
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning Banana Pi

Unleash the power of Banana Pi and use it for home
automation, games, and various practical applications

Daniel Blair

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Banana Pi

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1250615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-930-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Daniel Blair

Reviewers
Ryad El-Dajani

Marcel Lange

Martin Lützelberger

Igor Pečovnik

Commissioning Editor
Neil Alexander

Acquisition Editor
Reshma Raman

Content Development Editor
Nikhil Potdukhe

Technical Editor
Edwin Moses

Copy Editors
Karuna Narayanan

Vedangi Narvekar

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Daniel Blair is a tech entrepreneur and technologist from Winnipeg, Manitoba.
He is heavily involved in start-up and maker communities in Winnipeg and
regularly attends and organizes community events that are centered around
development and open hardware.

When the Banana Pi board was first released to the community, Daniel got involved
in the Banana Pi due to his experience with similar boards, such as the Raspberry Pi.
He has worked on various projects, which includes bringing the Tor browser to
the Banana Pi.

He has used nearly every incarnation of the Banana Pi and the boards that it has
inspired. He has been a part of all kinds of projects related to software and hardware.
Although Daniel has written a lot on the Banana Pi on his various websites, this is his
first book on the subject.

Bit Space Development, a tech start-up founded by Daniel, offers various solutions to
small businesses that need technology such as menu boards, Internet access points,
and company dashboards. The power of open hardware has enabled them to offer
top-quality support and robust hardware solutions as a small company.

I would like to thank my beautiful girlfriend, Erin, and my amazing
daughter, Emily, for putting up with my long writing sessions
and procrastination. I would also like to thank the good folks at
Bold Innovation Group in Winnipeg for their encouragement and
inspiration while writing this book.

I would also like to thank my mentors—Guy Dugas, Alex Trauzzi,
and Yvan Boisjoli—for keeping me in line and giving me the support
and guidance that I needed to work toward the goals that I have
achieved so far with regard to both this book and my career.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ryad El-Dajani is a software engineer and a passionate technology enthusiast.
He first became interested in computers when he was 10 years old. Soon thereafter,
he began to learn various programming languages.

After he completed his training as an IT specialist, he worked on several e-commerce
projects. Today, Ryad El-Dajani studies business computing and works at a big IT
company in Germany, where he is a part of various IT projects that are based on Java
or .NET technologies. Furthermore, he is authoring Banana Pi Cookbook, which will be
released by Packt Publishing soon.

Besides the classic application development, he has professional experience
in web frameworks such as Spring, Play, Symfony, eZ Publish, and Magento.
Moreover, he has been interested in all kinds of Unix-like embedded systems
since the revolutionary SheevaPlug.

www.allitebooks.com

http://www.allitebooks.org

Marcel Lange is a full-stack web developer from Hamburg, Germany, who
specializes in the development of PHP-based e-commerce applications. He holds a
degree in applied computer science.

He spends his leisure time experimenting with different kinds of electronics,
from soldering LED watches to building home automation systems and remotely
accessible robots. The rest of his spare time is devoted to working on his web blog,
http://ask-sheldon.com, where he shares his knowledge and experience with
various types of technologies and programming languages in the form of really
short articles or code snippets.

I would like to thank my family and friends for putting up with my
rare availability and sometimes brusque answers to e-mails and
messages. Thanks for being so lenient with me.

Furthermore, I want to express my gratitude to Packt Publishing for
giving me a chance to work on this very interesting project. It gave
me many new ideas and experiences. Thanks a lot!

Martin Lützelberger spent many years on biomedical and clinical research in the
field of molecular genetics, bioinformatics, and data management. As a long-time
Linux enthusiast, he developed a strong interest in microelectronics and physical
computing. After much tinkering with Arduino, the Raspberry Pi, and the Banana
Pi, he started to work as a teacher of informatics at a high school and brought these
single-board computers into the classroom to teach the youth of today how to
program and make them understand how computers work.

www.allitebooks.com

http://ask-sheldon.com
http://www.allitebooks.org

Igor Pečovnik has been acquainted with electronics since his childhood, which
spanned the early eighties. Transistors, tubes, ICs, and the first microcomputer were
his devices. He fell into Ham Radio and spent many evenings talking to people
all over the world long before the existence of the Internet. During his studies in
the mid-nineties, he fell in love with Linux. In this period, he was involved in the
mainstream Internet infrastructure deployment. He worked on various hardware
and software projects and started his own web publishing company, where he spent
a decade working as a CEO. The company operated one of the biggest local forums.
He took a break from entrepreneurship for a while and went back to intensive
humanistic study for years and focused on his family. After he became a father of
two, he went back to his first love—electronics. Once, he bought a small developer
board and figured out that its operating system was crappy. This motivated him to
start developing his own OS. The Debian Linux operating system, together with an
open source build kit, is most popular for CubieBoard, Banana PI, and Olimex Lime,
to name a few. He is a recognized member of the communities of these small boards.
After devoting a few years toward the development of systems, he still develops and
supports the basic Debian Linux for a dozen ARM boards.

I am working on a public project per se, so I have many coworkers
whom I want to thank. Thanks to all those who use, test, and report
problems, the ones who gave compliments and motivation, and the
people who donate money and devices!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: An Overview of the Banana Pi	 1

Differences between the Raspberry Pi and Banana Pi	 4
The M1	 5
The M2	 6
GPIO pins	 9
CON3 GPIO pin definitions	 10
Operating systems	 12
Raspberry Pi accessories	 13
Getting started	 13
Setting up your environment	 14
Powering the boards	 15
Summary	 16

Chapter 2: Preparing the SD Card	 17
Getting the SD card ready	 17

Prepping the SD card on Windows	 18
Prepping the SD card on Linux	 19

Preparing the drive from the command line	 19
Preparing your drive using GParted	 20

Prepping the SD card on the Mac	 21
Installing the operating system	 22

Installing Android	 22
Installing Linux on your Banana Pi	 24

Installing through Windows	 24
Installing on the Mac and Linux	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Configuring your Linux installation	 25
Setting up Raspbian	 26
Setting up Bananian	 27
Expanding the root partition	 28

Connecting remotely	 29
SSH from Windows	 29
SSH from Linux or the Mac	 31
SSH remotely	 31

Setting up your desktop environment	 32
Summary	 34

Chapter 3: Linux and the Command Line	 35
The filesystem	 35
Important commands	 40
Installing software	 40

The Apt package manager	 41
The dpkg tool	 42

Interfacing with GPIO pins	 43
Interacting with the GPIO pins in Python	 44

Interacting with hardware	 45
Using expansion boards	 46
Setting up the PiFace	 47
Mounting external drives	 48

Summary	 49
Chapter 4: Programming on the Pi	 51

Choosing your editor	 51
Command-line editors	 52

The Emacs editor	 52
The Vim editor	 53
The nano editor	 54

Graphic editors	 55
Eclipse	 55
The Geany IDE	 56

Web IDEs	 58
Google Coder	 58
Adafruit WebIDE	 60

Writing code on the Pi	 61
Bash scripting	 61
Python programming	 64
The Ruby language	 64
The Go language	 66

Summary	 69

Table of Contents

[iii]

Chapter 5: Hardware for Your Pi	 71
Breadboarding your Banana Pi	 72

Required hardware	 72
Common components	 73

Resistors	 73
Diodes	 75
Light-emitting diodes	 75
Capacitors	 76
Transistors	 76
Integrated circuits	 77

Working with hardware	 77
Working with LEDs	 77

Controlling LEDs with code	 79
Adding user input	 80

Working with servos	 82
Controlling our servo	 84

Summary	 90
Chapter 6: Interacting with Sensors	 93

Sensors and you	 94
Interacting with light	 95
Using RFID	 98
Using IR receivers	 102
Using force sensors	 106
Summary	 107

Chapter 7: Building an Internet Radio	 109
Setting up the music	 110
Using LCD displays	 111
Wiring up the LCD	 112

Connecting the Pi	 114
Writing to the display	 115
Radio output	 116

Introducing the PiFace radio	 117
The PiFace radio	 119
Adding stations	 120

Making our radio pretty	 120
Summary	 123

Table of Contents

[iv]

Chapter 8: Building a Home Server	 125
Setting up a web server	 126

Setting up our server	 126
Setting up ownCloud	 129

Setting up the SATA drive	 129
Installing ownCloud	 130
Installing Baikal	 134
Downloading Baikal	 136
Setting up swap	 136

Summary	 138
Chapter 9: Gaming on Your Pi	 139

Gaming on Android	 140
Gaming on Linux	 141
EmulationStation	 142
Streaming from your PC	 145
Summary	 150

Index	 153

[v]

Preface
This book covers the topics of the Banana Pi and single-board computing.
Single-board computing generally refers to the computers that reside entirely
on one chip. The computer that we are dealing with is the Banana Pi, which is
based on the Raspberry Pi, the open source computer.

Single-board computing has become extremely popular as of late for its use in
prototyping, education, and gaming. This book will introduce you to all of these
topics. We will go from the beginner to the intermediate level in just a few chapters.

The communities that developed these devices have come up with many cool use
cases, such as tiny low power servers, media devices, and arcade machines. We will
explore a few popular uses of the Banana Pi, which will show you just how versatile
your little computer is.

Also, there are a lot of different operating systems that are available for the
Banana Pi. We will explore the set up and use of two of the most popular operating
systems, Android and Linux. You will be an intermediate user by the time we are
done here, which will set us up to explore complex projects, such as robotics, further
down the road.

What this book covers
Chapter 1, An Overview of the Banana Pi, gives an introduction to the Banana Pi
board. It also covers the basic components of the Banana Pi.

Chapter 2, Preparing the SD Card, covers one of the most important steps to
owning your first Banana Pi. We will learn how to prepare the SD card on
multiple operating systems.

Preface

[vi]

Chapter 3, Linux and the Command Line, talks about the Linux operating system and
some useful commands. This is important when you are using the Banana Pi because
almost all of the operating systems for the Banana Pi are based on Linux.

Chapter 4, Programming on the Pi, explores the different programming languages
that are supported by the Banana Pi. This will introduce the user to some code and
different use cases.

Chapter 5, Hardware for Your Pi, explores some of the hardware that you can use with
the Banana Pi. We will explore electrical components such as the LED and capacitor.

Chapter 6, Interacting with Sensors, deals with sensors, which are very useful in
circuits. We will have a look at a few different sensors and how they can be used.

Chapter 7, Building an Internet Radio, is built upon the discussions from the previous
chapters and shows you how to construct a media device. The Internet radio will be
explored in a couple of ways, which will allow for it to be used more easily.

Chapter 8, Building a Home Server, takes a look at how you can build a low-power,
low-cost Banana Pi home server. We will delve into the Google Apps replacements
and shared calendars. All of this will be powered by your own hardware.

Chapter 9, Gaming on Your Pi, is the most fun chapter of this book. We will explore
video games on the Banana Pi. We will look at building a retro game computer and
explore game streaming on Android.

What you need for this book
This book will require you to have access to another computer other than your
Banana Pi. You will need to download some specific software, such as the Phoenix
card writer, to prepare the Android image. Furthermore, you will need access to
putty to SSH into the Banana Pi on Windows.

Besides the aforementioned requirements, you will just need access to your
favorite text editor, a keyboard, and some basic electrical components, such as the
breadboard, resistors, and LEDs.

Preface

[vii]

Who this book is for
This book is for the users who will be using the Banana Pi for the first time or are
new to single-board computing. We will learn a lot in a short amount of time.
So, be prepared for a fast-paced journey into the world of the Banana Pi.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Once you have done this, you will need to run fdisk on that particular drive."

A block of code is set as follows:

#!/usr/bin/env python
import RPi.GPIO as GPIO

#Use BCM numbering
GPIO.setmode(GPIO.BCM)

Any command-line input or output is written as follows:

sudo fdisk /dev/sdx

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"We can enter this IP into the Host Name input field on PuTTY"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/9309OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

An Overview of the
Banana Pi

This book is going to help you on your journey into single-board computing.
We are going to cover a lot of topics that are popular in the community and build
some skills that will help us when we are working on projects later on. The world
of single-board computing is new and fast-paced but it opens up so many doors
when it comes to education and technology. The Raspberry Pi (pictured here) is the
inspiration for the Banana Pi.

www.allitebooks.com

http://www.allitebooks.org

An Overview of the Banana Pi

[2]

Single-board computing is a relatively new technology that was popularized by
the Raspberry Pi and really made it easy to prototype and learn. The Raspberry Pi
brought cheap computing power to people around the world and empowered kids
and hobbyists to learn about Linux and start to play with electronics. It brought out
the maker in all of us and we started to build and see what we could do.

The Banana Pi allows you to take rapid prototyping to the next level. With an
operating system directly on the board and access to the general purpose input
output (GPIO) pins, you can not only set up a home theatre PC (HTPC), you can
actually build the next great product using one.

Learning electronics is easier than ever when you attach the GPIO output to a
breadboard and build directly from that. The Banana Pi, like the Raspberry Pi, is
so small you can even incorporate it into a finished product and forego the need to
implement another micro controller. The GPIO pins allow you to write code on the
device that interacts with physical hardware such as LEDs, resistors, and switches.
This means you can mock-up your idea, and get a working version of it before
making a commitment to manufacturing something.

Chapter 1

[3]

Coding is something that is becoming very important as a skill now, and with coding
tutorials, and software that you can install directly on the Banana Pi, you can build
skills that will be valuable to you for a long time. The Google Coder interface is
pictured in the preceding screenshot.

The Banana Pi is usable as a web server, which means that you can learn languages
such as Ruby, PHP, and Python directly on the board, or push code from your other
computer to the Pi, which can act as your local development server. I have found
projects such as Google Coder to be incredibly useful tools for learning
these skills.

Popular development tools are available for the Banana Pi on Linux as long as
there is an ARM-compatible build for it. This includes software such as gedit. You
can also run web-based solutions (for instance, Adafruit's WebIDE, which runs as a
web service directly on the Pi).

One of the most popular uses of the Raspberry Pi is as an HTPC or Media Centre
PC. This means that the device is hooked up to a TV and used for the displaying of
media. With tools such as XBMC (see the preceding screenshot) and Samba for file
sharing, this is quite easy. The Banana Pi makes this even more accessible. What used
to be a slower GUI is now sleek and fast and, with the built-in IR receiver, you can
even use a remote to control the Pi from the sofa without the need for a keyboard
and mouse. The SATA port on the M1 makes it faster than ever to get media to your
TV due to the read/write speed of SATA being a lot faster than USB. The M2's built-
in Wi-Fi is also very useful for this task.

An Overview of the Banana Pi

[4]

Popular software such as Octoprint (used to control a 3D Printer—for example, the
Printrbot) is also compatible with the Banana Pi. This allows you to directly connect
your Banana Pi to your 3D printer and use that as a print server. You can send your
3D models to the Pi and have it slice up your model and start the print. This is one of
my favorite uses for the Pi, something that also translates into rapid prototyping.

Differences between the Raspberry Pi
and Banana Pi
The Raspberry Pi took open source software and added a hardware aspect to it.
Now for less than $100 you could have a cheap computer and that really got people
excited. A huge community has grown from the Raspberry Pi, which has helped with
the success of the board and has been the inspiration for newer boards with better
specs such as the Banana Pi. The Banana Pi is a board that builds on the success of
the Raspberry Pi. It is a single-board computer, which means that everything needed
to operate on the system, is built-in, all you need to do is add your peripherals. The
Banana Pi takes it a step further with increased stats and performance, which allow
you to really take your projects to the next level.

The community for the Banana Pi is growing and you can already find projects
and tutorials specific to it. The additional hardware such as the SATA port and
Gigabit LAN has made it very popular for file servers or ownCloud. The nice thing
is, you can still do everything you wanted to do with the Raspberry Pi, but with
a little extra hardware. The following screenshot shows some hardware used to
breadboard a Banana Pi.

Chapter 1

[5]

The M1
There are two versions of the Banana Pi: the M1 and the M2. The M1 is more
common and currently sports a 1.2 GHz dual core processor, while the M2 is newer
and has a 1.4 GHz quad core processor. Both boards operate similarly, but the M2
is really where things are headed. You can identify the board you are using by
counting the GPIO pins in the bottom-left corner of the board. If you have 40 (like the
Raspberry Pi B+) then you have the M2. If you have 26, like the classic Raspberry Pi,
then you have the Banana Pi M1.

Getting familiar with the hardware on the Banana Pi is important; this will help you
determine what can be done with the Pi, and will help you decide which model to
use in your future projects at the planning phase. The M1 board has a very similar
layout to the Raspberry Pi model B (classic). On the left side of the board you have
your 26 GPIO pins, AV video out, and 3.5 mm audio out. The front of the board
has your LED indicators, IR receiver, and Ethernet port. The ports for the M1 are
outlined in the following diagrams:

An Overview of the Banana Pi

[6]

Both the M1 and M2 boards have nearly identical mounting holes
around the four corners of the board.

The M2
Down the right side of the board you have the UBOOT key, LVDS connector for
video displays, HDMI out, SATA, 5 v micro USB power port, and SATA power out.
The bottom of the board has the power and reset switches, as well as a micro USB
OTG (host) port. The back side of the board shows the CPU and the SD card slot for
the OS.

The M2 board is similar in layout to the Raspberry Pi model B+, with 40 GPIO
pins in the bottom-left corner of the board. The layout does differ though. On the
left-hand side of the board you will find the GPIO pins, 3.5 mm audio jack, and two
USB 2.0 ports. On the top of the board you will find the IR receiver, two more USB
2.0 ports, and the Ethernet port. The right-hand side of the board has the boot button,
LVDS/RGB display interface, HDMI out, and 5V, 2A power jack (not USB). The
bottom edge of the board has the camera interface, power and reset buttons, and the
micro USB OTG host port.

Chapter 1

[7]

These ports are outlined in the following diagram:

The bottom side of the board has the CPU, Wi-Fi antenna connector, RealTek 802.11
b/g/n Wi-Fi adapter, and the micro SD card slot for the OS. The biggest difference
between the M1 and the M2 is the lack of SATA when upgrading the M2. This may
determine which model you plan to use, or it may not affect your decision. The M2
supports Micro SD and Wi-Fi, unlike the M1, which does impact the final project if
those are features you are looking for.

An Overview of the Banana Pi

[8]

The next image shows the bottom side of the M2:

Overall, the boards are similar in terms of architecture and ports with several
exceptions for each board. You could compare the Banana Pi with the Model B
versions of the Raspberry Pi. The Raspberry Pi Model B+ builds upon and improves
some aspects of the Model B classic, however both are still useful. The M1 is not
necessarily worse than the M2, since it offers different hardware and even some
different software to the M2. The following chart gives a direct comparison of
features between both versions of the Banana Pi. The Banana Pi M1 uses the
A20 processor, which is currently very widespread and widely supported. The
A31 boasted by the M2 is still very new, and the lack of SATA on the board is a
shortcoming of the board's design.

The following table outlines the differences in hardware between the Banana Pi M1
and M2. The boards are comparable; although the M2 is the upgrade, the M1 has
features that the M2 does not.

Chapter 1

[9]

The following table visualizes the differences between both the M1 and M2
Banana Pi boards:

Banana Pi M1 Banana Pi M2

CPU A20 ARM® Cortex™-A7
Dual-Core

A31S ARM Cortex-A7
quad-core, 256 KB L1 cache
1 MB L2 cache

GPU ARM Mali-400MP2 complies
with OpenGL ES 2.0/1.1

PowerVR SGX544MP2

Memory
(SDRAM)

1 GB DDR3 (shared with GPU) 1 GB DDR3
(shared with GPU)

Storage SD max. 64 GB Micro SD max. 64 GB

Ethernet 10/100/1000 Ethernet RJ45 10/100/1000 Ethernet RJ45

Wi-Fi N/A 802.11 b/g/n

Video Outputs HDMI, CVBS, LVDS/RGB HDMI, CVBS, LVDS/RGB

Audio Output 3.5 mm Jack and HDMI 3.5 mm Jack and HDMI

Power Source 5 volt via MicroUSB (DC In
Only) and/or MicroUSB (OTG)

5 volt via MicroUSB (DC
In Only) and/or MicroUSB
(OTG)

USB 2.0 Ports 2x 4x

IR Receiver Yes Yes

Buttons Power, Reset, UBoot Power, UBoot

GPIO pins
The general purpose input output (GPIO) pins are one of the best features of both
the Raspberry and Banana Pi boards. These pins are what allow your software to
interact with the physical world much like working with an Arduino. These pins can
be interfaced with, via code right from within the operating system running on the
board. The pins can be used to interface with sensors, displays, touch screens, and
the layout is exactly the same as the Raspberry Pi; thus, basically all the accessories
are compatible with the Banana Pi.

An Overview of the Banana Pi

[10]

The next diagram shows the location of all the GPIO pins:

CON1 is the extensible on-board CSI connector. It is a 40-pin FPC connector that can
be used to connect the external camera module. CON2 is an LVDS display connector.
CON3 contains the CAN bus, SPI bus, I2C bus, PWM, serial port, and so on. It can be
configured to be used for all kinds of peripherals. The table viewable from the link
contains the CON3 pin definitions. This is a reference for future use as you will need
to know which pin is used for what.

CON3 GPIO pin definitions
The definitions for the GPIO pins can be located on the official website. These are
quick and easy references and will benefit you when working with the Banana Pi.
This following link will get you to the tables: http://www.bananapi.com/index.
php/component/content/article?layout=edit&id=24.

http://www.bananapi.com/index.php/component/content/article?layout=edit&id=24
http://www.bananapi.com/index.php/component/content/article?layout=edit&id=24

Chapter 1

[11]

J11 contains the default serial port. J12 also contains a serial port UART. UARTO
(UARTO-RX, UARTO-TX) is configured for console input/output. This is useful
if you want to log in using the serial port, which makes it the most commonly
used PIN.

UART stands for Universal Asynchronous Receiver/Transmitter. This is hardware
that translates data between serial and parallel sources. This means that those pins
are directly connected to a piece of hardware that translates this data. This is used for
directly connecting to the board and diagnostics, among other things.

The GPIO pins represent all of the interfaces you may need while working with the
Banana Pi. This includes connecting over serial, and even powering the board. These
pins allow you to interact with physical components through code you have written
on the board. This means you can, for example, signal an alarm when a moisture
sensor detects that your plants are dry, or write a row in your database when your
beer has reached a certain stage while brewing.

GPIO is not specific to the Raspberry or Banana Pi; this represents any general pins
that are on a board. This means that these pins are merely input and output and are
there for the sake of allowing you to work with them. The following image shows the
GPIO pins in relation to the actual device:

www.allitebooks.com

http://www.allitebooks.org

An Overview of the Banana Pi

[12]

Operating systems
The Banana Pi supports many different operating systems. Because of its ARM v7
processor, it also runs operating systems such as Android. The list is actually quite
long but currently there are several ported Raspberry Pi builds of Linux, which
includes Kano and Raspbian as well as an optimized build called Bananian. There
are also several ARM-based Linux builds targeted at the Banana Pi to choose from.
These builds include OpenSUSE, Arch, Fedora, Lubuntu, and even Kali Linux. There
are also two versions of Android available: 4.2.2 Jelly Bean and 4.4 KitKat.

The choice in operating systems is part of the reason the Banana Pi is so versatile.
The operating system you choose may impact your project; something like Android
would make a great media PC, whereas Arch or Debian would make a better file
server. The choice is there though and all are available for free from the official
website at http://www.bananapi.com/index.php/download.

The most common choice in operating systems for the Banana Pi is the Bananian port
of Raspbian. This is due to the popularity of Raspbian for the Raspberry Pi. Basically
every Raspbian-based project for the Raspberry Pi is directly compatible with the
Banana Pi. This means that, by sticking with Bananian or Raspbian, you immediately
have access to loads of tutorials and projects. Raspbian Linux is based on Debian
Linux; this is one of the most popular distributions in the world.

http://www.bananapi.com/index.php/download

Chapter 1

[13]

Raspberry Pi accessories
The Banana Pi is made to be compatible with Raspberry Pi accessories. This is of
course in relation to boards that are attached directly.

The GPIO layout of the M1 Banana Pi is identical to the Raspberry Pi Model A and
B (classic). That means that boards such as the PiFace command and control will
directly fit on the board and function just as if it was connected to a Raspberry Pi.
The Banana Pi boards have a different layout than the Raspberry Pi boards, which
means that you can't use your Raspberry Pi cases for the Banana Pi and vice versa.

Getting started
Now that you know about the hardware aspects of the different Banana Pi boards
and their differences from, and compatibilities with, Raspberry Pi boards, you can
start to plan out your projects.

An Overview of the Banana Pi

[14]

Setting up your environment
There are a number of ways that you can set up your actual work environment
for working with the Banana Pi. Depending on the board you are using, there are
various cables that you will need to get started, some of which can later be removed
depending on the project you are working on.

As you read earlier, the different boards have different layouts. There are some
common cables that you will need to get started. Both versions of the Banana Pi
have an HDMI out interface. Generally, no matter what the project, you are going
to connect it via HDMI even if it is just to get the project started.

Both boards can be powered over USB, although the M2 does have a 5V power jack
slot that can be used to power the board as well. The USB cable needed to power the
Banana Pi is a standard Micro USB cable that is similar to, if not exactly the same as,
the one you may use to charge your cell phone. You can connect a USB keyboard and
mouse to either board, and of course you will need an SD card to hold the operating
system. The essential hardware you are going to need to work with the Banana Pi is:

•	 HDMI cable
•	 Ethernet cable
•	 Wi-Fi dongle for the M1 (the M2 has built-in Wi-Fi)
•	 USB keyboard and mouse
•	 SD card (Micro for M2)

Chapter 1

[15]

Once you have set up the initial board, you will be able to downsize some of this
hardware. If you plan on using SSH to connect to the board, you won't need a
display, keyboard, or mouse, which leaves you with a very small footprint.

Powering the boards
There is more than one way to power the boards. In fact, there are three ways:

•	 Micro USB through the OTG Port
•	 5V connector for the M2
•	 Power through the GPIO

The most common way to power the board is through the micro USB port. This
is usually because we all seem to have a surplus of cables lying around and they
generally tend to be USB from hardware such as cell phones and controllers. The M2
also comes equipped with a 5V DC connector that is new to the Banana Pi.

One way you can power your project that may be right for you is over GPIO. The
pins are connected to the 5V rail, which means you can supply power to the pins.
This means you can wire up whatever sensors and electronics you need for your
project, as well as a direct power line. This is useful if you are planning on doing
something battery- or solar-powered. The +5V supplied from the USB connector is
filtered to give a stable 5V supply to the 5V0 Rail.

An Overview of the Banana Pi

[16]

There are implications to powering the board this way, though. Although you can
supply 5V of power though the GPIO pins, there is no protection for the board. This
is also true if you use the 3.3V pins. This means that the board is not protected from
spikes and you run the risk of a fried board. It is really recommended that you stick
to micro USB or the 5V connector unless you are prepared to build in that protection
before supplying power. Never power the device through GPIO pins AND micro
USB at the same time. Always use only one power source.

Summary
With the information we have covered so far you should be able to start doing some
projects. From here you will need to prepare your SD card with the operating system
of choice and gather the supplies you will need to get started.

You also have the tools necessary to start working with the GPIO pins as well as
a layout of the actual pins. This will help you later on when we start to do some
interesting stuff with sensors and electronics.

In the next chapter, we are going to cover some of the software, options, and the
process of installing the operating system onto the SD card for our Banana Pi. We
will cover Windows, Linux, and Mac OS X as the process varies depending on your
computer's operating system.

[17]

Preparing the SD Card
In this chapter, we are going to cover a variety of topics ranging from preparing your
card to installing your operating system. We will also cover installing Android and
configuring your installation.

As mentioned in the previous chapter, there are many different choices when it
comes to your operating system. The most common choices are Android for Media
PCs and Bananian or Raspbian, which are both based on Debian Linux. There are
several different ways to accomplish preparing your SD card for use on different
operating systems and we will cover each of them.

Getting the SD card ready
Regardless of the operating system on your computer, you need to have access to
an SD card writer. Most laptops have them; depending on your desktop, you may
or may not have a reader but, if you don't, these items are inexpensive and will be
necessary for working with your Banana Pi and any other single-board computer
that uses SD cards and microSD cards.

If you bought a brand-new SD card (Class 10 preferred) that has been preformatted
with FAT32 then you are good to go; in fact some kits come with an operating
system preinstalled on the SD card that will let you skip this whole section. If that is
the case, keep this section as information in your back pocket if you choose to switch
operating systems eventually or want to reinstall later.

Preparing the SD Card

[18]

Prepping the SD card on Windows
The quickest and easiest way to actually get your card wiped and ready to
go, is to use a piece of software called SD Formatter. This tool is distributed
by http://sdcard.org and is the official tool for working with SD cards.
You have only a few options when working with the software, as seen in the
following screenshot:

Once the software is installed and launched, you will be presented with a small
window that has a few options. You are asked to choose the drive, which is a drop-
down list of the removable devices attached to the computer. You are shown the
Size, Volume Label, and Format Option options. You can change these options
under the Option button where you can choose the format type and format size
adjustment as seen in the following screenshot:

http://sdcard.org

Chapter 2

[19]

The official Banana Pi website tells you to set your format type to Quick and to leave
the size adjustment to On. I have found that personally, I have a lot more success
working with the cards when I set the format type to Full (Erase), which is likely due
to the fact that we are installing an operating system. I find that Quick is generally
fine for drives you intend to just store files on. A full format checks the disk for bad
sectors, which takes longer but will result in a much better write. Once this is all set
and you have selected your drive from the drop-down, you can click on Format and
begin the process. When this is done, you will have a clean card to start working
with. Unfortunately if you have already installed Android using Phoenix, you will
need to format the disk using fdisk or GParted on Linux.

Prepping the SD card on Linux
Since we are going to be working with Linux later on, it makes sense that you
can prepare your card from the same OS you will be installing on. I personally
prefer working on Linux but that is my preference, I can live on any OS as long
as I have a terminal.

Preparing the drive from the command line
There is more than one way to prepare your SD card on Linux and some people tend
to lean towards the command line side of things. This is a quick and efficient way
to get things done. This is also good practice for later since a lot of working with the
Banana Pi is command-line-oriented.

To get started, you are going to need to identify your drive. You may need to
be running as root or as a user with root privileges. So, for the sake of this book,
we will run our commands with sudo. You can run the fdisk command to check
all of the attached drives:

sudo fdisk -l

It should be noted that mixing up the device path might lead to severe data loss!

This output will supply you with a list of the drives attached to the computer;
you will need to note which one is your SD card. Once you have done this,
you will need to run fdisk on that particular drive.

sudo fdisk /dev/sdx

Preparing the SD Card

[20]

The x character in sdx will be replaced by the drive number for your drive. The most
common path for the SD card is /dev/mmcblk0. Once you have run the command,
you will have several options. You will need to select d to delete all the partitions
on the drive. You will select n to create a new partition and finally w to write the
changes. Now you are able to create a filesystem on the empty partition. This is
accomplished by running the following command:

sudo mkfs.vfat /dev/sdxx

On some fresh installs of Linux you may need to install the dosfstools package.
The xx character will be replaced according to your drive as seen in the previous
case. Once this is finished, you will have an SD card with a clean FAT32 filesystem
ready to have an OS installed on it.

Preparing your drive using GParted
If you do a lot of drive maintenance under Linux, you may be familiar with GParted.
If not, then this is going to be one of your favorite tools. GParted is a utility for
formatting, deleting, and creating drives and partitions. GParted can also be used to
create a live CD/USB that you can boot to and accomplish the same task; this also
doubles as a valuable tool to have kicking around whenever you need to work with
drives. This tool is far more robust than SD Formatter for Windows as you can see in
the screenshot.

Chapter 2

[21]

Some of the features in GParted include creating, deleting, resizing, and moving
partitions. GParted is also great for working with filesystems such as FAT12/FAT32,
ext2, ext3, and ext4, NTFS, and more. This tool will allow you to delete and create
your new partitions.

To actually prepare your card in GParted and get things rolling, all you have to do
is select the drive in the top-right corner and unmount any partitions that may be on
the drive already. You can accomplish this by right-clicking on them in the list on the
graph and selecting unmount. Once this is done you will be able to right-click and
select delete from the context menu and create your new partition. Once the drive is
done you can click on the green Apply button on the top bar and everything will be
written. At this point, you are ready to install your operating system.

Prepping the SD card on the Mac
The Mac OS is actually based on Unix, which means that you have a very similar
command-line interface as Linux; that being said, many Mac users are going to be
more comfortable using the disk utility to prepare the card. This can be reached by
opening the setting page either by searching or by opening it from the overview
feature. The utility is a relatively simple looking tool that has a similar functionality
to GParted. You can see the UI in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Preparing the SD Card

[22]

Once you have launched the Disk Utility you will be presented with a list of attached
storage devices on the left-hand side. This list will include your main drive, external
drives, and your removable media such as USB thumb sticks and SD cards. You will
need to select your drive and erase the partition. This will create a fresh partition and
get you going onto the next step.

Installing the operating system
Once your SD card is prepped and ready to go, you can start to install the operating
system. Depending on the OS you are looking at installing, the instructions may
be slightly different but we will be covering installing Android and Raspbian/
Bananian, which are the most popular choices for the Banana Pi M1 and M2 units.

Installing Android
Android is one of the main reasons people come looking for the Banana Pi. With the
beefed up stats and the ability to run one of the most popular operating systems for
media consumption, it makes perfect sense to look at this option for something like
a media PC or something else along those lines. Currently, Android can only be set
up for the Banana Pi using Windows. This is due to the fact that the SD card needs to
be set up in a certain way to operate, which is slightly different than installing Linux.
You cannot use the dd command like you can for installing operating systems. You
will need to get the PhoenixCard software shown in the following screenshot:

Chapter 2

[23]

This software is admittedly somewhat difficult to use. Some of the UI is not
translated into English and it doesn't always work on the first try. Once the
software is launched you will see the UI and you'll notice this:

•	 The first thing on the very top is the DiskCheck button. You will use this to
check the disk you plan to write to, once it is selected from the drop-down.

•	 The Img File button is used to locate the .img file of the OS you downloaded
from the Banana Pi website.

•	 It is important to change the write mode to startup so that the SD card is
written so it can be booted from.

•	 You will then need to click on Format to Normal, which will start the process
of making the SD card bootable.

Once this is complete a pop-up dialog will announce Success! and you will know it
is good to burn the Android image. To do this you will need to:

1.	 Click on the Burn button, which will cause all kinds of output to spew into
the small output window.

2.	 Once you see magic complete (in my opinion, the least descriptive thing
ever but also my favorite output from any piece of software I have ever
used), you are good to go.

3.	 When this is done, you can pop the SD card into your Banana Pi and plug it
in. You will see a boot animation that may take longer than you are expecting
to complete. This is normal and if you wait around for a minute or so you
will see Android in all its glory running on your tiny computer.

Preparing the SD Card

[24]

You are able to install just about any .apk file you can think of. I have installed
emulators, Netflix, XBMC, and more and they all seem to work. If you install the
Android 4.2 version, you will have access to the Google Play Store, if you grabbed
the Android 4.4 KitKat download you will be out of luck for now, but you can install
Amazon Market to get going.

Installing Linux on your Banana Pi
Most projects aside from media PCs (and even some that are media PCs) will require
you to install Linux on the board. The install process is slightly different depending
on the OS that you have on your computer right now, similar to preparing your SD
card. Regardless of the operating system on your computer, the end result will be the
same: a full Linux installation that is ready for you to start hacking on.

Installing through Windows
Installing the OS through Windows is quick and painless. Downloading
the extremely common utility Win32 Disk Imager will solve this for you.
Now, follow these steps:

1.	 The interface is simple; you have an input field at the top where you can
choose an image file from the Image File drop-down, you can choose the
drive and buttons for starting the process here.

2.	 Once you have the drive and image file selected, it is just a matter of clicking
on the Write button and waiting patiently. Once the write is complete, you
are good to go. Insert the SD card into the Pi and boot it up.

Chapter 2

[25]

Installing on the Mac and Linux
Both Mac OS users and Linux users can follow the same instructions. This process
involves using the command line but doesn't require too much of you aside from
knowing the drive info and having the image downloaded.

1.	 The first thing you are going to need to do is get a list of the drives on
the system:
sudo fdisk -l

2.	 Once you know which drive you are working with, you can check the
hash key of the ZIP file to make sure it is the same as the download page.
This step is optional but it will ensure you are installing the correct image.
sha1sum [path]/[imagename]

3.	 You will need to unmount the drive so you can write to it.
unmount /dev/mmcblkxx

4.	 Writing the image to the drive is done using the dd command. This is a
powerful command that is used to convert and copy files. The following
command will write an .img file to a drive using 4M block sizes:
sudo dd bs=4M if=[path]/[imgname] of=/dev/mmcblkxx

5.	 If the 4M block size does not work (it generally should) you can try again
using 1M blocks. The smaller blocks will make the process take longer but it
shouldn't take long to write.

Configuring your Linux installation
Now that we have a working installation, we can get to configuring it. If you
installed Android it will be mostly configured out-of-the-box. If you installed Linux,
you will need to set up your environment. The process is slightly different for each
OS but I will be focusing on Raspbian and Bananian since they are the most common.
The process for each of these operating systems is only slightly different.

Preparing the SD Card

[26]

Setting up Raspbian
The configuration process for Raspbian is identical to working with the Raspberry
Pi since this operating system is a direct port from the Raspberry-flavored one. The
configuration tool is brought up by running the raspi-config tool. This tool allows
you to manage things such as resizing the filesystem and changing the host name.

The config tool can be launched by running the following command (you will need
to be root or run it with sudo):

sudo raspi-config

There are many different options in this menu and all of them are pretty useful.
The following table will explain some of their uses. Not every project needs all of
these configurations but they are good to have nonetheless.

Options Description
Expand Filesystem Ensures that all of the SD card storage is available to the OS

Change User Password Change password for the default user (pi)

Enable Boot to
Desktop/Scratch

Choose whether to boot into a desktop environment, Scratch,
or the command line

Internationalization
Options

Set up language and regional settings to match your location

Enable Camera Enable this Pi to work with the Banana Pi Camera
Add to Rastrack Add this Pi to the online Raspberry Pi Map (Rastrack)
Overclock Configure overclocking for your Pi
Advanced Options Configure advanced settings
About raspi-config Information about this configuration tool

Chapter 2

[27]

The menu can be navigated easily by using the arrow keys on your keyboard and
pressing Enter to select a menu option. You can also press Tab to switch to Finish
when you are done configuring your Pi.

Setting up Bananian
Bananian is intended to be super lightweight out-of-the-box. This allows it to work
on basically all of the Banana Pi devices including some we are not covering in
this book, such as the R1 router. Some of the main differences between Raspbian
and Bananian are that Bananian is command line only out-of-the-box and uses
the zsh command line as opposed to Bash. This won't affect us (and is actually my
preference) while working with the Pi. The following screenshot shows you the
Bananian command line:

Bananian has its own (less pretty) version of the raspi-config tool called
bananian-config. This tool is less of a selection of tools and more of a wizard
style tool, that will ask you step by step if you want to use each of its features.

The steps for the Bananian config tool are:

1.	 Changing the keyboard layout (the default value is us).
2.	 Changing the root password.
3.	 Changing the current time zone.

Preparing the SD Card

[28]

4.	 Changing the current locale.
5.	 Changing the hostname.
6.	 Enabling/disabling video acceleration.
7.	 Hardware configuration.
8.	 Expanding the root filesystem.

Overall, the Bananian and Raspbian config tools offer the same functionality but they
do function differently. These tools are both important for setting up your system.

Expanding the root partition
This is one of the configuration options for both configuration tools. When you flash
the OS onto the SD card, regardless of the size of the card, it will create specific
partitions. If you were to use a 32 GB SD card you would be missing out on some
space. This tool lets you expand the filesystem.

Once the Resize tool is used (it is fast), you will need to reboot the system, but it is
worth it because now you are using your whole drive. If you had tried to install any
software before doing this, you would have run out of room very quickly.

Chapter 2

[29]

Connecting remotely
Not every project you will do will require you to use a display directly attached
to the Banana Pi. You can connect to the device remotely from one of your other
computers on the network and run the Pi headless (with no display). This is
accomplished using SSH. By default, SSH is installed on Raspbian and Bananian
out-of-the-box. For this, you will need to make sure that the Banana Pi is connected
to the same network as your computer.

SSH from Windows
Windows does not come with an SSH client out-of-the-box. You need to download
one. The most common application for this is called PuTTY. PuTTY is a free
application you can download from its website (http://www.chiark.greenend.
org.uk/~sgtatham/putty/). The application does quite a bit when you get right
down to it but we just need the bare-bones configuration.

1.	 To connect to a remote computer you will need its IP address. You can get
this if you currently have a display connected to the Banana Pi by opening
the terminal emulator and running the command:
ifconfig

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Preparing the SD Card

[30]

2.	 This will produce a bunch of output that will include the information for
each of your network interfaces. If you are wired; you will look for eth0, and
if you are wireless; you will look for wlan0. The IP address you need will be
preceded by inet. The output of the command looks like this:
eth0 Link encap:Ethernet HWaddr 02:07:05:01:d2:44

 inet addr:192.168.1.6 Bcast:192.168.1.255
 Mask:255.255.255.0

 inet6 addr: fe80::7:5ff:fe01:d244/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:86523 errors:0 dropped:0 overruns:0
 frame:0

 TX packets:1649 errors:0 dropped:0 overruns:0
 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:9430022 (8.9 MiB) TX bytes:115701 (112.9
 KiB)

 Interrupt:117 Base address:0xc000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

3.	 From this output you can see that the IP address we need is 192.168.1.6.
We can enter this IP into the Host Name input field on PuTTY. When you
connect, you will be prompted for the username and password and will be
put into a command line session running on the Banana Pi.

4.	 If you need the IP address and do not have direct access to the Banana Pi
you can generally get this information from your router, or there are various
applications you can download to get this information from.

Chapter 2

[31]

SSH from Linux or the Mac
For your benefit, if you are using a Mac computer or Linux you have a terminal
emulator built in. Although you can download PuTTY on Linux, you don't need
to, because all you need to do is run the SSH command. On either Mac or Linux
open up your bash terminal and run this command:

Share this:

ssh user@ipaddress

The user is whichever user you plan to run as, and the IP address is specific to your
device within your network. For example, if my IP address is 192.168.1.6 and I want
to connect as root, I will run the command like so:

ssh root@192.168.1.6

Now I will be logged in as root. You will be prompted to remember the connection
and be asked for the password. You can create an SSH key to automatically log you
in, but for what we are doing this won't be necessary for now.

SSH remotely
It is possible to connect to your device over SSH from outside your network but
this is something that is specific to your network. One thing that is common and
that you will need to do, is forward the port you want to use for SSH (commonly
22) and route that connection to the Pi. This of course will open up a hole in your
firewall and allow traffic over that port for that device. This means you will need to
secure your connection in more ways such as by changing the default port, adding
a new user, and restricting root access. This is useful for projects where you need to
remotely connect such as file servers or remote web servers.

Depending on the applications you plan to run remotely you will need to open
different ports. If you are accessing the Pi over SSH you will need port 22; if you are
running a web server you will need 80, 8080, or whatever port you have decided
on. By default, if you are using it as a remote database server for MySQL, you
will need 3365. These ports are all configurable but you will need to take this into
consideration depending on what you plan on running.

www.allitebooks.com

http://www.allitebooks.org

Preparing the SD Card

[32]

Setting up your desktop environment
Raspbian comes with a desktop environment out-of-the-box, Bananian does not.
The nice thing about Linux is there are many different desktops to choose from.
It is generally a good idea to stick to the lightweight options since the Pi's do not
have a lot of graphic rendering power and are basically lightweight computers. The
following screenshot shows the LXDE desktop, popular for lightweight distributions.

Raspbian comes with LXDE, a lightweight desktop environment (the clue is
in the name). This is a pretty popular option because it is a classic layout, quick,
and familiar to users who are not used to Linux because of its very Windows
7-inspired look. There are alternatives, though—for example, XFCE.

Chapter 2

[33]

XFCE, as you can see from the following screenshot, is quite a bit different from
LXDE but both are very customizable. XFCE will be more familiar to users who have
used Linux before or even Mac users because of the use of the doc and menus on the
top of the screen.

The desktop environment really comes down to personal preference because it
really doesn't add anything or take anything away; it's just a question of aesthetics.
You can even install both and switch between the two to try them out. To install
LXDE on the Bananian you will need to run:

apt-get install task-lxde-desktop

Once the installation is done, you will need to reboot but you will then be prompted
with a login screen. From here you can open the application drawer in the bottom-
left corner and launch a terminal to begin installing the software. To install XFCE on
either operating system you will need to run the following command:

apt-get install xfce4-desktop

You will need to install the dependencies as well before this will work on Bananian
because of the stripped down environment you have.

Preparing the SD Card

[34]

Summary
In this chapter, we covered a lot. You now should have an SD card prepared for the
Banana Pi with your choice of operating system. You should also have a means of
connecting to the Pi, either by SSH or with a display connected directly to it. You will
also have a desktop environment you like that you will feel comfortable working in
while working on projects. These are the basic skills you need to take your hardware
from new to working. It doesn't take long but you now have a working credit-card-
sized computer. Your Banana Pi likely looks like mine by now.

In the next chapter we are going to cover some more operating system-specific topics
such as the filesystem on Linux, important commands that you will end up using
frequently, how to install and find software you want to work with, interfacing with
the GPIO pins from the command line, and interacting with hardware peripherals.
By the end of the next chapter you will not only have a working computer, you will
know how to use it effectively.

[35]

Linux and the Command Line
You might be feeling great now that you are up to speed with the hardware of the
Banana Pi and have an operating system installed. Now, you are ready to use it.
As not everybody is familiar with Linux, in this chapter, we will explore some of
the ins and outs of Linux. We will also explore some important commands and the
filesystem. Moreover, you will learn how to interface with some of the hardware on
the Banana Pi.

This chapter will prepare you to work with the operating systems available for the
Banana Pi, as most of them are Linux or Linux based. We will also explore using the
fancy GPIO pins we talked about in the first chapter.

Linux is one of the most popular operating systems in the world. Whether you are
aware of it or not, you are using Linux every day. Linux powers most of the home
network routers, web servers, and even some of your electronics. If you have an
Android phone, you are using Linux when you use your phone. Linux is not just for
desktop computers. So, these skills may help you work with the technology around
you, not just your Banana Pi.

The filesystem
On the Linux filesystem (and Unix), everything is a file. If something is not a file,
it is a process. There are specific files that are more than just files. Some examples
of these files are pipes and sockets. There are several different styles of files,
which are as follows:

•	 Directories: These files are lists of other files
•	 Special files: These are the mechanisms used for input and output;

most of these files are located in the /dev directory

Linux and the Command Line

[36]

•	 Links: These are used to make a file visible in multiple locations
•	 Sockets: These are special files that provide interprocess networking;

these sockets are protected by the filesystem's access control
•	 Named pipes: These form a way for processes to communicate with

each other

Keep in mind that everything is a file in Linux. This is a little different from
Windows, which uses files and folders to organize things. The following diagram
shows a graphical representation of the Linux filesystem:

Chapter 3

[37]

Everything on Linux stems from the root of the filesystem, which is represented by
/. This is not the same as the root user, which is the super user of the system. The
root of the filesystem contains several directories that are important for the operating
system. The root of a Raspbian install looks like this:

drwxr-xr-x 2 root root 12288 Feb 13 09:24 bin

drwxr-xr-x 2 root root 4096 Jun 9 2014 boot

drwxr-xr-x 14 root root 4420 Jan 1 2010 dev

drwxr-xr-x 132 root root 12288 Feb 13 09:26 etc

drwxr-xr-x 3 root root 4096 Jun 25 2014 home

drwxr-xr-x 25 root root 4096 Feb 13 09:24 lib

drwx------ 2 root root 4096 Jun 9 2014 lost+found

drwxr-xr-x 4 root root 4096 Jun 9 2014 media

drwxr-xr-x 2 root root 4096 Jan 6 2014 mnt

drwxr-xr-x 2 root root 4096 Feb 5 2014 opt

dr-xr-xr-x 149 root root 0 Jan 1 1970 proc

drwx------ 5 root root 4096 Aug 6 2014 root

drwxr-xr-x 22 root root 740 Feb 13 09:00 run

drwxr-xr-x 2 root root 12288 Feb 13 09:24 sbin

drwxr-xr-x 2 root root 4096 Feb 5 2014 srv

dr-xr-xr-x 12 root root 0 Jan 1 2010 sys

drwxrwxrwt 5 root root 4096 Feb 13 09:18 tmp

drwxr-xr-x 11 root root 4096 Feb 9 10:04 usr

drwxr-xr-x 13 root root 4096 Feb 5 2014 var

At the root of the filesystem, you will find various directories that need to be
included in our system. These directories hold files and folders for the boot loader,
device files, and variable data.

Linux and the Command Line

[38]

The following screenshot shows a tree representation of the user's home directory:

The following table describes the directories at the root of the Linux filesystem:

Directory Description
/bin Essential command binaries
/boot Static files for the boot loader
/dev Device files
/etc Host-specific system configuration
/lib Essential shared libraries and kernel modules
/media Removable media mount point
/mnt Temporary mount point for filesystems
/opt Add-on application software packages
/sbin Essential system binaries
/srv Data for services provided by this system
/tp Temporary files

Chapter 3

[39]

Directory Description
/usr Secondary hierarchy
/var Variable data

There are also several directories or symlinks that must be in the root directory
but are considered optional. Although most Linux distributions use some of
them, almost all of them will use the home directory. These are used to denote
the different directories:

•	 /: The root directory
•	 /home: Users' home directories
•	 /root: The root user's home directory

The home directory is where you will be located when you first connect to the
device over SSH. You can change this behavior. However, you will work out of
this directory often, unless you are performing some specific tasks.

Inside your home directory, you will find the directories in which you will store your
media, downloads, music, and so on. These directories will be the folders you work
out of when using a graphical user interface (GUI). These directories include:

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Desktop

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Documents

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Downloads

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Music

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Pictures

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Public

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Templates

drwxr-xr-x 2 bananapi bananapi 4096 Jun 9 2014 Videos

These folders are straightforward, and you can always create your own folder for
whatever you need. On a fresh install of Bananian or Raspbian, the /root or /home
directories may be empty. The desktop folder appears on your desktop when you are
viewing the GUI.

Linux and the Command Line

[40]

Important commands
When you connect remotely to your Banana Pi, you will be given a command-line
interface. This interface will allow you to traverse the filesystem using some simple
commands. It is important to know these commands because they will not only let
you move around, but will also enable you to create directories, edit files, change
the owners, and so on. Here are some of the important commands, along with short
descriptions from their man pages:

•	 ls: This lists information about the files (the current directory by default)
•	 pwd: This prints the full filename of the current working directory
•	 mkdir: This creates the directory (ies), if they do not already exist
•	 chown: This changes the user and/or group ownership of each given file
•	 chmod: This changes the file mode bits of each given file according to mode
•	 touch: This updates the access and modification times of each file to the

current time
•	 cat: This concatenates file(s), or standard input, to standard output
•	 cp: This copies the source to destination, or multiple source(s) to a directory
•	 mv: This renames the source to destination, or moves source(s) to a directory
•	 rm: This removes each specified file; by default, it does not remove directories
•	 ln: This makes links between files

There are many more commands, but these are what you should memorize to start
manipulating the filesystem.

Installing software
Arguably, one of the most important aspects of the operating system is its ability
to install additional software. On Linux, software can come in many forms. You
may install the package, download and install software from the Internet, or even
download and compile software from the source. It is not difficult to install software
on Linux. There are, of course, many more ways to do this than on an operating
system such as Mac or Windows, where you generally install one way.

Chapter 3

[41]

Since Raspbian is Debian based, the instructions for this section of the chapter
will generally be Debian oriented. There are package managers other than apt,
and there are, of course, package utilities other than dpkg. The command line is
straightforward and the commands are easy to remember. The following screenshot
shows the command line waiting for user entry to continue installing the ubuntu-
restricted-extras on Lubuntu for the Banana Pi:

The Apt package manager
In my opinion, Apt is one of the best package managers available. It is far superior to
the homebrew manager for Mac and better than all package managers for Windows.
Apt allows you to install software in the form of packages via the command line
without the need to search the Internet for a download link. For example, if you want
to install the VLC media player to view media on the Banana Pi, you could install it
by running a simple command:

sudo apt-get install vlc

www.allitebooks.com

http://www.allitebooks.org

Linux and the Command Line

[42]

This command will install the software to a computer. The computer will then allow
you to launch it through the application menu on the GUI or via the command line.
Apt is also the tool you will run when updating and upgrading the software on your
Pi. The Apt package manager allows you to:

•	 Install applications
•	 Remove applications
•	 Keep applications up to date

Apt is intended to be used to resolve dependency problems. It works well with
dpkg, another tool used by Debian-based Linux distributions to handle the actual
installation. If you are trying to install software through Apt, but it is not listed in
your sources, you can add it using the following command:

sudo add-apt-repository ppa:<repo>

sudo apt-get update

sudo apt-get install <repo>

This command will effectively add the repo and install the software to the computer.

The dpkg tool
The dpkg tool is used to manage the packages being installed. Apt uses this tool to
actually install and remove the packages you install through it. You can use dpkg
manually to install files as if they were EXE files on Windows, for example. This tool
is powerful and can be used to:

•	 Install packages
•	 Extract single files
•	 Remove packages
•	 Remove packages and their configuration files

If you download a .deb file, for example Skype from the Internet, you can use the
dpkg tool to install it. If you downloaded vlc.deb to the /home/user/Downloads/
directory, use this command to install it:

sudo dpkg –install ~/Downloads/vlc.deb

Chapter 3

[43]

This command will act in a manner similar to the process of installing apt; it will
install the package. The following icon shows the .deb icon visible on the GUI:

Interfacing with GPIO pins
As mentioned earlier, GPIO pins are a great way to interface with physical devices
such as buttons and LEDs. Python is one of the most popular scripting languages
on the Banana Pi (and Linux in general). When working with the Raspberry Pi, you
have access to RPi.GPIO, a library to work with the GPIO pins in Python. Since the
Banana Pi is slightly different, there is a modified version you will need to grab from
the LeMaker GitHub page at https://github.com/LeMaker/RPi.GPIO_BP.

A single command will download the package from GitHub for you onto the
Banana Pi:

git clone https://github.com/LeMaker/RPi.GPIO_BP -b bananapi

You can easily install this library by running the following commands:

sudo apt-get update

sudo apt-get install python-dev

cd ./RPi.GPIO_BP

python setup.py install

sudo python setup.py install

You will need to install setup.py both with and without sudo. This will facilitate the
installation of the necessary components to the root user as well as your current user.
Once this is done, you will be ready to start interfacing with the GPIO pins.

https://github.com/LeMaker/RPi.GPIO_BP

Linux and the Command Line

[44]

Interacting with the GPIO pins in Python
So, now that you have the Banana Pi flavor of the GPIO library installed, we can
start to write some basic code to interface with the pins. We will start by creating
the Python script we want to work out of, using the following command:

sudo nano gpio.py

This command will open the nano editor in which we can actually write some
Python code:

#!/usr/bin/env python
import RPi.GPIO as GPIO

#Use BCM numbering
GPIO.setmode(GPIO.BCM)

This command will tell the program to use the BCM option, which will use the
Broadcom SoC numbering. This numbering is actually different from the versions
of Raspberry Pi. However, we don't need to worry about that for the Banana Pi,
because there is only one version currently.

We will take what we just wrote and add some script to it in order to create a simple
script that will blink an LED on pin 7:

#!/usr/bin/env python
import RPi.GPIO as GPIO
import time
PIN_NUM = 7
#Use BCM numbering
GPIO.setmode(GPIO.BCM)
GPIO.setup(PIN_NUM, GPIO.OUT)
GPIO.output(PIN_NUM, GPIO.LOW)
while True:
 GPIO.output(PIN_NUM, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(PIN_NUM, GPIO.LOW)
 time.sleep(1)

This simple script illustrates how easy it is to write a small amount of code and
interact with a physical piece of hardware. We will work more with the GPIO pins in
the upcoming sections while we tackle topics such as sensors.

Chapter 3

[45]

The following screenshot shows the code we just wrote in the nano editor on
the Banana Pi:

Interacting with hardware
You may need to interact with all kinds of hardware on the Banana Pi. Whether it is a
SATA drive or a peripheral, such as the PiFace command and control over the GPIO,
there is a lot of hardware you can add to the Banana Pi. The following image shows
the Banana Pi Uno board, an expansion board released by the makers of the Banana
Pi to give it the pin out of the Arduino Uno:

Linux and the Command Line

[46]

This is one of many expansion boards released for the Banana Pi. These accessories
offer different functionalities, such as an LED matrix to additional GPIO pins. In
addition to all the Banana Pi accessories, most of the Raspberry Pi accessories are
compatible as well, including the PiFace command and control.

Using expansion boards
One of my favorite expansion boards is the PiFace command and control board. It is
actually intended for the Raspberry Pi, but it works fine for the Banana Pi. The board
adds a 16 x 2 LCD Display, five buttons, a toggle, and an IR receiver (the Banana Pi
already has one). The following image shows the PiFace:

Chapter 3

[47]

Setting up the PiFace
The point of this section is to show how easy it is to actually set up a piece of
Raspberry Pi hardware with our Banana Pi. The first thing we will do is install
the CAD software and reboot the system:

sudo apt-get install python3-pifacecad

sudo reboot

After the Pi has rebooted, we will run a script that will display some system
information on the LCD display. This will include the IP address and temps
for the Pi:

cd /usr/share/doc/python3-pifacecad/examples

python3 sysinfo.py

You can press Ctrl + C to exit the program. The following image shows the Banana
Pi beside the Raspberry Pi model B. They are similar in size and layout. Thus,
you can use the accessories freely between the two boards.

Linux and the Command Line

[48]

Mounting external drives
Since the Banana Pi has a SATA port, one of the first things people want to try out
is mounting a drive. Unfortunately, you cannot boot directly off SATA. You need a
microSD card in order to boot the device (although booting directly would have been
the best). The following image shows the connector used to attach a 2.5-inch SATA
drive to the Banana Pi:

If you connect the SATA drive to the Banana Pi with power and it is already
formatted, you will see the drive mount and appear on your desktop as a mounted
volume. It is important that you use the cable from the Banana Pi. Some other cables
have the positive and negative lines reversed. This should work with any filesystem
you are using on the drive. The .ext4 filesystem seems to be the most stable one.
Overall, I found the process of mounting drives to the Banana Pi fairly painless, if
you are just looking to use it as storage space.

Chapter 3

[49]

Summary
In this chapter, we touched on many topics relevant to getting comfortable with
Linux. You learned how to use the hardware in a Linux environment and even got
the GPIO pins working using Python and Linux. At this point, you have successfully
got your OS installed and running, navigated the filesystem, and written some code
to work with the GPIO pins. You are also able to connect a SATA drive to use as
additional storage.

These skills are not confined only to the Banana Pi. They are good general technical
skills that you should have. The Linux filesystem is similar to what you will find
on a Unix system, including Mac, which is based on BSD (Unix). Working with the
GPIO pins directly translates to other single-board computers that use GPIO based
on the Raspberry Pis.

Linux and the Command Line

[50]

In the following chapter, you will learn more about programming on the Pi. You
got a taste for it in this chapter, but in the next chapter, we will explore additional
programming languages that you can use on the Banana Pi. You will also learn about
different tools you can use to write the code that will power your next project.

We will explore languages such as Ruby, Bash, Python, and Go in order to write
clean and efficient code that will interact with hardware components such as LEDs,
switches, and other networked Pis.

[51]

Programming on the Pi
In the previous chapter, you became familiar with Linux and its filesystem as well as
the command-line interface and some commands that you needed to master to use
the system effectively. In this chapter, you are going to learn about some editors and
the programming languages that are available on the Pi and Linux. These tools will
help you write the code that will interact with the hardware through GPIO and on
the Pi as a server.

Coding may be something that is new to you, or it may be something that you are an
expert in. In this chapter, we will cover some fairly basic programming, as the focus
is on the different languages that are available to you and the tools to use them. We
will concentrate on some languages such as Ruby and Python that are not only easy
for beginners but also popular with seasoned developers.

Different languages are good for different things. If you are going to write a web
application, you might use Ruby on Rails. If you want to write a script to be run
in the terminal, you may use Bash. If you wish to write a server-side program to
manage some data, you may use Python. The beauty of Linux is that most of the
packages and programming languages that you want to use are either installed by
default or extremely easy to install.

Choosing your editor
There are many different integrated development environments (generally
abbreviated as IDEs) to choose from on Linux. When working on the Banana Pi,
you're limited to the software that will run on an ARM-based CPU. Hence, options
such as Sublime Text are not available. Some options that you may be familiar with
are available for general purpose code editing. Some tools are available for the
command line, while others are GUI tools.

www.allitebooks.com

http://www.allitebooks.org

Programming on the Pi

[52]

So, depending on whether you have a monitor or not, you will want to choose an
appropriate tool. The following screenshot shows some JavaScript being edited via
Nano on the command line:

Command-line editors
The command line is a powerful tool. If you master it, you will rarely need to leave
it. There are several editors available for the command line. There has been an
ongoing war between the users of two editors: GNU Emacs and Vim. There are
many editors like Nano (which is my preference), but the war tends to be between
the two aforementioned editors.

The Emacs editor
This is my least favorite command-line editor (just my preference). Emacs is a
GNU-flavored editor for the command line. It is often installed by default, but
you can easily install it if it is missing by running a quick command, as follows:

sudo apt-get install emacs

Chapter 4

[53]

Now, you can edit a file via the CLI by using the following code:

emacs <command-line arguments> <your file>

The preceding code will open the file in Emacs for you to edit. You can also use
this to create new files. You can save and close the editor with a couple of key
combinations:

•	 Ctrl + X and Ctrl + S
•	 Ctrl + X and Ctrl + C

Thus, your document will be saved and closed.

The Vim editor
Vim is actually an extension of Vi, and it is functionally the same thing. Vim is a fine
editor. Many won't personally go out of their way to not use it. However, people do
find it a bit difficult to remember all the commands. If you do get good at it, though,
you can code very quickly. You can install Vim with the command line:

sudo apt-get install vim

Also, there is a GUI version available that allows interaction with the mouse; this
is functionally the same program as the Vim command line. You don't have to be
confined to the terminal window. You can install it with an identical command:

sudo apt-get install vim-gnome

You can edit files easily with Vim via the command line for both Vim and Vim-
Gnome, as follows:

vim <your file>

gvim <your file>

The gnome version will open the file in a window There is a handy tutorial that you
can use to learn the commands of Vim. You can run the tutorial with the help of the
following command:

vimtutor

Programming on the Pi

[54]

This tutorial will teach you how to run this editor, which is awesome because the
commands can be a bit complicated at first. The following screenshot shows Vim
editing the file that we used earlier:

The nano editor
The nano editor is my favorite editor for the command line. This is probably because
it was the first editor that I was exposed to when I started to learn Linux and
experiment with the servers and eventually, the Raspberry Pi and Banana Pi. The
nano editor is generally considered the easiest to use and is installed by default on
the Banana Pi images. If, for some reason, you need to install it, you can get it quickly
with the help of the following command:

sudo apt-get install nano

Chapter 4

[55]

The editor is easy to use. It comes with several commands that you will use
frequently. To save and close the editor, use the following key combinations:

•	 Ctrl + O
•	 Ctrl + X

You can get help at any time by pressing Ctrl + G.

Graphic editors
With the exception of gVim, all the editors we just talked about live on the command
line. If you are more accustomed to graphical tools, you may be more comfortable
with a full-featured IDE. There are a couple of choices in this regard that you may be
familiar with.

These tools are a little heavier than the command-line tools because you will need to
not only run the software, but also render the window. This is not as much of a big
deal on the Banana Pi as it is on the Raspberry Pi, because we have more RAM to
play with. However, if you have a lot of programs running already, it might cause
some performance issues.

Eclipse
Eclipse is a very popular IDE that is available for everything. You can use it to
develop all kinds of systems and use all kinds of programming languages. This is
a tool that can be used to do professional development. There are a lot of plugins
available in this IDE. It is also used to develop apps for Android (although Android
Studio is also available now).

Eclipse is written in Java. Hence, in order to make it work, you will require a
Java Runtime Environment. The Banana Pi should come equipped with the Java
development and runtime environments. If this is not the case, they are not difficult
to install. In order to grab the proper version of Eclipse and avoid browsing all the
specific versions on the website, you can just install it via the command line by
entering the following code:

sudo apt-get install eclipse

Programming on the Pi

[56]

Once Eclipse is installed, you will find it in the application menu under
programming tools. The following screenshot shows the Eclipse IDE running
on the Banana Pi:

The Geany IDE
Geany is a lighter weight IDE than Eclipse although the former is not quite fully
featured. It is a clean UI that can be customized and used to write a lot of different
programming languages. Geany was one of the first IDEs I ever used when first
exploring Linux when I was a kid.

Geany does not come preinstalled on the Banana Pi images, but it is easy to get via
the command line:

sudo apt-get install geany

Chapter 4

[57]

Depending on what you plan to do code-wise on the Banana Pi, Geany may be
your best bet. It is GUI-based and offers quite a bit of functionality. However, it is
a lot faster to load than Eclipse. It may seem familiar for Windows users, and they
might find it easier to operate since it resembles Windows software. The following
screenshot shows Geany on Linux:

Both of these editors, Geany and Eclipse, are not specific to a particular
programming language, but they both are slightly better for certain languages.
Geany tends to be better for web languages such as HTML, PHP, JavaScript, and
CSS, while Eclipse tends to be better for compiled languages such as C++, Go, and
Java as well as PHP and Ruby with plugins.

If you plan to write scripts or languages that are intended to be run from the
command line such as Bash, Ruby, or Python, you may want to stick to the command
line and use an editor such as Vim or Nano. It is worth your time to play around
with the editors and find your preferences.

Programming on the Pi

[58]

Web IDEs
In addition to the command line and GUI editors, there are a couple of web-based
IDEs. These essentially turn your Pi into a code server, which allows you to run and
even execute certain types of code on an IDE written in web languages. These IDEs
are great for learning code, but they are not really replacements for the solutions that
were listed previously.

Google Coder
Google Coder is an educational web IDE that was released as an open source project
by Google for the Raspberry Pi. Although there is a readily available image for the
Raspberry Pi, we can manually install it for the Banana Pi. The following screenshot
shows the Google Coder's interface:

Chapter 4

[59]

The setup is fairly straightforward. We will clone the Git repo and install it with
Node.js. If you don't have Git and Node.js installed, you can install them with a
quick command in the terminal, as follows:

sudo apt-get install nodejs npm git

Once it is installed, we can clone the coder repo by using the following code:

git clone https://github.com/googlecreativelab/coder

After it is cloned, we will move into the directory and install it with the help of the
following code:

cd ~/coder/coder-base/

npm install

It may take several minutes to install, even on the Banana Pi. Next, we will edit the
config.js file, which will be used to configure the ports and IP addresses.

nano config.js

The preceding code will reveal the contents of the file. Change the top values to
match the following:

exports.listenIP = '127.0.0.1';
exports.listenPort = '8081';
exports.httpListenPort = '8080';
exports.cacheApps = true;
exports.httpVisiblePort = '8080';
exports.httpsVisiblePort = '8081';

After you change the settings you need, run a server by using Node.js:

nodejs server.js

You should now be able to connect to the Pi in a browser either on it or on another
computer and use Coder. Coder is an educational tool with a lot of different built-in
tutorials. You can use Coder to learn JavaScript, CSS, HTML, and jQuery.

Programming on the Pi

[60]

Adafruit WebIDE
Adafruit has developed its own Web IDE, which is designed to run on the Raspberry
Pi and BeagleBone. Since we are using the Banana Pi, it will only run better. This IDE
is designed to work with Ruby, Python, and JavaScript, to name a few. It includes
a terminal via which you can send commands to the Pi from the browser. It is an
interesting tool if you wish to learn how to code. The following screenshot shows the
interface of the WebIDE:

The installation of WebIDE is very simple compared to that of Google Coder,
which took several steps. We will just run one command:

curl https://raw.githubusercontent.com/adafruit/Adafruit-WebIDE/alpha/
scripts/install.sh | sudo sh

After a few minutes, you will see an output that indicates that the server is starting.
You will be able to access the IDE just like Google Coder—through a browser from
another computer or from itself. It should be noted that you will be required to create
a free Bit Bucket account to use this software.

Chapter 4

[61]

Writing code on the Pi
By now, you are either playing with the IDEs, or you are ready to move on
because you already have preferences. Either way, we want to write some code.
There are different purposes behind writing different kinds of code. We will focus
on Bash, Python, Ruby, and Go. These languages will give you a good range of
general-purpose tools for different tasks on your Pi.

Bash scripting
Bash scripting is the purest form of coding on Linux. Bash scripts are essentially
command-line commands strung together in a single file that can be executed. You
can write scripts that run at the startup to run updates and pull some data onto the
Pi. Shell scripts have the file extension sh.

The first line of a script should start with a shebang, which is represented by #!. This
character sequence will tell the interpreter to look for the correct software to run the
script that you have written. We will do this in bash so that we don't have to call
programs with the bash command. Instead, we will run them directly. This is also
useful for other languages, such as Ruby and Python.

You can write bash scripts by using whichever editor you like, but you will need to
have the following specific line at the top of the script:

#!/bin/bash

I like to use the following script as a basic tool to control the GPIO pins on the Pi:

#!/bin/bash

function gpio()
{
 local verb=$1
 local pin=$2
 local value=$3

 local pins=($GPIO_PINS)
 if [["$pin" -lt ${#pins[@]}]]; then
 local pin=${pins[$pin]}
 fi

Programming on the Pi

[62]

 local gpio_path=/sys/class/gpio
 local pin_path=$gpio_path/gpio$pin

 case $verb in
 read)
 cat $pin_path/value
 ;;

 write)
 echo $value > $pin_path/value
 ;;

 mode)
 if [! -e $pin_path]; then
 echo $pin > $gpio_path/export
 fi
 echo $value > $pin_path/direction
 ;;

 *)
 echo "Usage: $0 mode [pin] [in|out]"
 echo " $0 read [pin]"
 echo " $0 write [pin] [0|1]"
 echo "If GPIO_PINS is an environment variable containing"
 echo "a space-delimited list of integers, then up to 17"
 echo "logical pins (0-16) will map to the physical pins"
 echo "specified in the list."
 ;;
 esac
}

if ["$BASH_SOURCE" == "$0"]; then
 gpio $@
fi

If you add that code to a file called gpio.sh, you can save it and then run it via the
command line by passing the file into the bash command, which will tell bash to start
reading the script. Scripts are read in the top-down manner, but functions such as the
gpio function are reusable code, which won't be executed until it is called. This will
cause the script to spit out the generated output:

bash gpio.sh

Chapter 4

[63]

Functions need to be defined before they are called. Otherwise, you will get an error.
If you try to execute the following script, it will blow up:

#!/bin/bash
output

function output(){
echo "hello world"
}

This is because you are trying to call the output function, but the function hasn't been
read by bash yet. So, it has no idea what you are doing. If you flip them around, you
will be able to run it. The following screenshot shows the bash script being written in
the nano editor:

Programming on the Pi

[64]

Python programming
Python is one of the most popular languages on Linux. Basically, all Linux
developers channel the serpent god. Python is a great general-purpose language,
which is installed by default on Linux and is available for you on the Pi right
now. You can verify the version of Python that you are using by running a simple
command, as follows:

python --version

You will see some output:

Python 2.7.3

The output shows that I am running Python 2.7.3, which is not the latest version
of Python, but it is good enough for now. The best thing about everything is that
you already got a taste of Python in the previous chapter, when we connected to
the GPIO pins. The Python files on the system will have the py file extension. You
can start playing with Python by running the python command in the terminal.
This will start Python and drop you into a Python prompt, which will look like
the following:

Python 2.7.3 (default, Mar 18 2014, 05:13:23)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

From here, you will be able to start writing the Python code. For an example of a
Python script, you can refer to the previous chapter.

The Ruby language
Ruby is a programming language that is similar to Python. It is also installed
on Linux by default. You can check out your Ruby version by running the
following command:

ruby -v

You will see some output that identifies the version of Ruby that you are
currently using. If you are using the Ruby Version Manager (RVM) to manage
your Ruby versions, you can use the following code to check which version you
are currently using:

ruby 1.9.3p194 (2012-04-20 revision 35410) [arm-linux-eabihf]

Chapter 4

[65]

Ruby uses packages called Gems, which can be installed to give your programs
additional functionality. There is a Gem called Pi Piper, which can be added for
event-driven programming to the Banana Pi GPIO pins. To install it, you will
need to install the ruby-dev package:

sudo apt-get install ruby-dev

If you don't install this package, it will fail when you try to add the Ruby Gem.
To add the Gem, run the following code:

sudo gem install pi_piper

At this point, you will be able to add the pi_piper Gem to your script and interact
with the GPIO pins. The following script is an example that demonstrates how the
Ruby code interacts with the GPIO pins, waits for the detection of the pin's state,
and then provides the results via the output:

#/usr/bin/env ruby
require 'pi_piper'
include PiPiper

watch :pin => 23 do
 puts "Pin changed from #{last_value} to #{value}"
end

#Or

after :pin => 23, :goes => :high do
 puts "Button pressed"
end

PiPiper.wait

You can run Ruby scripts from the command line by using the ruby command.
If you saved the preceding code as gpio.rb, you can run it by issuing the
following command:

ruby gpio.rb

The preceding code will tell Ruby that you want it to read and run this file.
The code will also cause it to generate any output you have decided it should
spit out and in this case, wait for you to press a button on pin 23 on the Pi.

Ruby and Python are almost interchangeable. The language that you choose from
the two boils down to your preference. Both have their respective pros and cons,
but ultimately, it is nice to be able to use both.

Programming on the Pi

[66]

The Go language
Go is Google's answer to C. It is a general compiled language that is suitable for
a lot of different projects, but it is also quite fast and lightweight. The following
screenshot shows Go code being written in Nano:

Go does not come installed by default on the Pi, and it requires some setup
before you can start working with it. Before we begin, we will need to install
the prerequisites, as follows:

sudo apt-get install -y mercurial gcc libc6-dev

Mercurial is similar to Git (although not as cool, am I right?) We will use it to clone
the remote repository onto the Pi so that we can compile the language, as follows:

hg clone -u default https://code.google.com/p/go $HOME/go

Chapter 4

[67]

This may take a while, but will clone the Go repo into the /go directory inside your
home directory. If you remember from the previous chapter, you will be able to find
this in /home/bananapi/go. If all goes well, you will see some output that looks like
the following:

requesting all changes

adding changesets

adding manifests

adding file changes

added 21925 changesets with 76806 changes to 11602 files (+9 heads)

updating to branch default

4441 files updated, 0 files merged, 0 files removed, 0 files unresolved

Once the repo is cloned, we will need to compile the source. First, we will need to
change the directories to the source directory, as follows:

cd ~/go/src

Now we will need to compile the source, as follows:

./make.bash

Compiling will take a while. You can check your e-mail or make a cup of coffee
while you wait. Once the Go language has been compiled, we can add it to our
path so that we can easily call it, as follows:

export PATH=$PATH:$HOME/go/bin

You should now be able to check the Go version by running the following
version command:

go version

There is a Go library for the Pi that allows you to interact with the GPIO pins just like
we did with Python and Ruby. This package is called Go-RPIO, and it can be added
to your project by including it from the beginning, as follows:

import "github.com/stianeikeland/go-rpio"

Programming on the Pi

[68]

This will allow you to write the Go code and interact with the Pi. This is a script
that will toggle an LED on pin 19. We will import the proper libraries first in the
following way:

package main

import (
 "fmt"
 "github.com/stianeikeland/go-rpio"
 "os"
 "time"
)

Now we can proceed to define our pin and write our main function, which will
toggle the LED, as follows:

var (
 pin = rpio.Pin(10)
)

func main() {
 if err := rpio.Open(); err != nil {
 fmt.Println(err)
 os.Exit(1)
 }
 defer rpio.Close()
 pin.Output()
 for x := 0; x < 20; x++ {
 pin.Toggle()
 time.Sleep(time.Second / 5)
 }
}

Chapter 4

[69]

You do not need any other libraries to use the GO-RPIO library. However, we
used fmt, os, and time because we are working with time and output. Go is a fast
language. Therefore, once it is compiled, it can be executed quickly. Its logo is a
Gopher that moves quickly. It can be illustrated in the following way:

Summary
In this chapter, we explored several different programming languages,
command-line tools, graphical editors, and even some web IDEs. These tools are
valuable for all kinds of projects that you may be working on. Whether you are
building an Internet of Things device or a small code server to learn how to code
using one of the Web IDE solutions, you can now accomplish all of this.

In the next chapter, we are going to start playing with the various hardware aspects
of the Pi, which includes working with LEDs, controlling motors, and connecting
your Pi to a breadboard. We will also write more code to do all of these things in the
different languages that we have learned in this chapter.

[71]

Hardware for Your Pi
Now that we have explored working with some of the programming languages that
are available to you on the Banana Pi, we can start getting into the hardware side
of things. We can write the code now that we will use to interact with LEDs and
motors. In this chapter, we will talk about breadboarding your Pi and some of the
components that you can use in your projects.

Hardware prototyping is made easy when you have a tool like the Banana Pi. In the
previous chapters, we wrote code that interacted with the GPIO pins. Now we are
going to use these pins to do some fun stuff. There are some things that we need to
cover first, such as what hardware is required for this and how to properly use the
hardware. The following screenshot shows a breadboard:

Hardware for Your Pi

[72]

Breadboarding your Banana Pi
The breadboarding of electronics essentially involves the prototyping of what you
will eventually be able to build into a complete product. The breadboard acts as your
circuit board. It will have the components attached directly to it. There are multiple
kinds of breadboards, but all of them perform the same task. Some breadboards are
soldered (as shown in the following picture)—which means that the components
added must be soldered to the board—while some are not:

For the purposes of learning, in this book I will use a solderless breadboard.
This will allow us to attach components directly to the board without soldering.

Required hardware
So you have your Banana Pi and its shiny GPIO pins, and you have a breadboard.
However, now you are standing there thinking, "How do I put these things
together?"There are a few ways to breadboard the Banana Pi. There are a couple
of accessories available that are intended to breadboard the Banana Pi, but you
don't need them.

Chapter 5

[73]

The following image shows the GPIO breakout for the Banana Pi M1, which is also
compatible with the Model B Raspberry Pi:

In addition to the breakout, you will need a ribbon cable that will attach to the GPIO
pins on one end and the breakout on the other. This will allow you to connect the
Banana Pi directly to the breadboard and start working with the components. The
M1 board has 26 GPIO pins, while the M2 has 40.

Common components
Regardless of your project, you will find yourself working with some common
electrical components. There are many different components that you can use in
your circuits. We won't cover them all, but we will cover some common ones that
you might use when you are prototyping. These components exist in many projects,
and you will need to become familiar with them.

Resistors
Resistors are components that resist the flow of the current. This is a very basic
component that is used in most circuits and is very important. Resistors come
in a wide range of values; the value determines how much flow of electricity they
resist. The resistance is measured in Ohms, which is represented by the Ω symbol.
The amount of power the resistor can handle before burning to a crisp is measured
in Watts.

Hardware for Your Pi

[74]

The resistor is shown as a zigzag or a rectangle on a schematic, and it is present in
almost every circuit. Resistors can be made out of many different kinds of materials,
but they are most commonly made of carbon. The following image shows how you
can tell how much resistance each resistor offers:

Chapter 5

[75]

Diodes
Diodes are components that allow the current to flow in only one direction.
The diode has two terminals, called the anode and cathode. The current flows
through the diode only when a positive voltage is applied to the anode side and a
negative voltage is applied to the cathode. If you try to make the current flow the
other way, it will not. The following image shows a diode:

Light-emitting diodes
Light-emitting diodes (LEDs), just like normal diodes, are components that
allow the current to flow in only one direction. When the current passes from the
anode to the cathode, the diode emits light. The following screenshot shows the
different types of LEDs:

Hardware for Your Pi

[76]

Capacitors
A capacitor is a very common component that is used to temporarily store
electricity. The capacitor is used to smoothen the output of power supplies and
block direct current. It can also be used to tune radios to frequencies. The following
image shows a capacitor:

Transistors
Transistors are three-terminal devices that can control the flow of electricity across
two of its terminals when a voltage is applied to one of the terminals called the base.
The transistor is one of the most important components in electronics.

Chapter 5

[77]

Integrated circuits
An integrated circuit contains an entire electric circuit. It has its own tiny diodes,
transistors, resistors, and so on. These components are one of the most important
components in modern electronics. The components are etched onto tiny pieces of
silicon and can be used for many different purposes. Sometimes, these chips are
referred to as bug chips. The following image shows an integrated circuit:

An integrated circuit can have several billion transistors in them, all the size
of a fingernail. This is an impressive piece of technology that has made a lot of
innovations possible. Integrated circuits allow you to have a lot of functionality
added to your circuit for a fraction of the cost.

Working with hardware
Now that we have covered the method of breadboarding your Pi and some of the
electrical components that you might use in your circuits, we can talk about putting
these into practice with our Banana Pi. We will start with some simple circuits and
move on to the process of controlling motors through the GPIO pins.

Working with LEDs
The simplest circuit that we can make (aside from just a little wire!) is lighting up an
LED. You can consider this as the "Hello World" of electric circuits. For this, we are
going to need an LED (any color), some jumper wires (two pieces), and a resistor.
The resistor needs to be between 270 Ω and 330 Ω. If you go higher than that, the
LED will be dimmer than usual. With too much current, the LED will be very bright
before it burns right out.

Hardware for Your Pi

[78]

This is a very simple circuit. We will connect a wire to the 3.3V pin and the ground
pins. It doesn't matter which Banana Pi you are using, though you may need to refer
to the chart from the first chapter to reference the pins. I am using the M2 for this
example. The following image shows the pins that I am using:

I have created a simple circuit by connecting a white jumper to the 3.3V pin (top left)
on the M2. This pin goes to the breadboard and is plugged into the same rail as the
anode of an LED. This LED leads to a resistor, which prevents excessive current from
passing through the circuit. The blue jumper is connected to the other end of the
resistor on the negative rail, which is plugged into the ground pin on the Banana Pi.
In the next image, you can see the circuit that I created:

Note that we were able to create this circuit without the use of code. We can enhance
this circuit by writing a bit of code to make the LED blink.

Chapter 5

[79]

Controlling LEDs with code
Now that we have created a simple circuit using our Banana Pi, we can interact with
it by using a bit of code. We will revisit the Python coding language that we talked
about in a previous chapter. Let's start by moving the jumper on the 3.3V pin and
move it to pin 12, which represents GPIO 21. You can refer back to the chart if you
need to, but it is the 7th pin down the left side of the board.

We need to create a simple script. Let's start by importing what we will need to use
the time package and the GPIO pins:

import RPi.GPIO as GPIO
import time

We will need a function to blink a pin. We will fluctuate between turning the LED on
and off every second by using the following code:

def blink(pin):
 GPIO.output(pin,GPIO.HIGH)
 time.sleep(1)
 GPIO.output(pin,GPIO.LOW)
 time.sleep(1)
 return

This simple function will be the section of our code that actually handles the current
that is being supplied to the LED. Now, we need to set up the pins and the mode.
We will accomplish this with the help of the following code:

GPIO.setmode(GPIO.BOARD)
GPIO.setup(21, GPIO.OUT)

Now that our pins are initialized, we want to loop a few times over the blink
function to make the LED actually blink. If we just call the function once, we will
only see the LED turn on and then turn off. So, let's set up a for loop that will iterate
50 times, calling our function each time:

for I in range(0,50)
 blink(21)

Now, we will call the cleanup() function with the help of the following code:

GPIO.cleanup()

Hardware for Your Pi

[80]

The preceding function will clean up all the ports that we used. This will only affect
the pins that we used in our program (21). This is because programs don't necessarily
end just because they have hit the bottom of the script. Our pin will still be initialized
after the loop, which means that it will still be in the memory. By calling this
function, we can reinitialize the pin later on when we need to use it again. Here is a
picture of my circuit:

Adding user input
Now, we have a simple circuit that can be controlled by code. Let's add some user
input to our project. We will connect a button to the breadboard and use the input to
light up our LED. In the end, our circuit will look like this:

Chapter 5

[81]

We are going to need the following additional hardware:

•	 Two additional jumper wires
•	 A button
•	 A 1K Ohm resistor
•	 A 10K Ohm resistor

We will start by connecting the LED to the 270 Ohm resistor and the 3.3V input.
We are going to connect the button to the pin numbered 22 and a 10K Ohm resistor.
When the button is pressed, the circuit diverts the power from the 3.3V pin to the
pin numbered 22, which bypasses the 10K Ohm resistor. The 1K resistor is there to
protect the Banana Pi.

When all of this is on the breadboard, it will look like this:

Now, we will write some more code in Python to make the LED light up when the
button is pressed.

So, in this script, we are going to make the LED on pin 21 blink when the button on
pin 22 is pressed. To start out, we will import the packages that we need to start our
project just like before, in the following way:

import RPi.GPIO as GPIO
import time

Hardware for Your Pi

[82]

Now, we are going to set up the GPIO pins that we will be working with.
Again, this will be similar to our last script, except for the fact that, in this case,
we will be using two pins:

#Set up GPIO
GPIO.setwarnings(false)
GPIO.setmode(GPIO.BCM)

#Set up pins
GPIO.setup(21, GPIO.OUT)
GPIO.setup(22, GPIO.IN)

We will set up an infinite loop, which will set the value of the LED to the button
being pressed, with the help of the following code:

While True:
 GPIO.output(21, GPIO.input(22))
 time.sleep(0.05)

The preceding code will cause the LED to light up when the button is pressed.
You can save this script and run it with Python on the Banana Pi. Now try
pressing the button.

We have pretty much mastered the art of working with LEDs. We will now
move on to something more fun.

Working with servos
One of the most popular things that you can work with now is servo motors. Servos
are small electric motors that are popular in robotics and several other related
projects. We will write a small script that will allow us to control a servo motor.

Chapter 5

[83]

The following image shows a servo motor:

We will use the Pi to control the position of the servo. For this project, we are going
to need the following components other than your Pi:

•	 A servo motor
•	 Three jumper wires
•	 A breadboard

We will connect the servo to three pins on the Banana Pi. Unlike a stepper motor,
we can safely connect the stepper directly to the Pi without having to use a bunch of
resistors or integrated circuits. We will also write a simple script that will be a little
more complex than our previous scripts. With this script, we will be able to directly
control the stepper motor.

Hardware for Your Pi

[84]

First, we will connect the red wire (servo +5V) to the breadboard. On the same
rail, we will connect a wire to pin 4 on the Banana Pi. Next, we will connect pin 6
on the Pi to the breadboard, which will then be connected to the black wire on the
servo (-5V). Pin 11 is our PWM signal. This will be connected to the yellow wire
from the servo. When we are done, the circuit will look like this:

Now that we are all wired up, we can write our Python script.

Controlling our servo
We have our servo connected to our Pi. We want to control the position of the
servo by using a script. We will start by writing a new script:

nano servo_controller.py

The first thing we want to do is import our packages and set up the GPIO pins
like our previous scripts, as follows:

import RPi.GPIO as GPIO
import time

Set up GPIO
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.OUT)

Chapter 5

[85]

Now let's output some instructions so that we know what keys to press in order to
move the servo. This is optional, but we will add it in case we forget which keys to
press, as follows:

print "l : Left"
print "r : Right"
print "m : Middle"
print "q : Quit"

Now, we need to add some code that will listen for the correct keys and act
appropriately. If the L key is pressed, we will move the servo to the left. If the R key
is pressed, we will move the servo to the right. We can also move the servo to the
center position and quit our program.

First things first. We need to set up an infinite loop that will run and listen for the
keys that we will be pressing. We also need to define the servo (we will define that
on pin 11), as follows:

While True:

 Servo = GPIO.PWM(11, 50)
 Servo.start(2.5)

 input = raw_input("Selection: ")

 if(input == "r"):

 elseif(input == "l"):

 elseif(input == "m"):

 elseif(input == "q"):

 else:
 print "Input not recognized"

Now, we need to handle the different keys that are pressed. Right now, we have a
script that listens for input and then filters the script down to a specific piece based
on which key was pressed.

Hardware for Your Pi

[86]

First, we will handle the R key when it is pressed. We want to see how many
steps we have to take towards the right based on the input from the user. We will
then loop the function as many times as we are told and move the servo to the right.
We will receive input from the user, as follows:

if(input == "r"):

 steps = raw_input("Steps (1 – 10): ")
 steplength = 12.5 / int(steps)

Now, we will iterate as many times as the user has input and move accordingly,
as follows:

for Counter in range(int(steps)):
 Servo.ChangeDutyCycle(stepslength * (Counter + 1))
 Print stepslength * (Counter + 1)
 time.sleep(0.5)

time.sleep(1)
Servo.stop()

We will handle the process of moving towards the left next. This is similar to
what we just did:

elseif(input == "l"):
 Servo.start(12.5)
 steps = raw_input("Steps (1 – 10): ")
 stepslength = 12.5 / int(steps)

 for Counter in range(int(steps))
 Servo.ChangeDutyCycle(12.6 – (stepslength * (Counter + 1)))
 time.sleep(0.5)

 time.sleep(1)
 Servo.stop()

Next, we need to handle M. This will move the servo back to the middle position.
This is almost like a reset switch for our script, which can be implemented in the
following way:

elseif(input == "m"):

 Servo.start(7.5)

 time.sleep(1)

 Servo.stop()

Chapter 5

[87]

Now, we will handle exiting the script and cleaning up the GPIO pins when the user
selects Q in the script, as follows:

elseif(input == "q"):

 os._exit(1)

 Servo.stop()

 GPIO.cleanup()

Now, when you run the script, you will be presented with the selections. Based on
your input, the Banana Pi will control the servo and move it in the direction of your
choosing. This is our first interactive script. You can apply what we did here to all
kinds of sensors and components, which will be covered in the next chapter. You
can take things a step further and control multiple servos by using a servo controller,
such as the one shown in the following image:

Our complete script looks like this:

import RPi.GPIO as GPIO
import time
import os

Set up the GPIO

Hardware for Your Pi

[88]

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

GPIO.setup(11, GPIO.OUT)

print "l : left"

print "r : right"

print "m : middle"

print "t : test"

print "q : exit"

while True:

 Servo = GPIO.PWM(11, 50)	

Servo.start(2.5)

 input = raw_input("Selection: ")

 if(input == "r"):

 steps = raw_input("steps (1 - 10): ")

 stepslength = 12.5 / int(steps)

 for Counter in range(int(steps)):

 Servo.ChangeDutyCycle(stepslength * (Counter + 1))

 print stepslength * (Counter + 1)

 time.sleep(0.5)

 time.sleep(1)

 servo.stop()

Chapter 5

[89]

elif(input == "m"):

 Servo.start(7.5)

 time.sleep(1)

 Servo.stop()

 elif(input == "l"):

 Servo.start(12.5)

 steps = raw_input("steps (1 - 10): ")

 stepslength = 12.5 / int(steps)

 for Counter in range(int(steps)):

 Servo.ChangeDutyCycle(12.5 - (stepslength * (Counter + 1)))
 time.sleep(0.5)

 time.sleep(1)

 Servo.stop()

 elif(input == "q"):

 os._exit(1)

 Servo.stop()

 GPIO.cleanup()

 else:

 print "Input not recognized"

You can save this as servo_controller.py and run it from the command line by
using the following command:

python servo_controller.py

Hardware for Your Pi

[90]

The following screenshot shows the output of the program that we just wrote:

Summary
In this chapter, we worked with LEDs and servos. We controlled them with the code
written directly in the Banana Pi and interacted with the hardware both through
buttons and input on the script. Now, you should have started to see the potential of
what can be accomplished.

In the next chapter, we will cover the process of interacting with sensors. We will
explore infrared receivers that can be used in a remote control to control your Banana
Pi. We will also explore the operation of prototyping hardware such as Phidgets,
which can extend the Banana Pi, and take advantage of hardware such as RFID and
light sensors to control the motors.

Chapter 5

[91]

The following image shows the Phidgets RFID reader connected to the Banana Pi:

We will also explore the interaction with GPIO-connected hardware from the
input over the USB.

[93]

Interacting with Sensors
Playing with the LEDs and hardware is awesome, but we can now kick it up a
notch. Basically, the projects that you want to do—aside from the ones related
to software—are likely going to have some sort of a sensor incorporated into it.
This is common regardless of whether you are building a prototype or doing some
home automation.

Sensors are components that allow us to interact with the physical world. They do
different things based on what you want to detect. A light sensor can tell you how
much light it is being exposed to, and force sensors can tell you how much force is
being applied to them. There are more types of sensors than we could ever hope to
cover in this book. Using sensors allows us to write code that can trigger events that
depend on something that physically happens. For example, if there is enough light
coming through your window, a light sensor can trigger your blinds to open. You
can use an RFID card to not only unlock something, but also trigger an e-mail to you.
The following image shows a force sensor by Phidgets:

Interacting with Sensors

[94]

Sensors and you
There are a lot of different sensors from a lot of different brands. Brands such as
Phidgets are like small prototyping boards in themselves, and there are components
that you can add directly to the Banana Pi. The force sensor that was shown
previously functionally does the same thing as the following sensor:

Although sensors such as Phidgets require additional software, the setup is
generally not that difficult. Since we have been covering programming languages
such as Ruby, it won't be difficult to set up the packages.

We can start making some really interesting stuff, especially when we introduce
other prototyping hardware such as Phidgets. Although Phidgets are interfaced
through USB, we can write a single program that controls the hardware both over
GPIO and USB. The scripts we write don't care where the hardware is connected as
long as we define it first.

Chapter 6

[95]

Interacting with light
One of my favorite sensors to use in projects is a precision light sensor. What this
will do is send a signal when it detects light. We will use the precision light sensor by
Phidgets. However, you don't need to use this particular brand. The following image
shows a light sensor:

To get started, we will need to install the Phidgets driver and the RubyGems
required to interact with the sensors. We will then write a generic Ruby script
that can work with most of the sensors and that we can modify to do other stuff later.
This script will look for sensors that are connected to a main control board and then
move a servo. First, we will install the libusb development libraries by using the
following command:

sudo apt-get install libusb-1.0-0dev

Now we will need to download and build the Phidgets libraries. This will allow us to
actually work with the sensors. You can grab the file from http://www.phidgets.
com/docs/OS_-_Linux.

You will need to unpack the library and put it wherever you want. I unpacked it
in the home directory. Also, you will need to change the directories to refer to the
Phidgets library and compile it, as follows:

./configure

make

sudo make install

http://www.phidgets.com/docs/OS_-_Linux
http://www.phidgets.com/docs/OS_-_Linux

Interacting with Sensors

[96]

These libraries are written in C. The other libraries that we will need (for example,
Ruby) will depend on them to get the job done. Now that we have the library
installed, we will need to install a couple of Ruby gems (we will use Ruby for these
programs). We can install the gems needed with a couple of commands, which are
as follows:

sudo gem install ffi

sudo gem install Phidgets-ffi

Now we can start interacting with the sensors by using the Phidgets controller.
The following image shows the controller board that we will use; this interfaces
with the Banana Pi over USB and has pins to connect directly to sensors, such as
precision light sensors:

We will start our script by using the require function of Ruby with the gems that we
installed. These gems will be used to actually interface with the sensors, as follows:

#!/usr/bin/ruby

require 'rubygems'

require 'phidgetsffi'

Now we can run setup and define our sensors. We will use the advanced light sensor
and an advanced servo motor. The servo motor can be replaced by anything you like,
even a servo that is controlled directly by the GPIO pins, such as the one that we saw
in the last chapter. Here's the script:

puts "Library Version: #{Phidgets::FFI.libray_version}"

ifkit = Phidgets.InterfaceKit.new
adv = Phidgets.AdvancedServo.new

Chapter 6

[97]

Now we can set up the servos, as follows:

adv.on_attach do |device, obj|
 puts "Servos Initialized"
 device.advanced_servos[0].engaged = true
 sleep 1
end

adv.on_detach do |device, obj|
 puts "#{device.attributes.inspect} detached"
end

adv.on_error do |device, obj, code, description|
 puts "Error #{code}: #{description}"
end

The methods that we just created will handle the on attach, detach, and error
actions. These are automatically executed, depending on whether the servo is
physically attached or not. We will do the same for our sensor, as follows:

ifkit.on_attach do |device, obj|
 sleep 1
 if(device.sensors.size > 0)
 device.ratiometric = false
 device.sensors[0].data_rate = 64
 device.sensors[0].sensitivity = 15
 device.outputs[0].state = true
 sleep 1 #allow time for digital output 0's state to be set
 puts "Is digital output 0's state on? ... #{device.outputs[0].
on?}"
 end
end

We now have our on_attach method. This will check the device and provide
an output if the state is on. We will now need to handle the action when the
sensor changes. For the following example, it will be when the sensor is exposed
to more light:

ifkit.on_sensor_change do |device, input, value, obj|

 position = value / 10
 max = adv.advanced_servos[0].position_max

 if position < max
 adv.advanced_servos[0].position = position
 end
end

Interacting with Sensors

[98]

The servo will move according to the light that the sensor receives. Since the sensor
is accurate and the servo has a limited range of movement, we will take the value
returned by the sensor and divide it by 10. Now we have some cleaning up to do:

sleep 10

Closing the connection
puts 'DONE'
gets.chomp

Closing the connection
puts 'DONE'
ifkit.close
adv.advanced_servos[0].engaged = false
sleep 1
adv.close

The preceding code will put our program to sleep, close the connections to the servo,
and end the process.

Using RFID
Radio-frequency identification (RFID) is a popular way to transfer an ID code
wirelessly by using electromagnetic fields. This technology is often put to use in
projects because it is so common in the industry. The RFID tags can be used to
identify employees or objects, and it is fairly inexpensive to implement. We will
create a script by using the Phidgets RFID reader to move a servo, which will
symbolize unlocking a door. The following image shows the RFID reader that I will
be using for this example:

Chapter 6

[99]

We will use the same Ruby gems that we imported for the last example. Note the
similarities with the previous script. This shows how dynamic the code that we are
using can be.

We will start by requiring the gems that we need, as we did previously. This is
necessary to interact with the RFID reader and control the servo:

#!/usr/bin/ruby

require 'rubygems'

require 'phidgetsffi'

We will define the RFID reader and servo in order to use them, as follows:

puts "Library Version: #{Phidgets::FFI.library_version}"

puts "Waiting for Phidgets..."

Define the phidgets
rfid = Phidgets::RFID.new
adv = Phidgets::AdvancedServo.new

Interacting with Sensors

[100]

We will now handle the servo functions, as follows:

adv.on_attach do |device, obj|

 puts "Servos Initialized"
 device.advanced_servos[0].engaged = true
 sleep 1
end

adv.on_detach do |device, obj|
 puts "#{device.attributes.inspect} detached"
end

adv.on_error do |device, obj, code, description|
 puts "Error #{code}: #{description}"
end

We will also need to handle the on_attach function for the RFID reader. This is
going to enable the antenna and the LED to indicate that it is switched on. The
antenna will listen for the chip and read the code that comes with it:

rfid.on_attach do |device, obj|
 puts "RFID Activated"
 rfid.antenna = true
 rfid.led = true
 sleep 1
end

We will want to actually work with the tag when it is presented. The tag can be
a card, coin, or really anything with the actual RFID chip inside it. The on_tag
function will be as follows:

rfid.on_tag do |device, tag, obj|

 # Interact with the servo
 if tag == "4d004b113e"

 puts "Authorized for #{tag}"

 3.times do
 max = adv.advanced_servos[0].position_max

Chapter 6

[101]

 adv.advanced_servos[0].position = rand(max)
 sleep 0.5
 end

 else

 puts "Tag #{tag} unauthorized"

 end

end

We will also handle the on_tag_lost function. We won't do much in this function.
We will just provide an output that notifies that the tag was removed, as follows:

rfid.on_tag_lost do |device, tag, obj|
 puts "Tag #{tag} removed"
end

We will now wait for the tag to be presented:

Waiting for the RFID
puts "Present ID tag....."

gets.chomp

What the on_attach function is doing is this—when a tag is presenting to the
antenna, it triggers the function. The tag is evaluated to see whether it equals
4d004b113e. Then we will move the servo three random times.

This can be easily modified to evaluate the tag against a company database,
authenticate a user, and then open a locked door. We will finish our script by
closing the connection to the servo controller and RFID reader, as follows:

Closing the connection
puts 'DONE'
rfid.close
sleep 2
adv.advanced_servos[0].engaged = false
sleep 1
adv.close

Interacting with Sensors

[102]

Using IR receivers
The Banana Pi has a built-in IR receiver. This is a sensor that listens for an IR signal
that is sent from a device such as a remote, as shown in the following image:

This allows you to turn your Banana Pi into something like an HTPC for your TV.
In order to get this to work, though, you will need some software. We will install
LIRC, which will read the signal and allow us to perform different actions. If you
don't install this and set the receiver as a keyboard input, you can actually write a
bunch of gibberish just by using a remote.

To get started, we are going to install LIRC. We will do this via the command line,
as follows:

sudo apt-get install lirc

Now, you can check out the hardware configuration file in /etc/lirc/hardware.
conf. This file will have all the configurations for the remote, kernel support, and
several other options. There are a couple of other configuration files, but they will be
empty by default. We won't worry about them for now. We will now add the kernel
modules to /etc/modules. We will add one of the following lines to the file:

modprobe sun4i_ir
modprobe sunxi_ir

Chapter 6

[103]

We will need to check whether we have the correct device by running the checks for
the devices that are present under input. We will accomplish this task by using the
following command:

cat /proc/bus/input/devices

It will likely be event1. The thing about the IR remote is that it isn't a one-size-fits-all
device. Some remotes work and some don't. I've seen people try out many different
remotes only to have a couple that will work. There is a way to test, though. First, we
will need to install evtest, as follows:

sudo apt-get install evtest

We will run evtest by passing in the receiver. If yours is event1, this will work.
If not, just change the command, as follows:

evtest /dev/input/event1

Once you see the output coming from a remote, you have found out the one that
works with your Pi. Once we have a working remote, we can configure /etc/lirc/
hardware.conf that we mentioned previously. The configuration will look like this:

Arguments which will be used when launching lircd
LIRCD_ARGS=""

#Don't start lircmd even if there seems to be a good config file
#START_LIRCMD=false

#Don't start irexec, even if a good config file seems to exist.
#START_IREXEC=false

#Try to load appropriate kernel modules
if LOAD_MODULES=false , modules must be preloaded, i.e. during boot
(/etc/modules)
LOAD_MODULES=true
MODULES="sun4i_ir"
newer kernel
#MODULES="sunxi_ir"

Run "lircd --driver=help" for a list of supported drivers.
DRIVER="devinput"

Interacting with Sensors

[104]

usually /dev/lirc0 is the correct setting for systems using udev
DEVICE="/dev/input/event1"

Default configuration files for your hardware if any
LIRCD_CONF=""
LIRCMD_CONF=""

You may need to change the device to correctly reflect your input device, as follows:

DEVICE="/dev/input/event1"

We can configure the remote now. We will need to set up a configuration file for the
remote. We will create the file, as follows:

nano ~/REMOTE.conf

We will set up the generic configuration in the following way:

begin remote
 name REMOTE
 bits 16
 flags SPACE_ENC|CONST_LENGTH
 eps 30
 aeps 100
 header 9000 4500
 one 563 1687
 zero 563 562
 ptrail 563
 pre_data_bits 16
 gap 108000
 frequency 38000
 duty_cycle 33
 begin codes
 end codes
end remote

We will then run the irrecord command and supply the .conf file once it is
configured to your remote, as follows:

irrecord –H devinput –d /dev/input/event1 REMOTE.conf

Chapter 6

[105]

This will be your opportunity to configure the keys. Press the buttons on the remote.
You may need to press the keys more than once or hold them down for more than a
couple of seconds. When you are done, there will be a new configuration file saved
that has the keys that you created defined in it. We will edit this file, change the
name, and remove any doubled keys (the Hex code is repeated on the same line).
Lastly, we will copy the new configuration file over to lirc.conf, as follows:

mv REMOTE.conf.conf /etc/lirc/lirc.conf

We can start LIRC by running the following quick command:

/etc/lirc/lirc.conf start

We should now have a working remote. This part is finicky because there are so
many different remotes and configuration options available. Actually, I have had
the most success with a remote that comes with an IR receiver, such as the
one shown in the following image:

This has been my choice simply because they were made to go together, although
this does use up one of your USB ports. We will write some more code to actually
use an IR receiver in a project in the next chapter.

Interacting with Sensors

[106]

Using force sensors
Force sensors are really cool. They take the amount of force applied to them
and return a signal. There are two different ones that I have used, and they
are functionally the same. There is the one by Phidgets, in which we can easily
make use of the code that we wrote for the light sensor. We can just attach a force
sensor, which can than interact with a servo. We don't even need to change any
part of the code.

The other option is a force sensor that is connected directly to the circuit. You can use
it if you want to avoid a solution such as Phidgets. These are generally less expensive
(around $7 USD).

The sensor that I use looks like a circle with a rectangle coming out of it, as shown in
the following image:

Chapter 6

[107]

It is not a complicated component to add to your circuit. You can connect it to your
breadboard and as long as you connect it to the GPIO pins, you can read the output
from the sensor. There are only two pins. So, if you adapt a previous script, you can
easily read the sensor.

Summary
In this chapter, we explored a lot of different sensors that allow us to develop a
lot of different projects. One thing to remember is that as you add more sensors
to your project, it can get pretty messy. You can see the aftermath of this in the
following image:

Interacting with Sensors

[108]

In the preceding image, I have my control board connected to a touch sensor, slider,
rotation sensor, and a light sensor. You can see the mess that comes with all the
functionality. This can be managed.

In the next chapter, we will cover some exciting projects. The goal will be to take
everything that we learned in this book so far and build an Internet radio. This will
take advantage of several sensors, the Banana Pi, an IR receiver, and an exciting
device—an LCD display. The Internet radio that I built for myself is inside an
antique radio and is shown in the following image:

We will kick it up a notch from what I built and make something more modern.

[109]

Building an Internet Radio
So far, we have covered a lot of different topics. You learned about the different parts
of the Banana Pi. You also learned how to use it to build awesome stuff. You have
an understanding of the Linux operating system, and you are ready to make some
amazing things.

In this chapter, we will explore a couple of new hardware components and build an
Internet radio player. We will be able to use this player to listen to streams on the
Internet, such as podcasts and music. This is one of the most popular projects. There
are different approaches to this project, which also make it fun.

We will implement an LCD display and set up the software and some other
hardware components. They will help us change channels and view the current
stream. We will also take a look at the Banana Pi attachments and implement the
same project using an attachment called the PiFace command and control. There are
two ways to do the same project. The following image is of an Internet radio:

Building an Internet Radio

[110]

Setting up the music
Arguably, the most important part of an Internet radio is its ability to play music.
We will install MPC and MPD and add some radio stations. This isn't a complex
configuration. We will start by updating packages.

sudo apt-get update

Now, we will install the packages we will use:

sudo apt-get install mpc

sudo apt-get install mpd

The following screenshot shows the output generated by installing MPC and MPD:

We can now add the radio stations we want to listen to. I will add my favorite
podcast network, Jupiter Broadcasting, but you can add any audio stream you want.
Run the following command multiple times with different URLs to add various
channels to your playlist:

mpc add http://jbradio.out.airtime.pro:8000/jbradio_a

Chapter 7

[111]

We can test this to make sure it is working by using the following command.
Connect headphones or speakers.

mpc play

The following screenshot shows the MPC software playing a steam that was added:

If you are happy with the playlist, you can save it using the following command:

mpc save playlist

The playlist will be saved to the /var/lib/mpd/playlists/ directory. You can
edit the playlist manually using nano, or you could load the playlist into MPC as an
argument if you want to listen to it again. You can also supply just the name of the
playlist as an argument to start playing.

Using LCD displays
LCD displays are one of the best ways to display output from the Pi. It can be
difficult to get started with using LCD displays, and there are innumerable choices.
If you look at an option such as the PiFace or Adafruit's display boards, they connect
directly to the GPIO pins.

Building an Internet Radio

[112]

The following image shows a basic LCD:

We will work with a standard 16 x 2 LCD display. We need to wire up the display
to the Banana Pi.

Wiring up the LCD
Since we are directly connecting the LCD to the Banana Pi, we will wire it up.
We won't have a GPIO header to connect directly to. Displays of size 16 x 2 generally
have 16 pins. These devices are generally easy to work with. The different pins can
be broken down into the following types:

•	 Data pins: These are the pins that send data to the display. These pins are
pretty straightforward.

•	 Register Select pin: This can be used to move the display up or down or
even clear it.

•	 Read/Write pin: This pin allows you to read and write to the LCD. This will
almost always be in write mode. However, on rare occasions, it will be in
read mode to allow us to read from the display.

•	 Enable pin: This is a simple pin that allows us to write to the registers
on the LCD.

Chapter 7

[113]

The following image shows an HD44780 LCD (16 x 2) pins labeled:

Pin definitions for a standard 16 x 2 LCD display can be seen in the following table:

Pin Definition Symbol
1 GND VSS
2 +5V VDD
3 Contrast adjustment V0
4 H/L Register Select signal RS
5 H/L Read/Write signal R/W
6 H/L Enable signal E
7 H/L Data bus line DB0
8 H/L Data bus line DB1
9 H/L Data bus line DB2

Building an Internet Radio

[114]

Pin Definition Symbol
10 H/L Data bus line DB3
11 H/L Data bus line DB4
12 H/L Data bus line DB5
13 H/L Data bus line DB6
14 H/L Data bus line DB7
15 +4.2V A
16 Power supply for back light K

Since we are working with the Banana Pi, it is important to verify that the LCD
display you are using has an LED backlight as opposed to an EL backlight. EL
backlights use a lot more power and are cheap to get, but will not pair well with any
Pi. Displays with LED backlights have built-in resistors. If they don't, the Pi could be
damaged. Most modern displays use LED backlighting now.

Connecting the Pi
Now that we have identified the pins on the LCD, we can match them up with GPIO
pins. We will need to breadboard this at first (you can make a PCB later on). We will
start by connecting the +5V (pin 2) power to the positive line on the breadboard and
the GND pin (pin 1) to the black or negative line.

Now we can wire up the display to receive data from the Banana Pi. We will
need a potentiometer (knob!) on the circuit as well. We will connect pin 3 to
the potentiometer's middle prong. Pin 4 will connect to the negative line on the
breadboard. Pin 6 will connect to pin 24 on the Banana Pi.

We will skip several pins. They are not necessary for what we are doing right now.
These pins are 7, 8, 9, and 10; they are all data pins. Pin 11 connects to GPIO 23. Pin
12 connects to GPIO 17, and pin 13 connects to GPIO 21. Pin 14 connects to GPIO 22.
Finally, pin 15 will connect to the red line, or positive rail, and pin 16 will connect to
the ground.

Chapter 7

[115]

Here is the schematic of the wiring diagram:

It is important to not send 5V from the LCD display into the Banana Pi, which is
3.3V. You need to make sure that there is proper resistance in place or use something
like a Pi Cobbler from Adafruit when you breakout to the breadboard. You can hurt
your Pi if you don't.

Writing to the display
We have wired up our display now. We want to write some text to the screen.
We will, of course, need to make sure that the proper packages are installed.
We installed the Python developer packages earlier, but just in case you skipped
ahead, you will need to install them:

sudo apt-get install python-dev

sudo apt-get install python-setuptools

sudo apt-get install python-pip

Building an Internet Radio

[116]

We will also need the RPI GPIO library we used earlier in the book. You can
conveniently find this library at https://github.com/LeMaker/RPi.GPIO_BP.

A single command will download the package from GitHub onto the Banana Pi:

git clone https://github.com/LeMaker/RPi.GPIO_BP -b bananapi

You can easily install this library by running the following few commands:

sudo apt-get update

sudo apt-get install python-dev

cd ./RPi.GPIO_BP

sudo python setup.py install

Now we will grab a script from Adafruit's GitHub. They wrote this script for the
Raspberry Pi and to work with LCD displays, but it will work just fine for us:

git clone git://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

Now we can use this script to test and change directories to the project and run the
scripts to see the output. Now we want to take the music playing from the radio and
display information on the LCD.

Radio output
We will start by pulling another repo from GitHub. This repo is by Bob Rathbone
and includes some good scripts, such as ada_radio.py, which will allow us to
output the music to the display:

git clone git@github.com:bobrathbone/piradio.git

We can use these scripts to bridge the gap between our LCD display and MPD.
There are a few useful programs we will use. This will be even more useful if you
are using a display such as the Adafruit complete display.

•	 ada_radio.py: This manages the LCD display
•	 ada_lcd_class.py: This class interfaces the LCD and buttons
•	 I2C_class.py: This is an i2c interfacing class
•	 Test_ada_lcd.py: This is a service to test the LCD functions

Although these tools are developed by Adafruit, they are useful in other situations
as well. We will start the ada_radio script now:

python ada_radio.py start

https://github.com/LeMaker/RPi.GPIO_BP

Chapter 7

[117]

This command will start the script, and the display should start to show on the
LCD. The content displayed is coming from the MPD library we installed earlier.
The information from that program is being logged to the display.

Introducing the PiFace radio
So, we spent some time manually building an Internet radio. This is awesome, but
when you start to look at alternative LCD displays, such as the PiFace, you start to
realize that there are some easier solutions. The following image shows the PiFace
command and control:

We talked about this alternative earlier in the book, so I won't go into the details
again. We will jump right into working with it.

As I'm sure you will have already guessed, we will start by installing the PiFace
packages:

sudo apt-get install python3-pifacecad

Once they are installed, we will need to reboot:

sudo reboot

Building an Internet Radio

[118]

After the Banana Pi has rebooted, we can try out the display to make sure it actually
works. We will change directories to the examples folder:

cd /usr/share/doc/python3-pifacecad/examples

We will need to make sure that we have the SPI module enabled under raspi-
config. You may get an error like this:

Traceback (most recent call last):

 File "/usr/lib/python3/dist-packages/pifacecommon/spi.py", line 40, in
open_fd

 self.fd = posix.open(spi_device, posix.O_RDWR)

OSError: [Errno 2] No such file or directory: '/dev/spidev0.1'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File "sysinfo.py", line 61, in <module>

 cad = pifacecad.PiFaceCAD()

 File "/usr/lib/python3/dist-packages/pifacecad/core.py", line 40, in
__init__

 super(PiFaceCAD, self).__init__(hardware_addr, bus, chip_select)

 File "/usr/lib/python3/dist-packages/pifacecommon/mcp23s17.py", line
91, in __ init__

 super(MCP23S17, self).__init__(bus, chip_select)

 File "/usr/lib/python3/dist-packages/pifacecommon/spi.py", line 32, in
__init_ _

 self.open_fd(spi_device)

 File "/usr/lib/python3/dist-packages/pifacecommon/spi.py", line 44, in
open_fd

 % (spi_device, SPI_HELP_LINK)

pifacecommon.spi.SPIInitError: I can't see /dev/spidev0.1. Have you
enabled the SPI module?
(http://piface.github.io/pifacecommon/installation.html#enable-the-s
pi-module)

By opening the raspi-config menu in the terminal, we can go to the advanced
options and enable the module. It will require a reboot; after the reboot, the error
should be cleared up. If that doesn't work, you may need to reinstall the Python
packages or the PiFace common package.

Chapter 7

[119]

We can run the sysinfo example, which will enable the display and show us our
local IP address and temperature:

python3 sysinfo.py

The output of the PiFace will look like this:

Now that we have this working, you can stop it by pressing Ctrl + C. We can now set
up the Internet radio side of things.

The PiFace radio
We need to install mplayer on the Pi to set up the radio. We will run the following
command and press Y whenever we are asked:

sudo apt-get install mplayer

We can now unzip the radio examples, which are in the same directory as the
sysinfo example:

sudo gunzip /usr/share/doc/python3-pifacecad/examples/radio.py.gz

Building an Internet Radio

[120]

We can now run the PiFace radio:

python3 /usr/share/doc/python3-pifacecad/examples/radio.py

We have multiple controls on the PiFace. We can use these to change the radio
stations and pause the stream.

Adding stations
Now we have a radio with some fancy buttons, but we have some stations we don't
like. We can easily edit the software to add the stations we like. We will first need to
copy the program from the examples directory to our home directory:

cp /usr/share/doc/python3-pifacecad/examples/radio.py ~

cp /usr/share/doc/python3-pifacecad/examples/radiolircrc ~

We will need to edit the radio .py file:

nano radio.py

We will look for the section of the code that identifies the stations as an array:

{'name': "station name",
'source': 'station web address',
'info': 'station info web address' or None},

I'll add the station I added in the first radio:

{'name': "Jupiter Broadcasting",
'source': http://jbradio.out.airtime.pro:8000/jbradio_a ',
'info': None},

Now, just add as many stations as you like. When you run the program again, you
will be able to switch between these stations.

Making our radio pretty
A Banana Pi radio is a quick and easy thing to set up. It is one of the best first
projects that you can create because you get to experience both hardware and
software, and you are making a functional device. Now that we have a functional
device (well, actually two), you should be inspired to make something even more
awesome.

Chapter 7

[121]

I took one of my Banana Pis and thought an Internet radio was cool. However,
it would be even cooler if it was in an antique radio. Here is what it ended up
looking like:

I hollowed out the inside of this antique radio. It wasn't working anymore, so don't
worry about that part. I also broke apart some spare speakers I had lying around.
The original volume knob is glued to the potentiometer of the speaker on the inside,
giving it the proper functionality.

Everything else we talked about in this chapter boils down to the same end goal: a
project that allows you to be creative. The case that I chose unfortunately didn't make
sense adding an LCD. However, I used all the other aspects of this chapter, and it
created a very functional device to listen to my podcasts.

Building an Internet Radio

[122]

You could always leave the Banana Pi out of its case, like this one:

There are all kinds of containers for your Internet radio. You don't need to look for
antique radios; however, they do make for a nice project. You could also mount the
Banana Pi behind your monitor and connect it to speakers that you control via SSH.
Alternatively, you could put the Banana Pi with your stereo system and control it
by a web interface. Because of the open nature of the product, you can do almost
anything you want.

Some enclosures that you could use for this radio project or even for other situations
could be fabricated from a lot of interesting things, such as the following:

•	 LEGO
•	 N64 cartridge
•	 Mint tin

Chapter 7

[123]

If you have access to a 3D printer like I do, you could even 3D-print a case such as
the one that I made:

Summary
The Internet radio we made is a very practical tool. Everybody likes listening to
music or podcasts, or really any media. We have taken that love for music and built
something out of it. This project is a jumping-off point for future projects. You can
take what you have learned here and apply it to something such as an ownCloud
server or media PC.

A few potential projects to get you inspired to continue learning include:

•	 HTPC
•	 Workstation
•	 Retro Gaming Emulator
•	 Internet Kiosk
•	 Wireless Access Point
•	 Portable web server

Building an Internet Radio

[124]

These projects are generally pretty easy to implement and make for good
weekend projects.

We have taken all the accumulated knowledge from this book so far and applied
it to a practical project. We went from knowing almost nothing about single-board
computing to understanding the hardware aspects of the board and learning about
the Linux filesystem and basic commands. We programmed a lot of different
stuff directly on the board using Ruby, Go, Python, and Bash. We applied all this
knowledge to make this radio.

In the next chapter, we will cover some other practical applications, including running
a web server on the Banana Pi for use with server-side programming with PHP. We
will install a local WordPress installation. We will take this tiny server (look at the
following image) and turn it into a powerful web server for local development:

[125]

Building a Home Server
Now that we have explored a lot of hardware and some programming, we can
start talking about another popular use of the Banana Pi: home servers. Earlier, to
get a home server, you needed to take one of your existing computers that you had
kicking around and turn it into a server. These machines were usually older PCs
or expensive dedicated hardware. Now we can accomplish this task with a simple
device. The cost of running a Banana Pi is much less than the cost of running a PC
since we are powering the device with USB.

There are a few different kinds of servers we can run with a Banana Pi. Some
of the servers we will explore include a web server for local development and
web pages (dashboard style), ownCloud servers to run local cloud DropBox
alternatives, and NAS (network access storage) servers. The following image
shows my Banana Pi server:

Building a Home Server

[126]

Setting up a web server
Web servers serve web pages. A web server might seem like something silly to have
in your house, but there are a lot of practical applications. Of course, if you are a web
developer, it becomes even more useful. However, even if you're not a developer,
you can set up something such as a dashboard that shows the weather.

We will start by installing the base software that will be necessary, regardless of
what you want to do here. We will install nginx to serve web pages, MySQL as our
database, and PHP5, which we will use for the web pages.

Setting up our server
We will start by installing nginx using the following command:

sudo apt-get install nginx

Now, to start nginx, we will run the following command:

/etc/init.d/nginx start

You can test nginx by going to the IP address of your Banana Pi in the web browser
on the Pi itself or on another computer.

Setting up MySQL is easy, and the installation process will guide you through the
steps. Here's the command to install MySQL:

sudo apt-get install mysql-server

Now you will be prompted for the root password. Set this as something you can
remember, because it is important. Most of the defaults will be fine for what we
are here for.

Installing PHP will require a few different packages. We will install the packages to
get PHP working with MySQL. We will speed it up a bit because we are running on
a single-board computer after all. We will need to run a few commands, which are as
follows:

sudo apt-get install php5-fpm

sudo apt-get install php5-mysql

sudo apt-get install php-arc

Chapter 8

[127]

Now we need to configure nginx. PHP is already configured to work with nginx.
However, we need to comment out a few lines in the configuration file /etc/nginx/
sites-available/default:

 listen 80; ## listen for ipv4; this line is default and
 implied
 #listen [::]:80 default_server ipv6only=on; ## listen for ipv6

< more content >

 location ~ \.php$ {
 fastcgi_split_path_info ^(.+\.php)(/.+)$;

 # php5-cgi alone:
 # fastcgi_pass 127.0.0.1:9000;
 # php5-fpm:
 try_files $uri $uri/ /index.php?$uri&$args;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_index index.php;
 include fastcgi_params;
 }

We need to make sure we add the following line:

try_files $uri $uri/ /index.php?q=$uri&$args;

We also need to comment out the following line, because we are using php-fpm:

fastcgi_pass 127.0.0.1:9000;

We also need to edit the php.ini file, which contains all the configuration options
for PHP on the server. We need to set cgi.fix_pathinfo to 0.

We will then edit the php.ini file:

nano /etc/php5/fpm/php.ini

Now we will set the parameter. This file is pretty big, but you can press Ctrl + W to
search the document. When you find the parameter, you will need to set it:

cgi.fix_pathinfo=0

Now we will need to reset our server since we have made changes to the
configuration files. On start in the future, the server will load with our changes.

/etc/init.d/nginx restart

Building a Home Server

[128]

We can create a simple page to check whether the server is working properly with
PHP. We need to create a file called info.php. This file will output all the server
information:

nano /usr/share/nginx/www/info.php

We need to put some simple code in this file for it to work:

<?php
phpinfo();
?>

The page can be viewed by going to your Banana Pi's IP address in the browser and
adding the page information, /info.php, to the URL. If your Banana Pi is on IP
address 192.168.1.25, we use http://192.168.1.25/info.php. If everything is
working properly, you would see a page that looks like this:

Chapter 8

[129]

Setting up ownCloud
ownCloud is a DropBox alternative. It allows you to create your own service, such
as DropBox, but you get to own the hardware. The image at the beginning of this
chapter of my Banana Pi server is actually my ownCloud server. We need to do a
couple of things to get this working. If we are setting up a cloud service, we will
likely want more storage than we will get from our SD card. Luckily for us, we have
access to a SATA port on the board.

Setting up the SATA drive
So, we have a SATA drive and we want to mount it to a spot where we can access
and store data to the drive. For this purpose, we will assume that the drive has
already been formatted, and we will start mounting the drive. In order to connect a
drive to the Banana Pi and power it, you need a fancy cable like the one shown here:

You need a cable because on the Banana Pi, there is a power connector that can
power a hard drive. You can use an external power source, but this one will power
the drive while the Banana Pi is powered on. You will connect the power adapter to
the pins on the board and then connect the SATA connector to the board. The other
end of the cable is one large connector to connect directly to the board.

Once the drive is connected and the Banana Pi is powered on, the drive will come to
life. The devices connected to the device can be found by running a quick command:

fdisk -l

You will be presented with output that identifies all the disks attached to the device.
My disk was /dev/sda1/. We can mount this folder to a directory. We will create a
directory in /media/. This directory will hold our data:

mkdir /media/data/

Building a Home Server

[130]

Now we will mount the SATA drive to our new directory:

mount /sev/sdb1/ /media/data

When we look in that directory now, it will be an empty folder. We can now use this
folder to hold the files added by ownCloud.

Installing ownCloud
We have a Banana Pi with a web server and a SATA drive connected and mounted.
We can now install ownCloud. Since we are installing the ownCloud server onto our
nginx server, we need to set up SSL so that our user session isn't hijacked. We will
run a few commands:

mkdir /etc/ssl

mkdir /etc/ssl/nginx

cd /etc/ssl/nginx

openssl genrsa -out privkey.pem 2048

openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095

We are creating directories to hold the SSL certificates and generating our keys in
order to decrypt our traffic. Now we need to set up our database connection. We
need to log in to MySQL:

mysql -u root -p

You will be prompted for your root password you set up earlier (I hope you
remember it). We need to create a user and a database for the ownCloud installation:

CREATE USER 'cloud'@'localhost' IDENTIFIED BY 'your_password';

CREATE DATABASE IF NOT EXISTS owncloud;

GRANT ALL PRIVILEGES ON owncloud.* TO 'cloud'@'localhost' IDENTIFIED BY
'your_password';

FLUSH PRIVILEGES;

We can now log in as the user cloud and whatever password you set will be used to
connect to it.

You can now quit MySQL easily:

quit

Chapter 8

[131]

We now need to install a few extra packages that will be needed for ownCloud:

apt-get install php5-gd php5-json php5-curl php5-intl php5-mcrypt php-
xml-parser

These packages basically extend the functionality of PHP. We will also need to
install bzip:

apt-get install bzip2

We are now ready to install ownCloud:

wget https://download.owncloud.org/community/owncloud-7.0.3.tar.bz2

tar -jxvf ownCloud 7.0.3.tar.bz2

cp –rf ./ownCloud/ /var/www

We need to change the owner of the files we just moved to the /var/www directory
so that our web server can use them:

chown –R www-data:www-data /var/www

We have all the files we need to get going. Now we need to edit some configuration
files. We will start by editing the php.ini file again, this time adjusting the file size
limitations so that we can sync larger files:

sudo nano /etc/php5/fpm/php.ini

We will need to edit the following lines, which are not exactly together in the file.
You need to find them:

upload_max_filesize = 1024M

post_max_size = 1024M

Now, we will configure nginx again, this time to make sure that the secure
ownCloud install will be available over HTTPS:

sudo nano /etc/nginx/sites-available/ssl-default

We can use this configuration to get it running:

upstream php-handler {
 # server 127.0.0.1:9000;
 server unix:/var/run/php5-fpm.sock;
}
server {

Building a Home Server

[132]

 listen 443;
 ssl on;
 ssl_certificate /etc/ssl/nginx/cacert.pem;
 ssl_certificate_key /etc/ssl/nginx/privkey.pem;
 root /var/www;
 client_max_body_size 1G;
 fastcgi_buffers 64 4K;
 rewrite ^/caldav(.*)$ /remote.php/caldav$1 redirect;
 rewrite ^/carddav(.*)$ /remote.php/carddav$1 redirect;
 rewrite ^/webdav(.*)$ /remote.php/webdav$1 redirect;
 index index.php;
 error_page 403 /core/templates/403.php;
 error_page 404 /core/templates/404.php;
 location = /robots.txt {
 allow all;
 log_not_found off;
 access_log off;
 }
 location ~ ^/(data|config|\.ht|db_structure\.xml|README) {
 deny all;
 }
 location / {
 # The following 2 rules are only needed with webfinger
 rewrite ^/.well-known/host-meta /public.php?service=
 host-meta last;
 rewrite ^/.well-known/host-meta.json /public.php?service
 =host-meta-json last;
 rewrite ^/.well-known/carddav /remote.php/carddav/ redirect;
 rewrite ^/.well-known/caldav /remote.php/caldav/ redirect;
 rewrite ^(/core/doc/[^\/]+/)$ $1/index.html;
 try_files $uri $uri/ index.php;
 }
 location ~ ^(.+?\.php)(/.*)?$ {
 try_files $1 =404;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$1;
 fastcgi_param PATH_INFO $2;
 fastcgi_param HTTPS on;
 fastcgi_pass php-handler;
 }
}

Chapter 8

[133]

If you have deviated from the instructions, you will need to make sure you adjust
this configuration accordingly. We will create a symlink to sites-enabled:

ln -s /etc/nginx/sites-available/ssl-default /etc/nginx/sites-enabled

Now we can restart our server:

/etc/init.d/php5-fpm restart

/etc/init.d/nginx restart

You will be able to access the ownCloud setup page from the browser. If you connect
to your IP and navigate to ownCloud, you will see the page. On the initial install
page, you will be asked to connect to the database you created earlier and tell it to
put the data in the /media/data directory we created when we mounted the
SATA drive.

Building a Home Server

[134]

Installing Baikal
Baikal is a way for you to sync your calendar and contacts without submitting to a
third-party solution such as Google. Of course, ownCloud offers the same solution.
It is a lot lighter since it is not doing the file syncing. The interface looks like this:

We already have nginx and PHP installed. However, this time around, we will use
SQLite as opposed to MySQL.

We will install the packages needed. They include SQLite and the libraries needed
for PHP to interact with it:

sudo apt-get install sqlite php5 php5-fpm php5-sqlite

We will also generate an SSL certificate (if you did this for ownCloud, you're
still good):

sudo mkdir /etc/nginx/ssl

cd /etc/nginx/ssl

openssl genrsa -out privkey.pem 2048

openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095

Now we need to create a virtual host for nginx to route our requests to:

nano /etc/nginx/sites-available/ssl

Chapter 8

[135]

Then we need to edit this file. You can use the following configuration for it to
work properly:

server {
 listen 443;

 ssl on;
 ssl_certificate /etc/nginx/ssl/cacert.pem;
 # path to your cacert.pem
 ssl_certificate_key /etc/nginx/ssl/privkey.pem;
 # path to your privkey.pem

 root /var/www/;
 index index.html index.htm index.php;

 server_name localhost;
 location / {
 try_files $uri $uri/ /index.html;
 }
 location ~ ^(.+\.php)(.*) {
 try_files $fastcgi_script_name =404;
 fastcgi_split_path_info ^(.+\.php)(.*)$;

 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_index index.php;
 include fastcgi_params;
 }

 charset utf-8;

 location ~ /(\.ht|Core|Specific) {
 deny all;
 return 404;
 }
}

We will activate the host file now by creating the symbolic link to the
sites-enabled file:

ln -s /etc/nginx/sites-available/ssl /etc/nginx/sites-enabled

We are now ready to download Baikal.

Building a Home Server

[136]

Downloading Baikal
Now that our server is prepped and ready, we can download the Baikal files and
install the service. We will need to run a few commands to complete this task:

cd /var/www

wget http://baikal-server.com/get/baikal-flat-0.2.7.zip

unzip baikal-flat-0.2.7.zip

mv baikal-flat/ baikal/

chown -R www-data:www-data baikal/

We are good to go. We can now enable the installation by creating the empty
file ENABLE_INSTALL, which, in my opinion, is the worst way ever to accomplish
this task.

touch /var/www/baikal/Specific/ENABLE_INSTALL

Now you can go through the installation and create the administrator account
and users. Once the users are created, you will be able access the contact book and
calendar for those users. You can subscribe to these services through your clients,
just like you would subscribe to any other calendar or contact service.

Setting up swap
Swap memory is very common in Linux. It acts as memory that is used when the
physical RAM on the device is used up. This is not as necessary on newer computers
using Linux because, for example, the laptop I am writing this on is running Ubuntu,
and I have 16 GB of RAM.

Our Banana Pis have 1 GB of RAM. This is more than enough to perform simple
tasks or run simple servers. However, once we are running PHP and it gets more
complex, we need some extra memory. It is recommended that you do not create
a swap file on the SD card, because it will be a slower medium. Also, it isn't worth
using the file as memory and will shorten the life span of your card.

We will create a swap file on the drive we have connected to over SATA. This is
going to be much faster. We will create a 2 GB swap file, which will give us 1 GB of
RAM and 2 GB of extra swap memory.

We will start by running the swapon command:

sudo swapon -s

Chapter 8

[137]

This command will give you output that looks like this:

Filename Type Size Used Priority

You will notice that there are no swap files. This means you currently only have the
device memory, which means you may run out and notice some lag. We will fix this.
We can also verify the absence of a swap file by running the free command:

free -m

The output will look something like this, showing that there is no swap memory
available:

 total used free shared buffers cached

Mem: 3953 154 3799 0 8 83

-/+ buffers/cache: 62 3890

Swap: 0 0 0

Now we will create a swap file on the drive we mounted to /media/data. Assuming
that you have not gone through the ownCloud section yet, it might make sense to
put this file in another directory on that drive from the data mount point. You may
create an /ownCloud directory inside data and keep the swap file at the root:

dd if=/dev/zero of=/media/data/swapfile bs=1k count=2048k

We now have a 2-GB file called swapfile in /media/data/. We can now make this
file active using swapon:

chmod 600 /media/data/swapfile

chown root:root /media/data/swapfile

sudo mkswap /media/data/swapfile

sudo swapon /media/data/swapfile

Our swap file is now activated. We can check it out by running our swapon
command again:

sudo swapon -s

Now our output looks like this:

Filename Type Size Used Priority

/media/data/swapfile file 4194300 0 -1

Building a Home Server

[138]

We have a working swap file, which is awesome, except that we want it to be
permanent. We will edit the fstab file (which sounds dangerous, but isn't):

sudo nano /etc/fstab

At the very bottom of the file, we will add the following command:

/media/data/swapfile none swap sw 0 0

Now, we can save and close the swap file, and this file will be working even if you
reboot. One thing to note is that if you are going to remove the SATA drive, you
should remove this swap file. Otherwise, it will be looking for a drive that isn't there,
and as you may imagine, this is less than optimal.

The swap file we just added will help in the event we run out of memory. Processes
such as MySQL can use more memory, which means their queries will be much
faster, and the device will become a little more usable. We now have a nice little
server for our home.

Summary
We covered a lot about servers but barely scratched the surface. You learned about
a couple of practical home server solutions here. They will allow you to sync your
files, calendars, and contacts without letting anybody else have your data, which is
key today.

We explored a lot in this book. We built physical hardware that interacts with code,
we built servers that can simplify our lives, and you learned a lot along the way.
There is so much more that you can accomplish with the Banana Pi. My intention is
to arouse your interest and thus motivate you to learn some more.

One thing that makes these boards so awesome is the community forums. You can
search for almost anything you are trying to do and find help in doing it. There are
a lot more operating systems available for the Banana Pi that we didn't cover in this
book. These operating systems are interesting to work with as well. Depending on
what you are trying to do, you will find that there are a lot of different options to
get there.

[139]

Gaming on Your Pi
One of the cool things about the Banana Pi is that it allows you to basically do
whatever you want. One of the applications of the Banana Pi is that it can be used
as a media device, and even in this aspect, it isn't restricted to movies and music.
The Banana Pi has a much more robust hardware than the Raspberry Pi. The Banana
Pi allows you to play games on Android and Linux, which is something that the
Raspberry Pi can't quite handle.

There are a few options when it comes to playing games on the Banana Pi. You are
restricted to the fact you are still on Linux, which requires support. We are also
running an Arm board. So, there will be a restriction on the hardware that the games
are built for. I have found that retro game emulators and anything that is built
for Android works great. The following picture shows Mario being played on the
Banana Pi that runs on Android:

Gaming on Your Pi

[140]

Gaming on Android
The main focus of this book has been running Linux and building some awesome
stuff, but when it comes to gaming, Android beats Linux. Most of the games for
Android are designed for a touchscreen. If you are using a touchscreen display, you
are in luck. Otherwise, you will need to find some other alternatives.

Unfortunately, the Banana Pi lacks Xbox 360 controller support. However, other
controllers are supported. The best controller that I have found so far is an app called
BT Controller on the Google Play Store that I can use on my phone or tablet. Of
course, this assumes that you are using an Android phone or tablet. The following
screenshot shows the BT Controller app for Android:

Setting up BT Controller is simple. You have a couple of options that are easy to
configure. First, on the Banana Pi, you will need to set the controller as the server.
On the phone, you will need to search for the IP address of the Banana Pi. I have only
been able to get the Wi-Fi part of this working as the Banana Pi has not been able to
use any of my Bluetooth accessories on Android, but they work fine on Linux. This
may be a hardware issue with the Bluetooth dongles that I have available here.

Chapter 9

[141]

The following image shows the controller app running on a phone:

Some games work better than the others, but the hardware on the Banana Pi has
been proven to provide great results. You are only going to miss out on touchscreen
games, which won't be an issue if you have a touch-enabled display connected to
the Banana Pi.

Classic game emulators for systems such as Nintendo 64 and Play Station work
perfectly. I can't tell you where to get games for them. The controller support is
generally quite robust and supports a perfect gameplay. At this point, the
Banana Pi can be considered the ultimate media device.

Gaming on Linux
Gaming on Linux is something that has always been historically valid,
but until recently, there wasn't a lot that you could do. Now, with the rise of
some open source projects, there are lots of games that you can play on Linux
that are much more professionally made, and some of these games are supported
by the community.

Gaming on Your Pi

[142]

You can do any number of searches for games that will run on the Raspberry Pi,
Banana Pi, or Linux, and you will come across lists of the best titles that you can find.
They won't say which particular games you can play, but will point you to some of
the software you can use to play them.

EmulationStation
Retro game emulation is one of the most popular uses of the Pi boards. It is a
very cheap alternative to larger systems and can handle many different game
emulators. There is an open source project called EmulationStation that handles
many different systems.

There are a few different ways to install this and unfortunately, at the time of writing
this book, there isn't a premade RetroPie image for the Banana Pi. So, we will have to
install and compile the software manually.

Chapter 9

[143]

The end result will be an easy-to-use emulation machine.

Before we get started with the installation of the software, we will need to make
sure that we have everything up to date. If you are using Raspbian, you should
also update the firmware by using the following command:

sudo apt-get update

sudo apt-get upgrade

We can now install the EmulationStation software. We will need to edit the boot
config file and add a line that will set the GPU memory to 32. We will do this so
that we don't run out of memory while compiling the software.

sudo nano /boot/config.txt

We will add this line to the file, save, and exit, as follows:

gpu_mem = 32

Once we have saved and exited the file, we will immediately reboot the system,
as follows:

reboot

Gaming on Your Pi

[144]

After the system restarts, we will need to start installing the dependencies for SDL2.
This is important. So, you will need each of these packages:

sudo rpi-update

The libudev-dev package is particularly important because if you skip it, you may
not have keyboard support inside the software later. We can now compile and install
SDL2. First we will download SDL2 and unpack it, as follows:

wget http://libsdl.org/release/SDL2-2.0.1.tar.gz

tar xvfz SDL2-2.0.1.tar.gz

rm SDL2-2.0.1.tar.gz

pushd SDL2-2.0.1

Now we will compile the library, as follows:

./configure --disable-video-opengl --host=arm-raspberry-linux-gnueabihf

make

sudo make install

popd

We will get some output that looks like this:

Chapter 9

[145]

We might as well remove the folder since the library is installed. This can be
achieved by using the following command:

rm –rf SDL2-2.0.1

Now we can move on to actually compile EmulationStation. We will pull the Git
repository and check out the unstable branch first, as follows:

git clone https://github.com/Aloshi/EmulationStation

cd EmulationStation

git checkout unstable

If you are following the instructions on the EmulationStation website, you will
notice that they pass in different arguments to the cmake command. This will
produce errors. In order to properly build EmulationStation, we will need to
use the following commands:

cmake . -DFREETYPE_INCLUDE_DIRS=/usr/include/freetype/ -DCMAKE_CXX_
COMPILER=g++-4.7

Now we can compile the software, as follows:

make

sudo make install

You can launch EmulationStation by using the command line and typing
emulationstation. Now we will have to reverse the changes that we made
to the config.txt file under boot/, as follows:

sudo nano /boot/config.txt

Remove the line we added earlier.

You now have a fully functional system.

Streaming from your PC
PC gaming is considered one of the best experiences. One might have wished
for a Steam OS port on the Banana Pi, but unfortunately, at the time of writing this
book, there is currently no such port (somebody should fix this). There are other
ways to stream your games from your gaming rig to your Banana Pi, though.
Limelight streaming is an open source project that was developed to stream your
streaming-enabled games just like Steam OS.

Gaming on Your Pi

[146]

The following image shows Limelight:

As you can see from the preceding image, the Steam UI is being streamed to an
Android tablet. Essentially, the Banana Pi running Android is also an Android tablet.
So, we will make that work.

Limelight is nice because it has controller support and works on multiple platforms.
Also, it has an extremely low latency, is open source, and free. It is only fitting for an
open-hardware board that we stick to open-hardware solutions.

There is a Limelight Pi Raspberry Pi image available, but it is not ported to any
version of the Banana Pi at the time of writing this. That being said, we can install the
Android app, which is available:

Chapter 9

[147]

You can get the app from the Google Play Store by searching Limelight for
Rooted Devices. The Android image that is available for the Banana Pi is rooted by
default, so no worries there.

The app setup is fairly simple. There are only a couple of interfaces. The first
interface is the main screen, which shows a list of the computers that are currently
saved. You can either search for the computers that are currently streaming or add
another computer by entering its IP address manually. You can add new computers
by clicking on the + button in the top corner.

Gaming on Your Pi

[148]

The following screenshot shows the main interface of the Limelight app:

You can have multiple computers running stream games, but you can only stream
one game at a time to the devices. If you go by this route, you should ensure that the
computer running the game won't be used for anything else during this time.

There is another important interface on the Limelight app. The setting page can be
accessed through the gears at the top left corner of the main UI. Here, you will find
settings for a basic device configuration such as video bitrate, stretching a video to fit
the entire screen, and disabling warning messages.

Chapter 9

[149]

You can also enable multiple controller support and optimize the host settings, for
example the game settings, if you want the audio to stream or play from the host
computer. The following screenshot shows the settings page for the app:

The additional settings include the UI settings that let you control not only whether
you want to see the items as a list, but also whether you want to use small icons. The
rest of the app is simple. Start playing a game or stream the game on the gaming
computer and connect it to the Banana Pi.

Gaming on Your Pi

[150]

Summary
Gaming is important to so many people that it only makes sense that there are a lot
of options to turn your single-board computer into a streaming or an emulator PC.
The projects that we explored in this chapter are all open source, which is awesome.
You can see that the community has really come together to build an awesome
experience by using one of these devices.

The ability to run Android on the Banana Pi is awesome for many reasons. You
have an access to a lot of apps that you normally wouldn't have because of the ARM
architecture. Also, you can do stuff such as downloading top-quality games or even
streaming your PC games directly to your TV.

Chapter 9

[151]

By now, we have covered many topics in this book, from taking the Banana Pi out
of the box and building cool projects with it, to relaxing with your Banana Pi. You
can see how similar all of these boards are physically, but when you look under the
hood, there is a lot going on.

The Banana Pi is one of the most versatile Linux computers on the market today.
It is a good solution for hobbyists and can be used in large-scale projects.

In the future, on ARM-based single-board computers and the Banana Pi computer,
I am currently looking to develop solutions for small businesses that utilize these
computers. I even work with the local college, where I develop modular classrooms
that use the Banana Pi as an educational tool that brings education to the remote
communities.

[153]

Index
A
Adafruit complete display

ada_lcd_class.py 116
ada_radio.py 116
I2C_class.py 116
Test_ada_lcd.py 116

Adafruit WebIDE 60
Android

about 22
installing 22-24

Apt package manager 41, 42

B
Baikal

about 134
downloading 136
installing 134, 135

Banana Pi
about 1-4
boards, powering 15, 16
breadboarding 72
environment, setting up 14
GPIO pins 9, 10
hardware, working with 77
M1 board 5
M2 board 6, 7
operating systems 12
Raspberry Pi accessories 13
versus Raspberry Pi 4

Bananian
about 27
setting up 27, 28

bash scripting 61-63
boards

powering 15, 16
breadboarding, Banana Pi

about 72
common components 73
required hardware 72

C
capacitors 76
code, writing on Pi

about 61
bash scripting 61-63
Go language 66-69
Python programming 64
Ruby language 64, 65

command-line editors
about 52
Emacs editor 52, 53
nano editor 54, 55
Vim editor 53, 54

commands
cat 40
chmod 40
chown 40
cp 40
ln 40
ls 40
mkdir 40
mv 40
pwd 40
rm 40
touch 40

[154]

common electrical components
about 73
capacitors 76
diodes 75
integrated circuits 77
light-emitting diodes (LEDs) 75
resistors 73
transistors 76

CON3 GPIO pin definitions 10

D
desktop environment

setting up 32, 33
diodes 75
dpkg tool 42

E
Eclipse 55, 56
editor

command-line editors 52
graphic editors 55
selecting 51, 52
Web IDEs 58

Emacs editor 52, 53
EmulationStation

about 142
installing 143-145

environment
setting up 14, 15

expansion boards
using 46

external drives
mounting 48

F
filesystem

about 35-37
directories 35-39
links 36
named pipes 36
sockets 36
special files 35

force sensors
using 106, 107

G
gaming, on Android 140, 141
gaming, on Linux 141, 142
Geany IDE 56, 57
Go language 66-69
Google Coder 58, 59
GParted

about 20
used, for preparing drive 20, 21

GPIO (general purpose input output) pins
about 9, 10
interfacing with 43
interfacing with, in Python 44

graphic editors
about 55
Eclipse 55, 56
Geany IDE 56, 57

H
hardware

expansion boards, using 46
external drives, mounting 48
interacting with 45
PiFace, setting up 47

home server
building 125

home theatre PC (HTPC) 2

I
integrated circuits 77
Internet radio

enhancing 120-122
LCD displays, using 111
LCD, writing up 112-114
music, setting up 110, 111
PiFace radio 117-119

IR receivers
using 102-105

L
LCD, Internet radio

display, writing to 115
Pi, connecting 114, 115
radio output 116

[155]

wiring up 112-114
light

interacting with 95-98
light-emitting diodes (LEDs)

about 75
controlling, with code 79, 80
user input, adding 80-82
working with 77, 78

Limelight 146
Linux installation

Bananian, setting up 27, 28
configuring 25
Raspbian, setting up 26, 27
root partition, expanding 28

Linux installation, on Banana Pi
about 24
through Windows 24

M
M1 board 5, 7
M2 board 6

N
nano editor 54, 55

O
operating system

Android, installing 22-24
installing 22
Linux, installing on 25
Linux, installing on Banana Pi 24
Mac, installing on 25

ownCloud
about 129
Baikal, downloading 136
Baikal, installing 134, 135
installing 130-133
SATA drive, setting up 129
setting up 129
swap, setting up 136-138

P
PC gaming 145
Phidgets libraries

URL 95
PiFace

setting up 47
PiFace radio

about 117-119
stations, adding 120

PuTTY
about 29
URL 29

Python
about 64
programming 64

R
Radio-frequency identification (RFID)

about 98
using 98-101

Raspberry Pi
accessories 13
versus Banana Pi 4

Raspbian
setting up 26, 27

raspi-config tool
about 26
options 26

remote connection
setting up 29
SSH from Linux 31
SSH from Mac 31
SSH from Windows 29, 30
SSH remotely 31

resistors 73
RPI GPIO library

reference 116
Ruby 64, 65
Ruby Version Manager (RVM) 64

[156]

S
SATA drive

setting up 129
SD card

preparing 17
prepping on Linux 19
prepping on Mac 21, 22
prepping on Windows 18, 19

SD card, prepping on Linux
about 19
drive, preparing from command line 19
drive, preparing with GParted 20, 21

SD Formatter 18
sensors

interacting with 94
server

setting up 126-128
servos

controlling 84-89
working with 83, 84

software
installing 40

streaming
from PC 145-149

swap
setting up 136-138

T
transistors 76

V
Vim editor 53, 54

W
Web IDEs

about 58
Adafruit WebIDE 60
Google Coder 58, 59

web server
setting up 126-128

Thank you for buying
Learning Banana Pi

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Raspberry Pi for Secret Agents -
Second Edition
ISBN: 978-1-78439-790-6 Paperback: 206 pages

Turn your Raspberry Pi into your very own secret
agent toolbox with this set of exciting projects

1.	 Turn your Raspberry Pi into a multipurpose
secret agent gadget for audio/video
surveillance, Wi-Fi exploration, or playing
pranks on your friends.

2.	 Detect an intruder on camera and set off
an alarm and also find out what the other
computers on your network are up to.

3.	 Full of fun, practical examples and
easy-to-follow recipes, guaranteeing
maximum mischief for all skill levels.

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a
shoestring budget

1.	 Make your projects talk and understand speech
with Raspberry Pi.

2.	 Use standard webcam to make your projects
see and enhance vision capabilities.

3.	 Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for
developing robotics projects.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Server Essentials
ISBN: 978-1-78328-469-6 Paperback: 116 pages

Transform your Raspberry Pi into a server for hosting
websites, games, or even your Bitcoin network

1.	 Unlock the various possibilities of using
Raspberry Pi as a server.

2.	 Configure a media center for your home
or sharing with friends.

3.	 Connect to the Bitcoin network and manage
your wallet.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1.	 Install your first operating system, share files
over the network, and run programs remotely.

2.	 Unleash the hidden potential of the Raspberry
Pi's powerful Video Core IV graphics processor
with your own hardware accelerated
3D graphics.

3.	 Discover how to create your own electronic
circuits to interact with the Raspberry Pi.

4.	 Interface with purpose-built add-ons and
adapt off-the-shelf household devices.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of the Banana Pi
	Differences between the Raspberry Pi and Banana Pi
	The M1
	The M2
	GPIO pins
	CON3 GPIO pin definitions
	Operating systems
	Raspberry Pi accessories
	Getting started
	Setting up your environment
	Powering the boards
	Summary

	Chapter 2: Preparing the SD Card
	Getting the SD card ready
	Prepping the SD card on Windows
	Prepping the SD card on Linux
	Preparing the drive from the command line
	Preparing your drive using GParted

	Prepping the SD card on the Mac

	Installing the operating system
	Installing Android
	Installing Linux on your Banana Pi
	Installing through Windows
	Installing on the Mac and Linux

	Configuring your Linux installation
	Setting up Raspbian
	Setting up Bananian
	Expanding the root partition

	Connecting remotely
	SSH from Windows
	SSH from Linux or the Mac
	SSH remotely

	Setting up your desktop environment
	Summary

	Chapter 3: Linux and the Command Line
	The filesystem
	Important commands
	Installing software
	The Apt package manager
	The dpkg tool

	Interfacing with GPIO pins
	Interacting with the GPIO pins in Python

	Interacting with hardware
	Using expansion boards
	Setting up the PiFace
	Mounting external drives

	Summary

	Chapter 4: Programming on the Pi
	Choosing your editor
	Command-line editors
	The Emacs editor
	The Vim editor
	The nano editor

	Graphic editors
	Eclipse
	The Geany IDE

	Web IDEs
	Google Coder
	Adafruit WebIDE

	Writing code on the Pi
	Bash scripting
	Python programming
	The Ruby language
	The Go language

	Summary

	Chapter 5: Hardware for Your Pi
	Breadboarding your Banana Pi
	Required hardware
	Common components
	Resistors
	Diodes
	Light-emitting diodes
	Capacitors
	Transistors
	Integrated circuits

	Working with hardware
	Working with LEDs
	Controlling LEDs with code
	Adding user input

	Working with servos
	Controlling our servo

	Summary

	Chapter 6: Interacting with Sensors
	Sensors and you
	Interacting with light
	Using RFID
	Using IR receivers
	Using force sensors
	Summary

	Chapter 7: Building an Internet Radio
	Setting up the music
	Using LCD displays
	Wiring up the LCD
	Connecting the Pi
	Writing to the display
	Radio output

	Introducing the PiFace radio
	The PiFace radio
	Adding stations

	Making our radio pretty
	Summary

	Chapter 8: Building a Home Server
	Setting up a web server
	Setting up our server

	Setting up ownCloud
	Setting up the SATA drive
	Installing ownCloud
	Installing Baikal
	Downloading Baikal
	Setting up swap

	Summary

	Chapter 9: Gaming on Your Pi
	Gaming on Android
	Gaming on Linux
	EmulationStation
	Streaming from your PC
	Summary

	Index

