
www.allitebooks.com

http://www.allitebooks.org

Learning AndEngine

Design and create Android games with the simple
but powerful tool AndEngine

Martin Varga

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning AndEngine

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 2121114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-596-8

www.packtpub.com

Cover image by Martin Varga (android@kul.is)

www.allitebooks.com

www.packtpub.com
mailto:android@kul.is
http://www.allitebooks.org

Credits

Author
Martin Varga

Reviewers
Jafar Abdulrasoul [Jimmar]

Rafay Ali

Sergio Viudes Carbonell

Bret Hudson

Commissioning Editor
Kartikey Pandey

Acquisition Editor
James Jones

Content Development Editor
Sharvari Tawde

Technical Editors
Tanvi Bhatt

Taabish Khan

Faisal Siddiqui

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Deepa Nambiar

Laxmi Subramanian

Project Coordinator
Judie Jose

Proofreaders
Simran Bhogal

Paul Hindle

Indexers
Tejal Soni

Priya Subramani

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Martin Varga is a professional Java developer with a passion for teaching and
developing mobile games. He has worked as a senior software engineer in several
domains, including telecommunications, mentoring juniors and leading teams of
developers. When it was announced that Java will be the language of choice for
the Android mobile platform, he seized the opportunity and started his indie game
developer career.

He is the author of Mr. Dandelion's Adventures, an Android game made with
AndEngine, and a few other games used in his tutorials, which are published on
his website http://android.kul.is. Alongside the tutorials, he is also trying to
promote other indie developers' games and writing game reviews. He's an active
member of the AndEngine community and several game development websites,
answering questions of newcomers in the indie game development scene daily.

www.allitebooks.com

http://android.kul.is
http://www.allitebooks.org

Acknowledgments

First, I'd like to thank Packt Publishing for giving me an opportunity to create
something as wonderful as a new book. I must mention Anish Sukumaran, who
found me, and then James Jones, Aaron Lazar, and Sharvari Tawde, who helped
me on my path from a person who had no idea how to write a book to a person
who actually wrote one.

I would also like to thank all members of the game development community who
helped me in my humble beginnings. Thanks to Nicolas, for creating AndEngine and
making it easy to start; Matthew from http://www.matim-dev.com/, for his tutorials
that I used to create my first game in AndEngine; and Flavien and Michał, for their
contributions to AndEngine, their tutorials, and their games that motivated me.

Finally, I would like to thank all my friends and family who supported me during
the writing of this book and during the period when I broke a bone in my foot and
had to stay at home for nearly three months. There are too many of them to list, but
you know who you are. Special thanks to Melissa who gave me the most valuable
feedback during the making of my first game, helped me to actually finish it, and
later drove me around when I was not mobile myself.

www.allitebooks.com

http://www.matim-dev.com/
http://www.allitebooks.org

About the Reviewers

Jafar Abdulrasoul [Jimmar] is a computer engineer, Android developer, and
game developer from Kuwait, who has worked on a couple of games on different
platforms using various technologies such as AndEngine, cocos2d, and Unity 3D.

Jafar began his programming journey while in high school, and later ventured out to
seek more knowledge in this field by getting an engineering degree, while working
on personal projects, including Android applications and game development, on the
side. He was also one of the reviewers for AndEngine for Android Game Development
Cookbook, Jayme Schroeder and Brian Broyles, Packt Publishing.

To Hime, for showing up in my life and giving it a new purpose.

Rafay Ali is a Computer Science graduate from the University of Karachi,
currently working as a senior software engineer at KoderLabs. Besides having two
years of experience as a Java developer, he has worked on a couple of languages
and tools, including C++, C#, JavaScript, Ruby, Android, and Unity 3D. He loves
programming computer games and prototypes new game ideas as a hobby.
When he's not working, he can be found on Steam, placing wards in Dota 2.

www.allitebooks.com

http://www.allitebooks.org

Sergio Viudes Carbonell is a 31-year-old software developer from Elche,
Spain. He develops apps and video games for the Web, iOS, and Android.

He has been playing video games since his childhood. He started playing with his
brother's Spectrum when he was five years old. When he bought his first PC (well,
his parents did), he was 14 years old and started learning computer programming,
computer drawing, and music composing (using the famous FastTracker 2). When
he finished high school, he studied Computer Science at the University of Alicante.

His interest in mobile devices started with his first smartphone 12 years ago (2002),
when he bought the first Symbian device from Nokia, the Nokia 7650. He really liked
the idea that he could develop software that can run everywhere. So, along with his
studies and his job, he started creating simple mobile apps for his phone. He really
enjoys developing apps for mobile devices, composing music, drawing, and of course,
playing video games. So, he decided to put all his hobbies together and develop his
first video game for his favorite mobile platform, Android.

So far, Sergio has released three games, several apps, and he continues developing
apps and games not only for Android, but also for iOS and the Web.

Sergio was one of the reviewers for AndEngine for Android Game Development
Cookbook, Jayme Schroeder and Brian Broyles, Packt Publishing and Mobile Game Design
Essentials, Dr. Claudio Scolastici and David Nolte, Packt Publishing.

I would like to thank Nicolas Gramlich for creating AndEngine and
Martin Varga for writing this book. Special thanks go to my wife,
Fani, who encourages and supports me every day.

Bret Hudson began his programming adventure at the age of 12, starting out
with a small program called Game Maker, and quickly expanding to developing
web applications, software, and mobile apps. He has experience in over 15
programming and scripting languages as well as knowledge of a multitude of
types of database software.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Setting Up an AndEngine Project 7

Prerequisites 7
Downloading and installing the required software 8

Downloading the Android SDK 9
Installing the Android SDK 9
Configuring the Eclipse IDE 11

Getting the AndEngine libraries 12
Selecting the correct branch 13
AndEngine repositories 13
Downloading the sources 14
Adding AndEngine to the Eclipse IDE 15

Creating a new application 17
Creating a simple Android application 17
Device configuration 20

Before Honeycomb 21
Honeycomb until Ice Cream Sandwich 21
Jelly Bean and later 21

Running the application 21
Adding AndEngine 23

Adding the required projects 24
Changing the GameActivity to an AndEngine activity 24
Running the application 30

Understanding resolution policies 30
FixedResolutionPolicy 31
FillResolutionPolicy 32
RelativeResolutionPolicy 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

RatioResolutionPolicy 32
CropResolutionPolicy 33

Summary 34
Chapter 2: Game Concept and Assets 35

The game concept 35
Identifying the basic entities 37

Getting the assets 38
Graphics 38

Graphic formats 39
The main character 42
The enemy 43
Platform and clouds 43
Putting it all together 44

Sounds and music 45
Audio file formats 46
Sound effects 46
Music 46

Scene diagram 47
Summary 48

Chapter 3: From Assets to Entities 49
Managing resources 49

Loading graphics 51
Bitmap texture format 54
Texture options 54
Creating the regions 58
Building the atlas 58

Texture and alpha bleeding 59
Texture bleeding 59
Alpha bleeding 60

Unloading graphics 61
Loading sounds and music 62
Unloading sounds and music 63
Loading fonts 63
Unloading fonts 64
Putting it all together 65

Entities 65
Scene 66

AbstractScene 67
GameScene 68

Background 69
Sprite, tiled sprite, and animated sprite 72

Table of Contents

[iii]

Main character 73
Player class 73
PlayerFactory class 75

Using the new entity and its factory 76
Platforms and enemies 76
Running the code 77

Summary 78
Chapter 4: HUD and Text Display 79

Fonts and text 79
Storing the font on a texture 80

Storing special characters and international alphabets 82
Workaround for unsupported languages 84

Other limitations of the font texture 85
Writing text 85
HUD 87
Working with toasts 89
Localization 91
Debug output 93

Logging to LogCat from AndEngine 95
Logging best practices 96

Summary 97
Chapter 5: Basic Interactions 99

A simple animation 99
An animated sprite 99
Entity modifiers 101

User input 102
Touchscreen 102

Touch events 102
The scene touch listener 103
The entity touch area 104
Touch area bindings 106

Accelerometer 106
Pausing and resuming the accelerometer 108

Collision detection 109
Handling collisions 110

Collision handlers 110
The collidesWith method 111

Using correct threads to perform actions 114
Summary 117

Table of Contents

[iv]

Chapter 6: Physics 119
The physics engine 119

Basic terms 120
Body types 120
Fixtures 121

Shapes 121
Density 122
Friction 122
Elasticity 123
Sensor 124

The physics world 124
Forces and impulses 125
Joints 127

Adding physics 127
Adding a physics world 128
Introducing a collidable entity 129
Relation between physics bodies and entities 130

Adding a physics body to the player entity 130
Adding platforms 133
Controlling the player character 138

Changing the gravity vector 138
Using forces 140
Using impulses 141

Setting the velocity directly 141
Summary 142

Chapter 7: Detecting Collisions and Reacting to Events 143
Collisions 143

Detecting collisions 144
The player-platform collision 146
The player-enemy collision 148

Game events 152
The chase camera 152
Adding and removing platforms and enemies 154
Detecting the player character's death 157
Score 157
Wrapping the world around 158
Restarting the game after a player dies 160
Showing a message on game over 161

Restarting the game on tap 163
Playing sounds on events 164

Playing the jump sound 165
Playing the fall sound when the player's character dies 166

Summary 166

Table of Contents

[v]

Chapter 8: Advanced Physics 167
The Box2D Debug Draw extension 167

Adding Debug Draw to our AndEngine project 168
Using Debug Draw in a game 169

Assembling bodies from fixtures 170
Creating an empty body 171
The head fixture 172
Creating the torso 172
Creating the legs 174
Assembling the body 175

Collision filtering 176
Category 176
The category mask 177
Example of categories and masks 178
Group index 181

Joints 182
The revolute joint 182
The distance joint 183
The prismatic joint 184
The line joint 185
The weld joint 185
The pulley joint 186
The gear joint 186
The mouse joint 187
Implementing a revolute joint 187

Summary 190
Chapter 9: Adding a Menu and Splash Scene 191

Managing multiple scenes 191
A splash scene 192

Updating the resource manager 192
Creating the scene 193

The menu scene 194
The loading scene 197
The scene manager 199
Plugging in the SceneManager class 202

Storing values 204
Using preferences 205
Settings 206

Playing sound according to the settings 209
High score 210

Summary 211

Table of Contents

[vi]

Chapter 10: Polishing the Game 213
What is polishing? 213
Adding music 213

Life cycle of the media player 215
Adding animations using entity modifiers 218

Chaining modifiers 218
Modifiers 221
Ease functions 221
Using the modifier callback hooks 223

Particle systems 224
Creating a flying in the clouds effect 224
Creating a fire and smoke effect 227

Parallax background 234
VerticalParallaxEntity 235
Creating a parallax background 236

Shaders 238
Summary 241

Chapter 11: Testing, Publishing, and What's Next 243
Creating a production APK 243
Testing with the production APK 248
Testing on multiple devices 248

Using an emulator 248
Getting in touch with the community 251
Publishing the game to the Google Play store 252

Publishing to the beta stage first 252
Creating the application 253
Crash reports 256

Debugging crashes 257
Publishing to production 257

Promotion 257
Next steps 257

The first week 257
The first month 258

Summary 258
Index 259

Preface
Android has become the number one platform for mobile phones and tablets,
and its popularity is still rising. Mobile game markets have become a great place
for both professionals and indie game developers to present their games.

AndEngine was created by Nicolas Gramlich to ease the development of 2D
games for Android devices. Since the beginning, AndEngine helped to create
many successful games such as Traktor Digger, Construction City, and Bad Roads.

AndEngine is a full-featured open source engine. Its advantage is its simplicity.
It is complete and makes creating any 2D game possible, and yet it is still easy
to use. Moreover, AndEngine lets programmers use any part of the underlying
Android SDK with no limitations.

Learning AndEngine is meant to teach the basics of AndEngine. It's a step-by-step
guide to creating a simple game. Through the tutorial, all the basic features of
AndEngine are presented in a concise way, making it easy to follow. The book
starts with the installation of the required software, making a blueprint of the game,
and follows with gradually adding features to the game as the readers learn them.
Finally, a game is polished and released for a beta test in the most popular Android
application store, the Google Play store.

The AndEngine source code exists in three versions. This book deals with the latest
and most commonly used branch called the GLES2—AnchorCenter branch. It uses
a newer graphics library, and it is stable and complete.

What this book covers
Chapter 1, Setting Up an AndEngine Project, introduces AndEngine and guides
you through the installation of all the necessary software. At the end of the
chapter, an empty AndEngine skeleton application is created.

Preface

[2]

Chapter 2, Game Concept and Assets, introduces the idea of the game that will be
created. It begins with outlining the game rules, followed by gathering the game
assets and scene diagram, and ends with a completed blueprint for the game.

Chapter 3, From Assets to Entities, explains loading the assets into memory and how
to use them in a game. It shows a basic way to display an image on the screen by
creating a game entity. It also explains the basic terms and different ways of storing
images in memory, considering memory and quality requirements.

Chapter 4, HUD and Text Display, deals with loading fonts, national alphabets, and
outputting text. It also explains heads-up display (HUD) and its usage in a game.
The way to store characters and most common problems associated with it are
explained as well.

Chapter 5, Basic Interactions, teaches you about basic animation and controls in
AndEngine. Accelerometer and touchscreen are introduced along with collision
detection. In this chapter, the game becomes interactive.

Chapter 6, Physics, introduces the AndEngine Box2D extension that takes care of
physics simulation. Accelerometer readings are combined with procedural animation
governed by the physics engine to create a better way of controlling the main character.

Chapter 7, Detecting Collisions and Reacting to Events, adds more interactivity and uses
the physics engine's optimized collision detection. Game events are created and
handled and playing sounds is explained too.

Chapter 8, Advanced Physics, introduces concepts that are not necessary for the game,
but nevertheless important. Multiple fixture bodies that can make simulation more
precise and realistic are introduced. Collision filtering and its use as an optimization
technique is described. Finally, all physics engine joints are listed and explained.

Chapter 9, Adding a Menu and Splash Scene, describes exactly what the title suggests.
In this chapter, a splash scene that is shown at the start of the game is added and a
way to load resources in the background is described. Also, a simple menu scene is
added as an entry point to the game.

Chapter 10, Polishing the Game, explores a few ways to polish the game and make
it more interesting by adding music, more animations, and some special effects.
A standalone fire and smoke particle engine example is created.

Chapter 11, Testing, Publishing, and What's Next, shares insights about joining a
community of developers, user testing, debugging, and publishing the game.

Preface

[3]

What you need for this book
Learning AndEngine is meant for complete beginners in Android game
development, but you should know the fundamentals of Java programming.
Having some knowledge of the Android platform is beneficial but not required
and no knowledge of AndEngine is expected.

All the required software applications are open source and can be obtained for
free from the Internet. Therefore, an Internet connection is required. The first
chapter of the book helps you download the software and set your environment.

To follow the tutorial in this book, you should own an Android phone or tablet and
a PC or a Mac that is able to run the Eclipse IDE and Android SDK. The examples
can be run on an Android emulator but it is not recommended.

Who this book is for
If you are an aspiring game developer who is looking for a quick way into the
Android game developer world, this is the book for you! This book is most beneficial
for those who haven't created any games yet. More advanced users who have made
a game in AndEngine already will most likely find the book to be very basic.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The versionName value will be displayed in the store listing."

A block of code is set as follows:

@Override
public void populate() {
 ...
 engine.enableAccelerationSensor(activity, this);
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

if (player.isDead()) {
 endGameText.setVisible(true);
 if (score > activity.getHiScore()) {
 activity.setHiScore(score);
 }
}

Any command-line input or output is written as follows:

adb install LearningAndEngine.apk

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
option is located in the main button bar and in the Window menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/5968OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5968OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5968OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setting Up an AndEngine
Project

In this chapter, we are going to develop an empty AndEngine application that will
serve as a base for a game. First, we will discuss prerequisites and download and
install the required software. You will also learn where to get the latest and stable
AndEngine libraries from. Lastly, we are going to create and implement a simple
Android application that uses AndEngine libraries and then run it.

It doesn't matter on which platform you develop the project as long as you can install
the Java Software Development Kit (SDK) and Android SDK there. However,
AndEngine is not a multiplatform framework because applications created with
AndEngine can run only on an Android device or inside an Android emulator.

Prerequisites
Android applications are simply Java applications running inside an Android virtual
machine called Dalvik. You will encounter this name when compiling and running
the application. The final compiled code is not fully compatible with the Oracle Java
Virtual Machine, but for the purpose of this book, you are only expected to know
basic Java programming.

You will need the following software and hardware:

• Windows XP, Vista, 7, or 8; Linux (Ubuntu is recommended); or Mac OS
10.5.8 or a later operating system

• Java SDK
• Android SDK with the ADT bundle
• An Android device

Setting Up an AndEngine Project

[8]

You should already know how to install the Java SDK (JDK) and keep it up to date.
The Android SDK requires at least JDK 6. You can use higher versions if available.
Always use the latest update for security and compatibility reasons.

It is important to use JDK and not just the Java Runtime
Environment (JRE) for development. It is also a requirement of
Android SDK. Make sure the JAVA_HOME environment variable
is set to the correct folder.

Android SDK contains the Eclipse Integrated Development Environment (IDE)
with preinstalled plugins and Android platform tools. Using the latest version
of Android SDK is recommended.

If you have used Eclipse before, you can use your own existing
Eclipse installation as well, but then you are required to install
the plugins manually on your own.

We are going to download and install Android SDK with the Android Development
Tools (ADT) bundle in the next section. ADT allows you to install the application to
your device and also connect to it in order to get important information such as the
LogCat console output (text output from installed applications that is not visible to
users) and other interesting statistics about running apps.

Your device should be running at least Android 2.2, but using a more recent version
is recommended. If you don't own an Android device, you can use an Android
emulator for development. However, consider getting a physical device because
the behavior of the emulator is different from that of a real phone or tablet. The game
might run slower or have problems. Emulators are known to have issues especially
with hardware-accelerated graphics. Nothing can replace testing on a real device,
and in fact for serious game development, it's a necessity to test on multiple devices.

Downloading and installing the required
software
We are going to download and install Android SDK with the ADT bundle first. JDK
6 or later should already be installed and configured on your development machine.

Chapter 1

[9]

Downloading the Android SDK
Go to http://developer.android.com/sdk/. If you are on Windows, click on the
Download Eclipse ADT with the Android SDK for Windows button. If you are
using a different operating system, the page should autodetect it and offer you the
link for your OS. In case it doesn't detect it correctly, there is a link called VIEW ALL
DOWNLOADS AND SIZES that will expand a list of available platforms. Choose
the right platform for you. Be careful when choosing 32-bit or 64-bit software. If you
are running a 32-bit Java on a 64-bit system, choose the 32-bit software. Accept the
license agreement and save the file to your hard drive. The examples in this chapter
are from the 32-bit version for Windows.

There is another IDE available, Android Studio. However, it is in the
early access stage. It is not recommended to use this IDE.

Installing the Android SDK
The downloaded file will be a ZIP archive called something like adt-bundle-
windows-x86-20131030.zip. The filename indicates the selected platform and the
date of release. To install the software, simply unpack the archive to any folder.

If you have decided to use an existing Eclipse IDE, expand the GET
THE SDK FOR AN EXISTING IDE link and click on the Download
the stand-alone Android SDK tools for Windows button. Or,
download the SDK tools for appropriate platforms from the VIEW ALL
DOWNLOADS AND SIZES link. After that, follow the instructions at
http://developer.android.com/sdk/installing/.

You should find the following in the folder where you have unpacked the archive:

• The eclipse folder
• The sdk folder
• The SDK Manager.exe file

http://developer.android.com/sdk/
http://developer.android.com/sdk/installing/

Setting Up an AndEngine Project

[10]

First, run the SDK Manager.exe file. It might take a while to start, and it doesn't
show any splash screen. You will be presented with a window similar to the one in
the following screenshot:

Check for any packages that have updates available. Note that you only need the
latest SDK, which at the time this book was written was SDK 19 for Android 4.4.
The latest version is always bundled with the Android SDK. You should also
check the Google USB Driver option.

Every SDK version allows you to write applications that can be
deployed to any Android version. If you use a function from an SDK
version that is not available in an older Android SDK, the method will
not be executed and you will get a warning or an exception. Be careful
with that because the code will compile and deploy!

Optionally, you can install the Android emulator system images for older Android
versions. This is useful for testing. However, AndEngine can't be deployed to an
Android emulator with Android versions 2.x. For now, do not install anything else
but the updates and the USB driver. Install the selected packages and close the SDK
manager. The installation might take a while, because the packages are downloaded
from the Internet.

Chapter 1

[11]

Configuring the Eclipse IDE
Now, run the Eclipse IDE. From the eclipse folder, run the eclipse.exe file.
After the splash, the first thing you will see is the workspace selection window.
This is shown in the following screenshot:

If you have never worked with Eclipse, note that a workspace is both a virtual space
on your screen (the layout) and a directory where your projects and some metadata
that Eclipse keeps about your projects are stored. Choose any directory you want, but
make sure it is one with easy access. You can have multiple workspaces. If you check
the Use this as the default and do not ask again checkbox, you will be working with
this workspace by default and this dialog box won't appear again at the start.

The workspace selection dialog box is always available by
navigating to File | Switch Workspace menu in Eclipse.

After the start, close the Welcome screen and you will be presented with the Eclipse
default layout. Parts of the layout can be dragged and dropped to different locations.
Also, you can have different perspectives (presets of the opened windows and tabs)
for each workspace. We will be using the Java perspective for most of the time but we
will also use Dalvik Debug Monitor Server (DDMS) and the Debug perspective for
debugging and tuning our application. The perspectives are available by navigating to
Window | Open Perspective.

Setting Up an AndEngine Project

[12]

Stay in the Java perspective, but go to Window | Show View | Other… and search
for LogCat, as shown in the following screenshot:

LogCat is a log console. The Android system has a logging system that allows
developers to print categorized text messages to LogCat from their apps. This is very
useful for game developers because the text output to the screen can be very limited.
The ADT takes care of getting the LogCat output from the connected Android device.

The Eclipse IDE can be a bit difficult to grasp from the start. However, as a Java
developer, you have probably used it before or have used a similar one. Most
of the IDEs nowadays are very similar. Try to familiarize yourself with Eclipse
before proceeding to the next step.

Getting the AndEngine libraries
AndEngine is an open source game engine and the sources are licensed under
Apache License Version 2.0. This not only allows us to use AndEngine in both free
and commercial games, but it also gives us a chance to inspect or alter the source
code. The old way of adding AndEngine to an Android application was to add
compiled Java ARchive (JAR) files to your app. This is no longer necessary as
you can add AndEngine as a library project.

The author of AndEngine, Nicolas Gramlich, decided to store the whole engine
inside GitHub. Git is a version control system (VCS) for source codes and GitHub
is a hosting website for Git repositories. A VCS allows you to not only store your
sources, but also to store every version of each file. This is of course useful when
you need to see the history of your changes or collaborate with more people.

Chapter 1

[13]

A repository is a logical unit. As a rule of thumb, one repository contains one
project. A repository has its address and history separated from other repositories.
A repository in GitHub can be forked (creates your own copy with your own
history), cloned (creates a version on your machine linked with the repository),
or zipped and downloaded locally.

For more general information about AndEngine, visit the official
website at www.andengine.org.

Selecting the correct branch
Android uses OpenGL ES to display accelerated graphics. OpenGL ES is a free
API for full-function 2D and 3D graphics on embedded systems. There are several
versions of OpenGL ES, namely versions 1.x, 2.x, and recently 3.x.

A repository can also contain multiple branches. Think of a branch as an alternative
version of the project. AndEngine is split into three branches. The GLES1 branch
uses OpenGL ES 1.0 and it is the oldest. I don't recommend using it. GLES2 is
newer and GLES2-AnchorCenter is the newest. They both use OpenGL ES 2.
Use the GLES2-AnchorCenter branch if you haven't used AndEngine before.
The GLES2-AnchorCenter branch's biggest difference from the GLES2 branch
is the fact that point [0, 0] is now in the lower-left corner of the screen. This is the
same as in OpenGL and that's why it's recommended.

For the purpose of this book, we are going to exclusively use the
GLES2-AnchorCenter branch.

AndEngine repositories
AndEngine is split into a main project simply called AndEngine and many extensions
called, for example, AndEngineMultiplayerExtension, which are dependent on the
main project. Each project resides in its own repository.

For our game, we need the main AndEngine project and a 2D physics extension
called AndEnginePhysicsBox2DExtension. This extension adds a very popular 2D
physics simulation framework called Box2D to AndEngine. A lot of popular games
use this framework.

There is also a repository called AndEngineExamples. It is not an extension but an
application that includes all of the other AndEngine libraries and extensions and
illustrates their use.

www.andengine.org

Setting Up an AndEngine Project

[14]

If you download all the extensions and the AndEngineExamples
project, you can build the AndEngineExamples app and run it on
your Android device. An older version is also available online on the
Google Play store at https://play.google.com/store/apps/
details?id=org.anddev.andengine.examples.

Downloading the sources
You can download the sources from Nicolas Gramlich's original repository at
https://github.com/nicolasgramlich/.

However, there is a danger that the codes will be changed any time in the future.
For that reason, I recommend to download the sources from my forked repository,
which is guaranteed to work with the sources in this book.

The easiest way is to download the complete repository as a ZIP archive, which can
be done with the help of the following steps:

1. Browse to https://github.com/sm4/, switch to the Repositories tab, and
select AndEngine. Notice the drop-down menu titled branch. Make sure
GLES2-AnchorCenter is selected. Alternatively, you can browse directly to
the correct branch by going to https://github.com/sm4/AndEngine/tree/
GLES2-AnchorCenter.

2. The following screenshot is what you should see now:

https://play.google.com/store/apps/details?id=org.anddev.andengine.examples
https://play.google.com/store/apps/details?id=org.anddev.andengine.examples
https://github.com/nicolasgramlich/
https://github.com/sm4/
https://github.com/sm4/AndEngine/tree/GLES2-AnchorCenter
https://github.com/sm4/AndEngine/tree/GLES2-AnchorCenter

Chapter 1

[15]

3. Click on the Download ZIP button. A file named
AndEngine-GLES2-AnchorCenter.zip will be downloaded.

4. Unpack it in the workspace directory you selected when
configuring the Eclipse IDE. Note that the directory is called
AndEngine-GLES2-AnchorCenter. It contains the name of the
project and the branch name as well. Rename the directory to AndEngine.

5. Repeat the process for the AndEnginePhysicsBox2DExtension
repository. It can be downloaded from https://github.com/sm4/
AndEnginePhysicsBox2DExtension/tree/GLES2-AnchorCenter.

6. Don't forget to rename the directory to AndEnginePhysicsBox2DExtension
only. You should have two folders in your workspace directory: AndEngine
and AndEnginePhysicsBox2DExtension.

If you decide to use a different branch, remember that extensions
used must be from the same branch as the main project.

Adding AndEngine to the Eclipse IDE
In Eclipse, navigate to File | Import and choose Existing Projects into Workspace
(under the General folder). Browse to your workspace directory. You should see two
projects. Check them both and import them by clicking on the Finish button. This is
shown in the following screenshot:

www.allitebooks.com

https://github.com/sm4/AndEnginePhysicsBox2DExtension/tree/GLES2-AnchorCenter
https://github.com/sm4/AndEnginePhysicsBox2DExtension/tree/GLES2-AnchorCenter
http://www.allitebooks.org

Setting Up an AndEngine Project

[16]

If you have installed the ADT bundle with Android SDK 19, you should see no
errors. In case there are errors, try cleaning and building all projects again. Simply
click on the Project drop-down menu in Eclipse's main menu and select the Clean…
option while having the Build Automatically option checked.

It is possible that when you were installing the ADT bundle, it contained a different
SDK version from 19, or maybe you are, for some other reason, using a different
version. In that case, you will see messages like the following in the console:

[2014-01-14 15:36:11 - AndEngine] Unable to resolve target
 'android-19'

Right-click on the project, select the Properties option, and then choose the Android
option. Make sure that the Android SDK version of your choice (or simply the latest)
is selected. This is shown in the following screenshot. You will probably have to
clean the project to make the error disappear. We have to do this because the project
was saved with SDK 19 selected. Do it for both projects.

Chapter 1

[17]

Creating a new application
We will first create an empty Android application project and later add the
AndEngine libraries.

Creating a simple Android application
To create a simple Android application, we will follow these steps:

1. Go to File | New | Android Application Project in Eclipse. You will be
presented with the window shown in the following screenshot:

 ° Application Name: This is visible under the app's icon on your
phone. When creating a real application/game, give it a meaningful
name. Let's say your game is called Awesome Football Manager. You
can simply put this in the Application Name field, but on the phone,
you will probably see only Awesome Foo... under the icon, due to the
limit of characters that can be displayed.

Setting Up an AndEngine Project

[18]

 ° Project Name: This is just the project name in Eclipse, and it is how
your APK (Android Application Package—the final archive to be
deployed to the device) will be named. I recommend using a single
word derived from your application name.

 ° Package Name: This is used for your Java code and it is also a
unique identifier for the Google Play store. Make sure your chosen
package name is not taken! If you have your own domain, put it
there (backwards). If you don't have one, imagine that you do and
what it would look like. My domain is kul.is; therefore, my package
starts with is.kul and the full package name will be is.kul.
learningandengine.

 ° Minimum Required SDK: This is simply the lowest Android
version that you are going to support. AndEngine works well with
SDK 8, but if you are going to use big textures, you might run into
problems. It is always a trade-off between supporting as many
devices as possible and making sure that the application will work
on all supported devices. The lower the SDK, the more problems you
can expect and the more devices you should test. On the other hand,
more devices will be supported and you will reach a broader user
base. Android 2.2 and 2.3 are still used today.

 ° Target SDK and Compile With: For these, pick the highest available
SDK (19). You should own a device with the target SDK, or test the
application in the emulator.

 ° Theme: For this, select None. Your activity theme won't be visible,
so don't bother with it. Our game in AndEngine will use an overlay
view that will cover the whole available screen.

2. Click on the Next button to continue the application creation wizard.
3. On the next page, uncheck the Create custom launcher icon option.

This option will launch another wizard where you can upload an image
that would serve as your app icon in the store and on the device. We will
keep the default green Android icon for now.

4. Keep the Create activity option checked. An activity is a single, focused thing
that the user can do (in our case, play the game, but it can be for example, check
emails or record voice), and it represents the presentation layer of an Android
application. It is also a Java class that extends the Activity class from the
Android library. Have a look at the following screenshot:

Chapter 1

[19]

5. Click on the Next button to advance to the Create activity page as shown
in the following screenshot. Leave everything as it is and click on the Next
button again. We are creating a blank activity, but in fact, it doesn't matter.
We are going to change the activity anyway. We are using this option in
order to get the Activity class created for us in the right package.

Setting Up an AndEngine Project

[20]

6. The last page allows us to name the activity and the layout. We are not
going to work with the layout in this book, so you can leave it as it is.
We are going to name the activity GameActivity. This is shown in the
following screenshot:

7. Click on the Finish button to close the wizard. A new project will appear
in the Eclipse Project Explorer window (the tab on the left). You can run
the project now, but your device must be configured properly. First, plug
in your Android device.

Device configuration
You need to enable the USB debugging option under Developer options on your
phone or tablet in order to deploy the application from Eclipse. The configuration
differs across Android versions, and it can even differ for the same version on a
different device or brand.

Chapter 1

[21]

Before Honeycomb
Honeycomb is the codename for Android 3.0. In versions prior to Honeycomb, the
developer options are located under Settings | Applications | Development.

Honeycomb until Ice Cream Sandwich
You will find the Developer options button under Settings | Developer options in
the System subsection.

Jelly Bean and later
The developer options are hidden starting with Android 4.2. You need to use the
following trick to activate the option:

1. Go to Settings | About phone.
2. Scroll down to the Build number option.
3. Tap on this option seven times. On the third tap, you should see the message

about four taps remaining to become a developer.
4. Go back to the Settings window.
5. You should see the Developer options menu item in your Settings window.

Check the USB debugging option. This should be all that is required to upload the
application from Eclipse to your device.

Consider turning on the Unknown sources option under the
Security option as well. Basically, it means you can install APKs
from other sources than the Google Play store. This is useful for
testing when you upload a production APK directly from your
development machine to the device. The development versions of
apps are allowed thanks to the USB debugging option.

Running the application
Connect the device using a USB cable. You should see a notification of
USB debugging connected on your phone or tablet.

Setting Up an AndEngine Project

[22]

Finally, in Eclipse, select the project and click on the drop-down arrow next to
the run icon in the Eclipse top bar. Navigate to Run As | Android Application.
This is shown in the following screenshot:

A pop-up window named Android Device Chooser will show the list of connected
devices. Select your device. You can also check the Use same device for future
launches option, which will remember your device for this session and will use it
as the default target when you run the application the next time. Your device must
run the project's minimum Android SDK or higher.

If you don't have a physical Android device, the Android
Device Chooser window will allow you to define a virtual
device using the Android emulator.

Chapter 1

[23]

Have a look at the following screenshot:

After clicking on the OK button, Eclipse will build the application and create an APK.
All applications have to be signed using a certificate before publishing to the Google
Play store. For development purposes, all APKs are signed using a debug certificate.

The APK is then uploaded to the device and the main activity, in our case
GameActivity, is started. You should see a simple one-screen application with
Hello World text on the display. This is a default Hello World Android application
created by Eclipse.

Adding AndEngine
We need to add the AndEngine and AndEnginePhysicsBox2DExtension libraries to
our app and change the GameActivity.

Setting Up an AndEngine Project

[24]

Adding the required projects
AndEngine and all the extensions are library projects. That means they can be added
to our application as dependencies, similar to adding an external library JAR file.
Eclipse will then build and package the library project along with our application
to the final APK.

Right-click on the project, select Properties, and choose Android. Click on
the Add button in the Library subsection and select AndEngine. Also add the
AndEnginePhysicsBox2DExtension project similarly. This is shown in the
following screenshot:

Changing the GameActivity to an AndEngine
activity
AndEngine extends the basic Android Activity class because it needs to take care of
a lot of initializing and loading of resources for the game engine. AndEngine gives us
several hooks that we can use to perform our own initializations.

Chapter 1

[25]

Understanding the activity lifecycle
It is important to understand the lifecycle of an Android application and activities.
For a basic game, a single activity is usually enough, making things simpler.
The following diagram describes the most basic activity lifecycle:

Activity Started

onCreate

onStart

onResume

Activity Running

onPause

Activity Finished

onDestroy

onStop

Your activity process is killed

Your activity no longer visible

Another activity brought to foreground

Activity resumed

New activity created

Go back to activity

When you start your application, it goes through different states and the callback
methods onCreate, onStart, and onResume are called. Notice that the onResume
method is called even on the first start.

An activity is paused typically when the screen is locked or a dialog activity is brought
to the front. Imagine a low battery warning for example. An activity is stopped when
another activity completely covers your activity. This can be an incoming call. Note
that the onStop method doesn't have to be called. This can happen when the system
doesn't have enough resources for another activity and decides to kill your activity
right away. The final method, onDestroy, is called when your activity is finished
and cleared from the memory. Again, it is not guaranteed to be called.

www.allitebooks.com

http://www.allitebooks.org

Setting Up an AndEngine Project

[26]

The lifecycle is more complex than this and there are even more hooks that can be
overridden and used. For our purposes, this will be enough. In fact, AndEngine takes
care of most of the methods and gives us a few convenient methods to use instead.

The BaseGameActivity class
Our GameActivity class extends the BaseGameActivity class, which implements
basic game activity behavior for us. For example, it implements the onCreate
method that configures the engine and the surface view. The surface view is a
dedicated drawing surface for our game that we can use through AndEngine.

When you created the empty GameActivity, it looked like the following code
(it can differ based on the Eclipse and ADT versions):

package is.kul.learningandengine;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class GameActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_game);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it
 is present.
 getMenuInflater().inflate(R.menu.game, menu);
 return true;
 }

}

Delete both the onCreate and onCreateOptionsMenu methods. Change the parent
of the GameActivity class from android.app.Activity to org.andengine.
ui.activity.BaseGameActivity.

BaseGameActivity is an abstract class, and it will make you implement
the onCreateEngineOptions, onCreateResources, onCreateScene, and
onPopulateScene methods. The lifecycle methods are all handled by AndEngine.

Chapter 1

[27]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The onCreateEngineOptions method
1. First, define the onCreateEngineOptions method. This method is called

from the onCreate method and it is run first. You are supposed to configure
AndEngine's engine in this method. The following is a typical example:
public static final int CAMERA_WIDTH = 480;
public static final int CAMERA_HEIGHT = 800;

@Override
public EngineOptions onCreateEngineOptions() {
 Camera camera = new Camera(0, 0, CAMERA_WIDTH,
 CAMERA_HEIGHT);
 IResolutionPolicy resolutionPolicy = new
 FillResolutionPolicy();
 EngineOptions engineOptions = new EngineOptions(true,
 ScreenOrientation.PORTRAIT_FIXED, resolutionPolicy,
 camera);
 engineOptions.getAudioOptions().setNeedsMusic(true).
 setNeedsSound(true);
 engineOptions.setWakeLockOptions(WakeLockOptions.
 SCREEN_ON);
 Debug.i("Engine configured");
 return engineOptions;
}

We have defined two static constants that define the resolution of our view
port. AndEngine will then take care of scaling the final picture on the device.

2. In the method itself, we start with the camera definition. The Camera object
defines the part of the scene that will be visible. It takes four parameters: the
first two are the bottom-left coordinates in the scene and the third and fourth
are the width and height of the visible area.

3. Next, we define a resolution policy. The Android platform suffers from a
variety of different screen sizes and ratios. AndEngine tries to deal with this
by letting you specify one resolution and then scaling the resulting picture to
any device.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Setting Up an AndEngine Project

[28]

4. You don't need to care whether the screen size of the phone is bigger or
smaller than your desired resolution. AndEngine can enlarge your scene or
shrink the picture. You place your objects at coordinates in your resolution.
However, you still have to hint AndEngine about how the resulting picture
should be scaled, and that's what the resolution policy is for.

5. In the example, we are using the FillResolutionPolicy. As the name
suggests, this policy fills the whole screen with your scene. Your picture
will be resized but the aspect ratio will not be kept, unless the phone and
your scene have the same ratio. Pixels can become taller or wider.

6. Then, we create the EngineOptions object. This is the final object that will
be passed to the engine. It takes four parameters, as follows:

 ° Fullscreen: This option is set to true, as we want our game to
cover the whole screen.

 ° Screen orientation: For this, the possible values are PORTRAIT_
SENSOR, PORTRAIT_FIXED, LANDSCAPE_SENSOR, and LANDSCAPE_
FIXED. The sensor variant will flip the picture upside down when
you flip the device.

 ° Resolution policy: This is explained earlier.
 ° Camera: This is explained earlier.

7. We also set the audio options simply to indicate that we will be using both
sound and music.

8. Last, we set the wake lock to SCREEN_ON. This simply means that the device
will not enter sleep mode due to inactivity. This is important because you
can have a period in your game without user input when you don't want
the screen to turn off by itself. This can be a cutscene for example.

9. The line Debug.i("Engine configured"); is optional. This will print the
Engine configured message to LogCat. Use this kind of debug message to
check whether the method ran successfully.

The messages can have different levels: error, warning, info,
debug, and verbose. Each level has its own method, such as
Debug.e or Debug.d. These are used to differentiate the
severity of the method as LogCat allows filtering by the level.
You can use Debug.i("MyTag", "Engine configured");
in your code to further categorize your messages based on tags.

10. At the end, we return the engineOptions object.

Chapter 1

[29]

The onCreateResources method
The onCreateResources method is called after the engine options are created,
and it is used to initialize game resources such as graphics, sounds, and music.
For now, we leave this method empty.

@Override
public void onCreateResources(
 OnCreateResourcesCallback pOnCreateResourcesCallback)
 throws IOException {
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}

Notice the pOnCreateResourcesCallback parameter. This is used to indicate
that you are done loading the resources and the control is given back to the engine.
You have to call the onCreateResourcesFinished method, otherwise the engine
will not continue.

The onCreateScene method
The onCreateScene method is called from the onCreateResourcesCallback object
when you call the Finished method. It is used to create a scene object or objects.

Every displayable object in AndEngine is an entity. That includes the
scene, which is the parent of all the other entities currently displayed.
The engine can display one scene at a time, and you will typically
want to define multiple scenes, such as a menu scene and a game
scene. You can also have child scenes, which are used to display a
pause screen or a game over screen.

The following code describes the simplest scene. We only create an empty scene
object and set its background to cyan color.

@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback)
 throws IOException {
 Scene scene = new Scene();
 scene.getBackground().setColor(Color.CYAN);
 pOnCreateSceneCallback.onCreateSceneFinished(scene);
}

Again, you have to call the Finished method on the provided callback object to tell
the engine you are done creating your scene.

Setting Up an AndEngine Project

[30]

The onPopulateScene method
The onPopulateScene method is the final method we need to implement, which is
used to populate the scene with entities. For the simplest example, we are not going
to add any. Leave the method body empty, but remember to return the Scene object.
This method is called from the Scene callback and you have to call the next callback
too. This is described in the following code:

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback)
 throws IOException {
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

There is an alternative to BaseGameActivity called
SimpleBaseGameActivity which calls the callbacks for you at
the end of each of the onCreateResources, onCreateScene, and
onPopulateScene methods. It's up to you which one you want to
use, but you should understand what the callbacks are doing.

Running the application
Run the application and you should see an empty screen with a cyan background.
You can refer to the full source code for this chapter in the code bundle.

Understanding resolution policies
In the previous section, we configured the engine with FillResolutionPolicy.
Dealing with different screen resolutions can be a big issue, and it is one of the most
difficult topics to grasp for beginners. Especially for the first game, you should
choose a single resolution and prepare all your graphics assets as if you were
showing them in this resolution only. Let the engine deal with scaling and shrinking.

As you have learned before, AndEngine deals with different screen resolutions and
rations by using resolution policies. There are several of them, and they are suitable
for different scenarios.

Let's say you want to work with a resolution of 800 x 480 px. Your square is 80 x 80
px large. Let's add three of them to the scene. So, this is how you want your scene
to look. The bottom-left square is placed at [50, 50]. AndEngine calculates where to
display it in different resolutions.

Chapter 1

[31]

It should look like the following screenshot:

Let's see what this would look like on a Google Nexus 4 using different resolution
policies. The Google Nexus 4 has a resolution of 1280 x 768 px.

FixedResolutionPolicy
This policy simply creates a renderable area of specified size. If your screen is
1280 x 768 px like on the Nexus shown in the following screenshot, the 800 x 480 px
scene will be centered with a big border. If your screen size is exactly 800 x 480 px,
your scene will perfectly fit on your display. If your device has a smaller resolution,
the whole scene will be cropped. This policy keeps the aspect ratio of pixels
(squares will be squares).

You can of course pass anything to your FixedResolutionPolicy. It doesn't have
to be the same as the camera dimensions. You can measure the display size of the
device and then manually position all elements based on this measurement. That's
what this policy is for.

Setting Up an AndEngine Project

[32]

FillResolutionPolicy
As mentioned earlier, the FillResolutionPolicy fills the screen but can distort the
image because it doesn't keep the scene ratio.

You can see in the previous screenshot that on the Nexus 4, the difference is almost
unnoticeable, because 800 x 480 px ratio is about 1.66, and the Nexus 4 screen ratio
of 1280 x 768 is 1.66 too. But thanks to the soft buttons in the system bar, the usable
portion has roughly 1.56 screen ratio, and that's why the squares are slightly taller.

RelativeResolutionPolicy
You have to pass two floats to this policy, which are the percentages of width and
height of the screen you want to use. So, if you pass (1, 1), it means give me the whole
screen (the same as FillResolutionPolicy).

RatioResolutionPolicy
A ratio policy is probably the most commonly used in the examples. It keeps the
aspect ratio and scales your scene to fit one dimension. The other dimension will
be padded with the background color of your theme. It will create two bars.

Chapter 1

[33]

They are highlighted with yellow in the following screenshot:

If you set your background theme to be black, the bars will be black. If you use
this policy, try to match the theme background color to your game's background.

CropResolutionPolicy
This policy was originally created by user jgibbs on the AndEngine forums. He
called it CroppedResolutionPolicy. You will find a slightly modified version of
it in my GitHub repository.

The crop policy is similar to the ratio policy, but instead of padding, it scales
the scene while keeping the aspect ratio to cover the whole screen and crops the
overflow. See the arrows in the following screenshot pointing to the areas that
will be cropped:

Setting Up an AndEngine Project

[34]

This policy is not the easiest to use. You must place the objects relative to the edges.
The center of the screen will still be the center, but you can't simply say: place sprite
at [0, 0]. It might be in the overflow on some devices.

Summary
In this chapter, we learned how to set up our environment in order to develop
AndEngine games. We saw how to create a new Android application and how
to implement a foundation for an AndEngine game. Basic AndEngine parameters
were explained. We also covered one of the most difficult and important topics—the
resolution policies.

In the next chapter, we will draft our game idea and prepare the graphics, sound,
and music assets.

Game Concept and Assets
This chapter will introduce the game that we are going to make throughout the course
of this book. Even though this is not strictly an AndEngine topic, every game must
begin with a concept. We will outline the basic entities and gameplay rules. We will
also prepare all the assets needed for the game: graphics, sounds, and music. This
chapter will give you an idea of where to get pre-made assets. In the second part of
the chapter, we are going to include the assets to our game.

The game concept will be a Doodle Jump type of game that illustrates many of the
AndEngine features. We are going to create something that is called a game clone.
We will use similar rules but our own assets and code. Game clones are often the
first witnesses of a new game genre being born.

The game concept
We need to know how our game is going to look before we start coding. It is
important to have a basic idea and try to imagine whether this idea will work.
For your first game, it's highly recommended to start with something small and
possibly something that already exists.

Do not start with a complex idea. If it is your first game, you
will most likely get stuck and have a hard time finishing it.
Pick something you can finish in a matter of days.

www.allitebooks.com

http://www.allitebooks.org

Game Concept and Assets

[36]

Start with a pen and paper or some simple graphics software and try to draw the
basic screen from the game. The following figure is an example:

The basic idea is very simple. However, let's try to state even the obvious details.
This helps us to make sure we don't forget anything. The main goal of the character
is to get as high as possible. The score will be calculated from the height reached.
The obvious facts are that the game will be played in portrait mode and that there
is gravity that pulls our character down. The not so obvious fact is that when the
character leaves the screen from the left or right side, we want him to come back on
the other side. This is called wrap around.

There are randomly generated platforms that he can use as spring boards. The
character will be able to pass through the platform upwards, then fall on it, and the
platform should propel him up again. This is the key element of the game. See the
following illustration:

Chapter 2

[37]

As the character moves upwards, the camera follows him. When the character misses
the last platform on the current screen, the game is over. This also means that we have
to remove every platform that goes out of view when the view scrolls upwards.

To make the game a little bit more interesting, we can add enemies as well. These
will be flies hovering in the air.

Finally, we are going to add some decorations, let's say a couple of clouds.

We are going to include the Box2D physics extension that will take care of gravity
and collisions. We can implement these ourselves. This extension is probably overkill
for such a simple game. Let's use it anyway to see how physics in games work.

We want to have a sound on each jump and also a sound that will be played when
the characters misses the platform and falls down. We also want some background
music as well.

Now, let's think about controls. The jump will be triggered automatically as soon as
the character touches the platform. How should he move from left to right? There
are basically two options. First, we can use touch controls. Either add two buttons
to the screen or let the whole left half of the screen be a button to move left and the
right half a button to move right. We can also make use of the accelerometer and let
the character move by tilting the phone. Both approaches will work. Let's leave this
question open for now. AndEngine makes both options very easy to implement.

Identifying the basic entities
Let's review the concept and identify the basic entities in the game. They are
as follows:

• Character
• Platform
• Enemy
• Cloud

That's it. For each of the entities, we will need a graphic representation. The character
and enemy will be animated. For platforms and clouds, we only want static images.

Game Concept and Assets

[38]

Getting the assets
Assets are all resources used in a game including graphics, sound, and music. Maps,
levels, 3D models, skeleton animations, or any other kind of content in an external
file is an asset too.

When making a game, the best approach is, of course, to create a set of original assets
made exclusively for your game. However, this might not be possible for different
reasons, such as budget. Fortunately, there are plenty of free assets available online
for game developers to use.

Use free assets to create a proof of concept of your game idea
before you start investing money in custom-made assets!

You can find a sample list of completely free assets at http://android.kul.is/p/
list-of-free-resources.html.

Always check the license of free assets. The license can restrict
their commercial use.

We are going to search for all assets in this list. There is one asset pack that is
very useful for making a proof of concept game. It is called Open Game Art Bundle,
and you will find it at http://open.commonly.cc/.

This asset pack is licensed as Creative Commons Zero (CC-0), which basically means
you can use it for any purpose. You can also modify any part of it and redistribute it.

For more information about Creative Commons licenses,
visit http://creativecommons.org/licenses/.

Graphics
For our character, enemy, clouds, and platform, we will utilize a set of sprites from
Open Game Art Bundle. A sprite is a piece of graphic that can be moved on the
screen. The graphic is usually saved in an image file. If there is more than one sprite
in the same picture, we call it a sprite sheet. Sprite sheets are very useful, especially
when creating animations.

http://android.kul.is/p/list-of-free-resources.html
http://android.kul.is/p/list-of-free-resources.html
http://open.commonly.cc/
http://creativecommons.org/licenses/

Chapter 2

[39]

You can see a preview of the sprite sheet, which has been used in several platform
games already, in the following screenshot. You might see some parts of it that we
are going to use.

You will find all the following assets in the code bundle.

Graphic formats
AndEngine can load images of any raster format that is supported by Android.
The raster format means the pixels are stored one by one. When you scale the raster
format, you have to compute each new pixel in the scaled version from the existing
information. While this is usually not a problem when scaling down the picture,
it can produce blurring or unwanted artifacts when scaling up.

The second option is the vector graphics format, where lines, curves, rectangles,
and so on are stored separately and the image is drawn when needed. The biggest
advantage of the vector file format is that it can be scaled indefinitely while keeping
the same quality. On the other hand, working with vectors needs more performance;
therefore, the vectors are usually rasterized before they are used in games.
Rasterization is a process in which the vector graphics described as shapes
are converted to pixels, usually by rendering them in a selected resolution.

Game Concept and Assets

[40]

The file size of different formats varies. In the end, all images will be stored in
the graphics memory as textures, and it doesn't matter which format is used.
However, the file formats influence the storage space needed, quality of the
final texture, and load times.

The supported raster formats are the following:

• JPEG
• GIF
• PNG
• BMP
• WebP (Android 4.0 and above)

AndEngine has one extension that allows us to use the SVG vector file format.
It rasterizes the SVG file. Vectors are drawn onto a canvas first and then saved
into memory as any other raster image.

Each format has its use, advantages, and disadvantages. For an updated list of
supported file formats, visit the official Android SDK page at http://developer.
android.com/guide/appendix/media-formats.html. The formats are described
as follows:

• Joint Photographic Experts Group (JPEG): This is the most common lossy
compression image file format used today. Lossy means it compresses the
image by discarding some information. It is important to understand how
JPEG works to make full use of it and to know when to avoid it.
JPEG exploits the imperfections of human vision. First, it reduces the number
of colors that are available. Instead of the red, green, and blue components,
JPEG stores pixels in YCbCr space, which means one intensity channel and
two color components. You can imagine the intensity channel as a black
and white representation of the image and the two chroma components as
coordinates in a two-dimensional color palette. As the human eye is more
sensitive to intensity than to color, the color palette space is shrunk usually
by a factor of 2. This is the first loss of information.
In the next step, the image is cut into 8 x 8 pixel blocks. These are
transformed using Discrete Cosine Transformation (DCT), which gives us
a different representation of the blocks. Instead of 64 pixels, we represent all
the blocks as a linear combination of 64 patterns and then reduce the number
of possible values of the coefficients of the combination. This is the second
loss of information, and it is called quantization. The quality setting of JPEG
influences how much the coefficients will be quantized, and therefore how
much information will be lost.

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html

Chapter 2

[41]

Finally, the blocks are losslessly compressed using a compression method
similar to the file compression format ZIP.
The JPEG file format doesn't use transparency. It is most useful to represent
real-world images and photographs. In a game, you would typically want
JPEG to store, for example, a real sky image. JPEG offers the smallest file size
for real-world images, but there is always a trade-off with quality. It is not
recommended for cartoon graphics.
In the next figure, compare the original cartoon graphic (left) and the
result saved as JPEG with very low compression (right). The quantization
introduces block artifacts. This example uses extremely strong quantization,
but with today's high quality displays, even higher quality compression can
be noticeable.

• Graphics Interchange Format (GIF): This used to be a very popular format,
and it is going through a renaissance thanks to its animation capability.
The format, however, has its limitations. It can only use a 256-color palette
with one color reserved for the alpha channel (transparency). It uses lossless
compression as well. The file size can be very small but it is not used in
games due to the color limitations and also because there is a better file
format available. However, it is still supported by Android because it is very
popular on the Internet.

• Bitmap (BMP): BMP is losslessly compressed using the run-length encoding
image file format. This means that same pixels in a row are saved as a color
and the length of the series. BMP files tend to be big and they don't have any
advantage over PNG.

• Portable Network Graphics (PNG): We will be using the PNG file format
for our sprites, and it is also the recommended raster graphics format for
cartoon graphics. It uses lossless compression and has an alpha channel
(transparency). There are different types of PNG: 8-bit (useful for black
and white images) and 24-bit, which can support any number of colors
displayable by current screens. The alpha channel in PNG can be missing
(saves space), 1-bit (on/off), or 8-bit (256 levels of transparency).

Game Concept and Assets

[42]

PNG offers a good size to quality ratio. The file size grows with the increasing
complexity of the image. PNG doesn't handle photos or cartoon graphics with
gradients very well.

• WebP: This is a new file format from Google. It offers both lossy and lossless
compression and claims to produce smaller file sizes. Its limitation is that it is
not as widespread as the other file formats. You might run into compatibility
problems on older Android versions. This file format is not recommended to
be used with AndEngine.

• Scalable Vector Graphics (SVG): This is a textual file format. It is very
verbose and describes how the image should be drawn. AndEngine has an
extension to convert the SVG files to textures. However, it can take quite a
lot of time at the start of the game. SVG can be useful for supporting a wide
range of devices. However, that is an advanced topic.

The main character
The main character will have the following three animation frames:

• Flying up (jumping)
• Falling on a platform
• Falling below a platform (game over)

In platform games, it is very common to have several frames for animations of
walking, running, and so on. Our game is much simpler. We can find all the
necessary frames in the existing sprite sheet in the pack. For our purposes, we will
cut the needed frames and create our own sheet. Have a look at the following figure:

player.png

The three frames, starting from the left, are:

• Jump
• Fall
• Game over fall

Chapter 2

[43]

All frames have the same dimensions. While this is not always necessary,
it makes things easier. Unless you need memory size optimizations, simply
use the same size frames.

Notice that our character is facing only to the right. This is fine because it's very
simple to draw the same sprite flipped horizontally, effectively doubling the
number of animation frames. This is a common trick in animation.

The background is transparent. Color has been used for illustration purposes only.

The enemy
The enemy will be static, staying in one place. However, we will make it animated;
it will flap its wings, which will create an illusion that it is actually hovering.
We only need two frames to create such an animation, which are shown in the
following figure:

enemy.png

It doesn't matter whether we are creating the sprite sheet horizontally or vertically.
You can also have a grid with many frames in one image. Later, we will specify the
number of columns and rows for each sprite sheet.

Platform and clouds
We will have two different types of clouds and one platform. The easiest way to save
them is to use one file for each sprite. See the following figure:

platform.png

Game Concept and Assets

[44]

The platform is created from the tiles available in Open Game Art Bundle.
Two different tiles are used (the left and right halves). We call these images tiles
because they are mostly static and make up the floor or walls in a game. You will
encounter tiles and tilesets very often in 2D games. Mostly, you will only need a
few tiles to create a whole world. Now, have a look at the following figure;
it shows our first cloud:

cloud1.png

The following figure shows our second cloud:

cloud2.png

There are many ways to save the sprites and sprite sheets.
There are tools to optimize their placement into a single
file. However, for a simple game, don't worry about such
optimizations. Make the game first.

Putting it all together
Now, let's try to recreate the initial concept with the graphic assets that we have
found. The following screenshot shows how it should look on a phone screen.
We are going to create a game that will look pretty much the same.

Notice that we have added a score counter to the top-left corner to complete the
design of our game screen.

Chapter 2

[45]

White color text with black stroke will be visible on any kind of
background.

Sounds and music
Audio effects add more depth to every game. A right sound at the right time makes
everything feel more real. Imagine shooting a gun. Without the sound, it will never
feel right.

Music in games is used to set the mood, similar to music in movies. A good choice of
music can make a game better and vice versa. Usually, we want to use a music track
that loops well.

You will find the music and sounds in the code bundle as well.

www.allitebooks.com

http://www.allitebooks.org

Game Concept and Assets

[46]

Audio file formats
There are many audio file formats available for use. For a full list, refer to the
official list again at http://developer.android.com/guide/appendix/media-
formats.html.

The most popular formats are WAV, MP3, and OGG for both sounds and music.
While the WAV format supports many types of both lossy and lossless compression,
the MP3 and OGG formats are lossy only. Lossy compression in audio works in a
similar way to the one in graphics. The sound wave is transformed and some parts
are cut off. This is why a highly compressed audio file can sound like speaking from
a bad phone.

The OGG file format is recommended because it has easily adjustable quality settings
and produces slightly smaller files than the MP3 format.

Sound effects
For our game, we only need the jumping sound and the sound of falling when the
game is over. We could, of course, add more sounds, but this will be enough to
illustrate the sound handling in AndEngine.

There are a few good websites that allow users to search for sounds by name, tags,
and licenses. We are going to use CC-0 licensed audio files. The sounds used in the
game can be found at http://www.freesound.org/.

For the jumping sound, you can use almost anything. A short tap or a bottle being
opened will do. The falling sound in our game is the same sound they use in
cartoons, made by a whistle.

Music
Getting the right music might be difficult. CC-0 music is not very common.
However, for the purpose of this book, we can again use Open Game Art Bundle.
We only need one track that will play during the game and loop indefinitely.

Many games will work well without music as well. Don't get stuck
on looking for the right track.

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
http://www.freesound.org/

Chapter 2

[47]

Scene diagram
A scene diagram is useful when designing the skeleton of the application. For now, the
scene is just a screen that is part of our game. We want to have a few different screens
in our game, that is, different scenes. A typical game contains at least a splash scene, a
menu scene, and a game scene. A splash scene is usually used to load resources in the
background while showing a badge or logo of the game author.

We can add a loading scene between the menu and the game or between different
levels or stages of the game. Some games will also have a special scene for game
settings, final score, hall of fame, and so on.

We will keep our scenes to a minimum. The following is a simple diagram that
shows transitions from one scene to another. Notice the Back label. That means
the user taps the back button on the device.

Loading Scene

Game Scene

Splash Scene

Menu SceneExit
Back

Back

The splash and loading scenes are very simple and we do not need to spend time
designing them right now. We could design our menu scene, but it won't benefit
us much at this point. Let's start coding.

Game Concept and Assets

[48]

Summary
Concept is an important part in making a game. Not only do you get an idea of how
your game is going to look, but it will also show you most of the resources that you
are going to need. It's also important to think your idea through before coding and
identify any possible caveats. Later, when you start coding and get stuck, get back
to your concept.

In this chapter, we have drafted our game and its rules. We have also designed our
game screen using the real assets that we are going to use in our game. The concept
will serve as the blueprint to our game.

In the next chapter, we will load the assets to memory in order to use them. We will
list the different ways of loading the graphics and types of textures. We are going to
see the most common unwanted artifacts that can appear in AndEngine games, and
we will discuss how to prevent them. Finally, we are going to use the assets to create
our main character and add it to the game.

From Assets to Entities
We have our draft and it's time to convert the ideas into reality. In the first part of
this chapter, we are going to see how assets—images, fonts, sounds, and music—are
loaded into the memory. We will go through different ways of loading images based
on the desired quality and performance. This chapter will also point out the most
common mistakes made when storing and using textures.

In the second part, we will create the entities that will be used throughout the game.
This is an important transition from a static image to an interactive object.

Managing resources
In many games written in AndEngine, you will see the ResourceManager class. It's
one of the established patterns that you should be using as well. ResourceManager
is simply a class that takes care of loading and unloading of the resources. Because
the memory in Android devices is very limited, it is important to have a centralized
point that will ensure each asset is loaded only once and made available throughout
the entire game code. When working with limited space, you can also consider
unloading resources that are not being currently used.

When you suspend a game by pressing the Home button or when
another activity takes over, for example, when receiving a call,
resources might be unloaded automatically. AndEngine makes
them available again when the control is returned to the game.

The ResourceManager class is usually designed as a singleton. That is another
design pattern. It ensures that only one instance of the class is created during the
entire run of the program. We will make this one instance available through a static
method called getInstance().

From Assets to Entities

[50]

Let's start by creating a barebone Resource Manager. This can be done as follows:

package is.kul.learningandengine;

public class ResourceManager {
 // single instance is created only
 private static final ResourceManager INSTANCE = new
 ResourceManager();

 // constructor is private to ensure nobody can call it from
 outside
 private ResourceManager() { }

 public static ResourceManager getInstance() {
 return INSTANCE;
 }
}

Because the Resource Manager will be available from any place in the code, we can
make use of it and put some commonly used objects here. Add the following two
snippets into the code of the ResourceManager class. First, declare the common
objects, as follows:

//common objects
public GameActivity activity;
public Engine engine;
public Camera camera;
public VertexBufferObjectManager vbom;

Then, add a method to create the Resource Manager, as follows:

public void create(GameActivity activity, Engine engine, Camera
 camera, VertexBufferObjectManager vbom) {
 this.activity = activity;
 this.engine = engine;
 this.camera = camera;
 this.vbom = vbom;
}

The objects we are going to use are as follows:

• activity: This is our game activity. The activity classes extend the
Context class. The Context class holds a lot of important information
and provides useful methods. We will make use of some of the activity
classes later.

Chapter 3

[51]

• engine: Sometimes, we need to manipulate the engine itself. The engine
instance is available from the activity class as well, but this way it's easier
to use it.

• camera: Similar to the engine field, we sometimes need a handle to the
camera object.

• vbom: Vertex Buffer Object (VBO) is used to upload vertex data (points with
position, color, normal vector, and so on) to the video memory. In OpenGL,
almost everything is rendered using vertex data. VBO resides in the video
memory and that makes rendering it faster. Vertex Buffer Object manager
is a manager of these objects. It simplifies the use of VBOs in the game, and
we will use it often.

Loading graphics
We will start by loading the graphics. First, let's go through some basic terms:

• Texture: From texture mapping, texture is a surface applied to a 3D object.
In a 2D world, the 3D object is usually a rectangle (a quad is made up of
two triangles) viewed in orthographic projection.

• Texture atlas: This is a collection of textures (subimages) on a single image.
We can imagine it as a page in a photo album with small pictures and
stickers placed on the page.

• Texture region: This is the definition of the texture in a texture atlas.

In AndEngine and Android in general, we are making use of texture atlases
because they limit the amount of operations needed to load and unload images
from the video memory.

In our game, we are going to use the following texture regions in a single atlas.
Let's add the following code to the ResourceManager class:

//game textures
public ITiledTextureRegion playerTextureRegion;
public ITiledTextureRegion enemyTextureRegion;
public ITextureRegion platformTextureRegion;
public ITextureRegion cloud1TextureRegion;
public ITextureRegion cloud2TextureRegion;

private BuildableBitmapTextureAtlas gameTextureAtlas;

We have defined the five texture regions. Notice that two of the regions are
tiled texture regions. They are in fact the same as the texture regions, but they
define subregions within themselves. This is useful for sprites that change
shape or are animated.

From Assets to Entities

[52]

The following figure shows what an example texture atlas looks like. The regions
are numbered from one to five. Regions one and five are the tiled regions.
The backgrounds are used only for illustration.

We are going to use a buildable texture atlas. When placing the images onto a
texture atlas, you can either specify the positions manually, use some external
software to create the atlas for you, or use AndEngine's built-in facility to create
the atlas automatically. For our purpose, automatic creation is the best. It will
result in a similar texture atlas to the preceding example.

We will expect all of our assets from the previous chapter to be located in the
assets/gfx directory.

Add the following method to the ResourceManager class:

public void loadGameGraphics() {
 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/");
 gameTextureAtlas = new BuildableBitmapTextureAtlas(activity.
 getTextureManager(),

Chapter 3

[53]

 1024, 512, BitmapTextureFormat.RGBA_8888, TextureOptions.
 BILINEAR_PREMULTIPLYALPHA);

 playerTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createTiledFromAsset(
 gameTextureAtlas, activity.getAssets(), "player.png", 3, 1);

 enemyTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createTiledFromAsset(
 gameTextureAtlas, activity.getAssets(), "enemy.png", 1, 2);

 platformTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(
 gameTextureAtlas, activity.getAssets(), "platform.png");

 cloud1TextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(
 gameTextureAtlas, activity.getAssets(), "cloud1.png");

 cloud2TextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(
 gameTextureAtlas, activity.getAssets(), "cloud2.png");

 try {
 gameTextureAtlas.build(new
 BlackPawnTextureAtlasBuilder<IBitmapTextureAtlasSource,
 BitmapTextureAtlas>(2, 0, 2));
 gameTextureAtlas.load();

 } catch (final TextureAtlasBuilderException e) {
 throw new RuntimeException("Error while loading game
 textures", e);
 }
}

The first line sets the current working directory for the texture to assets/gfx.
Then, the bitmap texture atlas is initialized. As mentioned earlier, we could create
either a simple bitmap texture atlas or a buildable bitmap texture atlas. To make
things easier for us, we use the buildable option and let the algorithm place our
textures automatically. The only thing you need to take care of is the size of the
atlas. It must be big enough to fit all the regions.

From Assets to Entities

[54]

Bitmap texture format
The bitmap texture format specifies the color resolution and quality of the texture.
There are currently three formats implemented, which are as follows:

• RGBA_8888: This has 32-bit textures and the highest quality. It stores
alpha channel (transparency).

• RGBA_4444: This has 16-bit textures with an alpha channel. You will
experience quality loss; colors are matched using the nearest equivalent.
It can create unwanted artifacts, but saves a lot of memory.

• RGB_565: This has 16-bit textures without an alpha channel; green
channel has more bits, because it's most important for the human eye.

Texture options
Texture options is another setting that influences quality. There are eight options in
total and they are a combination of three flags: interpolation, alpha channel settings,
and repeating. The possible constants are as follows:

• NEAREST

• BILINEAR

• REPEATING_NEAREST

• REPEATING_BILINEAR

• NEAREST_PREMULTIPLYALPHA

• BILINEAR_PREMULTIPLYALPHA

• REPEATING_NEAREST_PREMULTIPLYALPHA

• REPEATING_BILINEAR_PREMULTIPLYALPHA

If you don't specify the TextureOptions parameter, the default
setting is used. Here, the DEFAULT value is NEAREST.

Interpolation
When resizing the images, the interpolation option specifies how the image is
resampled (shrunk or enlarged).

Chapter 3

[55]

Nearest-neighbor interpolation
Nearest neighbor uses a technique where the final pixel in the target image is
calculated from the nearest pixel in the source image.

The following screenshots are examples of what it looks like when you enlarge
or shrink an image using the nearest-neighbor interpolation:

Original

The following enlarged image looks pixelated. The image has not been
resized smoothly.

Enlarged

The following image that has been shrunk has lost some of its details, which is
expected, but notice the left wing. It looks very different from the original.

Shrunk

Here's the reason. When resizing images, first the position in the original image is
calculated and then the nearest pixel to that point is used. This is described in the
following figure:

www.allitebooks.com

http://www.allitebooks.org

From Assets to Entities

[56]

This interpolation is not very precise, but it preserves the hard edges. It is, however,
very seldom used in games on the Android platform, because resizing happens a lot
due to the number of different resolutions. You would see a lot of unwanted artifacts
when using this interpolation. On the other hand, this interpolation is very fast.

Bilinear interpolation
Imagine you have two discrete values and you want to know the value somewhere
between them. Linear interpolation is one of the ways to fill the holes between the
points. Bilinear interpolation is an extension of linear interpolation into 2D.
The resampled images can look blurry. See the following screenshot:

Original

The following enlarged image has been smoothly resized. It's a bit blurry,
but not pixelated.

Enlarged

The image that has been shrunk lost some of its details, which is expected, but the
shapes are almost the same as in the original.

Shrunk

Chapter 3

[57]

Imagine that instead of measuring which is the nearest pixel to the target pixel in the
source grid, we will project all four corners and then calculate the result from these
four values. This is described in the following figure. The bilinear interpolation is
slower, but with the current graphics hardware, you won't notice any slowdown.

Repeating
Repeating is very simple. In the nonrepeating case, if you resize the texture, the
image will be stretched or shrunk. In the repeating case, it will stay the same size
and it will repeat as necessary. This type of texture is typically used to draw a wall
or a floor. The following figure has been scaled to 250 percent using the repeating
settings. Notice that the texture repeats 2.5 times in both directions.

Alpha channel settings
There are two modes for alpha: straight alpha and premultiplied alpha. When
handled correctly, these two are equal. The difference is that in the premultiplied
mode, the color is matted, usually by black color, according to the alpha value.

For example, a blue pixel with 50 percent alpha in the straight alpha texture will
have RGBA: [0, 0, 255, 127] value. The same pixel in the premultiplied version
will have RGBA: [0, 0, 127, 127] value.

From Assets to Entities

[58]

Creating the regions
We use the BitmapTextureAtlasTextureRegionFactory class to create texture
regions. You can create regions from assets (the images in the assets directory),
resources (Android resources in the res directory), or any source object that
produces bitmaps. We are going to use the first option. Notice that we are creating
both simple and tiled assets. We simply specify which texture atlas to use and which
file to load. The extra two parameters in tiled assets are the number of columns and
rows. Consider the following code:

…
gameTextureAtlas = new BuildableBitmapTextureAtlas
 (activity.getTextureManager(),
 1024, 512, BitmapTextureFormat.RGBA_8888,
 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

playerTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createTiledFromAsset(
 gameTextureAtlas, activity.getAssets(), "player.png", 3, 1);

enemyTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createTiledFromAsset(
 gameTextureAtlas, activity.getAssets(), "enemy.png", 1, 2);

platformTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(
 gameTextureAtlas, activity.getAssets(), "platform.png");
…

Because we are using a buildable bitmap texture atlas, we do not have to specify
where to place the region in the atlas. If we use the simple atlas, we would have
to call another method that has two extra parameters, which are the x and y
positions of the region within the atlas.

Building the atlas
Finally, the code in the try and catch code blocks builds the atlas. In other words,
it calls the algorithm (called BlackPawn) to place the regions on the atlas. This is
shown in the following code:

try {
 gameTextureAtlas.build(new
 BlackPawnTextureAtlasBuilder<IBitmapTextureAtlasSource,
 BitmapTextureAtlas>(2, 0, 2));
 gameTextureAtlas.load();

Chapter 3

[59]

} catch (final TextureAtlasBuilderException e) {
 throw new RuntimeException("Error while loading game textures"
 , e);
}

We are catching the TextureAtlasBuilderException that can happen when it is
not possible to place all regions on the atlas. In this case, our application will end
with an error.

The BlackPawn builder has the following three parameters:

• Atlas border spacing: This is the minimum distance between the atlas
border and the texture border

• Source spacing: This is the space between the texture regions
• Source padding: This is the extra space inside the region's border

These parameters are used to prevent unwanted artifacts around sprites.
These are caused by texture and alpha bleeding.

Texture and alpha bleeding
The two main issues when creating sprites from textures in texture regions are
texture and alpha bleeding. They can appear any time, but mostly they create lines
around sprites that are visible usually when playing in a different resolution than
the one the game was designed for.

Texture bleeding
The following figure shows what texture bleeding looks like. Notice the two black
lines at the top of the sprite.

From Assets to Entities

[60]

The sprite was sampled from the tiled texture region in the following figure. The
border shows the area that was used for sampling. It goes beyond the limit of the
single tile, because of the interpolation. The pixels at the border of the lower tile are
calculated using the last row of pixels in the upper tile.

This can happen due to two reasons. First, we have a tiled sprite without spacing
(or padding) between the tiles. Then we can see these lines, which are parts of the
other tile. Secondly, when placing these regions onto the atlas, we place them too
close to each other and a region (tiled or not) will sample some values from the
neighboring regions.

The former can only be prevented when creating the tiled spritesheets. Make
sure you leave some space around the borders of the sprites. The latter can be
prevented by placing the regions onto the atlas while leaving some borders around
them (padding or spacing). This is what the BlackPawn texture builder algorithm
parameters are for.

Alpha bleeding
Alpha bleeding is caused when resampling images with alpha channel. It is not
as obvious as texture bleeding. When you create an image with transparency, the
transparent pixels still have red, green, and blue values. Usually, they are set to
black or white. When sampling the pixels on the border, sometimes these are
sampled to calculate the final color. Alpha bleeding can sometimes be prevented in
AndEngine using the premultiplied alpha variants of textures. But in most cases, it
won't be noticeable.

Chapter 3

[61]

The following figure is an example of what alpha bleeding looks like. The little
image on the left is placed over a white background and is moved by a pixel to the
right first. Alpha bleeding doesn't happen. But then, it's moved only half a pixel to
the right. This can easily happen, because our game can be displayed on different
resolution screens than originally planned or the sprite can be resized.

The problem here is that the graphics library needs to sample half of pixel A.
Pixel A is transparent, but it's underlying color is in fact black with zero alpha.
So, when a real color is needed, 50 percent black is used and this will bleed into
the blue making it darker.

Unloading graphics
When working with a lot of graphics assets in your game, the memory might not fit
all of them. Also, because an Android device's memory is quite limited and there can
be multiple running applications at the same time, it's important to unload resources
you don't need.

When a user presses the Home button, the graphics resources are unloaded
automatically and are loaded back when the controls are given back to the game.
Sometimes, the Android system decides that it needs all the memory occupied by
the game. In that case, the game is terminated and when the user runs it again, it is
started from the beginning.

When working with multiple scenes, a good practice is to unload the graphics
resources that are no longer needed. To do that, you only need to call the unload()
method of the texture atlas, as shown in the following line of code:

gameTextureAtlas.unload();

In our case, we are not going to use it because we don't need to unload any resources.

From Assets to Entities

[62]

Loading sounds and music
Both sounds and music are stored in audio files. Any type of audio file that the
Android media player can play can be used in AndEngine. The most popular file
formats are WAV, MP3, and OGG. Using OGG is highly recommended, because
it's a well-documented open format with good compression.

You can use free software, such as Audacity, to convert between the
file formats. Audacity has built-in OGG support. You can download it
from http://audacity.sourceforge.net/.

If your sound and music files are in other formats, you can still use them. In our
example, we will use OGG files.

Start by defining the fields for sounds and music. Add the following code to the
ResourceManager class:

//sounds
public Sound soundFall;
public Sound soundJump;

//music
public Music music;

Then, add a method to load them. This is shown in the following code:

public void loadGameAudio() {
 try {
 SoundFactory.setAssetBasePath("sfx/");
 soundJump = SoundFactory.createSoundFromAsset
 (activity.getSoundManager(), activity, "jump.ogg");
 soundFall = SoundFactory.createSoundFromAsset
 (activity.getSoundManager(), activity, "fall.ogg");

 MusicFactory.setAssetBasePath("mfx/");
 music = MusicFactory.createMusicFromAsset
 (activity.getMusicManager(), activity, "music.ogg");
 } catch (Exception e) {
 throw new RuntimeException("Error while loading audio", e);
 }
}

http://audacity.sourceforge.net/

Chapter 3

[63]

We are using two different factories: SoundFactory and MusicFactory. They both
have the setAssetBasePath method to set the root folder for sounds and music.

Loading both music and sound is pretty straightforward. Simply pass the sound or
music manager to the factory, the Android context instance (that is our activity),
and the path starting from the root folder that we set with the setAssetBasePath()
method.

The basic difference between sound and music objects is that sounds are pooled and
many sounds can be played at once. In the case of music, only one file can be played
at once, and you are given more precise controls over the audio track, for example,
seek, rewind, and pause. In both cases, you can set the volume or mute the audio.

Unloading sounds and music
It is possible to unload sounds and music as well by using the release() method
on the sound or music object. However, audio is stored in a different memory than
the graphics (textures), and we won't usually run into memory problems while using
them. For simple games, it's safe to just keep them in memory.

Loading fonts
Fonts in AndEngine are stored in textures and loading fonts is similar to loading
graphics. AndEngine can take a font file or it can render a system font to the texture.
This means that every character will be defined as a small texture region on a big
texture atlas. As a consequence, you have to create a font for a fixed size and color.
You can also create a stroke around the font.

Use contrasting colors such as white and black to create a font
with a stroke. It helps the readability of the text.

Also, you must define a texture big enough to fit all the characters you are going to
need. AndEngine creates the characters one by one and puts them on the texture as
they are requested.

We are going to use only one font. If more sizes are needed, text can be scaled, but
it's recommended to create separate fonts for separate sizes. Creating the font in
white allows us to change its color later. If we create the font in black, the color can't
be changed anymore.

From Assets to Entities

[64]

Add the following code to the ResourceManager class:

//font
public Font font;

public void loadFont() {
 font = FontFactory.createStroke(activity.getFontManager(),
 activity.getTextureManager(), 256, 256,
 Typeface.create(Typeface.SANS_SERIF, Typeface.BOLD), 50,
 true, Color.WHITE_ABGR_PACKED_INT, 2,
 Color.BLACK_ABGR_PACKED_INT);
 font.load();
}

The FontFactory class has methods to create fonts and stroked fonts from a
system font and from font files. In our example, we create a stroked font.

The texture size we are using is 256 x 256 pixels big and the font size is 50 px.
This won't fit all the characters in the font, but it's big enough for our case. It is
possible to use the font.prepareLetters(); method to create the characters
you will need in the texture beforehand. If you end up with black boxes instead
of characters, you will know that your texture is too small.

We are creating a bold Sans Serif system font of size 50, which roughly translates
to 50 pixel-tall characters (maximum) with variable width.

The Boolean parameter we are using (true) means we want the font to be anti-
aliased (smooth edges).

The color is passed as a packed integer. We don't need to worry about how it is
calculated because AndEngine's Color class can convert it for us from separate
red, green, blue, and alpha values. Some common values such as black and white
are already precalculated.

Unloading fonts
Because fonts are nothing else but textures, you can unload them the same way.
Simply call the following function:

font.unload();

Chapter 3

[65]

Putting it all together
When we have created all the necessary methods in the ResourceManager class, we
also need to call them at the right time. Let's go back to the GameActivity class and
change the following method:

@Override
public void onCreateResources(
 OnCreateResourcesCallback pOnCreateResourcesCallback)
 throws IOException {
 ResourceManager.getInstance().create(this, getEngine(),
 getEngine().getCamera(), getVertexBufferObjectManager());
 ResourceManager.getInstance().loadFont();
 ResourceManager.getInstance().loadGameAudio();
 ResourceManager.getInstance().loadGameGraphics();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}

First, we instantiate our singleton Resource Manager. We pass all the important
objects in order to store the references in Resource Manager. Then we load the font,
audio, and graphics, and finally call the callback method to indicate we are done
loading resources.

If you load a resource twice without unloading it, two copies will
be created in the memory. This is called a memory leak. If you
repeat it several times, the game will either crash or the user will
experience glitches.

We have finished loading all the resources we will need for now, and we can move
on to creating entities that will be displayed on the screen.

Entities
Everything you can display in AndEngine is an entity. The Entity class is a basic
class that stands on top of the hierarchy. The Entity class has all the parameters the
displayable objects need, such as position, scale factor, color, and so on. But on its
own, it doesn't display anything.

The Entity class can also have children, both in Java class hierarchy and in the
hierarchy of AndEngine objects.

From Assets to Entities

[66]

For the former case, let's take the Sprite class as an example. A sprite in AndEngine is
a simple image rendered on a quad (a square made of two triangles). The Sprite class
extends the Shape class, which already knows what to do when the programmer sets
its height and width; therefore, the Sprite class doesn't need to implement it. Also, the
Shape class extends the Entity class. See the following diagram for another example:

Entity

Shape Scene

Sprite Line Rectangle

The latter case means that you can attach one entity to another. It doesn't matter
what type it is, whether it's a sprite, shape, or anything else, as long as it is an entity.
The most basic example of this behavior is a scene and its children.

Scene
AndEngine can display one scene at a time. The Scene object is passed to the engine.
A scene is an entity too. A scene can have any number of entities attached to it. It can
also have a child scene. This is useful when you want to quickly show, for example,
a pop up at the end of a level. The hierarchy of attached entities will look similar to
what is shown in the following diagram:

Scene

ChildScene Sprite Rectangle

Sprite Sprite Sprite Sprite

Notice that a sprite can be attached to a rectangle. Also, a rectangle can be attached
to a sprite, because both the objects are extending the Entity class.

Chapter 3

[67]

We will start by creating a scene. For now, we only want to have one scene, the
GameScene. But later, we might want to add another scene for menu or even more
scenes. It's a very good practice to think about what all our scenes have in common
and then create a common ancestor for all our scenes.

Use Java packages to organize classes. Put all scene classes
in to a subpackage scene. In our case, that will be a package
called is.kul.learningandengine.scene.

AbstractScene
The AbstractScene class serves as a base for all other scenes. It's like a template for
creating scenes. It's also designed as an abstract class, which means we can't create
an instance of AbstractScene. Abstract classes are typically used when we want
to define some default behavior in child classes. We define this behavior in regular
methods of the abstract class and we force the child classes to implement the other
methods by marking them as abstract.

The following code describes what the Java class looks like:

package is.kul.learningandengine.scene;

public abstract class AbstractScene extends Scene {
 protected ResourceManager res = ResourceManager.getInstance();

 protected Engine engine = res.engine;
 protected GameActivity activity = res.activity;
 protected VertexBufferObjectManager vbom = res.vbom;
 protected Camera camera = res.camera;

 public abstract void populate();

 public void destroy() {
 }

 public void onBackKeyPressed() {
 Debug.d("Back key pressed");
 }

 public abstract void onPause();

 public abstract void onResume();
}

From Assets to Entities

[68]

The basic fields are added and populated from the ResourceManager class. This is
just a convenience so we can directly access them in every scene.

The abstract method populate() must be implemented in the scenes that extend
AbstractScene.

The destroy() method is not abstract and has a default behavior to do nothing.
Sometimes, we need to do something when the scene is destroyed. In that case,
we can override this method.

The onBackKeyPressed() method is called when the players press the back key on
their phone. Each scene should behave differently. For example, you could go back
to the menu scene from the game scene, and you should exit the game from the
menu scene when the back key is pressed.

The last two methods define actions to be taken when the game is paused and
resumed. This can happen when the user presses the Home button, or it can be
triggered by an incoming call and so on.

GameScene
In a typical multiscene game, we need to have another class, SceneManager, that will
take care of switching the scenes and handle the pause, resume, and back key press.
But we are going to start with a single scene. This will allow us to quickly develop
the game itself first and only later add other scenes.

Create a class called GameScene in the is.kul.learningandengine.scene package
and make it extend AbstractScene. It should look like the following code snippet:

package is.kul.learningandengine.scene;

public class GameScene extends AbstractScene {

 @Override
 public void populate() {

 }

 @Override
 public void onPause() {

 }

Chapter 3

[69]

 @Override
 public void onResume() {

 }

}

Now, let's go back to the GameActivity class and make it create our GameScene
class. Change the following two methods:

@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback)
 throws IOException {
 Scene scene = new GameScene();
 pOnCreateSceneCallback.onCreateSceneFinished(scene);
}

@Override
public void onPopulateScene(Scene pScene,
 OnPopulateSceneCallback pOnPopulateSceneCallback)
 throws IOException {
 AbstractScene scene = (AbstractScene) pScene;
 scene.populate();
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

Let's add something to the scene and test whether we have done everything correctly.

Background
Each scene has a background. The background is always drawn first, therefore, it
will always be displayed behind all other entities as expected. There are many kinds
of backgrounds. They are as follows:

• EntityBackground: This is the simplest class; any entity can be a background.
• SpriteBackground: This is a single sprite background.
• RepeatingSpriteBackground: This is a tiled background; a single sprite is

repeated to cover the whole background.
• ParallaxBackground: This is a background that creates a feeling of depth

by using several layers that move with different velocities.
• AutoParallaxBackground: This is the same as ParallaxBackground but

moves on its own. This is useful for creating effects with moving clouds
and so on.

From Assets to Entities

[70]

Let's create the same background as the one in the game concept explained in
Chapter 2, Game Concept and Assets. We will simply set the background to light blue
color and add two clouds. The easiest way to do this is to use EntityBackground.
Change the populate() method in the GameScene class as follows:

@Override
public void populate() {
 createBackground();
}

private void createBackground() {
 Entity background = new Entity();
 Sprite cloud1 = new Sprite(200, 300, res.cloud1TextureRegion,
 vbom);
 Sprite cloud2 = new Sprite(300, 600, res.cloud2TextureRegion,
 vbom);
 background.attachChild(cloud1);
 background.attachChild(cloud2);
 setBackground(new EntityBackground(0.82f, 0.96f, 0.97f,
 background));
}

The preceding code creates a new entity and attaches two entities to it. Then, it creates
a new EntityBackground class and sets it as the game scene's background. Notice that
the background color is passed in the constructor. This is because the entity itself has
color, but doesn't know how to render it. EntityBackground solves that problem.

If you try running the game now, you will notice that the clouds have noticeable
bandings—color stripes instead of a smooth gradient. This is because AndEngine
uses 16-bit rendering by default. There are several ways to improve the quality.

First, you can enable dithering. This means that the 32-bit colors will be created by
using small dots of 16-bit colors. Because the screen resolution is big, usually it won't
be noticeable. Just add the following line to the onCreateEngineOptions method in
the GameActivity class:

engineOptions.getRenderOptions().setDithering(true);

The other option is to force 32-bit rendering. This can be done by setting the bit size
parameters for each color, as shown in the following code snippet:

engineOptions.getRenderOptions().getConfigChooserOptions().
 setRequestedAlphaSize(8);
engineOptions.getRenderOptions().getConfigChooserOptions().
 setRequestedRedSize(8);

Chapter 3

[71]

engineOptions.getRenderOptions().getConfigChooserOptions().
 setRequestedGreenSize(8);
engineOptions.getRenderOptions().getConfigChooserOptions().
 setRequestedBlueSize(8);

We are going to use dithering. See the following figures as a comparison for the
differences between 32-bit rendering, 16-bit rendering, and 16-bit with dithering.
The colors were enhanced to illustrate the differences.

On a small screen, the differences are much less noticeable.

The following figure was rendered in 32-bits. Each line of pixels has its own color.
This is how the image was originally drawn.

32-bit rendering

The following figure shows what happens when we use 16-bit rendering without
dithering. Two or three lines of pixels now share the same color value. While there
are about 16 million colors with 256 different alpha values in a 32-bit space, there
are only 65,536 colors in 16-bit space without using alpha and just 4,096 when
using alpha.

16-bit rendering

From Assets to Entities

[72]

The previous screenshot shows the effect of dithering. When rendering in very
fine resolution, the human eye can't differentiate individual pixels anymore and
will perceive two pixels of different colors as a single area of another color.
Have a look at the following figure:

Enlarged figure of 16-bit with dithering

Sprite, tiled sprite, and animated sprite
In the preceding background example, we created two sprites. A sprite is a single
piece of graphic that can be put on the screen and manipulated. In AndEngine,
it's an entity that knows how to take a texture region and render it on the screen.

A tiled sprite is just a sprite that has more than one shape (more than one
texture region). It has a method to switch between the tiles, called the
setCurrentTileIndex method.

An animated sprite is the same as the tiled sprite, but it has a feature to automatically
switch from one tile to another creating an animation. See the animate method.

For simple objects that are created once and put on the screen, simply using the
Sprite, TiledSprite, or AnimatedSprite classes is good enough, such as in our
background example. But when creating more sprites that are heavily customized,
it's highly recommended to create a custom class extending the Sprite class and a
factory class that will create the entity with preset parameters. We are going to make
use of the factory pattern for our entities.

Chapter 3

[73]

The factory pattern is typically used when we have an entity and especially multiple
instances of that entity with some defined behavior, but we don't care about how it is
created. The creation of the entity might be difficult and include many steps. Instead
of putting the code in the entity itself (very bad) or putting the code somewhere in the
scene code (less bad), we create another class. Its single purpose is to create the entity.

It's like a real factory, let's say a factory that makes rubber ducks. We want our duck
to quack when squeezed. But we don't care how the duck is manufactured as long as
it quacks. So, our duck factory is like a supplier of ducks. Also if we need to, we can
change the supplier without modifying anything else.

It's the same with our code. We will have a factory for the player and we don't
care how it is created. If we need, we can change the class to create the player in a
different way without changing any other code in the game.

Main character
For our main character, we will need two classes: the Player class and the
PlayerFactory class. We are separating the functionality based on a simple rule of
thumb: each class should have a single responsibility. When we start adding more
functionality, the separation will make it much easier.

Player class
We start by extending the TiledSprite class in the is.kul.learningandengine.
entity package, as follows:

package is.kul.learningandengine.entity;

import org.andengine.entity.sprite.TiledSprite;
import org.andengine.opengl.texture.region.ITiledTextureRegion;
import org.andengine.opengl.vbo.VertexBufferObjectManager;

public class Player extends TiledSprite {

 boolean dead = false;

 public Player(float pX, float pY,
 ITiledTextureRegion pTiledTextureRegion,
 VertexBufferObjectManager pVertexBufferObjectManager) {
 super(pX, pY, pTiledTextureRegion,
 pVertexBufferObjectManager);
 }

 public boolean isDead() {

From Assets to Entities

[74]

 return dead;
 }

 public void setDead(boolean dead) {
 this.dead = dead;
 }

 public void turnLeft() {
 setFlippedHorizontal(true);
 }

 public void turnRight() {
 setFlippedHorizontal(false);
 }

 public void fly() {
 setCurrentTileIndex(0);
 }

 public void fall() {
 setCurrentTileIndex(1);
 }

 public void die() {
 setDead(true);
 setCurrentTileIndex(2);
 }
}

When extending any Sprite class, we need to implement at least one constructor.
We've added a Boolean field indicating that the player is dead, which we can use
later. We've also added a few convenience methods that call the TiledSprite
methods. We just give them meaningful names.

The Player class expects it will be created with a tiled sprite that has at least three
tiles. Tile 0 should be the fly (jump up) shape, tile 1 should be the falling shape,
and tile 2 should be the falling below the last platform shape, in other words,
the end of the game.

We also use a simple trick. We flip the sprite horizontally when going left,
because our images are drawn facing right.

Chapter 3

[75]

PlayerFactory class
The PlayerFactory class is responsible for creating the player entity. It is a singleton
class, and its code is very simple, as follows:

package is.kul.learningandengine.factory;

import is.kul.learningandengine.ResourceManager;
import is.kul.learningandengine.entity.Player;

import org.andengine.opengl.vbo.VertexBufferObjectManager;

public class PlayerFactory {
 private static PlayerFactory INSTANCE = new PlayerFactory();
 private VertexBufferObjectManager vbom;

 private PlayerFactory() {
 }

 public static PlayerFactory getInstance() {
 return INSTANCE;
 }

 public void create(VertexBufferObjectManager vbom) {
 this.vbom = vbom;
 }

 public Player createPlayer(float x, float y) {
 Player player = new Player(x, y, ResourceManager.
 getInstance().playerTextureRegion, vbom);
 player.setZIndex(2);
 return player;
 }
}

The only thing it does for now is create a new Player instance, which is the same as
creating a Sprite instance and then setting its z-index (z-coordinate).

AndEngine is a 2D engine, but the z-index is still used. The order of
sprites added to the scene or attached to an entity defines the order in
which they are drawn. If there are overlapping entities, the ones added
later will be drawn in front. You can change this order by setting the
z-index and calling the sortChildren() method on the parent
entity. A higher z-index means the sprite is closer to the viewer.

From Assets to Entities

[76]

Using the new entity and its factory
To use the factory, it must be first initialized using the create() method. This can
be done in the constructor of the GameScene class, as follows:

public GameScene() {
 PlayerFactory.getInstance().create(vbom);
}

We simply create the factory while passing the Vertex Buffer Object manager to it.
This will allow the factory to create drawable objects.

Next, change the populate method and add another method to create the player.
We are going to use a field for the player, because we will need to access it
throughout the entire scene code. Consider the following code:

private Player player;

@Override
public void populate() {
 createBackground();
 createPlayer();
}

private void createPlayer() {
 player = PlayerFactory.getInstance().createPlayer(240, 400);
 attachChild(player);
}

Platforms and enemies
The Entity and Factory classes for platforms and enemies are created in the same
way as the Player classes. We are going to create them in Chapter 5, Basic Interactions,
when we will add the physics engine to our game. In the same chapter, we will alter
the player classes to work with physics.

Chapter 3

[77]

Running the code
We have written code that is now ready to be run on an Android device. The current
application will show the player's character sprite in the middle of the screen with
light blue background and two clouds. You can have a look at this chapter's code in
the code bundle.

From Assets to Entities

[78]

Summary
In this chapter, we have learned how to load graphics and audio files into the
Android device's memory. We've seen different types of textures and the texture
options that influence the quality of the displayed images. Common mistakes,
texture and alpha bleeding, were described and solutions for both were provided.

We have also defined basic terms such as entity, scene, background, and sprite and
two types of entity hierarchies. We have designed the basic player entity and we
have learned about the factory pattern that can be used to create entities. In the
end, we have put everything together to put a sprite on the screen.

In the next chapter, we will explore other basic entities, namely text and HUD.
We are going to discuss the limitations of text in AndEngine in greater detail
and give a basic overview about localization and national alphabets.

HUD and Text Display
In this chapter, we will learn about text output. We will look deeper into how fonts
are created and stored and analyze the possible problems of AndEngine's way of
displaying text characters. We will also learn how to create multilingual games
and how to localize them.

We will see how to put text on a screen utilizing a heads-up display (HUD) in
order to display the score of the game. Alternative ways of displaying text
messages will also be discussed.

Finally, we will cover the basics of Android and AndEngine logging and
debugging output.

Fonts and text
A font is a file that defines the characters and sometimes special glyphs and symbols
that can be printed on the screen. Fonts are typically defined as vectors. Because
AndEngine and the OpenGL library in general don't work with vectors, we must
first create a raster or bitmap font. We can imagine it as printing the entire alphabet
with special characters using a font of our choice on an image and cutting out the
letters. Afterwards, we create words using these cut-outs.

The following code shows how we load the font in the ResourceManager class:

//font
public Font font;

public void loadFont() {
 font = FontFactory.createStroke(activity.getFontManager(),
 activity.getTextureManager(), 256, 256,
 Typeface.create(Typeface.SANS_SERIF, Typeface.BOLD), 50, true,
 Color.WHITE_ABGR_PACKED_INT, 2, Color.BLACK_ABGR_PACKED_INT);
 font.load();
}

HUD and Text Display

[80]

The first parameter passed is the FontManager class. It's an AndEngine class that
takes care of managing the fonts. The second parameter is the TextureManager
class. We pass it in because, as we will see later in this chapter, the font is basically a
texture onto which we print letters.

The third and fourth parameters are the font texture width and height. The texture
used is a minimal texture that can hold the entire English alphabet using the given
font and size. We are going to see how the size of the texture can lead to common
problems with fonts in AndEngine.

The fifth parameter is the font used. In this example, we are using a built-in font
that is available on every Android device. However, it can actually differ in size a
little on different Android versions. The sixth parameter, 50, is the size of the font.

The next parameter tells AndEngine to use anti-aliasing to smoothen the edges of
the text. It is followed by the eighth parameter, the font color. In our case, we will
use white.

The last two parameters define a stroke around each letter as a two-pixels-wide
black line.

When this code is called, the texture for the font is prepared. The font object is ready
to be used for outputting text. However, the font texture is empty at this moment. How
is that possible? Simply because AndEngine loads the letters and puts them onto the
texture only when they are needed for the first time. This is called lazy loading.

We can force AndEngine to load all letters that we are going to use by calling the
font.prepareLetters() method.

AndEngine's lazy loading can cause a small lag each time a new letter
is loaded. It's advisable to load the letters in advance at the beginning
of the game.

Storing the font on a texture
Because AndEngine works with its own surface view, it can't simply output text as
regular Android apps do. It must draw the text using small sprites. Each letter is in
fact a sprite on its own. They are assembled into words by the Text class.

Let's see what happens when we load the Latin alphabet. We start with all uppercase
letters and some special characters. The following assignment can be added to the
loadFont() method in the ResourceManager class:

font.prepareLetters("01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ.,!?".to
 CharArray());

Chapter 4

[81]

We are using the toCharArray() method because the prepareLetters() method
expects an array of characters.

You can opt to render only the characters that you are really going
to use. Also, you can call the method with a sentence. Any repeating
characters will be rendered only once and a space is not rendered at
all. For example, in the sentence in the following line of code, only
one E will be rendered on the texture:

font.prepareLetters("GAME OVER!".toCharArray());

The final texture will look something like the following screenshot. Note that the
texture is 256 pixels wide and 256 pixels tall. Each character is defined as a texture
region in this texture.

A texture 256 x 256 pixels large can fit all numbers, all uppercase Latin alphabet
letters, a comma, a period, an exclamation mark, and a question mark.

If we try to load more characters than the texture can fit, the game
will crash. In reality, we would define a bigger texture.

HUD and Text Display

[82]

Storing special characters and international
alphabets
There are a few prerequisites for using special characters and international alphabets.
First, the font used must contain them. The Android system font contains most of
the UTF characters. However, some custom fonts don't. Second, AndEngine treats
all letters as sprites; boxed entities, written from left to right. Any other writing
systems that compile the words in a different way are not supported.

All this is very important to take into account when localizing games to other
languages. Let's discuss what happens when using different international alphabets.

Characters from European languages
Most of the European language alphabets contain characters with a diacritic.
They are rendered just fine, but they usually take more space. They must be
rendered as separate characters and also the characters are usually taller.

First, we preload some of the characters to the texture map as follows:

font.prepareLetters("01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ÁÉ".toCharArray());

The result is shown in the following screenshot:

The letters with diacritic take more space vertically. AndEngine will take care of the
right positioning. Both top and bottom diacritics are rendered correctly.

Also notice that the width of each letter is different. The two new letters are the same
width as the four punctuation marks combined.

Chapter 4

[83]

Korean, Chinese, Japanese, and other similar writing
systems
Generally, writing systems that contain separate characters can be rendered.

The Korean alphabet, Hangul, is in fact a syllabary. Each character is constructed
from vowel and consonant parts. To render Hangul in AndEngine, you have to
prepare each combination separately. This can make the texture pretty big, but it
still works.

The same is true for the Japanese alphabet. Each character of both hiragana and
katakana (Japanese syllabic writing system) must be rendered separately, even the
characters with Japanese diacritic dakuten (double dot or circle). This can be changed
by overriding the Text class and adding a special rule. But, this override is not
implemented in AndEngine itself.

Finally, Chinese characters and Japanese Kanji (adopted Chinese characters) can be
rendered easily. But, there are many of them. A larger texture might be needed.

Let's change the code to include the characters we would like to render. This can be
done as follows:

font.prepareLetters("한글中文ひらがなカタカナ".toCharArray());

The following screenshot shows these Korean, Chinese, and Japanese characters
rendered on to a texture:

If you can read Japanese, maybe you have noticed that the katakana part is
composed only of ka, ta, and na, and one ka is missing. Each character is rendered
only once, therefore the character ka is rendered only once.

HUD and Text Display

[84]

Other writing systems
AndEngine has a problem rendering other writing systems. For example, Thai script,
Arabic script, or the script used to write the Hindi language can't be rendered correctly.
It is possible to implement a custom rendering, but it would take quite a lot of work.

Let's try to prepare some Hindi, Thai, and Arabic alphabet with this code:

The following screenshot shows the result. Notice that there are some extra
characters rendered separately and in general, it doesn't look like the text in the
preceding line of code. This is due to the fact that some writing systems work very
differently from the Latin alphabet, and AndEngine doesn't support them at all.

Workaround for unsupported languages
It is always possible to pre-render the text using other graphics software and use
it as sprites when needed. This might not be an option in text-heavy games, but
the only other option is to create a custom rendering for writing systems that are
not supported.

Chapter 4

[85]

Other limitations of the font texture
Another thing to watch out for is the size of the font. The font is rendered only
once in the size specified when creating the font object. If you want to use fonts
of different sizes, you can either scale the Text entity or create multiple font
objects in different sizes.

Writing text
Now that we have our font loaded, we can use the Text class to print it to the
screen. The Text class is nothing more than an entity that can assemble words
and sentences from small one-letter sprites.

Adding text to the scene is very straightforward. Add a new private field for the
score text and change the populate() method of the GameScene class as follows:

private Text scoreText;

@Override
public void populate() {
 createBackground();
 createPlayer();

 scoreText = new Text(16, 784, res.font, "0123456789", new
 TextOptions(HorizontalAlign.LEFT), vbom);
 scoreText.setAnchorCenter(0, 1);
 attachChild(scoreText);
}

This will add the text 01234567890 to the top-left corner, at the position (16, 784)
of the screen. The Text class allows you to specify the horizontal alignment of the
text with the three obvious choices: left, center, and right. If we have not used the
prepareLetters() method before, this constructor would create the letters for
us too.

We are using a new method called setAnchorCenter() here. When you attach an
entity to another entity (or scene) at position (x, y), it is the center of the entity that
gets attached at (x, y). The point of attachment of the attached entity is called the
anchor center. You can change it using the aforementioned setAnchorCenter()
method. The method takes two parameters, X and Y. It's a relative position of the
anchor to the entity. An anchor center at (0, 0) means bottom-left corner and (1, 1) is
the top-right corner. The center of the entity is (0.5, 0.5), which is the default position.

HUD and Text Display

[86]

The following illustration shows how the anchor center affects the placement. The
blue circle is the anchor center and the exact position of the anchor center is written
in black. When we place the rectangle in the center of the scene, the two cases will be
different. The green circle indicates the center of the scene.

We have set the anchor center to the top-left corner. This is beneficial because we
want to fit the text in the top-left corner of the scene.

You can always change the text by calling the method setText() from the Text
class, as shown in the following line of code:

scoreText.setText("NO SCORE");

This also generates any characters that haven't been generated before; this can cause
AndEngine to lag.

To change the size or the color of the text, we can use the setScale()
and setColor() methods that are available for all classes extending
the Entity class.

Chapter 4

[87]

The following screenshot shows how the scene looks with the attached text:

But what will happen when the camera moves to another place? So far, we have only
worked with a static scene. Of course, in a real game, we want the camera to follow
the main character as it jumps up. If we attach the text to the scene, then the text
disappears as soon as the character moves up far enough to pass the text.

Attaching text to the scene is useful if the text is actually part of the scene, for example,
like writing on a wall. But for score text, we want the text to be independent of camera
movement. That's why we need HUD.

HUD
To understand how heads-up display works, simply imagine that we draw something
on a piece of glass and put this glass in front of a camera in a way that whenever
the camera moves, the glass moves with it. This is exactly what we need to display
the score.

AndEngine has a concept of camera scene, a scene that works as the glass. HUD is
a special camera scene that has no background, so it is always see-through.

HUD and Text Display

[88]

Have a look at the following illustration of how the HUD works. The black rectangle
defines the visible portion of the scene. The HUD is the translucent rectangle. The
resulting image has the text in the top-left corner. Even if the visible portion of the
scene changes because of camera movement, the text will stay in the corner.

Another important feature of the HUD is that it is always drawn last. Even if we set
a z-index of an entity to a lower number in the HUD than all the other entities in the
scene, the HUD entity will be drawn on top of them. An entity attached to the HUD
can only be covered by another entity in the HUD.

There is always only one HUD per camera. Also, a common mistake is to attach the
HUD to the scene. It is possible, because in the end, the HUD is just an entity too.
But in that case, we would lose all the advantages of the HUD. The correct way to
use HUD is to set the HUD parameter of the camera using the following method:

HUD hud = new HUD();
camera.setHUD(hud);

Chapter 4

[89]

Let's modify the code from the Writing Text section, where we added text and
attached it to the scene. Now, we will create an HUD and attach the text to it.
Change the GameScene class as follows:

private Text scoreText;

@Override
public void populate() {
 createBackground();
 createPlayer();
 createHUD();
}

private void createHUD() {
 HUD hud = new HUD();

 scoreText = new Text(16, 784, res.font, "0123456789", new
 TextOptions(HorizontalAlign.LEFT), vbom);
 scoreText.setAnchorCenter(0, 1);
 hud.attachChild(scoreText);

 camera.setHUD(hud);
}

This is all that is needed to attach the text to the HUD. We added a new method
called createHUD() for convenience. In this method, we created a new hud object
and attached the text to it. Finally, we passed our hud object to our camera.

If you want to destroy the HUD, simply call the following function:

camera.setHUD(null);

It's important to remember that the HUD is a property of the camera. When we
switch to another scene, we have to remove the HUD.

Any entity can be attached to the HUD.

Working with toasts
Another way to output text on the screen is using toasts. A toast is a simple message
widget that can provide feedback about an operation in progress. It's a core Android
widget, not an AndEngine component, but we can nevertheless use it in our game.

The easiest way to show a toast is to use a static method provided by the Toast class.
In a general Android app, we can simply call this as follows:

Toast.makeText(activity, "Hello World", Toast.LENGTH_LONG).show();

HUD and Text Display

[90]

We can also call a toast inside the activity itself. This can be done as follows:

Toast.makeText(this, "Hello World", Toast.LENGTH_LONG).show();

The makeText() method creates the Toast object. It takes three parameters: the
context (activity), the text to show, and the length of the toast, which can be one
of the following two types:

• Toast.LENGTH_LONG

• Toast.LENGTH_SHORT

Finally, we call the show() method on the newly created Toast object.

However, if we try to call this object inside the game, it won't work. This is because
the Toast object must be created and dispatched in the UI thread. This thread is also
called the main thread. AndEngine uses this thread to set up the engine and, as with
every other Android application, to dispatch events from the UI to the components.
This is the reason why it is called both the main and the UI thread.

Most of the actions in the game are happening in the update thread. So, when we
want to use an Android widget such as a toast, we must tell the system to run the
code in the UI thread. Every activity has a method called runOnUiThread(). Let's
make use of it. Change the populate() method in the GameScene class as follows:

@Override
public void populate() {
 createBackground();
 createPlayer();
 createHUD();

 activity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(activity, "Hello world!",
 Toast.LENGTH_LONG).show();
 }
 });
}

The runOnUiThread() method expects an instance of a class implementing the
Runnable interface, which must implement a run() method. We are creating an
anonymous inner class implementing the method. An anonymous class is a locally
instantiated class without a name. It's a Java statement that can be used anywhere
where we can use a regular class. It's instantiated the same way, using the operator
new; in this case, it's a class of type Runnable. It can be a child of a class or an
implementation of an interface. It's useful when the class is used only once.

Chapter 4

[91]

When we run the code now, there will be a small message saying Hello world! for a
few seconds and then it will disappear on its own.

Localization
When we speak about application or game localization (or L10N, which means L
followed by 10 letters and N), we generally mean supporting multiple languages.
Another term is internationalization (or I18N), which means adapting the game
to different regions. An example of I18N would be supporting both metric and
imperial systems of units or supporting multiple date formats.

Localization in Android is very simple. The first step is to keep all the strings
separate from the code. Instead of hardcoding Hello world!, we put this string
into an XML resource file called strings.xml. This file is located at res/values/.

Keeping the strings separated from the code is a good practice even
when we support only one language.

When we created the application, the Eclipse new app wizard already put some
strings there. The following code shows how the file should look:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">LearningAndEngine</string>
 <string name="action_settings">Settings</string>
 <string name="hello_world">Hello world!</string>

</resources>

Each string has a name that we use to identify it in the code. It's important to use a
self-explanatory name. The value is then the real string that will be printed to the
screen. Instead of a hardcoded string, we then use the following:

Toast.makeText(activity, activity.getString(R.string.hello_world),
 Toast.LENGTH_LONG).show();

HUD and Text Display

[92]

The getString() method is used to retrieve the string based on an integer constant.
These constants are located in a generated class simply called R. This class is
generated automatically based on the XML file.

To use our strings, we must import the correct R class as follows:
import is.kul.learningandengine.R;

There is also a default class called android.R, which contains some
commonly used strings such as R.string.yes and R.string.no.

To add another language, simply create a folder named res/values-code, where
code is the language code, for example, de for German, es for Spanish, or cs for
Czech. Then, copy the strings.xml file to the folder and translate the values to the
desired language.

The file in the values directory serves as a default fallback option. The other language
files don't have to contain all values from the default file. Let's say the application
is running on a Spanish language phone, and we have only translated the hello_
world string. Android will automatically use the language file based on the settings
of the phone. But, when the application requests the app_name string, the value is
not found in the Spanish language file and the value from the default file will be
returned. If the application is running on a device with language settings that are
not supported by the game at all, the default values will be used too.

The default file must always contain all values. In cases where there
are more values in the specific language file and the app requests one
of those extra strings on a device with different language settings,
the app will crash.

The following screenshot shows the directory structure, and the new language file
looks for the Czech language:

Chapter 4

[93]

The localization is not limited to the strings. The same principle works for
any resource directory. This can be used to change the layout for different
regions or to change image files based on language settings.

Debug output
The last option that we will learn about is using Android's debug output to LogCat.
LogCat is an Android logger that can be accessed through the adb tool, and it
is available in Eclipse as well. Logging, in general, is a way to output text that a
developer needs to see but should stay hidden from the user.

To open the LogCat tab, go to Window | Show View | Others… and search
for LogCat.

HUD and Text Display

[94]

If an Android device is already connected, LogCat will immediately show some log
messages. The following screenshot shows an example of what a LogCat output
looks like:

The log messages have the following attributes:

• Log Level: This is the severity of the message. It can be verbose, debug, info,
warning, error, or assert (also known as what a terrible failure (WTF)). It is
indicated by one letter only.

• Time: This is the timestamp when the message was added.
• PID: This is the process ID of the app that printed the message.
• TID: This is the thread ID.
• Application: This is identified by the package name.
• Tag: This is the custom identifier.
• Text: This is the custom message.

We can filter the messages by level and also use filtering to show only messages
containing a certain string or tag.

Chapter 4

[95]

Logging to LogCat from AndEngine
To call the logger in the code, we can use the Android Log class or the AndEngine
Debug class. The following code snippets show a few examples to use logging:

Log.v("AndEngine", "This is a very detailed message");
Debug.v("This is a very detailed message");

Log.i("AndEngine", "Info level message");
Debug.i("AndEngine", "Info level message");

try {
 doSomethingDangerous();
} catch (Exception e) {
 Log.e("AndEngine", "Oops!", e);
 Debug.e("Oops!", e);
}

Debug.setDebugLevel(DebugLevel.ERROR);
Log.i("AndEngine", "This message still will be printed");
Debug.i("AndEngine", "This will not be printed, current level is
 ERROR");

Log.wtf("AndEngine", "This should never happen");

The first example is a verbose message using the Android Log class. The second
example is the same as the first, just using the AndEngine Debug class. Notice that
the tag is missing. The default tag AndEngine will be used.

The third and fourth examples show that both classes can be used in the same way.
The try and catch blocks use logging with an extra parameter. In these two cases,
the exception will be printed in LogCat with a full stack trace.

AndEngine has a method to set the debug level, which means messages below that
level won't be printed. The levels are sorted by severity.

Finally, there is an example of the wtf log level, which is not implemented in
AndEngine. It is usually used as a marker that the program entered a branch that
should never have been reached. For example, when we expect the program to exit
at a certain point, we can put the wft() message after the exit command. If the
message gets printed, we will know that the exit was not successful.

HUD and Text Display

[96]

Logging best practices
All exceptions should be logged and empty catch blocks avoided. Even if the
exception is expected to happen sometimes, we should always at least print it to
the log using the warning level, because the exception could happen for a different
reason than the expected one.

The following is an explanation of what each of the levels mean:

• Verbose: This is used for low-level debugging, such as the position of the
main character.

• Debug: These are messages that could be useful to determine where
something went wrong. For example, a message at the end of a method
to determine whether the method successfully finished.

• Info: This is used for important events, such as when the engine is
successfully created.

• Warning: This is used when something is not quite right but it's not a bug.
As an example, let's imagine we want to submit the high score to a server.
If it fails, the game can continue, but the warning should be printed.

• Error: This is used for exceptions and errors that we will need to analyze
and solve.

• Assert: This is the WTF level.

Log messages should also be optimized. Let's take the following simple logging
message that prints the character's position to a log:

Log.d("AndEngine", "Position: " + x + ", " + y);

The Java compiler creates a StringBuilder object, uses three method calls, and then
throws the StringBuilder object away. If this is done inside a game loop of a game
that shows 60 frames per second, it can have a big impact on performance.

What we should do instead is one of the three following options. The first option is
as follows:

if (BuildConfig.DEBUG) {
 Log.d("AndEngine", "Position: " + x + ", " + y);
}

Chapter 4

[97]

BuildConfig.DEBUG is Android's built-in property that should be set automatically
to false during the export of the production APK file. It is recommended to clean
the project before trying to export it, because this constant is located in one of the
generated classes. The second option is our own Boolean property, which we can
add to the GameActivity class as follows:

if (GameActivity.DEBUG) {
 Debug.d("Position: " + x + ", " + y);
}

Finally, the third option is AndEngine's built-in mechanism to test for the current
debug level. This is shown in the following code:

if (Debug.getDebugLevel().isSameOrLessThan(DebugLevel.DEBUG)) {
 Debug("Position: " + x + ", " + y);
}

When using any of these, the concatenation will not be called if the condition is
false. When using AndEngine's Debug class, we can set the debug level to NONE to
avoid printing anything.

Summary
In this chapter, we learned the basics of text output. Now, we are able to print text to
the screen, keep it in view by attaching it to an HUD, and support multiple languages.
We have discussed the caveats and limitations of AndEngine text implementation.

We also learned how to use Android logging to print development text and how to
access it.

In the next chapter, we will look into touch and tilt controls and start moving our
character around.

Basic Interactions
It's time to learn how to make the game interactive. In this chapter, we will first
see how to create a basic animation that will allow us to move the character from
one place to another. We will also learn the basics of collision detection.

Then, we will look into the different sensors that Android devices have, how to
read them, and how to use those readings. More specifically, we are going to use
the touchscreen and accelerometer, and we will use them to move the main
character around the screen.

The second part of this chapter will cover the specifics of different threads used in
AndEngine in detail. We will discuss the dangers of mixing threads and common
mistakes made by beginners to AndEngine.

A simple animation
There are two ways of creating an animation. First, our sprite can give multiple
frames and we animate the sprite by changing the frames in time. The second
way is using tweens (short for in-between).

An animated sprite
The AnimatedSprite class is simply a tiled sprite with the added functionality to
change tiles in time. Let's change the GameScene class temporarily to see how an
animated sprite works. This is shown in the following code:

AnimatedSprite fly;

@Override

Basic Interactions

[100]

public void populate() {
 ...

 fly = new AnimatedSprite(240, 200, res.enemyTextureRegion
 , vbom);
 fly.animate(125);
 attachChild(fly);
}

The first line creates the animated sprite. It works exactly the same way as any other
sprite. We simply specify the location on the screen, the tiled texture region, and the
Vertex Buffer Object manager.

The animate() method starts the animation. It takes a single parameter or multiple
parameters. The simplest way is to pass one float value that specifies for how long
in milliseconds each frame is displayed. However, sometimes we want to specify
different times, or show only some of the frames, and so on. The following are
some examples of the animate() method:

• fly.animate(new long[]{100, 200}, new int[]{1, 0}, false);:
The first parameter is an array of durations and the second parameter is
the frames to be displayed. The third parameter means we don't want the
animation looped. In this case, the call will play the second frame (numbered
as 1) first for 100 milliseconds and then the first frame (numbered as 0) for
200 milliseconds. Then, it will stop there.

• aSprite.animate(new long[]{100, 200, 150}, 7, 9, true);: This
call is similar to the first one, but instead of specifying the frames one by
one, we only specify the start (7) and end (9) frames. However, we must
specify times for each of them.

• aSprite.animate(animationData): This is a more advanced way to call
the animate() method. Here, animationData is an implementation of the
AnimatedSprite.IAnimationData interface. This is a bit advanced, but
when we need some really complicated animation that is not covered by
the existing methods, it might help us.

Finally, we attach the sprite to the scene. After running the application, we should
see a fly below our character. The fly should be flapping its wings. This is shown in
the following screenshot:

Chapter 5

[101]

Entity modifiers
AndEngine offers a very simple way of creating tweens using entity modifiers.
Tweens are simple math equations that allow us to change a property value to another
value continuously. Basic examples of such tweens are movement, rotation, scaling,
and color change. Entity modifiers allow us to do exactly that.

The great thing about entity modifiers is that they can be applied to any entity, and
they can be chained or run in parallel. It's also possible to have an entity modifier
listener that will be called when the modifier starts and finishes. As mentioned
before, an entity modifier is a tween. The basic math equation to transform one
value to another is a simple linear equation. But, there are more equations called
ease functions that allow us to create interesting effects.

The following are a few examples:

fly.registerEntityModifier(new RotationModifier(2, 0, 360));

Basic Interactions

[102]

The preceding code will make the fly rotate once from 0 degrees to 360 degrees
(one full turn). Now, consider the following code:

fly.registerEntityModifier(new LoopEntityModifier(new
 RotationModifier(2, 0, 360)));

By adding looping, the fly will rotate indefinitely. Lastly, consider the following code:

fly.registerEntityModifier(new LoopEntityModifier(new
 RotationModifier(2, 0, 360, EaseExponentialIn.getInstance())));

In this case, the fly will rotate slowly at the beginning and then faster near the end.
This is the same as the exponential function used.

See the hierarchy of the IEntityModifier interface in Eclipse to
see all available modifiers. To do this, simply open the interface,
click on the name, and press F4. We can see the modifiers in action
in the AndEngineExamples project that is available in the GitHub
repository. It is also available on the Google Play store under the same
name as a working application.

In the next part, we are going to see examples of the move modifiers.

User input
AndEngine uses a simple abstraction layer above the Android user input handlers.
We are going to use the touchscreen and the accelerometer, but it is of course possible
to use any other sensors that are not implemented in AndEngine by directly calling
the Android SDK methods.

Touchscreen
Let's start with the touchscreen, because it's the most common way of getting user
input in smartphones and tablets. The Android system is handling the touchscreen
itself and it is firing touch events. These touch events are caught and processed by
AndEngine. We are going to handle them using event listeners.

Touch events
Touch events in AndEngine handle five basic motion events from the Android SDK.
In this case, the terms motion and touch event can be used interchangeably.
These five events are as follows:

• ACTION_DOWN: This is the most basic event; it happens at the beginning of
a touch.

Chapter 5

[103]

• ACTION_MOVE: When the touch starts and the user drags their finger or
pen on the screen, move events are triggered.

• ACTION_OUTSIDE: This happens when the motion event leaves the current
view. This can happen, for example, when a warning dialog pops up during
the move event.

• ACTION_CANCEL: This happens when the user touches the screen inside
AndEngine's view and drags it outside its boundaries. We are not going
to see this, because we will only use the full-screen view. This should be
treated as the ACTION_UP event, but with no reaction performed.

• ACTION_UP: This happens at the end of the touch.

It is important to always check what event just happened. Each
physical touch usually generates at least the down and up events
and sometimes down, move, and up. Usually, we only want to
perform an action in one of the events.

There are two basic ways to handle events in AndEngine. First, each scene has
its own touch listener. Second, every entity that has an area can override the
onAreaTouched() method.

The scene touch listener
Global events that don't belong to any specific entity can be handled in the scene
touch listener. A good example is the go-to on touch functionality. The user touches
the screen and the character will move to that place. Each listener can return a
Boolean value, irrespective of whether the event was handled or not. If not, a child
scene or specific entities will be called to handle the event. If yes, the event is marked
as handled and the handling stops here.

Let's change our GameScene code to handle scene touch events and move our
character. Again, edit the populate() method and add the following lines:

@Override
public void populate() {
 ...

 setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
 pSceneTouchEvent) {
 if (pSceneTouchEvent.isActionDown()) {
 player.clearEntityModifiers();

Basic Interactions

[104]

 player.registerEntityModifier(new MoveModifier(1,
 player.getX(), player.getY(), pSceneTouchEvent.getX(),
 pSceneTouchEvent.getY()));
 return true;
 }
 return false;
 }
 });
}

The setOnSceneTouchListener() method overrides any listener that is currently
set. Only one listener per scene is allowed. Here, we are creating an anonymous
class that implements the IOnSceneTouchListener interface, which has only one
method: onSceneTouchEvent().

In this method, we first check whether the touch event is down. Next, we will clear all
entity modifiers. If we do not do this, each touch would add one modifier that would
try to move the character to a new location. The character would move chaotically.
The clearEntityModifiers() method removes all the modifiers. In the case of a
move modifier, the character will stop at the current position.

Finally, we return a true value, which means we completely handled the touch event.
In the case any other event was triggered, we return a false value, which means the
other events are handled elsewhere.

In our case, it doesn't matter whether we return a true or false
value. But in a more complex scenario, such as overlapping
entities, we might want to return a true value to indicate that
only the first (topmost) entity will register the touch.

The entity touch area
Any entity can handle its own touches. The simplest example of such usage is a
button. Instead of catching the event in the screen touch listener and then looking
for the entity that was touched, we simply add a listener to the entity and let it
handle the touch itself.

Each entity implements the ITouchArea interface. For this to work properly, the entity
must properly define its area. This topic is a bit advanced, but for now, it's enough to
know that all the basic entities such as primitive shapes and sprites correctly define
the touchable area by default and we do not have to implement it ourselves.

Chapter 5

[105]

Let's update our Player class code. We simply override the onAreaTouched()
method. By default, this method only returns a false value, which means that
it doesn't handle the events. Consider the following code:

@Override
public boolean onAreaTouched(TouchEvent pSceneTouchEvent,
 float pTouchAreaLocalX, float pTouchAreaLocalY) {
 if (pSceneTouchEvent.isActionDown()) {
 clearEntityModifiers();
 return true;
 } else if (pSceneTouchEvent.isActionMove()) {
 setPosition(pSceneTouchEvent.getX(), pSceneTouchEvent.
 getY());
 return true;
 }
 return false;
}

We are handling two events here. Firstly, in the case of the down touch event, we
clear the modifiers and return a true value. If we do not clear the modifiers, there
might be a movement modifier from the scene touch in place. If we do not return a
true value, the chain of handlers would continue and the scene would handle the
event. Secondly, on the move event, we update the position of the sprite.

Optionally, we could handle the up event as well, but the move
should end at the same place as where the up event happens.

Lastly, we need to register the touch area in the scene. Otherwise, the
onAreaTouched() method will never be triggered. We register the area in the
GameScene class, in the populate() method. This is shown in the following code:

@Override
public void populate() {
 ...

 registerTouchArea(player);
}

With this code in place, together with the scene touch listener, the main character
will move either when we tap on the destination or when we tap on the character
itself and drag it around.

Basic Interactions

[106]

Touch area bindings
Sometimes, we touch an entity, which triggers the down event, but then we move
our finger away and end the touch outside the entity. In that case, the up event is
not registered for the entity. A similar thing can happen when dragging an entity
and our finger leaves the entity area. For example, it happens when the drag is
slower than the actual physical motion.

In such cases, we can use the setTouchAreaBindingOnActionDownEnabled()
and setTouchAreaBindingOnActionMoveEnabled() methods. When set to true,
a binding is created between an event and an entity, and even after our finger leaves
the entity, the entity will still receive notifications, such as an ACTION_UP event,
from the motion in progress.

Accelerometer
There are many sensors available in the Android SDK, but not all need to be
implemented. This is the case for a thermometer, for example. Fortunately, an
accelerometer is available in most devices.

Using the accelerometer in AndEngine is simple. The engine offers a listener interface,
IAccelerationListener, that has two methods, onAccelerationAccuracyChanged
and onAccelerationChanged. We will be using the second method.

The first method is rarely called in the case of an accelerometer
and we can ignore it. However, in the case of other sensors, such
as GPS accuracy, it can be crucial. It is called when the accuracy of
readings is changed. For example, when the phone enters a building,
the GPS signal becomes weak and this method will be called. An
accelerometer doesn't suffer from such problems, but theoretically,
the method can be called.

Let's start with creating the acceleration listener. The easiest way is to let our
GameScene class implement the interface itself and implement both the methods.
Consider the following code:

public class GameScene extends AbstractScene implements
IAccelerationListener {

 @Override
 public void onAccelerationAccuracyChanged(AccelerationData
 pAccelerationData) {

Chapter 5

[107]

 }

 @Override public void onAccelerationChanged(AccelerationData
 pAccelerationData) {
 }
}

We will ignore the first method and leave it empty. The second method is being called
whenever the acceleration changes. In Android, there are several delay settings for
the accelerometer. For games, the lowest setting is used and AndEngine uses it
by default, which means the accelerometer is updated very often.

Don't worry about optimizing this right now. It is dangerous to
put any heavy calculations in this method, so optimize only when
you see a problem.

Each time the method is called, the AccelerationData object will be filled with
values from the current reading of the accelerometer. It is possible to get the
device orientation, the accelerometer accuracy, and most importantly, the three
accelerometer values for all the three axes.

To make our character move according to the tilt of the device, we implement the
onAccelerationChanged method in the following way:

float lastX = 0;
@Override
public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }

 player.setX(player.getX() + pAccelerationData.getX());
}

We are doing two things here. First, we are making the character face the direction
of the movement. It looks a bit complicated. We are saving the previous X value of
the accelerometer and changing the facing direction only when the difference reaches
a certain threshold. This is to prevent twitching when the accelerometer value is very
close to zero.

Basic Interactions

[108]

Try changing the value 0.5 to something smaller or even a negative
value (then the condition is always true). You will notice twitching.

The last line makes the character move on the x axis based on the tilt of the device.

Finally, we must enable the accelerometer and register the listener in the engine.
Simply add the following line of code to the populate() method:

@Override
public void populate() {
 ...
 engine.enableAccelerationSensor(activity, this);
}

We must register the listener only after we have created the
player. Otherwise, the accelerometer could get a reading before
we have initialized the Player object, which would cause a
null pointer exception.

The enableAccelerationSensor method takes two parameters. The first one is
our main activity and the second one is the accelerometer listener, which is our
scene; therefore, we pass it.

Pausing and resuming the accelerometer
When the game is paused, we might want to pause the accelerometer for two
reasons. First, if the accelerometer is used as an input, we don't want any input
when the game is paused. The other reason is battery usage. The accelerometer
drains the battery; therefore, it is beneficial to disable it when it is not needed and
then enable it again on resuming. We can use our onPause() and onResume()
methods in the GameScene class as follows:

@Override
public void onPause() {
 engine.disableAccelerationSensor(activity);
}

@Override
public void onResume() {
 engine.enableAccelerationSensor(activity, this);
}

Chapter 5

[109]

Collision detection
One of the most basic interactions in games is a collision of two entities. There are
several ways to detect collisions. In this chapter, we will cover basic entity collisions.
The other popular methods are pixel-perfect collisions and physics engine collisions.

We are going to look at physics engine collisions in Chapter 6, Physics. There is an
extension for pixel-perfect collisions as well, but it is unofficial and created for an
older version of AndEngine.

The basic collision detection works with the underlying geometry. For example,
a sprite is actually a texture drawn on a quad (two triangles). When creating sprites
that will be a part of collision detection, we should take extra care about their
bounding boxes.

Let's see a bad example of a bounding box. The following figure shows a texture that
will be used to create a sprite:

The following figure shows how it will look when detecting collisions. The
black bounding box is a boundary of the underlying geometries. The red area
is the actual collision.

We can define a polygonal textured mesh to make the collision detection more precise.
However, that is a very advanced technique, and for our purposes, the rectangle
bounding boxes will suffice. We only need to create them as small as possible.

Basic Interactions

[110]

Handling collisions
There are two possible ways of using basic collision detection. A collision handler
is useful when trying to detect the collision once. Detecting collisions in the
onManagedUpdate method is better when there is a need to continuously determine
whether two objects are colliding.

Collision handlers
A collision handler implementation in AndEngine is in a class simply called
CollisionHandler. This class implements the IUpdateHandler interface. Update
handlers are special classes that can be registered in the engine and they are called
in each update cycle of the engine.

To add a collision handler that will detect a collision between the player character
and the fly, we simply add the following code to the populate() method in the
GameScene class:

@Override
public void populate() {
 ...

 ICollisionCallback myCollisionCallback = new ICollisionCallback
 () {

 @Override
 public boolean onCollision(IShape pCheckShape, IShape
 pTargetShape) {
 fly.setColor(Color.RED);
 return false;
 }
 };

 CollisionHandler myCollisionHandler = new
 CollisionHandler(myCollisionCallback, fly, player);
 registerUpdateHandler(myCollisionHandler);
}

The first thing we do is create a collision callback. The callback method onCollision()
will be called automatically when the collision handler detects a collision. What we do
is change the fly's color to red.

Chapter 5

[111]

Only the light parts of the fly will change color. The setColor()
method works like a color filter. If something is black, it will stay
black with any filter.

The callback returns a false value if no more collision detection is needed or a
true value to indicate that the rest of the collisions should be handled too.

Next, we create the handler and pass both player and fly to it. The collision
handler can also accept a list of entities, and in that case, it will check each entity
against all the others.

Finally, we register the collision handler as an update handler. When the player
sprite collides with the fly, the fly will change color. The color change is permanent.

The collidesWith method
The collidesWith method belongs to each entity and can be used anywhere. It is
simple and returns a true value if the current entity is colliding with another entity.
We are going to use it in the onManagedUpdate() method to perform continuous
collision detection. The method is called for every entity attached to the scene in each
cycle of the game loop.

We can override the onManagedUpdate() method when creating the entity. For
example, we use our fly object and add the collision detection there. To do this,
let's follow these steps:

1. Change the initialization of the fly object to the following:
fly = new AnimatedSprite(240, 200, res.enemyTextureRegion,
 vbom) {

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 if (collidesWith(player)) {
 setScale(2);
 } else {
 setScale(1);
 }
 }
};

We call the parent classes on the onManagedUpdate() method first,
because there might be some important calculations done.

Basic Interactions

[112]

2. Then, we check for the collision, and if it is true, we set the scale to double.
In this case, the fly will be enlarged when it collides with the player
character, and it will return to normal size when they stop colliding.

3. With both collision detections in place, we can run the application.
There should be no change at first. Have a look at the following screenshot:

4. When the character moves close to the fly, both collision detectors get
triggered. The fly will turn red and expand. The collision is not perfect,
which is clearly visible in the following screenshot. The bounding boxes
already overlap, but the actual characters don't.

Chapter 5

[113]

5. Finally, when the character moves away, the fly will stay red and shrink
back to normal size. This is shown in the following screenshot:

Basic Interactions

[114]

Using correct threads to perform actions
As already mentioned in Chapter 4, HUD and Text Display, AndEngine uses different
threads for different actions. This makes sense, because the thread that takes care of
drawing entities should not be affected by the thread that registers touches.

The two basic threads are the UI (sometimes called main) and update threads.
There are certain actions that must be performed in the correct thread. Actions such
as showing a toast, dialog, or any other Android view manipulation must be done
in the UI thread. Other actions such as manipulating entities must be done in the
update thread.

The most common problem with AndEngine is a crash after detaching an entity
when a modifier is finished or detaching an entity after performing a touch. There
exist a lot of misconceptions among the people in the AndEngine community about
this. You will often hear that the problem is caused by detaching the entity in the
wrong thread.

However, that is not true because AndEngine takes care of the threads and runs
even the touch events, listeners, and update handlers in the update thread. To keep
alive the misconception, using the runOnUpdateThread() method actually helps.

Let's see an example of the problem. The basic use case here is to remove the player
character as soon as it stops moving after a scene touch. The following code snippet
is the relevant part of the populate() method in the GameScene class:

setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
 pSceneTouchEvent) {
 if (pSceneTouchEvent.isActionDown()) {
 Debug.i("Touching scene in Thread: " +
 Thread.currentThread().getName());
 IEntityModifierListener myEntityModifierListener = new
 IEntityModifierListener() {

 @Override
 public void onModifierStarted(IModifier<IEntity>
 pModifier, IEntity pItem) {
 }

 @Override
 public void onModifierFinished(IModifier<IEntity>
 pModifier, IEntity pItem) {

Chapter 5

[115]

 Debug.i("Detaching player in Thread: " +
 Thread.currentThread().getName());
 player.detachSelf();
 }
 };

 player.clearEntityModifiers();
 player.registerEntityModifier(new MoveModifier(1,
 player.getX(), player.getY(),
 pSceneTouchEvent.getX(), pSceneTouchEvent.getY(),
 myEntityModifierListener));
 return true;
 }
 return false;
 }
});

We have added log messages that will print the name of the current thread into
LogCat. There are two possible options. The UI thread is identified as the main
thread and the update thread is identified as UpdateThread.

Next, we create the myEntityModifierListener class that will listen to the modifier
events, and when the modifier finishes, it will try to detach the player sprite from
the scene. But, when we run the game now and tap the screen, the player sprite
will move there and then the game will crash with an ArrayIndexOutOfBounds
exception. Now, the common answer to the question why would be that we are not
detaching the player in the update thread. But, the log says otherwise, as shown in
the following screenshot:

What is actually happening is that AndEngine is going through all N entities and
performing all the required actions. At one point, it is handling the player entity,
and it registers that the modifier has finished and calls the method of the modifier
listener. There, we try to detach it. This still works but the engine will remove the
entity from the list of handled entities, because it's detached and therefore no
longer needs handling.

Then, the control is returned to the current iteration of the list of entities. The list
has changed in the meantime; it now contains N-1 entities. But the engine still
iterates as if there are N entities and this causes the exception when trying to
fetch the last element, which is no longer there.

Basic Interactions

[116]

The following code shows a typical example of how to fix this problem. We will
add a runOnUpdateThread() method call that will cause the code to execute at a
different time.

setOnSceneTouchListener(new IOnSceneTouchListener() {

 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
 pSceneTouchEvent) {
 if (pSceneTouchEvent.isActionDown()) {

 IEntityModifierListener myEntityModifierListener = new
 IEntityModifierListener() {

 @Override
 public void onModifierStarted(IModifier<IEntity>
 pModifier, IEntity pItem) {
 }

 @Override
 public void onModifierFinished(IModifier<IEntity>
 pModifier, IEntity pItem) {

 res.activity.runOnUpdateThread(new Runnable() {
 @Override
 public void run() {
 player.detachSelf();
 }
 });

 }
 };

 player.clearEntityModifiers();
 player.registerEntityModifier(new MoveModifier(1,
 player.getX(), player.getY(),
 pSceneTouchEvent.getX(), pSceneTouchEvent.getY(),
 myEntityModifierListener));
 return true;
 }
 return false;
 }
});

Chapter 5

[117]

We have added the runOnUpdateThread() method call and it fixes the problem.
It might lead us to the assumption that we were using the wrong thread, but in fact
this call simply delays the action to the beginning of the next game loop iteration,
and therefore, will detach the player before the processing of all the entities starts.
But it will happen in the update thread nevertheless.

Summary
In this chapter, we have learned the basics of user input. We have covered the
touchscreen and accelerometer and seen how to make the game respond to touch and
tilt events using animations and how to deal with collisions. Lastly, we have looked into
the most common mistake that happens when working with entities and threads and
how to deal with those problems.

In the next chapter, we are going to add physics to our game. We will learn about
different physics bodies, forces, and how to detect collisions using the physics engine.

Physics
In the last chapter, we introduced one of the ways to move a character in AndEngine
using the entity modifiers. However, for our game, we are going to use a physics
engine. In this chapter, we will first introduce the physics engine used in AndEngine.
We are also going to explain basic physics terms, such as force and velocity, and how
they are used in AndEngine. We will cover the limitations of the physics engine too.

In the second part of this chapter, we will implement some of the actions of our
character using the physics engine and accelerometer readings. We will also add
platforms and the enemy to the game and define them as physics bodies.

The physics engine
AndEngine uses the Android port of the Box2D physics engine. Box2D is very
popular in games, including the most popular ones such as Angry Birds, and many
game engines and frameworks use Box2D to simulate physics. It is free, open source,
and written in C++, and it is available on multiple platforms. AndEngine offers
a Java wrapper API for the C++ Box2D backend, and therefore, no prior
C++ knowledge is required to use it.

Box2D can simulate 2D rigid bodies. A rigid body is a simplification of a solid
body with no deformations. Such objects do not exist in reality, but if we limit
the bodies to those moving much slower than the speed of light, we can say that
solid bodies are also rigid.

Box2D uses real-world units and works with physics terms. A position in a scene
in AndEngine is defined in pixel coordinates, whereas in Box2D, it is defined in
meters. AndEngine uses a pixel to meter conversion ratio. The default value is
32 pixels per meter.

Physics

[120]

Basic terms
Box2D works with something we call a physics world. There are bodies and forces in
the physics world. Every body in the simulation has the following few basic properties:

• Position
• Orientation
• Mass (in kilograms)
• Velocity (in meters per second)
• Torque (or angular velocity in radians per second)

Forces are applied to bodies and the following Newton's laws of motion apply:

• The first law, An object that is not moving or moving with constant velocity
will stay that way until a force is applied to it, can be tweaked a bit

• The second law, Force is equal to mass multiplied by acceleration, is especially
important to understand what will happen when we apply force to
different objects

• The third law, For every action, there is an equal and opposite reaction, is a bit
flexible when using different types of bodies

Body types
There are three different body types in Box2D, and each one is used for a different
purpose. The body types are as follows:

• Static body: This doesn't have velocity and forces do not apply to a static
body. If another body collides with a static body, it will not move. Static
bodies do not collide with other static and kinematic bodies. Static bodies
usually represent walls, floors, and other immobile things. In our case,
they will represent platforms which don't move.

• Kinematic body: This has velocity, but forces don't apply to it. If a kinematic
body is moving and a dynamic body collides with it, the kinematic body
will continue in its original direction. Kinematic bodies also do not collide
with other static and kinematic bodies. Kinematic bodies are useful to create
moving platforms, which is exactly how we are going to use them.

Chapter 6

[121]

• Dynamic body: A dynamic body has velocity and forces apply to it. Dynamic
bodies are the closest to real-world bodies and they collide with all types of
bodies. We are going to use a dynamic body for our main character.

It is important to understand the consequences of choosing each body
type. When we define gravity in Box2D, it will pull all dynamic bodies
to the direction of the gravitational acceleration, but static bodies
will remain still and kinematic bodies will either remain still or keep
moving in their set direction as if there was no gravity.

Fixtures
Every body is composed of one or more fixtures. Each fixture has the following
four basic properties:

• Shape: In Box2D, fixtures can be circles, rectangles, and polygons
• Density: This determines the mass of the fixture
• Friction: This plays a major role in body interactions
• Elasticity: This is sometimes called restitution and determines how

bouncy the object is

There are also special properties of fixtures such as filters and filter categories,
which we will cover in Chapter 8, Advanced Physics, and a single Boolean property
called sensor.

Shapes
The position of fixtures and their shapes in the body determine the overall
shape, mass, and the center of gravity of the body.

The upcoming figure is an example of a body that consists of three fixtures.
The fixtures do not need to connect. They are part of one body, and that means
their positions relative to each other will not change.

Physics

[122]

The red dot represents the body's center of gravity. The green rectangle is a static
body and the other three shapes are part of a dynamic body. Gravity pulls the
whole body down, but the square will not fall.

Density
Density determines how heavy the fixtures are. Because Box2D is a two-dimensional
engine, we can imagine all objects to be one meter deep. In fact, it doesn't matter as
long as we are consistent.

There are two bodies, each with a single circle fixture, in the following figure. The left
circle is exactly twice as big as the right one, but the right one has double the density of
the first one. The triangle is a static body and the rectangle and the circles are dynamic,
creating a simple scale. When the simulation is run, the scales are balanced.

Friction
Friction defines how slippery a surface is. A body can consist of multiple fixtures with
different friction values. When two bodies collide, the final friction is calculated from
the point of collision based on the colliding fixtures.

Chapter 6

[123]

Friction can be given a value between 0 and 1, where 0 means completely frictionless
and 1 means super strong friction. Let's say we have a slope which is made of a body
with a single fixture that has a friction value of 0.5, as shown in the following figure:

The other body consists of a single square fixture. If its friction is 0, the body slides
very fast all the way down. If the friction is more than 0, then it would still slide,
but slow down gradually. If the value is more than 0.25, it would still slide but
not reach the end. Finally, with friction close to 1, the body will not move at all.

Elasticity
The coefficient of restitution is a ratio between the speeds before and after a collision,
and for simplicity, we can call the material property elasticity. In the following
figure, there are three circles and a rectangle representing a floor with restitution 0,
which means not bouncy at all. The circles have restitutions (from left to right) of 1,
0.5, and 0.

Physics

[124]

When this simulation is started, the three balls will fall with the same speed and
touch the floor at the same time. However, after the first bounce, the first one will
move upwards and climb all the way to the initial position. The middle one will
bounce a little and keep bouncing less and less until it stops. The right one will not
bounce at all. The following figure shows the situation after the first bounce:

Sensor
When we need a fixture that detects collisions but is otherwise not affected by them
and doesn't affect other fixtures and bodies, we use a sensor. A goal line in a 2D air
hockey top-down game is a good example of a sensor. We want it to detect the disc
passing through, but we don't want it to prevent the disc from entering the goal.

The physics world
The physics world is the whole simulation including all bodies with their
fixtures, gravity, and other settings that influence the performance and quality
of the simulation.

Tweaking the physics world settings is important for large simulations
with many objects. These settings include the number of steps performed
per second and the number of velocity and position interactions per step.

The most important setting is gravity, which is determined by a vector of gravitational
acceleration. Gravity in Box2D is simplified, but for the purpose of games, it is usually
enough. Box2D works best when simulating a relatively small scene where objects are
a few tens of meters big at most.

Chapter 6

[125]

To simulate, for example, a planet's (radial) gravity, we would have
to implement our own gravitational force and turn the Box2D built-in
gravity off.

Forces and impulses
Both forces and impulses are used to make a body move. Gravity is nothing else
but a constant application of a force. While it is possible to set the position and
velocity of a body in Box2D directly, it is not the right way to do it, because it
makes the simulation unrealistic.

To move a body properly, we need to apply a force or an impulse to it. These two
things are almost the same. While forces are added to all the other forces and change
the body velocity over time, impulses change the body velocity immediately. In fact,
an impulse is defined as a force applied over time.

We can imagine a foam ball falling from the sky. When the wind starts blowing from
the left, the ball will slowly change its trajectory. Impulse is more like a tennis racket
that hits the ball in flight and changes its trajectory immediately.

There are two types of forces and impulses: linear and angular. Linear makes the
body move left, right, up, and down, and angular makes the body spin around its
center. Angular force is called torque.

Linear forces and impulses are applied at a given point, which will have different
effects based on the position. The following figure shows a simple body with two
fixtures and quite high friction, something like a carton box on a carpet. First, we
apply force to the center of the large square fixture.

Physics

[126]

When the force is applied, the body simply moves on the ground to the right a little.
This is shown in the following figure:

Second, we try to apply force to the upper-right corner of the large box. This is
shown in the following figure:

Using the same force at a different point, the body will be toppled to the right side.
This is shown in the following figure:

Chapter 6

[127]

Joints
When a body is assembled from different fixtures, the fixtures never move
relatively to each other. Joints link multiple bodies together. They can fix all
degrees of freedom or fix only some of them. Joints are a more advanced topic
that will be covered in Chapter 8, Advanced Physics.

Adding physics
We are going to add a physics world to our game and set it up with gravity.
We will also make a physics body for the player character and add platforms.
Finally, we will make the character move based on the tilt of our Android device.
The physics extension should be already included in your game project since
Chapter 1, Setting Up an AndEngine Project.

First, we must remove the code that we added in Chapter 5, Basic Interactions, when
we were learning about modifiers, because we don't want the entity to be controlled
by touch or drag-and-drop. We want it to be controlled by physics and gravity.

Physics

[128]

The following code snippet shows how the relevant parts of the cleaned up version
of the GameScene class should look. The populate() method will be limited only
to this code.

@Override
public void populate() {
 createBackground();
 createPlayer();
 createHUD();
 engine.enableAccelerationSensor(activity, this);
}

The onAccelerationChanged() method should look like the following code snippet:

float lastX = 0;
@Override
public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }
}

We have removed the part that controls which direction the player is facing.
We can also remove all unnecessary fields and imports now.

The final code of this chapter is available in the code bundle.

Adding a physics world
We start by adding a physics world to the game. It is very straightforward. Every
Box2D port will have its equivalent of a physics world. The one in AndEngine is
implemented as an update handler. The following code belongs to the GameScene
class and adds and registers the physics world as an update handler:

private PhysicsWorld physicsWorld;

public GameScene() {
 super();
 physicsWorld = new PhysicsWorld(new Vector2(0, -
 SensorManager.GRAVITY_EARTH * 4), false);

Chapter 6

[129]

 PlayerFactory.getInstance().create(vbom);
}

@Override
public void populate() {
 createBackground();
 createPlayer();
 createHUD();

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);
}

When creating the physics world, two parameters are passed into the physicsworld
class constructor. The first parameter is the gravity vector. We are using the value of
Earth's gravity from the Android SDK multiplied by four to make the fall faster. The
second parameter is a Boolean value that defines whether the engine should allow the
sleeping of bodies. A body that comes to rest can be flagged as sleeping, which means
it will no longer be simulated until something collides with it or a force is applied to it.
This is a good optimization.

Putting a physics body to sleep has its drawbacks too. If sleeping is
turned on and the player character falls on a platform and stands still,
it will enter the sleep state. When we change the gravitational vector
afterwards, the player character will not be notified of this change and
will remain in the sleep state.

Introducing a collidable entity
It's a good practice to encapsulate functionality of an entity within the entity itself.
In simple tutorials, it's possible to add the body directly in the GameScene class.
But we want to keep our code well organized.

We are going to deal with entities that will have a physics body and will be
colliding with each other. Therefore, we are going to introduce an interface
called CollidableEntity in the is.kul.learningandengine.entity package.
This can be done as follows:

public interface CollidableEntity extends IEntity {
 public void setBody(Body body);
 public Body getBody();
 public String getType();
}

We want to have access to the physics body, and for the purpose of the collision,
we want to know what kind of object it is.

Physics

[130]

Relation between physics bodies and entities
What we see in the game and how the actual physics bodies look can be two different
things. Because the physics simulation can be very resource demanding, it's usually a
good idea to simplify the bodies as much as possible. The following figure shows two
examples of how bodies can relate to entities, and specifically to our case, sprites.

The first example is what we are going to use. The physics body is based on the
sprite itself. There is some extra space that will cause the collisions to be triggered
outside the actual player character, which might be noticeable in the game. For the
collision between a platform and the feet, the box is sufficient. But for the collisions
between the player character and the flying enemies, better approximation might
be required. This is the easiest way to create a physics body.

The second option will produce better results when detecting collisions. We will get
back to it in Chapter 8, Advanced Physics, when we are going to improve the physics
simulation with some advanced techniques.

Adding a physics body to the player entity
The existing Player class will be our first colliding entity. Let's implement the
CollidableEntity interface and add the required methods:

public class Player extends TiledSprite implements
 CollidableEntity {

…

 private Body body;
 public static final String TYPE = "Player";

…

 @Override
 public void setBody(Body body) {

Chapter 6

[131]

 this.body = body;
 }

 @Override
 public Body getBody() {
 return body;
 }

 @Override
 public String getType() {
 return TYPE;
 }
}

The getType() method returns a string, and we can choose any string as long as
it is unique. The getBody() and setBody() methods are the getter and setter of
the physics body. The Player class won't create the body itself. That is a job for the
PlayerFactory class. Let's update it as well to deal with the physics. The following
code snippet shows only the methods that have changed from the code in Chapter 3,
From Assets to Entities:

public class PlayerFactory {
 …
 private PhysicsWorld physicsWorld;
 public static final FixtureDef PLAYER_FIXTURE =
 PhysicsFactory.createFixtureDef(1f, 0f, 1f, false);

 …

 public void create(PhysicsWorld physicsWorld,
 VertexBufferObjectManager vbom) {
 this.physicsWorld = physicsWorld;
 this.vbom = vbom;
 }

 public Player createPlayer(float x, float y) {
 Player player = new Player(x, y,
 ResourceManager.getInstance().playerTextureRegion, vbom);
 player.setZIndex(2);

 Body playerBody = PhysicsFactory.createBoxBody(physicsWorld,
 player, BodyType.DynamicBody, PLAYER_FIXTURE);
 playerBody.setLinearDamping(1f);
 playerBody.setFixedRotation(true);

Physics

[132]

 playerBody.setUserData(player);
 physicsWorld.registerPhysicsConnector(new
 PhysicsConnector(player, playerBody));

 player.setBody(playerBody);
 return player;
 }

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 if (getCurrentTileIndex() < 2) {
 if (body.getLinearVelocity().y < 0) {
 fall();
 } else {
 fly();
 }
 }
 }
}

When creating the factory, the PhysicsWorld reference must be passed in.
The factory needs it to create the body.

We are creating a dynamic body with one rectangular fixture using an AndEngine
convenience method from the PhysicsFactory class. AndEngine measures the
entity and then calls the appropriate Box2D method with the correct parameters.

The body will be exactly the same size as the player sprite. The fixture defines the
body with density 1, no friction, and very bouncy. These parameters usually need
some tweaking. Other parameters that we set are linear damping and fixed rotation.
Damping can be both linear and angular, and it simply means that the body will
slow down its movement as if going through a denser environment than vacuum,
such as an atmosphere of water.

Finally, we set the user data of the body as our type, which we later use in collision
handling, and register a connector between the body and the entity (the Player
class). This means that the entity position (and rotation) will be updated by the
body position (and rotation).

Once the connector is created and registered, we should never set the
position of the entity itself.

Chapter 6

[133]

We have also added another option to change the look of our character based on
the movement. In the same way we are making the character face left or right, we
can change the currently-displayed sprite tile based on up and down movement.
We can put this code in the GameScene class, but we can also encapsulate it in the
player itself. That's what is happening here in the onManagedUpdate() method.

The last thing that remains is to change the GameScene code. We only need to pass
the physics world to the PlayerFactory class. This can be done as follows:

public GameScene() {
 super();
 physicsWorld = new PhysicsWorld(new Vector2(0, -
 SensorManager.GRAVITY_EARTH), true);
 PlayerFactory.getInstance().create(physicsWorld, vbom);
}

If run now, the game will start with the player character in the middle of the screen
slowly accelerating in the direction of the gravity.

Adding platforms
The next things we need in our game are platforms. We are going to create static
and moving platforms. Our entity and factory model allows us to create only one
class for both.

The Platform class belongs to the same package as the Player entity class. Its code
is very simple:

public class Platform extends Sprite implements CollidableEntity {

 private Body body;

 public static final String TYPE = "Platform";

 public Platform(float pX, float pY,
 ITextureRegion pTextureRegion,
 VertexBufferObjectManager pVertexBufferObjectManager) {
 super(pX, pY, pTextureRegion, pVertexBufferObjectManager);
 }

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {

Physics

[134]

 super.onManagedUpdate(pSecondsElapsed);
 }

 @Override
 public void setBody(Body body) {
 this.body = body;
 }

 @Override
 public Body getBody() {
 return body;
 }

 @Override
 public String getType() {
 return TYPE;
 }
}

The Platform class is based on the Sprite class and returns the type Platform.
Other than that, we only implement the setter and getter for the body. Most of the
interesting code is in the PlatformFactory class:

public class PlatformFactory {

 public static final FixtureDef PLATFORM_FIXTURE =
 PhysicsFactory.createFixtureDef(0f, 0f, 1f, false);

 private static PlatformFactory INSTANCE = new PlatformFactory();
 private PhysicsWorld physicsWorld;
 private VertexBufferObjectManager vbom;

 private PlatformFactory() { }

 public static PlatformFactory getInstance() {
 return INSTANCE;
 }

 public void create(PhysicsWorld physicsWorld,
 VertexBufferObjectManager vbom) {

Chapter 6

[135]

 this.physicsWorld = physicsWorld;
 this.vbom = vbom;
 }

 public Platform createPlatform(float x, float y) {
 Platform platform = new Platform(x, y,
 ResourceManager.getInstance().platformTextureRegion, vbom);
 platform.setAnchorCenterY(1);

 final float[] sceneCenterCoordinates =
 platform.getSceneCenterCoordinates();
 final float centerX =
 sceneCenterCoordinates[Constants.VERTEX_INDEX_X];
 final float centerY =
 sceneCenterCoordinates[Constants.VERTEX_INDEX_Y];

 Body platformBody = PhysicsFactory.createBoxBody(physicsWorld,
 centerX, centerY,
 platform.getWidth() - 20, 1,
 BodyType.KinematicBody, PLATFORM_FIXTURE);
 platformBody.setUserData(platform);
 physicsWorld.registerPhysicsConnector(new
 PhysicsConnector(platform, platformBody));
 platform.setBody(platformBody);
 return platform;
 }

 public Platform createMovingPlatform(float x, float y, float
 velocity) {
 Platform platform = createPlatform(x, y);
 platform.getBody().setLinearVelocity(velocity, 0);
 return platform;
 }
}

There are two methods: createPlatform() and createMovingPlatform(). The first
one creates a static platform. We are using a kinematic body here, but it could be a
static body as well. The reason is simply to save some lines of code. If our simulation
had more bodies, it would be better to strictly use static bodies for static platforms and
kinematic bodies for moving platforms. Static bodies need less processing time than
kinematic ones. Using kinematic bodies could negatively influence the performance.

Physics

[136]

We are first creating a sprite and later adding a body that doesn't cover the full sprite,
but in fact, it is just a thin line on top of the platform. We want only the top part of the
platform to react to the collisions. The highlighted code in the previous code snippet
is the easiest way to achieve this. The physics body-bounding boxes are shown as red
rectangles in the following screenshot from the game:

Finally, we add the code to the GameScene class that will insert the platform into
the game. For now, we are going to add just one static platform for the player to
land on as shown in the previous screenshot. This can be done as follows:

Random rand = new Random();

private LinkedList<Platform> platforms = new
 LinkedList<Platform>();

public GameScene() {
 super();
 physicsWorld = new PhysicsWorld(new Vector2(0, -
 SensorManager.GRAVITY_EARTH), true);
 PlayerFactory.getInstance().create(physicsWorld, vbom);

Chapter 6

[137]

 PlatformFactory.getInstance().create(physicsWorld, vbom);
}

@Override
public void populate() {
 createBackground();
 createPlayer();
 createHUD();

 addPlatform(240, 50, false);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);
}

private void addPlatform(float tx, float ty, boolean moving) {
 Platform platform;
 if (moving) {
 platform = PlatformFactory.getInstance().createMovingPlatform
 (tx, ty, (rand.nextFloat() - 0.5f) * 10f);
 } else {
 platform = PlatformFactory.getInstance().createPlatform(tx,
 ty);
 }
 attachChild(platform);
 platforms.add(platform);
}

We have added a random number generator to the GameScene class that is used in the
addPlatform() method to randomly send a platform in a random direction. We also
added a list of platforms because we will be adding and removing them dynamically
as the player moves upwards.

We are creating the PlatformFactory class in the constructor and adding one
platform in the populate() method using the addPlatform() method.

When the character falls on the platform, there is a little twitch when the two
frames—fly and fall—are changing very quickly. This is expected because we did not
implement the same threshold for up and down frames as we did for left and right.
The character is almost unnoticeably bouncing for a short time, up and down. But,
when we add a spring to the platform to propel the player upwards, the twitch will
not happen.

Physics

[138]

Controlling the player character
The gravity vector is fixed and it is pointing down along the y axis of the device in
portrait mode. There are no other forces in place, which means our character now
falls straight down. We have several options on how to make the character move
left and right using the Android device tilt. We already used the accelerometer
readings and moved the character using the entity modifiers. Now, we will do
the same using the physics engine.

Changing the gravity vector
The first option is to change the gravity vector based on the accelerometer readings.
We only want to change the x axis movement, and the more the phone is tilted,
the faster the character should move. Therefore, we will keep the vertical part of
the vector and change only the horizontal part based on the accelerometer readings.

This is not the most realistic option, but it's the one that is the easiest and gives the
best result.

The following code shows how it is done. Let's change the
onAccelerationChanged() method.

float lastX = 0;
@Override
public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }
 final Vector2 gravity =
 Vector2Pool.obtain(pAccelerationData.getX() * 8, -
 SensorManager.GRAVITY_EARTH * 4);
 this.physicsWorld.setGravity(gravity);
 Vector2Pool.recycle(gravity);
}

The highlighted code was added and it does three things. First, we obtain a
vector object from a pool of objects. This is an optimization technique that
prevents garbage collection.

Chapter 6

[139]

Android is based on Java, and Java frees the memory by removing
data that is no longer in use. This is called garbage collection, and it
can cause short lags during gameplay. If we simply created a new
vector here, a lot of objects would be created; one per accelerometer
reading. This would cause garbage collection quite often. Therefore,
it's better to reuse these objects. The pool contains a few objects that are
reused and never garbage collected until the whole pool is discarded.

Secondly, the accelerometer's horizontal value is used as the new gravity horizontal
part multiplied by a constant. We also multiply the y-value of gravity by a constant
to make the fall faster and the game more action-packed.

Lastly, we return the used vector to the pool in order to recycle it. Because the values
are set directly to the Box2D engine, we no longer need the vector object, but we
want to make it available in future iterations with new values.

When we run the game now, the character falls down and the direction of the fall
can be influenced by tilting the device. The black arrow in the following illustration
shows the final direction (vector) of movement. When the device is tilted, the vector
is composed of the original vertical value (red) and the new horizontal value (blue).

Physics

[140]

When the character lands on the platform and stops moving, it can no longer move
at all no matter how much we tilt the device. This is because the character is asleep.
It can only be awaken after another collision happens or a force is applied to it.

When creating the physics world, we can turn sleeping on or off
for all bodies. Each individual body also has a property called
sleepingAllowed that can be set manually.

Using forces
Instead of changing the gravity vector, we can apply a force to the character as an
alternative. We are not going to use this method in the end, but it can be useful in
other cases. Using forces is the most realistic option.

Let's temporarily change the onAccelerationChanged() method in the GameScene
class as follows:

public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }
 final Vector2 force =
 Vector2Pool.obtain(pAccelerationData.getX() * 50, 0);
 final Vector2 point = player.getBody().getWorldCenter();
 player.getBody().applyForce(force, point);
 Vector2Pool.recycle(force);
}

The highlighted part has changed. Now, we first obtain a vector from the pool and
set its horizontal value to the accelerometer's horizontal value multiplied by a big
constant. We use the constant because we want to apply a force big enough to move
our character. To accelerate the object faster, we need to use a bigger value. We should
factor in the time between two accelerometer readings as well, but for simplicity, a
constant will do.

We are also using the center of the player character as the point where we apply the
force. The Body class has a method that returns the position of the center of gravity
of the body in the physics world coordinates.

Chapter 6

[141]

When we run the game now, the character's fall can again be influenced by tilting
the device, but the final effect is different. It feels somehow lazier. This is due to the
fact that the forces are applied gradually over time. When changing the direction,
we must first overcome the character's inertia.

This method can be used to simulate a jet pack, because a jet pack would have
exactly this kind of effect on the character.

Using impulses
Impulse is a force applied over time. When we call the applyImpulse() method,
it has the same effect as if we have been applying a force over a period of time,
but it is applied immediately.

We are going to change the code of the onAccelerationChanged() method once
again. The difference from the last code is minimal, just two highlighted lines:

public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }
 final Vector2 force =
 Vector2Pool.obtain(pAccelerationData.getX() * 5, 0);
 final Vector2 point = player.getBody().getWorldCenter();
 player.getBody().applyLinearImpulse(force, point);
 Vector2Pool.recycle(force);
}

We need to use a smaller value when applying the impulse, because its effect is
stronger. Other than that, we only change one method for the other. When we
run the game now, the character is going to change direction more quickly.

Setting the velocity directly
This method is not recommended. Setting the velocity directly can break the physics
simulation, because it is something that doesn't happen naturally. On the other hand,
when adding a new object to the simulation, setting its initial velocity might be what
we need.

Physics

[142]

For one last time, we are going to change the onAccelerationChanged() method:

float lastX = 0;
@Override
public void onAccelerationChanged(final AccelerationData
 pAccelerationData) {
 if (Math.abs(pAccelerationData.getX() - lastX) > 0.5) {
 if (pAccelerationData.getX() > 0) {
 player.turnRight();
 } else {
 player.turnLeft();
 }
 lastX = pAccelerationData.getX();
 }
 final Vector2 velocity =
 Vector2Pool.obtain(pAccelerationData.getX() * 2,
 player.getBody().getLinearVelocity().y);
 player.getBody().setLinearVelocity(velocity);
 Vector2Pool.recycle(velocity);
}

In this case, we are creating the velocity vector using the horizontal value from the
accelerometer and the vertical value from the body itself, set by the physics engine.
While this certainly works, it doesn't happen naturally and it breaks the simulation too.

Summary
This chapter dealt with physics in AndEngine. Now, we know that AndEngine
is using a port of a popular two-dimensional physics engine called Box2D. Basic
terms such as force, impulse, velocity, fixture, restitution, friction, and density
were explained. We learned the differences between bodies, their properties,
and how the properties influence the final simulation.

In the second part, we added the engine to the game and implemented a way to
control the character using tilt and physics. Multiple ways were discussed with
their advantages and drawbacks.

In the next chapter, we will add enemies and work with collisions and game events.
We will learn how to manipulate the physics bodies and add and remove platforms
dynamically. We are also going to add enemies, and to make the game more
interactive, we will add sounds to the collisions.

Detecting Collisions and
Reacting to Events

In this chapter, we are going to add a physics-based collision detector to our game
and create events based on the detected collisions. We are going to learn how to
trigger events from different phases of a collision and for specific types of colliding
bodies. We will also learn how to handle these collision events and many other
events such as "game over".

Finally, we are going to learn how to play sound effects that we prepared earlier in
the game during the events to improve their overall feel.

Collisions
Collisions are an integral part of the physics engine. Algorithms used in Box2D are
nicely optimized and we will take advantage of it. However, we will be adding and
removing physics bodies during the game because it's usually a good idea to keep
the number of bodies to a minimum. Even the best algorithms will take some time to
calculate all collisions and too many bodies might mean a significant slowdown.

While adding bodies is usually easy and can be done without any problem,
removing bodies must be done at a specific time and it is one of the most
common culprits of strange crashes in games with physics.

Detecting Collisions and Reacting to Events

[144]

Detecting collisions
Collisions are detected automatically by Box2D, and collision events are handled
in a contact listener. Here's an example of the simplest contact listener. Let's create
a class called MyContactListener in the is.kul.learningandengine.scene
package and let it implement the ContactListener interface:

public class MyContactListener implements ContactListener {

 Player player;

 public MyContactListener(Player player) {
 this.player = player;
 }

 @Override
 public void beginContact(Contact contact) {
 }

 @Override
 public void endContact(Contact contact) {
 }

 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {
 }

 @Override
 public void postSolve(Contact contact, ContactImpulse impulse) {
 }
}

The ContactListener interface, like many other classes and interfaces
in the physics extension, belongs to a com.badlogic package. This is
due to the fact that AndEngine's physics extension is based on the libgdx
physics library. libgdx is another popular Android game framework and
can be found at http://libgdx.badlogicgames.com/.

http://libgdx.badlogicgames.com/

Chapter 7

[145]

The ContactListener interface contains the following four callback methods; each
of them is called during a different phase of a contact:

• The beginContact method is called when two fixtures from two different
bodies start to overlap. This is the place where we want to play a sound on
impact, show explosion animation, and so on.

• The endContact method is called when two fixtures stop overlapping.
• The preSolve method is called after the collision is detected but before any

calculation of the result is done. We are going to implement the one-sided
platform by turning off the collision in this method.

• The postSolve method is called after all the collision calculations have
been done. It is possible to access the final impulse that will be applied
to the body.

The collision always starts with beginContact. Then, preSolve and postSolve
are called, and they can be called multiple times if the contact is still in place.
Finally, endContact is called.

The physics world can't be manipulated inside the listener. For example,
it would be a big mistake to destroy a body in the postSolve method
because the processing would continue thinking that the body still exists.
In AndEngine, such action usually results in an unexpected crash. The
best practice in this case is to save the bodies that need to be manipulated
to another temporary list and do so before the next Box2D step. One of
the options is to use the runOnUpdateThread() method.

Our contact listener also keeps a reference to the player to be able to manipulate its
speed. To enable our contact listener, we simply set it in our current physics world.
We do this in the GameScene class in the populate() method, as follows:

 @Override
 public void populate() {
 createBackground();
 createPlayer();
 createHUD();

 addPlatform(240, 100, false);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);

 physicsWorld.setContactListener(new MyContactListener(player));
 }

Detecting Collisions and Reacting to Events

[146]

The player-platform collision
We will start with a simple player-platform collision. Right now in our game,
there is just one platform and the player falling straight on it.

When the collision is detected, the Contact object is passed in the beginContact()
method. Contact contains two fixtures that are overlapping. Each fixture belongs to
a body so that we can check what kind of bodies are actually colliding.

The order of bodies is not guaranteed. Always check whether
it is A in contact with B or B with A.

Let's add a convenient method to MyContactListener to make distinguishing the
collisions easier:

 private boolean checkContact(Contact contact, String typeA, String
typeB) {
 if (contact.getFixtureA().getBody().getUserData() instanceof
CollidableEntity &&
 contact.getFixtureB().getBody().getUserData() instanceof
CollidableEntity) {
 CollidableEntity ceA = (CollidableEntity) contact.getFixtureA().
getBody().getUserData();
 CollidableEntity ceB = (CollidableEntity) contact.getFixtureB().
getBody().getUserData();

 if (typeA.equals(ceA.getType()) && typeB.equals(ceB.getType())
||
 typeA.equals(ceB.getType()) && typeB.equals(ceA.getType()))
{
 return true;

 }
 }
 return false;
 }

We are making use of our CollidableEntity interface. If both fixtures belong
to bodies that are a part of CollidableEntities, we can safely cast them to the
CollidableEntities interface and then retrieve their type. In the branching
statement, we first check whether typeA just collided with typeB or typeB with typeA.

Chapter 7

[147]

Back in Chapter 2, Game Concept and Assets, we discussed the game rules.
The platforms should be passable from bottom-up and solid when fell onto.
Here's the illustration again:

Moreover, on contact after the fall, the platform must propel the main character
upwards. Here's how to achieve this behavior in the preSolve() method
of MyContactListener:

 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {
 if (checkContact(contact, Player.TYPE, Platform.TYPE)) {
 // player and platform
 if (!player.isDead() && player.getBody().getLinearVelocity().y <
0) {
 player.getBody().setLinearVelocity(new Vector2(0, 40));
 } else {
 contact.setEnabled(false);
 }
 }
 }

First, we check whether the player is still alive. This check is important because
we want a dead player to fall through any remaining platforms. Then, we check
whether the player is currently falling by checking the vertical component of its
linear velocity. If both conditions are true, we have a live player character falling
on a platform and we propel it upwards. It other cases, we simply mark the
contact as disabled, which has the same effect as if the contact never happened.

Detecting Collisions and Reacting to Events

[148]

In this particular case, we are setting the velocity directly because we want to
cancel all forces that could be influencing the player's character and propel it
straight up with a given speed.

To illustrate this behavior a little bit better, let's add another platform above our
first platform:

 @Override
 public void populate() {
...

 addPlatform(240, 100, false);
 addPlatform(340, 400, false);

...
 }

After running the game now, the player will fall on the first platform and it is
propelled upwards. We can now tilt the device right and the player will move
in the direction of the other platform. If it approaches from the bottom, it will
pass through. If it falls on it, then it will be propelled upwards.

The player-enemy collision
It's time to add enemies to the game. Our enemy will be the animated fly, as shown
in the following screenshot:

The Enemy class and EnemyFactory
The enemy entity will be represented by a new class called Enemy and will be
created by a new factory called EnemyFactory. We will put these classes into
their respective packages:

public class Enemy extends AnimatedSprite implements CollidableEntity
{

Chapter 7

[149]

 public static final String TYPE = "ENEMY";

 private Body body;

 public Enemy(float pX, float pY,
 ITiledTextureRegion pTiledTextureRegion,
 VertexBufferObjectManager pVertexBufferObjectManager) {
 super(pX, pY, pTiledTextureRegion, pVertexBufferObjectManager);
 }

 @Override
 public void setBody(Body body) {
 this.body = body;
 }

 @Override
 public Body getBody() {
 return body;
 }

 @Override
 public String getType() {
 return TYPE;
 }
}

The class is not much different from the platform class. The only important
difference is TYPE being set to ENEMY and that the extended class is AnimatedSprite
in this case.

The factory for enemies follows the same pattern as our other factories.
Here's the code:

public class EnemyFactory {
 public static final FixtureDef ENEMY_FIXTURE = PhysicsFactory.
createFixtureDef(1f, 0f, 1f, true);

 private static EnemyFactory INSTANCE = new EnemyFactory();
 private PhysicsWorld physicsWorld;
 private VertexBufferObjectManager vbom;

 private EnemyFactory() { }

Detecting Collisions and Reacting to Events

[150]

 public static EnemyFactory getInstance() {
 return INSTANCE;
 }

 public void create(PhysicsWorld physicsWorld,
VertexBufferObjectManager vbom) {
 this.physicsWorld = physicsWorld;
 this.vbom = vbom;
 }

 public Enemy createEnemy(float x, float y) {
 Enemy enemy = new Enemy(x, y, ResourceManager.getInstance().
enemyTextureRegion, vbom);

 Body enemyBody = PhysicsFactory.createBoxBody(physicsWorld, enemy,
 BodyType.KinematicBody, ENEMY_FIXTURE);

 enemyBody.setUserData(enemy);
 physicsWorld.registerPhysicsConnector(new PhysicsConnector(enemy,
enemyBody));

 enemy.setBody(enemyBody);
 enemyBody.setLinearVelocity(-1, 0);
 enemy.animate(75);
 enemy.setZIndex(1);
 return enemy;
 }
}

Again, we use a single instance of this factory. We need a method to return the
single instance and a method to create the factory itself. Lastly, we need a method
to create enemies. We have seen all this code before. The only difference here is that
we are calling the animate() method to animate the fly—change frames each 75
milliseconds and we set the enemy to move with a small velocity leftwards.

Adding enemies to the scene
As we will be adding enemies to the scene as the view moves upwards and
removing them as they disappear at the bottom edge of the display, we are
going to need the following changes to the GameScene class. The changes are
highlighted in the following code:

 private LinkedList<Enemy> enemies = new LinkedList<Enemy>();

 public GameScene() {

Chapter 7

[151]

 super();
 physicsWorld = new PhysicsWorld(new Vector2(0, -SensorManager.
GRAVITY_EARTH * 4), true);
 PlayerFactory.getInstance().create(physicsWorld, vbom);
 PlatformFactory.getInstance().create(physicsWorld, vbom);
 EnemyFactory.getInstance().create(physicsWorld, vbom);
 }

 private void addEnemy(float tx, float ty) {
 Enemy enemy = EnemyFactory.getInstance().createEnemy(tx, ty);
 attachChild(enemy);
 enemies.add(enemy);
 }

 @Override
 public void populate() {
 createBackground();
 createPlayer();
 createHUD();

 addPlatform(240, 100, false);
 addPlatform(340, 400, false);
 addEnemy(140, 400);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);

 physicsWorld.setContactListener(new
MyContactListener(player));
 }

First, we need to create the enemy factory in the constructor to make sure that it is
available later. The addEnemy() method simply adds the fly at the correct position,
and in the populate() method, we are insert one of the enemies.

Updating the contact listener
Finally, we update the contact listener. It is very simple and is as follows:

 @Override
 public void beginContact(Contact contact) {
 if (checkContact(contact, Player.TYPE, Enemy.TYPE)) {
 player.die();
 }
 }

Detecting Collisions and Reacting to Events

[152]

After collision is detected, we check whether it is a collision between the player and
the enemy, and if yes, we mark the player as dead. This will switch the frame of the
player and also stop it from colliding with platforms. It will fall off the screen.

This concludes the part about collisions. We are now ready to move the camera
and add and remove platforms.

Game events
There are a handful of events that we need to handle: the player jumps out of the
screen, a new platform or enemy is added, a platform or enemy is removed, and a
player dies. The player's character can die in two ways: when it collides with the
enemy, which we already implemented, and when it falls off the screen. We also
want to reward the player with a score when he or she reaches a new height.

There is one more special event we need to cover. When the player's character exits
the screen on the left or right side, we want it to reappear on the other side. We want
to create a wrapped world. Same with platforms and later enemies when we make
them move.

The chase camera
When the camera is following the main character, it is called a chase camera
in AndEngine. Any camera can be chasing any entity by simply calling the
following function:

camera.setChaseEntity(entity);

However, in our case, this is not exactly what we want. We need the camera to
follow only the upward movement of the player when it is alive and downward
when it dies.

For our purpose, we are going to create a new camera class that will inherit the
functionality from AndEngine's SmoothCamera. This type of camera moves smoothly
from one point to another when a new position is set. We will implement our own
chasing and restrict it to the vertical movement. Create a new class called MyCamera
in the is.kul.learningandengine package, as shown in the following code:

public class MyCamera extends SmoothCamera {

 private IEntity chaseEntity;

Chapter 7

[153]

 private boolean gameOver = false;

 public MyCamera(float pX, float pY, float pWidth, float pHeight) {
 super(pX, pY, pWidth, pHeight, 3000f, 1000f, 1f);
 }

 @Override
 public void setChaseEntity(IEntity pChaseEntity) {
 super.setChaseEntity(pChaseEntity);
 this.chaseEntity = pChaseEntity;
 }

 @Override
 public void updateChaseEntity() {
 if (chaseEntity != null) {
 if (chaseEntity.getY() > getCenterY()) {
 setCenter(getCenterX(), chaseEntity.getY());
 } else if (chaseEntity.getY() < getYMin() && !gameOver) {
 setCenter(getCenterX(), chaseEntity.getY() - getHeight());
 gameOver = true;
 }
 }
 }
}

The constructor calls the SmoothCamera constructor to set fast, but still smooth
zooming. The two large number parameters are pixel per second and maximal
velocities, and the last parameter is zoom velocity, which we are not going to use.

We are implementing our own chase entity logic, and as the chase entity is hidden
from its children in other camera classes, we have to implement the setter as well. We
are overriding the updateChaseEntity method to create the behavior we need. The
first branch of the if statement checks whether the character moved upwards. The
second branch checks for the falling. If the character falls beyond the lower bounds
of the camera, the camera automatically centers to the character once, which looks
like the camera is following it for a while. Afterwards, the chasing stops and character
falls off the screen. In fact, the camera stops following the character immediately when
it dies, and the single smooth shift to the character's location creates the nice effect.

Detecting Collisions and Reacting to Events

[154]

To use our camera, we need to update two classes. First, the GameActivity class:

 @Override
 public EngineOptions onCreateEngineOptions() {
 Camera camera = new MyCamera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
...
 }

Then update the GameScene class:

 @Override
 public void populate() {
 createBackground();
 createPlayer();
 camera.setChaseEntity(player);
 createHUD();

...
 }

Adding and removing platforms and enemies
Now that our camera follows the character, it's time to start adding platforms and
removing the platforms that are no longer visible. Thanks to the special camera,
we are sure that a platform that leaves the screen will never appear again and
thus can be safely removed.

Here's a basic idea of what we want to achieve. The arrow shows the direction
that the world, and therefore the platforms, move:

Chapter 7

[155]

As the player moves up, we will have to add a new platform. We are going to check
the distance between the uppermost platform (2) and the upper bound of the current
camera view (1). If the distance reaches a certain threshold, we are going to add a
new platform and the position (1).

We will also check the position of the lowermost platform (3). When it reaches the
lower bounds of the current camera view (4), we are going to remove this platform.

Enemies work exactly the same way. We will make use of it and add and remove
them together with platforms.

First, we add a method to the GameScene class that removes all unwanted entities
in a list. Here's what it looks like:

 private void cleanEntities(List<? extends CollidableEntity> list,
float bound) {
 Iterator<? extends CollidableEntity> iter = list.iterator();
 while (iter.hasNext()) {
 CollidableEntity ce = iter.next();
 if (ce.getY() < bound) {
 iter.remove();
 ce.detachSelf();
 physicsWorld.destroyBody(ce.getBody());
 }
 }
 }

This method simply iterates over all entities in a list, and if their y coordinate is
lower than the specified bound, the entity is removed from the list, the sprite is
detached from the scene, and the physics body is destroyed.

Secondly, we override the onManagedUpdate() method to calculate when to add
entities and call the cleanEntities() method:

 private static final float MIN = 50f;
 private static final float MAX = 250f;

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 boolean added = false;
 while (camera.getYMax() > platforms.getLast().getY()) {
 // x position of next platform
 float tx = rand.nextFloat() * GameActivity.CAMERA_WIDTH;
 // y position of next platform
 float ty = platforms.getLast().getY() + MIN + rand.nextFloat() *
(MAX - MIN);
 // 10 % chance to add enemy on the platform

Detecting Collisions and Reacting to Events

[156]

 if (rand.nextFloat() < 0.1) {
 addEnemy(tx, ty);
 }
 boolean moving = rand.nextBoolean();
 addPlatform(tx, ty, moving);
 added = true;
 }
 if (added) {
 sortChildren();
 }
 cleanEntities(platforms, camera.getYMin());
 cleanEntities(enemies, camera.getYMin());
 }

The first two lines are the minimum and maximum distance between platforms in
pixels. The method itself first defines a Boolean variable called added that is set to
true if anything was added and we need to sort the children of the scene. This is
important because we set the z-indexes of all entities to keep the player on top and
we must resort to everything whenever we add an entity.

Next, we calculate whether we need to add a platform. This happens whenever
the distance between the top bound of the camera view is higher than the topmost
platform. We also add a new enemy on a platform with 10 percent chance.

Finally, we call the cleanEntities() method on both platforms and enemies
to clean any entities that are below the visible area. We should see something like
this in the game now; multiple platforms and enemies here and there:

Chapter 7

[157]

Detecting the player character's death
Detecting the player character's death is in fact very simple. The only thing we
need is add the following code to the onManagedUpdate() method:

 // player below last platform
 if (player.getY() < platforms.getFirst().getY()) {
 player.die();
 }

If the player happens to be below the last platform, the game is over. When the main
character dies, it stops colliding with platforms (also there are no more platforms)
and falls down.

Score
There are few things that can serve as a score in your game. It can be the number of
platforms reached or height reached. Let's make it simple and say that the score will
be the maximum number of pixels that the lower bound of the camera has reached.
This is not only easy to implement but will also secure a lot of points.

First, we add a score counter, and then, we add a method that will increase the
counter every time the camera moves. The new code is highlighted and only the
relevant part in onManagedUpdate() is shown:

 private int score;

 private void createHUD() {
 HUD hud = new HUD();
 scoreText = new Text(16, 784, res.font, "0123456789", new
TextOptions(HorizontalAlign.LEFT), vbom);
 scoreText.setAnchorCenter(0, 1);
 score = 0;
 scoreText.setText(String.valueOf(score));
 hud.attachChild(scoreText);
 camera.setHUD(hud);
 }

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
...
 calculateScore();
 }

Detecting Collisions and Reacting to Events

[158]

 private void calculateScore() {
 if (camera.getYMin() > score) {
 score = Math.round(camera.getYMin());
 scoreText.setText(String.valueOf(score));
 }

 }

The score is calculated from the number of the pixels of the camera's lower
vertical bound. We have to use rounding because the bound can actually be
a floating point number.

When we run the game now, the score starts increasing very fast as soon as
the player starts moving upwards.

Wrapping the world around
The game almost works. It is possible to jump up, die from falling, and die from
touching the enemy. However, when the character leaves the screen left or right, it
is lost. There are also moving platforms that move outside the view and never come
back. Moreover, we would like to have moving enemies because now they simply
sit on platforms, making it almost impossible to use such a platform.

Chapter 7

[159]

The solution to all these problems is a wraparound. When anything leaves the screen
on the left (or right), it should reappear on the right (or left) again. We can imagine
this as if the screen was actually wrapped around a cylinder.

The easiest way to create a wraparound is to move the object that completely left the
screen on one side to the other side. Some variants of wraparound work in another
way. The object that starts leaving immediately appears on the other side, so at a
certain time, we can see it on both sides. However, such a wraparound is not as
simple to create, and therefore, we will implement only the easy solution.

The solution is the same for all our moving entities, but we can't add the same
functionality to the common ancestor without changing the AndEngine code.
Therefore, we will create a simple utility class that will contain one method
called wraparound().

Let's create it in the is.kul.learningandengine.entity package and call it Utils:

public class Utils {
 public static void wraparound(CollidableEntity ce) {

 if (ce.getX() + ce.getWidth() / 2 < 0) {
 ce.getBody().setTransform((GameActivity.CAMERA_WIDTH +
ce.getWidth() / 2) / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 ce.getBody().getPosition().y, 0);
 } else if (ce.getX() - ce.getWidth() / 2 > GameActivity.CAMERA_
WIDTH) {
 ce.getBody().setTransform((- ce.getWidth() / 2) /
PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,

Detecting Collisions and Reacting to Events

[160]

 ce.getBody().getPosition().y, 0);
 }
 }
}

The method checks whether the right bound of the object exited the left side, or the
left bound of the object exited the right side of the screen. In both the cases, the code
teleports the object to the other side without changing its speed. Therefore, platforms
keep moving in the correct direction, the player keeps falling, and so on.

To use this wraparound feature, we must add it to the onManagedUpdate()
method of each entity. In the case of the Player class, we add it to the existing
code, as follows:

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 Utils.wraparound(this);
 // if somebody set we are dying, we can't switch anymore
 if (getCurrentTileIndex() < 2) {
 if (body.getLinearVelocity().y < 0) {
 fall();
 } else {
 fly();
 }
 }
 }

For both Platform and Enemy, we need to override the method, as follows:

 @Override
 protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);
 Utils.wraparound(this);
 }

Restarting the game after a player dies
The only thing remaining now is to show some kind of end screen with the score
and allow the player to restart the game.

The way we implemented it, the player can die in two ways. First, when the player
touches the enemy and secondly when the player falls under the last platform. This
presents us with a common problem: how do we know that the game has finished?
Fortunately, we have added the dead field to the Player class, so we can always
know whether the player is alive or dead.

Chapter 7

[161]

There are more solutions to this problem. Another solution is to have a method
accessible from both the MyContactListener and GameScene classes that we can
call on the player's death. However, that will introduce more coupling between the
classes, which means that the classes will be more dependent on each other.

The best solution is probably to implement a state machine. Having different states
for player alive, game paused, player dead, and so on. Our game is too simple and
doesn't need a state machine yet. However, in Chapter 10, Polishing the Game, we are
going to use a state machine to indicate which scene is currently active to show how
it works. For now, a simple check will be enough.

Showing a message on game over
Let's start with showing a message to the player that the game is over. We want
to add the message to the HUD, so that it won't move when the camera moves.
Therefore, we change the createHUD() method in GameScene like this:

 private Text endGameText;

 private void createHUD() {
 HUD hud = new HUD();
 scoreText = new Text(16, 784, res.font, "0123456789", new
TextOptions(HorizontalAlign.LEFT), vbom);
 scoreText.setAnchorCenter(0, 1);
 score = 0;
 scoreText.setText(String.valueOf(score));
 hud.attachChild(scoreText);

 endGameText = new Text(GameActivity.CAMERA_WIDTH / 2,
GameActivity.CAMERA_HEIGHT / 2,
 res.font, "GAME OVER! TAP TO CONTINUE", new
TextOptions(HorizontalAlign.CENTER), vbom);
 endGameText.setAutoWrap(AutoWrap.WORDS);
 endGameText.setAutoWrapWidth(300f);
 endGameText.setVisible(false);
 hud.attachChild(endGameText);

 camera.setHUD(hud);
 }

Detecting Collisions and Reacting to Events

[162]

The added code creates a text entity that says Game over! Tap to continue.
Next, we set autowrap of the text to AutoWrap.WORDS and limit the text to 300
pixels of width. This means that the text will automatically continue to the next line
if it can't fit in 300 pixels, and words will be never be broken. The other option is
AutoWrap.LETTERS, where the wrapping can break a word. There is a third option
called AutoWrap.CJK, which is only useful for Asian characters such as Chinese,
Korean, and Japanese. These languages have special line breaking rules. For
example, certain characters might not come at the end of the line. We also set the
visibility of this text to false to keep it hidden at the beginning.

Creating a hidden entity is a neat trick to show something quickly
without running into problems with lags.

To show the text at the right time, we simply add the following code to the
onManagedUpdate() method in GameScene:

 if (player.isDead()) {
 endGameText.setVisible(true);
 }

This will be called in every cycle of the game, which means up to 60 times
per second. Fortunately, a simple "if" statement is very fast and won't negatively
influence the game's speed.

This is how the message should look:

Chapter 7

[163]

Restarting the game on tap
Next, we add a touch listener that will restart the game. There are basically two
ways of performing a restart. A simple way is to destroy the whole scene and create
everything again. A more complex way is to destroy and recreate all entities while
keeping the scene.

We will use the latter. Creating the scene from scratch is basically the same as changing
it, which we are going to do in Chapter 9, Adding a Menu and Splash Scene.

To remove all entities and restart the scene, we have to first implement the following
method to the MyCamera class:

 @Override
 public void reset() {
 super.reset();
 gameOver = false;
 set(0, 0, GameActivity.CAMERA_WIDTH,
GameActivity.CAMERA_HEIGHT);
 setCenterDirect(GameActivity.CAMERA_WIDTH / 2,
GameActivity.CAMERA_HEIGHT / 2);
 }

This will set the camera to the same settings as when we created the camera anew.
We set the gameOver flag to false, set the current camera view to the initial screen,
and then use the setCenterDirect()method to stop any smooth movement of the
camera that might be in progress.

Next, we will add the restartGame() method to the GameScene class:

 private void restartGame() {
 setIgnoreUpdate(true);
 unregisterUpdateHandler(physicsWorld);
 enemies.clear();
 platforms.clear();
 physicsWorld.clearForces();
 physicsWorld.clearPhysicsConnectors();
 while (physicsWorld.getBodies().hasNext()) {
 physicsWorld.destroyBody(
physicsWorld.getBodies().next());
 }
 camera.reset();
 camera.setHUD(null);
 camera.setChaseEntity(null);

Detecting Collisions and Reacting to Events

[164]

 detachChildren();

 populate();
 setIgnoreUpdate(false);
 }

This code first stops any updates from happening. This pauses the game and physics
engine to allow us to manipulate it. Then, we unregister the physics world as a
listener because we are going to register it again later. We clear the lists of platform
and enemies, remove all forces and physics connectors from the physics world, and
destroy all bodies.

Then, we reset the camera using the method we implemented earlier, remove its
HUD and chase entity, and finally detach all entities from the GameScene class.
Lastly, we call the populate method again and start updates again.

Finally, let's add the touch event listener and call the restartGame method on tap.
We first make the GameScene class implement the IOnSceneTouchListener method
and then implement the onSceneTouchEvent() method the following way (only the
new method is shown):

public class GameScene extends AbstractScene implements
IAccelerationListener, IOnSceneTouchListener {
...
 @Override
 public boolean onSceneTouchEvent(Scene pScene, TouchEvent
pSceneTouchEvent) {
 if (pSceneTouchEvent.isActionUp() && player.isDead()) {
 restartGame();
 return true;
 }
 return false;
 }
}

We first check whether the touch happened after the player's death and then call the
restartGame() method. This is everything that needs to be done to restart the game.

Playing sounds on events
The last thing that remains to be done to make the events feel more lively and real is
to add sounds. We have prepared two sounds that we will play.

Chapter 7

[165]

Just to refresh our memories, this is how we loaded the sounds in the
ResourceManager class:

public class ResourceManager {
 ...
 //sounds
 public Sound soundFall;
 public Sound soundJump;
 ...
 public void loadGameAudio() {
 try {
 SoundFactory.setAssetBasePath("sfx/");
 soundJump = SoundFactory.createSoundFromAsset(activity.
getSoundManager(), activity, "jump.ogg");
 soundFall = SoundFactory.createSoundFromAsset(activity.
getSoundManager(), activity, "fall.ogg");

 MusicFactory.setAssetBasePath("mfx/");
 music = MusicFactory.createMusicFromAsset(activity.
getMusicManager(), activity, "music.ogg");
 } catch (Exception e) {
 throw new RuntimeException("Error while loading audio", e);
 }
 }
 ...
}

Playing the jump sound
The jump sound should happen on the player-platform contact. Therefore, we are
going to play it in the MyContactListener class. Let's change the preSolve()
method like this:

 @Override
 public void preSolve(Contact contact, Manifold oldManifold) {
 if (checkContact(contact, Player.TYPE, Platform.TYPE)) {
 // player and platform
 if (!player.isDead() && player.getBody().getLinearVelocity().y <
0) {
 player.getBody().setLinearVelocity(new Vector2(0, 40));
 ResourceManager.getInstance().soundJump.play();
 } else {
 contact.setEnabled(false);
 }
 }
 }

Playing a single sound is really just this simple.

Detecting Collisions and Reacting to Events

[166]

Playing the fall sound when the player's
character dies
Like with the jump sound, we only need very simple code. This time, we should
play it when the player's death occurs. We can put this code to the Player class in
the die() method as follows:

 public void die() {
 if (!dead) {
 ResourceManager.getInstance().soundFall.play();
 }
 setDead(true);
 setCurrentTileIndex(2);
 }

We are using an extra if statement that checks whether this is the first time the
sound should play. If we haven't done this, the sound can be played multiple
times, for example, when the player touches an enemy and then falls.

Summary
In this chapter, we have learned three seemingly unrelated concepts that help us
to detect and react to events.

First, we added physics collisions to the game, and now we know how to use the
collision listeners to both perform an action on collision and to ignore a collision.
Secondly, we have identified basic events that happen throughout the game, on
collisions, or simple in time, and we learned when and how to react to them.
Lastly, we learned how to play sound effects on different events happening in
different places.

In the next chapter, we are going to see some advanced physics such as multiple
fixtures, joints, and collision filtering. The chapter will improve the look and feel
(UX) of our game.

Advanced Physics
The gameplay of the game is almost complete, and we will take a short break
from the game now. This chapter deals with a slightly more advanced topic,
the advanced physics. While it is not necessary to add any of the concepts we
are going to learn in this chapter to our game, they certainly can make the
game's look and feel much better.

In this chapter, we will learn how to assemble bodies from multiple fixtures that will
allow us to create more precise simulation, especially when it comes to collisions. We
will also learn about joints, which are used to create systems of linked bodies and
collision filtering. This will either help us to reduce the number of collisions, filter the
unwanted collisions, and is also used to reduce the performance requirements.

We will use the current code from Chapter 7, Detecting Collisions and Reacting to
Events, but we will add a lot of new things simply to illustrate the physics concepts.
Therefore, most of the code will not be used in the final game. As this chapter is
considered for advanced users and because the code is not essential for the game,
this chapter can be skipped.

The Box2D Debug Draw extension
When working with simple physics, one can easily imagine how the bodies look
and where the collisions happen. However, with added complexity, when a problem
arises, it is almost impossible to find out where it lies without visual aid. This is where
the Debug Draw extension comes in. Most of the Box2D ports will have a functionality
to visualize the bodies using outlines and colors.

Advanced Physics

[168]

Such a visualization typically looks something like this:

Adding Debug Draw to our AndEngine project
AndEngine has a Debug Draw extension as well. It was created by Nazgee, an
AndEngine user and game programmer. It is an unofficial extension, but it works
very well. It can be downloaded and added to any AndEngine project using the same
method described in the Downloading the sources and Adding AndEngine to Eclipse IDE
sections of Chapter 1, Setting Up an AndEngine Project, for the Box2D Physics Extension.

Here's the link to the original repository of the Debug Draw extension:
https://github.com/nazgee/AndEngineDebugDrawExtension

Here's an alternative link that is guaranteed to work with the source
code of this book:
https://github.com/sm4/AndEngineDebugDrawExtension

This is, again, an optional part of the tutorial and not necessary to finish the game.
However, it is very useful for any physics-based games with complex physics.

https://github.com/nazgee/AndEngineDebugDrawExtension
https://github.com/sm4/AndEngineDebugDrawExtension

Chapter 8

[169]

Using Debug Draw in a game
To use the Debug Draw extension, we only need to add the DebugRenderer object
to our game. We can add it in the GameScene class in the populate() method:

 DebugRenderer dr = new DebugRenderer(physicsWorld, vbom);
 dr.setZIndex(999);
 attachChild(dr);

The DebugRenderer object needs the physicsWorld handle and vbom (Vertex Buffer
Object Manager). When it is attached to the scene, it reads all bodies from the
physics world and renders them as colored outlines. The dynamic bodies are green,
kinematic bodies are white, and static bodies are cyan. If a body sleeps, it is rendered
as red and if it is not active, it is rendered with a black outline. Sensors are rendered
as pink outlines and all joints have white outlines, as we are going to see later.

Advanced Physics

[170]

Assembling bodies from fixtures
So far, we have only used the AndEngine class, PhysicsFactory, to create rectangle
(box) bodies. It is the simplest and most straightforward way to create bodies.
The whole creation of a body remains hidden.

A body consists of one or more fixtures. Let's create a slightly more complicated
body by manually creating three fixtures and putting them together to form a body.
We will first create fixtures for the head, torso, and body, just to illustrate how to
create multiple fixtures, but we are going to see how filtering works on the example
of these fixtures as well.

There are more ways of creating fixtures. One of the more automated
ways is to use an external editor such as R.U.B.E. and a loader that will
load the data to AndEngine. However, such a loader exists only as an
unofficial extension.

Here's a screenshot showing how the final body should look in the game:

Chapter 8

[171]

Creating an empty body
First, we need to create an empty body. The body is in fact just a virtual holder for
fixtures. When we create an empty body and add it to the game, nothing will show
and no collisions will happen. We are going to change the createPlayer() method
of the PlayerFactory class. Here's the new code:

 public Player createPlayer(float x, float y) {
 Player player = new Player(x, y, ResourceManager.getInstance().
playerTextureRegion, vbom);
 player.setZIndex(2);

 BodyDef bodyDef = new BodyDef();
 bodyDef.type = BodyType.DynamicBody;
 bodyDef.position.x = x / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT;
 bodyDef.position.y = y / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT;

 Body playerBody = physicsWorld.createBody(bodyDef);

 playerBody.setLinearDamping(1f);
 playerBody.setFixedRotation(true);
 playerBody.setUserData(player);
 physicsWorld.registerPhysicsConnector(new PhysicsConnector(player,
playerBody));

 player.setBody(playerBody);
 return player;
 }

We are defining a BodyDef object that has a position. In the physics world, the units
are meters, not pixels. Therefore, we use the pixel-to-meter conversion. We specified
that our BodyDef object defines a dynamic body. Other than this, we keep the code
unchanged. Next, we are going to add the fixtures. Each fixture can have different
properties. Let's make use of that.

Advanced Physics

[172]

The head fixture
What we want to achieve is almost perfect collisions with the enemy flies.
Moreover, right now, the whole body collides with a platform, making it jump
even when the head touches it, and this is something we don't really want. Only
the legs should propel the player upwards. What we can do is to turn the head
into a circular shape sensor.

Sensors do not generate the pre-solve and post-solve events in the contact listener.
This makes sense because a sensor can't influence its environment; it's immaterial.
However, it will still generate the begin and end contact events that we use to detect
the contact with enemies.

Here's a method that will create a circular fixture where the player's head should be.
It belongs to the PlayerFactory class:

 private void createHead(Body body) {
 FixtureDef headFixtureDef = PhysicsFactory.createFixtureDef(1f,
0f, 1f, true);
 CircleShape circle = new CircleShape();
 circle.setRadius(32 / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT);
 circle.setPosition(new Vector2(0, 12 / PhysicsConstants.PIXEL_TO_
METER_RATIO_DEFAULT));
 headFixtureDef.shape = circle;
 body.createFixture(headFixtureDef);
 }

First, we create a fixture definition in the same way we created it before. Then, we
create a circle shape, set its radius in meters, and set its position to the place where
the character's head is, again in meters. Then, we assign this shape to the fixture
definition and call the correct method in the Body class to create the fixture itself.

Before we add it to the final physics body, let's create the other fixtures as well.

Creating the torso
Circle shapes are easy; they only have a radius and position. To create every other
shape, a polygon shape must be created. Polygons are tricky. They must be defined
by vertices. Only convex polygon shapes are allowed; therefore, other shapes must be
assembled from multiple fixtures. The order of vertices is defined by a simple rule. The
"outside" of the shape is always on the right of each side. This means we have to define
our vertices in a counterclockwise order, as shown in the following diagram:

Chapter 8

[173]

Creating the vertices in the wrong order or creating a non-convex
(concave) shape will most likely make the game crash with an error.

Creating the vertices manually is a bit tedious. Let's see how it looks for our
trapezoid-shaped torso:

 private void createTorso(Body body) {
 FixtureDef torsoFixtureDef = PhysicsFactory.createFixtureDef(1f,
0f, 0.5f, true);

 PolygonShape middleBox = new PolygonShape();

 final float halfWidth = 30 / PhysicsConstants.PIXEL_TO_METER_
RATIO_DEFAULT;
 final float halfHeight = 8 / PhysicsConstants.PIXEL_TO_METER_
RATIO_DEFAULT;
 final float yShift = - 30 / PhysicsConstants.PIXEL_TO_METER_
RATIO_DEFAULT;
 Vector2[] vertices = new Vector2[4];
 vertices[0] = new Vector2(halfWidth, halfHeight + yShift);
 vertices[1] = new Vector2(-halfWidth, halfHeight + yShift);
 vertices[2] = new Vector2(-halfWidth * 0.75f, -halfHeight +
yShift);
 vertices[3] = new Vector2(halfWidth * 0.75f, -halfHeight +
yShift);
 middleBox.set(vertices);

 torsoFixtureDef.shape = middleBox;

 body.createFixture(torsoFixtureDef);
 }

Advanced Physics

[174]

The code is not complicated, just long. First, we create the fixture definition and
again we want the torso to actually be a sensor. We create a PolygonShape object
and set four vertices to it. The positions are defined using variables called halfWidth
and halfHeight, so we can easily change all vertices at once. The following figure
explains what they mean:

The following diagram shows the final points that are plotted:

Creating the legs
Finally, we create the legs. We will use the same method using the polygonal shape
as we used when creating the torso. However, this time we will create a rectangle,
and we can use a convenience method, setAsBox(), to define the vertices for us.

Also, we don't want the legs to be a sensor, but rather a regular material part of the
body. We are also going to increase the density of the legs to make the final body
about the same weight as the original big box. This can be done as follows:

 private void createLegs(Body body) {
 FixtureDef legsFixtureDef = PhysicsFactory.createFixtureDef(4f,
0.2f, 1f, false);

Chapter 8

[175]

 PolygonShape legsBox = new PolygonShape();
 legsBox.setAsBox(20 / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT,
 4 / PhysicsConstants.PIXEL_TO_METER_RATIO_DEFAULT,
 new Vector2(0, -44 / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT),
 0);
 legsFixtureDef.shape = legsBox;

 body.createFixture(legsFixtureDef);
 }

There is a special polygonal shape—the edge. It is simply one
edge of a polygon defined by two vertices. There is a method,
setAsEdge(), to create this polygonal shape.

Assembling the body
Finally, we assemble the body parts together. This is done in the createPlayer()
method in the PlayerFactory class, the same place where we created the empty
body. We simply call the three methods that we just defined, as follows:

 public Player createPlayer(float x, float y) {
 Player player = new Player(x, y, ResourceManager.getInstance().
playerTextureRegion, vbom);
 player.setZIndex(2);

 BodyDef bodyDef = new BodyDef();
 bodyDef.type = BodyType.DynamicBody;
 bodyDef.position.x = x / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT;
 bodyDef.position.y = y / PhysicsConstants.PIXEL_TO_METER_RATIO_
DEFAULT;

 Body playerBody = physicsWorld.createBody(bodyDef);

 createTorso(playerBody);
 createHead(playerBody);
 createLegs(playerBody);

 playerBody.setLinearDamping(1f);
 playerBody.setFixedRotation(true);
 playerBody.setUserData(player);

Advanced Physics

[176]

 physicsWorld.registerPhysicsConnector(new PhysicsConnector(player,
playerBody));

 player.setBody(playerBody);
 return player;
 }

We can run the game now. It will work almost the same as before, just with more
precise collisions and the jumping will only happen when the player actually
touches the platform top with legs.

Collision filtering
When we want two objects to pass each other, we can define them as never colliding
with each other or even never colliding with anything. This is done by collision
filtering. Each fixture can have the following three parameters defined:

• Its own category
• Other categories that it collides with
• Whether or not to collide with bodies in a specific group

When creating a FixtureDef object, there is a constructor that allows us to specify
all the parameters:

 FixtureDef fixture = PhysicsFactory.createFixtureDef(density,
elasticity, friction, sensor, category, categoryMask, groupIndex);

Category is a number of the type short. This means that it is 16 bits long,
and therefore, there are 16 categories. The other two parameters are of the
type short as well.

Category
A fixture should belong to a single category only and will collide with every fixture
in a category specified in category mask. A category has a number from 0 to 15. A
fixture's category or categories are then specified by a single 16-bit number. A 16-bit
number in the binary format consists of 16 zeroes and ones. We can index them from
0 to 15. If the fixture belongs to a category N, then the Nth bit will be 1. If it doesn't
belong to the category, then the Nth bit will be 0.

A fixture can belong to multiple categories, but this only
increases complexity.

Chapter 8

[177]

There are 16 categories, but we will omit bits 5 to 16 and show just a simplified 4-bit
example. We can imagine that there are 12 more zeroes prefixed to these numbers.
Usually, the categories and masks are written as decimal numbers. The decimal
number is simply the binary number with the base 10. We will see in the following
example what this means:

Category Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0100 4
4 1000 8

Now, if we want a fixture to belong to category 4, we will pass 8 to the constructor
as its category.

The category mask
The category mask specifies with which other categories the fixture collides.
It can collide with multiple categories. Specifying multiple categories using a
single number can be done by adding the categories together. For example, if we
want the fixture to collide with categories 1, 2, and 4, we will pass 1 + 2 + 8 = 11.
It might be easier to imagine it in the binary representation, as follows:

• 0001 +
• 0010 +
• 1000 =
• 1011

It is important that each number is on a new line.

10112 (base 2, binary) is 1110 (base 10, decimal). When two fixtures A and B collide, a
simple check is calculated using a logical conjunction (the AND operator): categoryA
AND maskB must not be 0 and at the same time categoryB AND maskA must not be 0.
Here are the possible results of the AND operator:

• 0 AND 0 = 0
• 0 AND 1 = 0
• 1 AND 0 = 0
• 1 AND 1 = 1

Advanced Physics

[178]

So if a fixture is defined to collide with the category mask 1101 (=13), it will collide
with any fixture that belongs to category 1, 3, or 4 (1 + 4 + 8 = 13). A few examples
of collisions are as follows:

A B C
Category mask 1100 1110 1111
Detected contact with category 0010 0010 0100
Result (AND) 0000 0010 0100
Collision happened? No Yes Yes

For correct functionality of collisions, the masks and categories must
be defined reflexively. Therefore, if a fixture belongs to category
A and its mask defines that it collides with category B, fixtures in
category B should define the mask that includes category A.

Example of categories and masks
The theory might be a bit difficult to grasp; let's see a real-world example in
our game.

We are temporarily going to change the populate() method in GameScene to
add our new objects. First, let's define some categories, as follows:

 public static final short CATEGORY_BOX_1 = 1;
 public static final short CATEGORY_BOX_2 = 2;
 public static final short CATEGORY_CIRCLE = 4;
 public static final short CATEGORY_PLATFORM = 8;

Then, we define masks, as follows:

 public static final short MASK_ALL =
 CATEGORY_BOX_1 +
 CATEGORY_BOX_2 +
 CATEGORY_CIRCLE +
 CATEGORY_PLATFORM;

 public static final short MASK_BOXES =
 CATEGORY_BOX_1 +
 CATEGORY_BOX_2 +
 CATEGORY_PLATFORM;

 public static final short MASK_CIRCLE =
 CATEGORY_CIRCLE +
 CATEGORY_PLATFORM;

Chapter 8

[179]

MASK_ALL means that the fixture collides with every other category. MASK_BOXES
defines the fixture that collides with the platform and both boxes, and MASK_CIRCLE
defines the fixture that collides with other circles and platforms.

Next, we temporarily stop the camera movement and remove the touch listener so
that we can actually see a static scene with our new objects, as follows:

 @Override
 public void populate() {
 createBackground();
 createPlayer();
 //camera.setChaseEntity(player);
 createHUD();

 addPlatform(240, 100, false);
 addPlatform(340, 400, false);
 addEnemy(140, 400);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);

 //physicsWorld.setContactListener(new MyContactListener(player));

 ...
 }

Finally, just after the commented line in the populate() method, we can add the
new code, as follows:

 FixtureDef boxFixture1 = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false,
 CATEGORY_BOX_1, MASK_BOXES, (short) 0);
 PhysicsFactory.createBoxBody(physicsWorld, 100, 300, 50, 25,
BodyType.DynamicBody, boxFixture1);
 FixtureDef boxFixture2 = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false,
 CATEGORY_BOX_2, MASK_BOXES, (short) 0);
 PhysicsFactory.createBoxBody(physicsWorld, 130, 350, 50, 25,
BodyType.DynamicBody, boxFixture2);

 FixtureDef circleFixture = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false,
 CATEGORY_CIRCLE, MASK_CIRCLE, (short) 0);
 Body circle = PhysicsFactory.createCircleBody(physicsWorld, 100,
440, 25, BodyType.DynamicBody, circleFixture);

Advanced Physics

[180]

 circle.setFixedRotation(true);

 FixtureDef platformFixture = PhysicsFactory.createFixtureDef(1f,
0f, 2f, false,
 CATEGORY_PLATFORM, MASK_ALL, (short) 0);
 PhysicsFactory.createBoxBody(physicsWorld, 100, 250, 150, 15,
BodyType.StaticBody, platformFixture);

This code defines four bodies; each of them belongs to a separate category.
Right now, the circle and boxes don't collide, but the boxes collide with each
other, as shown in the following screenshot:

Thanks to the category definitions, we can very easily turn off collisions for the
rectangles by removing the categories from MASK_BOXES, as follows:

 public static final short MASK_ALL =
 CATEGORY_BOX_1 +
 CATEGORY_BOX_2 +
 CATEGORY_CIRCLE +
 CATEGORY_PLATFORM;

 public static final short MASK_BOXES =
 CATEGORY_PLATFORM;

 public static final short MASK_CIRCLE =
 CATEGORY_CIRCLE +
 CATEGORY_PLATFORM;

Chapter 8

[181]

The result looks as expected. The rectangular boxes now overlap too, as shown in
the following screenshot:

The difference between collision filtering and sensors is that sensors
don't influence their environment and other bodies but still detect
collision and generate events for contact listener, whereas filtered
collisions behave as if no collision happened at all.

Group index
The last parameter we can define when creating a fixture is group index. Group
index is a positive or a negative number of a group. Members of the same group will
either always collide with each other if the group number is positive, or never collide
with each other if it is negative. Groups are different from categories and they have
precedence over categories when deciding whether two objects collide or not.

In our example, if we defined both boxes and the circle in group 1, they would
always collide. If we defined them with a negative group index, let's say -5, they
would never collide. Group index 0 has no effect.

Advanced Physics

[182]

Here's an example how to make the boxes collide again without changing their
categories or category masks. The change in the group index is highlighted in the
following code:

 FixtureDef boxFixture1 = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false,
 CATEGORY_BOX_1, MASK_BOXES, (short) 1);
 PhysicsFactory.createBoxBody(physicsWorld, 100, 300, 50, 20,
BodyType.DynamicBody, boxFixture1);
 FixtureDef boxFixture2 = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false,
 CATEGORY_BOX_2, MASK_BOXES, (short) 1);
 PhysicsFactory.createBoxBody(physicsWorld, 130, 350, 50, 20,
BodyType.DynamicBody, boxFixture2);

Joints
When we need to connect two bodies together in Box2D, we use joints. Joints always
connect two bodies and never more. Multiple joints are then required to link more
bodies together. A joint always connects a dynamic body with another body that
can be either static, kinematic, or dynamic. Joints between kinematic and static
bodies are allowed but have no effect.

Joints update the body positions and rotations based on the type
of joint. You can define two bodies in an arbitrary location and
rotation, but if the joint restricts the position, for example, the
bodies will immediately transform to the proper position after
the simulation starts.

A joint can also specify whether the connected bodies should collide or not.
We are going to see the basic joints available in Box2D, and we are going to
implement one of them.

The revolute joint
The revolute joint is like a pin or hinge. Imagine that you cut two bodies from
some paper and pin them together. The pin hole in the first body is the first anchor
and the hole in the second body is the second anchor. The bodies are linked with
the pin and both can rotate around that point.

Chapter 8

[183]

What's a bit hard to imagine is that the pin hole can actually be outside the bodies.
We can think of this as if there was a small invisible solid unbendable wire with a
little eye. Here's how a typical revolute joint looks:

The joint is defined between a static square and a dynamic triangle. The circle arrows
indicate where the joint anchors are. When we run the simulation, the triangle will be
translated to the correct position and will then start rotating around the anchor.

A typical use for a revolute joint is a simple wheel on a cart, clock hands, or basically
anything that revolves around a point.

The distance joint
The distance joint defines anchors in two bodies and a length. The two anchors will
always keep the distance defined by the fixed length. We can imagine this joint as
a steel rod mounted at the anchor positions between those two bodies. The bodies
can rotate around the anchors unless they are defined with a fixed rotation. In the
following figure, you can see two circles kept at the fixed distance.

Advanced Physics

[184]

The top circle rests on top of a static body. Without the joint, the lower circle will fall
due to gravity.

The prismatic joint
Two bodies linked with a prismatic joint will keep their relative rotation. If you
rotate one, the other one will rotate too. However, they have one degree of freedom,
they can move along a defined axis. We can imagine this as an elevator moving only
up and down in the elevator shaft or a cylinder in a car's engine. The piston will
move forward (up) and backwards (down) no matter how do you rotate the whole
engine. Pistons and elevators are a typical use of this joint.

The prismatic joint can define a limit that will limit the movement (distance)
of the bodies. In the following figure, the limit is shown and two thin green lines.
The axis of movement is a green arrow. The upper body is static, so only the lower
body moves. It can move as much as the limits permit.

Chapter 8

[185]

The prismatic joint can also have a motor, which means that the bodies will try to
move at a specified speed along the joint.

The line joint
The line joint is exactly the same as the prismatic joint, but the attached bodies can
rotate. It is used to model vehicle suspensions.

The weld joint
The weld joint is very simple. It just holds two bodies together at a fixed position
and rotation.

Advanced Physics

[186]

The friction joint
The friction joint adds friction between two bodies and thus reduces their relative
speed. This joint is defined by the two bodies and a force. We can imagine it as a
magnetic repulsive force between the two bodies.

The pulley joint
The pulley joint has two anchors, and the length from the first anchor to the first
body summed with the length from the second anchor to the second body is always
the same. Here's a typical example of how it works:

The behavior can be changed by a constant that will make one of the ropes extend
and contract constant times faster than the other side.

The gear joint
The gear joint is the only joint that connects two other joints. We still have to define
two bodies but we must also pass two joints to the gear joint. Let's say we have one
static body called Ground and two dynamic smaller bodies, A and B, attached to the
ground using a revolute joint. When we define a gear joint between A and B, we also
have to pass the joints' Ground-A and Ground-B joint definitions to the gear joint.
Then, the Ground-A joint makes A move, and B will move as well. The revolute
and prismatic joints can be linked with a gear joint.

Chapter 8

[187]

The mouse joint
The last joint is called the mouse joint and it is special because it only requires one
body, but still two bodies must be passed in. One of the bodies is the body that we
want to move and the other one can be any body.

A mouse joint is used to move a body to another location. Basically we define a point
(anchor) on a body and a target. It will look as if we have attached a string at the
anchor and pulled the string towards us while standing at the target location. The
properties of the string can also be defined. For example, we can make the string to
elastic and the body will bounce around the target before settling in.

A typical use for the mouse joint is a go-to feature or the drag-and-drop feature in
physics-based games.

Implementing a revolute joint
The good thing about joints is that most of them can be defined the same way, just
some parameters and the final effect differ. Here's a simple way to attach one of the
temporarily added bodies to the player's body. The code belongs to the populate()
method of the GameScene class. We have removed the temporary bodies except the
circle and we no longer need filtering:

 @Override
 public void populate() {
 createBackground();
 createPlayer();

Advanced Physics

[188]

 //camera.setChaseEntity(player);
 createHUD();

 addPlatform(240, 100, false);
 addPlatform(340, 400, false);
 addEnemy(140, 400);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);

 //physicsWorld.setContactListener(new MyContactListener(player));

 setOnSceneTouchListener(this);

 FixtureDef circleFixture = PhysicsFactory.createFixtureDef(1f, 0f,
2f, false);
 Body circle = PhysicsFactory.createCircleBody(physicsWorld, 80,
440, 25, BodyType.DynamicBody, circleFixture);
 circle.setFixedRotation(false);

 RevoluteJointDef revoluteJointDef = new RevoluteJointDef();
 revoluteJointDef.bodyA = player.getBody();
 revoluteJointDef.bodyB = circle;
 revoluteJointDef.localAnchorA.set(new Vector2(-1, 0));
 revoluteJointDef.localAnchorB.set(new Vector2(0, 0.6f));
 revoluteJointDef.collideConnected = false;
 physicsWorld.createJoint(revoluteJointDef);

 DebugRenderer dr = new DebugRenderer(physicsWorld, vbom);
 dr.setZIndex(999);
 attachChild(dr);
 }

The highlighted code sets the rotation of the circle to false. Without this, the revolute
joint would be just a weld joint in the end. To create a joint, we start by creating
the appropriate definition, in this case, the RevoluteJointDef object. We set both
bodies and then set the local anchors. The anchor A defines the point of attachment
one meter to the left from the player's center. The anchor point B defines the point of
attachment in the top part of the circle, 0.6 meters up from the center. We also turn
off the collisions between the bodies. Finally, we call the physicsWorld method to
create the joint.

Chapter 8

[189]

When we run the game now, the character will have a small circle attached to its
head that swings freely around the point of attachment. The effect is visible because
there isn't any sprite attached to the circle, only thanks to the debug renderer.

We can also configure a motor in the joint that will make the circle rotate
automatically. The player's character will not rotate because it is configured
with a fixed rotation set to true, as follows:

 revoluteJointDef.motorSpeed = 100f;
 revoluteJointDef.maxMotorTorque = 20f;
 revoluteJointDef.enableMotor = true;

The motor speed is the target speed, and the torque is a rotational force that it
can use to get to the target speed. Setting this as low will make the motor reach
the final speed very slowly and vice versa.

Advanced Physics

[190]

Summary
In this chapter, we learned three advanced concepts in the physics engine. First,
we talked about assembling bodies from multiple fixtures that can produce better
fitting bodies. We have also seen how to use different types of fixtures in a single
body to produce interesting effects. Secondly, we have learned what collision
filtering is and how to use it to specify which bodies should collide and which
should not. Finally, a brief introduction to joints was given and one of the joints
was implemented.

In the next chapter, we are going back to our game and will add additional scenes:
the splash, the menu, and the loading scene. We are going to see how to load
resources in the background and show a message or an image in the meantime.
We will also learn how to create persistent data in the game.

Adding a Menu and
Splash Scene

A splash scene is very important, not only because it shows your logo or any
other logos you want to show, but it also gives the players something to look at
while loading the resources in the background.

A menu scene serves as the entry point to the game. Even if your game is really
simple, there should be a screen that at least says Tap to Start. It can actually be
the game scene, paused and displaying the text. Nevertheless, it should be there.

In this chapter, we are going to add a splash and menu scene to our game. We will
also learn how to load the resources in the background. We are going to create a
loading scene as well as a transition from the menu to the game scene and back.
We will also add an option to enable and disable sound that will be available
from our menu scene.

While it may sound counterintuitive to add the scenes that the user sees at the
start of the game only now after we have almost finished the game, it's actually
the preferred way. First, we have created the gameplay and seen that our idea is
viable. Second, thanks to having no extra screens, every time we ran the game,
we went straight to the game. Finally, we have kept the code organized in a way
that makes it easy to add the additional scenes.

Managing multiple scenes
We need another manager class that will take care of switching the scenes. However,
the code depends on the other scenes and, therefore, we are going to create the classes
for the scenes first.

Adding a Menu and Splash Scene

[192]

A splash scene
A typical splash scene shows a logo of the game maker. Sometimes, it also shows
copyrights and can be split into multiple screens when there is a need to show multiple
logos—typically the game author, the publisher, and sometimes the engine logo.

We are going to use the AndEngine logo. It is included in the source code of
this chapter.

Updating the resource manager
Because we are using another resource, we need to update our ResourceManager
class. This time, we are going to create a method for both loading and unloading
the splash image.

In games that require a lot of resources, the graphics that are no
longer used should be unloaded to prevent out of memory errors.

The following is the new code that we need to add:

// splash graphics
public ITextureRegion splashTextureRegion;
private BitmapTextureAtlas splashTextureAtlas;
public void loadSplashGraphics() {
 BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/");
 splashTextureAtlas = new
 BitmapTextureAtlas(activity.getTextureManager(), 256, 256,
 BitmapTextureFormat.RGBA_8888,
 TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 splashTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(splashTextureAtlas, activity.getAssets(),
 "badge.png", 0, 0);

Chapter 9

[193]

 splashTextureAtlas.load();
}

public void unloadSplashGraphics() {
 splashTextureAtlas.unload();
}

We are declaring a new atlas and a texture region. We do not need to use a buildable
type of atlas because we are loading only a single image. That's why we are passing
the extra integer parameters in the following call:

splashTextureRegion = BitmapTextureAtlasTextureRegionFactory.
 createFromAsset(splashTextureAtlas, activity.getAssets(),
 "badge.png", 0, 0);

We are adding the image to the atlas at the position (0, 0). The unload method
unloads everything from this atlas, which is just the logo in our case.

Creating the scene
All scene classes belong to the is.kul.learningandengine.scene package.
Let's create a new scene class called simply SplashScene and let it extend the
AbstractScene class:

public class SplashScene extends AbstractScene {

 @Override
 public void populate() {
 Sprite splashSprite = new Sprite(GameActivity.CAMERA_WIDTH /
 2, GameActivity.CAMERA_HEIGHT / 2, res.splashTextureRegion,
 vbom);
 attachChild(splashSprite);
 }

 @Override
 public void onPause() {
 }

 @Override
 public void onResume() {
 }
}

Adding a Menu and Splash Scene

[194]

The scene is very simple. There's just a single sprite in the middle of the screen
showing the logo of AndEngine. The following screenshot shows what the scene
looks like:

Loading of the resources is not done in the scene itself. We are going to add the
code that loads them later, when we put all the scenes together.

The menu scene
AndEngine has a class that is called MenuScene, and this class can be used for
our purposes. Of course, we can create our own class and add all the functionality
ourselves. We can use sprites and their touch areas. But to create a simple menu
scene fast, we are going to use the AndEngine functionality.

The MenuScene class is a camera scene, which means it will move along with the
camera. In our case, it doesn't matter because our menu scene will be still. It allows
us to add menu items that can have simple animations and a number that identifies
the item. There's also a listener that handles the taps on the menu items.

To fit the menu scene to our system of classes, we are going to create a
MenuSceneWrapper class first. We are going to add only a single item to the menu
for now. This can be done as follows:

public class MenuSceneWrapper extends AbstractScene implements
 IOnMenuItemClickListener {

Chapter 9

[195]

 private IMenuItem playMenuItem;

 @Override
 public void populate() {

 MenuScene menuScene = new MenuScene(camera);
 menuScene.getBackground().setColor(0.82f, 0.96f, 0.97f);

 playMenuItem = new ColorMenuItemDecorator(new TextMenuItem(0,
 res.font, "PLAY", vbom), Color.CYAN, Color.WHITE);

 menuScene.addMenuItem(playMenuItem);

 menuScene.buildAnimations();
 menuScene.setBackgroundEnabled(true);

 menuScene.setOnMenuItemClickListener(this);

 Sprite player = new Sprite(240, 280, res.playerTextureRegion,
 vbom);
 menuScene.attachChild(player);

 setChildScene(menuScene);

 }

 @Override
 public void onPause() {
 }

 @Override
 public void onResume() {
 }

 @Override
 public boolean onMenuItemClicked(MenuScene pMenuScene, IMenuItem
 pMenuItem, float pMenuItemLocalX, float pMenuItemLocalY) {
 switch (pMenuItem.getID()) {
 case 0 :
 // show the game scene here
 return true;
 default :

Adding a Menu and Splash Scene

[196]

 return false;
 }
 }

 @Override
 public void onBackKeyPressed() {
 activity.finish();
 }

}

In the populate() method, we first create the MenuScene class. Then, we create
a TextMenuItem object. There are two options in AndEngine, the second being a
SpriteMenuItem object. While the former can only show text using the fonts we
have loaded before, the latter can show an arbitrary image.

We are wrapping the TextMenuItem into a ColorMenuItemDecorator, which is a
class that can change the color of the text on touch. Two color values are passed:
the default and the touched text color. The other implemented decorator class in
AndEngine is the ScaleMenuItemDecorator class that can scale the item on touch.

The buildAnimations() method will position the menu items automatically and
prepare the animations defined by the decorators. The setBackgroundEnabled()
method is used to either enable or disable the background of the camera scene.
Usually, this is set to false so that the underlying scene is shown, but we have set the
color of the menu background and we want to see it, so therefore we are passing true.

As a little decoration, we also add our player image under the menu items.

We also set our wrapper class to be the listener for touches. For this to work, our
class must implement the IOnMenuItemClickListener method, which declares
a method called onMenuItemClicked(). In this method, we decide what action to
take on a touched menu item based on its numerical identifier. In our case, this is
showing the game scene in case the menu item with identifier 0 was touched.
We do not have any other menu items yet.

Finally, we return true if we consider the touch handled or false if it was
not handled.

The last method, onBackKeyPressed(), tells the app to finish the activity,
effectively closing the game, when the user presses the back key in the menu.

Chapter 9

[197]

To exit a Java program, you can usually use System.
exit(errorCode);. But in an Android environment, this is not safe
because the system might have open handles, for example, a cache that
was not saved or cleared. Using activity.finish() is recommended,
because it will properly release all the resources.

The following screenshot shows a preview of the menu scene:

The loading scene
A loading scene is very simple and is used in a similar way as a theater curtain.
The typical use is to show the loading screen when another scene is requested.
Then, tear down the old scene, load new resources, and build the new scene,
and finally hide the loading scene and show the new scene.

Here's the code:

public class LoadingScene extends AbstractScene {

 @Override
 public void populate() {

Adding a Menu and Splash Scene

[198]

 CameraScene cameraScene = new CameraScene(camera);

 Text text = new Text(GameActivity.CAMERA_WIDTH / 2,
 GameActivity.CAMERA_HEIGHT / 2, res.font, "LOADING...",
 vbom);
 cameraScene.attachChild(text);

 setChildScene(cameraScene);
 }

 @Override
 public void onPause() {
 }

 @Override
 public void onResume() {
 }

}

This is one of the simplest loading screens possible. It just prints LOADING… in the
middle of the screen. This is shown in the following screenshot:

Chapter 9

[199]

The scene manager
Now that we have the required scenes, we have to create a mechanism to change
from one to the other. We want a class that will be accessible from everywhere in the
game. We are going to use the same pattern we have used for our ResourceManager
class and create a singleton SceneManager class. The code is a bit long, so let's write it
piece by piece. To begin, we create an empty class in the is.kul.learningandengine
package and make it a singleton. The code is as follows:

public class SceneManager {

 // single instance is created only
 private static final SceneManager INSTANCE = new SceneManager();
 public static final long SPLASH_DURATION = 2000;

 private ResourceManager res = ResourceManager.getInstance();

 private AbstractScene currentScene;

 private LoadingScene loadingScene = null;

 private SceneManager() { }

 public static SceneManager getInstance() {
 return INSTANCE;
 }

 public AbstractScene getCurrentScene() {
 return currentScene;
 }

 public void setCurrentScene(AbstractScene currentScene) {
 this.currentScene = currentScene;
 res.engine.setScene(currentScene);
 Debug.i("Current scene: " + currentScene.getClass().
 getName());
 }
}

We have already added some fields and constants. We are going to need a handle to
the current scene, and also, we want to create the loading scene only once and keep
it, so it will be easy to show it when necessary. The SPLASH_DURATION constant is a
minimum time in milliseconds for which the splash will be shown. Finally, there is a
setter and a getter for the currentScene class. The setter switches the current scene
in the engine as well and logs the current scene class name to LogCat.

Adding a Menu and Splash Scene

[200]

The next method, called showSplashAndMenuScene(), will be called at the beginning
of the game. It is as follows:

public AbstractScene showSplashAndMenuScene() {
 final SplashScene splashScene = new SplashScene();
 splashScene.populate();
 setCurrentScene(splashScene);

 new AsyncTask<Void, Void, Void>() {
 @Override
 protected Void doInBackground(Void... params) {
 long timestamp = System.currentTimeMillis();
 res.loadFont();
 res.loadGameAudio();
 res.loadGameGraphics();

 loadingScene = new LoadingScene();
 loadingScene.populate();

 AbstractScene nextScene = new MenuSceneWrapper();

 if (System.currentTimeMillis() - timestamp <
 SPLASH_DURATION) {
 try {
 Thread.sleep(SPLASH_DURATION -
 (System.currentTimeMillis() - timestamp));
 } catch (InterruptedException e) {
 Debug.e("Interrupted", e);
 }
 }
 nextScene.populate();
 setCurrentScene(nextScene);
 splashScene.destroy();
 res.unloadSplashGraphics();
 return null;
 }
 }.execute();
 return splashScene;
}

This method creates an extra thread, and it works by first creating and populating
the splash scene. The splash scene resources must be already loaded at this time.
We have to update the GameActivity class due to this fact. Then, create and execute
a background task.

Chapter 9

[201]

A background task is Android's way of running something in a background thread. It
is a very useful mechanism that has a lot of uses, but it can get a little bit complicated.
For now, we will stick to the simplest use case. We will only run a piece of code in
the background.

The other uses are, for example, showing a status bar. The background
task can define a value that will serve as the progress value.

The code inside the background task first creates a timestamp. Then, it loads all
resources and prepares the loading screen. If this does not take the time defined
as SPLASH_DURATION, then it waits until the time is up.

Then, it populates the next scene and sets it as the current scene. At this point,
the scene starts showing. Finally, it unloads the resources and destroys the splash
scene. The destroy() method is just our method that we can use to do some clean
up if necessary.

Now, we add two methods that switch the menu scene to the game scene and vice
versa. The first method is as follows:

public void showGameScene() {
 final AbstractScene previousScene = getCurrentScene();
 setCurrentScene(loadingScene);
 new AsyncTask<Void, Void, Void>() {

 @Override
 protected Void doInBackground(Void... params) {
 GameScene gameScene = new GameScene();
 gameScene.populate();
 setCurrentScene(gameScene);
 previousScene.destroy();

 return null;
 }
 }.execute();
}

This method uses the background task as well. It shows the loading scene first,
and then executes the task. The task itself creates the new scene, shows the new
scene, and finally destroys the previous scene.

Adding a Menu and Splash Scene

[202]

The other method looks exactly the same, just with the classes swapped:

public void showMenuScene() {
 final AbstractScene previousScene = getCurrentScene();
 setCurrentScene(loadingScene);
 new AsyncTask<Void, Void, Void>() {

 @Override
 protected Void doInBackground(Void... params) {
 MenuSceneWrapper menuSceneWrapper = new MenuSceneWrapper();
 menuSceneWrapper.populate();
 setCurrentScene(menuSceneWrapper);
 previousScene.destroy();
 return null;
 }
 }.execute();
}

That's it, we have our SceneManager class which is ready to use.

Plugging in the SceneManager class
Finally, we have to update other classes to make our SceneManager class work
properly. Let's first start with the GameScene class.

On back key press, we want the game to go back to the menu. Let's change the
GameScene class and override the relevant method:

@Override
public void onBackKeyPressed() {
 SceneManager.getInstance().showMenuScene();
}

The rest of the changes must be done in the GameActivity class. Three methods
have to be changed and one added:

@Override
public void onCreateResources(
 OnCreateResourcesCallback pOnCreateResourcesCallback)
 throws IOException {
 ResourceManager.getInstance().create(this, getEngine(),
 getEngine().getCamera(), getVertexBufferObjectManager());
 ResourceManager.getInstance().loadSplashGraphics();
 pOnCreateResourcesCallback.onCreateResourcesFinished();
}

Chapter 9

[203]

In the onCreateResources() method, we no longer load all of the resources,
but only those needed for the splash scene. Now, consider the following code:

@Override
public void onCreateScene(OnCreateSceneCallback
 pOnCreateSceneCallback)
 throws IOException {
 // we just have to pass something to the callback
 pOnCreateSceneCallback.onCreateSceneFinished(null);
}

We are now effectively ignoring the onCreateScene() method, because we have
only one method to call in the SceneManager class. We are going to call it in the
next method:

@Override
public void onPopulateScene(Scene pScene, OnPopulateSceneCallback
 pOnPopulateSceneCallback)
 throws IOException {
 SceneManager.getInstance().showSplashAndMenuScene();
 pOnPopulateSceneCallback.onPopulateSceneFinished();
}

Finally, we add a method that checks the key press event and calls the appropriate
method from the current scene:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 SceneManager.getInstance().getCurrentScene().
 onBackKeyPressed();
 return true;
 }
 return super.onKeyDown(keyCode, event);
}

This method will exit the game in the menu scene and return to the menu scene
from the game scene. It will ignore the back key in the splash and loading scene,
because those two scenes do not override the onBackKeyPressed() method.
The method returns true to indicate that the back key press was handled.

The usual behavior is to return to the previous activity. Since we have
only one activity, the Android system would return to the activity that
started the game, probably the launcher.

Adding a Menu and Splash Scene

[204]

That's all. When we run the game now, it will start with a splash screen, show it
for two seconds, and then show our simple menu scene. When we tap on the PLAY
text, the loading screen will show for just a fraction of a second and the game will
start. To return to the menu, we can press the back key.

We can use a simple trick to show the loading screen for a little bit longer.
The following code shows a change to the showGameScene() method:

public void showGameScene() {
 final AbstractScene previousScene = getCurrentScene();
 setCurrentScene(loadingScene);
 new AsyncTask<Void, Void, Void>() {

 @Override
 protected Void doInBackground(Void... params) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Debug.e("Interrupted", e);
 }
 GameScene gameScene = new GameScene();
 gameScene.populate();
 previousScene.destroy();

 setCurrentScene(gameScene);
 return null;
 }

 }.execute();

}

Now, the loading screen will be displayed for at least a second.

Storing values
From time to time, we need to persist some values. Typical examples are a high score
or the settings of our game. AndEngine doesn't have any built-in mechanism for this,
but we can use the Android SDK to achieve it.

There are two ways. A simple way is to use shared preferences, which is a key-value
persistent storage. A more robust but more complicated way is to use the SQLite
database, which is accessible from every Android application. We are going to use
the simple way to store the high score and sound settings.

Chapter 9

[205]

Using preferences
Each application has access to its Preferences object. It's basically a key-value map.
It is very simple to use preferences, but it's easy to make a mistake. First, we need to
initialize the storage. This is done with the following code:

SharedPreferences settings = getSharedPreferences
 ("andengine_game_prefs", MODE_PRIVATE);

We can have multiple preferences and they are identified by the name. This is the
first parameter and any name will do. The second parameter is a mode of access.
There are four modes of access, as follows:

• MODE_PRIVATE: This is shared only in your application.
• MODE_WORLD_READABLE: In this, all the other applications can read the

shared preferences if they know the name. This can cause security issues.
• MODE_WORLD_WRITEABLE: In this, other applications can even write to the

shared preferences. This can cause big security issues.
• MODE_MULTI_PROCESS: This was used before for multiprocess access.

To retrieve the value, a simple call is used:

settings.getInt(key, defaultValue);

There are methods to retrieve all basic types, not just an integer. The key is a string
key, which is the name of the preference. In case the value doesn't exist in the
storage, the defaultValue is returned instead.

Saving a value needs a little bit more code, as follows:

SharedPreferences.Editor settingsEditor = settings.edit();
settingsEditor.putInt(key, value);
settingsEditor.commit();

The commit() method ensures that the values are persisted. The following is the
complete code we need to add to the GameActivity class:

private final String KEY_SOUND = "Sound";
private final String KEY_HISCORE = "HiScore";

SharedPreferences settings;

public void setSound(boolean sound) {
 SharedPreferences.Editor settingsEditor = settings.edit();
 settingsEditor.putBoolean(KEY_SOUND, sound);

Adding a Menu and Splash Scene

[206]

 settingsEditor.commit();
}

public boolean isSound() {
 return settings.getBoolean(KEY_SOUND, true);
}

public void setHiScore(int score) {
 SharedPreferences.Editor settingsEditor = settings.edit();
 settingsEditor.putInt(KEY_HISCORE, score);
 settingsEditor.commit();
}

public int getHiScore() {
 return settings.getInt(KEY_HISCORE, 0);
}

@Override
public EngineOptions onCreateEngineOptions() {
 settings = getSharedPreferences("andengine_game_prefs",
 MODE_PRIVATE);
 …
}

There are two values we want to store. We define the keys as constants and create
the setters and getters. We are initializing the preferences in the first method that
gets called by AndEngine.

Settings
Now that we can save the value of sound (on or off), we would like to give the user
the option to change the settings. We can add another menu item to the menu scene.
We also want to indicate whether the sound is currently on or off. Unfortunately,
the default menu items in AndEngine don't allow us to change the text. But, we
can of course create our own menu item. The following is a custom text menu item
decorator that allows us to change the text. We can put it in the same package as
the MenuSceneWrapper class.

public class MyTextMenuItemDecorator extends
 ColorMenuItemDecorator {

 private TextMenuItem textMenuItem;

 public MyTextMenuItemDecorator(TextMenuItem textMenuItem, Color
 pSelectedColor, Color pUnselectedColor) {
 super(textMenuItem, pSelectedColor, pUnselectedColor);

Chapter 9

[207]

 this.textMenuItem = textMenuItem;
 }

 public void setText(CharSequence text) {
 textMenuItem.setText(text);
 }

}

It is basically the same as the ColorMenuItemDecorator class, but it has a handle
to textMenuItem, and this allows us to change the text. Now, we can change the
MenuSceneWrapper class. The changes are highlighted in the following code:

public class MenuSceneWrapper extends AbstractScene implements
 IOnMenuItemClickListener {

 private IMenuItem playMenuItem;
 private MyTextMenuItemDecorator soundMenuItem;

 @Override
 public void populate() {

 MenuScene menuScene = new MenuScene(camera);
 menuScene.getBackground().setColor(0.82f, 0.96f, 0.97f);

 playMenuItem = new ColorMenuItemDecorator(new TextMenuItem(0,
 res.font, "PLAY", vbom), Color.CYAN, Color.WHITE);

 soundMenuItem = new MyTextMenuItemDecorator(new TextMenuItem
 (1, res.font, getSoundLabel(), vbom), Color.CYAN,
 Color.WHITE);

 menuScene.addMenuItem(playMenuItem);
 menuScene.addMenuItem(soundMenuItem);

 menuScene.buildAnimations();
 menuScene.setBackgroundEnabled(true);

 menuScene.setOnMenuItemClickListener(this);

 Sprite player = new Sprite(240, 280, res.playerTextureRegion,
 vbom);
 menuScene.attachChild(player);

 setChildScene(menuScene);

 }

 private CharSequence getSoundLabel() {
 return activity.isSound() ? "SOUND ON" : "SOUND OFF";
 }

Adding a Menu and Splash Scene

[208]

 @Override
 public boolean onMenuItemClicked(MenuScene pMenuScene, IMenuItem
 pMenuItem, float pMenuItemLocalX, float pMenuItemLocalY) {
 switch (pMenuItem.getID()) {
 case 0 :
 SceneManager.getInstance().showGameScene();
 return true;
 case 1 :
 boolean soundState = activity.isSound();
 soundState = !soundState;
 activity.setSound(soundState);
 soundMenuItem.setText(getSoundLabel());
 return true;
 default :
 return false;
 }
 }
}

We create this menu item the same way as we did the previous one. When the
option in the menu is touched, the state of the sound setting is changed from true
to false or false to true, and then the value is stored in the preferences again.

The menu screen should now look like the following screenshot:

Chapter 9

[209]

Playing sound according to the settings
Another thing we need is to play the sound only when the sound is enabled. We need
to centralize the way we play sounds, because right now we simply call the sound.
play() method, and it would be impossible to control it this way.

Let's add one last method to the GameActivity class:

public void playSound(Sound soundToPlay) {
 if (isSound()) {
 soundToPlay.play();
 }
}

This method checks whether the sound is currently enabled and only then plays
the sound. The following code shows how we can use it in the Player class:

public void die() {
 if (!dead) {
 ResourceManager.getInstance().activity.playSound(
 ResourceManager.getInstance().soundFall);
 }
 setDead(true);
 setCurrentTileIndex(2);
}

It can also be used in the MyContactListener class as follows:

@Override
public void preSolve(Contact contact, Manifold oldManifold) {
 if (checkContact(contact, Player.TYPE, Platform.TYPE)) {
 // player and platform
 if (!player.isDead() && player.getBody().getLinearVelocity().y
 < 0) {
 player.getBody().setLinearVelocity(new Vector2(0, 40));
 ResourceManager.getInstance().activity.playSound(
 ResourceManager.getInstance().soundJump);
 } else {
 contact.setEnabled(false);
 }
 }
}

Adding a Menu and Splash Scene

[210]

High score
As the last thing in this chapter, we will add a persistent high score to our game.
We can already save and retrieve it, but now we need to save it at the right time
and display it somewhere.

We are checking for the game over event in the onManagedUpdate() method of the
GameScene class. We will save the score there in case the score surpassed the last
high score. This can be done as follows:

if (player.isDead()) {
 endGameText.setVisible(true);
 if (score > activity.getHiScore()) {
 activity.setHiScore(score);
 }
}

To display it, we can add it as text to the menu scene. The following is the code
change necessary in the populate() method of the MenuSceneWrapper class:

@Override
public void populate() {

 …

 Sprite player = new Sprite(240, 280, res.playerTextureRegion,
 vbom);
 menuScene.attachChild(player);

 Text hiscoreText = new Text(240, 600, res.font, "HISCORE: " +
 activity.getHiScore(), vbom);
 menuScene.attachChild(hiscoreText);

 setChildScene(menuScene);

}

Chapter 9

[211]

The following screenshot shows what the final version of the menu scene looks like:

Summary
In this chapter, we learned how to work with multiple scenes. We have added a
splash scene to show a logo, a menu scene that can alter the game settings and show
the high score, and a loading scene to make the transition from one scene to another.
We now also know how to load resources in the background and how to unload the
unnecessary resources to free the memory.

Our game is now complete. It's not particularly pretty and the gameplay rules need
a lot of tuning, but it works and it has all the essential features a simple game like
this needs.

In the next chapter, we will look into polishing our game a little bit more. We will
add music and a few special effects. We are going to use more animations, particle
systems, and parallax background to add a 3D feeling to the game. Finally, we will
learn a little bit about shaders—what they are and how they can make our game
look better.

Polishing the Game
We've made it all the way here to chapter 10 where we will polish our game.
We already have a game, it plays, and it has all the necessities of a mobile game.
However, we can still make it much better and make it look more professional.
We can add eye candy, music, and fine-tune the rules. In this chapter, we will
introduce several things that can improve the overall look and feel of the game.

We will add music to our game in this chapter and we are going to learn more
about entity modifiers and how they can improve our game by adding animations.
We will also understand what a particle system is and learn how to use it. To add
a simple 3D effect, we are going to utilize a parallax background. And at the end of
this chapter, we will see what shaders are and how are they used in modern games.

What is polishing?
Polishing is what a game needs; however, nobody can exactly define what it means.
If we try to simplify it, polishing means making the game better. It can mean adding
better music and sound effects, adding visual effects, and making the game play
more interesting and the game more stable and optimized. We will not polish our
game completely, because we won't discuss polishing the game play itself. That is
a topic for another book. However, we will discuss where we can polish our game
with respect to audiovisuals and learn how to achieve it.

Adding music
Music is different from sounds in Android. While sound files are usually short
and they are loaded into the memory, music files tend to be quite large and they
are streamed from the storage and only a part of the music file is currently in
memory. Also, only one music file can play at a single time.

Polishing the Game

[214]

The other problem with music files being quite large is that they take up valuable
space. The APK archive is limited to 50 MB. While simple games tend to be much
smaller, in resource-rich games the limit can be reached quite easily.

Up to two expansion files, 2 GB each, can be added to the game.
You can learn more about expansion files at http://developer.
android.com/google/play/expansion-files.html.

We have already loaded the music file in our game and now we only have to play
it. Let's limit the music to the game scene only. However, first, we will write a small
convenience class for playing music that will take into account our sound settings.
We will call it MusicPlayer and it belongs to the is.kul.learningandengine
package. The code is as follows:

public class MusicPlayer {

 private static MusicPlayer INSTANCE = new MusicPlayer();

 private ResourceManager res;

 private MusicPlayer() {
 res = ResourceManager.getInstance();
 }

 public static MusicPlayer getInstance() {
 return INSTANCE;
 }

 public void play() {
 if (res.activity.isSound() && !res.music.isPlaying()) {
 res.music.play();
 }
 }

 public void pause() {
 if (res.music.isPlaying()) {
 res.music.pause();
 }
 }

 public void stop() {
 if (res.music.isPlaying()) {
 res.music.pause();
 res.music.seekTo(0);
 }
 }
}

http://developer.android.com/google/play/expansion-files.html
http://developer.android.com/google/play/expansion-files.html

Chapter 10

[215]

We will follow the singleton pattern and there are three new methods: play(),
pause(), and stop(). They do exactly what the names suggest. The first method,
play(), checks whether the sound is enabled and the music is not playing and if
both conditions are true, it starts the music. The default behavior of this method
is infinite looping. Volume can also be adjusted, but we will simply play it on the
default volume. The pause() method just checks whether the music is playing.
The last method called stop() actually doesn't stop the music, but it pauses it and
rewinds the track. The reason for this little workaround is that AndEngine wraps
the MediaPlayer class that represents the Android media player in another class
called Music, which doesn't offer all methods and doesn't handle the music perfectly.

Life cycle of the media player
The media player has a quite complicated life cycle. AndEngine tries to hide it
from game developers and tries to simplify it. Here's the complete life cycle of
the media player:

Idle

Preparing

Stopped

PlaybackCompleted

Paused

Started

Prepared

Initialized

Error

End
reset()

release()

SetDataSource()

prepareAsync()

OnErrorListner.onError()

Prepare()

seekTo()

Looping true &&
playback completes

OnPreparedListner.onPrepared()

stop()

seekTo()/start()

Prepare()
PrepareAsync()

stop()

stop()

=

seekTo()

stop()

pause()

start()

seekTo()/pause()

stop()

Looping false &&
onCompletion() invoked on

OnCompletionListener

=

start()
(note: from beginning)

start()

Polishing the Game

[216]

The problematic part is when the media is stopped. It gets released and
AndEngine doesn't offer the prepare() method; therefore, we will have to use the
getMediaPlayer() method and then use the prepare() method directly. Because
the media track must be rewound after prepare() anyway, we can use a little trick.
We will never let the music stop and only pause it and rewind it if necessary. This
way we can avoid the problem altogether.

The most common error when working with a media player is X
called in state N, where N is an integer number and X is the state
we wanted. This error is always caused by trying to advance to an
invalid state from the current one.

Using the new manager class is very easy, but we have to use it as the right moment.
Starting the music in the populate() method of the GameScene class is a good idea,
as shown in the following code:

 @Override
 public void populate() {
 createBackground();
 createPlayer();
 camera.setChaseEntity(player);
 createHUD();

 addPlatform(240, 100, false);
 addPlatform(340, 400, false);
 addEnemy(140, 400);

 engine.enableAccelerationSensor(activity, this);
 registerUpdateHandler(physicsWorld);

 physicsWorld.setContactListener(new MyContactListener(player));

 setOnSceneTouchListener(this);
 MusicPlayer.getInstance().play();
 }

This will work nicely; it will start the music just after the whole scene is populated.
However, when the user goes back to the menu, the music will be still playing because
the media player and therefore the Music class plays the music in the background and
is not tied to the scene in any way. To stop playing the music when we go back, we can
stop it in the destroy() method of the GameScene class, as follows:

 @Override
 public void destroy() {

Chapter 10

[217]

 camera.reset();
 camera.setHUD(null);
 MusicPlayer.getInstance().stop();
 }

However, that is still not enough. What happens when the user presses the Home
button or receives an incoming call? Well, the answer is the music will be still
playing. We need to stop the music when the game is automatically paused and
sent to background and play it again when it is resumed. AndEngine gives us two
convenient hooks for this purpose in the BaseGameActivity class. Let's make use
of them. We are going to override them in our GameActivity class and add our
own behavior based on the current scene, as follows:

 @Override
 public synchronized void onResumeGame() {
 super.onResumeGame();
 SceneManager.getInstance().getCurrentScene().onResume();
 }

 @Override
 public synchronized void onPauseGame() {
 super.onPauseGame();
 SceneManager.getInstance().getCurrentScene().onPause();
 }

We have defined the onResume() and onPause() methods in AbstractScene.
This is how we can now utilize them in the GameScene class:

 @Override
 public void onPause() {
 MusicPlayer.getInstance().pause();
 }

 @Override
 public void onResume() {
 MusicPlayer.getInstance().play();
 }

And that's it. The music will stop in onPause() and start playing in onResume().

We have defined these methods as abstract with no default behavior
in the AbstractScene class. This means, that all scenes must define
some behavior. This is a good way to make sure everything that
needs to be stopped when the game is interrupted is stopped and
resumed when the user returns to the game.

Polishing the Game

[218]

Adding animations using entity modifiers
We used animations in Chapter 5, Basic Interactions, and in Chapter 6, Physics, we
learned how to use the physics engine to move objects. We are going to use the same
techniques from Chapter 5, Basic Interactions, to create simple animated effects and
we will use them in the menu scene. We are going to cover entity modifiers in more
detail here.

As we already learned, entity modifiers are used for tweening: changing a position,
rotation, or size of an object from one state to another. We also know that the tweening
can be linear, which means the same speed of change from state A to state B for the
whole duration, or we can use easing functions to change the behavior of the tween.

Chaining modifiers
The entity modifiers can also be chained together. A sprite can rotate and move at
the same time. There are two ways of chaining: parallel and sequence.

The following figure shows how parallel chaining looks. All the modifiers will run
at the same time, but they might not finish at the same time. Each modifier also
defines two callback hooks at the beginning and at the end of a modifier and
we perform any action at that moment:

The sequence modifier works as expected. Each modifier is run after the previous has
finished. Again, the callback hooks can be used. Have a look at the following figure:

Chapter 10

[219]

There's also a loop entity modifier that makes any modifier or chain of modifiers
loop either indefinitely or a specified number of times. This can be used to
indefinitely rotate an object.

Here's a code example of chaining. Both sequence and parallel modifiers can be nested
indefinitely or until we run out of memory or processing power. The following code is
from MenuSceneWrapper:

 @Override
 public void populate() {

 MenuScene menuScene = new MenuScene(camera);
 menuScene.getBackground().setColor(0.82f, 0.96f, 0.97f);

 playMenuItem = new ColorMenuItemDecorator(new TextMenuItem(0,
res.font, "PLAY", vbom),
 Color.CYAN, Color.WHITE);

 soundMenuItem = new MyTextMenuItemDecorator(new TextMenuItem(1,
res.font, getSoundLabel(), vbom),
 Color.CYAN, Color.WHITE);

 menuScene.addMenuItem(playMenuItem);
 menuScene.addMenuItem(soundMenuItem);

 menuScene.buildAnimations();
 menuScene.setBackgroundEnabled(true);

 menuScene.setOnMenuItemClickListener(this);

 Sprite player = new Sprite(240, 280, res.playerTextureRegion,
vbom);
 menuScene.attachChild(player);

 Text hiscoreText = new Text(240, 1000, res.font, "HISCORE: " +
activity.getHiScore(), vbom);
 menuScene.attachChild(hiscoreText);

 hiscoreText.registerEntityModifier(
 new SequenceEntityModifier(
 new ParallelEntityModifier(

Polishing the Game

[220]

 new MoveYModifier(2f, 1000, 600),
 new RotationByModifier(2f, 20f)
),
 new RotationByModifier(0.2f, -20f)
)
);

 setChildScene(menuScene);

}

First, we changed the position of the high score text to be located beyond the upper
border of the screen. Then, we used a sequence. The first part makes the text fall and
rotate slightly by 20 degrees clockwise. The second part makes it rotate back to the
original position, as shown in the following screenshot:

Chapter 10

[221]

Modifiers
There are plenty of modifiers to use. Here's a list of the class names of the
available modifiers. They have self-explanatory names. Each modifier expects
several parameters. There is always the duration parameter, with the exception of
chaining modifiers. Then, there are one to three parameters that depend on the type
of the modifier. Optionally, we can specify the ease function and the callback hook,
which we will see later.

• MoveModifier: This simply moves an entity from point A to point B; both
points must be specified. Entity will jump to point A if it's at a different
location. MoveXModifier and MoveYModifier are single axis variants of
this modifier.

• MoveByModifier: This moves an entity from its current position to a new
position using the specified x and y values.

• ScaleModifier: This changes the size of the entity.
• RotationModifier: This rotates the entity from angle A to angle B.

There is also RotationByModifier.
• AlphaModifier and ColorModifier: This changes the color or alpha

channel of an object.
• PathModifier: This is a modifier that is a little bit more complex. It moves

an entity along a specified path.
• DelayModifier: This does nothing; it simply waits for the specified time.

However, it still has the start and finish hooks. This is useful in a sequence.

There are also three curve modifiers that allow us to move an entity along a smooth
curve, but the definition of such curves requires some complex math and it is not in
the scope of this book.

Ease functions
The effect we have created doesn't look bad. However, what if we wanted the text
to bounce a little when it reaches the destination? The answer is to use the easing
equations. Now, the text moves along the y axis, 400 pixels downwards, linearly.
This is how we make it bounce:

 hiscoreText.registerEntityModifier(
 new SequenceEntityModifier(
 new ParallelEntityModifier(
 new MoveYModifier(2f, 1000, 600,

Polishing the Game

[222]

 EaseBounceOut.getInstance()
),
 new RotationByModifier(2f, 20f)
),
 new RotationByModifier(0.2f, -20f)
)
);

We have added just the easing, nothing else, but suddenly, the effect looks much
better. This is because in real life, objects usually don't move at a constant speed;
the speed varies as they accelerate or come to rest and sometimes they bounce
before coming to rest.

For each easing equation, there are three variants: in, out, and in-out. They mean that
the effect is coming at the beginning, end, or both. Here's a graph that compares the
linear ease function with the bounce-out, which we have used:

The horizontal axis shows time. The entity starts moving slowly, accelerates,
and bounces a few times until it stops.

To see all available functions, see the hierarchy of the
IEntityModifier interface. All graphs can be seen,
for example, at http://easings.net/.

http://easings.net/

Chapter 10

[223]

Using the modifier callback hooks
Each modifier has one more parameter, a listener that listens to two events, the
modifier start and the modifier end. Creating such a listener is very simple. Here is
the code that belongs to the populate() method of the MenuSceneWrapper class,
just before the line where we create the modifiers:

 IEntityModifierListener myListener = new IEntityModifierListener()
{

 @Override
 public void onModifierStarted(IModifier<IEntity> pModifier,
IEntity pItem) {
 pItem.setColor(Color.RED);
 }

 @Override
 public void onModifierFinished(IModifier<IEntity> pModifier,
IEntity pItem) {
 pItem.setColor(Color.GREEN);
 }
 };

The listener is created as an anonymous class that implements the
IEntityModifierListener interface. The interface defines two methods:
onModifierStarted() and onModifierFinished(). The names are self-explanatory.
The parameters available in the methods are the modifier itself (because at the time we
are creating the listener, we don't know which modifier it is), and the item that is being
a modifier, in our case a text, but it can be a sprite or any other entity.

And here's how to use the listener. Only a small change to the existing code is required:

 hiscoreText.registerEntityModifier(
 new SequenceEntityModifier(
 new ParallelEntityModifier(
 new MoveYModifier(2f, 1000, 600,
 EaseBounceOut.getInstance()
),
 new RotationByModifier(2f, 20f, myListener)
),
 new RotationByModifier(0.2f, -20f)
)
);

We are simply changing the color of the text. At the beginning, we set it to red and
when the text has finished falling, we change it to green.

Polishing the Game

[224]

Particle systems
A particle system is a method used to create effects such as fire, smoke, or snow.
The technique involves rendering a lot of small particles at once. A particle is a
small picture. It's hard to define what it should represent. In the case of snow, it
should be a single snowflake. When creating smoke or fire a small fire ball or a
puff of smoke would be a good start.

A particle system usually creates a particle at a given point using initial parameters
such as scale, opacity, and rotation. A set of modifiers is also created and each
particle is modified by all modifiers over time. A particle system also defines
the lifespan of a particle and how many particles are to be spawned.

Making particle systems look good is an art and there is no single way to do it. We are
going to see how we can create two completely different effects using the same picture.
Our game doesn't really need particle systems and so we will add one of these effects
to the menu scene just for illustration and we will create a special app to show the
other effect. Let's start with the less obvious one.

Creating a flying in the clouds effect
We can create a simple illusion of flying upwards through clouds using a particle
system that will spawn clouds on top of the screen and move them downwards.

In AndEngine, the particle system spawning area can be a point, circle, or a
rectangle, and either an outline or the whole shape. We will use a rectangle. Let's
add the following code to the populate() method of the MenuScreenWrapper class:

 @Override
 public void populate() {

 MenuScene menuScene = new MenuScene(camera);
 menuScene.getBackground().setColor(0.82f, 0.96f, 0.97f);

 float timeToLive = 12f;
 final BatchedSpriteParticleSystem particleSystem = new
BatchedSpriteParticleSystem(
 new RectangleParticleEmitter(192, 900, 300, 0),
 1, 5, 200,
 res.cloud1TextureRegion, vbom);

 }

Chapter 10

[225]

We have a lot of constants here. First, we are defining the lifespan of each particle as
12 seconds. Next, we are creating a batched-sprite particle system. Batched sprites are
basically the same as separate sprites, but they are all created using a single object and
share a lot of properties. For example, all sprites that use the same texture could be
batched together. And that's exactly what our sprites in particle systems are—sprites
using the same texture.

The performance optimization is happening on a lower level and we don't have
to worry about it. Basically, having a batch of sprites that share some properties
in a single object instead of a lot of separate sprites means less memory readings,
OpenGL calls, and so on.

A batched sprite particle system also uses a special sprite class called
UncoloredSprite. We will see this in the next code snippet. It doesn't mean
that our sprite will be black and white, but it means it has less properties saved
in the vertex buffer.

The particle system needs an emitter and we are using a rectangle. It is defined by
its centerX and centerY (the center coordinates) and width and height. The center is
moved slightly left, because our particle engine spawns the particles using the bottom
left corner instead of the center. This is a small bug in AndEngine and so we are using
this workaround. We are spawning the particles offscreen to create the desired effect.

The numbers 1, 5, and 200 define the spawn rate. The first number is the minimum
particles spawned per second and the second number is maximum per second. The
third number is maximum particles on screen at a given moment. In our case, it
means spawn one to five clouds per second until you reach 200. Unless we remove
the particles, no particles will be spawned after 200.

The last parameters state that we are using our cloud texture and the Vertex Buffer
Object manager.

Let's continue coding and add the following lines:

particleSystem.addParticleInitializer(new VelocityParticleInitializer<
UncoloredSprite>(0, 0, -50, -90));
particleSystem.addParticleInitializer(new ExpireParticleInitializer<Un
coloredSprite>(timeToLive));

These are two typical particle initializers. The velocity initializer defines the initial
speed range for each particle, in our case, no horizontal movement and something
between 50 and 90 pixels per second downwards. The second initializer simply says
that each particle should be removed after the specified period, in our case, 12 seconds.

Polishing the Game

[226]

We can add more initializers, for example, one for color, as follows:

particleSystem.addParticleInitializer(new ColorParticleInitializer<Unc
oloredSprite>(Color.WHITE, new Color(0.9f, 0.9f, 0.9f)));

This will spawn white and slightly colored clouds ranging from the original white
cloud to tinted red, green, blue, and color combination clouds.

Now, we will look at the modifiers part. We are going to fade out the cloud just before
it expires and is removed. We could also set the expiration time to a longer value and
let the clouds expire without the fade out, but let's do the former to see how is it done:

particleSystem.addParticleModifier(new AlphaParticleModifier<Uncolored
Sprite>(timeToLive - 1, timeToLive, 1f, 0f));

There is actually a modifier called
OffCameraExpireParticleModifier that will dispose of our
particles when they reach the bottom of the screen. However, we are
already spawning them offscreen, so it wouldn't work. They would
be removed immediately after spawning.

Here's how the effect looks:

Chapter 10

[227]

There's one more setting available for particle systems and that is color blending using
the method particleSystem.setBlendFunction(source, destination). When
two particles overlap, the final color is calculated and the result is influenced by the
blend function. However, in the version of AndEngine we are using, it has no effect
in combination with the batched particle system because it uses UncoloredSprite.

The blending options for source and destination parameters with examples can be
found at http://www.zeuscmd.com/tutorials/opengles/19-Blending.php.

The code for this chapter contains a standalone example that uses blending settings to
create a fire effect. Let's use a different type of blending to create a really cool effect.

Creating a fire and smoke effect
Two of the most typical effects created using particle systems are fire and smoke.
We are going to use a special smoke texture, which looks like this:

http://www.zeuscmd.com/tutorials/opengles/19-Blending.php

Polishing the Game

[228]

And for fire, we will actually use the same texture, just with a bit of color. We don't
need to create another texture. We can use the same smoke texture and use color
initialize to turn it red. This is what we need:

For this example, we will create a new application with a simple black background.
Here's the basic skeleton:

public class GameActivity extends SimpleBaseGameActivity {

 public static final int CAMERA_WIDTH = 480;
 public static final int CAMERA_HEIGHT = 800;
 public static final int FPS_LIMIT = 30;

 ITexture smokeTex;
 ITextureRegion smokeTexReg;

 @Override
 public Engine onCreateEngine(EngineOptions pEngineOptions) {
 Engine engine = new LimitedFPSEngine(pEngineOptions, FPS_LIMIT);
 engine.registerUpdateHandler(new FPSLogger());
 return engine;
 }

 @Override
 public EngineOptions onCreateEngineOptions() {
 EngineOptions engineOptions;
 Camera camera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
 IResolutionPolicy resolutionPolicy = new FillResolutionPolicy();
 engineOptions = new EngineOptions(true, ScreenOrientation.
PORTRAIT_FIXED, resolutionPolicy, camera);

Chapter 10

[229]

 engineOptions.setWakeLockOptions(WakeLockOptions.SCREEN_ON);
 engineOptions.getRenderOptions().setDithering(true);
 return engineOptions;
 }

 @Override
 protected void onCreateResources() throws IOException {
 smokeTex = new AssetBitmapTexture(this.getTextureManager(),
this.getAssets(), "gfx/smoke.png", TextureOptions.BILINEAR_
PREMULTIPLYALPHA);
 smokeTexReg = TextureRegionFactory.extractFromTexture(smokeTex);
 smokeTex.load();
 }
 @Override
 protected Scene onCreateScene() {
 Scene scene = new Scene();
 scene.getBackground().setColor(Color.BLACK);
 createSmoke(scene);
 createFire(scene);
 return scene;
 }

}

The skeleton app is the same as in our game. We are using the
SimpleBaseGameActivity class; so, we don't need to call the callbacks ourselves .
We are also using LimitedFPSEngine with the limit set to 30 frames per second.
As particle systems can be very CPU intensive, it's a good idea to limit the number
of frames required to save the battery. We are also loading a single texture resource
and creating a texture region directly from it without any texture atlas.

And now for the two most important methods; we will start with the smoke:

 private void createSmoke(Scene scene) {
 final BatchedSpriteParticleSystem smokeParticleSystem = new
BatchedSpriteParticleSystem(
 new CircleParticleEmitter(240, 400, 50),
 20, 40, 300,
 smokeTexReg, getVertexBufferObjectManager());

 float ttl = 5.5f;

 smokeParticleSystem.addParticleInitializer(new VelocityParticleIni
tializer<UncoloredSprite>(-25, 25, 20, 60));

Polishing the Game

[230]

 smokeParticleSystem.addParticleInitializer(new AccelerationParticl
eInitializer<UncoloredSprite>(0, 20));
 smokeParticleSystem.addParticleInitializer(new ExpireParticleIniti
alizer<UncoloredSprite>(ttl));
 smokeParticleSystem.addParticleInitializer(new ScaleParticleInitia
lizer<UncoloredSprite>(0.1f, 0.5f));
 smokeParticleSystem.addParticleInitializer(new RotationParticleIni
tializer<UncoloredSprite>(0f, 360f));

 smokeParticleSystem.addParticleModifier(new OffCameraExpireParticl
eModifier<UncoloredSprite>(getEngine().getCamera()));
 smokeParticleSystem.addParticleModifier(new AlphaParticleModifier<
UncoloredSprite>(0f, 0.5f, 0f, 0.2f));
 smokeParticleSystem.addParticleModifier(new AlphaParticleModifier<
UncoloredSprite>(2f, ttl, 0.2f, 0f));
 scene.attachChild(smokeParticleSystem);
}

We are using the BatchedSpriteParticleSystem to save performance. In this case,
we don't need any special blending options. We are not changing the blending options
because the default blending works well for the smoke effect. The default is GL_ONE
for source and GL_ZERO for destination. Destination is a color already in the buffer. So
it's the first particle drawn there. Then the source is the color being added, the second
particle. When the source is GL_ONE and the destination GL_ZERO, it simply means that
the destination, the particle drawn first, will be ignored and only the new color, the
second particle, will be shown.

This is how the blending looks using three overlaying triangles added in the
numbered order:

Chapter 10

[231]

We are spawning the particles in the middle of the screen where we expect the fire
to reach. We want the smoke to appear just above the fire. Scale and rotation
initializers add randomness to the particles. The velocity initializer makes them
shoot upwards and the acceleration initializer makes them speed up to make an
illusion of a real smoke.

The modifiers are used to remove smoke particles when they exit the screen and
fade them in as they appear and fade out as they reach the top.

The fire effect uses blending and, therefore, we can't use the batched particle system
that uses UncoloredSprite. We are going to build a less optimized particle system
then, using the following code:

 private void createFire(Scene scene) {
 IEntityFactory<Sprite> ief = new IEntityFactory<Sprite>() {

 @Override
 public Sprite create(float pX, float pY) {
 return new Sprite(pX, pY, smokeTexReg,
getVertexBufferObjectManager());
 }
 };

 final ParticleSystem<Sprite> fireParticleSystem = new
ParticleSystem<Sprite>(ief,
 new PointParticleEmitter(240, 100),
 20, 30, 200);
 fireParticleSystem.addParticleInitializer(new BlendFunctionParticl
eInitializer<Sprite>(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE));
 fireParticleSystem.addParticleInitializer(new ColorParticleInitial
izer<Sprite>(1f, 0.4f, 0.1f));
 fireParticleSystem.addParticleInitializer(new AlphaParticleInitial
izer<Sprite>(0f));

 fireParticleSystem.addParticleInitializer(new VelocityParticleInit
ializer<Sprite>(-15, 15, 20, 90));
 fireParticleSystem.addParticleInitializer(new ExpireParticleInitia
lizer<Sprite>(4.5f));
 fireParticleSystem.addParticleInitializer(new ScaleParticleInitial
izer<Sprite>(0.5f));
 fireParticleSystem.addParticleInitializer(new RotationParticleInit
ializer<Sprite>(0f, 360f));

 fireParticleSystem.addParticleModifier(new AlphaParticleModifier<S
prite>(0f, 0.5f, 0f, 0.2f));

Polishing the Game

[232]

 fireParticleSystem.addParticleModifier(new AlphaParticleModifier<S
prite>(3f, 4.5f, 0.2f, 0f));
 fireParticleSystem.addParticleModifier(new ScaleParticleModifier<S
prite>(3f, 4.5f, 0.5f, 0f));
 scene.attachChild(fireParticleSystem);
}

This particle system requires us to create an entity factory, which is the first line.
It's nothing more than a class with one method that returns the representation of the
particles, in our case, a simple Sprite. The particles are spawned from a single point
here and most of the initializers and modifiers should be clear after we build the clouds
and smoke systems. The only new thing is BlendFunctionParticleInitializer.

We are using GLES20.GL_SRC_ALPHA, GLES20.GL_ONE blending, which means that
the color of the particle already drawn is used and the new particle's color is added
to it using its alpha channel.

We need this kind of blending to make the center of the fire white. When a lot of
particles are drawn on top of each other, their colors add up. We are coloring the
smoke particle red with a bit of yellow. That means that when there will be only one
particle, the final color will be reddish. When there will be a lot of particles, the final
color will be bright orange and yellow, exactly like a real flame. Here's how the final
effect looks:

Chapter 10

[233]

Here's a simple trick that shows you how to make the flame blue. Let's change the
color initializer to this:

fireParticleSystem.addParticleInitializer(new ColorParticleInitializer
<Sprite>(0.3f, 0.4f, 1f));

This will result in coloring the smoke particle medium blue and thanks to the
blending options, we will get a blue flame.

There's a lot of blending options available. Not all combinations are viable. It would
be impossible to illustrate all combinations on paper, but there are many excellent
resources available online. Visit http://www.andersriggelsen.dk/glblendfunc.
php for a nice interactive testing tool that offers all the blending options.

When using particle systems, we must be careful not to use too many
particles. The smoke and fire effects can spawn thousands of sprites.
It can hamper the performance significantly.

http://www.andersriggelsen.dk/glblendfunc.php
http://www.andersriggelsen.dk/glblendfunc.php

Polishing the Game

[234]

Parallax background
When travelling by train, mountains in the distance seem to be static, but trees and
grass next to the track move very fast. In 2D games, a similar effect is simulated by a
parallax background. It adds a feeling of depth to the game. A parallax background
contains a few layers. The player is usually in the front, but there can be a layer in
front of the player as well. This simulates objects that are closer to the camera.

When the camera moves, the layers in the back are scrolled slowly and the layers in
front are scrolled faster; the same as in our train example.

In platformers, we often use a static background with a few parallax layers. It's
a good idea to make the background less prominent and less distracting, but
nevertheless beautiful. Some of the layers can move automatically; for example,
clouds can move even though the camera is static.

Here's a typical example of a parallax background: a blue sky and a sun as a
background, clouds that can move a little, slow scrolling mountains, and fast
scrolling grass. The background layers are typically seamlessly wrapped around.

AndEngine offers a horizontal parallax background. It can have an arbitrary number
of layers that can move in different speeds. However, we need a vertical parallax
background for our game. We will have to create our own class. However, the use
of our class is exactly the same as the original parallax background.

Chapter 10

[235]

VerticalParallaxEntity
In the following example, we will explain how the parallax background with the
entities works. To begin, we are going to extend a ParallaxEntity class:

public class VerticalParallaxEntity extends ParallaxEntity {

 IEntity entity;
 float parallaxFactor;

 public VerticalParallaxEntity(float parallaxFactor, IEntity entity)
{
 super(parallaxFactor, entity);
 this.entity = entity;
 this.parallaxFactor = parallaxFactor;
 }

 public void onDraw(final GLState pGLState, final Camera pCamera,
final float pParallaxValue) {
 pGLState.pushModelViewGLMatrix();
 {
 final float cameraHeight = pCamera.getHeight();
 final float entityHeightScaled = entity.getHeight() * entity.
getScaleY();
 float baseOffset = (pParallaxValue * parallaxFactor) %
entityHeightScaled;

 while (baseOffset > 0) {
 baseOffset -= entityHeightScaled;
 }
 pGLState.translateModelViewGLMatrixf(0, baseOffset, 0);

 float currentMaxY = baseOffset;

 do {
 entity.onDraw(pGLState, pCamera);
 pGLState.translateModelViewGLMatrixf(0, entityHeightScaled,
0);
 currentMaxY += entityHeightScaled;
 } while (currentMaxY < cameraHeight);
 }
 pGLState.popModelViewGLMatrix();
 }
}

Polishing the Game

[236]

The code for the layer might seem a bit intimidating. It deals with low-level OpenGL
calls. The highlighted code is the most important part. The onDraw() method first
measures the camera height and the real height of the entity. Then there are two
float numbers: parallax value and parallax factor. The value says how much the
camera moved. It can be an arbitrary number and we will be passing the camera's
y coordinate. The factor determines how much should the entity (layer) move.

We are setting the factor at the beginning when we create this entity. In our case,
a positive number means scrolling the layer in the same direction as the camera
and negative number scrolls it in the opposite way. Zero would mean a static layer.
The higher the absolute number, the faster the scroll speed. So, in our case, we need
numbers between 0 and -1.

Creating a parallax background
The code that creates the background belongs to the GameScene class. It replaces
our old static background. First, let's add a method to create it:

 private void createParallaxBackground() {
 parallaxBackground = new ParallaxBackground(0.82f, 0.96f, 0.97f);

 // layer in the back
 Entity clouds = new Entity();
 clouds.setSize(480, 800);
 clouds.setAnchorCenter(0, 0);
 Sprite cloud1 = new Sprite(200, 300, res.cloud1TextureRegion,
vbom);
 Sprite cloud2 = new Sprite(300, 600, res.cloud2TextureRegion,
vbom);
 clouds.attachChild(cloud1);
 clouds.attachChild(cloud2);

 VerticalParallaxEntity cloudsLayer = new VerticalParallaxEntity(-
0.1f, clouds);
 parallaxBackground.attachParallaxEntity(cloudsLayer);

 //layer in front
 Entity platforms = new Entity();
 platforms.setSize(480, 800);
 platforms.setAnchorCenter(0, 0);
 Sprite platform1 = new Sprite(150, 200, res.platformTextureRegion,
vbom);
 platform1.setColor(0.3f, 0.3f, 0.3f, 0.3f);
 platform1.setScale(0.8f);

Chapter 10

[237]

 Sprite platform2 = new Sprite(250, 550, res.platformTextureRegion,
vbom);
 platform2.setColor(0.3f, 0.3f, 0.3f, 0.3f);
 platform2.setScale(0.8f);
 Sprite platform3 = new Sprite(350, 450, res.platformTextureRegion,
vbom);
 platform3.setColor(0.3f, 0.3f, 0.3f, 0.3f);
 platform3.setScale(0.8f);
 platforms.attachChild(platform1);
 platforms.attachChild(platform2);
 platforms.attachChild(platform3);

 VerticalParallaxEntity platformsLayer = new
VerticalParallaxEntity(-0.5f, platforms);
 parallaxBackground.attachParallaxEntity(platformsLayer);

 setBackground(parallaxBackground);
}

Our background has two layers. Each layer can be a single image (a sprite) or an
entity assembled from multiple objects. We are doing the latter. The first layer is a
very slow moving layer with two clouds. We also set the size of the entity and its
center, because the parallax background needs to know the size to correctly wrap
around the layer. The second layer is assembled from three semi-transparent and
scaled-down platforms. They will appear as if they are in the background and we
will make them move a bit slower than the camera.

We must also change the populate() method to use this background:

 private ParallaxBackground parallaxBackground;

 @Override
 public void populate() {
// createBackground();
 createParallaxBackground();
 createPlayer();
…
}

And finally, we must be passing the parallax value to the background in each
update cycle to make it scroll properly:

@Override
protected void onManagedUpdate(float pSecondsElapsed) {
 super.onManagedUpdate(pSecondsElapsed);

Polishing the Game

[238]

 parallaxBackground.setParallaxValue(camera.getCenterY());

 boolean added = false;
…
}

The final effect is that the clouds move very slowly and the platforms in the back
move a bit faster but still slower than the platforms that the player can use. In
the following screenshot, we can see how the platforms are wrapped (the top
background platform is visible both on top and the bottom):

Shaders
Shaders are little programs that can be run on the prepared geometry (vertices)
or rendered fragments just before they get rendered on screen. Fragments are like
pixels before they get thrown on the screen.

Shaders can create amazing effects by displacing vertices, coloring fragments,
and so on. It's the most advanced topic that appears in this book, but every game
developer should know that they exist.

Chapter 10

[239]

Every entity, in fact, already uses a very simple vertex and fragment shader program
that doesn't do anything than to display the correct geometry with the correct color.
The shapes use a single color and the sprites use texture coordinates.

We are going to create a very simple shader program that will turn our platforms
black and white.

The code for the shader programs is long and it contains low level OpenGL calls. We
will use the basic shader program available in AndEngine and modify it a little. The
new program class is called BWShaderProgram. It contains a simple vertex shader that
does exactly the same thing as the basic one. The only change is the fragment shader.

Shaders in OpenGL are written in a domain-specific language called GLSL. We are
storing the program as a simple string. Here's the relevant part:

 public static final String FRAGMENTSHADER =
 "precision lowp float;\n" +
 "uniform sampler2D " + ShaderProgramConstants.UNIFORM_TEXTURE_0
+ ";\n" +
 "varying mediump vec2 " + ShaderProgramConstants.VARYING_
TEXTURECOORDINATES + ";\n" +
 "void main() {\n" +
 " vec4 myColor = texture2D(" + ShaderProgramConstants.UNIFORM_
TEXTURE_0 + ", " + ShaderProgramConstants.VARYING_TEXTURECOORDINATES +
");\n" +
 " gl_FragColor.r = dot(myColor.rgb, vec3(.3, .59, .11));\n" +
 " gl_FragColor.g = dot(myColor.rgb, vec3(.3, .59, .11));\n" +
 " gl_FragColor.b = dot(myColor.rgb, vec3(.3, .59, .11));\n" +
 " gl_FragColor.a = myColor.a;\n" +
 "}";

The program first defines a few variables that we are going to need. Then it looks
up the correct texture pixel (texel) in the texture and calculates red, green, and blue
values to be the same. This will make the final fragment, and therefore, the pixel
monochromatic as well.

The shader program must be loaded during the resource loading phase and loaded
only once. We will add it to the ResouceManager class in the loadGameGraphics()
method, as follows:

public BWShaderProgram myShaderProgram;
public void loadGameGraphics() {
 …

 myShaderProgram = BWShaderProgram.getInstance();

Polishing the Game

[240]

 activity.getShaderProgramManager().loadShaderProgram(myShaderProg
ram);
}

To use this shader program instead of the default one, let's change the
PlatformFactory class:

 public Platform createPlatform(float x, float y) {
 Platform platform = new Platform(x, y, ResourceManager.
getInstance().platformTextureRegion, vbom);
 platform.setShaderProgram(ResourceManager.getInstance().
myShaderProgram);
 …
}

And that's it! Now our platforms are displayed using our custom shader program.
Here's how it looks (the background platforms are not affected because they
are not created using the factory):

Chapter 10

[241]

The AndEngine examples project that comes with AndEngine
demonstrates a radial blur shader.

Summary
This was the final chapter before we will release our game. We learned what polishing
is and how we can polish our game with respect to audiovisuals. Music was added to
our game in this chapter and some special effects were demonstrated. We learned how
to improve simple tweens by using easing functions. We saw what a particle system
can do. Our background was changed to a parallax background and we implemented
our own vertical parallax background as an addition to the AndEngine horizontal
scrolling parallax background. Finally, we introduced shaders and saw a simple
example of what they can do.

In the next chapter, we will wrap up our game and publish it. We will discuss what
happens after the game is published and what is needed to make a game successful.

Testing, Publishing, and
What's Next

After the game is completed and tested on a developer's device, it's still far
from finished. A successful game must be thoroughly tested on a wide selection
of devices, and it also has to be marketed. After the game is published, it also
needs to be supported and newly-found bugs must be fixed promptly.

In this final chapter, we will learn how to test the game on different devices with
minimal resources and how to set up user testing with the help of the community.
We are also going to see how to publish a game and discuss some basic ways of
promoting the game. Lastly, we are going to learn how to deal with a user's
feedback after the game is published.

Creating a production APK
The first thing that must be done is creating a production APK. The difference
between a developer and production version is that the developer one is signed by
a debug certificate while the production one is signed by its own certificate. This is
necessary to identify an APK in the store with something that is hard to duplicate.

The certificate can be a self-signed certificate, which means we are going to create
it ourselves and we don't need to use a certificate from a certification authority.

Testing, Publishing, and What's Next

[244]

The following are the steps needed to create a production certificate and sign it with
a newly-created certificate:

1. We are going to use the Export option in the project context menu available
after right-clicking on the project name in the Project Explorer window in
Eclipse. First, we select the right export option, which is hidden under Android
| Export Android Application. This is shown in the following screenshot:

2. After clicking on the Next button, the wizard checks our game for errors.
There should be no errors at this time, as shown in the following screenshot:

Chapter 11

[245]

3. After clicking on the Next button, we are going to create our own new
keystore, which is a file storage that holds all of our encrypted keys. After
selecting a location and typing a new password, we can continue in the export
wizard. This is shown in the following screenshot. We only need one keystore
for all games. It's important to use a strong password and to never lose your
keystore. Saving it in cloud storage might be a good idea. If the keystore is
lost, your game can never be updated again.

Testing, Publishing, and What's Next

[246]

4. In the next step, a certificate for our game is created in our keystore. A few
fields must be filled in, as shown in the following screenshot. The Alias field
will have the name of the certificate used to identify it in the keystore. Each
certificate will need a password. The Validity (years) field must have a value
that exceeds the expected lifespan of the game, and right now, the requirement
is that the certificate is valid until the year 2033. At least one field that identifies
the author must be filled in. For each game, create a separate certificate.

Chapter 11

[247]

5. The last page of the wizard only wants us to select a location of the new
APK, as shown in the following screenshot:

The whole process takes some time and it is CPU intensive. At the end, a new keystore
is created with the new certificate and the production APK is created as well, signed
by it.

Often when updating the APK, the export ends with an error stating
Conversion to Dalvik format failed with error 1. There is no simple
cure for this error. Cleaning and building the project from scratch
and removing temporary files from the system and the bin and gen
directories from the project usually help. To prevent certain issues,
turning off the auto build is an option as well.

Testing, Publishing, and What's Next

[248]

Testing with the production APK
It's always a good idea to uninstall the debug version of the game from the device
and install the production version. We should never publish the APK without
checking it first even if the changes made were simple, because the export process,
in rare cases, introduces errors to the APK.

To install the APK, the adb command-line tool is used. The Unknown sources
option must be enabled in the security settings of the device. The APK can be
installed using the following command:

adb install LearningAndEngine.apk

You can also send the APK to yourself via e-mail. Opening the
attachment in a Gmail app will let you install the APK.

Testing on multiple devices
It is necessary to test the game on as many different devices as possible. The game
might look and feel very different on tablets and phones and even on two similar
phones. Moreover, some phones define their own ways of handling the application
life cycle, especially pausing and resuming. Testing on a few major brands and
popular devices is always recommended.

Using an emulator
Testing on different devices is not always an option for many reasons. In that case,
we should test at least a few different resolutions in an emulator. An emulator can
never substitute testing on a real device. It is missing many features of phones and
tablets and, of course, even the implemented functionality is just an emulation.

To run the game on an emulator, first start the Android Virtual Device Manager
from Eclipse. The option is located in the main button bar and in the Window menu.

Chapter 11

[249]

In the current version of the SDK, we have two options: creating a new device or
cloning an emulation of an existing device. We will create a new one. Let's click
on the New button in the manager and create a new phone emulation. We will
be presented with the window shown in the following screenshot:

Testing, Publishing, and What's Next

[250]

The parameters used are just an example, but the device will do just fine. The
resolution will fit nicely on the screen. We are using the latest available Android
SDK, at the time of writing this book. The RAM parameter should be set to at least
512 MB in order to run the latest Android somewhat smoothly. The Use Host GPU
option means that the graphics will be emulated on a graphics card instead of the
CPU, which usually brings a significant performance boost. However, the built-in
emulator is still quite slow even on the latest machines.

As an alternative, we can use the Genymotion emulator or install the
HAXM Intel driver and Intel Atom Android images. Genymotion is
a virtual machine, which performs better than the built-in emulator,
and the HAXM driver uses hardware virtualization to speed up the
bundled emulator to run faster.

After creating the device, it appears in the run dialog and we can run our game the
same way as we did on the real device, as shown in the following screenshot. We
can use the adb command-line tool and install the production APK in the emulator
as well.

Chapter 11

[251]

The following screenshot shows how it looks when our game runs successfully in
the emulator:

Getting in touch with the community
During the making of a game, we often get stuck. Fortunately, AndEngine has an
active community that can help us resolve our problems. From a long-term view,
it's also beneficial to give back to the community. One of the easiest ways is to give
feedback on other developers' games. Creating a circle of friends in the community
is always beneficial later on when you need to test your game with other people.

Testing, Publishing, and What's Next

[252]

The community forums are located at http://www.andengine.
org/forums/. There are also many sites with AndEngine tutorials.
The best known is Mathew's tutorial website, which can be found
at http://www.matim-dev.com/. You can also visit my website
for more tutorials at http://android.kul.is/.
We can find more help in other game development communities
that aren't directly associated with AndEngine. For example,
http://www.stackoverflow.com is a good website for asking
questions about programming.

Publishing the game to the Google Play
store
There are many Android stores available and distributing your game yourself is an
option too, but the biggest and most popular store is still the Google Play store and
therefore, every developer should use it.

The official documentation for developers contains a handy Get
started guide and is available at https://support.google.com/
googleplay/android-developer/.

Publishing to the beta stage first
Setting up a Google Play store alpha and beta test is not directly related to AndEngine,
but every Android developer should know about this great option to test games and
apps directly in the store.

Moreover, the publishing process in the alpha and beta stage is the same as in
the production stage, making it easy to try the whole life cycle first. The alpha and
beta versions are basically the same. However, the store allows us to maintain three
different versions and make them available to different people at the same time.
The alpha and beta stages allow us to define a group of people who can download
the APK. The production version is different, because an APK published as
production will be publicly available.

The alpha and beta stages are available to members of a selected Google Group or
Google+ community. Therefore, creating a small Google+ community and adding
trusted users to it is one of the best ways to test the game on different devices.

We won't describe the process here in detail because the official documentation
offers a detailed manual to perform each step. However, here's a quick summary.

http://www.andengine.org/forums/
http://www.andengine.org/forums/
http://www.matim-dev.com/
http://android.kul.is/
http://www.stackoverflow.com
https://support.google.com/googleplay/android-developer/
https://support.google.com/googleplay/android-developer/

Chapter 11

[253]

Creating the application
First, we need to create a new application. This is done on the ALL APPLICATIONS
page, as shown in the following screenshot:

The console will ask for a name and whether we want to start with uploading the
APK or preparing the store listing, as shown in the following screenshot. We need
to perform both steps before publication; therefore, choosing which step to perform
first depends on your personal preferences.

Let's start with the store listing. We must fill in the fields in the Pricing &
Distribution and Store Listing pages. After that, we can upload our APK. We don't
have to worry about the contents now, but it's a good practice to fill everything as if
this was the real production version already. That way, we can get feedback on the
store listing as well.

Testing, Publishing, and What's Next

[254]

The pricing and distribution depends solely on the purpose of our game. For this
game, we will set the price to free and make it available in all countries.

For the store listing, we will need at least two screenshots from our game and a
high resolution icon. We haven't created an icon yet. However, we can use the
following image for now:

We should also replace the launcher icons. So far, we have used the generic Android
icon. The source code for this chapter contains the previous image resized to different
resolutions in the res folder of our game.

When creating a new application, we can select a single image to
serve as our game's icon, and it will be resized automatically. To
do it later, we simply replace the generic icon in the res folder
and its respective resolution's subfolders with our own.
To generate the icons for all resolutions, we can use Android
Asset Studio, which is available at http://romannurik.
github.io/AndroidAssetStudio/.

The Google Play store also requires consent whether the application meets Android
content guidelines and an acknowledgement that the application might be subject to
US laws. Refer to https://play.google.com/about/developer-content-policy.
html and https://support.google.com/googleplay/android-developer/
answer/113770 for more information. After this, we can upload our APK to the
beta phase.

Some actions can be performed only after the APK is uploaded.
It might be necessary to visit each page multiple times until all
pages show a green tick.

http://romannurik.github.io/AndroidAssetStudio/
http://romannurik.github.io/AndroidAssetStudio/
https://play.google.com/about/developer-content-policy.html
https://play.google.com/about/developer-content-policy.html
https://support.google.com/googleplay/android-developer/answer/113770
https://support.google.com/googleplay/android-developer/answer/113770

Chapter 11

[255]

When the upload finishes, we should see something like what is shown in the
following screenshot:

On this page, we can see the version of the APK, which is set to 1. Every time we
upload a new APK, we must increase the version number in the AndroidManifest.
xml file. This can be done as follows:

<manifest xmlns:android="http://schemas.android.
 com/apk/res/android"
 package="is.kul.learningandengine"
 android:versionCode="1"
 android:versionName="1.0" >

The versionCode value is the right value. It is an integer. The versionName value
will be displayed in the store listing.

We can also exclude some devices and make our game unavailable for them. This is
useful in the case of some nonstandard Android devices or devices with low memory
that could theoretically run our game, but in practice, the game will always crash.

Testing, Publishing, and What's Next

[256]

Finally, the Manage list of testers link allows us to define the users who can access
this beta APK. For our game, a public Google+ community was created. It is called
Learning AndEngine and it can be accessed directly from https://plus.google.
com/communities/105620828467852624663.

After publishing the game in the beta stage, a special page will be available for
testers to access the game at https://play.google.com/apps/testing/is.kul.
learningandengine.

The APK published in the beta test will be kept available for future reference.
It will not be updated. You can find the most recent official version of the
game at https://play.google.com/store/apps/details?id=is.kul.
learningandengine.official.

The Crashes & ANRs and Statistics links lead to tracking of the said application
for the beta stage only.

Crash reports
Crash and application not responding (ANR) reports show us when our application
crashed, on what device, and why. The crash report can also contain a user message,
and it typically contains an exception that caused the crash; this is shown in the
following screenshot. In the current version of the Google Play store, there are
separate reports for each stage.

The alpha and beta testers should fill in the user message describing the action they
were performing just before the crash.

https://plus.google.com/communities/105620828467852624663
https://plus.google.com/communities/105620828467852624663
https://play.google.com/apps/testing/is.kul.learningandengine
https://play.google.com/apps/testing/is.kul.learningandengine
https://play.google.com/store/apps/details?id=is.kul.learningandengine.official
https://play.google.com/store/apps/details?id=is.kul.learningandengine.official

Chapter 11

[257]

Debugging crashes
Because each crash is typically related to an exception, we can go directly to the
code and fix the problem. The application can be run in the debugging mode, where
we have an option to stop at a breakpoint. A breakpoint is a line of code where we
want to stop the execution of the program. After stopping at a breakpoint, we can
analyze the current contents of the stack. Learning how to debug Java applications
is a useful skill that can help us deal with crashes.

Publishing to production
Publishing to production is basically the same as publishing to the beta or
alpha stage. Moreover, we have an option to promote the beta or alpha APK to
production APK. There is only one store listing, and we should take special care
to make it descriptive and interesting to potential players.

Promotion
Even if we create a great game, it might never be discovered. Marketing a game may
take serious effort and should not be underestimated. Most people discover games
by searching the Google Play store and, therefore, using the right keywords in the
description is very important. However, the Google Play store search option shows
games with a lot of downloads higher in the results and because of that, we need to
get some initial momentum going and get as many installs as possible. Social networks
and game developer communities are probably the best free options and there are of
course always paid advertisements.

Marketing is out of scope for this book, but we should pay attention to it. A good
marketing strategy begins long before the game is published.

Next steps
It would be a mistake to just sit back and relax after publishing the game to production.
If we have done the marketing right, we can see a lot of installs and that means a lot of
different people with different phones installing our game. It is almost guaranteed that
there will be crashes even after thorough testing.

The first week
In the first few days after the first installs start rolling, we should be ready to fix any
errors that might occur quickly and promptly upload the updated version. Bugs in
the initial stage can ruin an otherwise good game.

Testing, Publishing, and What's Next

[258]

The first month
The game is considered new for exactly thirty days from the publication to production.
A new game can appear in lists such as "Top New Free Games" and so on. Appearing
in such lists usually means our game will become even more popular. It's therefore
important to focus on marketing the game as much as possible in the first month.

The lists are separate for each country. It might be a good idea to focus
on getting into a "Top New" list only in some countries. For example,
translating the store description into several languages can help.

Summary
In this chapter, we have discussed some aspects of game development that might
not be directly related to AndEngine, but are nevertheless important. Testing on
multiple devices and in an emulator, user tests, and publishing are all integral
parts of game development and the same can be said for marketing.

Joining a community of game developers might help us not only when we get stuck
while making the game, but later as well when we need to test the game and when
we need to give our game the first push, to get it out there and get it discovered.

This concludes the whole development life cycle of a game. This chapter's source
code is the final source code of the game, which has been published in the Google
Play store.

Index
A
AbstractScene class 67, 68
accelerometer

about 99
pausing 108
resuming 108
using 106-108

access modes, preferences
MODE_MULTI_PROCESS 205
MODE_PRIVATE 205
MODE_WORLD_READABLE 205
MODE_WORLD_WRITEABLE 205

actions
performing, threads used 114-117

activity lifecycle, Android application 25
addEnemy() method 151
ADT 8
alpha bleeding 59-61
alpha channel settings 57
alternatives, unsupported languages 84
AndEngine

adding, to Android application 23
adding, to Eclipse IDE 15, 16
logging to, LogCat from 95
prerequisites 7, 8
software, downloading 8
URL 13

AndEngineExamples
about 13
URL 14

AndEngine libraries
obtaining 12, 13

AndEngineMultiplayerExtension 13

AndEnginePhysicsBox2DExtension
about 13
URL, for downloading 15

AndEngine project
Debug Draw, adding to 168

AndEngine repositories
about 13
AndEngineExamples 13
AndEngineMultiplayerExtension 13
branch, selecting 13
sources, downloading 14, 15

Android application
activity lifecycle 25
AndEngine, adding 23
creating 17-20
GameActivity, changing to

AndEngine activity 24
required projects, adding 24
running 21-30

Android Asset Studio
URL 254

Android Development Tools. See ADT
Android device 7
Android emulator 7
Android SDK

about 7
downloading 9
installing 9, 10
URL, for downloading 9
URL, for file formats 40
URL, for installation instructions 9

animated sprite
about 72, 99
working 99, 100

AnimatedSprite class 99

[260]

animate() method
about 100, 150
examples 100

animation
adding, entity modifiers used 218
creating, ways 99

animation frames, character 42, 43
application not responding (ANR)

report 256
assert 96
assets, for game

graphics 38
music 45
obtaining 38
sounds 45
URL, for list 38

atlas
building 58, 59

attributes, log message
Application 94
Log Level 94
PID 94
Tag 94
Text 94
TID 94
Time 94

Audacity
URL, for downloading 62

audio file formats
about 46
URL, for list 46

AutoParallaxBackground 69
autowrap 162

B
background task 200
Back label, scene diagram 47
BaseGameActivity class 26
best practices, logging 96
bilinear interpolation 56
Bitmap. See BMP
BitmapTextureAtlasTextureRegionFactory

class
used, for creating regions 58

bitmap texture format
about 54
RGB_565 54
RGBA_4444 54
RGBA_8888 54

BlackPawn builder, parameters
atlas border spacing 59
source padding 59
source spacing 59

blending options, for source and
destination parameters

references 227
BMP 41
Body class 140
body types

about 120
dynamic body 121
kinematic body 120
static body 120

breakpoint 257
buildAnimations() method 196
BuildConfig.DEBUG property 97

C
camera scene 87
category

about 176
example 178

category mask
about 177
example 178

character
animation frames 42, 43

chase camera 152, 153
cleanEntities() method 156
clearEntityModifiers() method 104
collidable entity 129
collidesWith method 111-113
collision detection

about 109
player-enemy collision 148
player-platform collision 146-148

collision filtering
about 176
categories and masks example 178-181
category 176, 177

[261]

category mask 177, 178
group index 181

collision handler
implementing 110, 111

collisions
about 143
detecting 144, 145
handling 110

ColorModifier 221
commit() method 205
community

about 251
references 252

configuration, Eclipse IDE 11, 12
contact listener 144
ContactListener interface

about 144
beginContact method 145
endContact method 145
postSolve method 145
preSolve method 145

coupling 161
crashes

debugging 257
crash report 256
createHUD() method 89
createMovingPlatform() method 135
createPlatform() method 135
Creative Commons licenses

URL 38
Creative Commons Zero (CC-0) 38
CropResolutionPolicy 33, 34

D
Dalvik 7
Dalvik Debug Monitor Server (DDMS) 11
debug 96
Debug class 97
Debug Draw

about 167
references 168
using, in game 169

debug output 93, 94
DebugRenderer object 169
DelayModifier 221
density, fixtures 122

destroy() method 201
device configuration 20
Discrete Cosine Transformation (DCT) 40
dithering 70
dynamic body 121

E
ease functions

about 101, 221, 222
references 222

Eclipse IDE
AndEngine, adding to 15, 16
configuring 11, 12

elasticity, fixtures 123, 124
empty body

creating 171
emulator

game, running on 248-251
enableAccelerationSensor method 108
enemies

about 43
adding, to scene 150, 151

Enemy class 148
EnemyFactory 148
EngineOptions object, parameters

camera 28
fullscreen 28
resolution policy 28
screen orientation 28

entities, for game
about 37, 65
animated sprite 72
background 69-71
bodies, relating to 130
character 42, 43
clouds 43
enemies 76
enemy 43
main character 73
platform 43, 76
scene 66, 67
sprite 72
tiled sprite 72
using 76

EntityBackground class 69
Entity class 65

[262]

entity modifiers
about 101
chaining 218-220
DelayModifier 221
examples 102
MoveByModifier 221
MoveModifier 221
PathModifier 221
RotationModifier 221
ScaleModifier 221
selecting 221
used, for adding animations 218

entity touch area 104, 105
error 96
event listeners 102
events

sound, playing on 164
expansion files

references 214

F
factory

using 76
fall sound

playing, on player character's death 166
FillResolutionPolicy 32
FixedResolutionPolicy 31
fixtures

about 121
bodies, assembling from 170

fixtures, properties
density 122
elasticity 123, 124
friction 122, 123
sensor 124
shapes 121

FontFactory class 64
FontManager class 80
font.prepareLetters() method 80
fonts

about 79
loading 63, 64, 79, 80
storing, on texture 80, 81
unloading 64

font texture
limitations 85

forces
about 120, 125, 126
using 140, 141

fragments 238
friction, fixtures 122, 123
friction joint 186

G
game

feedback, after publishing 257
initial concept, creating with graphic

assets 44
publishing, to beta stage 252
publishing, to Google Play store 252
publishing, to production 257
restarting, after player character's

death 160, 161
restarting, on tap 163, 164
running, on emulator 248-251
testing, on multiple devices 248
testing, with production APK 248

GameActivity class
about 26, 200
methods, modifying 65

game concept
about 35-37
entities 37

game events
about 152
chase camera 152, 153
enemies, adding 154-156
enemies, removing 154-156
message, displaying on game over 161, 162
platforms, adding 154-156
platforms, removing 154-156
player character's death, detecting 157
score 157
wraparound concept 158-160

game, publishing to Google Play store
application, creating 253-256

GameScene class 68, 69, 90
gear joint 186
Genymotion 250
getInstance() method 49
getMediaPlayer() method 216
getString() method 92

[263]

getType() method 131
GIF 41
Git 12
Google Play store

game, publishing to 252
graphic formats 39
graphics

about 38
loading 51-53
unloading 61

Graphics Interchange Format. See GIF
gravity vector

changing 138-140
group index 181

H
head fixture 172
heads-up display. See HUD
Honeycomb version 21
HUD

about 79
working 88, 89

I
Ice Cream Sandwich version 21
impulses

about 125, 126
using 141

info 96
installation, Android SDK 9, 10
Integrated Development

Environment (IDE) 8
interactive testing tool

references 233
international alphabets

about 82
characters, from European languages 82
Korean, Chinese, Japanese writing

systems 83
internationalization (I18N) 91, 92
interpolation

about 54
bilinear interpolation 56
linear interpolation 56
nearest-neighbor interpolation 55, 56

IOnMenuItemClickListener method 196

J
Java ARchive (JAR) 12
Java Runtime Environment (JRE) 8
Java Software Development Kit (SDK) 7
Jelly Bean version 21
Joint Photographic Experts Group. See JPEG
joints

about 127, 182
distance joint 183
friction joint 186
gear joint 186
line joint 185
mouse joint 187
prismatic joint 184
pulley joint 186
revolute joint 182, 183
weld joint 185

JPEG 40
jump sound

playing 165

K
keystore 245
kinematic body 120

L
lazy loading 80
libgdx

about 144
URL 144

libraries, AndEngine
obtaining 12, 13

linear damping 132
linear interpolation 56
line joint 185
loading scene 197, 198
localization (L10N) 91, 92
LogCat

about 8, 12, 93
logging to, from AndEngine 95

logging
best practices 96

[264]

M
makeText() method 90
media player

about 215
life cycle 216, 217

menu scene 191, 194-196
MenuScene class 194-196
message

displaying, on game over 161, 162
methods, AbstractScene class

destroy() 68
onBackKeyPressed() 68
populate() 68

modifier callback hooks
using 223

mouse joint 187
MoveByModifier 221
MoveModifier 221
multiple devices

game, testing on 248
multiple scenes

managing 191
music

about 45, 46, 213
adding, to game 214, 215
loading 62, 63
unloading 63

myEntityModifierListener class 115

N
nearest-neighbor interpolation 55, 56
Newton's laws of motion 120

O
objects, ResourceManager class

activity 50
engine 51
vbom 51

onAccelerationChanged method 107
onCreateEngineOptions method 27
onCreate method 25
onCreateResources method 29
onCreateScene method 29
onDestroy method 25
onDraw() method 236

onManagedUpdate()
method 110, 111, 133, 157

onMenuItemClicked() method 196
onModifierFinished() method 223
onModifierStarted() method 223
onPause() method 108
onPopulateScene method 30
onResume() method 25, 108
onStart method 25
onStop method 25
Open Game Art Bundle

about 38
URL, for obtaining 38

OpenGL ES 13

P
packed integer 64
parallax background

about 234
creating 236-238

ParallaxBackground 69
particle system

about 224
fire effect 227-233
flying in clouds effect 224-227
smoke effect 227-233

PathModifier 221
pause() method 215
physics

adding 127, 128
bodies, relating to entities 130
collidable entity 129
physics world, adding 128
platforms, adding 133-137
player character, controlling 138
velocity, setting 141, 142

physics body
about 119
adding, to player entity 130, 132
properties 120
relating, to entities 130

physics body, assembling from fixtures
about 170-176
empty body, creating 171
head fixture 172
legs, creating 174, 175

[265]

torso, creating 172-174
physics engine

about 119
bodies 120
body types 120
fixtures 121
forces 120, 125, 126
impulses 125, 126
Joints 127

physics world
about 120, 124, 125
adding 128

platforms
adding 133-137

player character, controlling
forces, using 140, 141
gravity vector, changing 138-140
impulses, using 141

player character's death
detecting 157

Player class 73, 74
player-enemy collision

about 148
contact listener, updating 151, 152
enemies, adding to scene 150, 151
Enemy class 149, 150
EnemyFactory 149, 150

player entity
physics body, adding to 130-132

PlayerFactory class 73, 75
player-platform collision 146-148
play() method 215
PNG 41
polishing 213
populate() method 85, 90, 110, 196
Portable Network Graphics. See PNG
prepareLetters() method 81, 85
prepare() method 216
prismatic joint 184
production

game, publishing to 257
production APK

creating 243-247
game, testing with 248

promotion 257
pulley joint 186

R
raster format

about 39
BMP 41
GIF 41
JPEG 40
PNG 41
WebP 42

rasterization 39
RatioResolutionPolicy 32
regions

creating, BitmapTextureAtlasTexture
RegionFactory class used 58

RelativeResolutionPolicy 32
repeating 57
RepeatingSpriteBackground 69
repository 13
resolution policies

about 30
CropResolutionPolicy 33, 34
FillResolutionPolicy 32
FixedResolutionPolicy 31
RatioResolutionPolicy 32
RelativeResolutionPolicy 32

ResourceManager class
about 49, 79, 199
creating 50
objects 50
updating 192, 193

resources
managing 49

restartGame() method 163
revolute joint

about 182, 183
implementing 187-189

RGB_565 format 54
RGBA_4444 format 54
RGBA_8888 format 54
rigid body 119
RotationModifier 221
R.U.B.E. 170
run-length encoding image file format 41
runOnUiThread() method 90
runOnUpdateThread() method 116, 117, 145

[266]

S
Scalable Vector Graphics (SVG) 42
ScaleMenuItemDecorator class 196
ScaleModifier 221
scene

about 47, 66
AbstractScene class 67, 68
creating 67
enemies, adding to 150, 151
GameScene class 68, 69

scene diagram 47
scene manager 199-202
SceneManager class

about 199
plugging in 202-204

scene touch listener 103, 104
score, for game 157
self-signed certificate 243
sensor, fixtures 124
setAnchorCenter() method 85
setBackgroundEnabled() method 196
setBody() method 131
setCenterDirect()method 163
setOnSceneTouchListener() method 104
setText() method 86
shaders 238-240
shapes, fixtures 121
shared preferences 204
showSplashAndMenuScene() method 200
singleton pattern 49
sleepingAllowed property 140
sortChildren() method 75
sound effects 46
sounds

about 45
loading 62, 63
playing, according to settings 209
playing, on events 164
unloading 63

special characters
storing 82

splash scene
about 191, 192
creating 193, 194
resource manager, updating 192, 193

sprite 38, 72
SpriteBackground 69
SpriteMenuItem object 196
state machine 161
static body 120
stop() method 215

T
text

about 79
writing 85-87

Text class 85
TextMenuItem object 196
texture

about 51
font, storing on 80, 81

texture atlas 51
texture bleeding 59, 60
TextureManager class 80
texture options

about 54
alpha channel settings 57
interpolation 54
repeating 57

texture pixel (texel) 239
texture region 51
threads

used, for performing actions 114-117
tiled sprite 72
tiled texture regions 51
tiles 44
toasts

about 89
working with 90, 91

toCharArray() method 81
torque 125
torso

creating 172-174
touch area bindings 106
touch events

about 102
ACTION_CANCEL 103
ACTION_DOWN 102
ACTION_MOVE 103
ACTION_OUTSIDE 103
ACTION_UP 103

[267]

touchscreen
about 99, 102
entity touch area 104, 105
scene touch listener 103, 104
touch area bindings 106
touch events 102, 103

tweens 101

U
unsupported languages

alternatives 84
user input

about 102
accelerometer 106-108
touchscreen 102

V
values, storing

about 204
high score 210
preferences, using 205
settings 206, 208

VBO 51
vbom (Vertex Buffer Object Manager) 169
vector graphics format 39
velocity

setting 141, 142
verbose 96
version control system (VCS) 12
Vertex Buffer Object See VBO
VerticalParallaxEntity 235

W
warning 96
WebP 42
weld joint 185
what a terrible failure (WTF) 94
wraparound 36, 159
writing systems

rendering, issues 84

Thank you for buying
Learning AndEngine

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Cocos2d-X by Example
Beginner's Guide
ISBN: 978-1-78216-734-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open
source frameworks in the world

1. Learn to build multi-device games in simple,
easy steps, letting the framework do all the
heavy lifting.

2. Spice things up in your games with
easy to apply animations, particle effects,
and physics simulation.

3. Quickly implement and test your
own gameplay ideas, with an eye
for optimization and portability.

AndEngine for Android Game
Development Cookbook
ISBN: 978-1-84951-898-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
examples to get to grips with the powerful
capabilities of AndEngine and GLES 2

1. Step by step detailed instructions and
information on a number of AndEngine
functions, including illustrations and
diagrams for added support and results.

2. Learn all about the various aspects of
AndEngine with prime and practical
examples, useful for bringing your ideas to life.

3. Improve the performance of past and future
game projects with a collection of useful
optimization tips.

Please check www.PacktPub.com for information on our titles

iOS 7 Game Development
ISBN: 978-1-78355-157-6 Paperback: 120 pages

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

1. Pen your own endless runner game using
Apple's new Sprite Kit framework.

2. Enhance your user experience with easy-to-use
animations and particle effects using Xcode 5.

3. Utilize particle systems and create custom
particle effects.

iPhone Game Blueprints
ISBN: 978-1-84969-026-3 Paperback: 358 pages

Develop amazing games, visual charts, plots, and
graphics for your iPhone

1. Seven step by step game projects for you
to build.

2. Cover all aspects from graphics to
game ergonomics.

3. Tips and tricks for all of your iPhone
programming.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up an AndEngine Project
	Prerequisites
	Downloading and installing the required software
	Downloading the Android SDK
	Installing the Android SDK
	Configuring the Eclipse IDE

	Getting the AndEngine libraries
	Selecting the correct branch
	AndEngine repositories
	Downloading the sources
	Adding AndEngine to the Eclipse IDE

	Creating a new application
	Creating a simple Android application
	Device configuration
	Before Honeycomb
	Honeycomb until Ice Cream Sandwich
	Jelly Bean and later

	Running the application
	Adding AndEngine
	Adding the required projects
	Changing the GameActivity to an AndEngine activity
	Running the application

	Understanding resolution policies
	FixedResolutionPolicy
	FillResolutionPolicy
	RelativeResolutionPolicy
	RatioResolutionPolicy
	CropResolutionPolicy

	Summary

	Chapter 2: Game Concept and Assets
	The game concept
	Identifying the basic entities

	Getting the assets
	Graphics
	Graphic formats
	The main character
	The enemy
	Platform and clouds
	Putting it all together

	Sounds and music
	Audio file formats
	Sound effects
	Music

	Scene diagram
	Summary

	Chapter 3: From Assets to Entities
	Managing resources
	Loading graphics
	Bitmap texture format
	Texture options
	Creating the regions
	Building the atlas

	Texture and alpha bleeding
	Texture bleeding
	Alpha bleeding

	Unloading graphics
	Loading sounds and music
	Unloading sounds and music
	Loading fonts
	Unloading fonts
	Putting it all together

	Entities
	Scene
	AbstractScene
	GameScene

	Background
	Sprite, tiled sprite, and animated sprite
	Main character
	Player class
	PlayerFactory class

	Using the new entity and its factory
	Platforms and enemies
	Running the code

	Summary

	Chapter 4: HUD and Text Display
	Fonts and text
	Storing the font on a texture
	Storing special characters and international alphabets
	Workaround for unsupported languages

	Other limitations of the font texture

	Writing text
	HUD
	Working with toasts
	Localization
	Debug output
	Logging to LogCat from AndEngine
	Logging best practices

	Summary

	Chapter 5: Basic Interactions
	A simple animation
	An animated sprite
	Entity modifiers

	User input
	Touchscreen
	Touch events
	The scene touch listener
	The entity touch area
	Touch area bindings

	Accelerometer
	Pausing and resuming the accelerometer

	Collision detection
	Handling collisions
	Collision handlers
	The collidesWith method

	Using correct threads to perform actions
	Summary

	Chapter 6: Physics
	The physics engine
	Basic terms
	Body types
	Fixtures
	Shapes
	Density
	Friction
	Elasticity
	Sensor

	The physics world
	Forces and impulses
	Joints

	Adding physics
	Adding a physics world
	Introducing a collidable entity
	Relation between physics bodies and entities
	Adding a physics body to the player entity

	Adding platforms
	Controlling the player character
	Changing the gravity vector
	Using forces
	Using impulses

	Setting the velocity directly

	Summary

	Chapter 7: Detecting Collisions and Reacting to Events
	Collisions
	Detecting collisions
	The player-platform collision
	The player-enemy collision

	Game events
	The chase camera
	Adding and removing platforms and enemies
	Detecting the player's character's death
	Score
	Wrapping the world around
	Restarting the game after a player dies
	Showing a message on game over
	Restarting the game on tap

	Playing sounds on events
	Playing the jump sound
	Playing the fall sound when the player's character dies

	Summary

	Chapter 8: Advanced Physics
	The Box2D Debug Draw extension
	Adding Debug Draw to our AndEngine project
	Using Debug Draw in a game

	Assembling bodies from fixtures
	Creating an empty body
	The head fixture
	Creating the torso
	Creating the legs
	Assembling the body

	Collision filtering
	Category
	The category mask
	Example of categories and masks
	Group index

	Joints
	The revolute joint
	The distance joint
	The prismatic joint
	The line joint
	The weld joint
	The pulley joint
	The gear joint
	The mouse joint
	Implementing a revolute joint

	Summary

	Chapter 9: Adding a Menu and Splash Scene
	Managing multiple scenes
	A splash scene
	Updating the resource manager
	Creating the scene

	The menu scene
	The loading scene
	The scene manager
	Plugging in the SceneManager class

	Storing values
	Using preferences
	Settings
	Playing sound according to the settings

	High score

	Summary

	Chapter 10: Polishing the Game
	What is polishing?
	Adding music
	Life cycle of the media player

	Adding animations using entity modifiers
	Chaining modifiers
	Modifiers
	Ease functions
	Using the modifier callback hooks

	Particle systems
	Creating a flying in the clouds effect
	Creating a fire and smoke effect

	Parallax background
	VerticalParallaxEntity
	Creating a parallax background

	Shaders
	Summary

	Chapter 11: Testing, Publishing, and What's Next
	Creating a production APK
	Testing with the production APK
	Testing on multiple devices
	Using an emulator

	Getting in touch with the community
	Publishing the game to the Google Play store
	Publishing to the beta stage first
	Creating the application
	Crash reports
	Debugging crashes

	Publishing to production

	Promotion
	Next steps
	The first week
	The first month

	Summary

	Index

