
www.allitebooks.com

http://www.allitebooks.org

Learning Android Intents

Explore and apply the power of intents in Android
application development

Muhammad Usama bin Aftab

Wajahat Karim

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Android Intents

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1160114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78328-963-9

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Muhammad Usama bin Aftab

Wajahat Karim

Reviewers
K. B. Vinay Kumar

Sharafat Ibn Mollah Mosharraf

Thiago Rocha

Sheeraz Shaikh

Imran Tanveer

Acquisition Editors
Amarabha Banerjee

Usha Iyer

Meeta Rajani

Lead Technical Editor
Susmita Panda

Technical Editors
Vrinda Amberkar Bhosale

Menza Mathew

Aman Preet Singh

Pratish Soman

Copy Editors
Janbal Dharmaraj

Deepa Nambiar

Karuna Narayanan

Lavina Pereira

Project Coordinator
Priyanka Goel

Proofreaders
Simran Bhogal

Linda Morris

Lindsey Thomas

Indexer
Rekha Nair

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Muhammad Usama bin Aftab is a telecommunications engineer with a flair
for programming. He has been working in the IT industry for the last two years,
in which he worked on Android Development, AndEngine GLES 1 and 2, Starling,
Adobe Air, and Unity 3D. He also has a total of two years of Android experience
consisting of professional and freelance work that he has done. In June 2011, he
started his career from a silicon-valley-based company named Folio3 Pvt. Ltd.
Folio3 guided him a lot. This helped him discover various technologies with
highly qualified professionals.

I would like to thank my parents for everything they did for my
education and took me to the next step in my career; my sister,
Goya Khan for always teasing me; and my friend/teacher/mentor,
Farzeen Qureshi who always held me tightly in difficult times of my
life. I thank Folio3 for being the first step in my professional life, for
teaching me different platforms, and keeping me motivated. I give
my special thanks to M. Aamir Ibrahim, Ayesha Ibrahim, and Wahaj
Sherwani for teaching me Android/Game Development and helping
me stay updated with the current technologies. I thank all of my
peers, co-author, and Packt Publishing for their trust in me. Last but
not least; I thank Allah (the Almighty) because without his help, I
would just be a particle in sand.

www.allitebooks.com

http://www.allitebooks.org

Wajahat Karim is a software engineer and has a high interest in game
development for mobile and Facebook platforms. He completed his graduation from
NUST School of Electrical Engineering & Computer Sciences (SEECS), Islamabad,
Pakistan. He has been working on games since he was in the third year of his
graduation. He is skilled in many platforms including Android SDK, AndEngine
GLES 1 and 2, Adobe Flash, Adobe Flex, Adobe AIR, Unity3D, and Game Maker. He
is also skilled, not only in programming and coding, but also in computer graphics
tools, such as Adobe Photoshop CS5, Adobe Illustrator, Adobe Flash, 3D Studio
Max, and Autodesk Maya 2012. After working on a Facebook game in WhiteRabbit
Studios until September 2012, he joined a silicon valley-based company, Folio3 Pvt.
Ltd, where he provides his services in mobile games using Unity3D, Adobe Flash,
and AndEngine. He also runs his own mobile app/game startup called AppSoul
Studio (Pvt.) Ltd. in his part time

First of all, I would like to thank Allah (the Almighty) for everything
and this life. Then I would like to thank my lovely sisters, Navera
Karim and Sumera Aijaz, who always have been proud of me and
would be shocked and surprised when they'll get this book in their
hands. Then, I would like to thank my parents, Ammi and Abu,
and my aunty, for all their prayers and support, motivation, and
hopes for me, and my cousins, Fayaz Ahmed Memon, Ayaz Ahmed
Memon, and Sheeraz Ahmed Memon, who are more than cousins
and brothers to me. I would like to thank my best teachers, Shahid
Razzaq, Shamyl Bin Mansoor, and Qasim Rajpoot, who taught me
everything that I have written in this book directly or indirectly. I
would like to thank my fiancée, Gul Sanober, for her understanding
and support throughout the process of writing this book and for
her ongoing support in allowing me to do what I truly enjoy in
life. I would like to thank my students for keeping me motivated,
especially Asad Hussain, Saifullah, Muhammad Saad, and Sara Ali
for their support throughout the whole writing process by asking
almost every day about the progress of the book. Thanks to my best
friends, Arslan Ahmed Abro, Mubashir Hassan, and Ali Hussain,
for making my life more funny and enjoyable. Last but not least; I
would like to say a BIG thanks to my co-author Usama Aftab and
Packt Publishing for their support and help in setting this whole
project in motion and publishing my first ever book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

K B Vinay Kumar completed his graduation in 2011 from JNTU Hyderabad; right
after his graduation, he picked up an opportunity in startup software solution as
an Android application developer. Apart from application development, he is quite
interested in exploring new things in the programming world; at the start of his
two years of experience with the Android framework, he worked on cross-platform
implementation using Xamarin.

Sharafat Ibn Mollah Mosharraf graduated from the University of Dhaka in
Computer Science and Engineering. He is currently working as an associate senior
software engineer at Therap Services, LLC. He has expertise and experience in
architecting, and designing and developing enterprise applications in Java, PHP,
and Android. He loves researching, as well as training people on state-of-the-art
technologies for designing, developing, securing, and maintaining Web and mobile
applications. He also provides coaching for various teams participating in national
application development contests. His areas of interest include user experience,
application security, application performance, and designing scalable applications.
He loves spending his free time with his family and friends.

I'd like to thank the author for writing such a wonderful book on
Android Intents. It had been difficult for me to train people to master
this topic due to a lack of elaborated and organized resources. I'd
also like to thank Priyanka Goel, the project coordinator of the
book. It was a pleasure to work with you. And last but not least, I
thank my wife, Sadaf Ishaq, for bearing with me while I was busy
reviewing the book. It's been always great to have you by my side!

www.allitebooks.com

http://www.allitebooks.org

Thiago Rocha, also know as Kimo, is interested in the intersection of technology
and entertainment. He is a Bachelor in Computer Science, graduated from Pontifícia
Universidade Católica de Minas Gerais, Brazil. He started working professionally with
Android development since Android Cupcake, and nowadays, he experiments with
web development using Ruby. When he's not working, Thiago dedicates his time to
practice some serious table tennis. In 2013, he got his third title of Absolute Champion
of Minas Gerais', which is the most important table tennis title of Minas Gerais state.
Thiago is part of Codelogic, a team of passionate developers (and also friends).

First, I would like to thank God, without Him, nothing would
be possible. Priyanka Goel, for providing me with this amazing
experience of reviewing a book. My family, that took care of me and
helped me become the person that I am today. Last, but not least, my
friends (from Codelogic),who supported me to accept this challenge.

Imran Tanveer is a self-learner and an Android geek who is passionate about
application development. He graduated from the National University of Science
and Technology in 2011 with an award-winning Android application as his final
year project and has been working in the industry ever since. In his short time as a
professional, he has worked for various organizations and has developed a number
of Android applications. Many of his applications are available on Google Play, and
have received tremendous rankings from users from all over the world. His work has
also been appreciated by Ericsson and was selected twice in the top six applications
from Pakistan in the Ericsson-PTA Mobile Excellence Awards, for one of which, his
application was awarded the runner-up prize and a nomination in the mBillionth
South Asia Awards.

www.allitebooks.com

http://www.allitebooks.org

Imran's vast knowledge and fervor for Android application development transcends
the career boundaries of most developers and has him finding his place in education.
He has delivered lectures for Android application development workshops in
various universities, and has gone far enough to extend his help to students working
in the domain as their external advisor. Apart from development and instruction, he
also writes training material on Android application development for Android ATC,
a Texas-based company.

Simply put, Imran Tanveer lives and breathes the Android domain and is willing
to go the extra mile in every direction, every day.

I would like to thank the Almighty Allah and my family for always
supporting and helping me achieve whatever I have achieved today.
I would also like to thank my friends, Adeena, Neelofar, Arshad,
and Ikram for always motivating and encouraging me whenever
I got distracted.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Understanding Android 7

Introducing Android 7
Exploring the different versions of Android 8
Google Play – the official app store for Android 10

Understanding the whys and whens of Android 11
The evolution of Android OS 12

Official IDE from Google – the Android Studio 14
Features of Android Studio 15
Limitations of Android Studio 16

Building blocks of an Android application 16
Coding components 18
Media components 18

The assets folder 18
The res folder 19

XML components 19
The layout folder 20
The menu folder 20
The values folder 21
AndroidManifest.xml 22

Referencing components 23
Library components 23

Android Activity lifecycle 24
Fundamental states of an activity 26
The callback methods of the Activity lifecycle 26
The activity lifecycle flow 30

Summary 32

Table of Contents

[ii]

Chapter 2: Introduction to Android Intents 33
Role of intents in an Android Application 34

Role of intents in Android Activities 35
Role of intents in data transfer between activities 35
Role of intents in Wi-Fi and Bluetooth transfer 36
Role of intents in Android Camera 36
Role of intents in GPS Sensor 36
Role of intents in sending SMS/MMS 36
Role of intents in Mobile Calls 36
Role of intents in e-mail and social network posts 37
Role of intents in Android Services 38
Role of intent in Broadcast Receiver 38
Role of intent in time zones 39
Role of intent in Status Bar 39

Intent – a technical overview 40
The Coding component 40
The XML component 41

Implementation of Android Intents for Activity Navigation 42
Understanding the flow 46

Part one – MainActivity.java 46
Part two – MySecondActivity.java 47
Part three – activity_main.xml 47
Part four – activity_two_layout.xml 47
Part five – AndroidManifest.xml 48

Other constructors of the android.content.Intent class 49
Intent() 49
Intent(intent o) 49
Intent(Context c, Class<?> cls) 49
Intent(String action) 49
Intent(String action, URI uri) 50

Getting results from Android Intents 50
Understanding with an example 51
Going deep into the example 51
Explaining the code 56

Structure of an intent 58
Component 58
Actions 59
Data 59
Extras 60

Summary 60

Table of Contents

[iii]

Chapter 3: Intent and Its Categorization 61
Explicit intents 62

Using explicit intents in an Android application 63
Starting an activity through an explicit intent 63
Starting a service through an explicit intent 72

Implicit intents 77
Using implicit intents in an Android application 78

Sharing content using implicit intents 78
Selecting an image through an implicit intent 88

Intents and Android late binding 93
Summary 93

Chapter 4: Intents for Mobile Components 95
Common mobile components 96

The Wi-Fi component 96
The Bluetooth component 96
The Cellular component 97
Global Positioning System (GPS) and geo-location 97
The Geomagnetic field component 97
Sensor components 97

Motion sensors 98
Position sensors 98
Environmental sensors 98

Components and intents 98
Communication components 99

Using Bluetooth through intents 99
Using Wi-Fi through intents 111

Media components 120
Using intents to take pictures 120
Using intents to record video 127
Speech recognition using intents 130
Role of intents in text-to-speech conversion 134

Motion components 137
Intents and proximity alerts 137
Role of intents in proximity alerts 139

Summary 141
Chapter 5: Data Transfer Using Intents 143

Finding the need to transfer data 143
Taking a simple example 144

Data transfer between activities – an INTENTed way 145
Data transfer in explicit intents 146

Table of Contents

[iv]

Methods of data transfer between activities 146
Data transfer using putExtras() 146

Implementation of putExtras() 147
Extras supported data types 157
The concept of Android Bundles 158

Data transfer using Parcelable 160
Implementation of Parcelable 160

Data transfer using Serializable 172
What is Serializable? 172
An example of Serializable 173
Implementation of Serializable 175

Data and the implicit intents 186
Viewing a map 187
Opening a webpage 188
Sending an e-mail 189
Making a call 190
Miscellaneous scenarios 190

Summary 190
Chapter 6: Accessing Android Features Using Intents 191

Features of Android OS 192
Android features versus components 193
Common Android features 193

Layouts and display 194
Data storage and retrieval 195
Connectivity and communication 196
Accessibility and multitouch 197
Extensive content and media support 198
Hardware support 199
Background services and multitasking 199
Enhanced home screen 200
Other Android features 200

Android features and intents 201
The <uses-feature> and <uses-permission> tags 201

Hardware features 203
Software features 204

Sharing using the SEND action 207
Telephony and making calls using intents 213

Making phone calls using intents 214
SMS/MMS using intents 217

Sending SMS using intents 218
Sending MMS using intents 221

Table of Contents

[v]

Confirming message delivery using intents 222
Receiving SMS messages using intents 225

The SmsManager class 225
The SmsMessage object 225
Protocol Data Unit (PDU) 225

Notification using intents 229
Notification forms 230
The NotificationManager class 230
The Notification class 230
The Notification layout 230

Summary 236
Chapter 7: Intent Filters 237

Intent object and its categorization 237
Component name 238

Intent resolution 238
Action 239
Data 240

Use of data in ACTION_EDIT 240
Use of data in ACTION_CALL 240
Use of data in ACTION_VIEW 240

Category 240
Extras 241

Intent filters 241
Handling multiple intent filters 243
Test components of an intent filter 243

Action test 244
Writing conventions for <action> 244

Category test 246
Setting up the launcher activity 247

Data test 248
Typical representation of the <data> tag 249

Summary 250
Chapter 8: Broadcasting Intents 251

Broadcasting in the Android OS 252
The broadcast intents 252

Built-in broadcasts in Android systems 253
Detecting the low-battery state of a device 255

The BatteryLowReceiver.java file 256
The BatteryLowActivity.java class 257
The AndroidManifest.xml file 258

Detecting the screen on/off state of a phone 260
The ScreenOnOffReceiver.java file 260

Table of Contents

[vi]

The AndroidManifest.xml file 262
Detecting the cell phone's reboot-completed state 263

The PhoneRebootCompletedReceiver.java file 264
The TempService.java file 264
The AndroidManifest.xml file 266

Sending and receiving custom broadcasts 267
The activity_main.xml layout file 267
The MainActivity.java file 268
The CustomReceiver.java file 269
The AndroidManifest.xml file 270

Summary 271
Chapter 9: Intent Service and Pending Intents 273

Intent Service 273
Comparison of four fundamentals 274

Best case to use 274
Triggers 275

Usage and implementation of Intent Service 275
Generating a fake notification from Intent Service 276
Taking another example 282

Pending Intents 285
How to make Pending Intents work? 285

Summary 288
Index 289

Preface
Android is an emerging technology with lots of apps on the Google Play market. Till
date, it is the biggest marvel in smartphone technology, propelling a larger number
of developers toward Android development. Intent is an essential part
of any Android application, and no Android application is complete without using
them. Features such as listening for broadcasts, sending messages, sharing via
social networks, sending notifications, and accessing hardware components such
as camera, sensors, and Wi-Fi, can be easily be carried out in your Android
applications using intents.

Learning Android Intents focuses on using intents to make the best use of various
features of Android platforms. It is ideal for developers who want to understand the
backbone and the domain of Android intents, its power, and the need of it inside an
Android application. Practical, in-depth examples are used throughout the book to
help understand the key concepts of using intents.

The book starts by introducing the very basic concepts of Android and its various
facts and figures, such as the different Android versions, their release dates, and
evolution of Android devices. While covering the basic technical concepts, it
proceeds from the easiest route of introducing Android intents toward the more
practical view of Android intents in terms of components and features.

In this book, you will learn how to use different components and features such as
transferring data between activities, invoke various features and components of
Android, execute different built-in and custom-made services, access the hardware
and software components of an Android device, and send notifications and alarms.
You will gain theoretical knowledge of what is running behind the concepts of
Android intents and practical knowledge of the mobile-efficient ways to perform
a certain task using Android intents.

Toward the end, you will have a clear vision and practical grip on Android intents
and their power.

Preface

[2]

What this book covers
Chapter 1, Understanding Android, covers the basic knowledge and key concepts of
the Android system, its versions, a brief history of the Android OS, Google Play
Market, and Android Studio. This chapter also covers topics from the development
perspective including the building blocks of Android application, Activity lifecycle,
and its callback methods.

Chapter 2, Introduction to Android Intents, covers the introduction of intents, basic key
concepts of intent, the role of intents in Android applications, a technical overview
of intents, use of objects in the android.content.Intent class, and its structure.
Further, this chapter also explains two practical examples of how to use intents to
navigate from one activity to another.

Chapter 3, Intents and Its Categorization, covers more details about intents and expands
on their categories such as explicit intents and implicit intents. This chapter also
provides practical implementation examples of using intents, such as sharing data
with other apps, getting shared data from other Android apps, picking images from
a gallery, and starting an activity or services through intents.

Chapter 4, Intents for Mobile Components, covers the basic knowledge about most
common hardware components found in every Android device such as Wi-Fi,
Bluetooth, cellular, Global Positioning System (GPS), geomagnetic fields, and motion
and position sensors. After that, this chapter provides details on the role of intents
with these hardware components along with practical examples for using intents,
including turning Bluetooth on/off, making a device discoverable, turning the Wi-Fi
on/off, opening Wi-Fi settings, taking pictures, recording videos, and carrying out
speech recognition and text-to-speech conversion.

Chapter 5, Data Transfer Using Intents, covers the in-depth details of data transfer
using intents. This chapter discusses transferring data between activities through
different methods, simple data transfer using the putExtra() method of the Intent
class, sending custom data objects by the Parcelable and Serializeable class
objects, and some scenarios of data transfer in the Android system.

Chapter 6, Accessing Android Features Using Intents, covers the most common software
features such as layouts, display, connectivity, communication, accessibility,
touch, and hardware support found in the Android OS. The chapter contains a
discussion on two important AndroidManifest tags, <uses-feature> and <uses-
permission>, their use, and comparison of mobile hardware components with
Android OS features relating to these tags. This chapter provides practical example
implementations of using intents in Android applications such as making calls,
sending SMS/MMS messages, confirming message delivery, receiving messages, and
sending notifications with custom layouts.

Preface

[3]

Chapter 7, Intent Filters, covers the details about intent and intent filters and how
they provide the Android OS with information about the activities present inside the
application. This chapter also covers details about filter tests such as action test, data
test, category test, and how these tests come in handy when using intents.

Chapter 8, Broadcasting Intents, covers broadcasting in Android and the broadcast
intents. This chapter provides a discussion on the Android OS's System Broadcast
Intents such as battery low, power connected/disconnected, booting completed
and head-set plugged in/out along with some practical example implementations
of those intents. Also, this chapter covers custom broadcast intents and their use in
various cases with practical examples.

Chapter 9, Intent Service and Pending Intents, covers the most advanced topics for
intents such as using IntentService objects in contrast to the common methods
such as Thread, Service, or AsyncTask. This chapter covers the PendingIntent
objects and their use in practical example implementation.

What you need for this book
The software required in order to execute the various examples in the book include
any IDE for Android development, preferably the Eclipse IDE with the latest
Android SDK or Android Studio (which is in preview release at time of writing
this book).

Who this book is for
Learning Android Intents is geared toward novice or intermediate developers who
want to expand their knowledge of Android Intents. Readers are expected to have
a basic understanding of Android development, how to use different Android IDEs,
and how to develop applications using native Android SDK APIs.

This book is useful for every Android application developer. Starting with the
first few chapters, the reader will begin to work with the basics of intent, and even
intermediate developers will find useful tips throughout this book. As the reader
progresses through the chapters, topics that are more difficult will be covered; so,
it is important that beginners do not skip ahead.

A fundamental understanding of the Java programming language and Android
development is suggested.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in the text are shown as follows: "To create an activity, we will extend
our class from the Activity class and override the onCreate()method."

A block of code is set as follows:

Also, it can be in the following format:

public class Activity1 extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_first);

New terms and important words are shown in bold. Words that you see on
the screen in menus or dialog boxes for example, appear in the text like this:
"clicking on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us a general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our authors guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve the subsequent
versions of this book. If you find any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata under the Errata section of that
title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Understanding Android
This chapter provides you with a strong theoretical concept of Android. It is
obvious that the term is not alien even for any novice technology user. Because of
the popularity of this great operating system, many developers started to shift from
web development and other platforms. This huge migration has brought a significant
change in the market of Android apps and has opened new, unlimited doors for
new mobile application developers. Android is a strong opponent of iOS which
is an operating system by Apple Inc. However, as statistics suggest, Android is
catching up with the iOS market in terms of revenue as Google Play is the fastest
growing app market in terms of total number of downloads.

This chapter includes the following topics:

• Introducing Android
• Understanding the whys and whens of Android
• Official Google IDE for Android Developers – the Android Studio
• Structure of an Android application
• Presenting the Android Activity lifecycle

Introducing Android
Android is a Linux-based operating system which makes it an open source software.
Google distributed its license under the Apache License Agreement. The availability
of Android code makes it an easily-modifiable operating system, which can be
customized by the vendor as well. Due to a highly flexible design, some critics call it
unsecure, which was right at a certain period of time, but now, Android is a mature
operating system with a high-level secure architecture. It is said that the newest
version of Android (that is, Jelly Bean) is the most secure operating system that
Google has ever produced. Let's move forward with an overview of the different
versions of the Android OS.

Understanding Android

[8]

Exploring the different versions of Android
Since the beginning, Android has been transforming itself with the release of
different versions. Not just UI but many features were added, modified, and
enhanced in each upcoming version. The first version to officially use the name of
a dessert was Android Cupcake 1.5, which was based on Linux 2.6.27. Every new
Android version comes with a new set of API levels, which basically revises the
previous API with some modification, obsoleteness, and addition of new controls.

Releasing new versions of Android brings some obsoleteness in the previous methods/
functions from a developer's point of view. However, this will bring warnings but not
errors; you can still use previous method calls in new API Levels as well.

The following table shows the different Android versions with their API Levels and
major highlights:

Android
version

Version
name

Main features API level Release
date

Android
4.1/4.2/4.3

Jelly Bean Google Now
Voice-to-search
Lock screen widgets
Speed enhancements
Gesture typing in keyboard
Secure USB debugging (for
developers only)
OpenGLES 3.0 support
Improved camera user
interface
Right-to-left languages
support

16, 17, and
18

July 9,
2012,
November
13, 2012,
and July
24, 2013

Android 4.0 Ice Cream
Sandwich

Major UI changes
Enhanced lock screen actions
Screen orientation animation
Email app with EAS v14
Facial unlock
Enhanced web browser
Support of tablet and cell
phones

14 and 15 October
19, 2011

Chapter 1

[9]

Android
version

Version
name

Main features API level Release
date

Android 3.x Honeycomb First OS for tablets
Addition of system bar and
action bar
Quick access to camera and
its features
Two pane email UI view
Multi-core support

11, 12, and
13

February
22, 2011

Android 2.3 GingerBread Enhanced UI
Native VoIP/SIP support
Google Talk and Google
Wallet
Video call support

9 and 10 December
6, 2010

Android 2.2 Froyo Speed improvements
USB tethering
JIT implementation

8 May 20,
2010

Android
2.0/2.1

Eclair Updated UI
Live wallpaper
Bluetooth 2.1

5, 6, and 7 January
12, 2010

Android 1.6 Donut Gesture recognition 4 September
15, 2009

Android 1.5 Cupcake Text prediction in keyboard
Record and watch videos

3 April 30,
2009

It is an interesting fact that the versions of Android are in alphabetical
order. Starting off from Apple Pie 1.0 and then Banana Bread 1.1,
it made its way towards Jelly Bean with a complete coherence of
alphabetical sequence, and by maintaining the legacy; the next version
expected will be Key Lime Pie.

Understanding Android

[10]

As it is mentioned earlier that Android is open for modifications by the vendor
due to its open-sourced nature, many famous mobile manufacturers put their
own customized versions of Android in their phones. For example, Samsung
made a custom touch interface over Android and calls it TouchWiz (Samsung
Galaxy S4 comes with TouchWiz Nature UX 2.0). Similarly, HTC and Sony
Xperia came up with their own custom user interface and called it HTC Sense
and TimeScape respectively.

Google Play – the official app store for
Android
Just like any other famous mobile operating systems, Android has its app store
known as Google Play. Previously, the app store was called Android Market, which,
at the start of the year 2012, became Google Play with a new-and-improved user
experience. The update unified the whole entertainment world under the umbrella
of Google Play. Music, apps, books, and movies, all became easily accessible to the
users just like Apple's famous App Store (iTunes). You can find detailed information
about the Android store at http://play.google.com/about/.

Google Movies & TV, Google Music, Google Books, and Google
Magazines are only available in limited countries.

http://play.google.com/about/

Chapter 1

[11]

Google Play provides a wide range of applications, movies, e-books, and music.
Recently, they also introduced the Google Play TV facility under the same app store.
Talking about the application side, Google Play provides different categories in
which a user can select applications. It ranges from games to comics and social apps.
Users can enjoy many paid applications and can unlock many features by in-app
billing services provided by Google Play.

There are different vendor specific app stores as well, such as Kindle's Amazon App
Store, Nook Store, and many others that provide many applications under their own
terms and conditions.

Understanding the whys and whens of
Android
Android is a Linux-based open source operating system, primarily targeted for
touch screen mobiles and tablets. Andy Rubin, Rich Miner, Nick Sears, and Chris
White founded the operating system in October 2003. The basic intention behind the
idea of Android was to develop an operating system for digital content. This was
because, at that time, mobiles were using Symbian and Windows Mobile as their
operating systems.

iPhone was released in June 2007 by Apple Inc. Android was released
in November 2007 by Google Inc.

However, when they realized that there is not much of a market for devices such
as cameras, they diverted their attention to mobile phones against Symbian and
Windows Mobile. iPhone was not on the market then. Android Inc., a top brand
for smart phone operating systems covering 75 percent of market share as of today
in smartphones, was running secretly at that time. They revealed nothing to the
market except that they were working on software for mobile phones. That same
year, Rubin, the co-founder of Android, ran out of money, and his close friend, Steve
Perlman, brought him $10,000 cash in an envelope.

In August 2005, Google Inc. acquired Android Inc., making it a subsidiary of Google
Inc. The primary employees of Android stayed in Android Inc. after acquisition.
Andy Rubin developed a mobile device platform powered by Linux Kernel. Handset
makers and carriers were being promised a flexible and upgradeable operating
system by Google. As Google was not releasing any news about Android in the
media, rumors started to spread around. Speculations spreading around included
Google is developing Google branded handsets and Google is defining cell phone
prototypes and technical specifications. These speculations and rumors continued
until December 2006.

Understanding Android

[12]

Later, in November 2007, Open Handset Alliance revealed that their goal was to
develop an open standard for mobile devices. Android was released as its first
product; a mobile device platform built on Linux Kernel Version 2.6. Open Handset
Alliance is a consortium of 65 companies involved in mobile space advocating open
source standards for the mobile industry.

In October 2008, the very first commercially available phone deploying Android
operating system was released by HTC, called HTC Dream. The following image
shows HTC Dream. Since then Android is being upgraded. Google launched its
nexus series in 2010.

HTC Dream, the First Android phone using Android Activity back stack

The evolution of Android OS
After the first appearance of Android OS in HTC Dream, it gained rapid popularity
among consumers. Android is continuously being upgraded by Google. Each major
release includes bug fixes from the last release and new features.

Android released its first version in September 2008 in the device HTC Hero. Android
1.1 was an update tweaking bugs and issues, with no major release. After Android
1.1, Android 1.5 named Cupcake, was released with features such as video uploading,
text prediction, and so on. Android 1.6 Donut and Android 2.0/2.1 Éclair released at
the end of 2009, followed by 2.1 in January 2010, introduced major updates such as
Google Maps, enhanced photo video capabilities, Bluetooth, multi-touch support, live
wallpapers, and more. In May 2010, Android 2.2 named as Frozen Yogurt, or Froyo,
was the major release, adding support for Wi-Fi hotspot connectivity.

Chapter 1

[13]

This version became very popular among developers, and is used to be the minimum
API level for android apps. Android 2.3 Gingerbread, released in May 2010
introduced the Near Field Communication (NFC) capability, which allowed users to
perform tasks such as mobile payments and data exchange. This version of Android
became the most popular version among developers. Android 3.0/3.1 Honeycomb,
was specially optimized for tablet devices, and more UI control for developers was
a big plus. Android 4.0 Ice Cream Sandwich was released in October 2011. Since
Android 3.0/3.1 was only for tablets, the Ice Cream Sandwich release overhauled
the gap, and was supported by both mobile phones and tablets. The latest release of
Android, Android 4.2 Jelly Bean further polished the UI, refined the software, among
other improvements.

Google started naming Android versions after sugar treats,
in alphabetical order, after Android 1.1 version.

The following image shows all the versions in a visual format:

www.allitebooks.com

http://www.allitebooks.org

Understanding Android

[14]

The following screenshot shows the current distribution (March 2013) of Android
versions. It is clear from the screenshot that Android 2.3 Gingerbread is the most
popular version, followed by Android Ice Cream 4.0:

Current distributions of Android versions

Official IDE from Google – the Android
Studio
Before Google I/O 2013, Android was officially using Eclipse as an IDE for its
development. Official Android Support clearly mentioned about the use of this
IDE along with the Android Development Tools (ADT) and Android Software
Development Kit (SDK) with its documentation.

Loading Screen for Android Studio (Windows 7)

Chapter 1

[15]

In Google I/O 2013, Google came up with a new IDE that is specially designed for
the development of Android Apps. The IDE is called Android Studio, which is an
IntelliJ-based software that provides promising features to the developers.

Features of Android Studio
Android Studio gives various features on top of an IntelliJ-based IDE. The list of
features that are introduced in Android Studio is as follows:

• Android Studio comes with built-in Android Development Tools
• Android Studio gives Gradle-based support for the build
• Flexible controls for building an Android UI and simultaneous views on

different screen sizes
• Android refactoring, quick fixes, and tips and tricks
• Advance UI maker for Android apps with drag-and-drop functionality

The following screenshot shows the Android Studio multi-screen viewer with
UI maker:

Understanding Android

[16]

The current version of Android Studio is v0.1.1.

Apart from that, there are various other features that are offered by Android Studio.
Google mentioned in the launch that the version (v0.1) is unstable and needs various
fixes before it can be used with its 100 percent accuracy.

Limitations of Android Studio
Android Studio is in the early phase, which makes it an immature software with
limitations. According to Google, they are working on the updates of the software
and soon will rectify the issues. As per Version 0.1.1,the limitations faced by the
developers are as follows:

• Android Studio can only be compiled with Android 4.2 Jelly Bean
• The user interface can only be made with Android 4.2 Jelly Bean UIs

and widgets
• An Eclipse project cannot be directly imported on Android Studio

(refer to http://developers.android.com/)
• Bugs in importing library projects

Building blocks of an Android application
An Android application consists of various building blocks that help developers to
keep things organized. It gives flexibility to maintain assets, pictures, animations,
movie clips, and implement the localization functionality. Moreover, there are some
components that contain the information regarding the minimum and maximum
versions of Android that your application supports. Similarly, menus are separately
handled in Android application projects.

Chapter 1

[17]

Various components of an Android application as shown in Android Studio

Just like Eclipse IDE, Android Studio gives various handy functionalities to
play with these features. Looking forward to the building blocks of the Android
application, we can classify the components into the following parts:

• Coding components
• Media components
• XML components
• Referencing components
• Library components

Understanding Android

[18]

Coding components
Breaking into components brings an easy understanding of the structure of an
Android application. Coding components are those that directly relate to the source
code of an Android project. In order to write an application, a developer needs to
write some lines of code that will respond in the way the user wants.

In coding components, the main folder that holds all of the developer's code is src.
The folder consists of one or more Java packages in which developers classify their
code in accordance with the type of work done. The default way to write a package
name is dot separated (for example, com.app.myapplicationproject), which can
easily distinguish it from any other package of any other project.

The Android application's package name is used to identify it
uniquely on Google Play.

Inside the packages there are .java files that are present for the developer to
reference from the Android library and proceed to the desirable output. These Java
classes may be or may not be inherited from the Android API. We can also use most
of the Java functions in writing our code.

Media components
Due to highly configured hardware, users need applications with good graphics,
animations, sounds, and video files. Hence, you can easily introduce any of them
but it should be made sure that none of them should affect the quality of the app
as there are thousands of different types of Android devices available. Android
provides a flexible method that you can use to place your media files within the
project. By classification, there are two ways of maintaining your media files
inside an application project:

• Assets folder
• Res folder

The assets folder
An Android project contains a folder named assets. This folder is responsible for
holding all of the media files, including music, images, and so on. The developer can
directly access the folder from the code by writing the getAssets() function within
the inherited Activity class. This function returns the AssetManager that can easily
be used to access the subfolders and files inside the main assets folder.

Chapter 1

[19]

The main advantage of the assets folder is that there is no need to keep references
for the files placed, which is very handy in the situation where the developer needs
to do a test and make a runtime change. Though it does not have any reference, it
may introduce errors due to typing mistakes. Another advantage of using assets
is that the developer can arrange folders according to his or her will; similarly, the
naming conventions for these folders can easily be chosen according to the ease of
the developer.

The res folder
The res folder is used to manage an application's resources such as media files,
images, user interface layouts, menus, animation, colors, and strings (text) in an
Android application; or in other words, you can say that this is the most intelligent
way of handling the media files. It consists of many subfolders including drawable,
drawable-ldpi, drawable-mdpi, drawable-hdpi, drawable-xhdpi, drawable-
xxhdpi, raw, layout, anim, menu, and values.

Drawable is directly related to the images that are used in the Android project. It is
an intelligent way of keeping images in the project. As we know that there are various
types of devices present in the market that support Android OS. In order to differentiate
between these devices, the low resolution images are placed in the ldpi folder for the
devices with less resolution. Similarly, the mdpi folder is for the device with medium
screen density, hdpi for high density, xhdpi for extra high density, and so on.

The images placed in these drawable folders should be
uniquely named in order to access them with a single
reference from the code.

Similarly, for placing music and sound contents, we use the raw folder in order to
access them from the code. Any other file apart from the music and sound can also
be placed in the raw folder (for example, the JSON file). The same goes with anim,
values, menus, and layout folders for placing the animations, values, custom
menus, and different types of layouts respectively.

XML components
In Android, a developer needs to use XML in order to make the user interface.
Layouts, Menus, Sub Menus, and many other things are defined in the form of
different Android tags based on XML. Apart from layouts, you can also store
strings, color codes, and many other things in the form of XML files. The component
supports the maintenance of the hierarchy of the application and makes it easy to
understand for all developers.

Understanding Android

[20]

Let's take a look at some of the most important XML files that are used as the
backbone of any Android application.

The layout folder
Inside the res folder, there is a folder called layout that contains all the layouts of
activities. It is to be noted that there are some extensions of this folder, just like the
drawable folders. The layout-land and layout-port methods are specifically used
for keeping the layout well organized in landscape and portrait mode respectively.

XML can also be used for making custom drawables that can be
used as images in different scenarios. For example, the image of the
custom button can be made with XML, which gives a different UI
behavior on clicked and non-clicked states.

The preceding screenshot is of Android Studio where you can see an activity_
main.xml file that is used to describe the layout of an activity. There are some
Android-defined XML tags for RelativeLayout and TextView (read the following
information box). Similarly, there are some other tags as well that are available for
the developer to include different kinds of widgets in the layout.

RelativeLayout is a layout in which children are placed to the
relative positions. This layout is often used by Android mobile
developers.
TextView is one of the views that is used to display any kind of
text including numbers, strings, and editables.

The menu folder
Android comes with different kind of menus that can be used in order to give quick
access to the prominent functionalities that are used within an activity. The different
menus available are as follows:

• Context menus
• Options menus (with an action bar)
• Pop-up menus
• Custom menus

Chapter 1

[21]

Due to the limited focus of this chapter, we cannot completely elaborate on the
functionality and give examples of the different types of menus. However, all types
of menus are based on XML files in which Android-defined tags such as <menu>,
<item>, and <group> are used to introduce menus in the application. See the
following screenshot for reference:

The Android ICS Options menu is on left and the Custom Pop Up menu is on the right

The values folder
The values folder consists of various XML files that can be used by the developer
in many scenarios. The most common files for this folder are styles.xml and
strings.xml. The style file consists of all the tags that are related to the style of
any UI. Similarly, the strings.xml file consists of all the strings that are used in
the source code of any Android project. Apart from that, the strings.xml file also
contains the <color> tagged hash-coding, which is used to identify many colors
inside the source code of an Android application.

Understanding Android

[22]

AndroidManifest.xml
Unlike the previously mentioned folders, AndroidManifest.xml is a file that
contains important information about the Android application. The manifest file
consists of various tags such as <application>, <uses-sdk>, <activity>, <intent-
filter>, <service>, and many other tags that are enclosed within the main tag of
<manifest>.

Just like the tags suggest, this XML file contains all the information about activities,
services, SDK versions, and everything that is related to the application. There
are various errors that may arise if you don't enter the correct information or miss
anything in the AndroidManifest.xml file.

Another major advantage of the AndroidManifest.xml file is that it is the best way
to track the structure of any Android application. The total number of activities,
services, and receivers can be seen easily by this file. Apart from that, we can change
the styles, fonts, SDK constraints, screen-size restrictions, and many other features
just by tweaking the AndroidManifest.xml file.

At the time of signing the .apk build, we mention the package name, version name,
and version code, which are uniquely identified by the Google Play in order to put
the application on the market. The application will then be identified by this package
name and further releases are based on changing the version codes and version name
described inside the AndroidManifest.xml file.

Chapter 1

[23]

Referencing components
Another basic component of an Android application is the referencing component.
Put simply this component helps XML-based files to interact with the Java code.
In Android Studio, the file R.java is placed under the source folder, which is the
child of the build folder in the project hierarchy. The R.java file consists of all the
references that are used in the XML files for layout, menus, drawables, anim, and so
on. This file is then exposed to the activity files to get the references and obtain the
objects to perform various functions and parameters.

Mostly, this R.java file is obtained as a part of the project import and used as
R.layout.main. In this example, it clearly means that we need to obtain a layout that
is a part of the res layout folder and the name of the layout is main. As a result, it
will return a resource ID, which is hidden from the developer and directly referenced
to the particular layout inside the res folder.

The R.java file is automatically generated while building the
project. Hence, it should not be pushed into the repository. Ensure
the content of the R.java file is not modified manually. The R.java
file that exists in the gen folder of your project is defined by Android
at the time of project making or compiling.

Library components
Libraries are pre-built Java files/projects that can be used by anyone to perform
certain tasks inside this application. There are various third-party paid/unpaid
libraries available that give various functionalities to the developer. Library
components are not libraries themselves; rather, they are the project folders
in which the libraries are kept.

In an Android project, a folder named libs is present inside the main application
folder (Android Studio), which is used as a library component. Any .jar library file
can be put under this folder in order to reference it from the code. While using those
libraries inside the Java code, you need to import the corresponding package
name that is present inside the .jar file in order to use the functions of that
particular class.

www.allitebooks.com

http://www.allitebooks.org

Understanding Android

[24]

Similarly, you can use any other Android project as a library by making it a module
and importing it inside your project. This functionality was previously called as
Library Project in Eclipse, imported by Project Properties | Android | Library
Reference.

The Android Studio module importing window

Android Activity lifecycle
An Android application consists of one or more activities. These activities are visual
representations of an application in transitioning flow while performing the task,
taking user inputs, and showing results to the user. Each activity presents the user
with a visual representation on the screen for user interaction. Android keeps all the
activities in a back stack following the last in, first out rule. Whenever a new activity
is started, the current activity is pushed in the back stack. Thus, Android gives focus
focuses on the new activity. The activity can take up the whole screen of the device,
or it can also take part of the screen, or it can be dragged as well. Whether it is an
activity taking the whole area of a screen or a small part of screen, only one activity is
focused at a time in Android. When, any existing activity is stopped, it is pushed into
the back stack, which in turn results the next top activity being focused.

Chapter 1

[25]

Android 4.x versions introduced fragments. Fragments can be
referred to as sub-activities, which are embedded in an activity to
perform different tasks in a single activity at the same time, unlike
activities.

Usually, an Android application consists of more than one activity. These activities
are loosely bounded with each other. It is a good practice to create each activity for
a specific task to be performed. For example, in a simple phone dialing application,
there might be one activity to show all contacts, one to show full contact details of
any specific contact, one for dialing a number, and so on. In all the applications, there
is a main activity that behaves as the starting point of the application. This activity
starts when the application is launched. Then this activity starts some other activity,
which starts another, and so on. Android manages all the activities in a back stack.

Android Activity back stack

The previous figure shows a simple representation of how back stack works. The
area highlighting top activities in a stack represents foreground activity, sometimes
called focused activity or running activity. When a new activity is created, it is
pushed in the stack, and when any existing activity is destroyed, it is pulled out
of the stack. This process of being pushed in the stack and pulled out of the stack
is managed by the activity lifecycle in Android. This lifecycle is called Activity
lifecycle. The lifecycle manages the activities in the stack and notifies about the
changes in the state in the activities through the callback methods of the cycle. An
activity receives different types of states such as activity created, activity destroyed,
and so on, due to change in the state. A developer overrides these callback methods
to perform the necessary steps for respective change of state. For example, when an
activity is started, the necessary resources should be loaded, or when an activity is
destroyed, those resources should be unloaded for better performance of the app. All
these callback methods play a crucial role in managing the Activity lifecycle. It is the
developer's choice to override none, some, or all methods.

Understanding Android

[26]

Fundamental states of an activity
Basically, an activity remains in three states: Resumed, Paused, and Stopped. When
an activity is resumed, it is shown on the screen and gets the focus of the user. This
activity remains in the foreground section of the back stack. When another activity is
started and it becomes visible on the screen, then this activity is paused. This activity
still remains on the foreground task, and it is still alive, but it has not gotten any user
focus. It is also possible that the new activity partially covers the screen. In that case,
the part of the paused activity will be visible on the screen. The activity comes in the
Stopped state when it becomes completely invisible from the screen, and is replaced
by another activity in the foreground. In this stopped state, the activity is still alive,
but it is in the background section of the back stack. The difference between the
paused and stopped states is that, in the paused state, the activity is attached to the
window manager, but in the stopped state, it is not attached to the window manager.

In an extremely low memory situation, an Android system can kill any
paused or stopped activity by asking to finish it, or without asking by
killing the process. To avoid this problem, the developer should store
all the necessary data in a pause and stop callback, and should retrieve
this data in the resume callback.

The callback methods of the Activity lifecycle
There are various callback methods that are called when the state of any
activity is changed. Developers perform the necessary tasks and actions in
these methods for better performance of the app. To show the Activity lifecycle
in action, we are creating a small Android application in this section. Here is
the step-by-step approach:

1. Start Android Studio.
2. Create an empty project with the details as shown in the following

screenshot:

Chapter 1

[27]

New Project Dialog in Android Studio

3. Add the following code in the MainActivity.java file of the project:
package com.learningandroidintents.callbacksdemo;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.widget.Toast;
public class MainActivity extends Activity {

 @Override
 public void onCreate (Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 Toast.makeText(this, "Activity Created!",
 Toast.LENGTH_SHORT
).show();
 }

Understanding Android

[28]

@Override
 protected void onStart ()
 {
 super.onStart();
 Toast.makeText(this, "Activity Started!",
 Toast.LENGTH_SHORT
).show();
 }

 @Override
 protected void onResume()
 {
 super.onResume();
 Toast.makeText(this, "Activity Resumed!",
 Toast.LENGTH_SHORT
).show();
 }

@Override
 protected void onPause()
 {
 super.onPause();
 Toast.makeText(this, "Activity Paused!",
 Toast.LENGTH_SHORT
).show();
 }

@Override
 protected void onStop()
 {
 super.onStop();
 Toast.makeText(this, "Activity Stopped!",
 Toast.LENGTH_SHORT
).show();
 }

@Override
 protected void onDestroy()
 {

Chapter 1

[29]

 super.onDestroy();
 Toast.makeText(this, "Activity Destroyed!",
 Toast.LENGTH_SHORT
).show();
 }
 }

4. Run the project in the emulator, and you will see toasts being printed on
screen in the following order:

• Activity Created
• Activity Started
• Activity Resumed
• Activity Paused
• Activity Stopped
• Activity Destroyed

Let us see the working of the previously mentioned code.

When you run the project, the emulator will display all the toasts in the previously
given order on the screen. At the start of project, an activity is created, and then
the activity is started. After starting the activity, it is displayed on the screen and
emulator prints Resumed. Now, we go back by pressing the back key, and the
Android system prepares to finish the activity. So, the activity is first paused, then
it is stopped, and finally it is destroyed. All these callbacks together are called the
Activity lifecycle. Activity lifecycle starts from the onCreate() method and it stops
at the onStop() method. The activity is visible from the onStart() method to the
onStop() method, and the activity remains in foreground from the onResume()
method to the onPause() method. The following figure shows this cycle distribution:

Understanding Android

[30]

The activity lifecycle flow
Until now, we have discussed the lifecycle callback methods used, their states, and
their purpose. Now, we will look into the callback method's flow. In Android, when
one activity is started, the already opened activity is stopped, and this change of
activity happens in a flow. The following figure shows the visual flowchart of the
Activity lifecycle:

Chapter 1

[31]

Callback methods are shown with rectangles. The very first step in the Activity
lifecycle is to create an activity. Android creates an activity, if no instance of that
activity is running in the same task. The noHistory tag does not allow multiple
activities; rather it will determine whether an activity will have historical trace or not
(refer to http://developer.android.com/guide/topics/manifest/activity-
element.html#nohist), where you can determine multiple instances by the
android:launchmode flag tag. Making this tag's value true means only one instance
of the activity will be created in the stack, and whenever an activity intent is called, the
same instance is pushed on top of the stack to show the activity on screen.

After the onCreate() method, the onStart() method is called. This method
is responsible for the initial settings, but it is best practice configure these in the
onResume() method, which is called after the onStart() method. Remember, the
foreground phase is started from the onResume() method. Say a user gets a call on
his or her phone, then this activity will be paused through the onPause() method.
So, all the steps involved in storing the necessary data when the activity is paused
should be done here. This method can be very beneficial in critical memory situations
because in these situations, Android can stop the paused activities, which in turn can
show unexpected behavior in the app. If the activity is killed due to a critical memory
situation, the onCreate() method is called instead of the onResume() method,
resulting in the creation of a new instance of the activity.

But, if everything goes right, then the activity returns to its same state through the
onResume() method. In this method, the user can do all the work of reloading the
stored data in the onPause() method, and can get the activity back to life. On turning
off the activity after onResume() is launched the onStop() method is called. This
triggers either the onRestart() method, or the onDestroy() method depending on
user action. In a nutshell, the developer can control the Activity lifecycle using callback
methods. It is a good practice to use the onPause() and onResume() methods for data
management, whether the activity remains foreground or not, and onCreate() and
onDestroy() should be used for only initial data management and cleaning up the
resources respectively.

All callback methods except the onCreate() method take no
parameter or argument. In case of a critical memory situation, if
an activity is destroyed, then that instance state is passed in the
onCreate() method at the time of creation of that activity.

It is not necessary to override all the methods. The user can override any number
of methods as there is no such restriction on it. The user should set a view in the
onCreate() method. If you don't set any view for the content, a blank screen will
show up. In each callback, first of all, the same callback method of the superclass
should be called before doing anything. This super callback method operates the
Activity lifecycle through standard flow developed by Android systems.

http://developer.android.com/guide/topics/manifest/activity-element.html#nohist
http://developer.android.com/guide/topics/manifest/activity-element.html#nohist

Understanding Android

[32]

Summary
In this chapter, we explored the key concepts of Android. We discussed about
Android, its versions that are named after sugar treats, covered a brief history of
Android, and how its founders released Android with Google. We also discussed
Google Play, an official store for Android apps; Android Studio, an official IDE
from Google, and its features and limitations. Then we moved our discussion to a
development perspective, and we discussed the building blocks for any Android
application. We also discussed the Activity lifecycle, which plays a very important
role in any Android application, its flow, its callback methods, and and looked at
an example of it.

In the next chapter, we will discuss the intents, role played by the intents in Android,
a technical overview, structure, and its uses in Android.

Introduction to Android
Intents

Revising the previous lesson—Android Activity is the visual representation of
controls, widgets and many other things with which the user interacts. An Android
application is a combination of many activities which interact with each other in
order to perform a single or multiple tasks for which the application is dedicated to.
Mostly, there is only a single activity that is shown on the screen at a particular time.
Some actions (like button tap or a gesture) may result in navigating from the current
activity to a new one on the top of the Activity Stack.

Android Intents help developers to perform interaction between two activities, yet
this is not the only thing that an intent does. This interaction includes moving from
one activity to another, pushing data from one activity to another and bringing
results after the closure of any particular activity. In short, it can be said that intent
is an abstract term in android referring to any task that is to be performed. There
are various other things which will be explored with the passage of time as you
read through this book.

This chapter includes the following topics:

• Role of intents in an Android Application
• Intent – a technical overview
• Structure of an intent

The concepts of Android Activity, Activity Lifecycle, and Activity
Stack, as discussed in the previous chapter, are the prerequisites for
understanding this chapter and the chapters ahead. If you don't have
the basic concept of these things, we would recommend that you read
Chapter 1, Understanding Android, in order to move forward.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Android Intents

[34]

Role of intents in an Android Application
In this section, we will see what the scope of Android Intents is. Till now, we have a
complete view of why the activities are required and why it is necessary to maintain
and trace the flow from one activity to another.

Navigation between different activities on button tap (using intents) and its representation by an activity stack

It can be said that this portion of the book is the summary of the benefits that we
can take from the Android Intents. The scope lies in the various factors of Android
Activities, services, data transfer, and many other things. We will see this in the
following list:

• Activity transition from one activity to another
• Data transfer from one activity to another
• Making connection with Wi-Fi and Bluetooth
• Accessing Android Camera

Chapter 2

[35]

• GPS sensor to get current location
• Sending SMS and MMS
• Customizing mobile calls
• Sending e-mails and social media posts
• Starting and controlling Android Services
• Handling broadcast messages
• Changing time zones
• Notification bar alerts
• And many more

We will now take a look at each of the key roles of Android Intents. A short description
on these main features of Android Intents is given in the following sections.

Role of intents in Android Activities
The most important and extensive use of intents can be seen in Android Activities.
The Android Application consists of many activities and to transit between those
activities, we need to use Android Intents. In the previous figure, you can see that
in Activity 1 (on the left-hand side) when the content is filled and the user taps the
Enter Data button, Android will use an intent to navigate to the Activity 2 (on the
right-hand side).

Apart from the previously mentioned role of intent, it can also be used to call other
applications such as a browser (with a certain website from your activity) and an
e-mail client (such as Gmail or any other with proper subject and e-mail body from
the activity, by sending it in a bundle).

Role of intents in data transfer between
activities
It is now clear that we use intents to navigate from one activity to another. But as we
all know the huge role of data in an Android Application, where the user needs to
fetch, manipulate, and show data in order to perform a certain task. The handling of
that data and its secure transfer from one activity to another is yet another purpose
of Android Intents.

In the previous figure, once the user has filled the form in Activity 1, on tapping
the Enter Data button, intents will perform two tasks. One task is to take the user
from one activity to another and second task is to transfer the filled data to the next
activity in order to show/calculate the result.

Introduction to Android Intents

[36]

Role of intents in Wi-Fi and Bluetooth transfer
While inside the application, if you want to implement a feature which gives a
facility to change the current Wi-Fi/Bluetooth connection, you need to use Android
Intents. With Android Intents, you can easily provide the internal interface which
will let the user switch between the Wi-Fi and Bluetooth connection while remaining
inside the application.

Role of intents in Android Camera
Android hardware can be of a huge importance when you talk about Android
Application. The use of these components can be a fundamental part of your
Android Application. Suppose the example of a 1D or 2D bar code reader, the
application needs to scan the bar code and decode it in order to extract the
information. This action can only be performed by opening the camera from inside
the application. The opening of camera is also handled by Android Intents.

Role of intents in GPS Sensor
The Android Application market is doing marvel in many categories. Various kinds
of Android Applications are present in the market today, this includes location-
based applications which perform various tasks by tracking the location of the user.
Through intents a developer can easily extract the current location of the user as
required for calculations.

Role of intents in sending SMS/MMS
Android Intents can be used in order to enable your application for sending SMS/
MMS. This task can be done by setting the SMS/MMS body from your activity
and set it in bundle to call the native built-in application for sending SMS/MMS
of the mobile. This SMS/MMS sending functionality can then be enhanced by
implementing a Broadcast Receiver, which enables your activity to know when
the message was sent or when it was delivered.

Role of intents in Mobile Calls
Any condition that will initiate a mobile call in an application can be fulfilled by
Android Intents. The Android Application will use the built-in application to start
the call to any particular number that will be provided in the form of data in an intent.

Chapter 2

[37]

Role of intents in e-mail and social network
posts
Accessing Gmail to send e-mail from your application is managed by Android
Intents. There is an intent call in which we put the recipient's e-mail, attachments,
body, and subject of the e-mail and start the intent on the activity. This will open the
native Gmail application with those parameters filled and the user can send this to
the desired recipient.

Similarly, we can send various social network updates such as Facebook, Twitter,
and Google+ through an intent. This task is done using Share Intent. We put the
content in the form of text or bundle and send it via Android Intent. Android then
opens all the available sharing applications (as shown in the previous figure) and
gives access to the user in order to pick the best application for sharing. The only
condition is that there should be a preinstalled application through which the
Android Intent interacts and sends the desired post is given as follows:

Intent sharingIntent =
 new Intent(android.content.Intent.ACTION_SEND);

Android Intent does not disclose any other feature of social networking
apart from posting on the wall or tweeting it to the timeline. To observe
the complete set of features there are many third party APIs present on
the Internet as free-license software or paid.

Using intent to share posts on various platforms using Share Intents

Introduction to Android Intents

[38]

The next screenshot shows what happens when you give a functionality to the user
and for example, the user wants to share it via Gmail. In this case, the screen appears
with your content in it and will look as shown in the following screenshot:

Gmail interface after passing the data from Share Intent

Role of intents in Android Services
Same as Android Activity, intents are used to initiate Android Services. Android
Services are basically the long-running tasks done by the Android Application
without affecting the user interface. This background task can continue running even
after the user switches the application. In other words, services can or cannot be
bound from the activity. The services can work independently in order to perform a
task. However in each case, an intent is used to initiate the services.

Role of intent in Broadcast Receiver
Intent has a wide usage with Broadcast Receiver. Broadcast Receiver is used to
respond to the broadcast messages initiated by any other application or even the
system. In this context, we catch the Android message and extract the data in order
to show it in our application. For example, Intent.ACTION_BOOT_COMPLETED is
used when we need to receive a signal when the system boot is completed. Similarly,
many other intent values and intent objects can be used at different points of
application in order to perform various tasks related to Broadcast Receiver.

Chapter 2

[39]

Another example can be sending the SMS/MMS where you can make a Broadcast
Receiver in order to see whether the sending is completed or the message is
delivered or not.

Role of intent in time zones
It is possible that your application might do something that is related to the time
zone. Once the time zone has changed while you are traveling, you want your
application to behave differently. In such cases, we can use Broadcast Receiver to
detect the change of the time zone, get data from the intent in order to access the
current time zone, and perform a certain task. This is a very handy way to maintain
your application structure and data according to your time zone.

Role of intent in Status Bar
Android Status Bar is used to provide instant notification to a user without
occupying too much space on the screen. The notification panel that slides from
top to bottom has many features in it, such as some quick access items like wireless
connection manager (currently available in few mobile phones only) and other
things. We can put a notification in that bar in order to inform the user about
anything. Android Intents are used in order to place the content and provide a
status bar notification in it.

Android Notification Panel and Notifications

Introduction to Android Intents

[40]

Intent – a technical overview
We have been through the theoretical overview of Android Intents in the past couple
of topics. Let's take a deeper look at the technicalities of this feature of Android. In
this portion, we will see the bigger picture of Android Intents which includes the
example code and its explanation.

Technically, Android Intent consists of two components and both of them work
independently. These two components are as follows:

• The Coding component
• The XML component

The Coding component
Android Intents are implemented in the Java code while writing a class. Normally
in an Android project, we have a separate package for handling the activities. As it
was mentioned earlier, in order to put a complete trace of application, there is an
AndroidManifest.xml file in which the record of every activity, service, permission,
and other things should be included.

While implementing the code, we need to take care that all of the
activities should be declared in the AndroidManifest.xml file in
order to access them from the code. Otherwise, Android will throw
an error of ActivityNotFoundException.

The implementation of Android Intents for activities, services, and Broadcast
Receivers is the same. While implementing Android Intents in an activity, we need
to take care of the following things:

• Importing the android.content package before implementing the intent
(this is the parent package of Android in which the intent class is present).

• The intent constructor should be under the context of Android Activity.
If not, it should have the object of context in order to determine on which
activity the intent is called.

• The destination activity class should be imported (if it is under any other
package of the source activity).

• You can only call the startActivity() method if the intent is in the context
of Android Activity or if the context of that source activity is present in the
context object.

Chapter 2

[41]

The XML component
The second and the most important component on which the intent depends is
in the AndroidManifest.xml file. Giving a recap about what this file includes—
AndroidManifest is the file which contains all the information regarding the
application. It contains all names of activities, services, permissions, version codes,
sdk versions, and many other things.

Similarly, there are Intent Filters that are also mentioned inside this file. At this time,
we just want to cover the main use of Intent Filters. The brief introduction of an
Intent Filter can be found in the following list:

• Intent Filters have some conditions that have to be fulfilled in order to
process the Android Intents

• Intent Filters have additional information regarding the data and category
of the Android Intent

A shorter definition may be that an Intent Filter describes how the Android System
will identify what behavior to adopt on a certain Android Intent.

<activity
 android:name=".MyFirstActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

You can include many Intent Filters inside a single activity in
AndroidManifest.xml.

As shown in the previous code, it is clearly mentioned that the tags of <intent-
filter> contain the information regarding the category and the action. These tags
are an essential part of the activity in AndroidManifest when the application tries to
do a task which is unknown to the system.

Introduction to Android Intents

[42]

To understand why <category> appears in the previous code of an Intent Filter,
take an example: we make an application in which there are two activities. If we do
not mention to the system which is the first activity to start the application with; the
system will get confused and show the error No Launcher Activity Found and
it will not start the application. So, in order to achieve this task, we need to put the
category of any of the one activity as android.intent.category.LAUNCHER. This
will help the system to recognize the base activity from which the application starts
and the flow continues.

Implementation of Android Intents for
Activity Navigation
In this section, we will take a look at the implementation of the Android Intent. Let's
get started.

In order to start this example, you need to build an Android project. You can use
Android Studio or Eclipse (as per your convenience) but make sure that if you are
using Eclipse, you should have correctly installed JDK, ADT, and the Android SDK,
along with their compatibility packages. If you don't know the difference between
these IDEs, you can refer to Chapter 1, Understanding Android, of this book.

Creating a project in Android Studio was covered in the previous chapter. Repeating
those steps will help you to create a complete Android project with some predefined
files and folders.

In order to get started with the implementation of Android Intents, you need to
perform the following steps:

1. Create a new Android project or choose any existing project in which you
want to implement Android Intents.

2. Open the source activity in which you want to implement the intent.

Just a reminder that intents are called when there is an event-call
taking place in an activity. For example, on tapping the button, the
next activity should appear. So the button-tap is the event.

3. Implement the following code in order to achieve this result:
//--

Part One - MainActivity Class

Chapter 2

[43]

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub
 Intent myIntent = new Intent(MainActivity.this,
 MySecondActivity.class);
 startActivity(myIntent);
 }
 });
 }
}

//--

Part Two - MySecondActivity Class

public class MySecondActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_two_layout);
 Toast.makeText(this, "The Intent has been called...",
 Toast.LENGTH_LONG).show();
 }
}

//--

Part Three - activity_main.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"

www.allitebooks.com

http://www.allitebooks.org

Introduction to Android Intents

[44]

 android:layout_height="match_parent"
 android:orientation="vertical" >

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Press to navigate"
 />

</LinearLayout>

//--

Part Four - activity_two_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

</LinearLayout>

//--

Part Five - AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.app.fragmenttestingapplication"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="16" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"

Chapter 2

[45]

 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=
 "com.app.fragmenttestingapplication.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=
 "com.app.fragmenttestingapplication.MySecondActivity"
 android:label="@string/app_name" >
 </activity>
</application>

</manifest>

4. Run the project and a button will appear. Tap the button in order to navigate
to the next activity through intents.

Indicates the flow of application from the first activity to the second activity

Introduction to Android Intents

[46]

Understanding the flow
The previous code is described in five parts; we will describe them one by one.
Keep in mind that these parts are referring to five different files in the Android
project. Knowing the fact that you will use this code inside a predefined project,
we will describe it from the scenario of a newly created project in order to make
it elaborative and clear.

Part one – MainActivity.java
MainActivity.java is the first class that is made while creating a project. Since it
is an Android Activity, it comes with an onCreate method which is called once the
activity has been created (as discussed in Chapter 1, Understanding Android, Android
Activity Life Cycle). The layout attached with this Activity is named as activity_
main.xml. Hence in the onCreate() method, the line setContentView(R.layout.
activity_main) refers to that XML and is used to set the view of that activity in
accordance with the layout present in activity_main.xml.

Now, in the second step, the button present in the activity_main.xml layout
with the ID of button1 is fetched in the code by using the findViewById(int id)
method present in the Activity class. It will return the object of the View class, so
we can easily cast it over the button in order to have a button object.

Once the button object is extracted, we implement the setOnClickListener()
method on it. The setOnClickListener() method belongs to the View class which
takes an argument of View.OnClickListener (an interface). This interface requires
us to override the onClick() functionality to be implemented. This event
is triggered whenever the button is tapped in the UI.

Inside this onClick() method, the real implementation of intent will take place.
Since we want to call our intent on tapping the button, we will do all of the stuff
related to the intent in this method. Declare the intent object with the constructor
taking the argument of context and the destination class. The MySecondActivity.
class file is the destination activity on which we want to navigate while we are
accessing the context of the current activity by taking MainActivity (or you can use
the getContext() method which basically returns the same context of the activity).
This is because we are currently in the context of OnClickListener.

At this moment we have the object of intent. We could do much more with this object
but at the moment, our task is to only navigate it to the next activity. This is why
we call the method startActivity() and pass this intent as an argument. This will
navigate the application to the next activity which will appear from the top in the
activity stack, while the previous activity will go underneath it.

Chapter 2

[47]

Part two – MySecondActivity.java
The activity MySecondActivity.java is the destination activity for the intent. This
is the simple activity which contains an onCreate() method which is setting the
content view on the screen. Just after the creation of the layout, we are showing a
toast message on the screen through the show() method in order to recognize that
the second activity has been loaded and is displaying the message The intent has
been called.

A toast message is a simple message which appears in a box for a few
seconds and goes away. By default, this message contains text, but
one can easily make a custom toast in order to include pictures and
many other things.

Part three – activity_main.xml
This XML file is the layout for the MainActivity.java class. As you can see, we
tried to bring the reference of the button from the layout. That button is declared
inside this activity_main file with the ID used to extract it from the XML.

The references of all the layouts declared in the XML files are put
inside the R file, which is used by the Java code/classes to get the
object in the code.

Describing the activity_main.xml file, there is a Linear Layout with certain
parameters regarding its length, width, and orientation. Inside the tags of Linear
Layout, you can see that the button which is brought into the code of Java is
declared. This tag also comes with certain parameters about height, width, ID, and
text that will appear in the layout.

Take precautionary measures in order to give the ID to any view. All
of these IDs are present in the R file which handles everything inside
a single class. Try to customize your ID in order to avoid confusing
the view of one activity with that of another.

Part four – activity_two_layout.xml
This is a simple layout file containing the parent Linear Layout in order to make
a simple blank activity. This layout file is assigned to the second activity on which
the intent brings the user after tapping the button and on which the toast message
is shown.

Introduction to Android Intents

[48]

Part five – AndroidManifest.xml
No project is complete without the AndroidManifest.xml file because it contains
all the information regarding the application. In this XML file, there is a parent tag
of manifest which contains the three most important properties regarding the project:

• Package Name: This is the name of the project from which the application
will go to Google Play (or any other market). This name should be uniquely
defined for the whole application and it should not match any other package
name in the market.

• Version Code: This is an integer value which represents the version number
compared to the previous version of the application.

• Version Name: This is a string value which is used to display for the user.
It is the release version name of the application.

Inside the Manifest tag, there is a tag named <uses-sdk> which, in its attributes,
defines the minimum and maximum API version of Android on which the
application is accessible. After this there is an application tag in which the
information related to application is stored which contains icon, label, and theme
for the application.

In the main tag, which describes the activities in an application, there are the
<activity> tags. It should be equal to the number of activities used in the
application. As you can see the XML component of intent is present in the first
activity, namely <intent-filter>, which is telling the system that MainActivity.
java is the class that should be used as a Launcher Activity. Unlike the first activity,
the second activity does not contain the tag for Intent Filter. You can analyze that
there is no need for the second activity to contain those tags because it is in the
flow with the first activity.

From the first activity, the second activity should come on the foreground intent.
That is why there is no need for it to contain the tags <category> and <action>.
The application will work fine without it as well.

Future considerations
We will see in detail what more we can do with intents in this book. Till now we
have only covered the basic intent functionality with its flow in the activity stack.
You will encounter a lot of content on the way.

Chapter 2

[49]

Other constructors of the android.content.
Intent class
The Intent class comes with a variety of constructors which help developers in
various scenarios. In the previous section, we used only one type of constructor.
Other polymorphic forms of the constructor are also available on Google.

Various kinds of constructors are explained in the following sections.

Intent()
This is the default constructor which returns an empty intent object. However,
by empty it does not mean that it is a null object.

Intent(intent o)
This constructor is used to make a clone of an existing intent. We pass the intent object
which we want to clone and put it in the argument of the constructor.
In this condition, the intent returned is the copy of the original one. It will also map
each and every value (extras) put in the original one and returns a copy of that intent.

Intent(Context c, Class<?> cls)
This is the constructor that we used in our example before. It basically takes two
arguments: a source context and the destination class. The source context is the
context of the activity you are currently using, while the second parameter is the
class to which you want to navigate to.

Intent(String action)
The constructor with the action is used to make an intent object in which the action
is written. The proper use and definition of the action, as used in intents, will be
covered in the upcoming chapters. Also keep in mind that this constructor is used
to broadcast actions.

Introduction to Android Intents

[50]

Intent(String action, URI uri)
This constructor is used to create an intent with the desired action as well as some
data URL. For example, we pass the argument new Intent(Intent.ACTION_VIEW,
Uri.parse("http://www.google.com"));. The constructor clearly means that
the intent will facilitate the action that is used for viewing and with the other
parameter, we are parsing the URI of the URL http://www.google.com. This will
open the browser in which Google's website will be loaded. Take another example
of this constructor: new Intent(Intent.ACTION_DIAL, Uri.parse("tel: (+1)
123456789"));. By writing this statement, we are clearly mentioning that we want
to make an intent which is used to activate the phone dialer and pass the value of
URI in order to perform the call function through intents.

This form of constructor is mostly used for calling implicit intents. More
information about the code can be found at http://developer.
android.com/reference/android/content/Intent.html.

Getting results from Android Intents
As we have seen previously, Android Intents were used to navigate from one
activity to another but in real scenarios there are many things that are required with
this navigation. One of the most important features of Android Intents is going to
be discussed here. What we will see here is the response that the source activity
will get once the destination activity is closed.

To further explain the previous statement, we have a scenario in which:

• There is a source activity (from which the navigation will start)
• A destination activity (to which the navigation will be done)
• On the closure of the destination activity, it will return a result back

to the source activity

This is a very handy option in Android Intents for bringing back the result from
an activity. We will discuss this feature in a great detail with an example code.

Chapter 2

[51]

Understanding with an example
In this example, we will look at the scenario in which there are two activities. Activity
one will be used as the launcher activity. Activity two will be used as the destination
activity which will also return some result back to the first activity. The first activity
will catch the result and on the basis of that code, it will decide what kind of task was
finished or failed in the second activity. In the end some dialog message will be shown
on the first activity in accordance with the result that is given back.

Going deep into the example
Again, the following code is in five parts. It is the modification of the last example in
which the normal use of intents was described. In order to implement this example,
perform the following steps:

1. Create a new project or open any existing project in which you want to
make the changes.

2. Open the source activity in which you want to implement the intent.
3. Implement the following code:

//--
//Part One - MainActivity Class

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub
 Intent myIntent = new Intent
 (MainActivity.this, MySecondActivity.class);
 startActivityForResult(myIntent, 1);
 }
 });
 }

Introduction to Android Intents

[52]

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
Intent data) {

 if(requestCode == 1){
 if(resultCode == RESULT_OK){
 Toast.makeText(this,
 "The Processing is succesfully done..."
 , Toast.LENGTH_LONG).show();
 }
 if (resultCode == RESULT_CANCELED) {
 Toast.makeText(this, "The Processing failed,
 try again later..", Toast.LENGTH_LONG).show();
 }
 }
}
}

//--
//Part Two - MySecondActivity Class

public class MySecondActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_two_layout);
 Toast.makeText(this, "The Intent has been called..."
 , Toast.LENGTH_LONG).show();

 Intent returnIntent = new Intent();

 CheckBox yesCheckBox = (CheckBox)
 findViewById(R.id.checkBox1);
 CheckBox noCheckBox = (CheckBox)
 findViewById(R.id.checkBox2);
 Button button = (Button) findViewById(R.id.button2);
 button.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub
 if(yesCheckBox != null && yesCheckBox.isChecked()){
 setResult(RESULT_OK, returnIntent);

Chapter 2

[53]

 finish();
 }else if(noCheckBox != null &&
 noCheckBox.isChecked()){
 setResult(RESULT_CANCELED, returnIntent);
 finish();
 }
 }
 });
 }
}
}

//--

Part Three - activity_main.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Press to navigate"
 />

</LinearLayout>

//--

Part Four - activity_two_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >
 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

www.allitebooks.com

http://www.allitebooks.org

Introduction to Android Intents

[54]

 android:layout_below="@+id/checkBox1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="24dp"
 android:text="@string/return_string" />

 <CheckBox
 android:id="@+id/checkBox2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/checkBox1"
 android:layout_alignBottom="@+id/checkBox1"
 android:layout_toRightOf="@+id/button1"
 android:text="@string/no_string" />

 <CheckBox
 android:id="@+id/checkBox1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_marginTop="50dp"
 android:layout_toLeftOf="@+id/button1"
 android:text="@string/yes_string" />

</RelativeLayout>

//--

Part Five - AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.app.fragmenttestingapplication"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="16" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity

Chapter 2

[55]

 android:name=
 "com.app.fragmenttestingapplication.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=
 "com.app.fragmenttestingapplication.MySecondActivity"
 android:label="@string/app_name" >
 </activity>
 </application>

</manifest>

4. Run the project and a button will appear. Tap the button in order to navigate
to the next activity through intents.

5. After successful execution of the intent, the new activity will appear. Click
on the back key of the emulator or Android phone on which you are testing
and the system will bring you back to the first activity.

6. After coming back to first activity it will show the toast in order to
communicate the result from the destination activity.

Indicates the flow of application from the first activity to the second activity and getting the result
back to the first activity

Introduction to Android Intents

[56]

Explaining the code
In this example, as mentioned before, we will understand how to get back the result
in order to verify (on the first activity) whether the task performed in the second
activity is successfully done or not.

Before going further, keep in mind that this is an extension of the previously defined
example; so the things that we went through previously will not be explained in this
example. Kindly read the previous example if you find anything difficult in here.

Let's get started, step by step.

Part one – MainActivity.java
Similar to before, this is the first activity from which the navigation will start on
tapping the button. Most part of this activity is same as that of the previous example,
but if you take a deeper look, you will notice that the startActivityForResult()
method is used in order to start the activity. That is because the activity that we are
starting will return a result after the second activity is closed.

The startActivityForResult() method has two arguments. First is the intent
which is similar to that of the startActivity() method described before. Let's
check out what the second argument is. Take a scenario where the first activity
invokes more than one activity which will return some result. Now at the time of
catching that result, we need to be sure which activity it is coming from. So this is
why we assign a request code which will return the result when the intent gets back
the user to the first activity. We will then put a check to know which activity the
result is coming from.

Moving on, if you look carefully in the code, there is an overridden method named
onActivityResult(). This method will be called when the closure of the second
activity occurs. It has three arguments as you can see in the code. The first is
requestCode which will be in accordance to the activity which is sending the result
back. Apart from that we have resultCode which will tell whether the task in the
second activity was performed successfully or not. Thirdly, we have an intent which
is basically the object which is causing the activity to move back to the first one.
We can also send some data back to the first activity through this intent.

Chapter 2

[57]

Part two – MySecondActivity.java
This is same as the first example; rather, it carries two objects of check boxes in the
layout file and these are used to make a result in the second activity. We find the
view using the ID and on the basis of the selected check box, we see which one is
enabled. When the button is pressed, it will see which check box is enabled and on
the basis of the enabled priority, it calls the setResult() function. This function sets
a result to the intent which will help the activity to move back to the first activity.

After setting the result, we will finish the second activity and it will move
back to the first activity with the result. Just after the activity has finished, the
onActivityResult() method from the first activity will be executed in order
to see the result which is sent by the second activity.

Part three – activity_main.xml
This part of the code is similar to the first example; kindly refer to the first example
for an explanation.

Part four – activity_two_layout.xml
This layout file refers to the second activity. We have put two checkboxes, on the
basis of which it will be decided which result is to be sent back to the first activity.
There are some attributes that are the same as the ones in the previous example and
hence, that example can be referred to.

Part five – AndroidManifest.xml
Again, this file is untouched and is same as the first example. Kindly refer to the
first simple example of intent.

Future considerations
There are two scenarios which we can focus on as a future consideration. The first is
how two or more activities can be handled while all of them are sending the result
back. This is of course with the help of the requestCode argument. The second most
important thing is, in the scenario where we are sending back only the response
code, there might be a need to also send back some strings, int values, or some
custom objects as a result. In that case, we will need some other methods to send
those objects back to the first one via intents.

Introduction to Android Intents

[58]

In Chapter 5, Data Transfer Using Intents, we will have a complete look
into how we can transfer different kinds of data inside an intent.

Structure of an intent
In this section, we will study the structure of an intent object as used in Android. An
intent is the bundle of information in which there are multiple things to facilitate. It
has information about the actions that should be taken while the intent is executed.
Similarly, it also has information about the category which is going to handle the
intent. Data plays a vital role in intents. So an intent has information of the data in
the form of a URI that has to be executed.

Due to limited space here, we cannot explain every constant in every
component. In order to get a complete list of constants that Android
uses, you can take a look here:
http://developer.android.com/reference/android/
content/Intent.html

We will now go through each one of the components in order to see what they
really mean.

Component
This will explain which component will get affected or handle the execution of a
particular intent. For example, there is an intent that is responsible for making an
action which is related to the activity in which it is called. Similarly, there is an intent
which is handled by Broadcast Receiver and reports when a certain system-related
task is performed. If the component name is not set, it will self-recognize the
component with other information. The following table shows the different kinds of
components that are used in Android Intents:

Constants Description
CATEGORY_BROWSABLE Describes that the intent can be safely executed by the

browser to display the data.
CATEGORY_LAUNCHER Tells that the activity should be executed as the launcher

while the application starts.
CATEGORY_GADGET The activity can be put inside another activity that starts

from any gadget.

Chapter 2

[59]

Actions
Actions basically state what action this intent will cause. For example, if we initiate
an intent object with the action named ACTION_CALL, this intent will start the call
functionality with the data string passed with the ACTION_CALL action in the form
of URI. Taking another example of ACTION_BATTERY_LOW, which is related to the
Broadcast Receiver component. By placing this action in the Intent Filter, it will fire
the event (or in short a low battery pop-up) if the battery goes lower than that of the
threshold value.

There are various kinds of actions present in Android. The following table shows
some of the intent actions and their description:

Constants Component Description
ACTION_CALL Activity Start the phone call
ACTION_EDIT Activity Display the data of the user to edit

ACTION_MAIN Activity Start as the initial activity with no
data

ACTION_SYNC Activity Sync the data present on the
server with the mobile device

ACTION_BATTERY_LOW Broadcast ReceiverShows the battery low warning

ACTION_HEADSET_PLUG Broadcast ReceiverShows an alert when the headset
is plugged in or unplugged

ACTION_SCREEN_ON Broadcast ReceiverTriggered when the screen is
turned on

ACTION_TIMEZONE_CHANGED Broadcast ReceiverWhen the setting of the time zone
is changed

Data
This should not be considered as the separate component; rather, it is used
to facilitate the action component. As described previously, there are certain
components which require some data to be passed. For example, the ACTION_
CALL function requires a data value by which it recognizes on which telephone
number calling should be performed. In this particular scenario, we need the tel:
xxxxxxxxxxx URI to be put in the data and forwarded to the action. Similarly, when
the ACTION_EDIT or ACTION_VIEW actions are performed, they need to be provided
with a document or a HTTP URL in order to complete the action. The data is given
to the intent in the form of URI (Universal Resource Identifier).

Introduction to Android Intents

[60]

Extras
These are basically the key-value pairs of the additional data that is required by the
Android Intent. We can take these values from the code (when we make an object
of the intent) and transfer that data to the next activity. Talking with respect to the
actions, there are some actions which require additional data to fulfill the task. For
example, the ACTION_TIMEZONE_CHANGED action needs an extra time zone which
describes the new time zone on the basis of which further tasks can be performed.

Summary
In this chapter, we discussed the introduction of intents with its role, technical
overview, the basic implementation in an Android Application, and the structure
of intent based on which, we will further explore different kinds of tasks that can
be performed. The chapter also provides two very important implementations of
Android Intents in which the navigation from one activity to another took place,
while in the second one, the result corresponding to any particular activity is sent
back to the first activity. The concept discussed in this chapter is the key tool to
understand the advanced concepts of Android Intent which will be discussed later
in this book. In the next chapter, we will learn about the categorization of Android
Intents and its Its theory and implementation in the light of various handy examples
which can be implemented easily in your Eclipse environment.

Intent and Its Categorization
Intents are asynchronous messages used to activate one Android component using
another. These intents are used to trigger the Android OS when some event has
occurred, and some action should be taken. The Android OS, on the basis of the
data received, determines the receiver for the intent and triggers it.

Generally, there are two types of intents: explicit and implicit. As their names
suggest, explicit intents trigger specific components of the Android OS specified
explicitly by the developers. However, implicit intents trigger the general
components of any category of the Android OS. It's left to the Android OS to
decide which component needs to be activated. If there is more than one general
component, the user is asked to select a component from a list of all the components.
This feature of the intents in the Android OS makes an application more interactive
because the other applications and developers can also access it. For example, you
are developing a picture-editing Android application to edit any image, apply filters
to it, and so on. So, if the application receives images from any source of the Android
system, such as an e-mail attachment, gallery images, any other image tools, and so
on, the application will become more interactive and responsive as compared to the
application that loads images from the app itself. This interaction of the application,
whether it is sending an image via e-mail or receiving an image in an editing
application, is implemented through implicit intents.

In this chapter, you will learn about the following topics:

• Types of intents
• Explicit intents
• Using explicit intents in an Android application
• Implicit intents
• Using implicit intents in an Android application
• Intents and Android late binding

Intent and Its Categorization

[62]

The concept of intents and their structure, as discussed in the previous
chapter, are the prerequisites for understanding this chapter and the
chapters that follow. If you don't have a basic understanding of these
things, read Chapter 2, Introduction to Android Intents, in order to move
forward.

These two types of intents, namely, explicit and implicit intents, are very different in
terms of functionality. Let's start with the simplest type of intent first.

Explicit intents
The simplest type of intent is the explicit intent. When a developer knows which
component to use and doesn't want to provide free access to the user, explicit intent
is the best choice. Here, the developer explicitly specifies the component to be
triggered in the declaration of the intent. This component can be any activity, service,
or broadcast receiver. For example, an Android application usually consists of more
than one activity for a corresponding functionality. In order to navigate from one
activity to another, an explicit intent is used. The following code snippet shows a
simple declaration of such an explicit intent that targets activity B from activity A:

Intents are instances of the android.content.Intent class. The explicit components
are specified as Java class identifiers, and they are used by the Android OS to activate
them whenever a developer sends the intent. As explained in the earlier chapters, an
object of the intent takes two parameters: context and class. The context parameter
receives the source context from which the intent is triggered to activate other
components. The class parameter takes the class object of a specific class that is used
to specify the target component. In the preceding code snippet, an intent object
takes the ActivityA class as the source component and ActivityB as the target
component to be activated. Now, this intent object declared in the code snippet
with the specific component as the target can be used anywhere. For example, it can
be used for starting ActivityB with ActivityA as the parent activity. The following
section describes the uses of explicit intents to trigger various components such as
activities, services, and so on.

Chapter 3

[63]

Using explicit intents in an Android
application
In this section, we will discuss the various uses of explicit intents in an Android
application. As discussed earlier, explicit intents can be used in activating other
components such as activities, services, and broadcast receivers. We will talk about
two examples of explicit intents; the first one to start one activity from another
activity, and the other to start a service in the background.

Starting an activity through an explicit intent
Any Android application contains at least one or multiple activities. So, in the case
of multiple activities, navigating between them becomes important for a developer.
In this section, we will develop an example of two activities in which we will start
one activity from the other and go back to it after stopping/finishing the currently
opened activity. The following figure shows a simple prototype of the example we
are about to develop:

As it is clear from the preceding figure, we have two activities: Main Activity and
Second Activity. Both the activities have a single button to navigate and a title
showing the name of the activity. Now, let's get started with the development of
our first example. But, in order to start this example, you need to build an Android
project. You can use Android Studio or Eclipse (as per your convenience), but
in the case of Eclipse, make sure that you have correctly installed the JDK, ADT,
and Android SDK along with their compatibility. If you don't know the difference
between these IDEs, refer to the first chapter of this book. Creating a project in
Android Studio has been explained in the previous chapter. Repeating those steps
will give you a complete Android project with some predefined files and folders.

Intent and Its Categorization

[64]

After creating an empty Android project, we are going to implement the use of explicit
intents. In the example, we will write or modify many different files of various types,
such as Java, XML, and so on. Each file has its own purpose and performs its own
functionality in the example. Let's explore these files one by one now.

The MainActivity.java class
The main file of the project is MainActivity.java. The following is the code snippet
to be implemented in this file:

The applications having more than one activity must have a main activity. This
main activity defines the starting point of the application. In our example, the
MainActivity.java class is the main activity of the project. To provide a layout file
to the activity for visual representation, we will call setContentView(R.layout.
activity_main) within the onCreate() method of the activity. The activity_
main.xml file is the layout file contained in the layout folder of the project directory
and represents the main screen of the app. After setting the View of the activity, we
get all the components that will be used in the activity by getting their Views from
the layout file. To get the View of any component, we will use the findViewById()
method that takes an ID of the View and returns a View object that is the type casted
as per our requirements. In this file, we've got the View object of the button having
the ID, button1, in the layout file, and we have the Button type casted it to and
reference it to our button. Any button should have listeners for user interaction with
the View and customizing the behavior of the View. In our file, we only set View.
OnClickListener for the button to get the clicks/taps of the button.

Chapter 3

[65]

There are two OnClickListener classes in the Android SDK. One is
in the View class. It is used for Views such as buttons, text fields, and
so on. The other is in the DialogInterface class and is used for the
detection of clicks and taps in dialogs. Developers should be careful
when importing classes and their packages.

We have set the OnClickListener object of the button using the
setOnClickListener() method of the Button object. We referenced an anonymous
listener in the parameter of the method, and have overridden the onClick() method.
In the onClick() method, we have to provide the behavior that we want
to show when a button is tapped on.

Anonymous objects are the objects that have no object name specified
by the developer. And because of this reason, developers can't access
the object directly in the code. You can also set the OnClickListener
object of the View by creating the object of the interface and passing it
in the setOnClickListener() method.

We have created an intent object with MainActivity as the source context, and
the SecondActivity class is the target component to be activated. One thing to
be noted here is that instead of passing the object of SecondActivity, we have
explicitly passed the Java class representation of SecondActivity. This is how we
have declared an explicit intent object. Now, through this intent object, we can do
many different tasks depending on our requirements, but in our case, the options are
limited. We have created an explicit intent that contains very specific information;
so, for that reason, this intent can be used for limited purposes only. In this example,
the intent is used to start another activity on top of a back stack by calling the
startActivity() method. This method takes the parameter of an explicit intent
object having the information of the source context and target activity.

To declare the intent in a class other than running activities, we can use
the application context to pass in the context parameter of the intent
constructor. This can be accessed by the getApplicationContext()
method.

So, summarizing the functionality of the file here, the file represents the starting
point of the application that shows a button. On tapping the button, the application
navigates to another activity. This navigation between activities is implemented
through an explicit intent object. After implementing the MainActivity file, let's
implement our second activity in the SecondActivity.java file.

Intent and Its Categorization

[66]

The SecondActivity.java class
The SecondActivity.java class is the destination activity for our explicit intent.
The following is the code snippet implemented in this file:

Again, this class is extended from the Activity class, and follows the activity
lifecycle. It should also override the lifecycle-callback methods as well.
In the onCreate() method, we set the View of the activity by calling the
setContentView() method, and this time, we have passed the activity_main2.
xml file's reference using R.layout.activity_main2. This XML file is placed in the
layout folder under res. We again get the View component of the button from the
layout file by calling the findViewById() method, and we typecast this to Button.
We then set OnClickListener() of the button to an anonymous listener, and
override the onClick() method to define the behavior on a button tap. This time, we
call the Activity.finish() method in the onClick() method. This method simply
pulls out the activity on top from the back stack.

As we started SecondActivity from MainActivity, when we finish
SecondActivity, we will see MainActivity again.

The back button in Android devices simply calls the finish()
method for activities or the dismiss() method for dialogs.

Chapter 3

[67]

We can also create an intent object with the context of SecondActivity and
the target class of MainActivity.java. But, this will create a new instance of
MainActivity in the back stack, and will push this on top of SecondActivity.
In that case, we will have two instances of MainActivity and one instance of
SecondActivity placed in the middle of these activities in the back stack.

If we set the android:noHistory attribute to true in the
<activity> tag of MainActivity in the AndroidManifest.xml
file, starting a new instance of MainActivity will result in an
already-created instance to be placed on top of the back stack, thus
avoiding the creation of a new object. Developers should be more
careful at the time of creating the app flow and navigation control
because this type of flow can make loops in the app. This can cause
a never-ending app problem.

We should note that both activity files, MainActivity.java and SecondActivity.
java, contain almost the same code except the button listener of MainActivity
that starts a new activity using explicit intent, and the button listener of
SecondActivity that just pulls back the application by auto-pressing
the back button of an Android phone.

Until now, we have learned how an explicit intent can be used to navigate to
another activity. But, it should be remembered here that both activities were using
different layout files for visual representation containing the action buttons that
performed both tasks. It should be noted that the layout files don't play any role in
the navigation of explicit intents. These files just show the visual content of activities
to make the user interaction easy. Now, let's focus on those layout files.

The activity_main.xml file
The activity_main.xml file is the layout file of MainActivity.java and is written
in XML. The following code shows the implementation of the layout file:

Intent and Its Categorization

[68]

From the layout file, we have LinearLayout and <Button> Views within the layout.
Remember that this button was extracted by the MainActivity file after setting the
View of the activity to OnClickListener.

The references of all the layouts and Views declared in the XML files
are autogenerated inside the R.java file. In Java, we can use the R
class and access components in a static manner. For example, we could
use R.layout.layout_name for layout. However, in XML, R can be
accessed by placing @. For example, for accessing a color, we can use
android:name="@color/my_custom_color".

Describing the activity_main.xml file, there is <LinearLayout> with certain
parameters regarding height, width, and orientation. As you can see, inside
the tags of <LinearLayout>, the <Button> tag that is brought into the code of Java
through the findViewById() method in the activity is declared. This tag also comes
with certain parameters such as id, width, height, and text that will appear in
the layout.

The activity_main2.xml file
The activity_main2.xml file layout is a visual representation of the SecondActivity
class. The following code shows this file:

Chapter 3

[69]

This layout is the same as the activity_main layout except that the text values
of buttons are different. This is used in the SecondActivity.java class. Again, a
button is referenced from XML to Java through the findViewById() method in the
activity, and OnClickListener is set to define the custom action to be performed
when a button is tapped on.

No Android application is complete without the AndroidManifest file. We
have already implemented the visual layouts of our example app and also their
functionality of navigating from one activity to the other, using explicit intents.
However, when any application has multiple activities, the Android OS must
be informed about all those activities and their attributes. In order to inform the
Android OS about how many activity classes are used, the AndroidManifest
file is used. Let's see how this file informs the Android OS about the activities.

The AndroidManifest.xml file
The AndroidManifest.xml file contains all the settings and preferences of the
application. When working on multiple activities, developers should be careful
while declaring activities. Only one activity that defines the starting point of the
application should have an intent filter of the launcher. All activities should be
saved in here. The information about activities can include the label of the activity,
theme of the activity, orientation, and so on. For activities, the AndroidManifest.
xml file is like a registration center where all the components in the app, such as
Activity classes, Service classes, and so on, should be registered. If any activity
is not registered in the AndroidManifest.xml file, Android OS will throw the
ActivityNotFoundException exception on calling that activity.

Intent and Its Categorization

[70]

About our explicit intent app, both the activities, MainActivity and
SecondActivity, are registered in the AndroidManifest.xml file. It should be
noted here that MainActivity has a subtag of <intent-filter> that declares
MainActivity as the starting or launcher activity of the whole application.
The following is the code implemented in the AndroidManifest.xml file:

Chapter 3

[71]

With the AndroidManifest.xml file, our explicit intent example is completed. In
this example, we defined two activities; one of them was the main activity. The
main activity used an explicit intent to start the other activity by declaring its name
explicitly. The example contained two layout files for a visual representation of both
the activities and the manifest file to register all the activities and basic settings for
the application. When you run the project, you should see the screen transition as
shown in following figure:

In the next section, we will have a look at another use of explicit intents in services.
We will learn how a service is started explicitly using intents from an activity.

Intent and Its Categorization

[72]

Starting a service through an explicit intent
Unlike activities, services perform specific tasks and actions in the background.
Services don't have any visual layout or UI. It must be noted that services run on
the main thread of the app; so, when Android has a need of memory, it will stop the
services that are not running or are in a paused state. In the next example, we will start
a service using an explicit intent, and we will also stop it using the same explicit intent.
So, in order to start this example, create an empty project using any Android IDE such
as Eclipse with the ADT plugin or Android Studio. In this project, we will implement
the use of explicit intents for starting/stopping services. As our main focus is on
explicit intents, we will create a very simple service that will display toasts on being
started or stopped by the activity. We have modified/implemented the four section in
the example application. So, let's see what these files do one by one.

The ServiceExample.java class
Since our example app includes a service, this file is a representation of a service
class used in our app. The following code shows the implementation of the service:

public class ServiceExample extends Service {

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 Toast.makeText(this,"Service Created",300);
 }

 @Override
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 Toast.makeText(this,"Service start",300);
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 Toast.makeText(this,"task perform in service",300);
 return super.onStartCommand(intent, flags, startId);
 }
}

Chapter 3

[73]

In Android development, we have to extend our class from the Service class and
override and implement the required methods according to our customizations
to create any service. At first, the onBind() method is to be implemented by
the developer, and this is a mandatory one. This method is an abstract method
of Service. This method is used to bind the running services at runtime. Then,
onCreate() and onStart() methods are the same as in the activity class. Developers
do the necessary initial setup in these methods. In our example, we are just going
to display toasts to notify the user about the method calls. The onStartCommand()
method is a very important method, and this is where we do all the background
work. It should be noted that services run in the main thread. So, if you want to do
heavy processing tasks, you should create a separate thread in this method and start
it. This is how background processing is done in the standard way.

We can also create threads in the main thread, and perform our heavy
processing in the background; then why do we need services to create
a thread? In Android OS, services are the standard method for doing
background processing. When the Android OS becomes short on
memory, it can stop the idle services to get their memory. But it can't
stop the threads; so, using services is a better way of continuously
performing tasks in the background.

We are not doing anything in the onStartCommand() method except displaying a
toast like other methods of the service class. There isn't any special point to mention
about the service class. Like the previous example, the most important part in this
example app is the main activity. Let's see the main activity class in detail now.

Intent and Its Categorization

[74]

The ServiceDemoActivity.java class
The ServiceDemoActivity.java class is the main activity of our app and defines the
starting point of the application. The following code shows the implementation
of the class:

This class is extended from the Activity class, and we have overridden some of its
methods. In the onCreate() method, we set the Content View layout of the activity by
referencing the layout stored in the res/layout folder of the app. Then, we extracted
buttons in the layout and set OnClickListener for those buttons. In an earlier
example, we used anonymous objects of the OnClickListener interface for buttons.
In this example, we are providing the Activity class as our OnClickListener by
passing this in the parameter of the setOnClickListener() method. The object
passed in the parameter must implement the OnClickListener interface and override
the onClick() method. So, our activity class implements this interface along with the
extending activity. We have also overridden the onClick() method in this class. As
we have two buttons this time and only one OnClickListener interface for both, we
have to first find which button has been pressed and then take action accordingly.

Chapter 3

[75]

One way to do this is to get the ID of the pressed View and compare it with the IDs in
the resources. So, the getId() method returns the ID of the View to us; we pass the
ID in the switch block and compare it with our IDs of the buttons. In both cases, we
are creating an explicit intent that passes the context of the activity and our service
class name as the target component to be activated, as we did in our activity example.
How the service is being started by the startService() method and being stopped
by the stopService() method should be noted. These methods take explicit intents
that include information about which service has to be started or stopped. This class
showed us how easy is it to use explicit intents to start or stop any service from any
activity. As usual, this main activity is using two buttons, Start and Stop, which are
extracted from a layout placed in the resources folder of the Android project directory.
Let's see what this layout file contains.

The activity_main.xml file
The activity_main.xml file is the layout file of ServiceDemoActivity and is written
in XML. The following code shows the implementation of the file:

We have a <LinearLayout> element and two button Views in the layout. Remember
that these buttons were extracted by the ServiceDemoActivity file to set
OnClickListener for both buttons after setting the View of the activity.

We can create layouts in XML as well as Java. Android recommends
creating all the layouts in XML because Java is used for processing in
Android. If we create layouts in Java, the layout creation will also be
processed; this can make the app more battery consumptive. Use Java
only for dynamic layouts such as the ones used in games.

Intent and Its Categorization

[76]

When describing the activity_main.xml file, there is a <LinearLayout> element
with certain parameters regarding height, width, and orientation. As you can
see, inside the <LinearLayout> tag, there are buttons declared that are brought into
the code of Java. This tag also comes with certain parameters about height, width,
id, and text that will appear in the layout. Last but not least, the Android manifest
file is for the application settings. Like activities, a developer has to register all the
services implemented in the app in the manifest file. Let's have a look at the file and
see how we have registered our service in the manifest file of the example app.

The AndroidManifest.xml file
To register a service, we have to provide the code inside the <application> tag.
The following code shows the full implementation of the AndroidManifest.xml file:

It can be noted that after <activity> tags, we have placed the <service> tag with
the attribute name to define which service we are registering. If we don't register our
service in the AndroidManifest.xml file, we will get a ServiceNotFoundException
exception thrown, and we will get error log such as "Unable to start service
(service package with name): not found".

Chapter 3

[77]

LogCat is found in the DDMS View in Android Studio. LogCat logs
all the activity being done in the connected device or emulator. Any
Force Close crash exception that is thrown is logged in LogCat,
and a developer can find the cause of the crash from it and solve it.

Until now, we have focused on explicit intents, and we created two simple apps that
use explicit intents. Now, let's move to another type of intent called implicit intent.

Implicit intents
Unlike explicit intents, when a developer doesn't know which component to use,
implicit intent is a good choice. Implicit intents do not directly specify the Android
components to be activated as in explicit intents, but they only specify which actions
need to be performed. The Android OS will choose the components to be triggered.
If there are multiple components which can be triggered, the Android OS provides
options to the user to select one component. For example, we want to open a web
link in a browser. If we use explicit intents, one option that we have is to develop
our own custom browser and trigger it explicitly from our app to view the web
link. The other way, which is more preferable, is to use implicit intents to open any
already-installed browser in the phone. If there is more than one browser installed in
the phone, the user will be given the choice to select one for performing the action,
that is, view the web link. This feature of implicit intents works as a general form to
perform any action in the Android OS. We specify the data and action in the intent,
and Android chooses a suitable component according to that data. The following
code snippet shows a simple declaration of an implicit intent that provides a link to
be browsed by Android in the best suitable component or browser in this case:

Like explicit intents, two parameters are passed in the constructor of the implicit
intent. You can read more about constructors of intents in Chapter 2, Introduction to
Android Intents. The first parameter is the action to be performed by the Android
OS; we specified it here as ACTION_VIEW. This will tell the Android system that
something is about to be viewed. The other parameter is the data, mostly defined
in the URI format. We have used the PacktPub website as an example. The Android
OS will open this web address in the default browser of the phone. If more than one
browser is found, the user will be given a list of all the available browsers to choose
one to view the address in.

Intent and Its Categorization

[78]

Any URI can be passed in here, not only a web address. For example,
the URI of any contact in the phone or any image in the gallery can
also be passed, and the Android OS will take the most suitable action
for the data passed in the URI.

The general behavior of this intent proves to be a very important feature in Android
development. Developers save a lot of time by making generalized apps. This becomes
beneficial for the developers as they just have to send information. The rest is defined
by the Android OS, and the users get a choice to perform the action as they wish.
Developers can not only provide the user with the feature to choose other apps for
performing actions in implicit intents, but they can also develop their own custom
apps to be added in the choose list. For example, we develop an image-editing app.
We want the app to function in such a way that when a user selects an image from any
other app, our app appears in the options list so that the user can easily navigate to our
app for editing images from anywhere in his or her phone. This can be done through
implicit intents. But the difference this time is that we will not send implicit intents;
instead, we will receive implicit intents from other apps. We can do this by registering
the intent filter in our AndroidManifest.xml file, where we will have to define the
action for which our app will perform. This feature makes an app more interactive
with other apps, and the integration between different apps and the Android OS
becomes very easy for developers. In the following sections, we will develop two
examples of implicit intents, and see what we can do with these examples.

Using implicit intents in an Android
application
This section will discuss the various uses of implicit intents in an Android
application. As discussed earlier, implicit intents can be used in communicating with
other Android components in a general form unlike explicit intents. Let's look at the
implicit intents in action with the following two examples: one uses implicit intents
for sharing content, and the other uses implicit intents to get content from other
Android apps.

Sharing content using implicit intents
Today, social networking is what makes any application viral and promotes it to
other users. Due to a large variety of social networks, it becomes difficult to put
all of the sharing features in the apps. Mostly, developers add Facebook, Twitter,
and Instagram in their apps, but adding those SDKs in the app sometimes becomes
troublesome for the developers as well as the users. For example, multiple SDKs add
some size in the build file; an app becomes complex due to a lot of features.

Chapter 3

[79]

Fortunately, we can solve this problem using a few lines of code through implicit
intents. Let's see how this can become possible by creating a simple content sharing
example. First create an empty project using any Android IDE such as Eclipse
with the ADT plugin or Android Studio, or open any existing project in which you
want to add the share feature. We will now implement the use of implicit intents in
sharing any data on social networks.

We have implemented a simple, one line-sharing application that asks the user to
choose the sharing method and shares the line on that network. There are two main
files that are modified in any empty project. Let's explore both the files one by one.

The activity_main.xml file
The activity_main.xml file is the visual layout of our simple, line-sharing app.
The following code snippet shows the implementation of this file:

Intent and Its Categorization

[80]

We have a relative layout in which we have placed two Views: a button with text
as Share and an <EditText> tag to get an input line from the user. In the previous
examples, we used <LinearLayout> to align the Views on the screen. This time, we
used <RelativeLayout> to add the Views. In relative layouts, we place our Views
relative to other Views. For example, android:layout_alignLeft takes the ID of
any View and puts this View on the left-hand side of the main View. Similarly, we
also used the android:layout_below attribute in the Share button to place it below
the text field. About the text field, this is the first View on the screen; so, this can be
placed relative to the parent View.

The layout_ android:layout_alignParentLeft and
android:layout_alignParentTop Boolean flags place the
EditText View on the top-left corner of the parent, that is, the
screen. Using Relative layouts for aligning a View is the most
recommended method in the Android OS.

This was the visual representation of our one line-sharing app. Now, let's see how
implicit intents are used in the main activity file.

The MainActivity.java class
The MainActivity.java class file is the main activity of the line-sharing app. The
following code shows the implementation of the file:

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button shareBtn = (Button) findViewById(R.id.button1);
 shareBtn.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View arg0) {
 // TODO Auto-generated method stub
 String msg = ((EditText) findViewById(
 R.id.editText1)).getText().toString();

 Intent in = new Intent(Intent.ACTION_SEND);
 in.putExtra(Intent.EXTRA_TEXT, msg);
 in.setType("text/html");
 startActivity(Intent.createChooser(in, "Share via..."));
 }
 });
 }
}

Chapter 3

[81]

The class is extended from the Activity class in order to make it an activity. As
usual, we override the onCreate() method, set the Content View of the activity by
the setContentView() method, and reference a layout that is our activity_main.
xml file placed in the res/layout directory. After setting the layout, we get the
button reference from the layout by the findViewById() method and set its View.
OnClickListener interface to an anonymous object.

After setting the Views, let's set the listeners and define the functionalities on the
touchable Views. For this purpose, we have overridden the onClick() method of the
listener and placed our main functionality code in this method as we want to share
the line on a button tap. We have first got the message text from the text field by
getting its reference and then the text in the field. We created an Intent object and
passed ACTION_SEND as its category into the constructor. The ACTION_SEND intent
delivers data to the Android OS.

Remember that we have not specified the receiver of the data unlike in explicit
intents, where we used to specify the target explicitly. It is up to the receiver of this
action to ask the user where the data should be sent, and this happens through the
chooser dialog.

After creating an instance of the intent, we add the extra data of the message line in
the intent. We have chosen the EXTRA_TEXT key to add our data in. For example, if
we want to send an SMS, we have to insert the data into the SMS body, and if we
want to send an e-mail, we have to put the data into the e-mail body. So, we have
chosen a general type of the text, and the Android OS will detect a suitable place to
put the data.

Until now, we have set the category and data, but we have to set the type of the data
as well. The Android OS will put the apps in our chooser dialog on the basis of the
type of the data. For example, we have set the type to text/html; this will put all
the apps that support the text or HTML format of the data, such as e-mail, Facebook,
Twitter, and so on, in the chooser. If we set this to image/png, all the apps, such
as image editors, gallery, and so on, will be put in the chooser list. Also, we can
define general types of supported images by putting a slash followed by a star.
For example, image/* will put all the image apps, not limited to only PNG, in the
chooser list.

Finally, we start the activity with this intent by calling the startActivity()
method. You should be careful to pass the intent in the startActivity() method or
in the Intent.chooser() method. If we pass the intent in startActivity, we will
get the ActivityNotFoundException exception. We don't specifically know which
activity to start in order to share the app; so, in that case, we will create a chooser list,
and the user will decide which activity to start. This is how we provide the user
with the option to choose his or her favorite method to share the content.

Intent and Its Categorization

[82]

Now, run the project and you will see a screen that will have a Share button and a
text field to write something to share. On pressing the Share button, you will see a
dialog asking you to choose the method of sharing. This dialog will include all those
apps, such as text messaging, SMS, MMS, e-mail, and Facebook, which are used to
share the text. The following figure shows the app screens:

In this example, we used implicit intents to communicate with other apps of the
Android OS. In the next example, we will see how other apps can communicate
with our app.

Registering your app for the share intent
In the previous example, we triggered other sharing apps from our app. In
this example, we will register our app for the share intent so that the other app
developers and users can communicate with our app using implicit intents. Both
examples use implicit intents, but the method of use is different in both cases.

Chapter 3

[83]

In the previous example, we used implicit intents in Java files and triggered the intent
on a button tap in OnClickListener. In this example, to register our app for any
intent such as the share intent in this case, we have to put our code in the XML file in
the AndroidManifest.xml file. Just to revise a little, the AndroidManifest.xml file
manages all the settings of our app. Let's learn how to implement the app now.

In order to start this example, create an empty project using any Android IDE such
as Eclipse with the ADT plugin or Android Studio, or open any existing project in
which you want to receive the send intent. In this project, we will explore the use of
implicit intents in getting the data shared by other apps in our app. We first register
our app as a text-sharing app. Then, all the apps that share any text/html type file
in Android can trigger our app if a user chooses it. To perform this task, we have
modified the code in three files: a layout file, an activity file, and the manifest file.
Let's look at those files one by one now.

The activity_main.xml file
The activity_main.xml file is the visual layout of our sharing app. The following
code shows the implementation of this file:

We have a Relative layout with a text View component in it. We have set the initial
text value of Text View to "Hello World"; remember that the data we get from
other apps while sharing will be printed in this Text View content. After the visual
representation, it always comes to the processing and coding logic of app. Let's look
at the next activity file which performs the main task and implements the logic of
using implicit intents.

Intent and Its Categorization

[84]

The MainActivity.java class
The MainActivity.java class file is the activity that displays the data which is shared
from any other app. The following code shows the implementation of this file:

Chapter 3

[85]

When a user chooses our app from the Share dialog, this activity will be opened.
We also have set this activity to our main activity. Any activity in the app can be
registered for getting the share intent. It is not necessary that the main activity has
to be registered for getting the shared data. We have set the layout of the activity,
and after that, we get the intent data. This is the data that will be thrown from any
other sharing app. We first get the intent by calling the getIntent() method. There
are many types of intents; we have to make sure that our activity will work only
for the intent type that we have registered in the AndroidManifest.xml file. To
detect whether this intent was sent for sharing or not, we have to check the intent
action. So, we have obtained the action of intent by calling the Intent.getAction()
method. We can get the type of intent using the Intent.getType() method. Then,
we check the type and action.

If the intent action is Intent.ACTION_SEND and the type is text/html, it means that
we can display that type of data in our app. If both conditions are true, we set the
Text View content to the data that we got from the intent. We can get the data from
the intent through the Intent.getStringExtra() method. This method takes the
data type as an input argument or parameter. In this example, we get the Intent.
EXTRA_TEXT data type that represents any text or message data in the intent that is
normally used for the body text in e-mails, Facebook posts, or SMS messages.

By understanding the MainActivity class, we saw that we have only got the intent
and checked it. But there is also a problem regarding how the other apps are going
to recognize our app and how they can know that our app can display the text/
html data. If we open this activity explicitly from another activity of the same app,
the same intent will be received and the same conditions will be checked. But this
time, no condition will be true, so no text will be changed in the layout. To make
the app visible to other apps, we have to register an intent filter. This is done in the
AndroidManifest.xml file.

Intent and Its Categorization

[86]

The AndroidManifest.xml file
To make our app visible for sharing content, we have to register the receiving
activity of the app with an intent filter in this file. The following code shows the
implementation of this file:

Chapter 3

[87]

In the <activity> tag of MainActivity, we have inserted two intent filters. The first
intent filter is to make this activity a main activity and the launcher of the app. The
second intent filter is a piece of code that performs the core functions of the app. We
have inserted an intent filter with the action as android.intent.action.SEND and
mimeType as text/html. This tells the Android OS that whenever any intent with
the Send action is triggered and it contains data with text/html type, the app can
process this intent. This is how our app is shown in the chooser dialog of the app.

Now, run the project and you will see the Hello World screen. Close the app
and run our previous example app, ShareImplicitIntent. Write something in the
text field and tap the Share button. In the chooser dialog, you will see our app,
GettingSharedData, in the list. Choosing this app will open the activity, and this
time, instead of Hello World, you will see the data shared from another app in the
text field. The following screenshot shows a demo of the app:

So far, we have seen two examples of implicit intents. In one example, we shared
some data with other apps such as e-mail, SMS, Facebook, and so on. In the other
example, other apps shared their content with our app, and we received that data
and displayed it. But, implicit intents are not limited to sharing content alone. There
are lots of options and choices that can be performed using implicit intents, including
making calls, sending texts, showing maps, searching for anything, taking pictures,
showing and editing contacts, and so on.

In our next example, we will learn how we can pick any image from the gallery
and display it in our activity.

Intent and Its Categorization

[88]

Selecting an image through an implicit intent
In this project, we will implement the use of implicit intents to pick any image from
the gallery. We will put an Image View that will display an image in our app. This
image will be chosen by the user from the gallery. Let's implement it now! In order
to start this example, create an empty project using any Android IDE such as Eclipse
with the ADT plugin or Android Studio, or open any existing project in which you
want to add the image picking feature.

We will register our app as an image-sharing app, and then all the apps which
share any image in Android OS can trigger our app if the user chooses it. We have
modified the code in three files: a layout file, an activity file, and the manifest file.
Let's see what these files do.

The activity_main.xml file
Just like in all the Android apps, the activity_main.xml file represents the layout file
of the main activity. The following code shows the implementation of this file:

Chapter 3

[89]

We have placed two View components; a button View to open the gallery on a
tap and an Image View to display the image. Unlike other apps, we have set the
button listener in our layout file. Revising the last method, we set our click listener
by calling the button.setOnClickListener() method in the activity class file. In
this example, we have used the android:onClick attribute in the <Button> tag,
and provided the name of the listener on the other side of the attribute. We have to
provide a method name that should be defined in the activity file using this layout.

The Android OS recommends that you set listeners in the XML layout
file. But, if the layout is used by more than one activity, developers
should be careful as an attribute value is a method name and should
be defined in the activity file. That means either all activities using the
layout file should define that method, or all activities should set the
listeners in Java files instead of XML.

The other View component in our layout file is Image View. This Image View will
show the image picked from the gallery or other image sharing apps. We have set
Image View's source to launcher-icon image as the default image.

After developing the layout of the app, let's focus on the logic of the app. The
MainActivity file shows how the app gets the image from other apps and displays it.

Intent and Its Categorization

[90]

The MainActivity.java class
The MainActivity.java class is the main activity Java file that performs all the
functionalities in the app. The following code snippet is the implementation of this file:

Chapter 3

[91]

We start from the onCreate() method where we first set the Content View of the
activity to our layout file. We have created three private fields in our class. The first
is the REQUEST_CODE constant that is an integer value. This constant is used as the
request code to get any data from any other Android app. As we are picking an
image from the gallery, we need a request code to identify the correct results and
data. The second field is the bitmap. This bitmap is used to store the picked image in
the bitmap format. The third and last field of the activity class is Image View. This is
used to reference Image View in the XML file.

The pickImage() method is the button listener that was set in the XML layout file
in the <Button> tag. This method should take the View parameter. This parameter
contains the View that was tapped at runtime. As per our app requirements, we
want to open the gallery on a button tap; so, to open the gallery, an implicit intent
will be triggered in this method. We create an empty intent object with a no-
argument constructor. Then, we set its type to any image format using image/*.
After that, we set its intent action to Intent.ACTION_GET_CONTENT. This tells the
Android OS to show all those apps that share the content.

Now, we already told the Android OS that we need only the image content by
setting the type; so, the Android OS will only show those apps, such as gallery, that
shares images. We set the category to Intent.CATEGORY_OPENABLE. This is used to
indicate that the GET_CONTENT intent only wants the URIs that can be opened with
ContentResolver.openInputStream.

Finally, we start the activity by calling the startActivityForResult() method.
Remember that we used the startActivity() method in our previous apps.

The difference between the startActivity() and
startActivityForResult() methods is that the
startActivityForResult() method returns some result to the
parent activity after being stopped while startActivity() doesn't
return anything.

As we need to get any image from gallery, the gallery app will return the URI
of the image that we will use in our app to display it. To get the result in our
activity, we need to override the onActivityResult() method in our class.
This method takes three parameters. The first is a request-code that is an integer
value. This value defines the request ID that we used to start an activity. We have
used a constant private field REQUEST_CODE in our class for this value; so, in our
onActivityResult() method, we will compare the request code to this constant
value for confirmation. The second parameter, RESULT_CODE, is an integer value. This
value tells us whether the result we have got is correct and okay to use or not. The
third and last parameter is the intent; this contains the resulting data that we will use
in our app.

Intent and Its Categorization

[92]

In the onActivityResult() method, we created an InputStream object and then we
compared our request code and result code to confirm whether we should process
the intent data or not. If everything goes fine, we get the URI of the picked image
by calling the Intent.getData() method and pass it to openInputStream() of the
content resolver of this activity. The content resolver of any activity can be retrieved
by calling the Activity.getContentResolver() method. After getting the stream
of the URI, we decode it to bitmap by calling the BitmapFactory.decodeStream()
method, and set the output bitmap to our activity-bitmap field. Then, we set the
bitmap in our Image View. And in the final section of the try/catch block, we close
our stream.

Now, run the project and you will see the screens as shown in following screenshot.
The user taps on the button, and the gallery will be shown. Then, the user chooses
his favorite photo to be displayed, and the app displays it on the app screen:

Summarizing the whole section of implicit intents, we implemented three examples.
In the first example, we learned how to share our data with other apps. In the second
example, we learned how other apps can share their data with our app. And finally,
in the third and last example, we learned how to get an image from the gallery and
use it in our app. In the next and last section of the chapter, we will discuss Android
late binding.

Chapter 3

[93]

Intents and Android late binding
As we all know, three of the most core components of an application in Android
are activities, services, and broadcast receivers. These components communicate
and are triggered via messaging. This messaging is done through intents. Intent
messaging is a facility for late-runtime binding (late binding) between components
in the same or different applications. In each case, an Android system finds the right
component, such as an activity, service, or receiver to be triggered, and instants them
if necessary. There is no overlapping within these intents. For example, broadcast
receiver intents are only sent to broadcast receivers and never sent to any activity
or service. Another example is that an intent passed in the startActivity() or
startActivityForResult() method is never sent to any component such as a
service or receiver, but only to an activity.

In the examples used in this chapter, implicit intents always performed actions in
which the developer was not sure about how these actions will be performed and
with what apps. This runtime behavior of assigning actions to components is called
Android late-runtime binding, and this can be done easily via implicit intents.

Summary
In this chapter, we discussed the categories of intents, implicit intents, explicit
intents, and late binding. The chapter also provided some important implementation
of Android intents in which we shared our data with other apps, the other apps
shared data with our app, picked any image from gallery, started an activity or
service through explicit intents, and so on.

In the next chapter, we will learn how mobile components such as a camera,
can be triggered by intents, and how they are used in our apps.

Intents for Mobile
Components

In the last chapter, we discussed the categories of intents and how different
categories are used. We also discussed the pros and cons of categories such as
implicit intents and explicit intents. But besides the theory regarding the intents
that we have been discussing until now, it's time to discuss some applications of
intents with a more practical approach. In this chapter, we will discuss the mobile
components that are commonly found in all Android phones. And we will see how
those mobile components can be accessed and used very easily via intents. Android
provides a vast collection of libraries and features through which a developer can
utilize mobile components. This is as easy as a walk in the park. This chapter mainly
includes four different categories of components: visual components such as camera,
communication components such as Wi-Fi and Bluetooth, media components such
as video and audio recording, speech recognition and text-to-speech conversion, and
finally, motion components such as proximity sensor. The following topics will be
discussed in this chapter:

• Common mobile components
• Components and intents
• Communication components
• Using Bluetooth through intents
• Using Wi-Fi through intents
• Media components
• Taking pictures and recording video through intents
• Speech recognition using intents
• Role of intents in text-to-speech conversion
• Motion components
• Proximity alerts through intents

Intents for Mobile Components

[96]

The concepts and structures of intents, as discussed in the previous chapters, are the
prerequisites for understanding this chapter and the later chapters. If you don't have
a basic understanding of these things, we would recommend you to read Chapter 2,
Introduction to Android Intents and Chapter 3, Intents and Its Categorization in order to
move forward.

Common mobile components
Due to the open source nature of the Android operating system, many different
companies such as HTC and Samsung ported the Android OS on their devices
with many different functionalities and styles. Each Android phone is unique in
some way or the other and possesses many unique features and components
different from other brands and phones. But there are some components that
are found to be common in all the Android phones.

We are using two key terms here: components and features. Component
is the hardware part of an Android phone, such as camera, Bluetooth
and so on. And Feature is the software part of an Android phone, such
as the SMS feature, E-mail feature, and so on. This chapter is all about
hardware components, their access, and their use through intents.

These common components can be generally used and implemented independently
of any mobile phone or model. And there is no doubt that intents are the best
asynchronous messages to activate these Android components. These intents are used
to trigger the Android OS when some event occurs and some action should be taken.
Android, on the basis of the data received, determines the receiver for the intent and
triggers it. Here are a few common components found in each Android phone:

The Wi-Fi component
Each Android phone comes with a complete support of the Wi-Fi connectivity
component. The new Android phones having Android Version 4.1 and above
support the Wi-Fi Direct feature as well. This allows the user to connect to nearby
devices without the need to connect with a hotspot or network access point.

The Bluetooth component
An Android phone includes Bluetooth network support that allows the users of
Android phones to exchange data wirelessly in low range with other devices. The
Android application framework provides developers with the access to Bluetooth
functionality through Android Bluetooth APIs.

Chapter 4

[97]

The Cellular component
No mobile phone is complete without a cellular component. Each Android phone
has a cellular component for mobile communication through SMS, calls, and so
on. The Android system provides very high, flexible APIs to utilize telephony and
cellular components to create very interesting and innovative apps.

Global Positioning System (GPS) and geo-
location
GPS is a very useful but battery-consuming component in any Android phone. It
is used for developing location-based apps for Android users. Google Maps is the
best feature related to GPS and geo-location. Developers have provided so many
innovative apps and games utilizing Google Maps and GPS components in Android.

The Geomagnetic field component
Geomagnetic field component is found in most Android phones. This component
is used to estimate the magnetic field of an Android phone at a given point on the
Earth and, in particular, to compute magnetic declination from the North.

The geomagnetic field component uses the World Magnetic
Model produced by United States National Geospatial-Intelligence
Agency. The current model that is being used for the geomagnetic
field is valid until 2015. Newer Android phones will have the newer
version of the geomagnetic field.

Sensor components
Most Android devices have built-in sensors that measure motion, orientation,
environment conditions, and so on. These sensors sometimes act as the brains of
the app. For example, they take actions on the basis of the mobile's surrounding
(weather) and allow users to have an automatic interaction with the app. These
sensors provide raw data with high precision and accuracy for measuring the
respective sensor values. For example, gravity sensor can be used to track gestures
and motions, such as tilt, shake, and so on, in any app or game. Similarly, a
temperature sensor can be used to detect the mobile temperature, or a geomagnetic
sensor (as introduced in the previous section) can be used in any travel application to
track the compass bearing. Broadly, there are three categories of sensors in Android:
motion, position, and environmental sensors. The following subsections discuss
these types of sensors briefly.

Intents for Mobile Components

[98]

Motion sensors
Motion sensors let the Android user monitor the motion of the device. There are
both hardware-based sensors such as accelerometer, gyroscope, and software-based
sensors such as gravity, linear acceleration, and rotation vector sensors. Motion
sensors are used to detect a device's motion including tilt effect, shake effect,
rotation, swing, and so on. If used properly, these effects can make any app or game
very interesting and flexible, and can prove to provide a great user experience.

Position sensors
The two position sensors, geomagnetic sensor and orientation sensor, are used to
determine the position of the mobile device. Another sensor, the proximity sensor,
lets the user determine how close the face of a device is to an object. For example,
when we get any call on an Android phone, placing the phone on the ear shuts
off the screen, and when we hold the phone back in our hands, the screen display
appears automatically. This simple application uses the proximity sensor to detect
the ear (object) with the face of the device (the screen).

Environmental sensors
These sensors are not used much in Android apps, but used widely by the Android
system to detect a lot of little things. For example, the temperature sensor is used
to detect the temperature of the phone, and can be used in saving the battery and
mobile life.

At the time of writing this book, the Samsung Galaxy S4 Android
phone has been launched. The phone has shown a great use of
environmental gestures by allowing users to perform actions such as
making calls by no-touch gestures such as moving your hand or face
in front of the phone.

Components and intents
Android phones contain a large number of components and features. This becomes
beneficial to both Android developers and users. Android developers can use
these mobile components and features to customize the user experience. For most
components, developers get two options; either they extend the components and
customize those according to their application requirements, or they use the built-in
interfaces provided by the Android system. We won't read about the first choice of
extending components as it is beyond the scope of this book. However, we will study
the other option of using built-in interfaces for mobile components.

Chapter 4

[99]

Generally, to use any mobile component from our Android app, the developers send
intents to the Android system and then Android takes the action accordingly to call
the respective component. As we have discussed earlier, intents are asynchronous
messages sent to the Android OS to perform any functionality. Most of the mobile
components can be triggered by intents just by using a few lines of code and can be
utilized fully by developers in their apps. In the following sections of this chapter,
we will see few components and how they are used and triggered by intents with
practical examples. We have divided the components in three ways: communication
components, media components, and motion components. Now, let's discuss these
components in the following sections.

Communication components
Any mobile phone's core purpose is communication. Android phones provide a
lot of features other than communication features. Android phones contain SMS/
MMS, Wi-Fi, and Bluetooth for communication purposes. This chapter focuses on the
hardware components; so, we will discuss only Wi-Fi and Bluetooth in this chapter.
The Android system provides built-in APIs to manage and use Bluetooth devices,
settings, discoverability, and much more. It offers full network APIs not only for
Bluetooth but also for Wi-Fi, hotspots, configuring settings, Internet connectivity,
and much more. More importantly, these APIs and components can be used very
easily by writing few lines of code through intents. We will start by discussing
Bluetooth, and how we can use Bluetooth through intents in the next section.

Using Bluetooth through intents
Bluetooth is a communication protocol that is designed for short-range, low-
bandwidth, peer-to-peer communication. In this section, we will discuss how
to interact and communicate with local Bluetooth devices and how we can
communicate with the nearby, remote devices using Bluetooth. Bluetooth is a very
low-range protocol, but it can be used to transmit and receive data such as files,
media, and so on. As of Android 2.1, only paired devices can communicate with
each other via Bluetooth devices due to encryption of the data.

Bluetooth APIs and libraries became available from Android 2.0
Version (SDK API Level 5). It should also be noted that not all
Android phones will necessarily include the Bluetooth hardware.

Intents for Mobile Components

[100]

The Bluetooth API provided by the Android system is used to perform a lot of
actions related to Bluetooth that includes turning the Bluetooth on/off, pairing with
nearby devices, communicating with other Bluetooth devices, and much more. But,
not all of these actions can be performed through intents. We will discuss only those
actions that can be performed through intents. These actions include setting the
Bluetooth On/Off from our Android app, tracking the Bluetooth adapter state, and
making our device discoverable for a small time. The actions that can't be performed
through intents include sending data and files to other Bluetooth devices, pairing
with other devices, and so on. Now, let's explain these actions one by one in the
following sections.

Some Bluetooth API classes
In this section, we will discuss some classes from the Android Bluetooth API that are
used in all Android apps using Bluetooth. Understanding these classes will help the
developers understand the following examples more easily.

BluetoothDevice
This class represents each remote device with which the user is communicating.
This class is a thin wrapper for the Bluetooth hardware of the phone. To perform the
operations on the object of this class, developers have to use the BluetoothAdapter
class. The objects of this class are immutable. We can get BluetoothDevice by
calling BluetoothAdapter.getRemoteDevice(String macAddress) and passing
the MAC address of any device. Some important methods of this class are:

• BluetoothDevice.getAddress(): It returns the MAC address of the
current device.

• BluetoothDevice.getBondState(): It returns the bonding state of the
current device, such as not bonded, bonding, or bonded.

The MAC address is a string of 12 characters represented in the form
of xx:xx:xx:xx:xx:xx. For example, 00:11:22:AA:BB:CC.

Chapter 4

[101]

BluetoothAdapter
This class represents the current device on which our Android app is running. It
should be noted that the BluetoothAdapter class represents the current device, and
the BluetoothDevice class represents the other devices that can or cannot bonded
with our device. This class is a singleton class and cannot be instantiated. To get
the object of this class, we can use the BluetoothAdapter.getDefaultAdapter()
method. To perform any action related to Bluetooth communication, this class
is the main starting point for it. Some of the methods of this class include
BluetoothAdapter.getBondedDevices(), which returns all paired devices,
BluetoothAdapter.startDiscovery(), which searches for all discoverable devices
nearby, and so on. There is a method called startLeScan(BluetoothAdapter.
LeScanCallback callback) that is used to receive a callback whenever a device
is discovered. This method was introduced in API Level 18.

Some of the methods in the BluetoothAdapter and
BluetoothDevice classes require the BLUETOOTH permission, and
some require the BLUETOOTH_ADMIN permission as well. So, when
using these classes in your app, don't forget to add these permissions
in your Android manifest file.

So far, we have discussed some Bluetooth classes in the Android OS along with some
of the methods in those classes. In the next section, we will develop our first Android
app that will ask the user to turn on the Bluetooth.

Turning on the Bluetooth app
To perform any Bluetooth action, Bluetooth must first be turned on. So, in this
section, we will develop an Android app that will ask the user to turn on the
Bluetooth device if it is not already on. The user can accept it and the Bluetooth
will be turned on, or the user can also reject it. In the latter case, the application will
continue and the Bluetooth will remain in the off state. It would be great to say that
this action can be performed very easily using intents. Let's see how we can do this
by looking at the code.

First, create an empty Android project in your favourite IDE. We have developed
it in Android Studio. At the time of writing this book, the project is in the Preview
Mode, and its beta launch is expected soon. Now, we will modify a few files from the
project to make our Android Bluetooth app. We will modify two files. Let's see those
files in the following sections.

Intents for Mobile Components

[102]

The MainActivity.java file
This class represents the main activity of our Android app. The following code is
implemented in this class:

In our activity, we have declared a constant value with the name BLUETOOTH_
REQUEST_CODE. This constant is used as a request code or request unique identifier in
the communication between our app and the Android system. When we request the
Android OS to perform some action, we pass any request code. Then, the Android
system performs the action and returns the same request code back to us. After
comparing our request code with Android's request code, we get to know about the
action that has been performed. If the code doesn't match, it means that this action
is for some other request. It is not our request. In the onCreate() method, we set
the layout of the activity by calling the setContentView() method. And then, we
perform our real task in the next few lines.

Chapter 4

[103]

We create a string enableBT that gets the value of the ACTION_REQUEST_ENABLE
method that pertains to the BluetoothAdapter class. This string is passed in the
intent constructor to tell the intent that it is meant to enable the Bluetooth device.
Like the Bluetooth-enable request string, the Android OS also contains many other
requests for various actions such as Wi-Fi, Sensors, Camera, and more. In this
chapter, we will learn about a few request strings. After creating the request string,
we create our intent and pass the request string to it. And then, we start our intent
by passing it in the startActivityForResult() method.

One thing to note here is that in the previous chapters, we used the
startActivity() method instead of the startActivityForResult() method.
Basically, the startActivity() method just starts any activity that is passed
through intents, but the startActivityForResult() method starts any activity,
and after performing some action, it returns to the original activity and presents
the results of the action. So, in this example, we called the activity that requests
the Android system to enable the Bluetooth device. The Android system performs
the action and asks the user whether it should enable the device or not. Then, the
Android system returns the result to the original activity that started the intent
earlier. To get any result from other activities to our activity, we override the
onActivityResult() method. This method is called after returning from other
activities. The method contains three parameters: requestCode, resultCode, and
dataIntent. The requestCode parameter is an integer value and contains the
request code value of the request provided by the developer. The resultCode
parameter is the result of the action. It tells the developer whether the action has
been performed successfully with a positive response or with a negative response.
The dataIntent object contains the original calling-intent data, such as which
activity started the intent and all the related information. Now, let's see our
overridden method in detail. We have first checked whether requestCode, our
request code, is BLUETOOTH_REQUEST_CODE, or not. If both are the same, we have
compared the result code to check whether our result is okay or not. If it is okay,
it means that Bluetooth has been enabled; so, we display a toast notifying the user
about it, and if the result is not okay, that means Bluetooth has not been enabled.
Here also we notify the user by displaying a toast.

This was the activity class that performs the core functionality of our Bluetooth-
enabling app. Now, let's see the Android manifest file in the following section.

Intents for Mobile Components

[104]

The AndroidManifest.xml file
The AndroidManifest.xml file contains all the necessary settings and preferences
for the app. The following is the code contained in this manifest file:

Any Android application that uses the Bluetooth device must have the permission
of Bluetooth usage. So, to provide the permission to the user, the developer declares
the <uses-permission> tag in the Android manifest file and writes the necessary
permissions. As shown in the code, we have provided two permissions: android.
permission.BLUETOOTH and android.permission.BLUETOOTH_ADMIN. For most
Bluetooth-enabled apps, only the BLUETOOTH permission does most of the work.
The BLUETOOTH_ADMIN permission is only for those apps that use Bluetooth admin
settings such as making the device discoverable, searching for other devices, pairing,
and so on. When the user first installs the application, he is provided with details
about which permissions are needed for the app. If the user accepts and grants the
permissions to the app, the app gets installed; otherwise, the user can't install the
app. The rest of the file is the same as in the other examples in the book.

Chapter 4

[105]

After discussing the Android manifest and activity files, we would test our project
by compiling and running it. When we run the project, we should see the screens
as shown in the following screenshots:

Enabling Bluetooth App

As the app starts, the user is presented with a dialog to enable or disable the
Bluetooth device. If the user chooses Yes, the Bluetooth is turned on, and a toast
updates the status by displaying the status of the Bluetooth.

Tracking the Bluetooth adapter state
In the previous example, we saw how we can turn on the Bluetooth device just by
passing the intent of the Bluetooth request to the Android system in just a few lines.
But enabling and disabling the Bluetooth are time-consuming and asynchronous
operations. So, instead of polling the state of the Bluetooth adapter, we can use a
broadcast receiver for the state change. In this example, we will see how we can
track the Bluetooth state using intents in a broadcast receiver.

This example is the extension of the previous example, and we will use the same
code and add a new code to it. Let's look at the code now. We have three files,
MainActivity.java, BluetoothStateReceiver.java, and AndroidManifest.xml.
Let's discuss these files one by one.

Intents for Mobile Components

[106]

The MainActivity.java file
This class represents the main activity of our Android app. The following code
is implemented in this class:

public class MainActivity extends Activity {
 final int BLUETOOTH_REQUEST_CODE = 0;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 registerReceiver(new BluetoothStateReceiver(), new IntentFilter(
 BluetoothAdapter.ACTION_STATE_CHANGED));
 String enableBT = BluetoothAdapter.ACTION_REQUEST_ENABLE;
 Intent bluetoothIntent = new Intent(enableBT);
 startActivityForResult(bluetoothIntent,
 BLUETOOTH_REQUEST_CODE);
 }
 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {

 // TODO Auto-generated method stub
 super.onActivityResult(requestCode, resultCode, data);
 if (resultCode == RESULT_OK) {
 if (requestCode == BLUETOOTH_REQUEST_CODE) {
 Toast.makeText(this, "Turned On", Toast.LENGTH_SHORT).show();
 }
 }
 else if (resultCode == RESULT_CANCELED) {
 Toast.makeText(this, "Didn't Turn On", Toast.LENGTH_SHORT).
show();
 }
 }
}

From the code, it is clear that the code is almost the same as in the previous example.
The only difference is that we have added one line after setting the content view
of the activity. We called the registerReceiver() method that registers any
broadcast receiver with the Android system programmatically. We can also register
the receivers via XML by declaring them in the Android manifest file. A broadcast
receiver is used to receive the broadcasts sent from the Android system.

Chapter 4

[107]

While performing general actions such as turning the Bluetooth on, turning the Wi-
Fi on/off and so on, the Android system sends broadcast notifications that can be
used by developers to detect the state changes in the mobile. There are two types
of broadcasts. Normal broadcasts are completely asynchronous. The receivers of
these broadcasts run in a disorderly manner, and multiple receivers can receive
broadcasts at the same time. These broadcasts are more efficient as compared to the
other type of broadcasts that are ordered broadcasts. Ordered broadcasts are sent to
one receiver at a time. As each receiver receives the results, it passes the results to the
next receiver or completely aborts the broadcast. In this case, other receivers don't
receive the broadcast.

Although the Intent class is used for sending and receiving broadcasts, the
intent broadcast is a completely different mechanism and is separate from the
intents used in the startActivity() method. There is no way for the broadcast
receiver to see or capture the intents used with the startActivity() method.
The main difference between these two intent mechanisms is that the intents used
in the startActivity() method perform the foreground operation that the user
is currently engaged in. However, the intent used with the broadcast receivers
performs some background operations that the user is not aware of.

In our activity code, we used the registerReceiver() method to register an object
of our customized broadcast receiver defined in the BluetoothStateReceiver
class, and we passed an intent filter BluetoothAdapter.ACTION_STATE_CHANGED
according to the type of the receiver. This state tells the intent filter that our object
of the broadcast receiver is used in detecting the Bluetooth state change in the
app. After the Register receiver, we created an intent passing BluetoothAdapter.
ACTION_REQUEST_ENABLE, telling the app to turn on the Bluetooth. Finally, we start
our action by calling startActivityForResult(), and we compare the results in
the onActivityResult() method to see whether the Bluetooth is turned on or not.
You can read about these processes in the previous example of this chapter.

When you register the receiver in the onCreate() or onResume()
method of the activity, you should unregister it in the onPause()
or onDestroy() method. The advantage of this approach is that
you won't receive any broadcasts when the app is paused or closed,
and this can decrease Android's unnecessary overhead operations
resulting in a better battery life.

Now, let's see the code of our customized broadcast receiver class.

Intents for Mobile Components

[108]

The BluetoothStateReceiver.java file
This class represents our customized broadcast receiver that tracks the state change
in the Bluetooth device. The following code shows the implementation of the file:

Just as we did for activities and services, to create a custom broadcast receiver, we
extend from the BroadcastReceiver class and override methods to declare the custom
behavior. We have overridden the onReceive() method and performed the main
functionality of tracking the Bluetooth device status in this method. First, we will create
a string variable to store the string value of the current state. To retrieve the string
value, we have used BluetoothAdapter.EXTRA_STATE. Now, we can pass this value in
the get() method of the intent to get our required data. As our states are integers and
also extras, we have called Intent.getIntExtra() and passed our required string in
it along with its default value as -1. Now, as we have got the current state code, we can
compare these codes with the pre-defined codes in BluetoothAdapter to see the state
of the Bluetooth device. There are four predefined states.

• STATE_TURNING_ON: This state notifies the user that the Bluetooth turn-on
operation is in progress.

• STATE_ON: This state notifies the user that Bluetooth has already been
turned on.

Chapter 4

[109]

• STATE_TURNING_OFF: This state notifies the user that the Bluetooth device is
being turned off.

• STATE_OFF: This state notifies the user that the Bluetooth has been turned off.

We compare our state with these constants, and display a toast according to the
result we get.The Android manifest file is the same as in the previous example.

Thus, in a nutshell, we discussed how we can enable the Bluetooth device and ask
the user to turn it on or off through intents. We also saw how to track the state of
the Bluetooth operations using intents in the broadcast receiver and displaying the
toasts. The following screenshots show the application demo:

Enabling the Bluetooth app

Being discoverable
So far, we have only been interacting with Bluetooth by turning it on or off.
But, to start communication via Bluetooth, one's device must be discoverable to
start pairing. We will not create any example for this application of intents, but
we will only explain how this can be done via intents. To turn on Bluetooth, we
used the BluetoothAdapter.ACTION_REQUEST_ENABLE intent. We passed the
intent in the startActivityForResult() method and checked the result in the
onActivityResult() method. Now, to make the device discoverable, we can pass
the BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE string in the intent. And
then, we pass this intent in the startActivityForResult() method, and track the
result in the onActivityResult() method to compare the results.

Intents for Mobile Components

[110]

The following code snippet shows the intent-creation process for making a
device discoverable:

In the code, you can see that there is nothing new that hasn't been discussed earlier.
Only the intent action string type has been changed, and the rest is the same. This is
the power of intents; you can do almost anything with just a few lines of code in a
matter of minutes.

Monitoring the discoverability modes
As we tracked the state changes of Bluetooth, we can also monitor the discoverability
mode using exactly the same method explained earlier in this chapter. We have to
create a customized broadcast receiver by extending the BroadcastReceiver class.
In the onReceive() method, we will get two extra strings: BluetoothAdapter.
EXTRA_PREVIOUS_SCAN_MODE, and BluetoothAdapter.EXTRA_SCAN_MODE. Then, we
pass those strings in the Intent.getIntExtra() method to get the integer values for
the mode, and then we compare these integers with the predefined modes to detect
our mode. The following code snippet shows the code sample:

Communication via Bluetooth
The Bluetooth communication APIs are just wrappers around the standard
RFCOMM, the standard Bluetooth radio frequency communications protocol.
To communicate with other Bluetooth devices, they must be paired with each
other. We can carry out a bidirectional communication via Bluetooth using the
BluetoothServerSocket class that is used to establish a listening socket for
initiating a link between devices and BluetoothSocket that is used to create a
new client socket to listen to the Bluetooth server socket. This new client socket is
returned by the server socket once a connection is established. We will not discuss
how Bluetooth is used in communication because it is beyond the scope of this book.

Chapter 4

[111]

Using Wi-Fi through intents
Today, the era of the Internet and its vast usage in mobile phones have made
worldwide information available on the go. Almost every Android phone user
expects an optimal use of the Internet from all apps. It becomes the developer's
responsibility to add Internet access in the app. For example, when users use your
apps, they would like to share the use and their activities performed in your app,
such as completing any level of a game or reading any article from any news app,
with their friends on various social networks, or by sending messages and so on.
So, if users don't get connected through your app to the Internet, social platforms,
or worldwide information, then the app becomes too limited and maybe boring.

To perform any activity that uses the Internet, we first have to deal with Internet
connectivity itself, such as whether the phone has any active connection. In this
section, we will see how we can access Internet connectivity through our core topic—
the intents. Like Bluetooth, we can do much work through intents related to Internet
connectivity. We will implement three main examples: to check the Internet status of a
phone, to pick any available Wi-Fi network, and to open the Wi-Fi settings. Let's start
our first example of checking the Internet connectivity status of a phone using intents.

Checking the Internet connectivity status
Before we start coding our example, we need to know some important things. Any
Android phone connected to the Internet can have any type of connection. Mobile
phones can be connected using data connection to the Internet or it can be any open
or secured Wi-Fi. Data connection is called mobile connection, and is connected via
the mobile network provided by the SIM and service providers. In this example, we
will detect whether the mobile phone is connected to any network or not, and if it is
connected, which type of network it is connected to. Let's implement the code now.

There are two main files that perform the functionality of the app:
NetworkStatusReceiver.java and AndroidManifest.xml. You might be
wondering about the MainActivity.java file. In the following example, this file
is not used because of the requirements of the app. What we are going to do in this
example is that whenever the Internet connectivity status of a phone is changed, such
as the Wi-Fi is turned on or off, this app will display a toast showing the status. The
app will be performing its work in the background; so, activity and layouts are not
needed in this app. Now, let's explain these files one by one:

Intents for Mobile Components

[112]

The NetworkStatusReceiver.java file
This class represents our customized broadcast receiver that tracks the state
change in the network connectivity of the device. The following code shows
the implementation of the file:

Just as we did for activities and services, to create a custom broadcast receiver,
we extend from the BroadcastReceiver class and override methods to declare
the custom behavior. We have overridden the onReceive() method, and we are
performing the main functionality of tracking the Wi-Fi device status in this method.
We have registered this receiver in the Android manifest file as a network status
change, and we will discuss that file in the next section. This onReceive() method
is called only when the network status is changed. So, we first display a toast stating
that the network connectivity status has changed.

Chapter 4

[113]

It must be noted that any broadcast receiver cannot be passed using
this in the context parameter of Toast as we used to do in the
Activity class because the BroadcastReceiver class doesn't
extend the Context class like the Activity class.

We have already notified the user about the network status changes, but we still
have not notified the user about which change has occurred. So, at this point, our
intent object becomes handy. It contains all the information and data of the network
in the form of extra objects. Recalling from the previous chapters, extra is an object
of the Bundle class. We create a local Bundle reference and store the intent extra
objects in it by calling the getExtras() method. Along with it, we also store the no
connectivity extra object in a boolean variable. EXTRA_NO_CONNECTIVITY is the
lookup key for a boolean variable that indicates whether there is a complete lack of
network connectivity, that is, whether any network is available, or not. If this value
is true, it means that there is no network available.

After storing our required extra objects, we need to check whether the extra objects
are available or not. So, we have checked the extra objects with null, and if the
extra objects are available, we extract more network information from these extra
objects. In the Android system, the developer is told about the data of interest in the
form of constant strings. So, we first get our constant string of network information,
which is EXTRA_NETWORK_INFO. We store it in a string variable, and then we use it
as a key value parameter in the get() method of the extra objects. The Bundle.
get() method returns an Object type of the object, and we need to typecast it to
our required class. We are looking for network information; so, we are using the
NetworkInfo class object.

The Intent.EXTRA_NETWORK_INFO string was deprecated in
API Level 14. Since NetworkInfo can vary based on the User
ID (UID), the application should always obtain the network
information through the getActiveNetworkInfo() or
getAllNetworkInfo() method.

Intents for Mobile Components

[114]

We have got all our values and data of interest; now, we will compare and check the
data to find the connectivity status. We check whether this NetworkInfo data is null
or not. If it is not null, we check whether the network is connected by checking the
value from the getState() method of NetworkInfo. The NetworkInfo.State state
that represents the coarse-grained network state is an enum. If the NetworkInfo.
State enum is equal to NetworkInfo.State.CONNECTED, it means that the phone
is connected to any network. Remember that we still don't know which type of
network we are connected to. We can find the type of network by calling the
NetworkInfo.getTypeName() method. This method will return Mobile or Wi-Fi in
the respective cases.

Coarse-grained network state is mostly used in apps rather than
DetailedState. The difference between these two states' mapping is
that the coarse-grained network only shows four states: CONNECTING,
CONNECTED, DISCONNECTING, and DISCONNECTED. However,
DetailedState shows other states for more details, such as IDLE,
SCANNING, AUTHENTICATING, UNAVAILABLE, FAILED, and the other
four coarse-grained states.

The rest is an if-else block checking the state of the network and showing the
relative toasts of status on the screen. Overall, we first extracted our extra objects
from intent, stored them in local variables, extracted network info from extras,
checked the state, and finally displayed the info in the form of toasts. Now,
we will discuss the Android manifest file in the next section.

The AndroidManifest.xml file
As we have used a broadcast receiver in our application to detect the network
connectivity status, it is necessary to register and unregister the broadcast receiver
in the app. In our manifest file, we have performed two main tasks. First, we have
added the permissions of accessing the network state. We have used android.
permissions.ACCESS_NETWORK_STATE. Second, we have registered our receiver in
the app using the receiver tag and added the name of the class.

Chapter 4

[115]

Also, we have added the intent filters. These intent filters define the purpose of the
receiver, such as what type of data should be received from the system. We have
used the android.net.conn.CONNECTIVITY_CHANGE filter action for detecting the
network connectivity change broadcast. There is nothing new in this file other than
these two, and the rest of the code is the same as we have discussed in the previous
chapters. The following is the code implementation of the file:

Intents for Mobile Components

[116]

Summarizing the details of the preceding app, we created a customized broadcast
receiver, and defined our custom behavior of network change, that is, displaying
toasts, and then we registered our receiver in the manifest file along with the
declarations of the required permissions. The following screenshots show a simple
demo of the app when turning the Wi-Fi on in the phone:

The Network Change Status app

Chapter 4

[117]

In the previous screenshot, we can see that when we turn the Wi-Fi on, the app
displays a toast saying that the network status has changed. And after that toast, it
displays the change; in our case, the Wi-Fi is connected. You might be wondering
about the role of intents in this app. This app was not possible without using intents.
The first use of intents was in registering the receiver in the manifest file to filter it
for network status change. The other use of intents was in the receiver when we have
received the update and we want to know the change. So, we used the intents and
extracted the data from it in the form of extra objects and used it for our purpose.
We didn't create our own intents in this example; instead, we only used the provided
intents. In our next example, we will create our own intents and use them to open the
Wi-Fi settings from our app.

Opening the Wi-Fi Settings app
Until now, we have only used intents for network and Wi-Fi purposes. In this
example, we are going to create intent objects and use it in our app. In the previous
app example, we detected the network change status of the phone and displayed
it on the screen. In this example, we will add a button in the same app. On clicking
on or tapping the button, the app will open the Wi-Fi settings. And the user can
turn the Wi-Fi on or off from there. As the user performs any action, the app will
display the network status change on the screen. For the network status, we used the
NetworkStatusReceiver.java and AndroidManifest.xml files. Now, let's open the
same project and change our MainActivity.java and layout_main.xml files to add
a button and its functionality to them. Let's see these two files one by one:

The activity_main.xml file
This file is a visual layout of our main activity file. We will add a button view in this
XML file. The code implementation of the file is as follows:

Intents for Mobile Components

[118]

We have added a button in the layout with the view ID of btnWifiSettings. We
will use this ID to get the button View in the layout file. We have already discussed
the layouts in the previous chapters. Let's now see our main activity file that will use
this layout as the visual content.

The MainActivity.java file
This file represents the main activity file as a launcher point of the app. We will
implement our button's core functionality in this file. The code implementation
of the file is as follows:

As discussed many times, we have extended our class from the Activity class, and
we have overridden the onCreate() method of the class. After calling the super
method, we have first referenced our layout file (explained in the previous section)
using the setContentView() method and passed the layout ID as the parameter.
After getting the layout file, we have extracted our Wi-Fi settings button from the
layout by calling the findViewById() method. Remember, we set the button View's
ID to btnWifiSettings; so, we will pass this ID in the method as an argument. We
stored the referenced file of our button in a local Button object.reference object.
Now, we will set View.OnClickListener of the local button to perform our tasks
on a button click. We have passed an anonymous object of OnClickListener in the
button.setOnClickListener() method, and overridden the onClick() method
of the anonymous object.

Chapter 4

[119]

Until now, we have only performed some initial steps to create a setup for our app.
Now, let's focus on opening the Wi-Fi settings task. We will create an Intent object,
and we have to pass a constant string ID to tell the intent about what to start. We will
use the Settings.ACTION_WIFI_SETTINGS constant that shows the settings to allow
the configuration of the Wi-Fi. After creating the Intent object, we will pass it in the
startActivity() method to open the activity containing the Wi-Fi settings. It is that
simple with no rocket science at all. When we run the app, we will have something
similar to the following screenshots:

Opening the Wi-Fi Settings app

As seen from the preceding screenshot, when we click or tap the Wi-Fi Settings
button, it will open the Wi-Fi settings screen of the Android phone. On changing the
settings, such as turning on the Wi-Fi, it will display the toasts to show the updated
changes and network status.

We have finished discussing the communication components using intents, in which
we used Bluetooth and Wi-Fi via intents and saw how these can be used in various
examples and applications. Now, we will discuss how the media components can be
used via intents and what we can do for media components in the following sections.

Intents for Mobile Components

[120]

Media components
The preceding section was all about communication components. But the difference
between old phones and the new smartphones is the media capability, such as high-
definition audio-video features. And the multimedia capabilities of mobile phones
have become a more significant consideration to many consumers. Fortunately,
the Android system provides multimedia API's for many features such as playing
and recording a wide range of image, audio, and video formats both locally and
streamed. If we describe the media components in simple words, this topic can only
be covered in a fully dedicated chapter, and it is beyond the scope of this book. We
will only discuss those media components that can be triggered, used, and accessed
through intents. The components to be discussed in this section include using intents
to take pictures, using intents to record video, speech recognition using intents, and
the role of intents in text-to-speech conversion. The first three topics use intents to
perform the actions; but the last topic of text-to-speech conversion doesn't use intents
on a complete basis. We will also develop a sample application to see the intents in
action. Let's discuss these topics one by one in the following subsections.

Using intents to take pictures
Today, almost every phone has a digital camera component. The popularity of digital
cameras embedded within mobile phones has caused their prices to drop along with
their size. Android phones also include digital cameras varying from 3.2 megapixels
to 32 megapixels. From the development perspective, pictures can be taken via
many different methods. The Android system has also provided the APIs for camera
control and pictures, but we will only be focusing on one method that uses intents in
it. This is the easiest way to take pictures in Android development, and contains no
more than few lines of code.

We will first create a layout with the image View and button. Then, in the Activity
class, we will get the references of our views from the layout file, and set the click
listener of the button. On clicking the button, we will create the intent of the capture
image, and start another activity as a child class. After getting the result, we will
display that captured image in our image View.

So, with the basic empty Hello World project ready, we will change three files
and add our code to it. The files are activity_main.xml, MainActivity.java,
and AndroidManifest.xml. Let's explain the changes in each file one by one:

Chapter 4

[121]

The activity_main.xml file
This file represents the visual layout for the file. We will add an ImageView tag to
show the captured image and a Button tag to take a picture and trigger the camera.
The code implementation of the file is as follows:

As you can see in the code, we have placed an ImageView tag in the relative layout
with the ID of imageView1. This ID will be used in the main activity file to extract
the view from the layout to use in the Java file. We have placed the view in the
horizontal centre of the layout by assigning the value true in the android:layout_
centerHorizontal tag. Initially, we have set a default image of our app's
launcher icon to our image View. Below the image View, we have placed a button
View. On tapping the button, the camera will be started. The button's ID is set to
btnTakePicture by the android:layout_below tag below the image View layout.
This relativity is the main advantage of the relative layouts as compared to linear
layouts. So now, let's have a look at the activity of the app that performs the main
functionality and uses this layout as a visual part as well.

Intents for Mobile Components

[122]

The MainActivity.java file
This file represents the main launching activity of the app. This file uses the layout_
main.xml file as the visual part, and it is extended from the Activity class. The code
implementation of the file is as follows:

We start our class by overriding the onCreate() method of the activity. We set
the visual layout of the activity to the activity_main.xml layout by calling the
setContentView() method. Now, as the layout is set, we can get references to
the views in the layout file.

Chapter 4

[123]

We create two fields in the class; takenImage of the ImageView class to be used to
show the captured image and imageButton of the Button class to be used to trigger
the camera by clicking on it. The onClick() method will be called when the button
is tapped/clicked. So, we will define our camera-triggering code in this method. So,
in this method, we are creating an instance of the Intent class, and we are passing
the MediaStore.ACTION_IMAGE_CAPTURE constant in the constructor. This constant
will tell Android that the intent is for the purpose of image capture, and Android
will start the camera on starting this intent. If a user has installed more than one
camera app, Android will present a list of all valid camera apps, and the user can
choose any to take the image.

After creating an intent instance, we pass this intent object in the
startActivityForResult() method. In our picture-capturing app, clicking on
the button will start another activity of the camera. And when we close the camera
activity, it will come back to the original activity of our app and give us some result
of the captured picture. So, to get the result in any activity, we have to override the
onActivityResult() method. This method is called when the parent activity is
started after the child activity is completed. When this method is called, it means
that we have used the camera and are now back to our parent activity. If the result is
successful, we can display the captured image in the image View.

First, we can learn whether this method is called after the camera or if another action
has happened. For this purpose, we have to compare the requestCode parameter
of the method. Remember, when calling the startActivityForResult() method,
we passed the TAKE_IMAGE_CODE constant as the other parameter. This is the request
code to be compared to.

After that, to check the result, we can see the resultCode parameter of the method.
As we used this code for the camera picture intent, we will compare our resultCode
with the RESULT_OK constant. After the success of both conditions, we can conclude
that we have received our image. So, we use the intent to get our image data by
calling the getExtras().get() method. This will give us the Object type of data.
We further typecast it to Bitmap to prepare it for ImageView.

Intents for Mobile Components

[124]

Finally, we call the setImageBitmap method to set the new bitmap to our image
View. If you run the code, you will see an icon image and a button. After clicking on
the button, the camera will be started. When you take the picture, the app will crash
and shut down. You can see it in the following screenshots:

The app crashed after taking a picture

You might be wondering why the crash occurred. We forgot to mention one thing;
whenever any app uses the camera, we have to add the uses-feature tag in our
manifest file to tell the app that it will use the camera feature. Let's see our Android
manifest file to understand the uses-feature tag.

Chapter 4

[125]

The AndroidManifest.xml file
This file defines all the settings and features to be used in our app. There is only one
new thing that we haven't seen. The code implementation of the file is as follows:

You can see that we have added the uses-feature tag, and we have assigned
android.hardware.camera in the android:name property. This tag tells the app
about the camera usage in it, and the Android OS gives our app the permission to
use the external camera.

Intents for Mobile Components

[126]

After adding this line in the manifest file and running the code, you will see
something similar to the following screenshot if you have more than one camera
app in your phone:

Taking pictures through the intents app

In the screenshot, you can see that the user is asked to choose the camera, and when
a picture is taken, the image is shown in the app.

Chapter 4

[127]

When we summarized the code, we first created a layout with image View and
button. Then, in the Activity class, we got the references of our views from the
layout file, and set the click listener of the button. After clicking on the button, we
created the intent of capture image, and started another activity as the child activity.
After getting the result, we displayed that captured image in our image View. It
was as easy as a walk in the park. In the next section, we will see how we can record
video using intents.

Using intents to record video
Until now, we have already seen how to take pictures using intents. In this section,
we will see how we can record video using intents. We will not discuss the whole
project in this section. The procedure to record videos using intents is almost the
same as taking pictures with few minor changes. We will only discuss those changes
in this section. Now, let's see how the app works to record video.

The first change that we have done is in our layout file. We removed the image View
section, and have placed the VideoView tag. The following code implementation
shows that tag:

You can see that everything is the same as it was in ImageView. Now, as we have
changed image view to video view in our layout, we have to change that in our
activity as well. Just as we did for ImageView, we will create a field object of
VideoView, and get the reference in our onCreate() method of the activity.
The following code sample shows the field object of VideoView line:

Intents for Mobile Components

[128]

Everything is the same, and we have already discussed it. Now, in our onClick()
method, we will see how we send the intent that triggers the video recording. The
code implementation to be put on the onClick() method to send
an intent is as follows:

You can see that we have created an intent object, and instead of passing
MediaStore.ACTION_IMAGE_CAPTURE, we have passed MediaStore.ACTION_VIDEO_
CAPTURE in the constructor of the intent. Also, we have put an extra object in the
intent by calling the putExtra() method. We have put the extra object defining the
video quality as high by assigning the MediaStore.EXTRA_VIDEO_QUALITY value to
1. Then, we pass the intent in the startActivityForResult() method again to start
the camera activity.

The next change is in the onActivityResult() method when we get the video from
the intent. The following code shows some sample code to get the video and pass it
in the VideoView tag and play it:

Chapter 4

[129]

In the case of taking a picture, we restored raw data from the intent, typecasted it
to Bitmap, and then set our ImageView to Bitmap. But here, in case of recording
a video, we are only getting the URI of the video. The Uri object declares the
reference of data in the mobile phone. We get the URI of the video, and set it in our
VideoView using the setVideoURI() method. Finally, we play the video by calling
the VideoView.start() method.

From these sections, you can see how easy it is to use the intents to capture images or
record videos. Through intents, we are using the already built-in camera or camera
apps. If we want our own custom camera to capture images and videos, we have to
use the Camera APIs of Android.

We can use the MediaPlayer class to play video, audio, and so on. The MediaPlayer
class contains methods like start(), stop(), seekTo(), isLooping(),
setVolume(), and much more. To record a video, we can use the MediaRecorder
class. This class contains methods including start(), stop(), release(),
setAudioSource(), setVideoSource(), setOutputFormat(), setAudioEncoder(),
setVideoEncoder(), setOutputFile(), and much more.

When you are using MediaRecorder APIs in your app, don't forget
to add the permissions of android.premission.RECORD_AUDIO
and android.permission.RECORD_VIDEO in your manifest file.

To take pictures without using intents, we can use the Camera class. This class
includes the methods open(), release(), startPreview(), stopPreview(),
takePicture(), and much more.

When you are using Camera APIs in your app, don't forget to
add the permissions of android.premission.CAMERA in your
manifest file.

Until now, we have used visual media components for videos and pictures using
intents. In the next section, we will use audio components of a phone using intents.
We will see how we can use the speech recognition and text-to-speech supports
using intents in the next sections.

Intents for Mobile Components

[130]

Speech recognition using intents
Smartphones introduced voice recognition that became a very big achievement
for disabled people. Android introduced speech recognition in API Level 3 in
Version 1.5. Android supports voice input and speech recognition using the
RecognizerIntent class. Android's default keyboard contains a button with a
microphone icon on it. This allows the user to speak instead of typing a text. It uses
the speech-recognition API for this purpose. The following screenshot shows the
keyboard with the microphone button on it:

Android's default keyboard with the microphone button

In this section, we will create a sample application that will have a button and
text field. After clicking on the button, Android's standard voice-input dialog will
be displayed, and the user will be asked to speak something. The app will try to
recognize whatever the user speaks and type it in the text field. We will start by
creating an empty project in the Android Studio or any other IDE, and we will
modify two files in it. Let's start with our layout file in the next section.

Chapter 4

[131]

The activity_main.xml file
This file represents the visual content of the app. We will add the text field and
button view in this file. The code implementation of the file is as follows:

As you can see, we have placed an EditText field. We have set android:inputType
to textMultiLine to type the text in multiple lines. Below the text field, we have
added a Button view with an ID of btnRecognize. This button will be used to start
the speech-recognition activity when it is tapped or clicked on. Now, let's discuss
the main activity file.

Intents for Mobile Components

[132]

The MainActivity.java file
This file represents the main activity of the project. The code implementation of the
file is as follows:

As usual, we override the onCreate() method, and get our button reference from
the layout set by the setContentView() method. We set the button's listener to this
class, and in the activity, we implement OnClickListener along with overriding
the onClick() method. In the onClick() method, we create an intent object and
pass RecognizerIntent.ACTION_RECOGNIZE_SPEECH as an action string in the
constructor. This constant will tell Android that the intent is for speech-recognition
purpose. Then, we have to add some extra objects to provide more information to
Android about the intent and speech recognition. The most important extra object to
be added is RecognizerIntent.EXTRA_LANGUAGE_MODEL. This informs the recognizer
about which speech model to use when recognizing speech. The recognizer uses this
extra to fine-tune the results with more accuracy. This extra method is required and
must be provided when calling the speech-recognizer intent. We have passed the
RecognizerInent.ACTION_LANGUAGE_MODEL_FREE_FORM model for speech. This is a
language model based on a free-form speech recognition. Now, we have some optional
extra objects that help the recognizer with more accurate results. We have added
extra of RecognizerIntent.EXTRA_PROMPT and passed some string value in it.
This will notify the user that speech recognition has been started.

Chapter 4

[133]

Next, we add the RecognizerIntent.EXTRA_MAX_RESULTS extra and set its value
as 1. Speech recognition's accuracy always varies. So, the recognizer will try to
recognize with more accuracy. So, it creates different results with different accuracies
and maybe different meanings. So, through this extra, we can tell the recognizer
about how many results we are interested in. In our app, we have put it as 1. So, that
means the recognizer will provide us with only one result. There is no guarantee
that this result will be accurate enough; that's why it is recommended to pass a value
greater than 1. For a simple case, you can pass a value upto 5. Remember, the greater
the value you pass, the more time will it take to recognize it.

Finally, we put our last optional extra of language. We pass Locale.ENGLISH as the
value of the RecognizerIntent.EXTRA_LANGUAGE extra. This will tell the recognizer
about the language of the speech. So, the recognizer didn't have to detect the
language, this results in more accuracy in speech recognition.

The speech-recognition engine may not be able to understand all the
languages available in the Locale class. Also, it is not necessary that
all the devices will support speech recognition.

After adding all the extra objects, we have ensured that our intent object is ready.
We pass it in the startActivityForResult() method with requestCode as 1.
When this method is called, a standard voice-recognition dialog is shown with the
prompt message that we had given. After we finish speaking, our parent activity's
onActivityResult() method is called. We first check whether requestCode
is 1 or not so that we can be sure that this is our result of speech recognition.
After that, we will check resultCode to see whether the result was okay or not.
After successful results, we will get an array list of strings containing all the
words recognized by the recognizer. We can get these words' lists by calling the
getStringArrayListExtra() method and passing RecognizerIntent.EXTRA_
RESULTS. This list is only returned when resultCode is okay; otherwise, we will get
a null value. After wrapping up the speech-recognition stuff, we can now set the text
value to the result. For that, we first extract the EditText view from the layout,
and set our result to the value of the text field by calling the setText() method.

An active Internet connection is required to run speech recognition.
The speech-recognition process is executed on the servers of Google.
An Android phone takes the voice input, sends it to Google Servers,
and it is processed there for recognition. After recognition, Google
sends the results back to the Android phone, the phone informs the
user about the results, and the cycle is complete.

Intents for Mobile Components

[134]

If you run the project, you will see something similar to the following screenshots:

Speech recognition using intents

In the image, you can see that after clicking on the Recognize button, a standard
voice-input dialog is shown. On speaking something, we will return back to our parent
activity, and after recognizing the speech, it will print all the text in the text field.

Role of intents in text-to-speech conversion
In the previous section, we discussed how the Android system can recognize
our speech and perform actions such as controlling the mobile phone via speech
commands. We also developed a simple speech-to-text example using intents. This
section is the opposite of the previous section. In this section, we will discuss how the
Android system can convert our text into a beautiful voice narration. We can call it
text-to-speech conversion. Android introduced the Text-To-Speech (TTS) Conversion
engine in Version 1.6 API Level 4. We can use this API to produce speech from within
our application, thus allowing our app to talk with our users. And if we add speech
recognition, it will be like talking with our application. Text-to-speech conversion
requires preinstalled language packs, and due to the lack of storage space on mobile
phones, it is not necessary that the phone will have any language packs already
installed in it. So, while creating any app using the text-to-speech engine, it is a good
practice to check whether the language packs are installed or not.

Chapter 4

[135]

We can't use text-to-speech conversion using intents. We can only use it through
the text-to-speech engine called TTS. But, there is a minor role of intents in text-to-
speech conversion. Intents are used only to check whether the language packs are
preinstalled or not. So, creating any app that uses text-to-speech will first have to
use intents to check the language packs' installation status. That's the role of intents
in text-to-speech conversion. Let's look at the sample code of checking the language
packs' installation state:

The first thing we will do for text-to-speech conversion is to check the language
packs. In the code, we can see that we are creating an intent object. And we are
passing the Engine.ACTION_CHECK_TTS_DATA constant that will tell the system
that the intent will check the text-to-speech (TTS) data and language packs. We are
then passing the intent in the startActivityForResult() method along with the
VAL_TTS_DATA constant value used as requestCode. Now, if the language packs
are installed and everything is okay, we will get resultCode as RESULT_OK in the
onActivityResult() method. So, if the result is okay, we can use text-to-speech
conversion. So, let's see the code sample for the onActivityResult() method, as
shown in the following screenshot:

Intents for Mobile Components

[136]

So, we first check requestCode of our passed code. Then, we check resultCode to
Engine.CHECK_VOICE_DATA_PASS. This constant is used to tell whether voice data is
available or not. If we have data available in our phone, we can do our text-to-speech
conversion there. Otherwise, it is clear that we have to install voice data first before
doing the text-to-speech conversion. You will be pleased to know that installing
voice data is also very easy; it uses intents for this purpose. The following code
snippet shows how to install voice data using intents:

We created an intent object and passed Engine.ACTION_INSTALL_TTS_DATA in the
constructor. This constant will tell Android that the intent is for the installation
of text-to-speech language packs' data. And then, we pass the intent into the
startActivity() method to start installation. After the language pack's installation,
we have to create an object of the TextToSpeech class and call its speak() method
when we want to do some text-to-speech conversion. The following is the code
implementation showing how to use the object of the TextToSpeech class in the
onActivityResult() method:

protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {

 if (requestCode == VAL_TTS_DATA) {
 if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {
 TextToSpeech tts = new TextToSpeech(this,
 new OnInitListener() {
 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {
 tts.setLanguage(Locale.US);
 tts.setSpeechRate(1.1f);
 tts.speak("Hello, I am writing book for Packt",
 TextToSpeech.QUEUE_ADD, null);
 }
 }
 });
 }
 else {
 Intent installLanguage = new Intent (
 Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installLanguage);
 }
 }
}

Chapter 4

[137]

As seen in the code, after the successful installation of the language data packs, we
have created an instance of TextToSpeech and passed an anonymous OnInitListener
object. We have implemented the onInit() method. This method will set the initial
settings of the TextToSpeech object. If the status is a success, we are setting the
language, speech rate, and finally, we are calling the speak() method. In this method,
we passed a string of characters, and Android will read these letters aloud.

Concluding the whole topic, the role of intents in text-to-speech conversion is of
checking and installing voice-data packs. Intents don't contribute directly to text-to-
speech conversion, but they just set the initial setup for text-to-speech conversion.

With text-to-speech conversion, we have finished the discussions on media
components. In media components, we discussed taking pictures, recording videos,
speech recognition, and text-to-speech conversion. In the next section, we will
discuss motion components and see how intents play a role in these components.

Motion components
Motion components in an Android phone include many different types of sensors
that perform many different tasks and actions. In this section, we will discuss motion
and position sensors such as accelerometer, geomagnetic sensor, orientation sensor,
and proximity sensor. All these sensors play a role in the motion and position of the
Android phone. We will discuss only those sensors that use intents to get triggered.
We have only one such sensor that uses intents and that is the proximity sensor. Let's
discuss it in the following section.

Intents and proximity alerts
Before learning about the role of intents in proximity alerts, we will discuss what
proximity alerts are and how these can be useful in various applications.

Intents for Mobile Components

[138]

What are proximity alerts?
The proximity sensor lets the user determine how close the device is to an object.
It's often useful when your application reacts when a phone's screen moves towards
or away from any specific object. For example, when we get any incoming call on
an Android phone, placing the phone on the ear shuts off the screen and holding
it back in the hands switches the screen on automatically. This application is using
proximity alerts to detect the distance between the ear and the proximity sensor of
the device. The following figure shows it in the visual format:

Another example can be when our phone has been idle for a while and its screen is
switched off, it will vibrate if we have some missed calls or give notifications hinting
us to check our phone. This can also be done using proximity sensors.

Proximity sensors use proximity alerts that detect the distance between the sensor of
the phone and any object. These alerts let your application set triggers that are fired
when a user is moved within or beyond a set distance from a geographic location.
We will not discuss all the details for the use of proximity alerts in this section, but
we will only cover some basic information and the role of intents in using proximity
alerts. For example, we set a proximity alert for a given coverage area. We select a
point in the form of longitude and latitude, a radius around that point in meters, and
some expiry time for the alert. Now, after using proximity alerts, an alert will fire if
the device crosses that boundary. It can be either that the device moves from outside
to within the radius or it moves from inside the radius to beyond it.

Chapter 4

[139]

Role of intents in proximity alerts
When proximity alerts are triggered, they fire intents. We will use a PendingIntent
object to specify the intent to be fired. Let's see some code sample of the application of
the distance that we discussed in the earlier section in the following implementation:

In the preceding code, we are implementing the very first step to use proximity
alerts in our app. First of all, we create a proximity alert that can be done through
PendingIntent. We define the name of the alert as DISTANCE_PROXIMITY_ALERT,
and then get the location manager service by calling the getSystemService()
method of the current activity we have written the code in. We then set some
random values for latitude, longitude, radius, and expiration to infinity. It should be
remembered that these values can be set to any depending on the type of application
you are creating.

Now comes our most important part of creating the proximity alert. We create the
intent, and we pass our own alert name in the constructor to create our own intent.
Then, we create an object of PendingIntent by getting a broadcast intent using the
getBroadcast() method. Finally, we are adding the proximity alert in our location
manager service by calling the addProximityAlert() method.

Intents for Mobile Components

[140]

This code snippet has only created the alert and set initial values for it. Now, assume
that we have completely finished our distance app. So, whenever our device passes
the boundary that we specified in the app or gets inside it, LocationManager will
detect that we have crossed the boundary, and it will fire an intent having an extra
value of LocationManager.KEY_PROXIMITY_ENTERING. This value is a Boolean value.
If it's value is true it means we have entered into the boundary, and if it is false, we
have left the boundary. To receive this intent, we will create a broadcast receiver and
perform the action. The following code snippet shows the sample implementation of
the receiver:

public class ProximityAlertReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Boolean isEntered = intent.getBooleanExtra(
 LocationManager.KEY_PROXIMITY_ENTERING, false);
 if (isEntered)
 Toast.makeText(context, "Device has Entered!",
 Toast.LENGTH_SHORT).show();
 else
 Toast.makeText(context, "Device has Left!",
 Toast.LENGTH_SHORT).show();
 }
}

In the code, you can see that we are getting the extra value of LocationManager.
KEY_PROXIMITY_ENTERING using the getBooleanExtra() method. We compare the
value and display the toast accordingly. It was quite easy as you can see. But, like all
the receivers, this receiver will not work until it is registered in AndroidManifest.
xml or via code in Java. The java code for registering the receiver is as follows:

There is nothing to explain here except that we are calling the registerReceiver()
method of the Activity class. We will discuss IntentFilter in more detail in the
following chapters.

In a nutshell, intents play a minor role in getting proximity alerts. Intents are only
used to tell the Android OS about the type of proximity alert that has been added,
when it is fired, and what information should be included in it so that the developers
can use it in their apps.

Chapter 4

[141]

Summary
In this chapter, we discussed the common mobile components found in almost
all Android phones. These components include the Wi-Fi component, Bluetooth,
Cellular, Global Positioning System, geomagnetic field, motion sensors, position
sensors, and environmental sensors. Then, we discussed the role of intents with
these components. To explain that role in more detail, we used intents for Bluetooth
communication, turning Bluetooth on/off, making a device discoverable, turning
Wi-Fi turn on/off, and opening Wi-Fi settings. We also saw how we can take
pictures, record videos, do speech recognition, and text-to-speech conversion via
intents. In the end, we saw how we can use the proximity sensor through intents.

In the next chapter, we will see how intents can be used in transferring data
between activities, services, and other mobile components.

Data Transfer Using Intents
Until now, we have learned the classification of intents, their uses in Android
Components, and a step-by-step guide to implement them in your Android
application. This is the right time to look at the most important part of an Android
application. It is the necessity of an Android application to transfer data from one
activity to another (whether implicit or explicit). The secure transfer and retrieval of
data is the prime focus of this chapter.

This chapter includes the following topics:

• The need to transfer data
• Data transfer between activities – an INTENTed way
• Data transfer in explicit intents
• Methods of explicit data transferring using intents
• Data transfer in implicit intents

Finding the need to transfer data
Technically, an Android application is a combination of different activities. These
activities consist of layouts, views, and some content. These contents are mostly not
dynamic nor are they predecided. For example, if an Android layout consists of a
button, the text in that button can be static or predefined. Similarly, if there is any
text field or any List View present in an activity, it mostly consists of dynamic data
that comes from any server or any other means.

In these kinds of situations, we need some dynamic data that our application can
fetch from the server (or somewhere else), and activities to transfer it between one
another. This is the scenario in which the transfer of data takes place. Furthermore,
the transfer of data is highly probable, where one activity performs some
manipulation on the data and the other activity needs to show it in its Views.

Data Transfer Using Intents

[144]

Taking a simple example
In order to have a better understanding of the picture, let's take a theoretical example
of why we need to perform data transfer between activities. The Reader application
can be a good example to understand the reasons for data transfer.

The Reader application is an application in which there are different kinds of news
present in a List View, and tapping them leads to the description page where the
whole news is displayed with images and other texts. Let's have a step-by-step look
at the flow of this application (taking the TechCrunch Android app as an example).
The application will start with a splash screen, describing to the reader or the
developer who made the app.

The following screenshot is the splash screen; the application will search for an Internet
connection in order to display the feeds to the app's screen. Once the data is locally
fetched, it parses it and places it inside the List View. Please note that the following
screenshot of the List View is basically the custom List View that is not directly
obtained by a built-in layout of Android. We need to make a custom layout for this
and then populate it in the normal List View. For this, adapters are used (refer to the
Internet in order to find how the basic List Views are created in Android).

Activity of the Reader app in which the news are listed in the List View.

Now, there are two possibilities of data transfer that are described as follows:

• Whole data including the description is fetched

Chapter 5

[145]

• Once the feed on the List View is clicked on, the description of that feed is
fetched at that particular moment

Activity showing the description of the story as it was tapped in the preceding Activity

No matter what the case is, this step will require the data to be transferred from the
first activity to the next activity. If the scenario is the first one, the description data
that was parsed by the first activity will be delivered to the second activity in order
to populate it in the View. Otherwise, in case of the second scenario, it will pass some
URL to the second activity from where it can fetch the description of the news. Refer
to the preceding screenshot.

Data transfer between activities – an
INTENTed way
When we talk about data transfer between activities, we need to keep in mind that
the only way to interact and manage the flow of the activities is through intents.
In the previous chapter, we had a thorough discussion on how to move from one
activity to the other using intents. Here, we will see how we can transfer data along
with those intents and how to securely catch the transferred data in the destination
activity.

Data Transfer Using Intents

[146]

Data transfer in explicit intents
You can begin to understand data transfer in intents by noticing its use in explicit
intents. Recalling the definition of explicit intents, they are intents that direct towards
another activity (within that application or another application). Explicit intents
are usually directed to activities within the same application, but based on the
application requirement, they can also be directed to activities belonging to other
applications (for example, a device camera).

Methods of data transfer between
activities
In this section, we will get started with the various data transfer techniques that are
used in an Android application. The techniques have their own pros and cons. There
are a total of three methods to transfer data explicitly from one activity to another. We
will see them shortly along with their examples. The three methods are as follows:

• Data transfer using putExtras()
• Data transfer using Parcelable (only applicable to custom data objects)
• Data transfer using Serializable (only applicable to custom data objects)

Data transfer using putExtras()
In Android, the simplest way to transfer data from one activity to another is by
sending it through extras. The intent extras support primitive data types to send the
data. This means that you can send the data in the form of different data types such
as String, Boolean, Integer, or Float.

Theoretically explaining, intent extras can be found inside the Intent class in the
Android API. Developers need to make an object of the Intent class. This would
be the same object that will be used in order to navigate through the activity. With
this object, there will be multiple polymorphs of the putExtras() function. These
polymorphs take different data types (as described earlier) as arguments and load
the intent object with that data. With this, the object is finalized. Now, calling the
startActivity() method from the Activity class starts the execution of the intent.

Chapter 5

[147]

That was one side of the picture. This intent takes the flow of application towards
the second activity; it's an activity of the same application in the case of an explicit
calling, or it can be some other application in the case of an implicit intent. This new
activity will receive the intent object and extract the data from it. From this, there is
another method referred to as getExtras() that is present in the Intent class. As a
result, it will give all the extras that were added by the source activity in the intent
object, and using this, we can easily extract the desired data present in the extras of
the intent.

This theoretical explanation may not make you understand each and everything of
the data transfer using intent. We will learn more about data transfer using intents
through examples in the next section, in which a step-by-step explanation of the data
transfer will be given.

Implementation of putExtras()
In this section, we will study a step-by-step implementation of how to transfer data
from one activity to another with the help of extras. As you may have previously
read, this method is the simplest of all when considering data transferring between
activities. In order to understand the working and implementation of this method,
you must understand the activity life cycle, handling of different activities, and the
implementation of intents in order to navigate between activities as prerequisites.

In order to begin with the first example, the first step is to make an Android project.
The steps for making a project in the Android Studio are described in the previous
chapters; you may refer to them if you want. You will end up making a project with
various numbers of files and folders (as it comes by default with the Android project).

Implement a readymade tutorial
For the sake of simplicity, we are using the name Activity1 for the source activity
and Activity2 for the destination activity. Now, follow the given steps in order to
successfully implement the example.

1. First, create a new Android project or choose any existing project in which
you want to implement the data transfer with intents. Implement the
following code inside your newly created project in their respective classes:
//---
//Activity1 Class

public class Activity1 extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

Data Transfer Using Intents

[148]

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_first);

 final EditText editTextFieldOne = (EditText) findViewById(
 R.id.edittext1);
 final EditText editTextFieldTwo = (EditText) findViewById(
 R.id.edittext2);
 final EditText editTextFieldThree = (EditText) findViewById(
 R.id.edittext3);

 Button transferButton = (Button) findViewById(R.id.button);

 String valueOne = editTextFieldOne.getText().toString();
 String valueTwo = editTextFieldTwo.getText().toString();
 String valueThree = editTextFieldThree.getText().toString();

 transferButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub

 Intent intent = new Intent(Activity1.this,
 Activity2.class);
 intent.putExtra("EDITTEXT_ONE_VALUE",valueOne);
 intent.putExtra("EDITTEXT_TWO_VALUE",valueTwo);
 intent.putExtra("EDITTEXT_THREE_VALUE",valueThree);
 Activity1.this.startActivity(intent);

 }
 });

 }
}

//--
//Activity2.java

public class Activity2 extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main_second);

 Intent intent = getIntent();

 String valueOne = intent.getExtras().getStringKey(
 "EDITTEXT_ONE_VALUE");

Chapter 5

[149]

 String valueTwo = intent.getExtras().getStringKey(
 "EDITTEXT_TWO_VALUE");
 String valueThree = intent.getExtras().getStringKey(
 "EDITTEXT_THREE_VALUE");

 TextView textViewOne = (TextView) findViewbyId(
 R.id.textView1);
 TextView textViewTwo = (TextView) findViewbyId(
 R.id.textView2);
 TextView textViewThree = (TextView) findViewbyId(
 R.id.textView3);

 textViewOne.setText(valueOne);
 textViewTwo.setText(valueTwo);
 textViewThree.setText(valueThree);

 }
}

//--
//main_first.xml File

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".Activity1" >

 <EditText
 android:id="@+id/edittext1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView1"
 android:layout_alignBottom="@+id/textView1"
 android:layout_alignParentRight="true"
 android:layout_toRightOf="@+id/textView1"
 android:ems="10"
 android:inputType="textPersonName" >

 <requestFocus />
 </EditText>

 <EditText
 android:id="@+id/edittext2"

Data Transfer Using Intents

[150]

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView2"
 android:layout_alignBottom="@+id/textView2"
 android:layout_alignLeft="@+id/edittext_enter_name"
 android:layout_alignRight="@+id/edittext_enter_name"
 android:ems="10" />

 <EditText
 android:id="@+id/edittext3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/edittext_enter_sirname"
 android:layout_alignRight="@+id/edittext_enter_sirname"
 android:layout_alignTop="@+id/textView3"
 android:ems="10" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignRight="@+id/edittext_enter_address"
 android:layout_below="@+id/textView3"
 android:layout_marginRight="10dp"
 android:layout_marginTop="33dp"
 android:text="@string/enter_button_text" />

</RelativeLayout>

//--
//main_second.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/null_string"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"

Chapter 5

[151]

 android:layout_height="wrap_content"
 android:text="@string/null_string"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/null_string"
 android:textAppearance="?android:attr/textAppearanceMedium" />

</LinearLayout>

//--
//AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.app.application"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.app.application.Activity1"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.app.application.Activity2"
 android:label="@string/app_name" >
 </activity>
 </application>

</manifest>

Data Transfer Using Intents

[152]

2. Run the project and the following screenshot will appear on the screen:

The Acivity1.java layout for taking input from the user for PutExtra()

3. Fill the EditText fields and tap the button to transfer the data. The
Activity2 screen will appear with the form data that was entered in
the Activity1 screen:

The view of the Activity2.java file, which shows that the data is successfully caught and showed.

Chapter 5

[153]

Understanding the code
The previous subsection, Implement a readymade tutorial, consists of five parts that
we will see in detail in the following sections. Like every example presented in
this book, we have described this example with respect to a new project in order to
make it flexible and easy to understand. You can easily put this example inside your
own application; it will not take any extra effort to do it once you have a proper
understanding of the intent extras.

The Activity1.java class
Getting started, this is the source activity that will initiate the intent in order to
navigate to the next activity.

This is a simple activity that is built when the new Android project is created.
Recalling the basics, it will have an onCreate() method that will be executed in
the first place when the activity is created by Android. Once the activity is created,
the layout that is defined in the main_first.xml file in the Layout folder will be
rendered on the screen.

Now, it is time to get the objects of all the EditText fields that are placed in the
layout file. For this, we will add the following lines in the code which will find
the View by ID and return the object:

EditText editTextFieldOne = (EditText) findViewById(
 R.id.edittext1);

It is good to use meaningful names for your objects.
Since this book is meant for beginners who don't
normally work on huge applications, the object names
are given to make the code as simple as possible.

The findViewById() method belongs to the Activity class, whose purpose is to
find the particular View that can be the child of any layout and return the object.
Similarly, we will get the other two EditText objects by writing the following lines:

EditText editTextFieldTwo = (EditText) findViewById(
 R.id.edittext2);
EditText editTextFieldThree = (EditText) findViewById(
 R.id.edittext3);

Data Transfer Using Intents

[154]

At this moment, we have the objects of all the input fields that are present in the
Activity1.java class. The next step is to implement the functionality of the button
that will take the input from these fields, add them into the object of intent, and send
it through.

The return type of the findViewById() method is an object of the View
class. So, while using findViewbyId(), we need to cast the returning
object into a particular class type. For understanding this, you can see that
the View is being casted to EditText in the preceding code.

Now, the next step is to implement the OnClickListener() method on the button.
For this, the first step is to get the object of the button using a method similar to the
one used in the input fields.

Button transferButton = (Button) findViewById(R.id.button);

Once we get the button object, we will implement the setOnClickListener()
method with an argument, OnClickListener() and its implementation:

transferButton.setOnClickListener(new OnClickListener(){});

As you can see in the preceding line of code, we have attached an
OnClickListener() object with transferButton along with its own
setOnClickListener method. Keep in mind that it is still a raw method.
It is now time to override the onClick() method.

In the preceding code, you can see that the definition of the onClick() method is
given, and inside this method, we will get the data from the EditText fields and put
it in the intent extras. As described in the code, the data is fetched from the EditText
field by calling these lines on every EditText object:

String valueOne = editTextFieldOne.getText().toString();

This will get the current value present in the input field. We get the values of all
the EditText fields and store them in valueOne, valueTwo, and valueThree
consecutively.

Now, as we have the data that is to be put inside the intent object, we make an
object of the intent using the previously described method. We set the source and
destination activities (that is, Activity1.java as the source and Activity2.java
as the destination). The next step is to pass the values inside the code. The Intent.
putExtra(String name, String data) method is the most suitable one to put the
string value in extras.

Chapter 5

[155]

The arguments of putExtra() is somewhat like the key-value pairs. The first
argument, name, is basically the key by which it will be identified once it reaches
the destination activity. The other one is simply the value that is to be transferred in
the extra associated with that key. So, by following line, we put the string inside an
intent object with a key:

intent.putExtra("EDITTEXT_ONE_VALUE",valueOne);

Now that the value of the first EditText field is placed inside the intent object with
the key of EDITTEXT_ONE_VALUE, we repeat this information for the other two values.
Once the values are loaded in the intent object, we call the startActivity() method
to execute the intent.

The Activity2.java class
This is the destination class in which the incoming intent will be handled. This class
contains a simple layout file with three TextView Views in order to show the values
coming from the previous activity. In the onCreate() method the intent is received
by the getIntent()method. This method belongs to the Activity class and is used
to get the intent which will be navigating to it.

There is a method inside the Intent class which is used to get all extras that are
coming with that particular intent object. The following method is used to identify
a particular set of data coming with the described key:

String valueOne = intent.getExtras().getStringKey(
 "EDITTEXT_ONE_VALUE");

The value associated with the key, EDITTEXT_ONE_VALUE, will be extracted from the
intent object, and saved into the valueOne string. Similarly, all the data will be taken
out of the intent object and saved in this destination class.

Once the data is saved in the variables, it is time to get the objects of the TextView
Views and set these values to it. As previously explained, the TextView Views are
obtained using the findViewById() method.

textViewOne.setText(valueOne);

The setText() method is used to set the text in TextView, and hence, it is saved by
the value that is coming from the first activity. This is how the destination activity
will get the data from the source activity using the putExtras() feature.

Data Transfer Using Intents

[156]

The main_first.xml file
The main_first.xml file is a simple XML file that contains three EditText fields used
by the activity to take input from. Furthermore, it also has a button that is used to
trigger the event in order to navigate to the next activity. The IDs for these Views are
given as edittext1, edittext2, edittext3, and button1 respectively.

You can make your desired layout file by dragging and dropping it in
the GUI. The XML code of the layout file is simple, and explained in
the previous chapters as well. But, keep in mind that drag-and-drop is
not recommended especially for the new Android developers; so, the best
way to implement it is via an XML file.

The main_second.xml file
This is the layout file for the second activity that is actually the destination and the
data-receiving activity. The layout consists of the three TextView Views that are used
to show valueOne, valueTwo, and valueThree as sent from Activity1, that is, the
source activity.

The AndroidManifest.xml file
The AndroidManifest.xml file is the fundamental part of an Android application.
It keeps track of the whole structure of the application. It contains all the activities,
receivers, permissions, version-related issues, minimum and maximum SDK,
and many other things. As we have two activities in our project, Activity1 and
Activity2, the AndroidManifest.xml file has these activities as also different things
such as the application version name and the version code in the XML tags.

No special permission is required to send the data from one activity
to another, but in case of data writing and reading on the SD Card or
internal memory, we do need certain permissions to fulfill the task.

Future considerations
Sending data through parcels is one of the basic techniques that is used by Android
intents. It has many more improvements and efficient enhancements that we will
further study in the following methods of data transferring. We should also keep in
mind that this method is restricted to certain limited data types (given in the next
section). In order to transfer the custom object from one activity to another, we need
to use the next method of data transferring.

Chapter 5

[157]

Extras supported data types
Intent's putExtra() method supports various data types that can be transferred
to the destination activity. In the previous example, we used only one data type
(String), but along with that, we can add various other data types. The methods are
self-explanatory apart from putParcelable() and putSerializable(), which are
the next major topics of this chapter. Take a look at the following screenshot showing
the various data types:

Different data types that can be added inside the putExtras() intent

Data Transfer Using Intents

[158]

The concept of Android Bundles
The Android data Bundle is a bundle in which various values can be added and sent
together. For example, if we want to send multiple values via putExtra(), we create
a Bundle, add all of those values inside that Bundle, and then send this Bundle with
the intent.putExtras() method.

You can provide data directly to the intent by adding all the values
individually to the intent, or the second method is to do it by adding
all the values in the Bundle and sending it through the intent.

We will now take a look at how it is possible to provide data to the Bundle and send
this Bundle to the next activity, by taking the previous activity and modifying it a
little. While sending data from Activity1, instead of adding different values directly
to the intent, we do the following:

As you see in the code, valueOne, valueTwo, and valueThree are added inside
the Bundle using the newBundle.putString() function with a unanimous key for
each data value. Now, this Bundle is added inside the intent using the intent.
putExtras(newBundle) function, and then we call the startActivity() function
as it was called in the previous example.

On the destination activity, we can directly catch the data by extracting the data
bundle first using the getIntent().getExtras() function. This will return the
Bundle object, and by referencing that specific key (that we added in the source
activity), we can extract the data using following function for all the three values:

Bundle.getString("EDITTEXT_ONE_VALUE","DEFAULT_VALUE");

The second parameter in Bundle.getString(key, defaultValue)
is the default value that will be returned if the value of the specified key
is not found.

Chapter 5

[159]

Take a look at the following screenshot. You will see the different data types that can
be simultaneously added into a Bundle:

Different functions that are used to add different data types inside a Bundle

Data Transfer Using Intents

[160]

Data transfer using Parcelable
The second and the most important method that is used to transfer data between
activities is Parcelable(). The previous method has a restriction according to
which we can only send the primitive data types such as Strings, Integers,
Doubles, and Floats. In a practical scenario, when we work on projects, there
are custom objects that we need to transfer between activities. These custom data
objects hold information according to the need of the application. Hence, it should
be transferred accordingly.

As it is now clear that the previous version is for the data transfer of basic data types
only, Parcelable can be called as the subtype of the previous type.

In this method, the data class is inherited by implementing the Parcelable class
interface in order to make its object compatible with the putExtra() intent method.
We also need to override some of the methods from the Parcelable class interface in
order to give it the functionality. Once it is done, the object of that class can be placed
inside the intent or the Bundle to navigate it through the activities.

Implementation of Parcelable
In this section, we will learn how to implement Parcelable on a data class and then
how to transfer that object between activities. There are two scenarios for this:

• Only one object is being sent from the source class to the destination class
• An array of the custom objects is being sent from the source class to the

destination class

Keeping the tradition, we will start by creating a new Android project. In the given
example, we call it the Parcel application. This project has Activity1.java as the
default activity that will be created when the project is newly created. It will also
behave as the source activity. The second activity will be Activity2.java that will
act as the destination activity that will receive the parcel.

Implement a readymade tutorial
Once we are done with making a new project, insert this code inside your application
This will affect Activity1.java, Activity2.java, layout_activity1.xml,
layout_activity2.xml, and AndroidManifest.xml, and introduce another class
named Person.java.

Chapter 5

[161]

//--
//The Activity1 Class

public class Activity1 extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.layout_activity1);

 final EditText nameText = (EditText) findViewById(
 R.id.edittext_enter_name);
 final EditText sirnameText = (EditText) findViewById(
 R.id.edittext_enter_sirname);
 final EditText addressText = (EditText) findViewById(
 R.id.edittext_enter_address);

 Button enterButton = (Button) findViewById(R.id.button1);
 final Person firstPerson = new Person();
 enterButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub
 firstPerson.setFirstName(nameText.getText().toString());
 firstPerson.setSirName(sirnameText.getText().toString());
 firstPerson.setAddress(addressText.getText().toString());

 Intent parcelIntent = new Intent(Activity1.this,
 Activity2.class);
 parcelIntent.putExtra("FIRST_PERSON_DATA", firstPerson);
 Activity1.this.startActivity(parcelIntent);

 }
 });

 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it
 //is present.

 getMenuInflater().inflate(R.menu.activity1, menu);
 return true;
 }

}

//--

Data Transfer Using Intents

[162]

//The MySecondActivity Class

public class Activity2 extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.layout_activity1);

 Person incomingPersonObj = getIntent().getParcelableExtra(
 "FIRST_PERSON_DATA");
 TextView nameTextView= (TextView) findViewById(
 R.id.person_name_text);
 TextView sirnameTextView= (TextView) findViewById(
 R.id.person_sirname_text);
 TextView addressTextView= (TextView) findViewById(
 R.id.person_address_text);

 nameTextView.setText(incomingPersonObj.getFirstName());
 sirnameTextView.setText(incomingPersonObj.getSirName());
 addressTextView.setText(incomingPersonObj.getAddress());

 }
}

//--
//The layout_activity1.xml File

<RelativeLayout
 xmlns:android=http://schemas.android.com/apk/res/android
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".Activity1" >

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:layout_marginTop="20dp"
 android:text="@string/name_text"

Chapter 5

[163]

 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText
 android:id="@+id/edittext_enter_name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView1"
 android:layout_alignBottom="@+id/textView1"
 android:layout_alignParentRight="true"
 android:layout_toRightOf="@+id/textView1"
 android:ems="10"
 android:inputType="textPersonName" >

 <requestFocus />
 </EditText>

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/edittext_enter_name"
 android:layout_marginTop="20dp"
 android:layout_toLeftOf="@+id/edittext_enter_sirname"
 android:text="@string/sirname_text"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <EditText
 android:id="@+id/edittext_enter_sirname"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView2"
 android:layout_alignBottom="@+id/textView2"
 android:layout_alignLeft="@+id/edittext_enter_name"
 android:layout_alignRight="@+id/edittext_enter_name"
 android:ems="10" />

 <EditText
 android:id="@+id/edittext_enter_address"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/edittext_enter_sirname"
 android:layout_alignRight="@+id/edittext_enter_sirname"
 android:layout_alignTop="@+id/textView3"
 android:ems="10" />

 <TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Data Transfer Using Intents

[164]

 android:layout_below="@+id/edittext_enter_sirname"
 android:layout_marginTop="20dp"
 android:layout_toLeftOf="@+id/edittext_enter_address"
 android:text="@string/address_text"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignRight="@+id/edittext_enter_address"
 android:layout_below="@+id/textView3"
 android:layout_marginRight="10dp"
 android:layout_marginTop="33dp"
 android:text="@string/enter_button_text" />

</RelativeLayout>

//--
//The activity_two_layout.xml File

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android=http://schemas.android.com/apk/res/android
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/person_name_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/null_string"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/person_sirname_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/null_string"
 android:textAppearance="?android:attr/textAppearanceMedium" />

 <TextView
 android:id="@+id/person_address_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/null_string"

Chapter 5

[165]

 android:textAppearance="?android:attr/textAppearanceMedium" />

</LinearLayout>

//--
//The Person.java File

public class Person implements Parcelable {

 private String firstName;
 private String sirName;
 private String address;

 public Person(){
 firstName = null;
 sirName = null;
 address = null;
 }
 public Person(String fName, String sName, String add) {
 firstName = fName;
 sirName = sName;
 address = add;
 }

 public Person(Parcel in) {
 firstName = in.readString();
 sirName = in.readString();
 address = in.readString();
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getSirName() {
 return sirName;
 }

 public void setSirName(String sirName) {
 this.sirName = sirName;
 }

 public String getAddress() {
 return address;

Data Transfer Using Intents

[166]

 }

 public void setAddress(String address) {
 this.address = address;
 }

 @Override
 public int describeContents() {
 // TODO Auto-generated method stub
 return 0;
 }

 @Override
 public void writeToParcel(Parcel dest, int flags) {
 // TODO Auto-generated method stub
 dest.writeString(firstName);
 dest.writeString(sirName);
 dest.writeString(address);
 }

 public static final Parcelable.Creator<Person> CREATOR =
 new Parcelable.Creator<Person>() {

 public Person createFromParcel(Parcel in) {
 return new Person(in);
 }

 public Person[] newArray(int size) {
 return new Person[size];
 }
 };
}

//--
//The AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.app.parcelapplication"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <application
 android:allowBackup="true"

Chapter 5

[167]

 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.app.parcelapplication.Activity1"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.app.parcelapplication.Activity2"
 android:label="@string/app_name" >
 </activity>
 </application>

</manifest>

Run this application and it will bring the Activity1 output screen on your device.
Take a look at the following screenshot to see how the application will appear on the
Android screen:

Activity1 with three EditText fields in order to take the input from the user,
and a button to transfer the data to the next activity

Data Transfer Using Intents

[168]

When you are on the first screen, enter the data and press the button to migrate to
the next activity that will show the entered data. The screen will look as follows:

Activity2 showing the transferred data from Activity1 in the form of Parcelable

Understanding the Parcelable implementation
In order to understand the working of this example, we need to first understand
how Parcelable works. In Android, there is a need to transfer custom data (that is,
custom objects and arrays of custom objects) from one activity to another. Normally,
the custom data classes are not compatible with the extras; so, we implement the
Parcelable interface to that class.

What Parcelable does with the custom data class is that it develops compatibility
with extras. The object or objects of the class implemented using Parcelable can be
added easily inside the putExtra() method of the intent. Similarly, it can also be
part of the Bundle object that can later be transferred via intents.

We can now go through the explanation of the preceding code.

The Activity1.java class
This is the source class from which the Parcelable object will start to migrate. It
starts with the implementation of the onCreate() method. In this method, after
setting the main View, we found Views by their IDs and brought their objects to the
activity. The Views include three EditText fields and a button. They are used to take
inputs from the user and trigger the event in order to start transferring the data to
the next activity.

Chapter 5

[169]

Inside the button.setOnClickListener() method, we pass a new
OnClickListener() object inside which the onClick() method is overridden. We
want the intent to start once the button is clicked; that is why we are implementing
the intent and taking the data from the fields inside the onClick() method.

Now, we don't want the method to directly transfer the data to the intent. That is
why we are making an object of the Person.java class that will hold the values
obtained from the fields. We name the object as firstPerson. In order to set the
values to this object, we implement the following line of code:

firstPerson.setFirstName(nameText.getText().toString());

The preceding line will set the first name of that object to the value that is obtained
from what is written inside the first EditText field. The first EditText field,
nameText, holds the value of the first name. So, using the nameText.getText()
method, it will return the Editable object that can be easily converted by calling the
toString() method on it.

The same method will be repeated in order to get the value from the second and the
third EditText fields. They will be set inside the same Person object. You can see
this being done using the following lines of code:

firstPerson.setSirName(sirNameText.getText().toString());.
firstPerson.setAddress(addressText.getText().toString());.

At this stage, the firstPerson object is ready to be delivered from Activity1
to Activity2. As the object is inherited by implementing Parcelable, we can
directly add it inside the extra. We will learn how to implement Parcelable in the
forthcoming section. Here, we will see how to add Parcelable inside the intent
object.

Make an object of the Intent class and give it the source and destination, that is, the
source context and .class reference of the destination class in order to let it know
from where to initiate this intent and where to end. We can add the Parcelable by
calling parcelIntent.putExtra(). See the following line of code:

parcelIntent.putExtra("FIRST_PERSON_DATA", firstPerson);

Using this, we can easily add the custom Parcelable data object inside the intent
object, and in the next line, simply call the startActivity() function in order to
start the intent.

Data Transfer Using Intents

[170]

The Activity2.java class
In this class, we will learn how to catch the transmitted Parcelable object in
the destination class. For this, first of all, start with the normal procedure of
implementing the onCreate() method of the activity. Set the Content View and
bring in three text Views by finding the IDs from the layout. These three text views
will show the received values of the first activity's object.

The getIntent() method will receive the intent object that was transmitted by the
Activity1.java class that holds the data. Once the object is obtained, we can get
its extras by calling the getExtras() method that will return the Bundle that holds
the data. Call the getParcelable() function on that Bundle with the key in order
to retrieve the object. This object is now taken by a new object of the Person class
named incomingPersonObj.

Now, we have the same object that was initiated from the source class at the time of
calling the intent from startActivity(). We will now set the text of the text views
by calling the following lines of code:

nameTextView.setText(incomingPersonObj.getFirstName());
sirnameTextView.setText(incomingPersonObj.getSirName());
addressTextView.setText(incomingPersonObj.getAddress());

The incomingPersonObj.getFirstname() method will get the first name of the
person from incomingPersonObj and set its value directly to nameTextView when
the first method is called. The procedure is the same for the sirnameTextView and
addressTextView objects.

The layout_activity1.xml file
This is the layout file that contains the Views of Activity1.java. As mentioned
in the code, it contains three EditText fields with the IDs: edittext_enter_name,
edittext_enter_sirname, and edittext_enter_address. Apart from that there
are also three text Views which are used to simply indicate which EditText field
contains which value.

Every activity requires an event trigger that is used to start any process. In this
layout, the button will do the task; hence, it is also placed below the EditText fields.

The layout_activity2.xml file
This layout file creates the layout of Activity2.java that is the destination activity.
This activity is responsible for extracting the data and showing it in its layout. The
layout consists of three TextView Views whose IDs are person_name_text, person_
sirname_text, and person_address_text. These IDs are used to bring these Views
to the code (as you can see in the second part of the code).

Chapter 5

[171]

The Person.java class
The Person class is basically the data-holder class whose objects will be created
anywhere in the application. This is also called the bean class that is used to hold the
data coming from servers in JSON, XML, or any other format. In our Person class, it
has three fields. All fields are private with their respective public getters and setters.
The firstName, sirName, and address objects represent the kind of information
they will hold. The Activity1.java class makes an object of this class, takes the
data from the EditText fields, and adds it inside the object.

This class is inherited by implementing the Parcelable interface. This Parcelable
interface needs some important things to be implemented. First of all, we will
implement a constructor of this class that will take Parcel as an argument. This
constructor will be used from inside this class while implementing the Parcelable
interface. The in.readString() method is used to read the value from the parcel.

In order to make this technique work, read the parcel in the same
order in which it was written in the writeToParcel() method.
See the order of writing the parcel in the code. It is firstName,
sirName, and address. The same thing can be observed in the
constructor.

The writeToParcel() method is overridden in order to produce objects of the same
class by Parcelable so that it can be used. Parcelable.Creator<Person> is used
to create instances of that class as used by Parcel; it uses the writeToParcel()
method to do the job.

Once the object is prepared, it is then forwarded to the next activity and caught by the
Activity2.java class as it is explained in the first and second parts of the given code.

The AndroidManifest.xml file
The importance of this file cannot be neglected when you are talking about
developing an Android application. We need to add both the activities in this file in
order to get them recognized by the Android application. As you can see in the file,
both activities have their own tags in the manifest file along with their parameters
and intent filters.

Future Consideration
The preceding method of implementing Parcelable is for transferring only one
Parcelable object inside the extras or a Bundle. Similarly, we can transfer an
Array or ArrayList of the custom data beans by implementing Parcelable.

Data Transfer Using Intents

[172]

Data transfer using Serializable
The third type of data transfer method that is used in intents is Serializable. Many
Java developers are already familiar with the term Serializable as it was used
earlier, way before the introduction of Android. The biggest advantage of Android is
that its development takes place on Java in SDK, and on C++ it's in NDK. This makes
it extremely lenient and powerful.

The same is the case with the functionality; Java.io.Serializable is purely a
function of Java that can be used as it is in Android development. The putExtras()
intent has an option of transferring the Java-serialized object from one activity
to another without any specific amount of effort. We start this section with the
introduction of Serializable for non-Java users.

What is Serializable?
Java comes with a mechanism in which an object can be represented in a byte array.
It's not just the data that is serialized, but the information about the object type
and what kind of data is placed inside the object can also be found in it.

These serialized objects can be written in the file and stored in any external storage
(such as an SD Card). The process of remaking the object is called deserialization
in which the information that is hidden inside the byte array can be gathered to
regenerate the object in the memory at the time of need.

The process of making and remaking any serialized object is completely JVM
independent. It means that the object can be serialized in Java and can be remade
in any language that also supports JVM with the same Java version as at the time
of making it serialized.

In Java, the ObjectOutputStream class is used to serialize the object while the
ObjectInputStream class is used to make an object when we are regenerating
from an existing serialized object. These classes contain the writeObject() and
readObject() methods respectively. The methods actually start the process of
serialization or deserialization.

Chapter 5

[173]

An example of Serializable
In this section, we will see how Serializable is done in Java. This is the inside
mechanism of how Android handles these objects. This example contains two
methods to perform the tasks of serialization and deserialization.

First of all, the method for serialization is as follows:

The Person class implements the Serializable interface. This will enable the object
to be recognized by the ObjectOutputStream class's object. First of all, we will create
a serialized object as shown in the code by setting the name and address.

Once the object is created, it is ready to be serialized. We start by making an object of
FileOutputStream that is used to write data into a file; the path that will refer to the
location where that serialized file exists is also added. Make an ObjectOutputStream
object that will have that file referenced by ObjectOutputStream out = new
ObjectOutputStream(fileOut). We are now ready to write the object by calling out.
writeObject(person). This will start to serialize the object (convert it to a byte array)
and add it to the given location. We will then close the out and fileOut objects.

Data Transfer Using Intents

[174]

Reading data from a serialized source is the next step that we will see. See the
following code:

The code is simple to understand because it contains almost the same steps as
those required for writing an object as a serialized file. We will create an instance
of the Person class to hold the remade object. The FileInputStream object is
created. It directs towards the location of the file that is to be deserialized. The
ObjectInputStream object is used to get that file path and make it ready to be
read. Using this, the in.readObject() method is called in order to deserialize
the object, and it will return the person object. Once it is done, we will close the
in and fileIn objects.

We now have the object of the deserialized Person class which can be in log or
printed on the console.

The method of writing serializable objects in Java and Android are
the same. While we are doing it in Android, we can write the file
in an SD Card. The file can later be fetched and deserialized by any
other activity or application.

Chapter 5

[175]

Implementation of Serializable
Until now, we have understood the main reasons of using Serializable. A quick
review is always good. The Serializable technique is used to convert an object
into byte array; we can use it to write into a file and store it as a .ser file on an SD
card or any other storage. This serialized object can then be read from any location
irrespective of the activity.

Serializable is the simplest method to perform data transfer. It is
also used for transferring one or more custom data objects from one
activity to another.
It is not necessary for serialized files to always have the .ser
extension.

Just like the other examples and implementations, we will start this by making a
fresh project. This project will have two activities; one will be the source and the
other will be the destination. The serialized object will start to navigate from one
activity, and the destination activity will catch it in order to extract data from it.
Android supports the native Java procedure of serializing and deserializing the
object; that is why, we don't have to do anything because the phenomenon of
serialization is handled by Android itself.

Passing Serializable – a tutorial
In this chapter, the implementation of Serializable will start by making a new
project. By default, this project will have one activity (let's say Activity1.java).
Implement the following steps that will lead you to make a project in which
Serializable is implemented. We will then see its explanation.

Starting with the first step, implement the following code in your newly created
Android project. This will introduce three new files:

• Activity2.java: This will act as the destination activity.
• layout_activity2.xml: This file will hold the layout for the

destination activity.
• Person.java: This is the serialized class that is responsible for

giving data beans' objects.

// ===
//The Activity1.java file

public class Activity1 extends Activity {

@Override

Data Transfer Using Intents

[176]

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.layout_activity1);

final EditText edittext1 = (EditText) findViewById(R.
id.editText1);
final EditText edittext2 = (EditText) findViewById(R.
id.editText2);
final EditText edittext3 = (EditText) findViewById(R.
id.editText3);

Button button = (Button) findViewById(R.id.button1);
button.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {
// TODO Auto-generated method stub
Person person = new Person();
person.setName(edittext1.getText().toString());
person.setSirname(edittext2.getText().toString());
person.setAddress(edittext3.getText().toString());

Intent intent = new Intent(Activity1.this, Activity2.class);
intent.putExtra("PERSON_OBJECT", person);
startActivity(intent);

}
});
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is
present.
getMenuInflater().inflate(R.menu.main, menu);
return true;
}

}

//==
//The Activity2.java file

public class Activity2 extends Activity {

Chapter 5

[177]

String TAG = "MainActivity2";
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.layout_activity2);
Person person = (Person) getIntent().getExtras().
getSerializable("PERSON_OBJECT");
TextView tView = (TextView) findViewById(R.id.data_text);

if(person != null){
tView.setText("Data Successfully catched");
Log.d(TAG, person.getName);
Log.d(TAG, person.getSirName);
Log.d(TAG, person.getAddress);

}else{
tView.setText("Data Object is null");
}
}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is
present.
getMenuInflater().inflate(R.menu.main, menu);
return true;
}

}

//==
//The Person.java

public class Person implements Serializable {
String name;
String sirname;
String address;

private static final long serialVersionUID = 1L;

public String getName() {
return name;

}

Data Transfer Using Intents

[178]

public void setName(String name) {
this.name = name;
}

public String getSirname() {
return sirname;
}

public void setSirname(String sirname) {
this.sirname = sirname;
}

public String getAddress() {
return address;
}

public void setAddress(String address) {
this.address = address;
}
}

//==
//The layout_activity1.xml file

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <EditText
 android:id="@+id/editText1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="26dp"
 android:ems="10" >

Chapter 5

[179]

 <requestFocus />
 </EditText>

 <EditText
 android:id="@+id/editText2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="41dp"
 android:ems="10" />

 <EditText
 android:id="@+id/editText3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="22dp"
 android:ems="10" />

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="153dp"
 android:text="Enter Data" />

</RelativeLayout>

//==
// The layout_activity2.xml file

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"

Data Transfer Using Intents

[180]

 tools:context=".MainActivity" >

 <TextView
 android:id="@+id/data_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

</RelativeLayout>

//==
//The AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.app.serializable"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.app.serializable.Activity1"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"
/>

 <category android:name="android.intent.category.
LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="com.app.serializable.Activity2"
 android:label="@string/app_name" >
 <intent-filter>

Chapter 5

[181]

 <action android:name="android.intent.action.MAIN"
/>

 <category android:name="android.intent.category.
DEFAULT" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Once you are done with the implementation, run the project. The following screen
will appear in which you need to add your data into the fields. Then click on the
Enter Data button:

Source activity asking data to be entered to send it through serializable

Data Transfer Using Intents

[182]

As soon as you press the Enter Data button, Activity2.java will be opened and the
following screen will be shown:

Activity2 showing that the data is successfully entered

Meanwhile, when you see the LogCat of the project, it will show the data that we
logged in the Activity2.java file. See the following screenshot:

LogCat showing the successful catching of data in Activity2

Walking through the Serializable code
In order to understand the working of Serializable in Android, you need to go
through the previously described details of Serializable in Java. We recommend
you to have a look at this if you haven't already done so. In this section, we will
rather focus on the explanation of the preceding example and how to implement it in
an Android project.

For the sake of simplicity, we have divided it into six parts. The explanation of each
part is given in detail.

Chapter 5

[183]

The Activity1.java class
The Activity1.java class will act as the source activity from which the intent will
initiate. It will also act as the source activity because it is responsible for creating and
sending the custom data object. Let's start with the very first part of the code, which
is the implementation of the Activity1.java class.

As it was mentioned earlier, this class is responsible for taking data inputs from the
user and making a data object out of it. Inside the onCreate() method, we will first
set a particular layout that holds the Views using the setContentView() method.
Once the layout is set, our next task is to bring those Views as objects in our Java
code, as shown in the following code. This will help us perform various tasks on
those objects that are bound on those Views in the layout.

final EditText edittext1 = (EditText) findViewById(
 R.id.editText1);
final EditText edittext2 = (EditText) findViewById(
 R.id.editText2);
final EditText edittext3 = (EditText) findViewById(
 R.id.editText3);

Calling the findViewById() function brings the particular View with which the
ID is associated. We cast it to the EditText class, and take it inside the edittext1,
edittext2, and edittext3 objects respectively.

These three fields will be used to take the input from the user, but we need an
event trigger that is used to navigate the user from one activity to another and is
also responsible for data transferring. For that, we implement a button in the layout,
and we will fetch it in the Java code by calling the findViewById() method:

Button button = (Button) findViewById(R.id.button1);

Now, we have all the necessary views in our Java code. Our next step is to
implement the button functionality, that is, what it will do when it is clicked on.
For that, we need to implement an OnClickListener interface on this button:

Button.setOnClickListener(new OnClickListener())

The preceding line of code is responsible for setting the click listener on the button. It
takes an argument of OnClickListener inside which we implement the onClick()
method. This onClick() method will be responsible for assigning a job to the button:

button.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 // TODO Auto-generated method stub
 }

 });

Data Transfer Using Intents

[184]

Once we are done with that, we will make an object of the Person class (the
Serializable object) and set its values to the one that is obtained by taking the
input from the EditText fields. Now, it has two parts; the first is to make a new
object of the Person class. We will do this by calling its constructor:

Person person = new Person();

In the second part, we will get the values of the EditText object by calling the
getText() method using that object. The getText() method returns an Editable
object; so, in order to convert it into string, we call the toString() method on it.
When you observe the code, we have performed all of these tasks together:

person.setName(edittext1.getText().toString())

First, the value from the edittext1 object is brought and converted to String.
Second, we are setting the person's name by its value. We will further set sirName
and address of the person object using a similar procedure:

person.setSirname(edittext2.getText().toString());
person.setAddress(edittext3.getText().toString());

Now, we have an object that is ready to be transferred. We will now make an object
of Intent and assign its source and destination activity's contexts. It will represent
which activity the intent is initiated and to which activity it will migrate. We will do
this by calling the constructor:

Intent intent = new Intent(Activity1.this, Activity2.class);

Once the intent object is made, we will add the data object inside this intent and
call the startActivity() method. In order to put the serialized object in the intent
object, we will call the intent.putExtra() method. The final step for this part is to
call the startActivity() method that will initiate the process of navigation.

The Activity2.java class
The destination activity's main purpose is to catch the intent, extract data object from
it, and show it in the Views. We start with the implementation of the onCreate()
method. First, the layout is set by calling the setContentView()method of the
Activity class. Now, it is time to catch the intent object that was initiated from the
Activity1.java class.

Just like the previous example in this chapter, we obtain the intent by calling the
getIntent() function. This function returns an intent object that is used to launch
this activity. Once the intent object is here, we call the getExtras() function. This
will return a Bundle that contains all the extras that were added on this intent
object by the sender activity.

Chapter 5

[185]

On this Bundle, we will now call the getSerializable() method that will bring the
Serializable object with the help of the key value that is given to it by the sender
activity. That key value should be identical to that of the sender activity; otherwise,
it will return a null value that may result in the crashing of your application due to
NullPointException.

The Person object is now in hand with all the values. Our next task is to log these
values in the LogCat so that we can verify it. A null-pointer check is implemented
in order to see whether or not the object is null. If it is not null, we log its values by
getting it from person.getName, person.getSirName and person.getAddress. If
the object is null, it will say Data Object is null, and hence, it will not crash.

Log.d(TAG, person.getName);

The Person.java class
When we talk about transferring data from Serializable, the Person.java class is
the most important class that we need to implement in order to do the transferring.
We made a Java class that consists of three private string variables. Each one of them
has its own getter and setter functions in order to get and set the value from outside
of the class. As in the previous method, we implemented our data bean class using
the Parcelable interface; here, we will implement our class with Serializable.

Once it is implemented, Android is ready to treat the objects of this class as
Serializable. Now, whenever it is added inside the intent object, Android will
transfer it as a byte array. This is a slow process as compared to Parcelable, but
its slowness is not noticeable when we do it on few objects. If we want to apply this
method where there are thousands of data objects, it may take some time.

The layout_activity1.xml file
The layout file belongs to the Activity1.java class. When you run the code
for the first time, the layout that will appear is described in this layout file.
In the Activity1.java class inside the onCreate() method, we used the
setContentView() method in order to paste the user interface.

In this XML file, there are four Views; three of them are EditText fields that are
placed to take input from the user in Activity1. Apart from that, there is a button
that is used to trigger an event after the data is completely filled in the fields. The IDs
given to them are the default ones that were used by the Activity1.java class to
fetch these Views inside the .java class, and edittext1, edittext2, and edittext3
are the IDs for their respective fields.

Data Transfer Using Intents

[186]

The layout_activity2.xml file
This layout file contains the Views for the Activity2.java class. It consists of
one TextView View that will tell us whether or not the values coming from the
Activity1.java class have been correctly fetched. This text View will then show
the Data successfully caught or Data object is null message in accordance with
the data object.

The AndroidManifest.xml file
The AndroidManifest.xml file consists of all the activities, permissions, SDK
information, version codes, and many other things. In short, it is used to keep all the
information regarding the applications. In this, we have our activities, Activity1.
java and Activity2.java classes along with their intent values. If you forgot to
mention any of your activity in this file, it will produce an exception in the LogCat
saying ClassNotFoundException.

Parcelable and Serializable are two methods used to transfer
data objects from one activity to another. Serializable is the
simplest one to implement while Parcelable is the fastest of all.
In case you need to perform a task based on fewer objects and you
want a simple solution, you should go for Serializable. But if
you want a perfect method irrespective of the complexity of the
implementation, you should go for Parcelable.

Data and the implicit intents
In the preceding examples, the need of data transfer was described within an
application. It is now very clear that any application is incomplete without the
transfer and manipulation of data. In this section of the chapter, we will see the
scenarios in which there is a need to transfer data to implicit intents.

Recalling the definition of implicit intents, they are those intents that normally do not
direct towards a specialized target rather they give the flow of the application to an
outside application, or in other words, they start another activity in order to perform
a certain task.

The outside applications require some data from your application in order to
perform tasks. We will now see the scenarios in which the data transfer in the form
of URI is passed to the implicit intent.

Chapter 5

[187]

Viewing a map
Google Map can be initiated from your own application with a particular place. It
means that you can send any location that you need to open in the Google Map via
implicit intents. Based on the latitude and longitude, you can open a particular point
in the Google Map. This latitude and longitude is given to the Google Map using a
URI that is a way to send data to implicit intents.

In order to perform this task, we need to write the following line of code:

There is a particular syntax according to which we need to write the URI string. In
order to open the map with a particular location, the URI string consists of the geo
keyword followed by the latitude and longitude (comma separated as shown in the
code). This URI value is given to the implicit intent with the android.content.
Intent.ACTION_VIEW action. This View action will take the URI and open the best
available application to perform the task. We will then start the intent by calling the
startActivity(intent) method.

Google Map View in an Android OS.

Data Transfer Using Intents

[188]

Opening a webpage
The implicit need of transferring data can also be categorized in case you want to
open a webpage, where you need to open the default web browser with a particular
loaded page . In this process, we need to transfer the URL that our application wants
to open in the browser. This URL is also passed with the help of the Uri.parse()
method.

Keep in mind that we are using the default web browser in this scenario.
It is not the web View that comes as a part of an Android application.

Implement the following lines of code in order to send and open the URL in the
default web browser:

As you can see in the code, there is a string that contains the value (URL) that is to be
opened in the web browser. This value is then entered in the constructor of the intent
in the Uri.parse() function with an Intent.ACTION_VIEW action. This will choose
the best available option to open the URL.

The view of a browser opening the Google.com webpage as called from our application

Chapter 5

[189]

Sending an e-mail
There is a probability that you need a function that needs to call the default Google
Mail application with a particular typed e-mail and a particular recipient in your
application. In this case, we again need to add the data, that is, the sender name,
e-mail body, and e-mail subject into the intent object and start the activity with that.

In order to perform this task, we need to write the following lines of code:

Make an Intent object with the Intent.ACTION_SEND action. Its work is to open
the intent with the sending option. Now, it's time to add the data inside this object.
The Android API caters to all the scenarios that can occur; hence, there are certain
constants defined in the Intent class that can be used to uniquely identify the
data by Android. Intent.EXTRA_EMAIL is the keyword constant that is used in the
putExtra() method while you are giving an e-mail address to the intent. Similarly,
there is a keyword constant for mentioning the subject in the extras; Intent.EXTRA_
SUBJECT and Intent.EXTRA_TEXT will be used to add the body of the e-mail.

Once we call the application with these parameters, it will open Gmail with
these parameters filled in the fields. It will look something similar to the
following screenshot:

A view of the Gmail application as called by our application

Data Transfer Using Intents

[190]

Making a call
If you want to initiate a call with a certain number inside your application, you
need to call the dialer intent. Using Intent.ACTION_DIAL, you can provoke the
dialer intent with a particular number given as the URI. Follow the given code to
implement the dialer functionality in your application:

The URI string contains the telephone number with which the dialer should initiate.
Once the dialer is opened, it will show the number as it is written, and the user can
now dial that number.

Miscellaneous scenarios
There are various other scenarios that can be included in this chapter (such as
calendar and time widgets), but due to limited space and constraints, we have taken
only four scenarios into consideration. The implementation of data transferring
between implicit intents is of extreme significance and can be done with great ease.

Summary
In this chapter, we had a detailed learning of how to play with data inside an
Android application. We learned how to transfer data from one activity to the other
using different methods and the simple transfer of default data structures using the
putExtra() function of Intent. The custom data objects or the array of custom data
objects can be sent to another activity using Parcelable and Serializable. We
also learned how to implement all these kinds of data-transferring methods in our
Android application. At the end of the chapter, we briefly covered four scenarios in
which the data is sent to other applications (using implicit intents) when calling them
through intents from our application.

This chapter is of great importance with respect to practical application development
because transferring data between activities or even outside the application is a
fundamental part of any Android application, and this can easily be done using
Android intents.

In the following chapters, we will study the use of intents for accessing the Android
features. We will also see how the intent filters work, what are the basics of the
broadcasting intents, and at the end, we will see the implementation of intent service
and pending intents.

Accessing Android Features
Using Intents

In the last chapter, we discussed data transfer using components. We saw how
to transfer data from one activity to the other, and why we should transfer data
between different components. We also discussed the various methods of data
transfer using intents. Android has a lot of components in the system, and intent
provides an easy interface to make those components communicate with each
other. In Chapter 4, Intents for Mobile Components, we discussed the different
Android components that use system hardware such as Wi-Fi, Bluetooth, camera,
microphone, and so on. We also discussed how these components can be utilized
using intents and how we can make many different applications using Android
hardware with no more than few lines of code.

Until now, we have only discussed hardware components and the role of intents
with those components. This chapter is all about Android software features and how
we can use those features in our applications using intents as the primary interface.
Android contains a vast collection of libraries and APIs, by which a developer can
use different Android features very easily. This chapter will walk us through the
common Android features, and we will also develop some example applications that
will show us the use of intents with those features.

This chapter includes the following topics:

• Features of Android OS
• Android features versus components
• Common Android OS features
• Android features and intents
• The <uses-feature> and <uses-permission> tags
• Sharing using the SEND action

Accessing Android Features Using Intents

[192]

• Sending SMS/MMS using intents
• Sending data messages using intents
• Confirming message delivery
• Receiving SMS
• Telephony and making calls using intents
• Sending notifications using intents
• Some other Android features

The concepts and structure of intents, as discussed in previous
chapters, are the prerequisites for understanding this and the following
chapters. If you don't have the basic concept of these things, we would
recommend you to read Chapter 3, Intents and Its Categorization and
Chapter 4, Intents for Mobile Components in order to move forward.

Features of Android OS
Android is an open source operating system and middleware framework for
smart devices such as phones and tablets. The devices contain lots of features and
functionalities that provide users with a way for an easy lifestyle. These features
include hardware features such as audio, Bluetooth, camera, network, microphone,
GSM, NFC, and sensors such as accelerometer, barometer, compass, gyroscope, and
Wi-Fi.

Not only does it include hardware components, it also includes software features
such as app widgets, home screen, input methods, live wallpapers, layouts, storage,
messaging, multi-language support, browsers, Java support, media support, multi-
touch, calls, messaging, multitasking, accessibility, external storage, and so on. We
have already referred to the hardware features as mobile components and discussed
them in the previous chapters. We will discuss the software features in this chapter
with practical examples.

Chapter 6

[193]

We are using two key terms here: components and features.
Components such as camera, Bluetooth, and so on are the hardware
parts of an android phone . The feature is the software part of an
Android phone, such as an SMS feature, e-mail feature, and so on.
This chapter is all about software features, their access, and their use
through intents.

Android features versus components
Generally, the terms "Android features" and "components" are used interchangeably.
But for the sake of clarification, we are referring to the keyword components as a
feature that uses hardware and the keyword features as an Android feature that uses
software in its backend. As we discussed in the previous section, Android contains
lots of components and features that, when ported to any phone, makes it a smart
phone. Not all the components and features can be used via intents. So, we will
discuss only those features in detail that can be used by intents.

It should be noted that features that use hardware directly or indirectly require
users to provide permissions to access it. These permissions are provided during the
application's installation. If the user doesn't provide permissions to the application,
the application can't access hardware; thus, it can't use that feature.

In this chapter, we will learn about those features that use software as backend but
also require some permissions. We will provide more details about the permissions
in the following sections.

Common Android features
Until now, we are only talking about Android features in a general way. In this
section, we will discuss some of the most common Android features found in
Android phones and tablets. Each Android device is unique in some way or the
other and possesses many unique features and components different from other
brands and phones. But there are some features that are found to be common in all
the Android phones. Many of these features can be used in our apps irrespective
of any specific model or phone, and intent is, without any doubt, the most
asynchronous and easy way to use these features in our applications. Now let's see
the Android features that are common among many devices and their functionality
in a phone.

Accessing Android Features Using Intents

[194]

Layouts and display
Today, smartphones are getting bigger in size, and there are new sets of Android
devices called tablets that are available. Bigger screens and higher-resolution
displays have transformed mobiles into multimedia devices. These devices contain
layout sizes from 240 x 320 to 1268 x 800 pixels and screen sizes from 3 to 11 inches.
These are found in varying device screen densities such as low, medium, high,
large, extra large, and so on. The following image shows three different devices with
different resolutions:

Android devices with different screen sizes

To display high graphics, Android provides graphic libraries for 2D canvas drawings
and 3D graphics with OpenGL using OpenGL-ES. A new rendering graphics library
called RenderScript was introduced after Android Version 3.0. RenderScript is a
scripting language for Android OS that allows developers to write high-performance
graphic rendering and raw computational code. It has been primarily oriented for
use with parallel data computations like dividing processing across multi-core
processors such as CPUs, GPUs, or DSPs.

Chapter 6

[195]

Before Android Version 3.0, which was developed for Android
tablets, Android rendered its layouts, home screen, and mobile UI
using 2D canvas. After RenderScript in Android 3.0, Android renders
its layouts, home screens, and mobile UI with more beautiful and
optimized graphics using RenderScript.

Data storage and retrieval
There is no Android device that doesn't use any kind of storage for running. For
better performance, the device not only needs a volatile memory like RAM for the
sake of processing and faster access, but it is also going to need a permanent storage
such as an external SD Card in it. Android devices support data storage and retrieval
in multiple ways that vary according to the developers and applications to be used.

If our applications use large data, the developers can use lightweight relational
database features for each of their applications using SQLite. Developers can use the
SQLite database to manage data with secret and efficient storage capability.

Not only databases, Android devices also provide features for file storage. As saving
and loading data is essential for almost every application, Android provides many
different methods to store and retrieve data to make our application persistent. File
storage is not a good option, but sometimes, developers don't have any option other
than reading and writing files to handle their application's persistent data. And
fortunately, Android provides features that let developers create, save, and load files
on a device's internal or external media, such as an SD card. These microSD cards are
formatted with the FAT32, Ext3, or Ext4 file systems. Not only these file systems, but
also some Android devices, mostly tablets, support high-capacity storage media such
as USB flash drives.

Apart from storing large or heavy data in databases or disk files, Android provides a
feature for storing simple application data such as UI state, game scroes, and so on.
This is achieved using the SharedPreferences method. The SharedPreferences
method uses the name/value pair (NVP) mechanism to store the application's
lightweight data.

Accessing Android Features Using Intents

[196]

Connectivity and communication
We can't call an Android device a smart phone until there is a connectivity feature
in it. The technologies supported for connectivity, communication, and data transfer
include GSM/Edge, IDEN, CDMA, EV-DO, Bluetooth, Wi-Fi, LTE, Near-Field
Communication (NFC), WiMAX, and so on. Android provides a complete set of
libraries for communication and connectivity. This allows developers to easily utilize
and use these features in their applications. For example, through Bluetooth support,
users can send files, access phone book and voice dialing, and exchange contacts
between phones.

In Android 3.1 and the later versions, Android contains the native
feature of connecting keyboard, mouse, and joystick devices with
Android phones via Bluetooth communication. Before Android 3.1,
some third-party applications provided a customized way for this
purpose.

Android phones have communication support not only for data transfer but also
for telephony and messaging. Android contains SMS and MMS for messaging along
with threaded text messaging and Android Cloud to Device Messaging (C2DM),
and the new Google Cloud Messaging (GCM) is also part of Android Push
Messaging services.

For telephony, Android supports calls, but it doesn't have native support for video
calling (at the time of writing this book); however, some Android devices have
customized versions of operating systems that allow developers and users to make
video calls either via UMTS networks (as in Samsung Galaxy S) or over IP. Also,
Google Hangout, the replacement of Google Talk, is available in Android 2.3.4 and
higher versions. This allows users to make video calls using an Internet connection.
To use Google Hangout video calling, users need a Google+ account. Skype, a third-
party tool of Microsoft Corporation, is also used to make video calls in Android 2.3
and later versions.

Chapter 6

[197]

Accessibility and multitouch
An Android device runs on a fully touch-based interface and contains few hard- or
soft-touch buttons that vary according to the device. Android devices have native
support for multi-touch. Multi-touch technology allows developers and users to use
single touch, tap, double tap, long touch, pinch-zoom gesture, rotate gestures, swipe
gestures in all directions, and much more. Android's latest version (which is Android
4.4 KitKat at the time of writing this book) contains some new touch gestures such
as tap and long touch gesture, scroll gesture, and so on. Also, Samsung introduced
touchless gestures that make use of their specific APIs called Look API. Through
Look API, users can use their phones without touching the screen and moving
their hands or head in air, and Android will perform the desired functionality.
For example, moving the head up will scroll the page up, and moving the head
down will scroll the page down on their phones. Also, many Android device
manufacturers, such as Samsung, introduced pen features to allow the users to write
on their phones and use them with pens more easily and accurately.

The multi-touch feature was first introduced in the HTC Hero
Android phone. Before that, the feature was originally disabled at the
Linux kernel level due to Apple's patents on touch-screen technology
at that time.

Along with touch, users can access their phones with a voice or speech recognition
engine natively introduced in Android phones. Also, Android contains a feature
called Talkback that allows people with no or low vision to hear what their Android
phone is doing at a particular time. These people can access their phones using voice
actions such as calling, texting, navigation, and so on. These voice actions were
introduced from Android 2.2 onwards. The ability to control hardware is not yet
(at time of writing this book) available through voice actions in Android.

Android 4.1 and the later versions provide enhancement over voice
actions to read answers from Google Knowledge Graph when queried
with specific commands only.

Accessing Android Features Using Intents

[198]

Extensive content and media support
An Android device is not less than any computer with high-definition media
support. Android offers comprehensive APIs for managing images, videos, and
audio. The formats supported in Android devices include WebM, H.263, H.264, 3GP,
MP4, MPEG-4, AMR, MP3, MIDI, OGG, WAV, JPEG, PNG, GIF, BMP, and WebP.
Not only this, Android also provides features for streaming online media using
RTP/RTSP protocols, HTML progressive downloads such as the HTML5 <video>
tag, HTTP dynamic streaming protocol, and the Adobe Flash Streaming (RTMP)
protocol provided by Flash plugins.

New Android devices support 3D-image capturing. and 3D Video
Support as their native features.

Along with extensive media support, Android also provides playback features,
controls, players, hard buttons for sound control as with other mobile phones,
fullscreen playback, and so on.

Android not only has media support but also has content support such as text files,
word documents, HTML, and so on. The web browsers available in Android are
based on the open source WebKit layout engine that was first developed by Apple
Inc. This is coupled with Chrome's V8 JavaScript engine in Android.

While most Android applications are written in Java natively, Android doesn't
support Java byte code due to the unavailability of the Java Virtual Machine in
Android. This Java code is instead compiled in the Dalvik executable and run on
the Dalvik Virtual Machine, a specialized virtual machine for Android systems. The
most important thing in Dalvik, which separates it from the Java Virtual Machine,
is that it is optimized for a low-battery life with limited memory and CPU.

Android browser has got a 100/100 score on Acid3 test in Android 4.0
Version. The Acid3 test is a web test page from Web Standards Project
that checks a web browser's compliance with elements of various web
standards such as Document Object Model (DOM), JavaScript, and so on.

Chapter 6

[199]

Hardware support
An Android device not only provides features of telephony, such as making phone
calls, sending messages, and so on, but it also has lots of features with new hardware
components that are used for many different purposes. Android has features of
video cameras, touchscreens, Global Positioning System (GPS) for location-based
applications, accelerometers, gyroscopes, barometers, magnetometers, proximity
sensors, pressure sensors, thermometers, Wi-Fi, Bluetooth, and dedicated
gaming controls.

Some new Android phones, such as Samsung Galaxy S4, provide
new sensors such as light and color sensors used to capture touchless
gestures.

With GPS and location-based technology included in Android phones, Android
systems have got native support for Google Maps, Google's GSM cell-based location
technology used to determine a device's current position. To make maps more useful
for developers and users, Android also provides native APIs for forward and reverse
geocoding support that helps to translate coordinates into address and vice-versa.

Background services and multitasking
Due to limited screen dimensions in Android smart phones, only one application
becomes visible on the user interface screen. But Android supports applications and
services running in the background with its multitasking feature. Using background
services, developers can perform automatic processing that doesn't require any user
interaction. Some example applications for this feature include generating alerts;
monitoring messages, statistics, and weather reports; downloading data from the
Internet; or playing audio files in the background.

When an Android device gets low on memory, it stops applications
with low priority in the background. Developers should store
the necessary data and state of application before going in the
background so that on getting stopped, an application can restore its
state from the saved one.

Android also supports the notification feature, a standard traditional approach to
alert users in their phones. Using Android libraries for notifications, developers can
make notification alerts that can be audible, vibration supported, or maybe LED
active. In addition to this, Android also allows developers to set notification UI icons,
layouts, and so on.

Accessing Android Features Using Intents

[200]

These background applications can be standalone as well as dependent on other
applications. Android provides features such as intents and content providers for
inter-application communication methods and mechanisms.

Enhanced home screen
The home screen is like a desktop screen of a computer or laptop. Android users get
quick links, app shortcuts, and information on their home screen. Android provides
customizable features for the home screen. Widgets, live folders, and live wallpapers
make the home screen more interactive and beautiful for users. These apps let
Android developers create dynamic application components that provide a window
into your applications or offer useful and timely information directly on the home
screen. Developers can also provide users with an option to add shortcuts on their
home screens. These shortcuts will provide users with the necessary information,
and they won't need to open their apps. For example, we have an app that tells us
the current time and weather of the day. Now, whenever users want to check the
time and weather, they have to open the app. So, instead of creating an app for this
purpose, creating a home screen widget would be much better idea. This widget will
show the weather and time on the home screen, and users wouldn't have to open the
app then.

Other Android features
Android developers can develop applications in multiple languages, offering
the local version of the application to the users. Android provides the feature of
multilanguage applications.

Also, Android supports tethering that allows users to share the network connection
of a device with other mobile phones and computers. This sharing can be achieved
via Wi-Fi hot spot or USB tethering.

Tethering was introduced in Android 2.2 Version; so, the earlier
versions had tethering support through third-party applications and
manufacturers.

Pressing the power and volume-down hard buttons at the same time allows users to
capture a screenshot of the device. This feature was first introduced in Android 4.0.
The earlier versions are using third-party applications, but these applications need
a rooted device as a prerequisite. Developers can also take screenshots using the
DDMS tool via a PC connection.

Chapter 6

[201]

Rooting any Android device is not allowed, and it breaks all the warranty
and guarantee deals and can sometimes be a risky procedure for mobiles.

Android features and intents
Until now, we have discussed the different features commonly found in Android
phones and tablets, but we are still unaware of the connection between intents
and these features. There are some features that can be used via intents and some
cannot. Simply to remind you, intents are asynchronous messages between different
applications and the Android system.

In this chapter, we will discuss a few features that can be used through intents, and
see how intents perform various actions. We have divided the features into four
sections: messaging, telephony, notifications, and alarms. We will develop some
examples that will use intents and access these features, and we will discuss how
these features are accessed and the role of intents in them.

Before we start discussing these example applications, we are going to discuss some
basic terminology used in Android for the clarification of concepts between intents
and features. In the next section, we will discuss two different tags, uses-feature
and uses-permission, from the AndroidManifest file. These tags are used to
declare some permissions and settings for any Android application. Let's see what
they are for in the next section.

The <uses-feature> and <uses-
permission> tags
Any Android application, by default, doesn't have the permission to perform any
operations that impact any other application, system, or the user directly or indirectly.
This includes reading or writing the user's private data such as contacts and messages,
reading or writing other applications' files, or any other activity. The Android system
allows applications to be standalone and sandboxed, but in case of sharing data,
the applications must explicitly share it with each other. To achieve this objective
of sharing more easily, Android allows developers to declare permissions in their
applications for the activities that the app wants to perform. Users will be informed
about the permissions that allow them to install the application on their devices.

Accessing Android Features Using Intents

[202]

Developers need to bear two things in mind regarding permissions: the permissions
for device capabilities such as accessing camera or hardware and defining custom
permissions. We will be discussing the first option of accessing device features and
hardware and granting permissions to the application in this topic. This can be
achieved using two tags in the manifest file: the uses-feature tag and the uses-
permission tag.

Firstly, we will talk about the <uses-feature> tag. The <uses-feature> tag lets
the developers declare any single hardware or software feature to be used by the
application. This is declared in the AndroidManifest file in the <manifest> tag of
the application, and as the name of tag suggests, this informs the application about
the dependent entities to be accessed. The following code snippet shows the general
declaration of the <uses-feature> tag:

You can see that there are three attributes in the <uses-feature> tag: name,
required, and glEsVersion. The android:name attribute specifies any single
hardware or software feature used by the application in the form of a string
descriptor. The android:required attribute is quite an important attribute in the
<uses-feature> tag. It is a Boolean value indicating if an application needs the
feature that is specified in the android:name attribute. If the developer declares
android:required="true" for any feature, it means that the application won't
run without the specified feature available on the device. If the developer declares
android:required="false" for the feature, it means that the application prefers the
feature to be available on the device. If the feature is not available, the application
won't work properly or may crash when using the feature due to its unavailability.
The default for this attribute is true. The final attribute in the <uses-feature> tag
is android:glEsVersion. This is a version number represented in 16 bits. This
attribute specifies the OpenGL ES version that the application will use. For example,
we are using a camera in our application. The following code snippet shows how to
declare the permissions for a camera in the manifest file:

Chapter 6

[203]

You can see in the code that we have used the android.hardware.camera string
for the android:name attribute. This string declares the camera feature of Android,
and other attributes declare that the application requires the camera feature and
supports the OpenGL ES 1.0 Version for it to work properly. The developer must
specify each feature used in the application in a separate <uses-feature> tag; so,
if the application requires multiple features, multiple tags should be declared in the
manifest file. It is a good practice to declare all the features used in an application.
These declared tags of <uses-feature> only provide information, and the Android
system doesn't check for matching features before the installation of the application.

Google Play uses the <uses-feature> tag declared in the manifest
file to filter the application from devices that do not meet its software
and hardware requirements.

The <uses-feature> tag was first introduced in API Level 4. The earlier versions
simply ignore this tag if an application containing the <uses-feature> tag is
running on lower-version devices.

The following tables show a list of a few feature types and name strings for hardware
and software features respectively. They can be used in the <uses-feature> tag's
android:name attribute:

Hardware features

Feature type Feature descriptor (Android
name) Description

Bluetooth android.hardware.
bluetooth

This feature allows the application to
use Bluetooth of the device.

Camera

android.hardware.camera
This feature allows the application
to use the camera component of the
device.

android.hardware.camera.
flash

This is subfeature that allows the
application to use the device's camera's
flash.

Location android.hardware.
location.gps

This subfeature allows the application
to use the precise location coordinates
obtained from the Global Position
System (GPS) receiver of the device.

Accessing Android Features Using Intents

[204]

Feature type Feature descriptor (Android
name) Description

Sensors

android.hardware.sensor.
accelerometer

This feature allows the application
to use motion reading from the
accelerometer sensor of the device.

android.hardware.sensor.
compass

This feature allows the application
to use directional readings from a
compass of the device.

android.hardware.sensor.
proximity

This feature allows the application to
use the proximity sensor of the device.

Screen

android.hardware.screen.
landscape

This feature sets the application's
screen orientation to landscape.

android.hardware.screen.
portrait

This feature sets the application's
screen orientation to portrait.

Touchscreen android.hardware.
touchscreen.multitouch

This subfeature allows the application
to use two-point multi-touch
capabilities such as Pinch.

Wi-Fi android.hardware.wifi This feature allows the application to
use the Wi-Fi component of the device.

Software features

Feature Type Feature Descriptor (Android
name) Description

App Widgets android.software.app_
widgets

The feature allows the application
to include app widgets and can be
installed on devices having a home
screen.

Home Screen android.software.home_
screen

The feature allows the application to
behave as a home screen replacement
of the device.

Input Method android.software.input_
methods

This feature allows the application to
provide custom input methods.

Live Wallpaper android.software.live_
wallpaper

This feature allows the application to
provide live wallpapers.

Chapter 6

[205]

We haven't shown all the features and descriptors in the preceding tables. We
have only presented some of the most commonly used features. The table shows
the feature type of each feature, its feature name descriptor to be used in the
android:name tag, and a short description of what the feature will do and how it
will affect the application in the device.

Some features are categorized as hardware features and some as software features.
Hardware features are the features that use hardware components on the backend.
To access these hardware components, our application should have the permission
to access the hardware. It should be noted that the <uses-feature> tag is just
informative, and it only tells the user that the application is using some specific
feature in the app. It doesn't allow access to the application for using any specific
feature or component.

To allow the application to use any specific component, Android provides another
tag, <uses-permission>. This tag provides access of a component to the application
if the user allows it at the time of installation. The following code snippet shows the
syntax for writing the <uses-permission> tag in the manifest file:

The <uses-permission> tag requests any specific permission that the application
must be granted for it to operate properly. Permissions are only granted by the user
at the time of the installation of the application. Unlike the <uses-feature> tag, the
<uses-permission> tag only has a single android:name attribute. The only attribute
of the tag specifies the name of the permission. The name of the permission can be
defined using the <permission> tag (this is beyond the scope of the book, and we
will not discuss it) or using standard permission names provided by the Android
system. For example, to allow application to read phone contacts, we can write a
code snippet like the following:

You can see how we provided a standard permission name from the android.
permission package for reading the contacts of the phone.

The features declared through the <uses-feature> tag are used
by Google Play to filter the application, and the permissions declared
through the <uses-permission> tag are presented to the user at the
time of installation for granting access.

Accessing Android Features Using Intents

[206]

Some of the <uses-feature> tag name descriptors were added in the API after the
<uses-permission> tag descriptors. Due to this, some applications using the <uses-
permission> tag were able to use specific hardware without the need of declaring
the <uses-feature> tag in the manifest file. To prevent the applications from any
unexpected issues regarding this mismatch, some permissions are implied with some
features. Google Play assumes that certain hardware-related permissions indicate
that the underlying hardware features are required by default. The <uses-feature>
tag allows Google Play to filter the applications in the market and show only those
applications that the device is capable of running to the user. However, the <uses-
permission> tag performs its duty when a user downloads the application and
installs it. Before installation, the user is asked to grant access of all the permissions
specified in the application. The application will only be installed when the user
grants access. So, for those features that have both the <uses-feature> and <uses-
permission> tag name descriptors, it is a good practice to declare both in the
manifest of the application for it to work properly. The following table shows some
of the features that are implied by the permissions:

Category <uses-permission> descriptor <uses-feature> descriptor

Bluetooth android.permission.
BLUETOOTH

android.hardware.
bluetooth

Camera android.permission.CAMERA android.hardware.camera

Location

android.permission.ACCESS_
COARSE_LOCATION

android.hardware.location

android.hardware.
location.network

android.permission.ACCESS_
FINE_LOCATION

android.hardware.
location.gps

android.hardware.location

Microphone android.permission.RECORD_
AUDIO

android.hardware.
microphone

Chapter 6

[207]

Category <uses-permission> descriptor <uses-feature> descriptor

Telephony

android.permission.CALL_
PHONE

android.hardware.
telephony

android.permission.PROCESS_
OUTGOING_CALLS

android.hardware.
telephony

android.permission.READ_SMS
android.hardware.
telephony

android.permission.RECIEVE_
SMS

android.hardware.
telephony

android.permission.SEND_SMS
android.hardware.
telephony

android.permission.WRITE_
SMS

android.hardware.
telephony

Wi-Fi android.permission.ACCESS_
WIFI_STATE

android.hardware.wifi

You can see in the table that all the features that are implied by permissions are
hardware features and require hardware components to run the application
properly. So, it has already been made clear that developer should declare both the
<uses-feature> and <uses-permission> tags to filter in Google Play and properly
install it on the device without creating any hassle for the user and developer.

Sharing using the SEND action
Any cell phone's primary purpose is to provide an easy way of communication. And
like all cell phones, Android smartphones provide an easier way of communication.
In this era of the Internet and social networking, Android phones have proved to
be quite productive in sharing and social networks. Android provides features such
as sharing pictures, status, sending e-mails, social networking such as Facebook,
Twitter, and so on. Fortunately for developers, all these sharing features can be used
very easily using a few lines of intents. Intent has proved to be a very good way of
performing asynchronous communication within Android's components and apps.

Accessing Android Features Using Intents

[208]

In Chapter 3, Intents and Its Categorization, we discussed an example of sharing status
using intents. We will explain the same SEND intent in more detail in this chapter,
and see how we can share images and text via any medium on the user's choice.
When it comes to sharing anything on Android phones, the intents with the SEND
action are used a lot. In this section, we will discuss intents with the SEND action
to see what is possible with it.

To define the intent with the SEND action, the following code snippet shows
the declaration:

You can see that we have passed a string constant of Intent.ACTION_SEND in the
constructor of the intent. This string constant tells the Android system that the intent
is meant to send anything on a device. We can execute the following intent by calling
the startActivity() method as shown in the following code snippet:

Passing the SEND intent in the startActivity() method will allow the user to
choose his favorite way of sending by providing a dialog of all the possible sharing
applications. But if we pass the SEND intent in the startActivity() method without
setting the intent type, it will throw a runtime exception. The following log shows
some lines of the exception thrown at runtime:

Chapter 6

[209]

In the log, you can see "Unable to start activity" and then android.content.
ActivityNotFoundException is thrown. This exception is thrown when a call to
the startActivity(intent) method or one of its variants fails because an activity
cannot be found to execute the given intent. Not only the type of exception, but also
the log shows the reason behind the failure of the activity. It says "No activity is
found to handle the intent". You might be wondering why Android couldn't
find the suitable activity to receive the intent. Recall implicit intents from earlier
chapters, Android looks for all the possible activities matching the intent type and
shows all those apps in a dialog. In our case, we haven't defined any type for the
intent except its Intent.ACTION_SEND action; that's why we are getting a runtime
exception of ActivityNotFoundException. Let's set the type of action and see the
dialog that shows all the possible apps to receive the intent:

You can see that we have called the setType() method and passed a string of
the text/html type. This method sets an explicit MIME data type of the intent.
This is used to create intents that only specify type and not the data. These are the
commonly used implicit intents in Android systems. This method clears any data of
the intent that was set previously.

The MIME type matching in the Android framework is case sensitive.
So, you should always write your MIME type with lowercase letters.
You can also use normalizeMimeType(String) method to ensure
that it is converted to lowercase.

Accessing Android Features Using Intents

[210]

We have passed text/html as the MIME type in method argument. This type
tells the Android system that all those applications that support the HTML type of
data and process it can receive this intent. So, in a result, Android pushes all those
applications in a dialog to let the user choose his/her favorite application. The
following image shows the dialog for the text/html type:

You can see that all the apps supporting HTML type content are shown in the image,
such as Email, Imo Messenger, and Skype. You can see how easy it is to share
content using the SEND intent in Android phones, and the job of choosing apps
and launching them is left to Android.

You may have noticed that there is no SMS/MMS-sending application
shown in the dialog because SMS/MMS are just plain text applications
and they support only that type of content.

Chapter 6

[211]

On choosing any option from the list, the app will start. As we haven't set any
content to be shared, the application will be mostly empty. To set the content in the
intent, we have to use extras. We will put extras for some information such as title,
subject, or text. The following code snippet shows how to put some extras in the
SEND intent:

You can see in the code that after setting the MIME type of intent, we have called
the putExtra() method few times. This method adds extended data to the intent.
There are two parameters of the function: name and value. The name parameter
must include a package prefix; for example, the app com.android.contacts would
use names like com.android.contacts.ShowAll. We have passed three strings
for subject, title, and text content of the intent. The names such as Intent.EXTRA_
SUBJECT, Intent.EXTRA_TITLE, and Intent.EXTRA_TEXT for these types of data are
already declared in the Intent class, and we can access those in a static manner. You
might be thinking why we have passed the subject if we have passed the title string
as well. Well, the SEND intent is an implicit intent, and Android shows all the apps
supporting the intent. The user can choose any app as different apps are interested in
different data. For example, any e-mail application will be interested in the Subject,
To, and Body strings. And any SMS application will only be interested in the To
and Body strings. So, for efficient usage of the SEND intent, you should add all the
possible content to share it with every application effectively. Let's take an example
of sending an e-mail using the SEND intent. The following code snippet shows how
we can use the SEND intent to send an e-mail:

Accessing Android Features Using Intents

[212]

Firstly, we have declared our SEND intent by passing the Intent.ACTION_SEND
parameter of constructor. Then, we have set the type of intent by the calling
setType() method to the "text/html" MIME type. We then add the extra content
for the e-mail app as shown in the following list:

• Intent.EXTRA_SUBJECT: This name constant is used to add the Subject.
• Intent.EXTRA_EMAIL: This name constant is used to fill an e-mail address in

the To field.
• Intent.EXTRA_CC: This name constant is used to fill the e-mail address in the

Cc field.
• Intent.EXTRA_BCC: This name constant is used to fill the e-mail address in

the Bcc field.

Finally, before calling the startActivity() method, we put body of the e-mail by
the Intent.EXTRA_TEXT name constant and pass our text in the value parameter of
the putExtra() method. The startActivity() method will show the same dialog
as shown in the previous image, and on choosing an e-mail application, it will show
the following screenshot:

An e-mail application already filled with content put in intent

Chapter 6

[213]

You can see from the image that all the data we put into extras is already filled in the
e-mail application such as subject, e-mail, text etc. Now, all that the users have to do
is to tap the Send button and the e-mail will be sent. In this example application, we
have sent an e-mail to one address directly using the To field and indirectly by Cc
and Bcc to two other addresses. Android allows us to add multiple e-mail addresses
as well. The name constant Intent.EXTRA_EMAIL is used for this purpose. We have
passed an address in the code; we can also pass arrays of strings consisting of e-mail
addresses to send the e-mails to.

From this section, we have mostly learned about how the ACTION_SEND intent is used
and how much work we can do with just a few lines of code using this intent. If we
choose Facebook, Twitter, or any other application from the dialog, we will see the
same result of sharing data via that app. This is the power of using implicit intents
to make it general in almost every possible way without doing any hard
development work.

ACTION_SEND is an action of the intent. Like this action, there are
other actions such as ACTION_VIEW, ACTION_SEARCH that can be
used by passing in intents for other purposes in Android.

Telephony and making calls using intents
Not only Android phones, but any phone's primary purpose from the day of
invention is to provide a way to communicate long-distance conversations. And like
all other phones, Android phones also provide features for making and receiving
calls, checking call logs such as missed calls and dialed numbers, storing contacts,
editing/modifying/deleting contacts, and a lot more. As Android phones lie in
the frame of smart phones, there is a lot to the call feature. Users can make video
calls, record calls, conference calls, mobile to computer calls and vice versa, and
much more. All these features provide a very effective product to users and let the
developers use these features for more flexibility and productivity.

Android provides many APIs for telephony features for developers. These telephony
APIs let your applications and developers access the underlying telephony
hardware, thus making it possible to create custom dialers, integrate call handling
or phone state monitoring, and so on.

Developers cannot customize the in-call screen of the phone due to
security reasons. The in-call screen is shown when users make any
calls or receive any incoming calls.

Accessing Android Features Using Intents

[214]

As this book is focused on intents, we will only discuss those telephony features that
can be utilized using intents. From many features like making calls, receiving calls,
checking the call log, accepting/rejecting calls, and so on, there are very few that can
be utilized directly and only using intents. Fortunately, making calls is one of them.
Let's discuss how we can make calls using intents in the next section.

Making phone calls using intents
There are two methods of making phone calls in Android. Developers can either use
the APIs provided by Android to make phone calls, or they can only initiate phone
calls by sending the intent with the necessary information such as the phone number.
We will explore the method of initiating phone calls later in this section.

In the preceding section, we saw how we can use actions in intents to tell the
Android system about our intentions. We will be doing the same to make phone calls
by telling Android about our intentions and the rest of the work is left to the system.
The following code snippet allows the application to launch the dialer with the
specified number already dialed, and the user can explicitly make a call by pressing
the call button in it:

You can see that we have done very few changes in the code. We have declared a
phoneNumber string that stores the number we want to dial. You might be wondering
why we have concatenated a tel: prefix in the string. Well, that prefix is used in
getting the Universal Resource Identifier (URI), of the number. We get this URI by
calling the static method Uri.parse() of the Uri class. This method returns the URI,
which we pass in turn in the constructor's other parameter. We provide the DIAL
action by passing Intent.ACTION_DIAL in the declaration of the intent, and finally,
we call the startActivity(intent) method as always to execute the intent and
tell the Android system to process our intentions. The following screenshot shows a
dialer result of the previously mentioned code snippet:

Chapter 6

[215]

A dialler screen with a dialled number initiated by starting the DIAL intent

When we run the previous code, the application will start the default dialer of the
Android phone and will dial the number provided in code in it. It will not call the
number; it will just dial the number because we used Intent.ACTION_DIAL. The
user can explicitly press the call button of the dialer and make a call.

If the user doesn't want to dial the number, it is also possible to directly call the
number without going to the dialer first. Android provides the Intent.ACTION_CALL
action for this purpose. The following code snippet shows how to make calls directly:

Accessing Android Features Using Intents

[216]

You can see from the code that everything is the same except the action passed in the
constructor of the intent. In the last example, we passed Intent.ACTION_DIAL and in
this example we have passed Intent.ACTION_CALL to directly make the call. When
we run this code snippet, the application will start making a call on an Android
phone. The following screenshot shows the call:

An in-call screen shown by starting the CALL intent

This action of ACTION_CALL to directly make a phone call requires the user to grant
permission to the application. The following code snippet shows the permission to
be placed in the AndroidManifest file to enable the app to work perfectly:

Chapter 6

[217]

It should be noted that ACTION_CALL cannot make calls to emergency numbers using
intents; however, using ACTION_DIAL it is possible to dial emergency numbers. If the
user has multiple dialers installed on the phone, the ACTION_DIAL action will present
the list of dialers from which the users can choose a favorite dialer. The following
screenshot shows the scenario of multiple dialers:

Multiple dialers to choose from the dialog

There is very little difference between the ACTION_DIAL and ACTION_CALL intents.
The ACTION_DIAL intent only dials the number, and the user can explicitly call by
pressing the call button, but ACTION_CALL directly makes the call without showing
the dialer to the user.

There can be restrictions on applications on making phone calls
directly. So, it is a good practice to use ACTION_DIAL in the apps
unless ACTION_CALL is required.

This is how we use intents to easily make phone calls and use the telephony features
of Android. In the next section, we will see how we can send SMS, MMS, and data
messages using intents. Along with sending, we can also confirm the message delivery
as well as receive messages. Let's now discuss these in detail in the next section.

SMS/MMS using intents
In addition to the features of making calls, mobile phones support messaging
services such as Short Messaging Services (SMS), Multimedia Messaging Services
(MMS), and lately the data messages. The SMS/MMS features are most widely used
in phones, and many people prefer it over making calls. Android provides APIs
and framework that let developers send and receive messages from within their
applications. Developers can even replace the native SMS application to send and
receive text messages.

Accessing Android Features Using Intents

[218]

At the time of writing this book, there is no API or library for sending
MMS messages from within your applications, but you can send them
using the ACTION_SEND or ACTION_SENDTO intents.

This section will walk you through the various actions such as sending SMS, sending
MMS, sending data messages, confirming message delivery, and receiving SMS
using intents. We will then brief you about how all these actions are performed
without using intents and how APIs of Android can be beneficial to us. Let's look at
our first task of sending SMS messages using intents in the next subsection.

Sending SMS using intents
The best thing about using intents is that it passes the responsibility of our
requirements to the Android system rather than we creating the full functionality
from the core. If we use intents in our current case, which is to send an SMS to
someone, we just have to provide the number to send the message to and the
message to be sent. The rest is done by Android itself.

We have already had plenty of discussions over the same topic of sending something
or sharing something using intents, and fortunately, there is nothing different that
we have to absorb here. It's the same old method of creating an ACTION_SEND intent
and executing it by calling the startActivity(intent) method. The following code
snippet shows the ACTION_SEND intent example that we used previously:

Now, if we use this code, it is not useful to us because it doesn't perform our action
of sending an SMS. Neither does it show the SMS-supporting applications in the
chooser dialog, nor does it send any SMS with the data passed in the EXTRA_TEXT
extra. To make use of ACTION_SEND for the purpose of sending an SMS, we have to
take care of some extra things. There are two ways of sending an SMS using intents:
by the ACTION_SEND intent and by the ACTION_SENDTO intent. Let's see how we can
send an SMS using the ACTION_SEND intent.

Chapter 6

[219]

We have to create intent with the ACTION_SEND action and then put an extra "sms_
body" with the message embedded in it. Android will ask the user for the phone
number of the recipient itself. But it still won't show any SMS support applications
in the chooser-list dialog because we are still missing the type of intent. As SMSes
are short text messages, we should set the intent type to "text/html", but most
SMS applications look for "image/jpg" or "image/png" as the intent type due to no
native support for MMS messages. So, after setting the intent type to "image/png",
we will have the following code snippet:

When we execute this code, we will see the chooser dialog of various apps including
SMS support applications, e-mail applications, and so on. When we select any SMS
application, we will see something similar to following image:

Default SMS application shown after sending the SMS intent

Accessing Android Features Using Intents

[220]

You may have already noticed that the text part of the SMS application is already
filled in with the content we added in the "sms_body" extra, and the user is typing
the number of recipients of the message.

The previous image shows a default SMS application of the QMobile
Noir A10 smartphone. Your device will show the SMS application that
you have set as default on your phone, and it won't be the same as this
application for sure.

This is how we can send an SMS using intents. Now, let's take our other case in
which we want to set the number of recipients using coding. For that purpose,
we have to use the ACTION_SENDTO intent instead of the ACTION_SEND intent. The
following code snippet shows the use of the ACTION_SENDTO intent:

In the preceding code, you can see that we have made a few changes in the code that
we discussed previously before sending the SMS messages. We have set the action
to ACTION_SENDTO instead of ACTION_SEND. Also, we have passed another argument
of the phone number URI in the constructor of the intent. We have created a string
for the phone number and concatenated the "sms:" tag before the number. This tag
lets the Uri class understand that the string is representing the phone number to
send the message to and parse it accordingly. You may remember from the previous
section, we used the "tel" tag for making calls to any number using intents. When
you execute the code, it will ask the application to choose SMS. On selecting any SMS
supported application, it will send the SMS directly to the phone number provided
instead of asking the phone number as in the previous example. You may have
noticed that we haven't set the type of intent in this code snippet. It is because when
we are using the ACTION_SENDTO intent, we don't have to explicitly set the type of
intent. Android will understand what the developer is trying to do from the tags
such as "sms" or "tel" and from actions such as ACTION_SENDTO or ACTION_CALL.

If you want to use ACTION_SEND and set the recipient number
explicitly using code, Android provides the "address" extra
to put the string of the number in it without having to use any
tags such as "tel" or "sms".

Chapter 6

[221]

Until now, we have talked about using ACTION_SEND and ACTION_SENDTO to send
SMS text messages. In the next section, we will see how we can send multimedia
messages with pictures embedded in them using intents.

Sending MMS using intents
The only thing that differs in a text message and multimedia message is the rich
media embedded in it. MMS messages contain rich media content such as photos,
videos, and cards, and some text as message for the content. Currently, there is no
library provided by Android that lets developers send MMS natively, unlike SMS.
But fortunately, intents make a clear way out for us in order to send an MMS. As the
real difference defines, we have to add some media in the text message intent with
its type set to multimedia, such as "image/png", and we have then finished sending
MMS messages. The following code snippet shows how to send any MMS message
using intents used for SMS messages:

You can see that there are two parts of the code. In the first part, we are getting the
URI of our required image stored in external storage in the images folder. In the
second part, we are creating intent with ACTION_SEND. Then, we add our text by using
an"sms_body" extra and set the type to "image/png" to make it meaningful for a
multimedia message. After that, we attach our media using the Intent.EXTRA_STREAM
extra and pass our image URI as value in it. Finally, we execute the intent by calling
the startActivity(intent) method. The only difference was to attach the media
URI using the EXTRA_STREAM extra, and the rest was the same as in the SMS messages.
You should also note that we can use ACTION_SENDTO to specify the recipient number,
or we can also add the "address" extra with the value of the phone number.

We have set the type of "image/png" in the previous example. This
can only send PNG images. For other image formats, we can specify
"images/*".

Accessing Android Features Using Intents

[222]

Until now, we have only discussed sending SMS and MMS messages. But are we
sure that those messages have been delivered successfully? Well, the next section is
about confirming message delivery and understanding the role of intents in it. Let's
see how we can confirm the message delivery using intents in the following section.

Confirming message delivery using intents
When we use intents to send messages, whether they are SMS or MMS, we just can't
track those messages for actions, such as, confirming delivery. The reason behind this
is the implicit use of intents and relying on the default action of the Android system.
If we use intents to send messages, it means that we are passing our responsibility of
sending messages to the Android system. Now, if we want to confirm the delivery
status of the message, it means that we are asking Android about our message.
Unfortunately, we lack two things to make it possible: one is to tell the Android
system about our confirmation of some message and the other is that the Android
system may not remember what message we are talking about.

In order to make it possible to confirm the delivery, we have to use the native API for
sending messages manually. It is the job of this API to keep track of both the delivery
status and the message we are talking about. Also, using this API, we can easily send
our query, asking the Android system about the delivery confirmation.

Now, if we are using native APIs for sending messages, we have to think about MMS
messages. As mentioned earlier, there is still no native support for MMS messages;
so, we won't be able to track and confirm the delivery of MMS messages, but yes, we
can confirm the delivery status of SMS messages. In this section, we will talk about
how we can check the SMS delivery status using the native SMS API and how intents
are used to achieve our goal.

Intents are an asynchronous way of communication in Android, and they are used
everywhere. The only change is that they are used to achieve our goals and finish the
requirements. In a short explanation about confirming the message delivery status,
we will use the native SMS API called SmsManager to send the text message using the
SmsManager.sendTextMessage() method. But to keep track of the message, we will
use two intents: one for the sent action and one for the delivery action. Along with
these two intents, we will also create two pending intents: one for the sent action and
one for the delivery action. Finally, to put all four intents in action, we will create two
broadcast receivers: one to check the sent action and the other to check the delivery
action. It may seem quite complex here, but it is as easy as a charm. Let's have a look at
the code snippet that declares our four intents: two intents and two pending intents:

Chapter 6

[223]

You can see that we have declared our intents in the usual way in the code. The only
difference here is that we have used our own custom actions represented in strings
such as "sent_sms_action" or "delivered_sms_action". Then, we have created
two pending intents using the getBroadcast() factory method of the PendingIntent
class. The getBroadcast() method will retrieve PendingIntent that will perform any
broadcast, such as calling the Context.sendBroadcast() method.

So, after creating all four intents, we will now have to create and register the
broadcast receivers that will put the pending intents in action. The following
code snippet shows both receivers being implemented:

Accessing Android Features Using Intents

[224]

As seen in the previous code, we have registered two broadcast receivers using
the Activity.registerReceiver() method and passed anonymous objects. The
overridden method onReceive() serves our purpose. One onReceive() method is
called when any message is sent, and the other onReceive() method is called when
any message is delivered. We have put comments to show you where you can use
your custom functionality in the code. You might be wondering how Android will
know that these are the broadcast receivers for sent and delivery status. Android
will know about it by checking the intent filters. You can see that we have passed
our custom actions passed in intents in the constructors of intent filters, and these
filters will filter the broadcasts, and the receiver will only receive those broadcasts
for which it was registered. We have done our core work for confirming the
message delivery until now. All that's left now is to put it in action, and here, the
SmsManager API comes handy. We will create an instance of SmsManager and call
its sendTextMessage() method to send the message and put all the intents in it, and
then we are done. The following code snippet shows the SmsManager usage code:

Remember, the SmsManager API uses the android.permission.SEND_SMS
permission; so, don't forget to add it in your manifest file, as shown in the following
code snippet:

So, this is how we can confirm the message delivery. We can only confirm the
delivery status of text messages, and we have to ask the user to grant a SEND_SMS
permission for the purpose. But, if we are using intents, we can only send messages
and we won't be requiring any permission from the users.

Android emulator supports sending and receiving SMS messages.
This can be accomplished by creating multiple instances of emulators
and sending text messages to port the number of emulators.

Summarizing the role of intents in confirming the message delivery, intents are
not performing the core action of confirming message delivery here. They are just
providing a way of communication by carrying the necessary information such as
which message's delivery is to be checked and so on. Then, these intents are used by
broadcast receivers that constantly check for the delivery and sent status. Once it is
done, they pass the status in our intents and then those intents provide us with an
update of whether the message has been sent or delivered or not.

Chapter 6

[225]

In the next section, we will be doing almost the same kind of stuff and coding, but
this time, we will do it to receive messages. After using all these code snippets, we
can develop our SMS application that can send and receive messages. Let's see how
we can receive messages and the role of intents behind it.

Receiving SMS messages using intents
Until now, we have talked about sending SMS/MMS messages and the importance of
intents in these applications. In this section, we will talk about how we can listen for
incoming messages so that we can use them in our applications. Using this feature,
we can develop messaging applications. Intents can send messages using the ACTION_
SEND or ACTION_SENDTO intents directly, but these don't play a direct role in listening
for incoming messages and receiving messages. Intents are used in the same way as
Broadcast Receiver, and are used to get the data such as sender number, message,
message time, and so on. Before we discuss how to listen for incoming messages, we
have to learn about some classes that are used in the following application.

The SmsManager class
We have already used the SmsManager class in the previous subsections for
confirming message delivery. This class is used to manage SMS operations such
as sending data, SMS, and PDU messages. We can't instantiate this object using a
constructor; we can get its instance by calling the static method of SmsManager.
getDefault(). We can use this class to send messages.

There are two different classes with the name SmsManager: android.
telephony.SmsManager and android.telephony.gsm.
SmsManager. The later class in the GSM package is deprecated in API
Level 4 and later versions.

The SmsMessage object
This class represents a simple SMS message object. On receiving the incoming
messages, we will get an array of SmsMessage objects. This class is used to get
information such as the message body, message time, and sender number.

Protocol Data Unit (PDU)
A PDU is the industry format for an SMS message. Developers shouldn't worry
about reading a PDU in detail or understanding the format, because the SmsManager
class of Android reads and writes PDUs and provides methods for the developer to
use PDUs.

Accessing Android Features Using Intents

[226]

These classes and concepts will be used in receiving the incoming messages' app.
Now, let's discuss how messages are received in Android. When any new SMS
message is received by any device, a new broadcast intent is fired. The action of
this intent is android.provider.telephony.SMS_RECEIVED. We have to create a
custom broadcast receiver that will look for this broadcast intent. Whenever we get
any message, the onReceive() method of the broadcast receiver will be called. The
following code snippet shows the implementation of our custom broadcast receiver
for incoming messages:

public class IncomingMsgReceiver extends BroadcastReceiver {
 private static final String SMS_RECEIVED = "android.provider.
 Telephony.SMS_RECEIVED";
 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(SMS_RECEIVED)) {
 // SMS Received. Write your code here.
 Bundle msgBundle = _intent.getExtras();
 getMessageData(msgBundle);
 }
 }
}

As always, we have extended our class from BroadcastReceiver and overridden
the onReceive() method. This method is called when any incoming message is
received by the device. We first check whether this intent contains any received
messages or not. If the intent action is the same as our SMS_RECEIVED string literal,
this means that we have received our message.

The SMS received action android.provider.Telephony.SMS_
RECEIVED is unsupported in Android and is subject to change in any
future platform releases. The developer should be cautious when using
these unsupported hidden methods and attributes of Android.

Once the action is verified after checking and comparing, we have to get the message
data from the intent and perform our custom actions of the application. We first
get the extras bundle from the intent by calling the getExtras() method and then
we have passed that bundle in our method called getMessageData(). This is our
custom method, and in this method, we will see how we can get the message data
from the bundle. The following code implementation shows the method definition:

Chapter 6

[227]

We first checked that our bundle is not a null object. Then we extracted the PDUs
from the bundle by calling the get() method and passing the "pdus" key.

If you don't know which key to pass in the get() method, you can
call the Set<String> Bundle.keySet() method to get all the
keys used in the bundle.

Recalling PDUs, PDU is the industry format for an SMS message. Once we have all
the PDU objects in an array, we create an SMS message from those PDUs using the
SmsMessage.createFromPdu() method. After creating all the messages, we are
traversing through the array and getting the message data such as the message body
text, message sender number, and message time from it using the SmsMessage.
getMessageBody(), SmsMessage.getOriginatingAddress(), and SmsMessage.
getTimestampMillis() methods. Now, we can use these data strings in our
applications. It must be noted that any large message is broken into many small
messages, which is why we are getting an array of objects.

This broadcast won't work until we register it in our application. To register it in
our application, we have to write the following code in our main activity:

Accessing Android Features Using Intents

[228]

There is nothing new to discuss here. We are creating an intent filter with the SMS_
RECEIVED action and an instance of our broadcast receiver. Then, we are passing
both in the registerReceiver() method of our activity. The message receiver
requires the android.permission.RECEIVE_SMS permission; so, don't forget to
add this line in your manifest file:

This is how we can receive the incoming messages in our application and use them
in many different ways. You might be wondering about the role of intents in this
application. As mentioned earlier, intents are not used in this application directly.
When any message is received by the device, a broadcast intent is fired. We are
using that intent to extract data and messages from it, and those messages are used
in our application. Intents play the role of providing the data about messages, after
receiving them, in Android devices.

We can use Android debug tools of the Dalvik Debug Monitor Server (DDMS) panel
to simulate incoming messages on our Android emulators. The following screenshot
shows the Emulator Control panel in the DDMS view for simulating messages:

Emulator Control panel in the DDMS view for simulating messages

Chapter 6

[229]

In this section, we learned about sending SMS, MMS, confirming message delivery,
and receiving incoming messages. We also discussed the importance and use of
intents in all these applications. In the next section, we will learn about notifications
and how intents are used in making interactive notifications.

Notification using intents
From traditional phones to smart phones, every mobile phone uses some method
to notify and alert the users about some event such as receiving messages or calls.
Like these phones, an Android phone uses a notification system to alert the users.
A notification is a message displayed out of the application's normal UI. When any
new notification is triggered, it is shown in the notification area. The users can see
notifications from the notification drawer and notification area at any time by pulling
the drawer downward using the down gesture. The following screenshot shows two
different examples of notifications in Android:

Notifications in Android phones

Notifications are like channels that alert the users about important events as they
occur when the user is busy in some other mobile activity such as playing a game.

For any developer, a notification is a user interface (UI) element that the developer
displays outside of the app's normal UI to indicate and notify the user that an event
has occurred. Then, users can choose to view the notification while using other apps
and respond to them when they wish. Using a notification is the preferred way for
invisible application components, such as broadcast receivers and services, to alert
the user about the occurrence of any event.

In this section, we will discuss notifications, their layouts, displaying additional
information in notification layouts, and launching intents. We will learn the role of
intents and create an example application with a custom notification layout and how
intents are important in these types of applications. Before we start developing our
example application, let's discuss some basic concepts used in notifications.

Accessing Android Features Using Intents

[230]

Notification forms
Notifications can take different forms like any persistent icon that goes into the status
bar and can be accessed through the launcher. When this notification is selected
by the user, any specified intent is triggered when some activity or service occurs.
Notifications can also be used to turn on the flashing LEDs of the device. Also,
devices can vibrate or play ringtones on receiving notifications.

The NotificationManager class
The NotificationManager class represents a system service that is used to handle
the notifications' system in Android. We can't instantiate this class, but we can get its
instance object by calling the getSystemService() method and passing Context.
NOTIFICATION_SERVICE. The following code snippet shows how to get an instance
of the NotificationManager class:

The Notification class
The Notification class represents any notification in Android. It provides APIs that
allow developers to set the icon, title, time of notifications, and so on. The following
code snippet shows us how to create a notification in Android:

The Notification layout
Each notification has an icon and ticker text, which is sometimes called status text.
An icon is displayed when a notification has been launched and the notification
drawer is closed. The ticker text scrolls along the status bar when a notification is
fired and then it is set to the notification message text when the notification drawer
is opened. The following screenshot gives an overview of the different aspects of a
notification area:

Chapter 6

[231]

Notification and notification area

You can see from the preceding screenshot that when any notification is fired, its
ticker text is scrolled through the status bar. After scrolling through the entire text,
its icon is displayed on the status bar. When a user opens the notification drawer by
pulling it down, the notification's big icon along with the notification title, content
text, and timestamp is shown. This is how any notification is fired in Android.

Now, we will discuss how notifications are triggered and how intents are used
in notification applications. We will create a notification, which is shown in the
following screenshot:

A simple notification

Accessing Android Features Using Intents

[232]

So, before moving forward to create a notification, we need the layout for our
notification. The following code implementation shows our layout for the notification:

Chapter 6

[233]

We have placed four views in RelativeLayout: an ImageView for the icon, a large
TextView for the title, and two small TextViews for description and timestamp
respectively. We have used the aligning of RelativeLayouts to place the views
below, above, to the right of, and to the left of other views so that it can be displayed
in the same way on every resolution of different smartphones. We have saved this
file as notification_layout.xml in the layout folder of the resources directory.
This was our layout for the notification. Now, let's learn how to create any
notification that will use this layout.

To create a notification with custom layouts, we have two different methods in
Android. The first method is to use the setLatestEventInfo method to update the
details displayed in the standard extended status-notification display. This method
is the easiest method and is used in more applications. The other method is to set the
contentView and contentIntent properties of the notification to assign the custom
UI layout for the extended display status using the RemoteView class.

RemoteView is a mechanism that allows developers to embed and
control a layout embedded within any separate application. This is
most commonly used in creating home screen widgets.

We will be using a difficult method in this section to create the notification as
this method uses intents in its code. We will first create a RemoteView object and
assign it to the contentView property of the notification object. The contentView
View represents the notification in the expanded status bar. Notifications often
represent a request for action, and this action is performed when a user clicks on the
notification in the notification drawer area or expanded status bar. We can specify
PendingIntent that will be fired when the user clicks on the notification item.
Mostly, this intent opens our application and provides more information about our
notifications. Along with setting contentView, we also need to set contentIntent to
our created object of PendingIntent in which a custom content view is assigned to
our notification. The contentIntent intent is the intent that must be executed when
the expanded status entry is clicked on. If this is the intent of the activity, we must
include FLAG_ACTIVITY_NEW_TASK that will start our activity in a new task.

When you manually set the contentView property, you must also
set the contentIntent property; otherwise, an exception will be
thrown when a notification is triggered causing any runtime crash
of your application.

Accessing Android Features Using Intents

[234]

Once the contentView property is set to our custom remote view, we can't set our
required views in a normal way. We have to use the set methods on the RemoteView
object that modifies each of the views used in the layout defined. This is how any
notification with a custom layout is developed. The following code shows the
implementation of the notification with custom layout, and this can be added
in any activity:

You can see from the code that we have first created an object of Notification
with the initial icon, ticker text, and time of triggering the notification. Then, we
create intent objects, Intent and PendingIntent, for specifying the action of our
notification when it is clicked on. Then, we set contentIntent and contentView of
the notification object. We create a new RemoteView object for contentView and pass
our notification_layout.xml reference in it. This is how the notification layout
is set to our custom layout passed in a RemoteView constructor. Then, we set our
pending intent to contentIntent. And finally, we update the values of our layout
using the set methods such as setImageViewResource() and setTextViewText().
Until now, we have developed our notification with a custom layout. Now, we will
see how to trigger the notification. The following code snippet shows how to trigger
the notification:

Chapter 6

[235]

We are getting an instance of the NotificationManager class by calling the
getSystemService() method. To trigger the notification, we are calling the
NotificationManager.notify() method that receives two parameters: the
first is the ID of the notification and the second is the notification object itself.
The following screenshot shows an output of the application:

Notification fired from our application

So far, we have seen how to create notifications and set custom layouts for their view.
You might be thinking about the importance and use of intents in this application. In
this application, intent was used only for one purpose and that is to navigate the user
to our required application or activity when the user clicks on the notification. We
created an Intent object, and from that, we created a PendingIntent object that
was used in the notification as contentIntent.

Accessing Android Features Using Intents

[236]

Summary
In this chapter, we discussed Android features. We learned about common Android
features such as layouts, display, connectivity, communication, accessibility, touch,
and hardware support and their comparison with Android mobile components.
We then saw how the two most important tags, <uses-feature> and <uses-
permission>, are used in the AndroidManifest file and for what purpose.

We also discussed the relation between hardware and software features and Android
mobile components and their relationship with these manifest tags. Then, we saw
the most common intent action ACTION_SEND that is used to send or share anything
with other applications using the implicit intents' approach. Then, we expanded our
knowledge of intents to more specific features of phones including making calls,
sending SMS/MMS messages, confirming the delivery of messages, and receiving
messages. We used intents as well as native Android APIs to perform these actions.
We then discussed notifications and alerts, and learned how we can set custom
layouts in notifications. We learned two different ways, and used one way in our
example application. We learned how intents are used in these types of applications
and also learned about their role with those classes.

In the next chapter, we will discuss intent filters and see how Android recognizes
different intents and filters them according to the calls and applications.

Intent Filters
Intent filters are the advanced step to understand the minor significant details of
Android Intents. In this chapter, we will take a look at the basics of intent filters and
how they can be used effectively in an Android application. The chapter also deals
with various kinds of tests that an intent should pass before it is delivered to the
desired component.

Intent filters can be found inside the AndroidManifest.xml file,
under the activity tag.

In this chapter, we will cover the following topics:

• Intent object and its categorization
• Understanding what intent filters are
• Understanding what intent tests are
• Implementing an intent filter for a particular task

Intent object and its categorization
Intent objects come with a whole lot of information. This bundle of information will
help the component to extract knowledge from it. For example, what kind of action
should be taken on the data that is coming with the intent object; similarly, there
is the information that is about the Android system. This information about the
Android system is required when the system doesn't know the component that
will handle the upcoming intent.

Intent Filters

[238]

In order to have a better understanding about the example mentioned in the
preceding paragraph, consider a scenario in which the intent is transferred in order
to start a movie. In this case, the operating system must know which software is
needed to perform this action.

The categories contained in the Android intent object are discussed in the
following sections.

Component name
The intent object contains information about the component name which will
be handling the data. Mostly, this component consists of the full class name. For
example, com.app.demoactivity.MyActivity or com.example.demoactivity.
MainActivity. This information about the component is optional for the intent
object. If it is known to the intent object, Android will divert the data handling
towards that particular component; if it is unknown, Android will identify what
the best component is to handle this event.

The package part of the component name isn't necessarily the
same as the project name in the AndroidManifest.xml file.

The component name is set by setComponent() or setClassName() methods that
are provided by the Android APIs.

Intent resolution
Android intents are categorized into two parts (as described in Chapter 3, Intent and
Its Categorization), implicit intents and explicit intents. For explicit intents, not
assigning a component name to it does not cause any problems as the component
has to be included in the intent object, and then Android will automatically direct
the explicit intent towards the described component.

On the other hand, in implicit intents, if the component name is not given to the
Android system, it will direct it automatically towards all the possible applications
that can handle this incoming intent. This action will only take place if the intent
has an intent filter, otherwise Android will not direct it. This term is called Android
intent resolution; it is when you need not define the component for implicit intent,
and it will automatically show a list of all the possible applications that can receive
this intent.

Chapter 7

[239]

Action
Action is a string that describes the action to to be taken on an intent. For example,
ACTION_CALL, ACTION_BATTERY_LOW, and ACTION_SCREEN_ON. You can find various
other constants for actions at http://developer.android.com/reference/
android/content/Intent.html. You can also make your own intent actions, but
make sure to add the project name before it, for example, com.example.myproject.
SHOW_CONTACT. The custom action is required when the developer wants to make an
event that has not been previously added to Android SDK. This requirement can also
occur when the developer wants to trigger/check an action which is closely related
to that application only. Hence, it is not present in Android SDK.

com.example.XXX is the package name that is discouraged by Java
and Android application development. It makes sure that the use of
this package is mostly due to understanding the purpose of it in this
example.

Action normally tells you how your intent is structured, especially the data and
the extras. It is like a phenomenon of methods, where there are arguments and it
returns values. It is a good practice to always use your action name as specifically
as possible, and tightly couple them with the intent. Intent action can be set by
using the Android API's method setAction(), and you can get it by using the
getAction() method.

Some of the predefined constants for the intent action are given in the following table:

Constants Component relation Action
ACTION_CALL Activity Initiate a phone call
ACTION_EDIT Activity Display data from the user to edit
ACTION_MAIN Activity Start up as an initial activity with

no data input and no returned
output

ACTION_SYNC Activity Synchronized data on the server
with the data on a mobile device

ACTION_BATTERY_LOW Broadcast receiver A warning that the battery is low
ACTION_HEADSET_PLUG Broadcast receiver A headset is plugged into the

device
ACTION_SCREEN_ON Broadcast receiver The screen has turned on

Intent Filters

[240]

Data
In Android intents, different types of actions are taken on the basis of the different
types of data that are provided. Data is one of the fundamental parts on Android
intents, especially in the implicit category. Let us look at some examples in order
to have a better understanding of how to use data with its relevant action in
Android intents.

Use of data in ACTION_EDIT
Consider an example of ACTION_EDIT. Whenever we call this action into intent,
it is obvious that the edit functionality is to be implemented in a sort of the
document. This document path is to be given in the form of a URI, which will
then be handled by the Android intent. This URI is basically the part of the data
that we put inside the intent object.

ACTION_EDIT can be used in a scenario where a developer wants to open the default
Android's Add new contact screen in which the developer expects the user to edit.
In this case, the intent which is called to open the Add new contact screen should
have the ACTION_EDIT action defined.

Use of data in ACTION_CALL
Consider another example of ACTION_CALL. This action is used when we need to
perform the call functionality through intent. So, in order to complete the task, we
need to provide a telephone number by referencing it using a tel:// URI. This is
the part of the data set that is to be provided with the intent so that Android may
know on what data does it need to perform the dialling functionality.

Use of data in ACTION_VIEW
Moving towards our third example, that is ACTION_VIEW. In most cases, when
this action is called, there is a website linked to it via a URI. This helps Android to
understand the data on which the view action is to be performed. Normally, with
ACTION_VIEW action, an http:// URI is attached, so that Android may process the
functionality of viewing any web page.

Category
It is the additional information given to the intent in order to know the best kind
of component required to perform that specific intent. For example, if there is a
webpage that we want to view using ACTION_VIEW action, we can specify its category
as CATEGORY_BROWSABLE, in order to let Android know that the data associated with
the intent is safe and can easily be executed using the Android browser.

Chapter 7

[241]

Some constants of categories that can be easily used in any Android program are
listed in the following table:

Constants Explanation
CATEGORY_BROWSABLE The activity is safe to be executed on an Android browser

using the data associated with the intent.
CATEGORY_GADGET The activity is associated with another activity that is hosted

by any Android gadget.
CATEGORY_HOME The activity displays the home screen, or it is the first screen

that the user sees when the Home button is pressed.
CATEGORY_LAUNCHER The category of a particular activity is launcher, which means

it is going to be the top of the stack activity.
CATEGORY_PREFERENCE The destination activity is from the preference panel.

Extras
In the previous chapters, we had a good look in the extras feature and how can
we can use it with intents. Just like the data, some extras are bound with the intent
that is to be launched. For example, the ACTION_HEADSET_PLUG action has the extra
"State" to indicate whether your headphones are connected to the cell phone
or not.

These methods are parallel to those for bundle objects. So, the extras can be installed
and read as a bundle using the putExtras() and getExtras() methods.

Intent filters
At this moment, we have a perfect understanding of Android intents and its
implementation. Android intents are responsible for telling Android that a certain
event has occurred, it is also used to give additional data on which a certain action
should be taken. But how would Android know which component can facilitate
the execution of any intent? For this, the concept of Intent filters comes in. Intent
filters identify which component can react to a particular call to activities, services
or broadcast intents.

Typically, intent filters are given to an activity or a service via AndroidManifest.
xml file that consists of action, data, and category tests. In the case of broadcast
receiver, intent filters can also be defined via code, dynamically.

Intent Filters

[242]

For an implicit intent, it is necessary for it to pass all the three tests in order to deliver
it to the particular component. Now, there can be two conditions based on these cases:
one is when the intent does not pass any one of the tests, the intent will not be passed
to the component. The other case is, when it has got its tests passed, it will directly be
handed over to the respective component. In the first case, there is an exception that
if it does not pass the test, it can be handed over to the next intent filter of the same
activity. By this, it will be possible that it might be executed as per the expectation.

We can have multiple intent filters inside one activity in the
AndroidManifest.xml file.

A normal XML tag of an activity having an intent filter inside looks like this:

As you can see in the code, it consists of one activity tag which has everything inside
it. This activity consists of only one intent filter that has two main components in it:
action and category. The action to be taken at the execution of this intent is android.
intent.action.MAIN, by calling this action any previous reference to the activity is
removed, and the activity is executed with a fresh start. With this, the category is set
as android.intent.category.LAUNCHER; this shows that the activity that is written
inside the AndroidManifest file is the launcher's activity tag. That means, it is
the first activity to be launched once the application is executed. If there are two or
more activities described as launcher in the AndroidManifest.xml file, the Android
operating system will ask the user which activity to start with.

<intent-filter> is part of the AndroidManifest.xml file and
not of the Java code, because the information it contains is required
before the project application is launched. For example, the category
is to be determined if it is a launcher activity or not, before the start of
the project application. As the AndroidManifest.xml file is executed
before the start of the project application in order to extract the
information about the project, intent filters are part of this file. The only
exception is in the case of broadcast intent, in which the information
can be modified dynamically from the Java code and not from the
AndroidManifest.xml file.

Chapter 7

[243]

Handling multiple intent filters
It is not a compulsion that any Android activity may have only one intent filter. One
activity may incorporate various intent filters which occupy many sub components
such as category, data, and actions. Take a look at the following screenshot which
shows the two intent filters present with different types of parameters:

The explanation of the code mentioned in the preceding screenshot will be covered
in the upcoming topics of this chapter. For the time being, it is important to know
the implementation of various intent filters inside an activity.

Test components of an intent filter
Filters are the representative of action, data, and category field of an intent object.
Whenever an implicit intent is called, it is tested against these filters in order to get
executed. If that intent does not fulfill any one of the test components, it will not be
executed, or rather, it will be directed to a separate intent filter of the same activity
(if it exists).

Now, in order to have a proper understanding of the intent filters, we need to go
through a step-by-step evaluation of each test component associated with the intent
filter. There are three test components present:

• Action test
• Data test
• Category test

Intent Filters

[244]

Action test
Action describes what kind of action is to be executed by the coming intent. The
AndroidManifest.xml file determines the requirements that are to be fulfilled
by the incoming intent. If any intent is unable to match the specified action in the
AndroidManifest.xml file, it will not be executed.

Action test is basically a test that is executed by the information given inside
the manifest file of the project. All the action components are defined inside the
<intent-filter> tags, and then matched in order to execute the intent. In the
following screenshot, you can see how the intent-filter tag looks while having
action tests:

In the code given in the preceding screenshot, there are three actions listed inside the
intent-filter tags. These action tests will be determined by the Android operating
system if the incoming intent is be able to do these actions. There are three tests listed
in the preceding code, descriptions of which you can see in the table given in the
Action section. The following two conditions are to be followed:

If there is no action written inside the intent-filter tags, the Android operating
system will refuse to process the intent as there is nothing available for matching.

If the intent-filter tag contains more than one action, but there is no action listed
in the incoming intent, the intent will go through with it without any problem.

Writing conventions for <action>
There are certain conventions that Android follows while defining the actions. It
should be kept in mind, for default actions we have to use the predefined constants
that are given in the Android API. In the Android library, it is a convention that
every action string starts with ACTION_, after which the real action name is written.
For example, ACTION_MAIN, ACTION_TIME_ZONE_CHANGED, and ACTION_WEB_SEARCH.

Chapter 7

[245]

Similarly, when it comes to the convention that is required to mention this string
inside the AndroidManifest.xml file, Android follows the android.intent.
action.STRING pattern. In this statement, the word STRING is replaced by the
particular action that is to be matched but without the word ACTION. In order to
understand the given statement, take the example of the ACTION_MAIN constant. If we
want to mention it inside the AndroidManifest.xml file, we will not write ACTION_,
instead we will write something like this:

It is the same case with ACTION_EDIT, which enables the Android to edit any
document whose reference is given in the URI. We will write the code, shown in the
following screenshot, to make it understandable in the AndroidManifest.xml file:

When it comes to the custom action, the action is defined by the user and not the
Android API. There is a best practice that before writing it always starts with your
package name in order to keep it unique. For example, if you want to make an
action called HIDE_OBJECTS, you will have to write code, as shown in the following
screenshot, in your XML file:

Intent Filters

[246]

Category test
In order to pass the category test, it is necessary that the incoming intent category
should be matched with at least one of the categories mentioned inside the
<category> tag in AndroidManifest.xml. If an intent object is created without any
knowledge of the category in it, it should always pass, no matter what categories are
defined in the manifest file.

Keeping in mind that if we want to move between one activity to another using the
startActivity() method, it is necessary that the activity that is willing to receive the
implicit intent must have one default category mentioned in the AndroidManifest.
xml file, which is CATEGORY_DEFAULT (as mentioned in Android API).

It is the same as writing the convention for action, the category should
be written as android.intent.category.DEFAULT, without
mentioning the CATEGORY_ string in AndroidManifest.xml.

Although, this is not the case with launcher category; it is an exception. We
mention android.intent.category.LAUNCHER in the launcher activity tags. The
representation of the category test is shown in the following screenshot:

In the code given in the preceding screenshot, there are two categories mentioned.
The first category is android.intent.category.DEFAULT, which is because this
particular activity is all set to receive the implicit intent. The other category that is
mentioned in the manifest file is android.intent.category.BROWSABLE, which
enables this activity to browse through the native Android browser present in the
phone or any other applications that are for browsing websites.

Chapter 7

[247]

Setting up the launcher activity
Setting up the launcher activity is primarily a part of the category. In this, we need to
make sure that we completely understand the exception of the launcher activity with
respect to intent. Since it is known that launcher activity is the one which is started
just after the application is started for the first time, we can now move forward with
its concept in category. The DEFAULT category is used if it is known that the activity
will receive some implicit intent, but on the other hand, the LAUNCHER activity is the
one that was started for the first time in any application.

In this sense, no launcher activity can be a default one at the same time. The result
concludes that no activity can have android.intent.category.DEFAULT and
android.intent.category.LAUNCHER at the same time in AndroidManifest.xml.
The launcher activity presented in the manifest looks like the code shown in the
following screenshot:

<activity android:name="com.example.android.application.MyList"
 android:label="@string/title_my_list">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

In code given in the preceding screenshot, the activity com.example.android.
application.MyList is the launcher activity that will produce a list at the start of the
application. Since this is the main entry point of the application, we provide ACTION_
MAIN as the action in the manifest. While you can see the second tag, the category that
is provided is given the name of android.intent.category.LAUNCHER.

Intent Filters

[248]

Data test
Data tags are mentioned in order to facilitate the action taken on the executed
activity. That is the reason why there can be multiple data tags inside one
<activity> tag. The <data> tag consists of the information on a specific URI or
MIME media type. For example, an activity may have the data tags, shown in the
following screenshot, in it:

In the code given in the preceding screenshot, the intent filter contains two
data tags. In each one of them, the MIME media type that is given under the
android:mimeType attribute is the one that specifies the data format supported by
the activity for a certain action. The video/avi value describes the video format
of .avi files, which is supported by the activity. Similarly, if there is a need for
mentioning the audio file type, we can use audio/mpeg.

It is also possible that we put an asterisk after the video or audio MIME Type.
For example, see the following screenshot:

This code is the same as the previous one, apart from the video/* and audio/*
MIME types. The asterisk indicates that all possible subtypes of them are supported
by this activity.

Chapter 7

[249]

Now, there are some points that we need to make sure of:

• An intent object that does not contain any particular information about URI
will only pass through the intent-filter tag if, and only if, there is no
information of data is provided in the AndroidManifest.xml file

• An intent object that only contains the URI but not the data MIME type will
only be passed if, and only if, it is matched with the URI specified in the filter
and there is no filter specified for the data type

• An intent object that only contains the MIME type, but not the URI, will only
be passed if, and only if, it is matched with the MIME type specified in the
filter and there is no filter specified for the URI

• In the case where an intent object contains the URI, as well as the MIME type,
it will only be passed if they are matched with the corresponding values of
intent-filters specified in AndroidManifest.xml

Typical representation of the <data> tag
The <data> tag contains many attributes in order to make it complete information.
The following syntax contains all the attributes that can be defined in the <data> tag,
which will increase the knowledge of the activity while the processing of intent
is happening:

Intent Filters

[250]

In the code given in the preceding screenshot, there are various attributes which are
all optional, yet they are more mutually dependent on one another. The list of the
optional attributes is given as follows:

• scheme

• host

• port

• path

• pathPrefix

• pathPattern

Now, let's talk about their dependencies with one another. If the scheme is not
mentioned in the data tag, no URI will remain valid after that. Similarly, if the
host element is not defined, all the path tags and host tag values will be voided.

Summary
In this chapter, we had a detailed look at the intent filter and intent object. We saw
the basic building blocks of the intent object, in which we define elements in the
Java code, and on the other hand there are intent filters, which give knowledge to
the Android OS about the activities present inside the application. We learned how
intent-filters tags do their work by matching the incoming intent object and its
attribute. Then, they decide whether or not the intent should be executed or not.

We also took a look on the action, data, and category, and how these work. How
different data, categories, and actions are incorporated within a single activity in
different intent filters, and what the main mechanism is if there are various filter
choices available. We also looked at some writing conventions, the typical way of
writing a launcher activity in the Android Manifest and how many MIME types are
incorporated over when the data is valid for different subtypes of a format. In the
next chapter, we will see how intents can be used with broadcast receivers, their
practical examples, and the kind of issues that can arise because of them.

Broadcasting Intents
In the previous chapter, we learned about intent filters and how these filters provide
information about different activities, services, and so on, to the Android OS. We also
discussed how intent filters work and how they match the coming intent object with
attributes. This chapter also provides information on action, data, and category tests.

Intents are the asynchronous way of sending messages between different
components of the Android OS. So far, we have only learned to send and receive
those messages, that is, the intents from one component to another component. But
in each of the examples we discussed, we had the information about the receiver of
the intent, such as which activity or service will receive the intent and will use the
data embedded in the intent.

In this chapter, we will be extending our knowledge of sending intents to multiple
broadcast receivers. We will learn how intents are broadcasted by the Android OS
and how these broadcast intents are received.

This chapter includes the following topics:

• Broadcasting in the Android OS
• Broadcast intents in the Android OS
• System broadcasts in the Android OS
• Using the different system broadcasts of the Android OS
• Detecting the battery-low broadcast
• Detecting the screen On/Off broadcast
• Detecting the cell phone reboot completed broadcast
• Sending/receiving custom broadcast intents

Broadcasting Intents

[252]

The concept of intents and the structure of intents, as discussed in
Chapter 2, Introduction to Android Intents and Chapter 3, Intents and Its
Categorization are the prerequisites for understanding this chapter and the
further chapters. If you don't have the basic concepts of these things, we
would recommend that you read Chapter 3, Intents and Its Categorization
and Chapter 4, Intents for Mobile Components in order to move forward.

Broadcasting in the Android OS
Any smartphone running Android OS has a lot of services and actions being
executed at a particular time. These services and actions can be in the foreground
or in the background. So the question that comes in our mind here is what these
services and actions are actually doing. The answer is very simple. These services
and actions are looking or listening for some events to occur, or performing some
long operation in the background, or communicating with other components of
Android OS, and so on. You might be wondering how these components listen
for the occurrence of any event or how they communicate with other components,
especially in background when user can't interact with the application directly. In
the Android OS, these types of tasks are achieved by broadcasting. The Android OS
continuously broadcasts the information about different actions, such as whether
power has been connected and Wi-Fi has been turned on. We, the developers, use
this broadcast information in our apps to make our apps more interactive and smart.
In the next section, we will see how the Android OS broadcasts different information.

The broadcast intents
The broadcast intents are the Intent objects that are broadcasted via a method call
to the sendBroadcast(), sendStickyBroadcast(), or sendOrderedBroadcast()
methods of any Activity class. These broadcast intents provide a messaging and
event system between different application components. Also, these intents are used
by the Android OS to notify interested applications about system events such as low
battery or whether headphones have been plugged in. To create an instance of the
broadcast intent, we must include an action string in it. An action string is used to
identify the broadcast intent, and it is unique. This action string typically uses the
Java package name format.

Chapter 8

[253]

In the following code snippet, we will create an instance of the broadcast intent and
broadcast it:

You can see in the preceding code that there is no special class named
BroadcastIntent. It is an ordinary Intent object. We have used these Intent
objects in methods such as startActivity() or startService(). This time we
have passed these Intent objects in the sendBroadcast() method of the Activity
class. We have set its action string by calling the setAction() method. As discussed
earlier, we have used the package-name format in the setAction() method. To
broadcast any intent, we have used the sendBroadcast() method. This method
broadcasts any given intent. Remember that this method call is asynchronous and
will return immediately. You can't get any results from any receiver and receivers
also can't abort any broadcast intent. The interested receivers match the action string
of intent with their action string, and if matched, those receivers are executed.

From now on, we will use the keywords broadcast or broadcasts
instead of broadcast intent in the whole chapter.

Built-in broadcasts in Android systems
The Android OS contains different types of broadcasts. The Android OS keeps
broadcasting these intents to notify other applications about the various changes
in the system. For example, when a device's battery gets low, the Android OS
broadcasts an intent containing low-battery information; applications and services
that are interested in this information receive it and perform actions accordingly.
These broadcasts are predefined in the Android OS and we can listen for those
intents in our application to make our apps more interactive and responsive.

You can find the list of all possible broadcasts in a text file named
broadcast_actions.txt. This file is stored in the SDK folder under
the Android folder.

<ANDROID_SDK_HOME>/platforms/android-<PLATFORM_
VERSION>/
 data/broadcast_actions.txt

Broadcasting Intents

[254]

The following table shows a list of some of the Android OS broadcasts with the
description of their actions:

Broadcast intent action Description

android.intent.action.ACTION_POWER_
CONNECTED

This intent is broadcasted when
a mobile phone is connected to a
power source.

android.intent.action.ACTION_POWER_
DISCONNECTED

This intent is broadcasted when
a mobile phone is disconnected
from any power source.

android.intent.action.BATTERY_LOW This intent is broadcasted when a
mobile phone's battery gets low.

android.intent.action.BOOT_COMPLETED
This intent is broadcasted
when a mobile phone's booting
completes.

android.intent.action.DEVICE_STORAGE_
LOW

This intent is broadcasted when
a mobile phone's device storage
gets low.

android.intent.action.NEW_OUTGOING_
CALL

This intent is broadcasted when a
new outgoing call starts.

android.intent.action.SCREEN_OFF This intent is broadcasted when a
mobile's screen is turned on.

android.intent.action.SCREEN_ON This intent is broadcasted when a
mobile's screen is turned off.

android.net.wifi.WIFI_STATE_CHANGED
This intent is broadcasted when
the WIFI state of a mobile phone
is changed.

android.media.VIBRATE_SETTING_CHANGED
This intent is broadcasted when
the vibrate settings of a mobile
phone are changed.

android.provider.Telephony.SMS_
RECEIVED

This intent is broadcasted when a
mobile phone receives an SMS.

Chapter 8

[255]

As we can see in the preceding table, the Android OS keeps informing different
applications about various changes in the device's state by sending broadcasts. We
can listen for these changes or broadcasts and can perform our custom actions to
make our apps responsive.

You might have observed that some of the preceding intents, such as
android.provider.Telephony.SMS_RECEIVED, are not included
in the list in the SDK folder. Such intents are not supported in Android
and are subject to change in any other future platform releases.
Developers should be cautious when using these unsupported, hidden
features in their apps.

Until now, we have only talked about broadcasts but we haven't still used them
in practical examples. In the next section, we will develop some examples, in
which we will listen for some Android OS's predefined broadcasts and perform
actions accordingly.

Detecting the low-battery state of a
device
In this section, we will implement a small application which will show an alert
message when the phone's battery gets low. Now, let's get started with the
development of our first example. But, in order to start this example, you need to
build an Android project. You can use the Android Studio or Eclipse IDE (as per
your convenience), but make sure that in the case of Eclipse, you have correctly
installed JDK, ADT, and Android SDK along with their compatibility. If you don't
know the difference between these IDEs, you can refer to Chapter 1, Understanding
Android, of this book. Following those steps will help you to create a complete
Android project with some predefined files and folders.

After creating an empty Android project, we have to modify two files: one main
activity file and a manifest file. Also, we have added a receiver file as well. Let's
look at these files in details now.

Broadcasting Intents

[256]

The BatteryLowReceiver.java file
As we are developing a Battery Low alert app, the first thing we have to
do is to detect the low battery. For that purpose, we would have to create a
BroadcastLowReceiver class, which will listen to the Battery Low broadcast.
The following code shows the implementation of the receiver file:

As seen in the preceding code, we have extended our class from the
BroadcastReceiver class and have overridden the onReceive() method. This
method will be called when any broadcast is received. The first thing we have to
do is to check whether this intent is the Battery Low intent or some other broadcast.
To do so, we check the action string of the intent with the standard Android action
which is Intent.ACTION_BATTERY_LOW. If the result is true, that means the device's
battery is low, and we have to perform our custom action.

Next, we create a thread in which we pass an anonymous Runnable object.
We override the run() method, and in this method, we create an instance of
AlertDialog using the AlertDialog.Builder interface. We set the details,
such as the title and the message of the alert, and then we display it.

Chapter 8

[257]

You might be wondering why we have created a thread to show the alert. We
could have shown alert without doing it in any thread. Well, it must be noted that
broadcast receivers run for a very small amount of time. It is approximately about
4 milliseconds. Developer should be very careful when performing operations in
receivers. It is a good practice to perform operations such as creating alerts and
starting activities and services in threads from broadcast receivers.

Now, our BatteryLowReceiver class is ready. But, how is this receiver triggered
and how can this class receive the Battery Low broadcasts from the Android OS?
The answers to these questions are explained in the next section. Let's see our
activity file now in detail.

The BatteryLowActivity.java class
This class represents our main activity of the application which means that whenever
an application is launched, this activity will be started first. The following code
shows the implementation of our activity file:

As always, we extended our class from the Activity class. Then, we have
overridden the onCreate() method of our activity. We created an instance of
IntentFilter and passed the Intent.ACTION_BATTERY_LOW action string in its
constructor. You can read more about intent filters in Chapter 7, Intent Filters. After
that, we created an instance of our BatteryLowReceiver class. Finally, we call
our registerReceiver() method and pass our receiver and filter objects in it.
This method tells the Android OS that our application is interested in the Battery
Low broadcast. This is how we can listen to the Battery Low broadcast. One thing
to be noted here is that when you call the registerReceiver() method, it is the
developer's responsibility to call the unregisterReceiver() method too, when
an application is not interested in listening to the Battery Low broadcast. If the
developer doesn't unregister it, this application, no matter whether it is opened or
closed, will listen for the Battery Low broadcast and take an action accordingly.

Broadcasting Intents

[258]

This can be bad for the memory and the optimization of our application. We can call
the unregisterReceiver() method in the onDestroy(), onPause(), or onStop()
callbacks of our Activity class, as in the following code snippet:

The AndroidManifest.xml file
Developers can also register a receiver in the AndroidManifest.xml file as well.
The advantage of registering receivers in the manifest file is that developers don't
have to unregister them manually by calling the unregisterReceiver() method.
The Android OS takes care of these receivers on its own, and the developer doesn't
have to worry about it anymore. The following is the code implementation of our
AndroidManifest.xml file which registers our Battery Low receiver in it:

Chapter 8

[259]

You can see in the preceding code that we have used the <receiver> tag in our
<application> tag to register our broadcast receiver. We have inserted the whole
package name of BatteryLowReceiver, as the name of receiver in the android:name
attribute of the <receiver> tag. As we set the intent-filter action in our activity file
by creating an instance of the IntentFilter class, we are embedding the <intent-
filter> tag with the action name set to android.intent.action.BATTERY_LOW.
This intent filter will tell the Android OS that the receiver is interested in the low-
battery state information of the device.

It must be noted that developers should register receivers by
only one method; either from their activities by calling the
registerReceiver() method or from their AndroidManifest.
xml files. It is a good practice to use the AndroidManifest.xml file
to register BroadcastReceiver of the application.

When we run our application, we will see a blank screen because we haven't set
any layout for our activity. But when mobile phone gets low on battery, an alert
box will be shown in our phone. The following screenshot shows an alert box
from our BatteryLowReceiver class:

Broadcasting Intents

[260]

Detecting the screen on/off state of a
phone
Almost in all Android phones, we have seen a very interesting feature while
attending a phone call; we can see that the screen goes on or off. In addition to
this, you might have observed that when you bring your phone near your ear,
the screen turns off, and when you take it away from your ear and hold it in
your hand, the screen automatically turns on. This is an interesting behavior of
smartphones. Let's say that we want to develop an application in which whenever
the screen turns on, we want to turn on the speaker mode so that other people
with us can hear and participate in the phone conversation. And when we put it
on our ear again and the screen turns off, we want to turn speaker mode off.
The following figure shows the concept of this application:

Now, let's develop such an application in the following example. Let's start from
creating an Android project in your favorite IDE. Then, we will have to first detect
whether the screen has been turned on or off. To detect this, we will implement our
custom BroadcastReceiver class. Let's implement our broadcast receiver class in
next section.

The ScreenOnOffReceiver.java file
The ScreenOnOffReceiver.java file represents our custom broadcast receiver for
detecting the screen on/off state of the phone. The following code implementation
shows our screen on/off detecting receiver:

Chapter 8

[261]

As in the previous example, we are extending our ScreenOnOffReceiver class
from the BroadcastReceiver class and overriding the onReceive() method. This
method will be called when any broadcast intent is received by our application. Our
application first checks whether it is screen on/off intent or not by comparing the
intent action with the Intent.ACTION_SCREEN_ON or Intent.ACTION_SCREEN_OFF
constants. Remember, in the previous example we were listening for only a single
broadcast intent. However in this example, we are listening for two broadcast
intents: one for screen on and other for screen off.

In Android phones, the screen turns on/off not only during calls. It also becomes
on/off when the phone is locked/unlocked. So before setting our speaker on/
off, we have to check whether we are currently in a call or not. We can detect it by
checking the mode of AudioManager. If the mode is AudioManager.MODE_IN_CALL,
that means we are currently in any incoming or outgoing call conversation. Once we
are confirmed about the call mode status, then we can set the speaker on/off. We are
using the AudioManager.setSpeakerphoneOn(boolean) method for this purpose.

Broadcasting Intents

[262]

Until now, we have implemented our receivers. But we haven't registered these
receivers. Remember from our previous example, we used two approaches to
register our custom broadcast receivers: one from the activity class by using the
registerReceiver() method and the other from the AndroidManifest.xml file. Let's
choose the latter approach of the AndroidManifest.xml file to register our receivers.

The AndroidManifest.xml file
As in the previous example, we will register our ScreenOnOffReceiver broadcast
receiver in this manifest file. It should be noted that in the previous example of the
Battery Low application, we registered our receiver for only one filter, which was the
low-battery state of the phone. However, in this example, we are listening for two
state filters: screen on and screen off. But, we have implemented only one broadcast
receiver. So, let's see how we can register one receiver with two intent filters in the
following code implementation of the AndroidManifest.xml file:

Chapter 8

[263]

You can see in the preceding code that we have put the <receiver> tag in our
<application> tag to register our receiver. Also, it should be noted that this time we
have used the <intent-filter> tag twice with two different actions embedded in
it: one for android.intent.action.SCREEN_ON and the other for android.intent.
action.SCREEN_OFF. You can read more about multiple intent filters in Chapter
7, Intent Filters. These two intent filters along with the receiver embedded in our
AndroidManifest.xml file registers our ScreenOnOffReceiver broadcast receiver
with the Android OS to listen to the screen-on and screen-off state changes of the
mobile phone.

Detecting the cell phone's reboot-
completed state
Many android applications run services in the background when running multiple
tasks and operations. For example, a weather application keeps checking the
weather after a fixed time interval by using a background service. But have you
ever wondered that when you reboot your cell phone or your battery dies and your
phone is rebooted, then how these services start running again after reboot? Well,
we will see how this can be done in this section.

When an Android phone is rebooted successfully, the Android OS broadcasts
an intent notifying other applications that the reboot is completed. Then those
applications start their background services again. In this section, we will create
an application that will listen to the reboot-completed broadcast, and we will
start our test service from it.

Let's create an empty Android project in any IDE such as Eclipse or Android Studio.
As always, we will first implement our broadcast receiver class.

Broadcasting Intents

[264]

The PhoneRebootCompletedReceiver.java file
The PhoneRebootCompletedReceiver.java class represents our reboot-completed
broadcast receiver file. The following code shows the implementation of the file:

You can see in the preceding code that we haven't done anything new. We have
extended our class from the BroadcastReceiver class. Then, we check for the
Intent.ACTION_BOOT_COMPLETED action of the intent. If it is true, we start our
temporary service by calling the Context.startService() method. Now,
let's see what the TempService class does, in the next section.

The TempService.java file
The TempService.java class represents our service which will start when the Android
system booting is completed.

In Android 3.0, the user needs to have started the application at
least once before the application can receive the android.intent.
action.BOOT_COMPLETED broadcast.

Chapter 8

[265]

The following code shows the implementation of our TempService class:

Like any usual service class, we have extended our class from Service. We
have overridden two methods: onBind() and onStartCommand(). In the
onStartCommand() method, we will display a toast by calling the Toast.
makeText() method with the "Service started" text. When our phone's booting is
complete, this toast will be displayed. We can implement our custom operations
here in this method.

Now, all that we are left with is to inform the Android OS that our application is
interested in listening out for the Boot Completed broadcast. As in the previous
applications, we will register our receiver in the AndroidManifest.xml file.
Let's see this in the next section.

Broadcasting Intents

[266]

The AndroidManifest.xml file
The AndroidManifest.xml file informs the Android OS that our application is
interested in listening for the Boot Completed broadcast. The following code
shows the implementation of the manifest file:

Almost everything is the same as in the previous example applications. We have
registered our receiver using the <receiver> tag nested in the <application> tag
with the intent filter of the android.intent.action.BOOT_COMPLETED action. We
have also registered TempService by using the <service> tag nested within the
<application> tag. It must be noted that the Boot Completed broadcast requires
users to grant the android.permission.RECEIVE_BOOT_COMPLETED permission. We
can ask the user to grant this permission by adding the <uses-permission> tag with
the android:name attribute set to android.permission.RECEIVE_BOOT_COMPLETED.
This is how we can start our custom services when a phone is rebooted.

Chapter 8

[267]

Sending and receiving custom
broadcasts
Until now, we have been only receiving broadcasts. And all those intents we have
experimented with are the Android System broadcasts. In this section, we will
talk about custom broadcasts. We will see how we can send our own custom
broadcasts to other applications and how other applications can listen for our
custom broadcast intents.

In the next section, we will create an example that will send custom broadcasts
to other applications. Let's create the activity and layout file for the application now.

The activity_main.xml layout file
The activity_main.xml file represents the layout file of our activity. The following
code shows the implementation of the manifest file:

As you can see in the layout file, we have placed a button with the ID,
btnSendBroadcastIntent. We will use this button in our activity file to send the
broadcast to other applications. Let's see the activity file now.

Broadcasting Intents

[268]

The MainActivity.java file
The MainActivity.java file is the main launcher point of our application. This
activity will use the activity_main.xml layout file as its visual part. The following
code shows the implementation of the file:

You can see in the preceding code that we have obtained the Button object
from our layout file by calling the findViewById() method. Then we set its
OnClickListener() method, and in the overridden onClick() method, we perform
our main operation of sending broadcasts to other applications. We create an Intent
object and set its action string by calling the Intent.setAction() method. It should
be noted that we have defined our own custom action value this time as the com.
packt.CustomBroadcast string. We should follow the package-naming convention
when we create our own custom broadcast receivers. Finally, we use that intent for
broadcasting by calling the sendBroadcast() method of the Activity class. This is
how our custom broadcast intent is sent to the Android OS and other applications.
Now, all of the applications and receivers that are listening for this type of broadcast
will receive it, and hence, can perform their custom operations. In the next section,
we will implement our custom broadcast receiver class which will receive this type
of intent and display a toast to notify the user.

Chapter 8

[269]

The CustomReceiver.java file
The CustomReceiver.java file represents our custom broadcast-receiver class, which
will receive our custom broadcast. This class can be in this application or any other
application which is interested in listening for this custom type of broadcast. Like
all of the previous examples, this class will be the same and extended from the
BroadcastReceiver class. The only difference between the previous examples and
this example is that we were using the Android OS's standard predefined constant
action strings to detect the System broadcasts, but in this example, we are listening
for our own custom broadcasts with custom action strings set. The following code
shows the implementation of the file:

public class OurCustomReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub
 if (intent.getAction() == "com.packt.CustomBroadcast") {
 Toast.makeText(context, "Broadcast Intent Detected.",
 Toast.LENGTH_LONG).show();
 }
 }
}

You can see in the preceding code that we haven't done anything new which you
aren't already familiar with. We have derived our class from BroadcastReceiver
and overridden the onReceive() method. We then compared the action string of the
intent with our own custom string of the com.packt.CustomBroadcast action. If it is
true, we will display a toast saying Broadcast Intent Detected. We can perform
our custom operations here in this method. Finally, we have to register this receiver
so that the Android OS can notify our application about the broadcast.

Broadcasting Intents

[270]

The AndroidManifest.xml file
As always, the AndroidManifest.xml tells the Android OS that our application is
listening for custom broadcasts. The following code shows the implementation of
the file:

You can see that we have registered our custom broadcast receiver in the same way
as we have registered the receivers for Android System broadcasts. Now, when we
run this application, we will see a button named Send Broadcast Intent. When we
tap on the button, our custom broadcast will be broadcasted in the Android OS.
As we have also created a receiver of this custom intent, so we will also receive
this intent. On receiving the intent, our custom receiver will display a toast. The
following screenshot shows the execution of this application:

Chapter 8

[271]

Summary
In this chapter, we discussed about broadcasts. We also saw the different Android
OS's System broadcast intents such as Battery Low, Power Connected and Boot
Completed. Also, we saw how these broadcasts are received by registering our
custom receivers and how we can perform our own custom operations in those
receivers. Finally, we learned about sending our own custom broadcasts and
receiving those custom intents as well.

In the next chapter, we will explore two special types of intents: IntentService
and PendingIntent. Also, we will learn how these intents are used and what
can be achieved by these intents.

Intent Service and
Pending Intents

From the very beginning of this book, we have been studying different tasks that
an intent can do to facilitate Android and their types. We have seen that intents
can help to navigate in between the activities. They are also used to transfer data
between them. We saw how we can put filters in order to verify whether the
incoming intent can qualify the component test and in the end, we learned the role
of intent in Broadcast Receivers. In this chapter, we will have an advanced look
at how the intents can be used for doing handy things using Intent Services and
Pending Intents.

In this chapter, we will have a look at the following topics:

• What is Intent Service?
• Usage and Implementation of Intent Service
• What is Pending Intent?
• Usage and Implementation of Pending Intent
• Summary

Intent Service
Intent Service is a simple kind of service that is used to handle asynchronous work
which has nothing to do with the main thread. This can be done if the client sends
the request by the startService(Intent intent) method. This new task will
be handled by the worker thread and stops when it runs out of work.

Intent Service and Pending Intents

[274]

Intent Service is inherited by the Service class present in
Android API

Intent Service is used to offload the working thread, so that it does not become the
bottleneck. It helps to make things go separately as of the main application thread.
It is to be noted that though it works independently of the main thread, only one
request can be processed at a given time.

Intent Service is the best way to offload the work from the UI thread of your
application and into a work queue. There is no need to make asynchronous tasks
and manage them for every processing. Rather, you define an Intent Service, enable
it to handle the appropriate data that you want to send for the processing, and
simply start the service. In the end, you can send the data back to the application
by broadcasting it in an intent object and catching it from the Broadcast Receiver
to use it in the application.

Comparison of four fundamentals
This section shows the basic difference between four of the most important elements
(Service, Thread, Intent Service, and Async Task) of Android development including
Intent Service.

Best case to use
Best case scenarios for Service, Thread, Intent Service, and Async Task are given in
the following table:

Best case scenario

Service When task is not too long and has nothing to do with the main thread

Thread When there is a long task to perform and more than one task has to be
done in parallel

Intent
Service

When there are long tasks without any intervention from the main thread
and also where callbacks are needed

Async Task When there are long tasks in which communication with the main thread
is needed and also where there is a need for parallel work to be done

Chapter 9

[275]

If there is a need for Intent Service to communicate with the main
thread, we need to use Handler or Broadcast Intents.

Triggers
The difference in the triggers of Service, Thread, Intent Service, and Async Task has
been discussed in the following table:

Service Thread Intent Service Async Task
Triggers By using the

onStartService()
method

By using the
start()
method

By Intent By using the
execute()
method

Cause of
Triggers

Can be called from
any thread

Can be called
and run by any
other thread

Can only be
called from the
main thread

Can only be
called from
the main
thread

Runs on Can be called from
the main thread

Its own thread Separate worker
thread

Separate
worker
thread
although the
method of the
main thread
can be run in
between

Limitations Can block the main
thread in certain
scenarios

Has to be
manually
handled and
the code may
not be easily
understandable

Cannot handle
multiple tasks
simultaneously
and all tasks
work on the
same worker
thread

Can have
only one
instance of
one task and
cannot be run
in a loop

Usage and implementation of Intent
Service
From the previous parts of this chapter, we have the clear view of the definition of
Intent Service and what the fundamental differences are that it has with Threads,
Async Tasks, and Service. It is now time to start with the implementation and usage
of Intent Services. For this, we will start with the example which will help us to learn
how to generate a fake notification from Intent Service.

Intent Service and Pending Intents

[276]

Generating a fake notification from Intent Service
In this example, we will learn the use of Intent Service in producing the
notification on your notification bar. The example will also explain the use of the
onHandleIntent() method which is used to implement all the functionality of
Intent Service that also includes sending the broadcast and the notification to the
notification bar.

Moreover, at the end of this section you will learn the difference between it and
Thread, or any other previously mentioned Android-defined method. After the
completion of this code, start the activity and you will get a view of these screens:

Start of Activity will show the Hello World Screen

Note: Remember that in this example we will not go through the
complete set of files that is used in the project. Since this is the last
chapter of the book, we assume that you already got the basics of
Android development in terms of XML file, resources, and layouts

Chapter 9

[277]

The Notification panel showing the Progress notification

A glance at the code
The example refers to the use of Intent Service in a scenario when there is a need
for sending a message to the notification bar about progressing or signaling of any
particular event.

package com.app.intentservice;

import android.app.IntentService;
import android.app.Notification;
import android.app.NotificationManager;
import android.content.Context;
import android.content.Intent;
import android.support.v4.app.NotificationCompat;

Intent Service and Pending Intents

[278]

public class CustomIntentService extends IntentService {

 private static final int NOTIFICATION_ID=1;
 NotificationManager notificationManager;
 Notification notification;

 public static final String ACTION_CUSTOM_INTENT_SERVICE
 = "com.app.intentservice.RESPONSE";
 public static final String ACTION_MY_UPDATE =
 "com.app.intentservice.UPDATE";
 public static final String EXTRA_KEY_IN = "EXTRA_IN";
 public static final String EXTRA_KEY_OUT = "EXTRA_OUT";
 public static final String EXTRA_KEY_UPDATE = "EXTRA_UPDATE";
 String activityMessage;

 String extraOut;

 public CustomIntentService() {
 super("com.app.intentservice.CustomIntentService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {

 //get input
 activityMessage = intent.getStringExtra(EXTRA_KEY_IN);
 extraOut = "Hello: " + activityMessage;

 for(int i = 0; i <=10; i++){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 //send update
 Intent intentUpdate = new Intent();
 intentUpdate.setAction(ACTION_MY_UPDATE);
 intentUpdate.addCategory(Intent.CATEGORY_DEFAULT);
 intentUpdate.putExtra(EXTRA_KEY_UPDATE, i);
 sendBroadcast(intentUpdate);

Chapter 9

[279]

 //generate notification
 String notificationText = String.valueOf((int)
 (100 * i / 10)) + " %";
 notification = new NotificationCompat.Builder
 (getApplicationContext())
 .setContentTitle("Progress")
 .setContentText(notificationText)
 .setTicker("Notification!")
 .setWhen(System.currentTimeMillis())
 .setDefaults(Notification.DEFAULT_SOUND)
 .setAutoCancel(true)
 .setSmallIcon(R.drawable.ic_launcher)
 .build();

 notificationManager.notify(NOTIFICATION_ID, notification);
 }

 //return result
 Intent intentResponse = new Intent();
 intentResponse.setAction(ACTION_CUSTOM_INTENT_SERVICE);
 intentResponse.addCategory(Intent.CATEGORY_DEFAULT);
 intentResponse.putExtra(EXTRA_KEY_OUT, extraOut);
 sendBroadcast(intentResponse);
 }

 @Override
 public void onCreate() {
 // TODO Auto-generated method stub
 super.onCreate();
 notificationManager = (NotificationManager)
 getSystemService(Context.NOTIFICATION_SERVICE);
 }
}

Dive into the understanding
Build a new project and open the src folder. Create a new class file with the name of
CustomIntentService.java which is the child class of IntentService. Extend the
IntentService class and override the method onHandleIntent(Intent intent).

Intent Service and Pending Intents

[280]

At this point, you are all set to implement your own Intent Service that is responsible
for sending a message to the notification bar and update it in the form of the Progress
Percentage Bar format. Now, let's start understanding the code by going through the
following steps:

1. The first step is to declare the variables notificationManager and
notification in order to use them inside the onHandleIntent() method.
There are some other static final variables that we will be using in this
project. They are NOTIFICATION_ID, ACTION_CustomIntentService,
ACTION_MyUpdate, EXTRA_KEY_IN, EXTRA_KEY_OUT, and EXTRA_KEY_UPDATE.
Two new strings variables are also required in order to handle
the notification string, stated as activityMessage and extraOut.

2. The main implementation of this IntentService will take place in the
onHandleIntent() method where we will define the working which
includes messages to the notification bar and broadcasting of messages.

3. At the start of this onHandleIntent(), the extras are obtained by the
intent.getStringExtra() method and saved in the msgFromActivity
variable which will later be sent to broadcast.

4. Our main objective is to send a notification which will show 0 to 100 %
progress (a fake counter) and get updated in the notification bar. For that,
we are initializing a for loop which will go from 0 to 10. At the start of this,
we will call Thread.sleep(1000), which will make the thread sleep and
will not work for 1000 milliseconds.

5. Once the thread has slept for a certain time, the first counter of our fake
progress update is done. Our next step is to send a broadcast whose main
purpose is to give the update. In order to see this, we use the following lines
of code:
//send update
Intent intentUpdate = new Intent();
intentUpdate.setAction(ACTION_MyUpdate);
intentUpdate.addCategory(Intent.CATEGORY_DEFAULT);
intentUpdate.putExtra(EXTRA_KEY_UPDATE, i);
sendBroadcast(intentUpdate);

A quick overview of how we send a broadcast: make a new intent object,
and give it a name and action of intentUpdate; since it is a custom action,
give it a name of ACTION_MyUpdate which you can see in the code; define
its category which is also a custom category; put the counter information
(the variable that shows the current counter of the loop) and send a
broadcast for this intent.

Chapter 9

[281]

6. The next step is to send the notification to the notification bar. The following
lines of code can be seen inside the previous example:
//generate notification
String notificationText = String.valueOf((int)
 (100 * i / 10)) + " %";
myNotification = new NotificationCompat.Builder
 (getApplicationContext())
.setContentTitle("Progress")
.setContentText(notificationText)
.setTicker("Notification!")
.setWhen(System.currentTimeMillis())
.setDefaults(Notification.DEFAULT_SOUND)
.setAutoCancel(true)
.setSmallIcon(R.drawable.ic_launcher)
.build();

notificationManager.notify
 (MY_NOTIFICATION_ID, myNotification);

This code sets the value of notificationText to the current counter of the
loop and converts it into the percentage; makes a new notification by calling
the NotificationCompat.Builder() (which is basically a builder pattern
described in Android SDK) and gives it the application context, sets its title
content, text, ticker, when-to-appear, and some other properties. At the end,
you have to call notificationManager.notify() in order to show it in the
notification bar.

7. The last step is to send another broadcast as an acknowledgement, and it has
the same procedure as that of the previous broadcast, as you can see in the
following code:
//return result
Intent intentResponse = new Intent();
intentResponse.setAction(ACTION_MyIntentService);
intentResponse.addCategory(Intent.CATEGORY_DEFAULT);
intentResponse.putExtra(EXTRA_KEY_OUT, extraOut);
sendBroadcast(intentResponse);

8. The last step showed in the code is to override the onCreate() method.
You must have noticed that we did not make a new object of the notification
manager which will certainly give an error. So, in order to make a new object,
we will get the system service of Android by using the notification manager
getSystemService (Context.NOTIFICATION_SERVICE).

Intent Service and Pending Intents

[282]

This example will also need a Broadcast Receiver. If you still don't
have an idea about it, you can refer to previous chapters.

Taking another example
The previous example mainly deals with the implementation of notification in the
Android notification bar. It covered the implementation of Intent Service but not
the making of Broadcast Receiver and its registration. In this example, we will learn
how to use Intent Service and convert all the input data to uppercase and broadcast
it back to Broadcast Receiver. The implementation of Broadcast Receiver is also a
part of this example.

Starting with the example, use the following code to implement it on your
development environment:

public class IntentServiceExampleTwo extends IntentService {
 private static final String TAG
 =IntentServiceExampleTwo.class.getSimpleName();

 public static final String INPUT_TEXT_STRING
 ="INPUT_TEXT_STRING";
 public static final String OUTPUT_TEXT="OUTPUT_TEXT";

 /**
 * initiate service in background thread with service name
 */
 public IntentServiceExampleTwo() {
 super(IntentServiceExampleTwo.class.getSimpleName());
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 Log.i(TAG,"onHandleIntent()");

 String data =intent.getStringExtra(INPUT_TEXT_STRING);
 Log.d(TAG,data);

 data=data.toUpperCase();

 SystemClock.sleep(4*1000);

 Intent stringBroadCastIntent =new Intent();

 stringBroadCastIntent.setAction
 (TextCapitalizeResultReceiver.ACTION_TEXT_CAPITALIZED);

Chapter 9

[283]

 stringBroadCastIntent.addCategory(Intent.CATEGORY_DEFAULT);

 stringBroadCastIntent.putExtra(OUTPUT_TEXT, data);

 sendBroadcast(stringBroadCastIntent);
 }

}

This is almost the same implementation that was done before, in the first example.
In this example, the working of the onHandleIntent() method is shown, in which
the following steps are taking place:

1. In the onHandleIntent() method, the first step that you can see is getting
data from the coming intent and saving it into a variable. The variable data
contains the incoming data which we will convert into the uppercase.

2. The second step is logging the data into LogCat, which is obtained by using
the method Log.d(String, String). The first argument is TAG, which
is normally the class name that is declared at the global level, so that any
method may use it. This class name is important to distinguish your message
from others (makes it easy to read). The second argument is the message
string which is used to show any data in the process, so that at runtime
the developer may see its value.

3. The third step is to convert this data into upper case. This will help to reflect
the change in the broadcasted intent. Save this back into the data variable.

4. The rest of the steps are the same as the previous example in which the intent
object is made, the categories and action are defined, data is put as an extra
and is sent to be broadcast by the receiver.

The next step, is to set the receiver which will be received from the sendBroadcast()
method. For this, take a look at the following code:

public class UpperCaseReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 TextView textViewResult =
 (TextView)findViewById(R.id.receiving_text_view);
 String result =intent.getStringExtra
 (ExampleIntentService.OUTPUT_TEXT);
 textViewResult.setText(result);
 }

};

Intent Service and Pending Intents

[284]

The previous code is that part of the example where how to make a Broadcast
Receiver is written and this will receive the broadcast back and set textView.
You can see in the code that the onReceive() method is overridden where the
class is extending the Broadcast Receiver. Inside the onReceive() method, the string
is obtained by the intent.getStringExtra() method and is saved in the result
string. This string will be used to set the text of the textView, so that you can see
the changes as they are reflected in the textView.

Moving forward, the next step is to register this receiver with Intent Service.
This will be done inside the activity where the receiver is linked to the Intent Filter,
so that it can have its effect. This is shown in the following piece of code:

private void registerReceiver() {

 IntentFilter intentFilter =new IntentFilter
 (UpperCaseResultReceiver.ACTION_TEXT_CAPITALIZED);

 intentFilter.addCategory(Intent.CATEGORY_DEFAULT);

 capitalCaseReceiver=new UpperCaseResultReceiver();

 registerReceiver(capitalCaseReceiver, intentFilter);
}

The method registerReceiver() is declared inside your activity which will be
called from the onCreate() or onResume() methods, so that it can register the
Broadcast Receiver while starting or resuming the activity.

• The Intent Filter is declared and initialized with the object named
intentFilter.

• The intentFilter object is set as default.
• The object of the Broadcast Receiver is initiated and registered

with the Intent Filter by calling the registerReceiver(Receiver,
IntentFilter) method.

After registering the receiver with the Intent Filter, the next step is to use this in your
activity. For this, take a look at the following code. This code can be inside any event:

Intent textUpperCaseIntent = new Intent
 (MainActivity.this, ExampleIntentService.class);

textUpperCaseIntent.putExtra
 (ExampleIntentService.INPUT_TEXT, inputText);

startService(textUpperCaseIntent);

Chapter 9

[285]

Initialize an intent in the traditional way by giving that the IntentService class
you just made and put the input text that you want to convert in upper case. The
extra data that is given to this intent is done by the Intent.putExtra(String,
String) method. The last step is to start the service with this intent. We will use
the startService() method and not the typical startActivity() method
because we use startActivity for starting activities through intents in Android.

Pending Intents
Pending Intents are the intents which give token to other applications or you
may call it a foreign application that may access your intent permission to run the
predefined piece of code. This way, many other applications such as Alarm Manager
and Calendar may use your application in order to execute their tasks.

Pending Intents are not run instantly; rather, they are run when some other activity
wants it to run. Pending Intent is a reference that is maintained by the system so that
it can be used at a later stage. That means that even if the application that contains
the Pending Intent ends, another application can still use the context until cancel()
is called over that intent.

To perform a broadcast via a Pending Intent, use Pending Intent via
PendingIntent.getBroadcast().

The Pending Intents can be launched via three methods, getActivity(Context
context, int requestCode, Intent intent, int flags),
getBroadcast(Context context, int requestCode, Intent intent, int
flags), and getService(Context context, int requestCode, Intent intent,
int flags). In order to have a view of Pending Intents and how it is made and
used in an Android Application, you can proceed to the next section which deals
with the implementation.

How to make Pending Intents work?
This section deals with the implementation and explanation of how Pending Intents
work. In order to have a good understanding of this, we advise you to read the
previously mentioned definition so that you understand it better.

In this example, we will show you how to make an application in which the user
can input time (in seconds) into the editText field (in seconds) after which an
alarm will go off and Android's Alarm Manager will make an alarm which will
be played accordingly.

Intent Service and Pending Intents

[286]

To understand more, take a look at the following code:

EditText text = (EditText) findViewById(R.id.editText1);

int i = Integer.parseInt(text.getText().toString());

Intent intent = new Intent(MainActivity.this, MyBroadcastReceiver.
class);

PendingIntent pendingIntent = PendingIntent.getBroadcast(
MainActivity.this, 234324243, intent, 0);

AlarmManager alarmManager = (AlarmManager) getSystemService(ALARM_
SERVICE);

alarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +
(i * 1000), pendingIntent);

Toast.makeText(MainActivity.this, "Alarm set in " + i + " seconds",

Toast.LENGTH_SHORT).show();

The piece of code written previously can be inserted into any event which can be
a button to get the input value in the EditText field and process it with Pending
Intents. The list of steps that is required to understand the previous code are
as follows:

1. Get the edit text from the layout file and make an object name text which
holds the current state of that widget.

2. The integer variable i will hold the input value in the edit text which will
be obtained by text.getText().toString().

3. Create an explicit intent with a BroadcastReceiver class as the Intent's
target class (which we will make after completing this).

4. In order to initiate the Pending Intent, we use PendingIntent.
getBroadcast(Context context, int requestCode, Intent intent,
int flags, int, Intent, int). More descriptions about this method can
be found at http://developer.android.com/reference/android/app/
PendingIntent.html.

5. Get the system service of Alarm by putting ALARM_SERVICE in the
getSystemService() method and direct it towards an AlarmManager object.

6. Set the values of the Alarm Manager by the value stored in i and give it the
Pending Intent which will help it to start (since Alarm Manager is a service
of Android).

Chapter 9

[287]

7. The alarmManager.set() method consists of the arguments int type, long
triggerMilliSec (in which you take the current system time and add your
variable i by converting it into milliseconds) and the Pending Intent.

8. Make a toast in order to show the successful completion of the alarm
management.

The next step is to make a Broadcast Receiver of your choice and implement that
receiver. For this, make a Broadcast Receiver and override the method onReceive().
Take a look at the following code:

@Override
public void onReceive(Context context, Intent intent) {
 Toast.makeText(context, "Alarm is ringing...",
 Toast.LENGTH_LONG).show();

 Vibrator vibrator = (Vibrator)
 context.getSystemService(Context.VIBRATOR_SERVICE);
 vibrator.vibrate(2000);
}

This receiver has a toast which will indicate its status of alarming. The next thing
is to declare an object of the vibrator kind which can be initiated by calling the
context.getSystemService(Context.VIBRATOR_SERVICE) method. This method
is responsible for returning back the object which will directly influence the physical
vibrator of the cell phone. The last step is to start the vibration by calling the
vibrator.vibrate(int) method.

To play the vibrator, you need to add the permission in
the manifest file. You can do it by using the following
piece of code:

<uses-permission android:name=
 "android.permission.VIBRATE" />

In the end, we have to declare this receiver in the AndroidManifest.xml file
and we can do this simply by using the following piece of code:

<receiver android:name="MyBroadcastReceiver" >
</receiver>

The previous example is describing the use of pending Intent and Broadcast
Receivers together.

Intent Service and Pending Intents

[288]

Summary
The summary of the last chapter of this book can be considered as the conclusion
of this book. In this chapter, we learned how to implement intentService and
PendingIntents and their best case scenarios. The IntentService feature and its
comparison with three most commonly used Android features, such as the Thread,
Services, and Async Tasks. Moreover, in this chapter, the example of Pending Intent
is implemented with the explanation of each step. This chapter can be considered to
be an advance version, or rather you may say, advance use of intents which can be
done in Android. Keeping in mind that the use of these functionalities is not likely
to be used, but under certain cases you have to let them work because there will
be no other solution.

Index
Symbols
<data> tag 249
<intent-filter> 242
<uses-feature> tag

about 201
hardware features 203, 204
permission implied features 206, 207
software features 205, 206

<uses-permission> tags
about 201-203
hardware features 203, 204
permission implied features 206, 207
software features 204-206

A
action 239
ACTION_CALL

data, using in 59, 240
ACTION_EDIT

data, using in 240
ACTION_HEADSET_PLUG action 241
ACTION_REQUEST_ENABLE method 103
ACTION_SEND 213
action test

about 244
writing conventions 244, 245

ACTION_VIEW
data, using in 240

Activity.finish() method 66
Activity.getContentResolver() method 92
activity life cycle flow 30, 31

activity_main2.xml file
used, for activity start 69

activity_main.xml file
about 68
used, for activity start 67
used, for content sharing 79-83
used, for service start 75, 76
using, for image choosing 88, 89

activity_main.xml Layout file 267
Activity.registerReceiver() method 224
activity, starting through explicit intent

MainActivity.java class 64, 65
steps 63

addProximityAlert() method 139
alarmManager.set() method 287
Android

about 7
App Store, Google Play 10
history 11, 12
limitations 12
name attribute 202
overview 7
versioning 8, 9
versions, diagram 14

Android 1.5 9
Android 1.6 9
Android 2.0/2.1 9
Android 2.2 9
Android 2.3 9
Android 3.x 9
Android 4.0 8
Android 4.1/4.2/4.3 8

[290]

Android Activities
intent role 35

Android Activity lifecycle
about 24, 25
callback methods 26-29
diagram 30
flow 30, 31
fundamental states 26

Android Application
about 33
building blocks 16
intent role 34, 35

Android camera
intent role 36

android.content.Intent class, constructors
Intent() 49
Intent(Context c, Class<?> cls) 49
Intent(intent o) 49
Intent(String action) 49
Intent(String action, URI uri) 50

Android Development Tools (ADT) 14
android.hardware.bluetooth feature 203
android.hardware.camera feature 203
android.hardware.camera.flash feature 203
android.hardware.location.gps feature 203
android.hardware.screen.landscape

feature 204
android.hardware.screen.portrait

feature 204
android.hardware.sensor.accelerometer

feature 204
android.hardware.sensor.compass

feature 204
android.hardware.sensor.proximity

feature 204
android.hardware.touchscreen.multitouch

feature 204
android.hardware.wifi feature 204
Android Inc 11
Android intent resolution 238
Android Intents

about 33
activity_main.xml 57
activity_two_layout.xml 57
AndroidManifest.xml 57
code 56

implementing, for Activity Navigation 42
MainActivity.java 56
MySecondActivity.java 57
working, with example 50-55

Android Intents implementation,
for Activity Navigation

about 42, 45
activity_main.xml 47
activity_two_layout.xml 47
android.content.Intent class,

constructors 49
AndroidManifest.xml 48
MainActivity.java 46
MySecondActivity.java 47

AndroidManifest.xml file
about 22, 70
used, for activity start 69, 71
used, for content sharing 86, 87
used, for service start 76

android:mimeType attribute 248
Android OS

broadcasting 252
broadcast intents 252, 253
built-in broadcasts 253-255
common features 193
evolution 12, 13
features 192

Android OS, common features
accessibility 197
background services 199
communication 196
connection, with intents 201
connectivity 196
content support 198
data retrieval 195
data storage 195
enhanced home screen 200
hardware support 199
layouts and display 194, 195
media support 198
multilanguage applications 200
multitasking 199
multitouch 197

Android OS features
about 192
versus components 193

[291]

Android phones
components 98
features 98

android:required attribute 202
Android Services

intent role 38
android.software.app_widgets feature 204
Android Software Development Kit

(SDK) 14
android.software.home_screen feature 204
android.software.input_methods

feature 204
android.software.live_wallpaper

feature 204
Android Studio

about 14, 15
features 15, 16
limitations 16

assets folder 18
Async Task

about 274
use case 274

B
BatteryLowActivity.java class 257
BatteryLowReceiver class 257
BatteryLowReceiver.java file 256, 257
bean class 171
BitmapFactory.decodeStream() method 92
Bluetooth

about 99
APIs 99
used, for communication 110
using, through intents 99, 100, 101, 105, 110

BluetoothAdapter class 100
BluetoothAdapter.getDefaultAdapter()

method 101
Bluetooth adapter state

pairing visibility 109, 110
pairing visibility modes, monitoring 110
tracking 105
tracking, with BluetoothStateReceiver.java

file 108
tracking, with MainActivity.java file 106,

107

Bluetooth API
about 100
classes 100

Bluetooth API classes
BluetoothAdapter 101
BluetoothDevice 100

Bluetooth app
turning on 101
turning on, with AndroidManifest.xml

file 104, 105
turning on, with MainActivity.java

file 102, 103
Bluetooth components 96
BluetoothDevice.getAddress() method 100
BluetoothDevice.getBondState() method

100
Bluetooth transfer

intent role 36
broadcast

built-in types 253
broadcast intent. See broadcast
Broadcast Receiver

intent role 38
BroadcastReceiver class 108, 269
broadcasting

in Android OS 252
building blocks, Android application

about 16
coding components 18
library components 23
media components 18
referencing components 23
XML components 19

built-in broadcasts
android.intent.action.ACTION_POWER_

CONNECTED 254
android.intent.action.ACTION_POWER_

DISCONNECTED 254
android.intent.action.BATTERY_LOW 254
android.intent.action.BOOT_COMPLETED

254
android.intent.action.DEVICE_STORAGE_

LOW 254
android.intent.action.NEW_OUTGOING_

CALL 254
android.intent.action.SCREEN_OFF 254
android.intent.action.SCREEN_ON 254

[292]

android.media.VIBRATE_SETTING_
CHANGED 254

android.net.wifi.WIFI_STATE_CHANGED
254

android.provider.Telephony.SMS_RE-
CEIVED 254

Bundle.get() method 113
button.setOnClickListener() method 89,

118, 169

C
callback methods, Activity life cycle 26-29
category constants

CATEGORY_BROWSABLE 241
CATEGORY_GADGET 241
CATEGORY_HOME 241
CATEGORY_LAUNCHER 241
CATEGORY_PREFERENCE 241

category test
about 246
launcher activity, setting up 247

cellular component 97
class parameter 62
Cloud to Device Messaging (C2DM) 196
coding components 18
communication

components 99
component 96, 193
component name

setting 238
content sharing, with implicit intents

about 79
activity_main.xml file 80, 83
AndroidManifest.xml file 86, 87
app, registering 82, 83
MainActivity.java class 80-85

contentView property 234
context parameter 62
Context.sendBroadcast() method 223
Context.startService() method 264
Cupcake 9
custom broadcasts

receiving 270
sending 267

sending, with activity_main.xml Layout
file 267

sending, with AndroidManifest.xml file 270
sending, with CustomReceiver.java file 269
sending, with MainActivity.java file 268

CustomReceiver.java file 269

D
Dalvik Debug Monitor Server (DDMS) 228
data

about 240
transferring, need for 143
using, in ACTION_CALL 240
using, in ACTION_EDIT 240
using, in ACTION_VIEW 240

data test
<data> tag, representing 249, 250
about 248
important points 249

data transfer
Android Bundles 158
between activities 145
example 144
in explicit intents 146
intent role 35
methods 146
need for 143
Parcelable() method, using 160
putExtras() method, using 146
Serializable, using 172
to implicit intents 186

data transfer, putExtras() method used
about 146, 147
putParcelable() 157
putSerializable() 157

data transfer, transferring to implicit intents
about 186
call, making 190
e-mail, sending 189
map, viewing 187
webpage, opening 188

Donut 9

[293]

E
Eclair 9
e-mail posts

intent role 37, 38
Enter Data button 35, 181
environmental sensors 98
explicit intents

about 61, 62, 238
activity_main.xml file 67-69, 75, 76
AndroidManifest.xml file 69-71, 76
MainActivity.java class 64, 65
SecondActivity.java class 66
ServiceDemoActivity.java class 74, 75
ServiceExample.java class 72, 73
used, for activity starting 63-71
used, for service starting 72-76
using, in Android application 63

explicit intents, using in Android
application 63, 72

F
feature 96, 193
findViewById() function 183
findViewById() method 66, 81, 118, 153, 154,

183, 268
fragments 25
Froyo 9

G
geo-location 97
geomagnetic field component 97
getAction() method 239
getApplicationContext() method 65
getAssets() function 18
getBooleanExtra() method 140
getContext() method 46
getExtras().get() method 123
getExtras() method 113, 226
getIntent() function 184
getIntent().getExtras() function 158
getIntent() method 85, 170
getParcelable() function 170
getSerializable() method 185
getState() method 114
getStringArrayListExtra() method 133

getSystemService() method 139, 235, 286
getText() method 184
Ginger Bread 9
Global Positioning System. See GPS
Google

official IDE 14
Google Cloud Messaging (GCM) 196
Google Play 11
GPS 97
GPS Sensor

intent role 36

H
hardware features

android.hardware.bluetooth 203
android.hardware.camera 203
android.hardware.camera.flash 203
android.hardware.location.gps 203
android.hardware.screen.landscape 204
android.hardware.screen.portrait 204
android.hardware.sensor.accelerometer

204
android.hardware.sensor.compass 204
android.hardware.sensor.proximity 204
android.hardware.touchscreen.multitouch

204
android.hardware.wifi 204

Honey Comb 9

I
Ice Cream Sandwich 8
image capturing

activity_main.xml file, using 121
AndroidManifest.xml file, using 125-127
MainActivity.java file, using 122-124

image selection, with implicit intents
about 88
activity_main.xml file 88, 89
MainActivity.java class 90-92

implicit intents
about 77, 78
data transfer, transferring to 186
used, for content sharing 78-87
used, for image selecting 88-92
using, in Android application 78, 88

[294]

incomingPersonObj.getFirstname()
method 170

in.readObject() method 174
in.readString() method 171
intent action constants

ACTION_BATTERY_LOW 239
ACTION_CALL 239
ACTION_EDIT 239
ACTION_HEADSET_PLUG 239
ACTION_MAIN 239
ACTION_SCREEN_ON 239
ACTION_SYNC 239

intent actions
ACTION_BATTERY_LOW 59
ACTION_CALL 59
ACTION_EDIT 59
ACTION_HEADSET_PLUG 59
ACTION_MAIN 59
ACTION_SCREEN_ON 59
ACTION_SYNC 59
ACTION_TIMEZONE_CHANGED 59

Intent.chooser() method 81
intent components

CATEGORY_BROWSABLE 58
CATEGORY_GADGET 58
CATEGORY_LAUNCHER 58

Intent() constructor 49
Intent(Context c, Class<?> cls)

constructor 49
intent filter

test components 243
Intent filters 237, 241, 242
intent-filter tag 249
Intent.getAction() method 85
Intent.getData() method 92
Intent.getIntExtra() method 110
Intent.getStringExtra() method 85
Intent.getType() method 85
Intent(intent o) constructor 49
Intent object

about 237
categorizing 238

Intent object, categories
action 239
category 240
component name 238
data 240

extras 241
intent.putExtras() method 158
intent role

in Android Activities 35
in Android Application 34, 35
in Android Services 38
in Bluetooth transfer 36
in Broadcast Receiver 38
in data transfer 35
in e-mail posts 37
in GPS Sensor 36
in Mobile Calls 36
in sending SMS/MMS 36
in social network posts 37, 38
in Status Bar 39
in time zones 39
in Wi-Fi transfer 35

intents
about 61
coding component 40
delivery, confirming 222
explicit 61
implicit 61
proximity alerts 139, 140
receiving 225
structure 58
technical overview 40
used, for image capturing 120-127
used, for making phone calls 213-217
used, for MMS sending 221, 222
used, for notifications sending 229
used, for SMS sending 218-220
used, for speech recognition 130-134
used, for video recording 127-129
XML component 41

Intent Service
about 273, 274
code 277-282
example 282-285
fake notification, generating 276
implementation 275
triggers 275
use case 274

Intent.setAction() method 268
Intent(String action) constructor 49
Intent(String action, URI uri) constructor 50

[295]

intent structure
about 58
actions 59
component 58
data 59
extras 60

Internet connectivity status
checking 111

Internet connectivity status check
AndroidManifest.xml file, using 114, 116,

117
NetworkStatusReceiver.java file,

using 112-114

J
Jelly Bean 8

L
layout folder 20
library components 23
LogCat 77
long-distance conversation call

making, intents used 213, 214
low-battery device state

detecting 255
detecting, with AndroidManifest.xml

file 258, 259
detecting, with BatteryLowActivity.java

class 257
detecting, with BatteryLowReceiver.java

file 256, 257

M
MAC address 100
MainActivity.java class

used, for activity start 64, 65
used, for content sharing 80-85
using, for image choosing 90-92

MainActivity.java file 268
media components

about 18
assets folder 18
res folder 19

MediaPlayer class 129
menu folder

about 20
Context Menus 20
Custom Menus 20
Options Menus (with Action bar) 20
Pop-up Menus 20

message delivery
confirming 222-224

messaging 93
MMS

sending, intents used 221, 222
Mobile Calls

intent role 36
mobile components

about 96
Bluetooth components 96
cellular component 97
geo-location 97
geomagnetic field component 97
GPS 97
sensor components 97
Wi-Fi components 96

motion components 137
motion sensors 98
Multimedia Messaging Services. See MMS
multiple intent filters

handling 243

N
nameText.getText() method 169
NetworkInfo.getTypeName() method 114
newBundle.putString() function 158
Notification class 230
NotificationManager class 230
NotificationManager.notify() method 235
notifications

sending, intents used 229
notifications, sending with intents

about 229
Notification class 230
notification forms 230
notification layout 230-235
NotificationManager class 230

[296]

O
ObjectInputStream class 172
onActivityResult() method 91, 92, 135, 136
onBind() method 73
OnClickListener() method 66, 154
onClick() method 74
onCreate() method 31, 66, 81, 91, 132
onHandleIntent() method 283
onInit() method 137
onPause() method 31
onReceive() method 112, 226, 287
onRestart() method 31
onResume() method 31
onStartCommand() method 73, 265
onStart() method 29

P
Parcelable() method

implementing 160
readymade tutorial, implementing 160, 167
used, for data transfer 160

Parcelable() method implementation
about 168
Activity1.java class 168
Activity2.java class 170
AndroidManifest.xml file 171
layout_activity1.xml file 170
layout_activity2.xml file 170
Person.java class 171

Pending Intents
about 285
making, it work 285-287

permission implied features
android.permission.ACCESS_COARSE_

LOCATION 206
android.permission.ACCESS_FINE_LOCA-

TION 206
android.permission.ACCESS_WIFI_STATE

207
android.permission.BLUETOOTH 206
android.permission.CALL_PHONE 207
android.permission.CAMERA 206
android.permission.PROCESS_OUTGO-

ING_CALLS 207
android.permission.READ_SMS 207

android.permission.RECIEVE_SMS 207
android.permission.RECORD_AUDIO 206
android.permission.SEND_SMS 207
android.permission.WRITE_SMS 207

phone calls
making, intents used 213, 214

PhoneRebootCompletedReceiver.java
file 264

phone reboot-completed state
detecting 263
detecting, with AndroidManifest.xml

file 266
detecting, with PhoneRebootCompletedRe-

ceiver.java file 264
detecting, with TempService.java file 264,

265
phone screen on/off state

detecting 260
detecting, with AndroidManifest.xml file

262, 263
detecting, with ScreenOnOffReceiver.java

file 260, 261
pickImage() method 91
position sensors 98
Protocol Data Unit (PDU) 225-229
proximity alerts

about 138
intents, using 139, 140

putExtra() method 128, 211
putExtras() function 146
putExtras() method

Activity1.java class 153, 154
Activity2.java class 155
AndroidManifest.xml file 156
implementing 147
main_first.xml file 156
main_second.xml file 156
readymade tutorial, implementing 147, 152
used, for data transfer 146

R
Recognize button 134
RecognizerIntent class 130
referencing components 23
registerReceiver() method 106, 107, 140, 262,

284

[297]

RelativeLayout 20
RemoteView 233
requestCode parameter 103
res folder 19
R.java file 23

S
ScreenOnOffReceiver class 261
ScreenOnOffReceiver.java file 260, 261
SecondActivity.java class

about 66
used, for activity start 66

SEND action
used, for sharing 207-213

Send Broadcast Intent 270
sendBroadcast() method 268, 283
sendTextMessage() method 224
sensor components

about 97
environmental sensors 98
motion sensors 98
position sensors 98

Serializable
about 172
example 173, 174
implementing 175, 181, 182
used, for data transfer 172

Serializable code
about 182
Activity1.java class 183, 184
Activity2.java class 184, 185
AndroidManifest.xml file 186
layout_activity1.xml file 185
layout_activity2.xml file 186
Person.java class 185

Service
about 274
triggers 275
use case 274

ServiceDemoActivity.java class
used, for service start 74, 75

ServiceExample.java class
used, for service start 72, 73

setAction() method 253
setContentView() function 184

setContentView() method 132, 183, 185
setImageBitmap method 124
setLatestEventInfo method 233
setOnClickListener() method 46, 65, 74, 154
setResult() function 57
setText() method 133, 155
setType() method 209
setVideoURI() method 129
SharedPreferences method 195
Short Messaging Services. See SMS
show() method 47
SMS

sending, intents used 218-221
SmsManager class 225
SmsManager.sendTextMessage() method

222
SmsMessage.createFromPdu() method 227
SmsMessage.getMessageBody() method 227
SmsMessage.getOriginatingAddress()

method 227
SmsMessage.getTimestampMillis() method

227
SmsMessage object 225
SMS messages

Protocol Data Unit (PDU) 225-229
receiving 225
SmsManager class, using 225
SmsMessage object 225

SMS/MMS sending
intent role 36

social network posts
intent role 37, 38

software features
android.software.app_widgets 204
android.software.home_screen 204
android.software.input_methods 204
android.software.live_wallpaper 204

speak() method 137
speech recognition

activity_main.xml file, using 131
intents, using 130
MainActivity.java file, using 132-134

startActivityForResult() method 56, 91-93,
123, 133-135

startActivity() method 65, 93, 246

[298]

startService() method 75, 285
Status Bar

intent role 39
status text 230
stopService() method 75

T
TempService.java file 264, 265
test components, intent filter

Action test 244
category test 246
data test 248, 249

Text-To-Speech. See TTS conversion
TextToSpeech class 136
TextView 20
Thread

about 274
About 274
triggers 275
use case 274

time zones
intent role 39

TTS conversion
intents, using 134-137

U
Universal Resource Identifier (URI) 214
unregisterReceiver() method 258
Uri.parse() method 188
URI (Universal Resource Identifier) 59
User ID (UID) 113

V
values folder 21
vibrator.vibrate(int) method 287
VideoView tag 127

W
Wi-Fi

using, through intents 111, 117

Wi-Fi components 96
Wi-Fi Settings App

opening 117
opening, with activity_main.xml file 117,

118
opening, with MainActivity.java file 118,

119
Wi-Fi transfer

intent role 36
World Magnetic Model 97
writeToParcel() method 171

X
XML

using 20
XML components

about 19
AndroidManifest.xml 22
layout folder 20
menu folder 20
values folder 21

Thank you for buying
Learning Android Intents

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android Development Tools for
Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools for Eclipse

1. Build Android applications using ADT
for Eclipse

2. Generate Android application skeleton
code using wizards

3. Advertise and monetize your applications

Android Security Cookbook
ISBN: 978-1-78216-716-7 Paperback: 350 pages

Practical recipes to delve into Android's security
mechanisms by troubleshooting common
vulnerabilities in applications and Android OS
versions

1. Analyze the security of Android applications
and devices, and exploit common
vulnerabilities in applications and Android
operating systems

2. Develop custom vulnerability assessment tools
using the Drozer Android Security Assessment
Framework

3. Reverse-engineer Android applications for
security vulnerabilities

4. Protect your Android application with up to
date hardening techniques

Please check www.PacktPub.com for information on our titles

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new fearures
of Android Ice Cream Sandwich

1. Learn new APIs in Android 4

2. Get familiar with the best practices
in developing Android applications

3. Step-by-step approach with clearly
explained sample codes

Android Native Development Kit
Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise
recipes on Android NDK development skills

1. Build, debug, and profile Android NDK apps

2. Implement part of Android apps in native
C/C++ code

4. Optimize code performance in assembly
with Android NDK

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Android
	Introducing Android
	Exploring the different versions of Android
	Google Play – the official app store for Android

	Understanding the whys and whens of Android
	The evolution of Android OS

	Official IDE from Google – the Android Studio
	Features of Android Studio
	Limitations of Android Studio

	Building blocks of an Android application
	Coding components
	Media components
	The assets folder
	The res folder

	XML components
	The layout folder
	The menu folder
	The values folder
	AndroidManifest.xml

	Referencing components
	Library components

	Android Activity lifecycle
	Fundamental states of an activity
	The callback methods of the Activity lifecycle
	The activity lifecycle flow

	Summary

	Chapter 2: Introduction to Android Intents
	Role of intents in an Android Application
	Role of intents in Android Activities
	Role of intents in data transfer between activities
	Role of intents in Wi-Fi and Bluetooth transfer
	Role of intents in Android Camera
	Role of intents in GPS Sensor
	Role of intents in sending SMS/MMS
	Role of intents in Mobile Calls
	Role of intents in e-mail and social network posts
	Role of intents in Android Services
	Role of intent in Broadcast Receiver
	Role of intent in time zones
	Role of intent in Status Bar

	Intent – a technical overview
	The Coding component
	The XML component

	Implementation of Android Intents for Activity Navigation
	Understanding the flow
	Part one – MainActivity.java
	Part two – MySecondActivity.java
	Part three – activity_main.xml
	Part four – activity_two_layout.xml
	Part five – AndroidManifest.xml

	Other constructors of the android.content.Intent class
	Intent()
	Intent(intent o)
	Intent(Context c, Class<?> cls)
	Intent(String action)
	Intent(String action, URI uri)

	Getting results from Android Intents
	Understanding with an example
	Going deep into the example
	Explaining the code

	Structure of an intent
	Component
	Actions
	Data
	Extras

	Summary

	Chapter 3: Intent and Its Categorization
	Explicit intents
	Using explicit intents in an Android application
	Starting an activity through an explicit intent
	Starting a service through an explicit intent

	Implicit intents
	Using implicit intents in an Android application
	Sharing content using implicit intents
	Selecting an image through an implicit intent

	Intents and Android late binding
	Summary

	Chapter 4: Intents for Mobile Components
	Common mobile components
	The Wi-Fi component
	The Bluetooth component
	The Cellular component
	Global Positioning System (GPS) and geo-location
	The Geomagnetic field component
	Sensor components
	Motion sensors
	Position sensors
	Environmental sensors

	Components and intents
	Communication components
	Using Bluetooth through intents
	Using Wi-Fi through intents

	Media components
	Using intents to take pictures
	Using intents to record video
	Speech recognition using intents
	Role of intents in text-to-speech conversion

	Motion components
	Intents and proximity alerts
	Role of intents in proximity alerts

	Summary

	Chapter 5: Data Transfer Using Intents
	Finding the need to transfer data
	Taking a simple example

	Data transfer between activities – an INTENTed way
	Data transfer in explicit intents
	Methods of data transfer between activities
	Data transfer using putExtras()
	Implementation of putExtras()
	Extras supported data types
	The concept of Android Bundles

	Data transfer using Parcelable
	Implementation of Parcelable

	Data transfer using Serializable
	What is Serializable?
	An example of Serializable
	Implementation of Serializable

	Data and the implicit intents
	Viewing a map
	Opening a webpage
	Sending an e-mail
	Making a call
	Miscellaneous scenarios

	Summary

	Chapter 6: Accessing Android Features Using Intents
	Features of Android OS
	Android features versus components
	Common Android features
	Layouts and display
	Data storage and retrieval
	Connectivity and communication
	Accessibility and multitouch
	Extensive content and media support
	Hardware support
	Background services and multitasking
	Enhanced home screen
	Other Android features

	Android features and intents
	The <uses-feature> and <uses-permission> tags
	Hardware features
	Software features

	Sharing using the SEND action
	Telephony and making calls using intents
	Making phone calls using intents

	SMS/MMS using intents
	Sending SMS using intents
	Sending MMS using intents
	Confirming message delivery using intents
	Receiving SMS messages using intents
	The SmsManager class
	The SmsMessage object
	Protocol Data Unit (PDU)

	Notification using intents
	Notification forms
	The NotificationManager class
	The Notification class
	The Notification layout

	Summary

	Chapter 7: Intent Filters
	Intent object and its categorization
	Component name
	Intent resolution

	Action
	Data
	Use of data in ACTION_EDIT
	Use of data in ACTION_CALL
	Use of data in ACTION_VIEW

	Category
	Extras

	Intent filters
	Handling multiple intent filters
	Test components of an intent filter
	Action test
	Writing conventions for <action>

	Category test
	Setting up the launcher activity

	Data test
	Typical representation of the <data> tag

	Summary

	Chapter 8: Broadcasting Intents
	Broadcasting in the Android OS
	The broadcast intents

	Built-in broadcasts in Android systems
	Detecting the low-battery state of a device
	The BatteryLowReceiver.java file
	The BatteryLowActivity.java class
	The AndroidManifest.xml file

	Detecting the screen on/off state of a phone
	The ScreenOnOffReceiver.java file
	The AndroidManifest.xml file

	Detecting the cell phone's reboot-completed state
	The PhoneRebootCompletedReceiver.java file
	The TempService.java file
	The AndroidManifest.xml file

	Sending and receiving custom broadcasts
	The activity_main.xml layout file
	The MainActivity.java file
	The CustomReceiver.java file
	The AndroidManifest.xml file

	Summary

	Chapter 9: Intent Service and Pending Intents
	Intent Service
	Comparison of four fundamentals
	Best case to use
	Triggers

	Usage and implementation of Intent Service
	Generating a fake notification from Intent Service
	Taking another example

	Pending Intents
	How to make Pending Intents work?

	Summary

	Index

