
K24726

ISBN 978-1-4987-0468-7

9 781498 704687

90000

Learn to Code
with Games
Learn to Code
with Games
John M. Quick

L E A R N
 T O C O D E W

I T H G A M
E S

QUICK

A novel approach for the classroom or self-study, Learn to
Code with Games makes coding accessible to a broad audi-
ence. Structured as a series of challenges that help you learn
to code by creating a video game, each chapter expands and
builds your knowledge while providing guidelines and hints to
solving each challenge.

The book employs a unique problem-solving approach to
teach you the technical foundations of coding, including
data types, variables, functions, and arrays. You will also use
techniques such as pseudocode and process mapping to
formulate solutions without needing to type anything into a
computer, and then convert the solutions into executable
code.

Avoiding jargon as much as possible, Learn to Code with
Games shows you how to see coding as a way of thinking and
problem solving rather than a domain of obscure languages
and syntaxes. Its practical hands-on approach through the
context of game development enables you to easily grasp
basic programming concepts.

Learn to Code with Games

Computer Game Development

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Learn to Code
with Games

www.allitebooks.com

http://www.allitebooks.org

Learn to Code
with Games
John M. Quick
D i g i p e n I n s t i t u t e o f Te c h n o l o g y , S i n g a p o r e

www.allitebooks.com

http://www.allitebooks.org

Learn to Code
with Games
John M. Quick
D i g i p e n I n s t i t u t e o f Te c h n o l o g y , S i n g a p o r e

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150813

International Standard Book Number-13: 978-1-4987-0469-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to the students who experienced
this educational approach without the support
of a textbook, as well as the future coders of the

world who will benefit from this book.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Preface	 xiii

Acknowledgment	 xvii

Author	 xix

	 1.	Our Hero Is Stuck!	 1

Goals . 1
Required Files . 2
Demo . . 2
Unity Game Engine . 3
Challenge: Make Luna Move . . 3
Hint: Visualizing the Game World . 4
Hint: Visualization and Code . 5
Hint: Position . . 5
Problem-Solving Techniques . 6

Pseudocode . 6
Process Mapping . 8
Pseudocode versus Process Mapping . 9

A Note about Example Solutions . 10
Example Solution: Make Luna Move . 10

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Bonus Challenge: Make Luna Move Faster (or Slower)14
Bonus Hint: User Input in Unity . 14
Summary . 15
Reference . 16

	 2.	Characters and Characteristics	 17

Goals . 17
Required Files . 18
Challenge: Data Types . 18
Hint: Data Type Descriptions . 18

Boolean (bool) . 19
Integer (int) . . 19
Floating Point (float) . 20
Double Precision (double) . 21
Character String (string) . 21

Hint: How Computers Think . 22
Challenge Extension: Data Types . 23
Example Solution: Data Types . 24
Challenge: Defining Variables .25
Hint: Access Levels . 26
Hint: Naming Variables . 27
Hint: Declaring Variables . 28
Challenge Extension: Defining Variables . 29
Example Solution: Defining Variables . 29
Challenge: Initializing Variables . 31
Hint: Initialization . 31
Hint: Unity’s Start() Function . 32
Hint: Comments . 32
Example Solution: Initializing Variables . . 34
Summary . 36
References . . 37

	 3.	 The Bounds of the World	 39

Goals . 39
Required Files . 40
Challenge: Detecting Boundary Collisions .40
Hint: 2D Collisions . 41
Hint: Operators . 42

Math Operators . 42
Equality Operators . 43

Hint: Expressions . 44
Hint: Screen Size in Unity . 45

World Coordinates . 45
Screen Coordinates . 46
Converting Screen Coordinates to World Coordinates 47

www.allitebooks.com

http://www.allitebooks.org

ixContents

Example Solution: Boundary Collisions . 47
Challenge: Accounting for the Character . 51
Hint: Origin Point . . 51
Hint: Game Components in Unity . . 52
Example Solution: Accounting for the Character . 54
Summary . 56
Reference . 57

	 4.	 Sprinting and Sneaking	 59

Goals . 59
Required Files . 60
Challenge: Making Luna Sprint . 61
Hint: Function Calls . 61
Hint: The Unity Update() Function . 62
Hint: Conditional Statements . 63
Hint: Increment and Decrement Operators . 68
Hint: Getters and Setters . 69
Hint: Unity’s GetComponent Command and Dot Notation 70
Example Solution: Making Luna Sprint . 72
Challenge: Making Luna Invisible . 76
Hint: Boolean Flags . . 77
Hint: Boolean Operators . 78
Hint: Unity’s Time.time Command . . 80
Hint: Local Variables . 80

Hint: Unity SpriteRenderer Visibility . 82
Example Solution: Making Luna Invisible . 83
Summary . 87
References . . 88

	 5.	Collectables	 89

Goals . 89
Required Files . 90
Challenge: Collecting Objects . . 90
Hint: Primitive and Composite Data Types . 91
Hint: Unity Tags . 92
Hint: Axis-Aligned Bounding Box Collisions . 94
Hint: Unity Destroy() Function . 97
Example Solution: Collecting Objects . 98
Summary . 101
Reference . 101

	 6.	 Spawning Objects	 103

Goals . 103
Required Files . 104

x Contents

Challenge: Spawning Collectables . 104
Hint: Unity Prefabs . 106
Hint: Unity Prefab Instantiation . 107
Hint: Random Number Generation . . 110
Hint: Parent Objects in Unity . 110
Hint: for and while Loops . 111
for Loop . . 112
while Loop . 114

Example Solution: Spawning Collectables . 115
Summary . 118
References . . 118

	 7.	 Taking Inventory	 119

Goals . 119
Required Files . 120
Challenge: Keeping Track of Collectables in an Inventory 120
Hint: The using Directive . 121
Hint: The C# List . 122
Hint: Add and Remove Functions . 123
Hint: Access by Index . . 124
Hint: The Count Property . 125
Hint: Function Argument Usage . 127
Example Solution: Keeping Track of Collectables in an Inventory 129
Summary . 133
References . . 133

	 8.	A Party of Heroes	 135

Goals . 135
Required Files . 136
Challenge: Managing a Group of Heroes . 136
Hint: Unidimensional Arrays . 137
Hint: Unity Tags for Multiple Objects . 140
Hint: foreach Loops . 141
Example Solution: Managing a Group of Heroes . 142
Summary . 149
Reference . 149

	 9.	Generating a Tile Map	 151

Goals . 151
Required Files . 152
Challenge: Generating a Tile Map . 152
Hint: Tile Maps in Games . 153
Hint: Multidimensional Arrays . 154
Hint: Nested Loops . 159

xiContents

Hint: Nested Loops with Multidimensional Arrays 161
Example Solution: Generating a Tile Map . 163
Summary . 168
Reference . 169

	10.	 Spawning Objects on a Tile Map	 171

Goals . 171
Required Files . 172
Challenge: Spawning Objects on a Tile Map . 172
Hint: Functions . 173
Hint: Functions with Return Values . 176
Hint: Functions with Arguments . 178
Example Solution: Spawning Objects on a Tile Map 182
Summary . 189
References . . 189

	11.	 Level Generation	 191

Goals . 191
Required Files . 192
Challenge: Generating the Map Scene . . 192
Hint: Coupling and Cohesion . 195
Hint: Refactoring for Better Management . 197
Example Solution: Generating the Map Scene . 198
Summary . 209

	12.	 Game State Management	 211

Goals . 211
Required Files . 212
Challenge: Managing the Game State . 212
Hint: Singleton Design Pattern . . 214
Hint: The Unity Awake() and DontDestroyOnLoad() Functions . . . 218
Hint: The Unity Application.LoadLevel() Function 219
Hint: Unity Physics 2D Collisions . 222
Example Solution: Managing the Game State . 227
Summary . 231
References . . 231

	13.	 Gameplay	 233

Goals . 233
Required Files . 234
Challenge: Bringing the Gameplay Together . 234
Hint: Obstacles and Artificial Intelligence . 239
Hint: Game State and Score . . 241

xii Contents

Hint: More Collisions . . 241
Hint: More Spawns . 242
Hint: Reset the Game . 242
Example Solution: Bringing the Gameplay Together 243
Summary . 262

Appendix A: Pseudocode Reference	 263

Appendix B: Process Mapping Reference	 269

xiii

Preface

World leaders, governments, and organizations around the world are calling for
citizens to learn to code. They have identified coding as an essential 21st-century
skill for all people. Have you ever wanted to learn to code, but were turned off by
the technical jargon? Are you an ambitious young coder or forging a new career
path later in life? Have you ever dreamed of making your own games and soft-
ware? Now is your time to shine. This book makes coding accessible to a broad
audience of aspiring coders, including you.

Learn to Code with Games presents a novel approach to coding for the com-
plete beginner. With this book, you will come to see coding as a way of thinking
and problem solving, rather than a domain of obscure languages and syntaxes.
If you’re looking to explore coding through a practical, hands-on approach, this
is the book for you. This book will challenge you to code real game components
and provide you with guidance along the way. With a little effort, you will come
to think and act like the code hero that you truly are. Your quest begins today.

Challenges
This book is structured as a series of challenges that help you learn to code by cre-
ating a video game. In each chapter, you will expand your coding knowledge by
defining and implementing your own solutions to game development challenges.
Guidelines and hints are provided along the way to help you put your ideas

xiv Preface

into code. Ultimately, your success as a coder is determined by you. This book
puts you into the position to succeed today and in the future.

Goals
Every challenge is accompanied by a set of goals. These are the coding techniques
that you will be able to implement by the time you finish each challenge. They can
be found in the Goals section at the beginning of each chapter.

Required Files
Files have been provided for every challenge. You can find these in the
Software folder for each chapter available at http://crcpress.com/product/isbn/​
9781498704687. The Challenge folder contains everything you need to code your
own solution. The Solution folder contains a completed example project, which
you can compare against your own solution. The Demo folder contains a playable
version of the completed example project, which you can use to guide the devel-
opment of your own solution. At the start of each challenge, the Required Files
section describes exactly which files you will need to use.

Demo
A demo is included for each challenge you will face in this book. It is a good idea
to test the demo before attempting to code your own solution to each challenge.
The demo will help you visualize what you are working toward. Both Mac and PC
versions of each demo are provided.

Unity Game Engine
The Unity game engine is used throughout the challenges in this book. The pri-
mary focus of this book is helping you learn to code by applying a variety of game
development techniques. While the focus is not on learning Unity itself, you will
become familiar with some of the basic features of Unity. This is because Unity is
your gateway to rapidly coding and creating games. To complete the challenges
in this book, you need to download and install Unity on your computer. Unity
is free to use and available on both Mac and PC. You can download the Unity
installer from http://unity3d.com. Once downloaded, open the installer on your
computer and follow the step-by-step instructions. In no time at all, you’ll be
ready to start making games.

Code Editor
By default, Unity includes a code editor named MonoDevelop. Whenever
you double-click to open a script file in Unity, it will open in MonoDevelop.
However, you may use any code editor that you wish throughout this book,
including a basic text editor. The choice of a code editor is a matter of personal
preference and makes no difference in your ability to successfully complete the

xvPreface

challenges in this book. If you work on Mac, you might consider alternatives
like Xamarin, TextWrangler, or Sublime Text. If you work on PC, you might
consider alternatives like Notepad++ or Visual Studio.

Additional material is available from the CRC Website: http://www.crcpress.
com/product/isbn/9781498704687.

xvii

Acknowledgment

Thanks to Carrie Heeter, PhD, Professor of Media and Information at Michigan
State University, whose advice transformed the course of this book for the better.

www.allitebooks.com

http://www.allitebooks.org

xix

Author

John M. Quick is an expert in the strategic enhancement of motivation, learning,
and performance. He collaborates with industry and university clients to strate-
gically solve the greatest challenges in motivation, learning, and performance.

John earned a PhD in educational technology at Arizona State University,
where he researched enjoyment and individual differences in games. He created
the Gameplay Enjoyment Model (GEM) and Gaming Goal Orientations (GGO)
model to guide the design of effective game-based solutions.

John has released more than 15 digital games. His games focus on innovative
topics, such as learner engagement, employee performance improvement, and
cutting-edge interfaces.

John has over 5 years of classroom experience at the higher education level.
He has instructed courses on computer literacy, game design, and programming
at Michigan State University, Arizona State University, and DigiPen Institute of
Technology Singapore.

1

1 Our Hero
Is Stuck!

Luna (Figure 1.1) has ventured into the wilderness for the first time. She has spent
her entire life underground in the Dark Elf capital city of Clandis. By sneaking
out of the underground to explore the surface world, she has broken a sacred
bond that will prohibit her from ever returning to her homeland. Yet, Luna is
a brave and curious person. She excitedly begins her new adventure among the
people and places of the surface world.

Upon reaching the surface, Luna sees sunlight for the first time. She feels
the soft grass under her feet and breathes fresh air. Luna also realizes that there
is a bit of a problem. She cannot move! She twists left, right, up, and down, but it
seems her feet are firmly planted into the ground. If only someone with knowl-
edge of how the surface world works could help, Luna could continue on her
quest.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Make a character move inside the game world

◾◾ Draw process maps to visualize solutions to coding problems

◾◾ Write pseudocode to create logical solutions to coding problems

1.   Our Hero Is Stuck!2

◾◾ Modify variable values in a code editor

◾◾ Position objects in the game world using a two-dimensional (2D) coor-
dinate system

◾◾ Determine the position of an object using Unity’s Transform and
Vector3 properties

◾◾ Handle user key presses using Unity’s Input.GetKey() functions

Required Files
In this chapter, you will need to use the following files from the Chapter_01 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > UserMove.cs to code your solution to the
challenge

◾◾ Demo > Mac/PC > PlayerMove to demonstrate how your completed
solution should work

◾◾ Solution > UserMove.cs to compare your solution to the provided example
solution

Demo
Double-click on the PlayerMove demo to run the working version of the game.
Notice how you can use the arrow keys to move Luna around the screen. This is the
way your version of the game should work once you have completed this challenge.

Figure 1.1  This is Luna. She is embarking on an adventure that you will help to code.

Challenge: Make Luna Move 3

Unity Game Engine
If you have not already installed Unity on your computer, you can download the
Unity installer from http://unity3d.com. Once downloaded, open the installer on
your computer and follow the step-by-step instructions. In no time at all, you’ll
be ready to start making games.

Challenge: Make Luna Move
Go to the Chapter_01 > Software > Challenge > Assets > Scenes folder and double-
click on the Map.unity scene to open it in Unity. Then, press the play button
(Figure 1.2) near the top-center area of the Unity interface. This will launch the
current version of your game in the Game window.

Try to use your keyboard’s arrow keys to move Luna around the screen. As
you can see, Luna is stuck in place and needs someone to help her move. This is
where you come in. Using your coding skills, you will help create Luna’s world and
determine the outcomes of her quest. Your first challenge is to help Luna move.

In Unity, find the Project window. Inside, open the Assets > Scripts folder.
There, you will find a file named UserMove. Double-click to open this file in your
code editor. By default, Unity uses a code editor named MonoDevelop. You may
use any code editor you wish throughout this book, including a basic text editor.
The choice of a code editor is a matter of personal preference and makes no differ-
ence in your ability to successfully complete the challenges in this book.

Whenever the player presses the arrow keys (up, down, left, or right), the
UserMove script updates Luna’s position in the game world. Inside UserMove, find
(Ctrl + F on Windows, Command + F on Mac) the CheckUserInput() function.
For this challenge, you should modify the code inside this function to get it work-
ing properly. Currently, the arrow keys are being recognized, but Luna’s movement
direction is not being updated. You need to modify the newDirX (new X direc-
tion) and newDirY (new Y direction) variables so Luna moves in the indicated
direction. Right now, these variables are set to 0, regardless of which key is pressed.

//excerpt from CheckUserInput() function
//notice that the newDirX and newDirY values are all set to 0

//if player holds up arrow
if (Input.GetKey(KeyCode.UpArrow)) {

	 //move up along the Y axis
	 newDirY = 0;

} //end if

//move down
//if player holds down arrow
if (Input.GetKey(KeyCode.DownArrow)) {

Figure 1.2  The play button is located near the top center of the Unity
editor. When pressed, your game will be launched in the Game
window. Press the play button again to stop the game.

1.   Our Hero Is Stuck!4

	 //move down along the Y axis
	 newDirY = 0;

} //end if
//move left
//if player holds left arrow
if (Input.GetKey(KeyCode.LeftArrow)) {

	 //move left along the X axis
	 newDirX = 0;

} //end if

//move right
//if player holds right arrow
if (Input.GetKey(KeyCode.RightArrow)) {

	 //move right along the X axis
	 newDirX = 0;

} //end if

To make Luna move, the values of newDirX and newDirY must be modi-
fied based on which key is pressed. Therefore, you must think of which values are
related to which directions that Luna can move in.

Before proceeding, take a moment to think through a possible solution to
this problem. You should write out your thoughts on a piece of paper. Use draw-
ings and diagrams to help visualize your solution and think of ways that you can
solve the problem. Luna’s quest depends upon it.

Hint: Visualizing the Game World
If you are having trouble jumping right into the problem, it may be helpful to
visualize the game world. To do this, you could simply use a piece of paper and a
pencil to draw a picture of the situation (Figure 1.3).

+y

–y

+x(0, 0)–x

Figure 1.3  The game world can be represented as a 2D coordinate plane. Drawing is an
effective way to help you sort out a solution to many coding problems.

Hint: Position 5

	 1.	 Draw a rectangle to represent your screen.

	 2.	 Place a square in the center to represent Luna.

	 3.	 Draw a horizontal line through the center of your screen and label it x.
This represents your x axis.

	 4.	 Draw a vertical line through the center of your screen and label it y. This
represents your y axis.

You have created a 2D coordinate plane and placed Luna at the position of
(0, 0). Reconsider the challenge at hand using your visualization of the situa-
tion. You know that pressing the up, down, left, and right arrow keys should
update the direction in which Luna moves. Ask yourself these questions: How
will I know if she is moving right (or left or up or down)? What will happen to
the value of her x and y coordinates as she moves? See if you can come up with a
solution based on this information.

Hint: Visualization and Code
To further aid yourself in finding a solution, compare your drawing to the code
in the CheckUserInput() function. Recall that you placed Luna at the (0, 0)
position in your drawing. In the code, newDirX and newDirY are currently set
to 0 when a player presses any arrow key. This means Luna’s direction is not being
updated, no matter what key the player presses. That is why she is always stuck in
the same place! What other values might you give to newDirX and newDirY to
ensure that Luna moves when an arrow key is pressed?

Hint: Position
In our 2D game world, the location of all visible objects is represented by an
X and Y position in the coordinate system. In the case of Unity, every object
has a Transform component. Within each Transform, a Vector3 variable
stores X, Y, and Z values to represent the position of the object in the world.
Since we are working in 2D and Z represents three-dimensional (3D) depth, we
are only concerned with the X and Y values at this time.

Return to the Unity editor. In the Hierarchy window, click on the Player
object. Then, turn your attention to the Inspector window. Here, you will see
that our Player object has a number of subcomponents. The first one is its
Transform. Within the Transform, you will find the mentioned Position
variable with its X and Y values (Figure 1.4). Since Luna is currently at position
(0, 0) in our game world, her X and Y values are set to 0.

Figure 1.4  Every Unity object has a Transform component. The Position variable
stores the coordinates of the object in the game world.

1.   Our Hero Is Stuck!6

Go to the Scene window in the Unity editor. Zoom in until you can see Luna.
Click and drag her to a different place in the window. Afterwards, look back at
her position in the Inspector window. It will have changed from (0, 0) to some-
thing different, like (1.31609, 0.62832). What this demonstrates is that move-
ment is equal to changing Luna’s position in the game world. Think back to your
code. If a player presses an arrow key, you want to change Luna’s position, rather
than keeping it stuck at (0, 0). Thus, you need to change the values of newDirX
and newDirY to ensure Luna’s position updates correctly. You may need to use
negative values to represent some directions. Try dragging Luna up, down, left,
and right. Take note of how her position values change in the Inspector win-
dow. Equipped with this information, see if you can solve the problem in your
code by changing the values of newDirX and newDirY to match the arrow key
directions.

By the way, if you want to reset Luna’s position back to (0, 0), click on her and
look to the Inspector window. Go to Luna’s Transform > Position variable,
place your mouse cursor inside the X box and type 0. Do the same for Y. Luna
will return to her original position in the center of the screen.

Problem-Solving Techniques
At this point, you should have a pretty good idea of how to get Luna moving
again. Perhaps you even have the game working in your own version of the proj-
ect. If so, congratulations on completing your first challenge. If not, there is no
reason to worry. Before sharing an example solution to this challenge, we will
explore some problem-solving techniques. These will help you solve coding prob-
lems efficiently and effectively in the future.

Pseudocode
Pseudocode is a problem-solving technique that involves writing logical solutions
to coding problems in human-readable language that can easily be converted into
computer language. The value of pseudocode is that it helps us solve the logic behind
our solution before we try to code it. Jumping straight into the code without logi-
cally solving a problem is a certain way to waste time, get confused, and become
frustrated. However, if you clearly identify the logic of your solution first, and only
then begin to code it, you will be much more effective at solving computer problems.

To examine an example of pseudocode, imagine that Luna has just encoun-
tered a locked door. How might we write out the logic of whether Luna can open
the door? Perhaps we could say something like this:

The door IS locked
IF Luna HAS key, THEN open door.

Our pseudocode suggests that we need to know whether Luna has the key
to the door. If she has the key, then the door will open. If she doesn’t have it, then
the door will remain locked.

Notice that keywords like is, if, has, and then appear in our pseudocode.
These types of words translate well into code because computers are good at

Problem-Solving Techniques 7

interpreting raw logical conditions. The more straightforward and unambigu-
ously a given state can be expressed, the better a computer will understand it.
Unlike humans, computers are not capable of daydreaming about what color to
make a character’s clothes or critically analyzing how enjoyable a game is to play.
In contrast, computers only understand the literal instructions that are provided
to them and execute those instructions to the best of their ability. Thus, our goal
when pseudocoding is to use familiar language to write a logical set of instruc-
tions similar to what a computer understands. If we succeed at this task, then it
is relatively simple to convert our pseudocode into computer code. For instance,
if we convert our locked-door pseudocode to computer code, it looks like this:

door.isLocked = true;

if (Luna.hasKey == true) {

	 door.isLocked = false;

}

The main difference between this code and our pseudocode is the inclusion
of computer language syntax, such as brackets, parentheses, periods, and semi-
colons. Meanwhile, the logic of the code is identical to our pseudocode. Again,
this demonstrates the value of pseudocoding. We understand our own language
better than code, whereas computers understand their own language better than
ours. Pseudocoding allows us to separate the logic of a problem from computer
code. As a result, we can solve the logic portion of a problem in human language.
Afterwards, we can convert the logical solution into computer language. This
separation of tasks relieves us of having to simultaneously write code in a lan-
guage very different from our own, while also trying to derive a logical solution
to a problem. By solving the logic first and then converting the solution into code,
our problem-solving process is more efficient and effective.

Note that there are no strict guidelines for pseudocoding. The purpose is
to help you understand the situation at hand and sort out a logical solution to
any problem. You may choose to use language that appears more human or
more computer-like. In terms of our locked-door example, you might use the
phrase “unlock the door.” This is well suited to human understanding of the
logic. However, you might instead write something like “set door locked is false,”
which is closer to what a computer would understand. Both describe the same
logic. One is more like what one person might say to another, whereas the other
is closer to what a person might tell a computer to do through code. Regardless
of your approach, the important thing is that you are conceptualizing the logic
of your solution and preparing yourself to succeed at subsequently implementing
the code. You might even translate your ideas through a series of pseudocode
steps. You can begin with a clear interpretation that you understand well and
then work to gradually convert it into computer language.

A brief summary of the commonly used pseudocode keywords is provided
here. For a complete listing of many useful pseudocode keywords and exam-
ples of how they can be used, see the pseudocode reference in Appendix A of
this book.

1.   Our Hero Is Stuck!8

◾◾ Status: destroy, has, is, in, load, lose, new, on, reload, reset, set, update, win

◾◾ Conditional: but, else, for, if, instead, otherwise, so, then, therefore, whether

◾◾ Boolean: and, false, not, or, true

◾◾ Math: add, divide, equal, greater than, less than, modulus, multiply,
subtract

◾◾ Process: begin, check, continue, do, end, finish, loop, pause, start, stop,
try, while

◾◾ Timing: after, again, before, except, first, last, next, until, when

◾◾ Permission: allow, can, cannot, only, must, prohibit, should

Process Mapping
Process mapping is a problem-solving technique that involves creating a visual
diagram to demonstrate how a system functions. This technique is used in a
variety of fields, including business, engineering, manufacturing, and computer
programming. Process maps, also known as flowcharts, are useful for depicting
how information flows through a computer program and describing how states
change as a result of different events. Fortunately, process mapping has a fairly
standardized set of symbols that can be used. Nevertheless, styles and practices
will differ between people, so feel free to do what suits your needs and helps you
solve problems. The most fundamental process mapping symbols are described
in Table 1.1. By putting these symbols together in a variety of different orienta-
tions, you can visualize a virtually unlimited number of processes.

Table 1.1  Common Process Mapping Symbols

Symbol Shape Description

Rectangle Defines a single state, action, activity, or step in the
overall process

Arrow Connects one object to another, indicating the direction
of information flow

Diamond Indicates a decision point at which the process can
branch into multiple paths (from the different edges of
the shape)

Rounded
rectangle or oval

Designates a start or end point for the process

Parallelogram Represents information entering or exiting the process
(e.g., user input, a call to an external process, or data
passed to another process)

Circle Used to connect different sections of a process map
together (e.g., when a diagram spans across multiple
pages)

www.allitebooks.com

http://www.allitebooks.org

Problem-Solving Techniques 9

To demonstrate process mapping, let’s reconsider our example whereby
Luna encountered a locked door. How might we map the logic of whether Luna
can open the door? Perhaps we could draw something like the map shown in
Figure 1.5.

This diagram represents the locked door as a starting point using an oval
shape. The process then comes to a decision diamond that asks whether Luna
has the key. If yes, the process reaches its terminal point with an unlocked
door. If no, the door remains locked and the process repeats. Ultimately,
this leads us to identical computer code as our pseudocode example did, but
with an emphasis on visuals and information flow, rather than sequenced
instructions.

door.isLocked = true;

if (Luna.hasKey == true) {

	 door.isLocked = false;

}

For additional information and examples, see the process mapping reference
in Appendix B of this book.

Pseudocode versus Process Mapping
Both pseudocode and process mapping offer valuable insights for solving
computer problems. It is possible to use them interchangeably, as personal pref-
erence dictates. For instance, you may prefer the literal step-by-step instructions
that pseudocode provides, or you might like the visual nature of a process map.
However, these techniques can also be used in tandem to provide a more com-
plete picture of a solution that both is visual and offers codelike instructions.
Pseudocode emphasizes the detailed instructions that will ultimately be given
to the computer through code, whereas process mapping emphasizes the over-
all state and information flow of the program. Together, these techniques can
help us determine a logical solution to any problem before trying to code it. It is
recommended that you try using each technique for yourself to discover what
works best for you. Whether you ultimately end up using pseudocode, process
mapping, or a combination of both, you will be well on your way to solving prob-
lems more efficiently and effectively.

Has key? Yes

No

Door unlockedDoor locked

Figure 1.5  A process map illustrates the logic behind a locked-door scenario.

1.   Our Hero Is Stuck!10

A Note about Example Solutions
The following section describes how the problem of getting Luna to move can
be solved. This is not the only possible solution. As you face increasingly com-
plex challenges throughout your coding journey, it is important to remember
that many potential solutions to any problem exist. In fact, even in seemingly
trivial cases, different people will come up with different solutions to the same
problem. They will use different numbers, variables, functions, and arithmetic.
They will use different code formatting that contains unique names, spacing,
and outlining. As you become more proficient at coding, you will develop your
own personal style that is different from everybody else’s. Thus, solving prob-
lems with computers is not about finding the right answer. It is about finding
ways to create what you want to in a way that suits the requirements of your
project. Therefore, the provided examples demonstrate just one way of success-
fully solving the challenges in this book. Your solutions may or may not be
similar. What matters most is that the solutions work and that you can apply
what you have learned in these challenges to solve the future challenges that
you face.

Example Solution: Make Luna Move
Your challenge was to modify the newDirX and newDirY variables in the
UserMove script’s CheckUserInput() function, such that Luna’s direction is
updated when the player presses the arrow keys. The relevant code for this chal-
lenge is provided:

//check user input
private void CheckUserInput() {

	 //store the new movement direction based on user input
	 int newDirX = 0;
	 int newDirY = 0;

	 //check for movement input
	 //move up
	 //if player holds up arrow
	 if (Input.GetKey(KeyCode.UpArrow)) {

	 //move up along the Y axis
	 newDirY = 0;

	 } //end if

	 //move down
	 //if player holds down arrow
	 if (Input.GetKey(KeyCode.DownArrow)) {

	 //move down along the Y axis
	 newDirY = 0;

	 } //end if

Example Solution: Make Luna Move 11

	 //move left
	 //if player holds left arrow
	 if (Input.GetKey(KeyCode.LeftArrow)) {

	 //move left along the X axis
	 newDirX = 0;

	 } //end if

	 //move right
	 //if player holds right arrow
	 if (Input.GetKey(KeyCode.RightArrow)) {

	 //move right along the X axis
	 newDirX = 0;

	 } //end if

	 //update current direction attempted
	 _newDir = new Vector2(newDirX, newDirY);

} //end function

In the challenge code, note that newDirX and newDirY are set to 0, mean-
ing that Luna’s direction never gets updated when keys are pressed. On the con-
trary, we know that we want to update Luna’s movement direction whenever the
player presses an arrow key. Hence, instead of using zero values, we need to repre-
sent direction through different values. Consider how pseudocode can help us to
conceptualize the solution for moving in the upward and downward directions:

IF �player presses up arrow, THEN character moves in positive y
direction

IF �player presses down arrow, THEN character moves in negative y
direction

Our pseudocode identifies upward movement as positive along the y axis
and downward movement as negative along the y axis. But, how do we know
this? Recall that our game world exists in a 2D coordinate space. Think back
to the diagram in Figure 1.3 that we used to conceptualize our problem. As
you can see, in our game world, upward movement relates to positive y values,
whereas downward movement relates to negative y values for Luna’s position.
Accordingly, when the player presses the up arrow, we can indicate the change
in direction by setting our newDirY value to 1. Similarly, when the player
presses the down arrow, we should set our newDirY value to –1. The values of
1 and –1 represent positive (upward) and negative (downward) movement along
the y axis.

To complete our solution, let’s consider how process mapping can be used to
determine the newDirX values for left and right movement (Figure 1.6).

Again, our problem-solving technique assists us in understand-
ing the situation. When dealing with the x axis in our game world, we can
see that leftward movement is negative and rightward movement is positive.

1.   Our Hero Is Stuck!12

Therefore, when the player presses the left arrow key, we set newDirX to –1.
Meanwhile, when the player presses the right arrow key, we set newDirX to 1.
The final, working code for the challenge follows. All modified lines are shown
in bold:

//check user input
private void CheckUserInput() {

	 //store the new movement direction based on user input
	 int newDirX = 0;
	 int newDirY = 0;

	 //check for movement input
	 //move up
	 //if player holds up arrow
	 if (Input.GetKey(KeyCode.UpArrow)) {

	 //move up along the Y axis
	 newDirY = 1;

	 } //end if

	 //move down
	 //if player holds down arrow
	 if (Input.GetKey(KeyCode.DownArrow)) {

	 //move down along the Y axis
	 newDirY = −1;

	 } //end if

	 //move left
	 //if player holds left arrow
	 if (Input.GetKey(KeyCode.LeftArrow)) {

Right
arrow?

Left
arrow? Yes

Yes

No

No

X movement negative

X movement positive

No X movement

Key pressed

Figure 1.6  A process map illustrates Luna’s left and right movement through the game
world.

Example Solution: Make Luna Move 13

	 //move left along the X axis
	 newDirX = −1;

	 } //end if

	 //move right
	 //if player holds right arrow
	 if (Input.GetKey(KeyCode.RightArrow)) {

	 //move right along the X axis
	 newDirX = 1;

	 } //end if

	 //update current direction attempted
	 _newDir = new Vector2(newDirX, newDirY);

} //end function

Let’s walk through our functioning code to be sure we know exactly how it
works. This section of our UserMove script checks for user input in the form of
arrow key presses. If a key press is found, it updates the associated x or y direction
variable. Take the first segment as an example:

//move up
//if player holds up arrow
if (Input.GetKey(KeyCode.UpArrow)) {

	 //move up along the y axis
	 newDirY = 1;

} //end if

This code checks for an up arrow key press. If pressed, the y axis move-
ment direction variable is updated to 1. Recall that a positive value of 1 in
our game world represents upward movement along the y axis in the 2D
coordinate system. The if keyword and associated opening and closing
brackets, { and }, ensure that the enclosed direction variable does not get
updated unless the key is pressed. The if statement gets told whether or not
the key press occurred by the code within the opening and closing paren-
theses, (and). Inside the parentheses lies Unity’s function for checking key
presses, Input.GetKey(). This function checks for a given key and returns
a true value if the key is held down. Otherwise, it returns false. Since
we need to know whether the up arrow key is pressed, we tell the Input.
GetKey() function to listen for KeyCode.UpArrow. Whenever the player
holds down the up arrow key, the if statement is true and the newDirY
variable is updated. If the key is not pressed, the if statement is false and
the newDirY variable is not changed.

A nearly identical process is used to handle down, left, and right movement.
Each direction has its own if statement that checks for a specific key press using
the Input.GetKey() function. The given key values for each direction are

1.   Our Hero Is Stuck!14

KeyCode.DownArrow (down), KeyCode.LeftArrow (left), and KeyCode.
RightArrow (right). As with upward movement, when a related key is pressed,
the newDirX or newDirY variable is updated to 1 or –1. The direction values
are used to represent how Luna should move within the 2D coordinate system of
the game world.

Perhaps you are wondering why we only used 1 and –1 values to indicate
direction. Indeed, we could have put any number of similar values, such as 2,
–4, or 38, into our code and it would still function. However, 1 and –1 are the
ideal values to use in this case. This is because we are only defining the direction
of Luna’s movement, not her speed. From physics, you may be familiar with the
definition of velocity as speed times direction. Our UserMove script applies this
formula to determine Luna’s movement. Thus, for movement to occur in our
script, we need both direction and speed. Toward the end of the UserMove script,
you will find the following lines of code:

//excerpt from MoveObject() function

//change in movement based on user input and speed
float deltaMoveX = _newDir.x * _speed; //the x-axis change
float deltaMoveY = _newDir.y * _speed; //the y-axis change

Here, the x and y directions that we set earlier are multiplied by Luna’s speed
to calculate an overall change in movement. If we were to use values other than
1 and –1 to represent direction, we would be throwing off this calculation.
Instead, our UserMove script handles speed and direction separately. Only the
_speed variable is responsible for determining how fast Luna will move, while
only our direction variables are responsible for determining where Luna will
move. For the complete example solution code and Unity project, see the files in
the Chapter_01 > Software > Solution folder.

Bonus Challenge: Make Luna
Move Faster (or Slower)
Search through the UserMove script and find where the _speed variable’s
value is set to 0.05. Change this value and run your project in Unity to test the
outcome. Note whether Luna moved faster or slower. Experiment with changing
the _speed value to adjust how quickly Luna moves in the game world.

Bonus Hint: User Input in Unity
In this challenge, we used Unity’s Input.GetKey() function to determine
whether a key was being held. This method is useful for handling character
movement, since players typically hold the direction key down for as long as
they want a character to move and release the key when they want the move-
ment to stop.

Summary 15

However, Unity has other functions for checking user input as well. For
instance, Input.GetKeyDown() only checks for the first time that a button is
pressed. This method is useful for certain applications, like a pause feature. If the
player holds the pause button, we wouldn’t want the game to erratically flicker
in and out of the pause state. Instead, we want to pause the game the instant the
button is pressed once. Later, when the player presses the button again, the game
continues.

In contrast to Input.GetKeyDown(), Input.GetKeyUp() only checks
for the moment that a button is released. That is, a player can press a key without
any action occurring until the key is later released. Again, this function is useful
to implement in certain circumstances. For example, user interface buttons that
start or quit a game may use this method. We wouldn’t want a player to instantly
quit out of a game by accident, as might happen with Input.GetKeyDown().
Instead, we can use Input.GetKeyUp() to allow the player an extra moment
to decide (and possibly cancel) before committing to the action. If, and only
if, the key is released over the interface button will the command be executed.
This gives the player a chance to rethink an important decision before commit-
ting to it.

Another set of functions in Unity involve button input rather than key-
board input. These are Input.GetButton(), Input.GetButtonDown(),
and Input.GetButtonUp(). They operate in a fashion similar to that of the
keyboard functions, but handle buttons like those found on a mouse or handheld
game controller. There are other types of input functions as well. See the Input
section of the Unity scripting reference documentation to explore more options
for handling user input (Unity Technologies n.d.).

Summary
You have risen to the challenge and solved your first coding problem. Before
proceeding to the next challenge, make sure you are comfortable with the fol-
lowing coding techniques. Revisit the activities of this chapter and make sure
you are confident applying these methods before moving on.

◾◾ Make a character move inside the game world

◾◾ Draw process maps to visualize solutions to coding problems

◾◾ Write pseudocode to create logical solutions to coding problems

◾◾ Modify variable values in a code editor

◾◾ Position objects in the game world using a 2D coordinate system

◾◾ Determine the position of an object using Unity’s Transform and
Vector3 properties

◾◾ Handle user key presses using Unity’s Input.GetKey() functions

1.   Our Hero Is Stuck!16

Luna thanks you for allowing her journey on the surface world to continue.
Now that she can move, there are many new places that she is excited to explore.
There are also many more challenges to face as you learn to code.

Reference
Unity Technologies. n.d. Input. http://docs.unity3d.com/ScriptReference/Input.html

(accessed January 28, 2015).

17

2 Characters and
Characteristics

Before Luna continues on her journey, let’s take some time to consider what
characteristics she has as an adventurer. When coding, we can represent different
attributes using variables and data types. In addition, we will use these coding
techniques to design additional characters for our game world.

Goals
By the end of this challenge, you will be able to apply these coding techniques:

◾◾ Design stats for game characters

◾◾ Define variables to represent different characteristics

◾◾ Choose valid and meaningful variable names

◾◾ Select the appropriate data types for variables

◾◾ Set the appropriate access levels for variables

◾◾ Initialize variable values

2.   Characters and Characteristics18

◾◾ Use Unity’s Start() function

◾◾ Write meaningful single-line and multiline comments to identify the
purpose of code

Required Files
In this chapter, you will need to use the following files from the Chapter_02 >
Software folder.

◾◾ Challenge > LunaStats.cs, LilyStats.cs, LargStats.cs, and PinkBeardStats.cs
to code your solution to the challenges

◾◾ Solution > LunaStats.cs, LilyStats.cs, LargStats.cs, and PinkBeardStats.cs
to compare your solution to the provided example solutions

Challenge: Data Types
Your first challenge is to help define the characteristics for Luna by coding vari-
ables. Variables are used to store information in a computer that can be called
upon at a later time. Open the LunaStats script in your code editor. You will see
that a number of different characteristic variables have been outlined for Luna,
such as _firstName, energy, and groupExpBonus. However, these vari-
ables are incomplete. For valid code, each variable must be assigned a data type.
A data type represents the kind of information that is stored in a variable. It is
your responsibility to complete this code by providing an appropriate data type
to each variable. You should choose from the most common data types available,
which include Boolean (bool), integer (int), floating point (float), double
precision (double), and character string (string). Use the descriptive com-
ments above each variable to help guide your decision about which data type is
most suitable.

To begin, find the _firstName variable near the top of the LunaStats
script. To give a data type to a variable, replace the entire /*REPLACE THIS
COMMENT WITH THE DATA TYPE*/ comment (including the asterisks and
slashes) with one of bool, int, float, double, or string. Provide a data
type for each variable in this manner. To assist yourself with choosing appro-
priate data types, think about the kind of information that should be stored in
each variable.

Hint: Data Type Descriptions
The following data types are the most common ones you will encounter when
coding games. They will be suitable for most software applications. However,
note that there are many data types to choose from, as well as some slight differ-
ences between computer languages. For the purposes of our work in this book,

www.allitebooks.com

http://www.allitebooks.org

Hint: Data Type Descriptions 19

the data types provided here will be more than enough. Nevertheless, you may
encounter future situations in your coding career that require additional data
types that are not covered in this section.

Boolean (bool)
A Boolean value can only take one of two forms, either true or false.
To assign a Boolean data type to a variable in C#, use the bool keyword
(Microsoft Corporation 2015a). Boolean variables are useful when you need
to represent something that has only two possible states. For example, to
indicate whether or not Luna currently has a ring, we might make a Boolean
variable called ring. If Luna does have the ring, we set the variable equal to
true. If she does not have the ring, we set it to false. Furthermore, it is com-
mon to append Boolean variable names with an action word like is, can, or has
to help identify it as something that can only be true or false at a given time.
Take, for instance, the variable hasRing, which gives a clearer indication that
the variable stores information about whether Luna has a ring. Alternatively,
you might prefix Boolean variables with the letter b, as in bRing, to designate
the data type. Using such techniques is a matter of personal preference and up to
the individual coder to decide. However, adding brief appendages like these to
your variable names helps make your code easier to read and remember, thereby
making your work more efficient in the long run.

Integer (int)
The integer data type represents values as whole numbers. For example, the
numbers 0, 1, and 138 can all be represented as integers. In fact, a C# integer can
be any whole number between –2,147,483,648 and 2,147,483,648. Meanwhile,
fractions or partial values, such as 0.5 and 82.49, cannot be represented using
the integer data type. In C#, an integer data type can be assigned to a variable
using the int keyword (Microsoft Corporation 2015e). Integers are useful for
data that require more than two options (hence, Boolean is not suitable), but
whose values can be represented using whole numbers, without the need for
decimals. For instance, you might represent Luna’s health points (HP) using
an integer, such as 10. If she were injured, you could subtract a whole number
value from the total HP. Conversely, if healed, you could add an integer value
back to her HP.

Another useful way to apply integers is as a coding scheme for more complex
information. As an example, suppose Luna has magical abilities that are associ-
ated with nature, like sun, moon, or stars. You could develop an integer coding
scheme like 0 = sun, 1 = moon, 2 = stars. Then, using an integer variable like
magicType, you could assign Luna a magical type, such as 1, to represent that
she commands the power of the moon. A coding scheme like this can be more
efficient for the computer to process, since computers tend to prefer simple num-
bers over words. It can also make your code easier to update if you change plans
later and help to keep your code cleaner as you perform more complicated opera-
tions using these values.

2.   Characters and Characteristics20

Similar to Booleans, it can be useful to append your integer variables to make
them easy to identify. Two possible choices are num, as in numHealthPoints,
and i, as in iMagicType. Both help to clarify that the data are represented
using whole numbers and the integer data type.

Floating Point (float)
A floating-point value, designated in C# by the float keyword, is used to
represent nearly any number, whole or partial, up to seven digits long. This
roughly equates to a range of values from –3.4 × 1038 to 3.4 × 1038 (Microsoft
Corporation 2015d). Example floats include 3.0 and 1.234567. Whereas Booleans
are the go-to choice for binary situations and integers are best for whole num-
bers, floating points should be used in cases where partial, fraction, or decimal
values are required. For instance, in the previous chapter’s challenge, Luna’s
speed was represented with a floating-point value of 0.05. Naturally, a Boolean
value would not make sense here, because speed is not something that can be
true or false. If we were to use integers, we would be greatly restricted in what
our options would be. Since our actual value was 0.05, an integer would only
allow 0, which would create no movement, or 1, which would be far too fast to
be playable. Therefore, a floating-point value is the better choice. It gives us a
range of possible values that we can use to adjust Luna’s speed to a level that is
suitable for players. We could easily change the speed to something like 0.02 to
make her slower or 0.09 to make her faster. When deciding whether to use a
floating-point or integer value, think about whether you require the precision
offered by a floating-point value. If whole numbers are sufficient, just use an
integer. If you need partial values or greater precision in your calculations, a
floating-point value would be necessary.

As with other data types, you may choose to prefix your floating-point vari-
ables with the letter f, as in fSpeed. This identifies the variable as using a float
data type. In addition, when setting values for floating points, it is important to
include a lowercase f or uppercase F suffix to the actual value. That is, you should
set your fSpeed variable to a value of 0.05f or 0.05F. The purpose behind this
suffix is that computer languages have many ways in which they can represent
decimal values. By including the suffix, you are explicitly telling the computer
that you want it to treat this value as a float data type. Otherwise, the computer
may default to handling the value in a different way. In the case of C#, a value like
0.05 without the suffix would be automatically treated as a double data type,
which is not what you want to happen in this case. By adding the suffix, you take
control of your code and communicate clearly with the computer about how you
want your data to be handled.

Technically speaking, there is some error involved in trying to represent
decimal numbers with a computer. This is because there is an infinite quan-
tity of possible numbers that can be imagined, but a computer has limited
capacity to represent such numbers. Thus, some rounding error is introduced
when a number is converted into computer form. Therefore, a floating-point
value approximates, rather than perfectly represents, a number. Nevertheless,
for most game applications, the rounding error introduced is inconsequential.

Hint: Data Type Descriptions 21

On the other hand, if you were creating high-profile banking applications
or launching rockets into space, you would be much more concerned with
precision.

Double Precision (double)
A double-precision value, like a floating point, represents partial, fractional, or
decimal values. It is designated by the double keyword. However, a double
has more precision than a float, because it can represent numbers with 15–16
digits. This approximates a range of values from ±5.0 × 10–324 to ±1.7 × 10308
(Microsoft Corporation 2015c). Therefore, a double may be a better choice than
a float when a high degree of precision is required.

For example, one cutting-edge way to control a digital game is by using an
eye tracker. An eye tracker is a hardware device that detects where someone
looks on a computer screen. It can be used as an alternative way to interact with
games, rather than using a mouse, keyboard, or handheld controller. Yet, eye
tracking is not a perfect process. The hardware is capable of estimating where
someone looks, but there is some slight error involved in determining the exact
on-screen coordinates that a player is focusing on. Still, it is important for the
controls in a game to be as precise as possible to enhance usability. Thus, when
storing the coordinates for where a player is looking, an eye tracker is likely to
use a double data type rather than a float. This provides added precision in a
situation that requires extreme detail.

For circumstances where you require the exceptional precision offered by
15–16 digits, and the 7 digits offered by a float are insufficient, you will want
to use the double data type. That said, for most game applications, including
those in this book, it is not necessary to use a double. While the double
adds precision, it comes at the cost of using more memory and processing
power from the computer. Therefore, you should only elevate your data type
to a double when you truly need to. Furthermore, be aware that even larger
and more precise data types exist than the double, such as the decimal data
type in C#. Although they are only used in rare circumstances that require the
highest degree of detail in representing numbers, you should know that other
data types exist.

Similar to float, it is best to explicitly indicate when you want the com-
puter to treat a value as a double. This can be done by adding a lowercase d or
uppercase D to the end of any double value you set. For example, if you want to
represent Luna’s speed with a double, you should use a value of 0.05d or 0.05D.
Likewise, you can clearly identify variables that use the double data type by pre-
fixing their names with the letter d, as in dSpeed.

Character String (string)
The character string is an interesting data type for a couple of reasons. First, it can
be used to store information that closely represents our human language, includ-
ing letters, words, numbers, and symbols. Second, unlike the other data types
we’ve seen, a character string is actually composed of a collection of smaller pieces.

2.   Characters and Characteristics22

These pieces, known as characters, represent one single part of the character string.
For example, in the character string “I have coded 1,000 lines!” the letter a is a char-
acter. The spaces, punctuation, and numbers are also characters. Indeed, characters
have their own data type, which uses the char keyword. The char data type can
be used to represent a wide range of Unicode characters, which include a variety
of common letters, numbers, and symbols used in computer software (Microsoft
Corporation 2015b). For our purposes, it is good to know that characters are the
foundational building blocks of strings. However, for our practical development,
we will focus on using strings, rather than creating individual characters.

In C#, you can assign the character string data type to a variable using
the string keyword. When setting the value of a character string, you must
enclose the data within a pair of double quotes, " and ". For instance, Luna
might have a string variable called race, whose value would be "Dark Elf".
You can think of strings as containers that hold text information, in contrast to
the other data types, which store numbers or true/false values. Multiple strings
can be manipulated and compared in a variety of ways (Microsoft Corporation
2015f). When you need to represent information as text, use a character string.
For example, character strings are useful for names, text information that will
displayed to players, and data that will be logged during the development pro-
cess to verify that your game is working properly. You may choose to prefix
your string variable names with s (sRace), txt (txtRace), or a similar
convention.

Hint: How Computers Think
Recall that the Boolean data type can represent only one of two values: true
or false. Similarly, at the most fundamental level, computers only understand
two values. This is known as a binary or base 2 number system. All information
stored in a computer’s memory can ultimately be traced back to a collection of 0s
and 1s. Like a single switch or a lever, a binary digit, or bit, can only have a value
of 0 or 1. A bit is the purest form of information stored in a computer.

You may have heard of the term byte before. A byte is a series of 8 bits. Using
its 8 bits, each of which equals 0 or 1, a byte can represent things like a single letter
Q or the number 255. To create things like decimal numbers or strings of words,
the computer puts a series of bytes together in a specific pattern. From a byte,
we derive other computer memory terms you may have heard of before, such as
kilobyte (1,000 bytes), megabyte (1,000,000 bytes), and gigabyte (1,000,000,000
bytes). Each of these structures is built upon collections of individual bits
holding values of 0 or 1.

Imagine yourself inside a massive building filled with many billions of tiny
switches along its walls. Every slightest action, like taking a step or saying a
word, causes many of the switches to flip, revealing a new unique pattern among
the collection of switches in the building. Using these switches, any state of the
world can be uniquely represented for an instant, before it is updated once again
by subsequent actions. This is what it is like to be inside a computer’s memory.
Every time you load a web page, save a file, or type a letter, your computer is
reconfiguring its bits to represent the present state of its memory.

Challenge Extension: Data Types 23

Truthfully, the computer understands nothing more than 0 or 1. Since writ-
ing directly in bits would be nigh impossible and dreadfully tedious for humans,
we use computer languages as the compromise between 0s and 1s and the natural
languages we speak among people. A computer is incapable of genuine autono-
mous thought, and although it processes mathematics quickly, it cannot right-
fully be considered to be smart. Rather, it is a coder like you who has to tell the
computer what to do. The computer will faithfully try its best to do whatever
you tell it to. It will never defy you. Thus, as a coder, your challenge is to become
proficient in solving problems, such that you can tell a computer exactly what
you want it to do. With your code, a computer is transformed into a useful and
powerful tool for achieving your goals.

Generally speaking, computers are more efficient at processing data that
closely resemble their own representation of information as compared to data
that humans can readily interpret. Hence, data types like bool and int tend to
be processed faster and use less memory in the computer than data represented
as float, double, or string. On the other hand, using strings and decimal
numbers, which resemble our familiar words and numbers, may be more intui-
tive for you than representing information in other forms. For certain appli-
cations, such as programming graphics and physics engines, using optimized
code at every opportunity is critical. However, for the coding involved in this
book, which focuses primarily on the player-facing user experience, you should
not experience any major performance differences based on the data types you
choose. Just be aware that different data types have different implications for
interpretability and how taxing they are on the computer. Do what is comfortable
for you today and helps you solve problems successfully. The important thing is
that you can use code to create great games. As you continue to learn and become
more proficient in coding, you will find yourself experimenting with different
approaches and developing your own personal style.

Challenge Extension:
Data Types
At this point, you should be able to come
up with reasonable data types for Luna’s
variables and justify why you chose
them. An extended challenge is offered
for additional practice. You can com-
plete this challenge by looking at the
LilyStats script in your code editor. As
with LunaStats, a number of variables
have been defined, but are currently
missing data types. Again, your chal-
lenge is to complete the variable defini-
tions by providing suitable data types.

By the way, Lily (Figure 2.1) is
another character who Luna may

Figure 2.1  Lily is a dryad, a spirit of
nature and protector of the forest.

2.   Characters and Characteristics24

encounter on her journey through the surface world. Lily is a dryad, which
is a spirit of nature that has a particular affinity for trees. Her hair is like
leaves and her skin resembles the bark of the tree from whence she came. She
loves her forest home and will protect it at all costs. Go forth and code Lily’s
variables!

Example Solution: Data Types
Your challenge was to provide data types for Luna’s variables in the LunaStats
script. One interpretation of the suitable data types for these variables is pro-
vided. The data types, which have replaced the comments from the challenge file,
are in bold.

//character’s first name
private string _firstName;

//character’s last name
private string _lastName;

//character’s race
private int _race;

//character’s current happiness level
public int happy;

//character’s current energy level
public int energy;

//character’s current experience points
public int exp;

//character’s movement speed
private float _speed;

//pct exp bonus when grouped with others
private float groupExpBonus;

//whether character is overjoyed
private bool _isJoyful;

//whether character is fatigued
private bool _isFatigued;

The first and last name variables clearly need to hold text, and therefore
strings are the best choice. For race, a string could be used. However, we might
also code the races in our game using integers like 0 = dark elf, 1 = dryad, 2 =
dwarf, and 3 = orc. The happiness, energy, and experience variables can all be
represented by whole numbers, which makes integers suitable. If, for some rea-
son, our game needed to use decimals for these variables, we could use floating-
point values instead. Meanwhile, due to our need for fine-grained control over
Luna’s speed, a float is necessary. Since the group experience bonus is represented

Challenge: Defining Variables 25

as a percentage value, a float is again the optimal choice. Lastly, our joyful and
fatigued variables both have only two states and therefore are best represented
by Boolean values. A similar thought process has been applied to assign the data
types for the LilyStats script.

//forest from which character originates
private string _origin;

//color of leaves
private string _leafColor;

//type of leaves; 0 = blade, 1 = vine, 2 = moss
private int _leafType;

//type of tree bark; 0 = birch, 1 = cherry, 2 = oak
private int _barkType;

//pct health of leaves
public float leafHealth;

//pct leaf health regeneration rate per day
private float _regenRate;

//current temperature of leaves, in Celsius
public float leafTemp;

//whether wilting due to temperature
private bool _isWilting;

//whether character sheds leaves
private bool _isDeciduous;

//whether character needs water nutrients
private bool _isThirsty;

Your own data types may vary slightly from these example solutions. For
instance, you may have used integers where floats were used or vice versa. The
important thing is that you can justify your choices with reasonable explana-
tions. Your data types should accurately represent the kind of information that is
stored in your variables. Furthermore, take a moment to consider any variables
where your data types differed from the offered solutions. Think about how the
information in those variables could be stored as both the data type you chose
and the one presented in the example solution. By taking multiple perspectives
on these variables, you can gain additional insights on how to choose your data
types.

Challenge: Defining Variables
Now that you have successfully typed a variety of variables, why not try design-
ing some of your own? Let’s introduce a new character that Luna might encoun-
ter on her journey through the surface world. Larg (Figure 2.2) is a friendly

2.   Characters and Characteristics26

orc from the western mountains.
Being very unlike his brutal, igno-
rant kin, Larg was outcast from his
society. Ultimately, he was forced to
flee down the mountain to avoid a
gruesome fate. Today, he peacefully
dwells upon the surface among
people of all kinds. Nevertheless, he
owes his physical might to his orc
heritage.

At the moment, Larg is com-
pletely without variables to define his
characteristics. Your challenge is to
define 10 different variables that rep-
resent him. Once you have designed
the characteristics for Larg, open
up the LargStats script and code the
variables.

Hint: Access Levels
Previously, you set the data types for a number of variables in the LunaStats and
LilyStats scripts. If you take a look back at the variables in those files, you will
notice that one component precedes the data type. This is the access level, which
determines the extent to which a variable can be referenced and modified by
external code.

Imagine that script A would like to be able to ask script B for a value from
one of its variables. If script B’s variable has its access level set to public, then
script A will be allowed to retrieve the requested information. On the other hand,
if script B doesn’t want script A to ask about its variables, then it should use the
private access level.

Basically, a private variable can only be accessed from inside the script
in which it was created. Hence, only code within a given script can access its
own private variables. Meanwhile, a public variable can be accessed from
any script. This means that the variable can be referenced to determine its value
or even have its value modified by an external script. Thus, any code within or
outside of a given script can access that script’s public variables. To distinguish
between private and public variables in your code, it is customary to add a
leading underscore to the name of all private variables, as in _aPrivateVar.
In contrast, public variables have no such marking, as in aPublicVar. This
makes it easy to distinguish between public and private variables as you are
working through your code.

For the time being, think of private as the default access level for vari-
ables. Most often, you do not want or need external code to access a script’s
variables. Consider a character’s name. Typically, this would not be something
that another character could change. Therefore, a private access level would
make sense. On the other hand, there are some cases where you do need to share

Figure 2.2  Larg is a peaceful orc who was
outcast by his brutal kin.

Hint: Naming Variables 27

information between scripts or allow external scripts to modify variable values.
Consider a character’s health. This value is expected to increase or decrease
frequently during gameplay as a result of interactions with other characters.
In cases like this, use a public access level to allow other scripts to retrieve and
modify a variable’s value. Similar to data types, there are even more access levels
available in computer languages. You may encounter these in special circum-
stances and advanced coding applications. However, for our purposes, public
and private will be suitable.

Hint: Naming Variables
The final component required to create a variable is its name. The name fol-
lows the access level and data type on the code line that declares the variable.
In C#, there are certain rules that must be followed when naming variables:

◾◾ Alphanumeric characters are valid (A–Z, 0–9), as in LevelScore01.

•	 However, a number may not be the first character, as in 9Lives.

◾◾ Underscores may be used, as in _is_Magic.

•	 Other special characters, such as *, !, or %, may not be used, as in
wow!*Magic*.

In addition to the required naming rules, you should adopt a style for
creating meaningful variable names. To start, ensure that your variable names
accurately represent how they are used. The name you choose should reflect
things like the data contained in the variable and the broader purpose of the
variable in the game. For instance, Luna is likely to encounter other heroes
in the surface world who will want to join in the adventure. Therefore, we
might want to have a variable that represents how large the player’s hero group
is. Accordingly, a name like iGroupSize would clearly identify an integer
variable that tells us how many members are in the group. An included com-
ment could explicitly describe the variable on the line where it was created.
Thereafter in the code, the name serves as its own reminder of the variable’s
purpose.

Let’s consider a few of the most common variable naming styles, all of which
can help you create easy-to-read code. In Camel Case, a variable name starts with a
lowercase letter. Subsequently, each new word in the variable begins with a capital
letter. Hence, if our group size variable were named groupSize, we would be using
Camel Case. Meanwhile, Pascal Case was a similar technique, whereby the variable
name starts with an uppercase letter. Subsequently, each new word also begins with
an uppercase letter. Thus, if our group size variable employed Pascal Case, it would
be named GroupSize. These styles make your code easier to read and interpret.
It is highly recommended that you use either Camel Case or Pascal Case to name
your variables. If you need extra evidence, try reading the following sets of variables.
Track which set takes you more time to read and which is easier to interpret.

2.   Characters and Characteristics28

◾◾ Set A (poor style)

•	 _ maxgroupsize

•	 YELLINGVOL
•	 highScorerank
•	 lEvEloNe

◾◾ Set B (good style)

•	 isLevelEnded
•	 PlayerClass
•	 runSpeed
•	 CanCastSpells

Either of Camel Case or Pascal Case is appropriate. Each will help you to cre-
ate meaningful variable names. Regardless of which style suits you best, always
be sure to create valid and meaningful variable names. By using effective naming
practices, you will make it easier for yourself, as well as others, to read, recognize,
and remember your code.

Hint: Declaring Variables
You know about access levels, data types, and naming. That’s everything you need
to fully declare a variable. The general format for creating a variable is as follows:

accessLevel dataType variableName;

Of course, we want to include a comment as well, either above or at the end
of the line, to describe our variable. For example, to declare the strength of Larg,
we could use this code:

//base strength (str) stat
//determines how much weight character can lift
private int iStr;

Besides the comments, access level, data type, and variable name, notice that
a semicolon (;) is included at the very end of the variable declaration line. This is
used not only when creating variables, but also for ending all statements in your
C# code. So, you will become very familiar with semicolons. A semicolon in C#
is a bit like the period at the end of a sentence. It completes one full instruction
to the computer. Like a sentence, a computer statement can be formatted differ-
ently and spread out across multiple lines visually. However, once the computer
sees the semicolon, it knows that the statement is complete and can be evaluated.

www.allitebooks.com

http://www.allitebooks.org

Example Solution: Defining Variables 29

For instance, this would also be a valid, albeit not recommended, way to declare
Larg’s strength variable.

//base strength (str) stat
//determines how much weight character can lift
private

int
iStr

;

Challenge Extension: Defining Variables
There’s one more character to become acquainted with, although he hardly
needs any introduction. Pink Beard (Figure 2.3) is a wild and adventurous
dwarf. He originally hails from the lavish dwarven city of Goldstone, located
deep within the eastern mountains. His lively and energetic personality event
ually became too much for his people, who generally carry a formal and
reserved attitude. Thus, the dwarves sent Pink Beard out on a pilgrimage to
their ancient homeland upon the surface. It was their hope that Goldstone
would enjoy at least a few months of peace and quiet before he returned. Pink
Beard is noted for his namesake beard of bright pink whiskers, as well as the
absurdly large sunglasses that he wears, even when underground. For addi-
tional practice, think of 10 variables that capture Pink Beard’s unique person-
ality and talents. Then open the PinkBeardStats script and code them.

Example Solution: Defining Variables
It was up to you to fully design and declare 10 variables to represent Larg and
Pink Beard. Example solutions are provided to demonstrate how you may have
solved this challenge. In addition to the data types, which you have practiced
extensively already, this challenge requires you to choose access levels and vari-
able names.

Figure 2.3  Pink Beard is an energetic dwarf on a pilgrim-
age to find his people’s ancient homeland.

2.   Characters and Characteristics30

//excerpt from LargStats.cs

//number of fangs character has, usually 1 to 4
private int _numFangs;

//physical might; for strength-based calculations
public int str;

//maximum weight character can lift, in kg
private int _maxWeight;

//length of fangs, in cm
private float _fangLength;

//time to recharge super strength, in seconds
private float _superStrRest;

//multiplier for super strength
private float _superStrBonus;

//whether currently using super strength
private bool _isSuperStr;

//whether one parent was race other than Orc
private bool _isHalfOrc;

//whether character has Orcish unibrow
private bool _hasUnibrow;

//whether character has Orcish underbite
private bool _hasUnderbite;

//excerpt from PinkBeardStats.cs

//family name
private string _surname;

//worshiped deity in Dwarven culture
private string _deity;

//forge specialty; 0 = tools, 1 = armor, 2 = jewelry
private int _forgeType;

//current grumpiness level
public int _grumpyLevel;

//amount of gold carried
public int gold;

//length of beard, in cm
public float beardLength;

//height of character, in cm
private float _height;

//weight of character, in kg
private float _weight;

//whether sunglasses are currently worn
private bool _isGlassesOn;

//whether beard can be rubbed for luck
private bool _isLuckyBeard;

Hint: Initialization 31

Recall that a private access level is most often suitable, except for cases
where a variable’s value needs to be modified or referenced in an external script.
As for variable names, it is best to keep them brief, informative, and consistently
formatted. Also, remember to include comments to explain the meaning behind
your variables. If you can reason through your variables in this manner, you are
on the right track to becoming a proficient coder.

Challenge: Initializing Variables
Currently, we have four characters and a collection of several variables that rep-
resent each of them. Your final challenge for this chapter is to initialize each and
every variable with a reasonable starting value. Also, include a meaningful com-
ment with each variable to explain why you assigned the value that you did. To
get started, find the Start() function in each character’s script. This is where
you will initialize each character’s variables.

Hint: Initialization
To initialize a variable is to give it a starting value. A critical thing to know
about variables is that they should never be used without having been initial-
ized. In some languages, a variable that has not been initialized will con-
tain random or no information. This would cause an error, should you try
to access the variable in your code. In other languages, a variable may auto-
matically receive a default value at creation. Although it may prevent outright
errors from appearing, you don’t want the computer making assumptions on
your behalf. If the computer assumes a value that you did not intend, your
code will not run as designed. Instead, you want to be in control of your code
and explicitly tell the computer what you want to make happen. Many com-
mon bugs and errors arise when people try to access information in variables
that have not been initialized. Therefore, it is wise to always initialize your
variables with meaningful values prior to accessing them in any other part
of your code.

To initialize a variable, you simply set it to a valid value based on its data
type. When choosing a value, think of what a reasonable starting point would
be in the context of your game. A few examples are provided. Note the use of
the variable name, followed by an equal sign, a value, and a semicolon to end
the line.

//examples of initialized variables

//the character’s name must be set at the start
_firstName = "Luna";

//all characters begin game with full health of 100
health = 100;

//character will not be fatigued to start
isFatigued = false;

2.   Characters and Characteristics32

Hint: Unity’s Start() Function
Start() is a special function in Unity. It is used to control the timing of execu-
tion for code. Specifically, any code in the Start() function will run after a
script is enabled, but before other functions in the game loop (Unity Technologies
n.d.). The Start() function is called only one time. Since our variables need to
be initialized once and must be assigned values before they are used later in the
code, the Start() function is an excellent place to handle initialization. In fact,
Start() is a good place to put any code that only needs to be used once and
must execute prior to the main body of your script.

Besides initializing variables, Start() is commonly used to call one-time
setup functions. For example, imagine beginning a new level in a game. There
might be certain things that need to be set up before the level begins, such as
score counters, timers, obstacles, and object positions. The initial preparation of
such items could be handled in separate functions that get called from within
Start(). This helps to keep the code clean and more organized.

Hint: Comments
You may have noticed certain descriptions placed throughout the sample code
and challenge files provided with this book. Whenever a single line contains a
double slash (//) or multiple lines are contained within slashes and asterisks (/*
and */), a comment is being designated. Comments are special sections in our
code. They are ignored by the computer when it compiles our code into a func-
tioning program. Although they do not alter the function of our programs, com-
ments are an absolutely vital part of coding. This is because comments allow us to
insert notes and descriptions into our code using human language.

Recall that human language and computer language are different enough as
to be difficult to interpret between one another. A computer cannot understand
human language. A human has to do a bit of translation to understand computer
language. Therefore, we use comments to leave notes, descriptions, and explana-
tions in our code using human language. This makes it easier for us, as well as
others, to understand how our code works. Try to interpret the meaning of the
following code:

float deltaMoveX = _newDir.x * _speed;

Without knowing the context or purpose in which the code was written, it
is difficult to accurately assess what the code does. You may be able to make a
reasonable guess as to what the code does, but with a great deal of uncertainty.
In contrast, try to interpret the same code after comments have been added:

//�calculate change in movement based on user input direction and
player speed

float deltaMoveX = _newDir.x * _speed; //x axis change

Suddenly, the comments have made the intent of this code clear. The com-
ment above the code gives a general picture of what is happening. A player’s

Hint: Comments 33

movement is being calculated based on speed and direction. Meanwhile, the end-
of-line comment clarifies that this particular formula is calculating the x axis
movement. Armed with this information, the code can be readily understood.
A float variable called deltaMoveX stores the change in x movement, which
is calculated as the new x direction times the player’s speed. Thanks to the com-
ments, this code is easy to understand in terms of its purpose and function.

Comments are best placed immediately above the code they are describing.
When adding brief, extended details, you may choose to include a comment at
the end of a line as well. Just make sure the comment is placed after the semi-
colon, so it will not interfere with the functional code on the line. Both tech-
niques were demonstrated in the preceding deltaMoveX example. To create
single‑line comments like these, simply use two forward slashes (//). Anything
that comes after the slashes will be ignored. This allows you to add any necessary
notes to your code in human language without disrupting the function of your
program.

//a single‑line comment can be placed above the code it describes
is�Commented = true; //a comment can also be placed at the end of a
line

Besides single‑line comments, you can also write multiline comments. These
can be spread out over several lines of code and wrapped into blocks, like para-
graphs. Multiline comments are useful when extended descriptions are required
that cannot easily fit within a single line. To begin a multiline comment, use the
/* characters. To end a multiline comment, use the */ characters. Everything
between these opening and closing characters will be treated as a comment. This
allows for more details to be added to the code in an easy-to-read format. For
instance, the header of each script in this book contains a basic description of the
file’s purpose, as well as copyright information. Note the use of a multiline com-
ment and line breaks to form a sort of paragraph.

/*
LunaStats
Defines the stats for Luna.

Copyright 2014 John M. Quick.
*/

You should use comments abundantly in your code. Every nontrivial line or
action taken in your code needs to have a descriptive comment. When you want
to describe what a particular line of code will do, add a comment directly above
the code. When you just need to make a small note or add bonus details, add a
comment to the end of the line. If you need to include a detailed explanation or
summarize a complicated process, make use of a multiline comment.

Comments are critical for demonstrating your understanding of code and
recalling it at a later time. As you make more and more games, you will want to
refer back to problems you solved in the past, rather than expending the time
and energy to duplicate existing work. With good commenting practices, you
will rapidly reuse your existing code, so you can focus on learning new and more
complex techniques.

2.   Characters and Characteristics34

Example Solution: Initializing Variables
Reasonable example initialized values are offered for each character’s variables.
Your values will naturally vary. Just be sure that your initialized values match the
data types of their corresponding variables. In addition, these values should reflect
what you expect the characters to start their adventure with in your game world.

//excerpt from LunaStats.cs
void Start() {

	 //first name
	 _firstName = "Luna";

	 //last name
	 _lastName = "Lunaurora";

	 //0 = Dark Elf
	 _race = 0;

	 //start with moderate happiness
	 happy = 5;

	 //start with full energy
	 energy = 10;

	 //start with no experience
	 exp = 0;

	 //suitable speed in game world units
	 _speed = 0.05f;

	 //25% bonus exp when grouped
	 groupExpBonus = 0.25f;

	 //not overjoyed to start
	 _isJoyful = false;

	 //not fatigued to start
	 _isFatigued = false;

} //end function

//excerpt from LilyStats.cs
void Start() {

	 //from the Southern Forests
	 _origin = "South";

	 //has green leaves
	 _leafColor = "Green";

	 //grows vines
	 _leafType = 1;

	 //skin is made of birch wood
	 _barkType = 0;

	 //start at max health (100%)
	 leafHealth = 1.0f;

Example Solution: Initializing Variables 35

	 //regenerate 10% of health per day
	 _regenRate = 0.1f;

	 //comfortable outdoor temperature
	 leafTemp = 24.0f;

	 //healthy to start
	 _isWilting = false;

	 //does not shed
	 _isDeciduous = false;

	 //energized to start
	 _isThirsty = false;

} //end function

//excerpt from LargStats.cs
void Start() {

	 //this Orc has 1 fang
	 _numFangs = 1;

	 //default starting strength for Orcs
	 str = 10;

	 //by default, 10 times strength
	 _maxWeight = 100;

	 //5cm, a rather long fang
	 _fangLength = 5.0f;

	 //30s to recharge ability
	 _superStrRest = 30.0f;

	 //strength is doubled
	 _superStrBonus = 2.0f;

	 //must be activated by player
	 _isSuperStr = false;

	 //full-blooded Orc
	 _isHalfOrc = false;

	 //two, distinct eyebrows
	 _hasUnibrow = false;

	 //makes fang stick out even more
	 _hasUnderbite = true;

} //end function

//excerpt from PinkBeardStats.cs
void Start() {

	 //family known for distinct laughter
	 _surname = "Loudlaff";

2.   Characters and Characteristics36

	 //legendary hero of tunneling
	 _deity = "Dugodurr";

	 //master of jewelry crafting
	 _forgeType = 2;

	 //not grumpy to start
	 _grumpyLevel = 0;

	 //brought some savings along for journey
	 gold = 100;

	 //30cm beard
	 beardLength = 30.0f;

	 //150cm height
	 _height = 150.0f;

	 //100kg weight
	 _weight = 100.0f;

	 //currently wearing glasses
	 _isGlassesOn = true;

	 //beard can be rubbed for luck
	 _isLuckyBeard = true;

} //end function

Summary
You have risen to the challenge and fulfilled the entire process of designing,
declaring, and initializing variables. You are well on your way to setting up the
foundations of your very own game. At this point, you should be able to succeed
in all of these coding tasks:

◾◾ Design stats for game characters

◾◾ Define variables to represent different characteristics

◾◾ Write valid and meaningful variable names

◾◾ Select the appropriate data types for variables

◾◾ Set the appropriate access levels for variables

◾◾ Initialize variable values

◾◾ Use Unity’s Start() function

◾◾ Write meaningful single-line and multiline comments to identify the
purpose of code

References 37

In Chapter 3, we will return to the surface world and continue coding Luna’s
quest. Although you have defined and initialized variables, you will see that there
are many more ways in which these values can be manipulated to make exciting
things happen within the game world.

References
Microsoft Corporation. 2015a. bool (C# Reference). https://msdn.microsoft.com/library/

c8f5xwh7.aspx (accessed January 30, 2015).
Microsoft Corporation. 2015b. char (C# Reference). https://msdn.microsoft.com/library/

x9h8tsay.aspx (accessed January 30, 2015).
Microsoft Corporation. 2015c. double (C# Reference). https://msdn.microsoft.com/

library/678hzkk9.aspx (accessed January 30, 2015).
Microsoft Corporation. 2015d. float (C# Reference). https://msdn.microsoft.com/library/

b1e65aza.aspx (accessed January 30, 2015).
Microsoft Corporation. 2015e. int (C# Reference). https://msdn.microsoft.com/

library/5kzh1b5w.aspx (accessed January 30, 2015).
Microsoft Corporation. 2015f. string (C# Reference). https://msdn.microsoft.com/

library/362314fe.aspx (accessed January 30, 2015).
Unity Technologies. n.d. MonoBehaviour.Start. http://docs.unity3d.com/ScriptReference/

MonoBehaviour.Start.html.

www.allitebooks.com

http://www.allitebooks.org

39

3 The Bounds
of the World

Thanks to you, Luna is up and running along the surface world. It’s time to start
coding more features and characteristics of our game. We’ll start by defining
the boundaries of the game world. This requires us to dive into the topic of colli-
sion detection. Collisions are one of the most fundamental components of game
development. It’s most unlikely that you will ever create or play a game that does
not involve collisions. With the ability to code collisions, you will be able to intro-
duce all kinds of interactivity into your games.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Prevent a game character from moving outside the screen

◾◾ Logically determine how objects collide in two-dimensional (2D) space

◾◾ Manipulate variable values using math and equality operators

◾◾ Modify variable values using expressions

3.   The Bounds of the World40

◾◾ Convert between screen and world coordinates in Unity

◾◾ Access Unity game components from within your code

Required Files
In this chapter, you will need to use the following files from the Chapter_03 >
Software folder.

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > UserMove.cs to code your solution to the
challenge

◾◾ Demo > Mac/PC > PlayerBounds to demonstrate how your completed
solution should work

◾◾ Solution > UserMove.cs to compare your solution to the provided exam-
ple solution

Challenge: Detecting Boundary Collisions
Return to your original challenge project from Chapter 1, PlayerMove, and
run it in Unity. This was the challenge in which you got Luna moving for the
first time. If you move her to the edge of the screen in any direction, she just
keeps on going! There is nothing stopping her from disappearing into oblivion.
Nor is there anything to console the poor players who might have lost their
hero to this case of incomplete coding. In contrast, try running the demo for
this chapter by double-clicking on PlayerBounds. Here, you will see that Luna
stops whenever she reaches the edge of the screen on all four sides. She cannot
pass the boundaries of the game world and cannot be lost in the mysterious
space beyond. We want her to stay with us at all times, so this is a good thing.
Ultimately, your challenge is to implement boundary collisions that keep Luna
visible on the screen at all times.

Before you begin trying to code a solution, recall the pseudocode and pro-
cess mapping techniques we previously discussed. It is time to put these techniques
to work. If you can solve the challenge using one or more of these methods first,
you will be in a much better position to efficiently and effectively translate your
thoughts into code. After you have solved the logic of this challenge, begin work-
ing to remedy the situation in the PlayerBounds project. Inside this project, open
the UserMove script in your code editor. Look for the series of four if statements
inside the MoveObject() function. To solve this challenge, you need to replace
the true/*REPLACE WITH POSITION CHECK*/ and /*UPDATE NEWX/Y
POSITION*/ comments with the appropriate code to stop Luna from moving out-
side the boundaries of the screen. Meanwhile, you can run the Map scene in Unity
to test your code. To help you focus on the logic behind this challenge and translate
your solution into code, several hints are provided.

Hint: 2D Collisions 41

Hint: 2D Collisions
When we originally thought about how Luna could move, we pictured the world
as a 2D coordinate plane. Once again, this visual will help us understand how to
prevent her from moving outside the boundaries of our world. Whereas before
we had a limitless coordinate system stretching in all directions, we now are plac-
ing boundaries at the edges of the screen. Therefore, you can draw out your coor-
dinate system with Luna in the middle just like before (Figure 3.1). To represent
the boundaries, simply draw a rectangle around the sides of your grid. These
indicate the top, bottom, left, and right edges of the screen. We know that our
completed code should ensure Luna never moves past these boundaries.

However, one big question remains to be answered: How do we know when
Luna collides with a boundary? More generally, how do we know when two
objects collide in 2D space? Think about this question for a moment and see if
you can reason out a response.

Since our world can be represented as a 2D coordinate plane, all objects inside
the world have x and y coordinates. These coordinates tell us where every object
is at a given time. In the case of Unity, we previously discussed the Transform
component, along with its Vector3 position variable, which stores the x and
y coordinates of an object. Hence, at any given moment, we know exactly where
Luna is, as well as any other object in our game. We can also think of our bound-
aries as having x and y coordinates. So, how do we know if two objects are collid-
ing or not? Basically, two objects are colliding in 2D space when they share the
same coordinates to some degree. In other words, two objects are colliding when
they overlap one another.

Once again, it would be helpful to visualize this situation. Imagine there is
an invisible box around Luna. Draw it on your diagram. You have already drawn
lines to represent the boundaries of the screen. Thus, you can begin to under-
stand how Luna will collide with the screen boundaries using your diagram.
At the same time, think in terms of the x and y coordinates of these objects.

+y

–y

+x0, 0

Right

Top

Bottom

Left

–x

Figure 3.1  The game world is conceptualized as a 2D coordinate plane. The boundaries
of the screen have been drawn to represent where Luna’s movement should be stopped.

3.   The Bounds of the World42

For instance, we know that Luna has collided with the rightmost boundary
once her x position is greater than or equal to the screen’s right edge x position.
Following the same logic, take a moment to see if you can reason out the left, top,
and bottom collisions.

Hint: Operators
By now, you should be able to come up with the logic behind the challenge of
keeping Luna within the screen’s boundaries. So, let’s transition into the code
portion of this challenge. We know that we want to compare Luna’s x and y val-
ues to the four edges of the screen to check for collisions. To do this, we will need
to make some calculations and comparisons in our code. This is where opera-
tors come into play. While there are many types of operators available to you in
C#, the two types of immediate importance to this challenge are the math and
equality operators.

Math Operators
The math operators in C# are those that you are already familiar with from, well,
math. In a sense, a computer is just a high-powered calculator. It can perform
all kinds of operations and calculations many times per second. At the most
basic level, we have addition, subtraction, multiplication, and division. Each has
its own symbol in code. A plus sign (+) indicates addition and a minus sign (−)
represents subtraction. Furthermore, an asterisk (*) represents multiplication,
whereas a forward slash (/) indicates division. One unique math operator that is
common in computer languages is modulus, which is represented by the percent
sign (%). Essentially, the modulus operator returns the remainder of the division
between two numbers. Thus, 5 % 3 calculates the remainder of 5 divided by 3,
which is 2. Modulus is useful for iterating through lists of objects, among other
things. Using these math symbols, we can perform calculations with numbers
and modify variable values in our game. Table 3.1 summarizes the math opera-
tors. Examples are provided for demonstration purposes:

//math operator examples

//addition
//add one and one
1 + 1

Table 3.1  Math Operators

Operators Symbols

Addition +
Subtraction –
Multiplication *
Division /
Modulus %

Hint: Operators 43

//subtraction
//reduce Luna’s energy by 5
energy − 5

//multiplication
//double Luna’s speed
_speed * 2

//division
//calculate the aspect ratio of the screen
Screen.width / Screen.height

//modulus
//get the second digit in a number
25 % 10 //gives us 5

Equality Operators
You are probably familiar with several equality operators from your prior experi-
ence in math. Equality operators help us compare values to one another, such as
checking whether two numbers are the same or whether one is higher than the
other. Often, equality operators are used within conditional statements to deter-
mine whether a section of code should be executed. For example, when checking
Luna’s position against the screen boundaries, you want to ask whether her coor-
dinates are greater than or equal to any of the boundaries. If so, you won’t allow
her to move beyond the boundary. If not, you simply allow her to keep moving as
normal. The most common C# equality operators are shown in Table 3.2. Again,
each has its own code symbol. Note that when you want to set a value of a vari-
able, you use a single equal sign (=). This is called assignment. However, if you
want to ask whether two values are equal to one another, a double equal sign is
used (==). Examples are provided:

//equality operator examples

//equal
//set the speed variable
_speed = 0.01f

Table 3.2  Equality Operators

Operators Symbols

Equal (assignment) =
Equal (comparison) ==
Not equal !=
Greater than >
Less than <
Greater than or equal to >=
Less than or equal to <=

3.   The Bounds of the World44

//equal comparison
//are the numbers equal?
1 == 2 //false

//not equal
//are the numbers not equal?
1 != 2 //true

//greater than
//does Luna have energy left?
energy > 0

//less than
//is Luna below the maximum level?
currentLevel < maxLevel

//greater than or equal to
//does Luna have enough gold to buy this item?
gold >= price

//less than or equal to
//is Luna’s energy fully recharged?
energy <= maxEnergy

Hint: Expressions
Like mathematical expressions, computer programming expressions contain a
series of values, variables, and operators that can be evaluated. You have already
learned about values, variables, and operators. With expressions, you can com-
bine any quantity of these elements to calculate, modify, or compare values in
your code. One important thing to note is that expressions are evaluated in a
particular order (Microsoft Corporation 2015). This depends on the precedence
given to each type of operation. For instance, multiplication is handled before
addition. Items within parentheses are always evaluated first, so this gives you a
degree of control over how your code is evaluated. In the case where there is a tie
for precedence, expressions are evaluated from left to right by default. Table 3.3
summarizes the precedence for evaluating expressions in C#. A series of exam-
ples is provided. Try to calculate the values yourself to make sure you understand
the order in which expressions are evaluated.

Table 3.3  Expression Evaluation Precedence
Ordered from First to Last

Operators Symbols

Parentheses ( )
Multiplication and division *  /  %
Addition and subtraction +  –
Greater and less than <  <=  >  >=
Equal (comparison) ==  !=
Equal (assignment) =

Hint: Screen Size in Unity 45

//expression examples
//what is the value of each line?

x = 1 + 2 + 3 //6

x = 10 / 2 + 3 //8

x = 10 / (2 + 3) //2

10 * 2 − 5 < (5 * 2) + 5 //false

6 * 4 >= 2 * 12 / 2 //true

1 + 3 * 5 == 2 * (4 + 4) //true

Hint: Screen Size in Unity
The screen size is the last piece of the puzzle you need. Once you can get the width
and height of the screen, you will be able to perform your boundary collision checks
and keep Luna inside the game world. In the case of Unity, retrieving and making
use of the screen dimensions requires a bit of explanation. This is due to the fact
that Unity has several different kinds of coordinate systems. Often, you will need to
convert between them in your code to make sure you are using consistent values.
For this challenge, we will need to reconcile two of Unity’s coordinate systems.

World Coordinates
One way that Unity represents space is through the world coordinate system.
You can think of world coordinates as measuring things that are inside the game
world itself. For example, Luna is inside the game world, along with many other
characters and objects. In our own terms, we might describe Luna as a sprite with
a width of 64 pixels and a height of 64 pixels. However, in Unity’s world coordi-
nate system, she is 0.64 units wide and 0.64 units tall. This equates to a conversion
of 100 between pixels to world units. That is, 64/100 = 0.64.

Indeed, Unity has a setting for art assets that are imported into any project.
This setting is called Pixels Per Unit and carries a default value of 100. Take
a look in the Assets > Textures folder of your Unity project. Click on the DarkElf
image. Then, direct your attention to the Inspector window. A few lines down you
will find the Pixels Per Unit setting and see that it has defaulted to a value
of 100. The reason this conversion is important is because you want to always
use consistent units in your code. Otherwise, things will not work as you intend.
Since Unity understands the game world in its own units, you want to make sure
to use these units in your code. Therefore, if you needed to refer to Luna’s size, you
would want to use a value of 0.64 units, rather than 64 pixels. For another example,
peek back at the UserMove script. You can see that Luna’s _speed variable is set
to a value 0.05f. This value is in world coordinates. It basically tells the computer
that we want Luna to move at a rate of 0.05f world units. By the way, it is possible to
change Unity’s Pixels Per Unit setting. However, unless you have a specific
reason to do so, it is generally recommended that you retain the default setting and
make the necessary unit conversions in your code where required.

3.   The Bounds of the World46

Screen Coordinates
Another way that Unity represents space is through screen coordinates. In this
case, the screen refers to the Unity player window. You use the Unity player win-
dow whenever you press the play button to test your project and see it run in the
Game window. Based on the resolution of your monitor and how you arrange
your Unity interface, the player window can adopt a variety of sizes. Similarly,
you also see the player window whenever you run a compiled Unity game. For
instance, all of the demo projects included with this book are run within a Unity
player window. If you hold the command (Mac) or control (PC) key and double-
click to open a demo, Unity allows you to choose from a wide variety of res-
olutions, such as 1024 × 768 and 800 × 600. Your resolution choice ultimately
defines the size of the player window. In the event you run a game in full-screen
mode, the size of the player window is equivalent to the monitor resolution.

Furthermore, Unity’s screen size is measured in pixels along the width and
height of the player window. For instance, a resolution of 1024 × 768 means
the screen is 1024 pixels wide and 768 pixels tall. In Unity, you can retrieve the
width of the player window, in pixels, using the Screen.width command.
Likewise, you can retrieve the height of the player window, in pixels, using the
Screen.height command. Thus, if your Unity player window has a resolu-
tion of 1024 × 768 pixels, Screen.width returns a value of 1024 and Screen.
height returns 768 (Figure 3.2).

The major benefit of being able to access the screen size is that we can make
our software resolution independent with relative ease. Imagine how many ver-
sions of the same game code you would need to write for it to play well on all
the different shapes and sizes of mobile devices in the world today. Similarly,
consider how hard it would be to make a desktop game that looks right on all the
various monitors that people own, some of which are 5, 10, or even 15 years old.
Thankfully, we can use the Screen.width and Screen.height commands
to retrieve the current screen size our game is being played on, regardless of what

Unity player window

Screen.width

S
c
r
e
e
n
.
h
e
i
g
h
t

Figure 3.2  Unity’s screen size is measured in pixels according to the size of the
player window. By default, divide any pixel measurement by 100 to convert it into Unity
world units.

Example Solution: Boundary Collisions 47

device or resolution is being used. This is what allows us to efficiently handle
many devices with a single set of code. Instead of coding our game with a single
resolution in mind, we can make our code adapt to a wide variety of situations.
To do so, we still have to be conscious of the different coordinate systems at work
within Unity. Thus, to make effective use of the Screen.width and Screen.
height commands, we must remember to convert these pixel values into world
units. This will ensure all measurements and values are consistent throughout
our code.

Converting Screen Coordinates to World Coordinates
We know that we can retrieve the screen dimensions using Unity’s Screen.
width and Screen.height commands. At the same time, we know that
Unity’s Pixels Per Unit conversion is 100. Therefore, to begin identifying
where our boundaries are in terms of world units, we can make the following
conversion:

//width of screen in world units
Screen.width / 100

//height of screen in world units
Screen.height / 100

By dividing our screen dimensions by Unity’s Pixels Per Unit value,
we have translated our screen width and height into world units. Recall that posi-
tion values, such as Luna’s 2D coordinates at any given time, are measured in
world units as well. Now we are able to accurately compare Luna’s position to
the boundaries of our screen! Recall that the origin of the Unity world is at the
point (0, 0), which lies in the center of the screen. Can you calculate the point
that represents the right edge of the screen? Try drawing a diagram to visualize
the situation.

From the provided code and hints, you should now have everything you need
to make your boundary collision checks. Try once again to write the code neces-
sary to compare Luna’s position against the top, bottom, left, and right sides of
the screen. Furthermore, stop her from moving outside these boundaries, when
necessary, by updating the values of newX and newY.

Example Solution: Boundary Collisions
Our challenge was to detect boundary collisions and prevent Luna from moving
beyond the edges of the screen. Solving this problem requires us to apply opera-
tors and expressions in two ways. Take a moment to examine the logic behind
this solution, which is depicted in pseudocode.

//left edge of player is past left side of screen
IF �player’s x position IS LESS THAN negative one half the screen

width
THE�N set player’s x position EQUAL TO negative one half the screen

width

3.   The Bounds of the World48

//right edge of player is past right side of screen
IF player’s x position IS GREATER THAN one half the screen width
THEN set player’s x position EQUAL TO one half the screen width

//top edge of player is past top side of screen
IF player’s y position IS GREATER THAN one half the screen height
THEN set player’s y position EQUAL TO one half the screen height

//bottom edge of player is past bottom side of screen
IF �player’s y position IS LESS THAN negative one half the screen

height
THE�N set player’s y position EQUAL TO negative one half the screen

height

Inside the UserMove script, return to the if statements that you modified
in the MoveObject() function.

//check x axis
//left edge of player is past left side of screen
if (true/*REPLACE WITH POSITION CHECK*/) {

//stop player at edge
/*UPDATE NEWX/Y POSITION*/

} //end if

//right edge of player is past right side of screen
if (true/*REPLACE WITH POSITION CHECK*/) {

//stop player at edge
/*UPDATE NEWX/Y POSITION*/

} //end if

//check y axis
//top edge of player is past top side of screen
if (true/*REPLACE WITH POSITION CHECK*/) {

//stop player at edge
/*UPDATE NEWX/Y POSITION*/

} //end if

//bottom edge of player is past bottom side of screen
if (true/*REPLACE WITH POSITION CHECK*/) {

//stop player at edge
/*UPDATE NEWX/Y POSITION*/

} //end if

First, you need to complete the if statements by checking Luna’s position
against the screen boundaries. In this script, Luna’s position is represented by
the newX and newY variables. Essentially, newX and newY represent Luna’s
new position based only on the user input direction and speed. However,
there are times when newX and newY might fall outside the boundaries of

www.allitebooks.com

http://www.allitebooks.org

Example Solution: Boundary Collisions 49

the game world. Therefore, we are using if statements to check for such
circumstances. Thus, inside the parentheses following the if keyword, you
should compare the newX and newY variables against their associated edges of
the screen. This will determine whether Luna’s new position is valid (inside the
boundaries) or invalid (outside the boundaries). Second, in the event you deter-
mine that Luna is about to move outside a given boundary, you need to set her
newX or newY position equal to the boundary instead. This positions her at the
edge of the screen, rather than allowing her to move past it. You can accomplish
this by setting the affected newX or newY variable inside the brackets of the if
statement.

An example solution is provided, with the updated code in bold. Consider
the first two if statements, which check Luna’s newX position against the left
and right edges of the screen.

//excerpt from MoveObject() function

//check x axis
//left edge of player is past left side of screen
if (newX < −0.5f * Screen.width / 100) {

//stop player at edge
newX = −0.5f * Screen.width / 100;

} //end if

//right edge of player is past right side of screen
if (newX > 0.5f * Screen.width / 100) {

//stop player at edge
newX = 0.5f * Screen.width / 100;

} //end if

We know Luna has collided with a boundary on the x axis if her newX
position is less than (more negative than) the left edge of the screen or greater
than (more positive than) the right edge of the screen. Notice that we use
Screen.width/100 to convert our screen width into world coordinates,
which match the units of Luna’s position. We also multiply the screen width by
0.5f, which is equivalent to taking one-half of its value. You may recall that the
origin point for our game world is at the center of the screen, while Screen.
width gives us the entire length of the screen. Thus, if we want to get to the
edges, we need to calculate only half of the screen width from the center. For
the left edge, we take a negative value, since the left edge of the screen is less
than zero on the x axis. Conversely, we take a positive value for the right edge
of the screen, which is greater than zero on the x axis. These calculations are
visualized in Figure 3.3.

In the event that Luna’s newX value exceeds one of these boundaries, we
update the newX value inside the brackets of the if statement. In both cases,
we simply set her newX position equal to the screen boundary value that we
checked. That is, rather than allowing Luna to continue moving as originally

3.   The Bounds of the World50

planned, we explicitly tell her newX value to equal the boundary instead. Similar
logic and code are applied to handle the top and bottom boundary collisions.

//excerpt from MoveObject() function

//check y axis
//top edge of player is past top side of screen
if (newY > 0.5f * Screen.height / 100) {

//stop player at edge
newY = 0.5f * Screen.height / 100;

} //end if

//bottom edge of player is past bottom side of screen
if (newY < −0.5f * Screen.height / 100) {

//stop player at edge
newY = −0.5f * Screen.height / 100;

} //end if

Since the top and bottom collisions involve movement along the y axis, we
are concerned with Luna’s newY position and the height of the screen. Again,
Screen.height provides the entire height of the screen, in pixels, so we need
to divide by 100 and multiply by 0.5f to calculate half of the height, in world units.
The top boundary is greater than zero on the y axis, so a positive value is used. In
contrast, the bottom boundary is less than zero on the y axis, so a negative value
is used. Once again, should Luna’s newY value exceed one of the boundaries, we
set it equal to that boundary. Subsequently, Luna’s y position will remain fixed at
the edge of the screen, rather than being allowed to move past it.

+y

–y

+x0, 0

Screen.width / 2

–x

–Screen.width / 2

Figure 3.3  Calculate the left and right edges of the screen by considering its overall width
and the origin of the game world.

Hint: Origin Point 51

Challenge: Accounting for the Character
If you run your code as currently written, you might notice a slight problem.
While Luna is indeed stopped at the edges of the screen, she isn’t stopped at
the position we might expect. It appears that about half of her hangs over the
edge. Naturally, we don’t want half of Luna to disappear into oblivion, while
half of her remains on the screen. We would prefer Luna to stay with us in
the game world at all times. Therefore, we need to make one final adjustment
to our calculations. This involves taking the dimensions of the character into
account when making our boundary checks. Hence, your new challenge is to
account for the width and height of the character, such that she stays entirely
on the screen. See if you can reason out the logic behind how this adjust-
ment will work before proceeding to the hints. Once again, drawing a diagram
would be most helpful in this situation.

Hint: Origin Point
Click on the Player object in the Hierarchy tab of your Unity project. Then,
direct your attention to the Scene tab. Zoom in, if necessary, and you will see
that Luna has a small circular marker at her center (Figure 3.4).

This marker indicates that the origin point for our Player object is in the
center. That is, the point (0, 0) for our Player object is set to the center of the
object, as opposed to some other position, such as the top-left or bottom-left
corner. This explains why our code needs to be expanded to compensate for
the size of our character. In our previous code, we were comparing Luna’s cen-
ter position to the edges of the screen. That is why half of her would disappear
over the edge of the screen. If we want to keep Luna entirely on the screen,
we need to compensate for the fact that her origin point is in the center. What
width and height values do you think you should use to adjust your calcula-
tions? Let Figure 3.5 assist you in forming a logical solution.

Figure 3.4  In the Scene window, we
can see that Luna’s origin point lies at
her center.

Width

OriginH
ei

gh
t

Figure 3.5  Luna’s origin point is in the
center. Thus, we can calculate her edges by
extending half her width on the x axis and
half her height on the y axis.

3.   The Bounds of the World52

Hint: Game Components in Unity
Perhaps you have noticed that we need to factor half the width and half the height
of Luna into our boundary collision checks. Along the x axis, we need to subtract or
add half of Luna’s width to accurately check her position against the right and left
edges of the screen. Similarly, we need to use half of Luna’s height to properly check
her position against the top and bottom edges of the screen. See if you can determine
the points that represent Luna’s left, right, top, and bottom edges. How would you
compare these values to the left, right, top, and bottom edges of the screen?

The final piece of the puzzle involves retrieving Luna’s dimensions, so we can
incorporate them into our code. Recall that Luna is represented by a 64 × 64 pixel
sprite. We could simply convert this to world units (divide by 100) and use a value of
0.32 in our code. However, it is generally best not to use such hard-coded values. This
is true because hard-coded values make our code less versatile. For instance, suppose
we were to represent half of Luna’s height and width with a value of 0.32, but later
changed the size of Luna’s sprite. Our boundary collision code would be completely
broken, since 0.32 no longer accurately represents Luna’s dimensions. Wouldn’t it be
better if we could use a single command to access Luna’s width and height, regard-
less of her sprite size? Better yet, is there a way for us to access the size of any charac-
ter’s sprite, regardless of what size that character is? Indeed, there is a way.

Click on the Player object in the Hierarchy window of your Unity project once
again. To Unity, Player is considered to be a GameObject. A GameObject is like
a container that can hold all kinds of things related to our game. In fact, almost
everything in our game world will be associated with a GameObject in some
way, whether it’s a character, obstacle, environment, special effect, or script. With
the Player object selected, turn your attention to the Inspector window (Figure 3.6).

Here, you will see the familiar Transform component. In Unity, a com-
ponent is something that can be added to a GameObject in order to provide
additional functionality. Any time you attach a component to a GameObject,
it is like saying, “I want this feature to be added to this object.” A Transform is
one component that every GameObject has. The Transform gives the object
a position and scale in the game world. Yet, a wide variety of other components
can also be added to a GameObject. Still focusing on the Inspector tab of the
Player object, you will notice that a pair of additional components are present.
One is the UserMove script. This is where we have been writing all of our code.
However, our code only applies to the Player object once it has been attached as
a component. Hence, by attaching the UserMove script to the Player object, you
are telling Luna to be controlled according to the code found within the script.
The other component attached to our Player object is a SpriteRenderer. In
Unity, a SpriteRenderer is used to display a 2D graphic. In our case, this
SpriteRenderer is what makes Luna appear as she does on the screen.
Without it, she would be invisible. The SpriteRenderer also grants Luna
dimensions, based on the fact that the sprite is a 64 × 64 pixel image. Thus, to
solve our current challenge, we need to retrieve Luna’s width and height from
the SpriteRenderer component of the Player GameObject in our scene.
Subsequently, we must use those dimensions in the code of the UserMove script,
which is also attached to the Player GameObject.

Hint: Game Components in Unity 53

Conveniently, Unity provides us with a simple way to access the compo-
nents attached to a GameObject using code. From within a given script, we can
use the gameObject command to reference the GameObject to which that
script is attached. For instance, if we type the gameObject command into our
UserMove script, we are referring to the Player GameObject in our Unity scene.
Furthermore, we can access other components attached to the same object as
our script, such as a SpriteRenderer. For example, we can access the Player
object’s SpriteRenderer component from our UserMove script by typing
gameObject.GetComponent<SpriteRenderer>(). Moreover, we can
even access the variables within the different components this way. Thus, to get the
dimensions of the Player GameObject via its SpriteRenderer, we can type
gameObject.GetComponent<SpriteRenderer>().bounds.size.x
for the width and gameObject.GetComponent<SpriteRenderer>().
bounds.size.y for the height. These relationships are summarized in the fol-
lowing sample code:

/*
Luna is made up of the
Player GameObject and its
attached components in our
Unity project.
*/

Figure 3.6  In the Unity scene, Luna is represented by the Player GameObject.
This GameObject has Transform, SpriteRenderer, and script components.

3.   The Bounds of the World54

//from inside the UserMove script
//access the Player GameObject
gameObject

//access the SpriteRenderer
gameObject.GetComponent<SpriteRenderer>()

//access the SpriteRenderer’s width
gameObject.GetComponent<SpriteRenderer>().bounds.size.x

//access the SpriteRenderer’s height
gameObject.GetComponent<SpriteRenderer>().bounds.size.y

With this code, you are able to access Luna’s dimensions. Therefore, you can
adjust your boundary collision code to account for her center origin point, width,
and height. Thus, you can finally prevent Luna from moving past the edges of the
screen, regardless of her size. Dive into the code and implement your solution!

On a side note, be aware that you will regularly use the notation demon-
strated in this challenge to access the components of GameObjects. It is quite
common to retrieve information about the objects in your game world from
within your code. You will become familiar with this approach throughout the
challenges in this book, as well as your continued game development. This is only
the beginning.

Example Solution: Accounting for the Character
The final step in completing our boundary collision checks requires us to account
for Luna’s size. To do so, we access the width and height of the SpriteRenderer
component attached to the Player GameObject in Unity. Using these dimen-
sions, we can adjust our existing boundary checks, like so. The code added for this
step is in bold.

//excerpt from MoveObject() function

//check x axis
//left edge of player is past left side of screen
if �(newX – 0.5f * gameObject.GetComponent<SpriteRenderer>().bounds.

size.x < –0.5f * Screen.width / 100.0f) {

//stop player at edge
new�X = –0.5f * Screen.width / 100.0f + 0.5f * gameObject.

GetComponent<SpriteRenderer>().bounds.size.x;

} //end if

//right edge of player is past right side of screen
if �(newX + 0.5f * gameObject.GetComponent<SpriteRenderer>().bounds.

size.x > 0.5f * Screen.width / 100.0f) {

//stop player at edge
new�X = 0.5f * Screen.width / 100.0f – 0.5f * gameObject.

GetComponent<SpriteRenderer>().bounds.size.x;

} //end if

Example Solution: Accounting for the Character 55

//check y axis
//top edge of player is past top side of screen
if �(newY + 0.5f * gameObject.GetComponent<SpriteRenderer>().bounds.

size.y > 0.5f * Screen.height / 100.0f) {

//stop player at edge
new�Y = 0.5f * Screen.height / 100.0f – 0.5f * gameObject.

GetComponent<SpriteRenderer>().bounds.size.y;

} //end if

//bottom edge of player is past bottom side of screen
if �(newY – 0.5f * gameObject.GetComponent<SpriteRenderer>().bounds.

size.y < –0.5f * Screen.height / 100.0f) {

//stop player at edge
new�Y = –0.5f * Screen.height / 100.0f + 0.5f * gameObject.

GetComponent<SpriteRenderer>().bounds.size.y;

} //end if

While the values for the boundaries of the screen have remained the same, two
major aspects of our collision code have changed. First, within the parentheses of
each if statement, we have offset our newX and newY checks by half of Luna’s size.
For the x axis, we use one-half of Luna’s width. For the y axis, we use one-half of
Luna’s height. Similar to how we halved the width and height when finding the edges
of the screen, we again take half of Luna’s dimensions when locating her personal
boundaries. Again, this is due to the fact that Luna’s origin point is at her center. Since
the gameObject.GetComponent<SpriteRenderer>().bounds.size.x
and gameObject.GetComponent<SpriteRenderer>().bounds.size.y
commands return Luna’s entire width and height, we have to halve them to get the
distance from her center point to her edges. Relative to her personal origin, Luna’s
left side is negative, while her right side is positive. Likewise, Luna’s top side is posi-
tive, while her bottom side is negative. These calculations are visualized in Figure 3.7.

With these implementations,
we are now accurately check-
ing Luna’s left, right, top, and
bottom sides against the left,
right, top, and bottom edges of
the screen.

The second adjustment
to our code lies inside the
brackets of our if state-
ments. Here, after we have
detected a collision, we must
set Luna’s position to be adja-
cent to the related boundary.
In our prior code, we did not
compensate for Luna’s cen-
ter origin point and allowed
half of her to disappear from

Width

H
ei

gh
t /

 2

Width / 2–Width / 2

–H
ei

gh
t /

 2

H
ei

gh
t

Figure 3.7  Luna’s edge calculations relative to her
center origin are shown.

3.   The Bounds of the World56

the screen. However, with our adjustments, she will stay completely on the screen
and her sides will touch the edge. To make this happen, we modify our newX and
newY values to factor in half of Luna’s size. For example, when moving right,
Luna’s right half would previously hang over the edge. Instead of letting this hap-
pen, we subtract an additional one-half of her width from the newX variable.
This ensures that her right side is fully on the screen and touching the rightmost
boundary. See Figure 3.8 for a visualization of this calculation.

Similar logic and calculations are applied to handle the left, top, and bot-
tom collisions. To align Luna to the left edge of the screen, we add half of her
width to newX. Next, to align Luna to the top edge of the screen, we subtract
half of her height from newY. Last, to align Luna to the bottom edge of the
screen, we add half of her height to newY. Each of these calculations compen-
sate for the fact that Luna’s origin is at her center and ensures that she is posi-
tioned exactly at the edge of the screen where we want her to be. Before you
proceed, make sure you understand how the logic and code in this solution
work. Drawing your own diagrams will aid you in interpreting this solution.

Summary
If you run your project in Unity and test it now, you will see that Luna stops just
at the edges of the screen and does not move past them. Meanwhile, when she is
not near the edges, she can move freely without interruption. Congratulations on
completing this challenge. You have successfully implemented your first 2D col-
lisions! You should now be familiar with all of these coding methods:

◾◾ Prevent a game character from moving outside the screen

◾◾ Logically determine how objects collide in 2D space

+y

–y

+x

newX =
Screen.width / 2 –

Player width / 2

–x

Figure 3.8  Previously, half of Luna would move off screen. However, by adjusting for
her center origin point, we can ensure that she remains fully visible. In this example, we
subtract half of her width from her x position to align her to the right edge of the screen.

Reference 57

◾◾ Manipulate variable values using math and equality operators

◾◾ Modify variable values using expressions

◾◾ Convert between screen and world coordinates in Unity

◾◾ Access Unity game components from within your code

The excitement is just beginning as we continue to bring our game world to
life. In Chapter 4, you will grant Luna special—dare we say, magical—powers.

Reference
Microsoft Corporation. 2015. C# Operators. http://msdn.microsoft.com/library/6a71f45d.

aspx (accessed February 3, 2015).

59

4 Sprinting and
Sneaking

Luna can move along the surface world, and we can ensure she will stay within
the boundaries of the screen. With these fundamentals in place, let’s give Luna
some interesting things to do. For your first challenge, you will give Luna the
ability to sprint at a faster speed than normal. Afterwards, you will grant her
the magical power of invisibility. Creating these abilities will expose you to a
variety of critical coding methods, such as the game loop and conditional state-
ments. Let’s get to work, so Luna can start doing awesome things in the game
world.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Allow a character to sprint according to user input and energy limitations

◾◾ Make a character invisible based on user input and time-based limitations

◾◾ Implement frame-based and time-based systems

◾◾ Perform function calls

4.   Sprinting and Sneaking60

◾◾ Use Unity’s Update() function to manage the game loop

◾◾ Apply conditional statements, including if and switch, along with
Boolean operators

◾◾ Adjust variable values using the increment and decrement operators

◾◾ Modify variable access using getters and setters

◾◾ Use Unity’s GetComponent command, along with dot notation, to
access variables

◾◾ Manage game states with Boolean flags

◾◾ Create local variables within functions

Required Files
In this chapter, you will need to use the following files from the Chapter_04 >
Software folder:

◾◾ For the Making Luna Sprint challenge, see these files in the PlayerSprint
folder:

•	 Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

•	 Challenge > Assets > Scripts > UserSprint.cs to code your solution to
the challenge

•	 Demo > Mac/PC > PlayerSprint to demonstrate how your completed
solution should work

•	 Solution > PlayerSprint.cs to compare your solution to the provided
example solution

◾◾ For the Making Luna Invisible challenge, see these files in the PlayerInvis
folder:

•	 Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

•	 Challenge > Assets > Scripts > UserInvis.cs to code your solution to
the challenge

•	 Demo > Mac/PC > PlayerInvis to demonstrate how your completed
solution should work

•	 Solution > PlayerSprint.cs to compare your solution to the provided
example solution

Hint: Function Calls 61

Challenge: Making Luna Sprint
Your first challenge will be to grant Luna the ability to sprint. You will need to
design and implement a particular system for handling this ability. As always,
it is recommended that you begin by process mapping or pseudocoding to
establish the logic behind your solution. Thereafter, you should begin to code it.
To assist you with taking on this challenge, let’s cover the basics of how your sys-
tem should work once it is completed. Take a look at the UserSprint script in your
code editor. In this file, you are provided with the following variables to start:

//the normal speed at which the player moves
private float _normalSpeed;

//the speed at which the player sprints
private float _sprintSpeed;

//the speed at which the player is currently moving
private float _currentSpeed;

//whether the player is currently sprinting
private bool _isSprinting;

//the player’s remaining energy
private int _energy;

You should be able to manage your sprinting system using only these vari-
ables. Besides these, you are only given empty functions to work with. Specifically,
you will need to initialize the variables in Start(), call functions from within
Update(), and complete the CheckUserInput() and CheckEnergy()
functions. Overall, your challenge is to find a way to manipulate the given vari-
ables so Luna can sprint. To make sure we are on the same page, here are some
guidelines on how your sprint system should work:

	 1.	 Luna should start sprinting when a specific keyboard key is held.

	 2.	 Luna should stop sprinting when a specific keyboard key is released.

	 3.	 Luna can only sprint when she has energy.

	 4.	 When she is sprinting, Luna’s energy should gradually reduce.

	 5.	 Should Luna’s energy run out while sprinting, she should stop sprinting.

	 6.	 When she is not sprinting, Luna’s energy should gradually increase.

Using these guidelines and the provided variables, work on sorting out the
logic for your solution. Once you have a sound logic established, begin to code
your solution. Let the upcoming hints provide you with additional guidance.

Hint: Function Calls
Calling a function is a bit like calling a person by name. For humans, calling
someone’s name gets her attention. If you are calling someone, you are probably
providing or requesting something. Likewise, calling a function in a computer

4.   Sprinting and Sneaking62

language requires you to use the name of the function in your code. Depending
on the circumstances, you can be providing data to a function, requesting
data from a function, or asking a function to do something. In the current
challenge, you only need to ask a function to execute its code. To do this, you
type the name of the function, followed by parentheses. For example, to call the
CheckUserInput() function, you would use the following code. An example
for the CheckEnergy() function is also provided.

//call the check user input function
Che�ckUserInput(); //this function’s code is executed at this

point

//call the check energy function
CheckEnergy(); //this function’s code is executed at this point

Since a function’s code is executed at the moment it is called, and prior to
any subsequent code, it is important to think about when you need to call func-
tions. The order in which you call different functions is important as well, because
certain things need to happen in your code before others. Another consideration
to make is whether your function needs to run continuously throughout the pro-
gram, at specific times, or only once. Conditions like these will impact when you
choose to call a function.

Hint: The Unity Update() Function
Update() is a special function in Unity. Unlike the Start() function, which
is called only once, Update() is called many times per second. Therefore, we
use Update() to handle things that need to happen repeatedly throughout our
game. Any code placed inside the update function will repeat every frame (Unity
Technologies n.d.b).

If you’ve ever worked with movies or animations, you may be familiar with
frames. Indeed, movies were invented based on the concept of frames. A movie
is not truly a smooth flow of continuous action as we perceive it to be. Instead,
a movie is made of many individual still images, called frames. When these frames
are placed back-to-back and swapped at a high rate of speed, our eyes perceive
motion. The frame rate, measured in frames per second (fps), is commonly used
to describe how fast these still images are swapped. For movies, animations, and
games, you may have heard of common frame rates, such as 24, 30, and 60 fps.
Games, in particular, are often recommended to run at 30 to 60 fps. However,
depending on an individual player’s hardware, how optimized the game code is,
and other factors, the actual frame rate will vary.

In a movie, a frame is one still image that gets combined with many oth-
ers to form a moving picture. However, in a game, each individual frame cap-
tures the state of our world at a given instant. As we put many frames together,
things gradually happen within our game world. For example, when we make
Luna move, we are taking advantage of frames and the Update() function.
If you look back at the UserMove script, you will see that the MoveObject()
function has been placed within Update(). This means that MoveObject()

Hint: Conditional Statements 63

is being called many times per second. Inside the MoveObject() function,
we use a speed and direction to update Luna’s position on the screen. Thus, in
a single frame, we only make the slightest adjustment to Luna’s position. Yet,
since we are updating Luna’s position many times per second, we perceive her
as moving smoothly across the screen. Hence, our MoveObject() code is
designed to adjust Luna’s position one time within a single frame. We then lever-
age the Update() function to ensure that her position is updated over and over
throughout the game.

The Update() function can be used for more purposes than just motion.
Recall that a frame represents the state of our game at a given moment. Depending
on the style of game, we may be doing many things within that moment, such
as checking collisions, creating and destroying objects, accepting user input,
making artificial intelligence (AI) decisions, and more. When all of these game
actions have taken place within a single frame, we have completed one game loop.
The game loop is a common term used to describe one complete cycle of events
in a video game. Most games are designed such that all of the continuous actions
that take place are handled with a single frame in mind. Subsequently, to produce
the actual gameplay, these actions are repeated many times per second. In Unity,
Update() is the built-in function that we use to manage our game loop. Any
time you have code that needs to run continuously throughout your game, you
want to put it inside Update(). Things like moving objects, checking collisions,
determining game states, and accepting user input are all good candidates for
inclusion in the Update() function.

In fact, the current challenge requires you to call functions that handle user
input and energy from within the Update() function of the UserSprint script.
Why? Well, you need to constantly watch for user input to determine whether the
player is trying to sprint or not. At the same time, you need to constantly update
Luna’s energy level based on whether she is sprinting (drain energy) or not sprint-
ing (recharge energy). Be sure to add these two function calls to Update() in
your UserSprint script.

Hint: Conditional Statements
Conditional statements are one of the most fundamental components of all
computer programming. They can be used for a variety of purposes, such as
introducing limits, comparing values, and checking states. The key feature of
conditional statements is that they control when and whether code is executed.
Without them, all of your program’s code would always be executed. However,
using conditional statements, you can specify the circumstances under which
events happen in your game.

Interestingly enough, you already made use of conditional statements in
your previous challenge. When you checked Luna’s boundaries against the edge
of the screen, you put code inside the parentheses of an if statement.

Recall that your task at that time was to compare Luna’s position against
the edges of the screen. While you did not write the structure of the if
statements, you applied the conditions that would determine whether the
code inside executes. For example, inside the parentheses of one if statement,

4.   Sprinting and Sneaking64

you asked whether Luna’s x position is greater than the right edge of the screen
(newX > 0.5f * Screen.width / 100.0f). The answer to this question
can only be true or false at a given moment. If it is false, the code within the
brackets of the if statement is not run. In contrast, when the condition within
the parentheses of the if statement is true, the code within the brackets is exe-
cuted. In our example, this means that Luna’s movement is stopped at the right
edge of the screen if, and only if, her x position attempts to go beyond the right
edge of the screen. As you can see, the if statement helps us to control when and
whether things happen in our game world.

Let’s consider the basic anatomy of the if statement. It begins with the key-
word if. Next come two parentheses. A condition that can evaluate to true or
false must be placed within these parentheses. Then come two brackets. Any code
placed within these brackets will execute whenever the condition evaluates to
true.

if �(/*Place true/false condition here.*/) {

/*
Code that executes when the statement
is true should be placed here.
*/

}

Take an example from your current challenge. Perhaps you want to use the
CheckUserInput() function to determine whether the player is holding the
sprint key. If so, you can update the _isSprinting variable. Your code might
look something like this:

//if player holds shift key
if (Input.GetKey(KeyCode.LeftShift)) {

//toggle sprinting flag
_isSprinting = true;

} //end if

This code uses an if statement to check whether the left shift key is being
held. When the key is being held, it updates the _isSprinting variable to
true. Otherwise, nothing happens. However, sometimes we want other things
to happen. Fortunately, we can extend our if statements using another keyword,
else. The else keyword can be used to add additional conditions via else
if. It can also be used to apply a catchall condition via else alone. This is the
basic structure for an if statement with multiple conditions.

if (/*condition*/) {

//code that executes when condition is true

}

/*
If the original condition was false,
the statement will proceed to check

Hint: Conditional Statements 65

the first else if condition.
*/

else if (/*condition*/) {

//code that executes when condition is true

}

/*
Any number of additional else if
statements could be placed here,
between the starting if and the
ending else. They will be checked
in order from top to bottom. If
any condition is found to be true
along the way, the if statement
stops there and executes the code.
*/

else {

/*
This code executes only if none of
the previous conditions in the if
and else if statements were true.
*/

}

A multicondition if statement must start with a basic if condition. There
can only be one, and it must be placed at the very start. By comparison, there
can be any number of else if conditions. These are structured identically to
the basic if condition, except that the keyword else comes before if. Lastly,
a single, optional, else condition may come at the very end. Note that this ending
else statement contains no parentheses or condition. This is because the end-
ing else statement executes only when all of the other conditions are false. You
can think of this else as a default circumstance that represents what happens if
none of the special conditions are true. It can also be used to handle exceptional
circumstances, such as errors. Let’s expand upon our CheckUserInput()
example by using a multicondition if statement:

//if player holds shift key
if (Input.GetKey(KeyCode.LeftShift)) {

//toggle sprinting flag
_isSprinting = true;

} //end if

//if player releases shift key
else if (Input.GetKeyUp(KeyCode.LeftShift)) {

//toggle sprinting flag
_isSprinting = false;

} //end if

4.   Sprinting and Sneaking66

//handle default or error cases
else {

/*
If there is something we need to do
when the key is not being held
or released, we can do it here. For
example, we might print a message
to the console.
*/

Debug.Log("Sprint key neither held nor released");

}

Our updated if statement checks not only for when the left shift key is being
held, but also for when it is released. Using else if, when the key is released,
the _isSprinting variable is updated to false. Meanwhile, our ending
else statement simply prints a confirmation message to the Unity Console win-
dow using the Debug.Log() command (Unity Technologies n.d.a).

That concludes your introduction to the if statement. You now have the
ability to create more powerful game features and control how your code oper-
ates. Before continuing with the challenge, we’ll cover another common condi-
tional statement, called switch.

The switch statement is another technique that you can use to apply condi-
tions to your code. Given a single variable, switch checks the variable’s value
against a series of mutually exclusive possible values. These possible values are
called cases. Once a case is determined to be true, the code inside that case is
executed. Let’s look at the basic C# switch statement structure.

switch (/*variable*/) {

case /*one possible value*/:

//code that executes when case is true

break;

case /*another possible value*/:

//code that executes when case is true

break;

/*
Any number of additional cases
could be placed here, before
the ending default case, so
long as each checks for a
unique possible value.
*/

default:

//code that executes when no other cases are true

break;

}

Hint: Conditional Statements 67

The statement begins with its namesake keyword, switch. A single variable
should be placed within the parentheses that follow. Inside the opening bracket, a
series of cases form the body of the statement. For each case, the case keyword
must be followed with a constant value (that is, not an expression, calculation,
or anything other than a solitary value) and a colon. Placed within each case is
code that will run in the event that case is true. This interior code can be unique
to each case. Afterwards, each individual case is ended with the break keyword
and a semicolon. The break keyword tells the switch statement to stop execut-
ing and allows the program to move on to subsequent code that lies outside of the
statement. Hence, once we have found the one true case in a switch statement,
we want to execute its code and move on to other things, rather than continu-
ing to search through any subsequent false cases. This is what break does for
us. Note that there can be any number of case statements, as long as each one
checks for a unique value. Once all of the cases have been listed, the default case
completes the body of the switch statement. For the default case, the default
keyword is followed by a colon, then the code that will execute, the break key-
word, and a semicolon. Unlike the case statements, default has no value to check
for. Instead, the default case automatically executes when no other provided case
is true. Therefore, default is quite similar to the ending else from the if state-
ment. Similarly, the default case can be used to handle things like errors or excep-
tional circumstances. You should always include a default case in your switch
statements. Lastly, following the default case, a closing bracket signals the end
of the entire switch statement. Let’s take a look at a partial example that you
might apply to your CheckEnergy() function in the current challenge.

//check whether sprinting
switch (_isSprinting) {

//is sprinting
case true:

//insert code to modify player’s energy and speed
break;

//not sprinting
case false:

//insert code to modify player’s energy and speed
break;

//default
default:

//insert code to handle errors or other exceptions
break;

}

The demonstrated switch statement checks the current value of the
_isSpriting Boolean variable. If it is true, that means the player is currently
sprinting. Therefore, it would be good to place code that increases Luna’s speed
and drains her energy here. Conversely, in the false case, Luna is not sprinting.

4.   Sprinting and Sneaking68

Thus, her speed and energy should be adjusted accordingly. Finally, a default case
is provided to complete the statement. You can use a switch statement like this
in the CheckEnergy() function for your current challenge. Of course, you will
need to add a bit of your own code to handle Luna’s speed and energy according
to whether she is or is not sprinting.

Most of the time, switch is functionally identical to the if statement. Yet,
the switch statement has a unique structure and usage limitations that do not
apply to if statements. In some instances, you might find that you like the clean-
liness and organization of a switch statement. However, it is limited to check-
ing a single variable across a set of mutually exclusive possible values. This makes
it much less versatile than the if statement, which can easily handle expressions
and comparisons between multiple values at once. As you develop your personal
coding style, you should experiment with both statements and determine the
circumstances in which you prefer to use each one.

You have been introduced to the basics of the if and switch statements.
These are some extremely powerful coding tools that open up a new world of
possibilities for your development of games. Get some practice with these coding
methods by applying them to solve your current challenge.

Hint: Increment and Decrement Operators
We previously discussed the use of math and equality operators. Among the
many additional operators available in C# are the increment (++) and decrement
(−−) operators. These members of the unary operator family are handy for mak-
ing fast, shorthand adjustments to our variables. The increment operator adds 1
to a variable, whereas the decrement operator subtracts 1 from a variable. Thus,
rather than typing out a longer expression, we can use these operators whenever
we need to adjust a value by just 1. The following sample code demonstrates this
point:

//increment the _energy variable by 1
//3 different ways, from long to short
_energy = _energy + 1
_energy += 1
_energy++

As you can see, the increment operator is the shortest to type, although each
line has the same outcome. While they are fast and easy to use, the downside is
that the increment and decrement operators only modify a value by 1. Therefore,
if we need to use a value other than 1, we will need to use a longer expression.
Table 4.1 summarizes the increment and decrement operators. Code samples are
provided for demonstration purposes:

Table 4.1  Increment and Decrement Operators

Operators Symbols

Increment ++
Decrement ––

Hint: Getters and Setters 69

//increment
//add one to energy
_energy++

//decrement
//subtract one from energy
_energy−−

You may have inferred from the code samples that these operators can help
solve your current challenge. Do not hesitate to use them to increase and decrease
your _energy variable as Luna sprints and rests. Furthermore, even beyond
this challenge, you will find the increment and decrement operators useful in
many coding situations.

Hint: Getters and Setters
Let’s take a moment to discuss an interesting situation that appears in our cur-
rent challenge. This is the first challenge in which you have worked with two
separate scripts. In addition to the UserMove script from our earlier challenge,
you are now coding the UserSprint script. Therefore, this is a good time to point
out that your scripts can communicate with one another. Scroll to the very bot-
tom of the UserSprint script. Here, you will find a getter and setter declaration for
the _currentSpeed variable.

//getters and setters
public float currentSpeed {

get { return _currentSpeed; }
set { _currentSpeed = value; }

}

Our _currentSpeed variable is normally private, meaning it cannot
be accessed or modified by other scripts. However, with a getter and setter,
even a private variable can be used in external scripts. As you can see, the
getter and setter declaration begins by defining a public version of the same
variable, but with a new name. To make a getter, which allows other scripts
to access the variable’s value, we start a line with the get keyword. Within
the brackets for the getter, we add any code that we want to execute whenever
a script accesses the variable. In the most basic case, we simply provide the
value of the variable. This requires using the return keyword, followed by
the original variable name. To make a setter, which allows other scripts to
modify the variable’s value, we start a line with the set keyword. Within the
brackets for the setter, we put the code that needs to execute whenever a script
modifies the variable. In the simplest case, we merely update the value of the
variable. This is done by assigning the original variable equal to the value
keyword. The value keyword generically represents a value that may be
assigned to the variable. From this, we can derive the basic syntax for getters
and setters as follows. Of course, the dataType should be replaced with a real
data type, such as bool, float, or int. Meanwhile, the publicVarName
and _privateVarName will be variable names of your choice that vary
from script to script.

4.   Sprinting and Sneaking70

//create a getter and setter
//define a public version of a variable with a data type and name
public dataType publicVarName {

//create a getter with the get keyword
//the return keyword is followed by the private variable
get { return _privateVarName; }

//create a setter with the set keyword
//set the private variable equal to the value keyword
set { _privateVarName = value; }

}

Getters and setters can be used in more advanced ways beyond this basic
format. You can put additional code within your get{} and set{} functions
to create custom behavior. For example, you could not only get the value of a
variable, but also increment a counter to keep track of how many times it has
been accessed by another script. Further, instead of only setting a variable’s value,
you could also trigger a related animation. Besides introducing custom behavior
when our variable values are retrieved or modified, getters and setters allow pri-
vate variables from one script to be accessed by other scripts. Typically, we don’t
want other scripts to modify our private variables. Yet, sometimes we need to
give other scripts some degree of access. For instance, our UserMove script needs
to retrieve Luna’s speed from the UserSprint script. Continue to the next hint to
find out exactly how this is done.

Hint: Unity’s GetComponent Command
and Dot Notation
In previous challenges, Luna’s speed was set to a fixed value in the UserMove
script. However, with the introduction of the sprint ability, her speed can change
during gameplay. Since the code managing her speed is now in the UserSprint
script, but the code that manages her movement is still in the UserMove script,
we must allow these scripts to communicate. To establish a connection, our
UserMove script uses the getter in the UserSprint script to retrieve Luna’s current
speed. Open the UserMove script in your code editor and go to the beginning of
the MoveObject() function. There, you will find this line of code:

//retrieve speed from sprint script
_speed = gameObject.GetComponent<UserSprint>().currentSpeed;

Recall that _speed is the variable in UserMove that factors into Luna’s
movement calculation. In the above line of code, currentSpeed is the pub-
lic version of the private _currentSpeed variable in UserSprint. Since we
defined currentSpeed publicly in a getter, UserMove is able to access it.
In this manner, UserMove can retrieve Luna’s current speed from UserSprint at
any time and update its movement calculations accordingly.

Besides the _speed and currentSpeed variables in the provided line
of code, there are a couple of other things you might be curious about. So, let’s

Hint: Unity’s GetComponent Command and Dot Notation 71

dissect the rest of the line to learn more about manipulating objects in Unity.
For one, take note of the gameObject command. In Unity, whenever you
type gameObject from a script (note the lowercase letter at the start of the
command), you are referencing the Unity GameObject to which the script is
attached. For example, if you click on the Player object in your Unity project and
look at the Inspector window, you will see that the UserMove script is attached
to it. Therefore, when you type gameObject into your UserMove script, you are
referencing the Player object in the Unity scene. This gameObject command
applies similarly to all Unity scripts. Thus, any time you want to access a script’s
parent GameObject, use the gameObject command.

Following gameObject is another useful Unity command, called
GetComponent. This command allows you to retrieve any of the components
attached to a GameObject. For instance, our Player object has a Transform,
SpriteRenderer, UserMove script, and UserSprint script attached to it.
All of these can be accessed from within a script using the GetComponent
command. To do this, start by typing GetComponent. Within a pair of less
than and greater than symbols, you put the type of object you are retriev-
ing. Afterwards, a pair of parentheses signal the end of the command. In our
code sample, the UserMove script is accessing the Player’s UserSprint script.
Therefore, UserSprint is the data type defined and the full command becomes
GetComponent<UserSprint>(). Similarly, you can access other compo-
nents attached to the Player, such as the SpriteRenderer. To do this, you
would type GetComponent<SpriteRenderer>(). In fact, you already used
this technique to find Luna’s dimensions in the previous challenge. Overall,
GetComponent is another tool you will want to keep in mind when working in
Unity. It allows you to get the individual components attached to an object. After
that, you can use your code to manipulate them.

Lastly, notice that we used gameObject and GetComponent together
to form gameObject.GetComponent<UserSprint>(). Afterwards, we
added a period (dot) and the name of the variable we wanted to access
(.currentSpeed). This is known as dot notation. Basically, we can use
dot notation to access a variable inside a script or component. Here, we
used gameObject.GetComponent<UserSprint>().currentSpeed
to access the currentSpeed variable inside the UserSprint script attached
to the Player GameObject. Likewise, you can see another example of dot
notation at the bottom of the MoveObject() function. There, we use
gameObject.transform.position to set the position variable of
the Transform component attached to the Player object. Dot notation is a
handy way to access things inside things, such as variables inside scripts or
functions inside objects. You will encounter and apply dot notation often in
your C# coding.

With all that said, we have toured a variety of exciting code techniques in
our challenge to make Luna sprint. We have learned about function calls, the
Update() function, conditional statements, increment and decrement opera-
tors, getters and setters, and several ways to access information in Unity! You
should apply these coding tools to solve the current challenge before proceeding
to the example solution.

4.   Sprinting and Sneaking72

Example Solution: Making Luna Sprint
Before describing the example solution, we should review the requirements for
this challenge:

	 1.	 Luna should start sprinting when a specific keyboard key is held.

	 2.	 Luna should stop sprinting when a specific keyboard key is released.

	 3.	 Luna can only sprint when she has energy.

	 4.	 When she is sprinting, Luna’s energy should gradually reduce.

	 5.	 Should Luna’s energy run out while sprinting, she should stop sprinting.

	 6.	 When she is not sprinting, Luna’s energy should gradually increase.

The associated logic is visualized in Figure 4.1.
We’ll break these requirements down step-by-step to see how they can be

translated into code. Naturally, to begin your solution, you need to initialize the
variables in Start() and call the appropriate functions in Update(), like so:

void Start() {

//normal speed in world coordinates
_normalSpeed = 0.05f;

//double normal speed
_sprintSpeed = 2.0f * _normalSpeed;

//default to normal speed
_currentSpeed = _normalSpeed;

//default to not sprinting
_isSprinting = false;

//maximum energy level to start
_energy = 100;

} //end function

Key held

Key released

Has
energy?

Energy
full?

Recharge
energy

Stop
sprinting

Sprint Drain energyYes

NoNo

Figure 4.1  A process map illustrates the logic behind Luna’s sprint ability.

Example Solution: Making Luna Sprint 73

void Update() {

//check user input
CheckUserInput();

//check energy
CheckEnergy();

} //end function

You may have selected different values for your variables. However, it makes
sense that the sprint speed is higher than the normal speed, that the player begins
at normal speed, and that the player is not sprinting at the beginning. Meanwhile,
CheckUserInput() and CheckEnergy() both need to run continuously
throughout our game and should be called within Update(). Returning to our
requirements list, the first two items specifically address key presses and there-
fore pertain to our CheckUserInput() function.

private void CheckUserInput() {

//if player holds shift key
if (Input.GetKey(KeyCode.LeftShift)) {

//toggle sprinting flag
_isSprinting = true;

} //end if

//if player releases shift key
else if (Input.GetKeyUp(KeyCode.LeftShift)) {

//toggle sprinting flag
_isSprinting = false;

} //end if

} //end function

In this function, we use an if statement to check whether the left shift key is
being held. If so, Luna’s state is updated by setting the _isSprinting variable
to true. If not, we use else if to check whether the player has released the left
shift key. If so, Luna’s state is returned to normal by setting the _isSprinting
variable to false. In total, this function succinctly handles all user input related
to Luna’s sprint ability and simply updates her state accordingly. Continuing, the
final four requirements can be handled in the CheckEnergy() function.

private void CheckEnergy() {

//check whether sprinting
switch (_isSprinting) {

//is sprinting
case true:

//energy remains
if (_energy > 0) {

4.   Sprinting and Sneaking74

//drain energy
_energy−−;

//update speed
_currentSpeed = _sprintSpeed;

} //end if

//energy depleted
else if (_energy <= 0) {

//set to min
_energy = 0;

//update speed
_currentSpeed = _normalSpeed;

} //end inner if

//ea�ch case of a switch statement requires a
break

break;

//not sprinting
case false:

//energy is less than max
if (_energy < 100) {

//replenish energy
_energy++;

//update speed
_currentSpeed = _normalSpeed;

} //end if

//energy is at max
else if (_energy >= 100) {

//set to max
_energy = 100;

//update speed
_currentSpeed = _normalSpeed;

} //end inner if

break;

//all switch statements should have a default condition
default:

break;

} //end switch

} //end function

Example Solution: Making Luna Sprint 75

This is our most complex code to date. Did you know that you can put an if
statement inside of a switch statement? That is what’s happening here. For that
matter, you can also put switch inside of if, if inside of if, switch inside
of switch, and so on. You may have used some combination of techniques like
this in your own solution, or perhaps you used completely separate statements
throughout. When we put multiple statements inside of one another, they are
called nested statements. This is perfectly valid code and allows us to apply mul-
tiple combinations of conditions at once. However, it is best to limit nesting to
just a couple of statements at a time, since any more will render our code illegible.
Now that this nesting situation has been exposed, let’s step through the code to
figure out how it works.

//excerpt from CheckEnergy() function

//check whether sprinting
switch (_isSprinting) {

//is sprinting
case true:

//energy remains
if (_energy > 0) {

//drain energy
_energy−−;

//update speed
_currentSpeed = _sprintSpeed;

} //end if

//energy depleted
else if (_energy <= 0) {

//set to min
_energy = 0;

//update speed
_currentSpeed = _normalSpeed;

} //end inner if

//each case of a switch statement requires a break
break;

It all begins with a switch statement that checks the current value of the
_isSpriting Boolean variable. The first case we arrive at is the true con-
dition. When Luna is sprinting, we use a nested if statement to check if her
energy is greater than 0. Recall that she cannot sprint if she doesn’t have energy
(requirement 3). If she does have energy, then her energy is decremented and her
speed is set to sprint (requirement 4). On the contrary, if her energy falls below
the minimum of 0, we stop reducing it and return her speed to the normal level
(requirement 5). The true case, as with all cases, ends in a break.

4.   Sprinting and Sneaking76

//excerpt from CheckEnergy() function

//not sprinting
case false:

//energy is less than max
if (_energy < 100) {

//replenish energy
_energy++;

//update speed
_currentSpeed = _normalSpeed;

} //end if

//energy is at max
else if (_energy >= 100) {

//set to max
_energy = 100;

//update speed
_currentSpeed = _normalSpeed;

} //end inner if

break;

The next switch case handles when the _isSprinting variable is false.
We know that we want Luna’s energy to recharge whenever she is not sprinting
(requirement 6). Therefore, a nested if statement within this case asks whether
Luna’s energy is less than the maximum value of 100. If so, Luna’s energy is incre-
mented and her speed remains at the normal level. On the other hand, if her energy
exceeds the maximum, we stop increasing it and maintain her normal speed.

//all switch statements should have a default condition
default:

break;

Lastly, the default case handles the unexpected situation that _isSprinting
winds up being neither true nor false. While unlikely, this could happen if someone
mistakenly changed _isSprinting from bool to another data type or stored
the wrong kind of data in the variable. Hence, we always maintain the default case
for good measure. In the end, with just a single switch statement and two nested
if statements, we were able to manage Luna’s speed and energy. Combined with
our user input function, we have successfully granted Luna the ability to sprint.
Our UserSprint script is officially complete.

Challenge: Making Luna Invisible
While we’re in the mood of granting special powers, why not allow Luna to
become invisible? Your second challenge is to grant Luna invisibility. As with
the sprint ability, you need to implement a logical system to handle invisibility.

Hint: Boolean Flags 77

To help you get started, we will cover the basics of how your invisibility system
should function. Take a look at the UserInvis script in your code editor. In this
file, you are provided with these variables:

//whether the player can currently use invisibility
private bool _canInvis;

//whether the player is currently invisible
private bool _isInvis;

//the duration of the invisibility effect
private float _duration;

//the cooldown time
private float _cooldown;

//th�e time at which the most recent invisibility/cooldown cycle
started

private float _startTime;

You can create a fully functional invisibility system with only these vari-
ables. Furthermore, you are provided with two empty functions to complete,
CheckUserInput() and CheckInvis(). Below are summary guidelines on
how your invisibility system should work:

	 1.	 Luna should become invisible when a specific keyboard key is pressed
once.

	 2.	 Luna should become visible after the duration of her invisibility has
ended.

	 3.	 After Luna becomes visible again, the cooldown period begins.

	 4.	 Luna can only go invisible again after the cooldown period has ended.

Work on solidifying your logic before you begin to code. As you put your
solution into place through code, let these hints provide you with additional
assistance.

Hint: Boolean Flags
Boolean flags, or simply flags, are variables used to control conditions in our code.
Since a Boolean variable can only be true or false at a given moment, it is con-
venient to use such variables to identify different game states. With a single Boolean
flag, you can represent two states, such as win or lose. If you put two flags together,
you can achieve a total of four unique states. When used effectively, flags give you
extra control over your code by determining if and when certain events take place.
Therefore, flags are an excellent complement to conditional statements.

For your current challenge, two flags are provided in the UserInvis script.
These are _canInvis and _isInvis. The former should be used to deter-
mine whether Luna can or cannot become invisible, whereas the latter tells us

4.   Sprinting and Sneaking78

whether Luna is or is not invisible at this moment. Think about the requirements
for this challenge and how these flags can help you manage Luna’s possible states.
Luna should become invisible when a key is pressed (requirement 1), but only if
the cooldown has ended (requirement 4). Surely, the _canInvis flag can be
used to make Luna invisible if the key is pressed and she is able to become invis-
ible at that moment. Furthermore, when Luna is invisible, we should keep track
of the ability’s duration, since she can only stay invisible for so long. Likewise,
when Luna is not invisible, we must keep track of the cooldown period to know
when she can use her ability again. Thus, the _isInvis flag can be used to
guide whether we should keep track of Luna’s invisibility duration or the ability’s
cooldown period at a given time. In total, with _canInvis and _isInvis,
you are able to manage Luna’s ability to become invisible. Be sure to make use of
these flags in your solution.

Hint: Boolean Operators
Boolean operators are among the many operators in C# that help us to realize our
logic through code. One Boolean operator is the conditional and. It is represented
by a double ampersand symbol, &&. When this is used inside a conditional state-
ment, like if, it allows multiple conditions to be evaluated at once. For example,
consider the following code:

if (x == 5 && y > 0)

This if statement asks whether the variable x equals 5 and the variable y is
greater than 0. The entire statement only evaluates to true if both conditions are true.
If either x does not equal 5 or y is less than or equal to 0, the entire statement would
evaluate to false. Hence, the code within this if statement will only run when both
conditions are true. This is the effect of the && operator. It allows us to apply multiple
conditions to a single statement and check whether all of them are true. You are not
limited to using a single && operator per statement. Therefore, you are free to chain
together multiple conditions this way. However, it is good practice to limit yourself
to using just a few at a time for better code readability and organization.

Another Boolean operator is the conditional or, which is represented by a
pair of vertical bars, ||. When used in a conditional statement, the statement will
evaluate to true if either of the conditions is true. For instance, consider this code:

if (x == 5 || y > 0)

Here, if x equals 5 or y is greater than zero, the entire statement will evaluate to
true. Unlike the && operator, which required both conditions to be true, the ||
operator only requires one of the conditions to be true. Hence, if x equals 4, but y
equals 1, the example code would still evaluate to true using the || operator. Like
the && operator, || can be used many times within a single conditional statement.

Yet another related operator worth mentioning is the logical not. Surprisingly,
it is represented by an exclamation mark, !. When placed in front of a condition,
this operator means to take the opposite of that condition. Consider that our con-
ditional statements are being evaluated as either true or false. Therefore, to take

Hint: Boolean Operators 79

the opposite is to take false when a statement is true or true when a statement is
false. This is demonstrated in the following code sample:

//imagine a light switch is represented by the isOn Boolean variable

//the switch is turned on
isOn //true
!isOn //false

//the switch is turned off
isOn //false
!isOn //true

As you can see, applying the ! operator simply takes the opposite true or
false value of whatever it precedes. Moreover, we previously discussed the use of
this operator with the equal sign in an earlier chapter. To reiterate, when != is
used, a condition will be true whenever one value is not equal to another. Along
with && and ||, the ! operator can be used in conjunction with Boolean flags and
conditional statements to add more control to your code. Furthermore, be aware
that these operators can be used together in a variety of combinations. Can you
interpret the meaning of this example statement? Under which circumstances
would it evaluate to true?

if (x == 5 && y > 0 || z != 10)

In this code sample, all three operators are used together. For the statement
to be true, x must equal 5 and y must be greater than 0 or z must not equal 10.
Hence, if x is 5 and y is greater than 0, the statement is true. Likewise, if z does not
equal 10, the statement is true. But, if x does not equal 5 or y is less than or equal
to 0 and z equals 10, then the statement is false. Clearly, these operators open
many avenues for managing game states and conditions in your code. Table 4.2
summarizes the Boolean operators.

In terms of your current challenge, you can use Boolean operators and flags
together to great effect. Remember our guidelines that Luna should become
invisible when a key is pressed (requirement 1) and that she can only become invis-
ible if the cooldown has ended (requirement 4). Inside the CheckUserInput()
function, we might represent those conditions like so:

//if player presses key and is able to go invisible
if (Input.GetKeyDown(KeyCode.I) && _canInvis == true) {

/*
Code to be executed if statement
is true should be placed here.
*/

} //end if

Table 4.2  Boolean Operators

Operator Symbol

Conditional and &&
Conditional or ||
Logical not !

4.   Sprinting and Sneaking80

This code uses the && operator to check for both a key press and the ability to
become invisible. Only if Luna is currently able to become invisible and the player
presses the corresponding key will we proceed to execute the necessary code for
her ability. You may want to apply this approach to the CheckUserInput()
function in your solution. Think about what code should go inside this if state-
ment. Also, be aware that there may be opportunities to use Boolean operators and
flags inside the CheckInvis() function for this challenge.

Hint: Unity’s Time.time Command
In Unity, the Time.time command returns the time, in seconds, since the game
started running (Unity Technologies n.d.c). This time is sampled at the start of
a given frame. From a logical standpoint, you can think of Time.time as being
the time right now. Therefore, whenever you need to know the time at a given
instant, use Time.time.

To begin the current challenge, you were provided with the _startTime
variable. This represents the time at which the most recent invisibility or
cooldown cycle started. From our guidelines, we know that Luna stays invisible
for only a limited amount of time (requirement 2) and that a cooldown period
follows before she can become invisible again (requirement 3). Thus, we need
to keep track of how long Luna has been invisible in order to make her visible
at the right time. Likewise, we have to keep track of how long the cooldown
period has lasted in order to allow her to use her ability again. Therefore, the
first thing we need to know is when exactly Luna last changed states. To do
this, we can update the _startTime variable whenever Luna becomes invis-
ible or visible. Unity’s Time.time command allows us to accomplish this
task, like so:

/*
At the moment Luna becomes invisible or
becomes visible after being invisible, we
should update our start time variable
*/
_startTime = Time.time;

Remember that Time.time gives us a value that represents the present
moment. This is perfect for updating our _startTime variable each time Luna
changes states from being visible to invisible or vice versa. In your solution,
make sure that you are updating _startTime whenever a new invisibility or
cooldown cycle begins.

Hint: Local Variables
You have created and made use of many variables in your challenges. Thus far,
all of these have been global variables. Global variables are defined within the
class section of a script, but outside of any particular function. Since they do
not belong to a specific function, they exist throughout an entire script and
can be accessed by other scripts. In contrast, local variables are defined within

Hint: Local Variables 81

a single function. Such variables only exist within a given function and cannot
be accessed outside of it. This relationship is demonstrated by the following code
sample, which depicts a common class script setup in C# and Unity:

//an example class script
public class ClassName : MonoBehaviour {

//global variables go here
pri�vate bool isGlobal; //this is an example of a global

variable

//an example function
private void ExampleFunction() {

//local variables go here
bo�ol isLocal; //this is an example of a local

variable

} //end function

} //end class

In this code sample, the global variable lies within the brackets of the class
definition. Meanwhile, the local variable is contained within the brackets of
an individual function. Further, note that the local variable does not have an
access level, such as public or private, associated with it. This is because a
local variable cannot be accessed anywhere but inside its own function.
Therefore, it would be irrelevant to assign an access level. On a related point,
local variables have no need for getters or setters, because there is nothing
outside their own function that can retrieve or modify them. Local variables
freely exist within their own functions and nowhere else within our code. With
these exceptions noted, local variables are similar to global variables in terms
of declaration and usage. To declare a local variable, simply list the data type
followed by a valid variable name and a semicolon. You can assign values to
local variables the same way as with global variables. Local variables can also
be manipulated using operators and everything else we’ve learned so far. The
major difference is that a local variable can only be utilized within the function
in which it was created.

You may be curious when to use global and local variables. A sound guide-
line is to use local variables wherever you can and only use global variables
when you truly need them. In other words, whenever you can accomplish what
you need to inside the body of a function, do so using local variables. Yet,
when the need arises to communicate across functions or throughout multiple
scripts, you have to use global variables. A reason that local variables are gen-
erally preferred is that they consume less computer memory. They have a very
short lifespan, since they are only created inside a single function, and then
destroyed after the function has executed. In contrast, global variables exist
for the entire lifetime of a script, which often means the entire duration of
the program. Therefore, global variables are perpetually consuming computer
resources. If you use too many of them, your game may not run as efficiently,
especially on less powerful hardware. Too many global variables can also make

4.   Sprinting and Sneaking82

it difficult to keep track of the information flowing through your code. Thus,
think of global variables as things you must use to communicate throughout
and across different scripts. For everything that can be accomplished in one
place, try to use local variables instead.

The current challenge provides you with an opportunity to showcase
your understanding of local variables. In a previous hint, you updated the
_startTime variable using Time.time. This makes sure that the beginning
of the latest invisibility or cooldown cycle has been stored for later use. This vari-
able is global because it marks a specific point in time that needs to be referenced
many times over in the future. Hence, it needs to live on longer than a single
function. After updating the _startTime whenever Luna changes visibility,
the other thing we need to do is keep track of how long her current state has
lasted. This is where our local variable comes into play. The CheckInvis()
function is responsible for managing these states, so we’ll put the code there.
Using a single local variable, we can check how long it has been since we last
updated _startTime.

//calculate the duration of the current invisibility/cooldown cycle
float cycleDuration = Time.time – _startTime;

Inside our CheckInvis() function, we create a local variable called
cycleDuration. We set this variable equal to Time.time (the time right at
this moment) minus the _startTime (a time that we saved in the past). Thus,
the difference is equal to the total amount of time since Luna last switched
states. By using our global _startTime variable and temporarily recreat-
ing our local cycleDuraton variable each time the CheckInvis() func-
tion is run, we are constantly keeping track of how long it has been since Luna
last became visible or invisible. But, how do we know whether Luna is cur-
rently visible or invisible? Don’t forget that you have the _isInvis flag to
keep track of that. Moreover, if you know Luna’s current state and how long she
has been in that state, how do you know if it is time to switch? That is what our
_duration and _cooldown variables are for. If Luna is invisible and the
cycleDuration has exceeded the _duration, you should make her visible
and reset _startTime. Similarly, if Luna is visible and the cycleDuration
is greater than the _cooldown, you should allow her to use her ability again
by updating _canInvis. See if you can translate this logic into code as you
build the CheckInvis() function.

Hint: Unity SpriteRenderer Visibility
The final task necessary to complete this challenge is to actually make Luna invisi-
ble. We can do this by accessing and manipulating the SpriteRenderer compo-
nent attached to our Player GameObject. In an earlier challenge, you used the size
of Luna’s SpriteRenderer (that is, GetComponent<SpriteRenderer>().
bounds.size) to retrieve her dimensions and check for collisions at the screen
boundaries. Similarly, you need to access the SpriteRenderer component
again in this challenge. However, this time, you will modify a different property of
that component.

Example Solution: Making Luna Invisible 83

All Unity components have an enabled property. Essentially, this is a
Boolean flag that tells whether the component is or is not active. If it is active,
it is free to do whatever it does. If it is not active, it is unable to do anything.
The job of a SpriteRenderer is to display a 2D image. If it is enabled, the
image will be displayed. If it is not enabled, the image will not be displayed. As
you may have predicted, we can enable or disable Luna’s SpriteRenderer
component to make her visible or invisible. Here is the code that you can use
to do it:

//access the SpriteRenderer of the Player GameObject
//use the enabled property to modify Luna’s visibility

//make Luna visible
gameObject.GetComponent<SpriteRenderer>().enabled = true;

//make Luna invisible
gameObject.GetComponent<SpriteRenderer>().enabled = false;

As we have done before, we use the gameObject command to access
the Unity GameObject that our current script is attached to. In this case,
our UserInvis script is attached to the Player object. From there, we use
the GetComponent<SpriteRenderer>() command to access the
SpriteRenderer component attached to the Player object. Lastly, via dot
notation, we access the enabled flag within the SpriteRenderer. To make
Luna visible, set the enabled variable to true. To make Luna invisible, set the
enabled variable to false. From here, it is just a matter of knowing when you
want to make Luna visible or invisible and doing so at the appropriate times.

That’s everything you need to know to successfully solve the current chal-
lenge and grant Luna the ability to become invisible. Use the power of flags,
operators, local variables, and time itself to make it happen. Once you have your
version working, proceed for a walk-through of the example solution.

Example Solution: Making Luna Invisible
Now that we’ve looked at each piece of the puzzle and you have put together your
own solution, let’s walk through a demonstration of how Luna can be given the
power of invisibility. The requirements for the invisibility system are listed:

	 1.	 Luna should become invisible when a specific keyboard key is pressed
once.

	 2.	 Luna should become visible after the duration of her invisibility has
ended.

	 3.	 After Luna becomes visible again, the cooldown period begins.

	 4.	 Luna can only go invisible again after the cooldown period has ended.

Subsequently, the logic for the example solution is visualized in Figure 4.2.

4.   Sprinting and Sneaking84

To begin, you need to initialize your variables in Start() and call the
appropriate functions in Update().

void Start() {

//default to able to use
_canInvis = true;

//default to visible
_isInvis = false;

//one second duration
_duration = 1.0f;

//two second cooldown
_cooldown = 2.0f;

//start from current time
_startTime = Time.time;

} //end function

void Update() {

//check user input
CheckUserInput();

//check invisibility
CheckInvis();

} //end function

Your values may differ from the ones shown in this example. Here, we
assume that Luna is not invisible to start and will not become so until the player
presses a key. Therefore, _canInvis is true and _isInvis is false. The
_duration of invisibility is set to 1 second, while the _cooldown period is
set to 2 seconds. We initialize the _startTime to the present for good measure.
Afterwards, we call the CheckUserInput() and CheckInvis() functions
in Update(). This is because we need to repeatedly check for key presses and
determine Luna’s invisibility state throughout the duration of the game. Next,
we’ll move on to the CheckUserInput() function:

private void CheckUserInput() {

//if player presses key and is able to go invisible
if (Input.GetKeyDown(KeyCode.I) && _canInvis == true) {

Invisible

Visible

Can Invis?Key pressed Check
duration

Check
cooldown

Disallow
Invis

Over
limit?

Over
limit? Allow Invis

Yes

Yes

Yes

No

No

Figure 4.2  A process map illustrates the logic behind Luna’s power of invisibility.

Example Solution: Making Luna Invisible 85

//toggle flags
_canInvis = false;
_isInvis = true;

//make player invisible by disabling renderer
gam�eObject.GetComponent<SpriteRenderer>().

enabled = false;

//update start time
_startTime = Time.time;

} //end if

} //end function

As we have done before, we will use the CheckUserInput() function to
handle key presses from the player. To activate invisibility, a key must be pressed
once (requirement 1). Thus, we use Input.GetKeyDown() to register the first
frame in which the I key (KeyCode.I) is pressed. However, in this system,
Luna cannot become invisible again until after a cooldown period ends (require-
ment 4). Hence, our if statement uses the && operator to require both a key
press and the _canInvis flag to be true. If either condition is not true, the
inner code will not execute. For example, if the player is already invisible and the
player presses the I key, nothing would happen. Yet, supposing the player trig-
gers the ability when Luna is able to become invisible, we immediately switch
our Boolean flags: _canInvis becomes false, while _isInvis becomes
true. Then we physically make Luna invisible on the screen by disabling the
SpriteRenderer component attached to the Player object. Finally, we update
the _startTime to Time.time to mark the beginning of a new invisibility
cycle. In CheckUserInput(), we have handled taking user input and kick-
ing off Luna’s invisibility. Then, we use CheckInvis() to further manager
her states.

private void CheckInvis() {

//ca�lculate the duration of the current invisibility/cooldown
cycle

float cycleDuration = Time.time – _startTime;

//player is currently invisible and
//invisibility duration has been exceeded
if (_isInvis == true && cycleDuration > _duration) {

//toggle flag
_isInvis = false;

//update visibility
gam�eObject.GetComponent<SpriteRenderer>().enabled =

true;

//update start time for cooldown
_startTime = Time.time;

} //end if

4.   Sprinting and Sneaking86

//player is currently visible and
//cooldown duration has been exceeded
else if (_isInvis == false && cycleDuration > _cooldown) {

//toggle flag
_canInvis = true;

} //end else if

} //end function

You may remember our discussion of local variables. We need to perpetually
keep track of how long Luna has been invisible or how long her cooldown period
has lasted to manage her states appropriately (requirements 2 and 3). To do this,
we use the cycleDuration local variable in coordination with Time.time
and _startTime.

//excerpt from CheckInvis() function

//calculate the duration of the current invisibility/cooldown cycle
float cycleDuration = Time.time – _startTime;

The calculated cycleDuration applies regardless of whether we are cal-
culating how long Luna has currently been invisible or how long she has been in
a cooldown period. By taking Time.time (the time right now) and subtracting
the _startTime saved when Luna last switched states, we calculate the total
amount of time since Luna last switched states. In the if statement that fol-
lows, we compare this value against the _duration or _cooldown as neces-
sary, depending on whether she _isInvis or not at the present moment. Using
_isInvis in this manner allows us to assign a different length of time to Luna’s
invisibility and cooldown periods.

//excerpt from CheckInvis() function
//player is currently invisible and
//invisibility duration has been exceeded
if (_isInvis == true && cycleDuration > _duration) {

//toggle flag
_isInvis = false;

//update visibility
gameObject.GetComponent<SpriteRenderer>().enabled = true;

//update start time for cooldown
_startTime = Time.time;

} //end if

In the initial if condition, if Luna is invisible for longer than the allow-
able amount of time, we immediately set _isInvis to false and enable the
SpriteRenderer to show her on the screen. Since this signifies the beginning
of a cooldown period, we also reset the _startTime.

Summary 87

//excerpt from CheckInvis() function

//player is currently visible and
//cooldown duration has been exceeded
else if (_isInvis == false && cycleDuration > _cooldown) {

//toggle flag
_canInvis = true;

} //end else if

In the else if case, should Luna be visible for long enough that the
required cooldown period has been exceeded, we change the _canInvis flag
to true. This allows the player to decide when to make Luna invisible again by
pressing the required key. With that, the entire process of managing Luna’s invis-
ibility is complete.

Summary
You have granted Luna the powers of super sprint speed and magical invisibility.
With these additions, our character is coming to life and your coding skills are
rapidly developing. Having completed this chapter, you should be able to do all of
these amazing things with your code:

◾◾ Allow a character to sprint according to user input and energy limitations

◾◾ Make a character invisible based on user input and time-based limitations

◾◾ Implement frame-based and time-based systems

◾◾ Perform function calls

◾◾ Use Unity’s Update() function to manage the game loop

◾◾ Apply conditional statements, including if and switch, along with
Boolean operators

◾◾ Adjust variable values using the increment and decrement operators

◾◾ Modify variable access using getters and setters

◾◾ Use Unity’s GetComponent command, along with dot notation, to
access variables

◾◾ Manage game states with Boolean flags

◾◾ Create local variables within functions

In your next challenge, you will apply what you have learned so far to start
enhancing the surface world that Luna resides in.

4.   Sprinting and Sneaking88

References
Unity Technologies. n.d.a. Debug.Log. http://docs.unity3d.com/ScriptReference/Debug.

Log.html (accessed February 16, 2015).
Unity Technologies. n.d.b. MonoBehaviour.Update. http://docs.unity3d.com/

ScriptReference/MonoBehaviour.Update.html (accessed February 16, 2015).
Unity Technologies. n.d.c. Time.time. http://docs.unity3d.com/ScriptReference/Time-

time.html (accessed February 16, 2015).

89

5 Collectables

Luna is moving, sprinting, and sneaking through the surface world. Thus far,
our game world consists of no more than an empty screen with boundaries at the
edges. In this challenge, you will start bringing the game world to life. One way
to do this is through the introduction of collectable objects. Once you know how
to create collectables, you can add a variety of useful objects to your game world.
Example game collectables include powerups, equipment, health, and treasure,
just to name a few. Let’s begin building our world by introducing collectable
objects.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Create objects that can be collected by a game character

◾◾ Manipulate variables with primitive and composite data types

◾◾ Utilize tags to access objects in Unity

◾◾ Detect Axis-Aligned Bounding Box (AABB) collisions between objects

◾◾ Destroy objects in Unity

5.   Collectables90

Required Files
In this chapter, you will need to use the following files from the Chapter_05 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > Collectable.cs to code your solution to the
challenge

◾◾ Demo > Mac/PC > Collectable to demonstrate how your completed solu-
tion should work

◾◾ Solution > Collectable.cs to compare your solution to the provided exam-
ple solution

Challenge: Collecting Objects
In this challenge, you will create a type of collectable object. Whenever Luna
moves across one of these collectables, the object should be removed from the
screen. You can think of this as simulating the act of Luna coming across a
collectable in the game world and choosing to pick it up. Naturally, this pro-
cess will involve detecting collisions between Luna and the collectable object.
You successfully detected collisions in a past challenge when you kept Luna
within the boundaries of the screen. You should leverage this knowledge to help
you detect the necessary collisions in this challenge. Here is a summary of the
requirements for this challenge:

	 1.	 The Collectable script, which is attached to each collectable object,
should continuously check for collisions with Luna.

	 2.	 The CheckCollisions() function retrieves Luna’s current position
and uses it to check for collisions with the collectable.

	 3.	 If a collision is detected between a collectable object and Luna, the col-
lectable object is destroyed.

Open the challenge project and the
Map scene in Unity. In the Hierarchy
window, click on the arrow beside the
Middleground object to display its
contents (Figure 5.1). You will see that
four different collectable objects have
been added to the scene. Each one has the
Collectable script component attached
to it. Your coding for this challenge will
be done within this script. Hence, as you

Figure 5.1  Expand the Middleground to
see the collectable objects in the scene.

Hint: Primitive and Composite Data Types 91

are solving the problem, make sure to think in terms of what needs to happen
when Luna encounters a single collectable object. Once your solution is complete,
it will apply to any number of collectables that are added to the game world.

For this challenge, you will work entirely within the Collectable script. You
are required to declare and initialize any variables, call the appropriate functions
in Update(), and complete the CheckCollisions() function. Remember
that inside CheckCollisions(), you will need to determine whether or not
Luna is colliding with the collectable object. If so, make sure to remove the object
from the game world. Think through the logic of this problem before you dive
into the code. It may be especially helpful for you to draw out how you will deter-
mine the collisions between Luna and the collectable objects. Furthermore, facil-
itate your problem solving with the provided hints.

Hint: Primitive and Composite Data Types
To date, you have used variables with primitive data types in your code. These
include the bool, int, float, and double variables that you are familiar
with, as well as a few others in the C# language. These data types are called primi-
tive because they cannot be broken down into any simpler form than they already
are. That is, a bool is already as basic as it gets. It cannot be divided into any other
data types. The same goes for other primitive data types.

In contrast, composite data types can be broken down into a collection of sim-
pler data types. In fact, all composite data types are formed through a combination
of other data types. Think back to our earlier discussion of strings. The string
data type was singled out as different from bool, int, float, and double. This
is because a string is actually a collection of characters, which are of the char
primitive data type. Hence, a string is a composite data type that is made up of
several primitive characters. As it happens, we often make use of composite objects
that are created from a mixture of variables with primitive and composite data types.

For example, you can think of the Player GameObject in our Unity
scene as being composite. It is made up of a collection of components, such as
SpriteRenderer, Transform, and UserMove script. Each of these compo-
nents is in turn made up of its own variables, which have primitive data types
like bool and int, as well as composite data types, like Sprite and Vector3.
Generally, this process of creating complex objects out of collections of simpler
ones is known as composition in coding terminology. It basically means that
you can mix and match several data types to produce increasingly complicated
objects in your code. In this way, individual variables are like the building blocks
that add up to much larger and more complex objects when they are put together.

The great ability that we gain from composition is that we are no longer lim-
ited to using primitive data types for variables. Instead, nearly any object in our
game can itself become a variable that can be manipulated in our code. That
means any character, any script, or any component inside our game world can
be put at our fingertips. Furthermore, we can represent almost anything in our
game world by assembling the right combination of variables. Therefore, we gain
much greater control over the destiny of our game and can do more sophisticated
things with our code thanks to composition.

5.   Collectables92

In the current challenge, you have the opportunity to try out some composite
data types for yourself. Let’s consider a starting point for our CheckCollisions()
function. We need to determine whether there is a collision between Luna and the
collectable. To make the code behind our calculations easier to read, it would be
useful to store this information in local variables. Recall that Luna is represented
in Unity by the Player object. Player is of the GameObject data type, which is a
special container that Unity uses for many types of things in our game world. Our
collectable is also a GameObject. Indeed, GameObject is a composite that can
be made up of many components, such as a Transform, SpriteRenderer,
and scripts. You may also remember that the Transform component of every
GameObject has a position variable, which is of the Vector3 type. Moreover,
Vector3 is a composite that is made up of three primitive float variables that
represent the x, y, and z coordinates of an object. The positions of both Luna and our
collectable object are stored in Vector3 variables. Likewise, we will need to adjust
for our objects’ center origin points when checking collisions. We can retrieve this
information from their SpriteRenderer components and store it in Vector3
variables. Thus, to gather all of the information we need to make our collision calcu-
lations, we can create local variables with the composite data types of GameObject
and Vector3.

Conveniently, whenever you want to create variables with composite data
types, you follow the same rules as with primitive data types. That is, you must
declare the data type and provide a valid variable name in your code. To set up the
necessary variables at the beginning of your CheckCollisions() function, you
might use the following code. Can you think of the next thing you should do with
these variables to determine whether Luna and the collectable are colliding?

//store the objects from the Unity scene in local variables

//player in scene
GameObject thePlayer;

//collectable
GameObject theCollectable;

//player position
Vector3 playerPos;

//collectable position
Vector3 collectPos;

//player size
Vector3 playerSize;

//collectable size
Vector3 collectSize;

Hint: Unity Tags
In the previous hint, we set up the basic variables we need to detect a colli-
sion between Luna and a collectable. The next step is to find the position of
both objects. Since the Collectable script is attached to a collectable object, we

Hint: Unity Tags 93

can easily retrieve information about the collectable using the gameObject
command, as we have done before. However, we cannot do the same for Luna,
since the Collectable script is not attached to her. We need another way to access
our Player GameObject in the Unity scene. Thankfully, we can use Unity’s tag
system.

In Unity, you can apply custom tags to objects. Go to your Unity project
and look at the Hierarchy window. Inside the Middleground object, you will
find several collectable objects. If you click on one of the collectables and turn
your attention to the top of the Inspector window, you will find a Tag dropbox.
Inside that dropbox, you will see that the collectable object has been assigned
a tag called Collectable. Similarly, if you look at the Player GameObject, you

will see that it has been tagged as
Player (Figure 5.2).

Furthermore, if you click on the
dropbox, you can see several choices
that can be applied to any object. In
addition, you can click on the Add
Tag … option to create your own
custom tags. Doing this will open
the Tags & Layers view inside the
Inspector window (Figure 5.3).

There you can add or remove
tags, which can later be applied to
your objects in the Tag dropbox
(Figure 5.4). To prove this, try add-
ing your own custom tag, creating
a new GameObject, and adding
your tag to that object now.

Using Unity’s tag system, we
can categorize and organize our
objects. For example, we might use
a unique tag like Player to iden-
tify the one and only character the
player controls in our game. On the
contrary, we might group several
similar objects using tags, as we
have done by using the Collectable
tag on all of our collectable objects.
Besides identification, the major
benefit we get from tagging objects
is the ability to retrieve them any-
where in our code. Unity has a built-
in function called GameObject.
FindWithTag(). This allows us
to find any single object by provid-
ing the function with its tag. To do
so, we type a string value into the

Figure 5.2  The Player tag has been applied
to the Player object.

Figure 5.3  Custom tags can be created in
the Tags & Layers panel.

Figure 5.4  The custom Collectable tag has
been applied to the collectable objects in the
scene.

5.   Collectables94

function’s parentheses that matches the tag applied to the object. Here is a basic
example:

//find a single GameObject using its tag
//find the object with the tag called "tagString"
GameObject.FindWithTag("tagString");

Our current challenge requires us to retrieve Luna’s position, so we can
determine whether she is colliding with a collectable. Since we know that Luna
has been assigned the Player tag, we can retrieve her using the GameObject.
FindWithTag() function. In addition, using dot notation, we can access
variables inside the GameObject we find. Thus, we can access the position
variable of the Transform component, as well as the size variable of the
SpriteRenderer component, attached to the Player GameObject. That
gives us everything we need to start checking collisions. Building from the
previous hint, our variables should look like this. The additions are shown
in bold.

//store the objects from the Unity scene in local variables

//player in scene
//find the object with the "Player" tag
GameObject thePlayer = GameObject.FindWithTag("Player");

//collectable
//this script is attached to a collectable
//therefore, we use the gameObject command
GameObject theCollectable = gameObject;

//player position
//use dot notation to access the player’s position
Vector3 playerPos = thePlayer.transform.position;

//collectable position
//use dot notation to access the collectable’s position
Vector3 collectPos = theCollectable.transform.position;

//player size
//use dot notation to access the player’s size
Vec�tor3 playerSize = thePlayer.GetComponent<SpriteRenderer>().

bounds.size;

//collectable size
//use dot notation to access the collectable’s size
Vec�tor3 collectSize = theCollect.GetComponent<SpriteRenderer>().

bounds.size;

Hint: Axis-Aligned Bounding Box Collisions
With the necessary information in hand, it is time to write our collision detec-
tion code in the CheckCollisions() function. You may want to refer back
to the earlier challenge in which you prevented Luna from moving outside the
boundaries of the screen. Similarly, in this challenge, you will need to use the
position of Luna’s top, bottom, left, and right edges to determine whether

Hint: Axis-Aligned Bounding Box Collisions 95

she is colliding in the game world. However, instead of comparing with the
edges of the screen, you will compare against the top, bottom, left, and right
edges of a collectable object. Hence, you are calculating whether two objects
are colliding in two-dimensional (2D) space, no matter where they are placed
on the screen.

Note that our player and collectable objects are treated as rectangles for
the purposes of collision detection. Of course, their sprites do not fill an entire
rectangle or take on that exact shape. Yet, they have invisible rectangles around
them, which are used to determine their top, bottom, left, and right edges for
collisions. These invisible rectangles are called bounding boxes. You can see a
visual representation of the bounding boxes of our player and collectable objects
in Figure 5.5.

Furthermore, these bounding boxes are always axis aligned for the purposes
of our collision calculations. Once again, imagine that our game world is on a 2D
coordinate plane. To be axis aligned means that our bounding boxes are always
perfectly parallel with our axes. That is, the top and bottom edges of the bounding
box are parallel to the x axis, while the left and right edges are parallel to the y axis.
This remains true no matter what happens to the contents of the box. For instance,
if you were to rotate Luna’s sprite at any angle, her bounding box would retain its
axis alignment.

Since we are calculating collisions with bounding boxes that are always
axis aligned, this method is called Axis-Aligned Bounding Box (AABB) colli-
sion detection. It is a common form of 2D collision detection applied in games.
AABB collisions are easy to implement and do not require advanced physics
calculations. They are also relatively easy on computing resources. However,
AABB is not the most accurate form of collision detection. Depending on
factors, such as how well your sprites fill a rectangular shape, the speed at
which objects move, and the amount of precision required in your collisions,
AABB may or may not yield visibly pleasant results. For the purposes of our
game, AABB collisions will be suitable. Luna and the collectables are rela-
tively square in shape. Also, a collectable will disappear as soon as Luna moves

over it. This will give the player a fairly
good impression that the objects collided
smoothly.

If you have not worked out the logic for
AABB collisions yet, take the time to do so.
Remember that you must detect collisions
between the top, bottom, left, and right edges
of each object’s bounding box. Based on these
edges, how will you know when the objects
are colliding on the x axis or the y axis? Think
in terms of your conditional statements as
well. What conditions must be true for you to
be completely sure that the objects are collid-
ing? Drawing a diagram like the one shown
in Figure 5.6 should help you to discover the
necessary calculations.

Figure 5.5  The bounding boxes of
the player and collectable objects
are visualized.

5.   Collectables96

To help you get started, let’s look at how we might check for an x axis colli-
sion between Luna and a collectable object:

//check object collisions
//x axis position comparisons
if (

//right edge of player beyond left edge of collectable
(playerPos.x + 0.5f * playerSize.x >=
collectPos.x − 0.5f * collectSize.x)

&&

//left edge of player before right edge of collectable
(playerPos.x − 0.5f * playerSize.x <=
collectPos.x + 0.5f * collectSize.x)

)

We previously stored the positions of Luna and the collectable in the
playerPos and collectPos variables. We also stored their sizes in
playerSize and collectSize. To determine whether these positions
overlap on the x axis, we can check whether Luna’s right edge is greater
than or equal to the collectable’s left edge. Simultaneously, Luna’s left-edge
position must be less than or equal to the collectable’s right edge. If both of
these conditions are true, we know that the objects are colliding on the x axis.
See Figure 5.7 for a visual depiction of this calculation.

As we have become accustomed to, we make adjustments in our code by half the
width of each object. Again, this is due to the fact that the objects have a center origin
point. Thus, the right edge of an object is its x position plus one-half of its width.
Meanwhile, the left edge of an object is its x position minus one-half of its width.

This sample code only tells part of the story. While the x portion of your
collision check could be true, note that the objects’ y axes may not be colliding.
For example, both objects could have the same x coordinate, but one object could
be at the top of the screen while the other is at the bottom. Thus, without both
x and y alignment, you cannot be certain that a collision has occurred. This
means you will need to add extra conditions to verify your collisions. See if you
can expand this code and write your own collision detection for the y axis.

Figure 5.6  The player’s and a collectable’s bounding boxes are shown. What calculations
and conditions must be applied to determine whether these objects are colliding?

Hint: Unity Destroy() Function 97

Hint: Unity Destroy() Function
The final step in this challenge is to remove the collectable from the screen after
Luna has collided with it. To accomplish this, we can use Unity’s Destroy()
function. The Destroy() function removes a GameObject, or one of its com-
ponents, from the game world (Unity Technologies n.d.). Ultimately, it will be
removed from the computer’s memory, thereby freeing up resources for other
activities. This is why destroying our collectable is better than using another
method to make it disappear, such as disabling its SpriteRenderer. On the
other hand, destroying an object is permanent, so it cannot be retrieved or used
again afterwards. Therefore, you want to use Destroy() once you are certain
that an object no longer has a purpose in the game. Conversely, you should
not destroy anything you need to use again at a later time. Furthermore, since
destroying is permanent and disallows subsequent use, you should always make
sure that Destroy() is the very last thing you do to an object.

To use Destroy(), we must provide the GameObject or individual com-
ponent that we want to destroy. We do this by placing the object inside the paren-
theses of the function. Often, functions accept information, such as a value or
variable, inside parentheses. The individual pieces of information provided to
a function are commonly called arguments or parameters. After an argument is
passed in through its parentheses, a function is able to use that information to
perform operations. In the case of Destroy(), Unity accepts whatever object or
component we provide to it. Afterwards, it takes care of destroying the object and
releasing it from the computer’s memory.

Thus, to finish off our Collectable script, we should destroy the collectable
object once Luna has collided with it. All we need to know is what, exactly, to pass
into the Destroy() function as an argument. Since we know that our Collectable
script is attached to a collectable object in our Unity scene, we can simply use our
familiar gameObject command. Recall that gameObject refers to the Unity
GameObject that the script is attached to. Our Collectable script is attached to
a collectable object. Therefore, gameObject points directly to the collectable we
need to destroy. Here’s the code needed to remove the collectable once and for all:

//remove the collectable object from the game
//destroy the GameObject this script is attached to
Destroy(gameObject);

A B

DC

Figure 5.7  The player and the collectable are colliding on the x axis if the player’s left edge
(A) is less than the collectable’s right edge (D) and the player’s right edge (B) is greater
than the collectable’s left edge (C). What conditions must be true for a y axis collision?

5.   Collectables98

Example Solution: Collecting Objects
Conceptually, the logic behind this challenge is somewhat simple to arrive at
(Figure 5.8). As a reminder, here are the requirements again:

	 1.	 The Collectable script, which is attached to each collectable object,
should continuously check for collisions with Luna.

	 2.	 The CheckCollisions() function retrieves Luna’s current position
and uses it to check for collisions with the collectable.

	 3.	 If a collision is detected between a collectable object and Luna, the col-
lectable object is destroyed.

While the logic may appear simple, AABB collisions can be quite tricky to
figure out the first time around. The good news is that you can now apply AABB
collisions widely throughout your future work in making games.

Let’s discuss the sample solution provided for collectable objects that Luna
can collect in the game world. Interestingly, this solution requires no global
variables to be created or initialized. Only the CheckCollisions() function
needs to be called inside Update(). Otherwise, everything happens within the
CheckCollisions() function.

void Update() {

//check collisions
CheckCollisions();

} //end function

In the previous hints, we already discussed accessing the player and collect-
able objects, as well as their relevant attributes.
//excerpt from CheckCollisions() function

//check collisions
private void CheckCollisions() {

//get the relevant scene objects
//player in scene
GameObject thePlayer = GameObject.FindWithTag("Player");

//collectable this script is attached to
GameObject theCollect = gameObject;

Check
collisions

Destroy
collectable

Collided with
player?

Yes

No

Figure 5.8  A process map illustrates the logic behind the example solution.

Example Solution: Collecting Objects 99

//player position
Vector3 playerPos = thePlayer.transform.position;

//collectable position
Vector3 collectPos = theCollect.transform.position;

//player size
Vec�tor3 playerSize = thePlayer.

GetComponent<SpriteRenderer>().bounds.size;

//collectable size
Vec�tor3 collectSize = theCollect.

GetComponent<SpriteRenderer>().bounds.size;

Subsequently, this information is used to implement AABB collision detection
in a single if statement (albeit a rather large one). To reiterate, in all of the state-
ment’s conditions, we adjust by the half width or height of the objects to account
for their center origin points. To ensure a collision has occurred, we must know
that the objects are overlapping on both the x and y axes. Therefore, we can start
by checking that Luna’s right-edge x position is greater than or equal to the col-
lectable’s left edge. Simultaneously, Luna’s left-edge x position must be less than or
equal to the collectable’s right edge. If both conditions are true, we know the objects
are aligned on the x axis.

//excerpt from CheckCollisions() function

//check object collisions
if (

//x axis position comparisons
//right edge of player beyond left edge of collectable
((playerPos.x + 0.5f * playerSize.x >=
collectPos.x − 0.5f * collectSize.x)

&&

//left edge of player before right edge of collectable
(playerPos.x − 0.5f * playerSize.x <=
collectPos.x + 0.5f * collectSize.x))

However, we also need to check the y axis to determine whether there is
indeed a collision. Thus, we check whether Luna’s top-edge y position is greater
than or equal to the collectable’s bottom edge, and whether Luna’s bottom-edge
y position is less than or equal to the collectable’s top edge. If both of these condi-
tions are true, we have y axis alignment between the objects.

//excerpt from CheckCollisions() function
//continued from preceding code sample

&&

//y axis position comparisons
//top edge of player beyond bottom edge of collectable
((playerPos.y + 0.5f * playerSize.y >=
collectPos.y – 0.5f * collectSize.y)

&&

5.   Collectables100

//bottom edge of player below top edge of collectable
(playerPos.y – 0.5f * playerSize.y <=
collectPos.y + 0.5f * collectSize.y))

) {

Logically speaking, we cannot be sure that a collision is happening unless all
four of the stated conditions are true. This is why we use so many && symbols in
the code of our if statement. If all four conditions are true, we have both x and y
overlap between the objects, and therefore a collision. Once we verify the collision,
our only task is to destroy the collectable, thereby removing it from the game world.

//excerpt from CheckCollisions() function

//destroy object
Destroy(gameObject);

Having completed these steps, all three requirements for the challenge are
satisfied. For additional clarity, the entire CheckCollisions() function is
provided in one place.

private void CheckCollisions() {

//get the relevant scene objects
//player in scene
GameObject thePlayer = GameObject.FindWithTag("Player");

//collectable this script is attached to
GameObject theCollect = gameObject;

//player position
Vector3 playerPos = thePlayer.transform.position;

//collectable position
Vector3 collectPos = theCollect.transform.position;

//player size
Vec�tor3 playerSize = thePlayer.

GetComponent<SpriteRenderer>().bounds.size;

//collectable size
Vec�tor3 collectSize = theCollect.

GetComponent<SpriteRenderer>().bounds.size;

//check object collisions
if (

//x axis position comparisons
//right edge of player beyond left edge of collectable
((playerPos.x + 0.5f * playerSize.x >=
collectPos.x − 0.5f * collectSize.x)

&&

//left edge of player before right edge of collectable
(playerPos.x − 0.5f * playerSize.x <=
collectPos.x + 0.5f * collectSize.x))

&&

Reference 101

//y axis position comparisons
//top edge of player beyond bottom edge of collectable
((playerPos.y + 0.5f * playerSize.y >=
collectPos.y − 0.5f * collectSize.y)

&&

//bottom edge of player below top edge of collectable
(playerPos.y − 0.5f * playerSize.y <=
collectPos.y + 0.5f * collectSize.y))

) {

//destroy object
Destroy(gameObject);

} //end if

} //end function

Summary
In this relatively brief challenge, you have made some big additions to your game
coding toolkit. You now know how to implement collectables, which can rep-
resent many different objects, such as powerups, equipment, health, and trea-
sure. You also know how to detect AABB collisions between objects in 2D space.
AABB collisions are widely used in games, and you will be certain to apply them
in many of your own creations. At this point, you should feel comfortable coding
all of these game elements:

◾◾ Create objects that can be collected by a game character

◾◾ Manipulate variables with primitive and composite data types

◾◾ Utilize tags to access objects in Unity

◾◾ Detect Axis-Aligned Bounding Box (AABB) collisions between objects

◾◾ Destroy objects in Unity

In Chapter 6, you will continue to expand your coding skills by learning how
to spawn numerous objects inside the game world.

Reference
Unity Technologies. n.d. Object.Destroy. http://docs.unity3d.com/ScriptReference/

Object.Destroy.html (accessed October 16, 2014).

103

6 Spawning
Objects

You have created an object for Luna to collect on her journey through the surface
world. It would be nice if your code could make several of these objects all over
the map, rather than having to place them into the world one by one. Indeed, you
can. Cloning and spawning objects is a very common task in game coding. You
will want to do this almost any time you need multiple copies of an object. In
this challenge, you will focus on spawning many collectables with randomized
positions. Once you get the hang of spawning, you can apply this technique to a
variety of game items, such as obstacles, enemies, and treasure.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Spawn multiple objects inside the game world

◾◾ Instantiate prefabs in Unity

◾◾ Randomize position values for spawned objects

◾◾ Organize spawned objects under a common parent

◾◾ Apply type casting to specify a variable’s data type

◾◾ Write for and while loops

6.   Spawning Objects104

Required Files
In this chapter, you will need to use the following files from the Chapter_06 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > CollectableSpawn.cs to code your solution
to the challenge

◾◾ Demo > Mac/PC > CollectableSpawn to demonstrate how your com-
pleted solution should work

◾◾ Solution > CollectableSpawn.cs to compare your solution to the provided
example solution

Challenge: Spawning Collectables
Your challenge is to spawn a number of collectable objects on the map. Your code
will be placed entirely within the Spawn() function of the CollectableSpawn
script. Also note that the CollectableSpawn script is attached to the Middleground
GameObject in the Unity scene. Two variables have been provided for you in
the script.

//number of objects to spawn; defined in Unity Inspector
public int numSpawns;

//prefab defined in Unity Inspector
public GameObject prefab;

The numSpawns variable tells our script how many different objects to
create every time the Spawn() function is called. Meanwhile, prefab tells our
code which of our objects is being cloned. Interestingly, both of these variables are
initialized in the Unity Inspector window, rather than inside our code. You can
verify this by looking at the Middleground object in the Unity editor. Then, find the
CollectableSpawn script attached to it in the Unity Inspector window. There, you
will see two boxes: one for numSpawns and one for prefab (Figure 6.1).

Conveniently, whenever we make a variable public in one of our scripts,
Unity will make it appear in the Inspector window. Filling in the box beside a
variable’s name allows us to define its value. This is an alternative to initializing
the variable’s value in our code, like we previously have. For certain variables, it is
helpful to use the Unity Inspector method. However, note that this method only
works in Unity, can only handle certain types of public variables, and cannot be
used with private variables. Therefore, most of the time, you will want to initial-
ize your variable values as normal inside their scripts. You can always initialize
variables in your code. However, in some special circumstances, it is helpful to
provide values through the Unity Inspector instead. You will explore one of those
circumstances in this challenge as you work to clone objects.

Challenge: Spawning Collectables 105

Besides the two variables, you are also provided with a familiar Update()
function. This function checks for an R key press. If the key is pressed, the Spawn()
function is called. This handy function makes it easy for you to debug your spawn
code. Any time you want to test it, simply press the R key to create more objects.

void Update() {

	 //check for key press
	 if (Input.GetKeyDown(KeyCode.R)) {

	 //spawn objects
	 Spawn();

	 } //end if

} //end function

Although a few things have been provided for you, you will need to learn about
some new coding techniques to solve this challenge. Namely, you must be able to
clone prefabs in Unity, as well as write for and while loops. These requirements
explain exactly how your final code should function once it is completed:

	 1.	 Each spawn should be cloned from a specified object, based on the value
given to the prefab variable.

	 2.	 Each spawn should have a randomly generated position. Ensure that
spawns are placed completely within the boundaries of the screen.

	 3.	 Each spawn should be organized under a common parent object.

Figure 6.1  The CollectableSpawn script’s numSpawns and prefab variables can be set
from inside the Unity Inspector window. Similarly, whenever a variable is made public
inside a script, it will automatically appear in the Unity Inspector and can be given a
value there.

6.   Spawning Objects106

	 4.	 Spawn a specified number of prefabs, based on the value given to the
numSpawns variable.

	 5.	 Use a for loop to manage the spawning of your objects. Once you have
it working, write a while loop that yields an identical outcome.

From these guidelines, make sure to work out the logic behind how your
solution will function. Once you have gathered your thoughts, proceed to imple-
ment your solution. Hints are provided to guide you, especially with the new
coding concepts required by this challenge.

Hint: Unity Prefabs
Prefabs are a special kind of object in Unity. With prefabs, we are able to save a
GameObject with all of its various components as a single entity in our game
project. This allows us to reuse the same object over and over again, without
going through the trouble of assembling its components each time.

Open the Map scene of your CollectableSpawn project in Unity. If you look
inside the Project window, within the Assets folder, you will find a folder named
Prefabs. Click on this folder to reveal its contents. For this project, we already have
two prefabs named Collectable and Player. Naturally, these represent Luna
and the collectable objects in our game world. You can click on these prefabs and
look at the Inspector window to see their underlying components and settings.
These prefabs were originally made by creating an empty GameObject in the
Hierarchy window and then configuring the necessary components in the Unity
Inspector. After the objects were finished, they were dragged into the Prefabs folder.
Subsequently, Unity automatically converted them into prefabs for later use.

Try making your own prefab now. Select GameObject > Create Empty
from the top menu bar in Unity (Figure 6.2). A new object will be added to the
Hierarchy window.

Figure 6.2  Create a new GameObject in Unity by accessing the GameObject > Create
Empty menu option.

Hint: Unity Prefab Instantiation 107

Feel free to rename the object
and add any components you like.
Change some of the settings on
the components as well. When
you are finished, click on the
object and drag it into the Assets >
Prefabs folder. Next, go back to the
Hierarchy and delete the origi-
nal object you created. Then, drag
and drop the prefab object from
your Prefabs folder and into your
Hierarchy window a few times.
As you can see, several copies of
the object are made, all with the
exact configuration that you speci-

fied in the original (Figure 6.3). You may delete these objects from the Hierarchy.
This is the basic process that you can follow to create any kind of prefab for

your Unity games. As you can see, Assets is a special kind of folder. Unity will
turn any GameObject you drag into that folder, or any subfolders, into a prefab.
The benefit of using a prefab is that you can configure a GameObject once and
then clone it easily. In addition, whenever you change the settings of the origi-
nal prefab, all copies of that prefab will automatically update. Furthermore, we
can create and manipulate prefabs in our code. All of these features make using
prefabs a great way to save time and organize the various objects in our game.

Hint: Unity Prefab Instantiation
Before we consider how to handle prefabs in our code, let’s look at one more thing
in our Unity project. Click on the Middleground object in the Hierarchy and find
its components in the Inspector window. You will see that our CollectableSpawn
script has been added to it. As mentioned before, we have two public variables in this
script that can be set via the Unity Inspector. One of them has the GameObject
type and a name of prefab. This variable is used to define which of the objects
saved in our Assets > Prefabs folder will be associated with our script. As you can
see, the Collectable prefab has been selected. To assign a prefab to a public variable
like this one, you can either drag the object from the Assets > Prefabs folder into
the variable’s box or click on the circular icon next to the box and select from the
possible options (Figure 6.4).

Recall that our prefabs were originally created with the GameObject
type. While Unity has saved them as a special kind of prefab object, they are
still recognized as being of the GameObject data type. Therefore, our code
will always use the GameObject data type when working with prefabs. That is
why our prefab variable is designated with the GameObject data type in the
CollectableSpawn script.

Now that you know what prefabs are, how they can be created, and how they
can be assigned, let’s learn to clone them in our code. To create a copy of a prefab
and add it to your game world, you can use Unity’s Instantiate() function.

Figure 6.3  Several prefabs have been dragged
out of the Assets > Prefabs folder and into the
Hierarchy window. These are all identical copies
of the original prefab.

6.   Spawning Objects108

The Instantiate() function must be provided with an object to clone. This
happens to be the prefab we want to duplicate. Remember our discussion of
function arguments from the preceding challenge? The object passed into the
Instantiate() function is an argument. Besides receiving information as
arguments, functions can also return information. Some functions not only take

Figure 6.4  Assign a prefab to a public variable in the Unity Inspector window by clicking on
the circular icon beside the variable’s box and selecting it from the list.

Hint: Unity Prefab Instantiation 109

in information to make calculations, but also give information back when they
are finished. Instantiate() is one of those functions. It will accept a prefab
object that we provide to it and return to us a new copy of that object. Since the
Instantiate() function returns to us a cloned prefab, we can create a new
GameObject variable to store it. You can think of this variable as catching what
is sent back from the function, like how one basketball player catches a ball passed
from another. After we have stored the clone in a variable, we can proceed to manip-
ulate other aspects of it, such as its position and parent. Below is the specific code
needed to clone one of our collectable objects using the Instantiate() function.

//clone a prefab and store it inside a variable
GameObject newSpawn = (GameObject)Instantiate(prefab);

Here, we declare a variable of the type GameObject and give it the name
newSpawn. We set this variable equal to the Instantiate() function, which
has been provided with a prefab to clone. The Instantiate() function per-
forms its duties and returns us a copy of the prefab. At the end, we have a clone
of our original prefab stored inside the newSpawn variable. This fulfills the first
requirement for the challenge.

You may be curious about the (GameObject) code directly in front of the
Instantiate() function. What this does is specify the data type of the object
returned by the Instantiate() function. In this case, we are saying the object
returned by Instantiate() will be of the GameObject type. This process of
specifying a variable’s data type is known as type casting. You can perform a type
cast by putting a data type inside parentheses just before a variable. This example
is just one form of type casting, which is generally used to modify or identify
data types. You can read more on type casting in the official documentation for
the C# language (Microsoft Corporation 2015). Note that type casting is not an
especially frequent task, but it is necessary from time to time, particularly when
we want to specify or alter a variable’s data type.

Moreover, if you read the documentation for Unity’s Instantiate()
function (Unity Technologies n.d.a), you will see that the function receives and
returns variables of the Object type. This happens to be a generic, underly-
ing type for all kinds of things in Unity. Therefore, it is referred to as a base
class. Many different things, including every GameObject, inherit their fea-
tures from the Object base class. When something inherits its features from a
base class, it is known as an inherited class. Not only do inherited classes retain
the features of the base class, but also they add their own unique features. Since
Instantiate() deals with the Object base class, it is capable of cloning
everything that inherits from the base class as well. This allows us to use a sin-
gle function to clone many kinds of things in Unity. However, it also makes us
responsible for defining exactly what kind of object we expect the function to
return. This is why we must explicitly state that we consider the object returned
by Instantiate() to be a GameObject. That way, our code knows that the
object will have all of the unique features that a GameObject has and not just
the generic features of the Object base class. Once we make this type cast, we
can proceed to manipulate our newSpawn variable just like any GameObject.

6.   Spawning Objects110

Hint: Random Number Generation
Randomness plays a role in nearly all games. Therefore, generating random
numbers is a frequent coding task. In this challenge, we need to generate ran-
dom x and y position values for our spawned objects (requirement 2). We can
do this using Unity’s built-in Random.Range() function (Unity Technologies
n.d.b). Random.Range() accepts two arguments. The first is a minimum value
and the second is a maximum value. You can pass either int or float values
into this function. Random.Range() will take the minimum and maximum
values, then return a randomly generated number that lies between them.
If you provide float values, the range is inclusive, meaning that both the mini-
mum and maximum value can themselves be generated. Hence, if you generate
a random float between 0 and 1, your possible outcomes are 0, 1, or any value in
between. However, if you provide int values to the Random.Range() func-
tion, the minimum is inclusive, while the maximum is exclusive. Therefore, if you
provided int values of 1 and 5, a number between 1 and 4 would be generated.
The basic format for using the Random.Range() function is demonstrated in
this code sample:

//Unity’s Random.Range() function
//accepts two arguments: min and max
//returns a random number between min and max

//float version
//generate a random number between 0 and 1
//store the returned value in a variable
float randFloat = Random.Range(0.0f, 1.0f);

//int version
//generate a random number between 1 and 9
//store the returned value in a variable
int randInt = Random.Range(1, 10);

You should be able to apply this sample code to solve the specific challenge of
generating random positions for your spawned collectables. Remember that the
position of our spawned collectable is stored as a Vector3, which uses float val-
ues to represent x, y, and z coordinates. The x and y will give us placement within
our game world. We are not concerned with generating the z value, since we are
working in two dimensions (2D). Further, you want to ensure that the objects
are spawned completely within the boundaries of the screen (requirement 2).
Therefore, be sure to factor in the screen size to your minimum and maximum
values, as well as adjust for the center origin point of the spawned objects. Once
you have your values generated, you can use them to set the spawned object’s
transform.position value. Take the opportunity to implement this ran-
domization in your code to set the position of your newSpawn variable.

Hint: Parent Objects in Unity
Your next step is to make sure that your spawned objects share a common par-
ent object in the Unity scene (requirement 3). This will ensure that the cloned
objects are neatly organized under a single parent, rather than cluttering up our

Hint: for and while Loops 111

Hierarchy window and making
a mess of the Unity interface.
Furthermore, using a common
parent makes it easier to man-
age all of the objects in our code.
Recall that every GameObject
in Unity has a Transform
component. One variable of
the Transform component is
parent. By setting the parent
of a GameObject, we assign it
to be filed under another object.
Once an object has been assigned
a parent, it becomes a child of that
parent. In the Unity Hierarchy
window, we can visualize these

relationships. A child object will always be placed beneath and indented relative to
its parent (Figure 6.5). Moreover, the children inside a parent object can be hidden
or revealed using the arrow symbol beside the parent’s name. This parent and child
system in Unity allows us to organize our objects into a clean, hierarchical format.

To assign an object to its parent, you set its transform.parent variable
equal to the Transform of the intended parent object. See the following code
for a demonstration:

//assign an object to a parent
//make the parentObject the parent of the childObject
childObject.transform.parent = parentObject.transform;

In this challenge, you want to set the parent of your newSpawn variable.
The CollectableSpawn script is attached to the Middleground object in the Unity
project. Since nothing else is contained within that object, the Middleground
makes a suitable parent for our spawned collectables. Using the sample code
above, as well as your prior knowledge of accessing objects in your code, you
should be able to assign Middleground as the parent of newSpawn.

Hint: for and while Loops
At this point, you should have written the necessary code to spawn a single col-
lectable object, provide it with a random position, and assign it to a parent. For
example, your Spawn() function code might look something like this:

//excerpt from Spawn() function

//clone prefab
GameObject newSpawn = (GameObject)Instantiate(prefab);

//calculate screen and object bounds
//use to ensure object is spawned on screen
float halfScreenW = 0.5f * Screen.width / 100.0f;
float halfScreenH = 0.5f * Screen.height / 100.0f;

Figure 6.5  Children objects appear indented
under their common parent object. Clicking
on the arrow icon beside the parent collapses or
reveals the child objects.

6.   Spawning Objects112

fl�oat halfObjW = 0.5f * prefab.gameObject.
GetComponent<SpriteRenderer>().bounds.size.x;

fl�oat halfObjH = 0.5f * prefab.gameObject.
GetComponent<SpriteRenderer>().bounds.size.y;

//get random x and y position values
fl�oat randX = Random.Range(−halfScreenW + halfObjW,
halfScreenW − halfObjW);

fl�oat randY = Random.Range(−halfScreenH + halfObjH,
halfScreenH − halfObjH);

//store the original position
Vector3 randPos = newSpawn.transform.position;

//update position with randomized x and y values
randPos.x = randX;
randPos.y = randY;

//set random position
newSpawn.transform.position = randPos;

//set parent game object in Unity scene
newSpawn.transform.parent = gameObject.transform;

After instantiating the prefab and storing it in newSpawn, we set up a few
local variables to store the half size of the screen and the object. We use these
values to make adjustments inside the Random.Range() function to ensure
our object will be spawned within the bounds of the screen. We store the object’s
original position in a Vector3 variable named randPos. The x and y values
for randPos are updated to reflect the randomized x and y coordinates we
generated. We then set the position of our newSpawn object equal to the ran-
domly generated position. Lastly, we set the parent of newSpawn equal to the
Transform of the GameObject attached to this script, which happens to be
the Middleground object in our scene.

This Spawn() function code successfully creates one instance of a cloned
object. If you were to test the game now, you would see that a single collectable is
spawned every time you press the R key. However, when we are spawning objects
in games, we often want to create many more than just one at a time. Loops are
the fundamental coding technique that allow us to automatically and rapidly
repeat actions many times over. For this challenge, we will explore two common
kinds of loops: for and while.

for Loop
A for loop is composed of three major parts: an iteration variable declaration,
a condition, and an increment (or decrement). The basic structure of a for loop
follows:

for (iteration variable; condition; increment/decrement) {

	 //any code placed here will execute each time the loop runs

}

Hint: for and while Loops 113

The loop begins with the for keyword. Inside parentheses, each section
is separated by a semicolon. The first part requires an iteration variable to be
declared. It is common coding practice to use the letter i to represent the iteration
variable. For subsequent loops inside the same function, use the letters j, k, and
so on. The second part of the loop contains the condition. This is a statement that
must evaluate to true for the code inside the loop to run. The third part of the
loop increments or decrements the iteration variable. Thus, each time the loop is
run, the iteration variable gets smaller or larger. Eventually, the loop ends when
the iteration variable is incremented to the point that the condition is no lon-
ger true. Following the parentheses are two brackets. Any code placed within
those brackets will execute each cycle of the for loop. Let’s take a look at a basic
example loop.

for (int i = 0; i < 10; i++) {

	 Debug.Log("The value of i this cycle is: " + i);

}

Can you predict what this loop will print to the Unity Console window?
Why not test it out in your own project? In this loop, we give the iteration variable
i an initial value of 0. In the condition, we check that the value is less than 10.
In the increment phase, which takes place at the end of one loop cycle and prior
to the start of the next one, we add 1 to the iteration variable. Therefore, we would
expect the loop to print the values 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. After 9, the value of
the iteration variable gets incremented to 10 and the condition becomes false.
Thus, the loop ends.

You can also write loops in reverse. That is, instead of counting upwards and
incrementing the iteration variable, you can move downwards by decrementing
it. Here is an example of such a loop. See if you can predict what values will
be printed to the Unity Console window. Test the loop yourself to determine
whether you had it right.

for (int i = 10; i > 0; i−−) {

	 Debug.Log("The value of i this cycle is: " + i);

}

As you can see, the reverse for loop simply starts the iteration variable
at a maximum and decrements it. In the condition, we check that the iteration
variable has reached a specified minimum value. You have already produced
the code required to spawn a single collectable object. From here, you just
need to put it inside a for loop. Rather than hard-coding a value, like the 10
shown in these example loops, be sure to utilize your numSpawns variable.
This will allow your script to work properly no matter what number is speci-
fied in numSpawns. Go ahead and write your for loop. Test and retest it in
your Unity project until you get it working. When your loop is working, you
should expect to see a number of objects added to your screen equal to num-
Spawns every time you press the R key. Once you do, proceed to read about
while loops.

6.   Spawning Objects114

while Loop
A while loop can be functionally identical to a for loop, but it takes on a
slightly different format. The while loop has only one major component in its
syntax, which is a condition. So long as the condition is true, the loop will keep
running over and over. The basic structure is shown.

while (condition) {

	 //any code placed here will execute each time the loop runs

}

With the for loop, the iteration variable and the increment step ensure that
the loop will eventually stop running. However, the while loop has no such
built-in mechanism that causes it to stop. This makes it easy to make the mistake
of writing an infinite loop. A loop is infinite whenever its condition can never
be false, and subsequently, it can never stop running. When this occurs, the
computer will surely crash. To prevent an infinite loop situation and ensure our
while loops are implemented properly, we must manually create our own way
to exit the loop. This is typically done through an iteration variable or a Boolean
flag. When using an iteration variable, a while loop turns out to be quite similar
to a for loop. When using a Boolean flag, you can look for additional special
conditions that should end the loop, rather than relying on the increment alone.
Both examples are demonstrated in this code sample:

//while loop example with iteration variable
//create the iteration variable
int i = 0;

//define the while loop
while (i < 10) {

	 //any code placed here will execute each time the loop runs

	 Debug.Log("The value of i this cycle is: " + i);

	 //increment the iteration variable
	 //the loop will stop once i becomes 10 or greater
	 i++;
}

//while loop example with Boolean flag
//create the flag variable
bool isComplete = false;

//define the while loop
while (isComplete == false) {

	 //any code placed here will execute each time the loop runs

	 Deb�ug.Log("The value of isComplete this cycle is: "
+ isComplete);

Example Solution: Spawning Collectables 115

	 //check to see if a custom condition that
	 //should end the loop is now true
	 if (/*custom condition goes here*/) {

	 //update the flag to end the loop
	 isComplete = true;
	 }
}

These are just a few basic examples of while loops. You can create more
complex systems and conditions to iterate through your code as the need arises.
At this point, you should be able to interpret what each of these example loops
will print to the Unity Console window. You should also be capable of imple-
menting a while loop to create an amount of collectable objects equal to the
value of the numSpawn variable.

Prepared with your newfound knowledge, try applying loops to enhance
your Spawn() function. If you have not already done so, start by writing a
for loop that spawns a number of collectables equal to the value stored in the
numSpawns variable. After you get it working, comment out the for loop and
write an identical while loop that also spawns a number of collectables equal
to numSpawns. When you are finished, a single call to your Spawn() function
should create whatever number of collectable objects is specified in numSpawns.
By achieving this, you will witness the power of loops to efficiently execute actions
many times with a relatively small amount of code. You will also have fulfilled
requirements 4 and 5 for this challenge.

Example Solution: Spawning Collectables
Ultimately, the solution for this challenge involves pairing the instantiation code
discussed in the earlier hints with the looping techniques demonstrated in the
latest hint. The logic for a for loop solution is shown in pseudocode:

FOR counter = 0 IS LESS THAN specified number of spawns, each
iteration:

1. INSTANTIATE clone of prefab

2. �Generate random x between negative half screen width plus
half object width and positive half screen width minus half
object width

3. �Generate random y between negative half screen height plus
half object height and positive half screen height minus
half object height

4. Set clone’s position EQUAL TO randomly generated position

5. Set clone’s parent EQUAL TO object in scene

6. INCREMENT counter via FOR loop

The challenge requirements are listed again as a reminder of how your code
should function:

	 1.	 Each spawn should be cloned from a specified object, based on the value
given to the prefab variable.

6.   Spawning Objects116

	 2.	 Each spawn should have a randomly generated position. Ensure that
spawns are placed completely within the boundaries of the screen.

	 3.	 Each spawn should be organized under a common parent object.

	 4.	 Spawn a specified number of prefabs, based on the value given to the
numSpawns variable.

	 5.	 Use a for loop to manage the spawning of your objects. Once you have
it working, write a while loop that yields an identical outcome.

The following code sample provides the entirety of the CollectableSpawn
script’s Spawn() function:

public void Spawn() {

	 //calculate screen and object bounds
	 //use to ensure object is spawned on screen
	 float halfScreenW = 0.5f * Screen.width / 100.0f;
	 float halfScreenH = 0.5f * Screen.height / 100.0f;
	 fl�oat halfObjW = 0.5f * prefab.gameObject.

GetComponent<SpriteRenderer>().bounds.size.x;
	 fl�oat halfObjH = 0.5f * prefab.gameObject.

GetComponent<SpriteRenderer>().bounds.size.y;

	 //for loop
	 //run loop a number of times equal to numSpawns
	 for (int i = 0; i < numSpawns; i++) {

	 //clone prefab
	 GameObject newSpawn = (GameObject)Instantiate(prefab);

	 //get random x and y values
	 fl�oat randX = Random.Range(−halfScreenW + halfObjW,

halfScreenW − halfObjW);
	 fl�oat randY = Random.Range(−halfScreenH + halfObjH,

halfScreenH − halfObjH);

	 //store the original position
	 Vector3 randPos = newSpawn.transform.position;

	 //update position with randomized x and y values
	 randPos.x = randX;
	 randPos.y = randY;

	 //set random position
	 newSpawn.transform.position = randPos;

	 //set parent game object in Unity scene
	 newSpawn.transform.parent = gameObject.transform;

	 } //end for

} //end function

Example Solution: Spawning Collectables 117

The Spawn() function begins by setting up local variables to store the half-
screen and object sizes. These are later used to ensure our objects are spawned
completely within the bounds of the screen (requirement 2). This example solu-
tion applied a for loop (requirement 5). Note that the condition element of the
loop asks whether the iteration variable i is less than numSpawns. The iteration
variable starts at 0 and is incremented by 1 each cycle until it reaches the value
of numSpawns and stops. Therefore, the loop runs a number of times equal to
numSpawns (requirement 4). Inside the loop, we placed our code that clones
a single object. That is, we instantiate a clone from our prefab (requirement 1),
generate a random position (requirement 2), and assign a common parent object
in the Unity scene (requirement 3). We only need to write the code to spawn a
single object successfully inside our loop. Since the loop runs many times over,
we eventually create many objects—hence the value of using loops rather than
having to copy our spawn code over and over. The identical while loop is pro-
vided (requirement 5). The parts of the while loop that differ from the for loop
are in bold.

//excerpt from Spawn() function

//while loop
//track total number of spawns made thus far
int totalSpawns = 0;
while (totalSpawns < numSpawns) {

	 //clone prefab
	 GameObject newSpawn = (GameObject)Instantiate(prefab);

	 //get random x and y values
	 fl�oat randX = Random.Range(−halfScreenW + halfObjW,

halfScreenW − halfObjW);
	 fl�oat randY = Random.Range(−halfScreenH + halfObjH,

halfScreenH − halfObjH);

	 //store the original position
	 Vector3 randPos = newSpawn.transform.position;

	 //update position with randomized x and y values
	 randPos.x = randX;
	 randPos.y = randY;

	 //set random position
	 newSpawn.transform.position = randPos;

	 //set parent game object in Unity scene
	 newSpawn.transform.parent = gameObject.transform;

	 //increment counter
	 totalSpawns++;

} //end while

The spawn code inside the while loop is identical to that in the for loop.
However, we set up an iteration variable called totalSpawns outside the
while loop. This keeps track of how many objects have already been spawned,

6.   Spawning Objects118

starting from 0. The condition asks whether totalSpawns is less than
numSpawns, which ensures that the loop will run a number of times equal
to numSpawns. At the very end of the loop code, we manually increment
totalSpawns by 1. This ensures that the loop ends once totalSpawns equals
numSpawns, thereby making the condition false. Simultaneously, that is the
point at which we have spawned the desired number of objects. In the end, the two
loops have the same result in our game world. Yet, you have practiced two differ-
ent methods of writing loops. In the future, you will apply both for and while
loops in your code, so it is good to know how to use them.

Summary
You have risen to the challenge and spawned several collectables for Luna to find
during her journey. With the ability to spawn objects, you can introduce a wide
variety of things into your game world, including items, powerups, enemies,
obstacles, and more. You have added all of these coding methods to your game-
making toolkit:

◾◾ Spawn multiple objects inside the game world

◾◾ Instantiate prefabs in Unity

◾◾ Randomize position values for spawned objects

◾◾ Organize spawned objects under a common parent

◾◾ Apply type casting to specify a variable’s data type

◾◾ Write for and while loops

With all of these objects being created and collected in the game world,
it would be nice to keep track of them. Thus, your next challenge will involve
managing groups of objects and creating an inventory of the things Luna has
collected.

References
Microsoft Corporation. 2015. Casting and Type Conversions (C# Programming Guide).

http://msdn.microsoft.com/library/ms173105.aspx (accessed February 23, 2015).
Unity Technologies. n.d.a. Object.Instantiate. http://docs.unity3d.com/ScriptReference/

Object.Instantiate.html (accessed February 23, 2015).
Unity Technologies. n.d.b. Random.Range. http://docs.unity3d.com/ScriptReference/

Random.Range.html (accessed February 23, 2015).

119

7 Taking
Inventory

Luna is no longer alone in the surface world. She is surrounded by collectable
objects, which we can spawn in vast amounts. As you know, many similar objects
could be introduced into our game, such as additional characters, obstacles, or
items. Until now, our collectables have been generically spawned and exist only
for the purpose of one-time collisions. However, there is much more that we can
do with the objects in our game. To unleash their full potential, we need to start
identifying and keeping track of our objects over time. This will allow them to be
a long-term part of the game. Imagine introducing things like special items, pieces
of equipment, or extra heroes into your game. These kinds of objects need to stick
around and play a role in our game long after the first time they are encountered.
To explore how we can manage our in-game objects over time, this challenge will
involve creating an inventory for Luna to store her collected objects in.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Create an on-screen inventory system for a game character

◾◾ Store multiple objects simultaneously in an inventory

◾◾ Apply the C# using directive to access external namespaces

7.   Taking Inventory120

◾◾ Manage collections of objects using the C# List

◾◾ Utilize arguments that are passed into functions

◾◾ Access objects that are stored inside a C# List

◾◾ Add objects to and remove objects from a C# List

Required Files
In this chapter, you will need to use the following files from the Chapter_07 >
Software > folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > CollectableInventory.cs to code your
solution to the challenge

◾◾ Demo > Mac/PC > CollectableInventory to demonstrate how your
completed solution should work

◾◾ Solution > CollectableInventory.cs to compare your solution to the
provided example solution

Challenge: Keeping Track of Collectables
in an Inventory
In this challenge, you will create a visible, on-screen inventory to store the objects
that Luna collects. Open the CollectableInventory script in your code editor
and the Map scene in Unity. Find the Middleground object in the Hierarchy
window. As you can see in the Inspector, the CollectableSpawn script from the
preceding challenge is attached. Therefore, you can press the R key whenever
you want to spawn more collectables. This will help you test your solution to
this challenge. Look inside the Foreground object and you will find the familiar
Player object, as well as a new object, called Inventory. The Inventory object
has the CollectableInventory script attached to it. You will work inside this
script throughout the challenge. In addition, you will use the Inventory object
to visually organize Luna’s collectables. As you know, Luna can collect objects
by colliding with them, as defined in our Collectable script. However, this time
around, instead of destroying our collectables, we will add them to an on-screen
inventory. The overall requirements for this challenge are listed:

	 1.	 Each object that the player collects must be stored in a List.

	 2.	 When an object is collected, it should be added to the List. It should
also be positioned next to the previous item in the on-screen inventory.

Hint: The using Directive 121

	 3.	 When the player presses the T key, the last object in the on-screen
inventory should be removed. It should also be removed from the List.
If no objects exist, the key press should have no effect.

Most of the work for this challenge is ahead of you. Yet, a few things have
been provided in the CollectableInventory script. You already have Start(),
Update(), AddItem(), and RemoveItem() functions defined. Inside these
functions, you will write the code that brings your inventory to life. Furthermore,
you will need to declare and initialize any variables that you need. Before you
get started, try to formulate the logic for how your code will work based on the
given requirements. Since this challenge involves managing groups of objects
for the very first time, you may want to read along with the hints as you put your
solution together.

Hint: The using Directive
Look to the top of your CollectableInventory script. You will find this line:

using UnityEngine;

This line makes use of the C# using directive (Microsoft Corporation 2015e).
The using directive allows a script to access external namespaces (Microsoft
Corporation 2015b). You can think of a namespace as an organized collection
of code that lies outside of the script itself. Typically, we apply the using direc-
tive to gain access to the contents of a different namespace, so we can use its
objects, functions, and other features in our own code. In fact, all of the scripts
we write in C# and Unity are going to use these directives to some degree. You
can find them near the top of every script associated with this book. For example,
the previous example line of code accesses the UnityEngine namespace. This is
what allows us to access all of the great features built into the Unity engine, such
as GameObject.FindWithTag(), gameObject.transform.position,
Random.Range(), and countless others.

In order to start grouping our objects and manipulating them in our inventory,
we will need to add a new using directive to our script. Specifically, we have to
access the System.Collections.Generic namespace (Microsoft Corporation 2015d).
This namespace contains several classes related to collecting and organizing objects
in our code. Most importantly for our current challenge, this namespace is required
for us to create a C# List. You can add the directive to your script, like so. Place it
just below the line that references the UnityEngine namespace:

using System.Collections.Generic;

On a side note, you will see a compiler error if you ever forget to include a
using directive in your script. Typically, the error message will read something
like this: The type or namespace name [INSERT NAME] could not be found. Are
you missing a using directive or an assembly reference? This is a clear indication
that your script does not currently have access to something important that it
needs. Your first troubleshooting step should be to ensure you have all of the
required using directives.

7.   Taking Inventory122

Hint: The C# List
With access to the System.Collections.Generic namespace, you are free
to create a List. A List is one of very many ways that you can collect, organize,
and manipulate groups of objects in C#. In our current challenge, we need to be
able to add and remove objects from our inventory in real time. A List is an
excellent choice for handling this task.

Before diving into the implementation, let’s discuss the basic properties
of the C# List. A List stores a collection of objects with a specified data type
(Microsoft Corporation 2015a). For instance, a List can contain a group of int,
bool, GameObject, or similar values. However, in a single List, the data type
of every object must be the same. In addition, every object in a List is associated
with an index value. An index represents the position of the object inside the List.
Note that a List, like most other collections of objects in computer coding, is zero
indexed. This means that the first item in the List is represented by the index value
of 0. Meanwhile, the second item has an index of 1, the third item has an index of
2, and so on. Unlike human counting, which typically begins at 1, computer code
tends to start at 0 in most cases. Keep this in mind when working with List. You
will get used to counting from 0 as you gain experience as a coder. The other key
feature of a List is that it can increase and decrease in size as necessary through-
out its life span. This means that objects can be added to or removed from a List
at any time. Therefore, we can refer to a List as having a variable length. Later on,
you will learn about other ways to handle groups of objects, some of which have
a fixed length that cannot change over time. To summarize, the C# List stores
multiple objects of the same data type, is zero indexed, and has a variable length.

Let’s look at some basic code samples to better understand how List can
be implemented. To declare a List, you must provide a data type and a variable
name, like so:

//declare a List that stores integers
List<int> intList;

//declare a List that stores GameObjects
List<GameObject> goList;

After declaring a List, you need to initialize it. To accomplish this, use
the new keyword to call the built-in List constructor function (Microsoft
Corporation 2015c). This automatically provides us with an initialized List,
which we can use in our code.

//initialize a List that stores integers
intList = new List<int>();

//initialize a List that stores GameObjects
goList = new List<GameObject>();

This covers the basics of the C# List. Why don’t you declare and initialize
your own List in the CollectableInventory script? Doing so fulfills the first
requirement for this challenge, because this List will store the objects that Luna
collects. Therefore, you can think of this List as the underlying code behind
Luna’s on-screen inventory.

Hint: Add and Remove Functions 123

Hint: Add and Remove Functions
A convenient feature of the C# List is that objects can be added and removed
using built-in functions. To automatically add an object to the end of a List, call
the Add() function. Inside the parentheses of the Add() function, you should
provide the object that you want to add to the List. Examples are provided to
demonstrate how to use Add().

//add an object to the end of a List using Add()

//add the integer 10 a List
intList.Add(10);

//add the Game Object attached to this script to a List
goList.Add(gameObject);

Alternatively, you can also insert an object at a specific index position in
a List using the Insert() function. For Insert(), you must provide two
arguments: the index position, followed by the object itself. Insert() does
not overwrite any of the other objects in the List. It simply places an object at
the specified index position and bumps any following objects to the next higher
index. This principle is demonstrated:

//insert an object into a List using Insert()

/*
Assume that intList currently contains these
values: 1, 2, 3, 4, 5
*/

//insert the integer 10 at index 2
intList.Insert(2, 10);

/*
After the insertion, intList now contains
these values: 1, 2, 10, 3, 4, 5

Remember that Lists are zero indexed when
using the Insert() function!
*/

On the other hand, you can automatically remove the first occurrence
of an object found in a List by calling the Remove() function. Inside the
parentheses for Remove(), you must provide the object that you would like to
remove. Note that Remove() only removes the very first matching object that
it finds. Therefore, any additional instances of the same object would remain
in the List.

//remove an object from a List using Remove()

/*
Assume that intList currently contains these
values: 1, 2, 1, 4, 1
*/

7.   Taking Inventory124

//remove the first instance of the integer 1
intList.Remove(1);

//Afterwards, intList contains: 2, 1, 4, 1

//remove the first instance of the integer 1
intList.Remove(1);

//Afterwards, intList contains: 2, 4, 1

As you can see, Remove() does not give a large degree of control when
eliminating objects from a List. Fortunately, we can use RemoveAt() to
specify an exact index value at which to remove an object. The RemoveAt()
function only requires us to provide an index position. Subsequently, the func-
tion will remove the object that it finds at that index position in the List. Again,
it does not overwrite or eliminate other objects. Instead, any objects that come
later in the list will have their index value reduced to fill the gap left by the
removed object.

//remove an object from a List using RemoveAt()

/*
Assume that intList currently contains these
values: 1, 2, 3, 4, 5
*/

//remove the integer 3, which is at index 2
intList.RemoveAt(2);

//After the removal, intList contains: 1, 2, 4, 5

//remove the integer 4, which is at index 2
intList.RemoveAt(2);

//After the removal, intList contains: 1, 2, 5

/*
Remember that Lists are zero indexed when
using the RemoveAt() function!
*/

With Add(), Insert(), Remove(), and RemoveAt(), you have several
handy functions for manipulating any List. Turn to thinking about the cur-
rent challenge. Part of the second requirement entails adding an object to your
List whenever Luna collects it. Meanwhile, part of the third requirement entails
removing the last item in the List whenever the player removes it from the on-
screen inventory. Think about how you might accomplish these tasks using the
List functions discussed in this section.

Hint: Access by Index
You’ve added objects to a List and might be wondering how you can make
use of them. One way to retrieve an object in a List is to access it by its index
value. Recall that every object has an index position when it is added to a List.

Hint: The Count Property 125

To retrieve an object from a List, we use the List name, followed by square
brackets that contain the index value. Consider these examples:

//access List objects by their index position

/*
Assume that intList currently contains these
values: 1, 2, 3, 4, 5
*/

//access the integers in intList by their index positions
//recall that the List is zero indexed
intList[0]; //this would retrieve the value 1 from intList
intList[1]; //2
intList[2]; //3
intList[3]; //4
intList[4]; //5
intList[5]; //this would cause an error

This is one of the convenient things about storing objects in a List. Since every
object is assigned an index value when it is added, we can later retrieve any object by
simply referring to its index position. As demonstrated, the object stored at the index
position is what gets returned. After retrieval, you may choose to set the object equal
to a local variable, pass it into a function as an argument, or use it in calculations.

Also, note the error line in the sample code. A common error that you may
encounter when working with index values reads something like this: Index out
of range. Whenever you see a message similar to this, it means that you attempted
to access an invalid index position. For instance, in the sample code, our List
has only five objects. Therefore, it has index values that range from 0 to 4. If we
try to access an index position of 5, or anything else other than 0 to 4, we would
cause an error. What the error message tells us is that the List does not have an
index position for the given value. That is, we never added an object to that posi-
tion, so that index was never created either. Hence, we would need to modify our
code to ensure we only access valid index positions. Be aware of this error as you
work with groups of objects and index values. Any time you see it, you will know
to examine the index values in your code.

Hint: The Count Property
All Lists have a length, which indicates how many objects are contained inside.
You can access the length of any List by calling its Count property. The value
returned by Count will be equal to the total number of items in the List. Here
is a demonstration:

/*
Assume that intList currently contains these
values: 12, 37, 92, 85, 64

Use the Count property to retrieve the total
number of objects in a List.
*/

intList.Count; //this would equal 5

7.   Taking Inventory126

You can use the Count of a List in a variety of useful ways. For example,
perhaps you want to loop through all of the objects in the List. To do so without
exceeding the maximum index position and causing an error, you could apply
the Count in your condition.

/*
Assume that intList currently contains these
values: 12, 37, 92, 85, 64

This for loop uses Count in the
condition to ensure that only valid
index values are iterated through.
*/

for (int i = 0; i < intList.Count; i++) {

	 //this would print 12, 37, 92, 85, 64 before the loop ends
	 Debug.Log("The current index position is: " + i);

}

Another way that you might use the length of a List is to ensure that
you have a valid index value before you use it to access an object. For instance,
consider the following code sample:

/*
Assume we are gradually moving through
the values in our List one by one. Each
time our counter variable is incremented,
it would be good to ensure that a valid
index position exists to match it within
our List. If the counter exceeds the length
of the List, we can wrap back around to the
start of the List.
*/

//increment the index counter
indexCounter++;

//check whether the index value is valid
//valid index
if (indexCounter < intList.Count) {

	 //print the retrieved object
	 Debug.Log(intList[indexCounter]);

}

//invalid index
else if (indexCounter >= intList.Count) {

	 //reset the index counter
	 //return to start of List
	 indexCounter = 0;

	 //print the retrieved object
	 Debug.Log(intList[indexCounter]);

}

Hint: Function Argument Usage 127

These are just a few of the useful ways that you can apply the Count prop-
erty to improve your code. Remember this property, as you will be applying it
regularly whenever you are working with a C# List. You may even find a way to
utilize it in the current challenge.

Hint: Function Argument Usage
Previously, we passed arguments into functions and stored the values that were
returned by functions. However, the current challenge gives us an opportunity
to utilize an argument that has been passed into a function. Recall that an argu-
ment can be passed into a function, like so:

/*
When calling a function that accepts arguments,
you can pass one or more arguments into the
function by placing them inside the parentheses.
*/

//create a variable to pass into the function
int aValue = 0;

//pass the variable into the function
theFunction(aValue);

After an argument has been passed into a function, it can be manipulated by
that function. Here is an example structure for a function that accepts a single
argument:

/*
This function accepts an argument of the int data type.
That means any int value can be passed into the function.
Afterwards, the int can be used via the defined pseudonym.
*/

void theFunction(int theArgument) {

	 /*
	 Whenever this function is called, an int
	 value must be passed into it. No matter
	 what the value is, it can now be referred
	 to using the pseudonym theArgument.
	 */

	 //for example, we could add one to the value
	 theArgument++;

	 //and print it
	 Debug.Log(theArgument);
}

Interestingly, no matter what value is passed into a function as an argu-
ment, it is renamed by the function. In the sample code, our original variable
was named aValue. However, when it is received by the function, it becomes
known as theArgument. This renaming feature may seem obscure at first, but

7.   Taking Inventory128

it is for a very convenient purpose. That is, we can write our function a single
time in a single way using a single variable name for the argument. Regardless
of what value or variable is originally passed into the function, it will always be
understood by the function under its specified pseudonym. As such, our func-
tion is flexible enough to handle any variable name we might pass into it. We will
further discuss creating our own functions that accept arguments at a later time.
Right now, we only need to understand how to utilize the arguments passed into
functions. The key point is that we can use the generic name the function pro-
vides to manipulate whatever argument is passed into it.

Let’s examine how you can use arguments to support your solution to the
current challenge. Open the Collectable script in your code editor and proceed to
the bottom of the file. There, you will find this code:

//excerpt from Collectable script

//add object to inventory
//note: references CollectableInventory script
Col�lectableInventory theInventory = GameObject.

FindWithTag("Inventory").GetComponent<CollectableInventory>();
theInventory.AddItem(gameObject);

This code searches for the Inventory GameObject in the Unity scene
and accesses its attached CollectableInventory script. Then, it calls the
AddItem() function from the CollectableInventory script. As an argument to
the CollectableInventory’s AddItem() function, it provides the GameObject
to which the Collectable script is attached. Recall that the Collectable script is
attached to each collectable object in the game. Therefore, when AddItem()
is called with an argument of gameObject, the individual collectable that
has just collided with Luna is passed to the CollectableInventory script. That
way, the collectable can be placed into our on-screen inventory. Go to your
CollectableInventory script and find the AddItem() function. The basic
function code looks like this:

//add an object to the inventory
//�note: the Collectable script references this function; when
collected, the collectable is passed into this function, so it
can be added to the inventory

public void AddItem(GameObject theItem) {

	 /*
	 Whatever collectable Luna just collided with
	 is passed into this function and represented
	 by the pseudonym theItem. Therefore, anything
	 you want to do to the collectable, such as
	 giving it a new position, can be done by
	 manipulating theItem variable.
	 */

} //end function

The AddItem() function accepts an argument of the type GameObject
and gives it the pseudonym theItem. We know from our Collectable script

Example Solution: Keeping Track of Collectables in an Inventory 129

that the object passed into this function is the latest collectable that Luna has
collided with. Therefore, we can use this function to accomplish the first and
second requirements of this challenge. The collectable, using the pseudonym
theItem, can be added to our List via the Add() function. In addition, we can
set the collectable’s position to align it properly within the on-screen inventory.

From the hints included in this chapter and your previous coding experience,
you should be able to achieve the remaining objectives of this challenge. See if you
can put a working solution together before proceeding to the example solution.

Example Solution: Keeping Track of Collectables
in an Inventory
This challenge involved managing an on-screen inventory of Luna’s collectables.
As a reminder, the challenge requirements are listed:

	 1.	 Each object that the player collects must be stored in a List.

	 2.	 When an object is collected, it should be added to the List. It should
also be positioned next to the previous item in the on-screen inventory.

	 3.	 When the player presses the T key, the last object in the on-screen inven-
tory should be removed. It should also be removed from the List. If no
objects exist, the key press should have no effect.

A pseudocode example of the logic behind the example solution is provided:

Declare and initialize inventory LIST
IF object collected, CALL AddItem()
IF T key pressed, CALL RemoveItem()

AddItem()
•	ADD item to inventory LIST
•	�Set x position EQUAL TO –Screen.width / 2 + half item width

+ index position * inventory LIST COUNT − 1
•	Set y position EQUAL TO other objects in inventory
•	Set parent EQUAL TO inventory object in scene

RemoveItem()
•	 IF inventory LIST COUNT IS GREATER THAN 0:

⚬⚬ REMOVE item at inventory LIST COUNT − 1
⚬⚬ DESTROY item

We will break down each requirement to examine how you could have
solved this challenge by coding your CollectableInventory script. The first
requirement notes that a List should be used to keep track of Luna’s collect-
ables. Therefore, we should declare and initialize a List in our code.

//excerpt from CollectableInventory script

//the stored inventory of collected objects
private List<GameObject> _inventory;

7.   Taking Inventory130

//init
void Start() {

	 //initialize inventory
	 _inventory = new List<GameObject>();

} //end function

We create a global List variable called _inventory to store our collect-
ables. We specify the GameObject type for the List, since our collectables are
of this type. Then, the List is initialized in the Start() function.

The second requirement states that a collected object needs to be added to our
List and positioned within the on-screen inventory. Recall that upon detecting
a collision between Luna and a collectable, the Collectable script sends an argu-
ment to the CollectableInventory script’s AddItem() function. That argument
represents the object that was just collected. Therefore, we can handle our second
requirement inside the AddItem() function.

//excerpt from CollectableInventory script

//add an object to the inventory
//�note: the Collectable script references this function; when
collected, the collectable is passed into this function, so it
can be added to the inventory

public void AddItem(GameObject theItem) {

	 //add the item to the inventory
	 _inventory.Add(theItem);

	 //position the item in the inventory
	 //�creates a row of inventory items along the bottom of the

screen

	 //retrieve the current position
	 Vector3 pos = theItem.transform.position;

	 //retrieve the size
	 Vec�tor3 size = theItem.GetComponent<SpriteRenderer>().

bounds.size;

	 //set the x position inside the inventory
	 //align the latest item at the end of the preceding items
	 float xPos = ��(−0.5f * Screen.width / 100.0f) + 0.5f * size.x

+ (_inventory.Count − 1) * size.x;

	 //set the y position at the bottom of the screen
	 flo�at yPos = (−0.5f * Screen.height / 100.0f) + 0.5f

* size.y;

	 //update position values
	 pos.x = xPos;
	 pos.y = yPos;

	 //set the updated position
	 theItem.transform.position = pos;

	 //add item to inventory GameObject in scene
	 theItem.transform.parent = gameObject.transform;

} //end function

Example Solution: Keeping Track of Collectables in an Inventory 131

The AddItem() function identifies the collectable GameObject passed
into it using the pseudonym theItem. It takes this collectable and adds it to the
_inventory List with Add(). Next, the original position is stored, so it can
be updated later. Meanwhile, the size is stored to make our code more readable.
Then, the new x and y position calculations are made. The on-screen inventory in
this example is placed at the lower-left-hand corner of the screen. Each collected
object will line up in a row from left to right. Therefore, they all have the same y
position, which is equal to the bottom edge of the screen plus half of the object’s
height (size.y). As we are accustomed to, using half of the object’s height
adjusts for its center origin point. However, each collectable object needs to have
a different x position inside the inventory. Any time a new object is collected,
we should account for how many objects are already in the inventory. To start,
we take the left edge of the screen plus one half the object width (size.x), which
gets our collectable precisely to the left edge of the screen. Next, we add the full
width of the collectable multiplied by 1 less than the total Count of items in
our _inventory List. This adjustment ensures that our collectables line
up neatly beside one another on the screen. To see how this works, try draw-
ing out the inventory and performing the x position calculation for each object
(Figure 7.1).

The first object is placed flush to the left side of the screen. This is because
_inventory only has a Count of 1. After 1 is subtracted from the Count, the x
position adjustment equals 0. However, the second object gets offset by the width
of one collectable. That’s because one collectable is already present in the inven-
tory. If we didn’t make this adjustment, both collectables would be placed on top of
each other at the lower left-hand corner of the screen. Yet, by offsetting the x posi-
tion to account for the collectable that’s already in the inventory, we get the objects
to line up. As more collectables are added to the inventory, each one is placed
at the end of the line. Furthermore, this calculation will work if collectables are
removed from the inventory. The Count of our _inventory List always
knows how many collectables are inside. Therefore, our x position calculation

always finds exactly where to place
the next collectable in the on-screen
inventory. Once the x and y position
values are calculated, they are used
to update the position of the collect-
able. Last, the collectable’s parent is
set to the Inventory GameObject
in the Unity scene. This ensures our
collectables are neatly organized
under a single parent.

The third requirement notes
that a T key press should remove
the last collectable from the
inventory, provided such an object
exists. We handle the key press in
Update() and subsequently call
the RemoveItem() function.

Index

X Offset

0

0w

1

1w

2

2w

...i

...iw

Figure 7.1  The x position offset for several
collectable objects is depicted. In the exam-
ple solution, every object begins from the left
edge of the screen plus half of the object width
(w). Subsequently, to line the objects up in a
row, each is offset based on its index position
in the _inventory List. For instance,
the offset for the object at index position 2
would be 2w. Thus, regardless of the number
of objects in the inventory, the latest one will
always be added to the end of the line.

7.   Taking Inventory132

//excerpt from CollectableInventory script

//update
void Update() {

//check for t key press
if (Input.GetKeyDown(KeyCode.T)) {

//remove item from inventory
RemoveItem();

} //end if

} //end function

The RemoveItem() function needs to eliminate the last collectable from
our _inventory List, as well as remove it from the on-screen inventory.
However, it should only do so when there are actually collectables inside the
inventory. Here’s one way the function could be structured:

//remove the most recent object from the inventory
public void RemoveItem() {

//only remove if at least one item exists
if (_inventory.Count > 0) {

//store item
GameObject lastItem = _inventory[_inventory.Count − 1];

//remove the last item in the inventory
_inventory.RemoveAt(_inventory.Count − 1);

//destroy item
Destroy(lastItem);

} //end if

} //end function

Before doing anything else, RemoveItem() ensures that the Count of the
_inventory List is greater than 0. Therefore, our code only proceeds if there
is at least one collectable in the inventory. Afterwards, the function accesses
the last collectable in the _inventory List and stores it in a GameObject
variable named lastItem. Recall that objects inside Lists can be accessed
using square brackets and an index positon. Meanwhile, Count returns the total
number of objects in a List. Since our List is zero indexed, we can find the very
last index position by taking Count − 1. That is how the last inventory collectable
is retrieved in this example. Once the collectable is stored in a variable, we can
safely remove it from our _inventory List. Here, the RemoveAt() func-
tion is used with an index position of Count − 1. Finally, to complete the task of
removing the collectable from our on-screen inventory, we use the Destroy()
function.

References 133

Summary
You have created an on-screen inventory for visualizing the objects that Luna
collects throughout her journey. In addition, you coded a List to manage the
addition and removal of objects in your inventory system. You can expand upon
this functionality to introduce a variety of compelling features, such as equip-
ment and consumable item systems, into your games. You have begun managing
groups of objects effectively in your code and should be able to accomplish all of
these objectives:

◾◾ Create an on-screen inventory system for a game character

◾◾ Store multiple objects simultaneously in an inventory

◾◾ Apply the C# using directive to access external namespaces

◾◾ Manage collections of objects using the C# List

◾◾ Utilize arguments that are passed into functions

◾◾ Access objects that are stored inside a C# List

◾◾ Add objects to and remove objects from a C# List

In the next challenge, you will continue building your knowledge of loops
and groups of objects. This will require introducing a few friends to accompany
Luna as she travels through the surface world.

References
Microsoft Corporation. 2015a. List<T> Class. http://msdn.microsoft.com/library/6sh2ey19.

aspx (accessed February 26, 2015).
Microsoft Corporation. 2015b. namespace (C# Reference). http://msdn.microsoft.com/

library/z2kcy19k.aspx (accessed February 26, 2015).
Microsoft Corporation. 2015c. new Operator (C# Reference). http://msdn.microsoft.com/

library/fa0ab757.aspx (accessed February 26, 2015).
Microsoft Corporation. 2015d. System.Collections.Generic Namespace. http://msdn.

microsoft.com/library/system.collections.generic.aspx (accessed February 26, 2015).
Microsoft Corporation. 2015e. using Directive (C# Reference). http://msdn.microsoft.

com/library/sf0df423.aspx (accessed February 26, 2015).

135

8 A Party of
Heroes

Luna will need some support to succeed in her journey through the surface world.
She’ll also have more fun if we provide her with a few friends. You may remember
that we defined stats for dryad, dwarf, and orc characters back in Chapter 2. We
also introduced the backstory of three characters, including Lily the dryad, Pink
Beard the dwarf, and Larg the orc. In this challenge, you will add these heroes
to the game world and allow them to join Luna on her journey. Along the way,
you’ll learn more about managing groups of objects and iterating through them
with loops.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Create a group of heroes inside the game world

◾◾ Manage groups of objects using unidimensional arrays

◾◾ Retrieve groups of objects from a Unity scene

◾◾ Iterate through groups of objects using foreach loops

8.   A Party of Heroes136

Required Files
In this chapter, you will need to use the following files from the Chapter_08 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > HeroGroup.cs to code your solution to the
challenge

◾◾ Demo > Mac/PC > HeroGroup to demonstrate how your completed solu-
tion should work

◾◾ Solution > HeroGroup.cs to compare your solution to the provided exam-
ple solution

Challenge: Managing a Group of Heroes
Open the Map scene in Unity. In the Scene window, you will see that Luna is
surrounded by our three new heroes: Lily the dryad, Pink Beard the dwarf,
and Larg the orc. You will place your code for this challenge in the HeroGroup
script. Note that this script is attached to the Player GameObject in the Unity
scene. Inside the script, you have been provided with several empty functions,
including Start(), Update(), ToggleMember(), RemoveMember(), and
CheckCollisions(). Everything else will be coded by you. To get an idea of
how this script should be crafted, take a look at the requirements for the com-
pleted solution:

	 1.	 All heroes who are currently in the group should be stored in a variable.
Use a storage method that allows objects to be added and removed as
needed. Initialize this variable in Start().

	 2.	 The Update() function should check for two key presses. When the
player presses E, call the ToggleMember() function. When the player
presses R, call the RemoveMember() function.

	 3.	 The CheckCollisions() function should locate all of the remaining
heroes on the map and store them. Next, it should use a loop to iterate
through each hero and check for a collision with Luna. If a collision is
detected between Luna and a hero, that hero’s sprite should be added
to the group and the corresponding GameObject should be removed
from the map.

	 4.	 The ToggleMember() function should change the sprite of the Player
GameObject to the next hero in the group. If the last group member
is reached, the function should cycle back around to the first group
member.

Hint: Unidimensional Arrays 137

	 5.	 The RemoveMember() function should delete the currently shown hero
from the group. Subsequently, it should switch the Player GameObject
sprite to the next hero in the group. However, if only one hero is in the
group, the RemoveMember() function should have no effect.

Remember to sort out the logic for your solution based on these requirements.
You should be able to code the first two requirements based on your success in
prior challenges. Therefore, the following hints will focus on the remaining three
requirements, which involve managing your group of heroes.

Hint: Unidimensional Arrays
A unidimensional array is an efficient method for storing objects that exist in
nearly all computer languages, including C#. In some ways, an array is similar
to the C# List that you are already familiar with. Like a List, an array is zero
indexed and stores objects of a specific data type. However, the major difference is
that a List has a variable length, whereas an array has a fixed length. Therefore,
any time you initialize an array, you must specify exactly what its length will be.
Thereafter, the array cannot be resized, added to, or removed from. While the
objects inside the array can still be accessed and modified, the overall size of
the array is fixed at its original length. Table 8.1 summarizes the similarities and
differences between the C# List and array.

The major characteristic that differs between a List and an array is length.
Therefore, we can apply a simple decision process to choose the best type of
storage for our needs. In general, arrays are optimized for faster storage and
retrieval by the computer. Thus, they are the better choice in most circumstances.
However, an array requires a fixed length to be specified at creation. In some cir-
cumstances, we need to add and remove objects in real time. Hence, providing a
fixed size up front may not be possible or practical. For these situations, a List is
a better choice, because it is flexible enough to increase or decrease its length over
time. To summarize, if you can specify a fixed length for your group of objects,
using an array is optimal. Yet, if you cannot provide a fixed length or need the
flexibility to change the size of your group over time, use a List.

With the basic characteristics of arrays covered, let’s look at how they are
implemented in code. To declare an array in C#, provide a data type, followed by
square brackets, and a variable name.

//declare an array that stores integers
int[] intArray;

//declare an array that stores GameObjects
GameObject[] inventoryArray;

Table 8.1  Comparison of C# List and Array Features

Feature List Array

Indexing Zero indexed Zero indexed
Data type Single, fixed Single, fixed
Length Variable Fixed

8.   A Party of Heroes138

After declaration, you can initialize an array by calling its constructor with
the new keyword. You must provide an integer value that represents the size of
the array inside square brackets.

//initialize an array that stores 5 integers
intArray = new int[5];

/*
Initialize an array that stores GameObjects.
The size is set to an integer variable that
represents the maximum number of inventory items.
*/
int maxItems = 3;

inventoryArray = new GameObject[maxItems];

Alternatively, you can initialize an array and assign values straightaway.
To do this, provide a series of comma-separated values inside curly brackets.
Here are a pair of examples:

/*
Use curly brackets with comma-separated values to
provide an array with values on initialization.
*/

//initialize an array with integer values
intArray = new int[] {1, 2, 3, 4, 5};

//initialize an array with specific GameObjects
inventoryArray = new GameObject[] {Water, Food, Potion};

You can access a specific object from an array using its index position. Type
the array name, followed by square brackets that contain the index position for
the object.

//access array objects by their index position

/*
Assume that intArray currently contains these
values: 1, 2, 3, 4, 5
*/

//access the integers in intArray by their index positions
//recall that the array is zero indexed
intArray[0]; //this would retrieve the value 1 from intArray
intArray[1]; //2
intArray[2]; //3
intArray[3]; //4
intArray[4]; //5

/*
Assume that inventoryArray currently contains these
GameObjects: Water, Food, Potion
*/

Hint: Unidimensional Arrays 139

//access the GameObjects in inventoryArray by their index positions
inventoryArray[0]; //Water
inventoryArray[1]; //Food
inventoryArray[2]; //Potion

Since an array has a fixed length, it does not have convenient add and remove
functions like a List does. However, you can directly set the value of any array
object. Simply access the object by its index position and set it equal to a value.
Whatever was previously stored at that position in the array will be replaced by the
value that you provide. Consider these examples:

//set the value of an array object using its index position

/*
Assume that intArray currently contains these
values: 1, 2, 3, 4, 5
*/

//change the values in intArray
intArray[0] = 10;
intArray[2] = 9;
intArray[4] = 0;

/*
The modified intArray contains these
values: 10, 2, 9, 4, 0
*/

/*
Assume that inventoryArray currently contains these
GameObjects: Water, Food, Potion
*/

//change the GameObjects in inventoryArray
inventoryArray[0] = Potion;
inventoryArray[1] = Water;
inventoryArray[2] = inventoryArray[1];

/*
The modified inventoryArray contains these
GameObjects: Potion, Water, Water
*/

To access the overall size of array, use the Length property. This functions
identically to the Count property of a List. Thus, Length returns the total
number of objects in the array. Recall that this information can be useful for a
variety of things, such as looping through arrays and validating index values.

/*
Use the Length property to retrieve the total
number of objects in an array.

Assume that intArray currently contains these
values: 1, 2, 3, 4, 5
*/

8.   A Party of Heroes140

intArray.Length; //this would equal 5

/*
Assume that inventoryArray currently contains these
GameObjects: Water, Food, Potion
*/

inventoryArray.Length; //this would equal 3

That covers the basics of unidimensional arrays in C#. Along with List, the
array gives you a second excellent way to manage groups of objects in your code.
Remember to think about whether you can assign a fixed length or need a vari-
able length when choosing between an array and a List. This challenge provides
you with the opportunity to apply an array and a List to handle different parts
of your solution. Give them both a try in your code.

Hint: Unity Tags for Multiple Objects
Previously, we used Unity’s built-in GameObject.FindWithTag() function
to retrieve a single object with a specific tag. This works well when only one object
has a given tag, such as a player in a one-player game. However, we can also
assign the same tag to many objects in our Unity scene. For example, we might
have several collectables or obstacles in our game world that use the same tag.
Fortunately, we can use the GameObject.FindGameObjectsWithTag()
function to retrieve all of the objects in our Unity scene that share a given tag.
The function is applied similar to GameObject.FindWithTag(), except that
GameObject.FindGameObjectsWithTag() returns a unidimensional
array that contains every matching GameObject. An example follows:
//find all GameObjects that share a common tag
//find all objects with the tag called "tagString"
GameObject.FindGameObjectsWithTag("tagString");

Revisit the third requirement of your current challenge, which describes
the CheckCollisions() function. The initial step for this function involves
retrieving all of the remaining heroes on the map. Thereafter, you can iterate
through the heroes and check for collisions with the player. Find the hero objects
inside the Hierarchy window of your Unity project. You will see that they all have
been tagged with Hero in the Unity Inspector. Therefore, you can retrieve all of the
heroes using the GameObject.FindGameObjectsWithTag() function along
with the Hero tag. Since this function returns a unidimensional array, you will
want to set up a variable to store that information in your code. Here is an example
of how you might handle this step in your CheckCollisions() function:
/*
Retrieve all of the remaining heroes
from the map using the Hero tag
and GameObject.FindGameObjectsWithTag()
function. Store these heroes in a local
unidimensional array variable inside
the CheckCollisions() function.
*/

GameObject[] heroes = GameObject.FindGameObjectsWithTag("Hero");

Hint: foreach Loops 141

Hint: foreach Loops
You already know how to apply for and while loops. Let’s introduce a differ-
ent kind of loop, called foreach. Similar to other kinds of loops, we can use
foreach to iterate through a group of objects and efficiently execute code many
times over. The structure of a foreach loop requires these parts: the foreach
keyword, a data type, a variable name, the in keyword, and a group of objects to
iterate through. An example of this basic structure follows:

foreach (datatype aVariableName in aGroupOfObjects) {

/*
Any code placed here will execute each time the loop runs.
To modify an individual object in the group as its turn comes
up in the loop, refer to it using the provided variable name.
*/

}

Following the foreach keyword are two parentheses. Inside these paren-
theses, the first item listed is a data type. This can be a primitive or composite
data type. It should match the type of objects contained within the group that is
being iterated through. For instance, if you want to iterate through an array of
the data type GameObject, the data type in your foreach loop should also be
GameObject. Next comes a variable name that generically identifies the objects
inside the group. This mirrors how pseudonyms are used to refer to function
arguments. You experienced this during the previous collectable inventory chal-
lenge. When a function receives an argument, no matter what the argument’s
original name was, it is referred to by the pseudonym thereafter. Similarly, no
matter what the name of a given object is inside its group, the variable name
provided in the foreach loop will act as a pseudonym. Thereafter, the code
inside our loop can refer to the object by the pseudonym. This makes it efficient
for us to write our code a single time and apply it to all of the objects in the
group. After the variable name, the in keyword is listed. This statement accom-
panies foreach as part of the required keywords to execute this type of loop
(Microsoft Corporation 2015). Lastly, the loop requires us to provide a group of
objects to iterate through. For example, we might provide the name of a List or
array stored in our script. Once the required elements are arranged, we place any
code that should be executed inside the loop’s brackets.

The great thing about foreach loops is that they provide us with a fast
and easy way to perform operations on an entire group of objects. The loop will
gradually step through every individual object in a group and apply any code we
want. You can think of a foreach loop as saying, “For each individual object in
the group of objects, do this.” Therefore, this kind of loop is useful when you want
to modify several individual objects in a group. Here is a related code sample:

/*
Assume you are iterating through a group with the GameObject data
type and want to set the parent of each GameObject. You could use
the following code.
*/

8.   A Party of Heroes142

//iterate through each GameObject in goGroup
foreach (GameObject aGO in goGroup) {

//set the parent of the current GameObject
aGO.transform.parent = gameObject.transform;

}

In this example, aGO is the pseudonym used to refer to the GameObject
currently being iterated through. Meanwhile, goGroup is a collection that con-
tains several GameObject variables. Inside the loop, the parent of the current
GameObject being iterated through is set. The loop will continue doing the
same for every object inside goGroup. Hence, once the loop has finished, every
object inside goGroup will have the same parent assigned to it.

Consider the foreach loop in terms of the third requirement for this chal-
lenge. This requirement states that a loop should be used to iterate through the
remaining heroes on the map. You already stored these heroes in a unidimen-
sional array at the beginning of your CheckCollsions() function. Although
you could use a familiar loop to complete this task, like for or while, try apply-
ing a foreach loop instead. With the foreach loop, you can easily iterate
through every hero in your array. Here is an example to get you started:

/*
Recall that you already found and stored
all of the heroes remaining on the map in
a unidimensional array named heroes.
*/

//iterate through each hero remaining on the map
foreach (GameObject aHero in heroes) {

//check this hero for collisions
//execute additional code as necessary

}

This loop sets the stage for you to iterate through each of the remaining heroes
on the map. Subsequently, you can check them individually for collisions with Luna.
If a collision is found, you can add that hero’s sprite to your group and remove the
original object from the map. That fulfills everything necessary for requirement 3.

Notably, requirements 4 (ToggleMember() function) and 5
(RemoveMember() function) need no special hints beyond what you already
know about computer coding. Therefore, you should read over the challenge
requirements carefully and see if you can implement them at this point. Compare
your own solution to the provided demo to make sure you have everything
covered. Once you’re satisfied with your work, proceed to the example solution
for this challenge.

Example Solution: Managing a Group of Heroes
Besides learning about unidimensional arrays and foreach loops, you had to
reapply a number of previously exercised coding skills to solve this challenge.

Example Solution: Managing a Group of Heroes 143

In the end, you have the ability to add heroes to a group and switch between them
during play. To recap, here are the requirements for the challenge:

	 1.	 All heroes who are currently in the group should be stored in a variable.
Use a storage method that allows objects to be added and removed as
needed. Initialize this variable in Start().

	 2.	 The Update() function should check for two key presses. When the
player presses E, call the ToggleMember() function. When the player
presses R, call the RemoveMember() function.

	 3.	 The CheckCollisions() function should locate all of the remaining
heroes on the map and store them. Next, it should use a loop to iterate
through each hero and check for a collision with Luna. If a collision is
detected between Luna and a hero, that hero’s sprite should be added
to the group and the corresponding GameObject should be removed
from the map.

	 4.	 The ToggleMember() function should change the sprite of the Player
GameObject to the next hero in the group. If the last group member
is reached, the function should cycle back around to the first group
member.

	 5.	 The RemoveMember() function should delete the currently shown
hero from the group. Subsequently, it should switch the Player
GameObject sprite to the next hero in the group. However, if only
one hero is in the group, the RemoveMember() function should have
no effect.

The logic for the example solution is depicted in a process map (Figure 8.1).
Recall that the solution opened by declaring and initialing the _memberSprites
List to store the hero group (requirement 1). In addition, the Update()

E?

R?

Increment
current
member

Over
limit?Key pressed Reset current

member to 0

Update hero
sprite

Remove hero
from screen

Add sprite
to group

Change to
next

member

Remove
current
member

Count
>1?

For each
remaining

hero
Colliding?Check

collisions

Yes

No

Yes

Yes

Yes

Yes

No

Figure 8.1  A process map illustrates the logic behind the example solution.

8.   A Party of Heroes144

function checks for E and R key presses in order to call the ToggleMember()
and RemoveMember() functions. The associated sample code follows:

//the member sprites
private List<Sprite> _memberSprites;

//index of current member selected in group
private int _currentMember;

//init
void Start() {

//init List
_memberSprites = new List<Sprite>();

//add sprite of current player to List
_me�mberSprites.Add(gameObject.GetComponent<SpriteRenderer>().

sprite);

//start at first member
_currentMember = 0;

} //end function

//update
void Update() {

//check collisions
CheckCollisions();

//check for e key press
if (Input.GetKeyDown(KeyCode.E)) {

//toggle member
ToggleMember();

} //end if

//check for r key press
if (Input.GetKeyDown(KeyCode.R)) {

//remove member
RemoveMember();

} //end if

} //end function

Note that the Start() function initializes the _memberSprites List
to store hero sprites and adds the current player sprite to the List. That’s
because Luna’s sprite already represents the player from the start of the game.
Therefore, her sprite needs to be included in the List. Furthermore, since the
List begins with only a single object, the _currentMember index vari-
able is set to 0. Besides checking for key presses, the Update() function also
calls the CheckCollisions() function. This tells the script to constantly
check for collisions with the heroes who may join Luna’s group. For the rest of

Example Solution: Managing a Group of Heroes 145

the solution, let’s take a look at each of the three remaining functions in turn:
CheckCollisions(), ToggleMember(), and RemoveMember(). We will
start with CheckCollisions().

private void CheckCollisions() {

//store remaining heroes in array
//retrieve remaining heroes from scene
Gam�eObject[] heroes = GameObject.

FindGameObjectsWithTag("Hero");

//get player’s current position
Vector3 playerPos = gameObject.transform.position;

//get player’s size
Vec�tor3 playerSize = gameObject.

GetComponent<SpriteRenderer>().bounds.size;

//iterate through each hero on the map
foreach (GameObject aHero in heroes) {

//get hero position
Vector3 heroPos = aHero.transform.position;

//get hero size
Vec�tor3 heroSize = aHero.

GetComponent<SpriteRenderer>().bounds.size;

//set up collision flags
bool isCollisionX = false;
bool isCollisionY = false;

//check x axis
if (

//player’s right edge is past hero’s left edge
(pl�ayerPos.x + 0.5f * playerSize.x >= heroPos.x

− 0.5f * heroSize.x)

&&

//player’s left edge is past hero’s right edge
(pl�ayerPos.x − 0.5f * playerSize.x <= heroPos.x

+ 0.5f * heroSize.x)

) {

//toggle flag
isCollisionX = true;

} //end if

//check y axis
if (

//player’s top edge is above hero’s bottom edge
(pl�ayerPos.y + 0.5f * playerSize.y >= heroPos.y

− 0.5f * heroSize.y)

&&

8.   A Party of Heroes146

//player’s bottom edge is below hero’s top edge
(pl�ayerPos.y − 0.5f * playerSize.y <= heroPos.y

+ 0.5f * heroSize.y)

) {

//toggle flag
isCollisionY = true;

} //end if

//i�f the objects overlap on both the x and y axes,
there is a collision

if (isCollisionX && isCollisionY) {

Deb�ug.Log("[HeroGroup] Player collision detected;
a new hero has joined your party!");

//add the hero’s sprite to the array
_me�mberSprites.Add(aHero.GetComponent

<SpriteRenderer>().sprite);
//remove the hero from the scene
Destroy(aHero);

} //end if

} //end foreach

} //end function

To fulfill requirement 3, the CheckCollisions() function retrieves
the remaining heroes on the map using GameObject.FindGameObjects
WithTag() and stores them in a local unidimensional array. Afterwards,
the function iterates through each hero in turn with a foreach loop. Inside
the loop, the code checks for AABB collisions, as we have done several times
before. While the collision checks are identical to what we have used in the
past, this example demonstrates a slightly different format. Here, two separate
Boolean flags are used to detect the x and y axis collisions: isCollisionX and
isCollisionY. When the positions of the player and the hero overlap on a
given axis, its flag is set to true. If both flags are true at the end of the col-
lision check, we are certain that a collision has occurred. That’s because both
x and y axis overlap are required to determine a two-dimensional (2D) collision.
In the event that a collision occurs, the final section of the function is executed.
There, the hero’s sprite is added to our _memberSprites List for safekeep-
ing and the original hero object is destroyed to remove it from the map. This
concludes the CheckCollisions() function and requirement 3. Next comes
the ToggleMember() function.

public void ToggleMember() {

//increment current index
_currentMember++;

Example Solution: Managing a Group of Heroes 147

//verify that index is within bounds and reset if necessary
if (_currentMember > _memberSprites.Count − 1) {

//reset to first member
_currentMember = 0;

} //end if

//update the renderer based on the current index
gam�eObject.GetComponent<SpriteRenderer>().sprite

= _memberSprites[_currentMember];

} //end function

For requirement 4, the ToggleMember() function begins by incre-
menting the _currentMember index variable. Recall that this variable
keeps track of which hero sprite in our _memberSprites List is currently
displayed. By incrementing the index, it is setting the stage to switch to the
next character sprite. However, it must verify that the index value is valid by
comparing it to the highest index in the _memberSprites List, which is
_memberSprites.Count − 1. Should the index value be out of range, it
resets the _currentMember variable back to 0. This has the effect of returning
to the first sprite, thus looping back around to the start of the _memberSprites
List. Lastly, the ToggleMember() function must physically change the
sprite shown on the screen. It does so by accessing the SpriteRenderer
component of the Player GameObject and setting its sprite equal to the
_currentMember selected from the _memberSprites List. Hence, with
the ToggleMember() function, players are able to switch through the group of
heroes in sequence and display their sprites on screen. The final function in this
solution is RemoveMember().

public void RemoveMember() {

//only remove if more than one member exists
if (_memberSprites.Count > 1) {

//remove member from group
_memberSprites.RemoveAt(_currentMember);

//offset index value
/*
Index Notes
Since an object was removed from the List, the
next index value is one lower than before. Thus,
we offset the index by −1 before incrementing it
again in ToggleMember().
*/
_currentMember−−;

//toggle member
ToggleMember();

} //end if

} //end function

8.   A Party of Heroes148

To satisfy requirement 5, the RemoveMember() function verifies that
more than one hero is in the group. It does so by checking that the Count of
the _memberSprites List is greater than 1. If not, we prevent the player
from deleting the one and only remaining character sprite. However, if there
are multiple heroes in the group, the code proceeds to remove the currently
selected hero from _memberSprites using the RemoveAt() function.
Subsequently, it decrements the _currentMember index variable and calls the
ToggleMember() function to swap the on-screen sprite to the next hero in the
_memberSprites List.

Note that the decrement of _currentMember is a necessary step to ensure
that our code accurately switches to the next hero in line. After a member is
removed from the group, the remaining heroes in the List will have index
positions that are 1 less than before. Imagine a neat row of heroes lined up.
Remove the second, which leaves a gap between the members of the group. Slide
the last two heroes over to fill the gap (Figure 8.2). In doing so, you have moved
the third hero into the slot the second had previously occupied and the fourth
into the slot of the third.

This is similar to what happens when you remove an object from a List.
Objects that come after the removed item will have their index values reduced
by 1 as they fill in the gap. This is why we must reduce the _currentMember
value by 1 after removing a hero from _memberSprites. That way, when
_currentMember is later incremented in the ToggleMember() function,
it will reflect the proper index position of the next hero in line. With all of the
requirements met, you have succeeded in passing this challenge. Have fun find-
ing friends to accompany Luna.

A

Index 0 1 2 3

B

C

Figure 8.2  (A) A group of four heroes is shown. (B) The second hero is removed. (C) The
remaining heroes slide over to fill the vacated space. This demonstrates how the index
values of a List are updated when an object is removed.

Reference 149

Summary
Not only have you created an entire party of heroes to accompany Luna on her
journey, but you have also learned to manage groups of objects with the unidi-
mensional array and List. Meanwhile, foreach loops join while and for
loops in your arsenal of techniques to iterate through groups of objects. With
these methods in hand, your coding skills continue to grow.

◾◾ Create a group of heroes inside the game world

◾◾ Manage groups of objects using unidimensional arrays

◾◾ Retrieve groups of objects from a Unity scene

◾◾ Iterate through groups of objects using foreach loops

With an entire party of heroes in our game world and lots of things to collect,
let’s focus on sprucing up the map itself. In the upcoming challenge, you will gener-
ate a unique map from several different tile designs.

Reference
Microsoft Corporation. 2015. foreach, in (C# Reference). http://msdn.microsoft.com/

library/ttw7t8t6.aspx (accessed March 3, 2015).

151

9 Generating
a Tile Map

Luna is surrounded by a number of collectable objects and friendly heroes in
the surface world. However, the world map of our game has remained a bit drab
throughout the journey to date. Let’s change that. In this challenge, you will
implement a tile map to create a unique and visually pleasing world for our game.
A tile map is a game development technique that has been used to create count-
less classic games, including Super Mario Bros. and The Legend of Zelda, among
many others. Knowing how to utilize tile maps effectively will serve you well in
your future two-dimensional (2D) game development.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Generate a map from a collection of tiles

◾◾ Store information in multidimensional arrays

◾◾ Perform complex iteration using nested loops

◾◾ Populate multidimensional arrays using nested loops

9.   Generating a Tile Map152

Required Files
In this chapter, you will need to use the following files from the Chapter_09 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > RandomMap.cs to code your solution to
the challenge

◾◾ Demo > Mac/PC > RandomMap to demonstrate how your completed
solution should work

◾◾ Solution > RandomMap.cs to compare your solution to the provided
example solution

Challenge: Generating a Tile Map
Your primary responsibility for this challenge is to randomly generate a world
map using a set of prefab tiles. Without looking ahead to the Unity project or
code, try to describe a logical solution based on the following requirements. Due
to the visual nature of this challenge, it may be especially helpful for you to draw
out your ideas on paper.

	 1.	 Your RandomMap script should calculate the total number of rows and
columns in the map based on the current screen size and the size of the
tiles being used. It should use these values to initialize a multidimen-
sional array of integers that represents the tile map.

	 2.	 The CreateMap() function should use nested loops to populate the
map array with random index values drawn from the array of possible
tiles.

	 3.	 The DisplayMap() function should use nested loops to iterate through
the map array. Based on the index values stored in the array, this
function should clone, position, and parent the corresponding prefabs
from the tile array.

With your initial logic established, open the Map scene in Unity and the
RandomMap script in your code editor. In the Unity Hierarchy window, look
for the BgMap GameObject, which can be found inside the Background.
In the Inspector, you will see that BgMap has the RandomMap script attached.
Additionally, four tile prefabs have been defined in the Inspector. These represent
the four different background tiles that you will use to generate your map. You
can view the individual tiles themselves in your Assets > Prefabs folder.

Switch to the RandomMap script. This is where you will code your solution
to this challenge. You have been provided with a unidimensional array named

Hint: Tile Maps in Games 153

tilePrefabs. This array contains the background tiles that you will use to
generate your map. Beyond that, you have been provided with empty Start(),
CreateMap(), and DisplayMap() functions. Everything else in this chal-
lenge will be coded by you. You are already familiar with cloning prefabs in Unity
from the Chapter 6 challenge. Therefore, the upcoming hints will focus on help-
ing you turn multidimensional arrays and nested loops into a functional tile map
for your game.

Hint: Tile Maps in Games
A tile map is a convenient way to organize a 2D game world and conserve art
assets. The rectangular row and column structure of a tile map makes it easy
to position objects. In addition, a tile map requires relatively few images, but
is able to produce a wide variety of game worlds. Further, these features make
designing levels efficient. Lastly, a tile map approach is suitable for many dif-
ferent types of games. For example, it can be applied to games seen from a top-
down, isometric, or side perspective. Moreover, it can be used to make games
that focus on action, exploration, or solving puzzles. The potential applica-
tions for a tile map are practically endless. Therefore, once you master the tile
map technique, you will be able to apply it to many future games that you want
to create.

Let’s explore the fundamentals of how a tile map works. Imagine that the
entire map is one large rectangle, like a piece of paper. Draw a series of evenly
spaced vertical and horizontal lines across the paper and you will form a grid of
squares (Figure 9.1). Each individual square on your paper is like a tile.

The tiles are the foundation of a tile map. A tile is a single unit of the map,
like one square in a grid. When many tiles are arranged together, an entire map
is formed. Note that the tiles are evenly sized and spaced. That is because each
tile is a square and has the same dimensions as every other tile. Typically, game
tiles are defined in pixels (px) at even powers of 2 to support efficient computer
processing. For example, common tile sizes are 16 × 16 px (24), 32 × 32 px (25),
and 64 × 64 px (26). Indeed, all of the tiles used in this book are 64 × 64 px. Other
sizes can be used. When choosing a tile size for future projects, keep in mind

that the primary goal is to reuse small,
easy-to-process tiles to create large, diverse
game worlds. Thus, the effectiveness of the
tile map approach is maximized.

If you look inside the Assets > Textures
folder of your Unity project, you will see
that the provided Grass tiles have been
imported as one large image and sliced
into individual 64 × 64 px tiles (Figure 9.2).

This is a common technique for pro-
ducing art in tile map games. Art asset
production and management is beyond the
scope of this book, so these kinds of things
have been set up for you. Nevertheless,

Row 0

Col 0 Col 1 Col 2 Col 3

Row 1

Row 2

Figure 9.1  A tile map is formed from
a grid of spaces laid out into three
rows and four columns.

9.   Generating a Tile Map154

feel free to further explore these aspects
of Unity at your leisure and to incorporate
your own art into the projects. Continuing,
if you look in the Assets > Prefabs folder,
you will see that the map tiles have been
saved with the GameObject data type.
This is what allows us to assign the tile
prefabs to the RandomMap script and sub-
sequently clone them to produce our map.
Figure 9.3 depicts an example world map
that can be produced from the tiles pro-
vided in this project. Additional informa-
tion has been overlaid to conceptualize the
structure of the tile map.

As you can see, the rectangular shape of the tile map can be represented
as a table with rows and columns. Horizontally, the rows flow from top to
bottom. Vertically, the columns flow from left to right. With a table-like grid
of rows and columns, we can think of our tile map as a coordinate system.
For instance, the tile at the top-left corner of the map is located at position
(0, 0), whereas the tile at the bottom-right corner is located at position (2, 3).
By conceptualizing our tile map as a coordinate grid system, we are able to
represent it effectively in computer code. This is where multidimensional
arrays come into play.

Hint: Multidimensional Arrays
Thus far, you have practiced using unidimensional arrays. These represent a
single group of objects that are ordered according to an index value. However,
we also have the capability to utilize multidimensional arrays in C# (Microsoft
Corporation 2015). Multidimensional arrays represent the position of objects
using two or more index values. Hence, they allow us to organize data across
multiple dimensions. For example, while the first object in a unidimensional
array is found at index 0, the first item in a 2D array can be accessed with
the indices [0, 0]. Meanwhile, we can take things a step further to produce a
three-dimensional (3D) array whose first object has an index value of [0, 0, 0].
Moreover, there are other types of multidimensional arrays as well, including
jagged arrays, which are composed of several arrays stored inside a parent array.
With all of these multidimensional arrays to choose from, we have many options

Figure 9.2  A single image containing all of the background tiles was imported into
Unity. It was later sliced into several individual tiles.

Row 0

Col 0 Col 1 Col 2 Col 3

Row 1

Row 2

Figure 9.3  An example randomly gen-
erated tile map is shown. The overlay
highlights how the map is made up of
rows and columns of individual tiles.

Hint: Multidimensional Arrays 155

for structuring data in our game world. The primary features of these multidi-
mensional arrays are summarized in Table 9.1.

When it comes to producing a rectangular tile map to fill our screen, a 2D
array is the optimal choice. Therefore, we will focus on implementing a 2D array
for the current challenge. You can think of a 2D array as a table of rows and
columns. The rows run vertically across the table, starting from 0 at the top and
moving downward. The columns run horizontally across the table from left to
right, with 0 starting at the left. Therefore, the first value in a 2D array can be
found at the index position [0, 0]. Meanwhile, the last value in the 2D array can
be accessed at [maximum row value, maximum column value]. Table 9.2 depicts
the rows and columns of a 2D array structure.

Notice that the row value comes first and the column comes second when
accessing a value in a 2D array. This may seem counterintuitive, because we usu-
ally think of coordinates for graphs, tables, or spreadsheets in (x, y) or (column,
row) format. However, the notation is reversed when accessing the values inside
a 2D array. The first value defines which row we want to access. Then, the second
value defines which column to access. This is an important point to keep in mind
when accessing values from a 2D array. Suppose that the example array were
filled with Boolean values (Table 9.3). Can you determine what values would be
retrieved at the index positions of [0, 0], [1, 2], and [2, 0]?

You should have retrieved the following values: true at [0, 0], false at [1, 2],
and true at [2, 0]. Review the previous sections, as well as Tables 9.2 and 9.3, until
you are comfortable with the structure of 2D arrays.

Table 9.1  Multidimensional Array Types

Type Indices Initializationa Access Structure

2D 2 type[,] array2D array2D[0, 0] A table of rows and columns
3D 3 type[, ,] array3D array3D[0, 0, 0] A cube of length, width, and height
Jagged 2 type[][] arrayJag arrayJag[0][0] An array with other arrays inside

a	 Replace type with any valid data type.

Table 9.2  4 × 3 2D Array Structure
with Index Positions Shown

Col. 0 Col. 1 Col. 2

Row 0 [0, 0] [0, 1] [0, 2]
Row 1 [1, 0] [1, 1] [1, 2]
Row 2 [2, 0] [2, 1] [2, 2]
Row 3 [3, 0] [3, 1] [3, 2]

Table 9.3  4 × 3 2D Array of Booleans
True True False
False True False
True True True
False False False

9.   Generating a Tile Map156

With an understanding of how 2D arrays are structured, let’s look at their
implementation in code. The principles are quite similar to those of unidimen-
sional arrays, with a few minor changes to account for the added dimension.
You can declare a 2D array with a data type, square brackets, a comma to separate
the two dimensions, and a variable name.

//declare a 2D array of Booleans
bool[,] bool2d;

//declare a 2D array of integers
int[,] int2d;

Like unidimensional arrays, 2D arrays have a fixed length. Since a 2D array
has two dimensions, we must initialize the array with both the total number of
rows and the total columns. Following the new keyword, we place these values
inside the square brackets of the 2D array.

//initialize a 2D array of Booleans
//with 5 rows and 2 columns
bool2d = new bool[5, 2];

//declare a 2D array of integers
//with 12 rows and 16 columns
int2d = new int[12, 16];

To access an object inside a 2D array, follow the array name with square
brackets that contain the object’s 2D index position. The value of the object will
be returned.

/*
Assume that we have an integer array
named int2d with 3 rows, 3 columns,
and the following values.

[3] [8] [1]
[9] [2] [7]
[4] [6] [5]

//access the integers in int2d by their index positions
//recall that the array is zero indexed
int2d[0, 0]; //this would retrieve the value 3
int2d[0, 1]; //8
int2d[0, 2]; //1
int2d[1, 0]; //9
int2d[1, 1]; //2
int2d[1, 2]; //7
int2d[2, 0]; //4
int2d[2, 1]; //6
int2d[2, 2]; //5

Values in 2D arrays are set similar to their unidimensional counterparts.
We must only remember to include a two-part index value. Otherwise, the pro-
cess of stating the array name, including an index within square brackets, and
setting the expression equal to a value is identical.

Hint: Multidimensional Arrays 157

/*
Assume that we have an integer array
named int2d with 3 rows, 3 columns,
and the following values.

[3] [8] [1]
[9] [2] [7]
[4] [6] [5]

//change the values in the array
int2d[0, 0] = 7;
int2d[1, 2] = 6;
int2d[2, 1] = 3;

/*
After the modifications, int2d
Contains these values.
*/

[7] [8] [1]
[9] [2] [6]
[4] [3] [5]

Much like other arrays, the length of the 2D array can be accessed with the
Length property. Notably, the Length of an array is not modified by how
many dimensions it has. Instead, the Length of an array always reflects the total
number of objects it contains. Hence, no matter how many index values we use
to refer to the position of an object, it still counts as a single object in the array.
Therefore, the Length of an array always refers to the total quantity of objects it
stores. Conveniently, for a 2D array, the Length will always match the number
of rows multiplied by the number of columns.

/*
Assume that we have an integer array
named int2d with 3 rows, 3 columns,
and the following values.

[3] [8] [1]
[9] [2] [7]
[4] [6] [5]
*/

//retrieve the length of the array
int2d.Length; //this would equal 9

That covers the fundamentals of 2D arrays. Hopefully, you are comfortable
enough to proceed with a specific application of 2D arrays to the current chal-
lenge. If not, review the prior topics in this hint and try experimenting with a few
2D arrays in your own code. When you are ready, proceed to learn how to set up
a 2D array for use in this challenge.

The first requirement in this challenge can be satisfied by establishing a
2D array to represent the tile map for our game world. To determine the size of
the array’s rows and columns, we can use the screen height and width, as well as
the tile size.

9.   Generating a Tile Map158

//excerpt from RandomMap script

//default size of tiles, in pixels
public int tileSize;

//number of map rows
private int _numRow;

//number of map columns
private int _numCol;

//map array
private int[,] _mapArray;

//array for holding tile prefabs
//defined in Unity Inspector
public GameObject[] tilePrefabs;

//init
void Start() {

//determine map properties based on screen size
_numCol = Screen.width / tileSize;
_numRow = Screen.height / tileSize;

//initialize map array
_mapArray = new int[_numRow, _numCol];

} //end function

For convenience, we declare a public tileSize variable to represent the
dimensions of our tiles, in pixels. Since it is public, it can easily be set from the
Unity Inspector. In this book, all of the tiles are 64 × 64 px, so a value of 64
should be set. However, should you want to reuse this script in the future or
experiment with your own tiles, you could easily do so by changing the value
of tileSize in the Unity Inspector. Next, we declare two integers, _numRow
and _numCol, to represent the number of rows and columns in the map. Also,
we declare a 2D array called _mapArray to represent our tile map. Recall that
the tilePrefabs unidimensional array was provided for us and contains the
tile prefabs that will eventually be displayed in our game world. Meanwhile,
_mapArray represents the raw data structure behind our world map. It will
ultimately store randomized index values from the tilePrefabs array (see
requirement 2), which are integers. Therefore, our _mapArray is declared as
a 2D array of integers. Indeed, a 2D array of integers is the best choice in this
circumstance and many others when it comes to producing tile maps for games.
This is because integers can represent many different tiles using simple identifica-
tion numbers, such as the values 0 through 9.

Continuing, we proceed to initialize our variables inside the Start()
function. The number of rows and columns is calculated based on the cur-
rent screen size and the tile size. This ensures that our map fills the entire
screen, so long as we play the game at a resolution that is evenly divisible by

Hint: Nested Loops 159

the tile size. Lastly, we initialize our
2D array using the calculated num-
ber of rows and columns. This code
should give you a head start on setting
up your own script and accomplishing
requirement 1.

Before moving on, take a moment
to visualize what your completed game
world will look like in terms of its under-
lying 2D array structure (Figure 9.4).
This should help you conceptualize the
world you are working to create through
your code.

Hint: Nested Loops
At this point, your 2D map array is ready to store information about the game
world. This is where a new looping technique will prove most useful. You are
already quite familiar with a variety of loops, including for, foreach, and
while. A normal loop is wonderful for iterating through a single group of
objects, producing a consecutive list of values, or executing a code segment over
and over. However, there are times when we want to produce multiple, distinct
values or iterate through objects in multidimensional arrays. In these circum-
stances, a single loop is not enough. However, we can use nested loops to tra-
verse multiple iterations simultaneously. Nesting involves placing one loop inside
another. Therefore, if we write a normal loop, then place another loop inside of it,
we have produced nested loops. Here is an example of a nested for loop:

//outer loop
for (int i = 0; i < 3; i++) {

//inner loop
for (int j = 5; j > 0; j−−) {

//print the current iteration values
Deb�ug.Log("Iteration values (i, j) = (" + i + ","

+ j + ")");

} //end inner loop

} //end outer loop

As you can see, we begin by writing a standard loop, which we can refer to as
the outer loop. To produce nested loops, we position a second, inner loop within
the brackets of the outer loop. Normally, we use i as our iteration variable for
loops. However, since the outer loop has used i already, we proceed to designate
j for the inner loop. This reflects common coding practice for naming iteration
variables inside nested loops. Note that the code within the inner loop prints a
message that contains the current value of the iteration variables. Step through
the sample code again. See if you can determine what values are printed from

Row 0

Col 0 Col 1 Col 2 Col 3

0 3 3 0

1 1 2 0

0 2 1 3

Row 1

Row 2

Figure 9.4  A randomly generated tile map
is shown. The overlay depicts the 2D array
of integers that represents the underlying
structure of the tile map.

9.   Generating a Tile Map160

start to finish in these nested loops. Take a look below to verify your interpreta-
tion. You can also write the loop into a script and test it for yourself.

//outer loop
for (int i = 0; i < 3; i++) {

//inner loop
for (int j = 5; j > 0; j−−) {

//print the current iteration values
Deb�ug.Log(“Iteration values (i, j) = (" + i + ","

+ j + ")");

} //end inner loop

} //end outer loop

/*
These nested loops would print the
following values from start to
finish. Recall that the values are
printed in (i, j) format. Thus, the
value of the outer loop is printed
first, followed by the inner loop.
*/

(0,5) //outer loop begins first iteration, inner loop begins
(0,4)
(0,3)
(0,2)
(0,1) //inner loop ends all iterations
(1,5) //outer loop begins second iteration
(1,4)
(1,3)
(1,2)
(1,1) //inner loop ends all iterations
(2,5) //outer loop begins third iteration
(2,4)
(2,3)
(2,2)
(2,1) //inner loop ends, outer loop ends

Recall that all code in a script is executed from top to bottom, left to right.
Therefore, the outer loop is entered first with a value of 0. Next, the inner loop is
reached. Thus, the code of the inner loop will proceed until the entire loop is com-
pleted. Only after the inner loop is completely finished will we begin the subsequent
iteration of the outer loop. Thus, when the outer loop begins, it yields a value of 0.
Afterwards, the inner loop yields values of 5, 4, 3, 2, and 1 before it finishes. Only then
do we come back around to the start of the outer loop. That is, the outer loop com-
pletes a single iteration only after the inner loop has completed all of its iterations.
At that point, the cycle continues until the entire nested loop process has finished.

Although it is common to use two nested for loops, be aware that other
options are available. Any of the other loop types can be nested inside one
another. You can also mix and match types if you desire. Furthermore, you could
even nest more than two loops inside one another. Yet, while there are many

Hint: Nested Loops with Multidimensional Arrays 161

possibilities for nested loops, you will most often only need to nest two loops
together. Beyond that, your code becomes unwieldy and you would likely prefer
an alternative solution. Nevertheless, keep nested loops in mind when solving
problems through your computer code. As you will come to see, nested loops are
especially useful for iterating through and populating multidimensional arrays.

Hint: Nested Loops with Multidimensional Arrays
Nested loops and multidimensional arrays go hand in hand. Why? Recall that
multidimensional arrays, such as our 2D tile map array, require multiple index
values to access their objects. Furthermore, when we create nested loops, both the
outer loop and the inner loop utilize iteration variables. Therefore, the iteration
variable values from our nested loops can be used to represent the index posi-
tions in our 2D array. By iterating through the index positions of our 2D array,
we can assign which tile prefabs will appear at which positions in our tile map.
This is precisely what we need to do to fulfill the second requirement for this
challenge. Our CreateMap() function should take random index values from
the tilePrefabs array, which represent different map tiles, and slot them into
the index positions of our _mapArray. Thus, our map array will contain a ran-
domly generated numerical representation of our world map. This code sample
provides one possible implementation for the CreateMap() function.

//randomly generate numeric map representation based on tiles
private void CreateMap() {

//fill the map array with random tiles from prefab array
//iterate through map columns (x)
for (int col = 0; col < _numCol; col++) {

//iterate through map rows (y)
for (int row = 0; row < _numRow; row++) {

//get a random tile from prefab array
//random index value based on array size
in�t randIndex = Random.Range(0, tilePrefabs.
Length);

//store the tile’s index value in the map array
_mapArray[row, col] = randIndex;

} //end inner for

} //end outer for

} //end function

We can accomplish our task with just a few lines of code, but it is impor-
tant to understand exactly what is happening inside the CreateMap() function.
We begin with a nested loop. The outer loop iterates through all of the col-
umns in the map, starting from 0 and counting upward. The inner loop simi-
larly iterates through the rows from 0 onward. Think back to the structure of
our 2D array, whose [0, 0] index begins in the upper left-hand corner. Our outer

9.   Generating a Tile Map162

loop enters the first column on the left side, then the inner loop fills every row
in that column moving downward. After every row in the first column is filled,
our outer loop moves one column to the right and the inner loop once again fills
every row from top to bottom. You should be able to picture this process in your
mind. Imagine that our 2D array begins as an empty table of rows and columns.
When our nested loop begins, the space in the upper-left corner is filled, followed
by every space beneath it. Once the bottom space is filled, we step to the right
one column and fill it from top to bottom. Subsequently, we take another step to
the right and continue to fill each column in sequence from top to bottom. Thus,
once our nested loops are complete, the entire table is filled. This process is visual-
ized in Figure 9.5.

What values are we filling our 2D array with? Inside our nested loop, we use
Unity’s Random.Range() function to select a random index value from our
tilePrefabs array. Each index value represents a different tile that we will use
to generate our map. All of the tiles are stored in the tilePrefabs array, so
we can refer to each one uniquely by its index value. Once we randomly calculate
a tile’s index value, we put it into our map array. Remember that 2D arrays are
accessed by row first, then column. Hence, we take the row value from the inner
loop and the column value from the outer loop to identify the current index posi-
tion in our map array. We set that index position in our map array equal to the
random tile value we previously calculated. This process repeats until our nested
loops have iterated through every row and column to assign a random tile at
each map position. Thus, when the entire CreateMap() function is finished, we
have a randomly generated 2D array of integers. Each integer value represents an
index position from the tilePrefabs array. Hence, at each position in the map
array, we identified a tile prefab GameObject that will ultimately be displayed
in our game. A sample visualization of a world map at this stage is provided in
Table 9.4.

The only step remaining in
this challenge is to complete the
third requirement by writing the
DisplayMap() function. You
already know how to instantiate
the prefabs that represent our map
tiles. So, all you need to do is iter-
ate through the entire numerical
2D map array that you just created
and instantiate the appropriate tile
prefab stored at each map position.
You will also want to position each
tile in a way that represents the rect-
angular structure of our world map
and provide all tiles with a common
parent. Once you have completed
the DisplayMap() function, you
should be able to run your code and
see the world map come to life!

Row 0

Col 0

Start

Col 1 Col 2 Col 3

End

Row 1

Row 2

Figure 9.5  A nested for loop fills our 2D
array starting from the top-left corner. Once
the first column is entered, every row below it
is filled. Next, the second column is entered
and every row below it is filled. This process
continues until every position in the array is
filled, ending with the bottom-right corner.

Example Solution: Generating a Tile Map 163

Example Solution: Generating a Tile Map
To review, let’s take another look at the requirements for this challenge:

	 1.	 Your RandomMap script should calculate the total number of rows and
columns in the map based on the current screen size and the size of the
tiles being used. It should use these values to initialize a multidimen-
sional array of integers that represents the tile map.

	 2.	 The CreateMap() function should use nested loops to populate the
map array with random index values drawn from the array of possible
tiles.

	 3.	 The DisplayMap() function should use nested loops to iterate through
the map array. Based on the index values stored in the array, this function
should clone, position, and parent the corresponding prefabs from the
tile array.

Sample logic for this challenge is provided in the following pseudocode:

Declare int map array, number of rows, number of columns

Start()

•	Number of columns = screen width / tile size

•	Number of rows = screen height / tile size

•	�Initialize int map array with [number of rows, number of
columns]

•	CALL CreateMap()

•	CALL DisplayMap()

CreateMap()
Outer FOR colCounter = 0 IS LESS THAN number of columns, each
iteration:

•	�Inner FOR rowCounter = 0 IS LESS THAN number of
rows, each iteration:

1. �Generate random index value between 0 and tilePrefabs.
Length

2. �Set map array[rowCounter, colCounter] EQUAL TO random
index value

Table 9.4  World Map as 2D Array of Integers
Representing Index Positions from Prefab Array

Col. 0 Col. 1 Col. 2

Row 0 1 3 1
Row 1 0 3 0
Row 2 0 0 2
Row 3 3 1 2

9.   Generating a Tile Map164

DisplayMap()
Outer FOR colCounter = 0 IS LESS THAN number of columns, each
iteration:

•	�Inner FOR rowCounter = 0 IS LESS THAN number of rows, each
iteration:

1. �Instantiate tile at tilePrefabs[mapArray[rowCounter,
colCounter]]

2. �Set tile’s x position EQUAL TO the column value times the
tile size, offset for the center origin and converted to
world units

3. �Set tile’s y position EQUAL TO the row value times the
tile size, offset for the center origin and converted to
world units

4. Set tile’s position based on calculated values
5. Set tile’s parent EQUAL TO map object in scene

We’ll break down the example solution according to each requirement. The
first requirement involves setting up our RandomMap script to handle its major
responsibilities of generating and displaying the tile map. We begin by declaring
a few variables.

//excerpt from RandomMap script

//default size of tiles, in pixels
public int tileSize;

//pixels to world units conversion for Unity Assets
public int pixelsToUnits;

//number of map rows
private int _numRow;

//number of map columns
private int _numCol;

//map array
private int[,] _mapArray;

//array for holding tile prefabs
//defined in Unity Inspector
public GameObject[] tilePrefabs;

For convenience, we declare public tileSize and pixelsToUnits vari-
ables. That way, these variables can be set to appropriate values in the Unity
Inspector. In this book, all of the tiles are 64 × 64 px, so a value of 64 should be
applied. In addition, we use the default Unity setting of 100 to convert the pixels
of our images into world units. However, you may want to use this script with
different settings in the future and could easily do so by changing these values
in the Unity Inspector. Furthermore, we declare variables to store the number of
rows and columns for our map. Lastly, we declare a 2D array of integers to repre-
sent our tile map. These variables are initialized in the Start() function. Recall
that the tilePrefabs array was already provided and stores the different tiles
that will later compose our map.

Example Solution: Generating a Tile Map 165

void Start() {

//determine map properties based on screen size
_numCol = Screen.width / tileSize;
_numRow = Screen.height / tileSize;

//initialize map array
_mapArray = new int[_numRow, _numCol];

//generate map array
CreateMap();

//display tiles from map array
DisplayMap();

} //end function

To calculate the number of columns for our tile map, we divide the total
screen width by the tile size. Similarly, to calculate the number of rows, we
divide the screen height by the tile size. Ideally, our game should be played
at a resolution evenly divisible by the tile size to ensure that our map fills
the entire screen. With our 64 × 64 px tiles, a suggested screen resolution is
1024 × 768 px, which equates to 16 columns and 12 rows. After calculating the
number of columns and rows, we use these values to initialize the fixed size of
our 2D map array. Lastly, we call the CreateMap() function, followed by the
DisplayMap() function, which leads us into our subsequent requirements.
Our task for the second requirement was to code the CreateMap() function,
such that our array is populated with random prefab tiles. Here’s how it can
be done:

private void CreateMap() {

//fill the map array with random tiles from prefab array
//iterate through map columns (x)
for (int col = 0; col < _numCol; col++) {

//iterate through map rows (y)
for (int row = 0; row < _numRow; row++) {

//get a random tile from prefab array
//random index value based on array size
in�t randIndex = Random.Range(0, tilePrefabs.
Length);

//store the tile’s index value in the map array
_mapArray[row, col] = randIndex;

} //end inner for

} //end outer for

} //end function

Inside CreateMap(), we apply a nested for loop to iterate through the
columns and rows of our 2D map array. In each iteration of the loop, we use

9.   Generating a Tile Map166

Random.Range() to draw a random index value from our tilePrefabs
array. Then, we identify the index position for our map array by taking the
row value from the inner loop and the column value from the outer loop. We
set that index position in our map array equal to the value randomly drawn
from the tilePrefabs array. When the process is complete, we have filled
our entire 2D array with random integer values that represent our different
map tiles. For the third, and final requirement, we need to display our tiles
on screen.

private void DisplayMap() {

//loop through the map array
//iterate through map columns (x)
for (int col = 0; col < _numCol; col++) {

//iterate through map rows (y)
for (int row = 0; row < _numRow; row++) {

//c�lone prefab tile based on value stored in map
array

Gam�eObject displayTile = (GameObject)
Instantiate(tilePrefabs[_mapArray[row, col]]);

//calculate tile position
//x position
flo�at xPos = (float)(col * tileSize − Screen.

width / 2 + tileSize / 2) / pixelsToUnits;

//y position
flo�at yPos = (float)(Screen.height / 2 − row

* tileSize − tileSize / 2) / pixelsToUnits;

//z position
//maintain z position of parent object
float zPos = gameObject.transform.position.z;

//set position
dis�playTile.transform.position = new

Vector3(xPos, yPos, zPos);

//a�dd the tile to the map game object in Unity
scene

//set parent
dis�playTile.transform.parent = gameObject.

transform;

} //end inner for

} //end outer for

} //end function

In the DisplayMap() function, we once again utilize nested for loops
to traverse our 2D map array. However, this time around, we retrieve the index
values stored in our 2D array and use them to instantiate tile prefabs. While we

Example Solution: Generating a Tile Map 167

apply our familiar Unity Instantiate() function, notice the bolded syntax
used to determine which tile should be cloned.

//clone prefab tile based on value stored in map array
GameObject displayTile =

(GameObject)Instantiate(tilePrefabs[_mapArray[row, col]]);

Inside the Instantiate() function, we are accessing a GameObject
from the tilePrefabs array. To retrieve that object, we must provide an index
value. Recall that our 2D map array has stored an integer that represents each
tile’s prefab. Therefore, we access the tile prefab value stored at the current index
position in our 2D map array. The current index position is determined by the
row and column iteration variables of our nested loops. For instance, in the first
iteration of our nested loops, we would arrive at an index position of [0, 0] in
our map array. When we retrieve the value stored at [0, 0] in our 2D map array,
we might find it to be 2. Thus, the value of 2 is passed to the tilePrefabs
array, which returns the associated tile prefab. That prefab is cloned using the
Instantiate() function. In this manner, each iteration of our nested loops
produces another cloned tile based on the information stored in our 2D map
array.

Once our tiles have been cloned, we must position them visually in the rect-
angular shape of our map. To do so, we convert the tile map’s column and row
coordinates into Unity world coordinates and apply them to the cloned tile’s
position.

//excerpt from DisplayMap() function

//calculate tile position
//x position
flo�at xPos = (float)(col * tileSize − Screen.width / 2

+ tileSize / 2) / pixelsToUnits;

//y position
flo�at yPos = (float)(Screen.height / 2 − row * tileSize

− tileSize / 2) / pixelsToUnits;

//z position
//maintain z position of parent object
float zPos = gameObject.transform.position.z;

//set position
displayTile.transform.position = new Vector3(xPos, yPos, zPos);

To better understand how the position is calculated, refer back to the visu-
alization of our tile map’s rows and columns in Figure 9.3. The x position is cal-
culated using the current column value from our nested loops, the tile size, and
the screen width. The formula first multiplies the column by the tile size. This
shifts the position of the tile to the appropriate column in our map. Next, we
subtract half the width of the screen. Recall that the origin of the Unity world is
in the center of the screen, but our 2D map array is a rectangle that has a top-left
origin point. Thus, it is necessary to subtract half of the screen width to maintain

9.   Generating a Tile Map168

our map’s origin point relative to the Unity world coordinates. Afterwards, the
half tile size is added to the x position. This compensates for the fact that our tile
prefabs have a center origin point. This adjustment lines our tiles up perfectly
within the column structure of our map. The calculation for the y position is
similar, with the exception that the current row value from our nested loops and
the screen height are used in place of the column value and screen width. For the
z position, we simply retain the same value as our parent GameObject. See if
you can reason through these calculations for yourself. Drawing a picture will
help you to understand how the positioning formulas line up the tiles within our
rectangular map structure.

Notice that the formulas for our x and y positions both have a float cast
before them. That’s because Unity’s Vector3 position requires float values to
be specified, while our tile map uses integers to represent the column and row
coordinates. By adding a float cast, we ensure that our integer calculations are
converted into the proper data type. With the converted world coordinates in
hand, we set the position of the cloned tile equal to a Vector3 composed of our
x, y, and z position variables.

//excerpt from DisplayMap() function

//set position
displayTile.transform.position = new Vector3(xPos, yPos, zPos);

The final step to complete our DisplayMap() function is to set the parent
of our cloned tiles to a common object. In this case, we utilize the BgMap object
in our scene, which this script is attached to. Assigning a parent is especially
important in this case, because our map is going to be made of many tiles. Using
a common parent keeps our Hierarchy window clean and allows us to manage all
of our tiles via a common parent, should the need arise.

//excerpt from DisplayMap() function

//add the tile to the map game object in Unity scene
//set parent
displayTile.transform.parent = gameObject.transform;

With CreateMap() and DisplayMap() completed, all three require-
ments have been met. You have extensively applied 2D arrays and nested loops
in this challenge. Your RandomMap script can now generate beautiful, unique
maps for Luna to explore in the game world. Run your project several times over
to see the magic happen before your eyes.

Summary
You have livened up the game world for Luna and her friends with a randomly
generated map. We will continue to build upon the tile map structure that you
coded in this challenge. By exploring the applications of a tile map structure in
our game, you will gain additional experience with this valuable game devel-
opment technique. Surely, you will find many future opportunities to apply tile

Reference 169

maps in 2D games. At this point, you should be comfortable completing these
coding tasks:

◾◾ Generate a map from a collection of tiles

◾◾ Store information in multidimensional arrays

◾◾ Perform complex iteration using nested loops

◾◾ Populate multidimensional arrays using nested loops

The application of our tile map doesn’t have to end at the background layer
of a map. We can also apply the convenient and orderly tile structure to other
areas of our game world. In the upcoming challenge, you will spawn objects at
positions on the tile map.

Reference
Microsoft Corporation. 2015. Multidimensional Arrays (C# Programming Guide). http://

msdn.microsoft.com/library/2yd9wwz4.aspx (accessed March 6, 2015).

171

10 Spawning
Objects on
a Tile Map

Previously, we spawned collectables randomly using Unity world coordinates.
Now that we’ve implemented a nice tile map structure for our game world, we
should revisit the concept of spawning objects. Instead of placing objects at arbi-
trary coordinates in the game world, we can choose to fill the positions of our tile
map. By utilizing our tile map structure to position spawned objects, we can take
greater control over our game world and set the stage for managing many dif-
ferent objects on our map. To begin this process, we will write a script to spawn
objects at random positions on our tile map.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Spawn multiple objects on a tile map

◾◾ Ensure that spawned objects do not overlap on a tile map

◾◾ Write custom functions

◾◾ Create functions that return information

◾◾ Make functions that utilize arguments

10.   Spawning Objects on a Tile Map172

Required Files
In this chapter, you will need to use the following files from the Chapter_10 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > MapSpawn.cs to code your solution to the
challenge

◾◾ Demo > Mac/PC > MapSpawn to demonstrate how your completed solu-
tion should work

◾◾ Solution > MapSpawn.cs to compare your solution to the provided
example solution

Challenge: Spawning Objects on a Tile Map
This is your biggest challenge yet. Open the Map scene in Unity. Building from
the previous challenge, you have been provided with a complete RandomMap
script that will generate the background layer for the game world. Thus, your
focus in this challenge will be on the MapSpawn script that generates a layer of
objects on top of your background map. Open the MapSpawn script in your code
editor. You have been provided with a single variable, named tilePrefab,
which represents the tile that you will spawn.

//tile prefab defined in Unity inspector
public GameObject tilePrefab;

In your Unity project’s Hierarchy window, find the Collectables GameObject
inside the Middleground. In the Inspector, you can see that the MapSpawn script
has been attached to the Collectables GameObject. Furthermore, the Collectable
prefab from the Assets > Prefabs folder has been assigned to the MapSpawn’s
tilePrefab variable (Figure 10.1). Thus, your MapSpawn script has stored the
Collectable prefab in a variable named tilePrefab.

This is all you are provided with to get your MapSpawn script started. Other
than that, you will need to write all of the code necessary to spawn the Collectable
prefab at random positions on the tile map. Unlike previous challenges, you are
not provided with any functions. That’s because you will be learning to write your
own functions in this challenge. In fact, from this point forward, you will be cod-
ing nearly everything required to complete challenges. Remember to sort out the
logic behind your solution before proceeding to implement your code and review
the hints. Drawing may be especially helpful for reasoning out how to position
the spawned tiles on your map. The requirements for this challenge are listed:

	 1.	 Your MapSpawn script should clone a specified number of tile prefabs.
These spawns should be placed at randomly generated positions on the
tile map. All spawns should share a common parent GameObject.

Hint: Functions 173

	 2.	 Your script should ensure that no spawns overlap one another on the tile
map. However, you must also ensure that the total number of specified
tiles is spawned before the script is complete. Hence, you cannot merely
skip tiles with duplicate positions, but must find a way to ensure that all
tiles are spawned at unique positions.

	 3.	 You will write your own functions for the MapSpawn script. Make sure
to experiment with different types of functions. Write at least one func-
tion that returns a value. In addition, write at least one function that
accepts arguments.

Hint: Functions
Essentially, a function is a block of code that can be executed on demand.
Although you have not written your own functions up to this point, you have
been writing code for functions all along. For instance, in the previous challenge,
you wrote all of the code for the CreateMap() and DisplayMap() functions.
Note that those two functions have distinct purposes. One generates the math-
ematical representation of a tile map as a two-dimensional (2D) array of integers,
while the other takes care of visualizing tile prefabs on screen. This division of
responsibilities is one of the key features of functions. That is, we use functions
to break our code into small, readable portions with specific responsibilities.
Technically speaking, we could put the entire code for a game into a single func-
tion. However, the code would be unbearably long and complicated. We would
have a very difficult time adding new features or fixing bugs if all of our code
were placed in one giant function. Instead, we choose to make many functions
that accomplish smaller, more specific tasks. This helps to make our code easier
to understand, maintain, and reuse.

Figure 10.1  The Collectable prefab has been assigned to the MapSpawn script’s
tilePrefab variable.

10.   Spawning Objects on a Tile Map174

Another major benefit of functions is that they save us from rewriting the
same code over and over. When we write a function, we can call it time and
time again. A function can be called simply by typing its name with paren-
theses. Any time a function is called, all of the code inside of it will execute.
If we didn’t have the ability to call functions, we would have to rewrite all of
that code every time we needed it. Hence, functions are helpful when we need
to reuse the same code multiple times throughout our game. For example, think
back to the challenge where you kept track of the heroes who joined Luna’s
group in the HeroGroup script. Every time the player presses the E key, the
ToggleMember() function is called. This function switches which hero is cur-
rently visible on screen. Since the player can add several heroes to the group and
switch between them frequently throughout the game, it pays off for us to write a
single function that can be reused numerous times.

In sum, we use functions to logically organize our code according to dif-
ferent responsibilities and to efficiently reuse the same code throughout our
software. Thus, when creating your own functions, you should look for oppor-
tunities to separate code to accomplish distinct tasks. For example, code that
handles keyboard input might be separated from code that handles moving an
object around the screen. You should also look for opportunities to write reus-
able code through functions. For instance, if a player can collide with many
objects at any moment during the game, it makes sense to create a function
that checks for collisions.

Now that you’re familiar with the reasoning behind functions, let’s look at
how you can write them yourself. In their most basic form, functions need an
access level, return type, and name, followed by parentheses and curly brack-
ets. Inside the brackets, we place the code that will execute when the function
is called.

//basic function structure
//replace ACCESS with an access level, like private or public
//replace RTYPE with a return type or void if nothing is returned
//replace FunctionName with any valid name of your choice
ACCESS RTYPE FunctionName() {

/*
Any code that needs to execute
when the function is called
should be placed within the
curly brackets.
*/

}

In many ways, writing functions is similar to creating variables. We start
with an access level. Like variables, most of the time, we can use private, since
our functions do not need to be accessed outside of the immediate script in which
they are created. However, we could also use public if a function needs to be
called from another script. Alternatively, there are less common access levels that
serve special purposes. Next comes the return type. For the most basic functions,
there is no information returned. Therefore, the void keyword is used to indi-
cate that no data are returned from the function. Additional options for return

Hint: Functions 175

values will be covered in an upcoming hint. Then, we must give our function
a valid name, similar to how we name variables. Following the function name is
a pair of parentheses and curly brackets. Again, the code that belongs to the func-
tion goes inside the curly brackets. With these pieces in place, we have formed a
basic function structure. To further demonstrate this structure, reexamine some
of the functions that you used in prior challenges.

/*
The following functions belong to scripts
that you worked on in previous challenges.
Each function utilizes a basic structure
no return type or arguments. The code inside
each function has been removed to help you
focus on the foundational structure of
functions. Once you write the structure of a
function, you can put a wide variety of code
inside its curly brackets.
*/

//from UserInvis.cs, Chapter 4
//check invisibility states
private void CheckInvis() {

//function code here

}

//from Collectable.cs, Chapter 5
//check collisions
private void CheckCollisions() {

//function code here

}

//from HeroGroup.cs, Chapter 8
//remove group member
private void RemoveMember() {

//function code here

}

//from RandomMap.cs, Chapter 9
//randomly generate numeric map representation based on tiles
private void CreateMap() {

//function code here

}

/*
A function can be called by typing
its name, followed by parentheses.
Each of the previous example
functions can be called, like so.
*/

10.   Spawning Objects on a Tile Map176

//call each function
CheckInvis();
CheckCollisions();
RemoveMember();
CreateMap();

Hint: Functions with Return Values
In our basic function structure, we apply a return type of void to indicate
that no information is returned. Expanding on this concept, it is important
to note that we have the option to return information back to the caller of
any function. To do so, we should replace void with a specific data type to
be returned. This data type can be primitive or composite. For example, to
return an integer from a function, we would specify int between the access
level and the function name. In the same way, we could also return a com-
posite data type, like a GameObject or SpriteRenderer. See the follow-
ing code samples that specify different return types for functions. The return
types have been bolded.

//example return functions
//return a bool that indicates whether the
//player is currently colliding with anything
private bool CheckCollisions() {

//function code here

}

//return a GameObject that represents a cloned prefab
private GameObject ClonePrefab() {

//function code here

}

Besides identifying a data type to return, the key feature of a return function
is that it provides information back to the source that called it. In other words,
this type of function returns information. Specifically, the final duty of the func-
tion is to provide information of the specified return type. Once this information
is returned, the function ends immediately. No code should be written in a func-
tion after the information is returned, because that code will never be executed.
Therefore, providing information is always the last thing that a return function
does. In order to return information, a function must use the return keyword
(Microsoft Corporation 2015c). Following the return keyword comes the
information to be returned. This information can take the form of a value, such
as the number 1, or a variable, such as a GameObject that represents a character
in the game world. Take a look at our expanded sample functions, which now
return information. The return code has been bolded.

//example return functions
//return a bool that indicates whether the
//player is currently colliding with anything

Hint: Functions with Return Values 177

private bool CheckCollisions() {

/*
In the body of this function, code would
be included to check the player for
collisions and return the appropriate
value of true or false.
*/

//check collision
if (/*collision detection code goes here*/) {

//return true to indicate collision
return true;

}

//otherwise
else {

//return false to indicate no collision
return false;

}
}

//return a GameObject that represents a cloned prefab
private GameObject ClonePrefab() {

//set up a local variable to store the cloned prefab
GameObject clone;

/*
In the body of this function, code would
be included to instantiate a prefab clone.
Subsequently, that clone could be returned.
*/

//return the cloned prefab
return clone;

}

Once information is returned, it gets sent back to the source that called the
function in the first place. Typically, we want to store this information. Thus, it
is common to set up a variable to catch the information provided by a return
function. Indeed, you have already done this many times, although you have not
yet written your own custom return functions. For instance, every time you call
Unity’s Instantiate() function to clone a prefab, an object is returned back
to you. Previously, we stored the information returned by the Instantiate()
function in a GameObject variable and proceeded to position it thereafter.
This process is similar to executing a pass in basketball. One player throws the
ball, like a return function that provides information, and the receiving player
catches the ball, like a variable stores information. Once the information is stored
in a variable, it may be further utilized in our code. Another option is to use

10.   Spawning Objects on a Tile Map178

the information right away, perhaps as part of a conditional statement. Let’s
examine how the information in our example return functions could be used.

//use the information returned by
//CheckCollisions() in an if statement
if (CheckCollisions() == true) {

/*
If the value returned by the
CheckCollisions() function is
true, the code placed here will
be executed.
*/

}

//store the information returned by
//ClonePrefab() in a GameObject
GameObject exampleClone = ClonePrefab();

/*
After executing the above code, we would
have a cloned prefab saved in a variable
called exampleClone. Subsequently, we
could further manipulate this GameObject
in our code. For example, we could set
the position of the clone.
*/

That covers the fundamentals of return functions. Do not hesitate to apply
return functions in your solution to this challenge and in your future game
development. Return functions are especially useful when you need to perform
calculations and provide information back to the caller. Return functions are
unique in that they always give information back when called. Yet, return func-
tions become even more powerful when they are integrated with arguments,
which is our next topic of discussion.

Hint: Functions with Arguments
The remaining fundamental aspect of functions is that they can accept argu-
ments. An argument represents information that is provided to a function. That
information can take the form of a primitive or composite data type. A function
that receives an argument can utilize it in its code. You have already practiced
calling many functions that accept arguments. The first time you used an argu-
ment was in the Destroy() function for the Collectable challenge in Chapter 5.
Recall that you must pass an object into the Destroy() function to remove
it from the game, as in Destroy(collectable). In addition, you have seen
functions that accept multiple arguments. For example, whenever you use
Random.Range(), you must provide a minimum and a maximum value, such
as Random.Range(0, 5). The 0 and 5 in this example are arguments, which
the Random.Range() function uses to calculate a random number. Look back
to the code you wrote for previous challenges and you will see many more exam-
ples of where you have provided arguments to functions.

Hint: Functions with Arguments 179

At this point, you want to write your own functions that accept arguments.
Once again, we can build from the basic function structure that was introduced
earlier. Instead of leaving the parentheses of our function empty, we can define
an argument by providing a data type and pseudonym. That pseudonym can be
any valid variable name.

//example argument functions

//check a given GameObject for collisions
private void CheckCollisions(GameObject theGameObject) {

/*
The function code could refer to the argument
passed into it under the pseudonym of theGameObject.
Note that the pseudonym can be any valid variable
name and is defined by you when you write a function.
*/

}

//add a bonus score to the player
private void AddBonusScore(int theBonusAmount) {

/*
In the body of this function, we could receive
the argument under the pseudonym of theBonusAmount
and add it to the player’s score.
*/

}

Recall our discussion of pseudonyms from the Collectable Inventory chal-
lenge in Chapter 7. When we give a pseudonym to an argument, it acts as a
generic name that represents the information passed into the function. Thus,
the pseudonym can be used to refer to the provided information in the function
code, regardless of what the argument’s original variable name or value was. This
allows us to write a function that can utilize any argument that gets passed in,
so long as it is of the appropriate data type. In this sample code, we see examples
of single and multiple argument functions. Note that multiple arguments can
be added to a function by putting a comma between them. You can define any
number of arguments for a function this way, as shown:

//example multiple argument functions

//create a tile map, given the number of rows and columns
private void CreateTileMapWithSize(int theNumRow, int theNumCol) {

/*
This function would use the theNumRow and
theNumCol arguments to initialize a 2D
map array.
*/

}

//spawn an object at a specific position
private void SpawnAtPos(GameObject theSpawn, Vector3 thePos) {

10.   Spawning Objects on a Tile Map180

/*
This function would clone theSpawn GameObject
and then set its x and y position based on the
values stored in thePos Vector3 argument.
*/

}

To reiterate, when you call a function that accepts arguments, you must
pass in information that matches the data type of the arguments in the function
definition. Here are a few examples:

//calling argument functions

//check collisions for the a GameObject variable named Player
CheckCollisions(Player);

//add a bonus of 100 points to the player’s score
AddBonusScore(100);

//create a tile map with 5 rows and 3 columns
CreateTileMapWithSize(5, 3);

//spawn a GameObject variable named Collectable
//at a given position
SpawnAtPos(Collectable, new Vector3(0, 0, 0));

Another important distinction to make is how an argument is passed into the
function. Certain arguments are passed by value (Microsoft Corporation 2015b),
while others are passed by reference (Microsoft Corporation 2015a). When an
argument is passed by value, its literal value is provided to the function, distinct
from anything already stored in the computer’s memory. For example, suppose
you create an integer, name it valueInt, and assign it a value of 4. If you pass
valueInt as an argument into a function, that function receives a value of 4,
but not the valueInt variable itself. Hence, if the function were to modify the
argument it received, the original valueInt variable would remain unchanged.
By contrast, when an argument is passed by reference, the function is pointed to
the same space in the computer’s memory where the data are stored. Thus, if the
function modifies the argument, the original variable will be modified as well.
For instance, when you pass a GameObject into the Destroy() function, the
actual object that you passed in is removed from the game world. Think back to
primitive and composite data types for an easy way to identify whether an argu-
ment is passed by value or reference. At the fundamental level, primitive data types
are passed by value, whereas composite data types are passed by reference. Thus,
when you pass an argument in the form of a bool, int, float, or double, the
function receives a value only. Yet, when you pass an argument in the form of a
string, List, GameObject, or any other composite data type, the function
references the original object itself. It is important to be aware of whether you are
or are not modifying objects that are passed into functions, as this will have dif-
ferent implications for how information flows through your code. So long as you
are aware of how values are passed, you will be in a good position to maintain

Hint: Functions with Arguments 181

control and consistency throughout your code. In the following code sample, the
difference between passing arguments by value and reference is demonstrated:

//primitive data types are passed by value
//thus, the original data passed in is not modified
//create an integer
int aValue = 5;

//print the value
Debug.Log(aValue); //5

//pass the integer into a function
PassValue(aValue);

//define the function
private void PassValue(int theValue) {

//add 1 to the value
theValue++;

//print the value
Debug.Log(theValue); //6

}

//print the value again
Debug.Log(aValue); //still 5

//composite data types are passed by reference
//thus, the original data and argument are the same
//assume we set the position of the attached GameObject
gameObject.transform.position = new Vector3(0, 0, 0);

//print the position
Debug.Log(gameObject.transform.position); //0, 0, 0

//pass the object into a function
PassReference(gameObject);

//define the function
private void PassReference(GameObject theGameObject) {

//set the position
theGameObject.transform.position = new Vector3(1, 1, 1);

//print the position
Debug.Log(theGameObject); //1, 1, 1

}

//print the position
Debug.Log(gameObject.transform.position); //now also 1, 1, 1

On a final note for functions, be aware that standard, return, and argument
functions are not mutually exclusive. Thus, they can be mixed and matched
at will. For example, it is perfectly fine to have both a return value and several

10.   Spawning Objects on a Tile Map182

arguments in a single function. The capability of functions to accept, calculate,
and return information provides you with a tremendous amount of flexibility
in how you solve computer problems. Be creative and effective in using func-
tions to organize your code. Examples of functions that return values and accept
arguments are provided for reference:

//example mixed return and argument functions

//c�reate and return a tile map, given the number of rows and
columns

private int[,] CreateTileMapWithSize(int theNumRow, int theNumCol) {

//initialize the array
int[,] mapArray = new int[theNumRow, theNumCol];

//return the array
return mapArray;

}

//add a bonus score to the player and return the updated score
private int AddBonusScore(int theCurrentScore, int theBonusAmount) {

//increment the current score with the bonus amount
theCurrentScore += theBonusAmount;

//return the updated score
return theCurrentScore;

}

Your true challenge in this chapter is to explore how to write functions
effectively. Most of the details in the requirements involve tasks you are already
familiar with. Specifically, you are well practiced in cloning prefabs and gener-
ating random positions. Using techniques for managing groups of objects, you
can accomplish the task of ensuring no spawns overlap one another. Thus, the
unique part of this challenge is that you are going to invent functions of your own
to accomplish these goals. Be creative and come up with a solution that is truly
your own. Then, proceed to compare and contrast your work with the provided
example solution.

Example Solution: Spawning Objects
on a Tile Map
Naturally, since you organized your own code and wrote your own functions for
this challenge, your solution will likely differ from the example. Nevertheless, it
is useful to review your own code in contrast to that written by others. Often, you
will gain unexpected insights into the different ways a problem can be solved.
As a reminder, the complete challenge requirements are listed:

	 1.	 Your MapSpawn script should clone a specified number of tile prefabs.
These spawns should be placed at randomly generated positions on the
tile map. All spawns should share a common parent GameObject.

Example Solution: Spawning Objects on a Tile Map 183

	 2.	 Your script should ensure that no spawns overlap one another on the tile
map. However, you must also ensure that the total number of specified
tiles is spawned before the script is complete. Hence, you cannot merely
skip tiles with duplicate positions, but must find a way to ensure that all
tiles are spawned at unique positions.

	 3.	 You will write your own functions for the MapSpawn script. Make sure
to experiment with different types of functions. Write at least one func-
tion that returns a value. In addition, write at least one function that
accepts arguments.

Meanwhile, Figure 10.2 conveys the logic behind the sample solution.
As with most problems that can be solved using computers, it is helpful to

break this challenge down into pieces. Let’s start by setting up some variables to
store the necessary information.

//tile size, in pixels
public int tileSize;

//pixels to Unity world units conversion
public int pixelsToUnits;

//number of tiles to spawn
public int numTiles;

//tile prefab defined in Unity inspector
public GameObject tilePrefab;

We include our familiar tile size and pixels to units variables for making
calculations based on the tile map structure. In addition, we declare an
integer, called numTiles, to specify the number of objects to spawn. Each
of these three variables is public and can be set via the Unity Inspector.

i < Max?

i < Max?

Randomly
sort List

Randomize
position Set parent

Add map
position

Clone tile

Remove
from List

Spawn
tiles

Initialize
List

Yes

Yes

No

Figure 10.2  A process map illustrates the logic behind the example solution. A List
storing all potential map positions is created and randomly sorted. Based on the specified
number of tiles to spawn, each tile is cloned, retrieves a unique map position from the
List, and is given a parent.

10.   Spawning Objects on a Tile Map184

Lastly, the tilePrefab variable, which was provided at the start of the
challenge, stores the prefab associated with this script. The overall flow of the
MapSpawn script’s responsibilities is managed in the Start() function.

void Start() {

//determine map properties based on screen size
int numCol = Screen.width / tileSize;
int numRow = Screen.height / tileSize;

//create open positions collection
List<Vector2> openPos = CreatePos(numCol, numRow);

//randomize order of open positions
RandSortPos(openPos);

//check that valid number of tiles is specified
//if more tiles have been specified than are open
if (numTiles > openPos.Count) {

//restrict to number of open positions
numTiles = openPos.Count;

} //end if

//store collection of cloned tiles
GameObject[] spawnTiles = CloneTiles(tilePrefab, numTiles);

//spawn tiles at random positions
Spa�wnTilesAtRandPos(spawnTiles, openPos, tileSize,

pixelsToUnits);

} //end function

We begin by calculating the number of rows and columns for the tile map
based on the current screen dimensions and tile size. A List of Vector2
variables named openPos is created to ensure that no spawned tiles overlap.
To accomplish this, every possible map position is stored in the List by the
CreatePos() function.

private List<Vector2> CreatePos(int theNumCol, int theNumRow) {

//create collection to store open positions
List<Vector2> allPos = new List<Vector2>();

//populate open positions
//iterate through columns
for (int col = 0; col < theNumCol; col++) {

//iterate through rows
for (int row = 0; row < theNumRow; row++) {

//store position
Vector2 pos = new Vector2(col, row);

//add position
allPos.Add(pos);

} //end inner for

} //end outer for

Example Solution: Spawning Objects on a Tile Map 185

//return open positions
return allPos;

} //end function

This is an example of a function that accepts multiple arguments and
returns information. To prepare the return type, a local List variable named
allPos is initialized. Following, we use nested loops to add every tile map
position to the List in the form of Vector2 variables. Once the nested loops
are complete, all map positions have been added to the List, which is returned
back to the caller of the function. Note that our Start() function set up the
openPos List to catch the information returned by the CreatePos()
function. Hence, openPos now contains all of the possible tile map positions.

//excerpt from Start() function

//create open positions collection
openPos = CreatePos(numCol, numRow);

Once all of the map positions are stored in a List, the next thing we want
to do is randomize their order. This will help us to ensure that no tiles overlap
one another on the map. Whenever we need to position a tile, we retrieve it
from the randomized List. After the position is used, we remove it from the
List. Therefore, our system ensures that we always get a random position and
that no positions are ever used more than once. To make this work, we ran-
domize the order of the open map positions by calling the RandSortPos()
function.

private void RandSortPos(List<Vector2> thePositions) {

//start counter at last item in collection
int indexCounter = thePositions.Count;

//loop through items
while (indexCounter > 1) {

//decrement counter
indexCounter−−;

//store a copy of the original value
Vec�tor2 original = new Vector2(thePositions[indexCounter].x,

thePositions[indexCounter].y);

//calculate random index value
int randIndex = Random.Range(0, indexCounter);

//swap the original value for the random
thePositions[indexCounter] = thePositions[randIndex];

//swap the random value for the original
thePositions[randIndex] = original;

} //end while

} //end function

10.   Spawning Objects on a Tile Map186

This function accepts a single argument that represents the List to sort.
In our case, it is the openPos List. Subsequently, the positions are randomly
shuffled within the List. The shuffling is accomplished using a while loop
and Sattolo’s sorting algorithm (Wilson 2005). We set up a counter that is equal
to the number of items inside the List. The while loop continues so long as
the counter is greater than 1. Inside the loop, the counter is immediately dec-
remented. The counter is used to draw the last item from the List and store it
in a local variable named original. Next, Random.Range() is used to cal-
culate an index value between 0 and 1 less than the value of the counter. Hence,
every position in the List that precedes original is eligible to be selected.
Then, a swap is performed. The List item at the same index as the counter is set
equal to the List item at the random index. Immediately after, the List item
at the random index is set equal to the position stored in original. Effectively,
this means that the last item in the List trades places with another, randomly
selected, item in the List. Sattolo’s algorithm helps us to loop through our entire
List a single time, performing these random swaps over and over. Once the
loop is complete, we have a nicely shuffled List. Thus, instead of openPos
storing the positions (0, 0) at index 0, (0, 1) at index 1, (0, 2) at index 2, and so
on, in sequential order, the positions are randomly shuffled. See Figure 10.3 for
a visual depiction of the shuffling process.

At this point, our MapSpawn script has created and randomized a List of
possible spawn positions. Moving along in the Start() function, we make a simple
check to ensure that a valid number of tiles has been defined in the Unity Inspector.

//excerpt from Start() function

//check that valid number of tiles is specified
//if more tiles have been specified than are open

A

B

C

D

E

Figure 10.3  The diagram depicts how our List is shuffled. At each step, the last person
is swapped randomly with one of the preceding people. The darkened squares represent
finalized positions. Starting at A, Larg is swapped with Lily to yield B. In B, Pink Beard is
swapped with Luna to yield C. Finally, in C, Pink Beard is swapped with Larg to yield D.
The final outcome is shown in E.

Example Solution: Spawning Objects on a Tile Map 187

if (numTiles > openPos.Count) {

//restrict to number of open positions
numTiles = openPos.Count;

} //end if

As you can see, we check whether more tiles have been asked to spawn than
open positions exist on our map. To ensure such a mistake does not disrupt the
function of our program and produce errors, we cap the maximum number
of spawns to the total number of open positions. From here, we can at last focus
on spawning our tiles. In Start(), a GameObject array named spawnTiles
is set equal to the CloneTiles() function.

pri�vate GameObject[] CloneTiles(GameObject thePrefab, int
theNumClones) {

//store clones in array
GameObject[] cloneTiles = new GameObject[theNumClones];

//populate cloned tiles array
for (int i = 0; i < theNumClones; i++) {

//clone prefab tile
GameObject cloneTile = (GameObject)Instantiate(thePrefab);

//add the tile to the map game object in Unity scene
//set parent
cloneTile.transform.parent = gameObject.transform;

//add to clone array
cloneTiles[i] = cloneTile;

} //end for

//return clone array
return cloneTiles;

} //end function

The CloneTiles() function is intended only to handle the cloning and
parenting of prefabs, but not their positioning. It accepts a GameObject that
represents the tile prefab and an integer that indicates the number of copies to
be cloned. It starts by initializing a GameObject array with a size equal to the
total number of tiles that need to be cloned. A loop is created to run one time for
each of these tiles. Inside the loop, each tile is cloned from a prefab, parented,
and added to the array. At the end of this process, the entire array of cloned
tiles is returned. Thus, our spawnTiles array contains all of the tiles that
need to be positioned on the map. The final step is to randomly position these
tiles. This is accomplished using the SpawnTilesAtRandPos() function,
which accepts a GameObject array to position, a List of available map
positions, the tile size, and the pixels to units conversion. For us, the spawn-
Tiles array contains every tile awaiting a position, while the openPos
List stores the available map positions. Meanwhile, our tileSize and

10.   Spawning Objects on a Tile Map188

pixelsToUnits variables contain the remaining information. Therefore,
we pass spawnTiles, openPos, tileSize, and pixelsToUnits as
arguments into the SpawnTilesAtRandPos() function.

pri�vate void SpawnTilesAtRandPos(GameObject[] theTiles, List<Vector2>
theOpenPos, int theTileSize, int thePixelsToUnits) {

//loop through tiles
foreach (GameObject aTile in theTiles) {

//select the next open map position
float randCol = theOpenPos[0].x;
float randRow = theOpenPos[0].y;

//remove the used position
theOpenPos.RemoveAt(0);

//calculate the position in world units
//x position
flo�at xPos = (randCol * theTileSize − Screen.width / 2

+ theTileSize / 2) / thePixelsToUnits;

//y position
flo�at yPos = (Screen.height / 2 − randRow * theTileSize

− theTileSize / 2) / thePixelsToUnits;

//z position
float zPos = gameObject.transform.position.z;

//set tile position
aTile.transform.position = new Vector3(xPos, yPos, zPos);

} //end foreach

} //end function

The SpawnTilesAtRandPos() function loops through each GameObject
in the provided array argument. The column and row coordinates from the first
position in the List of open positions are stored in float variables. Remember
how we shuffled the List earlier? This makes it convenient for us to take a ran-
dom position whenever we need it by simply asking for the first item. Afterwards,
the position is removed from the List using RemoveAt(). This prevents it from
ever being used again and ensures that our spawns do not overlap one another
on the map. Following, the map position taken from the List is converted into
Unity world coordinates. The position of the current tile is set equal to a Vector3
formed by the Unity world coordinates. This completes a single iteration of the loop.
In total, the loop will step through each spawn tile, remove an open map position
from the List, and set the tile’s position. Once complete, all of the tiles have been
positioned.

To summarize, the MapSpawn script starts by populating a List with all
of the possible positions on the tile map in the CreatePos() function. Next, it
randomly shuffles the order of those map positions using the RandSortPos().
Based on the number of tiles specified in the Unity Inspector, it clones and

References 189

parents the tiles in CloneTiles(). Lastly, the tiles are positioned, while
ensuring they never overlap, in the SpawnTilesAtRandPos() function.

As noted earlier, your solution likely differs from the example, which is
fine. For a challenge of this complexity and with very little code provided up
front, we would expect people to come up with a wide variety of solutions. The
important factors for your success in this challenge are that you learned how
to organize your code using functions and how to spawn objects on a tile map.
Many more opportunities will come for you to utilize functions, so this is only
the beginning.

Summary
Writing your own functions is a big step in your growth as a coder. You have the
power to organize your code and solve problems in an infinite variety of ways.
You have also expanded the capacity of your tile map to handle the spawning
of objects. This means that you can add all kinds of things to your game world,
like characters, collectables, and obstacles. Having completed this challenge, you
should be able to perform all of these coding tasks:

◾◾ Spawn multiple objects on a tile map

◾◾ Ensure that spawned objects do not overlap on a tile map

◾◾ Write custom functions

◾◾ Create functions that return information

◾◾ Make functions that utilize arguments

The complexity of our project, and our game world, continues to increase.
As we add more features to our game, we need to think about how they will be
organized. Therefore, our next challenge will involve managing the generation
of an entire game map, along with all of the objects that may be placed upon it.

References
Microsoft Corporation. 2015a. Passing Reference-Type Parameters (C# Programming

Guide). https://msdn.microsoft.com/library/s6938f28.aspx (accessed March 11, 2015).
Microsoft Corporation. 2015b. Passing Value-Type Parameters (C# Programming Guide).

http://msdn.microsoft.com/library/9t0za5es.aspx (accessed March 11, 2015).
Microsoft Corporation. 2015c. return (C# Reference). http://msdn.microsoft.com/

library/1h3swy84.aspx (accessed March 11, 2015).
Wilson, M. 2005. Overview of Sattolo’s algorithm. In Algorithms Seminar 2002–2004, ed.

F. Chyzak, 105–108. France: INRIA.

191

11 Level
Generation

In the preceding challenge, we created a MapSpawn script to handle spawn-
ing objects on our tile map. While the script is nicely composed to spawn a
single object without any overlapping positions, our game levels likely want to
include many different objects. For instance, we may want to add things like
heroes, collectables, obstacles, doors, and so on, to our map. Fortunately, our
MapSpawn script works with any type of tile prefab. Therefore, we can add a new
MapSpawn for each type of object we want to spawn. Unfortunately, our vari-
ous MapSpawn scripts are completely independent and unaware of one another.
Hence, they cannot coordinate to ensure that their tiles do not overlap, among
other things. Thus, it is time to think about how we will organize all of the indi-
vidual pieces that compose our map. In this challenge, we will introduce a script
that is responsible for managing all of the spawned objects in our game world.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Design unique game levels with just a few scripts

◾◾ Manage all objects spawned on a tile map

11.   Level Generation192

◾◾ Apply the principles of coupling and cohesion

◾◾ Refactor code to enhance organization

Required Files
In this chapter, you will need to use the following files from the Chapter_11 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity to run, modify, and test your
solution

◾◾ Challenge > Assets > Scripts > MapManager.cs, MapSpawn.cs,
RandomMap.cs, and UserMove.cs to code your solution to the challenge

◾◾ Demo > Mac/PC > MapManager to demonstrate how your completed
solution should work

◾◾ Solution > MapManager.cs, MapSpawn.cs, RandomMap.cs, and
UserMove.cs to compare your solution to the provided example solution

Challenge: Generating the Map Scene
Open the Map scene for this challenge in Unity and look to the Hierarchy window.
A MapGenerator GameObject has been created and has a MapGenerator script
attached to it (Figure 11.1).

This is the primary script that you will edit for this challenge. Currently, it is
empty, so it will be your responsibility to use it effectively to achieve the goals of
this challenge. Meanwhile, under the Background GameObject, you will find the
BgMap GameObject, which contains our RandomMap script (Figure 11.2). As
always, RandomMap is used to create the tile map background for our game world.

Figure 11.1  A MapGenerator GameObject and the associated MapGenerator script
have been provided in the Unity project.

Challenge: Generating the Map Scene 193

In the Foreground, you will find the familiar Player GameObject, which
we have used throughout the challenges. Meanwhile, the Middleground con-
tains the Collectables GameObject and Stairs GameObject (Figure 11.3).
Both of these have MapSpawn scripts attached to them and are used to spawn
different types of tiles on our map.

Hence, unlike the last chapter, where we spawned only one type of object
on our map, we are now spawning multiple types of objects. Indeed, this is
the very reason why we are in need of the MapGenerator script. The basic
concept behind this challenge is to gain better control of how the game world
is created, while also making our scripts independent of one another. Instead
of having all of our scripts run their respective Start() functions as soon
as the game is launched, we will use the MapGenerator to tell each script
what it should do and when. As our game world becomes more complex, it
becomes necessary to have better control over its creation. At the same time,
we want to maintain independence between our scripts, such as RandomMap
and MapSpawn, so they can be easily reused in future projects. This challenge
entails implementing a few fundamental computer science approaches, which
will be explored in the hints.

The requirements for this challenge follow. Consider working on one require-
ment at a time and testing to make sure it works, before proceeding to another.
This will help you to focus in on your solution and put it together piece by piece.

Figure 11.2  A BgMap GameObject and the associated RandomMap script have been
provided in the Unity project.

11.   Level Generation194

Also note that this challenge will require you to edit several scripts, in addition
to writing the MapGenerator, such as RandomMap, MapSpawn, and UserMove.
Furthermore, every aforementioned GameObject, including BgMap,
Collectables, Stairs, and Player, has a tag assigned to it in the Unity Inspector
window. This will make it easy for you to access them inside your MapGenerator

Figure 11.3  Inside the Middleground GameObject are the Collectables GameObject
and Stairs GameObject. Both have MapSpawn scripts associated with them.

Hint: Coupling and Cohesion 195

script using Unity’s FindWithTag() function. Since much of this challenge
involves reorganizing your code and defining the responsibilities for each script,
it may be useful to visualize your logic as a diagram of the relationships between
your scripts.

	 1.	 The MapGenerator script should manage the creation and display of the
background layer of the tile map. It should control when the RandomMap
script executes its code and provide it with any necessary information.

	 2.	 The MapGenerator script should manage the creation and display
of the Middleground layer of the tile map. It should control when all
MapSpawn scripts execute their code and provide them with any
necessary information. The MapGenerator script should also ensure that
no tiles in this layer of the map overlap one another.

	 3.	 The MapGenerator script should include a function to spawn the Player
GameObject at a specified row and column position on the tile map.
For example, the Player GameObject could be spawned at (0, 0) when a
level is created.

Hint: Coupling and Cohesion
The term coupling refers to how interrelated different aspects of our code are.
In other words, coupling measures how dependent our scripts are upon one
another. If our scripts refer to one another often and rely on many other scripts
to perform their responsibilities, they are tightly coupled. On the other hand, if
our scripts can perform their tasks without relying on any other scripts, they are
loosely coupled. Generally speaking, it is desirable for our scripts to be loosely
coupled. By keeping our scripts independent of one another, we create code that
is easier to understand, maintain, and reuse. For instance, if we clearly estab-
lish the responsibilities of RandomMap without referencing code stored in other
scripts, it will be easy to understand that RandomMap handles the creation of
a tile map just by looking at it. Similarly, should we need to make a change to
RandomMap, no other scripts will be affected since they are independent of one
another. Furthermore, if our RandomMap script is entirely independent of other
scripts, it can be readily applied to future projects that require a tile map. Hence,
keeping our scripts loosely coupled and independent of one another brings us
several benefits.

An accompanying coding term, known as cohesion, refers to how closely our
different pieces of code relate to one another. Think in terms of our scripts once
again. If all of the code contained within a script strongly supports the respon-
sibilities of that script, we have high cohesion. In contrast, if we combine many
unrelated features into a single script or otherwise put divergent pieces of code
together, we have low cohesion. Generally, we want our scripts to have high cohe-
sion. Similar to loose coupling, high cohesion helps us create code that is easy to
understand, maintain, and reuse. For example, inside the RandomMap script,
we wrote functions that create and display a tile map. We could also have placed

11.   Level Generation196

several other features in that script, such as those found in our UserMove script.
However, it wouldn’t make much sense for our RandomMap script, whose job is
to handle the creation of a tile map structure, to also move our character around
the screen. Instead, we opt to make each script responsible for its own tasks and
only include highly related code that supports the achievement of those tasks.
Hence, our RandomMap script focuses on creating a tile map structure. Our
MapSpawn script focuses on cloning, positioning, and displaying a given prefab
atop the tile map. Our UserMove script focuses on handling user input to move
a character. By separating the responsibilities of our scripts and only including
relevant code in each individual script, we are able to achieve loose coupling and
high cohesion at the same time.

The Unity game engine that we are working with in all of our challenges is
designed to support loose coupling and high cohesion. Unity has a component-
based structure. That is, the objects in the game engine are formed by attaching
small, distinct pieces of functionality to them. These pieces are known as com-
ponents. Unity provides us with the GameObject, which has a wide variety of
components that can be added to it. Some components that we have already seen
include Transform, SpriteRenderer, and scripts.

As an example, look to the Player GameObject in the Map scene for the
current challenge. You will see that it has Transform, SpriteRenderer,
and UserMove script components attached (Figure 11.4). The Transform gives
Luna a position, the SpriteRenderer makes her visible on the screen, and
the UserMove script allows us to control her with the keyboard. All of these are

Figure 11.4  In the Unity scene, Luna is represented by the Player GameObject. This
GameObject has Transform, SpriteRenderer, and script components.

Hint: Refactoring for Better Management 197

necessary elements for the Player GameObject in our game. Indeed, all of them
relate closely to the same objective of creating a functional character in our game
world. Yet, at the same time, each component handles its own unique responsi-
bilities that are distinct from the others. Therefore, our Player GameObject and
its components have loose coupling and high cohesion. These characteristics are
naturally supported by the design of the Unity game engine. By using the power
of the Unity engine, we can achieve loosely coupled and highly cohesive code in
our game development.

Hint: Refactoring for Better Management
Although we gain some important benefits through loose coupling and high
cohesion, there are some drawbacks as well. When all of our scripts are inde-
pendent of each other, they perform their responsibilities without any awareness
of the other scripts. Without any kind of communication between our scripts,
we have little control over the kind of game world we create. Imagine that we
add several different MapSpawn scripts to our Unity scene. Each script will ran-
domly spawn a different object on our map, such as stairs, heroes, or collectables.
Since each MapSpawn script is independent of the others, there is no way for
the scripts to ensure that their tiles do not overlap one another. Each script will
merely spawn its own tile at random positions without any knowledge of the
other scripts. Therefore, it is quite likely that the spawns will overlap one another,
which is an undesirable outcome in our game design.

One solution to the lack of control that comes along with loose coupling
and high cohesion is to refactor our code using a manager script. Refactoring
refers to the process of reorganizing our code to change its structure, but with-
out changing its overall functionality. One approach is to have an entity that
handles the control of and communication between several independent scripts.
In our current challenge, we are introducing a MapGenerator script to manage
the creation of our entire map scene. The MapGenerator is responsible for telling
RandomMap to create the background tile map, all of the MapSpawn scripts to
spawn their objects on top of the tile map, and the Player GameObject where
to be positioned when the scene is loaded. Additionally, the MapGenerator will
ensure that none of the spawned tiles overlap one another. In the end, each of our
scripts will remain independent and benefit from loose coupling and high cohe-
sion. However, the MapGenerator script will be an exception, because it is aware
of each script’s responsibilities and passes any necessary information to them.

To incorporate the MapGenerator effectively into our game project, we will
need to do a bit of refactoring in our scripts. We want to put in the effort to
make our scripts completely independent from one another. Simultaneously, we
want to design our MapGenerator script to control all of the independent scripts,
such that we can create our game world effectively. To begin, it may be helpful
to sort out the logic behind what each script in our project should be responsible
for. Think about what responsibilities should belong to the MapGenerator and
what responsibilities should belong to the independent scripts: RandomMap,
MapSpawn, and UserMove. Table 11.1 portrays one way that the responsibilities
between the scripts could be divided.

11.   Level Generation198

Based on how you plan to divide the responsibilities between your scripts,
you should proceed to implement your solution. Remember our goals of creating
scripts that are loosely coupled and highly cohesive. Also recall that our man-
ager is the glue that holds all of our independent scripts together and allows us
to control the creation of our map. Note that this challenge involves refactoring
portions of the code in several scripts, as well as writing the MapManager from
scratch. Feel free to explore the scripts and modify anything necessary to execute
your solution. Along the way, keep the requirements in mind as a guide for how
your solution should ultimately function. Focus on one requirement at a time and
implement your solution piece by piece.

Example Solution: Generating the Map Scene
Recall that the overall objective of this challenge is to gain more detailed control
over the design of our tile map. This requires us to refactor our code to maximize
the effectiveness of our MapGenerator script, while rendering our RandomMap
and MapSpawn scripts loosely coupled and highly cohesive. Let’s revisit the chal-
lenge requirements:

	 1.	 The MapGenerator script should manage the creation and display of the
background layer of the tile map. It should control when the RandomMap
script executes its code and provide it with any necessary information.

	 2.	 The MapGenerator script should manage the creation and display of the
Middleground layer of the tile map. It should control when all MapSpawn
scripts execute their code and provide them with any necessary informa-
tion. The MapGenerator script should also ensure that no tiles in this
layer of the map overlap one another.

	 3.	 The MapGenerator script should include a function to spawn the Player
GameObject at a specified row and column position on the tile map.
For example, the Player GameObject could be spawned at (0, 0) when a
level is created.

Figure 11.5 provides a visual diagram of the relationships between the
MapGenerator and the associated scripts in the example solution.

Table 11.1  Script Responsibilities

MapGenerator RandomMap MapSpawn UserMove

Tells other scripts when
to execute

Generates 2D array to
represent the tile map

Clones a specified
number of tile prefabs

Checks for
user input

Stores information
common to all map
scripts

Displays background layer
of tile map from a set of
prefabs

Randomly positions
tiles on the map

Moves the
player based
on user input

Passes other scripts
information as needed

Keeps track of where
objects are spawned
to ensure none overlap

Example Solution: Generating the Map Scene 199

To review the example solution, we will break down the script
responsibilities and requirements step by step. Two of the MapManager’s
responsibilities from Table 11.1 involve storing information and passing it to
the other scripts as needed. You may have noticed that we previously stored
the tileSize and pixelsToUnits conversion as variables in both our
RandomMap and MapSpawn scripts. It is not ideal for us to duplicate this
information in both scripts, especially since we have a MapGenerator to handle
such things. Therefore, we will move our tileSize and pixelsToUnits
variables to our MapGenerator script. At the same time, we will remove these
variables from the RandomMap and MapSpawn scripts. That way, the infor-
mation is stored a single time in a single place. Thus, we simplify our code and
make it more efficient. When other scripts need this information, it will be the
MapGenerator’s job to pass it along.

//excerpt from MapGenerator script

//class definition
public class MapGenerator: MonoBehaviour {

//default size of tiles, in pixels
public int tileSize;

//pixels to Unity world units conversion
public int pixelsToUnits;

MapGenerator
CreatePos()

MapGenerator
CreateBgMap()

RandomMap
CreateMapWithSize()

RandomMap
DisplayMap()

MapSpawn
CloneTiles()

MapSpawn
SpawnTilesAtRandPos()

MapGenerator
SpawnObjectsWithTag()

MapGenerator

Open map pos
Open map pos

Open map pos (sorted)
Player pos

Object tag

MapGenerator
RandSortPos()

MapGenerator
PositionPlayerAt()

Map
array

Number of
rows and
columns

Number of
rows and
columns

Map array,
tile size,

pixels to units

Tile
prefabs

Tile prefab,
number of tiles

Tile prefabs,
open map pos,

tile size,
pixels to units

Figure 11.5  The relationships between the MapGenerator and associated scripts in
the example solution are portrayed. Notice the flow of information into and out of the
MapGenerator and its functions. The functions in the RandomMap and MapSpawn
scripts can receive and return information, but they never communicate directly with
one another. Instead, all information flows through the MapGenerator.

11.   Level Generation200

The first requirement entails creating the background layer of our game world.
This involves modifying our RandomMap script to allow the MapGenerator full
control over its operations. After removing the tileSize and pixelsToUnits
variables, the only remaining global variable in RandomMap is tilePrefabs,
which is an array that stores all of the tile prefabs used to generate our map.

//excerpt from RandomMap script

//class definition
public class RandomMap : MonoBehaviour {

//array for holding tile prefabs
//defined in Unity Inspector
public GameObject[] tilePrefabs;

Since the tileSize and pixelsToUnits variables are stored in the
MapGenerator, we should rewrite the functions in RandomMap to accept infor-
mation in argument form. At times, we may also want to return information.
Thus, data are flowing into and out of RandomMap to the MapGenerator, which
controls the overall creation of our game world. This relieves the RandomMap
script of having to store its own data about the game world and allows the
MapGenerator to take control. In the previous challenge, our RandomMap script
had two functions: one to create the tile map’s data structure and one to dis-
play the tile map in our scene. Again, we will use two functions to maintain
these qualities. However, the way we pass information into and out of these func-
tions will change. Let’s consider how to create the tile map’s data structure first.
We will use a function called CreateMapWithSize(). This function is very
similar to the CreateMap() function that we wrote in Chapter 9’s challenge.
The differences are in bold.

//generate tile map with given size and return it
public int[,] CreateMapWithSize(int theNumCol, int theNumRow) {

//initialize map array
int[,] mapArray = new int[theNumRow, theNumCol];

//fill the map array with random tiles from prefab array
//iterate through map columns (x)
for (int col = 0; col < theNumCol; col++) {

//iterate through map rows (y)
for (int row = 0; row < _numRow; row++) {

//get a random tile from prefab array
//random index value based on array size
int randIndex = Random.Range(0, tilePrefabs.Length);

//store the tile’s index value in the map array
mapArray[row, col] = randIndex;

} //end inner for

} //end outer for

Example Solution: Generating the Map Scene 201

//return map array
return mapArray;

} //end function

As you can see, this function accepts a number of rows and columns as argu-
ments to determine the size of the tile map two-dimensional (2D) array. This
information will be provided by the MapGenerator, so RandomMap doesn’t need
to worry about it. Instead of storing a global 2D array to represent the tile map, a
local mapArray variable is created inside the function. Using our familiar nested
loops, the array is populated with random index values that represent the tile pre-
fabs. Afterwards, the local mapArray is returned by the function. This array is
ultimately passed back to the MapGenerator. Hence, we have accomplished our task
of passing information from the MapGenerator to RandomMap and back to the
MapGenerator. Essentially, this makes the RandomMap script entirely independent
and relieved from having to store permanent information about our game world.
All of the lasting information is handled by the MapGenerator instead. The other
major responsibility of RandomMap is to display the tile map in the scene. Again,
we have a function similar to Chapter 9’s DisplayMap(), except that our updated
function receives additional arguments, which are provided by the MapGenerator.

//display the tiles
pub�lic void DisplayMap(int[,] theMapArray, int theTileSize, int

thePixelsToUnits) {

//retrieve array size
int numRow = theMapArray.GetLength(0);
int numCol = theMapArray.GetLength(1);

//loop through the map array
//iterate through map columns (x)
for (int col = numCol − 1; col > −1; col--) {

//iterate through map rows (y)
for (int row = numRow − 1; row > −1; row--) {

//clone prefab tile based on value stored in map array
Gam�eObject displayTile = (GameObject)Instantiate

(tilePrefabs[theMapArray[row, col]]);

//calculate tile position
//x position
flo�at xPos = (float)(col * theTileSize - Screen.width / 2

+ theTileSize / 2) / thePixelsToUnits;

//y position
flo�at yPos = (float)(Screen.height / 2 − row

* theTileSize − theTileSize / 2) / thePixelsToUnits;

//z position
//maintain z position of parent object
float zPos = gameObject.transform.position.z;

//set position
dis�playTile.transform.position = new Vector3(xPos,

yPos, zPos);

11.   Level Generation202

//add the tile to the map game object in Unity scene
//set parent
displayTile.transform.parent = gameObject.transform;

} //end inner for

} //end outer for

} //end function

Rather than leveraging global variables stored in RandomMap, our
DisplayMap() function now accepts arguments for the 2D tile map array, tile
size, and pixels to units conversion. It gets the number of rows and columns from
the map array argument and uses them to iterate through all of the tiles. For each
tile, a prefab is cloned, positioned, and parented, as we have done many times
before. Notably, this function is almost identical to our previous one, with the
exception that it utilizes arguments passed to it from the MapGenerator instead
of variables stored within the RandomMap script itself. That covers the refactor-
ing of our RandomMap script. Let’s return to the MapGenerator to see exactly
how it creates the background layer of our tile map. Inside the Start() function,
you will see that the MapGenerator calls its own CreateBgMap() function.

//excerpt from MapGenerator script

//create background map
private void CreateBgMap() {

//get map object from scene
Ran�domMap bgMap = GameObject.FindWithTag("BgMap").

GetComponent<RandomMap>();

//determine map properties based on screen size
int numCol = Screen.width / tileSize;
int numRow = Screen.height / tileSize;

//generate map array
int[,] middleMap = bgMap.createMapWithSize(numCol, numRow);

//display tiles
bgMap.displayMap(middleMap, tileSize, pixelsToUnits);

} //end function

To begin, CreateBgMap() finds the RandomMap script in the Unity scene
by its tag. Next, it calculates the number of rows and columns for the tile map
using the current screen size and tile size. This information is passed into the
RandomMap’s CreateMapWithSize() function. A 2D array representing the
tile map is returned and stored in the middleMap variable. Last, the tile map
array, tile size, and pixels to units conversion are passed into the RandomMap’s
DisplayMap() function. Thus, the background layer of our tile map has been
generated and displayed. Notice how the MapGenerator script was in total control
of this process. Meanwhile, the RandomMap script merely received information,
performed calculations, and returned information back to the MapGenerator.

Example Solution: Generating the Map Scene 203

This is precisely what we wanted to happen. At this point, we have achieved the
first requirement for this challenge, so our next step is to handle the spawning of
objects atop our tile map.

Take a look at the MapSpawn script and we’ll discuss how it can be refactored
to work effectively with our MapGenerator. The script is based on our Chapter 10
challenge, but it has been modified. Similar to RandomMap, MapSpawn no lon-
ger stores the tileSize or pixelsToUnits variables. However, it retains two
key variables.

//excerpt from MapSpawn script

//class definition
public class MapSpawn : MonoBehaviour {

//number of tiles to spawn
public int numTiles;

//tile prefab defined in Unity Inspector
public GameObject tilePrefab;

Both variables are defined in the Unity Inspector for the script. As before,
the numTiles variable specifies how many clones the script will make and
tilePrefab defines which tile prefab the script will spawn. Recall that our
previous MapSpawn script stored all of the open tile map positions and kept
track of which were still available for spawning. This is now the responsibil-
ity of the MapGenerator, so the associated variables and functions have been
removed from MapSpawn. The MapGenerator can keep track of any number
of MapSpawn scripts, so the responsibility of avoiding overlap is better served
by the MapGenerator. Thus, our MapSpawn script is left with two functions:
CloneTiles() and SpawnTilesAtRandPos(). Both of these functions
are already prepared to receive information from the MapGenerator and do not
need to be refactored further. Therefore, we should return to the MapGenerator
and examine how it handles the MapSpawn scripts. To keep track of all possi-
ble spawn positions in the Middleground layer of the map, the MapGenerator
declares a List of Vector2 variables named _middleOpenPos.

//excerpt from MapGenerator script

//default size of tiles, in pixels
public int tileSize;

//pixels to Unity world units conversion
public int pixelsToUnits;

//available positions in middleground layer
private List<Vector2> _middleOpenPos;

Previously, our MapSpawn script contained a List of the available map posi-
tions, which was populated and shuffled using functions named CreatePos()
and RandSortPos(). However, now that our MapGenerator is responsible for
these duties, the functions have been placed there and removed from MapSpawn.

11.   Level Generation204

Inside Start(), the MapGenerator initializes the _middleOpenPos List,
populates it with every open position in our tile map, and then randomizes the
order of the List.

//excerpt from MapGenerator script

void Start() {

//determine map size based on screen/tile size
int numCol = Screen.width / tileSize;
int numRow = Screen.height / tileSize;

//populate middleground with open positions
_middleOpenPos = CreatePos(numCol, numRow);

//randomize order of open positions
RandSortPos(_middleOpenPos);

The MapGenerator’s CreatePos() and RandSortPos() functions are
identical to those in the MapSpawn script from the Chapter 10 challenge. Yet,
the MapGenerator stores the _middleOpenPos List of available positions
in a global variable. Therefore, it can keep track of all objects spawned on the
map and ensure they don’t overlap. In contrast, each of our MapSpawn scripts is
independent and unware of any other scripts. Thus, we gain the benefit of bet-
ter control over our spawned objects by refactoring this code to appear in the
MapGenerator.

The MapGenerator uses tags to handle the spawning of objects in the
Middleground layer of the tile map. For instance, we have GameObject variables
in our Unity scene tagged Stairs and Collectables. These objects have MapSpawn
scripts attached to them, which indicate the quantity and type of prefab to spawn
on the tile map. A custom function named SpawnObjectsWithTag() is writ-
ten in the MapGenerator script to handle the execution of any MapSpawn script
according to the tag of its associated GameObject.

//excerpt from MapGenerator script

//spawn objects associated with a specific tag
private void SpawnObjectsWithTag(string theTag) {

//retrieve game object associated with tag
GameObject parentObject = GameObject.FindWithTag(theTag);

//verify that object exists in scene
if (parentObject != null) {

//retrieve spawn script
Map�Spawn spawnScript = parentObject.

GetComponent<MapSpawn>();

//if more tiles have been specified than are open
if (spawnScript.numTiles > _middleOpenPos.Count) {

Example Solution: Generating the Map Scene 205

//restrict to number of available tiles
spawnScript.numTiles = _middleOpenPos.Count;

} //end if

//clone tiles
Gam�eObject[] spawnTiles = spawnScript.CloneTiles(spawnScript.

tilePrefab, spawnScript.numTiles);

//spawn tile at random position
spa�wnScript.SpawnTilesAtRandPos(spawnTiles, _middleOpenPos,

tileSize, pixelsToUnits);

} //end if

} //end function

The SpawnObjectsWithTag() function receives a string argument
that represents a tag in our Unity scene. It uses the argument in tandem with the
FindWithTag() function to store a local variable that represents the associated
GameObject.

//excerpt from MapGenerator script
//from SpawnObjectsWithTag() function

//retrieve game object associated with tag
GameObject parentObject = GameObject.FindWithTag(theTag);

A conditional statement verifies that the object exists before proceeding.
Otherwise, there’s a risk we would attempt to manipulate an object that doesn’t
exist, which would produce an error. Assuming the object is valid, its MapSpawn
script is retrieved with GetComponent() and stored locally as spawnScript.

//excerpt from MapGenerator script
//from SpawnObjectsWithTag() function

//verify that object exists in scene
if (parentObject != null) {

//retrieve spawn script
MapSpawn spawnScript = parentObject.GetComponent<MapSpawn>();

Another if statement checks whether the script’s specified number of
spawns is greater than the total number of available map positions in the
Middleground layer. If the original number is less, it will be used. Otherwise,
the number of tiles is set to the total number available instead. It wouldn’t make
sense to allow more tiles to be spawned than there are empty positions, since
some tiles would overlap.

//excerpt from MapGenerator script
//from SpawnObjectsWithTag() function

//if more tiles have been specified than are open
if (spawnScript.numTiles > _middleOpenPos.Count) {

11.   Level Generation206

//restrict to number of available tiles
spawnScript.numTiles = _middleOpenPos.Count;

} //end if

Following, a local GameObject array of named spawnTiles is cre-
ated by calling the MapSpawn script’s CloneTiles() function. Lastly, the
MapGenerator calls the MapSpawn’s SpawnTilesAtRandPos() function.

//excerpt from MapGenerator script
//from SpawnObjectsWithTag() function

//clone tiles
Gam�eObject[] spawnTiles = spawnScript.CloneTiles(spawnScript.

tilePrefab, spawnScript.numTiles);

//spawn tile at random position
spa�wnScript.SpawnTilesAtRandPos(spawnTiles, _middleOpenPos,

tileSize, pixelsToUnits);

The MapGenerator passes the tile size, pixels to units conversion, array of
cloned tile prefabs, and List of available positions as arguments. These pieces of
information ensure that the MapSpawn script performs its duties in accordance
with the level being generated by the MapGenerator. For instance, providing the
tile array and open position List ensures no tiles overlap, while the tile size and
pixels to units values ensure the positions are calculated according to the size of
our tile map.

That completes the SpawnObjectsWithTag() function. The nice thing
about this function is that it can handle any type of tile prefab, so long as it is
tagged in our Unity scene and associated with a MapSpawn script. Therefore,
no matter how many different objects we want to include in our game world,
this single function can handle them all. It only takes a simple function call
by the MapGenerator to execute SpawnObjectsWithTag() for each object
we want to place on our map. On that note, in the MapGenerator’s Start()
function, the SpawnObjectsWithTag() function is used to spawn stairs
and collectables.

//excerpt from MapManager script
//from Start() function

//stairs
SpawnObjectsWithTag("Stairs");

//collectables
SpawnObjectsWithTag("Collectables");

Thus, the MapGenerator controls how the MapSpawn scripts spawn various
objects on the tile map. It also keeps track of which positions are available to pre-
vent any overlap. With these tasks complete, we have successfully achieved the
second challenge requirement.

All that remains is the third requirement, which entails positioning the
player on the tile map. A public Vector2 variable, named playerPos, is
included in the MapGenerator. This will control where the player is spawned

Example Solution: Generating the Map Scene 207

when the level is created. By making the variable public, the player’s starting
position can be set in the Unity Inspector window.

//excerpt from MapManager script

//default size of tiles, in pixels
public int tileSize;

//pixels to Unity world units conversion
public int pixelsToUnits;

//position for player when map is loaded
public Vector2 playerPos;

//available positions in middleground layer
private List<Vector2> _middleOpenPos;

Inside the MapGenerator’s Start() function, the PositionPlayerAt()
function is called and the playerPos variable is passed in. Note that the player
is spawned before the stairs, which are spawned before the collectables. Since we
have limited map spaces, it is important to spawn the most important objects
before less important ones. Without a player, we have no game. Therefore, it must
be the top priority and come first in the code that spawns objects on our map.

//excerpt from MapManager script
//from Start() function

//position player
PositionPlayerAt(playerPos);

//stairs
SpawnObjectsWithTag("Stairs");

//collectables
SpawnObjectsWithTag("Collectables");

Let’s take a look at the PositionPlayerAt() function, which handles the
positioning of the Player GameObject when our level loads.

//excerpt from MapGenerator script

private void PositionPlayerAt(Vector2 thePos) {

//get player game object from scene
GameObject player = GameObject.FindWithTag("Player");

//calculate player position in world units
//x position
flo�at xPos = thePos.x * player.GetComponent<SpriteRenderer>().

bounds.size.x − 0.5f * Screen.width / pixelsToUnits + 0.5f
* player.GetComponent<SpriteRenderer>().bounds.size.x;

//y position
flo�at yPos = 0.5f * Screen.height / pixelsToUnits − thePos.y

* player.GetComponent<SpriteRenderer>().bounds.size.y − 0.5f
* player.GetComponent<SpriteRenderer>().bounds.size.y;

11.   Level Generation208

//store position
Vector3 playerPos = new Vector3(xPos, yPos, zPos);

//set position
player.transform.position = playerPos;

//exclude player pos
//prevents immediate collision when loading scene
_middleOpenPos.Remove(thePos);

} //end function

The PositionPlayerAt() function receives a Vector2 argument rep-
resenting the column and row coordinates where the player should be spawned.
It searches for the Player GameObject in the Unity scene by tag and stores it in
a local variable.

//excerpt from MapGenerator script
//from PositionPlayerAt() function

//get player game object from scene
GameObject player = GameObject.FindWithTag("Player");

Next, the Vector2 x and y values are converted into Unity world coor-
dinates. The z coordinate for the player is retained. Then, the calculated world
position is stored in a Vector3 variable. The position variable of the Player
GameObject is set equal to the calculated Vector3 position.

//excerpt from MapGenerator script
//from PositionPlayerAt() function

//calculate player position in world units
//x position
flo�at xPos = thePos.x * player.GetComponent<SpriteRenderer>().

bounds.size.x − 0.5f * Screen.width / pixelsToUnits + 0.5f
* player.GetComponent<SpriteRenderer>().bounds.size.x;

//y position
flo�at yPos = 0.5f * Screen.height / pixelsToUnits − thePos.y

* player.GetComponent<SpriteRenderer>().bounds.size.y − 0.5f
* player.GetComponent<SpriteRenderer>().bounds.size.y;

//store position
Vector3 playerPos = new Vector3(xPos, yPos, zPos);

//set position
player.transform.position = playerPos;

Lastly, the player’s tile map position is removed from the MapGenerator’s
List of available positions. This prevents another tile from being spawned right
on top of the player when the level is created.

//excerpt from MapGenerator script
//from PositionPlayerAt() function

Summary 209

//exclude player pos
//prevents immediate collision when loading scene
_middleOpenPos.Remove(thePos);

Having added our function to spawn the player when the level is generated,
we have successfully completed the third and final requirement for this chal-
lenge. Be sure to review the entire example MapGenerator script and make sure
you understand it before proceeding further. It is also a good idea to go back and
revise your own solution to fulfill any missing requirements, fix bugs, or enhance
its features.

Summary
In this challenge, you worked to enhance the generation of levels for your game
world. You refactored your code to improve its coupling and cohesion. The
MapGenerator you coded provides an easy way to create a wide variety of levels.
If you want to add new objects to your map, simply add MapSpawn scripts to your
Unity scene and call them in the MapGenerator’s SpawnObjectsWithTag()
function. Having taken control of the creation of your game levels, you should
be capable of these coding tasks:

◾◾ Design unique game levels with just a few scripts

◾◾ Manage all objects spawned on a tile map

◾◾ Apply the principles of coupling and cohesion

◾◾ Refactor code to enhance organization

You have implemented a tile map and level generation system that can
produce many unique maps quickly and easily. Thus, it is time for us to expand
beyond a single scene in our Unity project and consider how to add many different
levels to our game. In the upcoming challenge, you will implement a system to
handle switching between levels.

211

12 Game State
Management

One of the fundamental components of game development is state management.
Often, a single entity, known as a game state manager, is used to handle such respon-
sibilities. The state manager keeps track of things like what scene the game is in and
whether the game has been won or lost. It is responsible for switching between
scenes, like the title screen, menus, and levels. It also manages starting, stopping,
and resetting the gameplay. Currently, your game world has many objects that can
be configured to produce a variety of levels. In this challenge, you will create a state
manager to handle switching between the different levels in your game world.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Code a game state manager to handle switching between different levels

◾◾ Implement the singleton design pattern

◾◾ Manage the timing of instantiation and persistence of objects in Unity

◾◾ Load different scenes in Unity

◾◾ Utilize Unity’s physics engine for two-dimensional (2D) collisions

12.   Game State Management212

Required Files
In this chapter, you will need to use the following files from the Chapter_12 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity and Dungeon.unity to run, mod-
ify, and test your solution

◾◾ Challenge > Assets > Scripts > StateManager.cs, MapManager.cs, and
UserMove.cs to code your solution to the challenge

◾◾ Demo > Mac/PC > StateManager to demonstrate how your completed
solution should work

◾◾ Solution > StateManager.cs, MapManager.cs, and UserMove.cs to
compare your solution to the provided example solution

Challenge: Managing the Game State
Notably, this is the first project in which you have multiple scenes. One is called
Map and one is called Dungeon. The Map scene mirrors what we have been
working on all along. The only addition to this is the Stairs GameObject inside
the Middleground GameObject. As you can see in the Inspector window for
the Stairs, a MapSpawn script has been configured to spawn a single StairsDown
prefab (Figure 12.1). Also note that the Stairs GameObject has been given a tag
of Stairs.

If you play the scene immediately, you will see a map generated that is
similar to that in the previous challenge, except that a staircase is also included
(Figure 12.2).

At this time, double-click on the Dungeon scene inside the Project window’s
Assets > Scenes folder (Figure 12.3). This will open the Dungeon scene in the Unity
editor. Any time you want to switch between scenes in Unity, just double-click

Figure 12.1  A Stairs GameObject with a MapSpawn script has been included in the
Map scene.

Challenge: Managing the Game State 213

on the associated scene. Always remember to save the scene you are working on
before switching to another scene.

The Dungeon scene is nearly identical to the Map scene. One exception is that
a cool set of dungeon floor tiles are being used to generate the background tile
map. You can view the individual tiles in the Project window’s Assets > Prefabs
folder (Figure 12.4).

The other exception is that no Player GameObject is included in the
Dungeon scene. This is because our game only has a single player. Therefore,
we will reuse the player from our Map scene in the Dungeon scene, rather
than duplicating it. Otherwise, the Dungeon scene, like the Map scene, uses a

RandomMap script to generate back-
ground tiles and MapSpawn scripts to
spawn collectable objects and stairs.

Switch back to your Map scene.
It is recommended that you treat the
Map scene as your default workspace
for this challenge and do most of your

Figure 12.2  If you run the Map scene, you will see a familiar, randomly generated game
world with the addition of a set of stairs.

Figure 12.3  To open a scene in the Unity
editor, navigate to the Assets > Scenes
folder and double-click on the scene you
would like to open.

Figure 12.4  A set of dungeon floor tiles has
been included in the Unity project.

12.   Game State Management214

testing there. As you gradually build out your solution, you will launch the game
from the Map scene and allow Luna to explore various levels of the Dungeon scene.

To accomplish the goals of this challenge, you will code the entirety of the
StateManager script, as well as modify other scripts as necessary. Recall that the
objective of your state manager is to allow a single entity to handle the switching
of all scenes in the game. With this in mind, here are the requirements for this
challenge. In addition to sorting out the logic behind how you will approach your
solution, make sure to leverage the hints in this chapter, since several advanced
coding concepts are introduced.

	 1.	 The StateManager script implements a singleton instance of the state
manager.

	 2.	 The state manager is never destroyed as scenes are switched. Similarly,
the player is never destroyed.

	 3.	 The state manager is responsible for controlling all scene switching in
the game. It is also responsible for updating the camera’s orthographic
size when a new scene is loaded. It uses one or more custom functions to
accomplish these tasks.

	 4.	 The UserMove script checks for collisions between the player and the
stairs in each scene. Upon collision, a command is issued to the state
manager to switch scenes.

Hint: Singleton Design Pattern
The first requirement for this challenge entails setting up your state manager as
a singleton instance, so let’s discuss what it means to do so. In coding, a design
pattern is a common approach to solving a problem. It has been tried, tested, and
shown to generally apply in many contexts. There are many different design pat-
terns available to us. For this challenge, we will implement a design pattern known
as the singleton. In order to be a singleton, there must be only one instance, or copy,
of a given class. You can think of a class as a customized combination of variables
and functions created for a specific purpose (Microsoft Corporation 2015a). For
example, the scripts you have been working on throughout this book are all exam-
ples of classes. You’ll even notice that the class keyword appears near the top of
every one of our scripts. In the singleton design pattern, one instance of a class will
be created and never duplicated thereafter. Since we only require a single object
to manage the scenes in our game, and because we wouldn’t want several objects
interfering with one another on this critical responsibility, our state manager is an
excellent candidate for the singleton design pattern. Let’s consider how the single-
ton design pattern can be implemented in the context of our StateManager class.

public class StateManager:MonoBehaviour {

	 //singleton instance
	 private static StateManager _Instance;

Hint: Singleton Design Pattern 215

	 //singleton accessor
	 //access StateManager.Instance from other classes
	 public static StateManager Instance {

	 //create instance via getter
	 get {

	 //check for existing instance
	 //if no instance
	 if (_Instance == null) {

	 //create game object
	 GameObject StateManagerObj = new GameObject();
	 StateManagerObj.name = "State Manager";

	 //create instance
	 _In�stance = StateManagerObj.

AddComponent<StateManager>();

	 } //end if

	 //return the instance
	 return _Instance;

	 } //end get

	 } //end accessor

} //end class

There is quite a bit happening in this intriguing code sample, so let’s break
it down piece by piece. The first thing we do in our StateManager script is
set up a private variable with a data type of StateManager and a name
of _Instance.

//excerpt from StateManager script

//singleton instance
private static StateManager _Instance;

As required by the singleton design pattern, this represents the one and
only instance of our StateManager class. Also notice the static keyword,
which we are using for the first time. Whenever we make something static, we
are saying that it belongs to a class itself, rather than any particular instance
of the class (Microsoft Corporation 2015a). In practical terms, a static
variable or function is identical across all instances of a class. Normally, we
can create multiple instances of our classes and then set their variables or call
their functions independently. For example, we can configure one MapSpawn
script to spawn collectables and another to spawn stairs. However, this is not
the case when using the static keyword. No matter how many copies of
a class there are, a static variable or function will be identical across all
of them.

After declaring a private, static instance of the StateManager class, we han-
dle its creation through a getter accessor function. Quite some time ago, in the

12.   Game State Management216

Chapter 4 challenge, we used get and set accessors to modify the access levels
of our variables. As a reminder, here is a code snippet:

//create a getter and setter
//define a public version of a variable with a data type and name
public dataType publicVarName {

	 //create a getter with the get keyword
	 //the return keyword is followed by the private variable
	 get { return _privateVarName; }

	 //create a setter with the set keyword
	 //set the private variable equal to the value keyword
	 set { _privateVarName = value; }

}

At that time, it was noted that custom features can be added to accessor
functions. Our singleton design pattern adds a number of specialized features to
what is otherwise a simple getter. To start, the accessor variable is defined.

//excerpt from StateManager script

//singleton accessor
//access StateManager.Instance from other classes
public static StateManager Instance {

} //end accessor

A public variable of the type StateManager and name Instance is
established. Note once again that the static keyword is used. This means that
the Instance variable belongs to the StateManager class. Therefore, no mat-
ter where it is accessed in our code, it will always refer to the same singleton
instance. Conveniently, we can refer to our state manager instance from any-
where in our game’s code by typing StateManager.Instance. This allows us
to send the state manager commands, such as triggering the scene to be changed.
Subsequently, we can add the typical getter code to our accessor definition.

//singleton accessor
//access StateManager.Instance from other classes
public static StateManager Instance {

	 //standard getter
	 get {

	 //return the instance
	 return _Instance;

	 } //end get

} //end accessor

This is the standard getter code we are familiar with. Whenever an exter-
nal script might try to access StateManager.Instance, the private
_Instance variable would be returned. However, to fulfill the singleton

Hint: Singleton Design Pattern 217

design pattern, we want to add custom code to our getter that controls how
it is created.

//singleton accessor
//access StateManager.Instance from other classes
public static StateManager Instance {

	 //create instance via getter
	 get {

	 //check for existing instance
	 //if no instance
	 if (_Instance == null) {

	 //create game object
	 GameObject StateManagerObj = new GameObject();
	 StateManagerObj.name = "State Manager";

	 //create instance
	 _Ins�tance = StateManagerObj.

AddComponent<StateManager>();

	 } //end if

	 //return the instance
	 return _Instance;

	 } //end get

} //end accessor

Recall that we never want to duplicate a singleton. Therefore, when another
script tries to get our singleton instance, we first check whether it is null. If it
is not null, the instance that already exists is simply returned. Hence, once
the instance is created, it is never duplicated. On the contrary, if our singleton
instance happens to be null, we need to create it. Therefore, we create a new
empty GameObject named StateManagerObj. Next, we set its name prop-
erty to "State Manager". This process is the code equivalent of creating a
new GameObject in the Unity editor and changing its name in the Hierarchy
window. Lastly, to identify our singleton instance, we add a StateManager script
to StateManagerObj and set the _Instance variable equal to it. At this
point, we have created the one and only copy of our singleton instance. If any
other script attempts to access StateManager.Instance, we will simply
return the _Instance variable that has already been defined. To summarize,
we have created a script with a single state manager instance that can be accessed
throughout all of our code. If another script tries to access the state manager,
but no instance exists yet, it is automatically created. Yet, if the instance already
exists, it is simply returned, so no duplication occurs. This completes the single-
ton design pattern and the first challenge requirement.

In the end, we have implemented a sophisticated singleton design pattern for
our state manager. Reread this section as many times as you need. Work through
the code line by line to make sure you understand everything that is happening.
The wonderful thing about this implementation is that you can apply it any time

12.   Game State Management218

you need to create a singleton. In game development, singletons are useful for a
variety of purposes, including state, audio, animation, and score managers. Thus,
you can expect to utilize the singleton design pattern many times in your future
as a game developer.

Hint: The Unity Awake() and
DontDestroyOnLoad() Functions
We have made consistent use of Unity’s built-in functions to help control the
flow of information throughout our code. Recall that Update() helps us man-
age our game loop by running every frame throughout the duration of a scene.
Meanwhile, we have used Start() to accomplish one-time actions at the begin-
ning of our scripts, such as initializing variables. Let’s introduce another Unity
function that helps us control the order in which our code is executed: Awake().

The Awake() function is called a single time when a script is loaded (Unity
Technologies n.d.g). It is similar to Start(), because it is executed only one
time. However, Awake() is always executed before Start(). Thus, we can use
Awake() and Start() together to gain deeper control over the order in which
our code is executed. An example of the basic Awake() function structure is
provided:

//Unity’s Awake() function
//use to set up references and other critical code
//executes before Start(), just as a script is loaded
void Awake() {

	 //place code here

}

Suppose we have two scripts. If one script’s code is placed in Awake() and
the other’s is placed in Start(), we can be confident that the code in Awake()
will be executed first. This subtle tuning of our code’s execution is useful for
managing the flow of information throughout our game. For instance, Awake()
is commonly used to prepare references to the various objects in our game, such
as with GameObject.FindWithTag(). Subsequently, Start() can safely be
used to reference these objects, as well as initialize variables. Should we handle
these items out of order, we would certainly run into errors, like null object refer-
ences. As always, it is important to be aware of how our code operates and to take
as much control over it as we can. Dividing responsibilities between Awake()
and Start() helps us to manage our code better.

In this challenge, the second requirement entails ensuring that our state man-
ager and player are never destroyed. Normally, whenever Unity loads a new scene,
it destroys everything in the previous scene. This includes every GameObject,
script, and other component. However, Unity provides us with a simple way
to flag an object so it does not get destroyed. The DontDestroyOnLoad()
function receives an object as an argument and ensures that the object per-
sists throughout all of the scenes in our game (Unity Technologies n.d.h).

Hint: The Unity Application.LoadLevel() Function 219

Thereafter, it is our own responsibility to destroy the object at a later time.
Commonly, the DontDestroyOnLoad() function is used in tandem with the
C# this keyword. Simply put, the this keyword refers to the specific instance
of an object at hand (Microsoft Corporation 2015b). For example, if we call
this from inside a script, we are referring to that script itself. Combining these
together, we arrive at a universal way to ensure an object does not get destroyed
when switching scenes in Unity.

//Unity’s DontDestroyOnLoad() function
//use to ensure an object is not destroyed when switching scenes
//this keyword refers to the script itself
DontDestroyOnLoad(this);

As an example, let’s consider how to make sure our state manager is not
destroyed when switching scenes. Naturally, our singleton state manager
instance needs to survive throughout the duration of our game, since it is
responsible for switching scenes. Inside our StateManager script, we can utilize
the Awake() function to call DontDestroyOnLoad() right when our script
is loaded. By placing this code in Awake(), we can be certain no other in-game
activities will occur beforehand that might destroy or otherwise interfere with
our script.

//excerpt from StateManager script

//awake
void Awake() {

	 //prevent this script from being destroyed
	 //when application switches scenes
	 DontDestroyOnLoad(this);

} //end function

With that simple combination of Awake() and DontDestroyOnLoad(),
we can be confident that our state manager will persist throughout the game
without being destroyed automatically as scenes are changed. We have also ful-
filled the second requirement for this challenge.

In addition, see if you can apply this same code to your Player GameObject.
Think about it. The player is something that needs to persist throughout the
entire game, no matter how many different scenes we load. In which script could
you incorporate an Awake() and DontDestroyOnLoad() to ensure that the
Player GameObject sticks around throughout the game?

Hint: The Unity Application.LoadLevel()
Function
The primary responsibility of the state manager is to switch between the
scenes in our game. The third challenge requirement specifically addresses this
point. Fortunately, Unity provides a convenient built-in function for switching
scenes. The Application.LoadLevel() function accepts an argument that

12.   Game State Management220

represents a scene and subsequently loads that scene (Unity Technologies n.d.a).
The argument can be in the form of a string that represents the scene’s name,
such as "Map" or "Dungeon", or an index value that matches the scenes found
in the File > Build Settings … menu. For clarity, it is better to use the scene name,
since it makes your code easier to interpret. A scene can be loaded by name in
this manner:

//load a scene by name
//u�se Application.LoadLevel() with a string that represents the

scene’s name
//t�he scene name should match the name of the scene file in the

Assets folder
//load a scene named theSceneName
Application.LoadLevel("theSceneName");

For better organization, the Application.LoadLevel() function
should always be called from inside your state manager, rather than in various
other scripts throughout your program. However, certain events in other areas
of your game, such as the player colliding with the stairs, may trigger your state
manager to switch scenes. Therefore, it would be useful if your state manager had
a custom function for switching to the appropriate scene at the appropriate time.
That way, other scripts could notify the state manager when the scene needs to
be changed and provide the appropriate information in the form of an argument.
Based on your prior coding knowledge, you should be able to write a custom
function to handle this task. Give it a try.

A secondary responsibility for the state manager, also noted in the third
challenge requirement, is to update the camera’s orthographic size when
a scene is loaded. At heart, Unity is a three-dimensional (3D) game engine.
However, we are able to use it as if it is a 2D game engine. This is made possible
through orthographic projection. Essentially, orthographic projection uses a
camera to make a 3D world appear as if it is 2D. This is accomplished by per-
fectly aligning the camera to be orthogonal (perpendicular) to the plane in
which our game is created. Imagine that our 2D game world is drawn on one
wall in a typical, rectangular room. If we focus a camera directly at that wall
only, we can create the illusion that the entire space is 2D, even though it is
truly a much larger, 3D space. When we use Unity in 2D mode, this is basically
what happens.

You may have noticed that every Unity scene has a Main Camera
GameObject. Indeed, this camera is necessary for us to visualize our scene and
create the 2D effect. If you look at the Inspector window for a camera in a scene,
you will see that it has a Projection dropbox in which the Orthographic
option is set, as well as a Size field (Figure 12.5). The Size field determines how
large the viewport is for our camera, and thus how much of our game world is vis-
ible when the game is played.

In the case of our current game, we always want to show the entire game
world, regardless of what resolution the game will be played at. Therefore, we
need to update the main camera every time a new scene is loaded. This will
override the default size of the camera in the Unity editor and replace it with
an appropriate size according to the current screen resolution. Since our state

Hint: The Unity Application.LoadLevel() Function 221

manager is responsible for all scene switching, it makes sense for it to handle
updating the camera’s orthographic size. To set the main camera’s orthographic
size, we need to access the Camera.main.orthographicsize property
(Unity Technologies n.d.c). As it turns out, the proper orthographic camera size,
regardless of the screen resolution, is one-half the screen height. Naturally, this
value would be in pixels. For instance, with a 1024 × 768 px resolution, our height
of 768 px would be halved to yield 384 px. However, since the main camera mea-
sures its orthographic size in Unity world units, the pixel value must additionally
be divided by our pixels to units ratio. As you may recall, the default conversion
ratio in Unity, which we have maintained throughout our work, is 100 px per

Figure 12.5  When using Unity in 2D mode, the main camera is set up for orthographic
projection. Its size determines how large the camera’s view is.

12.   Game State Management222

1 world unit. Putting it all together, here is the code you can use to ensure your
camera in any scene is updated to match the current screen resolution:

//update camera orthographic size
//equals one half the screen height in Unity world units
Camera.main.orthographicSize = 0.5f * Screen.height / 100.0f;

However, a couple of points remain for you to fulfill this challenge require-
ment. First, you should write a custom function inside your StateManager script
that can handle updating the camera’s orthographic size whenever it is asked to
do so. Second, you need to call this function whenever a new scene is loaded.
Think about when and where in your game’s code that it would be most appropri-
ate to do so.

Hint: Unity Physics 2D Collisions
The fourth challenge requirement recommends checking for player collisions in
the UserMove script. When the player collides with the stairs, the state manager
should be told to switch scenes. In previous challenges, you went through the
painstaking process of conceptualizing and coding collisions by hand. You’re a
stronger coder for going through that process and have earned skills that you
can apply to many different games. However, in the case of Unity game develop-
ment, there is a simpler way to handle collision detection. Unity has a built-in
physics engine that is quite powerful, yet easy to use. If you keep using Unity to
make games, you will most likely leverage the physics engine to speed up your
development process. Therefore, it is worthwhile for us to practice applying the
physics engine from this point forward. Note that the Unity physics engine is
quite robust and able to support advanced systems. You may go on to create
physics-based games, like Angry Birds or Portal, using this engine. However, for
the purposes of this book, we will focus on applying the physics engine to rep-
licate the Axis-Aligned Bounding Box (AABB) collisions we previously coded
by hand.

Detecting physics 2D collisions in Unity requires certain components to be
added to our objects, as well as the use of built-in functions in our scripts. Since
we want our physics components to apply to all copies of our objects, we will
work in the Assets > Prefabs folder for the following steps. Recall that applying a
change to a prefab updates every copy of that prefab throughout our scenes. In
our game, the Player GameObject is present throughout the entire game, con-
trolled by the player, and collides with many other objects, such as stairs, heroes,
and collectables. Therefore, it makes sense to use our Player GameObject as the
primary source of collision detection.

Click on the Player prefab. We need to add two components: a Rigidbody2D
and a BoxCollider2D. In the Inspector window, add a Rigidbody2D
component by clicking on the Add Component button, followed by Physics
2D > Rigidbody 2D. The Rigidbody2D component makes our player visible
to Unity’s physics engine (Unity Technologies n.d.i). We only need to add a
Rigidbody2D component to one of the objects involved in a collision. Note that

Hint: Unity Physics 2D Collisions 223

several fine-tuned physics options are made available to the Rigidbody2D
component. For our purposes, the defaults are suitable, with the exception of
the Gravity Scale property. Our game doesn’t have gravity, and we don’t
want our objects to unexpectedly fall off of the screen due to gravitational force.
Setting the Gravity Scale property to 0 prevents any unintended effects.
Afterwards, add a BoxCollider2D component to the Player prefab by clicking
on the Add Component button, followed by Physics 2D > Box Collider 2D. The
BoxCollider2D component represents an axis-aligned bounding box (Unity
Technologies n.d.b). In the past, you manually calculated the bounding boxes
of objects, including their top, bottom, left, and right edges. Conveniently, the
BoxCollider2D component automatically provides our player with a bound-
ing box that matches the size of its sprite. If you like, you may adjust the size
and position of the bounding box to fine-tune the collision detection. Just like in
our manual calculations, this bounding box will be used by the physics engine
to determine whether our player is colliding in 2D space. The fully configured
RigidBody2D and BoxCollider2D components for our Player prefab are
shown in Figure 12.6.

With the physics engine components successfully applied to our Player prefab,
we will move on to the StairsDown prefab. Since our player is the primary col-
lision object and contains a Rigidbody2D component, we do not need to
add one to StairsDown. However, StairsDown does need a BoxCollider2D
component, so add one now by clicking on the Add Component button and select-
ing Physics 2D > Box Collider 2D. In addition, click on the Is Trigger checkbox
in the StairsDown BoxCollider2D component. This marks the collision with
StairsDown as one that triggers something to happen in the game. Generally, it is
good to use triggers for one-time collisions that immediately cause something to
happen in the game. For our game, colliding with the stairs promptly causes the
game to switch scenes, which is a good example of triggered behavior. The fully
configured BoxCollider2D component for the StairsDown prefab is shown in
Figure 12.7.

With the physics engine prepared to detect collisions between our player and
stairs, only one step remains. We will use Unity’s built-in physics functions to man-
age the player’s collisions. Since we marked our StairsDown collision as a trigger, we
have access to three of Unity’s collision functions. The OnTriggerEnter2D()
function is called the moment a collision is registered between two objects
(Unity Technologies n.d.d). In contrast, OnTriggerExit2D() is called the
moment two objects that are colliding cease to collide (Unity Technologies n.d.e).
Meanwhile, OnTriggerStay2D() is called each frame that two objects con-
tinue to collide with one another (Unity Technologies n.d.f). As you can see,
these three functions give us quite a bit of flexibility in managing how objects
collide and what events are triggered as a result.

Our UserMove script is responsible for moving the Player GameObject.
Therefore, it is appropriate to place our collision checking code in that script. The
moment our player collides with the stairs, we want to trigger the state manager
to switch scenes. Thus, it would be best to utilize the OnTriggerEnter2D()
function. Let’s look at how this function can be applied in code.

12.   Game State Management224

Figure 12.6  The Player prefab is shown with RigidBody2D and BoxCollider2D
components configured for AABB collisions.

Hint: Unity Physics 2D Collisions 225

Figure 12.7  The StairsDown prefab is shown with a BoxCollider2D component con-
figured for triggered collisions.

12.   Game State Management226

//excerpt from UserMove script

//check collisions
//called immediately when a collision is detected
void OnTriggerEnter2D(Collider2D theCollider) {

	 //disable collider
	 theCollider.enabled = false;

	 //retrieve the tag for the collider’s game object
	 string tag = theCollider.gameObject.tag;

	 //check the tag
	 switch (tag) {

	 //stairs
	 case "StairsDown":

	 //tell the state manager to switch scenes

	 break;

	 //default
	 case default:

	 Debug.Log("[UserMove] Collision ignored");

	 break;

	 } //end switch

} //end function

Whenever a collision occurs, the physics engine automatically passes the
OnTriggerEnter2D() function an argument. Here, that argument has been
given the pseudonym theCollider. This argument contains the collider com-
ponent of the object that has been collided with. In our case, that would be a
BoxCollider2D component, but it works for other types of colliders as well.
The first thing we do is disable the collider by setting its enabled property
to false. This is because we only want the collision to trigger a single event.
If we didn’t disable the collider, it might trigger multiple events over subse-
quent frames. Following, from the collider argument, we access the attached
GameObject and its tag via theCollider.gameObject.tag. Using Unity’s
tag system, we can sort out the exact object that was collided with and use it
to trigger the proper events in our game. For instance, the sample code checks
whether the collision was made with an object tagged "StairsDown". If so,
we want to tell the state manager to switch scenes. Otherwise, the collision is
ignored. To fulfill the fourth challenge requirement, you only need to complete
this collision code by calling to your custom state manager scene switching func-
tion. Thereafter, any time Luna collides with the stairs in your game, a new scene
will be loaded. That gets you pretty close to having a whole game put together!

This brief example shows how fast and easy it is to take advantage of
Unity’s physics engine to handle AABB collisions. In fact, you can handle all
of the collisions in our game using this method. If you’re feeling gutsy, try

Example Solution: Managing the Game State 227

adding physics collisions to the Collectable prefab and incorporating it into your
OnTriggerEnter2D() function. After you have implemented all of the chal-
lenge requirements in your own way, proceed to review the example solution.

Example Solution: Managing the Game State
You have learned some important new coding techniques throughout this
challenge. The example solution will be broken down according to the challenge
requirement:

	 1.	 The StateManager script implements a singleton instance of the state
manager.

	 2.	 The state manager is never destroyed as scenes are switched. Similarly,
the player is never destroyed.

	 3.	 The state manager is responsible for controlling all scene switching in
the game. It is also responsible for updating the camera’s orthographic
size when a new scene is loaded. It uses one or more custom functions to
accomplish these tasks.

	 4.	 The UserMove script checks for collisions between the player and the
stairs in each scene. Upon collision, a command is issued to the state
manager to switch scenes.

The following pseudocode describes the implementation of the StateManager
script in the example solution:

Declare PRIVATE STATIC _Instance

PUBLIC STATIC Instance getter {

IF _Instance IS NULL:
•	Create new GameObject
•	Add StateManager script to GameObject
•	Set _Instance EQUAL TO StateManager script

Return _Instance

}

Awake()
•	DontDestroyOnLoad(this)

SwitchSceneTo()
•	Receive string with scene name
•	Pass string to Application.LoadLevel()

UpdateCamSize()
•	�Receive int screen height and int pixels to units conversion
•	�Set main camera orthographic size EQUAL TO 0.5f * screen height /
pixels to units

12.   Game State Management228

The first challenge requirement entails implementing the state manager
according to the singleton design pattern. This is discussed in detail in the Hint:
Singleton Design Pattern section. Hence, only the code and a brief summary are
reiterated here.

//excerpt from StateManager script

//singleton instance
private static StateManager _Instance;

//singleton accessor
//access StateManager.Instance from other classes
public static StateManager Instance {

//create instance via getter
get {

//check for existing instance
//if no instance
if (_Instance == null) {

//create game object
GameObject StateManagerObj = new GameObject();
StateManagerObj.name = "State Manager";

//create instance
_In�stance = StateManagerObj.

AddComponent<StateManager>();

} //end if

//return the instance
return _Instance;

} //end get

} //end accessor

Inside the StateManager script, a private, static variable of the
StateManager type is defined and named _Instance. This represents
the one and only instance of the StateManager class that will exist through-
out our game. A custom, public getter function is defined under the name
Instance. This allows other scripts to access the state manager instance
using StateManager.Instance. The getter checks whether the private
_Instance variable has been defined. If so, it is returned to the caller.
However, if no instance yet exists, a new GameObject is created, named, and
equipped with a StateManager script. Then, the _Instance is set equal to the
newly created StateManager script. Thereafter, the instance is defined and will be
returned when requested by another script.

The second requirement dictates that our state manager and player should
never be destroyed. Normally, Unity destroys everything in the existing
scene before loading another. However, using a combination of Awake() and
DontDestroyOnLoad(), we can tell Unity that we want certain objects to
stick around instead of being destroyed. The code is identical for both our state

Example Solution: Managing the Game State 229

manager and our player. Therefore, make sure the following code appears in your
StateManager script and your UserMove script:

//excerpt from both StateManager script and UserMove script

//awake
void Awake() {

//prevent this script from being destroyed
// when application switches scenes
DontDestroyOnLoad(this);

} //end function

The third requirement concerns the state manager’s responsibilities to
change scenes and keep the camera’s orthographic size updated. This is a good
opportunity to write some custom functions into our StateManager script. One
will be used to manage the switching of scenes.

//excerpt from StateManager script

//switch scene by name
public void SwitchSceneTo(string theScene) {

//load next scene
Application.LoadLevel("theScene");

} //end function

The custom SwitchSceneTo() function accepts a string argument
containing the name of the scene that should be loaded. It then passes the
scene name to the Application.LoadLevel() function. Conveniently,
this allows any other script to command our StateManager to switch scenes
by calling StateManager.Instance.SwitchSceneTo() and providing
the name of the desired scene as an argument. Another custom function is
used to update the camera’s orthographic size.

//excerpt from StateManager script

//update camera size
//based on screen resolution and pixels to units conversion
pub�lic void UpdateCamSize(int theScreenHeight, int

thePixelsToUnits) {

//update camera orthographic size
Cam�era.main.orthographicSize = 0.5f * theScreenHeight /

thePixelsToUnits;

} //end function

The UpdateCamSize() function accepts two integers as arguments. One
represents the screen height, while the other holds the Unity pixels to units conver-
sion ratio. Given these values, the function calculates and sets the appropriate ortho-
graphic camera size for the scene. Remember that we want to update the camera size

12.   Game State Management230

every time a scene is loaded. Therefore, the UpdateCamSize() function must be
called in our code at the appropriate time. One way to accomplish this is to add the
following line to the Start() function in your MapGenerator script:

//excerpt from MapGenerator script
//Start() function

//update camera size
Sta�teManager.Instance.UpdateCamSize(Screen.height,

pixelsToUnits);

The MapGenerator is a useful place to call our UpdateCamSize() func-
tion, because every one of our game levels uses this script. Therefore, every time
a new level is created, the camera size will be updated.

The fourth, and final, requirement for this challenge involves adding
physics engine collisions to the Player GameObject and managing them via
the UserMove script. Recall that the Player prefab must have Rigidbody2D
and BoxCollider2D components attached. Meanwhile, to detect colli-
sions with the StairsDown prefab, we add a BoxCollider2D to it and check
the IsTrigger box. Subsequently, we can take advantage of Unity’s built-in
OnTriggerEnter2D() function inside our UserMove script.

//excerpt from UserMove script

//check collisions
//called immediately when a collision is detected
void OnTriggerEnter2D(Collider2D theCollider) {

//disable collider
theCollider.enabled = false;

//retrieve the tag for the collider’s game object
string tag = theCollider.gameObject.tag;

//check the tag
switch (tag) {

//stairs
case "StairsDown":

//tell the state manager to switch scenes
StateManager.Instance.SwitchSceneTo("Dungeon");

break;

//default
case default:

Debug.Log("[UserMove] Collision ignored");

break;

} //end switch

} //end function

References 231

When Unity’s physics engine detects a collision, this function receives the
associated collider and immediately disables it. It then retrieves the tag associated
with the collider’s GameObject. Using a switch statement, the tag is checked
against our possible collision objects. Right now, we are only concerned with the
StairsDown tag. We could, of course, add other collisions to the game by incor-
porating more tags into the switch statement. If the collision is indeed with
the StairsDown object, then a command is issued to the state manager to switch
scenes: StateManager.Instance.SwitchSceneTo("Dungeon"). This
means that any time Luna collides with the stairs during play, a new Dungeon
scene will be loaded. Thus, she can endlessly explore the depths of the dungeon!
Test it out and see for yourself. That brings us to the end of this important chal-
lenge. Congratulations on making it this far.

Summary
You have successfully implemented a state manager that allows you to switch
between different levels in your game world. Being able to code this fundamental
game component will serve you well in future projects. Excitingly, your game
now utilizes its level generation system to great effect. Every time Luna completes
a dungeon level by reaching the stairs, a brand new one is generated for her to
explore. Thus, your state manager enables an endless number of levels to appear
in your game. Furthermore, the singleton design pattern is applicable to many
other objects in game development, such as audio, animation, and score manag-
ers. At this point, you should be confident applying the following techniques:

◾◾ Code a game state manager to handle switching between different
levels

◾◾ Implement the singleton design pattern

◾◾ Manage the timing of instantiation and persistence of objects in Unity

◾◾ Load different scenes in Unity

◾◾ Utilize Unity’s physics engine for 2D collisions

Your game is nearly complete. Luna can explore the world, interact with
heroes, and collect objects. You can generate an endless number of unique levels
and travel between them. However, there are just a few more things that need to
be done. In the next challenge, you will focus on bringing together the necessary
pieces to round out the gameplay.

References
Microsoft Corporation. 2015a. Classes (C# Programming Guide). http://msdn.microsoft.

com/library/x9afc042.aspx (accessed March 22, 2015).
Microsoft Corporation. 2015b. this (C# Reference). http://msdn.microsoft.com/library/

dk1507sz.aspx (accessed March 22, 2015).

12.   Game State Management232

Unity Technologies. n.d.a. Application.LoadLevel. http://docs.unity3d.com/ScriptReference/
Application.LoadLevel.html (accessed March 22, 2015).

Unity Technologies. n.d.b. BoxCollider2D. http://docs.unity3d.com/ScriptReference/
BoxCollider2D.html (accessed March 22, 2015).

Unity Technologies. n.d.c. Camera.orthographicSize. http://docs.unity3d.com/
ScriptReference/​Camera-orthographicSize.html (accessed March 22, 2015).

Unity Technologies. n.d.d. Collider2D.OnTriggerEnter2D(Collider2D). http://docs.unity3d.
com/ScriptReference/Collider2D.OnTriggerEnter2D.html (accessed March 22, 2015).

Unity Technologies. n.d.e. Collider2D.OnTriggerExit2D(Collider2D). http://docs.unity3d.
com/ScriptReference/Collider2D.OnTriggerExit2D.html (accessed March 22, 2015).

Unity Technologies. n.d.f. Collider2D.OnTriggerStay2D(Collider2D). http://docs.unity3d.
com/ScriptReference/Collider2D.OnTriggerStay2D.html (accessed March 22, 2015).

Unity Technologies. n.d.g. MonoBehaviour.Awake. http://docs.unity3d.com/
ScriptReference/MonoBehaviour.Awake.html (accessed March 22, 2015).

Unity Technologies. n.d.h. Object.DontDestroyOnLoad. http://docs.unity3d.com/
ScriptReference/Object.DontDestroyOnLoad.html (accessed March 22, 2015).

Unity Technologies. n.d.i. RigidBody2D. http://docs.unity3d.com/ScriptReference/
Rigidbody2D.html (accessed March 22, 2015).

233

13 Gameplay

Throughout this book, you have implemented a variety of game features. Soon,
you will be applying your knowledge to code your own games, as well as study-
ing more advanced topics. A good way to wrap up the current project is to pull
together your previous solutions into a playable game. In this challenge, you
will apply what you have learned to put Luna into a living, breathing game
world. We’ll add the other heroes and collectable objects back into our levels.
Additionally, we’ll create new computer-controlled obstacles to challenge Luna
on her journey. All the while, the state manager will keep track of the win and
loss conditions. By the time you complete this challenge, you’ll be able to play
your own game, which is something to be proud of.

Goals
By the end of this chapter, you will be able to apply these coding techniques:

◾◾ Create autonomous moving objects using artificial intelligence (AI)

◾◾ Manage win and loss states in real time

◾◾ Track data, such as scoring, throughout the game

◾◾ Compile several features, including characters, collectables, and obsta-
cles, into a playable game

13.   Gameplay234

Required Files
In this chapter, you will need to use the following files from the Chapter_13 >
Software folder:

◾◾ Challenge > Assets > Scenes > Map.unity and Dungeon.unity to run, mod-
ify, and test your solution

◾◾ Challenge > Assets > Scripts > AIMove.cs, StateManager.cs, MapGenerator.cs,
and UserMove.cs to code your solution to the challenge

◾◾ Demo > Mac/PC > StateManager to demonstrate how your completed
solution should work

◾◾ Solution > AIMove.cs, StateManager.cs, MapGenerator.cs, and UserMove.cs
to compare your solution to the provided example solution

Challenge: Bringing the Gameplay Together
This challenge will focus on bringing together the final pieces necessary to have
a playable game. Essentially, that means you will need to add more collisions,
obstacles, and interactions. You will use these features to craft a functional game
system that can be won or lost by a player. Let’s start by reviewing the Unity
project provided for this challenge.

Two scripts that you previously worked on have been added back into the
project with slight modifications. In the Map scene, the Inventory GameObject
has the CollectableInventory script attached to it. You worked on this script in
Chapter 7. It has been modified to contain a maximum number of objects. This
lets us define how many collectables Luna can carry at once. It also has a setting
to define the scale of the objects in the inventory. This helps to distinguish them
from objects that are in the level and prevent the inventory from obstructing
the player’s view of the map. Both of these variables can be set from the Unity
Inspector. In addition, the Inventory uses DontDestroyOnLoad() inside its
Awake() function to make sure it doesn’t get destroyed when a new level is
loaded. The user input controls from the original version of this script have been
removed. Lastly, the original version relied upon a Collectable script that was
attached to each collectable object. However, the Collectable script is no lon-
ger necessary. Instead, the Collectable tag has been applied to every collectable
object in the game (see the Collectable prefab in the Assets > Prefabs folder).
Meanwhile, our UserMove script checks the player’s collisions by tag. Hence,
UserMove can pass the appropriate information to the CollectableInventory
script when the player collides with a collectable. Make sure to review the
Inventory GameObject and CollectableInventory script to make sure you
understand these parts of the project.

Also in the Map scene, find the Player GameObject. Note that a HeroGroup
script has been added. This script has been simplified from the version you created
in Chapter 8. The user controls, collision checks, and ability to remove members
have been deleted. These activities are handled in other areas of our code or are

Challenge: Bringing the Gameplay Together 235

no longer necessary. Meanwhile, the memberSprites List has been made
public. This will allow the UserMove script to add the appropriate hero to the
group when it detects a collision. The remaining features in HeroGroup remain
unchanged from the previous version. Review the HeroGroup script and make sure
you understand all of its code.

Take a look at the Assets > Prefabs folder. Three prefabs have been created to rep-
resent the heroes in our game: Dryad, Dwarf, and Orc. They have been tagged with
Dryad, Dwarf, and Orc, respectively. Each of these objects has a SpriteRenderer
component to display its image and a BoxCollider2D component for collision
detection (Figure 13.1). Thus, you can detect when Luna collides with these heroes
inside your UserMove script and trigger the appropriate actions in your code.

Furthermore, note that five additional prefabs have been added to represent
drakes. These are cleverly named Drake_01, Drake_02, Drake_03, Drake_04, and
Drake_05. A drake is like a small dragon. In Luna’s journey upon the surface world,
drakes are going to be mischievous little creatures that get in the way. They will fly
all over the dungeon. Luna will be challenged to avoid them while she seeks to save
her friends. The drake prefabs have all been generically tagged as Drake. That is
because they are not unique characters. The only difference between them is their
color, and many of them can potentially be spawned in our levels. Like our heroes,
the drake prefabs have SpriteRenderer and BoxCollider2D components
(Figure 13.2). Thus, you can incorporate drake collisions into your UserMove script
and trigger the appropriate events in your game.

Go to the Dungeon scene. Notice that two objects have been added to the
Middleground. The Heroes GameObject contains children objects represent-
ing each of our heroes (Figure 13.3). Each has a MapSpawn script attached.
Inside the MapSpawn script, the appropriate hero prefab has been assigned to the
tilePrefab variable in the Unity Inspector. With these objects set up in the
Unity scene, you can spawn your heroes by incorporating them into the code of
your MapGenerator script.

Similarly, a Drakes object has been created in the Dungeon scene. It has
five children objects, each with a tag, MapSpawn script, and associated prefab
(Figure 13.4). Therefore, you can also incorporate drakes into your MapGenerator
code to spawn them inside your game levels.

Now that you are familiar with the layout of the Unity project, let’s move on
to the objectives of this challenge. Everything necessary to bring the gameplay
together is summarized in these requirements:

	 1.	 The AIMove script defines how drakes move around the screen.

	 a.	 For example, the drakes may move in patterns around the screen to
obstruct Luna’s movement through the level.

	 2.	 The StateManager script keeps track of the game’s score and win–loss
state. It includes a function to reset the game once it ends.

	 a.	 For instance, the number of levels completed and the number of
heroes added to the party could be scored.

13.   Gameplay236

Figure 13.1  Dryad, Dwarf, and Orc prefabs have been added to the Assets > Prefabs
folder. Each has the Hero tag, SpriteRenderer component, and BoxCollider2D
component. As an example, the Dryad prefab is shown.

Challenge: Bringing the Gameplay Together 237

Figure 13.2  Five drake prefabs have been added to the Assets > Prefabs folder. Each has
the Drake tag, SpriteRenderer component, and BoxCollider2D component. An
example drake prefab is shown.

13.   Gameplay238

	 b.	 For example, the game may be won when all heroes are added to the
party, while it may be lost when the player collides with a drake, but
has no inventory items remaining.

	 c.	 Note that the reset function should restore all relevant variables and
objects to their initial states, so the game can played again from the
start.

	 3.	 The UserMove script uses Unity’s 2D physics engine to detect collisions
between the collectables, heroes, and drakes. Upon collision, appropriate
events are triggered in the game.

	 a.	 For example, collectables may be stored in the player’s inventory and
heroes may be added to the player’s group, while drakes cause the
player to lose an inventory item.

Figure 13.3  Inside the Middleground GameObject of the Dungeon scene, a Heroes
GameObject has been added. It contains children objects with MapSpawn scripts for
each of the heroes. As an example, the dryad is shown.

Figure 13.4  Inside the Middleground GameObject of the Dungeon scene, a Drakes
GameObject has been added. It contains children objects with MapSpawn scripts for
each of the drakes. An example drake is shown.

Hint: Obstacles and Artificial Intelligence 239

	 4.	 The MapGenerator enables heroes and drakes to be spawned in each
level. Custom functions may be used to determine how and when these
objects are spawned.

	 a.	 For instance, a random hero might be spawned every few levels, while
the number of drakes spawned gradually increases with each level.

Intriguingly, the system that you have developed over the course of this
book is capable of making many different types of games. The hints and
example solution will describe a game similar to what is listed in the require-
ments. However, if you have plans for a different game, you should not feel
constrained by these parameters. Feel free to explore beyond the requirements
and code your own game from the available components. There are many dif-
ferent pieces to work on, so remember to organize your thoughts before diving
into the code.

Hint: Obstacles and Artificial Intelligence
Obstacles are a key component in video games. They force players to use their
skills to overcome meaningful challenges. Obstacles can come in many forms,
including puzzles, enemies, and terrain. Thus far, there are no obstacles in our
game. It is time to change that. In games, artificial intelligence (AI) refers to
the behaviors defined for computer-controlled entities, such as characters and
obstacles. Almost all games have some degree of AI in them. For instance, any
time your character talks to a store clerk, dodges moving laser beams, or battles
against a boss, AI is involved.

In our game world, drakes will be pesky obstacles that make it difficult for
Luna to get from the starting point to the exit (stairs) in each level. To make them
work, we will create a custom script that defines their AI behavior. We certainly
want the drakes to move around the map, since that will make it more challeng-
ing for the player to navigate. How, exactly, they move is up to you to define in
your code. Here is an example suggestion for the AI behavior of drakes. Feel free
to come up with a different system that reflects how you think the drakes should
behave.

◾◾ From a random spawn point, a drake will move toward the farthest edge
of the map in a straight line at a random speed.

◾◾ Once a drake reaches the edge of the map, it will reverse direction and
return to its spawn point.

◾◾ A drake will continue moving back and forth between its spawn point
and the edge of the map unless interrupted, such as through a collision
with the player.

With your drake AI behavior defined, it’s time to code. This time, you will
create your own script from scratch and apply it to your game. Inside the Assets >
Scripts folder, right-click and select Create > C# Script (Figure 13.5). Give it a
name of AIMove.

13.   Gameplay240

Then, add the AIMove script component to each of the drake prefabs in the
Assets > Prefabs folder (Figure 13.6).

You now have an empty script in which you can write the AI behavior for
your drakes. Open the AIMove script in your code editor and begin working on
this, the first challenge requirement.

By the way, for testing purposes, it would be helpful to drag a drake prefab
directly into your Unity scene. This allows you to witness the AI behavior of your
drake without worrying about the player, spawning, or scenes. Every time you
test the scene, the drake will automatically move according to what you have
coded so far. Thus, you can rapidly test and revise its behavior. Once you have
the drake working how you want it to, you can simply delete the testing prefab
from the scene.

Figure 13.6  Add your AIMove script to each drake prefab in the Assets > Prefabs folder
by clicking on the Add Component button, followed by Scripts > AI Move.

Figure 13.5  To create a new script, right-click inside the Assets > Scripts folder and select
Create > C# Script.

Hint: More Collisions 241

Hint: Game State and Score
With obstacles and AI behavior in place, you can turn your focus toward
expanding the game state manager. In the previous challenge, you coded a state
manager to switch between levels. The other major responsibility of the state
manager is to keep track of the game state. That is, it needs to know whether
the player has won or lost the game and act accordingly in real time. These fea-
tures are noted in the second requirement for this challenge.

To begin expanding your state manager, determine the win and loss condi-
tions for your game. For instance, one suggestion is to imagine that Luna is on a
quest through the dungeon to save the other heroes. She has to explore the levels
to find her friends and add them to the party. Once she has saved all of the heroes,
the game is won.

On the other hand, recall that the drakes are Luna’s obstacles in the dungeon.
Meanwhile, Luna collects objects in her inventory throughout her journey. In
order to lose the game, we might subtract an object from the inventory every
time Luna collides with a drake. Thus, the game is over when Luna collides with
a drake, but has no collectables remaining.

Another item to consider is how you will score the game. How will you know
if the player performed well? Generally, it is a good idea to keep track of the
player’s overall performance. This is a way to provide feedback and motivate the
player to improve over multiple sessions. One example might be to keep track
of how many dungeon levels have been explored. Another could be to tally up
the total number of collectables gained. Yet another option would be to track
the number of times the player collided with a drake. Of course, a lower num-
ber would be desirable in that case. Think of how you want to keep track of the
player’s score and what you need to do to incorporate it into your state manager.

Regardless of the exact win, loss, and scoring conditions you have designed,
the state manager will require variables to keep track of them. Therefore, you
need to declare and initialize the necessary variables in your StateManager
script. These variables will be modified in other areas of your game, such as when
the player collides with objects.

Hint: More Collisions
You can use collisions as a method to update your state manager on the cur-
rent status of the game. As detailed in the third requirement, you want to
incorporate collectables, heroes, and drakes into your UserMove script’s colli-
sion checks. To do this, you should practice using Unity’s 2D physics engine,
which was introduced in the previous challenge. Recall that your prefabs already
have BoxCollider2D components and tags added to them. Thus, inside the
UserMove script’s OnTriggerEnter2D() function, you can add tag checks to
detect collisions for these objects.

Not only do you need to check for collisions with collectables, heroes,
and drakes, but you also want to update the status of your game when they
are triggered. Therefore, you will need to reference other scripts and send

13.   Gameplay242

commands accordingly. Here are some ideas for how you can handle collisions
with collectables, drakes, and heroes. As always, feel free to adjust these sys-
tems to your liking. The important thing is that you can execute your game’s
design through code.

◾◾ When the player collides with a collectable, add it to the inventory by
referencing the CollectableInventory script.

◾◾ When the player collides with a hero, add it to the group by calling to the
HeroGroup script.

◾◾ When the player collides with a drake, remove an item from the inven-
tory via the CollectableInventory script.

Hint: More Spawns
It’s time to revisit the MapGenerator script. As noted in the fourth requirement,
you need to incorporate the heroes and drakes into your level. Each hero and drake
prefab has been given a tag. In the Dungeon scene, all of the drakes and heroes
have been set up inside the Middleground with MapSpawn scripts. Therefore, sim-
ilar to how you spawned collectables and stairs, you need to incorporate heroes
and drakes into your MapGenerator script. However, rather than simply calling
all these objects by tag in your SpawnObjectsWithTag() function, it is rec-
ommended that you write custom functions to handle them. This is because you
may want to add special conditions on how these objects spawn in your levels. For
example, if your game is won based on whether Luna finds and saves all of the
other heroes, it wouldn’t make sense to spawn them all at once in the first level.
Instead, you could spawn a random hero every few levels. Furthermore, there are
five colors of drakes, and they all do not need to be spawned every level. It might be
nice to randomly choose the drake prefabs to spawn. In addition, you could vary
the number of drakes spawned per level. One way to increase the challenge of the
game over time would be to spawn more drakes as Luna explores more levels. If you
tracked such information in your StateManager script, you could reference it in the
MapGenerator to determine how many drakes to spawn each level. For instance,
level 3 could have 3 drakes, level 4 could have 4 drakes, and so on.

Regardless of how you choose to spawn your heroes and drakes, take the
time to test and refine your design. Get the initial system working in your
MapGenerator script. Then, play through your game, note any less than ideal
points, refine your code, and play again. This iterative cycle will help you to
improve your game’s design and code.

Hint: Reset the Game
With your state tracking variables, collision triggers, and spawns established,
there is another important feature to incorporate into your state manager. Win
or lose, once the game ends, you need to be able to reset it and allow the player
to start all over again. To reset the game, you must ensure that all variables are

Example Solution: Bringing the Gameplay Together 243

returned to their initial state. In addition, you have to delete any objects that
were previously marked with DontDestroyOnLoad(). That way, when you
reload your Map scene to restart the game, said objects will not be duplicated.
You should write a custom function in your StateManager script to handle reset-
ting the game. This will allow you to call the reset function whenever the win or
loss state is triggered during play. Where should you call the reset function? In
our current game, it would be best to trigger a reset when the player has won or
lost. For instance, you could use the following conditions to determine when the
reset function is called. Alternatively, you could come up with your own defini-
tions and incorporate them into the appropriate areas of your code.

◾◾ In the UserMove script, the player collides with the final hero needed to
complete the group. The player has won and the game can be reset via
the StateManager.

◾◾ In the UserMove script, the player collides with a drake, but doesn’t have
any collectables remaining in the inventory. The player has lost and the
game can be reset via the StateManager.

It may take some practice and testing to ensure that you reset everything
you needed to. You will need to play through the game several times to make
sure your reset function is bug-free. Try adding console log messages to your
code to print variable values. Also, pay attention to the Hierarchy window to see
which objects are present during play. Lastly, watch for any unexpected occur-
rences that appear during subsequent rounds of play. These measures will help
you verify that your reset function is working. Once it is, you will be able to end-
lessly play your game over and over again!

Example Solution: Bringing
the Gameplay Together
The example solution demonstrates one way to pull together the different compo-
nents into a working game. Your solution may vary from what is presented here,
especially if you chose to customize the game’s design in any way. Here are the
basic challenge requirements again:

	 1.	 The AIMove script defines how drakes move around the screen.

	 2.	 The StateManager script keeps track of the game’s score and win–loss
state. It includes a function to reset the game once it ends.

	 3.	 The UserMove script uses Unity’s 2D physics engine to detect collisions
between the collectables, heroes, and drakes. Upon collision, appropriate
events are triggered in the game.

	 4.	 The MapGenerator enables heroes and drakes to be spawned in each
level. Custom functions may be used to determine how and when these
objects are spawned.

13.   Gameplay244

The specific implementation of each requirement in the example solution
will be noted as each is discussed. Let’s begin with the first requirement and
the AIMove script. No matter where a drake is spawned on the tile map, the
AIMove script will find the farthest edge of the screen. The drake will move
toward the edge position until it is reached. Afterwards, it will turn back and
return to the starting point. This process continues indefinitely. In the code of the
AIMove script, variables are declared to handle the drake’s speed and position.

//excerpt from AIMove script

public class AIMove : MonoBehaviour {

//speed boundaries
public float minSpeed;
public float maxSpeed;

//speed object is moving
private float _speed;

//origin position of the object
private Vector3 _originPos;

//destination position of the object
private Vector3 _destPos;

The minSpeed and maxSpeed variables, which are set in the Unity
Inspector, allow us to randomize the _speed of each drake. This makes the
game a bit more interesting, since the drakes will be moving at different speeds,
rather than one fixed speed. We also set up variables to store the origin and des-
tination positions for the drake’s movement. The private variables are initial-
ized in the Start() function.

//excerpt from AIMove script

//init
void Start() {

//generate random speed
_speed = Random.Range(minSpeed, maxSpeed);

//set origin
_originPos = gameObject.transform.position;

//calculate destination
_destPos = FindEdgeFor(gameObject);

} //end function

The Random.Range() function is used to generate a random move-
ment _speed between minSpeed and maxSpeed. The _originPos is
set to the drake’s current position, which is its initial spawn point on the map.
The _destPos is set to the farthest edge from the drake, which is returned by
the custom FindEdgeFor() function.

Example Solution: Bringing the Gameplay Together 245

//excerpt from AIMove script

//calculate farthest screen edge given object
private Vector3 FindEdgeFor(GameObject theObject) {

//get object properties
Vector3 currentPos = theObject.transform.position;
flo�at objWidth = theObject.GetComponent<SpriteRenderer>().

bounds.size.x;
flo�at objHeight = theObject.GetComponent<SpriteRenderer>().

bounds.size.y;

//store distance to edges of screen
flo�at distUp = Mathf.Abs(0.5f * Screen.height / 100.0f − 0.5f

* objHeight − currentPos.y);
flo�at distDown = Mathf.Abs(−0.5f * Screen.height / 100.0f

+ 0.5f * objHeight − currentPos.y);
flo�at distLeft = Mathf.Abs(−0.5f * Screen.width / 100.0f + 0.5f

* objWidth − currentPos.x);
flo�at distRight = Mathf.Abs(0.5f * Screen.width / 100.0f − 0.5f

* objWidth − currentPos.x);

//find the maximum distance
flo�at maxDist = Mathf.Max(distUp, distDown, distLeft,

distRight);

//store position variables
float edgeX = currentPos.x;
float edgeY = currentPos.y;
float edgeZ = currentPos.z;

//update position based on direction
//up
if (maxDist == distUp) {

//update y
edgeY += distUp;

} //end if

//down
else if (maxDist == distDown) {

//update y
edgeY −= distDown;

} //end if

//left
else if (maxDist == distLeft) {

//update x
edgeX −= distLeft;

} //end if

13.   Gameplay246

//right
else if (maxDist == distRight) {

//update x
edgeX += distRight;

} //end if

//create destination
Vector3 edgePos = new Vector3(edgeX, edgeY, edgeZ);

//return
return edgePos;

} //end function

Let’s break down the FindEdgeFor() function. A drake GameObject
is passed into the FindEdgeFor() function. The position, width, and height
of the drake are stored in local variables.

//excerpt from AIMove script
//from FindEdgeFor() function

//calculate farthest screen edge given object
private Vector3 FindEdgeFor(GameObject theObject) {

//get object properties
Vector3 currentPos = theObject.transform.position;
flo�at objWidth = theObject.GetComponent<SpriteRenderer>().

bounds.size.x;
flo�at objHeight = theObject.GetComponent<SpriteRenderer>().

bounds.size.y;

Next, the distance to each edge of the screen—up, down, left, and right—is
calculated. Each distance is fed into the Mathf.Max() function, which returns
the maximum value to be stored in a variable named maxDist.

//excerpt from AIMove script
//from FindEdgeFor() function

//store distance to edges of screen
flo�at distUp = Mathf.Abs(0.5f * Screen.height / 100.0f − 0.5f

* objHeight − currentPos.y);
flo�at distDown = Mathf.Abs(−0.5f * Screen.height / 100.0f

+ 0.5f * objHeight − currentPos.y);
flo�at distLeft = Mathf.Abs(−0.5f * Screen.width / 100.0f + 0.5f

* objWidth − currentPos.x);
flo�at distRight = Mathf.Abs(0.5f * Screen.width / 100.0f − 0.5f

* objWidth − currentPos.x);

//find the maximum distance
flo�at maxDist = Mathf.Max(distUp, distDown, distLeft,

distRight);

The edgeX, edgeY, and edgeZ variables are set up to store the location
of the farthest edge relative to the drake’s current position. If conditions are

Example Solution: Bringing the Gameplay Together 247

used to determine whether the farthest edge is up, down, left, or right of the
drake. Depending on which edge is farthest, the edgeX or edgeY variable is
updated.

//excerpt from AIMove script
//from FindEdgeFor() function

//store position variables
float edgeX = currentPos.x;
float edgeY = currentPos.y;
float edgeZ = currentPos.z;

//update position based on direction
//up
if (maxDist == distUp) {

//update y
edgeY += distUp;

} //end if

//down
else if (maxDist == distDown) {

//update y
edgeY −= distDown;

} //end if

//left
else if (maxDist == distLeft) {

//update x
edgeX −= distLeft;

} //end if

//right
else if (maxDist == distRight) {

//update x
edgeX += distRight;

} //end if

A new Vector3 named edgePos is then created using edgeX, edgeY,
and edgeZ. This represents the position of the farthest edge from the drake.
Lastly, the edge position is returned.

//excerpt from AIMove script
//from FindEdgeFor() function

//create destination
Vector3 edgePos = new Vector3(edgeX, edgeY, edgeZ);

//return
return edgePos;

} //end function

13.   Gameplay248

At this point, the AIMove script has randomized the drake’s speed, noted
its origin point, and calculated its destination at the farthest edge of the screen.
Subsequently, the actual movement of the drake is handled in the Update()
function by calling to two custom functions.

//excerpt from AIMove script

//update
void Update() {

//move object
MoveObjectTo(gameObject, _destPos);

//check destination
CheckPosFor(gameObject, _destPos);

} //end function

The MoveObjectTo() function accepts two arguments. One is the
GameObject to be moved, and the other is a Vector3 representing its destina-
tion position. Thus, the drake and its calculated destination position are passed
into this function.

//excerpt from AIMove script

//move the object towards destination
private void MoveObjectTo(GameObject theObject, Vector3 theDestPos) {

//retrieve current world position
Vector3 currentPos = theObject.transform.position;

//store new coordinates
float newX = currentPos.x;
float newY = currentPos.y;
float newZ = currentPos.z;

//update movement based on speed and direction
//up
if (currentPos.y < theDestPos.y − _speed) {

//update y
newY += _speed;

} //end if

//down
else if (currentPos.y > theDestPos.y + _speed) {

//update y
newY −= _speed;

} //end if

//at destination
else {

//update y
newY = theDestPos.y;

Example Solution: Bringing the Gameplay Together 249

} //end if

//left
if (currentPos.x > theDestPos.x + _speed) {

//update x
newX −= _speed;

} //end if

//right
else if (currentPos.x < theDestPos.x − _speed) {

//update x
newX += _speed;

} //end if

//at destination
else {

//update x
newX = theDestPos.x;

} //end if

//store the movement position
Vector3 movePos = new Vector3(newX, newY, newZ);

//update object position
theObject.transform.position = movePos;

} //end function

To start, the MoveObjectTo() function retrieves the drake’s current posi-
tion. It stores the drake’s initial x, y, and z position variables, so they can be uti-
lized later.

//excerpt from AIMove script
//from MoveObjectTo() function

//move the object towards destination
private void MoveObjectTo(GameObject theObject, Vector3
theDestPos) {

//retrieve current world position
Vector3 currentPos = theObject.transform.position;

//store new coordinates
float newX = currentPos.x;
float newY = currentPos.y;
float newZ = currentPos.z;

With each frame, the MoveObjectTo() function compares the drake’s
current position to its destination using if statements. It then updates the drake’s
x and y coordinates according to the movement speed and direction.

13.   Gameplay250

//excerpt from AIMove script
//from MoveObjectTo() function

//update movement based on speed and direction
//up
if (currentPos.y < theDestPos.y − _speed) {

//update y
newY += _speed;

} //end if

//down
else if (currentPos.y > theDestPos.y + _speed) {

//update y
newY −= _speed;

} //end if

//at destination
else {

//update y
newY = theDestPos.y;

} //end if

//left
if (currentPos.x > theDestPos.x + _speed) {

//update x
newX −= _speed;

} //end if

//right
else if (currentPos.x < theDestPos.x − _speed) {

//update x
newX += _speed;

} //end if

//at destination
else {

//update x
newX = theDestPos.x;

} //end if

Note that the if statements factor in the drake’s speed as part of the distance
to the destination. That’s because we don’t want the drake to overshoot its target
once it gets very close. If the drake comes so close to its destination that it would
pass it in the next frame at its current speed, we instead set the drake’s position to
equal the destination. That way, the drake always exactly reaches its destination
position without error. To complete the function, a Vector3 named movePos
is created with the updated coordinates and the drake’s position is set equal to it.

Example Solution: Bringing the Gameplay Together 251

//excerpt from AIMove script
//from MoveObjectTo() function

//store the movement position
Vector3 movePos = new Vector3(newX, newY, newZ);

//update object position
theObject.transform.position = movePos;

} //end function

Thus, each frame, the drake is moved a little closer to its destination at a rate
equal to its speed. Meanwhile, the other custom function called in Update()
every frame is CheckPosFor().

//excerpt from AIMove script

//check whether object reached destination
pr�ivate void CheckPosFor(GameObject theObject, Vector3
theDestPos) {

//if object has reached destination
if (theObject.transform.position == theDestPos) {

//update destination position
_destPos = _originPos;

//update origin position
_originPos = gameObject.transform.position;

} //end if

} //end function

The CheckPosFor() function also accepts the drake and its destina-
tion position as arguments. It makes a single check to determine whether the
drake’s current position is equal to its destination. That is, it checks whether
the drake has already arrived at its destination. If not, the drake’s move-
ment continues as before. However, if the drake has reached its destination,
the destination position is set equal to the origin point, whereas the origin
point is updated to the drake’s current position. Effectively, this swaps the
drake’s starting and finishing positions. Hence, the drake will turn around
and go back to where it started. Without this swap, the drake would only
move from its origin to its destination a single time. However, thanks to the
CheckPosFor() function, every time the drake reaches its destination, it
will turn around and head back. This cycle continues endlessly, so long as the
object is not destroyed or otherwise altered somewhere else in our code. With
that, the AIMove script is complete. With a plan for the drake’s movement
behavior and a few custom functions, we were able to introduce relatively
interesting AI into our game.

The second requirement is all about expanding the capacity of our
StateManager script. Much of this script is identical to the one that was created
for the previous challenge. Therefore, only the changes will be highlighted in

13.   Gameplay252

this discussion. To keep track of the game state, two variables are declared.
The levelsCompleted variable tracks how many total maps the player
has completed. It is a way to score the player’s performance, as well as scale
the difficulty of the game over time. The heroesSaved variable counts the
number of heroes Luna has saved on her journey. In this version of the game,
she must find each of her friends in the dungeon. Once all three are rescued
and added to the group, the game is won. Note the loss state will be trig-
gered when Luna collides with a drake, but has no collectables remaining
in her inventory. Since the CollectableInventory script already keeps track
of how many objects are in Luna’s inventory, it is not necessary to duplicate
that information inside the StateManager. Thus, the levelsCompleted
and heroesSaved variables are declared in the StateManager script.

//excerpt from StateManager script

//keep track of total number of levels completed
public int levelsCompleted;

//keep track of total number of heroes saved
public int heroesSaved;

These variables are initialized to 0 inside the Awake() function. At the
beginning of the game, the player has neither completed any levels nor saved any
heroes. Thus, 0 is the proper initialization value for these variables.

//excerpt from StateManager script

//awake
void Awake() {

//prevent this script from being destroyed
DontDestroyOnLoad(this);

//start with no levels completed
levelsCompleted = 0;

//start with no heroes saved
heroesSaved = 0;

} //end function

The levelsCompleted variable is incremented every time our
SwitchSceneTo() function is called to load a new Dungeon map. Meanwhile,
the heroesSaved variable will be incremented only when Luna collides with a
hero, which occurs elsewhere in our code.

//excerpt from StateManager script

//switch scene by name
public void SwitchSceneTo(string theScene) {

//check scene
if (theScene == "Dungeon") {

Example Solution: Bringing the Gameplay Together 253

//increment levels completed
levelsCompleted++;

} //end if

//load next scene
Application.LoadLevel("theScene");

} //end function

The remaining addition to our StateManager is a reset function. When
called, this function needs to reset everything, so the player can replay the game
with a fresh start. The ResetGame() function handles this responsibility.

//excerpt from StateManager script

//reset game
public void ResetGame() {

//reset levels completed
levelsCompleted = 0;

//reset heroes saved
heroesSaved = 0;

//destroy old player
Destroy(GameObject.FindWithTag("Player"));

//destroy old inventory
Destroy(GameObject.FindWithTag("Inventory"));

//load map scene
SwitchSceneTo("Map");

} //end function

As you can see, the ResetGame() function returns our StateManager’s
variables to their initial values of 0. It also destroys the Player GameObject
and Inventory GameObject. Previously, we prevented these objects from being
destroyed when switching scenes. Therefore, we have to manually destroy them
ourselves, so they do not get duplicated when the game is restarted. Lastly, the
Map scene is loaded, since it is the first scene in our game. Thus, whenever the
ResetGame() function is triggered in our code, Luna will begin her journey
over again.

For the third requirement, we need to incorporate collectables, heroes, and
drakes into the collision checks made by our UserMove script. In addition, we
need to trigger any events that modify the game’s status in the StateManager as
part of handling these collisions. The entire OnTriggerEnter2D() function is
provided and will be discussed piece by piece.

//excerpt from UserMove script

//check collisions
void OnTriggerEnter2D(Collider2D theCollider) {

13.   Gameplay254

//disable collisions
theCollider.enabled = false;

//retrieve the tag for the collider’s game object
string tag = theCollider.gameObject.tag;

//retrieve collectable inventory
//used for collectable and drake collisions

Col�lectableInventory collectInventory = GameObject.
FindWithTag("Inventory").
GetComponent<CollectableInventory>();

//check the tag
switch (tag) {

//stairs down
case "StairsDown":

//check heroes saved
//if all heroes saved
if (StateManager.Instance.heroesSaved >= 3) {

//reset game
StateManager.Instance.ResetGame();

} //end if

//if heroes remain
else {

//continue to next dungeon level
StateManager.Instance.SwitchSceneTo("Dungeon");

} //end else

break;

//collectable
case "Collectable":

//inventory has space remaining
if �(collectInventory.inventory.Count <

collectInventory.maxObjects) {

//add collectable to inventory
collectInventory.AddItem(theCollider.gameObject);

} //end else if

//otherwise, reenable collisions
//item may be collected again later
else {

//enable collisions
theCollider.enabled = true;

} //end else

break;

Example Solution: Bringing the Gameplay Together 255

//hero
case "Hero":

//increment counter in state manager
StateManager.Instance.heroesSaved++;

//retrieve hero sprite from collision
Spr�ite heroSprite = theCollider.

GetComponent<SpriteRenderer>().sprite;

//add to the hero group
gam�eObject.GetComponent<HeroGroup>().memberSprites.

Add(heroSprite);

//destroy
Destroy(theCollider.gameObject);

break;

//drake
case "Drake":

//check inventory
//if inventory is empty
if (collectInventory.inventory.Count <= 0) {

//reset game
StateManager.Instance.ResetGame();

} //end if

//inventory has items remaining
else if (collectInventory.inventory.Count > 0) {

//remove collectable from inventory
collectInventory.RemoveItem();

//destroy
Destroy(theCollider.gameObject);

} //end else if

break;

//default
default:

break;

} //end switch

} //end function

Recall that the OnTriggerEnter2D() function automatically receives the
collider of the object our player collided with as an argument from the Unity
physics engine. Immediately, the collider is disabled to prevent multiple colli-
sions from being detected on the same object. Following, the tag of the colliding
object is stored in a local variable, so it can be handled appropriately. In addition,

13.   Gameplay256

the CollectableInventory script from the Inventory GameObject in our scene
is stored. This script will be needed by certain collision checks, so it is useful to
store it in a local variable.

//excerpt from UserMove script
//from OnTriggerEnter2D() function

//check collisions
void OnTriggerEnter2D(Collider2D theCollider) {

//disable collisions
theCollider.enabled = false;

//retrieve the tag for the collider’s game object
string tag = theCollider.gameObject.tag;

//retrieve collectable inventory
//used for collectable and drake collisions
Col�lectableInventory collectInventory = GameObject.

FindWithTag("Inventory").GetComponent<CollectableInventory>();

Afterwards, a switch statement is used to differentiate between poten-
tial collision objects by tag and handle them accordingly. We begin with the
"StairsDown" tag.

//excerpt from UserMove script
//from OnTriggerEnter2D() function

//check the tag
switch (tag) {

//stairs down
case "StairsDown":

//check heroes saved
//if all heroes saved
if (StateManager.Instance.heroesSaved >= 3) {

//reset game
StateManager.Instance.ResetGame();

} //end if

//if heroes remain
else {

//continue to next dungeon level
StateManager.Instance.SwitchSceneTo("Dungeon");

} //end else

break;

The StairsDown collision has been updated to account for our win state. In
this implementation, the player wins the game once Luna has added all 3 heroes
to her party. Therefore, the StateManager’s heroesSaved variable is checked.

Example Solution: Bringing the Gameplay Together 257

If it is greater than or equal to 3, the game has been won and the ResetGame()
function is called. However, if there are still heroes remaining to be found,
the StairsDown collision triggers a new Dungeon map to be loaded. Next, our
switch statement checks for the "Collectable" tag.

//excerpt from UserMove script
//from OnTriggerEnter2D() function

//collectable
case "Collectable":

//inventory has space remaining
if �(collectInventory.inventory.Count < collectInventory.

maxObjects) {

//add collectable to inventory
collectInventory.AddItem(theCollider.gameObject);

} //end else if

//otherwise, reenable collisions
//item may be collected again later
else {

//enable collisions
theCollider.enabled = true;

} //end else

break;

A check is made to determine whether empty space remains in the play-
er’s inventory. Thus, the CollectableInventory script’s count of total objects
is compared against its maximum allowable objects. If there is room, the col-
lectable object is passed into the CollectableInventory’s AddItem() function.
Otherwise, if the inventory is full, the collectable’s collider is enabled once again.
Thus, the player may choose to collect it again at a later time if space frees up in
her inventory. Following collectables, the "Hero" tag is checked for collisions in
our switch statement.

//excerpt from UserMove script
//from OnTriggerEnter2D() function

//hero
case "Hero":

//increment counter in state manager
StateManager.Instance.heroesSaved++;

//retrieve hero sprite from collision
Spr�ite heroSprite = theCollider.

GetComponent<SpriteRenderer>().sprite;

13.   Gameplay258

//add to the hero group
gam�eObject.GetComponent<HeroGroup>().memberSprites.

Add(heroSprite);

//destroy
Destroy(theCollider.gameObject);

break;

When Luna collides with a hero character, the StateManager script’s
heroesSaved counter is incremented. The hero’s sprite is saved locally
as heroSprite. Next, the HeroGroup script is accessed from the Player
GameObject. The heroSprite is then added to the memberSprites
List managed by the HeroGroup script. Subsequently, the original Heroes
GameObject is destroyed and removed from the scene. After at least one hero
has been added to the group in this manner, the player can switch between the
group members by pressing the spacebar key. Lastly, our collision switch state-
ment checks for the "Drake" tag.

//excerpt from UserMove script
//from OnTriggerEnter2D() function

//drake
case "Drake":

//check inventory
//if inventory is empty
if (collectInventory.inventory.Count <= 0) {

//reset game
StateManager.Instance.ResetGame();

} //end if

//inventory has items remaining
else if (collectInventory.inventory.Count > 0) {

//remove collectable from inventory
collectInventory.RemoveItem();

//destroy
Destroy(theCollider.gameObject);

} //end else if

break;

//default
default:

break;

} //end switch

} //end function

Recall that colliding with a sneaky drake will cause Luna to lose one of
her collectables. Therefore, the drake collision check first examines whether

Example Solution: Bringing the Gameplay Together 259

the player’s inventory is empty by accessing the inventory.Count prop-
erty from the CollectableInventory script. If empty, the game is lost and the
StateManager is told to reset the game. On the other hand, if Luna has collect-
ables remaining in her inventory, the CollectableInventory’s RemoveItem()
function is called to take one item away. In addition, the drake is destroyed to
remove it from the scene. This gives the player a chance to recover and adjust
her strategy after colliding with a drake. With collectables, heroes, drakes,
and state changes incorporated, our OnTriggerEnter2D() function is
complete.

The fourth, and final, requirement for this challenge requires us to spawn
heroes and drakes in our levels by updating the MapGenerator script. To do this,
two custom functions will be used. To spawn heroes, the SpawnHeroes()
function accepts two integers. One represents the number of heroes saved thus
far, while the other represents the number of levels completed. Both of these are
stored in the StateManager. Hence, SpawnHeroes() can be called from inside
the MapGenerator’s Start() function, like so:

//excerpt from MapGenerator script
//from Start() function

//spawn heroes
Sp�awnHeroes(StateManager.Instance.heroesSaved, StateManager.
Instance.levelsCompleted);

The example SpawnHeroes() function communicates a specific design for
how the heroes should be spawned in the game. It is assumed that the game is
won once all three of the unique heroes, including Lily (the Dryad), Pink Beard
(the Dwarf), and Larg (the Orc), are saved by Luna. Thus, the function will only
spawn Lily until she joins Luna’s group, followed by Pink Beard, and then by
Larg. If the player misses a hero for whatever reason, it will reappear in a later
level. Meanwhile, the function randomizes how often any hero is spawned, thus
making it less predicable and more challenging for the player. The complete func-
tion is provided:

//excerpt from MapGenerator script

//spawn heroes
pri�vate void SpawnHeroes(int theNumHeroesSaved, int

theNumLevelsCompleted) {

//determine whether this level should have a hero spawned
//25% chance that the check value will = 0
int spawnCheck = Random.Range(0, 4);

//the check value will equal zero every few levels
//skip the first few levels
if (spawnCheck == 0 && theNumLevelsCompleted > 3) {

//check which heroes have been saved
switch (theNumHeroesSaved) {

//none
case 0:

13.   Gameplay260

//spawn dryad
SpawnObjectsWithTag("Dryad");

break;

//dryad only
case 1:

//spawn dwarf
SpawnObjectsWithTag("Dwarf");

break;

//dryad and dwarf
case 2:

//spawn orc
SpawnObjectsWithTag("Orc");

break;

//default
default:

break;

} //end switch

} //end if

} //end function

Inside SpawnHeroes(), a random integer value named spawnCheck is
generated using Random.Range(0, 4). If at least three levels have already been
completed and if the spawnCheck value comes out to 0 (a 25% chance), a hero
will be spawned in the map. A switch statement checks for how many heroes
have been saved thus far. We know that the StateManager’s heroesSaved
counter gets incremented each time Luna collides with a hero on the map. Thus,
if Luna is all alone early in the game, the value passed into SpawnHeroes()
will be 0 and Lily (the Dryad) will be spawned. Once Lily is saved, the value will
equal 1 and Pink Beard (the Dwarf) will spawn. Further, with Lily and Pink
Beard in the party, the value will equal 2 and only Larg (the Orc) remains to be
spawned. In this manner, our SpawnHeroes() function randomizes when a
hero is spawned and ensures the opportunity for Luna to find each one based on
the status variables stored in the StateManager.

To spawn our drakes, we use the custom SpawnDrakes() function.
It accepts a single integer as an argument. From the MapGenerator script’s
Start() function, we can see that the number of levels completed thus far is
passed in.

//excerpt from MapGenerator script
//from Start() function

//spawn drakes
SpawnDrakes(StateManager.Instance.levelsCompleted);

Example Solution: Bringing the Gameplay Together 261

As with SpawnHeroes(), the SpawnDrakes() function implements a
game-specific design. Since there are five different drake prefabs in our game, each
of them with the same abilities, the function will randomly choose which colors
to spawn in a given level. This adds some variety to our levels. Furthermore, the
number of levels completed thus far determines how many drakes are spawned
in a given level. That is, 3 drakes are spawned in the 3rd level, 4 in the 4th, 5 in the
5th, and so on. This helps to scale the difficulty of the game over time and make it
a challenging experience for the player. The complete function is provided.

//excerpt from MapGenerator script

//spawn a specified number of drakes
private void SpawnDrakes(int theNumDrakes) {

//store all of the drake tags in an array
string[] tags = {

"BlueDrake",
"GreenDrake",
"GreyDrake",
"OrangeDrake",
"PinkDrake"
};

//set up counter to keep track of spawns
int numSpawned = 0;

//while there are still spawns remaining
while (numSpawned < theNumDrakes) {

//randomly select an object tag
string randTag = tags[Random.Range(0, tags.Length)];

//spawn the object with the associated tag
SpawnObjectsWithTag(randTag);

//increment counter
numSpawned++;

} //end while

} //end function

An array of strings named tags stores the tag for each of our drake prefabs.
Afterwards, a counter variable and while loop are set up to spawn a number of
drakes equal to the number of levels completed thus far. Inside the while loop, a
random tag is selected from the tags array using Random.Range(). The tag is
then passed into our existing SpawnObjectsWithTag() function. Remember
that our Dungeon scene already has a GameObject and MapSpawn script pre-
pared for each drake. Calling to the SpawnObjectsWithTag() function with
a specific tag allows our MapGenerator to actually place the selected drake into
our scene. Lastly, the counter is incremented to ensure our while loop exits.
With that, we have randomly colored drakes spawning in gradually increasing
quantities throughout our dungeon levels.

13.   Gameplay262

With the gameplay components fully assembled, take some time to play your
game. Feel free to refine any features to your liking. Add more features to the
game if you’re craving even more challenge. Also make sure to enjoy what you
have worked so hard to create.

Summary
Congratulations on coding a complete, playable game. Luna, the heroes, the
drakes, and the world you created are ready to be enjoyed. You should be proud
of what you have accomplished thus far. Now that you’re a coder, you should be
capable of applying these techniques:

◾◾ Create autonomous moving objects using artificial intelligence (AI)

◾◾ Manage win and loss states in real time

◾◾ Track data, such as scoring, throughout the game

◾◾ Compile several features, including characters, collectables, and obsta-
cles, into a playable game

When you started reading this book, you embarked on a journey to become
a better coder. While you have completed all of the challenges written here, the
challenges you will face in the future have only just begun. You are encouraged
to begin a new coding journey. On this quest, you will continue to learn and
improve your skills day by day. You may want to go beyond the scope of this
book to further expand Luna’s world and make it your own. Perhaps you are even
ready to code your first game from scratch. You have come a long way on your
coding journey. If you are committed to code and gradual self-improvement, you
will be making bigger and better games in no time at all.

263

Appendix A:
Pseudocode
Reference

This listing contains some commonly used pseudocode keywords. Usage exam-
ples are provided.

Status
These words describe the present state of things:

◾◾ Is

◾◾ On

◾◾ In

◾◾ Has

◾◾ Set

◾◾ Reset

◾◾ Update

◾◾ Load

◾◾ Reload

264 Appendix A

◾◾ New

◾◾ Destroy

◾◾ Win

◾◾ Lose

//example: a player wins a level
Player WINS level 1
LOAD level 2

Conditional
These words qualify the circumstances in which events can occur:

◾◾ If

◾◾ Then

◾◾ Else

◾◾ Otherwise

◾◾ Therefore

◾◾ Whether

◾◾ For

◾◾ But

◾◾ Instead

◾◾ So

//example: determining whether the player should walk or swim
IF player IS IN water, THEN swim
ELSE IF player IS ON land, THEN walk

Boolean
These words alter conditions using Boolean logic:

◾◾ And

◾◾ Or

◾◾ Not

◾◾ True

◾◾ False

265Appendix A

//example: a player encounters a locked door

//this version is more like human language
IF player encounters door AND has key, SET door to open
ELSE IF player does NOT encounter door OR does NOT have key,
SET door to locked

//this version is more like computer language
IF player encounters door IS TRUE AND player has key IS TRUE,
THEN SET door locked IS FALSE
ELSE IF player encounters door IS FALSE OR player has key IS FALSE,
THEN SET door locked IS TRUE

Math
These words make value comparisons and perform mathematical operations:

◾◾ Equal

◾◾ Greater than

◾◾ Less than

◾◾ Add

◾◾ Subtract

◾◾ Multiply

◾◾ Divide

◾◾ Modulus

//�example: a player runs into the edge of the screen and cannot
proceed further

IF� player’s right edge x value IS GREATER THAN screen’s right edge
x value, THEN:

SET player speed EQUAL TO zero
SET player’s x position EQUAL TO right edge of screen

Process
These words describe the flow of information in a system:

◾◾ Start

◾◾ Stop

◾◾ Pause

◾◾ Continue

◾◾ Begin

266 Appendix A

◾◾ End

◾◾ Finish

◾◾ Loop

◾◾ While

◾◾ Do

◾◾ Check

◾◾ Try

//example: checking the game state
CHECK win condition
IF win IS TRUE, THEN LOAD victory screen
ELSE IF loss IS TRUE, THEN LOAD game over screen
ELSE continue playing

Timing
These words describe when and how often events occur:

◾◾ After

◾◾ Before

◾◾ When

◾◾ Again

◾◾ Except

◾◾ Until

◾◾ First

◾◾ Next

◾◾ Last

//example: a player collects a temporary invincibility powerup
START invincibility timer
WHILE invincibility timer IS GREATER THAN zero:
Player IS invincible
DO NOT CHECK player for enemy AND obstacle collisions
SUBTRACT from invincibility timer
IF invincibility timer IS LESS THAN OR EQUAL TO zero, THEN:
STOP invincibility timer
CHECK player for enemy AND obstacle collisions

267Appendix A

Permission
These words introduce limits on what can or cannot be done:

◾◾ Can

◾◾ Cannot

◾◾ Should

◾◾ Must

◾◾ Allow

◾◾ Prohibit

◾◾ Only

//�example: the player collects a powerup that grants the flight
ability

IF player has flight powerup, player CAN run OR fly
IF �player does NOT have flight powerup, player MUST run AND

CANNOT fly

269

Appendix B:
Process Mapping
Reference

Table B.1 explains some of the most common symbols used to create process
maps. Usage examples are provided in Figures B.1 through B.7.

Table B.1  Common Process Mapping Symbols

Symbol Shape Description

Rectangle Defines a single state, action, activity, or step in the
overall process

Arrow Connects one object to another, indicating the direction
of information flow

Diamond Indicates a decision point at which the process can
branch into multiple paths (from the different edges of
the shape)

Rounded
rectangle or
oval

Designates a start or end point for the process

(Continued)

270 Appendix B

Yes
Set position

to edge

At screen
edge? Yes

No

Set speed to
zero

Player
moving

Figure B.4  Example process map: a player runs into the edge of the screen and cannot
proceed further.

Table B.1 (Continued)  Common Process Mapping Symbols

Symbol Shape Description

Parallelogram Represents information entering or exiting the process
(e.g., user input, a call to an external process, or data
passed to another process)

Circle Used to connect different sections of a process map
together (e.g., when a diagram spans across multiple
pages)

Level
won? Yes

No

Load level 2Run level 1

Figure B.1  Example process map: a player wins a level.

Land

Terrain
type? Water Swim

Player
moving

Walk

Figure B.2  Example process map: determining whether the player should walk or swim.

Has key? Yes

No

Door unlockedDoor locked

Figure B.3  Example process map: a player encounters a locked door.

271Appendix B

Load game
over screen

Game
won?

Game
lost?

Yes

YesNo

No

Load victory
screen

Playing
game

Figure B.5  Example process map: checking the game state.

Set timer Start timer

Stop timer

Player
vulnerable

Player
invincible

Decrement
timer

Timer > 0?

Yes

No

Figure B.6  Example process map: a player collects a temporary invincibility powerup.

Has flight?

Fly

No

Yes

Yes

No

RunPlayer
moving

Fly

Figure B.7  Example process map: the player collects a powerup that grants the flight ability.

K24726

ISBN 978-1-4987-0468-7

9 781498 704687

90000

Learn to Code
with Games
Learn to Code
with Games
John M. Quick

L E A R N
 T O C O D E W

I T H G A M
E S

QUICK

A novel approach for the classroom or self-study, Learn to
Code with Games makes coding accessible to a broad audi-
ence. Structured as a series of challenges that help you learn
to code by creating a video game, each chapter expands and
builds your knowledge while providing guidelines and hints to
solving each challenge.

The book employs a unique problem-solving approach to
teach you the technical foundations of coding, including
data types, variables, functions, and arrays. You will also use
techniques such as pseudocode and process mapping to
formulate solutions without needing to type anything into a
computer, and then convert the solutions into executable
code.

Avoiding jargon as much as possible, Learn to Code with
Games shows you how to see coding as a way of thinking and
problem solving rather than a domain of obscure languages
and syntaxes. Its practical hands-on approach through the
context of game development enables you to easily grasp
basic programming concepts.

Learn to Code with Games

Computer Game Development

	Front Cover
	Contents
	Preface
	Acknowledgment
	Author
	Chapter 1: Our Hero Is Stuck!
	Chapter 2: Characters and Characteristics
	Chapter 3: The Bounds of the World
	Chapter 4: Sprinting and Sneaking
	Chapter 5: Collectables
	Chapter 6: Spawning Objects
	Chapter 7: Taking Inventory
	Chapter 8: A Party of Heroes
	Chapter 9: Generating a Tile Map
	Chapter 10: Spawning Objects on a Tile Map
	Chapter 11: Level Generation
	Chapter 12: Game State Management
	Chapter 13: Gameplay
	Appendix A: Pseudocode Reference
	Appendix B: Process Mapping Reference
	Back Cover

		2015-09-25T14:18:44+0000
	Preflight Ticket Signature

