
www.allitebooks.com

http://www.allitebooks.org

Learning Ansible

Use Ansible to configure your systems, deploy software,
and orchestrate advanced IT tasks

Madhurranjan Mohaan

Ramesh Raithatha

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Ansible

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2011

Production reference: 1201114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-063-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Madhurranjan Mohaan

Ramesh Raithatha

Reviewers
Yves Dorfsman

Ajey Gore

Maykel Moya

Fernando F. Rodrigues

Patrik Uytterhoeven

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Ritika Singh

Technical Editors
Menza Mathew

Shruti Rawool

Copy Editors
Deepa Nambiar

Adithi Shetty

Project Coordinator
Judie Jose

Proofreaders
Stephen Copestake

Ameesha Green

Sandra Hopper

Indexers
Hemangini Bari

Monica Ajmera Mehta

Rekha Nair

Priya Sane

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Madhurranjan Mohaan is a passionate engineer who loves solving problems.
He has more than 8 years of experience in the software industry. He worked as
a network consultant with Cisco before starting his DevOps journey in 2011 at
ThoughtWorks, where he learned the nuances of DevOps and worked on all aspects
from Continuous Integration to Continuous Delivery. He is currently working at
Apigee, where he enjoys dealing with systems at scale.

Madhurranjan has also worked with various tools in configuration management,
CI, deployment, and monitoring and logging space, apart from cloud platforms such
as AWS. He has been a presenter at events such as DevOpsDays and Rootconf, and
loves teaching and singing. He is a first-time author and wishes to share his learning
with readers from across the world.

I'd like to thank the following folks (in alphabetical order) who've
been instrumental in making me what I am in this domain today:
Ajey Gore, Chirantan Mitra, Ranjib Dey, Rohith Rajagopal, Sharath
Battaje, and Sriram Narayanan. Special thanks to Shreya who was
very excited and said, "My kaka (uncle), the author!"

Ramesh Raithatha is a DevOps engineer by profession and a cyclist at heart.
He is currently working at Apigee and has worked on various facets of the
IT industry, such as configuration management, continuous deployment,
automation, and monitoring. He likes exploring stunning natural surroundings
on two wheels in his leisure time.

I would like to thank my friends, without whom we would have
completed the book much earlier.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

We would like to thank the entire "BAD" (Build Automation Deploy) team at
Apigee: Rahul Menon, Habeeb Rahman, Ashok Raja, Sudharshan Sreenivasan,
Shailendhran Paramanandhan, Pradeep Bhat, Jai Bheemsen Dhanwada, Sukruth
Manjunath, and our coach, Sridhar Rajagopalan.

We would also like to thank Meeta Rajani, Ritika Singh, and Menza Mathew from
Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Yves Dorfsman is a system administrator with experience in the oil and gas,
financial, and software industries, both in traditional corporations and startups,
supporting production and development environments.

Ajey Gore is the founder of CodeIgnition, a boutique DevOps consulting firm.
Prior to starting CodeIgnition, he was the CTO for Hoppr and also the Head of
Technology for ThoughtWorks. He has more than 15 years of experience and has
worked with multiple technologies.

Ajey is well known in the tech community in India for DevOps, Cloud, Automation,
Ruby, JavaScript, and Go languages. He organizes and runs the DevOpsDays India,
RubyConf India, and GopherCon India conferences. He has a broad knowledge of
configuration management tools, virtualization, cloud, and large-scale enterprise IT
projects development.

Maykel Moya has been working in the field of systems and network
administration since 1999. Previously, he worked at two of the largest ISPs in his
hometown of Cuba, where he managed HA clusters, SAN, AAA systems, WAN,
and Cisco routers. He entered the GNU/Linux landscape through Red Hat,
but today, his main experience lies in Debian/Ubuntu systems. He relates
to the "free software" philosophy.

Convinced through personal experience rather than human intervention that
computer operations don't scale and are error-prone, he is constantly seeking ways
to let software liberate people from tedious and repetitive tasks. With a Puppet
background, he looked for alternatives and discovered Ansible in its early days.
Since then, he has been contributing to the project.

www.allitebooks.com

http://www.allitebooks.org

Maykel is currently employed by ShuttleCloud Corp., a company that specializes
in cloud data migration at scale. Here, he works as a site reliability engineer,
ensuring that the machine fleet is always available and runs reliably. He also
manages resources in an optimal manner. Ansible is one of the many technologies
he uses to accomplish this on a daily basis.

Fernando F. Rodrigues is an IT professional with more than 10 years of
experience in systems administration, especially with Linux and VMware.
As a system administrator, he has always focused on programming and has
experience in working on projects from the government sector to financial
institutions. He is a technology enthusiast and his areas of interest include cloud
computing, virtualization, infrastructure automation, and Linux administration.

Fernando is also the technical reviewer of the book, VMware ESXi Cookbook,
Packt Publishing.

Patrik Uytterhoeven has over 16 years of experience in IT; most of this time
was spent with Unix and open source solutions. At the end of 2012, he joined
Open-Future, the first Zabbix reseller and training partner in Belgium, where he
had the opportunity to certify himself as a Zabbix-certified trainer. Since then,
he has been giving trainings and public demonstrations not only in Belgium, but
around the world, such as in the Netherlands, Germany, Canada, Ireland, and so on.
To make life easier, he made some Ansible roles for Red Hat/CentOS 6.x to deploy
and update Zabbix. These roles and some others can be found in Ansible Galaxy
at https://galaxy.ansible.com/list#/users/1375. At the moment, Patrik is
writing a Zabbix-related Cookbook for Packt Publishing.

www.allitebooks.com

https://galaxy.ansible.com/list#/users/1375
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Amma (my mom), Appa (my dad), and my wife, Jai.

---Madhurranjan Mohaan

To my parents.

---Ramesh Raithatha

Table of Contents
Preface 1
Chapter 1: Getting Started with Ansible 9

What is Ansible? 10
Installing Ansible 12

Installing Ansible from source 13
Installing Ansible using the system's package manager 15

Hello Ansible 17
The Ansible architecture 19
Configuring Ansible 20

Configuration using environment variables 21
Configuration using ansible.cfg 21

Configuration management 22
Working with playbooks 23

The anatomy of a playbook 23
Variables and their types 32

Variable names 33
Valid variable names in Ansible 33
Invalid variable names in Ansible 34

Variables in an included task file 34
Variables in a playbook 35
Variables in a global file 36
Facts as variables 37
Command-line variables 38
Variables in an inventory file 39

Working with inventory files 40
The basic inventory file 40
Groups in an inventory file 42
Groups of groups 43

Table of Contents

[ii]

Regular expressions with an inventory file 45
External variables 45
Host variables 45
Group variables 46
Variable files 46

Overriding configuration parameters with an inventory file 47
Working with modules 48

Command modules 48
The command module 48
The raw module 49
The script module 50
The shell module 50

File modules 51
The file module 51
Debugging in Ansible 53
The template module 55
The copy module 58

The source control module – git 59
Summary 61

Chapter 2: Developing, Testing, and Releasing Playbooks 63
Managing source code – Git 64
Developing a playbook 67

Installing VirtualBox and Vagrant 70
Downloading the Vagrant box 70
Developing a machine 70
Provisioning in Vagrant using an Ansible provisioner 71

Testing a playbook 74
Using the --syntax-check option 75
The check mode 76
Indicating differences between files using --diff 77

Functional testing in Ansible 79
Functional testing using Assert 79
Testing with tags 81

The --skip-tags 85
The Serverspec tool 88

Installing Serverspec 88
Analyzing the Rakefile and running tests 91
Running playbook_tester 92

Handling environments 94
Code based on Git branch 94
A single stable branch with multiple folders 95

Summary 100

Table of Contents

[iii]

Chapter 3: Taking Ansible to Production 101
Working with the local_action feature 102
Working with conditionals 105
Working with loops 111

Standard loops 111
Nested Loops 113
Looping over subelements 114

Working with include 115
Working with handlers 117
Working with roles 119

The Cassandra role 129
Creating a task file with roles 139
Using handlers with roles 142

The Ansible template – Jinja filters 144
Formatting data using filters 144
Using filters with conditionals 145
Defaulting undefined variables 145

Security Management 146
Using Ansible Vault 146
Encrypting user passwords 148
Hiding passwords 150
Using no_log 151

Summary 151
Chapter 4: Error Handling, Rollback, and Reporting 153

Error handling and Rollback 154
Executing the playbook 156

Callback plugins 159
Monitoring and alerting 168

E-mails 169
HipChat 171
Nagios 172
Graphite 176

Time for an error 179
Summary 183

Chapter 5: Working with Custom Modules 185
Using Python modules 187

Working with exit_json and fail_json 192
Testing Python modules 193

Using Bash modules 194
Using Ruby modules 196

Table of Contents

[iv]

Testing modules 199
Summary 202

Chapter 6: Provisioning 203
Provisioning a machine in the cloud 204

Diving deep into the playbook 207
Launching a DigitalOcean instance 216

Docker provisioning 219
Installing Docker on hosts 220
Deploying new Docker images 222
Building or provisioning new Docker images 226

Dynamic Inventory 232
Summary 235

Chapter 7: Deployment and Orchestration 237
Deploying a sample Ruby on Rails application 238
Packaging 252

Deployment strategies with RPM 260
Deploying newer versions of RPM in the same directory 261
Deploying the RPM in a version-specific directory 262

Canary deployment 263
Orchestration of a Tomcat deployment 263
Deploying Ansible pull 270
Summary 273

Appendix: Ansible on Windows, Ansible Galaxy,
and Ansible Tower 275

Ansible on Windows 275
Ansible Galaxy 277
Ansible Tower 280

Index 281

Preface
Ansible is one of the most popular tools today in the Infrastructure Automation
space. It is an IT orchestration engine that can be used in several subverticals, such
as configuration management, orchestration, provisioning, and deployment. When
compared to other automation tools, Ansible brings you an easy way to configure
your infrastructure without the overhead of a client setup.

We started using Ansible to set up our build agents for Continuous Integration
(CI) systems and were soon able to set up close to 150 agents that had different
applications, within a couple of weeks. At that stage, we primarily used it for
configuration management of our build agents, but once we had tasted success,
we realized that it would help us solve our problems in production as well.
In production, we used another tool for configuration management for a long time,
but we needed something else that would help us in orchestration and provisioning.
Our deployments and orchestrations were very manual in nature and quite
error-prone. We adopted Ansible in our production environments to solve this
very problem at the start of the year, and we've had great success so far. We're able
to build and rebuild infrastructures at a much faster rate that's less error-prone,
involves less manual effort, and uses just a single click. Our deployment times have
drastically come down. We've not yet attained Nirvana in this area but we're in a
way better situation today compared to a year ago. We learned a lot in the process
and we'd like to share our experiences with Ansible in this book. The Ansible website
has been of great help along with the very intelligent community of Ansible.

We'd like to talk briefly about DevOps before moving ahead with Ansible.
DevOps has been a movement aimed at bringing development and operations
teams in organizations together a lot more than usual to release software earlier.
Before the DevOps movement came into being, for a long time the notion was that
development teams implement the features and throw the software over the wall
for the operations team to then take it and run it in production. As a result, the
operations teams had no idea what they were deploying, and the developers
didn't know how their software was going to be deployed!

Preface

[2]

Another common complaint that most operations folks have heard is a developer
coming to them and saying, "It works on my machine". An operations person
recently responded to a similar question by saying, "Let's take your laptop and
put it in production". Jokes apart, this isn't the ideal situation, is it? There has
been a constant effort to get the development teams and operation teams to work
a lot closer through a combination of tools and culture. Without the right culture,
irrespective of what tools you use in your organization, the impact isn't going to be
massive. However, changing and adopting the best practices between teams and
breaking the wall, so to speak, between these diverse teams is what the DevOps
movement advocates.

Several teams have begun to embed operations folks in their development
workflows, right from the planning phase, so that the operations teams are aware
of what's going on; at the same time, they can offer their expertise during the early
stages of development. This is an aspect of culture that you can bring about in your
organization and that would reduce the risk and help you release your software
faster to production. For example, insights around scaling, database replication, and
logging practices are skills that operations teams bring in. On the other hand, skills
such as testing individual components and using unit, integration, and functional
testing are what the operations teams can ideally pick up from the developers.

The other aspect of DevOps that we mentioned earlier was the tools. With the advent
and adoption of cloud, which basically introduced the concept of "on-demand" and
"pay-as-you-go" computing, tooling has become all the more important. There are
primary focus areas, however, where tools have made significant progress. Let's
broadly look at these areas:

• Configuration Management: Several tools have come up in this area.
The aim of configuration management is to make sure your machines attain
the intended state as described in the configuration in the fastest possible
time and in the right manner so that they can play a particular role in your
environment. For example, if you have to introduce a new web server
during a traffic surge, how quickly can you do it, once you have a machine
is what configuration management addresses. This also has resulted in the
operations folks writing code and it's commonly termed as "Infrastructure as
code", since all the code that is necessary to set up your infrastructure is now
stored in the source control. This has slowly led to the adoption of Software
Development Lifecycle (SDLC) for infrastructure code. This includes tools
that aid your infrastructure testing. Tools in this space include CFEngine,
Chef, Puppet, Ansible, Salt, and so on. Infrastructure-testing tools include
Serverspec, Test kitchen, and so on.

Preface

[3]

• Provisioning: The tools in this space address how quickly you can bring up
new machines in your data center, virtualized environment, or your cloud.
Almost all cloud providers have APIs. The tools in this space use these
APIs to speed up instance provisioning. For organizations that are on Linux,
containers have made rapid strides in the last year or so with solutions
such as Docker and LXCs in the forefront, and more and more people
are beginning to use tools to make sure their containers are provisioned
in an automated way. Ansible plays an important role in both these
scenarios. Finally, there are tools such as Vagrant, which help you
automate development and test environments.

• Deployment: Tools in this area focus on how you can deploy applications
with zero downtime and in the best possible way. Many organizations now
perform Rolling deployments or Canary deployments. Ansible supports
both. Deployment pipelines have also become popular and tools such as
ThoughtWorks Go, Atlassian Bamboo, and Jenkins with its innumerable
plugins are strong players in this area.

• Orchestration: Tools in this area focus on how to coordinate among
various components in your infrastructure so as to perform deployments.
For example, making sure a web server is disabled from a load balancer,
before releasing a new version of your software to the web server, is a
common and famous example. Ansible, Mcollective, Salt, Serf, and Chef
are some of the tools that help in this area.

• Monitoring and Alerting: Monitoring and alerting tools have evolved to
handle fast-growing massive server environments. Legacy tools such as
Nagios, Ganglia, and Zenoss along with newer tools such as Graphite,
Sensu, and Riemann play a major role in this domain.

• Logging: Centralized logging makes sure you collect the right set of logs
across systems and applications so that you can write rules on top of them
to perform intelligent deductions, be it root cause analysis or alerting.
Tools such as Logstash-Kibana, SumoLogic, and Rsyslog are quite
popular in this space.

Ansible plays a significant role in four of the six major areas where tooling plays a
very important role. Along with this, the people who can contribute heavily to these
areas include sysadmins, operations teams, infrastructure admins, developers, and
anyone with the mindset of bringing about infrastructure automation. The book
aims to help and guide all these categories of users to set up robust automation
for their infrastructure.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

What this book covers
Chapter 1, Getting Started with Ansible, teaches you the basics of Ansible, its
architecture, and how to set it up and get started. It starts with Ansible's "Hello,
world!" program and builds the rest of the examples on top of it. You'll be introduced
to inventories, modules, variables, and playbooks, and how Ansible can be used for
configuration management.

Chapter 2, Developing, Testing, and Releasing Playbooks, will focus on how you can
develop your Ansible playbooks, test them, how to handle multiple environments,
and how to release your Ansible code into production. It also discusses the Software
Development Life Cycle (SDLC), which is as important with an infrastructure
management tool development as it is with any other custom software that is built.

Chapter 3, Taking Ansible to Production, focuses on all the important features that
you would require for taking Ansible into production, more from a configuration
management perspective. You will learn about features such as include, loops, and
conditions in Ansible; handlers and security management with Ansible; and, most
importantly, how to model your infrastructure using Roles. With the knowledge
gained from the first three chapters, you will know enough to write playbooks that
can be deployed in Production to configure your infrastructure.

Chapter 4, Error Handling, Rollback, and Reporting, helps you with topics such as how
to debug, rollback, and report what you have in production. In almost all cases,
you need to have enough information regarding these topics. It introduces Callback
plugins and techniques you can use to rollback configurations when something goes
wrong. It shows you how you can integrate Ansible with alerting and monitoring
tools, and generate metrics for error handling and reporting. In short, you will be
introduced to all that you would like in your sysadmin avatar.

Chapter 5, Working with Custom Modules, runs you through how you can write
custom modules for your setups. One of the strengths of Ansible is that you can
write custom modules in any language that has an interpreter (if the language is
available on the box), provided that they return a JSON output. In most cases, we
have seen that, having intelligent modules reduce the size of your playbooks and
make them more readable.

Chapter 6, Provisioning, explains how you can bring up new instances in clouds as part
of your provisioning activity. With the advent of cloud, the demand for spawning
machines in clouds, such as AWS, Rackspace, and DigitalOcean, have gone up quite
significantly. We'll also look at one of the most exciting container technologies, Docker,
and how you can use Ansible to provision new Docker containers.

Preface

[5]

Chapter 7, Deployment and Orchestration, looks at how you can deploy Rails as well as
Tomcat applications, along with packaging and deployment techniques. For a large
infrastructure, it's important to deploy software in as little time as possible and, in
almost all cases, with zero downtime; Ansible plays a key role in deployment and
orchestration. We'll also look at how you can use the Ansible pull when you have
large infrastructures.

Appendix, Ansible on Windows, Ansible Galaxy, and Ansible Tower, discusses Ansible's
support for Windows. In addition, we'll cover Ansible Galaxy, a free site from where
you can download community roles and get started, and finally, Ansible Tower,
a web-based GUI developed by Ansible that provides you with a dashboard to
manage your nodes via Ansible.

What you need for this book
You will need the following software to learn and execute the code files provided
with this book:

• Ansible along with the required Python packages. This is covered in more
detail in the book.

• Vagrant and serverspec to test code samples.

You will also need to install the following packages:

• pip
• Paramiko
• PyYAML
• Jinja2
• httplib2
• Git

Who this book is for
If you want to learn how to use Ansible to automate an infrastructure, either from
scratch or to augment your current tooling with Ansible, then this book is for you.
It has plenty of practical examples to help you get to grips with Ansible.

Preface

[6]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Ansible template also has a validate parameter, which allows you to run a
command to validate the file before copying it."

Any command-line input or output is written as follows:

$ git diff playbooks/example1.yml

 - name: Check httpd service

 - service: name=httpd state=started

 + service: name=httpd state=started enabled=yes

 - sudo: yes

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Vagrant defines a separate term called Provisioning, which runs the configuration
management blocks or blocks that are plugged into the Vagrantfile, be it Ansible,
Chef, Puppet, or shell scripts."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[7]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[8]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Ansible
We keep moving forward, opening new doors, and doing new things, because we're
curious and curiosity keeps leading us down new paths.

- Walt Disney

If exploring new paths is what you like, then in this chapter, we're going to lead you
down an exciting path with Ansible. Almost always, when one starts to invest time
trying to learn a new tool or language, the expectation is to install a new tool, get a
"Hello, world!" example out of the way, tweet about it (these days), and continue
learning more features in the general direction of solving the problem at hand.
The aim of this chapter is to make sure all of this (and more) is achieved.

In this chapter, we will cover the following topics:

• What is Ansible?
• The Ansible architecture
• Configuring Ansible
• Configuration management
• Working with playbooks
• Variables and their types
• Working with inventory files
• Working with modules

At the end of this chapter, you will be able to create basic playbooks and understand
how to use Ansible.

Getting Started with Ansible

[10]

What is Ansible?
Ansible is an orchestration engine in IT, which can be used for several use cases.
Compared to other automation tools, Ansible brings you an easy way to configure
your orchestration engine without the overhead of a client or central server setup.
That's right! No central server! It comes preloaded with a wide range of modules
that make your life simpler.

In this chapter, you will learn the basics of Ansible and how to set up Ansible on
your system. Ansible is an open source tool (with enterprise editions available)
developed using Python and runs on Windows, Mac, and UNIX-like systems.
You can use Ansible for configuration management, orchestration, provisioning,
and deployments, which covers many of the problems that are solved under the
broad umbrella of DevOps. We won't be talking about culture here as that's a
book by itself!

You could refer to the book, Continuous Delivery and DevOps – A Quickstart
Guide by Packt Publishing for more information.

Let's try to answer some questions that you may have right away.

• Can I use Ansible if I am starting afresh, have no automation in my system, and
would like to introduce that (and as a result, increase my bonus for the next year)?
A short answer to this question is Ansible is probably perfect for you. The
learning curve with Ansible is way shorter than most other tools currently
present in the market. For the long answer, you need to read the rest of
the chapters!

• I have other tools in my environment. Can I still use Ansible?
Yes, again! If you already have other tools in your environment,
you can still augment those with Ansible as it solves many problems in
an elegant way. A case in point is a puppet shop that uses Ansible for
orchestration and provisioning of new systems but continues to use
Puppet for configuration management.

• I don't have Python in my environment and introducing Ansible would bring in
Python. What do I do?
You need to remember that, on most Linux systems, a version of Python
is present at boot time and you don't have to explicitly install Python.
You should still go ahead with Ansible if it solves particular problems
for you. Always question what problems you are trying to solve and
then check whether a tool such as Ansible would solve that use case.

Chapter 1

[11]

• I have no configuration management at present. Can I start today?
The answer is yes!

In many of the conferences we presented, the preceding four questions popped up
most frequently. Now that these questions are answered, let's dig deeper.

The architecture of Ansible is agentless. Yes, you heard that right; you don't have to
install any client-side software. It works purely on SSH connections; so, if you have
a well oiled-SSH setup, then you're ready to roll Ansible into your environment in
no time. This also means that you can install it only on one system (either a Linux
or Mac machine) and you can control your entire infrastructure from that machine.

Yes, we understand that you must be thinking about what happens if this machine
goes down. You would probably have multiple such machines in production, but
this was just an example to elucidate the simplicity of Ansible. You could even run
some of these machines from where you kick off Ansible scripts in a Demilitarized
Zone (DMZ) to deal with your production machines.

The following table shows a small comparison of agentless versus agent-based
configuration management systems:

Agent-based systems Agentless systems
These systems need an agent and its
dependencies installed.

No specific agent or third-party
dependencies are installed on these
systems. However, you need an SSH
daemon that's up and running,
in most cases.

These systems need to invoke the agent to
run the configuration management tool. They
can run it as a service or cron job. No external
invocation is necessary.

These systems invoke the run remotely.

Parallel agent runs might be slow if they all
hit the same server and the server cannot
process several concurrent connections
effectively. However, if they run without a
server, the run would be faster.

Parallel agent runs might be faster than
when all agents are contacting the same
machine, but they might be constrained
by the number of SSH connections since
the runs are being invoked remotely.

The agent's installation and permissions
need to be taken care of along with the
configuration of the agent itself, for example,
the server that they should talk to.

Remote connections can log in as a
specific user and with the right level of
user support since it's SSH-based.

Getting Started with Ansible

[12]

Ansible primarily runs in the push mode but you can also run Ansible using
ansible-pull, where you can install Ansible on each agent, download the
playbooks locally, and run them on individual machines. If there is a large number
of machines (large is a relative term; in our view, greater than 500 and requiring
parallel updates) and you plan to deploy updates to the machine in parallel, this
might be the right way to go about it.

To speedup default SSH connections, you can always enable ControlPersist and
the pipeline mode, which makes Ansible faster and secure. Ansible works like any
other UNIX command that doesn't require any daemon process to be running all
the time.

Tools such as Chef and Puppet are agent-based and they need to communicate with
a central server to pull updates. These can also run without a centralized server to
scale a large number of machines commonly called Serverless Chef and Masterless
Puppet, respectively.

When you start with something new, the first aspect you need to pay attention to
is the nomenclature. The faster you're able to pick up the terms associated with the
tool, the faster you're comfortable with that tool. So, to deploy, let's say, a package
on one or more machines in Ansible, you would need to write a playbook that has
a single task, which in turn uses the package module that would then go ahead and
install the package based on an inventory file that contains a list of these machines.
If you feel overwhelmed by the nomenclature, don't worry, you'll soon get used to it.
Similar to the package module, Ansible comes loaded with more than 200 modules,
purely written in Python. We will talk about modules in detail in the later chapters.

It is now time to install Ansible to start trying out various fun examples.

Installing Ansible
Installing Ansible is rather quick and simple. You can directly use the source code by
cloning it from the GitHub project (https://github.com/ansible/ansible), install
it using your system's package manager, or use Python's package management tool
(pip). You can use Ansible on any Windows, Mac, or UNIX-like system. Ansible
doesn't require any database and doesn't need any daemons running. This makes
it easier to maintain the Ansible versions and upgrade without any breaks.

We'd like to call the machine where we will install Ansible our command center.
Many people also refer to it as the Ansible workstation.

https://github.com/ansible/ansible

Chapter 1

[13]

Note that, as Ansible is developed using Python, you would
need Python Version 2.4 or a higher version installed. Python
is preinstalled, as specified earlier, on the majority of operating
systems. If this is not the case for you, refer to https://wiki.
python.org/moin/BeginnersGuide/Download to download/
upgrade Python.

Installing Ansible from source
Installing from source is as easy as cloning a repository. You don't require any
root permissions while installing from source. Let's clone a repository and activate
virtualenv, which is an isolated environment in Python where you can install
packages without interfering with the system's Python packages. The command
and the resultant output for the repository is as follows:

$ git clone git://github.com/ansible/ansible.git

Initialized empty Git repository in /home/vagrant/ansible/.git/

remote: Counting objects: 67818, done.

remote: Compressing objects: 100% (84/84), done.

remote: Total 67818 (delta 49), reused 2 (delta 0)

Receiving objects: 100% (67818/67818), 21.06 MiB | 238 KiB/s, done.

Resolving deltas: 100% (42682/42682), done.

[node ~]$ cd ansible/

[node ansible]$ source ./hacking/env-setup

Setting up Ansible to run out of checkout...

PATH=/home/vagrant/ansible/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/
sbin:/usr/sbin:/sbin:/home/vagrant/bin

PYTHONPATH=/home/vagrant/ansible/lib:

MANPATH=/home/vagrant/ansible/docs/man:

Remember, you may wish to specify your host file with -i

Done!

www.allitebooks.com

https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download
http://www.allitebooks.org

Getting Started with Ansible

[14]

Ansible needs a couple of Python packages, which you can install using pip. If you
don't have pip installed on your system, install it using the following command. If
you don't have easy_install installed, you can install it using Python's setuptools
package on Red Hat systems or using Brew on the Mac:

$ sudo easy_install pip

<A long output follows>

Once you have installed pip, install the paramiko, PyYAML, jinja2, and httplib2
packages using the following command lines:

$ sudo pip install paramiko PyYAML jinja2 httplib2

Requirement already satisfied (use --upgrade to upgrade): paramiko in /
usr/lib/python2.6/site-packages

Requirement already satisfied (use --upgrade to upgrade): PyYAML in /usr/
lib64/python2.6/site-packages

Requirement already satisfied (use --upgrade to upgrade): jinja2 in /usr/
lib/python2.6/site-packages

Requirement already satisfied (use --upgrade to upgrade): httplib2 in /
usr/lib/python2.6/site-packages

Downloading/unpacking markupsafe (from jinja2)

 Downloading MarkupSafe-0.23.tar.gz

 Running setup.py (path:/tmp/pip_build_root/markupsafe/setup.py) egg_
info for package markupsafe

Installing collected packages: markupsafe

 Running setup.py install for markupsafe

 building 'markupsafe._speedups' extension

 gcc -pthread -fno-strict-aliasing -O2 -g -pipe -Wall -Wp,-D_FORTIFY_
SOURCE=2 -fexceptions -fstack-protector --param=ssp-buffer-size=4 -m64
-mtune=generic -D_GNU_SOURCE -fPIC -fwrapv -DNDEBUG -O2 -g -pipe -Wall
-Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector --param=ssp-
buffer-size=4 -m64 -mtune=generic -D_GNU_SOURCE -fPIC -fwrapv -fPIC
-I/usr/include/python2.6 -c markupsafe/_speedups.c -o build/temp.
linux-x86_64-2.6/markupsafe/_speedups.o

 gcc -pthread -shared build/temp.linux-x86_64-2.6/markupsafe/_
speedups.o -L/usr/lib64 -lpython2.6 -o build/lib.linux-x86_64-2.6/
markupsafe/_speedups.so

Successfully installed markupsafe

Cleaning up...

Chapter 1

[15]

By default, Ansible will be running against the development branch.
You might want to check out the latest stable branch. Check what the
latest stable version is using the following command line:
$ git branch -a

Copy the latest version you want to use. Version 1.7.1 was the latest version available
at the time of writing. Check the latest version you would like to use using the
following command lines:

[node ansible]$ git checkout release1.7.1

Branch release1.7.1 set up to track remote branch release1.7.1 from
origin.

Switched to a new branch 'release1.7.1'

[node ansible]$ansible --version

ansible 1.7.1 (release1.7.1 268e72318f) last updated 2014/09/28 21:27:25
(GMT +000)

You now have a working setup of Ansible ready. One of the benefits of
running Ansible through source is that you can enjoy the benefits of new
features immediately without waiting for your package manager to make
them available for you.

Installing Ansible using the system's package
manager
Ansible also provides a way to install itself using the system's package manager.
We will look into installing Ansible via Yum, Apt, Homebrew, and pip.

Installing via Yum
If you are running a Fedora system, you can install Ansible directly. For CentOS- or
RHEL-based systems, you should add the EPEL repository first, as follows:

$ sudo yum install ansible

On Cent 6 or RHEL 6, you have to run the command rpm -Uvh. Refer
to http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm for instructions on how to install EPEL.

http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

Getting Started with Ansible

[16]

You can also install Ansible from an RPM file. You need to use the make rpm
command against the git checkout of Ansible, as follows:

$ git clone git://github.com/ansible/ansible.git

$ cd ./ansible

$ make rpm

$ sudo rpm -Uvh ~/rpmbuild/ansible-*.noarch.rpm

You should have rpm-build, make, and python2-devel installed
on your system to build an rpm.

Installing via Apt
Ansible is available for Ubuntu in a Personal Package Archive (PPA).
To configure the PPA and install Ansible on your Ubuntu system, use the
following command lines:

$ sudo apt-get install apt-add-repository

$ sudo apt-add-repository ppa:rquillo/ansible

$ sudo apt-get update

$ sudo apt-get install ansible

You can also compile a deb file for Debian and Ubuntu systems, using the following
command line:

$ make deb

Installing via Homebrew
You can install Ansible on Mac OSX using Homebrew, as follows:

$ brew update

$ brew install ansible

Installing via pip
You can install Ansible via Python's package manager pip. If you don't have pip
installed on your system, install it. You can use pip to install Ansible on Windows
too, using the following command line:

$ sudo easy_install pip

You can now install Ansible using pip, as follows:

$ sudo pip install ansible

Chapter 1

[17]

Once you're done installing Ansible, run ansible --version to verify that it has
been installed:

$ ansible –version

You will get the following as the output of the preceding command line:

ansible 1.7.1

Hello Ansible
Let's start by checking if two remote machines are reachable; in other words,
let's start by pinging two machines following which we'll echo hello ansible on
the two remote machines. The following are the steps that need to be performed:

1. Create an Ansible inventory file. This can contain one or more groups.
Each group is defined within square brackets. This example has one
group called servers:
$ cat inventory

[servers]

machine1

machine2

2. Now, we have to ping the two machines. In order to do that, first
run ansible --help to view the available options, as shown below
(only copying the subset that we need for this example):
ansible --help

Usage: ansible <host-pattern> [options]

Options:

-a MODULE_ARGS, --args=MODULE_ARGS

 module arguments

-i INVENTORY, --inventory-file=INVENTORY

 specify inventory host file

 (default=/etc/ansible/hosts)

-m MODULE_NAME, --module-name=MODULE_NAME

 module name to execute

 (default=command)

Getting Started with Ansible

[18]

We'll now ping the two servers using the Ansible command line, as shown in
the following screenshot:

3. Now that we can ping these two servers, let's echo hello ansible!,
using the command line shown in the following screenshot:

Consider the following command:

$ansible servers -i inventory -a '/bin/echo hello ansible!'

The preceding command line is the same as the following one:

$ansible servers -i inventory -m command -a '/bin/echo hello ansible!'.

If you move the inventory file to /etc/ansible/hosts, the Ansible command will
become even simpler, as follows:

$ ansible servers -a '/bin/echo hello ansible!'

There you go. The 'Hello Ansible' program works! Time to tweet!

You can also specify the inventory file by exporting it in a variable named
ANSIBLE_HOSTS. The preceding command, without the –i option, will
work even in that situation.

Now that we've seen the 'Hello, world!' example, let's dig a little deeper into the
architecture. Once you've had a hand on the architecture, you will start realizing
the power of Ansible.

Chapter 1

[19]

The Ansible architecture
As you can see from the following diagram, the idea is to have one or more
command centers from where you can blast out commands onto remote
machines or run a sequenced instruction set via playbooks:

py py

Remote

Servers

Remote

Servers

Ansible

Python

API

SWITCH

SWITCH

Playbooks Host

Inventory

Ansible

Config

Command

Center

Core

Modules

Custom

Modules

SSH

Internet Router

Ansible Architecture

The host inventory file determines the target machines where these plays will be
executed. The Ansible configuration file can be customized to reflect the settings
in your environment. The remote servers should have Python installed along
with a library named simplejson in case you are using Python Version 2.5 or
an earlier version.

The playbooks consist of one or more tasks that are expressed either with core
modules that come with Ansible or custom modules that you can write for specific
situations. The plays are executed sequentially from top to bottom, so there is
no explicit order that you have to define. However, you can perform conditional
execution on tasks so that they can be skipped (an Ansible term) if the conditions
are not met.

You can also use the Ansible API to run scripts. These are situations where you
would have a wrapper script that would then utilize the API to run the playbooks
as needed. The playbooks are declarative in nature and are written in YAML Ain't
Markup Language (YAML). This takes the declarative simplicity of such systems to
a different level.

Getting Started with Ansible

[20]

Ansible can also be used to provision new machines in data centers and/or Cloud,
based on your infrastructure and configure them based on the role of the new
machine. For such situations, Ansible has the power to execute a certain number
of tasks in the local mode, that is, on the command center, and certain tasks on the
actual machine, post the machine-boot-up phase.

In this case, a local action can spawn a new machine using an API of some sort,
wait for the machine to come up by checking whether standard ports are up, and
then log in to the machine and execute commands. The other aspect to consider
is that Ansible can run tasks either serially or N threads in parallel. This leads to
different permutations and combinations when you're using Ansible for deployment.

Before we proceed with full-fledged examples and look at the power of Ansible,
we'll briefly look at the Ansible configuration file. This will let you map out the
configuration to your setup.

Configuring Ansible
An Ansible configuration file uses an INI format to store its configuration data.
In Ansible, you can overwrite nearly all of the configuration settings either through
Ansible playbook options or environment variables. While running an Ansible
command, the command looks for its configuration file in a predefined order,
as follows:

1. ANSIBLE_CONFIG: Firstly, the Ansible command checks the environment
variable, which points to the configuration file

2. ./ansible.cfg: Secondly, it checks the file in the current directory
3. ~/.ansible.cfg: Thirdly, it checks the file in the user's home directory
4. /etc/ansible/ansible.cfg: Lastly, it checks the file that is automatically

generated when installing Ansible via a package manager

If you have installed Ansible through your system's package manager or pip, then
you should already have a copy of ansible.cfg under the /etc/ansible directory.
If you installed Ansible through the GitHub repository, you can find ansible.cfg
under the examples directory, where you cloned your Ansible repository.

Chapter 1

[21]

Configuration using environment variables
You can use most of the configuration parameters directly via environment variables
by appending ANSIBLE_ to the configuration parameter (the parameter name should
be in uppercase). Consider the following command line for example:

export ANSIBLE_SUDO_USER=root

The ANSIBLE_SUDO_USER variable can then be used as part of the playbooks.

Configuration using ansible.cfg
Ansible has many configuration parameters; you might not need to use all of them.
We will consider some of the configuration parameters, as follows, and see how to
use them:

• hostfile: This parameter indicates the path to the inventory file.
The inventory file consists of a list of hosts that Ansible can connect to.
We will discuss inventory files in detail later in this chapter. Consider
the following command line for example:
hostfile = /etc/ansible/hosts

• library: Whenever you ask Ansible to perform any action, whether it is
a local action or a remote one, it uses a piece of code to perform the action;
this piece of code is called a module. The library parameter points to
the path of the directory where Ansible modules are stored. Consider the
following command line for example:
library = /usr/share/ansible

• forks: This parameter is the default number of processes that you want
Ansible to spawn. It defaults to five maximum processes in parallel.
Consider the following command line for example:
forks = 5

• sudo_user: This parameter specifies the default user that should be used
against the issued commands. You can override this parameter from the
Ansible playbook as well (this is covered in a later chapter). Consider the
following command line for example:
sudo_user = root

• remote_port: This parameter is used to specify the port used for SSH
connections, which defaults to 22. You might never need to change this
value unless you are using SSH on a different port. Consider the following
command line for example:
remote_port = 22

Getting Started with Ansible

[22]

• host_key_checking: This parameter is used to disable the SSH host key
checking; this is set to True by default. Consider the following command
line for example:
host_key_checking = False

• timeout: This is the default value for the timeout of SSH connection attempts:
timeout = 60

• log_path: By default, Ansible doesn't log anything; if you would like to send
the Ansible output to a logfile, then set the value of log_path to the file you
would like to store the Ansible logs in. Consider the following command line
for example:

log_path = /var/log/ansible.log

In the latter half of this chapter, we'll focus on Ansible features and, primarily,
how it can be used for configuration management. We'd recommend you to try
out the given examples.

Configuration management
There has been a huge shift across companies of all sizes throughout the world in the
field of infrastructure automation. CFEngine was one of the first tools to demonstrate
this capability way back in the 1990s; more recently, there have been Puppet, Chef,
and Salt besides Ansible. We will try and compare Ansible with Puppet and Chef
during the course of this book since we've had a good experience with all three tools.
We will also point out specifically how Ansible would solve a problem compared to
Chef or Puppet.

All of them are declarative in nature and expect to move a machine to the desired
state that is specified in the configuration. For example, in each of these tools, in
order to start a service at a point in time and start it automatically on restart, you
would need to write a declarative block or module; every time the tool runs on
the machine, it will aspire to obtain the state defined in your playbook (Ansible),
cookbook (Chef), or manifest (Puppet).

The difference in the toolset is minimal at a simple level but as more situations arise
and the complexity increases, you will start finding differences between the different
toolsets. In Puppet, you need to take care of the order, and the puppet server will
create the sequence of instructions to execute every time you run it on a different
box. To exploit the power of Chef, you will need a good Ruby team. Your team needs
to be good at the Ruby language to customize both Puppet and Chef, and you will
need a bigger learning curve with both the tools.

Chapter 1

[23]

With Ansible, the case is different. It uses the simplicity of Chef when it comes to
the order of execution, the top-to-bottom approach, and allows you to define the
end state in the YAML format, which makes the code extremely readable and easy
for everyone, from Development teams to Operations teams, to pick up and make
changes. In many cases, even without Ansible, operations teams are given playbook
manuals to execute instructions from, whenever they face issues. Ansible mimics that
behavior. Do not be surprised if you end up having your project manager change the
code in Ansible and check it into git because of its simplicity!

Let's now start looking at playbooks, variables, inventory files, and modules.

Working with playbooks
Playbooks are one of the core features of Ansible and tell Ansible what to execute.
They are like a to-do list for Ansible that contains a list of tasks; each task internally
links to a piece of code called a module. Playbooks are simple human-readable
YAML files, whereas modules are a piece of code that can be written in any language
with the condition that its output should be in the JSON format. You can have
multiple tasks listed in a playbook and these tasks would be executed serially by
Ansible. You can think of playbooks as an equivalent of manifests in Puppet, states
in Salt, or cookbooks in Chef; they allow you to enter a list of tasks or commands you
want to execute on your remote system.

The anatomy of a playbook
Playbooks can have a list of remote hosts, user variables, tasks, handlers
(covered later in this chapter), and so on. You can also override most of the
configuration settings through a playbook. Let's start looking at the anatomy
of a playbook. The purpose of a playbook is to ensure that the httpd package is
installed and the service is started. Consider the following screenshot, where the
setup_apache.yml file is shown:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Ansible

[24]

The setup_apache.yml file is an example of a playbook. The file comprises of three
main parts, as follows:

• hosts: This lists the host or host group against which we want to run the
task. The hosts field is mandatory and every playbook should have it
(except roles). It tells Ansible where to run the listed tasks. When provided
with a host group, Ansible will take the host group from the playbook and
will try looking for it in an inventory file (covered later in the chapter).
If there is no match, Ansible will skip all the tasks for that host group.
The --list-hosts option along with the playbook (ansible-playbook
<playbook> --list-host) will exactly tell you against which hosts the
playbook will run.

• remote_user: This is one of the configuration parameters of Ansible
(consider, for example, tom' - remote_user) that tells Ansible to use
a particular user (in this case, tom) while logging into the system.

• tasks: Finally, we come to tasks. All playbooks should contain tasks.
Tasks are a list of actions you want to perform. A tasks field contains the
name of the task, that is, the help text for the user about the task, a module
that should be executed, and arguments that are required for the module.
Let's look at the single task that is listed in the playbook, as shown in the
preceding screenshot:

tasks:
 - name: Install httpd package
 yum: name=httpd state=latest
 sudo: yes

 - name: Starting httpd service
 service: name=httpd state=started
 sudo: yes

Most of the examples in the book would be executed on CentOS, but the
same set of examples with a few changes would work on Ubuntu as well.

In the preceding case, there are two tasks. The name parameter represents what
the task is doing and is present only to improve readability, as we'll see during the
playbook run. The name parameter is optional. The modules, yum and service, have
their own set of parameters. Almost all modules have the name parameter (there are
exceptions such as the debug module), which indicates what component the actions
are performed on. Let's look at the other parameters:

Chapter 1

[25]

• In the yum module's case, the state parameter has the latest value and it
indicates that the httpd latest package should be installed. The command
to execute more or less translates to yum install httpd.

• In the service module's scenario, the state parameter with the started
value indicates that httpd service should be started, and it roughly
translates to /etc/init.d/httpd start.

• The sudo: yes parameter represents the fact that the tasks should be
executed with the sudo access. If the sudo user's file does not allow the user
to run the particular command, then the playbook will fail when it is run.

You might have questions about why there is no package module that
internally figures out the architecture and runs either the yum, apt,
or other package options depending on the architecture of the system.
Ansible populates the package manager value into a variable named
ansible_pkg_manager.
In general, we need to remember that the number of packages that have
a common name across different operating systems is a small subset
of the number of packages that are actually present. For example, the
httpd package is called httpd in Red Hat systems and apache2 in
Debian-based systems. We also need to remember that every package
manager has its own set of options that make it powerful; as a result, it
makes more sense to use explicit package manager names so that the full
set of options are available to the end user writing the playbook.

Let's look at the folder structure before we run the playbook. We have a folder
named example1; within that, there are different files related to the Ansible
playbook. With advanced examples, we'll see various folders and multiple files.
Consider the following screenshot:

The hosts file is set up locally with one host named host1 that corresponds to what
is specified in the setup_apache.yml playbook:

[root@node example1]# cat hosts
host1

Getting Started with Ansible

[26]

Now, it's time (yes, finally!) to run the playbook. Run the command line, as shown in
the following screenshot:

Wow! The example worked. Let's now check whether the httpd package is
installed and up-and-running on the machine. Perform the steps shown in
the following screenshot:

The end state, according to the playbook, has been achieved. Let's briefly look at
what exactly happens during the playbook run:

#ansible-playbook -i hosts playbooks/setup_apache.yml

The command, ansible-playbook, is what you would use in order to invoke the
process that runs a playbook. The familiar -i option points to the inventory host file.
We'll look at other options with ansible-playbook in a later section.

Next, we'll look into the Gathering Facts task that, when run, is displayed
as follows:

GATHERING FACTS ***

ok: [host1]

Chapter 1

[27]

The first default task when any playbook is run is the Gathering Facts task.
The aim of this task is to gather useful metadata about the machine in the form
of variables; these variables can then be used as a part of tasks that follow in the
playbook. Examples of facts include the IP Address of the machine, the architecture
of the system, and hostname. The following command will show you the facts
collected by Ansible about the host:

ansible -m setup host1 -i hosts

You can disable the gathering of facts by setting the gather_facts command just
below the hosts command in the Ansible playbook. We'll look at the pros and cons
of fact gathering in a later chapter.

- hosts: host1

 gather_facts: False

TASK: [Install httpd package] ***

changed: [host1]

TASK: [Starting httpd service] **

changed: [host1]

Followed by the execution of the preceding command lines, we have the actual tasks
that are executed. Both the tasks give their outputs stating whether the state of the
machine has changed by running the task or not. In this case, since neither the httpd
package was present nor the service was started, the tasks' outputs changed for the
user to see on the screen (as seen in the preceding screenshot). Let's rerun the task
now and see the output after both the tasks have actually run.

Getting Started with Ansible

[28]

As you would have expected, the two tasks in question give an output of ok,
which would mean that the desired state was already met prior to running the task.
It's important to remember that many tasks such as the Gathering facts task obtain
information regarding a particular component of the system and do not necessarily
change anything on the system; hence, these tasks didn't display the changed
output earlier.

The PLAY RECAP section in the first and second run are shown as follows.
You will see the following output during the first run:

You will see the following output during the second run:

As you can see, the difference is that the first task's output shows changed=2,
which means that the system state changed twice due to two tasks. It's very useful
to look at this output, since, if a system has achieved its desired state and then you
run the playbook on it, the expected output should be changed=0.

If you're thinking of the word Idempotency at this stage, you're absolutely right
and deserve a pat on the back! Idempotency is one of the key tenets of Configuration
Management. Wikipedia defines Idempotency as an operation that, if applied twice
to any value, gives the same result as if it were applied once. Earliest examples that
you would have encountered in your childhood would be multiplicative operations
on the number 1, where 1*1=1 every single time.

Most of the configuration management tools have taken this principle and applied
it to the infrastructure as well. In a large infrastructure, it is highly recommended to
monitor or track the number of changed tasks in your infrastructure and alert the
concerned tasks if you find oddities; this applies to any configuration management
tool in general. In an ideal state, the only time you should see changes is when you're
introducing a new change in the form of any Create, Remove, Update, or Delete
(CRUD) operation on various system components. If you're thinking how you can
do it with Ansible, keep reading the book and you'll eventually find the answer!

Chapter 1

[29]

Let's proceed. You could have also written the preceding tasks as follows but when
the tasks are run, from an end user's perspective, they are quite readable:

tasks:
 - yum: name=httpd state=latest
 sudo: yes
 - service: name=httpd state=started
 sudo: yes

Let's run the playbook again to spot any difference in the output, as shown in the
following screenshot:

As you can see, the difference is in the readability. Wherever possible, it's
recommended to keep the tasks as simple as possible (the KISS principle of Keep
It Simple Stupid) to allow for maintainability of your scripts in the long run.

Now that we've seen how you can write a basic playbook and run it against a host,
let's look at other options that would help you while running playbooks.

One of the first options anyone picks up is the debug option. To understand what
is happening when you run the playbook, you can run it with the Verbose (-v)
option. Every extra v will provide the end user with more debug output. Let's
see an example of using the playbook debug for a single task using the following
debug options.

• The -v option provides the default output, as shown in the
preceding screenshot.

• The -vv option adds a little more information, as shown in the
following screenshot:

Getting Started with Ansible

[30]

• The -vvv option adds a lot more information, as shown in the following
screenshot. This shows the SSH command Ansible uses to create a temporary
file on the remote host and run the script remotely.

From a playbook, it becomes important to view what the values of certain variables
are. In order to help you, there is a helpful debug module that you can add to your
setup_apache.yml playbook, as shown in the following screenshot:

Let's run the setup_apache.yml playbook and see how the debug module works in
the following screenshot:

Chapter 1

[31]

This is also the first usage of the metadata that we've gathered from the machine.
Here, we're outputting the value that is assigned to the ansible_distribution
variable. Every Ansible variable that has the metadata starts with ansible_. The
debug option can be used generously to help you in your overall usage of tasks.
Also, as expected, there is no change in the state of the machine; hence, changed=0.

The next useful option with ansible-playbook is to simply list all the tasks that will
be executed when you run a playbook. When you have several tasks and multiple
playbooks that run as part of a playbook, this option would help you analyze a
playbook when it is run. Let's look at an example in the following screenshot:

You also have the start-at option. It will start executing the task you specify.
Let's look at an example in the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started with Ansible

[32]

As you can see, there is no Install httpd package task in the preceding screenshot,
since it was skipped. Another related option that we should look at is the step option.
With this, you can prompt the user to execute a task (or not). Let's look at an example
in the following screenshot:

In the preceding example, we didn't execute the Starting httpd service task.
There are several more useful options that we will cover later in this chapter and in
Chapter 2, Developing, Testing, and Releasing Playbooks, along with relevant examples.
For now, let's jump into variables.

Variables and their types
Variables are used to store values that can be later used in your playbook. They
can be set and overridden in multiple ways. Facts of machines can also be fetched as
variables and used. Ansible allows you to set your variables in many different ways,
that is, either by passing a variable file, declaring it in a playbook, passing it to the
ansible-playbook command using -e / --extra-vars, or by declaring it in an
inventory file (discussed later in this chapter).

Before we look at the preceding ways in a little more detail, let's look at some of the
ways in which variables in Ansible can help you, as follows:

• Use them to specify the package name when you have different operating
systems running, as follows:
- set_fact package_name=httpd

Chapter 1

[33]

 when: ansible_os_family == "Redhat"

- set_fact package_name=apache2

 when: ansible_os_family == "Debian"

The preceding task will set a variable package_name either with httpd or
apache2 depending on the OS family of your machine. We'll look at other
facts that are fetched as variables shortly.

• Use them to store user values using a prompt in your Ansible playbook:
- name: Package to install

 pause: prompt="Provide the package name which you want to
install "

 register: package_name

The preceding task will prompt the user to provide the package name.
The user input would then be stored in a variable named package_name.

• Store a list of values and loop it.
• Reduce redundancy if the same variables are called in multiple playbooks

that refer to the same variable name. This is so that you can change the value
in just one place and it gets reflected in every invocation of the variable.

The types of variables that Ansible supports are String, Numbers, Float, List,
Dictionary, and Boolean.

Variable names
All variable names in Ansible should start with a letter. The name can have letters,
numbers, and an underscore.

Valid variable names in Ansible
The following are a few examples of valid variable names in Ansible:

• package_name

• package_name2

• user_input_package

• Package

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Ansible

[34]

Invalid variable names in Ansible
The following are a few examples of invalid variable names in Ansible:

• mysql version (multiple words)
• mysql.port (a dot)
• 5 (a number)
• user-input (a hyphen)

You can define variables in Ansible at different hierarchy levels; let's see what those
levels are and how you can override variables in that hierarchy.

Variables in an included task file
Variables in an included task file will override any other variables defined
at different levels of hierarchy except the extra variables passed through the
command line. We will see how command-line variables work later in this chapter.
This override feature allows you to change the value of a variable during different
tasks, making it more dynamic. This is one of the widely used variable features,
where you want to assign a default value to the variable and override it during
different tasks. Let's see an example of how this works in the following screenshot:

Chapter 1

[35]

In the preceding example, we created two playbooks. One will set a fact for the
package name and install Apache depending on the OS distribution; the second
one will actually be executed by Ansible, which will first call install_apache.yml
and make sure the Apache service is running on the remote host. To fetch the
package name, we will directly use the package_name variable that was set by
the install_apache.yml playbook.

Variables in a playbook
Variables in a playbook are set by the vars: key. This key takes a key-value pair,
where the key is the variable name and the value is the actual value of the variable.
This variable will overwrite other variables that are set by a global variable file or
from an inventory file. We will now see how to set a variable in a playbook using
the preceding example. This is demonstrated in the following screenshot:

The preceding example will first set the package_name variable with a default value
of httpd; this value will be further overridden by a task, install_apache.yml,
that we included. You can define multiple variables, each in a separate line.

Getting Started with Ansible

[36]

Variables in a global file
Variables in Ansible can also be defined in a separate file; this allows you to separate
your data (that is, variables) from your playbook. You can define as many variable
files as you want; you just need to tell your playbook the files it needs to look at for
variables. The format to define variables in a file is similar to the format of playbook
variables. You provide the variable name and its value in a key-value pair and it
follows a YAML format. Let's see how it works in the following screenshot:

The preceding example defines some variables where we directly pass a default
value, whereas, for AWS_ACCESS_KEY and AWS_SECRET_KEY, we fetch the value from
an environment variable using the lookup plugin of the Jinja templating language
(more on this in later chapters). Anything that succeeds hash (#) is not interpreted by
Ansible and is counted as a comment. You can also have comments after a variable is
defined. For example, consider the following command line:

mount_point: "/dev/sdf" # Default mount point

You tell Ansible which variable files need to be checked by using the vars_files
key. You can specify multiple variable files in a playbook. Ansible will check
for a variable in a bottom-to-top manner. Let's see how this works, in the
following screenshot:

Chapter 1

[37]

In the preceding example, Ansible will first check for a variable named
package_name in the var2.yml file. It will stop further lookup if it finds the
variable in var2.yml; if not, it will try searching for the variable in var3.yml,
and other files if there are any more.

Facts as variables
You've already seen an example of how to use a fact, such as ansible_distribution,
that is obtained as a fact from a machine. Let's look at a bigger list that you can access
when you run gather_facts. The same set of facts can be seen by running the setup
module without using the ansible-playbook command, and by using the ansible
command as shown in the following command lines:

$ ansible 192.168.33.10 -i inventory -m setup

192.168.33.10 | success >> {

 "ansible_facts": {

 "ansible_all_ipv4_addresses": [

 "10.0.2.15",

 "192.168.33.10"

],

 "ansible_all_ipv6_addresses": [

 "fe80::a00:27ff:fec9:399e",

 "fe80::a00:27ff:fe72:5c55"

],

 "ansible_architecture": "x86_64",

 "ansible_distribution_major_version": "6",

 "ansible_distribution_release": "Final",

 "ansible_distribution_version": "6.4",

 "ansible_domain": "localdomain"

 "ansible_swapfree_mb": 2559,

 "ansible_swaptotal_mb": 2559,

 "ansible_system": "Linux",

 "ansible_system_vendor": "innotek GmbH",

 "ansible_user_id": "vagrant",

 "ansible_userspace_architecture": "x86_64",

 "ansible_userspace_bits": "64",

Getting Started with Ansible

[38]

These facts are now exposed as variables and can be used as part of playbooks.
You will find more examples regarding this later in this book.

Command-line variables
Command-line variables are a great way to overwrite file/playbook variables.
This feature allows you to give your user the power to pass the value of a variable
directly from an ansible-playbook command. You can use the -e or --extra-vars
options of the ansible-playbook command by passing a string of key-value pairs,
separated by a whitespace. Consider the following command line:
ansible-playbook -i hosts --private-key=~/.ssh/ansible_key playbooks/
apache.yml --extra-vars "package_name=apache2"

The preceding ansible-playbook command will overwrite the package_name
variable if it is mentioned in any of the variable files. Command-line variables will
not override the variables that are set by the set_fact module. To prevent this type
of overriding, we can use Ansible's conditional statements, which will override a
variable only if it is not defined. We will discuss more about conditional statements
in later chapters.

One of the commonly used command-line variables is hosts. Till now, we saw
some Ansible playbook examples where we directly passed the hostname to the
playbook. Instead of passing the hostname directly, you can use an Ansible variable
and leave it to the end user to provide the hostname. Let's see how this works in
the following screenshot:

In the preceding playbook, instead of directly using the hostname, we will now pass
a variable named nodes. The ansible-playbook command for such a playbook will
look as follows:
ansible-playbook -i hosts --private-key=~/.ssh/ansible_key playbooks/
apache.yml --extra-vars "nodes=host1"

Chapter 1

[39]

The preceding ansible-playbook command will set the value of nodes as host1.
The Ansible playbook will now use the value of the nodes variable against hosts.
You can also pass a group of hosts by passing the hostname to the nodes variable
(more on grouping hosts will be seen in the next section).

The last thing we'd like to cover in this section is typing out all the options every
single time. You can export all of the options as environment variables, as shown
in the following command lines, so that you don't have to type them all.

$ env | grep ANSIBLE

ANSIBLE_INVENTORY=inventory

ANSIBLE_HOSTS=hosts

ANSIBLE_SSH_PRIVATE_KEY=~/.ssh/ansible_key

Once you type the preceding command lines, the playbook command would
resemble the following command line:

ansible-playbook playbooks/apache.yml --extra-vars "nodes=host1"

Variables in an inventory file
All of the preceding variables are applied globally to all hosts against which you are
running your Ansible playbook. You might sometimes need to use a specific list of
variables for a specific host. Ansible supports this by declaring your variables inside
an inventory file. There are different ways to declare variables inside an inventory
file; we will look at how an inventory file works and how to use Ansible with it in
the next section of this chapter.

Apart from the user-defined variables, Ansible also provides some system-related
variables called facts. These facts are available to all hosts and tasks, and are
collected every time you run the ansible-playbook command, unless disabled
manually. You can directly access these facts by using a Jinja template, for example,
as follows:

- name: Show how debug works

 debug: msg={{ ansible_distribution }}

The ansible_distribution part in the preceding command line is a fact, which
will be initialized by Ansible when you run the ansible-playbook command.
To check all the facts Ansible collects, run the following command line:

ansible -m setup host1 -i host1,

Getting Started with Ansible

[40]

The preceding example will run the setup module on host1 and list out all possible
facts that Ansible can collect from the remote host. It will also collect the facts from
facter (a discovery program) if you have it installed on your system. The variable -i
in the preceding example specifies an inventory file; in this case, instead of passing a
file, we will directly use the hostname.

When using a hostname directly instead of an inventory file, you need
to add a trailing comma "," with the hostname. You can even specify
multiple hostnames separated by a comma.

Working with inventory files
An inventory file is the source of truth for Ansible (there is also an advanced concept
called dynamic inventory, which we will cover later). It follows the INI format and
tells Ansible whether the remote host or hosts provided by the user are genuine
or not.

Ansible can run its tasks against multiple hosts in parallel. To do this, you can
directly pass the list of hosts to Ansible using an inventory file. For such parallel
execution, Ansible allows you to group your hosts in the inventory file; the file
passes the group name to Ansible. Ansible will search for that group in the
inventory file and run its tasks against all the hosts listed in that group.

You can pass the inventory file to Ansible using the -i or --inventory-file option
followed by the path to the file. If you do not explicitly specify any inventory file to
Ansible, it will take the default path from the host_file parameter of ansible.cfg,
which defaults to /etc/ansible/hosts.

The basic inventory file
Before diving into the concept, first let's look at a basic inventory file in the
following screenshot:

Chapter 1

[41]

Ansible can take either a hostname or an IP address within the inventory file. In the
preceding example, we specified four servers; Ansible will take these servers and
search for the hostname that you provided, to run its tasks. If you want to run your
Ansible tasks against all of these hosts, then you can pass all to the hosts parameter
while running the ansible-playbook or to the ansible command; this will make
Ansible run its tasks against all the hosts listed in an inventory file.

The command that you would run is shown in the following screenshot:

In the preceding screenshot, the Ansible command took all the hosts from an
inventory file and ran the ping module against each of them. Similarly, you can use
all with the ansible-playbook by passing all to the hosts. Let's see an example for
an Ansible playbook in the following screenshot:

Getting Started with Ansible

[42]

Now, when you run the preceding Ansible playbook, it will execute its tasks against
all hosts listed in an inventory file.

This command will spawn off four parallel processes, one for each machine.
The default number of parallel threads is five. For a larger number of hosts, you can
increase the number of parallel processes with the -f or --forks=< value > option.

Coming back to the features of the file, one of the drawbacks with this type of simple
inventory file is that you cannot run your Ansible tasks against a subset of the hosts,
that is, if you want to run Ansible against two of the hosts, then you can't do that
with this inventory file. To deal with such a situation, Ansible provides a way to
group your hosts and run Ansible against that group.

Groups in an inventory file
In the following example, we grouped the inventory file into three groups, that is,
application, db, and jump:

Now, instead of running Ansible against all the hosts, you can run it against a set of
hosts by passing the group name to the ansible-playbook command. When Ansible
runs its tasks against a group, it will take all the hosts that fall under that group.
To run Ansible against the application group, you need to run the command line
shown in the following screenshot:

Chapter 1

[43]

This time we directly passed the group name instead of running Ansible against
all hosts; you can have multiple groups in the inventory file and you can even club
similar groups together in one group (we will see how clubbing groups works in the
next section). You can use groups using Ansible's playbook command as well by
passing the group name to hosts.

In the preceding screenshot, Ansible will run its tasks against the hosts example.com
and web001.

You can still run Ansible against a single host by directly passing the hostname or
against all the hosts by passing all to them.

Groups of groups
Grouping is a good way to run Ansible on multiple hosts together. Ansible provides
a way to further group multiple groups together. For example, let's say, you have
multiple application and database servers running in the east coast and these
are grouped as application and db. You can then create a master group called
eastcoast. Using this command, you can run Ansible on your entire eastcoast
data center instead of running it on all groups one by one.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Ansible

[44]

Let's take a look at an example shown in the following screenshot:

You can use a group of groups in the same way you use Ansible with groups in the
preceding section. This is demonstrated in the following screenshot:

You can directly refer to an inventory group in the ansible-playbook as follows:

Chapter 1

[45]

Regular expressions with an inventory file
An inventory file would be very helpful if you have many servers. Let's say you
have a large number of web servers that follow the same naming convention, for
example, web001, web002, …, web00N, and so on. Listing all these servers separately
will result in a dirty inventory file, which would be difficult to manage with
hundreds to thousands of lines. To deal with such situations, Ansible allows
you to use regex inside its inventory file. The following screenshot shows an
example of multiple servers:

From the preceding screenshot, we can deduce the following:

• web[001:200] will match web001, web002, web003, web004, …, web199,
web200 for the application group

• db[001:020] will match db001, db002, db003, …, db019, db020 for the
db group

• 192.168.2.[1:3] will match 192.168.2.1, 192.168.2.2, 192.168.2.3
for the jump group

External variables
Ansible allows you to define external variables in many ways, from an external
variable file within a playbook, by passing it from the Ansible command using the
-e / --extra-vars option, or by passing it to an inventory file. You can define
external variables in an inventory file either on a per-host basis, for an entire group,
or by creating a variable file in the directory where your inventory file exists.

Host variables
Using the following inventory file, you can access the variable db_name for the db001
host, and db_name and db_port for 192.168.2.1:

Getting Started with Ansible

[46]

Group variables
Let's move to variables that can be applied to a group. Consider the following example:

The preceding inventory file will provide two variables and their respective values
for the application group, app_type=search and app_port=9898.

Host variables will override group variables.

Variable files
Apart from host and group variables, you can also have variable files. Variable files
can be either for hosts or groups that reside in the folder of your inventory file.
All of the host variable files will go under the host_vars directory, whereas all
group variable files will go under the group_vars directory.

The following is an example of a host variable file (assuming your inventory file is
under the /etc/ansible directory):

cat /etc/ansible/host_vars/web001

app_type=search

app_port=9898

As our inventory file resides under the /etc/ansible directory, we will create
a host_vars directory inside /etc/ansible and place our variable file inside
that. The name of the variable file should be the hostname, mentioned in your
inventory file.

The following is an example of a group variable file:

cat /etc/ansible/group_vars/db

db_name=redis

db_port=6380

Chapter 1

[47]

The variable file for groups is the same as the host file. The only difference here is
that the variables will be accessible to all of the hosts of that group. The name of the
variable file should be the group name, mentioned in your inventory file.

Inventory variables follow a hierarchy; at the top of this is the
common variable file (we discussed this in the previous section,
Working with inventory files) that will override any of the host
variables, group variables, and inventory variable files. After this,
comes the host variables, which will override group variables;
lastly, group variables will override inventory variable files.

Overriding configuration parameters with an
inventory file
You can override some of Ansible's configuration parameters directly through the
inventory file. These configuration parameters will override all the other parameters
that are set either through ansible.cfg, environment variables, or passed to the
ansible-playbook/ansible command. The following is the list of parameters you
can override from an inventory file:

• ansible_ssh_user: This parameter is used to override the user that will be
used for communicating with the remote host.

• ansible_ssh_port: This parameter will override the default SSH port with
the user-specified port. It's a general, recommended sysadmin practice to not
run SSH on the standard port 22.

• ansible_ssh_host: This parameter is used to override the host for an alias.
• ansible_connection: This specifies the connection type that should be used

to connect to the remote host. The values are SSH, paramiko, or local.
• ansible_ssh_private_key_file: This parameter will override the private

key used for SSH; this will be useful if you want to use some specific
keys for a specific host. A common use case is if you have hosts spread
across multiple data centers, multiple AWS regions, or different kinds of
applications. Private keys can potentially be different in such scenarios.

• ansible_shell_type: By default, Ansible uses the sh shell; you can override
this using the ansible_shell_type parameter. Changing this to csh, ksh,
and so on will make Ansible use the commands of that shell.

• ansible_python_interpreter: Ansible, by default, tries to look for a
Python interpreter within /usr/bin/python; you can override the default
Python interpreter using this parameter.

Getting Started with Ansible

[48]

Let's take a look at the following example:

example.com

web001 ansible_ssh_user=myuser ansible_ssh_private_key_file=myuser.rsa

db001

192.168.2.1

The preceding example will override the SSH user and the SSH private keys for the
web001 host. You can set similar variables for groups and variable files.

Working with modules
Now that we've seen how playbooks, variables, and inventories come together,
let's look at modules in greater detail. Ansible provides more than 200 modules
under top-level modules, such as System, Network, Database, and Files, that you
can readily use and deal with in your infrastructure. The module index page has
more details regarding the categories of the module. We'll explore modules that
are commonly used and look at more advanced modules in later chapters.

Command modules
We start with four modules that are pretty similar to each other. They are used to
execute tasks on remote machines. We need to take care of idempotency for most
tasks that involve any of the above modules using conditional clauses that we will
see in the coming chapters. Using parameters such as creates and removes can also
introduce idempotency. Let's see when and where we can use each of these.

The command module
This takes the command name along with the arguments. However, shell variables
or operations such as <, >, |, and & will not work as they will not be processed by
the shell. This feature is similar to the fork function in C programming. Running
the command module is secure and predictable. Also, the command module gives
you the following parameters:

• chdir: This is used to change to a specific directory and execute commands
• creates: You can specify what file will be created with this option
• removes: This is used to remove a file

Chapter 1

[49]

Let's write a task to reboot a machine, as follows:

 - name: Reboot machine

 command: /sbin/shutdown -r now

 sudo: yes

On running the preceding command, we can see the following output:

As expected, without the conditional clause, this task will execute every single time
as part of running the playbook.

The raw module
This module is used only when the other command modules do not fit the bill.
This can be applied to a machine and will run a command in SSH. Use cases include
running remote tasks on machines that don't have Python installed. Networking
devices, such as routers and switches, are classic cases. Let's look at a quick example
to install the vim package, as follows:

 - name: Install vim

 raw: yum -y install vim-common

 sudo: yes

On running the preceding command, we see that the package is installed. Even after
the package is installed, the task does not show that it is a changed task. It's best to
not use the raw package.

Getting Started with Ansible

[50]

The script module
This module is used to copy a script remotely to a machine and execute it. It supports
the creates and removes parameters. Let's look at an example where we list down
directories within a particular directory. Remember, you don't have to copy the
script remotely in this case. The module does it for you as follows:

 - name: List directories in /etc

 script: list_number_of_directories.sh /etc

 sudo: yes

On running the preceding command, we get the following output:

Here, 83 is the number of directories in the /etc directory, which can be verified by
running the following command:

$ls -l /etc | egrep '^d' | wc -l

83

The shell module
Finally we come to the shell module. The major difference between the command
and shell modules is that the shell module uses a shell (/bin/sh, by default) to
run the commands. You can use shell environment variables and other shell features.
Let's look at an example where we redirect the list of all files in /tmp to a directory
and, in a subsequent task, concatenate (using cat) the file. The tasks are shown
as follows:

 - name: List files in /tmp and redirect to a file

 shell: /bin/ls -l /tmp > /tmp/list

 sudo: yes

 - name: Cat /tmp/list

 shell: /bin/cat /tmp/list

Chapter 1

[51]

The output is shown as follows:

We've turned off color for screenshots that involve debugging just to
make them more readable. The preceding output might not look that
great but it can be formatted. Using callbacks and register, you
can format an output in a better manner. We'll demonstrate that in
later chapters.

File modules
We'll now switch to some very useful file modules, namely, file, template, and
copy. There are others as well but we intend to cover the most important ones and
those that are used often. Let's start with the file module.

The file module
The file module allows you to change the attributes of a file. It can touch a file,
create or delete recursive directories, and create or delete symlinks.

The following example makes sure that httpd.conf has the right permissions
and owner:

 - name: Ensure httpd conf has right permissions and owner/group

 file: path=/etc/httpd/conf/httpd.conf owner=root group=root mode=0644

 sudo: yes

On running the preceding command, you should see the following output:

Getting Started with Ansible

[52]

If we check the output on the machine, we will see the following:

As shown in the preceding screenshot, there is no change as the file has the
expected permissions and ownership. However, it's important to make sure
important configuration files are under the control of Ansible (or any configuration
management tool in general) so that, if there are changes, the next time playbook
is run, those changes are reverted. This is one of the reasons for having your
infrastructure as code, making sure you control all that matters from the code
that is checked in. If there are genuine changes, then those have to be checked into
the main Ansible repository that you maintain, and change has to flow from there.

The next example will create a symlink to the httpd conf file, as follows:

 - name: Create a symlink in /tmp for httpd.conf

 file: src=/etc/httpd/conf/httpd.conf dest=/tmp/httpd.conf owner=root
group=root state=link

 sudo: yes

The output of the preceding task is as follows:

If we check on the machine, we will see the following output:

The output is as expected. You might notice that we're running the ls command to
verify the output. This is not always necessary, but it's highly recommended that
you test everything that you automate right from the start. In the next chapter,
we'll show you the possible methods in which you can automate these tests.
For now, they are manual.

Chapter 1

[53]

Debugging in Ansible
Now, let's create a hierarchy of directories with 777 permissions. For this particular
example, we're going to use Ansible 1.5.5 for the purpose of showcasing how to
debug with Ansible:

 - name: Create recursive directories

 file: path=/tmp/dir1/dir2/dir3 owner=root group=root mode=0777

 sudo: yes

Do you see something not right with the preceding example? (In hindsight, if we've
asked you the question, it means something is wrong!)

Let's run it and check. On running it, we see the following output:

We would expect this task's output to be changed. However, it shows ok. Let's verify
it on the system.

There you go! The recursive directories are not present. Why did this happen
without an error?

To find the answer, run the -vv option you learned about earlier. The following
output is received:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Ansible

[54]

This was a bug in Version 1.5.5 but was fixed later in Version 1.6 and without
specifying state=directory, it errors out. However, there is a possibility that
you might find other such issues. Make sure you check the documentation; it might
be a bug that you might want to raise or possibly fix. To fix the preceding bug in
Version 1.5.5, we change the state value to directory, as shown in the following
command lines.

 - name: Create recursive directories

 file: path=/tmp/dir1/dir2/dir3 owner=root group=root mode=0777
state=directory

 sudo: yes

On running the preceding command line with the debug mode this time, we will see
the following output:

Looking at the tree output on the machine, we see that the directory has been
created. This is depicted in the following screenshot:

The moral of the story is, Learn debugging techniques with a tool so that you can
resolve issues at the earliest!

Let's move to another very useful module, template. This is as useful as the
template resource in Chef/Puppet.

Chapter 1

[55]

The template module
Ansible uses the Jinja2 templating language for creating templates, modeled after
Django's templates (Django is a popular Python web framework). This is similar to
Erubis, which Puppet and Chef use.

Templating is also a way to create a file on a machine. Let's now create a simple
template using the following command lines:

$cat test

This is a test file on {{ ansible_hostname }}

The test file is in the same directory as example1.yml.

To reference the template, we'll add the following to the playbook:

 - name: Create a test template

 template: src=test dest=/tmp/testfile mode=644

On running the preceding playbook, we get the following output:

As you can see in the following screenshot, Ansible created testfile inside /tmp
and applied the template to the file.

The user running the playbook is vagrant in this case and the file created will also
be owned by the same user. The ansible_hostname variable is populated during
the gather facts phase. Let's take a minor detour and disable gather facts by
adding the following to the playbook:

- hosts: host1

 gather_facts: False

Getting Started with Ansible

[56]

Now, on running the playbook, the debug task fails as follows:

On commenting out the task and running it again, we get an error with the template,
as shown in the following screenshot:

Now, there are several cases where you might not want to gather facts.
In such cases, to refer to the host, Ansible provides another useful variable
inventory_hostname, which you can use. To modify the template, use the
following command line:

cat playbooks/test

This is a test file on {{ inventory_hostname }}

On deleting the test file and rerunning the Ansible playbook, we find the same result
as before:

As expected, Ansible created testfile and did not fail because we used the
inventory_hostname variable this time:

Chapter 1

[57]

The Ansible template also has a validate parameter that allows you to run a
command to validate the file before copying it. This is like a hook that Ansible
provides to make sure files that might break the service are not written. A classic
example is that of the Apache httpd configuration. You can verify that the Apache
httpd configuration files have the right syntax using the httpd or apachectl
command. Since the validate command takes an argument, we'll use the
httpd option. It works as follows:

$httpd -t -f /etc/httpd/conf/httpd.conf

Syntax OK

If we introduce an error by uncommenting the Virtual hosts line, we get the
following output when we rerun the $httpd -t -f /etc/httpd/conf/httpd.conf
command:

httpd: Syntax error on line 1003 of /etc/httpd/conf/httpd.conf: /etc/
httpd/conf/httpd.conf:1003: <VirtualHost> was not closed.

We'll demonstrate the same technique for a new virtual host file in Apache. We'd like
to verify that the new virtual host file that we're adding has the right syntax. Let's
look at the virtual host file. There is an error, as shown in the following screenshot:

The playbook will have the following template task. The validate option takes a %s
parameter, which is the source file that we're planning to write to the machine:

 - name: Create a virtual host

 template: src=test.conf dest=/etc/httpd/conf.d/test.conf mode=644
validate='httpd -t -f %s'

 sudo: yes

Getting Started with Ansible

[58]

Now, on running the preceding command line, we get the following output:

Ansible points out the error and the file is not written. This is a great feature that
Ansible templates offer; if we have scripts for different packages/services that can
verify the validity of files, then we'll have a lot fewer breakages due to incorrect
configuration files. It is especially useful to have the validate feature when you
write your own modules. We will cover how to write custom modules in a
later chapter.

Let's move to the next module, copy.

The copy module
Using copy, you can copy a file from your local location to remote machines. This is
another way to create a remote file with predetermined content (the template being
the first). Let's look at an example as follows:

 - name: Copy file remotely

 copy: src=test2.conf dest=/etc/test2.conf owner=root group=root
mode=0644

On running the preceding command, we see the following output:

Chapter 1

[59]

Any idea why this failed? If you figured out that it's because sudo: true is not part
of the module invocation, share a high five with the nearest person. Once we add it,
the run goes through without errors, as shown in the following screenshot:

The copy module also supports the validate parameter just like the
template module.

With simple modules, we've tried to highlight possible errors that you
might come across during your experience with Ansible.

The source control module – git
We'll now look at a very important module, the source control module git. Ansible
has modules to support subversion, bzr, and hg, apart from github_hooks.
We'll look at possibly the most popular source control system today, git.

Let's check out a git repository from GitHub using an Ansible task. We'll first install
git with a yum task, shown as follows:

 - yum: name=git state=installed

 sudo: yes

Now, let's check out the popular gitignore repository. The Ansible task is shown
as follows:

 - name: Checkout gitignore repository

 git: repo=https://github.com/github/gitignore.git

 dest=/opt/gitignore

 sudo: yes

On running the playbook (using –vv here), we will see the following output:

Getting Started with Ansible

[60]

If we check the machine, we will see that the repository has been checked out in the
expected directory.

On rerunning the task, we see the following output:

This basically means that the task is idempotent as it checks the before and after
SHA (Secure Hash Algorithm) values.

There are several other parameters with the git module, such as depth and
version (which version to checkout). Quite often, we need to check out the git
repository via the SSH protocol. The public keys have to be added to the repository
and post that the checkout can happen. The git module has two other parameters,
accept_hostkey and key_file, to help you in the git checkouts. The following is an
example of a sample repository in one of our GitHub accounts, which we'll checkout
on the remote machine. This example assumes that the private key pair is already
present in ~/.ssh.

Consider the following task for example:

 - name: Checkout git repo via ssh

 git: repo=git@github.com:madhurranjan/node_nagios.git

 dest=/tmp/node_nagios

 accept_hostkey=yes

The output for the preceding command line is as follows:

Chapter 1

[61]

Summary
We end this chapter by summarizing what we've learned. We looked at an
introduction to Ansible, wrote our very first playbook, learned ways to use the
Ansible command line, learned how to debug playbooks, how Ansible does
configuration management at a basic level, how to use variables, how inventory
files work, and finally looked at modules. We hope you had a good time learning so
far, which is why we recommend a coffee break before you start the next chapter!
You can think of the following questions during your break to see whether you've
understood the chapter:

• What does Ansible offer?
• How can variables be used in Ansible?
• What files in your environment can be templatized?
• How can you create inventory files for your current inventory?

We will look at more advanced modules and examples in later chapters. In the next
chapter, we will look at how to develop Ansible playbooks and the best practices you
should follow. We will focus on how to develop Ansible playbooks, test them, and
the release cycle for the Ansible playbooks themselves. Make sure you do this in the
right manner and incorporate best practices right from the beginning; this will save
you a lot of time once your code matures.

Developing, Testing, and
Releasing Playbooks

"Gone are the days when code to manage infrastructure was randomly scattered
and deployed in Production."

- Anonymous

Quite often, you might have encountered situations wherein various teams introduce
random tidbits of code in Production, in files that are stored in an obscure directory
on the system. Quite often, you might also have teams suddenly chime in regarding
certain scripts that were in the working state last week but is no longer the case this
week. We've also seen situations where the operation team deals with developers
in an unpleasant manner for introducing changes as part of releases that are not
documented well enough. However, at the same time, they themselves release
and use pieces of scripts that no one else knows about, akin to pulling a rabbit
out of the hat.

Having seen these practices at close quarters, we firmly believe that these are
more or less similar to voodoo practices that need to be done away with. Instead,
we recommend that every operations/sysadmin team should follow a very similar
flow when dealing with the infrastructure code in a way that development teams do
(we're hoping the development teams actually follow the right procedure!) for all
their products and services. In this chapter, we'll cover standard practices that most
development teams follow and see how these can be applied to the infrastructure
code keeping Ansible in mind.

Developing, Testing, and Releasing Playbooks

[64]

In this chapter, we will cover the following topics:

• Managing source code
• Developing a playbook
• Testing a playbook
• The Serverspec tool
• Handling environments

Managing source code – Git
It is imperative that the right practices with respect to source code are followed right
from day one. If you're a team of five people, for example, the best way to share code
with each other is via a version control system. There are plenty of options, such as
Git, SVN, Perforce, HG, and many others, but the most popular system and the one
that we'll cover here is Git.

Before we look at how to use Git, we'd like to add a quick note on centralized versus
distributed version control systems. Centralized version control systems work with
a single central copy (which can also be a single point of failure) if not replicated. For
larger repositories, every commit to the remote system is relatively slow. In the case
of distributed version control systems, the entire repository, including the metadata,
is present on the developer's machine. It supports the notion of local commits before
you eventually push to the remote server. SVN and CVS fall in the centralized
version control category, whereas Git and Mercurial fall in the distributed version
control category. Now, let's jump into Git.

Git is a distributed version control system designed to handle everything, from small
to very large projects, with speed and efficiency. Thanks to popular sites, such as
GitHub and Bitbucket, the projects that use Git have grown in number rapidly. You
can refer to the Git website (http://git-scm.com/) and learn more about the same.
Assume that we have the example1 playbook and its contents from the previous
chapter. The tree structure of the example1 playbook is as follows:

$ tree example1

.

├── hosts

└── playbooks

 └── example1.yml

http://git-scm.com/

Chapter 2

[65]

One way to handle Git for Ansible is to use two branches: dev and master.
By default, the branch that comes with Git is the master branch. We need to
keep in mind the following rules:

• Rule 1: The master branch is always stable and should be treated as sacred
• Rule 2: All new commits have to be committed to the dev branch

Let's look at the basic command flow to illustrate the preceding tree flow of the
example1 playbook.

1. In the command window, run git init . after entering the example1
directory, as follows:
$ git init .

Initialized empty Git repository in /Projects/ansible/example1/.
git/

2. Let's add all the files that we have right now, (we've considered one of the
examples from the first chapter) as the first commit, shown as follows:
$ git add . ('.' represents the entire folder)

To view the status of your directory at any stage, make sure you run
git status. In other words, when in doubt, run git status, as follows:

3. We'll always commit first to the dev branch because, by default, it assumes
you are in the master branch:
$ git checkout -b dev

Switched to a new branch 'dev'

Developing, Testing, and Releasing Playbooks

[66]

4. Let's now commit what we have, as follows:

5. Let's run a few basic Git commands and see what they do:
$ git log ('git log' is another popular Git command to view the
commit SHAs, the author of the commits, the date when it was
committed, and the commit message shown as follows).

commit b3b9f27c79600496458dcd5d7301c01dc3d29691

Author: <author name> <email id>

Date: Sun Jul 6 17:19:10 2014 +0530

 First commit

$ git status (Now we see that there is nothing to commit).

On branch dev

nothing to commit, working directory clean

6. Now that we have committed our changes, we need a Git repository to push
these changes to. Go ahead and create your repository as recommended in
your organization, and add the Git link's remote URL, as follows:
$ git remote add origin git@<remote link>:ansible_repository.git

7. Once the remote URL is added, we have to push the local changes to the
remote branch, as follows:
$ git push origin dev:dev

This will create a remote branch named dev, corresponding to your local
dev branch, and push your changes. We have now seen what we have to
do to fulfill Rule 1, which is to make sure all the new commits go into the
dev branch.

Chapter 2

[67]

8. Now, assuming that the commits we have so far are stable (remember,
we manually tested it after running Ansible playbooks in the first chapter),
merge the dev branch to master and push it to a remote master. Now,
run the following commands:

$ git checkout -b master. (We have to add the '-b' here since
there is no prior master branch.)

$ git merge dev (This merges all your dev branch into master).
Without much ado, let's now push it to the remote master.

$ git push origin master:master

The preceding commands are carried out to fulfill Rule 2, which is to move
all your changes from dev to master once they're stable.

If we enforce the preceding two rules amongst team members with discipline,
we can make sure that the master branch is always stable. Discipline in this case,
comes with a Continuous Integration job or pipeline that will run tests on each of the
two branches. In a lot of cases, when a commit to dev branch results in a successful
CI job or pipeline execution, it is automatically merged to master. In the later part of
this chapter, we'll discuss how we can test our playbooks as part of CI or otherwise,
and then deploy the preceding code to the command center or centers that we
discussed in Chapter 1, Getting Started with Ansible. Till then, let's focus on other
aspects such as playbook development.

There are many other kinds of flows/branching strategies that people
use for development, such as feature branches, early branching, and late
branching, but that is out of the scope of this book. What we've covered
here is a simple flow that you may follow but this is not necessarily
binding on any team or individual.
Also, from a Git perspective, there are other standard Git commands that
are not covered here. The aim is to show a working model with basic
commands. For more information regarding Git, please refer to any online
Git tutorial or the Git link shared in the preceding section.

Developing a playbook
In Ansible, except for ad hoc tasks that are run using the ansible command,
we need to make sure we have playbooks for every other repeatable task. In order
to do that, it is important to have a local development environment, especially when
a larger team is involved, where people can develop their playbooks and test them
before checking them into Git.

Developing, Testing, and Releasing Playbooks

[68]

A very popular tool that currently fits this bill is Vagrant. Vagrant's aim is to help
users create and configure lightweight, reproducible, and portable development
environments. By default, Vagrant works on VirtualBox, which can run on a local
laptop or desktop. To elaborate further, it can be used for the following use cases:

• Vagrant can be used when creating development environments to constantly
check new builds of software, especially when you have several other
dependent components.
For example, if I am developing service A and it depends on two other
services, B and C, and also a database, then the fastest way to test the service
locally is to make sure the dependent services and the database are set up
(especially if you're testing multiple versions), and every time you compile
the service locally, you deploy the module against these services and test
them out.

• Testing teams can use Vagrant to deploy the versions of code they want to
test and work with them, and each person in the testing team can have local
environments on their laptop or desktop rather than common environments
that are shared between teams.

• If your software is developed for cloud-based platforms and needs to be
deployed on AWS and Rackspace (for example), apart from testing it locally
on VMware Fusion or VirtualBox, Vagrant is perfect for this purpose.
In Vagrant's terms, you can deploy your software on multiple providers
with a configuration file that differs only for a provider.
For example, the following screenshot shows the VirtualBox configuration
for a simple machine:

Chapter 2

[69]

The following is the AWS configuration for a simple machine:

As you can see, the provider configuration changes but the rest of the
configuration remains more or less the same. (Private IP is virtual-box-
specific but it is ignored when run using the AWS provider.)

• Vagrant also provides provisioners (Vagrant provisioners will be explained
shortly), which is what we're going to focus on. Vagrant provides users
with multiple options to configure new machines as they come up using
provisioners. They support shell scripts, tools such as Chef, Puppet, Salt,
and Docker, as well as our focus in this book, Ansible.

By using Ansible with Vagrant, you can develop your Ansible scripts locally, deploy
and redeploy them as many times as needed to get them right, and then check them
in. The advantage, from an infrastructure point of view, is that the same code can
also be used by other developers and testers when they spawn off their vagrant
environments for testing (The software would be configured to work in the expected
manner by Ansible playbooks.). The checked-in Ansible code will then flow like the
rest of your software, through testing and stage environments before it is finally
deployed into Production. So, let's look at how we can start using Ansible to
develop the example1.yml file that we used in our previous chapter.

Developing, Testing, and Releasing Playbooks

[70]

Installing VirtualBox and Vagrant
Install VirtualBox from the VirtualBox downloads page at https://www.
virtualbox.org/wiki/Downloads. Verify that VirtualBox has been installed
from the command line by running vboxmanage --version.

To install Vagrant, refer to the download link http://www.vagrantup.com/
downloads.html. Download it for the distribution of your choice. On installing
Vagrant, run vagrant --version to verify that the installation went
through correctly.

Downloading the Vagrant box
The next step is to download a base box from which you can spawn machines.
There are plenty of base boxes that can be used. For example, if you're running your
Ansible scripts on Mac and would like to test them on Ubuntu 14.04 and CentOS 6.5,
you need to download two base boxes corresponding to these versions and set them
up. A good starting point to search for these images is http://www.vagrantbox.
es/. You can also generate your own Vagrant box according to the instructions
provided on the Vagrant website, http://www.vagrantup.com/.

Once you download the Vagrant box, you need to add it to the local Vagrant
repository using vagrant box add:

$ vagrant box add centos65 boxes/centos65base.box

$ vagrant box list

centos65 (virtualbox)

Developing a machine
The following command creates a Vagrantfile, which is required to run
Vagrant commands:

$ vagrant init

Change the box in the Vagrantfile from config.vm.box = "base" to config.
vm.box = "centos65" (replace it with the box you have):

$ vagrant up

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/downloads.html
http://www.vagrantbox.es/
http://www.vagrantbox.es/
http://www.vagrantup.com/

Chapter 2

[71]

By default, Vagrant uses the VirtualBox provider and calls the VirtualBox API
to start up the machine. Verify that the machine comes up by running vagrant
status. The status should show running for this machine. Let's now log in to
the machine:

$ vagrant ssh

All Vagrant boxes have the vagrant user set up as a sudo user. So you will be able to
run any command either by using sudo or changing to the root user. Congratulations
on spawning up your Vagrant instance!

Provisioning in Vagrant using an Ansible
provisioner
Vagrant defines a separate term called provisioning, which runs the configuration
management blocks or blocks that are plugged into the Vagrantfile, be it Ansible,
Chef, Puppet, or shell scripts. The provision step is very useful to test your scripts
without waiting to relaunch the machine. However, keep in mind that vagrant up,
by default, runs provisioning on the machine.

Let's now see how you can use the Ansible provisioner with Vagrant. The following
screenshot shows the Vagrantfile that we have:

Developing, Testing, and Releasing Playbooks

[72]

Let's understand the Vagrantfile in more detail. The following lines are part of
the file:

• config.vm.box = "centos": This indicates that the Vagrant box used
is CentOS

• config.vm.network :private_network, ip: "192.168.33.10":
This option specifies that a network interface will be created (using NAT)
and the IP, 192.168.33.10, is assigned to it

• config.vm.provision "ansible" do |ansible|: This option introduces
the Ansible provisioner block. This is a ruby block. The options are explained
as follows:

 ansible.inventory_path = "hosts" - Inventory file that needs
to be considered

 ansible.playbook = "playbooks/example1.yml" - what playbook to
run

 ansible.sudo = true – enables sudo access during the playbook
run

 ansible.limit = 'all' - means that the 'vagrant provision'
command will affect all the machines that are under consideration.
'ansible.limit' by default is set to 'default' , which means
that it will affect only the machine that this ansible block is
part of. Since we have playbooks that we eventually will apply to
a larger set of machines, setting 'ansible.limit' to all makes
sense.

Since we said that we'll start looking at how to develop the playbook we eventually
ended up with, in Chapter 1, Getting Started with Ansible, we start with a single task in
example1.yml, as follows:

Chapter 2

[73]

Now, let's run vagrant up. This command will bring up the machine and also run
Ansible on it. This is shown in the following screenshot:

If you only want to bring up a machine and not run vagrant provision, you can
run vagrant up –no-provision. Let's look at the output of vagrant provision
as follows:

Developing, Testing, and Releasing Playbooks

[74]

Since we're running vagrant provision for the second time (yes, first time it ran
with vagrant up), the console shows the output as ok=1 changed=0. The actual
provisioning was performed the first time, and the second provisioning run didn't
bring about any change (as expected). This is similar to what you learned in
Chapter 1, Getting Started with Ansible, about idempotency.

Other helpful options of the Ansible provisioner are specified at
https://docs.vagrantup.com/v2/provisioning/ansible.html.

Once we run vagrant provision for the first task (the Install httpd package
task), we have a working flow. We then proceed with the following algorithm:

1. Add a new task.
2. Run vagrant provision.
3. If it fails, go back and debug.
4. If it succeeds, proceed to the next task.
5. Once all the tasks are complete, run vagrant destroy to destroy the machine.
6. Run vagrant up to make sure that the machine comes up from scratch and

gets configured successfully.

It is recommended that you check in the Vagrantfile along with each logically
separate playbook so that any custom settings that are set for a playbook are stored
in the source control.

Testing a playbook
Like software code, testing infrastructure code is an all-important task. There
should ideally be no code floating around in Production that has not been tested,
especially when you have strict customer SLAs to meet, and this is true even for the
infrastructure. In this section, we'll look at syntactic checks, testing without applying
the code on the machines (the no-op mode), and functional testing for playbooks,
which are at the core of Ansible that triggers the various tasks you want to perform
on the remote hosts. It is recommended that you integrate some of these into your
Continuous Integration (CI) system that you have for Ansible to test your playbooks
better. We'll be looking at the following points:

1. Syntax checking
2. Checking the mode with and without diff

https://docs.vagrantup.com/v2/provisioning/ansible.html

Chapter 2

[75]

3. Functional testing, which can be done in the following ways:
 ° Assertions on the end state of the system
 ° Testing with tags
 ° Serverspec (a different tool, but can work wonderfully with Ansible)

Using the --syntax-check option
Whenever you run a playbook, Ansible first checks the syntax of the playbook file.
If an error is encountered, Ansible will error out saying there was a syntax error and
will not proceed unless you fix that error. This syntax checking is performed only
when you run the ansible-playbook command. When writing a big playbook or
if you have included task files, it might be difficult to fix all of the errors; this might
end up wasting more time. In order to deal with such situations, Ansible provides
a way to check your YAML syntax as you keep progressing with your playbook.
Let's see how this works in the following example screenshot:

In the preceding screenshot, the ansible-playbook command checked the YAML
syntax of the setup_apache.yml playbook and showed that the syntax of the
playbook was correct. Let's look at the resulting errors from the invalid syntax
in the playbook, in the following screenshot:

The errors displayed in the preceding screenshot show that there is an indentation
error at action: shell /bin/ls" task. Ansible also gives you the line number,
column number, and the file name where this error exists. This should definitely be
one of the basic tests that you should run as part of your CI for Ansible.

Developing, Testing, and Releasing Playbooks

[76]

The check mode
The check mode (also known as the dry run or no-op mode) will run your playbook
in a no-operation mode, that is, it will not apply any changes to the remote host;
instead, it will just show the changes that will be introduced when a task is run.
Whether the check mode is actually enabled or not depends on each playbook.
The last time we ran the check, we found 75 out of 253 modules that support
check_mode. You can get to know which modules support check_mode using
the following command:

$ cd ~/src/ansible/library

$ ag –l supports_check_mode=True | wc –l

75

$ find –type f | wc -l

253

This helps you test how your playbook will behave and check if there will
be any failures before running it on your production server. You run a
playbook in the check mode by simply passing the --check option to your
ansible-playbook command.

Let's see how the check mode works with the setup_apache.yml playbook,
as follows:

Chapter 2

[77]

In the preceding run, instead of making the changes on the remote host, Ansible
highlighted all the changes that would have occurred during the actual run. From
the preceding run, you can find that httpd was already installed on the remote host,
because of which Ansible's exit message for that task was ok.

TASK: [Install httpd package] ***

ok: [host1]

Whereas, with the second task, it found that httpd service was not running on the
remote host.

TASK: [Check httpd service] ***

changed: [host1]

When you run the preceding playbook again without the check mode enabled,
Ansible will make sure that the service state is running.

Indicating differences between files
using --diff
In the check mode, you can use the --diff option to show the changes that
would be applied to a file. Let's see an example of how --diff works, in the
following screenshot:

Developing, Testing, and Releasing Playbooks

[78]

In the preceding playbook, we added a task, which will copy the http.conf file to
the remote host at /etc/httpd/conf/httpd.conf.

The --diff option doesn't work with the file module; you will have to
use the template module only.

In the following example, Ansible compares the current file of the remote host
with the source file; a line starting with + indicates that a line was added to the file,
whereas - indicates that a line was removed.

Chapter 2

[79]

You can also use --diff without the --check option, which will allow
Ansible to make the specified changes and show the difference between
two files.

The check mode is a test step that can potentially be used as part of your CI tests to
assert how many steps have changed as part of the run. The other case where you
can use this feature, is the part of the deployment process to check what exactly
will change when you run Ansible on that machine.

Functional testing in Ansible
Wikipedia says Functional Testing is a quality assurance (QA) process and a type
of black-box testing that bases its test cases on the specifications of the software
component under the test. Functions are tested by feeding them input and examining
the output; the internal program structure is rarely considered. Functional testing is
as important as code when it comes to infrastructure.

From an infrastructure perspective, with respect to functional testing, we test
outputs of our Ansible runs on the actual machines. Ansible provides multiple ways
to perform the functional testing of your playbook; let's look at some of the most
commonly used methods. Please note that the rest of the chapter will consider basic
examples to show you how you can test these playbooks. This is not an indication of
how best we should write playbooks. These topics will be covered in future chapters.

Functional testing using Assert
The check mode will only work when you want to check whether a task will change
anything on the host or not. This will not help when you want to check whether
the output of your module is what you expected. For example, let's say you wrote a
module that will check if a port is up or not. In order to test this, you might need to
check the output of your module and see whether it matches the desired output or
not. To perform such tests, Ansible provides a way where you can directly compare
the output of a module with the desired output.

Developing, Testing, and Releasing Playbooks

[80]

Let's see how this works. Consider the following screenshot where the
assert_example.yml file is executed:

In the preceding playbook, we're running the ls command on the remote host and
registering the output of that command in the list_files variable. (We'll cover
more of the register functionality in the next chapter.)

Further, we ask Ansible to check whether the output of the ls command has the
expected result. We do this using the assert module, which uses some conditional
checks to verify if the stdout value of a task meets the expected output of the user.
Let's run the preceding playbook and see what output Ansible returns, as shown in
the following screenshot:

Chapter 2

[81]

We ran the preceding playbook in the verbose mode using the -vv option. In the
first task, Ansible gave a list of all the files in the current directory, as shown in the
following screenshot, and we stored that output in the list_files variable:

In the second task, Ansible checked whether the output stored in the list_files
variable has a string testfile.txt (that is, we simply checked whether testfile.
txt exists). Well, the output is a positive one, which is shown in the following
screenshot:

The task passed with an ok message as testfile.txt was present in the
list_files variable. Likewise, you can match multiple strings in a variable
or multiple variables using the and and or operators (we will discuss these
operators in the next chapter).

The assertion feature is quite powerful, and users who have written either unit or
integration tests in their projects will be quite happy to see this feature!

Testing with tags
Tags are a great way to test a bunch of tasks without running an entire playbook.
We can use tags to run actual tests on the nodes to verify the state that the user
intended to be in, in the playbook. We can treat this as another way to run
integration tests for Ansible on the actual box. The tag method to test can be
run on the actual machines where you run Ansible, and also, it can be used
primarily during deployments to test the state of your end systems.

In this section, we'll first look at how to use tags in general, their features that
can possibly help us, not just with testing but even otherwise, and finally for
testing purposes.

Developing, Testing, and Releasing Playbooks

[82]

To add tags in your playbook, use the tags parameter followed by one or more tag
names separated by commas. Let's see an example playbook with tagging, as shown
in the following screenshot:

In the preceding playbook, we added two tags: one to stop a service and one to start
a service. You can now simply pass the stop tag to the ansible-playbook command
and Ansible will run all tasks that are tagged as stop.

You can still run an entire playbook by not passing any tags to the
ansible-playbook command.

Now, in the following screenshot, you can see the output of a task that is tagged
as stop:

Chapter 2

[83]

As expected, only the task tagged as stop ran. Let's see how multiple tags work in
the following screenshot:

In the preceding playbook, we checked whether the user had sudo privileges or
not. If not, the Ansible run will fail saying User doesn't have sudo privilege.
We tagged this task as pre_check because this is something you might want to
check before actually trying to start/stop a service.

Developing, Testing, and Releasing Playbooks

[84]

The Testing user sudo privilege task in this example will run a /usr/bin/
sudo -v command on a remote host and store its output in the sudo_response
variable. The next task, that is, the Stop if User doesn't have sudo privilege
task, will actually check if a user has sudo privileges or not. To do so, we will use the
when condition, which checks the return code of the previous task. Now, let's run the
preceding playbook with two tags: pre_check and start.

You can see in the preceding Ansible run that the Stop if User doesn't have
sudo privilege task was skipped. This is because the user, ec2-user, on the host,
web001, has sudo access. By passing tags, Ansible ran all the tasks that were tagged
as pre_check and start. Like this, you can have multiple tags assigned to a task and
call multiple tags from your ansible-playbook command.

You can also use tags to perform a set of tasks on the remote host just like taking a
server out of a load balancer and adding it back to the load balancer.

You can also use the --check option with tags. By doing this, you can
test your tasks without actually running them on your hosts. This allows
you to test a bunch of individual tasks directly, instead of copying your
tasks to a temporary playbook and running it from there.

Chapter 2

[85]

The --skip-tags
Ansible also provides a way to skip a couple of tags in a playbook. If you have a long
playbook with multiple tags, say more than 10, then it would not be a good idea to
pass 10 tags to Ansible. The situation would be more difficult if you miss to pass
a tag and the ansible-run command fails. To overcome such situations, Ansible
provides a way to skip a couple of tags, instead of passing multiple tags, which
should run. Let's see how this works in the multiple_tags_example.yml playbook.
The output is shown in the following screenshot:

The preceding playbook will skip tasks that are tagged as stop and run the rest of
the tasks.

Now that we've seen how a single or multiple tags work, we can use tags
intelligently in our code to test all those tasks that we consider important. At the
end of the run, we can run the same playbook with the --tags test, to check if the
expected results were met, or you can write one test playbook for each playbook.
For example, if your playbook is called installation.yml, your test playbook
will be called installation_test.yml.

You might ask why we would need a task like this. A classic example is that of a
service task, where you expect a service to start. Now, during the Ansible run,
the playbook would have run service <service name> start and also shown
that it started without any issues. However, if the start script itself calls another
script, which has dependencies on another service/database, there is a good chance
that the service start would fail. Running service < service name> status
shortly afterwards would show that the service hasn't started.

Developing, Testing, and Releasing Playbooks

[86]

Let's create two playbooks: installation.yml and installation_test.yml.
The first playbook, installation.yml, will install httpd service, whereas
installation_test.yml will check if httpd was installed on the remote host.
The following screenshot demonstrates this task:

The preceding playbook has three tags; they are as follows:

• install: This tag will install the httpd service
• start: This tag will start the httpd service
• stop: This tag will stop the httpd service

Using the install, start, and stop tags
You can install httpd by passing the install tag to the ansible-playbook
command; similarly, you can start and stop the httpd service by passing the
start and stop tags, respectively. Let's see how the install tag works,
as shown in the following screenshot:

Chapter 2

[87]

You can see that in the preceding ansible-playbook run, Ansible installs httpd on
web001. Now, let's test if it was actually installed by Ansible. To test this, we first
write our installation_test.yml playbook, as follows:

Developing, Testing, and Releasing Playbooks

[88]

The preceding Ansible playbook has three tags: install, start, and stop. The tasks
that are tagged as install will check to see whether the httpd service is installed.
We do this by running the rpm -qa | grep httpd command on the remote host.
Tasks tagged as start will check if the httpd service is running or not, and the
stop tag will check if the httpd service is stopped. Let's run this playbook with an
install tag and see if httpd was installed by our previous Ansible run. This is
demonstrated in the following screenshot:

Similarly, you can test other steps as part of your playbook using tags.

The Serverspec tool
Serverspec (Serverspec Version 2, which was released recently, is called Specinfra
2) is another standalone tool, written in Ruby, which tests the intended state of
machines by SSH'ing to the machines and running commands. Specinfra 2 supports
only rspec 3, which is a popular Ruby test framework, as against rspec 2, which
Serverspec v1 supported. Serverspec has gained tremendous popularity over the
last several months and its USPs are that it can run with or without any of the
configuration management tools, and it is agentless and declarative in nature.
A typical workflow though is to run configuration management scripts followed
by Serverspec tests.

Let's look at how to install Serverspec and how to start using it.

Installing Serverspec
If you're using the popular bundler gem in Ruby, add the serverspec gem to your
Gemfile and run bundle; else, install it by just running gem install serverspec.
The tests should be placed under a folder that matches the target hostname, role,
or playbook. These can be tweaked with a Rakefile that is used for the tests. The
Rakefile should be right at the root of the directory from where you intend to run
the tests.

Chapter 2

[89]

Let's see how we can write a simple test file to test check if Apache httpd has been
installed, the service is up and enabled, and the port is running. The assumption is
that Apache httpd has already been installed and is up and running before we run
the following commands:

Serverspec (both versions) requires a helper file named spec_helper, which
provides information regarding what machines are present and how you can log in
to those machines, including the SSH keys that are required for the same. A sample
spec_helper that we've used for the tests is shown as follows:

Developing, Testing, and Releasing Playbooks

[90]

Finally, we make sure that we provide the right inputs in terms of what machines
to run the tests against by changing the values in the Rakefile. The following
screenshot shows the Rakefile:

Hosts can have multiple nodes here. If the Ansible playbook has multiple nodes,
then you'll have to test multiple nodes.

Let's now look at the structure of the example1 playbook along with Serverspec tests,
as follows:

$ tree

├── playbooks

│ ├── example1.yml

│ ├── list_number_of_directories.sh

│ ├── test

│ ├── test2.conf

│ └── test.conf

Chapter 2

[91]

├── Rakefile

├── spec

│ ├── example1

│ │ └── httpd_spec.rb

│ └── spec_helper.rb

└── Vagrantfile

As seen in the preceding tree structure, we've chosen to write tests at a playbook
level (example1). In this case, if we have three nodes that run the example1
playbook, these tests in httpd_spec.rb will run against all three of them,
provided the information of the three nodes is specified in the Rakefile.

Analyzing the Rakefile and running tests
Now, let's look at the rake tasks available and then run the tests using
rake serverspec:

Developing, Testing, and Releasing Playbooks

[92]

We see that out of five tests, the test that checks to whether the httpd service is
enabled has failed. So let's fix that, as shown in the following command lines:

$ git diff playbooks/example1.yml

 - name: Check httpd service
- service: name=httpd state=started
+ service: name=httpd state=started enabled=yes
 sudo: yes

Now, let's run vagrant provision followed by the Serverspec test.

As you can see, this is a powerful way to test the end state of your system.

You can check out the documentation on the Serverspec site at
http://serverspec.org/ for more information.

Running playbook_tester
Tying all this together, we've a very simple playbook_tester that spawns
the Vagrant machine, deploys the playbook, and finally runs tests on them.
The following screenshot shows us how to run playbook_tester:

http://serverspec.org/

Chapter 2

[93]

Let's run playbook_tester on the example playbook.

Developing, Testing, and Releasing Playbooks

[94]

You can run exactly the same kind of testing in your environment or you're free
to pick one of the options we've shown. This can also be integrated into your CI
environment. Instead of VirtualBox, Vagrant can spawn a machine in the cloud or
your environment and run functional tests for each playbook.

Handling environments
So far, we've seen how you can develop playbooks and test them. The final aspect
is how to release playbooks into Production. In most cases, you will have multiple
environments to deal with before the playbook is released into Production. This is
similar to software that your developers have written. The progress can be shown
as follows:

When you write your playbooks and set up roles (we'll discuss roles in the
next chapter), we strongly recommend that you keep in mind the notion of the
environments right from the start. It might be worthwhile to talk to your software
and operations teams' to figure out exactly how many environments your setup has
to cater to. We'll list down a couple of approaches with examples that you can follow
in your environment.

Code based on Git branch
Let's assume you have four environments to take care of, which are as follows:

• Development (local)
• UAT
• Stage
• Production

In the Git branch-based method, you will have one environment per branch.
You will always make changes to Development first, and then promote those
changes to UAT (merge or cherry-pick, and tag commits in Git), Stage, and
Production. In this approach, you will hold one single inventory file, one set
of variable files, and finally, a bunch of folders dedicated to roles and playbooks
per branch. Let's look at the next approach.

Chapter 2

[95]

A single stable branch with multiple folders
In this approach, you will always maintain the dev and master branches. The initial
code is committed to the dev branch, and once stable, you will promote it to the
master branch (We saw this model at the beginning of this chapter.). The same roles
and playbooks that exist in the master branch will run across all environments.
On the other hand, you will have separate folders for each of your environments.
Let's look at an example. We'll show how you can have a separate configuration and
an inventory for two environments: stage and production. You can extend it for
your scenario.

Let's first look at the playbook that will run across these multiple environments.

As you can see, there are two sets of tasks in this playbook:

• Tasks that run against db servers
• Tasks that run against web servers

There is also an extra task to print the mail_server task that is common to all
servers in a particular environment.

Developing, Testing, and Releasing Playbooks

[96]

Let's look at the inventory for stage and production environments as follows:

As you can see, we have one unique machine each (IP) for the db and web sections,
respectively. Further, we have a different set of machines for stage and production
environments. The additional section, [servers:children], allows you to create a
group of groups. In this case, the servers group consists of all the servers in the db
and web groups. This would mean that any variables that are defined in the servers
section will apply to both the db and web groups, unless they're overridden in the
individual sections, respectively.

The next interesting part would be to look at variable values for each of the
environments and see how they are separated out in each environment.

Let's look at the stage variables, as shown in the following screenshot:

Chapter 2

[97]

As you can see, we are revisiting the concept of group_vars with a much better
example. These are variables that can be applied to an entire group. In this case,
we have the following three variable files:

• db: This defines db_password for stage. (We've obviously simplified
the command to showcase how this variable can be used. You can add
whatever variables are fit for your environment.)

• servers: This defines mail_server, which is common to all servers
in stage.

• web: This defines url for stage.

Similarly, let's look at the variables in the production environment directory.

Developing, Testing, and Releasing Playbooks

[98]

The variables are structured in a similar manner. No surprises here. Now, let's run
the playbook and see the effect it has on each of the environments. We'll first run it
on stage, as shown in the following screenshot:

Chapter 2

[99]

You can see that the Ansible run picked up all the relevant variables defined for the
stage environment. Observe the Print mail server task, which prints out the
mail_server parameter that was defined in the servers section. As mentioned,
it's common for both the db and web servers. Similarly, let's run the same playbook
in production, as follows:

The results are as expected. If you're using the approach to have a stable
master branch for multiple environments, it's best to use an amalgamation
of environment-specific directories, group_vars, and inventory groups to
tackle the scenario.

Developing, Testing, and Releasing Playbooks

[100]

Summary
With this, we conclude this chapter where you learned how to use Git with Ansible,
Vagrant to develop playbooks, and finally, how to test your playbooks. We hope that
you'll adopt some of the development and testing practices that we've showcased for
your environment. We have the following few factors for you to think about before
you proceed to the next chapter:

• Figure out how any of your development teams work and the path that their
code takes to Production.

• Think about how you can start using Vagrant with Ansible to set up your
playbook development environment and how you can make your entire
team start using it.

• Think of what approach you would use to handle environments. How many
environments do you have?

In the next chapter, we will look at various other Ansible features that you would
need before taking the Ansible scripts to Production. We'll also look at how you
can model the infrastructure using roles and connect multiple playbooks using the
include feature.

Taking Ansible to Production
"More practice, more success"

- Ranjib Dey, an ex-colleague and a fine exponent of DevOps.

So far, we've seen how to write basic Ansible playbooks, options associated with
the playbooks, practices to develop playbooks using Vagrant, and test them at the
end of it. We've now got a framework for you and your team to learn and start
developing Ansible playbooks. Consider this similar to learning how to drive a car
from your driving school instructor. You start by learning how to control the car
with the steering wheel, then you slowly begin to control the brakes, and finally,
start maneuvering the gears, and hence, the speed of your car. Once you've done
this over a period of time, with more and more practice on different kinds of roads
(such as flat, hilly, muddy, pot-holed, and so on) and by driving different cars, you
gain expertise, fluency, speed, and basically, enjoy the overall experience. From this
chapter onwards, we will up the gear by digging deeper into Ansible and urge you
to practice and try out more examples to get comfortable with it.

You must be wondering why the chapter is named the way it is. The reason for this
is the fact that with what we've learned so far, we've not yet reached a stage where
you can deploy the playbooks in Production, especially in complex situations.
Complex situations include those where you have to interact with several (hundred
or thousand) machines where each group of machines is dependent on another
group or groups of machines. These groups may be dependent on each other for all
or some transactions, to perform secure complex data backups and replications with
master and slaves. In addition, there are several interesting and rather compelling
features of Ansible that we’ve not yet looked at. In this chapter, we will cover all
of them with examples. Our aim is that, by end of this chapter, you should have
a clear idea of how to write playbooks that can be deployed in Production from a
configuration management perspective. The following chapters will add to what
we’ve learned to enhance the experience of using Ansible.

Taking Ansible to Production

[102]

In this chapter, we will cover the following list of topics:

• The local_action feature
• Conditionals
• Loops
• The include feature
• Handlers
• Roles
• Templates and filters
• Security management

Working with the local_action feature
The local_action feature of Ansible is a powerful one, especially when we think of
Orchestration. You will see local_action being used in Chapter 6, Provisioning, and
Chapter 7, Deployment and Orchestration, but we felt we should definitely introduce it
much earlier. This feature allows you to run certain tasks locally on the machine that
runs Ansible.

Consider the following situations:

• Spawning a new machine or creating a JIRA ticket
• Managing your command center(s) in terms of installing packages and

setting up configurations (Remember how we defined command centers in
Chapter 1, Getting Started with Ansible, as machines from where you could run
Ansible across your infrastructure?)

• Calling a load balancer API to disable a certain web server entry from the
load balancer

These are tasks that can be run on the same machine that runs the
ansible-playbook command rather than logging in to a remote box
and running these commands.

Let's look at an example. Suppose you want to run a shell module on your local
system where you are running your Ansible playbook. The local_action option
comes into the picture in such situations. If you pass the module name and the
module argument to local_action, it will run that module locally. Let's see how
this option works with the shell module. Consider the following screenshot that
shows the output of the local_action option:

Chapter 3

[103]

In the preceding screenshot, the first and the third task run the ps command
with the difference that the first task runs remotely and the third runs locally.
The second and fourth tasks print the output. Let's execute the playbook as
shown in the following screenshot:

Taking Ansible to Production

[104]

The behavior is as expected. The first task runs remotely on the actual node (in this
case, the web001 machine) and the third task runs locally on the command center.
You can run any module with local_action, and Ansible will make sure that the
module is run locally on the box where the ansible-playbook command is run.
Another simple example you can (and should!) try is running two tasks:

• uname on the remote machine (web001 in the preceding case)
• uname on the local machine but with local_action enabled

This will crystallize the idea of local_action further.

The following is another real-world use case where local_action is used, but this
time with the uri module. This use case is shown as follows:

In the preceding playbook, we are using the uri module with local_action. In this
case, there is no need to run the uri module remotely. We register the output from
the first task in qod, and with the second task, we print the quote of the day that we
fetched using the uri module. The output we received from the uri module is in the
JSON format; you can verify the output by running the playbook in the debug mode.
Do you remember which option you need to invoke to run in the debug mode?
Pat yourself on the back if you said -vv, -vvv, or -vvvv. The qod variable is a JSON
variable and has the following keys: json, contents, and quote. You can invoke
any of these methods. We've invoked the json.contents.quote method in the
preceding screenshot.

Chapter 3

[105]

Let's briefly step aside and look at the uri module, as you will find it
useful and will use it extensively if you're dealing with web services as
part of your automation. The uri module is used to interact with web
services using HTTP and HTTPS, and it supports Digest, Basic, and
WSSE HTTP authentication mechanisms.
As the uri module uses Python's httplib2 library to interact with
web services, make sure you have the httplib2 library installed
before you start using the uri module. You can install the httplib2
library using pip install httplib2. By default, the uri module
will use the HTTP GET method. However, depending on the situation,
you can use other HTTP methods, using the method option of the
uri module, which supports the GET, POST, PUT, HEAD, DELETE,
OPTIONS, and PATCH methods.

Let's now run the preceding example playbook with uri and local_action together
as follows:

As you can see, the uri module fetched the quote of the day from api.theysaidso.
com and printed it.

Working with conditionals
Till now, we saw how playbooks work and how tasks are executed. We also saw
that Ansible executes all these tasks sequentially. However, this would not help
you while writing an advanced playbook that contains tens of tasks and you have
to execute only a subset of these tasks. For example, let's say you have a playbook
that will install Apache HTTPD Server on the remote host. Now, the Apache HTTPD
Server has a different package name for a Debian-based operating system, and it's
called apache2; for a Red-Hat-based operating system, it's called httpd.

api.theysaidso.com
api.theysaidso.com

Taking Ansible to Production

[106]

Having two tasks, one for the httpd package (for Red-Hat-based systems) and the
other for the apache2 package (for Debian-based systems) in a playbook, will make
Ansible install both packages, and this execution will fail, as apache2 will not be
available if you're installing on a Red-Hat-based operating system. To overcome
such problems, Ansible provides conditional statements that help run a task only
when a specified condition is met. In this case, we do something similar to the
following pseudocode:

If os = "redhat system"

 Install httpd

Else if os = "debian system"

 Install apache2

End

While installing httpd on a Red-Hat-based operating system, we first check whether
the remote system is running a Red-Hat-based operating system, and if yes, we then
install the httpd package; otherwise, we skip the task. Without wasting your time,
let's dive into an example playbook:

Chapter 3

[107]

In the preceding playbook, we first check whether the value of ansible_os_family
is Red Hat, and if yes, then install the httpd service with the latest version.

Note that ansible_os_family is a fact that is collected by Ansible
whenever you run a playbook, provided that you have not disabled this
feature using gather_facts: False.

The second task in the playbook will install the latest apache2 package if the
ansible_os_family is Debian. If the when condition doesn't match a task, then it
will simply skip that task and move forward. You can also use user-defined variables
or a registered variable instead of Ansible facts.

Let's look at another example where we use conditionals.

In the preceding playbook, we check whether the user has sudo permissions on the
remote host. We've seen this scenario quite often when the remote user requires the
sudo permission to execute certain tasks, for example, installing a package

The first task will run a command, /usr/bin/sudo –v, on the remote host and store
its output in a response variable, in this case, the sudo_response variable. We use
the register feature to capture the output (that is, stdout) of the sudo command.
Apart from stdout, the register variable will also capture stderr (if any), the
return code (rc) of the command, the command itself, the start and end time of the
command being executed, and so on.

Taking Ansible to Production

[108]

In the second task, we check whether the rc of the command executed in the previous
task was 1. We use the fail module to exit the Ansible run with a message if the
return code was 1. If the when condition doesn't match, (that is, the return code is not
1) Ansible will simply skip that task. Notice that we are using sudo_response.rc
instead of sudo_response in the when condition. This is because Ansible stores the
output of any module in Python's dictionary format (that is, the key-value pair) so
that you can traverse over various keys easily. Let's see how this playbook works:

In the preceding example, the first task ran but the second task was skipped
by Ansible, as the when condition for that task failed because the rc of the sudo
command in the previous task was 0.

Likewise, you can have negative conditions as well, where you can check whether
the output of a command is not equal to the expected output. Let's see an example
task for this in the following screenshot:

In the preceding task, instead of checking whether the response code is 1, we check
whether it is nonzero, and here, != means not equal to.

Apart from !=, Ansible also supports the >, <, <=, >=, and == operators
with the when condition.

Chapter 3

[109]

The preceding operator will match the entire content of the variable, but what if you
just want to check whether a particular character or a string is present in a variable?
To perform such kinds of checks, Ansible provides the in and not operators,
as shown in the following screenshot:

In the preceding example, we first get a list of all the RPM files installed, use the
grep command for a specific version of the httpd package, and store the output in
a variable. We then check whether the string, httpd-2.2.27-1.2.amzn1.x86_64,
is present in the httpd_rpm variable using the when condition. The third task in the
preceding example is the opposite of the second task; it will check whether the string,
httpd-2.2.27-1.2.amzn1.x86_64, is not present in the httpd_rpm variable. You
can also match multiple conditions using the and and or operators. The and operator
will make sure that all conditions are matched before executing this task, where the
or operator will make sure that at least one of the conditions match.

Consider another example given in the following screenshot:

In the preceding screenshot, the first task remains the same. In the second task, we
check whether the strings, httpd-2.2.27-1.2.amzn1.x86_64 and httpd-tools-
2.2.27-1.2.amzn1.x86_64, are present in the httpd_rpm variable. Likewise, you
can have multiple and operators, and Ansible will make sure that all of them are
matched before executing the task.

Taking Ansible to Production

[110]

In the third task, using the or operator, we check whether neither of the two strings
are present in the httpd_rpm variable. Ansible will skip this task if either of the
conditions matches.

You can also combine both the or and and operators together, but we
will leave this exercise for you to try.

Apart from string matching, you can also check whether a variable exists.
This type of validation will be useful when you want to check whether a variable
was assigned some value or not. You can even execute a task based on the Boolean
value of a variable.

Consider the example given in the following screenshot:

The preceding task is an example of backing up your entire disk using rsync.
The rsync command is a Linux command to copy files. We have used the when
condition here to check whether the backup variable is set to true; that is, Ansible
will check the Boolean value of the variable and run the task only if it is set to true
or 1. The value for the backup variable can either be set in the variable file, or you
can ask the user to pass a backup variable using the --extra-vars option or prompt
the user for it.

Ansible also provides a way to check whether a variable was defined or not, which is
shown in the following screenshot:

Chapter 3

[111]

In the preceding example, we first check whether the backup_path variable is
defined, and if it is not, we prompt the user for the backup path. In the second task,
we use the backup_path variable with rsync to back up the entire disk on that
path. Likewise, you can also apply a condition to check the existence of a variable.
Consider the example in the following screenshot:

In the preceding case, we check whether the backup variable is set to true and the
backup_path variable exists (it doesn't matter what value it's set to).

Working with loops
Have you ever wondered how life would be if you had to install several packages on
your remote systems manually? We saw how Ansible helped us in such a situation
by automating the package installation. However, it would be still a nightmare
if you have to write the same task multiple times with different package names.
To overcome such situations and to make your life easier, Ansible provides you
with loops.

Standard loops
Using standard loops, you can pass a list of packages to install and Ansible
will run that task for all packages listed. Confused? Let's now go through
an example playbook.

Taking Ansible to Production

[112]

In the preceding playbook, Ansible will run the Installing packages task multiple
times (in this case, three times): once for each of the packages that are defined under
the with_items construct. Each of the packages is exposed as item, which is a
default variable that Ansible creates. Ansible then assigns a package name to item,
based on the iteration it is currently part of. So, for the first iteration, item is set to
httpd; in the second iteration, it is set to mysql; and in the final iteration, it is
set to mysql-server. Let's run this playbook and see how this works in the
following screenshot:

Ansible ran the task once, but it looped through the package installation using yum
for all three packages that we listed. This was the simplest way of looping in Ansible;
you can also pass a dictionary to with_items instead of a string, as shown in the
following screenshot:

Ansible will assign all dictionaries to the item variable one by one. This type of loop
will be useful when you have multiple arguments for a module; for example, with
the package name, you would also want to tell Ansible the expected state of that
package, that is, whether it should be present or absent.

Chapter 3

[113]

Nested Loops
Nested loops are useful when you have to perform multiple operations on the same
resource. For example, you want to allow access to multiple databases to a MySQL
user(s). To perform this task, you might first think of writing multiple tasks, one for
each group access, but it would be more difficult when you have more than one user.
To make such tasks easy, nested loops are used. Let's see an example playbook:

In the preceding playbook, we use the mysql_user module to give permissions
to a specific database. We use nested loop (using the with_nested parameter)
with two lists: the first is the user list, and the other is the database list. Ansible
will run the database list for each user in the first list; that is, first, Ansible will run
the mysql_user module for the user, alice, giving permissions to all three databases
one by one, and then, it will run for the user, bob. You can have multiple nested lists,
and Ansible will loop over all of them one by one. Let's see how this works:

As expected, Ansible ran the database list for both users one by one; likewise,
you can have multiple lists, and Ansible will loop over all of them.

Taking Ansible to Production

[114]

Looping over subelements
Till now, we saw how loops work with static data; that is, if you want to give
permission to access a database to multiple users with same set of database.
You cannot specify different sets of databases to different users using the
preceding loops. To deal with such cases, you can use a dictionary to loop over
subelements. Using such loops, you can specify a set of databases per user.

Consider the example in the following screenshot:

In the preceding playbook, we created a dictionary variable, which consists of
username and database names. Instead of adding user data in the playbook itself,
you can also add it to a separate variable file and include it in your playbook. Ansible
will then loop over this dictionary using the item variable. Ansible will assign
numeric values to the keys you provided using with_subelements, starting from 0.

In the preceding example playbook, you can access users using item.0 and the
database using item.1. In the preceding dictionary, the name is a key-value pair,
which is the reason we are accessing it using item.0.name, whereas the database
is a list, because of which we can directly access it using item.1. Let's run this
playbook and see how it works. The output is shown in the following screenshot:

Chapter 3

[115]

Working with include
In Chapter 1, Getting Started with Ansible, we've seen a quick example of include in the
context of variables. However, it's not just variables that we include from other files;
it can also be common tasks or handlers. This is a feature in Ansible to reduce duplicity
while writing tasks. This also allows us to have smaller playbooks by including
reusable code in separate tasks using Don't Repeat Yourself (DRY). Yes, this is
exactly what you do in programming as well. Let's consider the following scenario.

For example, imagine that you have the httpd service and you want to have local
monitoring that makes sure that the httpd service is always up. The monit package
from Linux is popularly used to automatically start services in the case where services
stop, and thus, this package can be used to solve the case where httpd should always
be up. Let's consider a situation where monit is being used to monitor a custom service
(call it SVC A) that you have written, and to deploy a change, you need to stop a
service, update the package, and then start the service. So, one of the prerequisites here
will be to stop monit before stopping SVC A. Let's say, you've now stopped monit,
updated the package associated with SVC A, started up SVC A, and you want to start
monit again. There might be multiple such scenarios and playbooks where you want
to manage services. The include feature works very well in such cases. Let's create a
manage_service.yml task that can be included in the main playbook.

Taking Ansible to Production

[116]

As you can see in the preceding screenshot, there are two variables that you need to
provide in order to use the service:

• service_name

• service_state

Each of these can either be variables in the playbook under the vars section,
as shown in the following screenshot:

Observe that we've used include to include manage_service.yml. The variables
can also be hardcoded as shown in the following screenshot:

The overall structure for the playbook currently looks like the following:

$tree

├── Vagrantfile

├── inventory

└── playbooks

 ├── example3.yml

 └── tasks

 └── manage_service.yml

2 directories, 4 files

Now, let's run the playbook. The result is as expected in both cases. Note that the
task name also can be parameterized.

Chapter 3

[117]

We'll look at handlers next and revisit include when we look at roles.

Working with handlers
In many situations, you will have a task or a group of tasks that change certain
resources on the remote machines. Ansible recognizes these changes. However,
for these changes to be truly effective, they need to trigger other events. For example,
when package or application configuration files change, you will need to restart or
reload the associated service. Normally, this won't happen as the associated service
is already running, and when the Ansible task runs for that service, it figures out that
the service is already running, and hence, there won't be any change. However, you
will require a way in which a restart event can be triggered for the associated service.
This is done via the notify action, and tasks that are called by this notify action are
called handlers.

Every handler task will run at the end of the playbook if previously notified, for
example, you changed your httpd server config multiple times and you want to
restart the httpd service so that the changes are applied. Now, restarting httpd
every single time on a configuration change is not a good practice. To deal with such
a situation, you can notify Ansible to restart the httpd service on every configuration
change, but Ansible will make sure that no matter how many times you notify it for
the httpd restart, it will call that task just once after all other tasks complete. Let's see
how this works in the following screenshot:

Taking Ansible to Production

[118]

In the preceding playbook, we have defined the restart httpd handler. When
the virtual host is created, it notifies the handler, and the handler restarts the httpd
service. Remember, the task itself is idempotent, and hence, the handler is notified
only the first time. If the configuration pertaining to the virtual host test.conf file
changes, then again Ansible will reinforce the intended configuration and notify
the handler.

To notify the handler task, we use the notify parameter that tells Ansible to
call the restart httpd task at the end of the playbook. As mentioned earlier,
you can call the handler task multiple times using the notify parameter, but
Ansible will run it just once at the end of the playbook. Let's run the playbook to
see whether the behavior is as we expected it to be. The output can be seen in the
following screenshot:

Handlers are triggered only when a task status is changed.

The results are as expected. Ansible updated the test.conf file and notified the
handler to restart the httpd service. You can also call multiple handlers from the
same task, as shown in the following screenshot:

Chapter 3

[119]

As discussed earlier, you can call the same handler multiple times, for example,
in the preceding playbook, we call the restart memcached handler two times
and Ansible will make sure that memcached is bounced only once at the end of the
playbook. You can also include a handler file instead of writing individual handlers
in a playbook. This is shown in the following screenshot:

Let's now proceed to roles.

Working with roles
When you start thinking about your infrastructure, you will soon look at the
purposes each node in your infrastructure is solving and you will be able to
categorize them. You will also start to abstract out information regarding nodes
and start thinking at a higher level. For example, if you're running a web application,
you'll be able to categorize them broadly as db_servers, app_servers, web
servers, and load balancers.

Taking Ansible to Production

[120]

If you then talk to your provisioning team, they will tell you which base packages
need to be installed on each machine, either for the sake of compliance or to manage
them remotely after choosing the OS distribution or for security purposes. Simple
examples can be packages such as bind, ntp, collectd, psacct, and so on. Soon
you will add all these packages under a category named common or base. As you
dig deeper, you might find further dependencies that exist. For example, if your
application is written in Java, having some version of JDK is a dependency.
So, for what we've discussed so far, we have the following categories:

• db_servers

• app_servers

• web_servers

• load_balancers

• common

• jdk

We've taken a top-down approach to come up with the categories listed. Now,
depending on the size of your infrastructure, you will slowly start identifying
reusable components, and these can be as simple as ntp or collectd. These
categories, in Ansible's terms, are called Roles. If you're familiar with Chef,
the concept is very similar. We will look at the end-to-end deployment with
roles later in the book, but for now let's consider a simpler example to start with.

Let's consider the build system. In most cases, you will expect a certain number
of components to be installed on your build agents to run these builds. At the
highest level, we'll start with the build_agent role that needs to be applied on
all the machines that are running builds. Now, if you have multiple applications,
for example, a Tomcat app and a Rails app to build, you will have two roles:
tomcat_build_agent_role and rails_build_agent_role. Each role can have
other roles as dependencies. We'll consider a Java application that requires JDK,
Maven, and Ant (popular build tools for Java applications) on all the build agents.
Furthermore, let's consider that the Java application interacts with Cassandra. This
can be any other database but we've chosen Cassandra here for a reason; however,
the same techniques apply in other similar situations. Cassandra will run on another
machine so that integration tests for the code are run against that Cassandra node.
Let's look at multiple ways to model this:

• Create two roles as follows:
 ° The Build Agent role that has Ant, Maven, and JDK as task files
 ° The Cassandra role with JDK, again as a task file, and Cassandra as

another task file

Chapter 3

[121]

• Create three roles and one task file as follows:
 ° The JDK role
 ° The Build Agent role with Ant and Maven as tasks and the JDK role

as dependency
 ° The Cassandra role with the JDK role as dependency

Clearly, the second way makes more sense, keeping in mind the DRY policy.
However, let's look at how the code will look for each of the preceding cases
and go over each option in more detail.

Let's create two roles with three task files. Running the tree command inside the
build_agent role directory, we see the following output:

$ cd build_agent

$ tree

.

├── tasks

│ ├── ant.yml

│ ├── jdk.yml

│ ├── main.yml

│ └── maven.yml

├── templates

│ ├── ant.sh

│ └── maven.sh

└── vars

 └── main.yml

3 directories, 7 files

As you can see, we have three parallel folders: tasks, vars, and templates.
The tasks folder utilizes the variable values in main.yml and the templates to
make sure the desired state is achieved on the machines.

Taking Ansible to Production

[122]

When it comes to roles, there is a default main.yml file that will always be executed.
Using the include feature that we saw in the previous examples, we include other
task files that will be executed in the order they are included. Let's look at the content
of main.yml as follows:

In this case, the YAML files that will be executed are jdk.yml, ant.yml,
and maven.yml, in this order.

We have simplified, yet working, versions of the YAML files, as our focus here is
on roles. Let's now look at the content of these files in the following screenshot:

Chapter 3

[123]

You might notice that the hosts section is not present as it was in all our previous
cases. For roles, Ansible allows us to define tasks and provide the inventory
externally as we'll see shortly. This is also similar to the way Puppet and Chef
manage manifests and recipes, respectively. Let's now look at the values in the
variable file, main.yml, as shown in the following screenshot:

If you're wondering how the inventory and playbooks are tied up together, it's
via the site.yml file that exists at the same level as the roles folder. For any new
project that has roles, it's important to have a single site.yml file that can have one
or more included files or all the mappings right there. We'll look at how to deal
with site.yml when we create the next role, as we'll have two roles to play with.
For now, the contents of site.yml are as follows:

Taking Ansible to Production

[124]

The site.yml file, which consists of a role, the inventory, and other attributes such
as tags, user, and sudo, represents what in Ansible parlance is called a Play. So,
we have an Ansible play that runs the build_agent role against a host group called
build_agents. As you can see later, we can define multiple plays in the same site.
yml file. For now, we'll proceed with this play. The roles section in site.yml can
have one or more roles as well. Our inventory section has only one machine in
this case.

To summarize, the site.yml file contains a play that will end up configuring the
machine with the IP, 192.168.33.10, as a build agent with the build_agent role.
It's really important that you understand and start using the same nomenclature
to express what's happening and the tool will automatically begin to appear a lot
simpler. Let's execute site.yml via the Ansible playbook and see what happens:

Chapter 3

[125]

You can see from the preceding screenshot that every task name starts with the role
name, build_agent. It follows the same order: first, it configures the JDK, then Ant,
and finally, Maven defined in main.yml of the tasks folder. Further, we have eight
changes. Only two ok tasks are present, because the ant directory (/opt) exists and
the gathering facts task does not bring about any change on the box.

Before we proceed to the next role, let's look at the playbook in more detail. As we
spoke so much about testing and Vagrant in the previous chapter, we'll use Vagrant
to provision the machine, and followed by this, we'll test the preceding run with
serverspec tests. (We also recommend serverspec tests because it's a different
tool than what we've used to configure the system and also because its primary
aim is to test!)

The following screenshot shows Vagrantfile:

Taking Ansible to Production

[126]

The following is the result of vagrant provision:

Let's look at Rakefile, which is shown in the following screenshot:

Chapter 3

[127]

In Rakefile, you can see that we now have our folder structure based on roles
(:role => %w(build_agent) and t.pattern = spec/#{host[:role]}/*_spec.
rb) rather than playbooks, which is what we saw in the previous chapter. So, you
can basically tweak the required parameters in Rakefile to make sure that the right
abstraction (role in this case and previously at the playbook level) has been utilized.

It is now time to view the folder structure of our tests and the tests as follows:

Let's run the tests using rake Serverspec as follows:

Taking Ansible to Production

[128]

On running the tests, we end up with a happy smile, as all our tests confirm that our
intended state is actually now the desired state on the system.

Before we jump to the Cassandra role, we'd like to briefly talk about the get_url
module that we've used in ant.yml and maven.yml, as that is the only new module
that we've used. By now, we guess you should be comfortable reading tasks around
file, shell, and template modules. If not, we'd recommend you to revisit the Working
with modules section of Chapter 1, Getting Started with Ansible. Remember what we
said at the beginning of this chapter: more practice, more success.

The get_url task (see the following example) takes a URL as a parameter from
where you intend to download content, to a particular destination dest. It supports
http, https, and ftp. It supports authentication as well, which we've not used in
our following examples, as we've considered that we have an internal file server
to download both Ant and Maven. The URLs for Ant and Maven in this case will
be updated only when the versions change. The get_url module also gives you a
thirsty property or a force property (the thirsty property is an alias of force),
which is by default set to no. This means that if the file of that name already exists,
then it won't be downloaded. If you set this property to yes, the behavior of the
module changes and the file is downloaded even if it's already present.

The get_url tasks are shown as follows:

- name: download ant

 get_url: url=http://{{ fileserver }}/{{ ant_software }} dest={{ ant_
base_directory }} thirsty=no

 tags:

 - ant

- name: download maven

 get_url: url={{ maven_url }} dest={{ maven_base_directory }}
thirsty=no

 tags:

maven

Also, note that the ways in which we've used the two URL parameters in the two
tasks are different. It's better to use the option we've used with ant_software rather
than the one with maven_software as, even if the fileserver parameter changes,
we change it at a global level rather than changing it at each individual value and
everything again begins to work.

Chapter 3

[129]

The Cassandra role
Let's now look at the second role, which is the Cassandra role. In the following
example, the Cassandra role comes with JDK as a dependency, and hence a jdk
task file and cassandra as another task file are used:

$ cd cassandra

$ tree

.

├── tasks

│ ├── cassandra.yml

│ ├── jdk.yml

│ └── main.yml

├── templates

│ └── cassandra.yaml

└── vars

 └── main.yml

3 directories, 5 files

The cassandra role also looks similar to the build_agent role in terms of
structure. Let's look at the main.yml and jdk.yml files to start with. Consider
the following screenshot:

Taking Ansible to Production

[130]

Let's now look at cassandra.yml of the cassandra role before proceeding with
the explanations.

The main.yml file of the cassandra role includes jdk.yml and cassandra.yml.
The jdk.yml file is an exact copy of what we saw earlier; cassandra.yml basically
has tasks to install Cassandra and set up the required files.

This might not be the best way to install Cassandra, especially if you
expect Cassandra to run as a service, but it solves our purpose. As part
of the build step, we've seen folks that have an extra step that explicitly
starts up Cassandra (or the database they choose), runs the tests on the
build_agent machine, and then stops Cassandra (their database).
You're free to tweak it as per your environment and convenience.

In the build_agent role section, we had a site.yml file that we passed as a
parameter to the ansible-playbook command. Before adding the role to site.yml,
we can test this role separately by creating a separate cassandra.yml file, as shown
in the following screenshot:

Chapter 3

[131]

The preceding cassandra.yml file creates a separate standalone file that contains
mapping between hosts and roles. Similarly, if we have a new role that can run on
its own, we can create a new YAML file, tying the hosts and the role in this YAML
file. You must be wondering what happened to site.yml. We'll come to this, but
before that, with our new found cassandra.yml, let's run the ansible-playbook
command as follows:

Taking Ansible to Production

[132]

As you would have expected, it ran against the cassandra_nodes group of the
inventory file that consists of exactly one IP, currently, 192.168.33.11.

Let's now get back to site.yml. This will be the master YAML file that will have
details around how Ansible will work against your inventory when you have roles.
We can have the site.yml file constructed in multiple ways as follows:

• The first way is to have a single monolithic file with multiple plays.
In our case, we have two plays.

Chapter 3

[133]

• After hearing terms such as monolithic, your mind must have alerted you
regarding the approach. Hence, we now have a better approach where you
use the site.yml file to include multiple files, which in turn represent a
single play. This also allows you to run specific commands against each file
(like we saw with the cassandra.yml example). This approach also allows
a better and faster way of debugging in case a certain play has an issue.
The demonstration of this approach is shown in the following screenshot:

Taking Ansible to Production

[134]

If you want to configure your entire infrastructure and you're using roles, you
should be in a position to do so by running ansible-playbook with site.yml as
a parameter. If you're able to achieve that, then you've done a good job with your
infrastructure. Ansible will follow the order that is specified in the site.yml file.
So in this case, it will first configure the build_agent node and then the cassandra
node. If you have 10 nodes under build_agents, it will configure all of them before
moving to the cassandra nodes. Let's see how the Ansible run spans out with the
site.yml file in our current case.

Chapter 3

[135]

The result is as we had explained before. It runs one role at a time and configures
all the hosts assigned to that role till it completes the configuration of the
entire infrastructure.

If we have a large number of roles, it will become difficult to understand what
tasks each role will run. We've covered in Chapter 1, Getting Started with Ansible,
how we can list all the tasks that are going to run and we should use this option now.
Though, the question is, do you remember how you can view all the tasks associated
with a playbook or role? We're hoping that you will instantly say list-tasks.

Let's run it against cassandra.yml as follows:

The output in the preceding screenshot shows you a single play along with all the
associated tasks. Let's now run it against site.yml and you should expect two
plays as follows:

Taking Ansible to Production

[136]

Bingo! The outputs that we view are quite helpful for anyone running the tasks to
view what plays will be run and what the associated tasks with each play are.

You must have seen that we've been using tags for all tasks. If we want to run
specific tasks, we can use tags. We'll show two examples as follows:

• To run only the cassandra setup tasks from cassandra.yml, perform the
steps shown in the following screenshot:

Chapter 3

[137]

• To run only the build_agent role tasks when we are running with the
site.yml file, perform the steps shown in the following screenshot:

Taking Ansible to Production

[138]

Let's now go back to our Vagrantfile. We now have a modified Vagrantfile and
we've added a second machine, where each machine will be configured with one
role. The ansible.playbook parameter now refers to the build_agent role for
the first machine and the cassandra role for the second; the following screenshot
demonstrates this:

We'll now run vagrant provision only on the new node, just to see whether
provisioning works as expected.

Chapter 3

[139]

Yes, it did! If you're wondering about tests, we'll leave that as a task for you
to complete.

Creating a task file with roles
Everything worked as expected. "What's the problem?", you might ask. The problem
with the preceding modeling is that jdk.yml is a duplicate in both roles. If we have
to follow the DRY model, we have to now have a new role to install Java and then
add that role as a dependency to the build_agent and cassandra roles. Let's see
how we can do this.

Taking Ansible to Production

[140]

First, we'll add the jdk role. Let's see the configuration in the following screenshot:

We now look at a new option that helps us define role dependencies. We define
meta/main.yml in the role folder to define jdk as a dependency for the
build_agent and the cassandra roles, shown as follows:

$ cat cassandra/meta/main.yml

dependencies:

 - { role: jdk }

$ cat build_agent/meta/main.yml

dependencies:

 - { role: jdk }

Chapter 3

[141]

You will also see that the include tasks do not include jdk.yml anymore.
The build_agent and the cassandra roles, are given as follows:

$ cat build_agent/tasks/main.yml

- include: ant.yml

- include: maven.yml

$ cat cassandra/tasks/main.yml

- include: cassandra.yml

Let's run it against build_agent.yml to see whether the changes get reflected.

Taking Ansible to Production

[142]

In the preceding case, even though we've not used JDK separately, we can do so
anytime. Later, if we introduce any other component that is dependent on JDK
and maybe a different version of Java 6, we can even override the value at the role
dependency level shown as follows:

dependencies:

 - { role: jdk, jdk6: 'jdk-6u51-linux-amd64.rpm' }

All other ways of overriding the variables that we've already discussed also apply.

Using handlers with roles
Let's look at one final example where we'll see how we can use handlers in the role.
For this, we add a service script to the Cassandra role to start up Cassandra and
register a handler for the service restart.

We'll start by looking at the new additions to the cassandra.yml task file as follows:

Chapter 3

[143]

The handler configuration is given as follows:

Like in the other cases, we have a folder named handlers and a main.yml file,
which is the default file where we provide the configuration for the Restart
Cassandra handler.

The overall tree structure of the cassandra directory now looks as follows:

$ tree cassandra

cassandra

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── tasks

│ ├── cassandra.yml

│ ├── jdk.yml

│ └── main.yml

├── templates

│ ├── cassandra-init.d

│ └── cassandra.yaml

└── vars

 └── main.yml

5 directories, 8 files

We'll leave it to you as an exercise to write tests to check whether the Cassandra
service is up and running. This is, in fact, a perfect case to test, simply because the
Ansible run might say that the service is up, but it might have resulted in an error
that might have prevented the service from starting up. This typically should never
happen but we've seen situations where due to init script errors, the process might
go down a minute after you start it but Ansible or any other tool would report them
as up.

Taking Ansible to Production

[144]

We have seen how to model roles for your infrastructure and urge you to try it out
for your case. Next, we will look at how Jinja2 filters can be used as part of templates.

The Ansible template – Jinja filters
Templates allow you to dynamically construct your playbook and its related data
such as variables and other data files. Ansible uses the Jinja2 templating language.
We have already covered the template basics in Chapter 1, Getting Started with Ansible.
In this section, we will move forward and see how Jinja2 filters work with Ansible.

Jinja2 filters are simple Python functions that take some arguments, process them,
and return the result. For example, consider the following command:

{{ myvar | filter }}

In the preceding example, myvar is a variable; Ansible will pass myvar to the Jinja2
filter as an argument. The Jinja2 filter will then process it and return the resulting
data. Jinja2 filters even accept additional arguments as follows:

{{ myvar | filter(2) }}

In this example, Ansible will now pass two arguments, that is, myvar and 2.
Likewise, you can pass multiple arguments to filters separated by commas.

Ansible supports a wide variety of Jinja2 filters, we will see some of the important
Jinja2 filters that you might need to use while writing your playbook.

Formatting data using filters
Ansible supports Jinja2 filters to format data to JSON or YAML. You pass a
dictionary variable to this filter, and it will format your data into JSON or
YAML: for example, consider the following command line:

{{ users | to_nice_json }}

In the preceding example, users is the variable and to_nice_json is the Jinja2 filter.
As we saw earlier, Ansible will internally pass users as an argument to the Jinja2
filter to_nice_json. Likewise, you can format your data into YAML as well, using
the following command:

{{ users | to_nice_yaml }}

Chapter 3

[145]

Using filters with conditionals
You can use Jinja2 filters with conditionals for checking if the status of a task is
failed, changed, success, or skipped. Let's start looking at examples:

In the preceding example, we first checked whether the httpd service was
running and stored the output of that module in the httpd_result variable.
We then checked whether the previous task failed using the Jinja2 filter,
httpd_result|failed. Ansible will skip this task if the when condition fails,
that is, if the previous task passed. Likewise, you can use changed, success,
or skipped filters.

Defaulting undefined variables
Instead of failing an Ansible run when a variable is not defined, you can assign a
default value to that variable, for example, a value similar to the following:

{{ backup_disk | default("/dev/sdf") }}

This filter will not assign the default value to the variable; it will only pass the
default value to the current task where it is being used. Let's look at a few more
examples of Jinja filters themselves before closing this section:

• Using Random Number filters: To find a random number, character, or string
out of a list, you can use the random filter:

 ° Execute this to get a random character from a list:
 {{ ['a', 'b', 'c', 'd'] | random }}

 ° Execute this to get a random number from 0 to 100:
 {{ 100 | random }}

 ° Execute this to get a random number from 10 to 50:
 {{ 50 | random(10) }}

 ° Execute this to get a random number from 20 to 50 in steps of 10:

 {{ 50 | random(20, 10) }}

Taking Ansible to Production

[146]

• Concatenating a list to string using filters: Jinja2 filters allow you to
concatenate a list to a string using the join filter. This filter takes a separator
as an extra argument. If you do not specify any separator, then the filter will
combine all elements of the list together without any separation. Consider
the following example:
{{ ["This", "is", "a", "string"] | join(" ") }}

The preceding filter will result in a This is a string output. You can
specify any separator you want instead of a white space.

• Encoding or decoding data using filters: You can encode or decode data
using filters as follows:

 ° Encode your data to base64 using the b64encode filter:
 {{ variable | b64encode }}

 ° Decode an encoded base64 string using the b64decode filter:

 {{ "aGFoYWhhaGE=" | b64decode }}

Security Management
The last section in this chapter is around Security Management. If you tell your
sysadmin that you want to introduce a new feature or a tool, one of the first
questions they would ask you would be, what security feature(s) are present with
your tool? We’ll try to answer these questions from an Ansible perspective in this
section. Let’s look at them in greater detail.

Using Ansible Vault
Ansible Vault is an exciting feature of Ansible that was introduced in Ansible
Version 1.5. This allows you to have encrypted passwords as part of your source
code. A recommended practice is to NOT have passwords in plain text as part of
your repository, especially because anyone who checks out your repository can
view your passwords. Let's see how ansible-vault can help you with this in the
following screenshot:

Chapter 3

[147]

With reference to the preceding snapshot, for the sake of understanding, we initially
created a file using ansible-vault named passwords.yml. It prompted us for a
password. On entering a password, it took us to the editor where we entered This
is a password protected file. After exiting from the file, we then tried to view
the file, only to see that we couldn't view it. Phew! Instead, we saw the file encrypted
with AES256, which is the default cipher. We then wanted to edit the file and in that
case as well, it prompted us for a password. Finally, we wanted to see the actual
content, and we ran the decrypt option on the file, and on entering the password,
it showed us the content.

Let's now see the next set of options in the following screenshot:

Taking Ansible to Production

[148]

For existing files, we can encrypt them as we've done with the preceding
importantfile file. However, in the preceding case, we've used the --vault-
password-file option. This option allows us to have the password that is going to
be used for encryption as a single line in a particular file. So, in our case, we have
a .password file that can be used to encrypt the file. Similarly, you can decrypt the
file as well. This is especially useful when you want to decrypt files on the fly from
CI or during deployment after checking out code that has encrypted files in it. Users
familiar with Chef can view this option as being similar to encrypted data bags.

You can also use Vault with ansible-playbook. You'll need to decrypt the file on
the fly using a command such as the following:

$ ansible-playbook site.yml --vault-password-file .password

There is yet another option that allows you to decrypt files using a script, which can
then look up some other source and decrypt the file. This can also be a useful option
to provide more security. However, make sure that the get_password.py script has
executable permissions.

$ ansible-playbook site.yml --vault-password-file ~/.get_password.py

You might be wondering where the .password file came from. This file needs
to be present on the command center in a location that is accessible to the users
who need to decrypt the password file while running the playbook. We typically
recommend you to add it to /opt/.password and check out your Ansible repository
to /opt/<ansible-repo>. You can create the .password file at the time of the
startup. The . character in the .password file is to make sure that the file is hidden
by default when you look for it. This is similar to the MySQL root password
that is created in newer versions in /root/.password instead of a more visible
password file.

The .password file content should either be a password or a key that is secure and
accessible only to folks who have permission to run commands on the command
center. Finally, make sure that you're not encrypting every file that's available!
Vault should be used only for important information that needs to be secure.

Encrypting user passwords
Vault takes care of passwords that are checked in and helps you handle them while
running Ansible playbooks or commands. However, when Ansible plays are run,
at times you might need your users to enter passwords. You also want to make sure
that these passwords don't appear in the comprehensive Ansible logs (the default
location: /var/log/ansible.log) or on stdout.

Chapter 3

[149]

Ansible uses Passlib, which is a password-hashing library for Python, to handle
encryption for prompted passwords. You can use any of the following algorithms
supported by Passlib.

• des_crypt - DES Crypt
• bsdi_crypt - BSDi Crypt
• bigcrypt - BigCrypt
• crypt16 - Crypt16
• md5_crypt - MD5 Crypt
• bcrypt - BCrypt
• sha1_crypt - SHA-1 Crypt
• sun_md5_crypt - Sun MD5 Crypt
• sha256_crypt - SHA-256 Crypt
• sha512_crypt - SHA-512 Crypt
• apr_md5_crypt - Apache's MD5-Crypt variant
• phpass - PHPass' Portable Hash
• pbkdf2_digest - Generic PBKDF2 Hashes
• cta_pbkdf2_sha1 - Cryptacular's PBKDF2 hash
• dlitz_pbkdf2_sha1 - Dwayne Litzenberger's PBKDF2 hash
• scram - SCRAM Hash
• bsd_nthash - FreeBSD's MCF-compatible nthash encoding

Let's now see how encryption works with a variable prompt.

In the preceding screenshot, vars_prompt is used to prompt users for some data.

The name module indicates the actual variable name where Ansible will store the
user password, as shown in the following command:

name: "ssh_password"

Taking Ansible to Production

[150]

We are using the prompt module to prompt users for the password as follows:

prompt: "Enter ssh password"

We are explicitly asking Ansible to hide the password from stdout by using
private; this works like any other password prompt in UNIX systems.
The private module is accessed as follows:

private: yes

We are using the md5_crypt algorithm over here with a salt size of 7:

encrypt: "md5_crypt"

salt_size: 7

Moreover, Ansible will prompt for the password twice and compare both passwords:

confirm: yes

Hiding passwords
Ansible, by default, filters output that contains the login_password key,
the password key, and the user:pass format. For example, if you are passing a
password in your module using login_password or the password key, then Ansible
will replace your password with VALUE_HIDDEN. Let's now see how you can hide a
password using the password key:

In the preceding shell script, we use the password key to pass passwords.
This will allow Ansible to hide it from stdout and its log file.

Now, when you run the preceding task in the verbose mode, you should not
see your mypass password; instead Ansible, with VALUE_HIDDEN, will replace
it as follows:

<web001> REMOTE_MODULE command myscript.sh password=VALUE_HIDDEN #USE_
SHELL

Chapter 3

[151]

Using no_log
Ansible will hide your passwords only if you are using a specific set of keys.
However, this might not be the case every time; moreover, you might also want
to hide some other confidential data. The no_log feature of Ansible will hide your
entire task from logging it to the syslog file. It will still print your task on stdout
and log it to other Ansible logfiles.

At the time of writing this book, Ansible did not support hiding tasks
from stdout using no_log.

Let's now see how you can hide an entire task with no_log as follows:

By passing no_log: true to your task, Ansible will prevent the entire task from
hitting syslog.

Summary
With this, we come to the end of this chapter, where we've seen how to use
features such as local_action, conditionals, loops, and including of files to reduce
redundant code. We also saw how to use handlers, how to model infrastructure
using roles, how to use Jinja filters, and finally security management with Ansible.
We now have made significant progress in terms of our Ansible skillset.

We'll next look at how to handle errors, send notifications, even run rollbacks, and
utilize callbacks in our Ansible code. This will help us think of our operations a lot
more and make sure that they understand what is going on. As you've just read
through what we would term as a "heavy" chapter, you deserve a quick coffee break
before proceeding to the next chapter. We also want you to think about the following
during your break:

• How will you go about identifying roles for your infrastructure?
• How will you manage SSH keys for users across systems using Ansible?
• What are the possible scenarios in your environment where you would use

the local_action feature?

Error Handling, Rollback,
and Reporting

"If you shut the door to all errors, truth will be shut out."

- Rabindranath Tagore

The quote here applies to everything in life and not just infrastructure! However,
since we're going to continue talking about infrastructure with a key focus on error
handling, rollback, and alerting in this chapter, we thought we'd start the chapter on
a philosophical note.

So far, we've seen how to write production-ready Ansible playbooks from a
configuration management perspective and test the same to overcome any failure.
Any time you write code, it's important to think of error handling, logging, alerting,
and reporting and if it's based on infrastructure, it becomes even more important.
Error handling helps you control the flow of your automation and allows you to
notify your users if something goes wrong. Rollbacks become important when
the intended task fails and you want to restore the state of the automation to a
well-known stable state. Reporting and alerting go hand in hand and we'll talk
about it more when we reach that section. We'll also introduce a powerful
concept called Callbacks and see how helpful they can be when we run our
infrastructure with Ansible.

In this chapter, we will cover the following topics:

• Error handling and Rollback
• Callback plugins: a reporting example
• Monitoring and alerting

Error Handling, Rollback, and Reporting

[154]

Error handling and Rollback
Automation always comes with a wide range of advantages such as increased
productivity, better control of systems, and solid workflows. However, with
advantages, there are always disadvantages! You need to have good control over
errors that might occur during automation. While you're writing the functional
code, to overcome such situations you would generally use a try-catch technique,
where you try to run your code, catch errors when your code fails, try to handle
them gracefully, and if possible, continue with the flow. Ansible doesn't provide
a try-catch feature; rather, it leaves it up to the user to handle errors. For certain
types of tasks, you can write custom modules that can leverage the power of your
programming language's error handling (We will look at custom modules in the
next chapter). However, for other Ansible core modules, you can use Ansible's
conditional statements or ignore errors (as was shown in the earlier chapters).

Suppose you have a playbook with many tasks. There is a possibility that a
certain task might fail. If this is one of the initial tasks where you validate certain
prerequisites, then error handling might not make sense. For example, let's say
you're dealing with one of the cloud systems (for example, Amazon Web Services
(AWS)) and you have a policy within your organization that whoever utilizes any
Ansible playbook to perform cloud-related activities should expose their access keys
via environment variables. Hence, as part of your Ansible role or playbook, you
might have a common or prerequisite playbook or role that will check whether
your access keys are available as environment variables.

Another prerequisite check that we've often seen is users checking if they have the
required sudo credentials on machines where the playbooks will run (We've even
seen an example related to the sudo check in Chapter 3, Taking Ansible to Production.).
This might be required for configuration management tasks and your prerequisite
playbook or role would check whether sudo access is first enabled. If your tasks fail
at this level, then error handling does not make sense!

However, if your playbook fails after certain tasks have been executed, and they've
changed the state of the remote system (remember ok and changed?), then it might
cause an outage or unpredictable behavior, as the remote system is not in the
intended state. This is definitely a cause for worry if you're one of the key people
managing the infrastructure. You need not worry if all tasks were in the ok state,
as it only means that they were idempotent, but if a task is running for the first
time, yes, you need to worry! A classic example might be when certain services
don't come up as expected and the machine is already in the load balancer and
you end up dropping live traffic.

Chapter 4

[155]

To handle such errors, we recommend writing a rollback playbook. A rollback
playbook will include all the tasks that need to be run if the original playbook fails
and restore the playbook to the state from where you can serve traffic. The idea here
is to run the primary playbook, and if it fails, run the rollback playbook, which will
restore the state on the remote host, resulting in a working system at the end.

Let's consider two practical examples that we've seen from close quarters. Suppose
you want to update the memcached package on your system, which is being
monitored by monit (we've already discussed monit in Chapter 3, Taking Ansible to
Production). Now, in order to update memcached, firstly, you will need to stop the
monit service so that it doesn't try to start the memcached service, and then you will
have to update your memcached package.

Let's say that when you ran your primary playbook, it successfully stopped monit
and memcached, but failed while it tried to update the memcached package. Since
the memcached and monit services are stopped, it will affect what is cached and
might cause monitoring alerts due to increased response times on the server. The
memcached package is the frontend. How do you fix this? Add a rollback playbook.
The rollback playbook consists of two tasks: start memcached after ensuring the older
package is still present on the system, and then start the monit service.

Another such example would be in a hosted scenario. Let's say, you have a customer
X, who is configured to run behind a load balancer with two equally balanced
servers. Now, if one of your engineers initiates a restart on the first server, then the
CPU load will spike on the other server. To take care of the spike, let's say another
engineer initiates a restart on the second server while the first one is still not serving
the traffic. Now, both your servers are down and your entire traffic towards that load
balancer will be affected, resulting in a downtime for your customer.

In order to deal with such human errors, you can use locking. Whenever a restart is
initiated on one of the servers, make sure that you lock the load balancer, which is
the shared resource, using a tool such as etcd, and unlock it only after the restart is
completed and the server can serve the traffic. In the meantime, no one can restart
the second server until the first server releases its lock. There is also an aspect of
making sure the traffic isn't unmanageable on the second server in such situations
when there are other complexities around it. However, basically, you want to make
sure that a shared resource is locked while performing such operations.

Note that etcd is a highly available key-value store similar to
Apache ZooKeeper.

Error Handling, Rollback, and Reporting

[156]

Let's see how we can use locking with the Apache Solr restart for multiple servers
that are part of the same load balancer, as shown in the following screenshot:

In the preceding playbook, we first print the lock name and the lock value for
readability. We then go ahead and try to lock the load balancer so that no one else
can restart any other server behind that load balancer. If the locking task fails, then
it means the load balancer is already locked and someone else has restarted one of
the Apache Solr servers behind it. However, if we are successful in obtaining the
lock, we restart the solr service and then unlock the load balancer. Apart from
these steps, you can also add some checks to this playbook before unlocking the
load balancer to make sure that the service is actually up and ready to serve the
production traffic.

Executing the playbook
Consider the following screenshot and let's see how the solr_restart.yml
playbook works:

Chapter 4

[157]

As expected, the preceding playbook:

1. Locked the load balancer.
2. Restarted the solr service.
3. Unlocked the load balancer.

This was an example of a successful Ansible run. However, what if Ansible was able
to acquire the lock but could not start the service, and the playbook run fails as a
result? Let's see what happens when the solr restart fails. This is demonstrated in
the following screenshot:

Error Handling, Rollback, and Reporting

[158]

As you can see, Ansible acquired the lock but could not restart the service. Now,
the solr service is not running and the load balancer is locked as well, which will
not allow anyone else to restart the other servers from the same load balancer. This
is where rollback comes into the picture. In order to roll back, you first need to try to
restart the service, and then unlock the load balancer. Let's see an example playbook
for rollback in the following screenshot:

In the preceding playbook, we first check if the lock still exists. We have nothing
to do if there is no lock, in which case we will skip all other tasks because it means
that someone from the team has already taken care of the previous Ansible failure.
However, if the lock still exists, we then try to restart the solr service but not allow
Ansible to fail, so that we can remove the lock even if the restart fails. You will not
allow Ansible to fail if there are multiple servers.

If there are only two servers behind the load balancer and the solr service restart
fails, you should NOT remove the lock, as restarting the second server in this case
can result in an outage. You can also notify the user by sending a mail asking them to
troubleshoot the issue manually. We will see how mail notification works later in this
chapter. Consider the following screenshot where we're running the rollback playbook:

Chapter 4

[159]

As explained before, Ansible checks if the lock exists, starts the service, and then
removes the lock.

Instead of running the rollback playbook manually on every failure, you can write a
small wrapper script, which can run the Ansible playbook, and depending on the exit
code of the Ansible playbook, it can run the rollback playbook if required. It could be
as simple as a bash script, which directly runs the ansible-playbook command.

Callback plugins
We now proceed to callback plugins. One of the features that Ansible provides is a
callback mechanism. You can configure as many callback plugins as required. These
plugins can intercept events and trigger certain actions. The section on alerting that
we will cover after this section shows you how to use these plugins to make sure you
get the right sort of feedback. Let's see a simple example where we just print the run
results at the end of the playbook run as part of a callback and then take a brief look
at how to configure a callback.

We will rerun the build_agent role from the last chapter for this example; the build
agent is already configured and we're running Ansible against it. This is shown in
the following screenshot:

Error Handling, Rollback, and Reporting

[160]

As you can see in the preceding screenshot, the callback plugin resulted in an extra
line called Run Results, and printed a dictionary or hash of the actual results. You
can utilize this information in a number of ways. Isn't this powerful? Are you getting
any ideas around how you can utilize a feature such as this? Do write it down before
reading further. If you're able to write out even two use cases that we've not covered
here and is relevant to your infrastructure, give yourself a pat on the back!

The callback plugin's location is present in ansible.cfg. You can use grep for the
term "callback" in ansible.cfg, shown as follows:

$ grep callback ansible.cfg

callback_plugins = /usr/share/ansible_plugins/callback_plugins

The callback_plugins path might be different for you depending on
how you installed Ansible.

You need to then add your callback scripts in this folder. If you have five callback
scripts to perform different operations, you need to add all five of them in the
callback_plugins folder. The callbacks are in Python and you'll have to know a
little bit about Python to make good use of them. You can pretty much copy and
paste the following example and get started with the callback plugins.

We have a simple callback_sample.py file to start with, the output of which
generates the Run Results line in the earlier example. Let's look at the folder that's
configured in ansible.cfg, which is /usr/share/ansible_plugins/callback_
plugins in our case:

$ ls -l /usr/share/ansible_plugins/callback_plugins

callback_sample.py

Let's now look at the contents of the callback_sample file:

$ cat /usr/share/ansible_plugins/callback_plugins/callback_sample.py
class CallbackModule(object):

 def on_any(self, *args, **kwargs):
 pass

 def runner_on_failed(self, host, res, ignore_errors=False):
 pass

 def runner_on_ok(self, host, res):
 pass

Chapter 4

[161]

 def runner_on_error(self, host, msg):
 pass

 def runner_on_skipped(self, host, item=None):
 pass

 def runner_on_unreachable(self, host, res):
 pass

 def runner_on_no_hosts(self):
 pass

 def runner_on_async_poll(self, host, res, jid, clock):
 pass

 def runner_on_async_ok(self, host, res, jid):
 pass

 def runner_on_async_failed(self, host, res, jid):
 pass

 def playbook_on_start(self):
 pass

 def playbook_on_notify(self, host, handler):
 pass

 def playbook_on_no_hosts_matched(self):
 pass

 def playbook_on_no_hosts_remaining(self):
 pass

 def playbook_on_task_start(self, name, is_conditional):
 pass

 def playbook_on_vars_prompt(self, varname, private=True, prompt=None,
encrypt=None, confirm=False, salt_size=None, salt=None, default=None):
 pass

 def playbook_on_setup(self):
 pass

 def playbook_on_import_for_host(self, host, imported_file):

Error Handling, Rollback, and Reporting

[162]

 pass

 def playbook_on_not_import_for_host(self, host, missing_file):
 pass

 def playbook_on_play_start(self, pattern):
 pass

 def playbook_on_stats(self, stats):
 results = dict([(h, stats.summarize(h)) for h in stats.processed])
 print "Run Results: %s" % results

As you can see, the callback class, CallbackModule, contains several methods.
The methods of this class are called and the Ansible run parameters are provided
as parameters to these methods. Playbook activities can be intercepted by using
these methods and relevant actions can be taken based on that. Relevant methods are
called based on the action, for example, we've used the playbook_on_stats method
(in bold) to display statistics regarding the playbook run. Let's run a basic playbook
with the callback plugin and view the output as follows:

You can now see the Run Results line right at the end, which is due to our
custom code. This is just an example of how you can intercept methods and
use them to your advantage.

Chapter 4

[163]

However, there are so many other methods that you can utilize. Spend some time
looking at the names of the methods. With all that you learned so far, you must be
in a position to recognize or guess what each preceding method might do. The word
pass indicates no action and is the default value for all these methods that you see.
If you find it difficult to understand these methods, you can print the output at the
method level and that will provide more food for thought on how you can utilize
these methods to your advantage. For example, let's modify the runner_on_ok task
and print the output that we get from host and res:

def runner_on_ok(self, host, res):

 print 'host - %s , res - %s" % (host,res)

On rerunning the playbook, it prints all the facts. A snippet of what we get with the
facts is shown below:

We see all the facts associated with the remote system given to us on a platter in the
form of JSON. This basically means you can even update your inventory system by
just running the Ansible setup task against all your nodes, parse out the res hash or
dictionary, and then make the right calls to check or update your inventory system.
(By default, if the playbook doesn't have any task, it will just run the setup task to
get information regarding the nodes. We urge you to try out a playbook with zero
tasks but with gather_facts not set to False. See the result for yourself!) Does this
make sense? We strongly urge you to read through this section a couple of times to
get a better understanding.

Error Handling, Rollback, and Reporting

[164]

For the Java tasks that we had in the playbook in our previous chapter, the output
appears as shown in the following screenshot:

Looking at the preceding output, we can conclude that every module that you write
in your playbook is queryable or addressable as part of the callback and you can
utilize it for better reporting.

Let's see an example where we use callbacks to push information regarding
the Ansible playbook run to a MySQL instance for daily, weekly, and monthly
reporting, and to analyze what tasks fail the most. You will have to set up your
MySQL database and make sure there is connectivity from the command center
where the callbacks are being configured. It's time to look at the plugin code,
which is as follows:

$ cat callback_mysql.py (remember this callback function should be in
the 'callback_plugins' folder as indicated in ansible.cfg file)

import getpass

import MySQLdb as mdb

import os

class CallbackModule(object):

 def __init__(self):

 self.dbhost = os.getenv('DBHOST')

 self.dbuser = os.getenv('DBUSER')

 self.dbpassword = os.getenv('DBPASSWORD')

 self.dbname = os.getenv('DBNAME')

 self.action = ""

 self.user = ""

 def update_stats(self, host, result, task=None, message=None):

 con = mdb.connect(self.dbhost, self.dbuser, self.dbpassword, self.
dbname)

 cur=con.cursor()

 cur.execute('insert into ansible_run_stats(user,host,res
ult,task,message) values("%s","%s","%s","%s","%s")' %(self.
user,host,result,task,message))

Chapter 4

[165]

 con.commit()

 con.close()

 def on_any(self, *args, **kwargs):

 pass

 def runner_on_failed(self, host, res, ignore_errors=False):

 self.update_stats(self.task.play.hosts, "unsuccessful", task=self.
task.name, message=res)

 def runner_on_ok(self, host, res):

 pass

 def runner_on_error(self, host, msg):

 pass

 def runner_on_skipped(self, host, item=None):

 pass

 def runner_on_unreachable(self, host, res):

 self.update_stats(self.task.play.hosts, "unsuccessful", task=self.
task.name, message=res)

 def runner_on_no_hosts(self):

 pass

 def runner_on_async_poll(self, host, res, jid, clock):

 pass

 def runner_on_async_ok(self, host, res, jid):

 pass

 def runner_on_async_failed(self, host, res, jid):

 pass

 def playbook_on_start(self):

 pass

 def playbook_on_notify(self, host, handler):

 pass

Error Handling, Rollback, and Reporting

[166]

 def playbook_on_no_hosts_matched(self):

 pass

 def playbook_on_no_hosts_remaining(self):

 pass

 def playbook_on_task_start(self, name, is_conditional):

 pass

 def playbook_on_vars_prompt(self, varname, private=True, prompt=None,
encrypt=None, confirm=False, salt_size=None, salt=None, default=None):

 pass

 def playbook_on_setup(self):

 pass

 def playbook_on_import_for_host(self, host, imported_file):

 pass

 def playbook_on_not_import_for_host(self, host, missing_file):

 pass

 def playbook_on_play_start(self, pattern):

 if not self.user:

 self.user = getpass.getuser()

 def playbook_on_stats(self, stats):

 if not stats.dark and not stats.failures:

 self.update_stats(stats.ok.keys()[0], "successful")

Let's look at the code in more detail to understand the flow; we first initialize
the database parameters by getting them from the environment in the following
snippet. We expect the following environment variables to be set: DBHOST, DBUSER,
DBPASSWORD, and DBNAME:

def __init__(self):

 self.dbhost = os.getenv('DBHOST')

 self.dbuser = os.getenv('DBUSER')

 self.dbpassword = os.getenv('DBPASSWORD')

 self.dbname = os.getenv('DBNAME')

 self.action = ""

 self.user = ""

Chapter 4

[167]

Since we might have different users who might log in with their account onto the
system, we need to make sure we trace who runs what commands. We store the
user value in the following method:

def playbook_on_play_start(self, pattern):

 if not self.user:

 self.user = getpass.getuser()

We then track the status of the playbook run by calling the update_stats method
(this can either be a class instance method or a method that's outside the class)
from the runner_on_failed, runner_on_unreachable, and playbook_on_stats
methods to capture the status of the playbook run as follows:

def runner_on_failed(self, host, res, ignore_errors=False):

 self.update_stats(self.task.play.hosts, "unsuccessful", task=self.
task.name, message=res)

def runner_on_unreachable(self, host, res):

 self.update_stats(self.task.play.hosts, "unsuccessful", task=self.
task.name, message=res)

def playbook_on_stats(self, stats):

 if not stats.dark and not stats.failures:

 self.update_stats(stats.ok.keys()[0], "successful")

Finally, the update_stats method connects to the database and pushes the data into
a table called ansible_run_stats, shown as follows:

def update_stats(self, host, result, task=None, message=None):

 con = mdb.connect(self.dbhost, self.dbuser, self.dbpassword, self.
dbname)

 cur=con.cursor()

 cur.execute('insert into ansible_run_stats(user,host,res
ult,task,message) values("%s","%s","%s","%s","%s")' %(self.
user,host,result,task,message))

 con.commit()

 con.close()

Error Handling, Rollback, and Reporting

[168]

Let's look at the rows in the database after a few runs. The output is shown in the
following screenshot:

As expected, Ansible recorded all the passed and failed runs' details in the MySQL
database. This is a great way to report. Make sure that you dump all the information
related to all your runs across all users and run reporting scripts either as cron jobs
or from other BI systems to send out reports with information on the number of
users, hosts, and tasks that run across your infrastructure using Ansible.

Let's look at the other possible use cases as follows:

• Let's say you're starting a deployment using Ansible and you want
to notify a bunch of people about it. In that case, you can utilize the
playbook_on_start method to alert all of them.

• You can change the way the log output looks for all the tasks.
• You can calculate the overall runtime taken by storing the start time and

end time as instance variables.
• You can alert anyone based on each of the outputs. We'll see a couple of

examples in the next section

Monitoring and alerting
Monitoring and alerting go hand in hand. At an infrastructure and application
level, you end up monitoring several metrics, right from CPU and memory to
application-level information such as heap and number of database connections
from your application, and alert relevant teams based on that. Also, from an
infrastructure automation point of view, you need to make sure you start a
strong feedback loop by integrating automation with your monitoring and
alerting system or systems through constant reporting.

Chapter 4

[169]

We'll focus on how you can keep on the Ansible run for any failures or confirmation
of task completions rather than staring at your screen continuously. At some stage,
you might run all the tasks from a custom UI. It should be fine if you are running a
small playbook with a bunch of tasks. However, if it's a long playbook with many
tasks, you might derail the flow and miss some of the errors or an important task
because of too much data popping out of your stdout output. To deal with such a
situation, we use Alerting. You can notify the user whenever a task/playbook fails
or after a task is completed, allowing them to sip their brew, sit back, and relax.
There are different types of alerting systems, such as mail, monitoring systems,
graphing systems, pagers, chat rooms, and so on. We will look at some of the
basic alerting techniques that can be used with Ansible, which are as follows:

• E-mails
• HipChat
• Nagios
• Graphite

E-mails
The easiest and most common way of alerting is to send e-mails. Ansible allows you
to send e-mails from your playbook using a mail module. You can use this module
in between any of your tasks and notify your user whenever required. Also, in some
cases, you cannot automate each and every thing because either you lack the authority
or it requires some manual checking and confirmation. If this is the case, you can notify
the responsible user that Ansible has done its job and it's time for him/her to perform
his/her duty. Let's see how you can use the mail module to notify your users with one
of the example playbooks of Chapter 3, Taking Ansible to Production, as follows:

Error Handling, Rollback, and Reporting

[170]

In the preceding playbook, we will first loop over the user and database dictionary
giving the MySQL users access to the database. If the tasks succeed, we will send an
e-mail to the user saying all tasks were completed successfully. Let's see how this
works in the following screenshot:

As expected, Ansible tried giving database access to the users, but it found that the
users already had access to the database, thus returning with an OK status instead
of a CHANGED status. Let's see if they actually received an e-mail. The following
screenshot shows an e-mail was sent to the user:

Bingo! It worked. Likewise, you can also send the stdout of a task by using variables
within the body of your e-mail.

You can also use this module before a prompt task. For example, let's say that you
have a playbook that takes around 20–30 minutes to complete, and at the end of the
playbook, you ask your user (via a command prompt), whether Ansible should add
the host back to the load balancer, since you cannot expect a user to sit in front of a
screen for 30 minutes and keep waiting for the prompt to respond. Instead, you can
e-mail your users before prompting so that they can get back to the Ansible prompt
and do the needful.

Chapter 4

[171]

HipChat
HipChat is a private group chat and IM network that provides real-time
collaboration features for companies and teams. Its usage has grown heavily over
the last year or so. Ansible allows you to send notifications to a HipChat room from
a playbook using a hipchat module. To send a notification, you need to first create a
token for the room where you want to notify.

Refer to the HipChat documentation to create API tokens.

Let's see how you can use the hipchat module to notify users, as shown in the
following screenshot:

In the preceding example, we reused the database playbook, which we saw in the
E-mails section of this chapter. We pass the hipchat API token, room name, message,
and sender name to the hipchat module.

Note that the hipchat module does not support HipChat v2 APIs at the
time of writing. You should use a HipChat v1 API with this module.

Error Handling, Rollback, and Reporting

[172]

Let's run the playbook. The output is shown in the following screenshot:

As expected, Ansible gave the database access to the user, sent an e-mail to the user,
and notified in the HipChat room. Let's see if we actually received a notification
in the ops room that we configured. We should receive something like the
following screenshot:

Yes we did! We received a notification in our HipChat room. Wasn't that quite easy?
Now, it's your job to try out this awesome module.

Nagios
No book or chapter on monitoring or alerting is complete without talking about
Nagios. Nagios is a widely used, open source monitoring tool, which allows you to
monitor almost everything that exists on planet Earth and maybe beyond. Well, jokes
apart, you can use Nagios to monitor your playbook run by sending passive checks
to the nagios server. As we did for the e-mail notifications, you can have a nagios
task at the end of a playbook, which will notify the nagios server if a playbook
succeeds; alternatively, you can have a task in the rollback playbook, which will
notify the nagios server that a playbook has failed.

Chapter 4

[173]

There are other popular monitoring tools such as Zabbix, Ganglia, and
Sensu. You can integrate Ansible in a way similar to what we've shown
with Nagios in this example.

Let's see an example playbook that uses a MySQL database and notifies our nagios
server if everything goes well.

In the preceding playbook, we first dump the MySQL table using the mysqldump
command. If it goes well, we then use a passive check to notify the nagios server
using the send_nsca command. These kinds of backup-and-restore tasks are simple
to perform but very often teams forget to do them or do not have the right kind of
alerting or monitoring around them and end up wasting a lot of time on them.
We felt it's best to show how you can do something as simple as this with Ansible,
and at the same time, stress on important best practices such as this in your
organization. If you're already doing it, great!

Let's run the playbook. We expect to see an ok output in Nagios at the end of the
playbook run, as shown in the following screenshot:

Error Handling, Rollback, and Reporting

[174]

As expected, Ansible successfully performed the MySQL dump of the Ansible
database and notified the nagios server. Let's see if the check is updated on our
nagios monitoring.

Hey, it worked! This was a simple example of Nagios integration to get you started.

Another example of Nagios alerting is to use it with some search indexing.
For example, you perform an indexing of your site every midnight and want to
monitor this using Nagios. To perform this activity, you can write a playbook,
which will index your data and make sure that the production traffic is not affected
because of this activity. At the end of the playbook, that is, the last task, you will
notify your nagios server about the completion of the activity using a passive check.
We'll leave this as an exercise for you to try out.

You can also add the send_nsca command to the Ansible callback and notify Nagios
on each failed, unreachable, or ok status. Let's see how a callback script for this
activity would look:

$ cat callback_nagios.py
import subprocess
class CallbackModule(object):
 def __init__(self):
 self.play_name = ""

 def nagios_passive_check(self, host, return_code, status):
 subprocess.call("echo -e '%s\t%s\t%d\t%s' | sudo /usr/sbin/send_nsca
-H 10.47.137.69 -c /etc/nagios/send_nsca.cfg" % (host, self.play_name,
return_code, status), shell=True)

 def runner_on_failed(self, host, res, ignore_errors=False):
 self.nagios_passive_check(host, 2, "Critical: %s" % res)

 def runner_on_unreachable(self, host, res):
 self.nagios_passive_check(host, 2, "Critical: %s" % res)

 def playbook_on_play_start(self, pattern):
 self.play_name = self.play.name

 def playbook_on_stats(self, stats):
 if not stats.dark and not stats.failures:
 self.nagios_passive_check(stats.ok.keys()[0], 0, "Ok: Successful")

Chapter 4

[175]

Let's look at the flow of the code in more detail as follows:

1. We initialize a variable, play_name, with an empty value as follows.
The intent is to store the playbook name in this variable so that we can
access it from any of the methods within the CallbackModule class:
 def __init__(self):

 self.play_name = ""

2. We create a method to actually call the send_nsca command and update
the nagios server as follows. We will pass the host against which Ansible is
running, return_code for the nagios server, and finally the message, that is,
the status of the playbook for the nagios server:
def nagios_passive_check(self, host, return_code, status):

 subprocess.call("echo -e '%s\t%s\t%d\t%s' | sudo
 /usr/sbin/send_nsca -H 10.47.137.69 -c
 /etc/nagios/send_nsca.cfg" % (host,
 self.play_name, return_code, status),
 shell=True)

3. We assign the play name from the playbook_on_stats method. Make sure
you add the correct play name to your playbook because we will be using
this play name as a service name in nagios:
def playbook_on_play_start(self, pattern):

 self.play_name = self.play.name

4. We call the nagios_passive_check method from the runner_on_failed,
runner_on_unreachable, and playbook_on_stats methods. This method
will notify the nagios server on receiving the failure, unreachable, and ok
statuses, respectively. The stats.dark method in the third method, shown
as follows, means the status was not unreachable, whereas stats.failures
means the status was not failure:

def runner_on_failed(self, host, res, ignore_errors=False):

 self.nagios_passive_check(host, 2, "Critical: %s" % res)

def runner_on_unreachable(self, host, res):

 self.nagios_passive_check(host, 2, "Critical: %s" % res)

def playbook_on_stats(self, stats):

 if not stats.dark and not stats.failures:

 self.nagios_passive_check(stats.ok.keys()[0], 0,
 "Ok: Successful")

Error Handling, Rollback, and Reporting

[176]

Graphite
Graphite is yet another extensively used tool in operations for real-time graphing.
Graphite thrives when it comes to time series. You can read more about Graphite at
http://graphite.readthedocs.org/en/latest/index.html.

To use Graphite, you need to send the following three parameters to it:

• The metric name
• Value of the metric
• Timestamp

Graphite provides an easy API that allows you to alert a user using a tool
such as Nagios, Cabot, or Riemann. You can read more about Graphite at
http://graphite.wikidot.com.

Now, the question is, what is it that we'd like to track from an Ansible perspective in
Graphite? Typically, as a best practice from a configuration management perspective,
we'd like to know how many tasks changed during an Ansible run. We'd also like to
know whether the Ansible run itself passed or failed. If it failed, did it fail because
the node was unreachable or because there was an issue with the playbook?

We'll do all of these from a Graphite plugin. We've seen how to check for status with
Nagios. We'll go one step further by also monitoring the number of tasks and how
many actually ran in each run. Let's see the code first, which is as follows:

$cat graphite_plugin.py

import socket

import time

class CallbackModule(object):

 def __init__(self):

 self.UNREACHABLE_RUN = 0

 self.FAILED_RUN = 25

 self.SUCCESSFUL_RUN = 50

 self.CARBON_SERVER = '192.168.1.3'

 self.CARBON_PORT = 2003

 self.playbook = ''

 #Process the run result for each host

 def process_result(self,res):

 status = self.SUCCESSFUL_RUN

http://graphite.readthedocs.org/en/latest/index.html
http://graphite.wikidot.com

Chapter 4

[177]

 changed_tasks, tasks = 0,0

 if type(res) == type(dict()):

 for key in res:

 host = key

 if res[host]['unreachable'] == 1:

 status = self.UNREACHABLE_RUN

 elif res[host]['failures'] != 0:

 status = self.FAILED_RUN

 else:

 tasks = res[host]['ok'] + res[host]['changed']

 changed_tasks = res[host]['changed']

 host = host.replace('.','-')

 self.send_data_to_graphite(host,status,tasks,changed_tasks)

 def send_data_to_graphite(self, host, status, tasks, changed_tasks):

 prefix = "ansible.run.%s.%s" % (self.playbook,host)

 tasks_metric = "%s.number_of_tasks %d %d\n" %
(prefix,tasks,int(time.time()))

 status_metric = "%s.status %d %d\n" % (prefix,status,int(time.
time()))

 changed_tasks_metric = "%s.changed_tasks %d %d\n" % (prefix,changed_
tasks,int(time.time()))

 print "Prefix", prefix

 print "Tasks: %d, status: %d, changed_tasks: %s" %
(tasks,status,changed_tasks)

 sock = socket.socket()

 sock.connect((self.CARBON_SERVER, self.CARBON_PORT))

 sock.sendall(status_metric)

 sock.sendall(tasks_metric)

 sock.sendall(changed_tasks_metric)

 sock.close()

 ## Other methods in the plugin do not change ##

 def playbook_on_play_start(self, pattern):

 self.playbook = pattern

 def playbook_on_stats(self, stats):

 results = dict([(h, stats.summarize(h)) for h in stats.processed])

 self.process_result(results)

Error Handling, Rollback, and Reporting

[178]

Here, we see that we change only two methods in the callback:

• playbook_on_play_start: This method is used in order to store the name of
the play

• playbook_on_stats: This method is used to get the final stats of the
playbook run

The metric values that we'll send to Graphite are in the send_data_to_graphite
method as follows:

• Metric for the overall number of tasks: (syntax: ansible.run.<playbook
name>.<hostname>.number_of_tasks)
To create a hierarchy in Graphite, you need to separate the metric names
by using a dot. Hence, as part of this exercise, we replaced the dots in an IP
address with a hyphen.

• Status of the run: (syntax: ansible.run.<playbook name>.<hostname>.
status)
As part of the status, we've covered three states: SUCCESSFUL_RUN, FAILED_
RUN, and UNREACHABLE_RUN. Each of the three statuses has specific values
that you can easily map out in Graphite: 50, 25, and 0. This is up to you
to customize.

• Number of changed tasks: (syntax: ansible.run.<playbook
name>.<hostname>.changed_tasks)

Make sure you have copied the graphite callback in the callbacks directory. We again
use our build_agent role from the previous chapter to demonstrate this example.
We bring up a new node and run the playbook. It results in the following output at
the end of the run:

Overall, 18 tasks ran and eight changed. Downloading of files does not change the
state of the system and hence does not have the changed status associated with them.

Chapter 4

[179]

Let's run these tasks again. We assume here that you run Ansible on each of the
machines every hour, to maintain the state, or at the start of every build. We
obviously haven't run the task every hour, because we want to show you what
graphs are going to look like (We ran it within 5 minutes). So coming back, on
rerunning, we find that eight tasks have run and none of the tasks have failed,
as shown in the following screenshot:

You might be wondering how the jump from 18 to 8 happened. This is because
the playbook has 10 tasks that depend on conditionals. For example, the task will
download Maven if the directory is not present. Hence, all those tasks are skipped.
You can look at the build_agent playbook role in the previous chapter to go over
the playbook content again.

Time for an error
Now, we'll introduce an error in ant.yml and rerun the playbook. The output is
shown as follows:

The Ansible run status will be set to FAILED_RUN from SUCCESSFUL_RUN and you will
see a change in Graphite if everything works as expected.

Error Handling, Rollback, and Reporting

[180]

We then fix the error and rerun the playbook, and we again see eight tasks.
Let's see the snapshots in Graphite spread across a 10-minute period that
captures all these runs.

You can see the three metrics that we've chosen along with their respective values
and how they've changed. On the left-hand side pane, you'll be able to see the
hierarchy that we've introduced as follows:

Now, we remove the status to compare just the overall number of tasks and the
number of changed tasks.

Chapter 4

[181]

Over a period of time, if there is no change, you should have unchanged values for
the number_of_tasks and changed_tasks metrics.

On the Graphite server filesystem, you will be able to see the following hierarchy for
the three metrics that we measured:

Error Handling, Rollback, and Reporting

[182]

You can see the directory from where we ran the tree command. Graphite stores
all the data in the form of whisper files. You can query the values of each file on the
filesystem using whisper-fetch, as shown in the preceding screenshot. You can
also run a curl call to obtain the values in the JSON format. A curl call to obtain
information about the last 30 minutes and in the JSON format should look like
the following:

$ curl "http://<graphite ip>/render?target=ansible.run.build_agents.192-
168-33-11.*&format=json&from=-30min

The following is the output of the preceding command line:

The Graphite website has a great, detailed documentation on how to consume the
data from Graphite. We'll leave it to you to figure out the rest! While consuming the
Graphite metrics, let's say from Nagios, you can set up an alert that will filter out all
the null values and alerts based on either the failure value or the lack of idempotency
in your playbooks.

Chapter 4

[183]

Summary
With this, we come to the end of this chapter where we've seen how to handle
errors using rollbacks, how to use callbacks in general, and how to report and
alert using tasks as well as callbacks. Along the way, we've also seen other tools
such as etcd, MySQL database, HipChat, E-mail, Nagios, and Graphite, and how
to integrate Ansible with them. These are definitely some common as well as
easy implementations that provide great value to Ansible users. Finally, it's very
important that you have a strong feedback loop in your infrastructure and you've
seen a few of those techniques in action in this chapter.

It's also time for a coffee break. As usual, we have a few questions for you to ponder
over and discuss with your team as follows:

• What monitoring system do you have and what features from this chapter
would benefit you the most?

• If you use callbacks, what would you want your callbacks to do?
• If you want to alert, about what would you alert?

We hope that you’ll revisit the roles that you’ve written, or started to write, after
reading Chapter 3, Taking Ansible to Production, and incorporate some of the Ansible
features that you’ve learned in this chapter to introduce feedback loops into your
infrastructure automation. If you’re a sysadmin, we can imagine you smiling after
reading through this chapter!

The next chapter is all about writing custom modules and testing them. This will test
some of your basic programming skills. So get ready to code.

Working with
Custom Modules

"Customize your thoughts in order to personalize your behavior."

- Joseph Mercado, author of "The Undiscovered You"

The preceding quote is in the context of a human being's thoughts and behavior,
but if you start to think about it and apply a similar philosophy to the technology
and tools that you use, you'll feel that it fits in quite well.

This chapter will focus on how to write and test custom modules. We've already
discussed how modules work and how to use them within your tasks. Well, just
for a quick recap, a module in Ansible is a piece of code, which is transferred and
executed on your remote host every time you run an Ansible task (it can also run
locally if you've used local_action).

From our experience, we've seen custom modules being written whenever a certain
functionality needs to be exposed as a first-class task. The same functionality could
have been achieved without the module, but it would have required a series of tasks
with existing modules to accomplish the end goal. For example, let's say you wanted
to provision a server via Preboot Execution Environment (PXE). Without a custom
module, you would have probably used a few shell or command tasks to accomplish
the same. However, with a custom module, you would just pass the required
parameters to it and the business logic will be embedded within the custom
module in order to perform the PXE boot.

The arguments that you pass to a module, provided they are in a key-value format,
will be forwarded in a separate file along with the module. Ansible expects at least
two variables in your module output, (that is, the result of the module run) whether
it passed or failed, and a message for the user, and they both have to be in the JSON
format. If you adhere to this simple rule, you can customize as much as you want!

Working with Custom Modules

[186]

If you've already started implementing roles with what you had learned in
Chapter 3, Taking Ansible to Production, we hope by the end of this chapter,
you would revisit your playbooks and probably replace a few of your tasks
as a single task by implementing a custom module. This way, you will
constantly evolve your playbooks.

In this chapter, we will cover the following topics:

• Python modules
• Bash modules
• Ruby modules
• Testing modules

When you choose a particular technology or tool, you generally start with what it
offers. You slowly understand the philosophy behind building the tool and what
problems it helps you solve. However, you truly feel comfortable and in control
only when you understand in depth how it works. At some stage, to utilize
the complete power of a tool, you'll have to customize it in ways and means that
suit your particular needs. Over a period of time, tools that provide you with
an easy way to plug in new functionalities stay, and those that don't, disappear
from the market.

It's a similar story with Ansible as well. All tasks in Ansible playbooks are modules
of some kind and it comes loaded with hundreds of modules. You will find a module
for almost everything you might need. However, there are always exceptions. This
is where the power to extend it comes in. Chef provides Lightweight Resources and
Providers (LWRPs) to perform this activity and Ansible allows you to extend its
functionality using custom modules.

The significant difference, however, is that you can write the module in any
language of your choice (provided you have an interpreter of that language),
whereas in Chef, the module has to be in Ruby. We recommend using Python
for any complex module, as there is out-of-the-box support to parse arguments;
almost all *nix systems have Python installed by default and Ansible itself is
written in Python. We will also show how you can write modules in other languages.

To make your custom modules available to Ansible, you can either
specify the path to your custom module in an environment variable,
ANSIBLE_LIBRARY; use the --module-path command-line option,
or drop the modules in a ./library directory alongside your
top-level playbooks.

With this background information, let's look at some code!

Chapter 5

[187]

Using Python modules
Ansible intends to allow users to write modules in any language. Writing the module
in Python, however, has its own advantages. You can take advantage of Ansible's
libraries to shorten your code, an advantage not available for modules in other
languages. Parsing user arguments, handling errors, and returning the required
values becomes easier with the help of the Ansible libraries.

We will see two examples for a custom Python module, one with and one without
using the Ansible library, to give you a glimpse of how custom modules work. Make
sure you organize your directory structure as mentioned in the previous section
before creating the module. The first example creates a module named check_user;
let's look at the code in the following screenshot:

Working with Custom Modules

[188]

The preceding custom module, check_user, will check whether a user exists on
a host. The module expects a user argument from Ansible. Let's break down the
preceding module and see what it does.

We first import the libraries required to parse the arguments. The arguments are
shown in the following screenshot:

Using the sys library, we then parse the arguments, which are passed in a file
by Ansible. The arguments are in the format, param1=value1 param2=value2,
where param1 and param2 are parameters and value1 and value2 are values
of the parameters.

There are multiple ways to split arguments and create a dictionary and we've chosen
an easy way to perform the operation. We first create a list of arguments by splitting
the arguments with a whitespace character, and then separate the key and value by
splitting the arguments with an = character and assigning it to a Python dictionary.
For example, if you have a string such as user=foo gid=1000, then you will first
create a list, which will look like ["user=foo", "gid=1000"] and then loop over
this list to create a dictionary. This dictionary will look like {"user": "foo",
"gid": 1000}; this is shown in the following screenshot:

We separate the arguments based on a whitespace character because this
is followed by core Ansible modules. You can use any separator instead
of a whitespace, but we would encourage you to maintain uniformity.

Chapter 5

[189]

Once we have the user argument, we then check whether that user exists on the host
as follows:

We use the pwd library to check the passwd file for the user. For the sake of
simplicity, we use two variables: one to store the success or failure message
and the other to store the message for the user.

Finally, we use the variables created in the try-catch block to check if the module
succeeded or failed, as shown in the following screenshot:

If the module succeeds, then we will exit the execution with an exit code 0; else, we
will exit with a non-zero code. Ansible will look for the failed variable and if it is
set to True, it will exit unless you have explicitly asked Ansible to ignore errors using
the ignore_errors parameter.

Working with Custom Modules

[190]

You can use customized modules like any other core module of Ansible. Let's look at
an example playbook for the preceding custom module as follows:

As you can see, we used the check_user module like any other core module. Ansible
will execute this module on the remote host by copying the module to the remote
host with arguments in a separate file. Let's see how this playbook runs as follows:

As expected, since we do not have any existing user named foo, the module fails
with a message saying User foo does not exists. If you noticed, we passed an
extra option, -M, to tell Ansible where to look for custom modules.

Ansible also provides a Python library to parse user arguments and handle
errors and returns. It's time to see how the Ansible Python library is useful to
make your code shorter, faster, and less error prone. This is demonstrated in
the following screenshot:

Chapter 5

[191]

Let's break down the preceding module and see how it works, as follows:

Working with Custom Modules

[192]

Previously, we performed a lot of processing on the argument file to get the final
user arguments. Ansible makes it easy by providing an AnsibleModule method,
which does all the processing on its own and provides us with the final arguments.
The required=True parameter means that the argument is mandatory and the
execution will fail if the argument is not passed. The default value for required is
false, which will allow users to skip the argument. You can then access the value of
the arguments through the module.params dictionary by calling the get method on
module.params.

The logic to check users on the remote host will remain the same, but the error
handling and return aspect will change as follows:

Working with exit_json and fail_json
Ansible provides a shorter way to handle success and failure by providing the
exit_json and fail_json methods, respectively. You can directly pass a message
to these methods and Ansible will take care of the rest. You can also pass additional
variables to these methods and Ansible will print those variables to stdout. For
example, apart from the message, you might also want to print the uid and gid
parameters of the user. You can do this by passing these variables to the exit_json
method separated by a comma. Let's see how you can return multiple values to
stdout, which is demonstrated in the following screenshot:

Chapter 5

[193]

As you can see, we return the uid and gid of the user along with the message, msg.
You can have multiple values and Ansible will print all of them in a dictionary
format. You can also further use these values in your playbook by registering the
output of the module (remember register in a playbook?).

Testing Python modules
You can test your module by simply running it along with an arguments
file. Simply copy your arguments to a file and run it, as shown in the
following screenshot:

Working with Custom Modules

[194]

Now, pass the file over to your custom module, as shown in the following screenshot:

Ansible provides a test-module script to test modules that use the Ansible library.
To get this script, you should clone the Ansible repository at https://github.com/
ansible/ansible. The test-module script is in the hacking folder within Ansible's
git repository. You can now test your module, as shown in the following screenshot:

In the preceding test, we pass the complete path of the module using the -m option
and the arguments with the -a option. You can also pass multiple arguments to the
module separated by a whitespace character.

The syntax and behavior of the module will be the same if run from a
playbook, no matter how you parse the arguments, handle errors, and
return statuses from inside your module.

Using Bash modules
Bash modules in Ansible are no different than any other bash scripts, except the
way it prints the data on stdout. Bash modules could be as simple as checking if
a process is running on the remote host to running some complex commands.

We recommend that you use bash over other languages, such as Python
and Ruby only when you're performing simple tasks. In other cases, you
should use languages that provide better error handling.

https://github.com/ansible/ansible
https://github.com/ansible/ansible

Chapter 5

[195]

Let's see an example for the bash module as follows:

The preceding bash module will take the service_name argument and forcefully kill
all of the Java processes that belong to that service. As you know, Ansible passes the
argument file to the module. We then source the arguments file using source $1.
This will actually set the environment variable with the name, service_name.
We then access this variable using $service_name as follows:

We then check to see if we obtained any PIDs for the service and run a loop over it to
forcefully kill all of the Java processes that match service_name. Once they're killed,
we exit the module with failed=False and a message with an exit code of 0,
as shown in the following screenshot:

Working with Custom Modules

[196]

If we do not find any running process for the service, we will still exit the module
with an exit code of 0 because terminating the Ansible run might not make sense;
this is shown in the following screenshot:

You can still terminate the Ansible run by printing failed=True
with an exit code of 1

Ansible allows you to return a key-value output if the language itself doesn't support
JSON. This makes Ansible more developer/sysadmin friendly and allows custom
modules to be written in any language of one's choice.

Let's test the bash module by passing the arguments file to the module.
The arguments file has the service_name parameter set to Jenkins,
as shown in the following screenshot:

Now, you can run the module like any other bash script. Let's see what happens
when we do so in the following screenshot:

As expected, the module did not fail even though there was no Jenkins process
running on the localhost.

Using Ruby modules
Writing modules in Ruby is as easy as writing a module in Python or bash. You just
need to take care of the arguments, errors, return statements, and of course, know
basic Ruby! Let's see what a Ruby module looks like in the following screenshot:

Chapter 5

[197]

In the preceding module, we first process the user arguments, then copy the
file using the rsync library, and finally, return the output. Let's break down
the preceding code and see how it works.

Working with Custom Modules

[198]

We first wrote a method, print_message, which will print the output in a JSON
format. By doing this, we can reuse the same code in multiple places. Remember,
the output of your module should contain failed => true if you want the Ansible
run to fail; otherwise, Ansible will think that the module succeeded and will
continue with the next task. The output obtained is as follows:

We then process the arguments file, which contains a key-value pair separated by a
whitespace character. This is similar to what we did with the Python module earlier,
where we took care of parsing out the arguments. We also perform some checks to
make sure that the user has not missed any required argument.

In this case, we check if the src and dest parameters have been specified and print a
message if the arguments are not provided. Further checks could include the format
and type of arguments. You can add these checks and any other checks you deem
important. For example, if one of your parameters is a date, then you'd like to verify
that the input is actually the right date. Consider the following screenshot, which
shows the discussed parameters:

Chapter 5

[199]

Once we have the required arguments, we will go ahead and copy the file using the
rsync library as follows:

Finally, we check if the rsync task passed or failed and call the print_message
function to print the output on stdout as follows:

You can test your Ruby module by simply passing the arguments file to the module.
Your arguments file will look as shown in the following screenshot:

Let's now run the module, as shown in the following screenshot:

We will leave the serverspec testing for you to complete.

Testing modules
Testing is often undervalued due to lack of understanding of its purpose and the
benefits it can bring to the business. Testing modules is as important as testing any
other part of the Ansible playbook because a small change in a module can break
your entire playbook. We will take an example of the Python module that we wrote
in the first section of this chapter and write an integration test using Python's nose
test framework. Unit tests are also encouraged, but for our scenario where we check
if a user exists remotely, an integration test makes more sense.

Working with Custom Modules

[200]

nose is a Python test framework. For more information, visit
https://nose.readthedocs.org/en/latest/.

To test the module, we convert our previous module into a Python class so that we
can directly import the class in our test, and run only the main logic of the module.
The following screenshot shows the restructured module, which will check whether
a user exists on a remote host:

As you can see in the preceding screenshot, we created a class named User.
We instantiated the class, and called the check_if_user_exists method to
check if the user actually exists on the remote machine.

https://nose.readthedocs.org/en/latest/

Chapter 5

[201]

It's time to write an integration test now. We assume that you have the nose package
installed on your system. If not, don't worry! You can still install the package by
using the following command:
pip install nose

Let's now write the integration test as follows:

In the preceding integration test, we import the nose package and our module,
check_users. We call the User class by passing the user we want to check. We then
check whether the user exists on the remote host by calling the check_if_user_
exists() method. Nose methods, assert_true and assert_equals, can be used
to compare the expected value against the actual. Only if the assert methods pass,
will the test pass. You can have multiple tests inside the same file by having multiple
methods whose names start with test_, for example, the test_if_user_exists()
method. Nose tests will take all the methods that start with test_ and execute them.
Let's see how this works in the following screenshot:

As you can see, the test passed because the user, ec2-user, existed on the host.
We use the -v option with nose tests for the verbose mode. For more complicated
modules, we recommend that you write unit tests and integration tests. You might
wonder why we didn't use serverspec to test the module.

We still recommend running serverspec tests for functional testing as part
of playbooks, but for unit and integration tests, it's recommended to use
well-known frameworks.

Finally, we recommend that your run all these tests as part of your CI system, be it
Jenkins, Travis, or any other system.

Working with Custom Modules

[202]

Similarly, if you write Ruby modules, we recommend you write tests for them with
a framework such as rspec. If your custom Ansible module has multiple parameters
with multiple combinations, then you will write more tests to test each scenario.
Finally, we recommend that you run all these tests as part of your CI system,
be it Jenkins, Travis, or any other system.

Summary
With this, we come to the end of this rather small but important chapter, which
focused on how you can extend Ansible by writing your own custom modules.
You learned how to use Python, Bash, and Ruby in order to write your modules.
We've also seen how to write integration tests for modules so that they can be
integrated into your CI system. In future, hopefully, extending your Ansible
functionality using modules should be way easier!

A couple of questions to think about are as follows:

• Can you think of common tasks that you perform daily and how you would
write an Ansible module for that? List them down in terms of how you
would invoke the module from a playbook.

• Which language do you think your team would be comfortable using for
your modules?

• Can you revisit the roles that you might have written after Chapter 3, Taking
Ansible to Production, and see which of them can potentially be converted into
custom modules?

Next, we will step into the world of Provisioning, Deployment, and Orchestration
and look at how Ansible solves our infrastructure problems when we provision
new instances or want to deploy software updates to various instances in our
environments. We promise that the journey is going to be fun!

Provisioning
"The only kind of server you want to create is a Phoenix server"

– Madhurranjan and Ramesh

We've now hit the "slog overs" as they say in cricket or the part of the book from
where we can see a logical end to the book. However, before we do that, we have a
few topics that anyone in System Administration, Release Management, or DevOps
would love to discuss—Provisioning, Deployment, and Orchestration. We're going
to cover topics on Deployment and Orchestration in the next chapter, and all that we
think is important regarding Provisioning in this chapter.

Regarding the preceding quote, the term "Phoenix Server" first appeared in one of
Martin Fowler's famous blikis (http://martinfowler.com/bliki/PhoenixServer.
html) and the credit goes to his colleague Kornelis Sietsma for coining the term. The
concept of a Phoenix is quite popular. For those who haven't heard, it refers to a
Greek mythological bird that lived long and cyclically regenerated from its own
ashes. Harry Potter fans might have come across the bird either in the books or
movies. The end result is that, while designing your infrastructure, you want to
make sure that you can bring up and bring down machines on demand and not
allow certain machines to assume mammoth importance.

http://martinfowler.com/bliki/PhoenixServer.html
http://martinfowler.com/bliki/PhoenixServer.html

Provisioning

[204]

One of the authors was in charge of a decently large build system and he came across
these finely carved custom build machines (Windows VMs to be specific) that had
been running builds for close to 3 years. Their team had to relocate close to 200 such
machines from one data center to another, since they were shutting down the first
data center. The team spent close to a month and the simple algorithm they followed
was to shut down machines once everyone went home, copy as many VM images as
possible onto a USB drive during the night, and physically drop the drive at the data
center the next morning so that someone in charge could mount them and copy all
the images over to the right servers. If you have an exasperated look on your face,
it's quite understandable because the entire team felt quite stupid during the entire
month. One of the immediate projects that was commissioned after that was to make
sure that they evolved to Phoenix servers soon after that.

In this chapter, at a broad level, we'll cover the following topics:

• Provisioning of machines in cloud such as AWS and DigitalOcean
• Provisioning Docker containers
• Ansible's Dynamic Inventory

Most of the new machine creations have two phases:

• Provisioning a new machine
• Running scripts to make sure the machine is configured to play the right role

in your infrastructure

We've looked at the configuration management aspect in the initial chapters.
We'll focus a lot more on provisioning new machines in this chapter with a
lesser focus on configuration management.

Provisioning a machine in the cloud
With that, let's jump to the first topic. Teams managing infrastructures have a lot
of choices today to run their builds, tests, and deployments. Providers such as
Amazon, Rackspace, and DigitalOcean primarily provide Infrastructure as a Service
(IAAS). They expose an API via SDKs, which you can invoke in order to create new
machines, or use their GUI to set it up. We're more interested in using their SDK as
it will play an important part in our automation effort. Setting up new servers and
provisioning them is interesting at first but at some stage it can become boring as it's
quite repetitive in nature. Each provisioning step would involve several similar steps
to get them up-and-running.

Chapter 6

[205]

Imagine one fine morning you receive an e-mail asking for three new customer
setups, where each customer setup has three to four instances and a bunch of
services and dependencies. This might be an easy task for you, but would require
running the same set of repetitive commands multiple times, followed by monitoring
the servers once they come up to confirm that everything just went fine. In addition,
anything you do manually has a chance of introducing bugs.

What if two of the customer setups come up correctly but, due to fatigue, you miss
out a step for the third customer and hence introduce a bug? To deal with such
situations, there exists automation. Cloud provisioning automation makes it easy
for an engineer to build up a new server as quickly as possible, allowing him/her to
concentrate on other priorities. Using Ansible, you can easily perform these actions
and automate cloud provisioning with minimal effort. Ansible provides you with the
power to automate various different cloud platforms, such as Amazon, DigitalOcean,
Google Cloud, Rackspace, and so on, with modules for different services available in
the Ansible core.

In this section, we will see two examples of cloud provisioning:

• One for Amazon
• One for DigitalOcean

As mentioned earlier, bringing up new machines is not the end of the
game. We also need to make sure we configure them to play the required
role. Let's look at a popular use case—that of bringing up a Hadoop
cluster to run MapReduce jobs. In short, for the uninitiated, Hadoop is a
framework that supports storage and large scale processing of datasets
on clusters of commodity hardware. More information regarding Hadoop
can be found at http://hadoop.apache.org/.

The directory structure looks as follows:

http://hadoop.apache.org/

Provisioning

[206]

There are three playbooks:

• One to launch an Amazon instance
• One to launch a DigitalOcean instance
• One common playbook to install the Hadoop cluster

We also have a static inventory file that consists of only one host, the localhost.
This file can either be /etc/ansible/hosts or any other file that needs to be referred
to with the -i option while running ansible-playbook. You might be wondering
why the host file just has localhost. This is because we'll be launching the machines
from the localhost. In this case, localhost is also the command center from where we
execute playbooks.

We will modify this inventory file on-the-fly, dynamically from the playbook with
the new host details. Let's see how we can use Ansible to launch a couple of ec2
instances and install the Hadoop cluster on it:

Chapter 6

[207]

Diving deep into the playbook
In the first task shown in the preceding screenshot, we launch the ec2 instance with
the hadoop-name and hadoop-data tags, respectively, so that we can later identify
the new instances easily. We register the output of the ec2 module to a variable
called ec2, which can be used to get the new instance details in the later tasks:

- name: Provision hadoop name node

 local_action: ec2 keypair={{ mykeypair }} instance_type={{ instance_
type }} image={{ image }} wait=true zone={{ zone }} region={{ region }}
instance_tags='{"name":"{{ item }}"}' wait_timeout=600

 register: ec2

 with_items:

 - "hadoop-name"

 - "hadoop-data"

The with_items section in the preceding code is an array that consists of tags for the
new machines that are going to be provisioned. The way item is referenced is shown
in the following line of code:

instance_tags='{"name":"{{ item }}"}'

The item section takes the value hadoop-name in the first iteration for the first
machine's tag and hadoop-data in the next iteration for the second machine's tag.

The next task will print the new instance details that we just launched:

- name: Print new instance details

 debug: var=ec2

We then wait for the SSH port to come up using the wait_for module. You can use
this module to wait for a specific port to come up. You can also wait until a specific
file is present or absent or a specific regular expression is matched. The with_items
section here provides the two instances that were created in the earlier step and
registered with the ec2 variable as parameters. The item.instances[0]['public_
dns_name'] represents public_dns_name for each of the instances that we
provisioned and is provided to the host parameter as part of the wait_for check:

- name: Wait for SSH to come up

 local_action: wait_for host={{ item.instances[0]['public_dns_name'] }}
port=22 delay=60 timeout=320 state=started

 with_items: ec2.results

Provisioning

[208]

The last task will update the inventory file with a new group called launched and
add the two newly launched hosts, provided as part of the with_items construct,
under it using the add_host module. This group will be valid only for the current
Ansible run, that is, the module will not actually update the inventory file; instead,
it will load that group in the memory for the current Ansible run. It will also add
two variables, instance_hostname and user, in the inventory against the new
host, which we can use later in the playbook to identify the hostname and SSH
user, respectively, as follows:

- name: Add new instance to host group

 add_host: hostname={{ item.instances[0]['public_ip'] }}
groupname=launched instance_hostname={{ item.item }} user=ec2-user

 with_items: ec2.results

To launch an instance in ec2, you either need to set the environment
variables, AWS_ACCESS_KEY and AWS_SECRET_KEY, for the AWS
access key and the secret key, respectively, or pass it to the ec2
module in the preceding playbook. You can generate these keys from
your AWS console.

We will now include this playbook in the cloud_provision.yml playbook.
The cloud_provision.yml playbook allows us to launch an instance(s) either
in Amazon EC2 or in DigitalOcean and then installs the required packages and
dependencies to configure the Hadoop cluster. Let's now look at the playbook by
running the following command:

$ cat playbooks/cloud_provision.yml

The following command lines denote play 1:

- name: Launching new hosts

 hosts: localhost

 gather_facts: no

 tasks:

 - include: digital_ocean_launch.yml tags=digital_ocean

 - include: ec2_launch.yml tags=ec2

Chapter 6

[209]

The following command lines denote play 2:

- name: Updating new instance

 hosts: launched

 gather_facts: no

 user: "{{ user }}"

 sudo: yes

 tags: digital_ocean,ec2

 tasks:

 - name: Updating hostname

 hostname: name={{ instance_hostname }}

 - name: Installing wget

 yum: name=wget state=present

 - name: Grouping hosts

 group_by: key={{ instance_hostname }}

 - name: Downloading CDH Repository

 shell: wget http://archive.cloudera.com/cdh4/one-click-install/
redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm

 - name: Installing CDH Repository

 yum: name=cloudera-cdh-4-0.x86_64.rpm state=installed

 - name: Adding Cloudera Public GPG Key to repository

 shell: rpm --import http://archive.cloudera.com/cdh4/redhat/6/
x86_64/cdh/RPM-GPG-KEY-cloudera

The following command lines denote play 3:

- name: Provisioning name node

 hosts: hadoop-name*

 user: "{{ user }}"

 sudo: yes

 tags: digital_ocean,ec2

 tasks:

Provisioning

[210]

 - name: Installing required packages

 yum: name=hadoop-0.20-mapreduce-jobtracker,hadoop-hdfs-
namenode,hadoop-hdfs-secondarynamenode state=present

 - name: starting services

 service: name={{ item }} state=started

 register: ser

 failed_when: "'Starting' not in ser.msg"

 with_items:

 - hadoop-0.20-mapreduce-jobtracker

 - hadoop-hdfs-namenode

 - hadoop-hdfs-secondarynamenode

The following command lines denote play 4:

- name: Provisioning data node

 hosts: hadoop-data*

 user: "{{ user }}"

 sudo: yes

 tags: digital_ocean,ec2

 tasks:

 - name: Installing required packages

 yum: name=hadoop-0.20-mapreduce-tasktracker,hadoop-hdfs-
datanode,hadoop-client state=present

 - name: starting services

 service: name={{ item }} state=started

 register: ser

 with_items:

 - hadoop-0.20-mapreduce-tasktracker

 - hadoop-hdfs-datanode

 failed_when: "'Starting' not in ser.msg"

Chapter 6

[211]

As shown in the preceding snippet of command lines, cloud_provision.yml is
the common playbook, which will be used for both AWS and DigitalOcean. This
playbook consists of four different plays. At a high level, the following are the plays:

• The first play: This launches new nodes either in AWS or Digital Ocean
• The second play: This updates the provisioned nodes with common content
• The third play: This is specific to NameNode
• The fourth play: This is specific to DataNode

Let's examine each of the plays in more detail.

The first play will launch an instance in ec2 or DigitalOcean depending on the tags
passed. If the tag passed is ec2, it will kick off an ec2 deployment by calling ec2_
launch.yml; alternatively, if the tag is digital_ocean, it will kick off a DigitalOcean
deployment by calling digital_ocean_launch.yml:

The second play will set the hostname on the new hosts and install other dependencies:

Provisioning

[212]

In the second play, we used hosts in the launched group of the inventory, which we
added in the previous play using hosts: launched.

The first task in the second play updates the hostname on the new instances using
the hostname module. The instance_hostname variable is added to the inventory
file in the preceding play:

 - name: Updating hostname

 hostname: name={{ instance_hostname }}

The following tasks will install dependencies and the repository to install a
Hadoop cluster:

 - name: Installing wget

 yum: name=wget state=present

 - name: Downloading CDH Repository

 shell: wget http://archive.cloudera.com/cdh4/one-click-install/
redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm

 - name: Grouping hosts ---- (We'll look at this task next!)

 group_by: key={{ instance_hostname }}

 - name: Installing CDH Repository

 yum: name=cloudera-cdh-4-0.x86_64.rpm state=installed

 - name: Adding Cloudera Public GPG Key to repository

 shell: rpm --import http://archive.cloudera.com/cdh4/redhat/6/
x86_64/cdh/RPM-GPG-KEY-cloudera

Let's look at the group_by module. The group_by module allows you to split
hosts further based on certain parameters, be it hostnames, machine facts,
or even regular expressions.

In this case, the group_by task will further group the instances based on the
hostname inside the launched group. Let's consider, for example, that the launched
group contains the hosts hdpn001, hdpd002, hdpd003, and hdpd004. Out of these,
hdpn001, as the name suggests, is the Hadoop NameNode whereas the other three
hosts are Hadoop DataNodes. We can now group these hosts based on either the
hostname or any other Ansible fact. If you are grouping the hosts based on the
hostname, then you can simply use regex inside your hosts field, as follows:

 hosts: hdpd*

Chapter 6

[213]

The preceding regex will match all hosts that start with hdpd; these are Hadoop
DataNodes in our case. Another popular use case is when you're running it across
a bunch of database nodes, where certain nodes are masters and certain nodes are
slaves. You can run group_by on a db_role fact that is set to either master or slave
and create a subgroup on which you can run certain actions.

Ansible again maintains the group only until the current Ansible run and it is not
reflected in the actual inventory file. Using these groups, we can easily identify our
name and data nodes in further plays. For this particular case, we create groups here
to separate out the nodes as DataNodes and NameNodes:

 - name: Grouping hosts

 group_by: key={{ instance_hostname }}

The last two plays are specific to NameNode and DataNode, respectively:

We use regex in the hosts field to map the names of hosts. This regex will identify
hosts that have matching hostnames:

 hosts: hadoop-name*

The preceding regex will identify all hosts that start with the string hadoop-name.
This means that hosts with hostnames hadoop-name01, hadoop-name02, hadoop-
name-test, and so on will be matched. These groups were created in play 2 in the
preceding screenshot using the group_by module.

Provisioning

[214]

Let's run the preceding playbook to launch two instances on the Amazon EC2 cloud
and install the Hadoop cluster on it. We call the cloud_provision.yml playbook
with the following extended parameters:

• Group_id: This is a security group in AWS
• Mykeypair: This is a key pair generated in AWS
• Instance_type: This is a type of instance that will be provisioned
• Image id: This is an Amazon Machine Image (AMI), which is an image OS

template used to spawn the new machine
• zone: This specifies the AWS zone
• region: This specifies the AWS region

We also provide —tags=ec2 so that the ec2_launch.yml file is invoked, as follows:

$ ansible-playbook -i hosts playbooks/cloud_provision.yml -e "group_
id=sg-bddb8bd6 mykeypair=ramesh-opsresearch instance_type=t1.micro
image=ami-bba18dd2 zone=us-east-1b region=us-east-1" --tags ec2

PLAY [Launching new hosts] **

TASK: [Provision hadoop name node] **************************************

changed: [localhost] => (item=hadoop-name)

changed: [localhost] => (item=hadoop-data)

TASK: [Print new instance details] **************************************

ok: [localhost] => {

 "ec2": {

 "changed": true,

 "msg": "All items completed",

 "results": [

 {

 "changed": true,

 "instance_ids": [

 "i-98458573"

],

Chapter 6

[215]

 "instances": [

 {

 "ami_launch_index": "0",

 "architecture": "x86_64",

 "dns_name": "ec2-54-198-250-211.compute-
 1.amazonaws.com",

 "ebs_optimized": false,

 "hypervisor": "xen",

 "id": "i-43be45a8",

 "image_id": "ami-bba18dd2",

 "instance_type": "t1.micro",

 "kernel": "aki-919dcaf8",

 "key_name": "ramesh-opsresearch",

 "launch_time": "2014-08-31T16:24:05.000Z",

 "placement": "us-east-1b",

 "private_dns_name": "ip-10-71-130-
 46.ec2.internal",

 "private_ip": "10.71.130.46",

 "public_dns_name": "ec2-54-198-250-
 211.compute-1.amazonaws.com",

 "public_ip": "54.198.250.211",

 "ramdisk": null,

 "region": "us-east-1",

 "root_device_name": "/dev/sda1",

 "root_device_type": "ebs",

 "state": "running",

 "state_code": 16,

 "virtualization_type": "paravirtual"

 }

],

Provisioning

[216]

The output is truncated because it's way too long. In the very first task, you can see
that we launched two instances and we see a changed status twice because we ran
a loop for hadoop-name and hadoop-datanode; that is, two nodes were created
(remember how it was with items?). Let's see how the other three plays behaved:

The preceding screenshot is the output of the playbook that we ran previously.
As you can see, Ansible ran all four plays that launched two ec2 instances and
installed a Hadoop NameNode and DataNode. We have not added any task
to customize the Hadoop cluster and will leave that up to you as an exercise,
based on your setup.

Launching a DigitalOcean instance
Let's now see how you can launch a DigitalOcean instance using Ansible. We will use
the digital_ocean_launch.yml playbook to launch an instance and use the same
cloud_provision.yml playbook to install dependencies and the Hadoop cluster
that we used for ec2. Let's briefly look at the digital_ocean_launch playbook:

Chapter 6

[217]

This playbook will launch two instances in the DigitalOcean cloud and update the
inventory accordingly.

To launch an instance, you will need to generate an API key and client
ID from the DigitalOcean console and pass it to the digital_ocean
module in the preceding playbook.

We included this playbook in the cloud_provision.yml playbook and can now run
it with a digital_ocean tag. Please remember that, in this case, the playbook that
we call does not change; just the tags and extra arguments to the playbook change.

Let's run this playbook and see how it behaves:

Provisioning

[218]

The output is truncated, but you can see, Ansible launched both the instances
and printed the output with the instance details. Let's see what happens to the
Hadoop installation:

There you go! You have an up-and-running Hadoop cluster that is fully functional.
We've shown how you can use Ansible to provision new machines in AWS and
DigitalOcean; add them to the inventory; and, finally, configure them so that they
end up performing the activity they're meant for. The methodology that you will
follow while dealing with any other cloud or your own data center will be very
similar to what we've shown if you're using Ansible or any other similar tool;
hopefully, we've shown enough to get you started and be productive.

Chapter 6

[219]

Docker provisioning
Docker is perhaps the most popular open source tool that has been released in the
last year. The following quote can be seen on the Docker website:

Docker is an open platform for developers and sysadmins to build, ship, and run
distributed applications, whether on laptops, data center VMs, or the cloud.

Increasingly, more and more individuals and companies are adopting Docker.
The tagline for Docker is Containerization is the new virtualization. At a high level, all
Docker allows you to do is prepare lightweight containers using instructions from
a Dockerfile and run the container. The same container can be shared or shipped
across environments, thereby making sure you run the exact same image and
reducing the chance of errors. The Docker image that you build is cached by default;
thus, the next time you have similar instructions, the time taken to bring up a similar
container is reduced to almost nothing.

What is a container?
Though this is not a book about containers, we've commonly heard
concerns and questions regarding what a container can provide as against
a VM. We'd like to devote a paragraph to what a Linux container is before
proceeding; this is so that we can see how Ansible can aid your use of
Docker to make it a simple and powerful combination to use.
A Linux container is a lightweight virtualization technique that provides
isolation in the form of namespaces and resource control using cgroups.
It's often described as chroot on steroids. The underlying host kernel
should support these features for you to create containers. Unlike in
the case of VMs, there is no hypervisor layer; instead, there is direct
interaction with the hardware components. Finally, since every container
is just a process, bootstrapping containers is very quick (approximately 1
second) and so is bringing them down.

Let's now look at how Ansible can be used with Docker to make this a powerful
working combination. In this section, we'll look at how we can use Ansible to
perform the following:

• Installing Docker on hosts
• Deploying new Docker images
• Building or provisioning new Docker images

Provisioning

[220]

Installing Docker on hosts
Let's say you have a new host on which you want to start creating Docker containers.
In order to set it up, one of the first things you might want to do is actually install
Docker. The Ansible website has an example of a Docker role for Ubuntu. We'll look
at a relatively simple example of setting up Docker on CentOS 7. CentOS 7 supports
Docker and is included in the CentOS-Extras repository. For those who are not
familiar, CentOS-Extras is one of the repositories that come in by default when you
install CentOS 7, hence, you can directly install it using yum install docker.

In CentOS 6, the Docker package was in the EPEL repository and, as a result, you
needed to add the repository before pulling the repository. You can add the EPEL
repository as follows:

$ rpm –Uvh http://download.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

The package name is docker-io in RHEL 6 / CentOS 6. You can install it with yum
install docker-io.

So, we'll create an install_docker role with a single main.yml file. The contents of
the file are shown in the following screenshot:

Chapter 6

[221]

This is straightforward, isn't it? We'll now run site.yml and see what happens:

No hitches. Docker gets installed on the machine. We can check if it's installed by
running a couple of verification commands on the machine. (Remember serverspec?
Make sure you write serverspec tests!)

The following is what we observe when we validate the installation of Docker on
the machine:

Provisioning

[222]

The Docker service is up-and-running and we can now deploy or create new
containers on the machine. In the preceding case, we have a single Docker host,
but the same playbook can be run across a multitude of hosts as well, provided
you have all those hosts in the inventory file.

Deploying new Docker images
Docker has a public registry (https://registry.hub.docker.com/) that has
thousands of images. Our next step is to check whether we can download those
images and run them locally. We'll use Ansible to do this for us using the docker
module. We create a role called nginx and add a main.yml file that does the
job for us. We'll be pulling the Nginx image for this purpose. Let's look at the
following code:

$ cat nginx/tasks/main.yml

 - name: Run nginx docker container

 docker: image=nginx command="nginx" hostname=nginx_container
 ports=80

 - name: Display IP address and port mappings for docker container

 debug: msg={{ inventory_hostname }}:{{
 item['HostConfig']['PortBindings']['80/tcp'][0]['HostPort']
 }}

 with_items: docker_containers

Here, the first task is the one that does all the magic:

• image=nginx: This indicates that we'll download the nginx image
• command=nginx: This tells us what command needs to be run to start the

Docker container
• hostname=nginx_container: This tells us the name of the Docker container
• ports=80: This tells us that the container will run on port 80

https://registry.hub.docker.com/

Chapter 6

[223]

The docker_containers variable is populated in the first step once the container
or containers are created and is an array of containers. The second task uses the
docker_containers array to print the IP address and the host port that is mapped
to port 80 of the container that is created. Remember that all containers are attached
to a separate bridge and there is port forwarding from the host to the container,
by default. We'll add the nginx role after the install_docker role in site.yml
as follows:

$ cat site.yml

- hosts: dockerhost

 user: vagrant

 sudo: yes

 roles:

 - install_docker

 - nginx

Without further ado, let's run site.yml. When we run the playbook, it throws the
following error:

This basically means that the docker-py package isn't installed on the Docker host
and that it is a prerequisite for using the docker module. We go back and modify the
install_docker role's main.yml file as follows:

Provisioning

[224]

On running the entire site.yml playbook again, we will get to see what we want
to see!

What we've shown in the preceding screenshot is the truncated output. Essentially,
Docker outputs the entire metadata associated with the new Docker image. Let's look
at the IP and port mappings that were part of the task:

Chapter 6

[225]

Let's check whether the container is well and truly up:

Now, let's say you want to set up multiple Docker containers. This is typically the
case when you want to set up multiple web servers. In this case, we modify main.
yml in tasks by adding the parameter count=3. Everything else remains the same.

On running the Ansible playbook (no change in command), we end up with three
Docker containers. The output is too big but on copying the output to a file (called
output) and grepping for msg, we find that three containers have been created:

As you can see, the ports that are mapped on the host are different but the actual
ports on the containers themselves would be 80. Let's check the host to see if there
are three containers, each running on port 80:

Yay! This worked as expected. There are other parameters as well that you can
explore with respect to the docker module but we've already covered how to get
started with the module.

Provisioning

[226]

Building or provisioning new Docker images
Let's now look at a more interesting use case: building the Docker image using
Ansible. If you remember, in an earlier chapter we created a build agent role and
installed Java, Maven, and Ant as part of the build agent. Now, assume that your
Lead has read about Docker and wants to introduce Docker somewhere in the
organization, and figures out that the first place this can be done is in the build
system. The Lead figures out that adding new build agents that are Docker images
would be a great way to test it. The ball is now in your court and you're supposed to
come up with Docker build agents.

Before we get into that, we need to understand how a Docker container is built. In
order to build a Docker container, you need to provide a Dockerfile. The Dockerfile
will have one or more commands that will be run in a sequence to generate the
Docker image. Every command that is run in the Dockerfile generates a new image
and is cached. So if you have four steps in a Dockerfile, you will end up with four
containers. Now, if you build a second container from the same base image with
four steps, where the first two steps are held in common with the previous container,
then it will reuse the cached containers of the first and won't rebuild fresh containers
for the first two steps. At each step, the output container of the previous step is the
input. We'll look at a Dockerfile in our next step.

So you start playing with Docker, figure out how a Dockerfile works, and want to
create a Docker image for your build agent. Now, instead of having a set of RUN
commands in the Dockerfile, you want to reuse what you've already done with
Ansible and more importantly you want to make sure that the commands present in
the Dockerfile follow a particular format. So, what we recommend is, whether you're
using Ansible, Chef, or Puppet, make sure you run the necessary configuration
management tool command in the Dockerfile.

Let's take a look at how our Dockerfile looks once we embed the Ansible playbook
contents, as shown in the following screenshot:

Chapter 6

[227]

As you can see in the previous screenshot, a Dockerfile consists of:

• FROM centos:centos6: This specifies the base image from which you'll build
the Docker image. In this case, we chose a base CentOS 6 image.

• RUN: This basically runs the commands on the containers and generates
new intermediate containers. In this case, it generates a new container
after steps 2 and 3.

• ADD: This command allows you to copy the contents of the current directory
to the container that is being built in the specified location. Here, it copies the
current directory to /tmp.

• WORKDIR: This sets the current working directory in the container to /tmp.
• RUN ansible-playbook: This command runs the ansible-playbook

command from /tmp.
• ENV: This sets the environment variables. In this case, it sets the PATH and

ANT_HOME variables.

To summarize, we copy the contents of the current directory to /tmp and run the
ansible-playbook command from there by providing the build_agent.yml
file as a parameter. This build_agent.yml file was copied over when we ran the
ADD command.

Let's now build the image. We run the command docker build –t build_agent
.. This means that we will now build a Docker container from a Dockerfile that is
present in the current directory, and the Docker image that we build will be tagged
build_agent. We will now run the following command:

$ docker build -t build_agent .

Uploading context 135.7 kB

Uploading context

Step 0 : FROM centos:centos6

 ---> b1bd49907d55

Step 1 : RUN rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

 ---> Running in fe3bea02fca0

warning: /var/tmp/rpm-tmp.faqlEl: Header V3 RSA/SHA256 Signature, key ID
0608b895: NOKEY

Retrieving http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

Preparing... ##

epel-release ##

 ---> 74a7cccd4ebd

Provisioning

[228]

Removing intermediate container fe3bea02fca0

Step 2 : RUN yum install -y ansible

 ---> Running in 4efed0c7fe20

 --> Finished Dependency Resolution

Dependencies Resolved

===
=======

 Package Arch Version Repository
Size

===
=======

Installing:

 ansible noarch 1.7-1.el6 epel
874 k

Installing for dependencies:

 PyYAML x86_64 3.10-3.el6 epel
157 k

 libyaml x86_64 0.1.6-1.el6 epel
52 k

 python-babel noarch 0.9.4-5.1.el6 base
1.4 M

 python-crypto x86_64 2.0.1-22.el6 base
159 k

 python-crypto2.6 x86_64 2.6.1-1.el6 epel
530 k

 python-httplib2 noarch 0.7.7-1.el6 epel
70 k

 python-jinja2 x86_64 2.2.1-2.el6_5 updates
466 k

 python-keyczar noarch 0.71c-1.el6 epel
219 k

 python-paramiko noarch 1.7.5-2.1.el6 base
728 k

 python-pyasn1 noarch 0.0.12a-1.el6 base
70 k

 python-setuptools noarch 0.6.10-3.el6 base
336 k

Chapter 6

[229]

Transaction Summary

===
=======

Install 12 Package(s)

< Removing information around handling dependencies >

Installed:

 ansible.noarch 0:1.7-1.el6

Dependency Installed:

 PyYAML.x86_64 0:3.10-3.el6 libyaml.x86_64 0:0.1.6-1.el6

 python-babel.noarch 0:0.9.4-5.1.el6 python-crypto.x86_64 0:2.0.1-
22.el6

 python-crypto2.6.x86_64 0:2.6.1-1.el6 python-httplib2.noarch
0:0.7.7-1.el6

 python-jinja2.x86_64 0:2.2.1-2.el6_5 python-keyczar.noarch 0:0.71c-
1.el6

 python-paramiko.noarch 0:1.7.5-2.1.el6 python-pyasn1.noarch
0:0.0.12a-1.el6

 python-setuptools.noarch 0:0.6.10-3.el6

Complete!

 ---> 10daf9ce140f

Removing intermediate container 4efed0c7fe20

Step 3 : ADD . /tmp

 ---> 426776c7f5e4

Removing intermediate container 45681c651661

Step 4 : WORKDIR /tmp

 ---> Running in ccd1c5a489d8

 ---> 8384bee9428f

Removing intermediate container ccd1c5a489d8

Step 5 : RUN ansible-playbook build_agent.yml -i inventory -c local

 ---> Running in 643c96b9c9ba

 [WARNING]: The version of gmp you have installed has a known issue
regarding

timing vulnerabilities when used with pycrypto. If possible, you should
update

it (ie. yum update gmp).

Provisioning

[230]

PLAY [build_agents] ***

GATHERING FACTS ***

ok: [localhost]

TASK: [jdk | download jdk rpm] **

changed: [localhost]

TASK: [jdk | setup java jdk] **

changed: [localhost]

TASK: [build_agent | install which and tar packages]

changed: [localhost] => (item=which,tar)

TASK: [build_agent | create ant directory] ******************************

ok: [localhost]

TASK: [build_agent | download ant] **************************************

changed: [localhost]

TASK: [build_agent | untar ant] ***

changed: [localhost]

TASK: [build_agent | add ant to /etc/profile.d]

changed: [localhost]

TASK: [build_agent | download maven] ************************************

changed: [localhost]

Chapter 6

[231]

TASK: [build_agent | untar maven] ***************************************

changed: [localhost]

TASK: [build_agent | add maven file to /etc/profile.d]

changed: [localhost]

PLAY RECAP **

localhost : ok=11 changed=9 unreachable=0
failed=0

 ---> 071108e3325e

Removing intermediate container 643c96b9c9ba

Step 6 : ENV PATH $PATH:/opt/apache-maven-3.0.5/bin:/opt/apache-
ant-1.7.1/bin

 ---> Running in 95132f21b8da

 ---> 00e21ce3d0da

Removing intermediate container 95132f21b8da

Step 7 : ENV ANT_HOME /opt/apache-ant-1.7.1

 ---> Running in 06b55dedac49

 ---> a311af7b2f84

Removing intermediate container 06b55dedac49

Successfully built a311af7b2f84

There you go! We have a Docker image that's been built and is tagged build_agent.
Let's check if the build_agent image exists:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

build_agent latest a311af7b2f84 32 minutes
ago 659.9 MB

centos centos6 b1bd49907d55 4 weeks ago
212.5 MB

Provisioning

[232]

Let's create a container from this image and check if the image has Maven, Ant,
and Java installed. Finally, check the environment variables that we set:

Bingo! Everything works as expected. The next thing you want to do is create
containers from the build_agent image and use them as part of your build system.

With this, we come to the end of the Docker section. There are many more features
that you can explore on the Docker website. We wanted to highlight how you
can use Docker to open predefined images and prepare new images for certain
configurations using Ansible. Hope you got a good introduction into how you
can do this in your environment.

Dynamic Inventory
You might be wondering as to why we're covering a topic such as Dynamic
Inventory in a chapter on Provisioning. This is because, whenever you bring up a
new machine, you need to account for that as part of your new modified inventory,
and, the next time there is a requirement to find out what's been provisioned in
the cloud or your data center, you need to make sure that the new machine or
machines are absolutely accounted for. So, let's look at Dynamic Inventory
in a little more detail.

Chapter 6

[233]

An inventory is a source of truth for Ansible. Maintaining the inventory would not
be difficult when you have a small set of servers running, that is around 10 to 20
servers. However, imagine having a vast environment with thousands of servers
running; maintaining a huge list of servers manually would be a nightmare, might
result in an inaccurate inventory, and would definitely lead to errors.

To deal with such a tedious job, Ansible allows you to use a dynamic script, through
which you can generate an inventory on-the-fly. Ansible provides an inventory script
for the majority of the cloud providers out there (https://github.com/ansible/
ansible/tree/devel/plugins/inventory) but, if you still do not find one for your
cloud provider or data center, you can write a script of your own that can use your
cloud provider's APIs and generate an inventory out of that. The Ansible inventory
scripts can be written in any language but, in most cases, Dynamic Inventory scripts
are written in Python. These scripts should be executable in nature (chmod + x
inventory.py).

In this section, we will take a look at Amazon's ec2 inventory script and try to plug
it in with Ansible. You need to download the following two files from Ansible's
GitHub repository:

• The ec2.py inventory script
• The ec2.ini file, which contains the configuration for your ec2

inventory script

Ansible uses boto to communicate with Amazon using APIs. To allow this
communication, you need to export the AWS_ACCESS_KEY_ID and AWS_SECRET_
ACCESS_KEY variables.

You can use the inventory in two ways:

• Pass it directly to an ansible-playbook command using the -i option and
copy the ec2.ini file to your current directory where you are running the
Ansible command

• Copy the ec2.py file to /etc/ansible/hosts, make it executable using
chmod +x, and copy the ec2.ini file to /etc/ansible/ec2.ini

The ec2.py file will create multiple groups based on the region, availability zone,
tags, and so on. You can check the contents of the inventory file by running ./ec2.
py --list.

https://github.com/ansible/ansible/tree/devel/plugins/inventory
https://github.com/ansible/ansible/tree/devel/plugins/inventory

Provisioning

[234]

Let's see an example playbook with the ec2 Dynamic Inventory, which will take the
NodeName and restart the hadoop-hdfs-datanode service on it.

The preceding playbook will take the node/group name and restart the
hadoop-hdfs-datanode service on it. Let's see how the playbook runs:

In the preceding example, we're using the ec2.py script instead of a static inventory
file with the -i option and the group name tag_name_hadoop-data, which contains
all the hosts tagged as hadoop-data. Right now, we just have one host with that tag,
which we launched earlier during the ec2 provision example.

Similarly, you can use these inventory scripts to perform various types of operations.
For example, you can integrate it with your deployment script to figure out all the
nodes in a single zone and deploy to them if you're performing your deployment
zone-wise (a zone represents a data center) in AWS.

If you simply want to know what all the web servers in the cloud are and you've
tagged them using a certain convention, you can do that by using the Dynamic
Inventory script by filtering out the tags. Furthermore, if you have special scenarios
that are not covered by the script that is already present, you can enhance the script
to provide the required set of nodes in the JSON format and you can act on those set
of nodes from the playbooks. If you're using a database to manage your inventory,
your inventory script can query the database and dump a JSON. It could even sync
with your cloud and update your database on a regular basis.

Chapter 6

[235]

Summary
With this, we come to the end of this chapter on Provisioning. We covered how we
can spawn machines in the cloud, particularly in Amazon AWS and DigitalOcean;
how we can use Docker to create new images and provision containers; and,
finally, how we can use a dynamic inventory to handle a cloud infrastructure
in a robust manner.

Next, we'll proceed to an important chapter on Deployment and Orchestration.
We'll look at how we can deploy applications and adhere to certain best practices
in the Deployment world using Ansible. We strongly advise you to get yourself a
coffee as the last chapter (excluding the Appendix, Ansible on Windows, Ansible Galaxy,
and Ansible Tower) promises to be heavy! During your coffee break, here are a few
questions that you can think about:

• How would you use Ansible cloud modules in your environment? If there
are no Ansible modules for your cloud, by combining knowledge from the
previous chapter and this chapter can you write out custom modules for
your cloud?

• How can you use a dynamic inventory in your environment? Do you even
have a need for a dynamic inventory?

• Can you use Docker in your environment if you already aren't doing it?
If yes, think about how you can use Ansible to generate Docker images
and run them.

Deployment and
Orchestration

"Going through a deployment! BACK OFF!", says one of our colleagues who also
plays the part of a Release Engineer. We've had responses such as this and others
that can't be written from colleagues in closed rooms while performing deployments.
During deployment events, we've had:

• People writing instructions on the board
• Tense colleagues sipping their tea or coffee and listening intently to

these instructions
• People on a conference call for hours
• Celebration after every component is deployed
• Finally, a lot of people coming out as if they actually went through

a "war' in the war room
• Hell breaks loose if there has to be a rollback

We can't promise that we'll change many of these, but we will include certain best
practices that might reduce the pain of deployment. However, we'll mostly focus on
the aspects of Ansible that can be used to ease your deployment and orchestration
headache on the release day of software products.

Deployment and Orchestration

[238]

Let's start by defining deployment and orchestration in this context as follows:

• Deployment: Freedictionary.com defines Deployment as follows:

 To position (troops) in readiness for combat, as along a front or line.

Well, we guess that's why people get into a "war room" to perform software
deployments. Software deployment is a way of releasing new code on
machines to perform certain tasks to make sure the overall system works
as intended. Having been in several deployment war rooms before, we can
guarantee that completing deployment activities without any glitch is a
source of immense satisfaction and happiness.

• Orchestration: Orchestration is defined as:

 Arrangement of music for performance by an orchestra.

Deployment orchestration is similar to the preceding definition, because here
we have to make sure that the right set of systems has the right versions and
are updated in the right order, so that, in the end, they work together as a
cohesive system to provide optimum performance. The art of making this
happen is orchestration.

In this chapter, we'll cover the following topics:

• Deploying a sample Ruby on Rails application
• Packaging
• Deployment: points to consider
• Canary deployment
• Orchestration and deployment: deployment of Tomcat application

Deploying a sample Ruby on Rails
application
We'll start with deploying a sample Ruby on Rails application. Ruby on Rails is
a popular Ruby framework for web development and is widely used. A similar
deployment pattern is followed for Node.js, PHP, and Python applications as
well. Hence, the steps that we show here for Rails would be similar to other
language deployments.

Freedictionary.com

Chapter 7

[239]

We'd like you to consider the philosophy or approach that we follow here for your
applications. It might help to read briefly about how Ruby on Rails works before
reading this section further, but we'd like to stress that the approach is the same for
similar frameworks. The example mentioned here is based on Rails and, in the later
part of the chapter, we will also include Java deployments. Typical steps that are
followed in such applications are as follows:

• Setting up a database: There are multiple ways to set up databases. Broadly,
they can be classified as:

 ° Single node, which acts as a master
 ° Multinode, which acts either as master-slave (leader-follower is the

term used by Django, a popular Python framework) or master-master

• Setting up the application on one or more nodes: The most common
method of deployment is to directly download the files from Git and use
either the latest commit from the master branch, or a particular tag from the
master branch, and start the application server. This model can be followed
for all those applications that don't need a compiled version to specifically
deploy, such as a war or jar file.
Heroku is a popular platform where you can host Rails, Node.js, or Python
applications; they ask you to provide the link to your Git repository
master, and the rest is taken care of by them. Coming back, in Rails, there
are multiple options for the Rails server, right from what you can run in
development environments such as Thin (http://code.macournoyer.
com/thin/) and Webrick (http://en.wikipedia.org/wiki/WEBrick)
to more popular production servers such as Passenger (https://www.
phusionpassenger.com/), Unicorn (https://github.com/blog/517-
unicorn), and Puma (http://puma.io/).
Servers such as Unicorn also support zero downtime deployments when
you're performing releases by deploying the new version and then sending a
USR2 signal to the process to reload the new code. Each of these servers runs
on multiple worker processes that execute your request.

• Setting up the load balancer: As you scale, you will have more number
of application servers and as a result you need a frontend load balancer
(reverse proxy), which will route your requests to application servers, get
the responses, and send them back to your end users. We won't consider
advanced functionality, such as SSL termination, in this chapter.

http://code.macournoyer.com/thin/
http://code.macournoyer.com/thin/
http://en.wikipedia.org/wiki/WEBrick
https://www.phusionpassenger.com/
https://www.phusionpassenger.com/
https://github.com/blog/517-unicorn
https://github.com/blog/517-unicorn
http://puma.io/

Deployment and Orchestration

[240]

Without further ado, let's start with a single two-node deployment of a sample Rails
application, whose diagrammatic representation is shown as follows:

Rails App +

LB (Nginx)
Database

Node 1 Node 2

We start at the point where we have two Amazon EC2 instances provisioned.
You can refer to the previous topic on Provisioning to see how to set up servers
on AWS. In this example, we will perform the deployment on these servers.

First things first. When we start deploying applications, as we mentioned in
Chapter 3, Taking Ansible to Production, we would like to deal with all interactions
on various servers using Roles. So, in this case, we will have two roles, described
as follows:

• The db role: This role is responsible for setting up the database. Consider the
following example:
$ cat db.yml

- hosts: db

 user: ec2-user

 sudo: yes

 roles:

 - db

• The app_server role: The application along with the load balancer will be set
up by this role. The command line is as follows:

$ cat app_server.yml

- hosts: app

 user: ec2-user

 roles:

 - app_server

Chapter 7

[241]

Typically, there is also a common role that we covered in Chapter 3, Taking Ansible to
Production, on Roles. The common role will take care of security parameters, common
packages, ntp settings, dns settings, and so on. We'll ignore these factors here as our
focus is on the application. There are three task files for db. We will look at main.yml
and one of the included files, pre_requisites.yml, to start with:

Let's now look at the third file, mysql_server.yml.

You might wonder where the mysql55-server came from. This is a standard
package available in the Amazon repository and we used Amazon Linux for
these deployment examples on EC2, as mentioned earlier.

Now, consider the following screenshot:

Deployment and Orchestration

[242]

In the preceding screenshot, the .my.cnf template file mentioned is present in
db/templates/root.

We have two YAML files included in main.yml. They are as follows:

• pre_requisites.yml: In this file, we will include packages that need to be
installed in order for the Ansible myql_user module to run them.

• mysql_server.yml: We used the mysql_user module, which is
quite helpful. As you can see, the mysql_root_password function is
parameterized. You can handle passwords either using Ansible Vault or
via environment variables. In this case, we used environment variables,
as follows.

$ cat db/vars/main.yml

mysql_root_password: "{{ lookup('env','MYSQL_ROOT_PASSWORD') }}"

rails_user_password: "{{ lookup('env','RAILS_USER_PASSWORD') }}"

Lookup is another type of Ansible plugin that you can utilize.
You can look up external data sources to obtain data, which can
then be used either in Jinja templates or playbooks. In this case,
we're looking up environment variables, but you can look up files
and systems such as the etcd and redis keys; basically, you can
also extend lookup plugins for your custom usage.

Finally, we're creating a Rails user that can be accessed from the application server.
We've again used the mysql_user module to accomplish this. We'll now run db.yml
to set up the database. This is demonstrated in the following screenshot:

Chapter 7

[243]

We now have the database set up. Let's check the grant permission for the rails
user by logging into the mysql command line, as shown in the following screenshot:

Deployment and Orchestration

[244]

It is now time to set up the application along with the load balancer! Let's look at our
Ansible configuration in the following screenshot:

We have three YAML files, one of which is shown in the preceding screenshot;
the other two YAML files will be seen in the following screenshots. At a high level,
main.yml calls three files: pre_requisites.yml, app_install.yml, and nginx.yml.

They are explained as follows:

• pre_requisites.yml: You can have a pattern that makes sure you
always have pre_requisites.yml, which defines the preconfiguration.
(We'll also look at Ansible's pre_tasks in the later part of this chapter.)
In this case, the pre_requisites.yml file takes care of installing the
development libraries that are required to install gems on the system.
Gems, for those not familiar with Ruby, are custom library code that
you can install and use as part of your application.

Chapter 7

[245]

We will also install the bundler gem, system-wide, so that we can use it
to install application-specific gems locally to the application directory.
Tomorrow, if you share the same system for another Rails application in a
parallel directory, you can run bundle install in that directory and it will
install the gems related to that project in the respective directory. Similarly,
in Node.js, you have packages.json, which defines the dependencies in
the form of npms that needs to be installed and can be installed in a local
(node_modules) directory within the main nodejs application folder.
The app_install.yml playbook is shown in the following screenshot:

• app_install.yml: This is the main YAML file that does the following tasks:

 ° Downloading the code from the git repository (the Checkout git
repo and Change permissions of folder tasks)

 ° Installing folder-specific gems using bundler (the Install gems via
bundler task)

 ° Running Rails-specific commands, rake db:create and rake
db:migrate, to set up the database (tasks: Setup database.yml, Set
SECRET_KEY_BASE environment variable, Run rake db:create,
and Run rake db:migrate)

Deployment and Orchestration

[246]

In order to perform this activity, we transfer the database.yml
template, which has the following content:

The host parameter in the template file points to the database host
that is present in the inventory file using the groups['db'][0]
variable. Ansible allows you to refer to inventory groups in templates
using groups[name_of_inventory_group]. If you'd like to access all
the hosts, you can use groups['all']. This information is exposed
as an array that can be used. Perform the following steps:

1. Precompile the assets (the Run rake assets:precompile
task).

2. Set up the rails server (in this case, the Unicorn server) and
start it (the Setup unicorn.rb and Start service tasks).

Chapter 7

[247]

Next, we'll look at the load balancer configuration file, nginx.yml, which is given
as follows:

Deployment and Orchestration

[248]

The preceding file downloads nginx and sets up the configuration file to point to
the Unicorn socket (since it is set up on the same machine). The nginx configuration
file, nginx.conf, which is set up using the template module, is shown in the
following screenshot:

Let's look at the variables that are configured as follows:

$ cat app_server/vars/main.yml

rails_user_password: "{{ lookup('env','RAILS_USER_PASSWORD') }}"

secret_base: "{{ lookup('env','SECRET_KEY_BASE') }}"

rails_env: production

app_dir: /opt/sample_rails_app

app_port: 3000

server_name: sample_app

We've already seen how lookup works earlier in the chapter. The sample application
is set up in /opt/sample_app.

Chapter 7

[249]

Now, let's run the app_server.yml role, as follows, to see whether we can achieve
the intended result:

$ ansible-playbook -i inventory app_server.yml --private-key ~/.ssh/key.
pem

PLAY [app] **

GATHERING FACTS ***

The authenticity of host '54.227.241.154 (54.227.241.154)' can't be
established.

RSA key fingerprint is 18:8b:ac:11:61:ed:cd:fc:f4:80:28:58:83:cd:f1:08.

Are you sure you want to continue connecting (yes/no)? yes

ok: [54.227.241.154]

TASK: [app_server | Check if epel.repo exists] **************************

ok: [54.227.241.154]

TASK: [app_server | Add epel yum repo] **********************************

skipping: [54.227.241.154]

TASK: [app_server | Install packages required] **************************

changed: [54.227.241.154] => (item=git,ruby-devel,gcc,libxml2-
devel,patch,sqlite-devel,mysql-devel,gcc-c++)

TASK: [app_server | Install required system gems]

changed: [54.227.241.154] => (item=bundler)

TASK: [app_server | Checkout git repo] **********************************

changed: [54.227.241.154]

TASK: [app_server | Change permissions of folder]

Deployment and Orchestration

[250]

changed: [54.227.241.154]

TASK: [app_server | Install gems via bundler] ***************************

changed: [54.227.241.154]

TASK: [app_server | Setup database.yml] *********************************

changed: [54.227.241.154]

TASK: [app_server | Set SECRET_KEY_BASE environment variable]

changed: [54.227.241.154]

TASK: [app_server | Run rake db:create] *********************************

changed: [54.227.241.154]

TASK: [app_server | Run rake db:migrate] ********************************

changed: [54.227.241.154]

TASK: [app_server | Run rake assets:precompile]

changed: [54.227.241.154]

TASK: [app_server | Setup unicorn.rb] ***********************************

changed: [54.227.241.154]

TASK: [app_server | Start service] **************************************

changed: [54.227.241.154]

TASK: [app_server | Check if epel.repo exists] **************************

ok: [54.227.241.154]

Chapter 7

[251]

TASK: [app_server | Add epel yum repo] **********************************

skipping: [54.227.241.154]

TASK: [app_server | Add content to /etc/hosts] **************************

changed: [54.227.241.154]

TASK: [app_server | Install nginx package] ******************************

changed: [54.227.241.154]

TASK: [app_server | Start nginx server] *********************************

changed: [54.227.241.154]

TASK: [app_server | Copy nginx conf] ************************************

changed: [54.227.241.154]

NOTIFIED: [app_server | restart nginx] **********************************

changed: [54.227.241.154]

PLAY RECAP **

54.227.241.154 : ok=20 changed=17 unreachable=0
failed=0

Now, let's enter the URL and see if the application comes up, as shown in the
following screenshot:

Yep, it does!

Deployment and Orchestration

[252]

Packaging
Everything works, but is this the optimum way to deploy an application? If you
show your sysadmin the scripts and packages we installed on our production
machines, he/she will be deeply unhappy and will immediately raise a red flag.
Ideally, you do not want to run any compiler and development packages on
production machines and we have quite a few of them in pre_requisites.yml
in our app_server role. It would then mean that it's acceptable to have all these
libraries installed right up to the staging environment.

The sysadmin would be happy with this resolution but not the deployment team.
That's because one of the best practices is to make sure that you try and deploy
using the same scripts and packages into each of your environments, right from
your first test environment to staging and, finally, to production, as shown in the
following screenshot:

App

package

Test Env 2Test Env 1 Staging Production

Installing compilers such as gcc and development libraries to get your
app up-and-running depends on your software stack. You won't have this
problem if it's Java since you're probably just deploying a WAR or JAR
file. However, with frameworks such as Rails or Node.js, you will face
this problem.

So, what do we do in such scenarios? Packaging is the answer. Every operating
system has an optimized package manager that takes care of how a particular
package should behave when it's installed. Let's take an example. In Red Hat
systems, the RPM Package Manager (RPM) is used as a standard way to install
packages. To generate RPMs, you need to provide an RPM spec file that defines
the following parameters:

• What files and folders need to be in the RPM
• The layout of these files
• The precommands that need to be run before laying out these files

Chapter 7

[253]

• The postcommands that need to be run after laying out the files on
the system

• Which user should own the files
• What permissions should be associated with various files

Utilizing the goodness of package managers simplifies your entire deployment.
Let's look at what happens when we apply the best practices of packaging to
applications that are written in frameworks such as Rails and Node.js. The following
diagram explains the flow you should adopt in order to use the best practices of the
packaging world:

If tests pass, generate an OS

system package (rpm for

Redhat, deb for Debian etc)

Developer checks in code

Install dependencies (bundle

install) and run tests

Upload the test artifact a file

server or yum repository

These

steps run

as part of

your

Continuous

Integration

system

Test Env1 Test Env2 Staging Production

Let's explain a couple of things in more detail. yum stands for the Yellowdog
Updater, Modified. It is an open-source command-line package management utility
for Linux operating systems using the RPM. Many enterprises create mirrors of
public repositories within their organizations so that they don't pull dependencies
from outside every single time. Similarly, you can create a custom repository to store
your artifacts and install them as a system package.

Deployment and Orchestration

[254]

We won't be covering how to set up a custom yum repository server
as it is out of the scope of this book, but the way you would consume
it on the app machines would be as simple as adding a file in /etc/
yum.repos.d/<name of repo>.repo followed by running the yum
makecache and yum install <name of package> commands. An
example of a repo file is as follows:
$ cat /etc/yum/repos.d/custom.repo
[Test]
name=TestRepo
baseurl=http://user:password@local.yumrepo.net/custom/
centos6/x86_64/
gpgcheck=0
enabled=1

To generate rpm, you could use the traditional spec file or another popular open
source tool called fpm. You can install fpm using gem install fpm, since it's a Ruby
gem, after making sure that the ruby-dev(el) and gcc packages are installed on
your operating system. There are other alternatives to fpm that help you create a
package based on your package manager. We'll use fpm to generate the package and
install it in our environment. You'll also see that the Ansible playbook to install the
Rails app will be simplified to a much greater extent.

Let's now generate rpm from fpm and add it to our custom yum repository.
You could also use other file servers or cloud storage services, such as S3, if
you're not in a position to set up the custom package repositories. So let's now
create the package of our application. Go to the application directory and run
bundle install. (We've already covered how you can install a bundler in a
system-wide manner earlier in the chapter.) Remember, we're still working with
the Rails application that we started with. Let's install the required dependencies
as follows:

$ cd ember-simple-auth-rails-demo

$ bundle install —local

The preceding command installs all the dependencies locally in the application
directory. Next, we generate rpm. The BUILD_NUMBER value is a unique value that is
fed from your CI system. For example, if you're using Jenkins, the BUILD_NUMBER
value is automatically set for every run of the CI system. Consider the following
command line, for example:

$ fpm -s dir -t rpm -v $BUILD_NUMBER -n sample_app -a all --exclude "**/
log/**" --exclude "test/" --exclude "**/.git" -p /home/ec2-user -C
sample_rails_app --prefix /opt/sample_app_$BUILD_NUMBER .

Chapter 7

[255]

We then copy rpm to the yum server and update the RPM database. The createrepo
program creates a repomd (an XML-based RPM metadata) repository from a set of
rpms. This command makes sure that the rpm would now be available on each of
your servers when you run yum install. Consider the following command lines:

$ scp -i key.pem sample_app-${BUILD_NUMBER}-1.rpm <yum server>:/var/www/
html/centos6/x86_64 (

'/var/www/html/centos6/x86_64' is the path on the yum server where the
newly generated rpm has to be added.

$ ssh -i key.pem <yum server> "cd /var/www/html/centos6/x86_64/;
createrepo --database /var/www/html/centos6/x86_64/"

Let's now see how our deployment changes based on the rpm approach. We'll first
look at the modified Ansible playbooks as follows.

Deployment and Orchestration

[256]

As you can see in the preceding screenshot, prerequisites.yml now has a couple
of new tasks that take care of adding our internal repository to the machine where
we're going to install the package. Let's look at app_install_2.yml. We changed
main.yml in the preceding playbook to now include app_install_2.yml instead
of app_install.yml. The modification is reflected in the following screenshot:

As you can see in the preceding screenshot, we've now changed our installation to
directly install the dependencies from our internal yum repository. The application
rpm is called sample_app and we've as usual used the package module to install
it. We also don't have any development libraries installed. We require mysql-libs
for the MySQL Gem but apart from that there is very little change that we have had
to make. Let's look at the ansible run and see if the application comes up, using the
following command lines.

$ ansible-playbook -i inventory --private-key ~/.ssh/key.pem app_server.
yml -e 'app_version=1'

PLAY [app] **

GATHERING FACTS ***

The authenticity of host '54.91.91.3 (54.91.91.3)' can't be established.

RSA key fingerprint is 59:89:d7:6a:f4:87:96:bc:37:3d:ee:1c:91:e3:cd:0b.

Are you sure you want to continue connecting (yes/no)? yes

Chapter 7

[257]

ok: [54.91.91.3]

TASK: [app_server | Install mysql libs package]

changed: [54.91.91.3]

TASK: [app_server | Install required system gems]

changed: [54.91.91.3] => (item=bundler)

changed: [54.91.91.3] => (item=rake)

TASK: [app_server | Check if internal.repo exists]

ok: [54.91.91.3]

TASK: [app_server | Add internal yum repo] ******************************

changed: [54.91.91.3]

TASK: [app_server | Run makecache] **************************************

changed: [54.91.91.3]

TASK: [app_server | Install rails rpm] **********************************

changed: [54.91.91.3]

TASK: [app_server | Change permissions of folder]

changed: [54.91.91.3]

TASK: [app_server | Setup database.yml] *********************************

changed: [54.91.91.3]

TASK: [app_server | Set SECRET_KEY_BASE environment variable]

changed: [54.91.91.3]

Deployment and Orchestration

[258]

TASK: [app_server | Run rake db:create] *********************************

changed: [54.91.91.3]

TASK: [app_server | Run rake db:migrate] ********************************

changed: [54.91.91.3]

TASK: [app_server | Setup unicorn.rb] ***********************************

changed: [54.91.91.3]

TASK: [app_server | Start service] **************************************

changed: [54.91.91.3]

TASK: [app_server | Check if epel.repo exists] **************************

ok: [54.91.91.3]

TASK: [app_server | Add epel yum repo] **********************************

skipping: [54.91.91.3]

TASK: [app_server | Add content to /etc/hosts] **************************

changed: [54.91.91.3]

TASK: [app_server | Install nginx package] ******************************

changed: [54.91.91.3]

TASK: [app_server | Start nginx server] *********************************

changed: [54.91.91.3]

TASK: [app_server | Copy nginx conf] ************************************

Chapter 7

[259]

changed: [54.91.91.3]

NOTIFIED: [app_server | restart nginx] **********************************

changed: [54.91.91.3]

PLAY RECAP **

54.91.91.3 : ok=20 changed=17 unreachable=0
failed=0

Let's check if the application starts and displays the following screenshot:

Indeed it does! The site comes up and we have a much better deployment method
than before. You might have noticed that we pass app_version as a parameter to
specify the version that needs to be installed. This corresponds to the build number
that we used while generating the rpm. In the preceding case, every change results in
a new package with a new version, and hence, a new deployment.

Is this the best way to handle new deployments? So far, we've come to the conclusion
that generating standard system packages and deploying them is a better way of
performing new deployments rather than deploying them based on source code,
where we have to install several development libraries that system administrators
might object to.

An additional note here is that we used shell commands to start processes. However,
a better method is to encapsulate the process in the /etc/init.d scripts so that you
handle the application lifecycle using the following commands:

• service app_name start: This is used to start the application.
• service app_name stop: This is used to stop the application.
• service app_name status: This is used to view the status of

the application.
• service app_name restart: This will bring down the application and

restart it. Typically, the way to do it is if you push code changes.

Deployment and Orchestration

[260]

• service app_name reload: Certain underlying servers, such as Unicorn
that we used in the preceding example, update the code and automatically
reload the application if you send the process that is running a USR2 or
HUP signal. Different servers behave differently and they might reload the
applications differently. Some systems have the hot deploy option, which
also allows you to perform seamless deployments. In such scenarios, running
an app_name reload would be the ideal way to go about your application.

We've again borrowed the above idea from the way system packages behave.
The standard for most system packages is to install them and then run a standard
service <name of package> start command; it starts up the service. Similarly,
run a command in order to stop the service. Your system administrators would be
very happy to interact with their applications with commands such as these.

We'll leave the init script as something for you to try out for the
application that you're writing, but we hope that the logic of having init
scripts is clear. Once you have the scripts ready, you can use a template
or package the init script as well as part of the rpm and add a service
task in your Ansible script to interact with your application.

Let's look at how to deploy new changes in more detail with system packages.

Deployment strategies with RPM
So far, in this chapter, we discussed how you can deploy an application for the first
time on new machines. However, in most cases, we already have a certain version of
the application that has been deployed and now, either to introduce a new feature
or fix bugs, a new version has to be deployed. We'd like to discuss this scenario in
greater detail.

At a high level, whenever we deploy an application, there are three kinds of changes
to take care of:

• Code changes
• Config changes
• Database changes

The first two types are ideally handled by the RPM, unless you have very specific
values that need to be set up during runtime. Files with passwords can be checked
but they should be encrypted with Ansible Vault or dropped into files as templates
during run time, just as we did with database.yml.

Chapter 7

[261]

With templates, if the configs are ideally just name-value pairs that can be
handled in a Jinja template, you should be good, but if you have other lines in the
configuration that do not change, then it's better that those configuration files are
checked and appear as part of the RPM. Many teams we've worked with check
environment-specific folders that have all the configuration parameters; while
starting the application, we provide the environment in which the application
should be started.

Another way is to deploy the RPM with default values for all configuration
properties while writing a different folder with name-value pairs that override
the parameters in the default configuration that is part of the RPM.

The database changes should be handled carefully. Ideally, you want
them to be idempotent for a particular version of the RPM so that, even
if someone tries to push database changes multiple times, the database is
not really affected.
For example, in the preceding case, we run rake db:migrate that is
idempotent in nature; even if you run the same command from multiple
machines, you shouldn't really face issues. The Rails framework does it by
storing the database migration version in a separate table.

Having looked at the three types of changes, we can now examine how to perform
rpm deployments for each release. When you're pushing new changes, the current
version or service is already running. It's recommended that you take the server out
of service before performing upgrades. For example, if it's part of a load balancer,
make sure it's out of the load balancer and not serving any traffic before performing
the upgrades. Primarily, there are the following two ways:

• Deploying newer versions of rpm in the same directory
• Deploying the rpm into a version-specific directory

Deploying newer versions of RPM in the
same directory
There are two methods to deploy newer versions of rpm in the same directory.
The first method flows in the following manner:

1. Stop the service.
2. Deploy the code.
3. Run database migrations.
4. Start the service.

Deployment and Orchestration

[262]

The second method is as follows:

1. Deploy the code.
2. Run database migrations.
3. Perform a reload or restart operation to load the new code.

It's critical to make sure that the database changes don't break the current version
or the new version that will be deployed. Remember that, while you're doing the
database upgrades, at a particular point in time you will have certain servers serving
old code and certain servers serving new code; you don't want to cause outages in
either case. Let's also look at another approach.

Deploying the RPM in a version-specific directory
We use the best of what an RPM provides and what another Ruby deployment tool,
Capistrano, does. Deploy the RPM into a version-specific directory, and the symlink
into a common application folder. The advantage of having multiple RPMs installed
and running out of a symlink is that every version will have its own directory, and
the rollback, if there is one, is much simpler; you just have to change the symlink to
point to the older version and restart the code. The remaining steps are similar. In
Capistrano, you can specify the number of versions to maintain on the system at a
time. With system packages, by default, you cannot have multiple versions installed
but you can tweak this aspect to make sure multiple versions do get installed on
your system. Yet another important aspect of this sort of deployment is that you
can perform your deployment in the following phases:

• Push the new code to all servers prior to your deployment window.
An extreme case can be deploying the RPM the day before the actual release.

• During the deployment downtime, perform the db upgrade, change the
symlink, and restart the application.

These are ideas that you can definitely implement using Ansible but, though we
presented the code to perform deployments to individual servers so far, we thought
we should lay down the logic behind why someone would choose one method over
the other. Let's now look at what Canary and Rolling deployments are.

Chapter 7

[263]

Canary deployment
The name Canary is used with reference to the canaries that were often sent
in to coal mines to alert miners about toxic gases reaching dangerous levels.
Canary deployment is a technique that is used to reduce the risk of releasing a new
version of software by first releasing it to a small subset of users (demographically,
location-wise, and so on), gauging their reaction, and then slowly releasing it to the
rest of the users.

Whenever possible, keep the first set of users as internal users, since it reduces the
impact on the actual customers. This is especially useful when you introduce a new
feature that you want to test with a small subset of users before releasing it to the
rest of your customer base. If you're running, let's say, an application across multiple
data centers and you're sure that certain users would only contact specific data
centers when they access your site, you could definitely run a Canary deployment.

Orchestration of a Tomcat deployment
Now that we've seen how you can package code and deploy (and a couple of
other possible ways to deploy) the package, we'll move on to multiple servers and
show how you can orchestrate the deployment of a new version of code to your
servers. This time, for the sake of variety, we'll show how you can perform a
Tomcat deployment.

In this case, we will run an application, yet again on Amazon EC2 servers, but they
could be running in your data center or on any other cloud. So far, we've spoken
about how code should look on the box in terms of RPM and how to view database
upgrades. Here, we'll show how you can remove servers out of service, upgrade
them, and add them back to the mix, and we'll do it for all the servers in the mix,
though in this case there are only four of them. This is popularly termed Rolling
Deployment. If you only deploy new versions to a certain number of these
servers based on either location or some other logic, you could view that as a
Canary deployment.

Deployment and Orchestration

[264]

Ansible allows you to perform rolling deployments. Let's look at the update_tomcat.
yml playbook, as shown in the following screenshot:

In the preceding playbook, we use roles to update the Tomcat server and application.
In addition, we also use the pre_task and post_task features, which will make sure
we don't disturb the production traffic by performing all prechecks and postchecks.
These steps are part of the overall orchestration that Ansible allows you to perform.
Most other tools do not provide these notions of pre- and post-tasks. Another feature
that we've already seen is the local_action feature. Using these features, you can
orchestrate your deployments in a much more controlled and elegant manner.

Getting back, the pre_task and post_task features can also be used with Roles
while you're running regular configuration management tasks. The pre_task feature
can send out notifications to the team responsible for monitoring, for example, by
letting them know that an Ansible run would be starting on the machine and once
the run is complete, as part of post_task, notify them about it. The most common
use of the pre_task and post_task features is while performing releases. We'll look
at these in more detail.

Refer to the Working with Roles section of Chapter 3, Taking Ansible to
Production, to know more about Ansible roles.

Let's look at the preceding playbook in greater detail.

Chapter 7

[265]

As we will be rolling a deployment, we've specifically asked Ansible to process one
host at a time by using the serial option within the playbook. Also, we will pass
all hosts to Ansible because we only have four Tomcat servers. If you have a huge
list of servers for your deployment, then you might want to create groups in your
inventory (in such a way that it doesn't disturb your production traffic) and pass
that group name to Ansible. In that case, you might also want to remove serial: 1
to deploy to all servers in that specific group at the same time. For example, if your
application is spread across multiple data centers and you're free to deploy an entire
data center at one go, then you could create inventory groups based on the data
center and release them to an entire data center at the same time. The following is
the start of the playbook that contains the serial option that we spoke about:

- name: Provisioning tomcat server
 hosts: "all"
 gather_facts: no
 user: "ec2-user"
 serial: 1
 sudo: yes

Next, we will use pre_tasks to stop the monit service and take the Tomcat server
out of the load balancer by applying the iptables rule. As the name suggests, the
tasks listed under pre_tasks will be executed before the roles are executed. Apart
from this, you can also add tasks that will disable monitoring checks, such as
Nagios or Riemann, and send a maintenance notification to the right set of
people. The pre_tasks task is given as follows:

 pre_tasks:
 - name: Stopping monit
 service: name=monit state=stopped

 - name: Adding iptables rule to block port 8080
 shell: iptables -A INPUT ! -s 127.0.0.1 -p tcp -m tcp --dport 8080
-j DROP

 - name: Saving iptables rule
 shell: iptables-save

Note that we will block TCP port 8080 using iptables because the load
balancer tries to perform a health check on this port. This trick is quite
popular especially on AWS since it takes time to get the machine out of
the load balancer (if you're using Amazon ELB for load balancing) and
add it back in; by disabling and enabling a server, however, we are saving
quite a bit of time.

Deployment and Orchestration

[266]

We also use post_tasks, which will be executed after roles complete their execution.
In this set of tasks, we restart monit and flush the iptables rule so that the load
balancer can add the server back to its active pool. The post_tasks task is given
as follows:

 post_tasks:

 - name: Starting monit

 service: name=monit state=started

 - name: Flushing iptables rule

 shell: iptables -F

We use the tomcat role to update the Tomcat server and sample application.
We also pass three variables: tomcat_url, tomcat_version, and tomcat_app to the
role playbook that will be used to download the correct version of the Tomcat server
and application. This is the first time we're calling the role in this way by explicitly
passing the variable values along with the invocation of a role. Please look at the
syntax carefully to make sure you understand it. It's also a way to generalize the role
itself and pass the required parameters from outside. By doing this, whenever you
want to change the version of Tomcat or the application, you just have to change one
or more of these variables, but the actual role code doesn't really change. Further,
each of the parameters, tomcat_url, tomcat_version, and tomcat_app, can
themselves be variables that you could invoke here. This is left as an exercise for
you. The roles task is given as follows:

 roles:

 - { role: tomcat, tomcat_url: "http://www.us.apache.org/dist/tomcat/
tomcat-7/v7.0.55/bin/apache-tomcat-7.0.55.tar.gz", tomcat_version:
"7.0.55", tomcat_app: "https://tomcat.apache.org/tomcat-7.0-doc/appdev/
sample/sample.war" }

Chapter 7

[267]

Let's now look at the tomcat role.

The preceding screenshot shows the tomcat role that will uninstall the older
version of Tomcat, download and install the newer version, and update the
sample application. Let's see the role in greater detail.

We first remove the older version of Tomcat using the file module, which will make
sure usr/local/tomcat does not exist, as shown in the following command lines:

- name: Remove older version of tomcat

 file: path=/usr/local/tomcat state=absent

We then download the new file archived in Tomcat using the tomcat_url variable
passed to the role and the get_url module. Once we download the new version
of Tomcat, we will extract and copy it to the /usr/local/tomcat directory. We've
shown the deployment with just the tar.gz file. You could replace them with RPMs
as well but, for this specific case where you have JAR or WAR files to deploy, we
just went with the tar.gz file. However, if you wanted to enforce a standard way to
deploy the tar.gz file across your organization, you could convert these tar.gz file
to RPM. Let's look at the code for the explanation with tar.gz:

- name: Download Tomcat

 get_url: url={{ tomcat_url }} dest=/tmp

- name: Extract archive

Deployment and Orchestration

[268]

 command: chdir=/tmp /bin/tar xvf apache-tomcat-{{ tomcat_version
}}.tar.gz

- name: Copy tomcat folder

 command: creates=/usr/local/tomcat mv /tmp/apache-tomcat-{{ tomcat_
version }}/ /usr/local/tomcat

 sudo: yes

We used the command module to extract the tomcat module. The Extract archive
and Copy tomcat folder tasks can be replaced with a single task using the
unarchive module that would look as follows:

- name: Extract archive

 unarchive: src=/tmp /bin/tar xvf apache-tomcat-{{ tomcat_version
}}.tar.gz dest=/usr/local/tomcat copy=no

With the plethora of modules available, there is always a tendency to use less
optimized modules; always take a peek at the module list, however, and you might
find something that will help you out! We'd like to recommend that you use as few
tasks as possible to get things done. For this example, we'll stick to the two tasks that
we originally wrote. Once we have the newer version of Tomcat installed, we will go
ahead and start the Tomcat server and make sure that port 8080 is up and listening
as follows:

- name: Start Tomcat

 command: nohup /usr/local/tomcat/bin/startup.sh &

 sudo: yes

- name: Wait for port 8080

 wait_for: host=0.0.0.0 port=8080

We use the startup.sh script with nohup, since Ansible will kill the
tomcat process once it exits as it might end up being a foreground
process. To keep the tomcat process running, we need to send it to the
background. Again, if you remember what we said in the earlier part of
the chapter, you could potentially replace this startup.sh script with a
/etc/init.d script that you could directly call to start, stop, and restart
your application.

Chapter 7

[269]

Lastly, we will update the sample Tomcat app by using the get_url module. We use
the tomcat_app variable to get the link from where we can download the tomcat
sample application using the following command lines:

- name: Download sample tomcat app
 get_url: url={{ tomcat_app }} dest=/usr/local/tomcat/webapps

You can enhance the tomcat playbook by using tags (to deploy the server
and application, separately), extra_variables (to pass the Tomcat
version), and the unarchive module. This is left up to you as an exercise.
You can deploy a tomcat WAR file either before starting the service or
after. We have done it post starting the service.

Let's run the preceding playbook and see how it works, as shown in the
following screenshot:

Deployment and Orchestration

[270]

So the run looks good. We truncated the output and pasted the final result, as shown
in the following screenshot:

As you can see in the preceding Ansible run, Ansible updated the tomcat server and
application on all the tomcat servers serially; at the end of it, you have a working
deployment and, more importantly, a working application.

Deploying Ansible pull
The last topic we'd like to cover in this section is Ansible pull. If you have a large
number of hosts that you'd like to release software on simultaneously, you will be
limited by the number of parallel SSH connections that can be run. At scale, the pull
model is preferred to the push model. Ansible supports what is called as Ansible
pull. Ansible pull works individually on each node. The prerequisite is that it points
to a repository from where it can invoke a special file called localhost.yml or
<hostname>.yml. Typically, the ansible-pull option is run either as a cron job
or is triggered remotely by some other means.

We're going to use our tomcat example again, with the only difference being that the
structure of the repository has been changed slightly. Let's look at the structure of the
git repository that will work for Ansible pull as follows:

Chapter 7

[271]

As you can see, localhost.yml is present at the top level and the roles folder
consists of the tomcat folder, under which is the tasks folder with the main.yml
task file. Let's now run the playbook using ansible-pull as follows:

Let's look at the preceding run in detail as follows:

• The ansible-pull command: We invoke ansible-pull with the
following options:

 ° –o: This option means that the Ansible run takes place only if the
remote repository has changes.

 ° –C master: This option indicates which branch to refer to in the
git repository.

 ° –U < >: This option indicates the repository that needs to be
checked out.

 ° –i localhost: This option indicates the inventory that needs to
be considered. In this case, since we're only concerned about one
tomcat group, we use -i localhost. However, when there are many
more inventory groups, make sure you use an inventory file with the
–i option.

Deployment and Orchestration

[272]

• The localhost | success JSON: This option checks whether the repository
has changed and lists the latest commit.

• The actual Ansible playbook run: The Ansible playbook run is just like
before. At the end of the run, we will have the WAR file up and running.

You don't need to use the –o option with ansible-pull if the playbooks are not
going to change.

With this, we come to the end of the deployment and release aspect. It is
recommended that you integrate the Ansible playbooks you write for deployment
into a deployment pipeline using either ThoughtWorks Go (http://www.
thoughtworks.com/products/go-continuous-delivery), Bamboo (https://www.
atlassian.com/software/bamboo), or Jenkins (http://jenkins-ci.org/) along
with its plugins to make sure you have specific deployment logs for each of your
actual deployments; it is also recommended you add authorization to the pipelines
to allow only specific teams to perform release deployments.

The following screenshot is an example of how you would run the same playbook
but as a Jenkins job called DeployTomcat:

Finally, to end the chapter, you will succeed in a big way if you work towards
making all your deployments for various applications a non-event!

http://www.thoughtworks.com/products/go-continuous-delivery
http://www.thoughtworks.com/products/go-continuous-delivery
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
http://jenkins-ci.org/

Chapter 7

[273]

Summary
We get it if you're a little tired at the end of this chapter. It did cover quite a few
topics. To summarize, we looked at Deployment using a Rails application, Packaging
and the importance of it, and Deployment strategies. You also learned about Canary
and Rolling Deployments, Deployment Orchestration of a Tomcat application, and
Ansible pull.

We've a few topics for you to think about, as follows:

• Do you use packaging for your applications? How do you perform
releases today? How would you want to use Ansible, if possible,
for performing releases?

• How do you handle configurations and database migrations for your
applications? Can you use certain practices that we discussed here?

• Do you perform rolling or Canary deployments? If no, how would you lay it
out using Ansible?

Finally, to end this book, we covered a whole gamut of topics around Ansible
and how you can use Ansible as part of configuration management, deployments,
alerting, and orchestration. We tried to provide as many examples as possible to
illustrate the flow of tasks and we would be very happy if you take Ansible back
to your organization and utilize what we've gone through in these chapters. We
thoroughly enjoyed writing about Ansible and coming up with working samples.
We hope you enjoyed reading the book as much as we did writing it. You might
also find the Appendix, Ansible on Windows, Ansible Galaxy, and Ansible Tower useful
but, for now, Adios! We'd like to end by saying:

"Besides black art, there is only automation (with Ansible!)"

-Modified quote of "Federico Garcia Lorca"

Ansible on Windows, Ansible
Galaxy, and Ansible Tower

Ansible on Windows
Ansible Version 1.7 started supporting Windows with a few basic modules.
There is no doubt that there will be extensive work around this area. Anyone who
is familiar with Windows systems, understands Python, and likes Ansible, should
wholeheartedly contribute to the Ansible-on-Windows effort. We'll briefly look at the
setup process and try pinging a Windows system.

Let's look at the setup aspect as follows:

1. The command center or the control machine is a Linux machine. Ansible
doesn't run on Cygwin. If you're a Windows shop, please make sure you
have at least one Linux machine to control your environment.

The connection from the command center to all the machines
is not over SSH; instead, it's over winrm or Windows Remote
Management (WinRM). You can look up the Microsoft
website for a detailed explanation and implementation
at http://msdn.microsoft.com/en-us/library/
aa384426(v=vs.85).aspx.

2. On the command center, once you've installed Ansible, it's important
that you install winrm, which is compatible with Ansible, via pip,
shown as follows:
$ pip install https://github.com/diyan/pywinrm/archive/
df049454a9309280866e0156805ccda12d71c93a.zip

Downloading/unpacking https://github.com/diyan/pywinrm/archive/
df049454a9309280866e0156805ccda12d71c93a.zip

http://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx

Ansible on Windows, Ansible Galaxy, and Ansible Tower

[276]

 Downloading df049454a9309280866e0156805ccda12d71c93a.zip

 Running setup.py (path:/tmp/pip-bfPf0z-build/setup.py) egg_
info for package from https://github.com/diyan/pywinrm/archive/
df049454a9309280866e0156805ccda12d71c93a.zip

Requirement already satisfied (use --upgrade to upgrade):
xmltodict in /usr/lib/python2.6/site-packages (from
pywinrm==0.0.2dev)

Requirement already satisfied (use --upgrade to upgrade): isodate
in /usr/lib/python2.6/site-packages (from pywinrm==0.0.2dev)

Installing collected packages: pywinrm

 Running setup.py install for pywinrm

Successfully installed pywinrm

Cleaning up...

3. On each of the remote Windows machines, you need to install PowerShell
Version 3.0. Ansible provides a couple of helpful scripts as follows to get
you to set it up:

 ° Winrm Setup (https://github.com/ansible/ansible/blob/
devel/examples/scripts/ConfigureRemotingForAnsible.ps1)

 ° An upgrade to PowerShell Version 3.0 (https://github.com/
cchurch/ansible/blob/devel/examples/scripts/upgrade_to_
ps3.ps1)

4. Allow port 5986 via the firewall as this is the default WinRM connection
port, and make sure this is accessible from the command center. To make
sure you can access the service remotely, run a curl call: curl -vk -d
"" -u "$USER:$PASSWORD" "https://<IP>:5986/wsman". If Basic Auth
works, you're set to start running commands.

5. Once the setup is done, you're now ready to start running Ansible! Let's run
the equivalent of the Windows version of the "Hello, world!" program in
Ansible by running win_ping. In order to do this, let's set up our credentials
file. This can be done using Ansible Vault as follows:
$ ansible-vault create group_vars/windows.yml

Vault password:

Confirm Vault password:

<Add content for the following Ansible variables>

ansible_ssh_user: Administrator

ansible_ssh_pass: <password>

ansible_ssh_port: 5986

ansible_connection: winrm

https://github.com/ansible/ansible/blob/devel/examples/scripts/ConfigureRemotingForAnsible.ps1
https://github.com/ansible/ansible/blob/devel/examples/scripts/ConfigureRemotingForAnsible.ps1
https://github.com/cchurch/ansible/blob/devel/examples/scripts/upgrade_to_ps3.ps1
https://github.com/cchurch/ansible/blob/devel/examples/scripts/upgrade_to_ps3.ps1
https://github.com/cchurch/ansible/blob/devel/examples/scripts/upgrade_to_ps3.ps1

Appendix

[277]

6. Let's set up our inventory file as follows:
$ cat inventory

[windows]

174.129.181.242

7. Followed by this, let's run win_ping:
$ ansible windows -i inventory -m win_ping --ask-vault-pass

Vault password:

174.129.181.242 | success >> {

 "changed": false,

 "ping": "pong"

}

We encourage you to start trying out the Windows modules present and keep an eye
on Ansible for Windows as it's definitely headed in the right direction.

Ansible Galaxy
Ansible Galaxy is a free site where you can download Ansible roles developed by the
community and kick-start your automation within minutes. You can share or review
community roles so that others can easily find the most trusted roles on Ansible
Galaxy. You can start using Ansible Galaxy by simply signing up with social media
applications such as Twitter, Google, and GitHub, or by creating a new account on
the Ansible Galaxy website (https://galaxy.ansible.com/) and downloading
the needed roles using the ansible-galaxy command, which ships with Ansible
Version 1.4.2 and later. Perform the following steps:

1. To download an Ansible role from Ansible Galaxy, use the following syntax:
$ ansible-galaxy install username.rolename

You can also specify a version as follows:
$ ansible-galaxy install username.rolename[,version]

If you don't specify a version, then ansible-galaxy will download the latest
available version.

https://galaxy.ansible.com/

Ansible on Windows, Ansible Galaxy, and Ansible Tower

[278]

2. You can install multiple roles in two ways; firstly, by passing multiple role
names separated by a space as follows:
$ ansible-galaxy install username.rolename[,version] username.
rolename[,version]

Secondly, you can do so by specifying role names in a file and passing that
filename to the -r/--role-file option:

$ cat requirements.txt

user1.rolename,v1.0.0

user2.rolename,v1.1.0

user3.rolename,v1.2.1

3. You can then install roles by passing the filename to the ansible-galaxy
command as follows:
$ ansible-galaxy install -r requirements.txt

4. Let's see how you can use ansible-galaxy to download a role for
apache httpd as follows:

5. The preceding ansible-galaxy command will download the apache httpd
role inside the /etc/ansible/roles directory. You can now directly use the
preceding role in your playbook, as follows:

Make sure you have added /etc/ansible/roles to roles_path in
your ansible.cfg file.

Appendix

[279]

6. As you can see in the preceding screenshot, we created a simple playbook
with a geerlingguy.apache role. This is the role that we downloaded using
ansible-galaxy. Let's run this playbook and see how it works, as follows:

The preceding output is truncated because it's way too long to be pasted.
The following screenshot is the final result of our playbook:

As you can see, Ansible checked, installed, and configured the Apache httpd server
on the web001 host.

Ansible on Windows, Ansible Galaxy, and Ansible Tower

[280]

Ansible Tower
Ansible Tower is a web-based GUI developed by Ansible. Ansible Tower provides
you with an easy-to-use dashboard to manage your nodes and role-based
authentication to control access to your Ansible Tower dashboard. You can use
LDAP or Active Directory to manage your users with Ansible Tower. Apart from
the dashboard and role-based authentication, Ansible Tower also provides a built-in
REST API, job scheduling, graphical inventory management, job status updates,
and so on.

Ansible Tower is not freely available; you need to pay, depending on the number of
nodes you want to manage. At the time of writing of this book, Ansible provided a
free copy of Ansible Tower for 10 nodes. For more details, visit the Ansible Tower
website at http://www.ansible.com/tower and the user guide is available at
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-
latest.pdf.

http://www.ansible.com/tower
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf
http://releases.ansible.com/ansible-tower/docs/tower_user_guide-latest.pdf

Index
Symbols
--skip-tags

about 85, 86
install tag 86-88
start tag 86-88
stop tag 86-88

--syntax-check option
using 75

-v option 29
-vv option 29
-vvv option 30

A
agent-based systems

versus agentless systems 11
Alerting 169
Amazon Machine Image (AMI) 214
Amazon Web Services (AWS) 154
Ansible

about 10-12
configuring 20
configuring, ansible.cfg used 21
configuring, environment variables used 21
functional testing 79
Hello Ansible 17, 18
installing 12
installing, from source 13-15
installing, package manager used 15, 16
installing, via Apt 16
installing, via Homebrew 16
installing, via pip 16
installing, via Yum 15
need for 186
on Windows 275-277

repository, URL 194
security 146
URL 12
URL, for inventory script 233
used, for launching DigitalOcean

instance 216-218
Ansible architecture 19, 20
ansible.cfg

used, for configuring Ansible 21
ansible_connection parameter 47
Ansible Galaxy

about 277-279
URL 277

ansible-playbook command 38, 75
Ansible provisioner

using, with Vagrant 71-74
ansible-pull command

-C master option 271
-i localhost option 271
-o option 271
about 271
localhost | success JSON 272

Ansible pull deployment 270-272
ansible_python_interpreter parameter 47
ansible_shell_type parameter 47
ansible_ssh_host parameter 47
ansible_ssh_port parameter 47
ansible_ssh_private_key_file parameter 47
ansible_ssh_user parameter 47
Ansible Tower

about 280
URL 280

Ansible Vault
using 146-148

Ansible workstation 12

[282]

app_install.yml 245
application lifecycle, commands

service app_name reload 260
service app_name restart 259
service app_name start 259
service app_name status 259
service app_name stop 259

app_server role 240
Apt

Ansible, installing via 16
Assert

used, for functional testing 79-81
assertion feature 81
automation 154

B
Bamboo

URL 272
Bash modules

using 194-196
basic alerting techniques

e-mails 169, 170
Graphite 176-178
HipChat 171, 172
Nagios 172-175

basic inventory file 40-42

C
callback mechanism 159
callback plugins

overview 159-168
callback_plugins path 160
Canary deployment 263
Capistrano 262
Cassandra role 129-139
CFEngine 22
chdir parameter 48
Chef 12
cloud

machine, provisioning in 204, 205
cloud provisioning

examples 205
cloud_provision.yml playbook, parameters

Group_id 214
Image id 214
Instance_type 214

Mykeypair 214
region 214
zone 214

command-line variables 38, 39
command modules

about 48, 268
command module 48
raw module 49
script module 50
shell module 50, 51

common role 241
conditionals

using, with Jinja2 filters 145
working with 105-111

configuration management 22
configuration parameters

overriding, with inventory file 47
container 219
contents, Dockerfile

ADD 227
ENV 227
FROM centos:centos6 227
RUN 227
RUN ansible-playbook 227
WORKDIR 227

Continuous Integration (CI) system 74
copy module 58, 59
Create, Remove, Update, Delete (CRUD) 28
creates parameter 48

D
data

formatting, with Jinja2 filters 144
database

setting up 239
db role 240
db variable 97
Demilitarized Zone (DMZ) 11
deployment event

observations 237
deployment strategies, with RPM

newer versions of RPM, deploying in same
directory 261

RPM, deploying in version-specific
directory 262

dev branch 65

[283]

DevOps 10
DigitalOcean instance

launching, Ansible used 216-218
Docker

about 219
installing, on hosts 220, 221
URL, for public registry 222

Docker images
building 226-231
deploying 222-225
provisioning 226-231

Docker Provisioning 219
Dynamic Inventory 232-234

E
e-mails 169
environments, handling

about 94
Git branch-based method 94
single stable branch, with multiple

folders 95-99
environment variables

used, for configuring Ansible 21
EPEL installation

URL 15
error handling 154-156
exit_json

working with 192-194
external variables 45

F
facter 40
facts 39
facts, as variables 37, 38
fail_json

working with 192-194
file modules

about 51-54
copy module 58, 59
file module 51-54
template module 55-58

forks parameter 21
functional testing, in Ansible

about 79
Assert, used 79-81
tags, used 81-84

G
gather_facts command 27
Git

about 64
rules 65
URL 64

global file
variables, using in 36

Graphite
about 176
error, introducing in ant.yml 179-182
parameters 176
URL 176

group of groups 43
groups

in inventory file 42, 43
group variables 46

H
Hadoop

URL 205
handlers

using, with roles 142, 143
working with 117-119

Hello Ansible 17, 18
Heroku 239
HipChat documentation 171
hipchat module 171
Homebrew

Ansible, installing via 16
hostfile parameter 21
host_key_checking parameter 22
host parameter 246
hosts

Docker, installing on 220, 221
hosts field 24
host variables 45
httpd 25

I
Idempotency 28
include

working with 115, 116
included task file

variables, using 34, 35

[284]

installation, Docker
on hosts 220, 221

install tag 86
invalid variable names, in Ansible 34
inventory 233
inventory file

basic inventory file 40-42
configuration parameters,

overriding with 47
group of groups 43
groups, used in 42, 43
regular expressions, used with 45
variables, using in 39
working with 40

J
Jenkins

URL 272
Jinja2 filters

about 144
undefined variables, defaulting 145, 146
used, for formatting data 144
using, with conditionals 145

L
library parameter 21
Lightweight Resources and Providers

(LWRPs) 186
Linux container 219
load balancer

setting up 239, 240
local_action feature

working with 102-105
log_path parameter 22
loops

nested loops 113
standard loops 111, 112
using, over subelements 114
working with 111

ls command 52

M
machine

developing 70
provisioning, in cloud 204, 205

mail module
using 170

main.yml
mysql_server.yml 242
pre_requisites.yml 242

master branch 65
Masterless Puppet 12
modules

command modules 48
file modules 51
source control module, git 59, 60
testing 199-202
working with 48

monitoring 168
mysql_server.yml 242

N
Nagios 172
name parameter 24
nested loops 113
newer versions, of RPM

deploying, in same directory 261
no_log

using 151
nose

URL 200
notify parameter 118

O
Orchestration 238

P
package manager

used, for installing Ansible 15, 16
packaging

about 252-260
deployment strategies, with RPM 260, 261

Passenger
URL 239

Passlib
algorithms 149
using, with Jinja2 filters 149

passwords
hiding 150

[285]

Personal Package Archive (PPA) 16
Phoenix Server

URL 203
pip

about 12
Ansible, installing via 16

playbook
about 206
anatomy 23-32
developing 67-69
executing 156-158
overview 207-216
testing 74
tree structure 64
variables, using in 35
working with 23

playbook, developing
Ansible provisioner,

using with Vagrant 71-74
machine, developing 70
Vagrant box, downloading 70
Vagrant, installing 70
VirtualBox, installing 70

playbook_on_play_start method 178
playbook_on_stats method 178
playbook, testing

--diff option, used for indicating differences
between files 77-79

check mode 76, 77
syntax, checking 75

PLAY RECAP section 28
plays

about 19
first play 211
fourth play 211
second play 211
third play 211

post_task feature 264
PowerShell Version 3.0

URL 276
pre_requisites.yml 242, 244
pre_task feature 264
provisioning 71
Puma

URL 239
Puppet 12

push mode 12
Python

URL 13
Python modules

testing 193, 194
using 187-189

Q
quality assurance (QA) process 79

R
Rails application

database, setting up 239
load balancer, setting up 239, 240
sample Ruby, deploying on 238-251
setting up, on one or more nodes 239

raw module 49
regular expressions

external variables 45
group variables 46
host variables 45
used, with inventory file 45
variable files 46, 47

remote_port parameter 21
remote_user field 24
removes parameter 48
return code (rc)

using 107
roles

about 120
Cassandra role 129
handlers, using in 142
used, for creating task file 139-142
working with 119-128

rollback playbook 155
Rolling Deployment 263
RPM

deploying, in version-specific directory 262
deployment strategies, used with 260, 261
parameters 252

rspec 3 88
Ruby modules

using 196-199

[286]

S
sample Ruby

deploying, on Rails application 238-251
script module 50
Security Management

Ansible Vault, using 146-148
no_log, using 151
passwords, hiding 150
user passwords, encrypting 148, 149

Serverless Chef 12
Serverspec

about 88
installing 88-91
playbook_tester, running 92-94
Rakefile, analyzing 91, 92
tests, running 91, 92

servers variable 97
service module 25
shell module 50, 51
source

Ansible, installing from 13-15
source code

managing 64-67
source control module, git 59, 60
Specinfra 2 88
standard loops 111, 112
start tag 86
stop tag 86
sudo: yes parameter 25
sudo_user parameter 21

T
tags

--skip-tags 85
testing with 81-84

task file
creating, with roles 139-142

tasks field 24
template module 55-58
Thin

URL 239
ThoughtWorks Go

URL 272
timeout parameter 22

Tomcat deployment
Orchestration 263-270

U
Unicorn

URL 239
user passwords

encrypting 148, 149

V
Vagrant

about 68
Ansible provisioner, using with 71-74
download link 70
installing 70
provisioners 69
URL 70
use cases 68

Vagrant box
downloading 70
URL 70

Vagrantfile 72
validate option 57
valid variable names, in Ansible 33
variable files 46, 47
variable names

about 33
invalid variable names, in Ansible 34
valid variable names, in Ansible 33

variables
about 32
command-line variables 38, 39
facts, as variables 37, 38
in global file 36
in included task file 34, 35
in inventory file 39
in playbook 35
variable names 33

variable types, Ansible 33
version-specific directory

RPM, deploying in 262
VirtualBox

download link 70
installing 70

virtualenv 13

[287]

W
Webrick

URL 239
web variable 97
Windows

Ansible on 275-277
Windows Remote

Management (WinRM) 275

Y
YAML Ain't Markup Language (YAML) 19
Yum

Ansible, installing via 15
yum module 25

Thank you for buying
Learning Ansible

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Ansible Configuration
Management
ISBN: 978-1-78328-081-0 Paperback: 92 pages

Leverage the power of Ansible to quickly configure
your Linux infrastructure with ease

1. Starts with the most simple usage of Ansible
and builds on that.

2. Shows how to use Ansible to configure your
Linux machines.

3. Teaches how to extend Ansible to add features
you need.

Mastering Puppet
ISBN: 978-1-78398-218-9 Paperback: 280 pages

Pull the strings of Puppet to configure
enterprise-grade environments for
performance optimization

1. Implement puppet in a medium to
large installation.

2. Deal with issues found in larger deployments,
such as scaling, and improving performance.

3. Step by step tutorial to utilize Puppet
efficiently to have a fully functioning
Puppet infrastructure in an enterprise-level
environment.

Please check www.PacktPub.com for information on our titles

Extending Puppet
ISBN: 978-1-78398-144-1 Paperback: 328 pages

Design, manage, and deploy your Puppet
architecture with the help of real-world scenarios

1. Plan, test, and execute your Puppet
deployments.

2. Write reusable and maintainable Puppet code.

3. Handle challenges that might arise in upcoming
versions of Puppet.

Configuration Management with
Chef-Solo
ISBN: 978-1-78398-246-2 Paperback: 116 pages

A comprehensive guide to get you up and running
with Chef-Solo

1. Explore various techniques that will help you
save time in infrastructure management.

2. Use the power of Chef-Solo to run your servers
and configure and deploy applications in an
automated manner.

3. This book will help you to understand the
need for the configuration management tool
and provides you with a step-by-step guide to
maintain your existing infrastructure.

Please check www.PacktPub.com for information on our titles

	Cover
	Learning Ansible
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Ansible
	What is Ansible?
	Installing Ansible
	Installing Ansible from source
	Installing Ansible using the system's package manager

	Hello Ansible

	The Ansible architecture
	Configuring Ansible
	Configuration using environment variables
	Configuration using ansible.cfg

	Configuration management
	Working with playbooks
	The anatomy of a playbook

	Variables and their types
	Variable names
	Valid variable names in Ansible
	Invalid variable names in Ansible

	Variables in an included task file
	Variables in a playbook
	Variables in a global file
	Facts as variables
	Command-line variables
	Variables in an inventory file

	Working with inventory files
	The basic inventory file
	Groups in an inventory file
	Groups of groups
	Regular expressions with an inventory file
	External variables
	Host variables
	Group variables
	Variable files

	Overriding configuration parameters with an inventory file

	Working with modules
	Command modules
	The command module
	The raw module
	The script module
	The shell module

	File modules
	The file module
	Debugging in Ansible
	The template module
	The copy module

	The source control module – git

	Summary

	Chapter 2: Developing, Testing, and Releasing Playbooks
	Managing source code – Git
	Developing a playbook
	Installing VirtualBox and Vagrant
	Downloading the Vagrant box
	Developing a machine
	Provisioning in Vagrant using an Ansible provisioner

	Testing a playbook
	Using the --syntax-check option
	The check mode
	Indicating differences between files
using --diff

	Functional testing in Ansible
	Functional testing using Assert
	Testing with tags
	The --skip-tags

	The Serverspec tool
	Installing Serverspec
	Analyzing the Rakefile and running tests
	Running playbook_tester

	Handling environments
	Code based on Git branch
	A single stable branch with multiple folders

	Summary

	Chapter 3: Taking Ansible to Production
	Working with the local_action feature
	Working with conditionals
	Working with loops
	Standard loops
	Nested Loops
	Looping over subelements

	Working with include
	Working with handlers
	Working with roles
	The Cassandra role
	Creating a task file with roles
	Using handlers with roles

	The Ansible template – Jinja filters
	Formatting data using filters
	Using filters with conditionals
	Defaulting undefined variables

	Security Management
	Using Ansible Vault
	Encrypting user passwords
	Hiding passwords
	Using no_log

	Summary

	Chapter 4: Error Handling, Rollback, and Reporting
	Error handling and Rollback
	Executing the playbook

	Callback plugins
	Monitoring and alerting
	E-mails
	HipChat
	Nagios
	Graphite
	Time for an error

	Summary

	Chapter 5: Working with Custom Modules
	Using Python modules
	Working with exit_json and fail_json
	Testing Python modules

	Using Bash modules
	Using Ruby modules
	Testing modules
	Summary

	Chapter 6: Provisioning
	Provisioning a machine in the cloud
	Diving deep into the playbook
	Launching a DigitalOcean instance

	Docker provisioning
	Installing Docker on hosts
	Deploying new Docker images
	Building or provisioning new Docker images

	Dynamic Inventory
	Summary

	Chapter 7: Deployment and Orchestration
	Deploying a sample Ruby on Rails application
	Packaging
	Deployment strategies with RPM
	Deploying newer versions of RPM in the
same directory
	Deploying the RPM in a version-specific directory

	Canary deployment
	Orchestration of a Tomcat deployment
	Deploying Ansible pull
	Summary

	Appendix: Ansible on Windows, Ansible Galaxy, and Ansible Tower
	Ansible on Windows
	Ansible Galaxy
	Ansible Tower

	Index

