
www.allitebooks.com

http://www.allitebooks.org

Learning Behavior-driven
Development with JavaScript

Create powerful yet simple-to-code BDD test
suites in JavaScript using the most popular tools
in the community

Enrique Amodeo

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Behavior-driven Development with JavaScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1130215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-264-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Enrique Amodeo

Reviewers
Domenico Luciani

Mihir Mone

Takeharu Oshida

Juri Strumpflohner

Commissioning Editor
Pramila Balan

Acquisition Editor
Richard Brookes-Bland

Content Development Editors
Sriram Neelakantan

Sharvari Tawde

Technical Editor
Indrajit A. Das

Copy Editors
Karuna Narayanan

Laxmi Subramanian

Project Coordinator
Judie Jose

Proofreaders
Stephen Copestake

Maria Gould

Paul Hindle

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Enrique Amodeo is an experienced software engineer currently working and
living in Berlin. He is a very eclectic professional with very different interests and
more than 15 years of experience. Some of his areas of expertise are JS, BDD/TDD,
REST, NoSQL, object-oriented programming, and functional programming.

As an agile practitioner, he uses BDD and emergent design in his everyday work
and tries to travel light. Experienced in both frontend and server-side development,
he has worked with several technical stacks, including Java/JEE, but since 2005, he
prefers to focus on JS and HTML5. He is now very happy to be able to apply his JS
knowledge to the server-side development, thanks to projects such as Node.js.

He also has written a book in Spanish on designing web APIs, following the REST
and hypermedia approach (https://leanpub.com/introduccion_apis_rest).

I would like to thank my wife for making this book possible.
She is the one who supported me and reminded me to "continue
writing that difficult chapter" whenever I started thinking of
doing something else. Without her, I would probably have
never completed this book!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Domenico Luciani is a software and web developer and compulsive coder.
He is curious and is addicted to coffee. He is a computer science student and a
passionate pentester and computer-vision fanatic.

Having fallen in love with his job, he lives in Italy; currently, he is working for
many companies in his country as a software/web developer. You can find more
information on him at http://dlion.it/.

Mihir Mone is a postgraduate from Monash University, Australia. Although
he did his post graduation in network computing, these days, he mainly does
web and mobile development.

After spending some time fiddling around with routers and switches, he
quickly decided to build upon his passion for web development—not design,
but development. Building web systems and applications rather than websites
with all their fancy Flash animations was something that was very interesting
and alluring to him. He even returned to his alma mater to teach web development
in order to give back what he had learned.

These days, he works for a small software/engineering house in Melbourne,
doing web development and prototyping exciting, new ideas in the data
visualization and UX domains.

He is also a big JavaScript fan and has previously reviewed a few books on jQuery
and JavaScript. He is a Linux enthusiast and a big proponent of the OSS movement.
He believes that software should always be free to actualize its true potential.
A true geek at heart, he spends some of his leisure time writing code in the hope
that it may be helpful to the masses. You can find more information on him at
http://mihirmone.apphb.com.

He is also a motorsport junkie, so you may find him loitering around the race tracks
from time to time (especially if Formula 1 is involved).

www.allitebooks.com

http://www.allitebooks.org

Takeharu Oshida works at a small start-up, Mobilus (http://mobilus.co.jp/).
Mobilus provides a real-time communication platform and SDK called Konnect.

As a JavaScript engineer, he designs APIs, writes code and tests, activates EC2
instances, and deploys code. In other words, he is involved in everything, from
frontend to backend.

He is also a member of the Xitrum web framework project (http://xitrum-
framework.github.io/). In this project, he is learning the functional programming
style of Scala by creating sample applications or translating documents.

I want to thank to my colleague, Ngoc Dao, who introduced this
book to me.

Juri Strumpflohner is a passionate developer who loves to code, follow the
latest trends on web development, and share his findings with others. He has been
working as a coding architect for an e-government company, where he is responsible
for coaching developers, innovating, and making sure that the software meets the
desired quality.

Juri strongly believes in the fact that automated testing approaches have a positive
impact on software quality and, ultimately, also contribute to the developer's own
productivity.

When not coding, Juri is either training or teaching Yoseikan Budo, a martial art form
in which he currently owns a 2nd Dan black belt. You can follow him on Twitter at
@juristr or visit his blog at http://juristr.com to catch up with him.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and, as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy-and-paste, print, and bookmark content
• On-demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Welcome to BDD 7

The test-first approach 7
The test-first cycle 9

Write a failing test 10
Make the test pass 10
Clean the code 11
Repeat! 12

Consequences of the test-first cycle 13
BDD versus TDD 14
Exploring unit testing 16
The structure of a test 21

Test doubles 22
What is a good test? 23
Summary 24

Chapter 2: Automating Tests with Mocha, Chai, and Sinon 27
Node and NPM as development platforms 27

Installing Node and NPM 28
Configuring your project with NPM 29
Introducing Mocha 32

Useful options in Mocha 35
Our first test-first cycle 37

More expressive assertions with Chai 41
Working with the "should" interface 45

Red/Green/Refactor 47
Parameterized tests 56
Organizing your setup 58
Defining test scenarios 63

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Test doubles with Sinon 65
Is it traditional TDD or BDD? 70
Welcome Sinon! 71
Integrating Sinon and Chai 73

Summary 76
Chapter 3: Writing BDD Features 77

Introducing myCafé 77
Writing features 78

Displaying a customer's order 79
Tips for writing features 84
Starting to code the scenarios 86

Testing asynchronous features 89
Testing a callback-based API 89
Testing a promise-based API 91

Interlude – promises 101 92
Mocha and promises 95

Organizing our test code 101
The storage object pattern 104
The example factory pattern 108

Finishing the scenario 112
Parameterized scenarios 117

Finishing our feature 120
Summary 127

Chapter 4: Cucumber.js and Gherkin 129
Getting started with Gherkin and Cucumber.js 130

Preparing your project 130
Writing your first scenario in Gherkin 132
Executing Gherkin 134
The World object pattern 138
Better step handlers 143
Better reporting 145

Writing advanced scenarios 147
Gherkin example tables 147
Consolidating steps 153
Advanced setup 156

Gherkin-driven example factory 159
Implicit versus explicit setup 161
The Background section 164

Parameterized scenarios 165
Finishing the feature 170

Table of Contents

[iii]

Useful Cucumber.js features 172
Tagging features and scenarios 172
Hooks 174

The before hook 174
The after hook 175
The around hook 175

Non-English Gherkin 176
Cucumber.js or Mocha? 176
Summary 177

Chapter 5: Testing a REST Web API 179
The approach 179

A strategy to test web APIs 180
Mocha or Cucumber.js? 182
The plan 182

Testing the GET order feature 183
Exploring our feature a bit 184
Starting, stopping, and setting up our server 186
Testing whether the API responds with 200 Ok 189

Should we use a realistic order object? 190
Implementing the test 191

Testing our HAL resource for orders 193
The contract with the business layer 195
Finishing the scenario 198

Testing slave resources 202
The order actions 202
Testing embedded resources 210
Extracting cross-cutting scenarios 216
Homework! 219

Summary 221
Chapter 6: Testing a UI Using WebDriverJS 223

Our strategy for UI testing 223
Choosing the right tests for the UI 225
The testing architecture 226

WebDriverJS 229
Finding and interacting with elements 231
Complex UI interaction 235
Injecting scripts 236
Command control flows 238
Taking screenshots 240
Working with several tabs and frames 240

Table of Contents

[iv]

Testing a rich Internet application 241
The setup 242

The test HTML page 242
Serving the HTML page and scripts 244
Using browserify to pack our code 245
Creating a WebDriver session 249

Testing whether our view updates the HTML 249
Testing whether our view reacts with the user 260
What about our UI control logic? 267

Summary 270
Chapter 7: The Page Object Pattern 273

Introducing the Page Object pattern 273
Best practices for page objects 274

A page object for a rich UI 277
Building a page object that reads the DOM 279
Building a page object that interacts with the DOM 284
Testing the navigation 294

Summary 300
Chapter 8: Testing in Several Browsers with Protractor
and WebDriver 303

Testing in several browsers with WebDriver 303
Testing with PhantomJS 304
Running in several browsers 307
The Selenium Server 309

Welcome Protractor! 312
Running the tests in parallel 319
Other useful configuration options 320
Using the Protractor API 322

Summary 330
Chapter 9: Testing Against External Systems 333

Writing good test doubles 334
Testing against external systems 336

Testing against a database 337
Accessing the DB directly 337
Treating the DAO as a collection 344

Testing against a third-party system 350
The record-and-replay testing pattern 351

Summary 356

Table of Contents

[v]

Chapter 10: Final Thoughts 357
TDD versus BDD 357
A roadmap to BDD 360

BDD versus integration testing 360
BDD is for testing problem domains 361

Concluding the book 364
Next steps 366
Summary 366

Index 367

Preface
JavaScript is not only widely used to create attractive user interfaces for the
Web, but, with the advent of Node.js, it is also becoming a very popular and
powerful language with which to write server-side applications. In this context,
JavaScript systems are no longer toy applications, and their complexity has
grown exponentially. To create complex applications that behave correctly, it is
almost mandatory to cover these systems with an automated test suite. This is
especially true in JavaScript because it does not have a compiler to help developers.
Unfortunately, it is easy to fall into testing pitfalls that will make your test suite
brittle; hard to maintain, and sooner or later, they will become another headache
instead of a solution. Using behavior-driven development and some common testing
patterns and best practices, you will be able to avoid these traps.

A lot of people see the whole TDD/BDD approach as a black-and-white decision.
Either you do not do it, or you try to achieve a hundred percent test coverage. The
real world calls for a more pragmatic approach: write the tests that really pay off and
do not write those that do not give you much value. To be able to take this kind of
decision, a good knowledge of BDD and the costs associated with it is needed.

What this book covers
Chapter 1, Welcome to BDD, presents the basic concepts that act as a foundation for
BDD. Its goal is to debunk a few false preconceptions about BDD and to clarify its
nomenclature. It is the only theoretical chapter in the whole book.

Chapter 2, Automating Tests with Mocha, Chai, and Sinon, introduces the basic tools
for testing in JavaScript. We will go through the installation process and some simple
examples of testing. You can safely skip this chapter if you are well versed with
these tools.

Preface

[2]

Chapter 3, Writing BDD Features, presents some techniques for transforming a
functional requirement written in normal language into a set of automated BDD tests
or features. We will write our first BDD feature.

Chapter 4, Cucumber.js and Gherkin, repeats the exercise of the previous chapter but
this time using Cucumber.js. This way we can compare it fairly with Mocha. You can
safely skip this chapter if you already know Cucumber.js.

Chapter 5, Testing a REST Web API, shows you how to test not only the core logic,
but also the Node.js server that publishes a Web API. This chapter will be of special
interest if you are writing a REST API.

Chapter 6, Testing a UI Using WebDriverJS, shows you how to approach testing the UI
layer from the perspective of BDD. You will also learn about WebDriverJS and how
it can help you in this task.

Chapter 7, The Page Object Pattern, explains how to create robust UI tests that are less
susceptible to being broken by UI design changes. For that, we will apply the page
object pattern.

Chapter 8, Testing in Several Browsers with Protractor and WebDriver, shows you how to
use the Protractor framework to run your test suite in several browsers.

Chapter 9, Testing Against External Systems, gives you some basic techniques for doing
this and, most important, shows you when not to do it. Although this kind of test is
not strictly BDD, sometimes you do need to test against external systems.

Chapter 10, Final Thoughts, briefly summarizes the book and clarifies the right
granularity for BDD testing. It will also tell you whether to do only BDD at the core
business level, or add additional tests at other levels.

What you need for this book
You can follow the code samples in this book using any modern PC or laptop.
The code samples should work on Linux and OS X. You can follow the code using
Windows, too, but keep in mind that you will need to slightly modify the command-
line commands shown in the book to the Windows syntax.

Preface

[3]

You should have installed at least a modern evergreen web browser, such as Internet
Explorer 10 or above (http://support.microsoft.com/product/internet-
explorer/internet-explorer-10/), Google Chrome (http://www.google.com/
chrome/), or Firefox (https://www.mozilla.org/en-US/firefox/new/).

JavaScript is an interpreted language, so you do not need any special IDE or editor;
any editor that supports simple plain text will do. Having said that, I recommend
using an advanced editor such as vi, vim, TextMate (http://macromates.com/),
Sublime (http://www.sublimetext.com/), or Atom (https://atom.io/). If you
prefer an IDE, you can try WebStorm (https://www.jetbrains.com/webstorm/
download/), although a full-fledged IDE is not needed.

During the book, especially in Chapter 2, Automating Tests with Mocha, Chai, and Sinon,
detailed explanations are given about how to install and configure the necessary
software and tools. This includes Node.js, WebDriver, and all the libraries we are
going to use. All of them are open source and free-of-charge.

Who this book is for
This book is for any JavaScript developer who is interested in producing well-tested
code. If you have no prior experience with testing Node.js, or any other tool, do not
worry as they will be explained from scratch. Even if you have already used some
of the tools explored in the book it can still help you to learn additional testing
techniques and best practices.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The headers property of the replay object is an array of regular expressions."

Preface

[4]

A block of code is set as follows:

var result = b.operation(1, 2);

expect(result).to.be.deep.equal({
 args: [1, 2],
 result: 3
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

module.exports = function (findConfiguration) {
 return function () {
 findConfiguration('default');
 return validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 };
};

Any command-line input or output is written as follows:

$ me@~> mkdir validator

$ me@~> cd validator

$ me@~/validator> npm init

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"You can download and execute a nice installer by going to Node.js website
and clicking on Install."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Welcome to BDD
Before we start coding tests, we need to understand what behavior-driven
development (BDD) is and how it differs from test-driven development (TDD).

We need to understand not only the concept of BDD, but also all the jargon
associated with it. For example, what is a feature? Or what is a unit test? So, in this
chapter, I will try to clarify some common vocabulary in order to give you a solid
understanding of what every technical term means.

In this chapter, you will learn:

• The reason for writing automated tests
• The workflow prescribed by the test-first approach
• What BDD is and how it differs from TDD
• What a unit test really is
• The different phases that compose a test
• What test doubles are and the different kinds of test doubles that exist
• The characteristics of a good test

The test-first approach
Testing is nothing new in software engineering; in fact, it is a practice that has been
implemented right from the inception of the software industry, and I am not talking
only about manual testing, but about automated testing as well. The practice of
having a set of automated tests is not exclusive to TDD and BDD, but it is quite old.
What really sets apart approaches such as TDD and BDD is the fact that they are
test-first approaches.

Welcome to BDD

[8]

In traditional testing, you write your automated test after the code has been written.
At first sight, this practice seems to be common sense. After all, the point of testing is
discovering bugs in the code you write, right? Probably, these tests are executed by a
different team than the one that wrote the code in order to prevent the development
team from cheating.

Behind this traditional approach lies the following assumptions:

• Automated tests can discover new bugs
• The project is managed under a waterfall life cycle or similar, where large

chunks of functionality are developed until they are perfect, and only then is
the code deployed

These assumptions are mostly false nowadays. Automated tests cannot discover
anything new but only provide feedback about whether the code behaves as
specified or expected. There can be errors in the specification, misunderstandings,
or simply different expectations of what is correct between different people. From
the point of view of preventing bugs, automated tests are only good as regression
test suites. A regression test suite contains tests that prove that a bug that is already
known is fixed. Since there usually exists a lot of misunderstanding between the
stakeholders themselves and the development team, the actual discovery of most
bugs is often done during exploratory testing or by actual users during the beta or
alpha phase of the product.

About the waterfall approach, the industry has been moving away from it for some
time now. It is clearly understood that not only fast time to market is crucial, but that
a project's target can undergo several changes during the development phase. So, the
requirements cannot be specified and set in stone at the beginning of the project. To
solve these problems, the agile methodologies appeared, and now, they are starting
to be widely applied.

Agile methodologies are all about fast feedback loops: plan a small slice of the
product, implement it, and deploy and check whether everything is as expected.
If everything is correct, at least we would already have some functionality in
production, so we could start getting some form of benefit from it and learn how the
user engages with the product. If there is an error or misunderstanding, we could
learn from it and do it better in the next cycle. The smaller the slice of the product
we implement, the faster we will iterate throughout the cycles and the faster we
will learn and adapt to changes. So ideally, it is better to build the product in small
increments to be able to obtain the best from these feedback loops.

Chapter 1

[9]

This way of building software changed the game, and now, the development team
needs to be able to deliver software with a fast pace and in an incremental way. So,
any good engineering practice should be able to enable the team to change an existing
code base quickly, no matter how big it is, without a detailed full plan of the project.

The test-first cycle
In this context, the test-first approach performs much better than the traditional one.
To understand why, first, let's have a look at the test-first cycle:

WRITE

A FAILING

TEST

MAKE

THE TEST

PASS

CLEAN

THE CODE

CODING

TASK THERE ARE

NO MORE TESTS

DONE

do it

fast!

run tests

before and

after

START

HERE!

c
o
d
e

is
g
o
o
d

e
n
o
u
g
h
!

As you can see, the cycle starts with a new coding task that represents any sensible
reason to change the codebase. For example, a new functionality or a change in an
existing one can generate a new coding task, but it can also be triggered by a bug.
We will talk a bit more in the next section about when a new coding task should
trigger a new test-first cycle.

Welcome to BDD

[10]

Write a failing test
Once we have a coding task, we can engage in a test-first cycle. In the first box of the
previous diagram, write a failing test, we try to figure out which one is the simplest
test that can fail; then, we write it and finally see it fail.

Do not try to write a complex test; just have patience and go in small incremental
steps. After all, the goal is to write the simplest test. For this, it is often useful to think
of the simplest input to your system that will not behave as expected. You will often
be surprised about how a small set of simple tests can define your system!

Although we will see this in more detail in the upcoming chapters, let me introduce a
small example. Suppose we are writing the validation logic of a form input that takes
an e-mail and returns an array of error messages. According to the test-first cycle, we
should start writing the most simple test that could fail, and we still have not written
any production code. My first test will be the success case; we will pass a valid e-mail
and expect the validation function to return an empty array. This is simple because
it establishes an example of what is valid input, and the input and expectations are
simple enough.

Make the test pass
Once you have a failing test, you are allowed to write some production code to fix
it. The point of all of this is that you should not write new code if there is not a good
reason to do so. In test-first, we use failing tests as a guide to know whether there is
need for new code or not. The rule is easy: you should only write code to fix a failing test
or to write a new failing test.

So, the next activity in the diagram, make the test pass, means simply to write the
required code to make the test pass. The idea here is that you just write the code as
fast as you can, making minimal changes needed to make the test pass. You should
not try to write a nice algorithm or very clean code to solve the whole problem.
This will come later. You should only try to fix the test, even if the code you end up
writing seems a bit silly. When you are done, run all the tests again. Maybe the
test is not yet fixed as you expected, or your changes have broken another test.

In the example of e-mail validation, a simple return statement with a empty array
literal will make the test pass.

Chapter 1

[11]

Clean the code
When all the tests are passing, you can perform the next activity, clean the code.
In this activity, you just stop and think whether your code is good enough or
whether it needs to be cleaned or redesigned. Whenever you change the code, you
need to run all the tests again to check that they are all passing and you have not
broken anything. Do not forget that you need to clean your test code too; after all,
you are going to make a lot of changes in your test code, so it should be clean.

How do we know whether our code needs some cleaning? Most developers use
their intuition, but I recommend that you use good, established design principles
to decide whether your code is good enough or not. There are a lot of established
design principles around, such as the SOLID principles (see http://www.
objectmentor.com/resources/articles/Principles_and_Patterns.pdf)
or Craig Larman's GRASP patterns (see http://www.craiglarman.com/wiki/
index.php?title=Books_by_Craig_Larman#Applying_UML_and_Patterns).
Unfortunately, none of the code samples of these books are in JavaScript, so I will
summarize the main ideas behind these principles here:

• Your code must be readable. This means that your teammates or any
software engineer who will read your code 3 months later should be able to
understand the intent of the code and how it works. This involves techniques
such as good naming, avoiding deep-nested control structures, and so on.

• Avoid duplication. If you have duplicated code, you should refactor it to
a common method, class, or package. This will avoid double maintenance
whenever you need to change or fix the code.

• Each code artifact should have a single responsibility. Do not write a function
or a class that tries to do too much. Keep your functions and objects small
and focused on a single task.

• Minimize dependencies between software components. The less a
component needs to know about others, the better. To do so, you can
encapsulate internal state and implementation details and favor the designs
that interchange less information between components.

• Do not mix levels of abstractions in the same component; be consistent in the
language and the kind of responsibility each component has.

Welcome to BDD

[12]

To clean your code, you should apply small refactoring steps. Refactoring consists of
a code change that does not alter the functionality of the system, so the tests should
always pass before and after each refactoring session. The topic of refactoring is
very big and out of the scope of this book, but if you want to know more about it, I
recommend Refactoring: Improving the Design of Existing Code (http://martinfowler.
com/books/refactoring.html).

Anyway, developers often have a good instinct to make their code better, and this
is normally just enough to perform the clean code step of the test-first cycle. Just
remember to do this in small steps, and make sure that your tests pass before and
after the refactoring.

In a real project, there will be times when you just do not have much
time to clean your code, or simply, you know there is something wrong
with it, but you cannot figure out how to clean it at that moment. In such
occasions, just add a TODO comment in your code to mark it as technical
debt, and leave it. You can talk about how to solve the technical debt later
with the whole team, or perhaps, some iterations later, you will discover
how to make it better.

Repeat!
When the code is good enough for you, then the cycle will end. It is time to start from
the beginning again and write a new failing test. To make progress, we need to prove
with a failing test whether our own code is broken!

In our example, the code is very simple, so we do not need to clean up anything.
We can go back to writing a failing test. What is the most simple test that can make
our code fail? In this case, I would say that the empty string is an invalid e-mail,
and we expect to receive an email cannot be empty error. This is a very simple test
because we are only checking for one kind of error, and the input is very simple; an
empty string.

After passing this test, we can try to introduce more tests for other kinds of errors.
I would suggest the following order, by complexity:

• Check for the presence of an @ symbol
• Check for the presence of a username (@mailcompany.com should fail,

for example)
• Check for the presence of a domain (peter@ should fail too)
• Check whether the domain is correct (peter@bad#domain!com should fail)

Chapter 1

[13]

After all of these tests, we would probably end up with a bunch of if statements in
our code. It is time to refactor to remove them. We can use a regular expression or,
even better, have an array or validation rules that we can run against the input.

Finally, after we have all the rules in place and our code looks clean, we can
add a test to check for several errors at the same time, for example, checking that
@bad#domain!com should return an array with the missing username and
incorrect domain errors.

What if we cannot write a new failing test? Then, we are simply done with the
coding task!

As a summary, the following are the five rules of the test-first approach:

• Don't write any new tests if there is not a new coding task.
• A new test must always fail.
• A new test should be as simple as possible.
• Write only the minimum necessary code to fix a failing test, and don't bother

with quality during this activity.
• You can only clean or redesign your code if all the tests pass. Try to do it in

each cycle if possible.

Consequences of the test-first cycle
This way of writing code looks weird at first and requires a lot of discipline from
the engineers. Some people think that it really adds a big overhead to the costs of
a project. Maybe this is true for small projects or prototypes, but in general, it is
not true, especially for codebases that need to be maintained during periods of
over 3 or 4 months.

Before test-first, most developers were doing manual testing anyway after each
change they made to the code. This manual testing was normally very expensive to
achieve, so test-first is just cutting costs by automating such activity and putting a lot
of discipline in our workflow.

Apart from this, the following are some subtle consequences:

• Since you write tests first, the resulting code design ends up being easily
testable. This is important since you want to add tests for new bugs and
make sure that changes do not break the old functionality (regression).

Welcome to BDD

[14]

• The resulting codebase is minimal. The whole cycle is designed to make
us write just the amount of code needed to implement the required
functionality. The required functionality is represented by failing tests, and
you cannot write new code without a failing test. This is good, because the
smaller the code base is, the cheaper it is to maintain.

• The codebase can be enhanced using refactoring mechanisms. Without tests,
it is very difficult to do this, since you cannot know whether the code change
you have done has changed the functionality.

• Cleaning the code in each cycle makes the codebase more maintainable. It is
much cheaper to change the code frequently and in small increments than to
do it seldom and in a big-bang fashion. It is like tidying up your house; it is
better to do it frequently than do it only when you expect guests.

• There is fast feedback for the developers. By just running the test suite, you
know, in the moment, that the changes in the code are not breaking anything
and that you are evolving the system in a good direction.

• Since there are tests covering the code, the developers feel more comfortable
adding features to the code, fixing bugs, or exploring new designs.

There is, perhaps, a drawback: you cannot adopt the test-first approach easily in a
project that is in the middle of its development and has been started without this
approach in mind. Code written without a test-first approach is often very hard to test!

BDD versus TDD
The test-first approach covered in the previous section is what has been described
generically as TDD.

The problem with TDD, as already presented, is that it does not say anything about
what a coding task is, when a new one should be created, or what kind of changes
we should allow.

It is clear that a change in a requisite or a newly discovered bug should trigger a
TDD cycle and involve a new coding task. However, some practitioners think that it
is also OK to change the codebase, because some engineer thought that a change in
the technical design would be good for the system.

The biggest problem in classic TDD is that there is a disconnection between what the
product is supposed to do and what the test suite that the development team builds
is testing. TDD does not explicitly say how to connect both worlds. This leads to a
lot of teams doing TDD, but testing the wrong things. Yes, perhaps they were able
to test all their classes, but they tested whether the classes behave as expected, not
whether the product behaves as expected.

Chapter 1

[15]

Yes, perhaps they have a very detailed test suite with high coverage and with all its
tests passing, but this offers no clue about whether the product itself will work as
expected or whether a bug is resolved. This is a bad situation, as the main benefit of
the tests is in the fast feedback they provide.

BDD tries to fix these problems by making the test suite directly dependent of the
feature set of the product. Basically, BDD is a test-first approach where a new coding
task can be created only when a change in the product happens: a new requisite,
a change in an existing one, or a new bug.

This clarification changes rule 1 of test-first, from Don't write any new tests if there is not
a new coding task to Don't write any new tests if there is not a change in the product. This has
some important implications, as follows:

• You should not add a new class or function or change the design if there is
not a change in the product. This is a more specific assertion about coding
tasks than the generic one about TDD.

• As a change in the product always represents only a feature or bug, you only
need to test features or bugs, not components or classes. There is no need to
test individual classes or functions. Although this does not mean that it is a
bad idea to do so, such tests are not viewed as essential from the BDD point
of view.

• Tests are always about describing how the product behaves and never about
technical details. This is a key difference with TDD.

• Tests should be described in a way that the stakeholders can understand
to give feedback about whether they reflect their expected behavior of
the system. That is why, in BDD jargon, tests are not called tests, but
specifications or features.

• Test reports should be understandable for the stakeholders. This way, they
can have direct feedback of the status of the project, instead of having the
need for the chief architect to explain the test suite result to them.

• BDD is not only an engineering practice, but it needs the team to engage
frequently with the stakeholders to build a common understanding of the
features. If not, there would be a big risk that we are testing the wrong feature.

Of course, there were teams that practiced TDD in this way, avoiding all of the
problems mentioned earlier. However, it was Dan North who first coined the term
BDD to this specific way of doing TDD and to popularize this way of working.

BDD exposes a good insight: we should test features instead of components. This is
very important from the perspective of how to design a good test suite. Let's explore
this subject a bit in the next section.

www.allitebooks.com

http://www.allitebooks.org

Welcome to BDD

[16]

Exploring unit testing
99.99 percent of the projects we are going to face will be complex and cannot be
tested with a single test. Even small functionalities that a non-engineer would
consider very simple will actually be more complex than expected and have several
corner cases. This forces us to think about how to decompose our system in tests or,
in other words, what exactly are the tests that we should write.

In the beginning of the test-first movement, there was no clear answer to this
question. The only guidance was to write a test for each unit and make the tests from
different units independent between them.

The notion of units is very generic and does not seem to be very useful to guide the
practice of test-first. After a long debate in the community, it seems that there is a
consensus that there exists at least two kinds of units: features and components.

A feature is a single concrete action that the user can perform on the system; this
will change the state of the system and/or make the system perform actions on
other third-party systems. Note that a feature is usually a small-grained piece of
functionality of the system, and a use case or user story can map to several features.
An important thing about features is that they describe the behavior of the system
from the point of view of the user. Slicing a user story into features is a key activity of
BDD, and throughout the book, we will see plenty of examples of how to do it.

The other kinds of units are the components of our system. A component is any
software artifact, such as classes, procedures, or first-order functions, that we use to
build the system.

Chapter 1

[17]

We can conceptualize any product we are building as a matrix of features versus
components, like in the following image:

C1 C2 C3 C4 C5 C6

F1

F2

F3

F4

F5

F6

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

FEATURES

COMPONENTS

X = COMPONENT INVOLVED IN FEATURE

In this image, we can see that any system implements a set of features, and it is
implemented by a set of components. The interesting thing is that there is seldom a
one-to-one relationship between components and features. A single feature involves
several components, and a single component can be reused across several features.

Welcome to BDD

[18]

With all this in mind, we can try to understand what traditional TDD, or traditional
unit testing, is doing. In the traditional approach, the idea is to make unit tests of
components. So, each component should have a test of its own. Let's have a look at
how it works:

C1 C2 C3 C4 C5

F1

F2

F3

F4

F5

F6

X

X

X

X

X

X

X

X

X

X

X

X

X

X

FEATURES

COMPONENTS

(time)

progress

tests

In the preceding image, you can see that the system is built incrementally, one
component at a time. The idea is that with each increment, a new component is
created or an existing one is upgraded in order to support the features. This has the
advantage that if a test is failing, we know exactly which component is failing.

Chapter 1

[19]

Although this approach works in theory, in practice, it has some problems. Since
we are not using the features to guide our tests, they can only express the expected
behavior of the components. This usually generates some important problems, such
as the following ones:

• There is no clear and explicit correlation between the components and the
features; in fact, this relationship can change over time whenever there is a
design change. So, there is no clear progress feedback from the test suite.

• The test results only make sense for the engineering team, since it is all
about components and not the behavior of the systems. If a component test
is failing, which features are failing? Since there is not a clear correlation
between features and components, it is expensive to answer this question.

• If there is a bug, we don't know which tests to modify. Probably, we will
need to change several tests to expose a single bug.

• Usually, you will need to put a lot more effort into your technical design
to have a plan of what components need to be built next and how they fit
together.

• The tests are checking whether the component behaves according to the
technical design, so if you change the design, then you need to change the
tests. The whole test suite is vulnerable to changes in the design, making
changes in the design harder. Hence, a needed refactor is usually skipped,
making the whole quality of the codebase worse and worse as time passes.

Of course, a good and experienced engineering team can be successful with this
approach, but it is difficult. It is not surprising that a lot of people are being very
vocal against the test-first approach. Unit test components is the classic and de facto
approach to test-first, so when someone says terms such as TDD or unit testing, they
usually mean component unit testing. This is why problems with component unit
testing have been wrongly confused with problems of the general test-first approach.

Welcome to BDD

[20]

The other way of doing test-first is to unit test features, which is exactly what
BDD make us do. We can have a look at the diagram to see how a system progresses
using BDD:

C1 C2 C3 C4 C5 C6

F1

F2

F3

F4

F5

F6

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

FEATURES

COMPONENTS

(t
im

e
)

p
ro

g
re

s
s

tests

As we can see, as time progresses, we add tests for each feature, so we can have
good feedback about the status of completion of the project. If a test is failing, then it
means that the corresponding feature is broken.

On the other hand, we don't need a very detailed up-front design to start coding.
After all, we have the guidance of the behavior of the system to start the test-first
workflow, and we can fine-tune our design incrementally using the "clean code" step
of the workflow. We can discover components on the fly while we are delivering
features to the customer. Only a high-level architecture, some common conventions,
and the set of tools and libraries to use, are needed before starting the development
phase. Furthermore, we can isolate the test from most technical changes and
refactorings, so in the end, it will be better for our codebase quality.

Finally, it seems to be common sense to focus on the features; after all, this is what
the customer is really paying us for. Features are the main thing we need to ensure
that are working properly. An increment in component unit testing does not need
to deliver any value, since it is only a new class, but an increment in BDD delivers
value, since it is a feature. It does not matter whether it is a small feature or not; it is a
tangible step forward in project termination.

Chapter 1

[21]

There is, of course, a disadvantage in this approach. If a test is failing, we know
which feature is failing, but we do not know which component needs to be fixed.
This involves some debugging. This is not a problem for small and medium systems,
since a feature is usually implemented by 3–5 components. However, in big systems,
locating the affected component can be very costly.

There is no silver bullet. In my opinion, BDD is an absolute minimum, but unit
testing some of the key components can be beneficial. The bigger the system is,
the more component unit testing we should write, in addition to the BDD test suite.

The structure of a test
As we saw earlier, a unit could be a feature if we are doing BDD, or it could be a
component if we are doing traditional TDD. So, what does a unit test look like?
From a very high level point of view, a unit test is like the following image:

3rd

party

or

other units

UNIT

TEST

1 set up

3 assert

2
a
c
t

3
a
s
s
e
rt

You can see that the test is acting as the unit. The term "act" means that the test is
performing a single operation on the unit through its public API.

Welcome to BDD

[22]

Then, the test must check or assert the result of the operation. In this phase, we need
to check whether the actual return value is as we expect, but we also need to check
whether the side effects are the expected ones. A side effect is a message that the unit
sends to other units or third-party systems in order to perform the action correctly.

Side effects look quite abstract, but in fact, they are very simple. For example, from
the point of view of traditional TDD, a side effect can be a simple call from one class
to another. From the point of view of BDD, a side effect can be a call to a third-party
system, such as an SMS service, or a write to the database.

The result of an action will depend on the prior state of the system we are testing.
It is normal that the expected result of the very same action varies according to the
specific state the system is in. So, in order to write a test, we need to first set up or
arrange the system in a well-known state. This way, our test will be repeatable.

To sum up, every test must have the following three phases:

• Set up/Arrange: In this phase, we set up the state of the system in a
well-known state. This implies choosing the correct input parameters, setting
up the correct data in the database, or making the third-party systems return
a well-known response.

• Act: In this phase, we perform the operation we are testing. As a general rule,
the act phase of each test should involve only one action.

• Assert: In this phase, we check the return value of the operation and the
side effects.

Test doubles
Whenever we see the term "unit testing", it means that we are making tests of the
units of our system in an isolated way. By isolated, I mean that each test must check
each unit in a way independent of the others. The idea is that if there is a problem
with a unit, only the tests for that unit should be failing, not the other ones. In BDD,
this means that a problem in a feature should only make the tests fail for that feature.
In component unit testing, it means that a problem with a component (a class, for
example) should only affect the tests for that class. That is why we prescribe that the
act phase should involve only one action; this way, we do not mix behaviors.

However, in practice, this is not enough. Usually, features can be chained together
to perform a user workflow, and components can depend on other components to
implement a feature.

Chapter 1

[23]

This is not the only problem, as we saw earlier; it is usually the case that a feature
needs to talk with other systems. This implies that the set up phase must manipulate
the state of these third-party systems. It is often unfeasible to do so, because these
systems are not under our control. Furthermore, it can happen that these systems are
not really stable or are shared by other systems apart from us.

In order to solve both the isolation problem and the set up problem, we can use test
doubles. Test doubles are objects that impersonate the real third-party systems or
components, just for the purpose of testing. There are mainly the following type of
test doubles:

• Fakes: These are a simplified implementation of the system we are
impersonating. They usually involve writing some simple logic. This logic
should never be complex; if not, we will end up reimplementing such
third-party systems.

• Stubs: These are objects that return a predefined value whenever one of its
methods is called with a specific set of parameters. You can think of them as
a set of hardcoded responses.

• Spies: These are objects that record their interactions with our unit. This way,
we can ask them later what happened during our assertion phase.

• Mocks: These are self-validating spies that can be programmed during the
set up phase with the expected interaction. If some interaction happens that
is not expected, they would fail during the assertion phase.

We can use spies in the assertion phase of the test and stubs in the set up phase, so it
is common that a test double is both a spy and a stub.

In this book, we will mostly use the first three types, but not mocks, so don't worry
much about them. We will see plenty of examples for them in the rest of the book.

What is a good test?
When we are writing tests, we need to keep in mind a series of guidelines in
order to end up with a useful test suite. Every test we write should have the
following properties:

• They should be relevant. A test must be relevant from the point of view of the
product. There is no point in testing something that, when it is done, does not
clearly move the project forward to completion. This is automatically achieved
by BDD, but not by traditional TDD.

Welcome to BDD

[24]

• They should be repeatable. Tests must always offer the same results if there
has not been a code change. If it is failing, you must change the code to see it
pass, and if it is passing, it must not start failing if nobody changed the code.
This is achieved through a correct setup of the system and the use of test
doubles. If tests are not repeatable, they offer no useful information! I have
seen teams ignore tests that are flipping between passing and failing because
of incorrect setup or race conditions. It would have been better not to waste
time and money in writing a test that nobody cares about because it is
not reliable.

• They should be fast. After all, one key point of test-first is rapid feedback and
quick iteration. It is not very cost effective if you need to wait 15 minutes for
the tests to end whenever you make a code change in a test-first cycle.

• They should be isolated. A test should fail only because the feature
(or component) it is testing has a defect. This will help us diagnose the
system to pinpoint where the error is. This will help us write code in an
incremental fashion in the order our customers require (often, the most
valuable features first). If the test is not isolated, then we often cannot
write a new test, because we need first to write another feature or component
that this one depends on.

Summary
The test-first approach appeared as an engineering practice to back up the agile
methodologies. It supports the notion of incremental design and implementation
of the codebase in order to be able to deliver software fast, incrementally, and in
short iterations.

The test-first approach tells us to first write the most simple failing test that we can
think of, fix it with the smallest change of code possible, and finally, clean the code,
changing the design if necessary and taking advantage of the fact that we have tests
as a safety net. Repeat the cycle until there is no new failing test to write.

There are two main approaches to test-first: traditional TDD and BDD. In traditional
TDD, or component unit testing, we test components (classes, functions, and so
on) in isolation from other components. In BDD, we test simple user actions on the
system, also known as features, in isolation from other features. Both are forms
of unit testing, but due to historic reasons, we reserve the term "unit testing" for
component unit testing.

Chapter 1

[25]

In my opinion, the BDD approach is superior, because it relates the tests with the
actual behavior of the system, making the progress of the project more visible,
focusing the team on what really matters and decoupling the tests themselves from
the specific details of the technical design. However, in big systems, it can be difficult
to diagnose which components should be fixed when a feature fails, so some degree
of traditional TDD is still useful.

Tests should be isolated to avoid coupling between them and enable fast detection
of which feature/component must be fixed. They should also be fast to get a quick
feedback cycle during development. Furthermore, tests should be repeatable; if not,
we cannot trust their result, and they become a waste of time and money.

To make tests isolated, fast, and repeatable, we can use test doubles. They replace
and impersonate third-party systems or components in our test suite. They can be
used both to set up the system in a predictable way, hence achieving repeatability
and quick execution, and to check the side effects produced by the system under test.
In traditional unit testing, we can use them to isolate the component under test from
other components.

This concludes the first chapter. Fortunately, it is the only one devoted to theory in
this book. In the next chapter we will start coding!

www.allitebooks.com

http://www.allitebooks.org

Automating Tests with
Mocha, Chai, and Sinon

Before we start making some BDD, let's familiarize ourselves with the basic tools
available in JavaScript to write and execute a test. In this chapter, we will explore
the main capabilities of Mocha, the most popular test runner in JavaScript. We will
perform the following tasks:

• Writing expressive assertions using the Chai package
• Creating test doubles using the Sinon and sinon-chai packages
• Exploring the basic techniques for organizing our test codebase

To achieve these goals, we will perform a small code kata, or coding exercise, where
we will be able to practice not only the tools, but also the test-first cycle explained in
the previous chapter.

Node and NPM as development platforms
All the tools that we will use are written in JavaScript. A long time ago, the only way
to execute JavaScript was to use a browser, but those days are long gone. Nowadays,
we can execute our development tools from the command line during our normal
development cycle or from a Continuous Integration (CI) server whenever we
commit our changes to a source code repository.

The most easy and productive way to run our test tools is to use Node. Node is
a lightweight and highly-scalable platform for JavaScript, written on top of the
excellent V8 JavaScript virtual machine. Node is especially good for applications
that perform high-volume IO, but it can also be used as a development platform,
as we will see in a moment.

Automating Tests with Mocha, Chai, and Sinon

[28]

Installing Node and NPM
The examples in this book will work with Node Version 0.10.x or above. If you don't
have it installed already, you must do so to follow the code examples.

It is recommended that you do not install a version of Node whose
minor version number is not even. These versions are not stable and are
experimental. For example, 0.11.x, 0.9.x, and so on, are all unstable versions.
As a rule of thumb, you should install the latest even version number.

The following are the three ways to install Node:

• You can download and execute a nice installer by going to
http://nodejs.org/ and clicking on Install. This will detect your OS
and decide automatically which installer to download. If you want to
decide yourself, go to http://nodejs.org/download/.

• If you prefer to install Node using a package manager, especially if you
are using LINUX, go to https://github.com/joyent/node/wiki/
Installing-Node.js-via-package-manager and follow the instructions
for your OS.

• Another option is to install Node Version Manager (NVM). NVM is a utility
that allows you to have several different versions of Node on your machine,
switch from one version to another easily, and install new versions. To install
NVM, just go to https://github.com/creationix/nvm and follow the
instructions. Once you have NVM successfully installed, you just need to
issue the following command line:

$ me@~> nvm install 0.10

$ me@~> nvm alias default 0.10

$ me@~> nvm use default

I actually use NVM because I have several projects in my development
machine that were designed to run on production with different versions
of Node. So, I just need to switch to the correct Node version with an nvm
use command to switch from one project to another.

NVM is not the only version manager for Node. You can try others such
as Nodebrew (https://github.com/hokaccha/nodebrew).

Chapter 2

[29]

Configuring your project with NPM
With the installation of Node, the Node Package Manager (NPM) is also installed.
NPM is actually the utility that we will use for our normal development cycle.

NPM allows you to install libraries, manage the dependencies of your projects,
and define a set of commands to build your code.

To start, just create a new folder for your project and initialize it from there:

$ me@~> mkdir validator

$ me@~> cd validator

$ me@~/validator> npm init

The last command, npm init, will invoke NPM to generate package.json inside
the current directory; during the process, it will ask you some questions. Most
of them are self-explanatory, but if you do not know what to answer just press
ENTER. Do not worry; you will be able to edit the package.json file later. This
is my package.json file:

{
 "name": "validator",
 "version": "0.1.0",
 "description": "A validation service for Weird LTD.",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Enrique Amodeo",
 "license": "MIT"
}

This file contains all the information needed for NPM to manage your new package;
in fact, this information is what marks the folder as a package. It contains the name
of your package, which other packages your package depends on, and whether
these dependencies are necessary only in runtime or during development. It has
information on the author of the package, the version, the repository where the
original code is hosted, the license, and so on. This will be useful if you want to
publish your package so that other people can reuse it in their projects.

Automating Tests with Mocha, Chai, and Sinon

[30]

For an exhaustive explanation of all the information that package.
json can contain, just issue the npm help json command or go to
https://www.npmjs.org/doc/files/package.json.html. For
an exhaustive list of all the commands of NPM, go to https://www.
npmjs.org/doc/cli/npm.html. In this book, we will only see the
options and commands that you need to do BDD.

Instead of using npm init, you could have simply created and edited package.
json. In fact, you can always edit this file instead of using NPM to do so.

However, note that package.json must always contain a single
valid JSON document. JSON documents do not contain comments
or code, and all the strings are defined using double quotes.

To finish the initialization of the project, you just need to install the tools that we will
use: Mocha and Chai. To do so, issue the following command:

$ me@~/validator> npm install mocha chai --save-dev

This command will install Mocha and Chai locally to your project. This means that it
will download the packages and all their dependencies, compile them if necessary,
and store the result in a node_modules/ directory inside the project. In fact, you
should now have node_modules in your project that contains a folder for Mocha and
another for Chai.

The npm install package_name command will always install the
latest stable version. To install a specific version, use npm install
package_name@version syntax. For example, if we wish to install
version 1.10.0 of chai, then we could use the following command:
$ me@~/validator> npm install chai@1.10.0 --save-dev

Besides all of this, your package.json file should now look like this:

{
 "name": "validator",
 "version": "0.1.0",
 "description": "A validation service for Weird LTD.",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Enrique Amodeo",

Chapter 2

[31]

 "license": "MIT",
 "devDependencies": {
 "chai": "^1.9.1",
 "mocha": "^1.20.1"
 }
}

Our package.json file has changed; now it contains a "devDependencies"
section! This is because we specified the --save-dev parameter in the preceding
command. This means that, after downloading and installing the packages, NPM
will modify the package.json file to specify that your package depends on the
Mocha and Chai packages during development time. To understand exactly what
this means, let's do a short experiment. First, remove the entire node_modules folder:

$ me@~/validator> rm -rf ./node_modules

Now, issue the following command:

$ me@~/validator> npm install

The result is that the packages are reinstalled again, and the node_modules folder is
recreated. NPM will just read the information contained in package.json to know
which modules to install.

Note that, in this case, NPM will install the latest version that is compatible with the
ones specified inside package.json. In the preceding example, we have "^1.9.1"
and "^1.20.1". The ^ character at the beginning specifies that NPM will install
the latest version of the package that does not change the leftmost nonzero digit. In
this specific case, we will allow patch and minor version changes. We can edit the
package.json file to define any kind of version range; see https://www.npmjs.
org/doc/misc/semver.html for more details.

You should ignore the node_modules folder and not include it into the
source control. Whenever you check out the source code, you just need
to execute npm install, and all the latest and compatible versions
of your dependencies will be installed into your project. Including
node_modules in your source control is a bad idea, as it is redundant
information, makes your repository bigger, and can result in certain
problems. After all, each package in node_modules can contain not only
JavaScript, but also binary files. Some Node packages contain C code
modules that are compiled during installation. The resulting binary files,
as opposed to the JavaScript ones, are not cross-platform. You can have a
look at https://github.com/github/gitignore/blob/master/
Node.gitignore to see an example of a typical .gitignore file.

Automating Tests with Mocha, Chai, and Sinon

[32]

Note that you could have installed the modules using the --save option instead
of --save-dev. This would have installed the packages as runtime dependencies
instead of development dependencies. Runtimes dependencies are specified in the
"dependencies" section of the package.json file. Although installing Mocha and
Chai as runtime dependencies will not generate any errors while replicating the
examples in this book, it is not a really good idea. When the npm install command
installs a package, it will also install all the runtime dependencies of that package,
but not the development dependencies. So, if we install Mocha and Chai as runtime
dependencies, the other packages that depend on our package will also install Mocha
and Chai, even if they are not really needed for the correct execution of
our package.

Introducing Mocha
Mocha is a modern test runner that can be executed from Node as well as inside
a browser. As we saw earlier, our main approach is to use Node. In this book,
I am using Mocha Version 1.20.1, but any 1.x version should be OK.

We have already installed Mocha using NPM, so we can run it with the
following command:

$ me@~/validator> ./node_modules/.bin/mocha -u bdd -R spec -t 500
--recursive

It fails because we do not have any test yet; we will fix it later. I will explain the exact
meaning of these parameters in a moment. For now, note that, to execute Mocha, we
need to find out where NPM has installed the executable of the tool. A package can
be a simple library, or it can also contain an executable command-line tool, as is the
case with Mocha. NPM always will install this executable in the node_modules/.
bin/ folder; hence, we need to execute ./node_modules/.bin/mocha in order to
invoke Mocha.

This would not have been necessary if we had installed Mocha as a global package
using the -g option:

$ me@~/validator> npm install mocha -g

This would have installed Mocha as a utility tool available in our global PATH.
So, we would have only needed to use the following command:

$ me@~/validator> mocha -u bdd -R spec -t 500 --recursive

Chapter 2

[33]

Much better, right? However, actually this approach is not as nice as it seems.
The fact is that global packages have a couple of problems:

• They are not included in the dependency management of our package.
The package.json file will not be modified.

• It's possible that you have several different projects, each one using a
different and incompatible version of Mocha. In this case, you will have
a big problem if you are using Mocha as a global package.

Due to these problems, it is usually preferable to install any tool we need as a local
development dependency. This way, each project can use different versions for each
package and tools, without interfering between them, and we can manage all of our
dependencies using only the package.json file. The only reason to install a global
package is when we really want to install a Node-based application, such as a text
editor or network monitor, and not for development tools.

So, are we doomed to always use the ugly ./node_modules/.bin/mocha file to
execute Mocha? No, fortunately, there is a solution. You just need to modify the
package.json file to specify a test command such as the following one:

{
 "name": "validator",
 "version": "0.1.0",
 "description": "A validation service for Weird LTD.",
 "main": "index.js",
 "scripts": {
 "test": "mocha -u bdd -R spec -t 500 --recursive"
 },
 "author": "Enrique Amodeo",
 "license": "MIT",
 "devDependencies": {
 "chai": "^1.9.1",
 "mocha": "^1.20.1"
 }
}

Once you have done this, you can invoke Mocha in the following way:

$ me@~/validator> npm test

The npm test command will just inspect the "scripts" section of package.json
and execute the command specified in "test". NPM is smart enough to figure out
that you want to execute a tool installed as a local package, so it will temporarily
modify PATH to include node_modules/.bin/.

Automating Tests with Mocha, Chai, and Sinon

[34]

This is a very good approach. Not only is it very easy to execute the tests, but if we
want to change the options in Mocha or use another test runner that is different
from Mocha, we just need to edit the test script in package.json. This way, we will
always use npm test and forget about the command line details of the test runner.

The popular Travis (https://travis-ci.org/) Continuous
Integration (CI) platform will first execute npm install and then
npm test as the default build command for a Node project.

Enough setup; it is time to see a failing test! Just create a new test file:

$ me@~/validator> mkdir test && touch test/validator-spec.js

Edit the file to add the following code:

var assert = require('assert');

describe('Be welcome to Mocha', function() {
 it('with a failing test', function() {
 assert(false, 'Hello World');
 });
});

Do not worry about the code now; simply execute npm test again and behold
the result:

Your first Mocha execution

Chapter 2

[35]

Useful options in Mocha
The Mocha Command Line Interface (CLI) has a multitude of options. Here, we will
review the ones we used and some other important ones.

You can create the ./test/mocha.opts file so it contains the default
options for Mocha. The options specified in this file have less priority
and will be replaced by the ones specified in the CLI. The file format
consists of an option in a different line.

Here are the main options:

• The most important option is the -u or --ui option that allows us to specify
which test interface to use to write tests. The test interface is the set of functions
you will use to write your tests. The default value, bdd, is the one we will
use throughout the book, and it indicates that we will use functions such as
describe, it, context, beforeEach, and so on to organize our tests. Other test
interfaces are qunit, exports, and tdd, but I do not find them BDD-friendly!

• Another cool option is -R or --reporter; this allows you to define the test
report format you want to use. Mocha is highly configurable and allows you
to write your own custom reporter. There are some open source projects that
add new reporters to Mocha. We will use spec, which offers a very clear and
detailed report. Other reports such as dot, min, or progress are more concise
and a bit faster. Depending on the grade of detail you want to receive and
your technical restrictions, you should choose one or the other. If you are in a
good mood, you should try the nyan reporter.

• The -t or --timeout option defines how many milliseconds Mocha will
wait for a test to finish. The default value of 2 seconds is too high for a rapid
test-first cycle and should be used only for UI testing or end-to-end tests. In
this book, we will use 500 milliseconds, which should be more than enough
for most use cases.

The --recursive option instructs Mocha to explore the specified
test folder recursively to look for tests to execute. By default, Mocha
will execute the test in the files that match the ./test/*.js pattern, but
you can specify other folders, patterns, or even specific files at the end of
the command line, just after all the options.

• If you want to stop the tests at the first fail, use the -b or --bail option.
By default, Mocha will run all the tests, even if some of them are failing.

www.allitebooks.com

http://www.allitebooks.org

Automating Tests with Mocha, Chai, and Sinon

[36]

• Finally, the interesting -w or --watch option will execute mocha. It will
not exit; instead, it will watch for changes in the current working directory;
whenever a file is changed, it will re-execute all the tests. This last option,
--watch, is very useful during development. In fact, it is so useful that we
should change the package.json file as follows:

{
 "name": "validator",
 "version": "0.1.0",
 "description": "A validation service for Weird LTD.",
 "main": "index.js",
 "scripts": {
 "test": "mocha -u bdd -R spec -t 500 --recursive",
 "watch": "mocha -u bdd -R spec -t 500 --recursive --watch"
 },
 "author": "Enrique Amodeo",
 "license": "MIT",
 "devDependencies": {
 "chai": "^1.9.1",
 "mocha": "^1.20.1"
 }
}

Note the new entry called "watch" inside the "scripts" section. To execute Mocha
in the watch mode, just execute the following command:

$ me@~/validator> npm run-script watch

You can execute any command inside the "scripts" section, including the test
command, issuing npm run-script followed by the name of the script. Since NPM
always considers the test command as the default script, you can omit run-script
and simply execute npm test. However, only the test script is special; for the
others, you need to use npm run-script or, even better, its shorter alias, npm run.

You can see that Mocha is executed in the watch mode because the execution does
not terminate. Mocha is just waiting for the changes to re-execute the tests, so just try
to change test/validator-spec.js and see how Mocha reacts.

This is a really practical setup to do BDD; just change your code, and your test will
be executed again, providing you with fast feedback!

You can visit the home page of Mocha at http://mochajs.org to
get exhaustive information on the tool.

Chapter 2

[37]

Our first test-first cycle
It is now time to start practicing a bit of test-first. For this, we will try to solve a small
coding exercise, or coding kata. Do not worry if it is not very realistic, as its goal is to
exercise the test-first approach and the basic usage of the tools.

Suppose you are developing a web application, and you need to write the validation
logic for a field in one of the entities of the model. So, a new coding task appears
to implement such a validation. According to the test-first cycle, we should first
write a test, so let's open validator-spec.js and replace its dummy code with the
following lines:

var assert = require('assert');

describe('A Validator', function() {

});

This is not yet a test, but we are using the describe function provided by Mocha to
structure what is going to be our test. The describe function creates a new test suite
for Mocha. A test suite is just a grouping of test cases with a nice description. The
description is provided as the first parameter, and the actual contents of the test suite
are supplied inside the function that we use as the second parameter. Whenever
Mocha wants to execute the test suite, it will just execute the function.

Since the description is used to generate a nice test result report, we need to have a
very clear and readable one. It is a good practice to use as description the name of the
unit that is actually being tested in that test suite—in this case, the validator. In this
chapter, we will be doing traditional unit testing, so we should use the name of the
Validator component as the description of our test suite. If we were being strict about
BDD, we would have used the title of a feature as the description. However, in small
systems, such as this code kata, there is no point in being so strict, as it is so small that
there is a one-to-one correspondence between the feature and the component.

You can have several tests suites per file or even nested test suites.

According to the requirements of our validator, it should take a positive number,
apply a set of validations, and return an array that contains all the errors. Of course,
the first validation rule is really simple: if the number is not strictly positive, generate
the error.nonpositive error.

Automating Tests with Mocha, Chai, and Sinon

[38]

The most simple test could be the following one:

var assert = require('assert');

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 assert.deepEqual(validator(0), ['error.nonpositive']);
 });
});

First of all, note that we have created our first test case using the Mocha it function.
Like describe, the it function takes a description of the actual test case, which will
be used in the test report, and a function with the code of the test. This is a common
pattern in Mocha. Unlike describe, the it function cannot be nested.

It is important that the description of the test case and the test suite can be read
together as a coherent statement; this way, the reporters will offer a readable
explanation of what is going on with the test.

This test case is so simple that we do not need a setup phase, and the action and
assert phases are combined in a single line.

The action is simple: just call a hypothetical validator function with 0. After all, we
should always write the simplest test that can fail and that involves choosing simple
data inputs and outputs and opting for the most simple interface for our component.
If we had chosen an object instead of a function, the test would have looked like this:

var assert = require('assert');

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 var validator = new Validator();

 assert.deepEqual(validator.validate(0), ['error.nonpositive']);
 });
});

Actually using an object here is more complex than using a single function, and does
not really add anything!

Chapter 2

[39]

To make the assertion, we are using a standard node package, assert, so we do
not need to install anything extra for now. The assert package has a set of assertion
functions, such as equal, deepEqual, and so on. They will perform the check and
throw an assertion error if the result is not as expected. In this case, we are using
deepEqual because we are comparing arrays and not simple values. The assert.
equal function will use the == operator to test, but we really want to test the contents
of the arrays, so we use assert.deepEqual.

Try to execute the test and see it fail. The error tells us that actually, there is no such
thing as a validator function yet. This has an easy solution:

var assert = require('assert');

function validator() {

}

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 assert.deepEqual(validator(0), ['error.nonpositive']);
 });
});

Yes, we can write the validator function in the same file as the test! We are trying
to fix a failing test, so we do not have time to write nice code; this is a task for when
the test passes. If you execute the test, you will see a proper fail now, which will look
something like this:

Our first real error

Automating Tests with Mocha, Chai, and Sinon

[40]

We should make the test pass now; let's do it with the simplest code possible:

var assert = require('assert');

function validator() {
 return ['error.nonpositive'];
}

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 assert.deepEqual(validator(0), ['error.nonpositive']);
 });
});

Now, it works! Yes, the code is not impressive, but actually you cannot do it better.
All the tests pass, and the implementation is so simple that you cannot argue against
it. Of course, what is happening is that we only have one test; if we add more tests,
the code will grow more complex.

Now, with all the tests passing, we can clean our code a bit. The obvious thing is
to extract the production code to another file. Create a lib/validator.js file and
move the validator function to it:

module.exports = function () {
 return ['error.nonpositive'];
};

Now, edit the test code to get the following lines:

var assert = require('assert'),
 validator = require('../lib/validator');

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 assert.deepEqual(validator(0), ['error.nonpositive']);
 });
});

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Chapter 2

[41]

Then, just run the tests again to make sure that everything is OK, as follows:

Green and refactored

This concludes our very first test-first iteration, but there are still several more!
However, before going ahead, let's have a look at Chai.

More expressive assertions with Chai
We have already installed chai as a dependency of our project, but we have not yet
used it. Specifically, I am using version 1.9.1, but any 1.x version should be OK.

Until now, we have been using the standard assert package to create our
assertions. The assert package is not bad, but it is limited to a few assertions. It is
not extensible, and some people found it a bit difficult to read. I personally always
find myself wondering, "Is the first parameter the actual value or the expected one?"
Actually, the first parameter is the actual value, and the second one is the expected
value. This is important because the report message depends on distinguishing the
actual value from the expected one. Let's change the code of our test to use chai:

var chai = require('chai'),
 expect = chai.expect,
 validator = require('../lib/validator');

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 expect(validator(0)).to.be.deep.equal(['error.nonpositive']);
 });
});

As you see, now we are importing the chai package instead of the assert one.
Note that chai is just a library and not a test runner such as Mocha, so we do not
need to change the test script inside the package.json file.

Automating Tests with Mocha, Chai, and Sinon

[42]

Using the imported chai object, we created a local variable called expect; this points
to the expect utility function in chai. This way, we simply need to type expect in
our code instead of chai.expect.

In the test itself, we can see that we wrap the actual result of validator(0) using the
expect function. This function will return a nice DSL that we can use to write nice
and expressive assertions about the actual result. This DSL is formed by particles that
can be chained together. There are three kinds of particles: chains, assertions, and
flags. They are explained here:

• Chains are particles that do not modify the behavior of the assertions but
that provide expressivity. You can always add a "." to a chain to add another
particle. In this example, we used the chains to and be, but we could have
omitted them, and the test would have been exactly the same. Chains make
our assertions easier to read. The to, be, been, is, that, and, has, have, with,
at, of, and same particles are considered to be chains.

• Assertions are the particles that perform the actual check of the result. They
are usually functions that take one or more parameter with the expected
result. In the example, we are using the equal assertion.

• Flags allow us to modify the behavior of the assertions. For example, the
equal assertion just checks the value using the === operator. However, if we
use the deep flag, as we did in the example, the equal assertion will instead
check the contents of the actual result. Another useful flag is not; this will
invert the assertion.

Other useful assertions are include or contain; both are the same. These assertions
simply test whether a string contains a substring or an array of elements, as in the
following examples:

expect(['a', 5, 'cd']).to.contain(5);
expect('string').to.contain('tri');

To perform a Boolean assertion, we can use the ok, true, or false particles.
These assertions are not functions. For example, take a look at the following code:

expect(true).to.be.ok;
expect(1).to.be.ok;
expect(true).to.be.true;
expect(1).not.to.be.true;
expect('').not.to.be.ok;
expect(false).to.be.false;

Chapter 2

[43]

The ok assertion will test whether the actual result is a truthy value, whereas true
and false will test for strict equality to the true and false primitives in JavaScript.
We also can test strictly for null and undefined using the corresponding assertions.
If we just want to know whether a value is either null or undefined, we could use
the exist assertion:

expect(!true).to.be.false;
expect(!false).to.be.true;
expect(false).to.exist;
expect(null).not.to.exist;
expect(undefined).not.to.exist;

If you wish to check for the type of the actual result, you could use the a or an
assertion. In chai, the type is the result of the JavaScript typeof operator, except
for null. Unfortunately, in JavaScript, typeof null will return 'object' instead
of 'null', which does not make sense at all. Fortunately chai takes care of this
annoying detail:

expect(null).to.be.a('null'); // Thanks Chai!
expect(null).to.be.null; // Of course
expect(undefined).to.be.an('undefined');
expect(undefined).to.be.undefined;
expect(Number).to.be.an('object');
expect(Number).to.be.a('function');
expect(true).to.be.a('boolean');
expect(3).to.be.a('number');
expect('John').to.be.a('string');

For arrays, objects, and strings, we can use the empty assertion:

expect('').to.be.empty;
expect({}).to.be.empty;
expect([]).to.be.empty;

To check numbers, we have several assertions, such as most, least, above, below,
closeTo, and within. Let's see some examples:

expect(1).to.be.at.most(2);
expect(2).to.be.at.most(2);
expect(3).not.to.be.at.most(2);
expect(1).to.be.below(2);
expect(2).not.to.be.below(2);
expect(1).to.be.below(2);
expect(1).to.be.at.least(1);
expect(2).to.be.at.least(1);

Automating Tests with Mocha, Chai, and Sinon

[44]

expect(0).not.to.be.at.least(1);
expect(1).not.to.be.above(1);
expect(2).to.be.above(1);
expect(1).to.be.within(1, 3);
expect(2).to.be.within(1, 3);
expect(3).to.be.within(1, 3);
expect(4).not.to.be.within(1, 3);
expect(2.2).to.be.closeTo(2, 0.2);
expect(2.3).not.to.be.closeTo(2, 0.2);

All these assertions have aliases such as gt, greaterThan, gte, lt, lessThan,
and lte.

Sometimes, you would like to test whether a function throws an error. You can do
this with the throw assertion or with its alias, throws. For example, if we expect the
validator to throw when a null value is passed, we can test as in the following code:

var fn = function() {
 validator(null);
};
expect(fn).to.throw('parameter');
expect(fn).to.throw(ValidatorError);
expect(fn).to.throw(new ValidatorError('Null is bad parameter'));
expect(fn).to.throw(/bad parameter/);

We can test for a specific error type passing the constructor of the error, for the
message using a string or a regular expression, or test whether the error is strictly
equal to the one we provide.

Some particles, such as include and contain, can act as a flag or assertion. For
example, both include and contain can be used as a flag in the following example:

expect({ name: 'John', age: 32 }).to.include.keys('age');

This will test whether the object contains a key. Without include or contain, the
keys assertion would have failed, as it would have checked whether the object only
has the property 'age'.

Another particle that can work as an assertion or a flag is length:

expect([1, 2, 3]).to.have.length(3);
expect([1, 2, 3]).to.have.length.of.at.least(2);
expect([1, 2, 3]).to.have.length.of.at.most(4);
expect([1, 2, 3]).to.have.length.within(2, 4);
expect([1, 2, 3]).to.have.length.greaterThan(2);

Chapter 2

[45]

As you can see, as an assertion we can use it to test whether the length of an array
has a specific value. Alternatively, we can use it as a flag and combine it with any
other assertion that works with numbers.

There are more assertions and flags in Chai; for an exhaustive reference
of them, go to http://chaijs.com/api/bdd/.

We can merge several assertions in one as if we are using the and chain.
For example, assume the following two assertions:

expect(anArray).to.have.length(2);
expect(anArray).to.contain('element');

We can merge them in a single statement:

expect(anArray).to.have.length(2).and.to.contain('element');

This nice trick can help us, sometimes, to make more expressive assertions.

Working with the "should" interface
Chai provides three different kinds of assertion styles: expect, should, and assert.
The assert style is very similar to the one provided in the standard assert package,
but with more functionality. We have already seen the expect style, so let's have a
look at the should style.

In this book, we will not use the assert style. If you are really interested,
have a look at http://chaijs.com/api/assert/.

To use the should style, we can change the test as follows:

var chai = require('chai'),
 should = chai.should(),
 validator = require('../lib/validator');

describe('A Validator', function() {
 it('will return error.nonpositive for not strictly positive
numbers', function() {
 validator(0).should.be.deep.equal(['error.nonpositive']);
 });
});

www.allitebooks.com

http://www.allitebooks.org

Automating Tests with Mocha, Chai, and Sinon

[46]

The first change you can notice is that we need to call a function, chai.should(),
to get a reference to the should utility, but we are actually not referencing it in
our test!

What happens is that should will install a set of extensions to the Object prototype;
in other words, it will monkey-patch the global prototype for all the objects in
JavaScript. This way, we do not need to wrap the actual result we want to check with
any utility function. We can directly use the DSL to make a nice assertion chain!

In general, whenever we see code such as expect(expr).to., we can replace it with
expr.should. using the should style. The assertions, flags, and chains are exactly
the same as the ones we saw in the expect style.

This is a bit more elegant than the expect approach of wrapping the result with the
expect function. However, some people are not very comfortable about overriding
the Object prototype, as it can lead to some problems in Internet Explorer. Anyway,
in Node, this will not be a problem.

However, the should approach has another problem: how do we test for null
or undefined? What will happen if the actual result is null or undefined itself?
In this case, the should approach does not work, and we need to use some
workarounds. The problem is that null and undefined cannot be extended with
the Chai DSL, as they are not really true objects. So, the only thing we will see in
this case is a nasty exception.

The should utility object contains a set of functions that we can use in these cases.
For example, to test for null or undefined, we can do the following:

should.exist({});
should.not.exist(null);
should.not.exist(undefined);

If the code we are testing returns null or undefined, then we can use the should.
equal utility that works as if it is in the assert style:

should.equal(maybeNull(), 'but must be non null');

However, in this case, we lose all the power of Chai! This is a big problem in my
opinion, since, actually, almost any implementation could return null or undefined,
intentionally or just because of a mistake. That is why the should style is not a good
idea in JavaScript; it is better to use the expect style itself. The should style is a good
idea in languages such as Ruby, where nil is a real object, but not in JavaScript!

Chapter 2

[47]

Red/Green/Refactor
Now that we have a basic knowledge of Chai, we can continue with our coding.
The code we already have in place is clearly not correct, so we need to add another
test that forces us to make the code right.

Currently, we are implementing the rule about errors for nonpositive numbers,
so we should finish it before continuing. Which test could we add to make our
implementation fail? We can try testing the validator with valid numbers.
Let's see the result:

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 expect(validator(3)).to.be.empty;
 });

 it('will return error.nonpositive for not strictly positive
numbers', function() {
 expect(validator(0)).to.be.deep.equal(['error.nonpositive']);
 });
});

Note that we have added a new test for valid numbers that is failing. So now we fix it
in a very simple way in lib/validator.js:

module.exports = function (n) {
 if(n === 0)
 return ['error.nonpositive'];
 return [];
};

The test passes, but the code still seems to be incorrect. Fortunately, we can break it
easily by adding another test for nonstrictly positive numbers:

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 expect(validator(3)).to.be.empty;
 });

 it('will return error.nonpositive for not strictly positive numbers,
like 0', function() {
 expect(validator(0)).to.be.deep.equal(['error.nonpositive']);
 });

Automating Tests with Mocha, Chai, and Sinon

[48]

 it('will return error.nonpositive for not strictly positive numbers,
like -2', function() {
 expect(validator(-2)).to.be.deep.equal(['error.nonpositive']);
 });
});

Note that the new test has exactly the same description as the other one; after
all, they are testing the same rule. The only difference is that we are testing with
different inputs, so we changed the descriptions to identify the specific input we
are using in each test.

To fix the test, we only need to make a very small change:

module.exports = function (n) {
 if(n === 0 || n === -2)
 return ['error.nonpositive'];
 return [];
};

Now, we have all tests green, and it is time to clean the code. We have a duplication
in the if condition with the same equality check twice. We also have duplication
between the literals in the test, 0 and -2, and the literals used in the validator
function. It is time to remove this duplication collapsing both checks:

module.exports = function (n) {
 if(n <= 0)
 return ['error.nonpositive'];
 return [];
};

Yes, I know that you knew the correct code from the beginning! However, this
is only because the logic we are implementing in this exercise is simple and very
evident. In a real scenario, you will not have such simple problems. The technique of
adding several tests for the same logic but using different inputs in order to expose
some duplication that drives our refactor is called triangulation. The different inputs
that we use during triangulation are called examples. We should choose examples
that are meaningful from the point of view of the problem domain, that break our
current implementation, and that try to cover edge cases. When the logic is simple,
a couple of examples are enough but, when it is not so simple, you need more to
discover the right refactor or the hidden algorithm. The point of triangulation is that
it will generate a lot of duplication and ugly code; sooner or later, though, you will
discover a pattern to collapse all this duplication or make your code cleaner.

Chapter 2

[49]

So, refactored and green? Not quite yet. We still need to clean our tests! There is some
duplication in the test case's description. We can solve this with nested test suites:

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 expect(validator(3)).to.be.empty;
 });

 describe('will return error.nonpositive for not strictly positive
numbers:', function() {
 it('like 0', function() {
 expect(validator(0)).to.be.deep.equal(['error.nonpositive']);
 });

 it('like -2', function() {
 expect(validator(-2)).to.be.deep.equal(['error.nonpositive']);
 });
 });
});

We used a nested test suite to describe one of the validation rules of the validator
function. Inside this nested suite, we added one test per example. Since we still have
more rules to implement, there will be more nested tests suites. Let's continue with
the next rule: numbers divisible by 3 generate error.three. However, this time,
we will do it faster:

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 expect(validator(7)).to.be.empty;
 });
 // Skipped code for brevity
 describe('will return error.three for divisible by 3 numbers:',
function() {
 it('like 3', function() {
 expect(validator(3)).to.be.deep.equal(['error.three']);
 });

 it('like 6', function() {
 expect(validator(6)).to.be.deep.equal(['error.three']);
 });
 });
});

Automating Tests with Mocha, Chai, and Sinon

[50]

Note that now there is a new nested suite to test the new rule. Also note that we
modified the test about valid numbers, as the example we had selected before, 3, is
not a valid number after all. The implementation to make the test pass is as follows:

module.exports = function (n) {
 if(n <= 0)
 return ['error.nonpositive'];
 if(n % 3 === 0)
 return ['error.three'];
 return [];
};

Now the test is green, but we can change the code to have only one return value
and one array instantiation:

module.exports = function (n) {
 var result = [];
 if(n <= 0)
 result.push('error.nonpositive');
 else if(n % 3 === 0)
 result.push('error.three');
 return result;
};

The next validation rule tells us that numbers divisible by 5 are also invalid! It is time
for another suite:

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 expect(validator(7)).to.be.empty;
 });

 // Skipped code for brevity
 describe('will return error.five for divisible by 5 numbers:',
 function() {
 it('like 5', function() {
 expect(validator(5)).to.be.deep.equal(['error.five']);
 });

Chapter 2

[51]

 it('like 10', function() {
 expect(validator(10)).to.be.deep.equal(['error.five']);
 });
 });
});

To implement this, we can simply do a bit of copy-and-paste:

module.exports = function (n) {
 var result = [];
 if(n <= 0)
 result.push('error.nonpositive');
 else if(n % 3 === 0)
 result.push('error.three');
 else if(n % 5 === 0)
 result.push('error.five');
 return result;
};

Now, we have the tests passing again. Fortunately, there are no more validation
rules to implement. However, we are not yet done, since we can still think of a failing
test. What should happen if there is a number that violates several rules? In this case,
there should be an error for each of the violated rules in the array. In fact, this is what
happened when the QA guy made some exploratory testing and introduced the
number 15 in our app. What a shame!

No problem, we can add this bug in our suite:

var chai = require('chai'),
 expect = chai.expect,
 validator = require('../lib/validator');

describe('A Validator', function() {
 // Skipped code for brevity
 it('will return one error for each rule the number violates',
function() {
 expect(validator(15)).to.be.deep.equal(['error.three', 'error.
five']);
 });
});

Automating Tests with Mocha, Chai, and Sinon

[52]

If you run the tests now, you should reproduce the bug:

Gotcha! The error is captured

Note the nice report we have in the screenshot. It nicely displays the
difference between the expected (in green) and the actual result (in red).
Whenever there is an assertion fail, Mocha expects AssertionError
to be thrown. This error has three important fields: actual, expected,
and showDiff. If showDiff is set to true, then the reporter is
supposed to display the actual difference between the actual and
expected result. You can tell Chai not to activate this flag, with the
chai.config.showDiff = false; instruction.

We could have written the test in another way; instead of adding a new test case, we
can modify the existing test cases to reflect the new behavior:

var chai = require('chai'),
 expect = chai.expect,
 validator = require('../lib/validator');

describe('A Validator', function() {

Chapter 2

[53]

 it('will return no errors for valid numbers', function() {
 expect(validator(7)).to.be.empty;
 });

 describe('will include error.nonpositive for not strictly positive
numbers:', function() {
 it('like 0', function() {
 expect(validator(0)).to.include('error.nonpositive');
 });

 it('like -2', function() {
 expect(validator(-2)).to.include('error.nonpositive');
 });
 });

 describe('will include error.three for divisible by 3 numbers:',
function() {
 it('like 3', function() {
 expect(validator(3)).to.include('error.three');
 });

 it('like 15', function() {
 expect(validator(15)).to.include('error.three');
 });
 });

 describe('will include error.five for divisible by 5 numbers:',
function() {
 it('like 5', function() {
 expect(validator(5)).to.include('error.five');
 });

 it('like 15', function() {
 expect(validator(15)).to.include('error.five');
 });
 });
});

There are some changes. The first change is to test using include instead of strict
equality, and we changed the descriptions of the tests accordingly. The second
change is that we replaced 6 and 10 with 15 in the tests. This approach is better, as
these new tests reflect more effectively how the validator should work. Furthermore,
this approach helps us write less tests!

Automating Tests with Mocha, Chai, and Sinon

[54]

To fix the bug, we will simply remove the else keyword:

module.exports = function (n) {
 var result = [];
 if(n <= 0)
 result.push('error.nonpositive');
 if(n % 3 === 0)
 result.push('error.three');
 if(n % 5 === 0)
 result.push('error.five');
 return result;
};

Now, the test is passing without any bugs. However, with this last change, a pattern
emerged: we can extract each if condition to a rule function:

function nonPositiveValidationRule(n, result) {
 if (n <= 0)
 result.push('error.nonpositive');
}
function nonDivisibleBy3ValidationRule(n, result) {
 if (n % 3 === 0)
 result.push('error.three');
}
function nonDivisibleBy5ValidationRule(n, result) {
 if (n % 5 === 0)
 result.push('error.five');
}

module.exports = function (n) {
 var result = [];
 nonPositiveValidationRule(n, result);
 nonDivisibleBy3ValidationRule(n, result);
 nonDivisibleBy5ValidationRule(n, result);
 return result;
};

Now we have an explicit representation of the validation rules in our code.
However, we can simplify it even more; nonDivisibleBy3ValidationRule
and nonDivisibleBy5ValidationRule have a clear duplication:

function nonPositiveValidationRule(n, result) {
 if (n <= 0)
 result.push('error.nonpositive');
}

Chapter 2

[55]

function makeNonDivisibleValidationRule(divisor, error) {
 return function(n, result) {
 if (n % divisor === 0)
 result.push(error);
 };
}
var nonDivisibleBy3ValidationRule = makeNonDivisibleValidationRule(3,
'error.three'),
 nonDivisibleBy5ValidationRule = makeNonDivisibleValidationRule(5,
'error.five');

module.exports = function (n) {
 var result = [];
 nonPositiveValidationRule(n, result);
 nonDivisibleBy3ValidationRule(n, result);
 nonDivisibleBy5ValidationRule(n, result);
 return result;
};

Now we can avoid calling three functions in a row using a reduce loop:

function nonPositiveValidationRule(n, result) {
 if (n <= 0)
 result.push('error.nonpositive');
}
function makeNonDivisibleValidationRule(divisor, error) {
 return function(n, result) {
 if (n % divisor === 0)
 result.push(error);
 };
}
var validationRules = [
 nonPositiveValidationRule,
 makeNonDivisibleValidationRule(3, 'error.three'),
 makeNonDivisibleValidationRule(5, 'error.five')
];
module.exports = function (n) {
 return validationRules.reduce(function(result, rule) {
 rule(n, result);
 return result;
 }, []);
};

www.allitebooks.com

http://www.allitebooks.org

Automating Tests with Mocha, Chai, and Sinon

[56]

Now we can extract each rule to a different file. We move the rule about nonpositive
numbers to lib/validator/rules/nonPositive.js:

module.exports = function (n, result) {
 if (n <= 0)
 result.push('error.nonpositive');
};

The other rule goes to the lib/validator/rules/nonDivisible.js file, as follows:

module.exports = function (divisor, error) {
 return function (n, result) {
 if (n % divisor === 0)
 result.push(error);
 };
};

Finally, we can use these files inside lib/validator.js:

var nonPositiveValidationRule = require('./rules/nonPositive'),
 nonDivisibleValidationRule = require('./rules/nonDivisible'),
 validationRules = [
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
];
module.exports = function (n) {
 return validationRules.reduce(function (result, rule) {
 rule(n, result);
 return result;
 }, []);
};

We cannot think of another failing test or refactor, so we are done!

Parameterized tests
The tests are currently OK, but sometimes we end up testing the same thing again
and again, but with different examples. In fact, you can see a lot of duplication of
code in our current tests. We can remove them using parameterized tests that we
can execute several times with different examples:

function expectedToIncludeErrorWhenInvalid(number, error) {
 it('like ' + number, function () {
 expect(validator(number)).to.include(error);

Chapter 2

[57]

 });
}

describe('A Validator', function () {
 it('will return no errors for valid numbers', function () {
 expect(validator(7)).to.be.empty;
 });

 describe('will include error.nonpositive for not strictly positive
numbers:', function () {
 expectedToIncludeErrorWhenInvalid(0, 'error.nonpositive');
 expectedToIncludeErrorWhenInvalid(-2, 'error.nonpositive');
 });

 describe('will include error.three for divisible by 3 numbers:',
function () {
 expectedToIncludeErrorWhenInvalid(3, 'error.three');
 expectedToIncludeErrorWhenInvalid(15, 'error.three');
 });

 describe('will include error.five for divisible by 5 numbers:',
function () {
 expectedToIncludeErrorWhenInvalid(5, 'error.five');
 expectedToIncludeErrorWhenInvalid(15, 'error.five');
 });
});

We can make this technique as complex as we want, for example by using a loop:

function expectedToIncludeErrorWhenInvalid(example) {
 var number = example.number,
 error = example.error;
 it('like ' + number, function () {
 expect(validator(number)).to.include(error);
 });
}

describe('A Validator', function () {
 it('will return no errors for valid numbers', function () {
 expect(validator(7)).to.be.empty;
 });

 describe('will include error.nonpositive for not strictly positive
numbers:', function () {
 [

Automating Tests with Mocha, Chai, and Sinon

[58]

 {number: 0, error: 'error.nonpositive'},
 {number: -2, error: 'error.nonpositive'}
].forEach(expectedToIncludeErrorWhenInvalid);
 });

 describe('will include error.three for divisible by 3 numbers:',
function () {
 [
 {number: 3, error: 'error.three'},
 {number: 15, error: 'error.three'}
].forEach(expectedToIncludeErrorWhenInvalid);
 });

 describe('will include error.five for divisible by 5 numbers:',
function () {
 [
 {number: 5, error: 'error.five'},
 {number: 15, error: 'error.five'}
].forEach(expectedToIncludeErrorWhenInvalid);
 });
});

Of course, in our use case it is simply over-engineering. It could pay off if you really
have plenty of examples, but do not abuse this technique.

We can use a parameterized test to refactor a test suite that must be
tested against several implementations of the same interface. In this
case, we can extract the common test suite to a different file and import
it from the specific tests suites of each implementation.

Organizing your setup
So far, we have a validator with a fixed set of validation rules. We can reuse the
validator in different contexts if we can make the set of rules a configuration
parameter. In fact, in our imaginary requisite list, it is stated that the set of rules can
be changed using some kind of configuration system!

This time, we need to change the interface of the validator package a bit to include
the possibility of configuring the rules. To do so, we will change our test to reflect the
new interface. We need a setup phase where we create a validator instance with the
desired set of rules:

var chai = require('chai'),
 expect = chai.expect,
 validatorWith = require('../lib/validator'),

Chapter 2

[59]

 nonPositiveValidationRule = require('../lib/rules/nonPositive'),
 nonDivisibleValidationRule = require('../lib/rules/nonDivisible');

describe('A Validator', function() {
 it('will return no errors for valid numbers', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(7)).to.be.empty;
 });

 describe('will include error.nonpositive for not strictly positive
numbers:', function() {
 it('like 0', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(0)).to.include('error.nonpositive');
 });

 it('like -2', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(-2)).to.include('error.nonpositive');
 });
 });

 describe('will include error.three for divisible by 3 numbers:',
function() {
 it('like 3', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);

Automating Tests with Mocha, Chai, and Sinon

[60]

 expect(validator(3)).to.include('error.three');
 });

 it('like 15', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(15)).to.include('error.three');
 });
 });

 describe('will include error.five for divisible by 5 numbers:',
function() {
 it('like 5', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(5)).to.include('error.five');
 });

 it('like 15', function() {
 var validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 expect(validator(15)).to.include('error.five');
 });
 });
});

The tests are now broken, since we need to change the current implementation of the
package to the new interface:

module.exports = function (validationRules) {
 return function (n) {
 return validationRules.reduce(function (result, rule) {
 rule(n, result);
 return result;
 }, []);
 };
};

Chapter 2

[61]

Now the tests are passing. However, they are really ugly with a lot of duplication.
We can clean them using the beforeEach function from Mocha:

describe('A Validator', function() {
 var validator;
 beforeEach(function() {
 validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 });

 it('will return no errors for valid numbers', function() {
 expect(validator(7)).to.be.empty;
 });

 describe('will include error.nonpositive for not strictly positive
numbers:', function() {
 it('like 0', function() {
 expect(validator(0)).to.include('error.nonpositive');
 });

 it('like -2', function() {
 expect(validator(-2)).to.include('error.nonpositive');
 });
 });

 describe('will include error.three for divisible by 3 numbers:',
function() {
 it('like 3', function() {
 expect(validator(3)).to.include('error.three');
 });

 it('like 15', function() {
 expect(validator(15)).to.include('error.three');
 });
 });

 describe('will include error.five for divisible by 5 numbers:',
function() {
 it('like 5', function() {

Automating Tests with Mocha, Chai, and Sinon

[62]

 expect(validator(5)).to.include('error.five');
 });

 it('like 15', function() {
 expect(validator(15)).to.include('error.five');
 });
 });
});

The beforeEach function is executed once before each it function inside a given
describe scope. This will generate a brand new validator instance for each one of
the tests. This is good because we do not want the tests to interfere with each other;
we want to isolate them. Executing each test with a brand new instance is a good
practice, since one test can change the internal state of the object under test.

If you are an advanced JavaScript practitioner, you know that the
validator instance is not a regular object but a closure. However,
this does not change the point of the discussion.

Actually, our validator instance is immutable and stateless, so we can share the
same instance across tests safely. We can leverage the before function in Mocha
to do so:

describe('A Validator', function() {
 var validator;
 before(function() {
 validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 });
 // Skipped for brevity
});

The before function will execute exactly once before any test. This way, it will create
a single instance of validator that will be shared by the entire test. The before
function is also useful when you want to do something expensive only once, such as
setting up a database, starting a server, or opening a WebDriver session.

Chapter 2

[63]

Use beforeEach by default; it will save you a lot of headaches.
Use before only when you want to emphasize the fact that the
object you are testing is immutable or when you want to perform
a one-time expensive setup.

Sometimes, you need to do some postprocessing or cleaning up after the tests.
You can use the afterEach and after functions. The afterEach function will be
called once after each test is finished. The after function will be called once when
all the tests are finished. Both functions will be called even if some tests fail or throw
an unexpected exception.

Defining test scenarios
It is obvious that the tests we have written are only OK for the set of rules we have
configured for the validator. If we had configured a different set of rules, the tests
would be different. In this case, it is not a big deal, since we only have one set of
rules. However, it is probable that, in the future, we will have several rules, so it is
better to be explicit. The easiest way to do so is to have a different test suite file for
each set of rules and change the title of the test suite:

describe('A Validator with the default validation rules', function() {
 // Skipped for brevity
});

However, having all the different setups in the same test suite is also a good idea.
For this, we can use the context function:

describe('A Validator', function () {
 var validator;
 context('with the default validation rules', function () {
 beforeEach(function () {
 validator = validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 });

 it('will return no errors for valid numbers', function () {
 expect(validator(7)).to.be.empty;
 });
 // Skipped for brevity
 });

Automating Tests with Mocha, Chai, and Sinon

[64]

 context('with other rules', function() {
 beforeEach(function() {
 validator = validatorWith([weirdRule(1), nonStandardRule]);
 });
 // Other tests
 });
});

We can see that, for each context, we have at least one beforeEach block. We
use the context to group all the tests that need a common setup and to add a nice
common description to this set of tests. The context title should reflect the things
that change between different setups—in this case, the different set of rules we have
configured to the validator.

As a rule of thumb, we can consider that we can use one context for each scenario of
a feature. A scenario defines a different execution path of the same feature. Since one
feature defines only one operation on the system, different scenarios can vary only in
their setup or in the inputs of the operation. From a technical point of view, context
is a simple alias of describe. They are exactly the same as far as Mocha is concerned;
they can be nested and mixed without any problem.

As a rule of thumb, it is better to reserve context to define scenarios, describe to
define features and actions, and it for assertions or tests. If we are very purist about
this, we need to change the descriptions in our test a bit:

describe('A validation', function () {
 var validator;
 context('using the default validation rules:', function () {
 // Skipped for brevity
 it('for valid numbers, will return no errors', function () {
 expect(validator(7)).to.be.empty;
 });

 context('for not strictly positive numbers:', function () {
 it('like 0, will include error.nonpositive', function () {
 expect(validator(0)).to.include('error.nonpositive');
 });

 it('like -2, will include error.nonpositive', function () {
 expect(validator(-2)).to.include('error.nonpositive');
 });
 });
 context('for numbers divisible by 3:', function () {
 it('like 3, will include error.three', function () {
 expect(validator(3)).to.include('error.three');

Chapter 2

[65]

 });

 it('like 15, will include error.three', function () {
 expect(validator(15)).to.include('error.three');
 });
 });

 context('for numbers divisible by 5:', function () {
 it('like 5, will include error.five', function () {
 expect(validator(5)).to.include('error.five');
 });

 it('like 15, will include error.five', function () {
 expect(validator(15)).to.include('error.five');
 });
 });
 });
});

Note that, with the top-level describe function, we used the feature as the title,
instead of the component name. The inner level describe functions have been
replaced by context functions, as we are describing different scenarios (what
happens with different inputs). For the it functions, we use the specific input
example and the expected result or assertion.

Although it is not convenient to overdo it, it is good to try to have a common
naming standard across the whole team for the titles and the way you structure
your Mocha tests.

Test doubles with Sinon
A few weeks after going to production, our validator is a complete success but it also
happens that potential new customers would like to have different sets of validation
rules. Fortunately, our validator is configurable, but we somehow need to specify a
different configuration for each customer.

The act of configuring a different set of rules for each customer is clearly another
operation of the system and, hence, a different feature, so we are not really interested
in testing it in the validator tests. We would like to isolate the tests about the validator
feature and the configuration feature. To do so, we need to create an interface in a
way that allows the validator to ask for the correct set of rules for the configuration.
Then we can create a test double for such an interface in our tests. The test double will
impersonate the real configuration and allow us to isolate our tests.

Automating Tests with Mocha, Chai, and Sinon

[66]

When creating these test doubles we need to design the shape of the interfaces and
how both features collaborate between each other using this interface. For the sake of
being brief, let's suppose that the validator asks the configuration for a rule set using
a name, and it receives JSON with a description of the rule set.

We could have thought of making the configuration return the actual
instances of the validation rules. However, this would imply that the
validation rules are owned by the configuration feature but this seems
wrong. After all, the configuration is about configuring the system,
and the validation logic should be inside the validator.

Our validator package is now more of a validator factory that uses the configuration
to create a given validator instance for a set of rules. The design is as follows:

set up & assert
TEST DOUBLE

CONFIGURATION INTERFACE

TEST

act & assert

VALIDATION
INTERFACE

set up
FACTORY
INTERFACE

FACTORY

4) EXECUTE RULES

3) CREATE VALIDATOR
WITH RULES

2) CREATE RULES

1) ASKS CONFIGURATION

RULES

VALIDATOR

Our new design

With this in mind, we need to change the tests to reflect this new design:

var chai = require('chai'),
 expect = chai.expect,
 factoryWithConfiguration = require('../lib/factory');

describe('A validation', function () {
 var validator;
 context('using the default validation rules:', function () {
 beforeEach(function () {
 var fakeConfiguration = function() {
 return [

Chapter 2

[67]

 {type:'nonPositive'},
 {type:'nonDivisible', options:{divisor: 3, error: 'error.
three'}},
 {type:'nonDivisible', options:{divisor: 5, error: 'error.
five'}}
];
 };
 var newValidator = factoryWithConfiguration(fakeConfiguration);
 validator = newValidator('default');
 });
 // Skipped for brevity
 });
});

We just changed the setup; instead of creating the validator directly, a factory with a
fake configuration is used. The fake configuration is just a plain function that returns
a hard-coded rule description in JSON. This specific test double is a stub, because it
has no logic and only returns a hard-coded response.

We need to create the lib/factory.js file and add the minimum code to make this
new test pass:

var validatorWith = require('./validator'),
 nonPositiveValidationRule = require('./rules/nonPositive'),
 nonDivisibleValidationRule = require('./rules/nonDivisible');

module.exports = function () {
 return function () {
 return validatorWith([
 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 };
};

As you can notice, we have just hardcoded the original setup into the factory code.
Clearly, this is not the solution; we need to add more tests to get the implementation
of a real factory! For example, we should test whether we used the 'default' rule
set name to access the correct configuration:

describe('A validation', function () {
 var validator, configuration;
 context('using the default validation rules:', function () {
 beforeEach(function () {

Automating Tests with Mocha, Chai, and Sinon

[68]

 configuration = function() {
 configuration.callCount++;
 configuration.args = Array.prototype.slice.call(arguments);
 return [
 {type:'nonPositive'},
 {type:'nonDivisible', options:{divisor: 3, error: 'error.
three'}},
 {type:'nonDivisible', options:{divisor: 5, error: 'error.
five'}}
];
 };
 configuration.callCount = 0;
 var newValidator = factoryWithConfiguration(configuration);
 validator = newValidator('default');
 });

 it('will access the configuration to get the validation rules',
function() {
 expect(configuration.callCount).to.be.equal(1);
 expect(configuration.args).to.be.deep.equal(['default']);
 });
 // Skipped for brevity
 });
});

First of all, fakeConfiguration has been renamed to configuration and stored in
a variable. Then a new test checks whether we are calling the configuration system to
get the default rule set. For this, we changed the implementation of our test double
to transform it into a spy. A spy will record what happened to it, so we can test this
information again later. Here, we are just recording how many times we have called
the arguments of the last call.

There is some confusion in the terminology of test doubles. It is
common to encounter the term mock to refer to any kind of test
double. However, remember from last chapter that there are actually
four kinds of test doubles: fakes, stubs, spies, and mocks.

To make the test pass:

module.exports = function (findConfiguration) {
 return function () {
 findConfiguration('default');
 return validatorWith([

Chapter 2

[69]

 nonPositiveValidationRule,
 nonDivisibleValidationRule(3, 'error.three'),
 nonDivisibleValidationRule(5, 'error.five')
]);
 };
};

This is better, but we are not really doing anything with the result. We need another
set of tests that force us to write the logic that transforms the JSON file into actual
validation rule instances. We can do this using triangulation. We will now write
another scenario where we will use a different set of validation rules:

describe('A validation', function () {
 var validator, configuration;
 context('using the default validation rules:', function () {
 // Skipped for brevity
 });
 context('using the alternative validation rules:', function () {
 beforeEach(function () {
 configuration = function () {
 configuration.callCount++;
 configuration.args = Array.prototype.slice.call(arguments);
 return [
 {type: 'nonPositive'},
 {type: 'nonDivisible', options: {divisor: 11, error: 'error.
eleven'}}
];
 };
 configuration.callCount = 0;
 var newValidator = factoryWithConfiguration(configuration);
 validator = newValidator('alternative');
 });

 it('will access the configuration to get the validation rules',
function () {
 expect(configuration.callCount).to.be.equal(1);
 expect(configuration.args).to.be.deep.equal(['alternative']);
 });
 // TODO: Dear reader, add tests for this set of rules!
 });
});

Automating Tests with Mocha, Chai, and Sinon

[70]

This new scenario will force us to use the rule set name parameter and transform the
JSON file into actual validation rules. Of course, we need to add the tests in the new
scenario for the specified rule set. I leave the exercise of making two or three more
test-first iterations and deriving a good implementation of the factory to you. After
some refactoring, you will probably end up with something similar to the following
lines of code:

var validatorWith = require('./validator'),
 nonPositiveValidationRule = require('./rules/nonPositive'),
 nonDivisibleValidationRule = require('./rules/nonDivisible');

var ruleFactoryMap = {
 nonPositive: function () {
 return nonPositiveValidationRule;
 },
 nonDivisible: function (options) {
 return nonDivisibleValidationRule(options.divisor, options.error);
 }
};

function toValidatorRule(ruleDescription) {
 return ruleFactoryMap[ruleDescription.type](ruleDescription.
options);
}

module.exports = function (findConfiguration) {
 return function (ruleSetName) {
 return validatorWith(findConfiguration(ruleSetName).
map(toValidatorRule));
 };
};

Of course, your implementation does not need to be exactly the same as the
previous one!

Is it traditional TDD or BDD?
In small systems such as this, the distinction is very blurry, since there is a very
direct correlation between features and components.

Actually, what we have done is more BDD than component unit testing. We have
chosen to use test doubles to define the boundary of our feature. What we have
stubbed is the configuration service of the validator; in doing so, we have chosen this
interface as the boundary of our feature.

Chapter 2

[71]

In a real system, then, we would have needed to write additional BDD specs for the
configuration feature and implement it. So, we have split this hypothetical system
into two features: validator and configuration. This configuration feature could be
very simple, like accessing a plain JSON file; in this case, we can do a very simple
integration test. Alternatively, it can be very complex, involving an interface for a
business validation rule administrator and some kind of database.

If we were doing traditional TDD, we could have chosen otherwise—that is, to stub
the validation rules. This way, we could have tested the validator component in
isolation, using dummy rules. Then we would have tested each rule individually.
In this simple example, one can argue that the individual rules do not belong
to the validator feature but to the configuration feature, making BDD and TDD
indistinguishable.

However, this is really not the point; traditional TDD will not help us to make
decisions about which component belongs to which feature and to be explicit about
how we decompose our system in features. This is not the case with BDD.

Welcome Sinon!
As you may have noticed, making test doubles involves a lot of boilerplate code and
adds some complexity to our tests. But do not worry! There are a lot of libraries to
create test doubles. We will use Sinon in this book. To install it, just type this:

$ me@~/validator> npm install --save-dev sinon

Alternatively, if you want to use exactly the same version as me then run the
following command:

$ me@~/validator> npm install --save-dev sinon@1.10.2

However, any 1.x should work here. Now, we can replace our handmade spy
with a sinon one:

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon'),
 factoryWithConfiguration = require('../lib/factory');

describe('A validation', function () {
 var validator, configuration;
 context('using the default validation rules:', function () {
 beforeEach(function () {

Automating Tests with Mocha, Chai, and Sinon

[72]

 configuration = sinon.stub();
 configuration.returns([
 {type: 'nonPositive'},
 {type: 'nonDivisible', options: {divisor: 3, error: 'error.
three'}},
 {type: 'nonDivisible', options: {divisor: 5, error: 'error.
five'}}
]);
 var newValidator = factoryWithConfiguration(configuration);
 validator = newValidator('default');
 });

 it('will access the configuration to get the validation rules',
function () {
 expect(configuration.callCount).to.be.equal(1);
 expect(configuration.calledWithExactly('default')).to.be.ok;
 });
 // Skipped for brevity
 });

 context('using the alternative validation rules:', function () {
 beforeEach(function () {
 configuration = sinon.stub();
 configuration.returns([
 {type: 'nonPositive'},
 {type: 'nonDivisible', options: {divisor: 11, error: 'error.
eleven'}}
]);
 var newValidator = factoryWithConfiguration(configuration);
 validator = newValidator('alternative');
 });

 it('will access the configuration to get the validation rules',
function () {
 expect(configuration.callCount).to.be.equal(1);
 expect(configuration.calledWithExactly('alternative')).to.be.ok;
 });
 // Skipped for brevity
 });
});

Chapter 2

[73]

The first thing to notice is that we are calling sinon.stub() to create a spy.
Actually, in Sinon, when you call sinon.stub(), it will return an object that has
the capabilities of both a spy and stub. This is what we really want, as we not only
need to create a test double that records its history, but also one that returns a
predefined result.

To program the test double to return a predefined result, we used the returns(...)
method. If we had created the test double using the sinon.spy() method, the
resulting test double would not have had the returns(...) method.

Sinon automatically provides a callCount property with the number of invocations
the test double has received. It has several other properties and methods. We could
have used the calledOnce property, such as the following:

expect(configuration.calledOnce).to.be.ok;

This tests in exactly the same way as our example but will generate a different
error message if the test fails. There exist the calledTwice and calledThrice
properties too.

The calledWith() and calledWithExactly() methods will return true if the last
invocation included the specified parameters. The difference between both versions is
that the latter will check whether the parameter list is exactly the one specified, and the
first version will just check whether at least the specified parameters are received.

Sinon has an extensive API to create spies, stubs, and mocks.
In http://sinonjs.org/docs/, you have an exhaustive
reference for this API.

Integrating Sinon and Chai
Although sinon allow us to avoid the activity of writing test doubles, it has made
our assertions a bit less expressive. Basically, most of our assertions on the test
double will be of the to.be.ok type. Here, the problem is that, in the case of failure,
the report message does not give a good diagnosis of what happened. Another
problem is that we need to put all the expectation inside the expect(...) function,
which is not very readable.

Fortunately, Chai is an extensible library, and there is already a bridge between
Sinon and Chai; it is unsurprisingly called sinon-chai:

$ me@~/validator > npm install --save-dev sinon-chai

Automating Tests with Mocha, Chai, and Sinon

[74]

I am using version 2.5.0, but any 2.x version should be OK. Now, we will modify the
test to include the test to use the new library:

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon'),
 factoryWithConfiguration = require('../lib/factory');

chai.use(require('sinon-chai'));

describe('A validation', function () {
 var validator, configuration;
 context('using the default validation rules:', function () {
 // Skipped for brevity
 it('will access the configuration to get the validation rules',
function () {
 expect(configuration).to.have.been.calledOnce;
 expect(configuration).to.have.been.calledWithExactly('default');
 });
 // Skipped for brevity
 });

 context('using the alternative validation rules:', function () {
 // Skipped for brevity
 it('will access the configuration to get the validation rules',
function () {
 expect(configuration).to.have.been.calledOnce;
 expect(configuration).to.have.been.calledWithExactly('alternati
ve');
 });
 // Skipped for brevity
 });
});

First of all, we need to install the sinon-chai plugin. To do so, we just need to call
chai.use(require('sinon-chai')) before our test suite.

Chapter 2

[75]

Then we just need to change the assertions. The idea is that you can directly pass
the test double to the expect(...) function and then use the new assertions that
sinon-chai provides. There will be one assertion for each method in the stub and
spy interfaces of sinon.

If your test fails, you will see a more informative error message, explaining the
difference between what we expected and what really happened. The result will look
something like the one shown in the following screenshot:

An error report with Sinon

Note that we are calling the configuration with a wrong parameter, defaultBUG,
instead of default.

You can have a look at the complete documentation at
https://github.com/domenic/sinon-chai. As you
can see, for each method in a sinon test double, there is one
equivalent method in sinon-chai.

Automating Tests with Mocha, Chai, and Sinon

[76]

Summary
Wow! This was a long chapter, but we covered a lot of ground. You learned the
basics of Node and NPM, just enough to be able to set up a simple development
environment for BDD. Node allows us to execute JavaScript from the command line,
something that is essential to perform BDD. With NPM, we can initialize our project,
manage its dependencies, and install tools and libraries, such as Mocha and Sinon.

We practiced the test-first cycle, Red/Green/Refactor, using Mocha and Chai.
During your first contact with the test-first cycle, you learned not only how to use the
tools and libraries but also some useful testing techniques:

• Adding duplication to your code with triangulation, to expose patterns that
help you discover the correct algorithm and design you need to use.

• Knowing how a bug can lead to a new failing test or change the existing
ones, to reflect our new understanding of the system.

• Organizing test code in Mocha to avoid duplication using parameterized
tests and the before and beforeEach functions.

• Organizing tests using describe, context, and it, and how to describe
them in a consistent way.

• Using test doubles to help define the boundary of our features. Contrast
this with the fact that, in traditional TDD, test doubles help us define the
boundary of our component.

• Making test doubles using Sinon and how to integrate them nicely with
Sinon and Mocha using sinon-chai.

Finally, you learned that the line between component unit testing and BDD is
sometimes blurry but that BDD emphasizes the decomposition of a system in
features instead of components, helping locate the feature boundaries and interfaces.

In the next chapter, we will look at how to write BDD features more in depth using
a more realistic example. You will also learn more advanced techniques to organize
our test codebase and how to test asynchronous code.

Writing BDD Features
Although in the last chapter, you learned how to use Mocha, Sinon, and Chai to code
some BDD tests, it was not so clear how we can write a good feature, given a set of
requirements. In this chapter, we will go through the following topics:

• Exploring in greater depth how to write good features. For this, we will work
on a more realistic example: myCafé, an imaginary start-up.

• Since myCafé is a JavaScript server, we will need to implement its
functionality using asynchronous programming, so we will learn how to test
asynchronous code.

• We will explore more techniques to organize your test codebase so that we
can make it more expressive and reuse code across different features.

What we are not going to see in this chapter is the actual implementation of the system,
but only the code of the tests. I expect you to write the actual code necessary to make
the tests pass! This way, you will be able to practice the test-first cycle a bit more.

Introducing myCafé
The famous myCafé start-up has hired us to start developing their core business. The
myCafé business idea is very simple: allow customers to preorder coffee from a mobile
web page so that, when they arrive at the coffee shop, it will already be waiting.

This involves several subsystems, such as payment, orders, shop, inventory, and so
on. We have been charged with the task of developing the orders subsystem.

Writing BDD Features

[78]

The order subsystem is clearly not very complicated. The user goes to the ordering
page, selects the products they want, and then places the order. Users can add drinks
to their order, remove them, and change the quantity desired for each. The order
subsystem can also place the order, triggering the payment process; after that, it will
communicate the order to the shop.

We will focus only on the basic functionality mentioned earlier. We will not deal with
other more advanced functionality such as having several orders or being able to select
between several shops. This fits in with Agile methodologies, where you first focus on
the basic features and then add extra layers of behavior in additional iterations.

So, for now, we will focus only on the ordering page, and we will assume that each
user can have only one order and only one shop at a time.

Writing features
The first thing we need to do is to identify the features on the ordering page. As we
saw in the last chapter, there should be only one single user action in the system
per feature.

A nice trick to extract features is to identify the main conceptual entities that the user
is going to interact with. Then, we can simply discover the operations that the user
can execute on each entity and write one feature per operation.

In the order subsystem, we will obviously have an Order entity. With this in mind,
we can think of several features, such as the following ones:

• Placing the order
• Creating a new order
• Adding some beverages to the order
• Removing a beverage from the order
• Changing the quantity of a beverage

Of course, each one of these actions is a different feature, but we are forgetting a very
important one: displaying the order. After all, whenever the user visits the ordering
page or refreshes it, they are simply performing an action against the server.

So, we actually have six features: create an order, display the order, add a beverage,
remove a beverage, and change the quantity of a beverage. For brevity, we will not
go into the details of all of them; instead, we will focus on displaying an order.

Chapter 3

[79]

Displaying a customer's order
Let's start with the easiest feature: displaying an order. For this, we need to identify
what information we need to display to the user. In this case, we will display the
following features:

• The items in this order: the name of the beverage, the quantity, and the
unit price

• The total price of the order

We will write the feature directly using Mocha. For this, we need to create a project
as follows:

$ me@~> mkdir mycafe && cd mycafe

$ me@~/mycafe> npm init

Just answer the questions to initialize package.json or simply edit it afterwards.
Specify a test command similar to the one we saw in previous chapter. Then, install
the testing libraries:

$ me@~/mycafe> npm install --save-dev mocha chai sinon sinon-chai

Finally, we will create the following folders:

$ me@~/mycafe> mkdir test lib

Inside the test folder, we will create a test file called customer_displays_order.
js; this will contain our first feature:

'use strict';

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon');

describe('Customer displays order', function () {
});

Note that we are using the feature name for both the name of the test file itself and
the title of the feature. A default format for feature names can be something like
<ROLE>_<ACTION>_<ENTITY>, where <ROLE> is the name of the kind of user that
performs the actions, <ACTION> is the user operation represented by this feature,
and <ENTITY> is the main information entity that is affected by the feature action.

Writing BDD Features

[80]

Now, we will go for our first scenario. Remember from the last chapter that one
scenario represents a different setup of the system, or a different user input; this
results in a different result. At the beginning, it is always interesting to start with the
most simple success scenario. In the case of a display feature, this is often displaying
an empty entity—in this example, an empty order. As we saw in the last chapter, to
signal a scenario, we use the context function:

describe('Customer displays order', function () {
 context('Given that the order is empty', function() {
 });
});

Now, we need to add a test for each thing we think should happen when a user
displays an empty order. It is clear that we should not see any item, and the total
price should be zero:

describe('Customer displays order', function () {
 context('Given that the order is empty', function() {
 it('will show no order items');
 it('will show 0 as the total price');
 });
});

Note that we have not passed any function as a second argument of the it function.
This is not an error, but it tells Mocha that these tests are pending. If you run Mocha
now, it will not execute any tests, but it will generate a normal test report saying that
the tests are pending.

It is often a good idea to make the tests pending when we are exploring the
functionality of a feature. Right now, we are not interested in writing the test code;
we are interested only in discovering what the behavior of the feature is so that we
can obviate the actual test implementation.

Another interesting thing is the wording. Normally, the scenario title is worded
in the past or in the present, expressing that the state of the system is already as
described in the moment when the user performs the operation. Contrast this with
tests titles that are in the future tense, emphasizing what will happen in the future
when the user performs the operation. The operation itself is in the present tense,
and is defined in the title of the feature; it is common to all the scenarios.

Chapter 3

[81]

So far everything has been very obvious, but there is still one test missing. Until
now, we have been writing tests that describe what information is seen by the user.
However, this is not the end of the story; we need to describe which operations
the user can perform on the order. Can the user add a new beverage to the order?
Can the user submit the order for payment? We need to write tests that describe
this. Consider that, with each change in the state of the order, some operations can
be enabled, and some others can be disabled. So, we should be specific about the
operation that the user can execute when an order is displayed:

describe('Customer displays order', function () {
 context('Given that the order is empty', function() {
 it('will show no order items');
 it('will show 0 as total price');
 it('will not be possible to place the order');
 it('will be possible to add a beverage');
 it('will not be possible to remove a beverage');
 it('will not be possible to change the quantity of a beverage');
 });
});

As you can see, we are explicit about the actions that are possible and the ones that
are not for an empty order.

This scenario is good as it is, but it could be a bit better. It stands to reason that,
if we do not have an order item, we cannot perform operations about it, such as
removing the item or changing the quantity of a beverage. With this scenario, we
want to express that, with empty orders, we can only add a new beverage. So, we
can simplify the scenario as follows:

context('Given that the order is empty', function () {
 it('will show no order items');
 it('will show 0 as total price');
 it('will only be possible to add a beverage');
});

This is much more compact and conveys our intention better. As a rule of thumb,
we should write scenarios with tests that are relevant and not redundant. The
shorter the scenario, the better, since it's easier to understand and maintain, and
faster to execute.

Writing BDD Features

[82]

Why should we care about whether an action is available or not? The
reason is simple; if we do not test this kind of thing here, where are
we going to test it? Somewhere, there should be some logic to enable
and disable controls, forms, and so on. Putting this logic in view
(ERB, JSP, Mustache template, and so on) and deciding not to test it
is not a good idea. On the other hand, UI and end-to-end tests are
expensive and very slow, so we cannot use them to drive our code!

Now that the scenario is complete, we would normally start adding the test code for
one test at a time and driving the implementation using the test-first cycle. When all
the tests pass and the code has been cleaned up, then we start with the next scenario.
Repeat this until we cannot think of any more scenarios, and we are done!

However, in this chapter, we will focus on exploring the concept of writing a feature,
so we will skip the actual implementation part and continue directly with the next
scenario. If we have tested for empty orders, what about the orders with actual
contents? Have a look at the following code:

describe('Customer displays order', function () {
 context('Given that the order is empty', function() {
 // Skipped for brevity
 });

 context('Given that the order contains beverages', function() {
 it('will show one item per beverage');
 it('will show the sum of the unit prices as total price');
 it('will be possible to place the order');
 it('will be possible to add a beverage');
 it('will be possible to remove a beverage');
 it('will be possible to change the quantity of a beverage');
 });
});

Note that now it is still possible to add a beverage, but it is not the
only thing we can do; we can add, remove, and edit the quantity of
beverages in the order. We can place the order too.

Chapter 3

[83]

Are we done with all the scenarios? Not quite yet. In most applications, the user can
receive messages from the system. So, an order can have messages that need to be
shown to the system. In this example, there will be error messages; once they
are shown, they will be not displayed again. We can implement this with the
following scenario:

describe('Customer displays order', function () {
 context('Given that the order is empty', function () {
 // Skipped for brevity
 });

 context('Given that the order contains beverages', function () {
 // Skipped for brevity
 });

 context('Given that the order has pending messages', function(){
 it('will show the pending messages');
 it('there will be no more pending messages');
 });
});

It is interesting to note that the scenario does not say anything about the actions or
contents of the order. This is because these details are not relevant to the scenario.
What changes in this scenario is the fact that we have pending messages. On the one
hand, we do not say anything about the contents of the order, so we cannot write
any test about them. On the other, we have already tested how to display orders,
depending on their contents, so it would be a duplication of the tests, which will
almost certainly pass anyway.

Should we write a scenario about an order with no pending messages? No, it is not
necessary. On the one hand, if we implement the functionality one scenario at a time
before going to the next scenario, we will find that this no messages scenario will
pass directly. In the earlier chapters, we saw that we should not write tests that pass
directly. On the other hand, if we write the scenario, it will be something like this:

context('Given that the order has pending messages', function () {
 it('will show no messages');
 it('there will be no more pending messages');
});

Writing BDD Features

[84]

This, actually, is exactly the same test as the earlier one, since 'will show no
messages' is exactly the same thing as 'will show the pending messages'
when there are actually no messages to show.

The only reason we wrote different scenarios for empty and nonempty orders
is because that circumstance actually changes the set of actions that the user can
perform, so it actually matters.

The pending messages and order contains beverages scenarios could also
benefit from a bit of triangulation. For this, we can write parameterized scenarios,
as we will see at the end of this chapter.

Are we done now? No, we still need to write scenarios about operational errors. Bad
things can happen, for example the database might be down or the order requested
might not exist. For brevity, we will skip this kind of scenario for now.

Tips for writing features
In general, keep your features and scenarios small, concise, and relevant, and
ensure that they are not redundant. This will save you a lot of time and money in
maintenance and make your test suite and reports easier to read and understand.

Write your features incrementally. First, discover a new scenario, a simple one if it
is possible. Then, you can focus on the tests. Add a test, make it pass, and clean your
code. Add another test and so on, until you cannot think of another failing test for
this scenario. Finally, try to discover another scenario where there can be failing tests.
Repeat until you cannot think of another failing scenario.

What actually happens in reality is that you are going to miss some
scenarios and even some tests. This is normal, since we usually do
not have a complete picture of the functionality at the beginning.
Do not worry about this, because we can always add a new scenario
or test when we realize that something is missing. BDD is an agile
and lean approach, so do not bother about making a perfect and
complete feature in the first shot.

Chapter 3

[85]

To discover which scenarios we can have, it is convenient to ask yourself whether the
outcome of the user operation would be different in the following cases:

• If the system is in a different state
• If some of the systems we need to interact with do not respond in a timely

fashion or simply return an error
• If some of the systems we need to interact with return different valid responses
• If the user performed a different action before the current one
• If the user has different credentials
• If the user enters incorrect information

All of these questions can lead us to discover new scenarios where we just need to
change the setup and the input data. It is convenient that, in each scenario, only one
thing changes at a time.

In order to understand which tests we need to add to each scenario, we need
to consider:

• The new state of the system
• The actual response of the system to the user
• The set of actions that is available to the user in the new states
• Possible interactions with other systems, such as a database, a web API,

and so on
• Other side-effects

Note that, for the display scenarios, there are no side-effects or interactions
with other systems, so we only need to consider the actual response and the
set of actions.

And the final and the most important tip is that, for each feature, there should
be only one user action that will be the same across scenarios.

Writing BDD Features

[86]

Starting to code the scenarios
Let's start implementing the scenarios. We can start with the simple scenario about
empty orders. The first thing to do is to implement the setup of the scenario, so we
need to somehow define that the order of the user is empty. To do so, we need to
think a bit about the architecture of our system. It seems reasonable to have an order
database of some kind and to access to it using a very thin DAO. So, we can create
an order system using a test double for this DAO and then ask the order system to
display a specific order:

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon'),
 orderSystemWith = require('../lib/orders');

describe('Customer displays order', function () {
 context('Given that the order is empty', function () {
 beforeEach(function () {
 var orderDAO = {},
 orderSystem = orderSystemWith(orderDAO);

 this.result = orderSystem.display('some empty order id');
 });
 it('will show no order items');
 it('will show 0 as total price');
 it('will only be possible to add a beverage');
 });
 // Skipped for brevity
});

Note that we also added the execution of the feature's action in the
beforeEach function, because it is common to all the tests of the
same scenario.

This seems the simplest design we can imagine. Now, we need to think a bit about
the interaction between the order system and the DAO when we want to display an
order. It seems reasonable that the order system will need to retrieve the order from
the DAO:

 beforeEach(function () {
 var orderDAO = {
 byId: sinon.stub()
 },

Chapter 3

[87]

 orderSystem = orderSystemWith(orderDAO);

 orderDAO.byId.withArgs('some empty order id').returns([]);

 this.result = orderSystem.display('some empty order id');
 });

We added a byId stub method to the DAO; this method will return an empty
order when asked for it. To do so, we used the withArgs method of Sinon's stubs;
this method allows us to tell the stub about the value to return, depending on the
received arguments. The chosen representation for an empty order is simply an
empty array, since it is the simplest thing.

In this case, we are in the process of discovering the interface of the DAO and
understanding how to represent the order at a database level. It might be possible
that these things are already known. For example, we might already have a database
in place, or we are using a DAO framework (ORM/ODM) that imposes some
constraints on the interface of the DAO. In this case, we just need to consult the
pertinent documentation and make our test double exactly like the DAO we are
going to use.

Since the creation of the DAO itself and the order system is going to be common to
all scenarios, we will move it to a common setup:

describe('Customer displays order', function () {
 beforeEach(function () {
 this.orderDAO = {
 byId: sinon.stub()
 };
 this.orderSystem = orderSystemWith(this.orderDAO);
 });
 context('Given that the order is empty', function () {
 beforeEach(function () {
 this.orderId = 'some empty order id';
 this.orderDAO.byId.withArgs(this.orderId).returns([]);

 this.result = this.orderSystem.display(this.orderId);
 });
 it('will show no order items');
 it('will show 0 as total price');
 it('will only be possible to add a beverage');
 });
});

Writing BDD Features

[88]

Note how we used a beforeEach function instead of a before block to be sure
that each scenario has a brand new test double. We do not want to mix up the
setup between scenarios. It would be better to move the actual feature action to the
common setup too, but we cannot do this. Each scenario can have a different setup or
input data, and we cannot execute the action before the setup. So, it is better to keep
it in the beforeEach function, right after the setup, even if this line of code is going
to be duplicated across all the features.

In the preceding code, the objects are passed through the runtime context of the tests.
In Mocha, the this keyword will point to the same object throughout all the test
suites, so we can use it to store useful information. The other option is to play with
the scope of local variables inside the test and context functions.

Let's write our tests now:

it('will show no order items', function () {
 expect(this.result).to.have.property('items')
 .that.is.empty;
});

it('will show 0 as total price', function () {
 expect(this.result).to.have.property('totalPrice')
 .that.is.equal(0);
});

it('will only be possible to add a beverage', function () {
 expect(this.result).to.have.property('actions')
 .that.is.deep.equal([{
 action: 'append-beverage',
 target: this.orderId,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 }]);
});

We defined a response that will be a simple JSON object with the items,
totalPrice, and actions fields. The items field is a simple array that contains
a per-order entry. The totalPrice field should contain the sum of the prices
of the items and, finally, the actions field is an array with the allowed actions
for the order.

Chapter 3

[89]

Each action is modeled as an object with an action field, which indicates the kind of
action it is; a target field, which indicates which order the action should be applied
to; and an optional parameters field, with the actual parameters of the action. In this
case, we can pass the ID of a beverage using beverageRef, and how many we want
using the quantity parameter.

Of course, there are multiple ways of modeling the response of the system, and
probably you would end up with something a bit different. The important point here
is that the tests force us to model the shape of the object we return as a response.

It is interesting to note that the system is not only returning data, such as the total
price and items, but it also returns the allowed actions. This forces us to model the
way in which we want to describe the actions.

Modeling actions is actually quite important. If we say that, in a test, there is an
append-beverage action with beverageRef and quantity, there should exist,
somewhere, a feature that tests these actions with the exact same parameters!
If we change the parameters in one test, then we must change all the other features
to be consistent.

Testing asynchronous features
If you have made the tests pass, you are probably thinking that you are done. But
actually, you are not. The problem is that we have designed a synchronous API. This
is not feasible in a JS application, because JS is single-threaded. Any I/O will cause
our system to block, and we need to process the requests one at a time. This is not
acceptable in a server or in a UI application. So, we need to change our design to use
an asynchronous API, but how do we test an asynchronous API?

Testing a callback-based API
Instead of returning the value directly, we can change our API to use callbacks. The
same thing applies to our DAO. After all, the DAO will perform IO, so it needs to
be asynchronous. So, let's change our test. For this, we first need to change the setup
and action:

context('Given that the order is empty', function () {
 var result;
 beforeEach(function (done) {
 this.orderId = 'some empty order id';
 this.orderDAO.byId

Writing BDD Features

[90]

 .withArgs(this.orderId)
 .callsArgWithAsync(1, null, []);

 this.orderSystem.display(this.orderId, function (err, res) {
 result = res;
 done(err);
 });
 });
 it('will show no order items', function () {
 expect(result).to.have.property('items').that.is.empty;
 });
 // Skipped for brevity
 });

The first important thing to note is that now the function that we pass in beforeEach
receives a done parameter. This parameter is a callback that we must call when our
code has finished. The functions that we pass to it, beforeEach, afterEach, before,
and after, can receive this extra parameter. So, we can use asynchronous code not
only in the tests, but in the setup and cleanup functions too.

Mocha will wait for the done callback to be invoked before proceeding with the
test suite. If we call it without parameters, with null or undefined, Mocha will
mark the test as passing. If we supply an error when calling the callback, Mocha will
mark the test as failed and report the error. Another way in which we can fail is due
to a timeout. If we take too long to call the done callback, Mocha will timeout and
report an error.

We can use the --timeout or -t parameter in the Mocha command
line to define how long this timeout will be. This will set up a
global timeout value for all of our tests. We can also specify the
timeout at a suite or at a test level. To do so, we can use the this.
timeout(millis) method of Mocha. We can call it inside a
describe block to set the timeout at the test-suite level. We can also
call it inside an it block to set the timeout only for that test.

The display method of the order system has been changed to use a callback to
return the result. The Node.js convention for callbacks is used. In this convention,
the error is always the first parameter, and the result is the second one. If there is no
error, this parameter would simply be null, so we can directly call the done callback
using the error parameter.

Chapter 3

[91]

A bit of the code has been changed to use the result local variable to hold the result,
instead of the runtime context of the test, since it is more convenient when working
with callbacks. Obviously, the tests have been changed to refer to result instead of
this.result.

The other important change is in the way we set up the DAO. First, we did not
specify the callback in the withArgs function. This is not a problem, since withArgs
is not a strict matcher and will not check whether the number of arguments actually
passed to the stub are exactly the same as specified.

Then, we used callsArgWithAsync to tell the stub to call the callback it receives as
the second parameter. We need to specify the index of the parameter that will be the
callback and then the actual parameters that will be passed to the callback. Since we
are using the Node.js convention, the parameters are null, which means that there is
no error, and the empty array, which means it is an empty order.

When we use callsArgWithAsync, the stub will call the specified callback when
it is invoked, but not immediately. It will schedule the callback invocation for the
next tick. This means that the JS runtime will wait for the current execution to finish
before making the invocation.

There is another version of this function; it is called callsArgWith and will call the
callback immediately the moment the stub is invoked. However, it is better to use
the asynchronous version, since it is more realistic. A real DAO will not invoke the
callback immediately, but it will wait until it has retrieved the information from
the database.

Both versions, callsArgWith and callsArgWithAsync, will fail if
the parameter supplied in the specified position is not a function.

Testing a promise-based API
There is another way of modeling an asynchronous API: using promises. Callbacks
are difficult to compose unless you are comfortable with functional programming.
The naïve way of composing asynchronous functions that use callbacks is to nest
one callback inside another. This can very easily lead to callback hell: spaghetti code,
memory leaks, and a control flow that is difficult to follow.

You can actually combine two callback-based functions safely using functional
programming, but there are other options. The most popular one is to use promises.

If you do not know anything about promises, just keep reading. If you already know
about them, just skip the following section.

Writing BDD Features

[92]

Interlude – promises 101
This section will give you a very short introduction to promises. A promise is an
object that represents the eventual result of an asynchronous function. Let's look at
an example:

var promisedUser = userDAO.byId(userId);
promisedUser.then(function(user) {
 console.log(user.name);
});

When we call the byId method of the user DAO, an asynchronous process will be
started in the background; this process will perform the IO necessary to retrieve the
user data from the database. Since this IO will take a while and JS is single-threaded,
we cannot block and wait for the IO to finish. Instead, a promise object is returned
immediately, representing the eventual result of the database access.

The client code stores the promise in the promisedUser variable and attaches a
callback to the promise using a method called then. All the promises objects have a
then method that we can use to register a callback; this method will be invoked only
once, whenever the result is ready.

Promises can be in three states: fulfilled, rejected, and pending. They are
explained here:

• A promise is in the pending state if the process represented by the promise is
still executing, and it has not yet finished

• A promise passes from the pending state to the fulfilled state when the
asynchronous process finishes successfully, and its result is ready

• A promise passes from the pending state to the rejected state when the
asynchronous process finishes with an error

The promise contract assures us that the callbacks registered with the then method
will be invoked only once when the promise is in the fulfilled state. It does not matter
whether the promise was in the pending or fulfilled state when we registered the
callback; we can trust that our callback will receive the result only once. This way,
our code does not need to concern itself with whether the promise is already fulfilled
or not; we are not going to lose the result. Compare this with Node.js streams or
normal events where we can lose data if we register our callback too late.

Chapter 3

[93]

Another interesting property of promises is that we can return a value inside the
callback; here is an example:

var promisedUserName = userDAO
 // Returns a promise of the user
 .byId(userId)
 // Returns a promise of the user's name
 .then(function(user) {
 // The user's name value will be wrapped as a promise
 return user.name;
 });
promisedUserName.then(function(userName) {
 console.log(userName);
});

What happens is that the then method always returns a new promise. This new
promise will be fulfilled when the resulting value is returned by the callback. If the
callback throws an error, this second promise will be rejected.

However, what it is really more interesting is that the callback itself can return a
new promise instead of an immediate value. When a callback returns a promise,
the then method will return this promise directly. This can be very useful for
composing asynchronous processes:

var promiseAvatarIsRendered = userDAO
 .byId(userId)
 // Returns a promise of the user's picture
 .then(function(user) {
 // pictureDAO.byId returns a promise itself
 // No extra wrapping will happen
 return pictureDAO.byId(user.pictureId);
 })
 .then(function(userPic) {
 return ui.renderUserAvatar(userPic);
 });

First, we get a promise for the user. Then, when it is fulfilled, we return a promise
for the picture of the user; when we have the picture loaded, we render it.
The final result is a promise that will be fulfilled whenever the whole pipeline,
including rendering the avatar, is finished. Compare this code with a naïve
version using callbacks:

function renderUserAvatar(userId, cb) {
 userDAO.byId(userId, function(err, user) {

Writing BDD Features

[94]

 pictureDAO.byId(userId, function(err, userPic) {
 ui.renderUserAvatar(userPic, cb);
 });
 });
}

How do we handle errors? We can register a second callback in the error handler;
this callback will be invoked if the promise is rejected. Again, it will be invoked only
once, and we will not lose the error. Here is an example:

var promiseAvatarIsRendered = userDAO
 .byId(userId)
 .then(function(user) {
 return pictureDAO.byId(user.pictureId);
 }, function(err) {
 if(shouldRecoverError(err))
 return defaultPicture;
 throw err;
 })
 .then(function(userPic) {
 return ui.renderUserAvatar(userPic);
 });

The error handlers are very simple. If we can recover the error, we should return a
value. In this case, the returned promise will not be rejected, but will be fulfilled with
the new value. If we cannot handle the error, we can throw it or throw a new one.
In this case, the promise will be rejected with the error we throw.

Obviously, promises are a much better choice for our API, since we can both
compose asynchronous processes and handle errors much easily.

Promises are not implemented in any of the standard libraries that come with the
current version of the JavaScript language (ES5). They will be in the next version,
ES6. Node.js v0.10.x does not include promises either. However, do not worry; there
are a lot of libraries that implement the promise that we can use. Some popular
libraries for promises are Q, bluebird, and when, although there are more! All of
them are good, but in this book we will use Q. Since we want to use promises for
our API, we will install it:

$ me@~/mycafe> npm install --save q

Chapter 3

[95]

Since we want to use Q for the API of our order system, we need to save it as a
runtime dependency instead of as a development dependency. The preceding
command will simply install the most recent stable version. If you wish to install
the exact version of Q that I am using, then change the command as follows:

$ me@~/mycafe> npm install --save q@1.0.1

Anyway, you can use another promise's library if you wish!

If you want to go deep into promises, you could go to
http://promisesaplus.com/ and read the specification;
alternatively, and maybe better, you just can read the documentation
for the Q framework at http://documentup.com/kriskowal/q/.

Mocha and promises
You can test promises in Mocha very easily. This time, you do not need to invoke a
done callback; you just need to return the promise! Mocha will wait for the promise
to be fulfilled or rejected before proceeding with the test suite. If the promise is
rejected, it will report that the test has failed using the error that rejects the promise.

It should be easy then to change the test:

var result;
beforeEach(function () {
 this.orderId = 'some empty order id';
 this.orderDAO.byId
 .withArgs(this.orderId)
 .callsArgWithAsync(1, null, []);

 return this.orderSystem.display(this.orderId)
 .then(function (res) {
 result = res;
 });
});

The change is very simple; the done callback has been removed; now, the display
method returns a promise, so we do not need to pass a callback parameter. We used
the returned promise to capture the final result into the result variable. Note that
this callback has no parameter for errors, because the then method will only call it
when the operation is successful. Finally, we returned the promise, so Mocha will
wait for it.

Writing BDD Features

[96]

Another way of testing it is to wait for the promise in the test methods. The first
thing to do is to store the promise result of the display(this.orderId) action into
a field of the runtime context called this.result:

context('Given that the order is empty', function () {
 var orderId;
 beforeEach(function () {
 orderId = 'some empty order id';
 this.orderDAO.byId
 .withArgs(orderId)
 .callsArgWithAsync(1, null, []);

 this.result = this.orderSystem.display(orderId);
 });
 // Skipped for brevity
});

Note that we also stored the identifier of the order for future reference in the
orderId variable. Now, we can return a promise with an assertion in each test of
this scenario. For example, to test that there are no items in the result, we can use the
following lines of code:

it('will show no order items', function () {
 return this.result.then(function (result) {
 expect(result).to.have.property('items')
 .that.is.empty;
 });
});

In this solution, we just wrapped the assertions of each test in the then method and
returned the resulting promise. Again, Mocha will wait for the promise to finish. If the
assertion fails, it will throw an error; this will reject the promise, and Mocha will mark
the promise as failed. We can apply the same technique to the other two tests:

it('will show 0 as total price', function () {
 return this.result.then(function (result) {
 expect(result).to.have.property('totalPrice')
 .that.is.equal(0);
 });
});

Chapter 3

[97]

it('will only be possible to add a beverage', function () {
 return this.result.then(function (result) {
 expect(result).to.have.property('actions')
 .that.is.deep.equal([
 {
 action: 'append-beverage',
 target: orderId,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 }
]);
});

However, this solution is not so good, since it has more boilerplate code in the tests
than the other approach. On the other hand, the beforeEach block looks much
better. Can we have the best of both approaches? Yes, we can.

Chai-as-Promised
The chai-as-promised package is an extension of Chai. It adds to Chai the
capability to handle promises directly. It basically adds the eventually chain,
the fulfilled, rejected properties, and the rejectedWith() assertion.

We can insert the eventually chain in our Chai assertion; from this point,
chai-as-promised will simply wrap the rest of the assertion in the then method
of the promise. For example, have a look at the following assertion:

return this.result.then(function (result) {
 expect(result).to.have.property('totalPrice')
 .that.is.empty;
});

The preceding assertion can be simplified as follows:

return expect(this.result).to.eventually
 .have.property('totalPrice').that.is.equal(0);

On the other hand, the fulfilled property will simply check whether the promise
has been already fulfilled:

return expect(this.result).to.be.fulfilled;

Writing BDD Features

[98]

In the same line, the rejected property will check whether the promise has been
rejected, and rejectedWith() will additionally check the error, just like a normal
throw assertion. For example, take a look at the following lines of code:

return expect(this.result).to.be.rejected;
return expect(this.result).to.be.rejectedWith(NotFoundError);
return expect(this.result).to.be.rejectedWith(NotFoundError,
 orderId);

It's now time to code. First of all, let's install chai-as-promised:

$ me@~/mycafe> npm install --save-dev chai-as-promised

Then, we need to import it in our test and plug it into Chai:

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon'),
 orderSystemWith = require('../lib/orders');

chai.use(require("chai-as-promised"));
// Skipped for brevity

Now, we can change our tests:

context('Given that the order is empty', function () {
 // Skipped for brevity
 it('will show no order items', function () {
 return expect(this.result).to.eventually
 .have.property('items').that.is.empty;
 });
 it('will show 0 as total price', function () {
 return expect(this.result).to.eventually
 .have.property('totalPrice').that.is.equal(0);
 });
 it('will only be possible to add a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.is.deep.equal([
 {
 action: 'append-beverage',
 target: orderId,
 parameters: {

Chapter 3

[99]

 beverageRef: null,
 quantity: 0
 }
 }
]);
 });
});

As you can see, the assertions now look almost like normal asynchronous assertions.
You just need to add the eventually chain and return the resulting assertion. It is
very important that you return the assertion; if not, Mocha will think that your test
is synchronous and will not wait for it. This is bad because the test will always pass,
since the actual assertion is performed inside a promise.

I recommend that you have a look at the GitHub project page for
a complete reference of this library at https://github.com/
domenic/chai-as-promised/.

Test doubles with promises
Sometimes, you need to make a test double for an object that returns promises
instead of using callbacks. We can explore this if we assume that our DAO
uses promises.

The easiest way is to make the Sinon stub return a promise if we are using the Q
promises package, as shown in the following code:

beforeEach(function () {
 orderId = 'some empty order id';
 this.orderDAO.byId
 .withArgs(orderId)
 .returns(Q.fulfill([]));

 this.result = this.orderSystem.display(orderId);
});

In this case, we are using Q.fulfill(val) to create a promise for a normal value,
which is an empty array in this case. We could have used Q.reject(err) if we had
wanted the stub to simulate an error.

This approach is very simple and works in most cases. However, it has a problem;
it is synchronous! Both methods will fulfill or reject the promise immediately.
So, when we call the stub, it returns a promise that is already fulfilled.

Writing BDD Features

[100]

If we want a more realistic test double, we need to ensure that the promise returned
is not immediately done. This is exactly the same thing we had with callsArgWith
and callsArgWithAsync. We can get something similar with a couple of utilities:

function promiseFor(value) {
 return Q.delay(1).then(function () {
 return value;
 });
}

function failingPromiseWith(error) {
 return Q.delay(1).then(function () {
 throw error;
 });
}

These utilities simply wrap a value or an error in a promise, but with a small delay of
a millisecond. This way, it will be fulfilled or rejected asynchronously. Now, our test
would be like this:

beforeEach(function () {
 orderId = 'some empty order id';
 this.orderDAO.byId
 .withArgs(orderId)
 .returns(promiseFor([]));

 this.result = this.orderSystem.display(orderId);
});

Now, our test double returns a really asynchronous promise.

Should we use a DAO based on callbacks or promises? As we saw, if
we have already selected the technology that we are going to use as the
database, we should make the DAO mimic the real object offered by the
database driver. Usually, they offer a callback-based interface; in this
case, we will stick with the callback. If you are not sure about it, you
should stick to a callback-based interface because it is the most common.

Chapter 3

[101]

Organizing our test code
We will continue coding our tests, assuming that our API uses promises but that the
DAO uses callbacks. If you tried to make your first scenario pass, then you would end
up with something similar to what I have in my project in the lib/orders.js file:

var Q = require('q');

module.exports = function () {
 return {
 display: function (orderId) {
 return Q.fulfill({
 items: [],
 totalPrice: 0,
 actions: [
 {
 action: 'append-beverage',
 target: orderId,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 }
]
 });
 }
 };
};

No orderDAO anywhere! In fact, we can remove all references to orderDAO in the
setup or our test! What happened is that we introduced it prematurely. This is
something we would not have done in real circumstances but, for the purposes of
this book, it was very convenient.

On the other hand, start thinking of the high-level architecture of our
system; it is not a bad thing, provided that you timebox it. It stands to
reason that the orders must have come from some kind of database.
So, introducing a DAO for this, even a bit prematurely, helps us shape
the boundary of our system, so it is not so bad!

Writing BDD Features

[102]

We can continue writing our feature. We can write the setup and action for the
next scenario:

context('Given that the order contains beverages', function () {
 beforeEach(function () {
 this.orderId = 'some non empty order id';
 this.orderDAO.byId
 .withArgs(this.orderId)
 .callsArgWithAsync(1, null, [
 {
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 1
 },
 {
 beverage: {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 2.30
 },
 quantity: 2
 }
]);

 this.result = this.orderSystem.display(this.orderId);
 });
 // Skipped for brevity
});

This time, the DAO will return an order with two items. The first item is a single
expresso, and the second one is two mocaccinos. Each item is composed of a quantity
and a beverage. The beverage has an identifier, a name, and a price.

Again, the simple fact that we need to make a setup forces us to think about the
design of our system. In this case, we need to figure out how the order items are
stored in the database.

If the data schema for the order is already known, just be faithful to it.
Remember that DAOs should not involve any logic beyond the mere
IO to retrieve or update the information. Any data transformation or
additional logic should be inside our order subsystem. This way, we
can cover such logic with the tests we are writing.

Chapter 3

[103]

In this example, we have chosen a specific data schema where the beverage
information is embedded in the order document. We could have chosen another
approach such as using a reference to the beverage instead of a copy. In a real
project, this is a good moment to have a technical discussion about which data
schema design to use.

Irrespective of the data schema we use for our storage, the result of the display
should include all the relevant data that we want to display to the user. So, the tests
for the order information are as follows:

it('will show one item per beverage', function () {
 return expect(this.result).to.eventually
 .have.property('items').that.is.deep.equal([
 {
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 1
 },
 {
 beverage: {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 2.30
 },
 quantity: 2
 }
]);
});

it('will show the sum of the unit prices as total price', function ()
{
 return expect(this.result).to.eventually
 .have.property('totalPrice').that.is.equal(6.10);
});

Writing BDD Features

[104]

The actual test for the order contents and the setup has a lot of duplication, so it is
better to clean it a bit:

beforeEach(function () {
 this.orderId = 'some non empty order id';
 this.expresso = {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 };
 this.mocaccino = {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 2.30
 };
 this.orderItems = [
 { beverage: this.expresso, quantity: 1},
 { beverage: this.mocaccino, quantity: 2}
];
 this.orderDAO.byId
 .withArgs(this.orderId)
 .callsArgWithAsync(1, null, this.orderItems);

 this.result = this.orderSystem.display(this.orderId);
});

it('will show one item per beverage', function () {
 return expect(this.result).to.eventually
 .have.property('items')
 .that.is.deep.equal(this.orderItems);
});

We simply stored the setup data in the runtime context so that we can reference it
from both the tests and the setup.

The storage object pattern
Although we do not have much duplication now, we have ended up with a quite
verbose setup that it is not very nice to read. Furthermore, if we want to make a
similar setup in another scenario or in another feature, we will end up copying and
pasting this code. This is highly probable, since most of our features will involve
some kind of access to the orders database. This approach to setup is clearly not very
maintainable.

Chapter 3

[105]

What we need is to encapsulate the setup logic so that we can reuse it across all of
our tests. We can start with an extract method:

function orderAlreadyContainsItems(orderDAO, orderId, items) {
 orderDAO.byId
 .withArgs(orderId)
 .callsArgWithAsync(1, null, items);
 return items;
}

context('Given that the order contains beverages', function () {
 beforeEach(function () {
 this.orderId = 'some non empty order id';
 this.expresso = {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 };
 this.mocaccino = {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 2.30
 };
 this.orderItems = orderAlreadyContainsItems(this.orderDAO, this.
orderId, [
 { beverage: this.expresso, quantity: 1},
 { beverage: this.mocaccino, quantity: 2}
]);

 this.result = this.orderSystem.display(this.orderId);
 });
 // Skipped for brevity
});

This would be OK if we only had one method for our DAO but, as a general rule, we
can use the DAO to delete, update, or create. It is not something that we are going to
do in the display feature, but we will definitely need it in place to order a beverage,
add a beverage, and so on.

It is common to have more than one DAO. So, we would like to have something that
we can reuse for other DAOs.

For the sake of brevity, we will look at how to make a better setup now and leave
implementing all of these features till later.

Writing BDD Features

[106]

The idea is that we can create a test double that represents not the DAO but the
external storage system, such as a database or a remote third-party service. We can
create a utility in the test/support/storageDouble.js file with the following code:

'use strict';

var sinon = require('sinon');

module.exports = function () {
 var dao = { byId: sinon.stub() },
 storage = {};

 storage.dao = function () {
 return dao;
 };

 storage.alreadyContains = function (entity) {
 var data = entity.data;
 dao.byId
 .withArgs(entity.id)
 .callsArgWithAsync(1, null, data);
 return entity;
 };

 return storage;
};

In this file, we are creating an object that encapsulates both the setup code and the
test double creation.

We created a double for the order DAO and stored it in a dao local variable. We
offered a read accessor for this DAO too. This is good because, if we decide that we do
not want to use Chai anymore or we change the interface of the DAO, we do not need
to review all of our tests to accommodate the change; we can review only this file.

Then we come to the alreadyContains method. This method contains the setup
logic to specify that there is already an order in the database. This way, if the
interface of the DAO changes, we do not need to change our tests; we only need
to change the storageDouble library. If, in the future, we need to add a new
kind of setup, we can add a new method here. Additionally, we can reuse the
storageDouble library to create a test double for any DAO that has the same
interface as our orders DAO.

Chapter 3

[107]

Let's change our test to leverage this:

var chai = require('chai'),
 expect = chai.expect,
 newStorage = require('./support/storageDouble'),
 orderSystemWith = require('../lib/orders');

chai.use(require("chai-as-promised"));

describe('Customer displays order', function () {
 beforeEach(function () {
 this.orderStorage = newStorage();
 this.orderSystem = orderSystemWith(this.orderStorage.dao());
 });

Note that we no longer import the Sinon module; instead, we import our
storageDouble utility. We use it to create a new order storage double, and then
we use the dao accessor to initialize our order system. The rest of the test ends up
being like this:

 context('Given that the order is empty', function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains({
 id: 'some empty order id',
 data: []
 });

 this.result = this.orderSystem.display(this.order.id);
 });

 // Skipped for brevity

 it('will only be possible to add a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.is.deep.equal([
 {
 action: 'append-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 }

Writing BDD Features

[108]

]);
 });
 });

 context('Given that the order contains beverages', function () {

 beforeEach(function () {
 // Skipped for brevity
 this.order = this.orderStorage.alreadyContains({
 id: 'some non empty order id',
 data: [
 { beverage: this.expresso, quantity: 1},
 { beverage: this.mocaccino, quantity: 2}
]});

 this.result = this.orderSystem.display(this.order.id);
 });

 it('will show one item per beverage', function () {
 return expect(this.result).to.eventually
 .have.property('items')
 .that.is.deep.equal(this.order.data);
 });
 // Skipped for brevity
 });
// Skipped for brevity
});

Note that the test is now more concise and legible. On the one hand, the order data
has been consolidated into the this.order field. On the other, we are using the
alreadyContains method of orderStorage; this makes the setup more expressive.

The example factory pattern
Let's think about our test data. It will be much better if we have a common set of
standard test-beverage samples. This way, we can reference this beverage sample
from any of our tests, making them less verbose.

To do so, we can create a factory object that we can use to create examples of test
data. This example factory should offer factory methods that allow us, in a simplified
but expressive way, to describe the data we want to have in the examples. This also
applies to examples for the input data or the expected results.

Chapter 3

[109]

We can apply this idea to our tests. First, we can create a support/examples/
beverages. js file:

'use strict';

module.exports = {
 expresso: function () {
 return {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 };
 },
 mocaccino: function () {
 return {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 2.30
 };
 }
};

This code example uses functions in order to return a new copy of the data; this way,
we can change it without problems in the tests if we need to do so. Instead of using
one single method capable of creating any beverage, we have opted to model only a
limited set of beverages. This is much more simple and expressive. The trick is to use
realistic examples taken from the problem domain.

Using example factories gives us another advantage: it protects our test from data
schema changes. We can reuse this dictionary of beverages across tests; if the data
schema for beverages changes, there is only one place we need to change.

Do not overdo it! The point of this technique is to simplify
your test codebase and make it more maintainable and
expressive. Do not end up adding complex logic here or
creating ultraflexible parametrizable factories. So, proceed
with common sense here and define only simple and
expressive factories, with only a bit of logic or none at all.

Writing BDD Features

[110]

We can try to do the same with orders. In this case, we would like to create
empty and nonempty orders. We can define another utility in support/examples/
orders.js:

'use strict';

var beverage = require('./beverages');

var counter = 0;

function asOrderItem(itemExample) {
 return {
 beverage: beverage[itemExample.beverage](),
 quantity: itemExample.quantity
 };
}

module.exports = {
 empty: function () {
 return {
 id: "<empty order>",
 data: []
 };
 },
 withItems: function (itemExamples) {
 counter += 1;
 return {
 id: "<non empty order " + counter + ">",
 data: itemExamples.map(asOrderItem)
 };
 }
};

This utility is a bit more complex. It has two methods: one to generate empty
orders and the other, withItems, to generate nonempty ones from an array
of item examples.

Each of these examples consists of a beverage name and a quantity. We will
transform it into a real array of items using the asOrderItem function that will ask
the beverage examples to create the correct beverage for each name. This design
helps us to abstract the test from the exact way we are managing the relationship
between order items and beverages from the tests. If we change from using a
embedded beverages to using references, we only need to change this utility.

Chapter 3

[111]

The counter variable is used inside the withItems method to generate the id of the
order, as this detail is not important in the tests.

Now, we need to change the test to leverage these utilities:

var chai = require('chai'),
 expect = chai.expect,
 newStorage = require('./support/storageDouble'),
 order = require('./support/examples/orders'),
 orderSystemWith = require('../lib/orders');

chai.use(require("chai-as-promised"));

describe('Customer displays order', function () {
 // Skipped for brevity
 context('Given that the order is empty', function () {
 beforeEach(function () {
 this.order = this.orderStorage
 .alreadyContains(order.empty());

 this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });

 context('Given that the order contains beverages', function () {
 beforeEach(function () {
 this.order = this.orderStorage
 .alreadyContains(order.withItems([
 { beverage: 'expresso', quantity: 1},
 { beverage: 'mocaccino', quantity: 2}
]));

 this.result = this.orderSystem.display(this.order.id);
 });

 // Skipped for brevity
 });
 // Skipped for brevity
});

Writing BDD Features

[112]

As you can see, we used the order example factory in the setup. We do not need to
worry about identifiers, and we can reference the beverage now. The setup is now
much more compact, readable, and relevant.

You should hide any information and data structures that are not strictly relevant to
the behavior of the feature we are trying to test. This includes technical details such
as identifiers, for example. However, the border between relevant and irrelevant can
sometimes be quite blurry.

In this specific example, is the price of each beverage relevant? Yes, you need to know
the price to understand whether the total price is correctly calculated or not. From
this point of view, we should have specified the price of the beverage in the setup of
the tests. In this example, I decided to be less verbose at the cost of being less explicit.
You can do this only if there is a strong common understanding about the test data;
thus, if it is clear that a Mocaccino example always costs 230, then we do not need to
be explicit about the price. This usually happens when the data is realistic and comes
from the problem domain. If your team does not have this common understanding
about the test examples, I recommend that you go for a more verbose and more explicit
approach, hiding only the things that are not strictly relevant to the test.

Finishing the scenario
Now we can try to finish our scenario. The tests on the available actions are pending,
so it is time to implement them. We can first do the test relative to being able to place
the order:

it('will be possible to place the order', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include({
 action: 'place-order',
 target: this.order.id
 });
});

We simply checked whether the actions property is a collection that includes the
relevant action. We can now add tests to add and remove a beverage from the order:

it('will be possible to add a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include({

Chapter 3

[113]

 action: 'append-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 });
});

it('will be possible to remove a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include({
 action: 'remove-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: beverage.expresso().id
 }
 })
 .and.that.include({
 action: 'remove-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: beverage.mocaccino().id
 }
 });
});

These tests have exactly the same structure as the one relating to placing the order.
The only interesting thing here is the remove-beverage test. Here, we are checking
whether we have two remove-beverage actions, one for each beverage. We will use
the and chain from Chai to make the assertion more compact. Finally, we will add a
test to check whether we have an action to edit the quantity of each beverage:

it('will be possible to change the quantity of a beverage', function
() {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include({
 action: 'edit-beverage',
 target: this.order.id,
 parameters: {

Writing BDD Features

[114]

 beverageRef: beverage.expresso().id,
 newQuantity: 1
 }
 })
 .and.that.include({
 action: 'edit-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: beverage.mocaccino().id,
 newQuantity: 2
 }
 });
});

To build the actions on adding and removing beverages, we need the identifiers of
the corresponding beverages, and the beverage example factory is used to get them.
The tests are readable but a bit verbose. There is also a bit of duplication between all
the actions, since all have a target set to the order.

We can make it a bit more succinct if we create a new example factory for actions. If
we look carefully, all the actions are very much coupled to the actual contents of the
order. It makes sense to create action examples from an order example. We can edit
test/support/examples/orders.js to include a method to create order actions:

module.exports = {
 empty: function () {
 // Skipped
 },
 withItems: function (itemExamples) {
 // Skipped
 },
 actionsFor: function (order) {
 return {
 removeItem: function (index) {
 var item = order.data[index];
 return {
 action: 'remove-beverage',
 target: order.id,
 parameters: {
 beverageRef: item.beverage.id
 }
 };
 },

Chapter 3

[115]

 editItemQuantity: function (index) {
 var item = order.data[index];
 return {
 action: 'edit-beverage',
 target: order.id,
 parameters: {
 beverageRef: item.beverage.id,
 newQuantity: item.quantity
 }
 };
 },
 appendItem: function () {
 return {
 action: 'append-beverage',
 target: order.id,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 };
 },
 place: function () {
 return {
 action: 'place-order',
 target: order.id
 };
 }
 };
 }
};

Now, we can take an order example and, using actionsFor, we can create an
example factory for this particular order.

The place and appendItem methods will create an action for "placing an order"
and "adding a beverage" respectively. The example factory knows about the order
identifier, so it can fill the target field.

The same thing happens with removeItem and editItemQuantity. Instead of
passing the expected default value for the newQuantity field and the beverage
identifier for the beverageRef field, we chose to simply pass the index of the item.
This makes sense, since the item has all the information needed to fill the parameters
of the action.

Writing BDD Features

[116]

We can edit our scenario as follows:

context('Given that the order contains beverages', function () {
 beforeEach(function () {
 this.order = this.orderStorage
 .alreadyContains(order.withItems([
 { beverage: 'expresso', quantity: 1},
 { beverage: 'mocaccino', quantity: 2}
]));
 this.orderActions = order.actionsFor(this.order);
 this.result = this.orderSystem.display(this.order.id);
 });

 // Skipped for brevity

 it('will be possible to place the order', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.place());
 });

 it('will be possible to add a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.appendItem());
 });

 it('will be possible to remove a beverage', function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.removeItem(0))
 .and.that.include(this.orderActions.removeItem(1));
 });

 it('will be possible to change the quantity of a beverage', function
() {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.editItemQuantity(0))
 .and.that.include(this.orderActions.editItemQuantity(1));
 });
});

Now, our scenario is much less verbose.

Chapter 3

[117]

Parameterized scenarios
Sometimes, you would like to execute the same scenario with different sets of
setup data and/or with different inputs. Maybe you need to triangulate to drive a
more realistic implementation, or you would simply like to explicitly specify what
happens with some edge cases.

We can try to use the technique we saw in the last chapter with our "nonempty
order" scenario:

function scenarioOrderContainsBeverages(testExample) {
 context('Given that the order contains ' + testExample.title,
function () {

 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.
withItems(testExample.items));
 this.orderActions = order.actionsFor(this.order);

 this.result = this.orderSystem.display(this.order.id);
 });

 it('will show one item per beverage', function () {
 // Skipped, no changes here
 });

 it('will show the sum of the unit prices as total price', function
() {
 return expect(this.result).to
 .eventually.have.property('totalPrice')
 .that.is.equal(testExample.expectedTotalPrice);
 });

 // Skipped (No changes in the rest of the tests)
 });
}

[
 {
 title: '1 Expresso and 2 Mocaccino',
 items: [
 { beverage: 'expresso', quantity: 1},
 { beverage: 'mocaccino', quantity: 2}
],
 expectedTotalPrice: 6.10
 }
].forEach(scenarioOrderContainsBeverages);

Writing BDD Features

[118]

Now that our test is parameterized, we can add another example. However, first,
let's add another beverage in the support/examples/beverages.js file:

module.exports = {
 // Skipped for brevity
 capuccino: function () {
 return {
 id: "capuccino id",
 name: "Capuccino",
 price: 2
 };
 }
};

Now, we can create a new example that contains a capuccino:

[
 {
 title: '1 Expresso and 2 Mocaccino',
 items: [
 { beverage: 'expresso', quantity: 1},
 { beverage: 'mocaccino', quantity: 2}
],
 expectedTotalPrice: 6.10
 },
 {
 title: '1 Mocaccino, 2 expressos, and 1 capuccino',
 items: [
 { beverage: 'mocaccino', quantity: 1},
 { beverage: 'expresso', quantity: 2},
 { beverage: 'capuccino', quantity: 1}
],
 expectedTotalPrice: 7.30
 }
].forEach(scenarioOrderContainsBeverages);

Now, we need to change the tests on the edit, quantity, and delete items. Since we
have three items, we should check for all of them. We could implement some kind
of loop to create a promise for each assertion about each item action. Then, we could
use Q.all to wait for all the assertions to be fulfilled or for at least one to be rejected.
However, this is actually not a good idea. The resulting code would be complex; in
our tests, we should favor code that is simple and expressive. After all, it is just a test,
not production code.

Chapter 3

[119]

What we actually need is a separate test for each separate assertion. Until now, we
have had all the assertions for all the edit quantity actions in a single test. We are
asserting for the first and second items in the same test. The same thing applies to the
remove item action.

Let's change our tests:

testExample.items.forEach(function (itemExample, i) {

 it('will be possible to remove the ' + itemExample.beverage,
 function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.removeItem(i));
 });

 it('will be possible to change the quantity of ' +
 itemExample.beverage, function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.include(this.orderActions.editItemQuantity(i));
 });

});

This is much better. Now, we have a different test for each item. We can even
have a much better and explicit title for each test; this will produce a much
informative report.

Do not abuse these techniques. It is more important for the tests to be easily readable
than to save a bunch of lines of code. As a rule of thumb, it is OK to parameterize one
scenario if we conserve exactly the same set of assertions for each test data example.
For example, one can be tempted to merge the "empty order" with the "nonempty
order" scenario. After all, it is just different setup data, right? However, if we do this,
then we need to parameterize somehow whether the place order is expected to be
available or not (an empty order should not be). The same thing applies to testing:
there are no other actions available, except for adding an item. Maybe, we need to
change the title of the tests, depending on whether the order is empty or not, to offer
a clearer test report. This is too complicated, and the resulting test code would be less
readable, so it is better not to do it. As always, just use your common sense to decide
whether it is reasonable to parameterize one scenario or not.

Writing BDD Features

[120]

Finishing our feature
We are almost done; we just need to finish our last scenario. First of all, we need a
new DAO that is responsible for storing the messages. The real implementation of
this DAO, perhaps, will not go to the database but will probably use the flash scope
or the session scope of the web framework we are going to use. This does not matter
conceptually as it is an object to access external data:

beforeEach(function () {
 this.orderStorage = newStorage();
 this.messageStorage = newStorage();
 this.orderSystem = orderSystemWith({
 order: this.orderStorage.dao(),
 message: this.messageStorage.dao()
 });
});

Now, we can create an example message factory in the test/support/examples/
errors.js file:

'use strict';

module.exports = {
 badQuantity: function (quantity) {
 return {
 key: "error.quantity",
 params:[quantity]
 };
 },
 beverageDoesNotExist: function () {
 return {
 key: "error.beverage.notExists"
 };
 }
};

For now, we can imagine two errors: when the user tries to order a quantity that is
not a number or is less than one and when the requested beverage does not exist.

Now we can change our tests:

var chai = require('chai'),
 expect = chai.expect,
 newStorage = require('./support/storageDouble'),

Chapter 3

[121]

 order = require('./support/examples/orders'),
 errors = require('./support/examples/errors'),
 orderSystemWith = require('../lib/orders');

chai.use(require("chai-as-promised"));

describe('Customer displays order', function () {

 beforeEach(function () {
 this.orderStorage = newStorage();
 this.messageStorage = newStorage();
 this.orderSystem = orderSystemWith({
 order: this.orderStorage.dao(),
 message: this.messageStorage.dao()
 });
 });

 context('Given that the order is empty', function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });

 this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });

 function scenarioOrderContainsBeverages(testExample) {
 context('Given that the order contains ' + testExample.title,
function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.
withItems(testExample.items));
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.orderActions = order.actionsFor(this.order);

Writing BDD Features

[122]

 this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });
 }
 // Skipped for brevity
 context('Given that the order has pending messages', function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: [errors.badQuantity(-1)]
 });

 this.result = this.orderSystem.display(this.order.id);
 });
 it('will show the pending messages', function () {
 return expect(this.result).to.eventually
 .have.property('messages')
 .that.is.deep.equal(this.messages.data);
 });
 it('there will be no more pending messages');
 });
});

We need to add the setup for the new DAO in the other scenarios too. The new test
itself is very simple.

To implement the remaining test, we need to think about what needs to happen
so that the messages are not shown again. The answer is simple: we need to test
whether we are updating the messages to an empty array after displaying them.
We need to change the storageDouble.js file to add a method to update:

module.exports = function () {
 var dao = {
 byId: sinon.stub(),
 update: sinon.stub()
 },
 storage = {};
 storage.updateWillNotFail= function() {
 dao.update.callsArgWithAsync(1, null);
 };
 // Skipped for brevity
};

Chapter 3

[123]

We not only need to add the update method, but also a setup method to ensure that
the update will be performed successfully. Otherwise, the test double will never call
the callback, and our test will time-out.

Note that not all the doubles in our system need to have the same
interface or be DAOs. If you really think that messageDAO should
have another interface, just create a new kind of test double.

Now, we just need to write our test:

var chai = require('chai'),
 expect = chai.expect,
 newStorage = require('./support/storageDouble'),
 order = require('./support/examples/orders'),
 errors = require('./support/examples/errors'),
 orderSystemWith = require('../lib/orders');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

describe('Customer displays order', function () {
 // Skipped for brevity
 context('Given that the order is empty', function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();

 this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });

 function scenarioOrderContainsBeverages(testExample) {
 context('Given that the order contains ' + testExample.title,
function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.
withItems(testExample.items));

Writing BDD Features

[124]

 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();
 this.orderActions = order.actionsFor(this.order);

 this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });
 }
 // Skipped for brevity
 context('Given that the order has pending messages', function () {

 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: [errors.badQuantity(-1)]
 });
 this.messageStorage.updateWillNotFail();

 this.result = this.orderSystem.display(this.order.id);
 });

 it('will show the pending messages', function () {
 return expect(this.result).to.eventually
 .have.property('messages')
 .that.is.deep.equal(this.messages.data)
 });

 it('there will be no more pending messages', function () {
 var dao = this.messageStorage.dao(),
 orderId = this.order.id;
 return this.result.then(function () {
 expect(dao.update)
 .to.be.calledWith({
 id: orderId,
 data: []
 });
 });
 });
 });
});

Chapter 3

[125]

We need to explicitly state in the setup that the update operation of the message will
not fail. This is nice, as it reminds us that we should write an additional scenario
about handling failure.

The main problem now is that the test is a bit convoluted, because we need to wait
for the operation to finish before actually making the assertion against the test
double. We can solve this issue by simply waiting for the operation to complete in
the beforeEach block:

context('Given that the order has pending messages', function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: [errors.badQuantity(-1)]
 });
 this.messageStorage.updateWillNotFail();

 this.result = this.orderSystem.display(this.order.id);

 return this.result;
 });

 it('will show the pending messages', function () {
 return expect(this.result).to.eventually
 .have.property('messages')
 .that.is.deep.equal(this.messages.data)
 });

 it('there will be no more pending messages', function () {
 expect(this.messageStorage.dao().update)
 .to.be.calledWith({
 id: this.order.id,
 data: []
 });
 });

We can make it a bit nicer still if we create a method that represents the assertion in
the test object itself:

var chai = require('chai'),
 expect = chai.expect,
 sinon = require('sinon');

Writing BDD Features

[126]

module.exports = function () {
 var dao = {
 byId: sinon.stub(),
 update: sinon.stub()
 },
 storage = {};
 // Skipped for brevity
 storage.toExpectUpdate = function (entity) {
 expect(dao.update).to.be.calledWith(entity);
 };

 return storage;
};

Now, our test can be rewritten as follows:

it('there will be no more pending messages', function () {
 this.messageStorage.toExpectUpdate({
 id: this.order.id,
 data: []
 });
});

Finally, we just need to parameterize the scenario:

function scenarioOrderHasPendingMessages(testExample) {
 context('Given that the order has pending the following messages: '
+ testExample.title, function () {
 beforeEach(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: testExample.pendingMessages
 });
 this.messageStorage.updateWillNotFail();

 return this.result = this.orderSystem.display(this.order.id);
 });
 // Skipped for brevity
 });
}

[
 {
 title: 'bad quantity[-1]',
 pendingMessages: [errors.badQuantity(-1)]
 },
 {

Chapter 3

[127]

 title: 'beverage does not exist, bad quantity[0]',
 pendingMessages: [
 errors.beverageDoesNotExist(),
 errors.badQuantity(-1)
]
 }
].forEach(scenarioOrderHasPendingMessages);

Summary
In this chapter, you learned some of the following tricks to write better features:

• Decompose the system into the principal entities. Then analyze which actions
each role can perform on each entity. For each action you discover, there
must be a feature.

• Do not forget that the act of displaying or showing information is an action
itself, so it needs its own feature.

• Decompose a feature in a set of scenarios where each scenario represents a
different setup or input data that will lead to a different outcome.

• We need a specific test for each outcome of each scenario.
• The returned data is not the only possible outcome, but there can be side

effects and available actions.
• Test an asynchronous system based either on callbacks or promises.
• Build asynchronous test doubles using either callbacks or promises.
• Test doubles should faithfully resemble the technology we use to access

external systems, databases, and other features. This includes not only the
interface, but also the resulting data schemas.

• Make a more efficient setup that extracts the example test-data creation to
example factory objects.

• Create smart test objects that represent external systems and that will
encapsulate all the test double creation, setup, and assertion logic.

• Build parameterized scenarios.

In the next chapter, you will learn another tool used for BDD: Cucumber.js. We will
learn how to express features in a more human-friendly format used by Cucumber.js:
Gherkin. Finally, we will implement another feature of myCafé and
see how we can isolate the testing of both features and decouple them.

Cucumber.js and Gherkin
In the last two chapters we covered how to effectively use Mocha from the point
of view of BDD, but Mocha is not the only option we have. There are plenty of test
runners that we could have used to implement our BDD tests. Other tools such as
Vows (http://vowsjs.org/) work perfectly well (some claim even better than
Mocha) to do BDD. However, I have chosen Mocha because it is the most popular
tool and because all the things that you have learned with it can be easily applied to
other tools. Nonetheless, I would not consider this book complete if I did not show
you another tool for comparison purposes, and this tool is Cucumber.js.

In this chapter:

• We will explore how to write BDD features using Gherkin
• You will learn how to automate features written in Gherkin

using Cucumber.js
• We will write several helper codes that will simplify this automation
• You will learn the World object pattern used in Cucumber.js
• We will migrate the feature we wrote in the last chapter to Gherkin

and Cucumber.js
• We will see how to reuse most of the code of the last chapter to implement

tests using Cucumber.js

Cucumber.js and Gherkin

[130]

Getting started with Gherkin and
Cucumber.js
Gherkin is a domain-specific language, specialized in describing features and
scenarios. The point of Gherkin is that it is extremely similar to natural language,
so similar that domain experts can read and understand features written in Gherkin
or, in some lucky cases, write them themselves.

This is a very important advantage, since BDD aims not only to automate tests, but
also to improve communication between domain experts and software developers.

To introduce the Gherkin language, we will migrate to this language the "display
order" feature we coded in the previous chapter, and then we will automate it
using Cucumber.js.

For brevity, I will not show system error scenarios. Keep in mind that, if you were
writing a real application, you would need to add scenarios about these kinds of
errors. You need to address things such as what happens when one of the external
systems, such as the orders database, is down!

Preparing your project
We can prepare a project from scratch but, for this example, it is faster to just reuse
the project we already have. Simply make a copy of the myCafé project, and then
you can remove the test/customer_displays_order.js file but keep the test/
support/ folder. Remove the node_modules/ folder and edit the package.json file
to remove all the references to Mocha. It should look similar to this:

{
 "name": "mycafe",
 "version": "0.1.0",
 "description": "A sample app for BDD with JS",
 "main": "index.js",
 "author": "Enrique Amodeo",
 "license": "MIT",
 "devDependencies": {
 "chai": "^1.9.1",
 "chai-as-promised": "^4.1.1",
 "sinon": "^1.10.3",
 "sinon-chai": "^2.5.0"
 },

Chapter 4

[131]

 "dependencies": {
 "q": "^1.0.1"
 }
}

Now you should execute npm install to reinstall the remaining dependencies.
Then just install the cucumber package:

$ me@~/mycafe> npm install --save-dev cucumber

After the installation, we can edit the package.json file to add a test script:

{
 "name": "mycafe",
 "version": "0.1.0",
 "description": "A sample app for BDD with JS",
 "main": "index.js",
 "scripts": {
 "test": "cucumber.js --format pretty"
 },
 "author": "Enrique Amodeo",
 "license": "MIT",
 "devDependencies": {
 "chai": "^1.9.1",
 "chai-as-promised": "^4.1.1",
 "cucumber": "^0.4.1",

 "sinon": "^1.10.3",
 "sinon-chai": "^2.5.0"
 },
 "dependencies": {
 "q": "^1.0.1"
 }
}

The test script will just invoke the command-line tool of Cucumber.js, called
cucumber.js, and tell it to use the pretty reporter.

If you are using Windows, then you must use cucumber-js instead
of cucumber.js as the executable name. Fortunately, this detail
will be hidden inside our package.json file, and we will be able to
run Cucumber.js simply using npm test.

Let's start writing our first scenario!

Cucumber.js and Gherkin

[132]

Writing your first scenario in Gherkin
We can create a folder called features/ in the root of the new project. In general,
inside the features/ folder, we will create an additional folder for each use case,
subsystem, or business process that our project implements. In this example, we will
create a making_an_order/ folder, and inside it we will add customer_displays_
order.feature with the following contents:

Feature: Customer displays order

 Part of the "Making an Order" epic

 As a Customer
 I want to display the order
 in order to review the contents of my order and its price easily

Nothing really impressive, but we have created our first Gherkin file. All Gherkin
files start with the Feature: keyword followed by the title of the feature. As a title,
we can use exactly the same title we used for our Mocha feature. The title of the
feature will be used in the test report.

The following paragraphs are simple, free text that describes the feature.
This description has no effect from the test automation point of view, but it is
helpful as general documentation.

As a description, I often use the canonical form of a user story:
As a <ROLE> I want to <ACTION> in order to <VALUE
FOR THE USER>. This usually plays very well with the BDD
approach and with agile teams in general.

Now, we can try to add our first scenario to the feature:

Feature: Customer displays order

 Part of the "Making an Order" epic

 As a Customer
 I want to display the order
 in order to review the contents of my order and its price easily

 Scenario: Order is empty
 Given that the order is empty

Chapter 4

[133]

 When the customer displays the order
 Then no order items will be shown
 And "0" will be shown as total price
 And there will only be possible to add a beverage

Every scenario must start with the Scenario: keyword. Optionally, we can put a
title to each scenario. As we saw in the last chapter, we should indicate in the title the
circumstance in the setup, or in the input data, that leads to a different outcome for
the same action.

The actual content of the scenario is defined as a series of steps. A step in Gherkin
is any sentence that starts with one of the following keywords: Given, When, Then,
And, and But. Actually, these keywords have no effect on the automation of the tests,
beyond signaling the beginning of each step. However, there is a rather strict style
about using them, which is as follows:

• Use the Given keyword to start a step intended to perform a piece of the
setup of our scenario. A setup step should be worded in the past or in the
present, specifying the state of the system before executing the scenario
action.

• Use the When keyword to specify the feature action in the present tense.
• Use the Then keyword to specify any outcome of the action. Each of these

steps represents a specific test or assertion.
• The But and And keywords are neutral and can be used whenever we want

to make our scenario more expressive. However, it is bad style to use them in
the first step of the setup or in the first assertion.

The structure of a scenario follows a Given/When/Then pattern. In the Given steps,
we define the setup of the test. In the When step, we define the action that this feature
is describing. There must be only one When step, since all features describe a single
action on the system, but the tool will not enforce this. The Then steps define the tests
or assertions we want to perform.

Note the resemblance between this structure and the one we used in our Mocha
contexts. As a rule of thumb, for each Mocha context, you should have a similar
Gherkin scenario. We have changed the wording a little to make the scenario more
readable, but the titles of the tests and contexts correspond almost exactly with the
steps and scenarios.

You can comment a single line in Gherkin using the # character.
There are no multiline comments.

Cucumber.js and Gherkin

[134]

Executing Gherkin
Now that we have a feature with a scenario, we can execute it issuing the npm test
command in the command line. The result looks something like this:

Executing Gherkin with Cucumber without code!

Wow! We did not write any JavaScript, and Cucumber is able to offer us an
understandable report. It tells us that all the steps are undefined and that we should
automate them somehow. For this, Cucumber.js offers us some code examples that
we could use to automate step execution.

The next step is to create a new JavaScript file, test/step_definitions/display_
order_steps.js, with the following contents:

'use strict';

module.exports = function () {
 this.Given(/^that the order is empty$/, function (cb) {
 cb.pending();

Chapter 4

[135]

 });

 this.When(/^the customer displays the order$/, function (cb) {
 cb.pending();
 });

 this.Then(/^no order items will be shown$/, function (cb) {
 cb.pending();
 });

 this.Then(/^"([^"]*)" will be shown as total price$/, function
(expectedTotalPrice, cb) {
 cb.pending();
 });

 this.Then(/^there will only be possible to add a beverage$/,
function (cb) {
 cb.pending();
 });
};

We just copied what Cucumber.js proposed, changing some parameter names.
When Cucumber.js loads this module, it will execute the exported function using
an instance of the Cucumber.js API as a value for this. This way, we can access
the Cucumber.js API using the this keyword. Using the Given, When, and Then
methods, we can register handlers for the different steps we wrote in our scenarios.
All of these functions are aliases of each other and perform exactly the same task:
registering a function that will handle the execution of the step that matches a certain
regular expression.

If you think that repeating this in this.Given, this.When, and
this.Then is too verbose, there is a nice trick: you can just assign
them to local variables and go without this. Have a look at the
following code:

module.exports = function() {

 var Given = this.Given,

 When = this.When,

 Then = this.Then;

 Given(/^some setup step$/, function(cb) {…});

 When(/^some action step$/, function(cb) {…});

 Then(/^some assertion step$/, function(cb) {…});

};

Cucumber.js and Gherkin

[136]

When Cucumber.js is executed, it will just parse the Gherkin of our features and look
for the registered handler whose regular expression has the best match for the step.
If it finds one, it will execute the handler function using the extracted parameters
from the regular expression.

It is a good practice to enclose the parameters in quotes. This makes
it easier to capture them in the regular expression. This is exactly
what "([^"]*)" does: capture all the characters between double
quotes that are not double quotes themselves.

The handler function always receives a callback function as its last parameter.
When Cucumber.js executes our handler function, it waits until we do one of the
following things:

• The handler function executes the callback without parameters or with a
falsy parameter to indicate that the step is executed without errors.

• The handler function executes the callback with a truthy parameter,
indicating that there was an error or an assertion failed. Alternatively, we can
invoke cb.fail(error), which is a bit more verbose but more descriptive.

• The handler function executes cb.pending(), indicating that the step is not
yet ready to be implemented properly.

A problem with the Cucumber.js approach is that we are forced to call
the callback, even if our step handler is totally synchronous. So do not
forget to invoke the callback!

When you register a step handler function using Given, When, or Then, you can use
either a regular expression or a string. For example, consider the following step:

this.Then(/^"([^"]*)" will be shown as total price$/, function
 (expectedTotalPrice, cb) {
 cb.pending();
});

The preceding step can be rewritten as:

this.Then('"$price" will be shown as total price', function
(expectedTotalPrice, cb) {
 cb.pending();
});

Chapter 4

[137]

The string style is simpler than the regular expression, so unless we really need
the full power of the regular expressions it is better to stick to the string style. In
the string style, we simply use double quotes to get a parameter. With a regular
expression, we need to use a capture group.

If you execute npm test again, you will see that nothing has changed. Do not worry;
we just need to tell Cucumber.js the location of the JavaScript files with the code that
automates the steps. We just need to change package.json:

"scripts": {
 "test": "cucumber.js --format pretty --require
 test/step_definitions/"
},

The --require parameter will tell Cucumber.js to include all the JavaScript modules
in the test/step_definitions/ folder. This way, it will see the implementation of
the steps. If you execute the tests again, you will see the following output:

Steps present, but still pending!

Now, we can see that it found all the step handlers, and it tried to execute the
scenario. When it executed the first step, the handler function called cb.pending(),
marking this step as pending. In this case, Cucumber.js will not continue to execute
the rest of the steps of the scenario and will mark them as skipped.

Cucumber.js and Gherkin

[138]

You can have your steps handlers in several files; there is no need
to put them all in the same file. In the future you could end up with
other files, such as test/step_definitions/add_beverages_
to_order_steps.js or test/step_definitions/common_
steps.js.

It is now time to start adding real code to our steps handlers. For this, we will
use the World object pattern, which is a recommended best practice in the
Cucumber ecosystem.

The World object pattern
In Cucumber.js, all the step handler functions are executed with a special object, called
the World, as a runtime context. So, whenever we reference this inside a function
handler, we access the World object. The World object has two interesting properties:

• A new instance of the World object is created before each scenario. We can
safely share information between steps through the World object, without any
fear of mixing states between scenarios. So, the best practice is to store any
state of the current scenario in the World object.

• We can create our custom World object. This is very helpful because we can
add all the utilities and helpers that our steps need.

Since the World object is used at the same time as a test support API, we will build
our own on top of the support code we used in the previous chapter. Let's create a
test/support/world.js file with the following contents:

'use strict';

var newStorage = require('./storageDouble'),
 orderSystemWith = require('../../lib/orders');

module.exports = function (cb) {
 this.orderStorage = newStorage();
 this.messageStorage = newStorage();
 this.orderSystem = orderSystemWith({
 order: this.orderStorage.dao(),
 message: this.messageStorage.dao()
 });

 cb(); // We are done!
};

Chapter 4

[139]

We simply exported a function that will be used by Cucumber.js to construct a brand
new World object. Cucumber.js expects this function to be asynchronous, even if
it is not the case, so it will pass us a callback that we must call to mark the world
construction as done.

Since a new World instance will be created for each scenario, we simply put here
the code we were using in the last chapter to initialize our order system and its
test doubles.

There is an alternative way of constructing a World object:

module.exports = function (cb) {
 var world = {};
 world.orderStorage = newStorage();
 world.messageStorage = newStorage();
 world.orderSystem = orderSystemWith({
 order: world.orderStorage.dao(),
 message: world.messageStorage.dao()
 });

 cb(world); // We are done!
};

In this style, we can create an object and simply pass it as an argument to the callback.
If we invoke the callback without arguments, Cucumber.js will use the value of this
as the new World instance. If we pass a parameter, it will become the World instance.
Which style to use? It depends on your personal style of JavaScript coding!

Now that we have the world in place, we can start implementing our step handlers.
The first thing is to tell Cucumber.js that it must use our World implementation:

var chai = require('chai'),
 expect = chai.expect,
 order = require('../support/examples/orders');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

module.exports = function () {
 this.World = require("../support/world.js");
 // Skipped tests for brevity
};

Cucumber.js and Gherkin

[140]

Apart from importing Chai and our examples factory, we will import our world
module and assign it to this.World. Cucumber.js will use whatever function is in
this.World as the world object factory. Note that Cucumber.js requires the name of
this factory to be this.World.

Let's now implement the Given step:

this.Given('that the order is empty', function (cb) {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();
 cb();
});

That is exactly the same code we had in the beforeEach block of the empty order
scenario in the previous chapter. The only difference is that we need to call the
callback, even if our setup is synchronous.

Let's go for the When step:

this.When('the customer displays the order', function (cb) {
 this.result = this.orderSystem.display(this.order.id);
 cb()
});

Nothing new; again, we will call the callback immediately. Since we are returning a
promise, we do not need to wait for it to be resolved in the When step. We will wait
for it using chai-as-promised in the Then steps:

this.Then('no order items will be shown', function (cb) {
 expect(this.result).to.eventually
 .have.property('items').that.is.empty
 .then(function (ignoredItems) {
 cb();
 }, cb);
});

Chapter 4

[141]

So, we implemented our first assertion. This is a bit weird! Of course, we must wait
for the eventual assertion made by chai-as-promised to finish, but the following
code should have worked:

this.Then('no order items will be shown', function (cb) {
 expect(this.result).to.eventually
 .have.property('items').that.is.empty
 .then(cb, cb);
});

We wait for the promise to end using the then method, passing the callback as both
parameters. If the assertion passes, then the callback will be called, since we pass it as
the success handler. If the assertion fails, then the callback is called with an error, and
Cucumber.js will fail. Why is the preceding code not correct? The problem is that the
promise returned by chai-as-promised will pass the result parameter to the success
handler when it is fulfilled successfully. This will make Cucumber.js fail, so we need
to explicitly ignore the result.

If you are wondering about the value returned by a sinon-as-
promised promise when the assertion is successful, the answer is
the actual value you are testing against in the assertion.

With this weird caveat, we can implement the rest of the steps:

this.Then('"$price" will be shown as total price', function
(expectedTotalPrice, cb) {
 expect(this.result).to.eventually
 .have.property('totalPrice')
 .that.is.equal(Number(expectedTotalPrice))
 .then(function (ignored) {
 cb();
 }, cb);
});

this.Then('there will only be possible to add a beverage', function
(cb) {
 expect(this.result).to.eventually
 .have.property('actions')
 .that.is.deep.equal([
 {

Cucumber.js and Gherkin

[142]

 action: 'append-beverage',
 target: this.order.id,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 }
])
 .then(function (ignored) {
 cb();
 }, cb);
});

Just notice the code in the test about the price. Yes, Cucumber.js will extract the
parameters using regular expressions, but they are always strings! We need to
cast it to a number.

Now you can execute the tests and see the scenario passing (assuming that you
implemented the necessary production code in the previous chapter):

A great success!

Now, everything is green!

Chapter 4

[143]

Better step handlers
So far, the code is a bit ugly, since we need to mess with callbacks and promises.
Unfortunately, unlike Mocha, Cucumber.js does not offer an easy way to deal with
promises. However, we can create a small utility for this. Create a file called
test/support/cucumber_sugar.js with the following contents:

'use strict';

module.exports = function (stepHandler) {
 return function () {
 var cb = arguments[arguments.length - 1];

 try {
 var result = stepHandler.apply(this, arguments);

 if (result && typeof result.then === 'function') {
 result.then(function (ignoredParam) {
 cb()
 }, cb);
 } else
 cb();
 } catch (err) {
 cb(err);
 }
 };
};

This code is a bit advanced, but it mainly takes a step handler function that is
written according to the Mocha spec and transforms it into a normal Cucumber.js
step handler. Basically, it executes the provided function with the same arguments
that it receives and inspects the result. If the result has a then method, it considers
that the step handler has returned a promise, and we just attach the Cucumber.js
callback to the promise. If not, we just call the callback to tell Cucumber.js that the
step handler is finished.

We can change our steps to use this utility:

'use strict';

var chai = require('chai'),
 expect = chai.expect,

Cucumber.js and Gherkin

[144]

 order = require('../support/examples/orders'),
 sugar = require('../support/cucumber_sugar');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

module.exports = function () {
 this.World = require("../support/world.js");

 this.Given('that the order is empty', sugar(function () {
 this.order = this.orderStorage.alreadyContains(order.empty());
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();
 }));

 this.When('the customer displays the order', sugar(function () {
 this.result = this.orderSystem.display(this.order.id);
 }));

 this.Then('no order items will be shown', sugar(function () {
 return expect(this.result).to.eventually
 .have.property('items').that.is.empty;
 }));

 this.Then('"$price" will be shown as total price', sugar(function
(expectedTotalPrice) {
 return expect(this.result).to.eventually
 .have.property('totalPrice')
 .that.is.equal(Number(expectedTotalPrice));
 }));

 this.Then('there will only be possible to add a beverage',
sugar(function () {
 return expect(this.result).to.eventually
 .have.property('actions')
 .that.is.deep.equal([
 {
 action: 'append-beverage',
 target: this.order.id,
 parameters: {

Chapter 4

[145]

 beverageRef: null,
 quantity: 0
 }
 }
]);
 }));
};

We only need to wrap our step's handlers using the sugar utility method. Now our
steps look exactly as in Mocha and are much more readable!

Better reporting
Another problem is the error reporting. If an assertion fails, the Cucumber.js reporter
will not offer a diff of the expected and actual values if the assertion of Chai is using
the deep flag. The real problem is that the Cucumber.js reporter does not know how
to interpret the Chai assertion error and ignore the showDiff, actual, and expected
fields. If we had an error in our code, then the report error would be like this:

Not a very useful error message

To solve this, we can write our own Cucumber.js reporter, but this is expensive.
We can go with a cheaper solution:

function simpleDiffReport(cb) {
 return function (err) {
 if (err) {
 if (typeof err.expected !== 'undefined' &&
 typeof err.actual !== 'undefined') {
 var errMsg = [];
 errMsg.push('Expected:');
 errMsg.push(JSON.stringify(err.expected));
 errMsg.push('Actual:');

Cucumber.js and Gherkin

[146]

 errMsg.push(JSON.stringify(err.actual));
 errMsg.push(err.stack);
 cb(errMsg.join('\r\n'));
 } else
 cb(err);
 } else
 cb();
 };
}

module.exports = function (stepHandler) {
 return function () {
 var cb = simpleDiffReport(arguments[arguments.length - 1]);
 // Skipped for brevity
};

We simply wrapped the callback in a function that will inspect the Chai assertion
error to compose a more meaningful message. With this change, our error message
now looks like this:

At least we know what we expect and what is returned

This error report is much more informative as we now know that the problem is the
quantity field; it is 10, and it should be 0. This will help us to debug the error better.

Chapter 4

[147]

Writing advanced scenarios
At this point, we have the first scenario working and, thanks to our sugar utility,
we have better error reporting and less clutter in our test code. Now, we will try to
address the upcoming scenarios that are a bit more complicated.

Gherkin example tables
We could write the following Gherkin code for the scenario about nonempty orders:

Feature: Customer displays order
 // Skipped for brevity

 Scenario: Order is empty
 // Skipped for brevity

 Scenario: Non empty order
 Given that the order contains "1" "Expresso"
 And that the order contains "2" "Mocaccino"
 When the customer displays the order
 Then the order will show "1" "Expresso"
 And the order will show "2" "Mocaccino"
 And "6.10" will be shown as total price
 And there will be possible to "place order"
 And there will be possible to "add beverage"
 And there will be possible to "place order"
 And there will be possible to "edit item quantity" for item
 "1"
 And there will be possible to "remove item" for item "1"
 And there will be possible to "edit item quantity" for item
 "2"
 And there will be possible to "remove item" for item "2"

The problem with this scenario is that it is very redundant and verbose. One way to
solve this is by using Gherkin tables:

Scenario: Non empty order
 Given that the order contains:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |

Cucumber.js and Gherkin

[148]

 When the customer displays the order
 Then the following order items are shown:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |
 And "6.10" will be shown as total price
 And there will be possible to:
 | action | for item |
 | place order | |
 | append item | |
 | edit item quantity | 1 |
 | remove item | 1 |
 | edit item quantity | 2 |
 | remove item | 2 |

This is much more compact. The tables offer us a way to describe a list of examples
that can be consumed by the step handlers. The syntax is quite straightforward; just
use the | character to build the cells of the table, and use the first row for the labels.

In the steps, the tables will be available as the first parameter for our step handlers.
The Cucumber.js table object has a hashes()method that transforms it into an array
of plain JavaScript objects. Each one of these objects represents a single row in the
table and will contain a field for each column of the table. Each field will have the
label of the column as the key and the value of the corresponding cell as the value.

We can now write our handlers for the new steps:

this.Given('that the order contains:', sugar(function
(orderItemExamples) {
 this.order = this.orderStorage
 .alreadyContains(order.withItems(orderItemExamples));
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();
}));

this.Then('the following order items are shown:', sugar(function
(orderItemExamples) {
 return expect(this.result).to.eventually
 .have.property('items')

Chapter 4

[149]

 .that.is.deep.equal(order.items(orderItemExamples));
}));

this.Then('there will be possible to:', sugar(function
(actionExamples) {
 var expectedActions = order
 .actionsForOrderFrom(this.order, actionExamples);

 return expect(this.result).to.eventually
 .have.property('actions')
 .that.have.length(expectedActions.length)
 .and.that.deep.include.members(expectedActions);
}));

Although the code is similar to what we did in the last chapter, we have changed
test/support/examples/orders.js here to be able to deal with the Cucumber.js
example tables. The new code for this utility is as follows:

var beverage = require('./beverages');

var counter = 0;

function asOrderItem(itemExample) {
 return {
 beverage: beverage[itemExample.beverage.toLowerCase()](),
 quantity: Number(itemExample.quantity)
 };
}

function toCamelCase(actionName) {
 return actionName
 .split(/\s+/)
 .map(function (word, i) {
 if (i === 0)
 return word;
 return word.charAt(0).toUpperCase() + word.slice(1);
 })
 .join('');
}

function actionFactoryFor(order) {
 return {

Cucumber.js and Gherkin

[150]

 removeItem: function (index) {
 return {
 action: 'remove-beverage',
 target: order.id,
 parameters: {
 beverageRef: order.data[index].beverage.id
 }
 };
 },
 editItemQuantity: function (index) {
 var item = order.data[index];
 return {
 action: 'edit-beverage',
 target: order.id,
 parameters: {
 beverageRef: item.beverage.id,
 newQuantity: item.quantity
 }
 };
 },
 appendItem: function () {
 return {
 action: 'append-beverage',
 target: order.id,
 parameters: {
 beverageRef: null,
 quantity: 0
 }
 };
 },
 placeOrder: function () {
 return {
 action: 'place-order',
 target: order.id
 };
 }
 };
}

module.exports = {
 empty: function () {
 return {

Chapter 4

[151]

 id: "<empty order>",
 data: []
 };
 },
 items: function (itemExamples) {
 return itemExamples.hashes().map(asOrderItem);
 },
 withItems: function (itemExamples) {
 counter++;
 return {
 id: "<non empty order " + counter + ">",
 data: this.items(itemExamples)
 };
 },
 actionsForOrderFrom: function (order, actionExamples) {
 var actionFactory = actionFactoryFor(order);

 return actionExamples.hashes().map(function (actionExample) {
 var actionName = toCamelCase(actionExample.action),
 forItem = actionExample['for item'];

 return actionFactory[actionName](Number(forItem) - 1);
 });
 }
};

We have some changes here. The first one is the auxiliary asOrderItem function.
It can now handle a single row for an order item example as defined in our Gherkin
scenario. It needs to change the beverage name to lowercase and transform the
quantity to a number. The exported items method calls hashes() to obtain a
JavaScript array and then maps it to a real array of order items using asOrderItem.

The other big change is the actionsForOrderFrom method. This will map a table
of examples, as described in Gherkin, to the order action objects that we actually
need in our code. For this, we will first transform the action name as it comes from
the Gherkin to an action name. We used the toCamelCase function for this. The old
actionsForm public method has been extracted and renamed to a private function
called actionFactoryFor. This way, we can still create an action factory for a given
order and use it in the mapping process. We just need to call the corresponding
factory method defined by actionName.

Cucumber.js and Gherkin

[152]

I would like to show you the last step handler again:

this.Then('there will be possible to:', sugar(function
(actionExamples) {
 var expectedActions = order
 .actionsForOrderFrom(this.order, actionExamples);

 return expect(this.result).to.eventually
 .have.property('actions')
 .that.have.length(expectedActions.length)
 .and.that.deep.include.members(expectedActions);
}));

Note that not only does it use the new order.actionsForOrderFrom utility, but it
now has a much different assertion from what we had in the last chapter. In the last
chapter, we used the include assertion for this test, and we created a different test
for each action. Now, we defined one step that tests for the whole set of actions, so
we need to test for the whole array in one shot.

We might have been tempted to use to.have.deep.equal in this case, but
this would have been a mistake. Take into account that the order in which our
implementation puts the actions into the result array might not be exactly the same
order in which the scenario specifies the examples. It is not very sensible to expect
both orders to be the same, since this is not really relevant to the good working of
our system!

To solve this problem, the assertion gets a bit more complex. Now, we need to use
the deep.include.members assertion to check whether expectedActions is a subset
of the actions array. This forces us to check whether both arrays have the same
length. This will avoid false positives if the resulting set of actions is larger than the
expected one and has actions that are not in expectedActions.

The include.members assertion checks whether all the elements
of the provided set are contained in the actual collection, but
not the other way around. It does not check for the order of the
elements. We can use the deep flag to indicate that we want a deep
comparison between the elements of both arrays.

Chapter 4

[153]

Consolidating steps
We can simplify our scenarios if we reword the steps of the empty order scenario
a bit:

Scenario: Order is empty
 Given that the order contains:
 | beverage | quantity |
 When the customer displays the order
 Then the following order items are shown:
 | beverage | quantity |
 And "0" will be shown as total price
 And there will be possible to:
 | action |
 | append item |

After all, "no items will be shown" is equivalent to showing an empty item table.
The same reasoning can be made with regard to the steps about having an order
empty or showing only the place order action. If we rephrase this scenario this way,
we can simplify our steps in the best possible way—that is, by removing the unused
steps! In this case, we can remove the steps for "the order is empty", "no order items
will be shown", and "there will only be possible to add a beverage".

The only problem with this approach is that Gherkin is not so terse as it was earlier
and looks a bit artificial. So I would like to leave it as it was earlier, but I would like
to simplify my steps too! The solution is to write the step handler code once as a
reusable function and attach it to all the steps that need it. We can make this change
in our code:

var theOrderContains = sugar(function (orderItemExamples) {
 this.order = this.orderStorage
 .alreadyContains(order.withItems(orderItemExamples));
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
 this.messageStorage.updateWillNotFail();
});
this.Given('that the order contains:', theOrderContains);

var theFollowingItemsAreShown = sugar(function (orderItemExamples) {
 return expect(this.result).to.eventually
 .have.property('items')

Cucumber.js and Gherkin

[154]

 .that.is.deep.equal(order.items(orderItemExamples));
});
this.Then('the following order items are shown:',
theFollowingItemsAreShown);

var thereWillBePossibleTo = sugar(function (actionExamples) {
 var expectedActions = order.actionsForOrderFrom(this.order,
actionExamples);

 return expect(this.result).to.eventually
 .have.property('actions')
 .that.have.length(expectedActions.length)
 .and.that.deep.include.members(expectedActions);
});
this.Then('there will be possible to:', thereWillBePossibleTo);

this.Given('that the order is empty', function (cb) {
 theOrderContains.call(this, this.dataTable([]), cb);
});

this.Then('no order items will be shown', function (cb) {
 theFollowingItemsAreShown.call(this, this.dataTable([]), cb);
});

this.Then('there will only be possible to add a beverage', function
(cb) {
 thereWillBePossibleTo.call(this, this.dataTable([
 {action: 'append item'}
]), cb);
});

The step handler function has been given a name, and we can simply from the step
registration code (this.Given, this.Then, and this.When). This really does not
change anything for those steps. However, now we can invoke them from the other
steps and reuse them! There are only two caveats, as follows:

• We need to use the call(this, param, param....) syntax to invoke the
step handlers. This is because they should run with the runtime context
(this) that points to the world instance.

• We need to pass the data table examples that they expect. We cannot simply
pass an array of objects to the step handler, since they expect a Cucumber.js
data table; unfortunately, there is no easy way of constructing one.

Chapter 4

[155]

To hide the complexity of constructing a Cucumber.js data table, the dataTable
method has been added to our world object:

var newStorage = require('./storageDouble'),
 orderSystemWith = require('../../lib/orders'),
 DataTable = require('cucumber').Ast.DataTable,
 Row = DataTable.Row;

module.exports = function (cb) {
 var world = {};
 world.orderStorage = newStorage();
 world.messageStorage = newStorage();
 world.orderSystem = orderSystemWith({
 order: world.orderStorage.dao(),
 message: world.messageStorage.dao()
 });

 world.dataTable = function (dataExamples) {
 var cucumberTable = DataTable();
 if (dataExamples.length === 0)
 return cucumberTable;
 var keys = Object.getOwnPropertyNames(dataExamples[0]);
 cucumberTable.attachRow(Row(keys));
 dataExamples.forEach(function (example) {
 var dataRow = keys.map(function (key) {
 return example[key];
 });
 cucumberTable.attachRow(Row(dataRow));
 });
 return cucumberTable;
 };

 cb(world); // We are done!
};

The first thing to do is to import the Cucumber.Ast.DataTable and Cucumber.
Ast.DataTable.Row factory functions. A Cucumber.js DataTable is made of
DataTable.Row, and each one of these rows is an array of cells. So let's assume that
we have the following lines of code in Gherkin:

beverage	quantity
Expresso	1
Mocaccino	2

Cucumber.js and Gherkin

[156]

Then the resulting DataTable should be built as follows:

var DataTable = require('cucumber').Ast.DataTable;
var items = DataTable(); // Create empty data table
// The first row is the header of the table
items.attachRow(DataTable.Row(['beverage', 'quantity']));
// Then we add the rows with the actual data
items.attachRow(DataTable.Row(['Expresso', '1']));
items.attachRow(DataTable.Row(['Mocaccino', '2']));

The dataTable method transforms a normal array of objects into a set of rows, just
like the format we used earlier. For this, it simply extracts the keys of the object to
create the header row and then extracts the values for those keys for each object.

Now we can have not only an expressive Gherkin, but also the ability to invoke a
step handler from another and create an alias between steps. This is a good tradeoff!

Advanced setup
In our current Gherkin, there is a lot of implicit setup. For example, in the steps that
set up the order contents, we also executed code to set up the fact that the update
call to the messages' DAO will not fail and that the order has no pending messages.
This looks wrong; after all, we should only do the code setup needed to populate the
items in the right order, which is what is stated in Gherkin.

We can solve this problem by adding additional steps:

Scenario: Order is empty
 Given that the order is empty
 And that the order does not have pending messages
 And that the update operations will not fail
 When the customer displays the order
 Then no order items will be shown
 And "0" will be shown as total price
 And there will only be possible to add a beverage

Scenario: Non empty order
 Given that the order contains:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |

Chapter 4

[157]

 And that the order does not have pending messages
 And that the update operations will not fail
 When the customer displays the order
 Then the following order items are shown:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |
 And "6.10" will be shown as total price
 And there will be possible to:
 | action | for item |
 | place order | |
 | append item | |
 | edit item quantity | 1 |
 | remove item | 1 |
 | edit item quantity | 2 |
 | remove item | 2 |

We also need to add the step handlers:

this.Given('that the order does not have pending messages',
sugar(function () {
 this.messages = this.messageStorage.alreadyContains({
 id: this.order.id,
 data: []
 });
}));

this.Given('that the update operations will not fail', sugar(function
() {
 this.messageStorage.updateWillNotFail();
}));

var theOrderContains = sugar(function (orderItemExamples) {
 this.order = this.orderStorage
 .alreadyContains(order.withItems(orderItemExamples));
});

Now the step handlers do only what is stated in Gherkin. However, we now have
new problems:

• We have a duplication of setup between different scenarios.
• The setup is a bit verbose.

Cucumber.js and Gherkin

[158]

• There is some coupling between the "order has no pending messages" and
the"order contains" steps. The first step must always be run after the second
one, because it needs the order identifier. This is not good because someone
can reorder the steps without being aware of this technical and business-level
irrelevant detail.

• It follows from the last point that it can be argued that whether the updates
fail or not is a lower level of abstraction, and this should not be mentioned
in Gherkin.

Before solving these problems, let's make matters worse. If you show the nonempty
order to somebody, they will frown and ask, "Why is the order price 6.10, what is the
price of each beverage?" In the last chapter, we decided not to include the unit price
in our examples and to encapsulate those details in the beverage example factory.
After all, Mocha is for developers, and any developer can browse to the example
factory to see any detail they need. However, the point of using Gherkin is to be able
to communicate with nonengineers, such as domain experts, and other stakeholders,
so we should include explicitly in Gherkin any information needed to make sense of
the scenario. Since we cannot calculate the total price of the order without knowing
the unit price of each beverage, we will need to be explicit about this:

Scenario: Order is empty
 Given that the shop serves the following beverages:
 | beverage | price |
 | Expresso | 1.50 |
 | Mocaccino | 2.30 |
 And that the order is empty
 And that the order does not have pending messages
 And that the update operations will not fail
Skipped for brevity

Scenario: Non empty order
 Given that the shop serves the following beverages:
 | beverage | price |
 | Expresso | 1.50 |
 | Mocaccino | 2.30 |
 And that the order contains:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |
 And that the order does not have pending messages
 And that the update operations will not fail
Skipped for brevity

Chapter 4

[159]

Gherkin-driven example factory
This is not a trivial change. Previously, we have been working with a fixed set of
beverage examples, and now this set is defined by Gherkin. Since we do not need
test/support/examples/beverages.js anymore, we should remove it.
We then need to change the test/support/examples/orders.js file:

var counter = 0;

// Skipped for brevity
module.exports = {
 // Skipped for brevity
 withItems: function (items) {
 counter++;
 return {
 id: "<non empty order " + counter + ">",
 data: items
 };
 },
 // Skipped for brevity
};

We have removed the test/support/examples/beverages.js module and all the
code that depends on it. Where should we put this code? The answer is to put it in
the same module that is going to implement the new logic about beverage examples.
A good place where we can put any logic relating to Gherkin examples is in our
custom world object:

// Skipped for brevity
function beverageExampleFactoryFor(beverageExamples) {
 var factory = {};
 beverageExamples.hashes().forEach(function (beverageExample) {
 var name = beverageExample.beverage,
 factoryName = name.toLowerCase(),
 price = Number(beverageExample.price);
 factory[factoryName] = function () {
 return {
 id: factoryName + " id",
 name: name,
 price: price
 };
 };
 });

Cucumber.js and Gherkin

[160]

 return factory;
}

module.exports = function (cb) {
 var world = {};
// Skipped for brevity
 function asOrderItem(itemExample) {
 return {
 beverage: world.beverageFactory[itemExample.beverage.
toLowerCase()](),
 quantity: Number(itemExample.quantity)
 };
 }

 world.shopServesBeverages = function (beveragesExamples) {
 world.beverageFactory = beverageExampleFactoryFor(beveragesExampl
es);
 };

 world.asItems = function (itemExamples) {
 return itemExamples.hashes().map(asOrderItem);
 };

 // Skipped for brevity
 cb(world); // We are done!
};

Our world object now has shopServesBeverages that will be able to dynamically
construct a beverage example factory object based on the provided examples. This
factory has exactly the same convention as the static one we had in test/support/
examples/beverages.js. The actual logic is in the beverageExampleFactoryFor
private method. It simply converts the Cucumber data table to an array and iterates
it to generate a new factory function for the corresponding beverage. All of these
functions are attached to the resulting example factory object.

In addition, we added an asItems method that contains the logic that we had earlier
in test/support/examples/orders.js to create example order items.

We made a lot of changes in our test support code, so we need to update our existing
step handlers and write a new handler for the step about "shop serving beverages":

var theOrderContains = sugar(function (orderItemExamples) {
 this.order = this.orderStorage.alreadyContains(
 order.withItems(this.asItems(orderItemExamples))
);

Chapter 4

[161]

});
var theFollowingItemsAreShown = sugar(function (orderItemExamples) {
 return expect(this.result).to.eventually
 .have.property('items')
 .that.is.deep.equal(this.asItems(orderItemExamples));
});
this.Given("that the shop serves the following beverages:",
sugar(function (beveragesExamples) {
 this.shopServesBeverages(beveragesExamples);
 }));

Implicit versus explicit setup
In the last section, we saw that we need to explicitly add any information needed
to understand the scenario outcome, looking only at the Gherkin code. This forced us
to add the price explicitly. What about the "empty messages" and the "updates will
not fail" steps?

By default, it is logical to assume that an order will not contain pending messages;
after all, nobody will expect to see any message unless something wrong has
happened. The same thing applies to the update DAO operation failing. It is even
worse in this case.

If you have any doubt about what can be safely assumed by
default and which information is relevant and which is not, there
is a simple solution: consult with the domain expert and/or the
relevant stakeholders!

In these cases, it is simply better to remove this kind of thing from the Gherkin code.
After removing the steps, we can also remove the corresponding step handlers.
However, we still need to execute the code that was in those step handlers so that
the test will run correctly!

We can move the code about "updates not failing" to the test double itself in the
test/support/storageDouble.js file:

module.exports = function () {
 // Skipped for brevity
 storage.updateWillNotFail = function () {
 dao.update.callsArgWithAsync(1, null);
 };

Cucumber.js and Gherkin

[162]

 storage.toExpectUpdate = function (entity) {
 expect(dao.update).to.be.calledWith(entity);
 };

 // Default behavior
 storage.updateWillNotFail();

 return storage;
};

The code that states that, by default, the current order has no pending messages
is more tricky, since it cannot be executed before creating the order. We can
encapsulate this logic in the world object:

'use strict';

var newStorage = require('./storageDouble'),
 orderSystemWith = require('../../lib/orders'),
 DataTable = require('cucumber').Ast.DataTable,
 Row = DataTable.Row,
 order = require('./examples/orders');

// Skipped for brevity
module.exports = function (cb) {
 var world = {},
 orderStorage = newStorage(),
 messageStorage = newStorage();

 world.orderSystem = orderSystemWith({
 order: orderStorage.dao(),
 message: messageStorage.dao()
 });

 // Skipped for brevity
 world.currentOrderHasItems = function (itemExamples) {
 world.order = orderStorage.alreadyContains(
 order.withItems(world.asItems(itemExamples))
);
 // By default, and order has no pending messages
 world.orderMessages = messageStorage.alreadyContains({
 id: world.order.id,
 data: []

Chapter 4

[163]

 });
 };

 world.asActions = function (actionExamples) {
 return order.actionsForOrderFrom(world.order, actionExamples);
 };
 // Skipped for brevity
 cb(world); // We are done!
};

Now the world object imports the order example factory and has two new methods:
asActions and currentOrderHasItems. The first method simply transforms
a set of Cucumber action examples into actions belonging to the current order. The
second one contains the logic about dealing with the storage double objects to create
an order with specific contents. As discussed, the created order will not contain any
messages by default.

Since all of our logic about messages and orders is inside the world object, we can
make the storage doubles private. The step handler code changed to the new world
API is as follows:

'use strict';

var chai = require('chai'),
 expect = chai.expect,
 sugar = require('../support/cucumber_sugar');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

module.exports = function () {
 // Skipped for brevity
 var theOrderContains = sugar(function (orderItemExamples) {
 this.currentOrderHasItems(orderItemExamples);
 });
 // Skipped for brevity
 var thereWillBePossibleTo = sugar(function (actionExamples) {
 var expectedActions = this.asActions(actionExamples);

 return expect(this.result).to.eventually
 .have.property('actions')
 .that.have.length(expectedActions.length)
 .and.that.deep.include.members(expectedActions);
 });
 // Skipped for brevity
};

Cucumber.js and Gherkin

[164]

The importing of the order example factory has been removed. The step handler
implementations are now much simpler because most of the logic is now in the
world object.

As a rule of thumb, you should use the world object to
encapsulate the setup logic and the transformation between
Cucumber examples and data that your application needs.

The Background section
Finally, we can remove the duplication using a Background: section in our
Gherkin:

Feature: Customer displays order

 Background:
 Given that the shop serves the following beverages:
 | beverage | price |
 | Expresso | 1.50 |
 | Mocaccino | 2.30 |

 Scenario: Order is empty
 Given that the order is empty
 When the customer displays the order
 # Skipped for brevity

 Scenario: Non empty order
 Given that the order contains:
 | beverage | quantity |
 | Expresso | 1 |
 | Mocaccino | 2 |
 When the customer displays the order
 # Skipped for brevity

The steps in the Background: section will be run before each scenario, so we
can refactor the common steps of all scenarios relating to the same feature into
this section.

If you are thinking of refactoring the common steps between features,
I am sorry to disappoint you; this is not possible in Cucumber.

Chapter 4

[165]

Parameterized scenarios
As with Mocha, sometimes we would like to triangulate in Gherkin; the equivalent
would be to execute the same scenario but with different data. To do so, Gherkin
provides the Scenario Outline: and Examples: sections.

Suppose you have the following scenario for the validator of the Chapter 2,
Automating Tests with Mocha, Chai, and Sinon:

Scenario: Invalid number
 Given the default set of validation rules
 When the system validates the number "-2"
 Then the result will include the error "non positive"

We can parameterize as follows:

Scenario Outline: Invalid number
 Given the default set of validation rules
 When the system validates the number "<input number>"
 Then the result will include the error "<expected error>"

 Examples:
 | input number | expected error |
 | 0 | non positive |
 | -2 | non positive |
 | 3 | three |
 | 5 | five |
 | 15 | three |
 | 15 | five |

In the example, we can see the <input number> and <expected errors>
placeholders. A placeholder defines a variable that will be substituted by
Cucumber.js for the corresponding value in the examples table. Placeholders are
defined using the < and > characters enclosing their names. As you see in the
example, the name can contains spaces.

Cucumber.js will execute Scenario Outline: once for each data row in the
Examples: section. In each execution, it will first replace any placeholder with
the corresponding value, and then it will try to find the corresponding step
handler to execute.

One Scenario Outline: section can have more than one
Examples: section.

Cucumber.js and Gherkin

[166]

Unfortunately, we cannot have nested tables in Gherkin. A nested table would make
our Gherkin very complex to read, and this will remove a lot of value from the
Cucumber approach.

We can now parameterize our "nonempty order" scenario:

Background:
 Given that the shop serves the following beverages:
 | beverage | price |
 | Expresso | 1.50 |
 | Mocaccino | 2.30 |
 | Frapuccino | 4 |

// Skipped for brevity
Scenario Outline: Non empty order
 Given that the order contains:
 | beverage | quantity |
 | <beverage 1> | <quantity 1> |
 | <beverage 2> | <quantity 2> |
 When the customer displays the order
 Then the following order items are shown:
 | beverage | quantity |
 | <beverage 1> | <quantity 1> |
 | <beverage 2> | <quantity 2> |
 And "<expected price>" will be shown as total price
 And there will be possible to:
 | action | for item |
 | place order | |
 | append item | |
 | edit item quantity | 1 |
 | remove item | 1 |
 | edit item quantity | 2 |
 | remove item | 2 |

Examples:
beverage 1	quantity 1	beverage 2	quantity 2	expected price
Expresso	1	Mocaccino	2	6.1
Mocaccino	2	Expresso	1	6.1
Frapuccino	5	Mocaccino	3	26.9

Note that we added a new beverage, the Frapuccino, and replaced the data table cells
and the total price with placeholders.

Chapter 4

[167]

In fact, we can put placeholders in any part of the step, including
data cells or even headers in the data tables.

The lack of nested tables forces us to make the Examples: section a bit more verbose,
using several columns to fill the cells of the full table. The main limitation of this is that
we need to stick to a fixed number of rows in our data tables—in this case, only two
items per order. The good news is that we do not need to change any code!

If you really need to triangulate using a different number of order items, you could
try with the following Gherkin code:

Scenario Outline: Non empty order
 Given that the order contains the following "<items>"
 When the customer displays the order
 Then "<items>" will be shown as the order's content
 And "<expected price>" will be shown as total price
 And there will be possible to:
 | action | for items |
 | place order | |
 | append item | |
 | edit item quantity | <for items> |
 | remove item | <for items> |

Examples:
items	for items	expected price
1 Expresso, 2 Mocaccino	1,2	6.10
2 Mocaccino, 1 Expresso	1,2	6.10
2 Frapuccino,1 Mocaccino,1 Expresso	1,2,3	11.80

Instead of using tables for the order items, we used a comma-separated list of items.
Each element in this list is a quantity followed by the name of the beverage. This is
a very natural way of expressing example data in our scenario. We used the same
approach for the actions; now, each action example has a for items column where
we can put a comma-separated list of item indexes.

The data structure used in our test's code will often not have a
direct correspondence with the way we structure the examples
in Gherkin. Use the test support code to decouple the structure
of the Gherkin examples and the structure we need in the actual
models and DAOs.

Cucumber.js and Gherkin

[168]

The resulting steps are very expressive and the examples table is easy to read, so this
is a good approach. The only problem is that the code of the step handlers needs to
be changed to this new approach. First, in our world object we need to change the
way we parse the item examples:

function asOrderItem(itemExample) {
 var regex = /\s*(\d+)\s*([^\s]+)\s*$/;
 var matches = regex.exec(itemExample.toLowerCase());
 if (!matches)
 throw new Error('<[' + itemExample + ']> is not an order item');
 return {
 beverage: world.beverageFactory[matches[2]](),
 quantity: Number(matches[1])
 };
}

world.asItems = function (itemExamples) {
 if (!itemExamples)
 return [];
 return itemExamples.split(',').map(asOrderItem);
};

First, the asItems method expects a simple string that contains the comma-separated
list of items, so it no longer uses hashes(); instead, it employs split(','). Second,
asOrderItem does not receive an object, but a string, so we need to use a regular
expression to parse it.

Now, we can change the steps:

this.Given('that the order contains the following "$items"',
theOrderContains);

this.Then('"$items" will be shown as the order\'s content',
theFollowingItemsAreShown);

this.Given('that the order is empty', function (cb) {
 theOrderContains.call(this, "", cb);
});

this.Then('no order items will be shown', function (cb) {
 theFollowingItemsAreShown.call(this, "", cb);
});

Chapter 4

[169]

The only changes are the wordings of the steps and the fact that we do use a plain
string instead of a data table.

We now need to change the logic to parse the actions. This is in test/support/
examples/orders.js:

actionsForOrderFrom: function (order, actionExamples) {
 var actionFactory = actionFactoryFor(order);

 return actionExamples.hashes().map(function (actionExample) {
 var actionName = toCamelCase(actionExample.action),
 forItems = actionExample['for items'];

 if (!forItems)
 return actionFactory[actionName]();

 return forItems.split(/\s*,\s*/).map(function (itemIndex) {
 return actionFactory[actionName](itemIndex - 1);
 });
 }).reduce(function (a, b) {
 // Flaten array
 return a.concat(b);
 }, []);
}

Now we need to map the value of the for items column to an array of actions.
Since we can end up with an array of actions, we need to flatten the result.

We are investing a lot of effort in translating examples into actual data structures that
we can use. This effort will allow us to write a Gherkin that is easy to understand,
but we need to be careful here and write this kind of code in a way we can reuse it.
For this, we do not just need to create reusable utilities, we also need to define both
our data examples and steps in a homogeneous way, so that we can take advantage
of our test support code.

Avoid writing Gherkin that looks technical! The point of writing
Gherkin is to engage the stakeholders in their own language.

Cucumber.js and Gherkin

[170]

Finishing the feature
We can now add the scenario about the pending messages:

Scenario Outline: Order has pending messages
 Given that the order has the following pending messages "<pending>"
 When the customer displays the order
 Then "<pending>" messages will be shown
 And there will be no more pending messages

Examples:
 | pending |
 | bad quantity '-1' |
 | beverage does not exist, bad quantity '-1' |

Now, we need to edit test/support/example/errors.js to be able to parse
the messages:

var errorExampleFactory = {
 asMessage: function (messageExample) {
 var regex = /\s*([^']+)('[^']+')?\s*$/;
 var matches = regex.exec(messageExample);
 if (!matches)
 throw new Error('<[' + itemExample + ']> is not a message');
 var factoryName = matches[1].replace(/\s+$/, ''),
 factory = errorExampleFactory[factoryName];
 if (typeof factory !== 'function')
 throw new Error('<[' + factoryName + ']> is an unknown
message');

 return factory(matches[2]);
 },
 'bad quantity': function (params) {
 return {
 key: "error.quantity",
 params: params
 };
 },
 'beverage does not exist': function () {
 return {
 key: "error.beverage.notExists"
 };
 }
};

module.exports = errorExampleFactory;

Chapter 4

[171]

We can change the world object as follows:

world.currentOrderHasItems = function (itemExamples) {
 // By default, no messages
 world.alreadyExistsAnOrderWith(itemExamples, "");
};

world.currentOrderHasMessages = function (messagesExamples) {
 // We do not care about the items here!
 world.alreadyExistsAnOrderWith("", messagesExamples);
};

world.alreadyExistsAnOrderWith = function (itemExamples,
messagesExamples) {
 world.order = orderStorage.alreadyContains(
 order.withItems(world.asItems(itemExamples))
);
 // By default, and order has no pending messages
 world.orderMessages = messageStorage.alreadyContains({
 id: world.order.id,
 data: world.asMessages(messagesExamples)
 });
};

world.asMessages = function (messagesExamples) {
 if (!messagesExamples)
 return [];
 return messagesExamples.split(',').map(error.asMessage);
};

The new asMessages method will transform the message examples into an array of
error message objects using the test/support/example/errors.js utility.

With this new scenario, it is clear that we can potentially create an order with
any combination of items and messages, so we need a method for this. This
method is alreadyExistsAnOrderWith. The currentOrderHasItems and
currentOrderHasMessages methods rely on alreadyExistsAnOrderWith.
This method is now in charge of setting up the doubles to create an order with
a specified set of items and messages.

Cucumber.js and Gherkin

[172]

Finally, we will add the step handlers:

var orderHasPendingMessages = sugar(function (messages) {
 this.currentOrderHasMessages(messages);
});
this.Given('that the order has the following pending messages
"$messages"', orderHasPendingMessages);

this.Then('"$messages" messages will be shown', sugar(function
(messages) {
 return expect(this.result).to.eventually
 .have.property('messages')
 .that.is.deep.equal(this.asMessages(messages));
}));

this.Then('there will be no more pending messages', function (cb) {
 orderHasPendingMessages.call(this, "", cb);
});

This finishes the "happy path" of the feature. Now, we should start adding scenarios
about what happens when one of the DAOs fails or if the requested order simply
does not exist, but I will leave it as an exercise for you.

Useful Cucumber.js features
There are some features in Cucumber.js that can be handy in certain situations.
Let's see what they are.

Tagging features and scenarios
You can tag features, scenarios, and Examples: sections to selectively execute only
tagged parts of your specification.

You can create a tag using the @ character as follows:

@ready
Feature: Some feature

 @simple
 Scenario: scenario 1
 # Skipped for brevity
 @errorcase
 Scenario: scenario 2
 # Skipped for brevity

Chapter 4

[173]

 @important @regression
 Scenario Outline: scenario 3
 # Skipped for brevity

 Examples:
 | placeholder 1 | placeholder 2 |
 | example 1.1 | example 1.2 |
 | example 2.1 | example 2.2 |

 @complicated
 Examples:
 | placeholder 1 | placeholder 2 |
 | example 3 | example 2 |

You can simply put a space-separated list of tags in any section of the Gherkin code.
If you add tags at the feature level, all its scenarios will inherit it.

To run the scenarios selectively, you can use the --tags option:

$> cucumber.js --format pretty --tags @ready

$> cucumber.js --format pretty --tags @simple

$> cucumber.js --format pretty --tags @simple,@errorcase

$> cucumber.js --format pretty --tags @ready --tags @~complicated

The first command line will run all the scenarios that are tagged as @ready. In this
example, this means all the scenarios in our feature, but potentially not in other
features. The second command will run only scenario 1.

The third command line will run scenarios that are either tagged as @simple or as
@errorcase. When a comma-separated list of tags is specified in the command line,
they are combined using OR logic.

You can have several --tags arguments—for example, in the preceding command
line. In this case, Cucumber.js will combine the expressions using AND logic.

You can use the predefined @ignore tag to momentarily avoid the
execution of certain scenarios.

Tags can be very useful to organize your test runner. For example, one can use tags
to group together features that belong to the same subsystem or to relate some of
them to specific bug tickets.

Cucumber.js and Gherkin

[174]

Hooks
In Cucumber.js, you can define hooks—that is, functions that can be run before, after,
or around each scenario.

The function that you use as a hook behaves like a normal step handler: the this
keyword points to the world object, and you must call the callback to notify that
you are done. That is why we can use our sugar utility for hooks too.

The before hook
You can declare a before hook using the this.Before function provided by
Cucumber.js. For example, you could have a file called test/step_definitions/
hooks.js:

module.exports = function() {
 this.Before(sugar(function() {
 // Note: "this" here points to the world object
 return this
 .writeOrdersToDB()
 .then(this.initServer.bind(this));
 }));
};

We used our sugar() utility. In the example, writeOrdersToDB and initServer
return promises.

Before hooks will be executed once before every scenario, but after the world
constructor. The Background: section, if any, will be executed after the hook.

Before hooks are useful for initialization purposes, such as setting up the DAOs or
starting a server. You need to decide what part of this initialization logic should go
inside the world constructor and what should be done inside a before hook. Usually,
it depends on your personal coding style; some people use only the before hook,
and some others do not. I often use hooks for technical set up or clean up that is not
strictly relevant for the stakeholders, and hence should not appear in the Gherkin.

Chapter 4

[175]

The after hook
We can write a symmetric after hook for the before hook we just wrote:

module.exports = function() {
 // Skipped for brevity
 this.After(sugar(function() {
 // Note: "this" here points to the world object
 return this
 .stopServer()
 .then(this.deleteOrdersFromDB.bind(this));
 }));
};

After hooks will be executed once whenever a scenario finishes.

The around hook
Around hooks are a bit more complex. They allow us to execute code before and
after each scenario, giving us more fine-grained control. For example, we can merge
both the before and after hooks we just wrote as follows:

module.exports = function() {
 this.Around(function(executeScenario) {
 // Note: "this" here points to the world object
 this.writeOrdersToDB()
 .then(this.initServer.bind(this))
 .then(function() {
 executeScenario(function(cb) {
 this.stopServer()
 .then(this.deleteOrdersFromDB.bind(this))
 .then(cb, cb);
 });
 });
 });
};

The around hook receives an executeScenario function. We should call this
function whenever the scenario must be executed. The function receives a callback
as a parameter with the code block (the same code as in the after hook) to be
executed after the scenario is run.

Cucumber.js and Gherkin

[176]

Non-English Gherkin
What happens if our stakeholders do not understand English? We can simply write
the Gherkin code in a language they are comfortable with!

The keywords of Gherkin, such as Scenario: or Feature:, are translated to
other languages (at the moment of writing this book, they are translated into
40 languages!).

Just add # language: code as the first line of your feature file. The code is the
two-letter code of the language you choose (en for English, es for Spanish, and so
on). To see what languages are supported and to find out the translations of each
keyword, visit https://github.com/cucumber/gherkin/blob/master/lib/
gherkin/i18n.json.

Cucumber.js or Mocha?
Which is better? Cucumber.js or Mocha? There is no clear answer to this question,
but here is my advice: if you have engaged stakeholders who are willing to read or
even write the Gherkin code, go for Cucumber.js. If you are not in this (fortunate)
situation, then using Cucumber.js is not so attractive.

Even if you are in this situation, you need to think twice before using Cucumber.js,
specially if you are new to BDD or JS. The main problem with Cucumber.js is that you
need to invest a lot in the test support code that translates the Gherkin to real code.
This effort is wasted if the stakeholders are not going to, at least, read the Gherkin code
and give you feedback on the intended behavior of the system.

On the technical side, the Cucumber.js tool itself is a bit immature, specially
compared to Mocha. I specially miss the support for promises, better assertion failure
reporting, a simple API to deal with tables, or a simple way to call one step from
another. These are problems that could be solved in the future or with a couple of
utilities, but nowadays you will pay an extra cost to build this small helper utilities.

The Ruby version of Cucumber is much more mature, and it is
easier to work with it.

However, even when I am writing Mocha, I start thinking in the tests from the
Gherkin point of view. I can recommend that you think of your features and
scenarios as if you were going to write them with Gherkin and then adapt them to
Mocha. If you have a look at the previous chapter, the structure and titles of the test
suite are very much influenced by how I would have done it with Gherkin.

Chapter 4

[177]

Another option is to use a tool that transforms Gherkin to Mocha. Definitely, this is
possible, as the project at https://github.com/mklabs/mocha-gherkin shows.

Summary
In this chapter, you learned how to use Gherkin and Cucumber.js to write BDD
features. This has been a long and hard chapter, because you not only needed to
learn a new tool, Cucumber.js, but you also needed to build a set of utilities to make
your life easier.

Always write features and scenarios in a language that makes sense and is
understandable to the stakeholders. Avoid technical details, such as database
structure, identifiers, or low-level operations, in your Gherkin.

It is a best practice to create a custom world object. The world object will be
instantiated once before each scenario, so it is a good place to store any information
that needs to be accessed by all the steps in the same scenario. In general, keep the
code in the step handlers as small as possible. To achieve this, try to move some logic
to the world object.

Create small utilities to allow Cucumber.js to deal with promises, synchronous steps,
and Chai assertions more easily.

In Gherkin, you can create data tables to model complex examples that contain
lists of objects, so it is a good practice to create test utilities that help you transform
these examples and data tables into data structures that your system needs. Add
entry points to this API in the world object; this way, you can take advantage of the
existing context in the world object to simplify the API.

Another good trick is to share the step handler functions across different step
definitions. This is useful for the implementation of steps that are simply aliases,
or slight variations, of each other.

Avoid duplication in the setup of your scenarios that refactor common setup steps
to a Background: section.

You can use Scenario Outline: to create a parameterized scenario. The scenario
will be run once for each row in the Examples: section.

Until now, you have learned how to test your business logic first, but sometimes
we would like to test other aspects of our application, such as the UI or how we are
publishing our logic to the Web. In the next chapter, we will start exploring how to
test the server side of our application.

Testing a REST Web API
In this chapter, you will learn how to test a REST web API. As we will see, publishing
a specific functionality as a REST web API is not simple and involves a lot of corner
cases. Fortunately, there are a lot of tricks we can use to make our life easier.

In this chapter, you will learn the following topics:

• How to make a very fast test suite that can run around 150 tests per second to
drive a REST API

• Why we should isolate the tests of the REST API from the tests of our
business layer and how to do this efficiently

• The main design patterns for our test suite when dealing with REST APIs

The approach
We have already coded a feature for the myCafé application; now, we have been
asked to publish this feature as a web API. Business thinks that other parties can
build nice applications on top of it, and IT thinks that we can integrate the order
subsystem as a microservice inside the company.

If you are new to restful web API's design, you can get an introduction
to it in RESTful Java Patterns and Best Practices, available at https://
www.packtpub.com/application-development/restful-
java-patterns-and-best-practices.

As an industry, it is a good practice to publish our logic as a REST service that
follows the hypermedia approach. For this, we can use a standard mime type called
application/hal+json; this is simply known as HAL.

Testing a REST Web API

[180]

If you want to know the exact details of HAL, you could read the
standard documentation at http://tools.ietf.org/html/draft-
kelly-json-hal-06.

Basically, we need to create a web server that receives a GET HTTP request for the
order, calls the display() method of the core logic we have developed so far, and
maps the response to a HAL document. It does not sound very complex, but how
do we test it?

A strategy to test web APIs
A naïve approach to testing would be to simply change the existing tests to attack a
web server instead of a local API. We can maintain the current features and scenarios
and change the step handlers, if we use Cucumber.js, or the implementation of the
tests, if we use Mocha.

This approach is called an integrated test, since we are testing the core business layer
(the order subsystem) and the web layer at the same time. This is actually a popular
approach and can work pretty well with simple cases such as the one we are using in
this book. However, it will not scale very well for non-toy projects.

The problem here is that creating a hypermedia web API for the order subsystem,
and the order subsystem itself, are different problem domains.

The main point is that the web API does not really care about business logic;
it simply deals with the technical aspects of REST and HAL. It could even publish
as a HAL document, an order object that is not strictly valid according to the
business logic.

On the other hand, the order subsystem must be totally independent of how we
publish and consume it. It can be consumed as a local API, published as HAL,
as an old SOAP style service, or through an enterprise queue system.

The following are the main responsibilities of the web API:

• Publishing the display() operation in HTTP. This involves defining
an URI, which HTTP method will be used, which HTTP status codes to
use, and so on.

• Extracting the corresponding parameters from such a request.
• Mapping the result of the display() operation as a HAL document. This

involves technical details, such as how to model the actions or how to
represent the order items.

• Dealing with network problems.

Chapter 5

[181]

To sum up, the main responsibility of the web API layer must be to publish the
business processes over the web. A corollary of this is that the behavior of the
web API layer should not add any kind of extra logic to the business rules. Also,
for each business operation, there must be a feature in the web API that publishes
it over the Web.

As we just saw, the responsibilities of the web API layer are mostly independent of
the business logic ones, and they are complex enough to be considered a different
problem domain.

If we decide to make an integrated test, we might face some of the
following drawbacks:

• If we want to have good test coverage of all the paths, then we will
end up with a combinatorial explosion of scenarios and features.
This happens because we need to test for most combinations of the
functionality of both layers.

• The tests are confusing and usually not at the right level of abstraction.
If we test only at the business level, then we will have a big gap between
the description of the test and the actual code we need to implement in the
test, thus leading to complex tests. Furthermore, since the test is defined in
the language of the business, we cannot precisely specify tests for technical
aspects of the web API (the tests may be getting complex due to this big
gap in abstraction). On the other hand, if we test at the web API level,
the resulting tests will not be very user-friendly, and we might get lost in
technical details instead of focusing on functionality.

• An integrated test is hard to diagnose. If a test fails, where is the problem?
In the web layer or in the business layer?

Of course, in small projects, these factors are not very big, and we can go for an
integrated test approach and test both layers together. However, I have seen too
many ineffective, over-complex, and expensive-to-maintain test codebases due to this
mistake. So, it is better to slice the system into two dimensions. One axis is the different
layers of abstraction that we can have: the web API layer and the business layer. The
other one is based around business entities: orders, beverages, and so on. We will have
a separate library, each one with its own separate feature set with a corresponding test
suite, stated in a language that corresponds with its own problem domain.

If you are a domain-driven design practitioner, note that the business
entities I proposed correspond to aggregate roots or bounded contexts.

Testing a REST Web API

[182]

Mocha or Cucumber.js?
Which tool should we use? In this case, the problem domain is very technical, and we
will normally have different stakeholders from the ones we have for the business logic
layer. For the later ones, it is enough to know that the order is published as a "service"!

The point is that any stakeholder who can understand the problem domain of
publishing a web API can probably read the code of your tests, provided that they
are maintainable enough.

The conclusion is that Cucumber.js will not, probably, add much
value to the tests of this technical problem domain, so it is better
to use Mocha.

The plan
Both the order subsystem and its web API are different problem domains, so we
should test the latter as a different set of features of our application.

For this, we will make a test double of the business layer; in this case, it is only an
object with a display() method. We need to design a server API that we can use to
start, stop, and make the server use the test double.

We can use any HTTP client for Node.js to drive the interaction with the server. The
other option could be to use a mocking library for the network stack, but I consider
this kind of mocking only necessary if you really need more speed in your tests.
However, even using real HTTP calls, we can run around 100 tests per second on a
normal laptop. This is usually sufficient to test-drive our server-side code.

Hence, the proposed testing architecture is like the following diagram:

HTTP

(Asse t)r
response

request
(action)

Node.js

BUSINESS LAYER
TEST DOUBLE

EXPRESS ROUTES

EXPRESS APP

TEST SUITE

S
ET

 U
P

Testing architecture for our web API

Chapter 5

[183]

As you can see, both the server and test code reside in the very same Node.js process.
Before running any test, the server will be started and will not be stopped until the
end of the test suite. Before each test, the server is injected with a brand new test
double that represents the order core business layer, so we can run each test using a
clean and predictable state.

All this arrangement makes our test suite faster due to the following reasons:

• No need to use separate processes for the server and the tests.
• No need to instantiate, bind to a server socket, and stop our server app for

each test. This saves a lot of time, as these steps are very expensive.
• No need to set up a database. After all, we are testing only the web layer

so that we can perform the setup phase with only a simple test double
in memory.

If you need an even faster test, you can opt to use a library to make test doubles of
the Node.js HTTP server libraries or, if you are using it, the express package.
In this case, you can apply the techniques we explored in the previous chapters.

Testing the GET order feature
Let's create a brand new package in a different project. Why a different project?
We have explored the idea that the API deserves its own set of features and that
we should decouple it from the core layer using a well-defined interface that we
will mock. Since it is a different problem domain, we should create a different
package. This way, we can develop them and manage their life cycles in an
independent fashion.

For a simple project like this, it is OK if you prefer to simply put
both layers in the same package.

So, let's create a mycafe-api/ folder with the same project layout we have been
using so far. Initialize the project by creating a basic package.json file, and then,
run the following commands to install the packages we need:

$ ~/mycafe-api> npm install --save-dev chai sinon sinon-chai chai-as-
promised request mocha

$ ~/mycafe-api> npm install --save express q

Testing a REST Web API

[184]

Note that I am installing express as a runtime dependency (version 4.x). This is a
great package that allows us to create either a web application or a web API. Due to
brevity, we will not see how to use it in this book; in fact, it deserves its own book.
For more details, just see http://expressjs.com/4x/api.html.

The other dependencies are the normal testing libraries we have been using so far.
As I explained earlier, we will use Mocha instead of Cucumber.js.

However, how do we connect this web API package with the business layer? In a
real system, the project we did in the last two chapters will be the core business logic
layer. We can publish this project as an NPM package to our private NPM repository
or link it as a local package on our machine. Then, we can connect the web API
package and the business logic package in the following two ways:

• One way is by referencing the business logic package as a runtime
dependency from the mycafe-api project.

• An even better alternative would be to have a mycafe-server package,
with runtime dependencies to the business logic package, and the web API
package. This server package can instantiate a business logic instance, inject
it to the web API package, and start the web server using the routes from the
web API package.

Now we are ready to implement our first scenario.

Exploring our feature a bit
What should be our first feature? In a web API, the equivalent of displaying an order
is to retrieve the web resource that corresponds to that order. The standard way
to do so involves issuing a GET HTTP request to the order resource that should be
published in a URI. Hence, our feature should be called Get Order or something
along these lines.

Basically, we need to explore what happens when we issue a GET request against our
system. There are several scenarios here: success, the requested order does not exist,
security, an error on the database, and so on.

Let's create a test/get_order.js file with the following contents:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

Chapter 5

[185]

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

describe('GET /order/:orderId', function () {
 context('The order exists', function () {
 it('will respond with a 200 code');

 describe('will respond with a HAL document for the order',
 function () {
 // What goes here?? We will see throughout this chapter
 });
 });

 context('The order does not exists', function () {
 it('will respond with a 404 code');
 });

 context('The order subsystem is down', function () {
 it('will respond with a 500 code');
 });
});

To start with, we can have one success and two failure scenarios:

• If the order is found, we must return a 200 Ok code. We also need to describe
what kind of document we want to return in the body of the request. Later in
this chapter, we will see what to do here.

• If the order requested does not exist, we should return a 404 Not Found
code.

• If there is an exception or error during the execution of the order,
we should return a 500 Internal Server Error code.

I am sure that, if we think hard enough, we can add more error scenarios. For
brevity, we will focus on the success scenario. I will leave the other scenarios to you
as an exercise. For now, let's start with the very basics: testing the 200 Ok code.

Also notice the title of the 'GET /order/:orderId' feature; it is very technical, but
since our problem domain is how to create a web API, we should use titles that are
meaningful at the abstraction level of a web API. In this case, this title makes sense
because the actual action that we are testing is what happens when a client performs
a GET request to the /order/:orderId URI, where :orderId means the actual public
identifier of the order.

Testing a REST Web API

[186]

Starting, stopping, and setting up our server
To start testing, we need to build some support code that allows us to start and
stop the server, to easily make requests to it, and to create a test double for the
business layer.

Assuming that we are using express as our server toolkit, we can create a test/
index.js file with the following lines of code:

'use strict';

var sinon = require('sinon'),
 express = require('express'),
 app = express(),
 server,
 port = process.env.PORT || 3000;

before(function (cb) {
 app.listen(port, function () {
 server = this;
 // Note: arguments contains the arguments passed to this function,
 in this case a potential error produced by app.listen()
 cb.apply(this, arguments);
 });
});

after(function (cb) {
 if (!server)
 return setImmediate(cb);
 server.close(cb);
});

We are just using the standard express API in combination with the before()
and after() Mocha calls. They will run only once before and after all the scenarios,
so we will reuse the same server instance throughout all the tests. Mocha will run
both the test/index.js and test/get_order.js files and sort out the correct
order of execution.

However, for each test, we need a new clean setup. For this, we need to create a
brand new test double for the business layer, so we can add the following lines
of code:

beforeEach(function () {
 var orderSystemDouble = {
 display: sinon.stub()
 };
 // What we do with it???
});

Chapter 5

[187]

Now we need to pass the double to the code that does the actual work. Since we
are using express, it seems natural that the package we are testing will export a
function that takes the order subsystem and returns an express.Router() instance
that can be mounted in any server. So, we need to require such a function and use
it in our setup:

var sinon = require('sinon'),
 newRouteFor = require('../index'),
 express = require('express'),
 app = express(),
 server,
 port = process.env.PORT || 3000;

// Skipped for brevity
beforeEach(function () {
 var orderSystemDouble = {
 display: sinon.stub()
 };
 app.use('/orders', newRouteFor.order(orderSystemDouble));
});

In this example, the function we are trying to implement using BDD is
newRouteFor.order(orderBusinessLogic). In the preceding code, we passed a
test double as the order business logic instance, instead of a real one. By convention,
in Node, you often expose the public API of the package in an index.js file in the
root of the package, so we did the same here.

As we explained before, this design allows a main server package to
create an instance of the real business logic, pass it to the web API
package, and obtain a route. This route can be used to start the server.
This way we have a modular server, and we can switch to another
implementation of the business layer if necessary.

There is only one caveat, since beforeEach() will be invoked once before each
test, we will end up using several route instances for the same path in the same
express application. This will force express to call each one of the routes it has
whenever it receives an order request, processing the request multiple times.
We do not want that, so we need to complicate our approach a little to use only
one instance of router:

'use strict';

var sinon = require('sinon'),
 newRouteFor = require('../index'),

Testing a REST Web API

[188]

 express = require('express'),
 app = express(),
 server,
 currentOrderSystem,
 port = process.env.PORT || 3000;

before(function (cb) {
 this.ordersBaseURI = '/orders';
 app
 .use(this.ordersBaseURI, newRouteFor.order({
 display: function () {
 return currentOrderSystem.display.apply
 (currentOrderSystem, arguments);
 }
 }))
 .listen(port, function () {
 server = this;
 cb.apply(this, arguments);
 });
});

after(function (cb) {
 if (!server)
 return setImmediate(cb);
 server.close(cb);
});

beforeEach(function () {
 currentOrderSystem = {
 display: sinon.stub()
 };
 this.orderSystem = currentOrderSystem;
});

First, the orderSystemDouble local variable was moved to a module-scoped one
called currentOrderSystem. Now we can configure the router in the before()
section only once using a fake order system that will simply lazily delegate to
the corresponding method of currentOrderSystem. Provided that your router
implementation is stateless, this should do the trick!

Note that we stored both the order system double and the base URI where the
orders will be published—that is, in this.orderSystem and this.ordersBaseURI,
respectively. This way, we can access them in our tests to create an additional setup
and perform requests to the server.

Chapter 5

[189]

Testing whether the API responds with 200 Ok
Since we are testing the success scenario, we should add some setup in the test/
get_order.js file:

var chai = require('chai'),
 expect = chai.expect,
 Q = require('q');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));
describe('GET /order/:orderId', function () {
 beforeEach(function () {
 this.orderId = "<some order id>";
 this.orderURI = this.ordersBaseURI + '/' +
 encodeURIComponent(this.orderId);
 });
 context('The order exists', function () {
 beforeEach(function () {
 this.orderModel = {};
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(this.orderModel));
 });
 it('will respond with a 200 code');

 // Skipped for brevity
 });

 // Skipped for brevity
});

There is a first beforeEach() block that affects the whole test suite. Here, we defined
the identifier of the order we are going to use throughout our feature and store it in
this.orderId. We also specified the exact URI we need to use for an order in the
this.orderURI field. This is a very important detail, since it is part of the API contract.
In this case, we used the /orders/:orderId format, with the caveat that we need to
encode orderId to escape illegal characters that cannot be part of a URI path segment.

The next beforeEach() block is specific to the setup of the scenario and uses Q to
make the display() method of the order system double return this.orderModel
when asked for the correct id. In the this.orderModel field, we stored the example
of the model that it is supposed to be returned by display().

Testing a REST Web API

[190]

We can implement the setup of the two error scenarios in a similar way:

context('The order does not exists', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(null));
 });
 it('will respond with a 404 code');
});

context('The order subsystem is down', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.reject(new Error('Expected error')));
 });
 it('will respond with a 500 code');
});

The setup is very similar, but we returned a null to simulate that the business layer
was not able to find the order. In the other scenario, we returned a rejected promise
to simulate that something went wrong in the business layer.

Should we use a realistic order object?
In the preceding code, we set this model to an empty object. However, we know
from the previous chapters that the orders are not empty objects; they should at least
have totalPrice, messages, items, and actions arrays, even if they are empty.
Perhaps, we should change our code as follows:

this.orderModel = {
 totalPrice: 0,
 messages:[],
 items: [],
 actions:[]
};

After all, this is the correct empty order, and the specification of the display()
operation ensures this. Should we always work with orders that are well formed
in our tests? There is no clear answer to this. If we do so, our code probably will be
simpler, because the set of model instances it needs to deal with is more constrained.
For example, we do not need to check whether the actions' field exists or not; we
already know that there will always be at least one empty array.

Chapter 5

[191]

On the other hand, if we really want the API layer and the business logic layer to
evolve as independently as possible, we will need both layers to be as decoupled as
possible. Not expecting a well formed order will make our API layer more robust
against trivial errors or design changes in the business layer. For example, the business
layer team could change their minds and, for whatever technical reason, decide that,
if the order does not have messages, it will simply not have a messages field. This
could break our API layer if we had relied on this trivial detail when we created our
tests for the API layer. This couples both subsystems and makes evolution difficult for
both of them. Avoiding knowledge about what a well formed order is, has the added
advantage that the setup of our tests will be simple, as we only need to define the
order's fields that are strictly relevant to our API, even if the data in those fields are not
strictly correct from the point of view of the business layer.

As a conclusion, if both layers are owned by the same team, the API layer will
only talk with the same implementation of the business layer, going for a more
realistic order could be better. On the other hand, if you think that the risk of trivial
misunderstandings between teams is high, probably specifying only the strictly
relevant information in the order for our test is a good approach.

Implementing the test
We need to perform an HTTP GET request to the API in order to test whether it
returns a HTTP status code 200. It would be nice to be able to have the following
test implementation:

it('will respond with a 200 code', function () {
 return expect(this.GET(this.orderURI)).to.eventually
 .have.property('status', 200);
});

The idea is that the this.GET(URI) method will perform the HTTP request and
return a promise with an object that describes the response. We can write this kind of
utility using the request module. Let's create test/support/client.js to hold this
utility using the following code:

'use strict';

var request = require('request'),
 Q = require('q');

module.exports = function (baseURL) {
 return {
 GET: function (resourcePath) {
 return Q.Promise(function (resolve, reject) {
 request({

Testing a REST Web API

[192]

 timeout: 500,
 uri: baseURL + resourcePath,
 method: 'GET',
 headers: {
 'Accept': 'application/hal+json'
 }
 }, function (error, response, body) {
 try {
 if (error)
 return reject(error);
 resolve({
 status: response.statusCode,
 body: body ? JSON.parse(body) : undefined
 });
 } catch (err) {
 reject(err);
 }
 });
 });
 }
 };
};

We exported a factory function that takes a base URL and returns a very basic web
API client. For now, this client is an object with only a GET(resourcePath) method.
This function will use the request library to perform the GET HTTP request. We
are also explicitly specifying that the mime type to be returned is application/
json+hal.

To make the request library return a promise, we used Q.Promise(). This will
return a promise that will be successfully fulfilled when the code calls the resolve()
callback. It will be rejected if we call reject().

We can simply use the basic HTTP client that comes with Node.js but
I found the request module quite handy. For details on it, have a look
at https://github.com/mikeal/request.

Now let's modify our test/index.js file to use this utility:

var sinon = require('sinon'),
 newRouteFor = require('../index'),
 newClient = require('./support/client'),

Chapter 5

[193]

 express = require('express'),
 app = express(),
 server,
 currentOrderSystem,
 port = process.env.PORT || 3000;

before(function () {
 this.GET = newClient('http://localhost:' + port).GET;
});
// Skipped for brevity

We used the before() block to create an instance of the web API client and
then attached the GET(resourcePath) method only once to the runtime context
of Mocha.

You can now run the test; it will fail because we have not yet written any code for
the server. Since this is not a book about Express, I will leave it to you as an exercise
to make the tests pass. The important point here is that the tests are fast, and you can
use them to test drive your API server code.

Testing our HAL resource for orders
Apart from saying that we should return a 200 Ok code, we should describe the
document we return in the body of the response.

Since it is a HAL resource and we are building a hypermedia API, it would be nice
to have a self link that points to the order itself. This is a best practice since it allows
the client to know the URI of the resource, even if it is embedded in another one.
Let's create a test for this:

describe('will respond with a HAL document for the order', function ()
{
 it('will have a self link', function () {
 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._links.self')
 .that.is.deep.equal({
 href: this.orderURI
 });
 });
});

Testing a REST Web API

[194]

We simply test whether the body of the request transports a HAL document with a
_links property. In a HAL document, the _links property is an object that contains
links to other resources. Each one of the keys of _links represents a link type; in
this case, we are interested only in the self link, which is the standard link type that
defines a link to the resource itself. The point here is that we are testing at the right
level of abstraction for our web API. After all, we are concerned with the details of
how we publish the order models and not with other aspects of the system. This
involves testing the details of HTTP communication, such as response codes and
URIs, and also testing the format of the data returned. In our example, we want
to ensure that the returned document complies with the HAL standard and that it
is useful for potential consumers. If we were making an integrated test using the
scenarios we defined in Chapter 3, Writing BDD Features and Chapter 4, Cucumber.js
and Gherkin, we would not be able to test all of this effectively, since these scenarios
are defined at a business level.

We can write similar tests for the data contained in the order, totalPrice, and
messages properties:

describe('will respond with a HAL document for the order', function ()
{
 // Skipped for brevity
 it('will have a totalPrice property with the total price of the
 order', function () {
 this.orderModel.totalPrice = 222;

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.totalPrice', this.orderModel.
 totalPrice);
 });
 it('will have a messages property with the pending messages of the
 order', function () {
 this.orderModel.messages = ['msg1', 'msg2'];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.messages')
 .that.is.deep.equal(this.orderModel.messages);
 });
});

Chapter 5

[195]

In this case, the HAL document should have corresponding totalPrice and
messages properties, with exactly the same data as those of the order. Again, we do
not care about the fact that the order has the wrong price (it should be 0, since it has
no items) or what exactly a message should be (should it be a string, or should it be a
more complex object?). The point is that all of these details are the responsibilities of
the business layer, and it would be a waste of time to test them again, and a source of
coupling between both layers. After all, we do not want to break our web API layer,
if someone in the future decides that, if you want to buy two cappuccinos, the second
one will be for free. These are business rules that are not the responsibility of the web
layer, and we should not be concerned, during the web API's testing, with what a
correct order is.

The contract with the business layer
As we saw earlier, we should not include the business rules in our contract with
the business layer, since they are encapsulated by this layer. This also applies to
the syntactic aspects of the order model, or schema. Obviously, there must be some
contract that tells us the names of the properties and the information that they hold.

For example, let's take the totalPrice property. Should it be a number? Can it be
a string too? Or should it always be an object with the amount and currency fields?
This kind of information should be in the contract, and it will shape our exact tests.
If, for example, the totalPrice property can be a number and a string, we should
add a test that says what will happen when it is a string. Do we transform it to a
number or not? Should we say something about the currency? Or do we simply
return the same thing in our HAL document without processing it?

I prefer to go for a very loose contract if I can. It introduces a bit more
complexity on the web API layer, but it allows the business layer to
be simpler. Besides, we can evolve both layers better when they're
independent of each other.

What will happen if the order model instance has no totalPrice or messages
properties? If this circumstance breaks our current implementation of the web API
layer, perhaps, we should add tests for this. If the contract between both layers
clearly states that this will never happen, then maybe it is a waste of time to test for
circumstances that should never happen.

Testing a REST Web API

[196]

However, using defensive coding is a sensible position if you are working in a
dynamic-type language, such as JavaScript, and both layers are developed by separate
teams. In JavaScript, there is no compiler to enforce that the orders will always have a
predefined schema, and there can be misunderstandings between the team writing the
business layer and the one writing the web API layer. In JavaScript, it is a good practice
to test whether, in the event of an error or a violation of the contract, our web API layer
will not fail catastrophically and will handle the problem somehow.

One approach for this is to simply try to recover the error and return some
meaningful default value to the user. This is a forgiving approach and the one I
used in the examples earlier. On the one hand, we have a scenario, 'The order
subsystem is down', to handle what happens when a severe problem occurs. On
the other hand, in the 'will respond with a 200 code' and the 'will have
a self link' tests, we also check whether we send at least an empty but correct
HAL response, even if the business layer returns an empty object, without any
totalPrice or messages fields. However, this is not enough; we need to assert what
happens with the totalPrice and messages fields of the HAL document. Should
they not be present in the response, or should they assume default values? If it is the
former, we must test explicitly for the nonexistence of these fields. If it is the latter,
we must test whether we have fields with the default value.

We can change our tests as follows:

describe('will have a totalPrice property', function () {
 it('with 0 as default value', function () {
 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.totalPrice', 0);
 });
 it('with the total price of the order', function () {
 this.orderModel.totalPrice = 222;

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.totalPrice',
 this.orderModel.totalPrice);
 });
});
describe('will have a messages property', function () {
 it('with an empty array as default value', function () {
 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.messages')
 .that.is.an('array').empty;
 });

Chapter 5

[197]

 it('with the pending messages of the order', function () {
 this.orderModel.messages = ['msg1', 'msg2'];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body.messages')
 .that.is.deep.equal(this.orderModel.messages);
 });
});

These tests now clearly state that, if there is no totalPrice property in the order,
we assume 0 as the default value. For messages, we assume an empty array. This
is a very nice approach, since it makes the life of the web API consumer easier
because it does not need to check whether these properties are undefined or not. It
has the slight disadvantage that the HAL document is a bit bigger and wastes more
bandwidth. As always, these kinds of decisions involve a trade-off.

If we could not decide on a good default value, maybe because there are business
rules involved in this, then the best option would be to simply test whether the fields
are included or not in the message.

Note that the preceding approach would lead to exactly the same tests as if we
had defined a loose contract where the order model object does not need to have a
totalPrice or messages field. Because of that, it is better to define the contract like
this and simplify the contract with the business layer at the syntactic level.

If we decide that we really want to have a stricter contract, we should simply insist
that we need the totalPrice and messages fields; if they are not present, we will
return a 500 error. This is not a catastrophic failure, since our server will not crash,
but it is an unforgiving approach that could induce the consumer to stop performing
requests for that order for a while. If you go for this approach, you should change
the setup of the success scenario to return a syntactically correct order and add new
error scenarios for this.

Which approach is better should be decided on a case-by-case basis. Whenever it
makes sense to assume meaningful defaults, the first one is usually better. Anyway,
our web API layer defines an external contract that will be used by third parties, so
you need to define a very robust implementation and be very clear about how it works
in any event. That is why it is important to test what happens if the contract with the
business is violated and test for all the possible scenarios in which this can happen.

Testing a REST Web API

[198]

Interestingly, all of these aspects are not a big problem if you do integrated tests!
Since an integration test will check both layers together, any problem derived
from misunderstandings between teams will be exposed. This is a clear drawback
and source of complexity in the isolated testing of different abstraction layers and
subsystems. However, I still think that the drawbacks of integrated testing are often
bigger than the approach proposed here. After all, there will be always one point
where you must break your system into pieces that need to be developed and tested
independently; if not, you will end up with a big, unmaintainable monolith of code.

Finishing the scenario
To finish the scenario, we need to think about how to publish order actions and order
items. The two scenarios can be as follows:

• For each one of the actions that the order can have, we can publish an extra
resource with its own URI. If we access one of these "action" resources, we
will get a form that can be filled and executed to perform the action.

• For each one of the items, we will also publish a resource with its URI.
Performing a GET request against these resources will return the information
for each one of the items.

This is a common design pattern in the world of web APIs. The idea is that each
one of these resources, orders, items, and actions has links that relate them to the
others. So, what we need to test at the order level is that we have the right links to
these other resources.

Let's start with the items. For them, we will use the standard link type that is
unsurprisingly called item. We need to test two cases: one is an empty order
and the other is the nonempty one:

it('given that the order is empty, there will be no item links',
 function () {
 this.orderModel.items = [];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.not.deep.property('body._links.item');
});

it('given that the order is not empty, there will be an item link for
 each item', function () {
 this.orderModel.items = ['itemX', 'itemY'];

Chapter 5

[199]

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._links.item')
 .that.has.length(this.orderModel.items.length)
 .and.that.include.deep.members([
 {href: this.orderURI + '/item_0'},
 {href: this.orderURI + '/item_1'}
]);
});

Here, we are using the following design pattern for HAL documents:

• If there are no relevant links of a type, then there is no entry in the _links
object. That is why we are asserting that there will be no item field in
the _links.

• If the document can have one or more links of the same type, then the
corresponding entry in the _links object will be an array of links.
This is the case when we have one or more items.

• If there can be only one link of a type, then we do not use an array and
directly put the link object. This is the case of the self link, as we saw in
the will have a self link test.

The previous test is explicit about the URI for each one of the items. It must follow
the /orders/:orderId/item_:itemIndex pattern. Also, note that the items we are
using in the second test are totally fake and have nothing to do with a real order item.
However, to test this functionality, the correctness of the items is not really important!

The relation between a collection and its items is being standardized
at http://tools.ietf.org/html/rfc6573.

What about actions? We should only include links to form resources that represent
actions that act directly on this order, such as append-beverage and place-order.
However, actions about deletion on changing order items should belong to the item
resource itself.

Where to put a link to another resource is a technical decision to be taken while
testing the web API. Here, I am following my own experience: each action should
be linked with the main resource it acts on. Testing the web API can generate some
feedback about the design of the interface and the contract of the business layer.
For example, did the business layer team do a good job putting all the actions at the
order level? What do you think?

Testing a REST Web API

[200]

How can we model the append-beverage action? According to http://tools.
ietf.org/html/rfc6861, the create-form link type is the correct choice, since it
represents a link to a form that, when executed, will add a new item to the parent
resource; in this case, the item is the order. Let's write some tests for this:

it('given that the order has not an append-beverage action,' +
 ' there will not be a link to a create-form', function () {
 this.orderModel.actions = [
 { action: 'not-an-append-beverage-action' }
];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.not.deep.property('body._links.create-form');
});
it('given that the order has an append-beverage action,' +
 ' there will be a link to a create-form', function () {
 this.orderModel.actions = [
 { action: 'append-beverage' }
];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._links.create-form')
 .that.deep.equals({
 href: this.orderURI + '/create-form'
 });
});

The tests are very simple. If there is an action of type append-beverage, we will
create a link to the create-form link type. We are not interested in its target or
parameters fields, since they are not relevant for our tests. This can make us wonder
why the business layer team added a target field to the action, if we do not need
it. Perhaps it will be better to rename action as type. As I said earlier, this is the
kind of insight that arises while doing testing; this should lead to a meaningful
conversation with other teams.

We can take a similar approach for the place-order form:

it('given that the order has not a place-order action,' +
 ' there will not be a link to a place-order-form', function () {
 this.orderModel.actions = [
 { action: 'not-a-place-order-action' }
];

Chapter 5

[201]

 return expect(this.GET(this.orderURI)).to.eventually
 .have.not.deep.property('body._links.place-order-form');
});

it('given that the order has a place-order action,' +
 ' there will be a link to a place-order-form', function () {
 this.orderModel.actions = [
 { action: 'place-order' }
];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._links.place-order-form')
 .that.deep.equals({
 href: this.orderURI + '/place-order-form'
 });
});

It is the same approach; the only difference is that the link type will be place-
order-form. There is a clear duplication here, so let's get rid of it:

function willHaveALinkForTheAction(example) {
 var actionName = example.actionName,
 linkType = example.linkType;

 it('given that the order has not an ' + actionName
+ 'action, there will not be a link to a ' + linkType, function () {
 this.orderModel.actions = [
 { action: 'not-the-' + actionName + '-action' }
];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.not.deep.property('body._links.' + linkType);
 });

 it('given that the order has an ' + actionName + ' action,' +
 ' there will be a link to a ' + linkType, function () {
 this.orderModel.actions = [
 { action: actionName }
];

 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._links.' + linkType)
 .that.deep.equals({

Testing a REST Web API

[202]

 href: this.orderURI + '/' + linkType
 });
 });
}

[
 {actionName: 'append-beverage', linkType: 'create-form'},
 {actionName: 'place-order', linkType: 'place-order-form'}
].forEach(willHaveALinkForTheAction);

Testing slave resources
Although we have tested the main HAL document for an order, we are still not done.
We have discovered that we need to create more HAL resources, order items, and
actions. We need to write tests for them too.

The order actions
As we saw earlier, each action has been extracted to a form resource. How do form
resources look?

Let's start with the /orders/:orderId/place-order-form resource. We will need
a new feature for this, since accessing a form resource is a different operation from
accessing the order from the consumer's point of view.

Let's create a test/get_placeOrderForm.js test suite:

'use strict';

var chai = require('chai'),
 expect = chai.expect,
 Q = require('q');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

describe('GET /order/:orderId/place-order-form', function () {
 beforeEach(function () {
 this.orderId = "<some order id>";
 this.orderURI = this.ordersBaseURI + '/' +
 encodeURIComponent(this.orderId);
 });

Chapter 5

[203]

 beforeEach(function () {
 this.placeOrderFormURI = this.orderURI + '/place-order-form';
 });

 context('Given that the order exists', function () {
 beforeEach(function () {
 this.orderModel = {};

 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(this.orderModel));
 });
 context('and that there is a place-order action', function() {
 beforeEach(function () {
 this.orderModel.actions = [
 { action: 'place-order' }
];
 this.response = this.GET(this.placeOrderFormURI);
 });
 it('will respond with a 200 code', function () {
 return expect(this.response).to.eventually
 .have.property('status', 200);
 });
 describe('will respond with a HAL document for the form',
 function () {
 it('will have a self link', function () {
 return expect(this.response).to.eventually
 .have.deep.property('body._links.self')
 .that.is.deep.equal({
 href: this.placeOrderFormURI
 });
 });
 it('will have the parent order as a target', function () {
 return expect(this.response).to.eventually
 .have.deep.property('body._links.target')
 .that.is.deep.equal({
 href: this.orderURI
 });
 });
 it('will use the POST method when submitted', function() {
 return expect(this.response).to.eventually
 .have.deep.property('body.method', 'POST');
 });

Testing a REST Web API

[204]

 it('will have a name property with value "place-order-form"',
 function() {
 return expect(this.response).to.eventually
 .have.deep.property('body.name',
 'place-order-form');
 });

 it('will have a status parameter with value "placed"',
 function() {
 return expect(this.response).to.eventually
 .have.deep.property('body.parameters')
 .that.is.deep.equal({status: 'placed'});
 });
 });
 });
 });
});

This is the success scenario: the order exists, and it contains a place order action. In
this case, it needs to return a 200 code with a proper HAL representation of the form.
This is more or less the same approach we used to test the order.

The main difference is in the setup. We need to first assert that the order exists. This
is necessary because the place-order-form link type is a slave resource; in other
words, it cannot exist if it is not associated with an existing order. This is emphasized
by the fact that the URI of the form is an extra segment under the order's URI. To
set this up, we just copied the beforeEach() blocks of the get_order.js test suite.
We added an extra beforeEach() method to set up the forms' URI in the this.
placeOrderFormURI field. After that, we needed to assert that the order contains
a place-order action. Note that we did this in a separate context() block; I will
explain in a moment why I did it in this way.

The tests themselves are not really complex. We just need to check whether the
self and target links are OK, whether the HTTP method to be used with the form
submission is POST, and whether we have the expected name and status parameters
for the form.

A common design pattern to model forms in HAL is to use a target
link and a method parameter to specify to which URI, and with which
HTTP method, we must submit the form. Extra form parameters go
inside the parameters property.

Chapter 5

[205]

Now, we need to focus on the unsuccessful scenarios. For example, what happens
when the order exists but it has no actions property? Or what if we have an actions
property, but we don't really have a place-order action in it? If we decide that we
should return a 404 error in these cases, then we can write the following test:

context('Given that the order exists', function () {
 beforeEach(function () {
 this.orderModel = {};

 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(this.orderModel));
 });

 it('and that there is no actions property, will respond with a
 404 code', function () {
 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 404);
 });
 context('and that there is a place-order action', function () {
 // Skipped for brevity
 });

 it('and that there is no place-order action, will respond with a
 404 code', function () {
 this.orderModel.actions = [
 { action: 'not-a-place-order-action' }
];

 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 404);
 });
});

Now we can see why I defined an extra nested context() block for the success case.
This way, we can reuse the setup of the order between the following three scenarios:

• The order exists, and there is no actions property
• The order exists, and there is an actions property with a

place-order action
• The order exists, and there is an actions property without a

place-order action

Testing a REST Web API

[206]

Finally, we can create two more error scenarios: the order does not exist and the
business layer generates an error:

context('Given that the order does not exists', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(null));
 });
 it('will respond with a 404 code', function () {
 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 404);
 });
});

context('Given that the order subsystem is down', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.reject(new Error('Expected error')));
 });
 it('will respond with a 500 code', function () {
 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 500);
 });
});

These scenarios are exactly the same as the ones in the order resource, except that
they try to get the place-order-form URI.

We can model the create-form resource in a similar way. We can create
test/get_createForm.js with the following lines of code:

'use strict';

var chai = require('chai'),
 expect = chai.expect,
 Q = require('q');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

describe('GET /order/:orderId/create-form', function () {
 beforeEach(function () {

Chapter 5

[207]

 // Skipped for brevity
 });

 beforeEach(function () {
 this.createFormURI = this.orderURI + '/create-form';
 });

 context('Given that the order exists', function () {
 beforeEach(function () {
 // Skipped for brevity
 });

 it('and that there is no actions property, will respond with a
 404 code', function () {
 return expect(this.GET(this.createFormURI)).to.eventually
 .have.property('status', 404);
 });

 context('and that there is a append-beverage action', function ()
{
 beforeEach(function () {
 this.orderModel.actions = [
 { action: 'append-beverage' }
];
 });

 it('will respond with a 200 code', function () {
 return expect(this.GET(this.createFormURI)).to.eventually
 .have.property('status', 200);
 });

 describe('will respond with a HAL document for the form',
 function () {
 it('will have a self link', function () {
 return expect(this.GET(this.createFormURI)).to.eventually
 .have.deep.property('body._links.self')
 .that.is.deep.equal({
 href: this.createFormURI
 });
 });

 it('will use the PUT method when submitted', function () {

Testing a REST Web API

[208]

 return expect(this.GET(this.createFormURI)).to.eventually
 .have.deep.property('body.method', 'PUT');
 });

 it('will have a name property with value "create-form"',
 function () {
 return expect(this.GET(this.createFormURI)).to.eventually
 .have.deep.property('body.name', 'create-form');
 });
 });

 function appendBeverageActionWithParametersScenario(example) {
 context('and the action has ' + example.description, function
() {
 beforeEach(function () {
 this.orderModel.actions[0].parameters = {
 beverageRef: example.beverageRef,
 quantity: example.quantity
 };

 this.response = this.GET(this.createFormURI);
 });

 it('the form will have a beverageHref parameter with the
 URI of the specified beverage', function () {
 return expect(this.response).to.eventually.have.deep
 .property('body.parameters.beverageHref',
 example.expectedBeverageURI);
 });

 it('the form will have a quantity parameter with the
 specified quantity', function () {
 return expect(this.response).to.eventually.have.deep
 .property('body.parameters.quantity',
 example.expectedQuantity);
 });
 });
 }

 [
 {
 description: 'no default beverage',
 quantity: 10, beverageRef: null,

Chapter 5

[209]

 expectedQuantity: 10, expectedBeverageURI: null
 },
 {
 description: 'a default beverage',
 quantity: 2, beverageRef: '<some beverage>',
 expectedQuantity: 2, expectedBeverageURI:
 '/beverages/%3Csome%20beverage%3E'
 }
].forEach(appendBeverageActionWithParametersScenario);

 function appendBeverageFormTargetsNewItemURI(example) {
 it('and the order has ' + example.items.length +
 " items, the target of the form will point to " +
 example.expectedTarget, function () {
 this.orderModel.items = example.items;

 return expect(this.GET(this.createFormURI)).to.eventually
 .have.deep.property('body._links.target')
 .that.is.deep.equal({
 href: this.orderURI + example.expectedTarget
 });
 });
 }

 [
 {items: ['item0', 'item1'], expectedTarget: '/item_2'},
 {items: [], expectedTarget: '/item_0'}
].forEach(appendBeverageFormTargetsNewItemURI);
 });

 it('and that there is no append-beverage action, will respond
 with a 404 code', function () {
 // Skipped for brevity
 });

 context('Given that the order does not exists', function () {
 // Skipped for brevity
 });

 context('Given that the order subsystem is down', function () {
 // Skipped for brevity
 });
});

Testing a REST Web API

[210]

I omitted the failure scenarios and the common setup, since they are very similar to
the ones in place-order-form. The interesting case here is the success-case scenario
that has been divided in to three different scenarios, which are as follows:

• The first scenario is like the one we have for place-order-form; it checks the
method, name, and self links, and so on.

• The second one is a parameterized scenario that will be executed with
different examples of the parameter values that this action can have.
This will allow us to cover cases such as what would happen if the
beverageRef were null.

• The third one is about the target URI. It is a common technique to design
create-form to use PUT instead of POST. This is better because the PUT
method is idempotent and, if the consumer issues a duplicated request, there
will not be an accidental item creation. The problem is that the target URI
must point to the URI of the new item, and this will change with the number
of items the order has.

Testing embedded resources
Until now, we have been representing the relationship between resources using
links. Although this is correct, sometimes, it can be not very performant, since the
consumer will need several network calls to retrieve all the resources it is interested
in. For this reason, it is normal to provide the most useful slave resources embedded
in the main document.

In the case of our order, it would be interesting to embed its item resources and
its forms. In HAL, we can use the _embedded section for this purpose. However,
how do we test it? We should test that the _embedded section contains the correct
item and form resource, but this implies that we need to repeat the tests we already
have for those resources themselves. It is clear that we need to extract these tests
to some reusable module. Let's create a test/specs/createForm.js file with the
following contents:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

module.exports = {
 willBeACreateForm: function () {
 it('will have a self link', function () {

Chapter 5

[211]

 return expect(this.createForm).to.eventually
 .have.deep.property('_links.self')
 .that.is.deep.equal({
 href: this.createFormURI
 });
 });

 it('will use the PUT method when submitted', function () {
 return expect(this.createForm).to.eventually
 .have.property('method', 'PUT');
 });

 it('will have a name property with value "create-form"', function
() {
 return expect(this.createForm).to.eventually
 .have.property('name', 'create-form');
 });
 },
 willHaveTheRightParameters: function (example) {
 it('the form will have a beverageHref parameter with the URI of
the specified beverage', function () {
 return expect(this.createForm).to.eventually.have.deep
 .property('parameters.beverageHref',
 example.expectedBeverageURI);
 });

 it('the form will have a quantity parameter with the
 specified quantity', function () {
 return expect(this.createForm).to.eventually.have.deep
 .property('parameters.quantity', example.expectedQuantity);
 });
 },
 willHaveTheRightTarget: function (example) {
 it('the target of the form will point to ' +
 example.expectedTarget, function () {
 return expect(this.createForm).to.eventually
 .have.deep.property('_links.target')
 .that.is.deep.equal({
 href: this.orderURI + example.expectedTarget
 });
 });
 }
};

Testing a REST Web API

[212]

This new module will contain all the tests about what is a correct create-form
resource for an order. They are separated in different utility methods, each
one containing the tests for the different success scenarios we had in the
get_createForm.js test suite. There is a minor difference in the code; we are
now testing against this.createForm. This field must be set up previously with
a promise of the create-form object.

We can change test/get_createForm.js to use this module:

'use strict';

var chai = require('chai'),
 expect = chai.expect,
 Q = require('q'),
 aCreateForm = require('./specs/createForm');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

describe('GET /order/:orderId/create-form', function () {
 // Skipped for brevity
 context('Given that the order exists', function () {
 // Skipped for brevity
 context('and that there is an append-beverage action', function ()
{
 // Skipped for brevity
 describe('will respond with a HAL document for the form',
 function () {
 beforeEach(function () {
 // Store create-form in this.createForm
 // This way it can be accessed by the embedded tests
 this.createForm = this
 .GET(this.createFormURI)
 .then(function (response) {
 // The create-form is in the body of the response
 return response.body;
 });
 });
 // This will embed the tests for a create-form here
 aCreateForm.willBeACreateForm();
 });
 // Skipped for brevity
 });
 // Skipped for brevity
});

Chapter 5

[213]

We just need to import the module and call it in the appropriate places. Each
scenario is defined with a corresponding context() block. Inside these blocks, there
is a beforeEach() method that performs the required setup, makes the GET request,
and then extracts the create-form action from the body of the response. This will
result in a promise that contains the form itself. This promise is stored in this.
createForm, so it can be accessible from the embedded tests. Then, we just simply
invoke the methods of test/specs/createForm.js to embed the relevant tests
inside this feature.

Now we can use the same approach in test/get_createForm.js to add scenarios
that test that the form has been created with the right parameters and has the correct
target property:

context('and that there is an append-beverage action', function () {
 // Skipped for brevity
 function appendBeverageActionWithParametersScenario(example) {
 context('and the action has ' + example.description, function () {
 beforeEach(function () {
 this.orderModel.actions[0].parameters = {
 beverageRef: example.beverageRef,
 quantity: example.quantity
 };

 this.createForm = this
 .GET(this.createFormURI)
 .then(function (response) {
 return response.body;
 });
 });
 aCreateForm.willHaveTheRightParameters(example);
 });
 }

 [
 {
 description: 'no default beverage',
 quantity: 10, beverageRef: null,
 expectedQuantity: 10, expectedBeverageURI: null
 },
 {
 description: 'a default beverage',
 quantity: 2, beverageRef: '<some beverage>',

Testing a REST Web API

[214]

 expectedQuantity: 2, expectedBeverageURI:
 '/beverages/%3Csome%20beverage%3E'
 }
].forEach(appendBeverageActionWithParametersScenario);

 function appendBeverageFormTargetsNewItemURI(example) {
 context('given the order has ' + example.items.length + ' items',
function () {
 beforeEach(function () {
 this.orderModel.items = example.items;
 this.createForm = this
 .GET(this.createFormURI)
 .then(function (response) {
 return response.body;
 });
 });
 aCreateForm.willHaveTheRightTarget(example);
 });
 }

 [
 {items: ['item0', 'item1'], expectedTarget: '/item_2'},
 {items: [], expectedTarget: '/item_0'}
].forEach(appendBeverageFormTargetsNewItemURI);
});

Now we can use the same approach in test/get_order.js to add a new scenario
that describes how a create-form resource is embedded in the order:

describe('will embed the create-form resource', function () {
 beforeEach(function () {
 this.orderModel.actions = [
 { action: 'append-beverage' }
];
 });

 it('will have an embedded resource named create-form', function () {
 return expect(this.GET(this.orderURI)).to.eventually
 .have.deep.property('body._embedded.create-form')
 });

 describe('the embedded resource will be a valid create-form',
function () {
 var scenarioParameters = {

Chapter 5

[215]

 items: ['itemX', 'itemY', 'itemZ'], expectedTarget: '/item_3',
 quantity: 3, beverageRef: '<some other beverage>',
 expectedQuantity: 3, expectedBeverageURI: '/beverages/%3Csome%20
other%20beverage%3E'
 };
 beforeEach(function () {
 this.createFormURI = this.orderURI + '/create-form';
 this.orderModel.items = scenarioParameters.items;
 this.orderModel.actions[0].parameters = {
 beverageRef: scenarioParameters.beverageRef,
 quantity: scenarioParameters.quantity
 };
 this.createForm = this
 .GET(this.orderURI)
 .then(function (response) {
 if (response.body && response.body._embedded)
 return response.body._embedded['create-form'];
 });
 });
 aCreateForm.willBeACreateForm();
 aCreateForm.willHaveTheRightParameters(scenarioParameters);
 aCreateForm.willHaveTheRightTarget(scenarioParameters);
 });
});

In this case, it is a bit simpler. I expect that the logic that generates the
create-form resource is going to be reused to embed it into the order. It does
not make much sense either to test it so exhaustively or to triangulate it, because
this logic has already been tested in test/get_createForm.js.

In a similar way, we can create specs/placeOrderForm.js as follows:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

module.exports = function () {
 it('will have a self link', function () {
 return expect(this.placeOrderForm).to.eventually
 .have.deep.property('_links.self')
 .that.is.deep.equal({
 href: this.placeOrderFormURI
 });

Testing a REST Web API

[216]

 });

 it('will have the parent order as a target', function () {
 return expect(this.placeOrderForm).to.eventually
 .have.deep.property('_links.target')
 .that.is.deep.equal({
 href: this.orderURI
 });
 });
 it('will use the POST method when submitted', function () {
 return expect(this.placeOrderForm).to.eventually
 .have.property('method', 'POST');
 });

 it('will have a name property with value "place-order-form"',
 function () {
 return expect(this.placeOrderForm).to.eventually
 .have.property('name', 'place-order-form');
 });

 it('will have a status parameter with value "placed"', function () {
 return expect(this.placeOrderForm).to.eventually
 .have.property('parameters')
 .that.is.deep.equal({status: 'placed'});
 });
};

The only difference is that, because we have only a single scenario, we export a
single function.

Extracting cross-cutting scenarios
As you may have noticed, in all the get_*.js test suites there will always be a
scenario to test what happens when an order does not exist, what happens when the
display() method throws an error, and so on. In these cases, the only difference
is in the exact URI we are using in the GET request, but the result and setup are the
same across all the test suites.

We can create a new feature to capture all of these bad-weather scenarios in
test/get_resource_fails.js:

'use strict';

var chai = require('chai'),

Chapter 5

[217]

 expect = chai.expect,
 Q = require('q');

chai.use(require("sinon-chai"));
chai.use(require("chai-as-promised"));

function commonFailureScenarios(example) {
 describe('GET ' + example.resource + ' fails:', function () {
 context('The order does not exists', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(example.orderId)
 .returns(Q.fulfill(null));

 this.response = this.GET(this.ordersBaseURI + example.uri);
 });
 it('will respond with a 404 code', function () {
 return expect(this.response).to.eventually
 .have.property('status', 404);
 });
 });

 context('The order subsystem is down', function () {
 beforeEach(function () {
 this.orderSystem.display
 .withArgs(example.orderId)
 .returns(Q.reject(new Error('Expected error')));

 this.response = this.GET(this.ordersBaseURI + example.uri);
 });
 it('will respond with a 500 code', function () {
 return expect(this.response).to.eventually
 .have.property('status', 500);
 });
 });
 });
}

[
 {
 resource: "/order/:orderId",
 orderId: "<some order id>",

Testing a REST Web API

[218]

 uri: '/%3Csome%20order%20id%3E'
 },
 {
 resource: "/order/:orderId/create-form",
 orderId: "<some order>",
 uri: '/%3Csome%20order%3E/create-form'
 },
 {
 resource: "/order/:orderId/place-order-form",
 orderId: "order-id",
 uri: '/order-id/place-order-form'
 }
].forEach(commonFailureScenarios);

This will create a test suite for each order-related resource, with a scenario
for each common cause of failure. Now we can just simply remove all those
bad-weather scenarios from all the test suites. For example, we can simplify
get_placeOrderForm.js in the following way:

describe('GET /order/:orderId/place-order-form', function () {
 beforeEach(function () {
 this.orderId = "<some order id>";
 this.orderURI = this.ordersBaseURI + '/' +
 encodeURIComponent(this.orderId);
 this.placeOrderFormURI = this.orderURI + '/place-order-form';

 this.orderModel = {};
 this.orderSystem.display
 .withArgs(this.orderId)
 .returns(Q.fulfill(this.orderModel));
 });

 it('and that there is no actions property, will respond with a
 404 code', function () {
 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 404);
 });

 context('and that there is a place-order action', function () {
 beforeEach(function () {
 this.orderModel.actions = [
 { action: 'place-order' }
];
 this.response = this.GET(this.placeOrderFormURI);
 });

 it('will respond with a 200 code', function () {
 return expect(this.response).to.eventually
 .have.property('status', 200);

Chapter 5

[219]

 });
 describe('will respond with a HAL document for the form',
 function () {
 beforeEach(function () {
 this.placeOrderForm = this.response.then(function (response) {
 return response.body;
 });
 });
 isAPlaceOrderForm();
 });
 });

 it('and that there is no place-order action, will respond with a
 404 code', function () {
 this.orderModel.actions = [
 { action: 'not-a-place-order-action' }
];

 return expect(this.GET(this.placeOrderFormURI)).to.eventually
 .have.property('status', 404);
 });
});

Note that the test suite has been dramatically simplified! We can do the same for the
get_createForm.js and get_order.js resources.

Homework!
Our API is far from done; there are still a lot of features to test and implement in our
API. For example, we could add tests to embed place-order-form into the order.
However, there is a lot of more to do.

In the case of form resources, we will need to add new features to show how to fill
and execute them. Another thing that is missing is a test for item resources, both
in the standalone and embedded modes. For brevity, and as we do not have the
corresponding operations on the business layer for some of those features, I will
leave it as an exercise for you. Some hints are as follows:

• Items are slave resources, so expect scenarios similar to the actions.
• Items can have actions too, such as editing the quantity and deleting them

from the order. You will need to create form resources for them and test them.
• An item should relate somehow to the beverage it refers to. Obviously, there

should be a beverage subsystem with its own API, so you can simply define a
reference to the URI of the relevant beverage.

Testing a REST Web API

[220]

Until now, we have been focusing only on how to read the state of the order resource
and its slaves—in other words, the read-only functionality of the web API. We also
need to test the write capabilities of the API. In a well-designed web API, we should
only try to change the state of a resource executing the forms that we return as part
of the representation of that resource. Executing a form means sending a request to
the URI specified on target using the valued specified in the method field. As the
body in the request, we should send the data contained in the form's parameters.
You can test a form execution with the techniques you already learned in this
chapter. Just follow the following structure for your features:

• The setup is made as in the rest of the tests seen earlier, using the test double
of the business layer.

• To drive the test execution of the forms:
 ° Issue a request to the target URI of the form using the value of the

method field as the HTTP method.
 ° Pass in the body of the request and the parameters of the form using

the appropriate mime type. The mime type, which is part of the
contract of your API, should be explicit in the tests. Triangulate using
different parameter values.

• Assert that the correct call happens in the business layer, and check whether
the parameters of the call are consistent with the request's body. Each form
execution should have a one-to-one mapping with a specific method in the
business layer. Remember that the responsibility of the web API layer is to
publish the business layer, not to add extra logic to it.

What about the beverage resources? Should we create tests for them as well? We have
been focusing on the business processes related to orders and how to publish them as a
web API. So, I think that the beverages probably belong to another subsystem, maybe
inventory, so it is better to leave the tests for that subsystem. However, this kind of
decision always depends a lot on the specifics of each business.

As you can see, the problem domain of publishing business functionality as a
web API is not small. Imagine what would have happened if we had tested both
layers together?

Chapter 5

[221]

Summary
The naïve approach of testing both the web API layer and the business layer is not
usually a good idea. We can run into problems such as slow tests, difficulties in
debugging the tests, excessive complexity, and so on. Instead, it is better to slice the
system into two layers: the web API, which is responsible for publishing the business
logic over the Web, and the business layer, which is responsible for implementing
the business rules themselves.

If both layers are developed by the same team, then we can assume that the business
layer will always fulfill its contract. If not, it will be better to add new scenarios to
check whether the web layer reacts in a sensible way if the business does not comply
with its contract (that is, it has a bug).

Since the only responsibility of the web API layer is to publish the business layer
over HTTP, we should not try to add any more logic here. This means that we should
be agnostic about the business rules in our tests of the web API layer. So, try not to
make the setup of your test more complex than needed, because you want to use the
correct model.

Drive the server through a real HTTP request. Create a small utility for this; you can
attach this to the runtime context of Mocha to access it easily. During setup, start and
stop the server only once, but set up the server with a brand new test double of the
business layer before each test.

For each of the resources, add a new feature for each HTTP verb you can use to
access a resource. In particular, form resources will need additional features that
show how to fill and execute them. Add a new feature for each mime type to which
you plan to publish the resource.

In each of these features, check for the HTTP status code and check whether the
returned body is well formed. This means that you need to at least check the
body for its data fields, self link, links to related resources, and whether there are
embedded resources or not.

To simplify your test codebase, extract the tests for each resource in a function that
can be reused from other tests. This will remove duplication if you need to test
embedded resources.

We will leave the realm of the abstract now; in the next chapter, we will explore how
to test an UI. This is a complex subject indeed!

Testing a UI Using
WebDriverJS

In this chapter, we will look into an advanced concept: how to test a user interface.
For this purpose, you will learn the following topics:

• Using WebDriverJS to manipulate a browser and inspect the resulting HTML
generated by our UI

• Organizing our UI codebase to make it easily testable
• The right abstraction level for our UI tests
• Testing modern, rich Internet applications

Our strategy for UI testing
There are two traditional strategies towards approaching the problem of UI testing:
record-and-replay tools and end-to-end testing.

The first approach, record-and-replay, leverages the use of tools capable of recording
user activity in the UI and saves this into a script file. This script file can be later
executed to perform exactly the same UI manipulation as the user performed and to
check whether the results are exactly the same. This approach is not very compatible
with BDD because of the following reasons:

• We cannot test-first our UI. To be able to use the UI and record the user
activity, we first need to have most of the code of our application in place.
This is not a problem in the waterfall approach, where QA and testing are
performed after the codification phase is finished. However, in BDD, we aim
to document the product features as automated tests, so we should write the
tests before or during the coding.

Testing a UI Using WebDriverJS

[224]

• The resulting test scripts are low-level and totally disconnected from the
problem domain. There is no way to use them as a live documentation for
the requirements of the system.

• The resulting test suite is brittle and it will stop working whenever we make
slight changes, even cosmetic ones, to the UI. The problem is that the tools
record the low-level interaction with the system that depends on technical
details of the HTML.

The other classic approach is end-to-end testing, where we do not only test the UI
layer, but also most of the system or even the whole of it. To perform the setup of the
tests, the most common approach is to substitute the third-party systems with test
doubles. Normally, the database is under the control of the development team, so
some practitioners use a regular database for the setup. However, we could use an
in-memory database or even mock the DAOs. In any case, this approach prompts us
to create an integrated test suite where we are not only testing the correctness of the
UI, but the business logic as well.

In the context of this discussion, an integrated test is a test that checks
several layers of abstraction, or subsystems, in combination. Do not
confuse it with the act of testing several classes or functions together.

This approach is not inherently against BDD; for example, we could use Cucumber.js
to capture the features of the system and implement Gherkin steps using WebDriver
to drive the UI and make assertions. In fact, for most people, when you say BDD they
always interpret this term to refer to this kind of test.

Unfortunately, as we saw in the previous chapter, integrated tests are not a good
idea. We will end up writing a lot of test cases, because we need to combine the
scenarios from the business logic domain with the ones from the UI domain.
Furthermore, in which language should we formulate the tests? If we use the UI
language, maybe it will be too low-level to easily describe business concepts. If we
use the business domain language, maybe we will not be able to test the important
details of the UI because they are too low-level. Alternatively, we can even end up
with tests that mix UI language with business terminology, so they will neither be
focused nor very clear to anyone.

Chapter 6

[225]

Choosing the right tests for the UI
If we want to test whether the UI works, why should we test the business rules?
After all, this is already tested in the BDD test suite of the business logic layer. To
decide which tests to write, we should first determine the responsibilities of the UI
layer, which are as follows:

• Presenting the information provided by the business layer to the user in a
nice way.

• Transforming user interaction into requests for the business layer.
• Controlling the changes in the appearance of the UI components, which

includes things such as enabling/disabling controls, highlighting entry fields,
showing/hiding UI elements, and so on.

• Orchestration between the UI components. Transferring and adapting
information between the UI components and navigation between pages fall
under this category.

Thus, we are in a similar situation compared to the one in the previous chapter.
We do not need to write tests about business rules, and we should not assume much
about the business layer itself, apart from a loose contract. In this sense, all the advice
of the previous chapter is still valid for testing a UI.

How we should word our tests? We should use a UI-related language when we
talk about what the user sees and does. Words such as fields, buttons, forms, links,
click, hover, highlight, enable/disable, or show and hide are relevant in this context.
However, we should not go too far; otherwise, our tests will be too brittle. Saying, for
example, that the name field should have a pink border is too low-level. The moment
that the designer decides to use red instead of pink, or changes his mind and decides
to change the background color instead of the border, our test will break. We should
aim for tests that express the real intention of the user interface; for example, the
name field should be highlighted as incorrect.

Testing a UI Using WebDriverJS

[226]

The testing architecture
At this point, we could write tests relevant for our UI using the following
testing architecture:

BROWSER

A

U

T

M

A

T

I

O

N

A

P

I

D

O

M

UI

X

H

R

NODE

W

E

B

D

R

I

V

E

R

UI

M

O

C

K

E

X

P

R

E

S

S

E
V
E
N

T
S

&
W

E
B

D
R

IV
E
R

C
O

M
M

A
N

D
S

HTTP

A simple testing architecture for our UI

We can use WebDriver to issue user gestures to interact with the browser. These user
gestures are transformed by the browser in to DOM events that are the inputs of our
UI logic and will trigger operations on it. We can use WebDriver again to read the
resulting HTML in the assertions. We can simply use a test double to impersonate
our server, so we can set up our tests easily.

Chapter 6

[227]

This architecture is very simple and sounds like a good plan, but it is not! There are
three main problems here:

• UI testing is very slow. Take into account that the boot time and shutdown
phase can take 3 seconds in a normal laptop. Each UI interaction using
WebDriver can take between 50 and 100 milliseconds, and the latency with
the fake server can be an extra 10 milliseconds. This gives us only around 10
tests per second, plus an extra 3 seconds.

• UI tests are complex and difficult to diagnose when they fail. What is failing?
Our selectors used to tell WebDriver how to find the relevant elements.
Some race condition we were not aware of? A cross-browser issue? Also note
that our test is now distributed between two different processes, a fact that
always makes debugging more difficult.

• UI tests are inherently brittle. We can try to make them less brittle with best
practices, but even then a change in the structure of the HTML code will
sometimes break our tests. This is a bad thing because the UI often changes
more frequently than the business layer.

As UI testing is very risky and expensive, we should try to code as less amount of
tests that interact with the UI as possible. We can achieve this without losing testing
power, with the following testing architecture:

UI=
PASSIVE

VIEW
+

CODE

UI

LOGIC

D

O

M

DOM

EVENTS

DOM

UPDATE

P

A

S

S

I

V

E

V

I

E

W

USER REQUESTS

VIEW MODEL

UPDATE

CORE

UI

X

H

R

HTTP

USER

EXPERIENCE

ABSTRACTION

LEVEL

WEB API ABSTRACTION

LEVEL

“CLASSIC” BOD

TESTING HERE

DOM/HTML

LEVEL OF

ABSTRACTION

HOW DO

WE TEST THIS??

USE WEBDRIVER

A smarter testing architecture

Testing a UI Using WebDriverJS

[228]

We have now split our UI layer into two components: the view and the UI logic.

This design aligns with the family of MV* design patterns. In the context of this
chapter, the view corresponds with a passive view, and the UI logic corresponds
with the controller or the presenter, in combination with the model. A passive view
is usually very hard to test; so in this chapter we will focus mostly on how to do it.
You will often be able to easily separate the passive view from the UI logic, especially
if you are using an MV* pattern, such as MVC, MVP, or MVVM.

Most of our tests will be for the UI logic. This is the component that implements the
client-side validation, orchestration of UI components, navigation, and so on. It is the
UI logic component that has all the rules about how the user can interact with the UI,
and hence it needs to maintain some kind of internal state.

The UI logic component can be tested completely in memory using standard
techniques, such as the ones we saw in the early chapters of this book. We can simply
mock the XMLHttpRequest object, or the corresponding object in the framework
we are using, and test everything in memory using a single Node.js process. No
interaction with the browser and the HTML is needed, so these tests will be blazingly
fast and robust.

Then we need to test the view. This is a very thin component with only two
responsibilities:

• Manipulating and updating the HTML to present the user with the
information whenever it is instructed to do so by the UI logic component

• Listening for HTML events and transforming them into suitable requests for
the UI logic component

The view should not have more responsibilities, and it is a stateless component.
It simply does not need to store the internal state, because it only transforms and
transmits information between the HTML and the UI logic. Since it is the only
component that interacts with the HTML, it is the only one that needs to be tested
using WebDriver.

The point of all of this is that the view can be tested with only a bunch of tests that
are conceptually simple. Hence, we minimize the number and complexity of the tests
that need to interact with the UI.

Chapter 6

[229]

WebDriverJS
Testing the passive view layer is a technical challenge. We not only need to find a
way for our test to inject native events into the browser to simulate user interaction,
but we also need to be able to inspect the DOM elements and inject and execute
scripts. This was very challenging to do approximately 5 years ago. In fact, it was
considered complex and expensive, and some practitioners recommended not to test
the passive view. After all, this layer is very thin and mostly contains the bindings of
the UI to the HTML DOM, so the risk of error is not supposed to be high, specially if
we use modern cross-browser frameworks to implement this layer.

Nonetheless, nowadays the technology has evolved, and we can do this kind of
testing without much fuss if we use the right tools. One of these tools is Selenium
2.0 (also known as WebDriver) and its library for JavaScript, which is WebDriverJS
(https://code.google.com/p/selenium/wiki/WebDriverJs).

In this book, we will use WebDriverJS, but there are other
bindings in JavaScript for Selenium 2.0, such as WebDriverIO
(http://webdriver.io/). You can use the one you like most
or even try both. The point is that the techniques I will show you
here can be applied with any client of WebDriver or even with
other tools that are not WebDriver.

Selenium 2.0 is a tool that allows us to make direct calls to a browser automation
API. This way, we can simulate native events, we can access the DOM, and we can
control the browser. Each browser provides a different API and has its own quirks,
but Selenium 2.0 will offer us a unified API called the WebDriver API. This allows us
to interact with different browsers without changing the code of our tests. As we are
accessing the browser directly, we do not need a special server, unless we want to
control browsers that are on a different machine.

Actually, this is only true, due some technical limitations, if we
want to test against a Google Chrome or a Firefox browser using
WebDriverJS. For any other browser, we are forced to use the
Selenium Server, as we will see in Chapter 8, Testing in Several
Browsers with Protractor and WebDriver.

Testing a UI Using WebDriverJS

[230]

So, basically, the testing architecture for our passive view looks like this:

BROWSER

A

U

T

M

A

T

I

O

N

A

P

I

D

O

M

DOUBLE

CORE

UI

REMOTE

SCRIPTING

P

A

S

S

I

V

E

V

I

E

W

DOM INTERACTION

NODE

WEBDRIVER

TESTS

Testing with WebDriverJS

We can see that we use WebDriverJS for the following:

• Sending native events to manipulate the UI, as if we were the user, during
the action phase of our tests

• Inspecting the HTML during the assert phase of our test
• Sending small scripts to set up the test doubles, check them, and invoke the

update method of our passive view

Apart from this, we need some extra infrastructure, such as a web server that serves
our test HTML page and the components we want to test.

As is evident from the diagram, the commands of WebDriverJS require some
network traffic to able to send the appropriate request to the browser automation
API, wait for the browser to execute, and get the result back through the network.
This forces the API of WebDriverJS to be asynchronous in order to not block
unnecessarily. That is why WebDriverJS has an API designed around promises. Most
of the methods will return a promise or an object whose methods return promises.
This plays perfectly well with Mocha and Chai.

Chapter 6

[231]

There is a W3C specification for the WebDriver API. If you want to
have a look, just visit https://dvcs.w3.org/hg/webdriver/
raw-file/default/webdriver-spec.html.

The API of WebDriverJS is a bit complex, and you can find its official documentation
at http://selenium.googlecode.com/git/docs/api/javascript/module_
selenium-webdriver.html. However, to follow this chapter, you do not need to read
it, since I will now show you the most important API that WebDriverJS offers us.

Finding and interacting with elements
It is very easy to find an HTML element using WebDriverJS; we just need to use
either the findElement or the findElements methods. Both methods receive a
locator object specifying which element or elements to find. The first method will
return the first element it finds, or simply fail with an exception, if there are no
elements matching the locator. The findElements method will return a promise
for an array with all the matching elements. If there are no matching elements, the
promised array will be empty and no error will be thrown.

How do we specify which elements we want to find? To do so, we need to use a
locator object as a parameter. For example, if we would like to find the element
whose identifier is order_item1, then we could use the following code:

var By = require('selenium-webdriver').By;

driver.findElement(By.id('order_item1'));

We need to import the selenium-webdriver module and capture its locator factory
object. By convention, we store this locator factory in a variable called By. Later, we
will see how we can get a WebDriverJS instance.

This code is very expressive, but a bit verbose. There is another version of this:

driver.findElement({ id: 'order_item1' });

Here, the locator criteria is passed in the form of a plain JSON object. There is no
need to use the By object or any factory. Which version is better? Neither. You just
use the one you like most. In this chapter, the plain JSON locator will be used.

Testing a UI Using WebDriverJS

[232]

The following are the criteria for finding elements:

• Using the tag name, for example, to locate all the elements in
the document:
driver.findElements(By.tagName('li'));
driver.findElements({ tagName: 'li' });

• We can also locate using the name attribute. It can be handy to locate the input
fields. The following code will locate the first element named password:
driver.findElement(By.name('password'));
driver.findElement({ name: 'password' });

• Using the class name; for example, the following code will locate the first
element that contains a class called item:
driver.findElement(By.className('item'));
driver.findElement({ className: 'item' });

• We can use any CSS selector that our target browser understands.
If the target browser does not understand the selector, it will throw
an exception; for example, to find the second item of an order
(assuming there is only one order on the page):

driver.findElement(By.css('.order .item:nth-of-type(2)'));
driver.findElement({ css: '.order .item:nth-of-type(2)' });

Using only the CSS selector you can locate any element, and it is the one I
recommend. The other ones can be very handy in specific situations.

There are more ways of locating elements, such as linkText, partialLinkText, or
xpath, but I seldom use them. Locating elements by their text, such as in linkText
or partialLinkText, is brittle because small changes in the wording of the text
can break the tests. Also, locating by xpath is not as useful in HTML as using a CSS
selector. Obviously, it can be used if the UI is defined as an XML document, but this
is very rare nowadays.

In both methods, findElement and findElements, the resulting HTML elements
are wrapped as a WebElement object. This object allows us to send an event to that
element or inspect its contents. Some of its methods that allow us to manipulate the
DOM are as follows:

• clear(): This will do nothing unless WebElement represents an input
control. In this case, it will clear its value and then trigger a change event.
It returns a promise that will be fulfilled whenever the operation is done.

Chapter 6

[233]

• sendKeys(text or key, …): This will do nothing unless WebElement is an
input control. In this case, it will send the equivalents of keyboard events to
the parameters we have passed. It can receive one or more parameters with a
text or key object. If it receives a text, it will transform the text into a sequence
of keyboard events. This way, it will simulate a user typing on a keyboard.
This is more realistic than simply changing the value property of an input
control, since the proper keyDown, keyPress, and keyUp events will be fired.
A promise is returned that will be fulfilled when all the key events are issued.
For example, to simulate that a user enters some search text in an input field
and then presses Enter, we can use the following code:
var Key = require('selenium-webdriver').Key;

var searchField = driver.findElement({name: 'searchTxt'});
searchField.sendKeys('BDD with JS', Key.ENTER);

The webdriver.Key object allows us to specify any key that does
not represent a character, such as Enter, the up arrow, Command, Ctrl,
Shift, and so on. We can also use its chord method to represent a
combination of several keys pressed at the same time. For example,
to simulate Alt + Command + J, use driver.sendKeys(Key.
chord(Key.ALT, Key.COMMAND, 'J'));.

• click(): This will issue a click event just in the center of the element.
The returned promise will be fulfilled when the event is fired.

Sometimes, the center of an element is nonclickable, and an
exception is thrown! This can happen, for example, with table
rows, since the center of a table row may just be the padding
between cells!

• submit(): This will look for the form that contains this element and will
issue a submit event.

Apart from sending events to an element, we can inspect its contents with the
following methods:

• getId(): This will return a promise with the internal identifier of this element
used by WebDriver. Note that this is not the value of the DOM ID property!

• getText(): This will return a promise that will be fulfilled with the visible
text inside this element. It will include the text in any child element and will
trim the leading and trailing whitespaces. Note that, if this element is not
displayed or is hidden, the resulting text will be an empty string!

Testing a UI Using WebDriverJS

[234]

• getInnerHtml() and getOuterHtml(): These will return a promise that will
be fulfilled with a string that contains innerHTML or outerHTML of this element.

• isSelected(): This will return a promise with a Boolean that determines
whether the element has either been selected or checked. This method is
designed to be used with the <option> elements.

• isEnabled(): This will return a promise with a Boolean that determines
whether the element is enabled or not.

• isDisplayed(): This will return a promise with a Boolean that determines
whether the element is displayed or not. Here, "displayed" is taken in a broad
sense; in general, it means that the user can see the element without resizing
the browser. For example, whether the element is hidden, whether it has
diplay: none, or whether it has no size, or is in an inaccessible part of the
document, the returned promise will be fulfilled as false.

• getTagName(): This will return a promise with the tag name of the element.
• getSize(): This will return a promise with the size of the element. The size

comes as a JSON object with width and height properties that indicate the
height and width in pixels of the bounding box of the element. The bounding
box includes padding, margin, and border.

• getLocation(): This will return a promise with the position of the element.
The position comes as a JSON object with x and y properties that indicate the
coordinates in pixels of the element relative to the page.

• getAttribute(name): This will return a promise with the value of the
specified attribute. Note that WebDriver does not distinguish between
attributes and properties! If there is neither an attribute nor a property with
that name, the promise will be fulfilled as null. If the attribute is a "boolean"
HTML attribute (such as checked or disabled), the promise will be
evaluated as true only if the attribute is present. If there is both an attribute
and a property with the same name, the attribute value will be used.

If you really need to be precise about getting an attribute or a property,
it is much better to use an injected script to get it.

• getCssValue(cssPropertyName): This will return a promise with a string
that represents the computed value of the specified CSS property. The
computed value is the resulting value after the browser has applied all the CSS
rules and the style and class attributes. Note that the specific representation
of the value depends on the browser; for example, the color property can be
returned as red, #ff0000, or rgb(255, 0, 0) depending on the browser.
This is not cross-browser, so we should avoid this method in our tests.

Chapter 6

[235]

• findElement(locator) and findElements(locator): These will return
an element, or all the elements that are the descendants of this element,
and match the locator.

• isElementPresent(locator): This will return a promise with a Boolean
that indicates whether there is at least one descendant element that matches
this locator.

As you can see, the WebElement API is pretty simple and allows us to do most of our
tests easily. However, what if we need to perform some complex interaction with the
UI, such as drag-and-drop?

Complex UI interaction
WebDriverJS allows us to define a complex action gesture in an easy way using the
DSL defined in the webdriver.ActionSequence object. This DSL allows us to define
any sequence of browser events using the builder pattern. For example, to simulate a
drag-and-drop gesture, proceed with the following code:

var beverageElement = driver.findElement({ id: 'expresso' });
var orderElement = driver.findElement({ id: 'order' });

driver.actions()
 .mouseMove(beverageElement)
 .mouseDown()
 .mouseMove(orderElement)
 .mouseUp()
 .perform();

We want to drag an espresso to our order, so we move the mouse to the center of the
espresso and press the mouse. Then, we move the mouse, by dragging the element,
over the order. Finally, we release the mouse button to drop the espresso.

We can add as many actions we want, but the sequence of events will not be
executed until we call the perform method. The perform method will return a
promise that will be fulfilled when the full sequence is finished.

The webdriver.ActionSequence object has the following methods:

• sendKeys(keys...): This sends a sequence of key events, exactly as we
saw earlier, to the method with the same name in the case of WebElement.
The difference is that the keys will be sent to the document instead of a
specific element.

Testing a UI Using WebDriverJS

[236]

• keyUp(key) and keyDown(key): These send the keyUp and keyDown events.
Note that these methods only admit the modifier keys: Alt, Ctrl, Shift,
command, and meta.

• mouseMove(targetLocation, optionalOffset): This will move the mouse
from the current location to the target location. The location can be defined
either as a WebElement or as page-relative coordinates in pixels, using a
JSON object with x and y properties. If we provide the target location as a
WebElement, the mouse will be moved to the center of the element. In this
case, we can override this behavior by supplying an extra optional parameter
indicating an offset relative to the top-left corner of the element. This could
be needed in the case that the center of the element cannot receive events.

• mouseDown(), click(), doubleClick(), and mouseUp(): These will issue the
corresponding mouse events. All of these methods can receive zero, one, or
two parameters. Let's see what they mean with the following examples:
var Button = require('selenium-webdriver').Button;

// to emit the event in the center of the expresso element
driver.actions().mouseDown(expresso).perform();
// to make a right click in the current position
driver.actions().click(Button.RIGHT).perform();
// Middle click in the expresso element
driver.actions().click(expresso, Button.MIDDLE).perform();

The webdriver.Button object defines the three possible buttons of a
mouse: LEFT, RIGHT, and MIDDLE. However, note that mouseDown()
and mouseUp() only support the LEFT button!

• dragAndDrop(element, location): This is a shortcut to performing
a drag-and-drop of the specified element to the specified location.
Again, the location can be WebElement of a page-relative coordinate.

Injecting scripts
We can use WebDriver to execute scripts in the browser and then wait for its results.
There are two methods for this: executeScript and executeAsyncScript.

Both methods receive a script and an optional list of parameters and send the script
and the parameters to the browser to be executed. They return a promise that will
be fulfilled with the result of the script; it will be rejected if the script failed.

Chapter 6

[237]

An important detail is how the script and its parameters are sent to the browser. For
this, they need to be serialized and sent through the network. Once there, they will
be deserialized, and the script will be executed inside an autoexecuted function that
will receive the parameters as arguments. As a result of of this, our scripts cannot
access any variable in our tests, unless they are explicitly sent as parameters. The
script is executed in the browser with the window object as its execution context
(the value of this).

When passing parameters, we need to take into consideration the kind of data that
WebDriver can serialize. This data includes the following:

• Booleans, strings, and numbers.
• The null and undefined values. However, note that undefined will be

translated as null.
• Any function will be transformed to a string that contains only its body.
• A WebElement object will be received as a DOM element. So, it will not

have the methods of WebElement but the standard DOM method instead.
Conversely, if the script results in a DOM element, it will be received as
WebElement in the test.

• Arrays and objects will be converted to arrays and objects whose elements
and properties have been converted using the preceding rules.

With this in mind, we could, for example, retrieve the identifier of an element, such
as the following one:

var elementSelector = ".order ul > li";
driver.executeScript(
 "return document.querySelector(arguments[0]).id;",
 elementSelector
).then(function(id) {
 expect(id).to.be.equal('order_item0');
});

Notice that the script is specified as a string with the code. This can be a bit
awkward, so there is an alternative available:

var elementSelector = ".order ul > li";
driver.executeScript(function() {
 var selector = arguments[0];
 return document.querySelector(selector).id;
}, elementSelector).then(function(id) {
 expect(id).to.be.equal('order_item0');
});

Testing a UI Using WebDriverJS

[238]

WebDriver will just convert the body of the function to a string and send it
to the browser. Since the script is executed in the browser, we cannot access
the elementSelector variable, and we need to access it through parameters.
Unfortunately, we are forced to retrieve the parameters using the arguments
pseudoarray, because WebDriver have no way of knowing the name of each argument.

As its name suggest, executeAsyncScript allows us to execute an asynchronous
script. In this case, the last argument provided to the script is always a callback
that we need to call to signal that the script has finalized. The result of the script
will be the first argument provided to that callback. If no argument or undefined
is explicitly provided, then the result will be null. Note that this is not directly
compatible with the Node.js callback convention and that any extra parameters
passed to the callback will be ignored. There is no way to explicitly signal an error in
an asynchronous way.

For example, if we want to return the value of an asynchronous DAO, then proceed
with the following code:

driver.executeAsyncScript(function() {
 var cb = arguments[1],
 userId = arguments[0];
 window.userDAO.findById(userId).then(cb, cb);
}, 'user1').then(function(userOrError) {
 expect(userOrError).to.be.equal(expectedUser);
});

Command control flows
All the commands in WebDriverJS are asynchronous and return a promise or
WebElement. How do we execute an ordered sequence of commands? Well, using
promises could be something like this:

return driver.findElement({name:'quantity'}).sendKeys('23')
 .then(function() {
 return driver.findElement({name:'add'}).click();
 })
 .then(function() {
 return driver.findElement({css:firstItemSel}).getText();
 })
 .then(function(quantity) {
 expect(quantity).to.be.equal('23');
 });

Chapter 6

[239]

This works because we wait for each command to finish before issuing the next
command. However, it is a bit verbose. Fortunately, with WebDriverJS we can do
the following:

driver.findElement({name:'quantity'}).sendKeys('23');
driver.findElement({name:'add'}).click();
return expect(driver.findElement({css:firstItemSel}).getText())
 .to.eventually.be.equal('23');

How can the preceding code work? Because whenever we tell WebDriverJS to do
something, it simply schedules the requested command in a queue-like structure
called the control flow. The point is that each command will not be executed until
it reaches the top of the queue. This way, we do not need to explicitly wait for the
sendKeys command to be completed before executing the click command. The
sendKeys command is scheduled in the control flow before click, so the latter one
will not be executed until sendKeys is done.

All the commands are scheduled against the same control flow queue that is
associated with the WebDriver object. However, we can optionally create several
control flows if we want to execute commands in parallel:

var flow1 = webdriver.promise.createFlow(function() {
 var driver = new webdriver.Builder().build();

 // do something with driver here
});
var flow2 = webdriver.promise.createFlow(function() {
 var driver = new webdriver.Builder().build();

 // do something with driver here
});
webdriver.promise.fullyResolved([flow1, flow2]).then(function(){
 // Wait for flow1 and flow2 to finish and do something
});

We need to create each control flow instance manually and, inside each flow, create
a separate WebDriver instance. The commands in both flows will be executed in
parallel, and we can wait for both of them to be finalized to do something else using
fullyResolved. In fact, we can even nest flows if needed to create a custom parallel
command-execution graph.

Testing a UI Using WebDriverJS

[240]

Taking screenshots
Sometimes, it is useful to take some screenshots of the current screen for debugging
purposes. This can be done with the takeScreenshot() method. This method will
return a promise that will be fulfilled with a string that contains a base-64 encoded
PNG. It is our responsibility to save this string as a PNG file. The following snippet
of code will do the trick:

driver.takeScreenshot()
 .then(function(shot) {
 fs.writeFileSync(fileFullPath, shot, 'base64');
 });

Note that not all browsers support this capability. Read the
documentation for the specific browser adapter to see if it is available.

Working with several tabs and frames
WebDriver allows us to control several tabs, or windows, for the same browser.
This can be useful if we want to test several pages in parallel or if our test needs to
assert or manipulate things in several frames at the same time. This can be done with
the switchTo() method that will return a webdriver.WebDriver.TargetLocator
object. This object allows us to change the target of our commands to a specific frame
or window. It has the following three main methods:

• frame(nameOrIndex): This will switch to a frame with the specified name
or index. It will return a promise that is fulfilled when the focus has been
changed to the specified frame. If we specify the frame with a number, this
will be interpreted as a zero-based index in the window.frames array.

• window(windowName): This will switch focus to the window named as
specified. The returned promise will be fulfilled when it is done.

• alert(): This will switch the focus to the active alert window.

We can dismiss an alert with driver.switchTo().alert().
dismiss();.

Chapter 6

[241]

The promise returned by these methods will be rejected if the specified window,
frame, or alert window is not found.

To make tests on several tabs at the same time, we must ensure that
they do not share any kind of state, or interfere with each other
through cookies, local storage, or an other kind of mechanism.

Testing a rich Internet application
Now that we have a basic understanding of the capabilities of WebDriverJS and
as we have clarified that we intend to test only our passive view in integration
with the browser, we can start by setting up a project in the usual way: create a
folder with the lib/ and test/ subfolders, issue the npm init command, and
follow the instructions.

For the testing, we will use Mocha. Why not Cucumber.js? Well, it is a good idea
to use Cucumber.js to test the core UI logic layer, as we will see later. However,
passive view is a very technical layer in nature, and the only stakeholders that could
be really interested in it would be the UX designer and the HTML/CSS expert. It is
not uncommon that in some agile teams one or even two of these roles are fulfilled
by a member of the team and not an external person. So, there is not much sense in
adding the extra cost of using Gherkin.

Since tests that interact with browsers are usually slow,
I recommend that you increase the timeout of the Mocha test to around
5 seconds. I have changed my test command inside the package.json
file to: mocha -u bdd -R spec -t 5000 –recursive.

After executing the npm init command, we need to install the dependencies:

$ ~/mycafe/ui> npm install --save-dev browserify reactify chai chai-as-
promised sinon sinon-chai mocha selenium-webdriver express

$ ~/mycafe/ui> npm install --save react

We have installed the browserify, reactify, and selenium-webdriver packages
as development libraries. The first two packages will help us bundle the code of our
passive view in order to be served to the test HTML page. The last one is the package
that contains WebDriverJS.

Testing a UI Using WebDriverJS

[242]

I will develop the passive view using ReactJS (http://facebook.
github.io/react/). That is why I am installing the react and
reactify packages. Obviously, you can use your favorite framework
for this, such as AngularJS (https://angularjs.org/) or Knockout
(http://knockoutjs.com/). All the techniques in this chapter can
be applied to them.

There is only one thing we need to get started; download the chromedriver file.
This file contains the adapter of WebDriverJS for Google Chrome, so we need to
download it. Just go to http://chromedriver.storage.googleapis.com/index.
html, enter the folder for the latest release (at the time of writing, it was 2.13),
download the correct ZIP for your operating system, and unzip it. The resulting
executable file is the adapter. You can do one of the following:

• Put this file into the root of your project
• Create a symbolic link in the root of your project to a well-known standard

location of the chromedriver executable on your machine
• Configure your PATH environment variable to include this file

Now, we are ready to begin coding!

The setup
First of all, we need to do a setup that is more complex than usual. We need to
execute the code of our passive view inside one HTML page running in a browser.
For this, we need to create the appropriate HTML. We need a web server not only to
provide this page, but also to serve all the needed scripts. This includes bundling the
code for our passive view in a way that can be consumed by a browser. Finally, we
need to start a WebDriver session.

The test HTML page
There is no need for this page to be a real application page, just a container to include
all the markup we need for the testing. In our example, we can create a test/order.
html page like this:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">

Chapter 6

[243]

 <title>A test bed page for our Order Passive view</title>
 <link href="/static/css/order.css" type="text/css" rel="stylesheet">
</head>
<body>
 <!-- To be used by injected scripts -->
 <script src="/node_modules/sinon/pkg/sinon.js"></script>
 <script src="/node_modules/chai/chai.js"></script>
 <script src="/node_modules/sinon-chai/lib/sinon-chai.js"></script>
 <script>window.expect = chai.expect;</script>
 <!-- To be used by common js bundles -->
 <script src="/dist/react.js"></script>
 <script src="/dist/order-view.js"></script>
 <!-- Some markup needed in our test-->
 <div class="not-a-container"></div>
 <div class="container"></div>
 <div class="not-a-container-either"></div>
</body>
</html>

It's just a simple page that includes some scripts and has some test markup. We only
need some <div> elements to check that passive view is rendered inside the correct
container. Besides this, we loaded the following scripts here:

• The sinon, chai, and sinon-chai packages. We will need them to
perform some assertions against test doubles in our tests. Fortunately,
the corresponding packages contain not only the package for Node.js, but
also a version ready to be executed in the browser. Note that all the paths
start with /node_modules/<pkg name>/ to be able to reach inside the
corresponding package.

• The /dist/react.js file will contain the runtime of ReactJS. It will be
served by browserify, so it can be used by our passive view package.
We will see the details later.

• The /dist/order-view.js script will contain the browserified version of the
passive view for the order.

Afterwards, we included a small snippet to globally expose on the page the chai.
expect function for a commodity.

Testing a UI Using WebDriverJS

[244]

Serving the HTML page and scripts
Now we need to start a web server that will serve all of these resources. Let's create a
test/index.js file with the following code:

'use strict';

var express = require('express'),
 port = process.env.PORT || 3000,
 server,
 app = express();

before('start web server', function (cb) {
 app.use(express.static(__dirname + '/..'));

 app.listen(port, function (err) {
 server = this;
 cb.apply(this, arguments);
 });
});
before('attach test utils', function () {
 this.uriForPage = function (name) {
 return 'http://localhost:' + port + '/test/' + name + '.html';
 };
});
after('stop web server', function (cb) {
 if (!server)
 return cb();
 server.close(function () {
 server = null;
 cb();
 });
});

This will start a static web server before the tests and stop it afterwards, there is
nothing new here, since we use the same techniques as we did in the previous
chapter. The only exception is that we attach a utility function, uriForPage, that will
return the correct URI for a specified test page.

Chapter 6

[245]

Using browserify to pack our code
This setup is OK to serve all the static assets we need, but the passive view code
is written according to the CommonJS module convention, which is the one used
by Node.js. The thing is that we can use require() to get other modules from our
order-view module, and this will not work as it is in the browser. To solve this,
some tools were invented; here, we will use the browserify package.

The browserify package will scan your modules to discover the tree of
dependencies it needs. Then it will wrap each module in a wrapper function that
implements the module pattern, so your code will behave as if it is in a Node.js-
isolated module. It will also bundle the most basic Node.js modules, such as events,
utils, http, and so on. Finally, it will pack all the code in a single file called bundle
that can be consumed by a browser. The point here is that you do not need to code
your UI logic in a different way just because it needs to be executed in a browser.
You can develop it as if it were in Node.js and then, using browserify, the code will
be bundled in a browser-friendly way.

The browserify tool has many options and is very powerful.
It can be used as an API from JavaScript code or as a standalone
command-line tool. It can be integrated easily with the most
popular build systems in the JavaScript ecosystem, such as Grunt
(http://gruntjs.com/) or Gulp (http://gulpjs.com/).
To get all the details, visit http://browserify.org/.

Since I am using ReactJS, I am writing the passive view in JSX. This is a small
extension to the JavaScript language that allows you to mix HTML and JavaScript.
Just for illustration purposes, this is how my passive view looks after a few iterations
of the TDD cycle:

/** @jsx React.DOM */

'use strict';

var React = require('react'),
 OrderView = require('./components/order.jsx');

function NOOP() {
}

module.exports = function (containerSelector, controller) {
 var onItemSelected = NOOP;
 if (controller)

Testing a UI Using WebDriverJS

[246]

 onItemSelected = controller.itemSelected.bind(controller);

 var view = React.renderComponent(
 <OrderView onItemClicked={onItemSelected}/>,
 document.querySelector(containerSelector)
);

 return {
 update: view.setProps.bind(view)
 };
};

You do not need to understand the file, but just notice that we are importing the react
runtime using normal Node.js syntax. If we require additional files, then browserify
will take care of this in a way that is transparent to us.

You do not need to write the passive view using JSX. In React, you can
use plain JavaScript, so the reactify step can be skipped in this case.
However, since using JSX is the common approach for most React
users, I prefer to make a realistic example here. Obviously, this is not
needed if you use AngularJS or Knockout.

We can modify our test/index.js file in the following way:

var express = require('express'),
 port = process.env.PORT || 3000,
 server,
 app = express(),
 browserify = require('browserify'),
 reactify = require('reactify'),
 bundles = {};

function registerBundle(name, cb) {
 return function (err, buf) {
 if (err)
 return cb(err);
 bundles[name] = buf.toString();
 cb();
 };
}

Chapter 6

[247]

before('pack react', function (cb) {
 var reactFileName = require.resolve('react/dist/react.js');
 browserify({
 noParse: [reactFileName]
 })
 .require(reactFileName, {expose: 'react'})
 .bundle(registerBundle('react', cb));
});

before('pack order-view', function (cb) {
 var viewFileName = require.resolve('../lib/order-view.jsx');

 browserify()
 .transform(reactify)
 .require(viewFileName, {expose: 'order-view'})
 .add(viewFileName)
 .exclude('react')
 .bundle(registerBundle('order-view', cb));
});

Just before we started the tests, we used browserify to process the react runtime
and our passive view code. The resulting bundles are stored in memory in the
bundles object. Without entering into too much detail about browserify, we can
imagine how all of this works. On one side, the react package includes an already
bundled file that is ready to be used in the browser, so there is no point in applying
browserify again to it. On the other hand, the react module needs to be visible
somehow to our order-view module because it imports the react module. Here is
the solution:

• In the 'pack react' block, the react distribution is simply wrapped
around a browserify wrapper and exposed as a package named react.
We explicitly told browserify not to try to analyze the code of the file,
thus saving time.

• In the 'pack order-view' block, we told browserify to pack the
order-view module and all its dependencies in a single file, but we
explicitly excluded the react dependency because we will serve it in a
separate bundle.

This setup is an efficient way to bundle our code, since it avoids parsing and
analyzing the whole react runtime again and again. This is important in a real project
because you will probably want to test several views and not only the one for the
orders. Actually, in a real project, you would probably end up sharing some of this
code between the setup of the WebDriver tests and the build system.

Testing a UI Using WebDriverJS

[248]

We just need to add some routes to our web server to serve the bundles:

before('start web server', function (cb) {
 app.use(express.static(__dirname + '/..'));

 app.get('/dist/:bundleName.js', function (req, res) {
 var bundle = bundles[req.param('bundleName')];
 if (!bundle)
 return res.sendStatus(404);
 res.set('Content-Type', 'application/json');
 res.send(bundle);
 });

 app.listen(port, function (err) {
 server = this;
 cb.apply(this, arguments);
 });
});

The code just looks in the dictionary and returns the bundle as JSON if found. If not,
it will return a 404 error.

Maybe you are wondering why we executed browserify in the before() block
instead of in the build pipeline, using either Gulp or Grunt. We could make the
test task dependent on the distribution task. After all, you need to do it anyway to
correctly build a distribution of your UI. In fact, this approach is perfectly fine, but I
slightly prefer the one used in this chapter. I have some reasons for this:

• I do not want to make the build pipeline more complex than necessary.
• I want the test suite to be as fast as possible, so I am only packing the

minimum set of JavaScript files that the test page needs. Note that, in the test
page, we only test one single passive view. Probably, in our distribution, we
will build bigger bundles because a real page can use several widgets.

• If you need to make a change in the setup, you only need to modify the test
setup. With the other approach, you need to modify the build pipeline too.

Anyway, both approaches have their advantages, so if you prefer to add a bit more
complexity to your build pipeline and make your test code a bit simpler, then try it!

Chapter 6

[249]

Creating a WebDriver session
The only thing we need now is to create a WebDriver session. When a session
is created, a new browser is started and put under the control of a WebDriver
instance. There are multiple ways of creating a session, but we will go with the
most straightforward one: using chromedriver to control a single Google Chrome
browser instance. For this, we need to add the following lines of code to our
test/index.js file:

var webdriver = require('selenium-webdriver');
before('start web driver session', function () {
 this.driver = new webdriver.Builder().
 withCapabilities(webdriver.Capabilities.chrome()).
 build();
});

after('quit web driver session', function () {
 return this.driver.quit();
});

The code is quite simple. We used the webdriver.Builder object to create
a WebDriver instance that, under the hood, will open a browser session. The
withCapabilities method specifies which kind of browser we want; in this case,
we want a a Google Chrome browser (webdriver.Capabilities.chrome()).

The after() block will simply destroy the session when all the tests are done.

You can go to http://selenium.googlecode.com/git/docs/
api/javascript/class_webdriver_Capabilities.html to
know which browsers are currently supported.

Testing whether our view updates the HTML
We are now ready to start writing a test for our view. The first feature that a passive
view should have is the ability to receive a view model and update the HTML with
the new information. A view model is a simple JSON object with all the information
needed by the view to update the DOM. It not only includes the information to
show, but also includes the state of the controls, whether some element should be
highlighted or hidden, and so on.

Testing a UI Using WebDriverJS

[250]

The general pattern to test this kind of feature is as follows:

1. Set up your test by executing a remote script where you instantiate an
instance of your passive view and attach it to the corresponding HTML tag.

2. Drive your test with a remote script that will invoke the passive view update
method with an example of a view model.

3. Check whether the relevant HTML nodes have been created or updated
using WebDriver.

4. Triangulate with several examples of the view model.

Let's see how all of this can be done with some code. Create a test/order_view_
updates_dom.js file with the following lines of code:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

chai.use(require('chai-as-promised'));

var driver;
before(function () {
 driver = this.driver;
});

describe('An order-view updates the DOM', function () {
 before(function () {
 driver.get(this.uriForPage('order'));

 return driver.executeScript(function () {
 window.view = require('order-view')('.container')
 });
 });

 function willUpdateTheDOM(example) {
 // Add tests here!
 }

 [
 {

Chapter 6

[251]

 description: 'an order',
 viewModel: {
 totalPrice: "12.34 $"
 }
 }
].forEach(willUpdateTheDOM);
});

Note how in the setup we are instructing the browser to load the order HTML
test page. For this, we used the WebDriver get() method. Then we simply used
executeScript to create a new view instance in the <div> with the .container
class. We stored the resulting instance in window.view for future reference.
Remember that actually this code is being executed in the browser, so we have
access to the window object.

There is an interesting trick here; we are using before() instead of beforeEach(),
so we can load the HTML page, and create the view instance, only once for all the
tests, instead of one time per each test. This will speed up our test suite, but it has the
risk of mixing the state between the tests. Fortunately, the passive view is a stateless
object, so it is safe to do it like this. At most, you would need to reset the HTML
and/or other browser states in an afterEach() block, as follows:

afterEach(function() {
 return driver.executeScript(function () {
 document.querySelector('.container').innerHTML = '';
 });
});

Fortunately this is not necessary with ReactJS, since the HTML will be fully updated
whenever we update the view, removing the old HTML if necessary.

Inside the willUpdateTheDOM function, we will code the parameterized tests we need.
This function will be invoked with several examples of the view model to triangulate
the test. For now, we only have a very simple example showing the totalPrice. Note
that this field is a correctly formatted and localized string. The format and localization
logic is implemented in the core UI layer and tested independently, so we do not need
to worry about the values here. Just use meaningful examples and check whether the
data is displayed as it is in the view model.

Testing a UI Using WebDriverJS

[252]

Let's write some test code to check whether totalPrice is displayed. Add the
following lines of code inside the willUpdateTheDOM function:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {
 beforeEach(function () {
 return driver.executeAsyncScript(function () {
 var viewModel = arguments[0],
 cb = arguments[1];

 view.update(viewModel, cb);
 }, viewModel);
 });

 it('will update the DOM to show the total price', function () {
 var priceElement = driver.findElement({
 css: '.container .order .price'
 });

 return expect(priceElement.getText())
 .to.eventually.be.equal(viewModel.totalPrice);
 });
 });
 }

We executed the action we want to test using a remote asynchronous script.
We just executed view.update with the corresponding view model and a
callback. The view.update operation has been designed as asynchronous because
some frameworks, such as React, perform an incremental update of the DOM in
asynchronous batches for performance reasons.

The assertion simply uses WebDriver to locate the element that shows the price
with a CSS selector. We called getText() on the resulting element that will give us
a promise with the text shown earlier. We can easily assert that this text is the same
as the one in the view model, thanks to the sinon-as-promised plugin of Chai.

Chapter 6

[253]

We can start incrementally adding tests to check whether more information is
shown. For example, we could test whether the order items are shown as rows
in a table:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {
 // Skipped for brevity

 describe('will update the DOM to show the items', function () {
 it('there is one entry per each item', function () {
 var itemElements = driver.findElements({
 css: '.container .order .item'
 });

 return expect(itemElements).to.eventually
 .have.length(viewModel.items.length);
 });

 viewModel.items.forEach(function (itemModel, i) {
 var itemSelector = '.container .order .item:nth-of-type(' + (i
 + 1) + ')';

 it('the DOM for item ' + i + ' shows the item name', function
 () {
 var itemNameElement = driver.findElement({
 css: itemSelector + ' .name'
 });

 return expect(itemNameElement.getText())
 .to.eventually.be.equal(itemModel.name);
 });

 it('the DOM for item ' + i + ' shows the item quantity',
 function () {
 var itemQuantityElement = driver.findElement({
 css: itemSelector + ' .quantity'
 });

 return expect(itemQuantityElement.getText())
 .to.eventually.be.equal(itemModel.quantity);

Testing a UI Using WebDriverJS

[254]

 });

 it('the DOM for item ' + i + ' shows the item price', function
 () {
 var itemPriceElement = driver.findElement({
 css: itemSelector + ' .price'
 });

 return expect(itemPriceElement.getText())
 .to.eventually.be.equal(itemModel.unitPrice);
 });
 });
 });
 });
}

[
 {
 description: 'an order with 3 items',
 viewModel: {
 totalPrice: '12.34 $',
 items: [
 {name: 'Expresso', quantity: '2', unitPrice: '2.33 $'},
 {name: 'Mocaccino', quantity: '3', unitPrice: '1.45 $'},
 {name: 'Latte', quantity: '1', unitPrice: '2.00 $'}
]
 }
 }
].forEach(willUpdateTheDOM);

We just added a loop to create a test for each item that will check the price, quantity,
and name. Here, note that the use of the nth-of-type(index) selector allows us to
locate individual item entries.

We should also test how the user actions are rendered. How do we represent a user
action in the view model? Let's have a look at this:

[
 {
 description: 'an order with 3 items',
 viewModel: {
 totalPrice: '12.34 $',
 items: [

Chapter 6

[255]

 {name: 'Expresso', quantity: '2', unitPrice: '2.33 $'},
 {name: 'Mocaccino', quantity: '3', unitPrice: '1.45 $'},
 {name: 'Latte', quantity: '1', unitPrice: '2.00 $'}
],
 addBeverageForm: {
 target: '/orders/items_3',
 method: 'POST',
 enabled: true,
 shown: true,
 fields: [
 {name: '__method', type: 'hidden', value: 'PUT'},
 {name: 'beverage',type: 'text', value: '', error: true},
 {name: 'quantity', type: 'text', value: '1'},
 {name: 'addToOrder', type: 'button',
 value: 'Add to order'}
],
 messages: ['name of the beverage is required']
 }
 }
 }
].forEach(willUpdateTheDOM);

As shown, a good way to represent a user action is using a form. In the view model,
we have opted to model the form in a low-level way. It is an object that contains
several properties, explained here:

• The enabled and shown properties define whether the form's controls are
enabled or not or whether it is going to be visible or not.

• The fields array contains an object for each field. Each one of these objects
represents an input control, so we need properties to define the name, the
type of the field (hidden, text, submit, button, file, and so on), the value,
and whether the field is marked as containing an error or not.

• The method and target fields will define which HTTP verb will be used if
we submit the form and where the URI is that executes the form submission.

• Finally, it contains a messages array that contains the possible list of error
messages to be shown.

Now we need to test whether the form is rendered correctly:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

Testing a UI Using WebDriverJS

[256]

 describe('when update is called with ' + example.description,
function () {
 // Skipped for brevity
 describe('will update the DOM to show the add beverage action',
function () {
 var formModel = viewModel.addBeverageForm;
 describe('there is a form', function () {
 beforeEach(function () {
 this.form = driver.findElement({
 css: '.container .order form.add-beverage'
 });
 });

 it('with a ' + formModel.method + ' method', function () {
 return expect(this.form.getAttribute('method'))
 .to.eventually
 .be.equal(formModel.method.toLowerCase());
 });

 it('with action set to ' + formModel.target, function () {
 return expect(this.form.getAttribute('action'))
 .to.eventually
 .match(new RegExp(formModel.target + '$'));
 });
 // Skipped for brevity
 });
 });
 });
}

The first thing we did is to look for the form using a CSS selector and save it in
the this.form variable. This way, we can remove the duplicated code that looks
for the form in the different tests. In the preceding code, we checked the method
and action properties of the form. There is no complicated code in this test.
There are just two caveats:

• The method property of a form must be in lowercase, as specified in the
HTML standards.

• The browser will return the full URI as the action property value. That is
why we are asserting using a regular expression.

Chapter 6

[257]

We can also check whether the form is shown or hidden and whether the messages
are shown:

describe('will update the DOM to show the add beverage action',
function () {
 // Skipped for brevity
 it('which is ' + (formModel.shown ? '' : 'not ') + 'visible',
function () {
 return expect(this.form.isDisplayed())
 .to.eventually.be.equal(formModel.shown);
 });

 if (formModel.shown) {
 formModel.messages.forEach(function (msg, i) {
 it('with an error message [' + msg + ']', function () {
 var msgElement = this.form.findElement({
 css: '.error-msg:nth-of-type(' + (i + 1) + ')'
 });

 return expect(msgElement.getText())
 .to.eventually.equal(msg);
 });
 });
 }
 // Skipped for brevity
 });
});

To assert whether the form is shown or not, we checked the isDisplayed()method
from WebDriver. Also, note the way the title of the test is changed depending on
whether the example says that the form should be shown or not.

If the form is not displayed, then the getText() message will return an empty
string. That is why the test is executed conditionally, based on whether the form is
displayed or not. Note how we locate the elements for each message using this.
form.findElement. This way, we only need to use a CSS selector that is relative
to the form. This small trick could have been used for the tests of the items we saw
earlier, instead of using a long selector.

Testing a UI Using WebDriverJS

[258]

Finally, we need to check the fields:

describe('will update the DOM to show the add beverage action',
function () {
 // Skipped for brevity
 formModel.fields.forEach(function (fieldModel) {
 describe('with a field named ' + fieldModel.name, function () {
 beforeEach(function () {
 this.field = this.form.findElement({
 css: 'input[name="' + fieldModel.name + '"]'
 });
 });

 it('that has type [' + fieldModel.type + ']', function () {
 return expect(this.field.getAttribute('type'))
 .to.eventually.be.equal(fieldModel.type);
 });

 it('that has value [' + fieldModel.value + ']', function () {
 return expect(this.field.getAttribute('value'))
 .to.eventually.be.equal(fieldModel.value);
 });

 it('that is ' + (fieldModel.error ? '' : 'not ') +
'highlighted as error', function () {
 var className = this.field.getAttribute('class');

 if (fieldModel.error)
 return expect(className)
 .to.eventually.include('error');
 else
 return expect(className)
 .to.eventually.not.to.include('error');
 });

 it('that is ' + (formModel.enabled ? 'enabled' : 'disabled'),
function () {
 var disabled = driver.executeScript(function () {
 var inputEl = arguments[0];
 return inputEl.disabled;
 }, this.field);

Chapter 6

[259]

 return expect(disabled).to.eventually
 .be.equal(!formModel.enabled);
 });
 });
 });
 });
});

The tests are very simple and use the techniques we have seen until now. The only
new things are the tests for enabled and error. The test for error accesses the
class attribute and checks whether it contains the.error class or not. Note that we
need to use an if statement here. The test is parameterized, so we need to change the
assertion depending on whether the field should be marked as an error or not. If it is
marked as an error, we use the include('error') Chai assertion to check whether
the string containing the class names includes 'error'. If the field is not marked as
an error, we use not.to.include('error') to test exactly for this opposite.

The test for enabled is more interesting since we do not need to check the
disabled Boolean attribute, just the JavaScript property. As we saw earlier,
in this case we cannot use getAttribute since it gives priority to the attribute.
That is why a remote script is used. We can directly pass the WebElement script,
and this will be converted to a DOM element from which we can read the
JavaScript disabled property.

Note the kind of CSS selectors we used. They are semantic and
deliberately loose coupled with the specific structure of the resulting
HTML. This results in tests that are less brittle to the changes in the
HTML structure. The price we pay for this is that we do not check
which specific HTML is generated. However, sometimes this detail is
important; in these cases, we should use more specific selectors that
reveal the detailed structure of the HTML. In general, we should aim
for the less-specific selectors that check exactly what we want to.

We can continue adding elements to our view model and test whether they are
shown appropriately. This give us an incremental workflow to test-drive the
implementation of the UI.

Testing a UI Using WebDriverJS

[260]

Testing whether our view reacts with the user
There is another feature that we should test: the ability of the passive view to receive
low-level DOM events and transform them into appropriate calls to the core UI logic.
It is important to realize that mapping between DOM events and actions in the core
UI logic is not one-to-one:

• Several low-level DOM events can be mapped to exactly the same action.
For example, if we are using a search form, we can trigger the search both by
pressing Enter or by clicking on a search button.

• A complex sequence of DOM events could be mapped to a single action. For
example, a drag-and-drop action can be mapped to an "add to order" action.

It is a good idea to talk with the UX designer about how exactly
the user accomplishes business operations in the UI and when
validations should be triggered to discover the mapping between
low-level DOM events and calls in the core UI layer.

The pattern to test this kind of features is as follows:

1. Set up a test double of your core logic UI with spies for each relevant call you
want to check using a remote script.

2. Drive the test using WebDriver to send native events.
3. Use WebDriver to execute a remote script that checks the spies.

It is a good practice to create a separate scenario for each native event
that maps to the same action and to separate test files containing
all the scenarios that check the same logic action. This way, we can
easily locate the relevant test suite file.

Let's see how all of this can be done with some code. Create a test/order_view_
fires_addBeverage.js file where we will test which events perform an add
beverage operation against the core UI logic:

describe('An order-view sends an "add beverage" request to the
controller', function () {
 var addBeverageForm = {
 target: '/orders/items_2',
 method: 'POST',
 enabled: true,
 shown: true,

Chapter 6

[261]

 fields: [
 {name: '__method', type: 'hidden', value: 'PUT'},
 {name: 'beverage', type: 'text', value: ''},
 {name: 'quantity', type: 'text', value: ''},
 {name: 'addToOrder', type: 'submit', value: 'Add to order'}
],
 messages: []
 };

 before(function () {
 return driver.get(this.uriForPage('order'));
 });

 beforeEach(function () {
 return driver.executeAsyncScript(function () {
 var newOrderView = require('order-view'),
 addBeverageForm = arguments[0],
 cb = arguments[1];

 window.controller = {
 addBeverage: sinon.spy()
 };

 newOrderView('.container', window.controller)
 .update({
 totalPrice: '0 $',
 items: [],
 addBeverageForm: addBeverageForm
 }, cb);
 }, addBeverageForm);
 });
});

The preceding code performs the setup necessary for our tests:

• We defined a variable called addBeverageForm that will hold the initial view
model of the form we are testing.

• We loaded the test page in a before block, so it will be done only once.
• Finally, we used a beforeEach block to initialize our passive view using

executeAsyncScript. This setup is a bit different from the one we did in the
previous feature. As we did earlier, we created a new instance of the passive
view and attached it to the .container element. However, this time we
provided a test double for the controller that will receive the user operations.
In this case, the controller will have an addBeverage method that should be
called when the user executes the form. We finally updated the view using a
view model that contains the addBeverageForm model.

Testing a UI Using WebDriverJS

[262]

Note that, unlike in the previous feature, we are using a beforeEach block instead
of a before block to initialize our view. This is because we will change the value
of the inputs of the forms when we tell WebDriver to type into them. If we do
not regenerate the HTML again, the next test will type again in the input but the
input has already been filled with some text. So our final input will consist of a
concatenation of both texts: the one for the old test and the one for the new test.
Another important reason for using a beforeEach block is that we need to create a
new test double so the tests do not interfere with each other.

Another option would have been using a before block as we did in the previous
feature, but also adding an extra afterEach block to do a clean up. It is a bit more
complex, but we usually avoid the expensive operation of recreating the whole
HTML and the passive view instance whenever we prepare a new test. If we went
with this approach, we would end up with the following setup:

before(function () {
 driver.get(this.uriForPage('order'));

 return driver.executeAsyncScript(function () {
 var newOrderView = require('order-view'),
 addBeverageForm = arguments[0],
 cb = arguments[1];

 window.controller = {
 addBeverage: sinon.spy()
 };

 newOrderView('.container', window.controller)
 .update({
 totalPrice: '0 $',
 items: [],
 addBeverageForm: addBeverageForm
 }, cb);
 }, addBeverageForm);
});

afterEach(function () {
 driver.findElement({
 css: '.container .order form.add-beverage input[name="beverage"]'
 }).clear();

Chapter 6

[263]

 driver.findElement({
 css: '.container .order form.add-beverage input[name="quantity"]'
 }).clear();

 return driver.executeScript(function () {
 controller.addBeverage.reset();
 });
});

In the afterEach block, we found the input fields and cleared them; then we
executed a remote script to reset the Sinon spy.

Deciding between the "extra afterEach method for clean up with a single before
block" approach and the "beforeEach block with the page loading in a separate
before block" approach depends mainly on which one makes your test faster and
whether the clean up is complex or not.

Let's write a test that ensures that, when the user clicks on the addToOrder button
in the form, then the controller receives an addBeverage request. We can add the
following code after our setup:

describe('given that the user has entered 2 Cappuccinos', function ()
{
 var expectedRequest = {
 beverage: 'Cappuccino',
 quantity: '2',
 target: '/orders/items_2',
 method: 'PUT'
 };

 beforeEach(function () {
 driver.findElement({
 css: '.container .order form.add-beverage
input[name="beverage"]'
 }).sendKeys('Cappuccino');

 driver.findElement({
 css: '.container .order form.add-beverage
input[name="quantity"]'
 }).sendKeys('2');
 });

Testing a UI Using WebDriverJS

[264]

 it('when the user clicks the "add to order" button, ' +
'an addBeverage request will be sent to the order with "2
Cappucinos"', function () {
 driver.findElement({
 css: '.container .order form.add-beverage
input[name="addToOrder"]'
 }).click();

 return driver.executeScript(function () {
 expect(controller.addBeverage)
 .to.have.been.calledWith(arguments[0]);
 }, expectedRequest);
 });
});

We used a beforeEach block to fill both input controls using the sendKeys method.
We do not need to make them wait for each other; WebDriver will take care of
this using its control flow mechanism. Note that the beforeEach block is not
asynchronous, so it will finish as soon as we schedule both sendKeys commands,
without waiting for them to be executed.

Now that we have filled the add beverage form, we can perform the test itself. A
click event is sent to the addToOrder button, and then we send a remote script that
will make an assertion on the controller test double. In this case, we expect that the
addBeverage method has been called with the correct parameters, an object with
a property with the value of each input field, and the correct target URI and HTTP
methods. Note that we expect the passive view not to use the method parameter of
the form, but the value of the __method hidden input instead.

This way of writing tests works because WebDriver will schedule sendKeys, click,
and executeScript in the same order as we did in the code. It will wait for each
command to finish before executing the next one, so we do not need to do anything
special to orchestrate them. The only thing we need to remember is to return
the promise of the executeScript command so that Mocha will wait for all the
commands and for the assertion to be finished.

The first time you run this test, you will probably see it fail in a weird way. It will
probably tell you that the expect symbol is undefined. What is happening is that,
when we click on a submit control, the browser will execute the form and navigate
outside our test page. WebDriver will wait for the click event to finish; this usually
involves waiting for the submission to finish. Then it will execute the remote script
but, in the new page, we have not declared any chai or expect dependency.

Chapter 6

[265]

To be able to pass this test, the passive view needs to kidnap the submit event of the
form and stop its default behavior: submitting the form and navigating out of the
page. This can be done with a simple ev.preventDefault() method in the event
handler of the form. This is a normal technique in single-page applications related to
the progressive enhance approach.

Now we want to test whether the same addBeverage request is issued when the user
presses Enter in any of the fields. Let's add a test for this:

describe('given that the user has entered 2 Cappuccinos', function ()
{
 // Skipped for brevity

 ['beverage', 'quantity'].forEach(function (fieldName) {
 it('when the user press ENTER in the "' + fieldName + '" input, '
+
'an addBeverage request will be sent to the order with "2
Capuccinos"', function () {
 driver.findElement({
 css: '.container .order form.add-beverage input[name="' +
fieldName + '"]'
 }).sendKeys(Key.ENTER);

 return driver.executeScript(function () {
 expect(controller.addBeverage)
 .to.have.been.calledWith(arguments[0]);
 }, expectedRequest);
 });
 });
});

The test is similar to the one we did earlier. We just simply pressed the Enter key in
the specified input field. The only thing here is that the test is parameterized against
the input name, and we ran it for the beverage and quantity fields.

Now we can triangulate to check whether these fields are used in the addBeverage
call if we pass different values for them:

function willSendAnAddBeverageRequest(example) {
 var enteredBeverage = example.input.beverage,
 enteredQuantity = example.input.quantity;
 describe('given that the user has entered ' + example.title,
function () {
 var expectedRequest = {
 beverage: enteredBeverage,

Testing a UI Using WebDriverJS

[266]

 quantity: enteredQuantity,
 target: '/orders/items_2',
 method: 'PUT'
 };

 beforeEach(function () {
 driver.findElement({
 css: '.container .order form.add-beverage
input[name="beverage"]'
 }).sendKeys(enteredBeverage);

 driver.findElement({
 css: '.container .order form.add-beverage
input[name="quantity"]'
 }).sendKeys(enteredQuantity);
 });

 it('when the user clicks the "add to order" button, ' +
 'an addBeverage request will be sent to the order with "' +
example.title + '"', function () {
 // Skipped for brevity
 });

 ['beverage', 'quantity'].forEach(function (fieldName) {
 it('when the user press ENTER in the "' + fieldName + '" input,
' +
 'an addBeverage request will be sent to the order with "' +
example.title + '"', function () {
 // Skipped for brevity
 });
 });
 });
}

[
 {
 title: '2 Capuccinos',
 input: {
 beverage: 'Cappuccino',
 quantity: '2'
 }
 },
 {

Chapter 6

[267]

 title: '12 Expressos',
 input: {
 beverage: 'Expresso',
 quantity: '12'
 }
 },
 {
 title: 'nothing',
 input: {
 beverage: ' ',
 quantity: ' '
 }
 }
].forEach(willSendAnAddBeverageRequest);

The last scenario is interesting. Here, we test what happens when the user enters
empty spaces in the fields. What should the passive view do? Nothing special! It
should just send exactly the same spaces the user entered. The passive view is not
responsible for the validation, but the UI control logic is. So passive view tests must
not say anything about what is a correct input and what is not. Leave this to the tests
of the UI control logic.

We can continue adding tests for any other DOM-level event that needs to be
translated to an addBeverage request. Which ones? I don't know; the UX
designer will tell you!

Sending any kind of event to the browser, as we did with the click
and sendKeys methods, is very slow. Especially, the sendKeys
method because it will send one event for each character and key that
we pass as parameters. This makes this kind of test inherently slow,
more than 200 milliseconds each.

What about our UI control logic?
Until now, we have tested only the interaction between the HTML and our passive
view. However, this layer is dumb; it is really not doing much. We still have a lot of
logic to test, and this logic is owned by the core UI layer.

The good news is that the logic in this layer is not very different from what we saw
in Chapter 3, Writing BDD Features, and Chapter 4, Cucumber.js and Gherkin. The point
is that we can use the same techniques to test it.

Testing a UI Using WebDriverJS

[268]

Who are our stakeholders here? Anyone who has an interest in how users interact
with other users. In most organizations, this implies business people, regular/test
users, UX designers, and so on. Often, these stakeholders are not really engineer
people, so it makes sense, as we saw in Chapter 4, Cucumber.js and Gherkin, to write
our BDD features for the UI using Gherkin. This way, the interaction with them will
be better, and the status of the development will be easier for them to understand.

If we stick to a language that is meaningful to these stakeholders and relevant for
the UI domain, we will end up with features that deal with a single interaction of the
user with the UI and how these interactions are reflected in the UI.

For example, the most simple feature would be to define what happens when the
user displays an order:

Scenario:
 Given that the order contains the following items:
 | beverage | quantity | price |
 | Expresso | 3 | 1 |
 | Capuccino | 2 | 5 |
 And that the total price is "10 dollars"
 When the user displays the order
 Then "10.00 $" will be shown as total price
 And "3.00 $" will be shown as a discount
 And the following order items will be shown:
 | item | unit price | subtotal |
 | 3 Expressos | 2.00 $ | 2.00 $ |
 | 2 Capuccinos | 5.00 $ | 10.00 $ |

This is actually very similar to the feature we had in the core logic, but the
implementation of the steps is slightly different. As a general setup, we need to
create test doubles for the passive view and the server client and attach them to the
core UI logic. To ensure that the order has certain contents, we just need to set up the
test double for the server side. To drive the feature, we just call a display method in
the core UI controller. To check whether the UI is updated, we need to check whether
the passive view's update method has been called with the correct parameters.

In this Gherkin, we tackled aspects such as what kind of information is shown (the
subtotal for each entry, the total price, and whether we got some discount). We also
showed you how to format the information correctly: quantity and beverage name
are together in the same element, and the amount of money is formatted to 2 decimal
places and the use of the dollar symbol.

Chapter 6

[269]

Note that we do not say anything about how exactly the UI looks.
This would be a mistake. The exact way in which the HTML should
be updated is one responsibility of the passive view, and we should
avoid this kind of detail here. Thus, steps such as "The second row of
the order items table will show <the data of the item>" are a bad smell,
and we should aim for something like "The <data of the item> will be
shown in the second position". Here, we do not care about whether
we show it with a table or not, but whether we show the correct
information in the correct order.

Another example would be on validating a field in the client side without going to
the server:

Scenario: quantity is incorrect
 When the user fills "1Df" in the quantity field
 Then the quantity field will be highlighted as erroneous
 And the quantity field will show "1Df"
 And an "invalid quantity (1Df)" message will appear

The steps are very simple to implement. We do not have a setup here, although we
would need to have it if the validation depends on the value of the other fields. The
"user fills" action corresponds to a method in the core UI logic controller that will
be invoked by the passive view when appropriate. The assertion again is simply
checking the parameters passed to the update method in the passive view.

Again, sticking to the correct level of abstraction here is very important.
The following details are all irrelevant for this layer and should be dealt with
in the passive view:

• How does the user enter the data in the field? Maybe they press Enter or
change the focus to another field? Or maybe, they just expect to update the
field as they type?

• What exactly is a field? A fancy rich control? A simple <input> tag? Or
maybe an editable <div>?

• How does the field get highlighted? A red star appears next to it? Its border
changes color?

• How does the messages exactly look? Where are they positioned?

This kind of detail should not be expressed in this Gherkin.

Testing a UI Using WebDriverJS

[270]

Suppose we want to specify when the quantity of the item is filled successfully:

Scenario: quantity is correct
 Given that the user is Spanish
 When the user fills " 1000 " in the quantity field
 Then the quantity field will show "1.000"
 And the "add beverage" action will be enabled

This scenario shows that we accepted blanks and that they are stripped. It also shows
that, because the user is from Spain, the quantity is formatted with the "." character
as a thousands separator.

If you keep the right abstraction level, your BDD features will be very robust and
will not change whenever the graphic design changes or there are small changes in
the interactivity. The features should only be changed if there is a big change in the
way the UI behaves—changes in the navigation; changes relating to when controls
are disabled or enabled, or when they appear or disappear; and changes in client-
side validation, formatting, and so on.

Summary
This chapter showed us that a good way to test the UI of an application is actually
to split it into two parts and test them separately. One part is the core logic of the UI
that takes responsibility for control logic, models, calls to the server, validations, and
so on. This part can be tested in a classic way, using BDD, and mocking the server
access. No new techniques are needed for this, and the tests will be fast. Here, we can
involve nonengineer stakeholders, such as UX designers, users, and so on, to write
some nice BDD features using Gherkin and Cucumber.js.

The other part is a thin view layer that follows a passive view design. It only updates
the HTML when it is asked for, and listens to DOM events to transform them as
requests to the core logic UI layer. This layer has no internal state or control rules; it
simply transforms data and manipulates the DOM. We can use WebDriverJS to test
the view.

This is a good approach because the most complex part of the UI can be fully
test-driven easily, and the hard and slow parts to test the view do not need many
tests since they are very simple. In this sense, the passive view should not have a
state; it should only act as a proxy of the DOM.

Chapter 6

[271]

The setup is more complex than usual because we need to bundle the code we
want to test in a way it can be consumed by the browser. We can use the browserify
tool for this. We can execute browserify during the setup or as part of our build
process. There is no need to use a special package system just because we are coding
for the browser.

As part of the setup, we will often need to inject test doubles for our passive view
using the executeScript method of WebDriverJS. We do not need to always reload
the test page between tests. Since the view is stateless, we can just reset the test
double for the core UI logic and wipe out the generated HTML from the last test.
This will speed up the tests. For additional cleanup, we can clean up cookies and
other resources using WebDriver.

To drive our UI during the tests, we should send the same gestures that the user
would do to interact with the UI. We can do this with various methods in the
elements returned by WebDriver; alternatively, for more complex interactions,
we can use the ActionSequence object.

In our assertions, we can use executeScript to check whether the passive view
requested the correct operation to the core UI logic. If the expectation was not met,
the assertion error will be transferred to our test.

In the assertions, we also need to check whether the HTML is updated correctly.
For this, we can use WebDriver again. We can find the HTML elements using the
findElement or findElements methods. To locate the elements, I recommend that
you use CSS selectors, although other locators are available.

Regardless of all these techniques, UI tests are slow and inherently brittle to the
changes in the HTML structure. To complicate things more, the layer that changes
more frequently is the passive view, not the core UI layer. Can we do something
about it? Well, there are no silver bullets here, but we can make it a bit better with
the Page Object pattern, as we will see in the next chapter.

The Page Object Pattern
In this chapter, we will try to better organize the test codebase we created in the
previous chapter. In order to do so, you will learn the Page Object pattern. This
pattern will allow us to simplify our test code and encapsulate the complexity of
using WebDriver and accessing the DOM in a nice object that we can reuse across
all of our codebase.

In this chapter, you will learn:

• What the Page Object pattern is and why to use it
• Best practices to design a page object
• How to save code by designing a library of small reusable page objects
• How to build a page object using WebDriver
• How to properly test the navigation logic of our application (do not do this

in the page object)

Introducing the Page Object pattern
If we have a look at the code we have written, we will realize that the tests are a
bit ugly. The tests are not very readable because there is a lot of references to the
WebDriver API that is a bit low-level. Furthermore, there are many CSS selectors
throughout all the tests. This produces two main problems:

• Excessive verbosity and a lack of readability in the tests due to all these
references to CSS selectors and the WebDriver API.

The Page Object Pattern

[274]

• Difficult maintenance. A change in the structure of the HTML can break our
tests, because the specified CSS selectors are no longer valid. The problem is
not the fact that the tests get broken, but that we need to review all the tests,
looking for the selectors that we need to fix. This is because the same CSS
selector can be referenced in several tests that depend on the same element.

The Page Object pattern intends to solve these problems by encapsulating the details
of accessing the elements of a page and interacting with it. The idea is to create
an object that offers a logical view of the page and move all the references to the
WebDriver and CSS selectors inside this object.

Besides this, the Page Object pattern has an additional advantage: it decouples
our test from WebDriver so that we can switch to another tool if we want to. After
all, technology moves fast, and in a year or two there could be better tools than
WebDriver out there. In this event, it would be nice to change to such a tool without
modifying our whole test suite, just the page object.

Although normally it is used for testing, the Page Object pattern can be used for any
purpose related to UI automation—load testing, for example.

Best practices for page objects
The API of the page object must be formulated in terms of the logical structure of
the UI and not in terms of the details of the HTML. Basically, the language of the
tests and the one in the Page Object's API should be the same. Some best practices to
model the API of a page object are as follows:

• Allow read-only accessors to get the information shown by the HTML
rendered by the widget. These accessors should not receive any parameters,
and they should return a promise containing the value shown, not a
WebElement. The accessor should be named after the information we are
looking for. For example, orderView.totalPrice() would return a promise
with a string with the price shown.

• As an alternative to several read-only accessors, use a single one that
will return a promise of an object with a field for each information. For
example, orderView.info() would return a promise of an object with the
totalPrice, items, and other such fields.

Chapter 7

[275]

• Create read/write accessors for the input fields. The read accessor will
return a promise with the current value of the input. The write accessor
receives the new value and returns an empty promise that will be fulfilled
when the input field's value has been modified. Controls such as checkboxes
should model the value as boolean. Multiple choice elements should simply
return the values that are selected. Text inputs should be able to receive not
only text, but also keys. For example, quantity() would return a promise
with the value of the quantity field, and quantity('22') should send the
corresponding text to the input and return an empty promise.

• Sometimes, we need an extra degree of control for inputs. In this case,
model the input control with its own small page object, accessible through a
read-only accessor. For example, orderView.addBeverage().quantity()
would return an object with a value() read/write accessor and extra
methods for interaction, such as pressEnter(), or for inspection, such as
isPresent(), isVisible(), or isMarkedAsError().

• Create action methods for buttons, links, and others, named after the action
the control represents, that will trigger the action. For example, we can have
a orderView.addBeverage().addToOrder()method that will issue a click
event in the addToOrder button of the form. If we need extra control of the
interactivity, we can create, as we did earlier, a small page object for the
control, instead of a simple action method. Add methods such as click(),
pressEnter(), and isEnabled() to it in order to be able to issue events and
inspect the control.

• Model each form as a small nested page object. For example, orderView.
addBeverageForm() should return a page object for that form.

• Create a composite page object if it is necessary, instead of a big giant object.

As you can see, there are two kinds of methods in a page object: query methods,
which return the information shown on a page, and action methods, which interact
with the page by sending events and filling inputs.

In general, a page object's query method should return the following:

• Another page object, if there is a composition relationship between both or,
in other words, if a widget is inside another widget. If necessary, we can
consider forms, and even controls, as small page objects. This is the case
when we need to interact with them using different gestures, or we are
interested in a lot of information, not only in the value of the inputs.

• A promise for a primitive that represents the information shown to the user,
or the value of an input.

The Page Object Pattern

[276]

Action methods are simpler; they simply return a promise that will be fulfilled when
the action is complete. If necessary, they can take parameters.

How can we model navigation using page objects? This is a tricky question. One
possible design is to make the methods that trigger navigation return the page object
for the target of the navigation. For example, if we submit the placeOrder form,
we should show the UI for the payment; then, we can make submitPlaceOrder()
return PaymentPageObject. However, this is wrong! How do you know what the
destination of the placeOrder form is? In fact, there should be a test, such as "when
we submit the place order form, we go to the payment UI, testing exactly that".
Furthermore, almost always, there will be other scenarios, different from the success
case; these scenarios will expect you to go to other pages, and not to the payment UI.
So, the approach of making the action methods that trigger navigation return another
page object is not a good practice, but a common pitfall.

What happens here is that the navigation logic does not belong to the passive view,
which is what we are trying to test with the help of the Page Object pattern. Navigation
is a concern of the core UI logic, most specifically of the controller or the router
components (depending on the design pattern you are using). We can test that kind
of logic without WebDriver or any page object, using only vanilla BDD. What we
really should test for the passive view is whether it knows how to react correctly to
the changes on the current page, and whether it hides and shows the corresponding
HTML when it is instructed to do so. We will see how to test this later.

You can end up needing to introduce navigation in the page object
if you do integrated tests of the view and the core UI logic. This is a
very popular approach but, in the previous chapter, we saw that it
is not good. The fact that introducing navigation in a page object is
problematic is yet another bad smell of integrated testing.

Another common pitfall is to add assertion methods to a page object. An
assertion method would make a check and throw AssertionError if the test
is not correct. For example, orderView.addBeverageForm().quantity().
assertThatIsMarkedAsError() would check whether the input control has an
.error class; if not, it would throw AssertionError. A page object should not have
assertions. The responsibility of a page object is to access and interact with the page
and not check anything. The assertions should be done in the tests themselves.

To sum up, apart from our page objects, we should keep things such as navigation
and assertion checking and focus them on doing page interaction and inspection.

Chapter 7

[277]

Here, we are dealing with an HTML interface, but a good page object will hide
the fact that the UI is HTML-based. In principle, if your page object's API is well
designed, then it should be possible to change from HTML to another UI technology,
such as SVG, native Android, or native iPhone, without changing any of your tests
and changing only the implementation of the page object.

Originally, the Page Object pattern was intended to model a whole page. This made
sense when the page was the main HTML UI building block. Nowadays, the trend
is to create reusable design units, also known as widgets, and build the web pages
using them. So, we should not enforce the idea of a single page object per page;
rather, we should try to define an individual page object per widget whenever
necessary. Furthermore, if a page or widget contains other widgets, you can model
it with the composite pattern: a page object composed of other page objects. We can
also create a library of page objects not only for these building blocks, but even for
smaller controls, such as currency inputs, date pickers, and so on. The goal is to be
able to reduce the amount of code we need to write whenever we need to test a new
passive view. If we can reuse the existing page objects when we need to test a new
passive view, we can save a lot of time and effort. This approach pays only if your
application is big enough to leverage these reusable building blocks.

A page object for a rich UI
It is now time to change our UI tests to use the Page Object pattern. The first thing
is to create an initial page object that represents the browser. This will encapsulate
all the logic about navigation and executing scripts. This way, we can, in the future,
replace WebDriver with another tool, if it is necessary. Let's create such an object
inside the test/support/ui.js file:

'use strict';

module.exports = function (port, driver) {
 function uriFor(uiName) {
 return 'http://localhost:' + port + '/test/' + uiName + '.html';
 }

 return {
 uriFor: uriFor,
 goTo: function (uiName) {
 return driver.get(uriFor(uiName));
 },
 executeScript: driver.executeScript.bind(driver),
 executeAsyncScript: driver.executeAsyncScript.bind(driver)
 };
};

The Page Object Pattern

[278]

The module is very simple; it just exposes a constructor for our main page object. The
uriFor method is almost identical to the one we had before in test/index.js, and
it will construct the right URI for a given test page. The goTo function will instruct
WebDriver to open the specified page in the browser, just as we did in the test setup
in the previous chapter. The executeScript and executeAsyncScript functions
simply forward the call to the corresponding methods in the WebDriver instance.

This object will be the entry point for our testing utilities, so we need to modify
test/index.js to expose it to the tests:

var express = require('express'),
 port = process.env.PORT || 3000,
 server,
 app = express(),
 browserify = require('browserify'),
 reactify = require('reactify'),
 bundles = {},
 driver,
 webdriver = require('selenium-webdriver'),
 newPageObject = require('./support/ui');

// Skipped for brevity

before('start web driver session', function () {
 driver = new webdriver.Builder().
 withCapabilities(webdriver.Capabilities.chrome()).
 build();

 this.ui = newPageObject(port, driver);
});

after('quit web driver session', function () {
 return driver.quit();
});
// Skipped for brevity

We just removed the beforeEach block that created the uriForPage method,
and constructed an instance of the main page object using the WebDriver session.

Chapter 7

[279]

Building a page object that reads the DOM
Now we can change the test/order_view_updates_dom.js feature to use this
page object:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

chai.use(require('chai-as-promised'));

describe('An order-view updates the DOM', function () {
 var orderView;
 before(function () {
 this.ui.goTo('order');

 orderView = this.ui.newOrderView();

 return orderView.init('.container');
 });

 function willUpdateTheDOM(example) {
 // Skipped for brevity
 }
 // Skipped for brevity
});

We just used the goTo method of the main page object to open the test page for the
order view. Then a new page object was created for the order view, using a factory
method called newOrderView. The new page object will be stored in the orderView
variable and will be initialized to be rendered inside the .container element. This
is exactly the same setup code we had earlier, but the actual code that interacts with
WebDriver will have been moved inside the page object. First, we need to add the
newOrderView method to the main page object in test/support/ui.js:

var newOrderView = require('./order');

module.exports = function (port, driver) {
 // Skipped for brevity

The Page Object Pattern

[280]

 return {
 // Skipped for brevity
 newOrderView: function () {
 return newOrderView(driver);
 }
 };
};

Now, we need to create the actual page object for the order view in the test/
support/order.js file:

'use strict';

module.exports = function (driver) {
 var containerSel, self;

 self = {
 init: function (containerSelector) {
 containerSel = containerSelector;
 return driver.executeScript(function () {
 window.view = require('order-view')(arguments[0]);
 }, containerSelector);
 }
 };

 return self;
};

Nothing mysterious here; it is the same code we had in the previous chapter but it
is neatly encapsulated in the init function. Let's add a couple of methods to update
the order view with a new view model and to get the total price shown. For this, we
just need to move and adapt the code we had in the tests, which is present in the
test/support/ folder:

module.exports = function (driver) {
 var containerSel, self;

 self = {
 init: function (containerSelector) {
 containerSel = containerSelector;
 return driver.executeScript(function () {
 window.view = require('order-view')(arguments[0]);
 }, containerSelector);
 },

Chapter 7

[281]

 update: function (viewModel) {
 return driver.executeAsyncScript(function () {
 // 'done' is callback injected by webdriver as last
 // parameter to notify the async script is done
 var done = arguments[1];
 view.update(arguments[0], done);
 }, viewModel);
 },
 totalPrice: function () {
 return driver.findElement({
 css: containerSel + ' .order .price'
 }).getText();
 }
 };

 return self;
};

Now we can modify the test to use these methods:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {
 beforeEach(function () {
 return orderView.update(viewModel);
 });

 it('will update the DOM to show the total price', function () {
 return expect(orderView.totalPrice())
 .to.eventually.be.equal(viewModel.totalPrice);
 });
 // Skipped for brevity
}

Now both the action and the test code are more expressive. We can do the same
thing with the item list. This time, we can do it a bit differently: when we ask for
the items, we can return a slave page object that represents the list of items shown
in the order:

var newItemView = require('./orderItem');

function newCollection(elements, newView) {
 return {

The Page Object Pattern

[282]

 size: function () {
 return elements.then(function (arrayOfElements) {
 return arrayOfElements.length;
 });
 },
 info: function (i) {
 return elements.then(function (arrayOfElements) {
 return newView(arrayOfElements[i]).info();
 });
 }
 }
}

module.exports = function (driver) {
 var containerSel, self;

 self = {
 // Skipped for brevity
 items: function () {
 return newCollection(driver.findElements({
 css: containerSel + ' .order .item'
 }), newItemView);
 }
 };

 return self;
};

In the items() method, we just executed a findElements command to get
all the elements that represent the items of an order. We passed the result of
such a command and a newItemView constructor to the collection constructor,
newCollection.

The page object for the collection has only two methods: size() and info().
The first will simply return a promise with the length of the array of elements
returned by findElements. The second will locate a specific element in this array,
using the provided index, and will use the newItemView to construct a small page
object for that element. Then it will use its info() method to return the contents
of that item.

You can see a composite pattern here: the main page object constructs a page object
for the order; we can use the page object for the order to get a page object for the
order items collection; and, finally, for each order item in the collection, we can create
another page object.

Chapter 7

[283]

I am very uncomfortable with the name of the pattern: page object.
As you can see, it no longer represents a whole page, but a small
widget or UI element. That is why, in the code, the variables are not
called *pageObject, but *View. After all, they represent the thing
we are testing: the view layer. However, feel free to use any other
naming convention that you think is better.

We need to create the page object for each order item and implement its info()
method. Let's do this inside the test/support/orderItem.js file:

'use strict';

var promise = require('selenium-webdriver').promise;

module.exports = function (element) {
 return {
 info: function () {
 return promise.all([
 element.findElement({css: '.name'}).getText(),
 element.findElement({css: '.quantity'}).getText(),
 element.findElement({css: '.price'}).getText()
]).then(function (fields) {
 return {
 name: fields[0],
 quantity: fields[1],
 unitPrice: fields[2]
 };
 });
 }
 };
};

Here, instead of adding a different accessor for each property, we created a single
one called info(). This method will ask WebDriver for the text content of the
name, quantity, and price children elements of this order item element. When this
information is available, we will return an object that contains a property for each
one of them.

Here, we used the webdriver.promise.all utility that waits for all the promises to be
fulfilled and returns an array with the values of the promises. We finally transformed
this array into a proper object with the then method that all promises have.

The Page Object Pattern

[284]

Now we can implement the test to check the item values:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {
 // Skipped for brevity
 describe('will update the DOM to show the items', function () {
 var itemViews;
 beforeEach(function () {
 itemViews = orderView.items();
 });

 it('there is one entry per each item', function () {
 return expect(itemViews.size()).to.eventually
 .be.equal(viewModel.items.length);
 });

 viewModel.items.forEach(function (itemModel, i) {
 it("the DOM for item " + i + " shows the item's information",
function () {
 return expect(itemViews.info(i))
 .to.eventually.be.deep.equal(itemModel);
 });
 });
 });

 // Skipped for brevity
}

Now we have a single test for the item information instead of three. This is
more compact.

Building a page object that interacts with
the DOM
We can use the page object to check the form as well. We will use the same strategy:
an accessor method in the order page object that will return a page object for the
form itself:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {

Chapter 7

[285]

 // Skipped for brevity

 describe('will update the DOM to show the add beverage action',
function () {
 var formModel = viewModel.addBeverageForm;
 describe('there is a form', function () {
 beforeEach(function () {
 this.form = orderView.addBeverageForm();
 });

 it('with a ' + formModel.method + ' method', function () {
 return expect(this.form.method())
 .to.eventually.be.equal(formModel.method.toLowerCase());
 });

 it('with action set to ' + formModel.target, function () {
 return expect(this.form.target())
 .to.eventually.match(new RegExp(formModel.target +
'$'));
 });

 it('which is ' + (formModel.shown ? '' : 'not ') + 'visible',
function () {
 return expect(this.form.isShown())
 .to.eventually.be.equal(formModel.shown);
 });

 if (formModel.shown) {
 formModel.messages.forEach(function (msg, i) {
 it('with an error message [' + msg + ']', function () {
 return expect(this.form.errorMessage(i))
 .to.eventually.equal(msg);
 });
 });
 }
 // Skipped for brevity
 });
 });
 });
}

The Page Object Pattern

[286]

The page object for the form has accessors to return the target URL, the HTTP
method to use, whether the form is shown or not, and possible error messages.
We can put the implementation of such an object in the test/support/form.js file:

'use strict';

module.exports = function (driver, element) {
 return {
 method: function () {
 return element.getAttribute('method');
 },
 target: function () {
 return element.getAttribute('action');
 },
 isShown: function () {
 return element.isDisplayed();
 },
 errorMessage: function (i) {
 return element.findElement({
 css: '.error-msg:nth-of-type(' + (i + 1) + ')'
 }).getText();
 }
 };
};

The implementation of the methods is again very similar to the one we had in our
tests. There is nothing really interesting here. Now, we just need to change the order
page object to add an accessor that returns the form page object:

var newItemView = require('./orderItem'),
 newFormView = require('./form');

// Skipped for brevity

module.exports = function (driver) {
 var containerSel, self;

 self = {
 // Skipped for brevity
 addBeverageForm: function () {
 return newFormView(driver, driver.findElement({
 css: containerSel + ' .order form.add-beverage'
 }));
 }

Chapter 7

[287]

 };

 return self;
};

The addBeverageForm function will just locate the appropriate form element and
build the page object for it.

What about the inputs? Well, we can just continue with our strategy and create a
page object for each one:

function newInputView(driver, name, element) {
 return {
 name: function () {
 return name;
 },
 type: function () {
 return element.getAttribute('type');
 },
 value: function () {
 return element.getAttribute('value');
 },
 isMarkedAsError: function () {
 return element.getAttribute('class').then(function (classNames)
{
 return classNames.indexOf('error') !== -1;
 });
 },
 isEnabled: function () {
 return driver.executeScript(function () {
 return !arguments[0].disabled;
 }, element)
 }
 };
}

module.exports = function (driver, element) {
 return {
 // Skipped for brevity
 fieldWithName: function (name) {
 return newInputView(driver, name, element.findElement({
 css: 'input[name="' + name + '"]'
 }));
 }
 };
};

The Page Object Pattern

[288]

We have added the fieldWithName method to the form page object. It will try to
locate an input field with the same name inside the form and construct with it an
input page object using the newInputView factory.

The input page object has methods that allow access to its name, type, and value
attributes. The isMarkedAsError method encapsulates the logic to know whether
the input is highlighted to the user as containing an erroneous value. In our current
implementation, it will just check whether the input element has a class named error
or not. However, if in the future, the HTML design changes, and for example it uses
another class name, or any other mechanism, we just need to change this method.
This isolates our tests from this implementation detail.

The isEnabled method is interesting too. As we saw in the last chapter, the
getAttribute method of WebDriver cannot be used directly to know whether an
input is enabled or not. The HTML attribute that controls this and the corresponding
property has the same name, disabled, so a call to getAttribute('disabled') will
only return the value of the attribute. However, the attribute only defines the initial
value of the property, and we are interested in its current value and how it changes
depending on our test scenarios. That is why we need to use a script to check the
JavaScript property directly. All this technical complexity is hidden now in the
isEnabled method, whereas in the previous chapter it was directly in the tests.

Now we can use this new page object to check the input fields of the form:

function willUpdateTheDOM(example) {
 var viewModel = example.viewModel;

 describe('when update is called with ' + example.description,
function () {
 // Skipped for brevity
 describe('will update the DOM to show the add beverage action',
function () {
 var formModel = viewModel.addBeverageForm;
 describe('there is a form', function () {
 // Skipped for brevity
 formModel.fields.forEach(function (fieldModel) {
 var fieldName = fieldModel.name;
 describe('with a field named ' + fieldName, function () {
 beforeEach(function () {
 this.field = this.form.fieldWithName(fieldName);
 });

Chapter 7

[289]

 it('that has type [' + fieldModel.type + ']', function ()
{
 return expect(this.field.type())
 .to.eventually.be.equal(fieldModel.type);
 });

 it('that has value [' + fieldModel.value + ']', function
() {
 return expect(this.field.value())
 .to.eventually.be.equal(fieldModel.value);
 });

 it('that is ' + (fieldModel.error ? '' : 'not ') +
'highlighted as error', function () {
 return expect(this.field.isMarkedAsError())
 .to.eventually.be.equal(!!fieldModel.error);
 });

 it('that is ' + (formModel.enabled ? 'enabled' :
'disabled'), function () {
 return expect(this.field.isEnabled())
 .to.eventually.be.equal(formModel.enabled);
 });
 });
 });
 });
 });
 });
}

The tests now look much clearer than the one we had in the previous chapter,
especially the one regarding whether the field is marked as an error and the one
about whether the field is enabled or not. The page object hides all the technical
complexity of these tests so that we can focus on making a meaningful and
expressive assertion.

Now is the time to update the tests for test/order_fires_addBeverage.js:

describe('An order-view sends an "add beverage" request to the
controller', function () {
 var addBeverageForm = {
 target: '/orders/items_2',
 method: 'POST',

The Page Object Pattern

[290]

 enabled: true,
 shown: true,
 fields: [
 {name: '__method', type: 'hidden', value: 'PUT'},
 {name: 'beverage', type: 'text', value: ''},
 {name: 'quantity', type: 'text', value: ''},
 {name: 'addToOrder', type: 'submit', value: 'Add to order'}
],
 messages: []
 }, orderView;

 before(function () {
 this.ui.goTo('order');

 this.ui.executeScript(function () {
 window.controller = {
 addBeverage: sinon.spy()
 };
 });

 orderView = this.ui.newOrderView();

 orderView.init('.container', 'controller');

 orderView.update({
 totalPrice: '0 $',
 items: [],
 addBeverageForm: addBeverageForm
 });

 this.form = orderView.addBeverageForm();
 });

 afterEach(function () {
 this.form.fieldWithName('beverage').clear();
 this.form.fieldWithName('quantity').clear();

 this.ui.executeScript(function () {
 window.controller.addBeverage.reset();
 });
 });

Chapter 7

[291]

 function willSendAnAddBeverageRequest(example) {
 // Skipped for brevity
 }

 // Skipped for brevity
});

Although the setup contains almost the same logic as it did earlier, except that it
takes advantage of the page object API, there is a subtle point here. We needed to
initiate the controller test double; for this, we executed a remote script using the
executeScript method of our main page object. The new controller test double is
stored in the global scope (window) under the very imaginative name of controller.
Now, we needed to pass this test double to our page object to initiate it, but the
actual object lives in the browser and not in our test. For this, we added a parameter
to the init method that contains the name of the global variable that hosts the test
double. We can modify the init method in test/support/order.js as follows:

init: function (containerSelector, controllerName) {
 containerSel = containerSelector;
 return driver.executeScript(function () {
 window.view = require('order-view')(arguments[0],
window[arguments[1]]);
 }, containerSelector, controllerName);
}

We just passed the name of the variable as a second parameter to the remote
script that initializes the order view, and we looked for the test double inside the
window object.

Now that we have solved the setup, we can have a look at cleaning up the
afterEach block. We can execute a remote script to reset the test double, but we
need to clear the fields of the form too. We can do this if we add a clear() method
to the input page object:

function newInputView(driver, name, element) {
 return {
 // Skipped for brevity
 clear: element.clear.bind(element)
 };
}

The Page Object Pattern

[292]

Since a WebElement has a perfectly fine clear() method itself, we just delegate to it.

It could be a very good idea to add a clear() method to the form
that clears all its fields.

In our test, we will need to introduce text into the input, press Enter, and click on a
button. We can add the corresponding methods to the input page object:

var Key = require('selenium-webdriver').Key;

function newInputView(driver, name, element) {
 return {
 // Skipped for brevity
 clear: element.clear.bind(element),
 click: element.click.bind(element),
 typeText: element.sendKeys.bind(element),
 pressKey: function (keyName) {
 return element.sendKeys(Key[keyName]);
 }
 };
}

There is nothing very new in the preceding code. Just notice that we have separated
the WebDriver's sendKeys method into typeText and pressKey. The intention of the
former is to simply type some text into an input element. Although the implementation
just delegates to the sendKeys method and we do not check for it, we intend only
to pass a string as a parameter of typeText and not any key. The pressKey method
is used instead to send a generic key event. For example, pressKey('SHIFT')
is equivalent to sendKeys(Key.SHIFT). This way, we isolate our tests from the
WebDriver API and provide methods with more meaningful names.

With the power of these new methods, we can complete the tests:

function willSendAnAddBeverageRequest(example) {
 var enteredBeverage = example.input.beverage,
 enteredQuantity = example.input.quantity;
 describe('given that the user has entered ' + example.title,
function () {
 var expectedRequest = {
 beverage: enteredBeverage,
 quantity: enteredQuantity,

Chapter 7

[293]

 target: '/orders/items_2',
 method: 'PUT'
 };

 beforeEach(function () {
 this.form.fieldWithName('beverage')
 .typeText(enteredBeverage);

 this.form.fieldWithName('quantity')
 .typeText(enteredQuantity);
 });

 it('when the user clicks the "add to order" button, ' +
 'an addBeverage request will be sent to the order with "' +
example.title + '"', function () {
 this.form.fieldWithName('addToOrder').click();

 return this.ui.executeScript(function () {
 expect(controller.addBeverage)
 .to.have.been.calledWith(arguments[0]);
 }, expectedRequest);
 });

 ['beverage', 'quantity'].forEach(function (fieldName) {
 it('when the user press ENTER in the "' + fieldName + '" input,
' +
 'an addBeverage request will be sent to the order with "' +
example.title + '"', function () {
 this.form.fieldWithName(fieldName).pressKey('ENTER');

 return this.ui.executeScript(function () {
 expect(controller.addBeverage)
 .to.have.been.calledWith(arguments[0]);
 }, expectedRequest);
 });
 });
 });
}

The Page Object Pattern

[294]

We made our test more compact and legible. Not only that, but note that both the
form and input page objects, and the collection page object, can be reused for any
other form or collections of elements. The form and input interfaces are very generic,
so they can represent any form and set of inputs. It will be perfectly fine for another
form, such as placing an order or removing a beverage. Similarly, you can reuse
the collection page object for different collections of things; just pass a different
page object factory function. This will save us a lot of code across tests, since all the
repetitive technical details about the WebDriver API are encapsulated in only one
place. This is the main advantage of this way of designing page objects.

As a disadvantage, one can argue that these objects small page objects are not much
different from WebDriver's WebElement objects. This is true, but we still retain the
possibility of replacing WebDriver with an other tool, since the API is now neutral.
Furthermore, we have achieved our main goal: to encapsulate knowledge about
the HTML structure of our UI inside the page objects. Whether you should use this
approach or just try to model each form with a page object with a custom and more
abstract API is your decision. Just remember the main goals of using a page object
and the tradeoffs involved in your specific case.

Testing the navigation
Until now, we have been testing the ability of a view to update the DOM and
transform a DOM event to user operations, but what about navigation? Does it make
sense to test the navigation in a single-page application? Actually, yes! Sometimes,
the user expects to change from one screen to another, or they expect some views to
appear and others to disappear. This can be considered as navigation.

The idea is that certain actions, such as form submissions or links, can trigger a
screen change. In a traditional UI, this would trigger a change in the URL and a page
refresh. The change in the URL is fine, but the page refresh is not. So, if there is a
change of screen, we would like to see the new URL in the browser while updating
the DOM to show the new view with client-side logic, instead of refreshing the
whole page. Furthermore, changes in the URL triggered by the user when they
navigate using their browsing history, or the Back button of the browser, should
trigger a view change too, without a page refresh if possible.

Chapter 7

[295]

In the implementation of the view, I am using the HTML5 History
API (http://dev.w3.org/html5/spec-LC/history.html) that
allows me to implement this functionality in around six lines of code.
No need to use a full-fledged client-side router library here; after all,
the navigation flow logic is in the core UI logic layer. Maybe you will
need a router there, but definitively not in passive view. An alternative
would be to just use the window.onhashchange event (http://dev.
w3.org/html5/spec-LC/history.html#event-hashchange).

We can extend the passive view interface with a redirectTo(url) method.
This method should be called by the core UI logic to signal a navigation event
as opposed to a refresh of the current view with new data represented by the
update(viewModel) method. This navigation event can happen in response to
any user operation, such as addBeverage. In general, the view will call a different
method whenever a user operation is triggered, and the core UI logic can respond
with an update of the current UI or a redirectTo, signaling that we should navigate
to an other screen.

The implementation of redirectTo should change the URL of the browser, and notify
the core UI logic when this is done. The core UI logic controller can have a load(url)
method for this purpose, whose responsibility is to generate a view model for the UI
represented by the URL (this will often imply an asynchronous web API call using
AJAX or some other technology).

In the proposed design, both passive view and the core UI logic are
coordinating themselves through an event dance. This is good because it
allows us to easily test both layers in separation and because it provides
certain decoupling between layers. However, it can make the behavior
a bit difficult to understand. Other kinds of designs are possible; for
example, the methods of the core UI logic can return a promise with
an object representing the next action to be performed by the view.
This makes the flow more clear, but gives the view the additional
responsibility of decoding the resulting action. Just feel free to play with
new designs and see which one is the best for you!

The Page Object Pattern

[296]

Now we can try to make a test for this behavior; let's create a test/order_view_
reacts_to_navigation.js file:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

chai.use(require('chai-as-promised'));

describe('An order-view reacts to navigation', function () {
 var orderView;
 beforeEach(function () {
 this.ui.goTo('order');

 this.ui.executeScript(function () {
 window.controller = {
 load: sinon.spy(),
 addBeverage: sinon.spy()
 };
 });

 orderView = this.ui.newOrderView();

 return orderView.init('.container', 'controller');
 });

 ['some/other/page', 'place/order/form'].forEach(function (newPage) {
 var newUrl;
 beforeEach(function () {
 newUrl = this.ui.uriFor(newPage);
 });

 describe('when redirectTo is called with the URL of ' + newPage,
function () {
 beforeEach(function () {
 return orderView.redirectTo(newUrl);
 });

Chapter 7

[297]

 it('the browser will not navigate', function () {
 return expect(orderView.isInitialized())
 .to.eventually.be.ok;
 });

 it('the url will change to the url of ' + newPage, function () {
 return expect(this.ui.currentUrl())
 .to.eventually.be.equal(newUrl);
 });

 it('a load request will be send to the controller for ' +
newPage, function () {
 return this.ui.executeScript(function () {
 expect(controller.load)
 .to.have.been.calledWith(arguments[0]);
 }, newUrl);
 });
 // Skipped for brevity
 });
 });
});

We now performed the setup with the beforeEach block instead of the before
block. We did it this way to clean the browser history for each test. Since we are
going to play with navigation, the browser history will change its state. However,
we need to set up a predictable state in the browser history before each test so that
our tests do not interfere with each other, and get the expected result. Unfortunately,
WebDriver does not provide a way to clean the history, so we are forced to always
reload the order test page. This will not clean the history, but the starting point of
the test will always be the same page and the last entries in the history will be
always the same.

Alternatively, you can simply use driver.quit() after each test and
then open a fresh new WebDriver session before each test, with a clean
history. However, I do not recommend this because it will make your
tests very slow!

Another new thing in the setup is that we added a spy for the load() method of the
controller test double.

The Page Object Pattern

[298]

Then we have the action of the test itself; this is performed through the redirectTo
method of the page object. We still have not added this method to the page object.

Another new method that we need to implement in the page object is the
isInitialized method. This method will tell us whether the page object represents
a valid order view or whether it really cannot find it. It is needed because we need
to test whether changing the URL will not trigger a page refresh for the new URL.
If this is the case, the code to initialize the order view will not be present in the new
page, so this method will return false. Let's implement both methods inside
test/support/order.js:

module.exports = function (driver) {
 var containerSel, self;

 self = {
 // Skipped for brevity
 isInitialized: function () {
 return driver.executeScript(function () {
 return window.view && typeof window.view === 'object';
 });
 },
 redirectTo: function (newUrl) {
 return driver.executeScript(function () {
 return window.view.redirectTo(arguments[0]);
 }, newUrl);
 }
 };

 return self;
};

The isInitialized method just checks that a variable called view is defined in
the global scope and that it is a non-null object. We can think of more sophisticated
checks if necessary, but this is good enough in this example.

The redirectTo method will just execute the corresponding method in the view
using a remote script.

The currentUrl method is not yet implemented. Let's change test/support/ui.js:

module.exports = function (port, driver) {
 // Skipped for brevity

 return {
 // Skipped for brevity
 currentUrl: driver.getCurrentUrl.bind(driver)
 };
};

Chapter 7

[299]

It simply delegates to the getCurrentUrl method of WebDriver.

Now we need to check what happens when the user presses the Back button. As we
said, we do not really want to navigate; we just want to inform the core UI layer:

describe('An order-view reacts to navigation', function () {
 // Skipped for brevity

 ['some/other/page', 'place/order/form'].forEach(function (newPage) {
 // Skipped for brevity
 describe('given there has been a redirection to ' + newPage + ',
when the back button is pressed', function () {
 beforeEach(function () {
 orderView.redirectTo(newUrl);

 return this.ui.goBack();
 });

 it('the browser will not navigate', function () {
 return expect(orderView.isInitialized())
 .to.eventually.be.ok;
 });

 it('a load request will be send to the controller for the
previous page', function () {
 return this.ui.executeScript(function () {
 expect(controller.load)
 .to.have.been.calledWith(arguments[0]);
 }, this.ui.uriFor('order'));
 });
 });
 });
});

As we can see, the tests are almost exactly the same. We just made the setup force a
redirect to a new page, and then we pressed the Back button. In this scenario, the core
UI layer should be notified to load the order screen again.

We just need to implement the goBack method inside the test/support/ui.js file:

module.exports = function (port, driver) {
 // Skipped for brevity
 return {

The Page Object Pattern

[300]

 // Skipped for brevity
 goBack: function () {
 return driver.navigate().back();
 }
 };
};

We just asked WebDriver to navigate one entry back in the history.

We can continue adding more tests here. For example, we should test whether we
hide or remove the DOM for the old view when we change screens.

What happens when the user clicks on a link? In this case,
the passive view should notify the core UI logic about a
goToPage(linkTarget) request, but should abort any possible
navigation using ev.preventDefault(). It is the same thing with
the forms; we check whether the appropriate request has been sent
to the core UI logic but, in this case, we do not need to triangulate
because links have no input controls.

Summary
You learned that we can prevent maintainability problems in our UI tests with the
Page Object pattern: an object that offers a logic and structured view of our UI and
hides details about the specific low-level HTML structure. This way, aesthetic changes
in the design of the UI can be easily absorbed by our tests, since we do not need to
inspect all the tests to make the corresponding changes, only the page object.

Making a page object is not a difficult task; we just need to be a bit careful with its
design. A page object should use meaningful names in its methods and stay at the
level of abstraction of the UI logical structure, not the raw DOM. You should also try
to hide WebDriver from the tests, but do not overdo it. Good examples of this are the
typeText and pressKey methods. Do not couple your page object with the specific
framework you are using to implement your passive view, such as React or AngularJS.

Modern web pages are usually composed of several reusable UI building blocks, so it
is better to have a reusable page object for each one of these blocks than a big one for a
whole page. Also, try to make reusable page objects for common controls, such as the
form, the input, and the collection we saw in this chapter. With this approach, you will
save code across your tests, and adding a new test will be cheaper.

Chapter 7

[301]

Finally, keep in mind that the responsibility of the page object is to access and
manipulate the browser and the DOM, and not to perform any tests. So, do not add
any assertion methods to the page object. This forces us to keep the test double in the
tests. Remember that all the assertions are in the tests too, so it is better to be explicit
about how the test doubles are constructed, if we need to make an assertion on them.

Page objects should not have any navigation logic. Do not make a method return
another page object just because it is supposed to go there if the navigation is
successful. Instead, create a specific test suite that defines the navigation.

Now we have a solid foundation to test our UI, and the test code looks better.
Unfortunately, we are running the tests only against the Google Chrome browser,
and this is not particularly valuable. Remember that passive view tests are expensive,
difficult to debug, and slow. If we add the fact that, when we use the correct
framework, this layer doesn't have much code, why should we test it at all? The
answer lies in cross-browser issues. No browser is 100 percent standards-compliant.
They have quirks and weird bugs, so even correct code from the point of view of the
standards, that works in a browser, can fail in another one. In the next chapter, we
will see how to solve this issue by testing against different browsers.

Testing in Several Browsers
with Protractor and

WebDriver
Until now, we have been doing some quite advanced testing of our UI view layer,
but all these tests have been executed against the Google Chrome browser, which
is a fairly modern and powerful browser. This is acceptable if we know that our
target audience is going to use this browser. Although in some scenarios, such as an
internal private tool, this can be the case, in general any application targeted to the
public web is going to be executed in a very heterogeneous set of browsers. Since
there are not only different levels of adoptions of the HTML5 API, but also subtle
bugs through different browsers, we really need to test our view layer in all the
browsers that our audience is going to use.

In this chapter, you will see how to run the same test suite against different browsers
using two different tools: WebDriver and Protractor, a very popular testing platform
for AngularJS. This way, you will be able to take an informed decision about which
approach to use in your testing.

Testing in several browsers with
WebDriver
There is no need for a special tool to be able to run your test in different browsers.
We can do so using WebDriverJS. Let's have a look.

Testing in Several Browsers with Protractor and WebDriver

[304]

Testing with PhantomJS
We can change our tests to execute them against PhantomJS (http://phantomjs.
org/). PhantomJS is a headless WebKit that can be accessed and programmed using
JavaScript. The point of using a headless browser such as PhantomJS is that it will
neither open a window nor render anything on the screen during your tests. Using a
headless browser can make your tests run slightly faster, because the browser does
not need to open a window process and wait for the HTML to be rendered.

An alternative to using PhantomJS would be to install and configure
XVFB (http://www.x.org/releases/X11R7.6/doc/man/man1/
Xvfb.1.xhtml).

Currently, PhantomJS has built-in support for WebDriver. In the previous versions,
there was a need to install a special plugin called GhostDriver for PhantomJS
(https://github.com/detro/ghostdriver). However, from version 1.8 onwards,
it is already built-in in the main distribution of PhantomJS.

The first thing to do is to install the PhantomJS binary in our machine. You can
follow the instructions at http://phantomjs.org/download.html to do so if
you like, but I will do it in another way. I will simply install the NPM phantomjs
package. This package is a wrapper of PhantomJS that will allow you to access the
PhantomJS API from Node.js. As with any other NPM package, we can issue the
following command to install it for our project:

$ ~/mycafe> npm install --save-dev phantomjs

This will install and save the phantomjs module as a development dependency
of our project. There is no need to install it globally! During the installation, the
binaries of the real PhantomJS will be downloaded and built for the specific OS
of the machine you are using. This is not only much easier than a manual
installation, but also plays better with any CI infrastructure you could have.

Now that we have PhantomJS successfully integrated in our project, it is time to
change test/index.js in order to instruct WebDriver to use PhantomJS instead
of Google Chrome:

before('start web driver session', function () {
 driver = new webdriver.Builder().
 WithCapabilities(

Chapter 8

[305]

 webdriver.Capabilities.phantomjs()
 .set('phantomjs.binary.path', require('phantomjs').path)
).build();

 this.ui = newPageObject(port, driver);
});

Note that we only need to change webdriver.Capabilities.chrome() to
webdriver.Capabilities.phantomjs() so that WebDriver can start using
PhantomJS. We need to configure the phantomjs.binary.path property with the
path to the PhantomJS executable. If we do not do so, it will assume that PhantomJS
is installed globally in the machine. Fortunately, we can use the path property
exported by the phantomjs module to know where the actual PhantomJS executable
has been installed.

Now we can run our tests! Simply issue the npm test command as usual. In my
case, I implemented the view using ReactJS, and, when I first executed the tests, all
were failing. If you run into a similar problem, let me explain what is happening
here. The problem is that PhantomJS 1.9's support for ECMAScript 5 (ES5) is
not good. Some standard libraries of ES5, such as Function.prototype.bind,
are not supported yet. ReactJS and other modern frameworks rely on the correct
implementation of the ES5 standard to work properly.

The fact that the tests fail like this is good, since it forces us to realize that our passive
view does not work in older browsers! What can we do? We need to fix our code
to work properly in these not-so-modern browsers; for this, we can use a ES5 shim.
A shim is a script that implements the missing standard functionality for older
browsers so that we can code according to modern standards without worrying
about the support issues.

Of course, the use of shims has its limits. Some functionalities cannot be
implemented using a small JavaScript library. In these cases, the shim
usually requires a native plugin for the browser, and/or the size of the
library is too big. This is not the case with regard to the ES5 standard
functionality, but it can be a problem for certain HTML5 APIs, such as
WebComponents, audio, and so on.

One of the best shims for ES5 is ES5-Shim (https://github.com/es-shims/es5
-shim). Again, we can directly download scripts from the GitHub project, but it is
better to use a prepackaged NPM module. Issuing the npm install --save
-dev es5-shim command will do the trick.

Testing in Several Browsers with Protractor and WebDriver

[306]

Now we need to modify our test/order.html test page:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>A test bed page for our Order Passive view</title>
 <link href="/static/css/order.css" type="text/css" rel="stylesheet">
</head>
<body>
<script src="/node_modules/es5-shim/es5-shim.min.js"></script>
 <!-- To be used by injected scripts, normal in browser distribution
 -->
<script src="/node_modules/sinon/pkg/sinon.js"></script>
<script src="/node_modules/chai/chai.js"></script>
<script src="/node_modules/sinon-chai/lib/sinon-chai.js"></script>
<script>expect = chai.expect;</script>
<!-- To be used by common js bundles -->
<script src="/dist/react.js"></script>
<script src="/dist/order-view.js"></script>
<!-- Some markup needed in our test-->
<div class="not-a-container"></div>
<div class="container"></div>
<div class="not-a-container-either"></div>
</body>
</html>

We just added a <script> tag that will load the es5-shim.min.js script from
our local node_modules/ folder.

If we run our tests again, we will see that most of our tests are now passing;
however, the ones relating to the method of our form are not. What happens is
that PhantomJS is returning the value of the method attribute in uppercase.
However, Google Chrome returns it in lowercase. We can first change our test in
test/order_view_updates_dom.js:

it('with a ' + formModel.method + ' method', function () {
 return expect(this.form.method())
 .to.eventually.be.equal(formModel.method);
});

Chapter 8

[307]

We replaced formModel.method.toLowerCase() with formModel.method.
This way, the tests pass because we are using uppercase in our test examples,
just like PhantomJS. However, now our tests will break if we run them against
Google Chrome. To solve this, we need to change our page object for the form
in test/support/form.js:

module.exports = function (driver, element) {
 return {
 method: function () {
 return element.getAttribute('method')
 .then(function (method) {
 return method.toUpperCase();
 });
 },
 // Skipped for brevity
 };
};

We are forcing the page object to return the value of the method attribute as
uppercase. This is the right thing to do, because the page object should accept
and return values that are consistent with the test examples.

Now, our tests are passing in both Chrome and PhantomJS!

Running in several browsers
Now that we know how to persuade WebDriver to use different browsers, we can
change our code to make it run the test suite against several browsers with a
single command.

If you are using WebDriver 2.44.0 and Firefox 32 or 33, the tests
will fail. However, this is not our fault. There was actually a bug
in that version of WebDriver. Currently, the fix is planned to be
released with version 2.45.0. Take a look at https://code.
google.com/p/selenium/issues/detail?id=8128.

Testing in Several Browsers with Protractor and WebDriver

[308]

Since we need to tell Mocha to run the tests several times, we need to change our test
files a bit. For example, in test/order_view_updates_dom.js:

var chai = require('chai'),
 expect = chai.expect;

chai.use(require('chai-as-promised'));

module.exports = function (browserName) {
 describe('[' + browserName + '] An order-view updates the DOM',
 function () {
 // Skipped for brevity
 });
};

What we are doing here is transforming the test suite in a Node.js module.
This module exports a single test factory function that takes a browser name and
creates a test suite for that browser. By default, Mocha will not execute this test suite
now; we need to explicitly import this module and call the exported function. We
need to make the same change in test/order_view_fires_addBeverage.js and
test/order_view_reacts_to_navigation.js.

Now we need to change the code in test/index.js:

[
 // Note: Firefox will fail if you use version below 2.45.0
 webdriver.Capabilities.firefox(),
 webdriver.Capabilities.phantomjs()
 .set('phantomjs.binary.path', require('phantomjs').path),
 webdriver.Capabilities.chrome()
].forEach(function (capability) {
 var browserName = capability.get(webdriver.Capability.BROWSER_
NAME),
 driver;

 describe('Test suite for [' + browserName + ']', function () {
 before('start web driver session [' + browserName + ']',
function () {
 driver = new webdriver.Builder()
 .withCapabilities(capability)
 .build();

 this.ui = newPageObject(port, driver);
 });

Chapter 8

[309]

 require('./order_view_updates_dom')(browserName);
 require('./order_view_fires_addBeverage')(browserName);
 require('./order_view_reacts_to_navigation')(browserName);

 after('quit web driver session [' + browserName + ']',
function () {
 return driver.quit();
 });
 });
 });

We created an array of capabilities and iterated through it. For each capability, we
created a different test suite. We did so by importing the test module and invoking
the resulting test factory function with the name of the browser. For each suite, a new
WebDriver session with its corresponding page object is created.

If we run the tests now, we will see how they are executed for PhantomJS, Firefox,
and Google Chrome!

The Selenium Server
For some browsers such as PhantomJS, Google Chrome, or Firefox, we can connect
directly to them using the appropriate driver. Unfortunately, WebDriverJS does not
support this kind of direct connection to other browsers, such as Safari or Internet
Explorer. However, there is a solution for this: using a Selenium Server.

At the time of writing, the latest version of Selenium Server is 2.44.0. Unfortunately,
this version has some issues:

• The problem with Firefox that has already been mentioned at
https://code.google.com/p/selenium/issues/detail?id=8128.

• Some issues with the Selenium Server and the PhantomJS browser. For
example, look at Downgrading to version 2.43.1 fixes the issue at https://code.
google.com/p/selenium/issues/detail?id=8102. You can download
2.43.1 from http://selenium-release.storage.googleapis.com/2.43/
selenium-server-standalone-2.43.1.jar.

• Lack of support for the History API for Safari. Thus, our tests about
navigation could fail if you are using this standard API.

Testing in Several Browsers with Protractor and WebDriver

[310]

The Selenium Server is a process that is able to talk with all the browsers supported
by WebDriver. We can connect to it from any kind of process and instruct it to run
our commands, using a JSON-based protocol over HTTP (https://code.google.
com/p/selenium/wiki/JsonWireProtocol). This can be very useful because we can
have one or more instances of the Selenium Server running on separate machines
with different operating systems and browser versions installed.

The fact that our test sends commands to the Selenium Server and
that the Selenium Server redirects them to the browser, makes our
tests a bit slower, because we have an extra latency for this extra
connection to the server.

For now, we can keep it simple and just download the Selenium Server to use it with
our server. For this, go to http://www.seleniumhq.org/download/ and download
the latest Selenium Server JAR file. Assuming that we have downloaded it to the root
of our project, we can issue the following command to start it:

$ me@~/mycafe> java -jar selenium-server-standalone-2.44.0.jar -port 4444

For this command to work, you need JAVA installed on your
machine.

This command will launch a Selenium Server in the standalone mode. Now, we can
modify our test/index.js file to use the server:

[
// Note: Firefox will fail if use version below 2.45.0
// webdriver.Capabilities.firefox(),
 webdriver.Capabilities.phantomjs()
 .set('phantomjs.binary.path', require('phantomjs').path),
 webdriver.Capabilities.chrome(),
 webdriver.Capabilities.safari()
].forEach(function (capability) {
 var browserName = capability.get(webdriver.Capability.BROWSER_NAME),
 driver;

 describe('Test suite for [' + browserName + ']', function () {
 before('start web driver session [' + browserName + ']', function
() {
 driver = new webdriver.Builder()
 .usingServer('http://localhost:4444/wd/hub')

Chapter 8

[311]

 .withCapabilities(capability)
 .build();

 this.ui = newPageObject(port, driver);
 });

 require('./order_view_updates_dom')(browserName);
 require('./order_view_fires_addBeverage')(browserName);
 if (browserName !== 'safari') {
 // Version 2.44 or below lacks support for History API for
Safari
 // We will see in next versions...
 require('./order_view_reacts_to_navigation')(browserName);
 }
 // Skipped for brevity
 });
});

Note that we have added the capability to test against Safari. We just need to add a
line stating that the location of the server is http://localhost:4444/wd/hub with
the usingServer() method.

Launching the Selenium Server manually could be what we want to do if we are
using a remote machine for it or if we are using the grid rather than the standalone
configuration. In our case, we are not in any of these situations, so it would be nice
if WebDriverJS could launch a standalone server on its own and we could avoid this
manual step. To do so, we can add the following code to our test/index.js file:

var express = require('express'),
 port = process.env.PORT || 3000,
 server,
 app = express(),
 browserify = require('browserify'),
 reactify = require('reactify'),
 bundles = {},
 webdriver = require('selenium-webdriver'),
 newPageObject = require('./support/ui'),
 SeleniumServer = require('selenium-webdriver/remote').
SeleniumServer,
 seleniumServer;

before('start selenium server', function () {
 // If you want to use PhantomJS use version 2.43.1 instead of 2.44
 seleniumServer = new SeleniumServer(__dirname +

Testing in Several Browsers with Protractor and WebDriver

[312]

 '/../selenium-server-standalone-2.44.0.jar', {
 port: 4444
 });

 return seleniumServer.start();
});

after('stop selenium server', function () {
 return seleniumServer.stop();
});

// NOTE: If you are using version 2.44 of Selenium Server,
// you cannot test with PhantomJS :(!!!

We need to import the selenium-webdriver/remote submodule that is built-in in
the selenium-webdriver module. This module exports a constructor that will allow
us to create SeleniumServer, start it, and stop it.

To create the instance, we need to pass the path to the JAR file with the
implementation of the Selenium Server. We can pass additional parameters,
such as the port where the server will listen.

We can now use the Selenium Server object to tell us to which address each new
WebDriver session should connect:

before('start web driver session [' + browserName + ']', function () {
 driver = new webdriver.Builder()
 .usingServer(seleniumServer.address())
 .withCapabilities(capability)
 .build();

 this.ui = newPageObject(port, driver);
});

Welcome Protractor!
Protractor is a wrapper for our test runner that will manage of all the WebDriver
details. Actions such as starting, stopping, and configuring the desired capabilities
will be taken care of by Protractor. It offers us a more simple and direct way of using
WebDriver, one where we need less boilerplate code. On top of that, Protractor
wraps the API of WebDriver to make it slightly easier to use.

In the beginning, Protractor was designed to be used to test AngularJS applications
using the Jasmine test runner. Currently, we can use Mocha and test applications
written with other frameworks.

Chapter 8

[313]

Let's change our project to use Protractor. We can now remove the selenium
-webdriver module from our package.json file. Do the same thing with its
respective folder under node_modules/. Remove chromedriver and the Selenium
Server JAR files. Also remove test/index.js. Now we can install Protractor:

$ me@~/mycafe> npm install --save-dev protractor

The protractor module includes all the necessary files and JARs to launch
WebDriver. The first thing to do is to tell Protractor to upgrade its WebDriver copy.
Then we can start the Selenium Server in standalone mode. Finally, we can tell
Protractor to run the tests. For this, we can create some scripts in our package.json:

"scripts": {
 "upgrade-selenium": "webdriver-manager update",
 "start-selenium": "webdriver-manager start",
 "test": "protractor test/conf.js"
},

The protractor module includes two executables: webdriver-manager and
protractor. The first allows us to update the local copy of the chromedriver
and Selenium Server. The second one will run Protractor. Now we can issue the
commands to update Selenium and start a standalone server:

$ me@~/mycafe> npm run upgrade-selenium

$ me@~/mycafe> npm run start-selenium

As we will see shortly, you do not need to start the Selenium Server
manually using the start-selenium script. If you do not specify
the seleniumAddress property in the configuration, Protractor
will start its own Selenium Server.

Here, we are using npm run instead of npm run-script; the former is just a shortcut
for the latter. With these commands, we should have a running Selenium Server.
This is a much simpler approach than the one used earlier. We do not need separate
downloads, and everything is handled neatly by Protractor.

Starting the Selenium Server and our development web server
should be done better in our build pipeline. We can use GruntJS
(http://gruntjs.com/), GulpJS (http://gulpjs.com/), or Broccoli
(https://github.com/broccolijs/broccoli) to define a build
pipeline that will process the ReactJS files, watch our code and assets,
minify, and so on. The thing is that the build pipeline should start and
stop the servers whenever required, without the need to do it manually.

Testing in Several Browsers with Protractor and WebDriver

[314]

Now we need to create a small development web server to serve the test HTML
pages and code. Let's create it in test/support/devServer.js:

'use strict';

var express = require('express'),
 port = process.env.PORT || 3000,
 app = express(),
 browserify = require('browserify'),
 reactify = require('reactify'),
 bundles = {};

function registerBundle(name) {
 return function (err, buf) {
 if (err)
 return console.log(err);
 bundles[name] = buf.toString();
 };
}

var reactFileName = require.resolve('react/dist/react.js');
browserify({
 noParse: [reactFileName]
})
 .require(reactFileName, {expose: 'react'})
 .bundle(registerBundle('react'));

var viewFileName = require.resolve('../../lib/order-view.jsx');

browserify()
 .transform(reactify)
 .require(viewFileName, {expose: 'order-view'})
 .add(viewFileName)
 .exclude('react')
 .bundle(registerBundle('order-view'));

app.use(express.static(__dirname + '/../..'));

app.get('/dist/:bundleName.js', function (req, res) {
 var bundle = bundles[req.param('bundleName')];
 if (!bundle)
 return res.sendStatus(404);
 res.set('Content-Type', 'application/json');
 res.send(bundle);

Chapter 8

[315]

});

app.listen(port, function (err) {
 if (err)
 return console.log(err);
 console.log('test server open');
});

This is basically the same code we used earlier, but after removing Mocha and
adjusting the paths. Now we can add a new script to our package.json file to start
this development web server. Our package.json file should now look like this:

{
 "name": "mycafe-ui",
 "version": "0.1.0",
 "description": "A sample project for testing the UI using
Protractor",
 "scripts": {
 "upgrade-selenium": "webdriver-manager update",
 "start-selenium": "webdriver-manager start",
 "start-dev-server": "node ./test/support/devServer.js",
 "test": "protractor test/conf.js"
 },
 "author": "Enrique Amodeo",
 "license": "MIT",
 "devDependencies": {
 "browserify": "^6.1.0",
 "chai": "^1.9.2",
 "chai-as-promised": "^4.1.1",
 "es5-shim": "^4.0.3",
 "express": "^4.9.8",
 "mocha": "^1.21.5",
 "phantomjs": "^1.9.12",
 "protractor": "^1.4.0",
 "reactify": "^0.15.2",
 "sinon": "^1.10.3",
 "sinon-chai": "^2.6.0"
 },
 "dependencies": {
 "react": "^0.12.0"
 }
}

Testing in Several Browsers with Protractor and WebDriver

[316]

Then we can start the server with the following command:

$ me@~/mycafe> npm run start-dev-server

In order to be able to run our tests, we need to tell Protractor which test files it
should run, which test runner to use, the address of the Selenium Server, and which
browsers to use. To do so, we need to create a configuration file. According to the
test script defined in package.js, this file should be test/conf.js:

exports.config = {
 framework: 'mocha',
 mochaOpts: {
 ui: 'bdd',
 reporter: 'spec',
 timeout: 10000
 },
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: [
 './order_*.js'
],
 multiCapabilities: [
 // PhantomJS support is broken in Selenium Server 2.44.0
 {
 browserName: 'phantomjs',
 "phantomjs.binary.path": require('phantomjs').path
 },
 {
 browserName: 'chrome'
 },
 {
 browserName: 'safari'
 },
 {
 browserName: 'firefox'
 }
],
 onPrepare: function () {
 browser.ignoreSynchronization = true;
 }
};

Chapter 8

[317]

The file is pretty self-explanatory as follows:

• We can control which test runner to use with the framework option. Here, it
is set to Mocha. Jasmine is the default value. Cucumber is also supported.

• The mochaOpts option allows us to pass parameters to Mocha.
• The address of the Selenium Server is specified in the seleniumAddress

option. If you do not specify this property, Protractor will try to start its
own Selenium Server before the tests.

• With the specs option, we can define which tests to run using an array
of file expressions.

• The capabilities option specifies against which browser the Protractor test
should run. It consists of an object with at least a browserName property that
indicates which browser to use. As we will see later, it can have additional
properties. This object will be passed as it is to the WebDriver session, so
it can contain any special property for each capability. In this case, we are
setting the phantomjs.binary.path for the phantomjs capability.

• If we desire to test against several browsers, we could use the
multicapabilities option that receives an array of capabilities.
This is our case.

• The onPrepare option allows us to set some code to be run once before
the test is executed, for each capability. This gives us the opportunity to do
some customizations and create some utilities for our tests. In this case, we
are telling Protractor not to wait for AngularJS to boot. For this, we set the
ignoreSynchronization property to true. This is useful when you are
testing a non-AngularJS application, as I am (I'm using ReactJS). If you have
used AngularJS to build it, you can safely remove this code.

Now we need to undo the changes we made previously to our test files and add the
necessary code to create a page object. For example, test/order_view_updates_
dom.js will now change in the following way:

'use strict';

var chai = require('chai'),
 expect = chai.expect;

chai.use(require('chai-as-promised'));

before('create root page object', function () {

Testing in Several Browsers with Protractor and WebDriver

[318]

 this.ui = require('./support/ui')(3000, browser.driver);
});

describe('An order-view updates the DOM', function () {
 // Skipped for brevity
});

We created a new instance of page object in a before() block. Note that Protractor
makes a browser global variable available; this variable contains the WebDriver
session in its driver property. We use this property to create our page object. We
need to make similar changes to test/order_view_fires_addBeveraje.js and
test/order_view_reacts_to_navigation.js.

Finally, we need to change our page objects a bit. We are not installing the
selenium-webdriver module any more, so we need to remove references to it from
our page objects. Fortunately, Protractor gives us a suitable replacement for it.

In test/support/form.js, we need to replace the following code:

var Key = require('selenium-webdriver').Key;

The Protractor equivalent is as follows:

 var Key = protractor.Key;

The test/support/orderItem.js file needs to be changed as follows:

'use strict';

module.exports = function (element) {
 return {
 info: function () {
 return protractor.promise.all([
 element.findElement({css: '.name'}).getText(),
 element.findElement({css: '.quantity'}).getText(),
 element.findElement({css: '.price'}).getText()
]).then(function (fields) {
 return {
 name: fields[0],
 quantity: fields[1],
 unitPrice: fields[2]
 }
 });
 }
 };
};

Chapter 8

[319]

With these changes, our page objects will work with Protractor. Protractor is just a
wrapper around WebDriver, so the code we have will work as before.

Now, if we run npm test, Protractor will be launched and will execute your tests.

Running the tests in parallel
We can speed up our test suite execution if we run our test suites in parallel.
The idea is to run each test file in a separate session of WebDriver, so a different
browser window will be opened to run each test file. This can offset the drawback
of the additional latency involved in using a Selenium Server.

We can do this easily because our view is stateless! If we were doing
traditional end-to-end testing to check our UI, probably we would need
a very complex setup to create a server side, or a database with its own
set of test data. If not, the setup of each test will mix with each other
when they are run in parallel.

Obviously, this is useful when we are using a big server, or a grid of Selenium
Server, that can withstand the load of opening and running tests on dozens of
browser instances. If you really want to be very sure of your code, you probably
would want to run against different browser versions and different operating
systems too. So, a Selenium Server grid configuration is necessary in this case.

To configure a grid, you need to start a hub server in one of your boxes:

$ me@~/mycafe> java -jar selenium-server-standalone-2.44.0.jar -role hub

Then, for each box of your grid, you need to start a Selenium Server instance and
register it against the grid:

$ me@~/mycafe> java -jar selenium-server-standalone-2.44.0.jar -role node
-hub http://mytestserver.com:4444/grid/register

Now we can configure the Protractor test/conf.js file to run the tests in parallel:

seleniumAddress: 'http://mytestserver.com:4444/wd/hub',
multiCapabilities: [
 {
 browserName: 'chrome'
 shardTestFiles: true,
 maxInstances: 4
 },

Testing in Several Browsers with Protractor and WebDriver

[320]

 {
 browserName: 'firefox'
 shardTestFiles: true,
 maxInstances: 4
 },
 {
 browserName: 'safari',
 shardTestFiles: true,
 maxInstances: 4
 },
 {
 browserName: 'ie',
 shardTestFiles: true,
 maxInstances: 4
 }
]

This configuration will be able to connect to the hub of the grid and run each browser
in parallel. For each browser, up to four test files can be run in parallel, as specified
in the maxInstances property. To make sure that each test file is run in parallel, we
must set shardTestFiles to true.

You can try to launch the tests in parallel without a grid, just with
the standalone Selenium Server. This will work, at least for the
browsers you have installed on your development machine. I
suggest that you set the maxInstances option to 2 in order to not
overwhelm your development machine.

Other useful configuration options
There are some extra configuration options that can be useful to you; they are
as follows:

• If, instead of building your own grid, you are using the Grid in the cloud
provided by Sauce Labs (https://saucelabs.com/selenium/selenium-
grid), you can use the following configuration properties:

 ° The sauceUser option is used to configure you user
 ° The sauceKey option is used to configure the key for your account
 ° If you are not using the default URL of the Sauce Labs Selenium grid,

maybe because you are tunneling through a proxy, you can change
the URL with the sauceSeleniumAddress option.

Chapter 8

[321]

• If you do not wish to use a Selenium Server, but rather the drivers for
Firefox and Google Chrome, just set the directConnect property to true.
Additionally, you may need to configure the following ones:

 ° The firefoxPath option is used if your Firefox installation is not in
the default path

 ° The chromeDriver option can be used to tell Protractor where the
chromedriver file is, if it is not listed in the PATH environment variable

• If you want Protractor not to connect to a Selenium Server that is already
running but to start its own server, then the seleniumAddress property
should not be set. You can control this behavior with the following properties:

 ° The port option will specify in which port to start Selenium Server.
The default is 4444.

 ° You can pass other command-line options to the Selenium Server
using the seleniumArgs property. Its value must be an array of
strings that contain the options.

 ° Protractor will try to start its own Selenium Server using the binaries
packed inside the protractor module. To tell Protractor to use
different binaries, you can use the seleniumServerJar property.

• In addition to the WebDriver options and the shardTestFiles and
maxInstances properties, a capability can have a couple more of properties:

 ° The specs option can contain an array of additional test files to be
run only for this capability. These files will be added to the ones
specified at the global level.

 ° The exclude option will remove the specified file from the list of
test files to run in this capability. For example, if we cannot run the
navigation tests in Safari because the History API is not supported
in the current version of WebDriver, we can use the following line
of code:

{
 browserName: 'safari',
 exclude: ['test/order_view_reacts_to_navigation.js']
}

• The jasmineOpts, mochaOpts, and cucumberOpts options contain an
object with the options to be passed to the corresponding test runner.

Testing in Several Browsers with Protractor and WebDriver

[322]

• The getPageTimeout option controls the timeout in milliseconds for
the page load.

• The allScriptsTimeout option controls the timeout in milliseconds to
wait for the execution of a script.

Using the Protractor API
Now that we have our tests running using Protractor, we can think of changing our
page objects to use the API that Protractor offers us, instead of the WebDriverJS
API. Our page objects work perfectly fine, but there are two reasons why you would
perhaps, like to use the Protractor API:

• Your application uses AngularJS, so you need to use the special capabilities
that Protractor offers to test AngularJS applications, such as mock modules
or searching elements by AngularJS bindings

• Maybe you find the API from Protractor easier to use than the
WebDriver one

To sum up, if you are using AngularJS, you can benefit from using the Protractor API
instead of the WebDriver API. However, if you are not using AngularJS, it is not so
attractive to do so.

Let's start with our main page object in test/support/ui.js:

'use strict';

var newOrderView = require('./order');

module.exports = function (port, browser) {
 function uriFor(uiName) {
 return 'http://localhost:' + port + '/test/' + uiName + '.html';
 }

 return {
 uriFor: uriFor,
 goTo: function (uiName) {
 return browser.get(uriFor(uiName));
 },
 newOrderView: function () {
 return newOrderView(browser);
 },
 goBack: function () {

Chapter 8

[323]

 return browser.navigate().back();
 },
 executeScript: browser.executeScript.bind(browser),
 executeAsyncScript: browser.executeAsyncScript.bind(browser),
 currentUrl: browser.driver.getCurrentUrl.bind(browser.driver)
 };
};

Now our page object receives and uses the browser variable that contains the
Protractor instance. The Protractor instance contains many methods that simply
decorate the ones in the WebDriver session instance. The main difference is that
Protractor methods will wait for AngularJS to be initialized, finish rendering, and,
in the case of the navigation methods, it will evaluate the defined AngularJS mock
modules we might have defined. So, mostly we just need to replace the driver
variable with the browser instance in most of the methods, and we will be properly
integrated with the AngularJS framework. Here, there is really no difference in this
example because I am instructing Protractor to explicitly not wait for AngularJS
because I am not using it (see the test/conf.js file in the previous sections).

The only method that is not exposed by the protractor instance is getCurrentUrl().
That is why we need to access the original WebDriver session using
browser.driver.

In addition, there are some useful methods that will only work if you are using
AngularJS, and you should avoid them if you are not. Here they are:

• The waitForAngular() method that will return a promise that will be
fulfilled when AngularJS has been properly initialized.

• The setLocation(url) method will use AngularJS to perform
intra-page navigation.

• The getLocationAbsoluteUrl() method will ask AngularJS for the
current URL, taking into account the intra-page navigation.

• The addMockModule, clearMockModules, and removeMockModules methods
will handle the configuration of AngularJS mock modules. These modules
can act as test doubles for AngularJS services, controllers, and so on. If we
had used AngularJS, they could have been handy in the setup of our tests,
since, probably, our core UI logic layer would be an AngularJS module.

Now we can change test/support/order.js:

'use strict';

var newItemView = require('./orderItem'),

Testing in Several Browsers with Protractor and WebDriver

[324]

 newFormView = require('./form');

function newCollection(elements, newView) {
 return {
 size: function () {
 return elements.count();
 },
 info: function (i) {
 return newView(elements.get(i)).info();
 }
 }
}

module.exports = function (browser) {
 var totalPrice,
 addBeverageForm,
 items,
 self;

 function initElements(containerSelector) {
 var container = element(by.css(containerSelector));
 totalPrice = container.element(by.css('.order .price'));
 addBeverageForm = container.element(by.css('.order form.add-
beverage'));
 items = container.all(by.css('.order .item'));
 }

 self = {
 init: function (containerSelector, controllerName) {
 initElements(containerSelector);

 return browser.executeScript(function () {
 window.view = require('order-view')(arguments[0],
window[arguments[1]]);
 }, containerSelector, controllerName);
 },
 isInitialized: function () {
 return browser.executeScript(function () {
 return window.view && typeof window.view === 'object';
 });
 },
 redirectTo: function (newUrl) {
 return browser.executeScript(function () {
 return window.view.redirectTo(arguments[0]);
 }, newUrl);
 },
 update: function (viewModel) {
 return browser.executeAsyncScript(function () {

Chapter 8

[325]

 view.update(arguments[0], arguments[1]);
 }, viewModel);
 },
 totalPrice: function () {
 return totalPrice.getText();
 },
 items: function () {
 return newCollection(items, newItemView);
 },
 addBeverageForm: function () {
 return newFormView(browser, addBeverageForm);
 }
 };

 return self;
};

Here, we have rewritten our order page object using browser and
element(locator). We use browser to execute the needed scripts. The
element(locator) function is a global function introduced by Protractor that
allows us to find elements using a locator parameter. It is the same thing as driver.
findElement(locator) but will return ElementFinder instead of a WebElement.

You can think of ElementFinder objects as lazy versions of WebElement. It has
the same methods as WebElement, but it will not ask WebDriver to find the element
until you do not try to interact with it. So, for example you can use the following
lines of code:

describe('Some test', function() {
 var aButton = element(by.css('button.interesting'));

 beforeEach(function() {
 browser.get('http://localhost:4000/test.html');
 });
 it('when button is clicked, then is cool', function() {
 aButton.click();

 expect(aButton.getAttribute('class'))
 .to.eventually.contain('cool');
 });
});

This will work because the button element is not looked for until we try to send a
click event to it. In WebDriver, it will never work because the moment we search for
an element, a command is sent to the browser to try to locate it. So, we are forced
to do it in a beforeEach() block or in any other context where we already have
a WebDriver session with a loaded page. Protractor's approach produces more
readable code.

Testing in Several Browsers with Protractor and WebDriver

[326]

As you can see, we are leveraging this mechanism to look for the ElementFinder
objects, during initialization time, in the initElements() helper function. Then, we
use those elements to create new page objects in the relevant methods. We first create
ElementFinder for the container that is the order view. Then we use the element
and all methods of the ElementFinder container to locate the other relevant
elements. Let's have a look at the most relevant methods of ElementFinder:

• The element(locator) method receives a locator and returns another
ElementFinder container with a descendant of the current element that
matches the locator. It is exactly the same as the global element function,
but the global one will look in the whole document instead of only for
descendants of a given element. This function will print a warning if the
locator matches several descendants.

• The $(cssSelector) function is a shortcut to find the set of descendants
that match the CSS selector. For example, element.element(by.css('.
error')) is the same as element.$('.error'). There is a global $ function.

• The all(locator) method receives a locator and returns an
ElementArrayFinder container that represents a collection of elements that
are the descendants of this element and matches the locator.

• The $$(cssSelector) function is a shortcut to find the set of descendants
that match the CSS selector. For example, element.all(by.css('.error'))
is the same as element.$$('.error'). There is a global $$ function.

• The getWebElement() method returns the underlying WebElement object for
this ElementFinder container. Remember that ElementFinder is just a lazy
wrapper around WebElement.

• The evaluate(expression) function receives a string with a JS expression
and evaluates it using the AngularJS scope associated with the element. It is
handy if we intend to access data in that AngularJS scope. Obviously, it will
only work if you are using AngularJS otherwise it returns a promise that will
be fulfilled with the result of the expression.

• It wraps all the known methods from WebElement, such as click(),
getText(), and sendKeys(). In most of the context, an ElementFinder
container can be used exactly as a regular WebElement.

It is interesting to know that ElementFinder and ElementArrayFinder are
themselves promises too, so they have a then method, and they can be used directly
to wait for the element to be located. This implies opening the WebDriver session,
loading the test page, and waiting for AngularJS to load and finish rendering.

Chapter 8

[327]

On the other hand, ElementArrayFinder contains methods that we expect to have
in a normal array: map(fn), reduce(fn), each(fn), first(), last(), get(index),
and count(). All of them return promises with the corresponding result. We have
made use of count() and get() in the newCollection page object factory to
simplify its implementation.

The locators are almost the same as in WebDriver. There is a global variable called by
that holds a factory with a different kind of locator. The usual WebDriver locators,
such as by.css(), by.id(), and by.tagName(), are present. Additionally, there are
specific AngularJS locators, which are follows:

• The by.model variable will match any element that has a two-way binding to
a given AngularJS model. This is used mostly for input controls, using the
ng-model attribute.

• The by.binding and by.exactBinding variables will match any element
that has a one-way binding to a given AngularJS model. This is used mostly
to update the HTML with an AngularJS model, using the ng-bind attribute
or the {{…}} shortcut. The by.binding version will check whether the ng-
bind value starts with the value provided. For example, by.binding('foo')
will match ng-bind="foobar". If you want an exact match, use the
by.exactBinding version.

• The by.repeater variable will find the set of top-level elements inside a
container that has a matching ng-repeat directive. You can actually use
it in four ways:

 ° In combination with element.all. For example, element.
all(by.repeater('item in order.items')) will return an
ElementArrayFinder with one top-level element per order item.

 ° Using the row(index) sublocator to select a single row in the
repeater. For example, element(by.repeater('item in order.
items').row(1)) will return the top-level element for the
second-order item.

 ° Using the column(binding) sublocator to select only the elements
that match the specified binding, instead of the top-level element. For
example, element.all(by.repeater('item in order.items').
column('item.price')) will return an ElementArrayFinder
with the elements containing the price for each order item, and
nothing more.

 ° You can use a combination of row(index) and column(binding).

Testing in Several Browsers with Protractor and WebDriver

[328]

Now that we are more familiar with the Protractor API, we can have a look at how to
change test/support/orderItem.js:

module.exports = function (element) {
 var name = element.$('.name'),
 quantity = element.$('.quantity'),
 price = element.$('.price');

 return {
 info: function () {
 return protractor.promise.all([
 name.getText(),
 quantity.getText(),
 price.getText()
]).then(function (fields) {
 return {
 name: fields[0],
 quantity: fields[1],
 unitPrice: fields[2]
 };
 });
 }
 };
};

Nothing really advanced here; we only used the $ function to locate the elements
once. The test/support/form.js file is more interesting:

var Key = protractor.Key;

function newInputView(browser, name, element) {
 return {
 name: function () {
 return name;
 },
 type: function () {
 return element.getAttribute('type');
 },
 value: function () {
 return element.getAttribute('value');
 },
 isMarkedAsError: function () {

Chapter 8

[329]

 return element.getAttribute('class').then(function (classNames)
{
 return classNames.indexOf('error') !== -1;
 });
 },
 isEnabled: function () {
 return browser.executeScript(function () {
 return !arguments[0].disabled;
 }, element.getWebElement());
 },
 clear: element.clear.bind(element),
 typeText: element.sendKeys.bind(element),
 pressKey: function (keyName) {
 return element.sendKeys(Key[keyName]);
 },
 click: element.click.bind(element)
 };
}

module.exports = function (browser, element) {
 var errorMessages = element.$$('.error-msg');

 return {
 method: function () {
 return element.getAttribute('method').then(function (method) {
 return method.toUpperCase();
 });
 },
 target: function () {
 return element.getAttribute('action');
 },
 isShown: function () {
 return element.isDisplayed();
 },
 errorMessage: function (i) {
 return errorMessages.get(i).getText();
 },
 fieldWithName: function (name) {
 return newInputView(browser, name,
 element.$('input[name="' + name + '"]')
);
 }
 };
};

Testing in Several Browsers with Protractor and WebDriver

[330]

Again, we used the $ and $$ function for brevity. This is very handy for the
errorMessage(i) method, since we can use $$ to create an ElementArrayFinder
for the error messages and use its get(i) method to easily implement the
functionality.

The isEnabled() method of the input page object is tricky. It seems to have
almost the same code as it did earlier, but this time we need to retrieve the
original WebElement using getWebElement() to be able to pass it as a parameter
of the remote script. Obviously, WebDriver does not know how to serialize an
ElementFinder and, surprisingly, the wrapper provider by Protractor for the
executeScript method does not unwrap ElementFinder for us.

Summary
In this chapter, you learned how to run our test suite in different browsers. For this,
we used two different tools: WebDriver and Protractor.

Although we can directly use WebDriver to do so, the setup and code can be a bit
more cumbersome.

Protractor offers us a more streamlined approach than using WebDriver out-of-the-
box. The setup and configuration are much easier, and the API that we are offered is
more powerful.

This is especially important if your UI is written with AngularJS, since Protractor
offers a special API to access and control elements in the context of AngularJS. You
can find elements by bindings, model, or repeater. You can also set up test doubles
for AngularJS modules, such as controller or service. Finally, Protractor
will take care of waiting for AngularJS to finish loading and rendering.

This does not mean that we cannot use Protractor with a non-AngularJS application.
As you have seen, we can test a ReactJS application perfectly well using Protractor.
You just need to tell Protractor, using the configuration, not to wait for AngularJS.
Of course, you need to take care not to use the Protractor API designed to work
with AngularJS.

Another point is that, even with our aggressive approach of not doing end-to-end
testing, testing against browsers is slow. So, it is a good idea to use a Selenium Server
grid and parallelize your test files across the grid. This way, we do not need to wait
for a test file to finish before starting another one, and there is no need to wait for
the tests to be run in a browser before starting with the next browser. In this aspect,
Protractor helps us, since it is very easy to configure to do so.

Chapter 8

[331]

Finally, I want you to notice all the code and configuration we have written just to
test the passive view of our UI. It was a lot of effort, and took us a lot of time. Three
full chapters of this book! Of course, we can reuse most of our infrastructure and page
objects to make tests cheaper by adding new tests. But, are all these efforts worth
enough? After all, if you use a modern framework, then most of the cross-browser
issues should be solved by the framework already. Furthermore, testing the core UI
logic is much easier and faster. Since the core UI logic should have most of the code
of our UI, and the passive view has almost no code, what is the value of exhaustively
testing the passive view?

So, think twice before testing the passive view; do it only if you are convinced that
these kinds of tests will give you a benefit that justifies all the cost of creating and
maintaining them. My general advice is to aim for a very exhaustive test suite of
the core UI logic and test only the most problematic aspects of the passive view.
However, as always, the tradeoffs of your specific project will tell you what is the
correct decision.

Testing Against External
Systems

In this chapter, we will have a brief look at what happens when we want to test code
that depends on another system. How should we approach such a task? Should we
do it?

This is a difficult question that has no easy answer, so in this chapter I will show
you some techniques that can help you in this subject. This way, you can evaluate
whether applying any of these techniques is suitable for your specific case and, if so,
whether it can really pay off.

In this chapter, we will learn the following topics:

• Tips on how to write test doubles that are consistent with the expected
collaboration between two subsystems or problem domains.

• We will see how to test the code that accesses databases. This technique can
be used to test the code that accesses the filesystem or other kinds of storage
infrastructure.

• We will explore what happens when we try to test the code that accesses
external systems that are not in our control.

• We will see the record-and-replay technique; understanding how it can help
us test against external web services.

Testing Against External Systems

[334]

Writing good test doubles
Throughout this book, we have been testing systems that we have been developing
to solve our problem domain; hence, they are under our total control. Whenever
our system tried to use another one that is not under our control, or simply involves
another problem domain, we have used test doubles to replace them in our tests. This
is a good practice, since we avoid composing scenarios and features from different
systems, and because we can set up such test doubles to perform predictable tests. The
trick here is to configure the test doubles to make them behave in a way that simulates
the behavior of the other system in a realistic way. This always leads to the same
doubt: are our test doubles good enough?

Of course, we will eventually need to write code that implements the interfaces that
we have been mocking. This gives us two possibilities, which are explained here:

• We need to write a fair amount of nontrivial code to implement those
interfaces. In this case, we can consider that this code is, in fact, a new
subsystem, and we can apply the whole BDD approach to it again.

• We actually cannot write much code for it, just a thin layer code that will call
an external service, a database, or the platform. This is usually the case with
DAOs or service clients. We will see how to deal with this later.

In any case, what should the tests for our new code be like? We need to have some
kind of connection between both test suites, because both systems are going to be
connected in production. The idea is to do something like what is shown in the
following diagram:

Keeping your test doubles honest

Chapter 9

[335]

In System A, we are using System B, so when we test A, we make test doubles
for the interface of B. However, we must ensure that, when we test B, we do so with
at least the same calls that A would do to B. The actions performed in the tests of
System B and its assertions must have a correlation with the setup we did in the tests
of System A.

A simple way to do this is just to use the same test data in both test suites. Let's
assume that we have a test in A whose setup says that, when a certain operation on
B is called with a parameter, it will return a specific result. In such a case, we should
test that, when the same operation is called in B with the same parameters,
it will return a result that is consistent with the one we used in the setup.

For example, let's assume that we have the following setup in the test of System A:

var b = {
 operation: sinon.spy();
};
b.operation.withArgs(1, 2).returns({
 result: 3
});

In this case, the test in the system B should look like this:

var result = b.operation(1, 2);

expect(result).to.be.deep.equal({
 args: [1, 2],
 result: 3
});

In the test for system B we use the same arguments and the same operation that the
one we used in the test double. The assertion checks whether we get an object with a
result property with the correct value. This check is consistent with what A expects
from B and tests whether this part of the contract between A and B is implemented
correctly. However, we can see that we are also checking whether the args property
contains an array with the arguments passed to the operation. This is really not needed
at all to check the contract between A and B! This is necessary because B could be used
by other systems, not only by A. These other systems can add extra requirements to the
API of system B, even if they are not really needed by A.

Testing Against External Systems

[336]

A typical pitfall here is to make the API of B so generic and broad that
we end up giving too many responsibilities to B. It is OK that not all the
clients use the full API or consume the full data provided by B, only if B
solves a single problem domain and its interface is coherent!

What about the setup of B? The setup only depends on the implementation of B and
should not have any relationship with tests of A.

Testing against external systems
So far, we have learned a simple technique to maintain the integrity of our test
doubles. The problem comes when we need to implement a system that should
implement the interfaces represented by these doubles.

Actually, the really problematic case is when we need to test against an external
system, because we cannot make a test double for the external system, the database,
or the platform. After all, we are trying to test the code layer that talks directly
with them. We have reached the boundary not only of our system, but also of our
runtime. In these cases, we can only test this code in integration with the external
system, so we need an integration test. The following figure illustrates testing against
external systems:

B’s

API
B

B’s
Test

ac
tio

n+
as

se
rt

Ex
te

rn
al

 S
ys

te
m

Co
nn

ec
tio

n

Cannot M
ock

This

External
System

set up+assert
????

Can we do this?

Less Code
Here, the better!!!

Reaching the end of the world

Chapter 9

[337]

We already saw that the actions and assertions of our tests should be consistent with
the setup we made in the tests of the consumer, but how do we set up if we cannot use
test doubles again? Well, it depends on which kind of external system we are facing.

Testing against a database
A very common type of external system is a database. This is the case with the Order
DAO we had in the earlier chapters. The implementation of such a DAO will only
imply making the appropriate calls to the DB client library and configuring the DB
connection properly.

The logic of the DAO can sometimes include some simple data adaptation
between what is offered by the DB and what is exposed in the DAO
interface. However, such logic should be as slim as possible and avoid
any transformation at all, whenever we can. The less logic here, the easier
it will be to test. Try to move as much logic as possible outside the DAO
into the core logic of the application.

All of the techniques we will see in the next two sections can be applied not only to
a DB, but also to other kinds of external systems for which we have some kind of a
low-level interface—for example, the filesystem.

In our example in Chapter 3, Writing BDD Features, we had an Order DAO with two
methods: byId and update. They perform a search by primary key and an update
by primary key, respectively. How should we test them? Well, there are mainly two
approaches; let's have a look at them.

Accessing the DB directly
When we are writing the DAO, the first thing we need to know is which kind of DB
we are going to use. The DAO implementation is going to be totally different if we
go for a mySQL than if we use a MongoDB. In any case, whatever DB we are using,
it will have some kind of API and connector that we will use to implement our DAO.
So, why not use this same DB API to test our DAO?

We are not covering it here, but you will need to install MongoDB and
start it before running the tests. As we have seen in the book, this can be
done either in a before() block or in the project's build pipeline. I am
using MongoDB 2.6.x for this example and Version 2.0 of the mongodb
NPM package. If you do not have MongoDB installed, you can see how to
install it at http://docs.mongodb.org/manual/installation/.

Testing Against External Systems

[338]

We can start writing the test with the basic setup:

'use strict';

var newOrderDAO = require('../lib/orderDao'),
 MongoClient = require('mongodb').MongoClient,
 ObjectID = require('mongodb').ObjectID,
 expect = require('chai').expect;

describe('An Order DAO', function () {
 var orderDB, config;
 before('connect to DB', function (done) {
 config = {
 port: 27017,
 name: 'order-db'
 };

 MongoClient.connect('mongodb://localhost:' + config.port + '/' +
config.name,
 {db: {w: 1}},
 function (err, db) {
 if (err)
 return done(err);
 orderDB = db;
 done();
 }
);
 });

 after('disconnect from DB', function () {
 orderDB.close();
 });

 beforeEach('clean orders', function (done) {
 orderDB.collection('orders').deleteMany({}, done);
 });

 var orderDAO;
 beforeEach('create dao', function () {
 orderDAO = newOrderDAO(config);
 });

 var theOrder, ordersCollection;
 beforeEach('create test data', function (done) {

Chapter 9

[339]

 theOrder = {
 _id: new ObjectID(),
 data: [
 {
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 3
 },
 {
 beverage: {
 id: "capuccino id",
 name: "Capuccino",
 price: 2.50
 },
 quantity: 1
 }
]
 };
 ordersCollection = orderDB.collection('orders');
 ordersCollection.insertMany([
 {
 _id: new ObjectID(),
 data: []
 },
 theOrder,
 {
 _id: new ObjectID(),
 data: [{
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 1
 }]
 }
], done);
 });

 describe('#byId', function () {
 // TODO

Testing Against External Systems

[340]

 });

 describe('#update', function () {
 // TODO
 });
});

We are using Version 2.0.x of the mongodb package; this is the official MongoDB client
for Node.js. The general setup is divided into several stages, which are as follows:

• Opening a connection to the MongoDB. This will be done only once before
all the tests, and the resulting connection will be reused throughout the test
suite for additional setup and assertions. There is an after() block to close
the connection when all the tests are done.

• In 'clean orders', we simply remove all the documents in the orders
collection before each test. This will ensure that we can make repeatable tests,
since we start with a brand new database.

• After cleaning the database, we insert 'create test data', a set of test
orders, into the database. These orders will be used during our tests, and they
constitute a baseline against which we can reason about our tests. Note that we
store a reference to the order we plan to test against in the theOrder variable.

• We finally create an instance of our DAO, pointing to the same database we
have set up.

Now that we have the DB in a known state, we can start testing the byId method.
The success scenario should test whether there is some data in the DB; we only
retrieve the document that has the provided ID. We can define an error scenario by
saying that, if we do not find the document, we return an error:

describe('#byId', function () {
 it('will return the specified order', function (done) {
 var orderId = theOrder._id.toHexString();

 orderDAO.byId(orderId, assertThatSuccessWith(done, function
(order) {
 expect(order).to.be.deep.equal({
 id: orderId,
 data: theOrder.data
 });
 }));
 });

 it('will return an error if the specified order does not exists',
 function (done) {

Chapter 9

[341]

 var nonExistingId = new ObjectID().toHexString();

 orderDAO.byId(nonExistingId, assertThatFailsWith(done,
 function (err) {
 expect(err).to.exist;
 expect(err.toString())
 .to.match(/not found/i)
 .and.to.contain(nonExistingId);
 }));
 });
});

Basically, we implemented the success scenario by simply asking the DAO for
theOrder, which we know is already inserted into the DB. Then, we checked
whether we retrieved the correct result. Note that there is only a small data
transformation here: instead of returning a MongoID object as the identifier of each
order, we used a string as it is expected from the DAO client. The error scenario is
similar, but we just tried to retrieve a document that we know does not exist, and
we checked whether the returned error contains a useful message.

The only difficulty here is that the API of the DAO is callback-based, using the Node.
js convention. This makes our test awkward, because we need to check the result
inside the callback. This is a bit tricky and involves some boilerplate code. To simplify
the testing, we will use a couple of helper functions:

function assertThatSuccessWith(done, assertion) {
 return function (err, result) {
 if (err)
 return done(err);
 try {
 assertion(result);
 done();
 } catch (e) {
 done(e);
 }
 };
}

function assertThatFailsWith(done, assertion) {
 return function (err) {
 try {
 assertion(err);
 done();
 } catch (e) {
 done(e);

Testing Against External Systems

[342]

 }
 };
}

The assertThatSuccessWith function takes the done callback from the test and
an assertion function, and returns a Node.js callback that we can pass to our DAO's
methods. This callback will check whether the DAO method returned an error and,
if so, it will inform Mocha of this fact, invoking the done callback with the error. If
there is no error, it will execute the assertion function by passing the received result.
In this assertion function, we should put all the assertions that we need to check
against the result. If everything goes well, the assertion function will not throw, and
the done function is called without arguments, telling Mocha that the test passed. If
the assertion function throws, it means that the test failed, so we need to call done
with the error again. The assertThatFailsWith function is very similar, but it just
executes the assertion function with the error.

Now we can finish testing the DAO by writing some tests about the update method.
Again, we have two scenarios: updating an order that already exists and updating
a nonexisting order. In the second scenario, we decide that it should not fail, but we
insert the nonexisting order as a new one. Let's look at the tests:

describe('#update', function () {
 it('will update the specified order', function (done) {
 var orderId = theOrder._id,
 expectedOrder = {
 id: orderId.toHexString(),
 data: theOrder.data.push({
 beverage: {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 4.30
 },
 quantity: 4
 })
 };

 orderDAO.update(expectedOrder, function (err) {
 expect(err).not.to.be.defined;

 ordersCollection.findOne({
 _id: orderId
 }, assertThatSuccessWith(done, function (order) {
 expect(order).to.be.deep.equal({
 _id: orderId,
 data: expectedOrder.data

Chapter 9

[343]

 });
 }));
 });
 });

 it('will create a new order if the specified order does not exists',
 function (done) {
 var orderId = new ObjectID(),
 expectedOrder = {
 id: orderId.toHexString(),
 data: [{
 beverage: {
 id: "mocaccino id",
 name: "Mocaccino",
 price: 4.30
 },
 quantity: 4
 }]
 };

 orderDAO.update(expectedOrder, function (err) {
 expect(err).not.to.exist;

 ordersCollection.findOne({
 _id: orderId
 }, assertThatSuccessWith(done, function (order) {
 expect(order).to.be.deep.equal({
 _id: orderId,
 data: expectedOrder.data
 });
 }));
 });
 });
});

What changes now is that the assert phase needs to be done directly against the DB.
We just wait for the update operation to finish and then check whether there are
no errors and whether the DB contains the relevant data. This is done with direct
access to the DB, using the mondodb client library. These tests are a bit verbose,
because we need to create the updated version of the order, and we need to nest two
callbacks for the assertion. The first callback will wait for the update to finish and
check whether there are no errors. Then we need another extra callback to receive the
results of the DB, where we check whether the data is correct.

Testing Against External Systems

[344]

There are some extra best practices that we should observe when testing against a
DB; they are as follows:

• Use the same database, versions, configuration, and libraries that are
in production.

• It is better to have a test database instance for exclusive use of our test suite.
• If you are using a relational database, you must ensure that the schema

matches the one expected in your code. For this, there a couple of best
practices, which are as follows:

 ° Simply drop the schema and recreate it again. If you are using
indexes, do not forget to recreate them.

 ° Create the schema with an exclusive name for your test if you can.
If it is possible, create a different name whenever your test runs.
This implies that you need to inject the schema name to your ORM
as a configuration parameter.

 ° When testing write operations, always perform the transaction
commit phase before asserting. Some DBs will run validation and
integrity constraint checks only during a commit. You need to ensure
that these checks are passed successfully.

 ° Never delete data after a test, but before it. If your test fails,
you could just check the contents of the database to debug
(assuming you are doing the commit as explained).

 ° If you are running your tests in parallel, use separate schema names
if using RDBM, or collections names, if using noSQL. As mentioned
earlier, you can create a unique name as part of you test setup and
pass it to the DAO. This allows your tests to run in parallel without
interference. Another option, more expensive, would be to just use
different database instances.

Treating the DAO as a collection
If our DAO interface supports a full CRUD API, some of the code we are using in the
tests will be suspiciously similar to the one we use in the DAO implementation itself.
For example, to test the byId method, we need to populate the DB with data during
the setup. This setup code is very similar to the one we have to write to implement
an insert/update method! So this testing approach leads to some duplication of
code between tests and production code, which is not good.

Chapter 9

[345]

A better approach is to treat the DAO like a collection—in this case, a big persistent
hash map. If you think about it, you will notice that the logical contract of the DAO
is very similar to a hash map. You can even implement the DAO in memory using
a JavaScript object—that is, a kind of hash map. So the question is, How would you
test a hash map?

The solution here is that you cannot really test each method of the DAO in isolation,
but you need to test them in pairs. We can test the query methods doing the setup
using the insert, delete, and update methods. Or the other way around, we can test
the update method using the query methods in the assertion.

The point is that we are not testing the contract of each method in isolation, because
now we cannot have a meaningful contract for each method. In the previous
approach, we could define a contract, or behavior, in terms of the inputs of each
method and the side-effects in the DB, which we could check directly using the
DB client library. Now we cannot check these side-effects, so we need to define the
behavior of one method in terms of the others. The contract is defined for the DAO
as a whole, and not for each method.

Let's see how we can change the tests now:

var orders = [
 {
 id: newId(),
 data: []
 },
 {
 id: newId(),
 data: [
 {
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 3
 },
 {
 beverage: {
 id: "capuccino id",
 name: "Capuccino",
 price: 2.50
 },
 quantity: 1
 }

Testing Against External Systems

[346]

]
 },
 {
 id: newId(),
 data: [{
 beverage: {
 id: "expresso id",
 name: "Expresso",
 price: 1.50
 },
 quantity: 1
 }]
 }
];

describe('An Order DAO', function () {
 var orderDAO;
 beforeEach(function () {
 orderDAO = newOrderDAO({
 port: 27017,
 name: 'order-db'
 });
 });
 // We will see in a moment what goes here
});

Here, we just created some test data and a DAO. Note the use of newId() to generate
new identifiers for this data. Let's continue:

describe('An Order DAO', function () {
 // Skipped for brevity

 describe('Given that there are no orders', function () {
 beforeEach(function (done) {
 orderDAO.removeAll(done);
 });

 function updateAndFindSpec(order) {
 it('when we ask the DAO to retrieve order "' + order.id + '",
 then an error will be returned', function (done) {
 orderDAO.byId(order.id, assertThatFailsWith(done,
 function (err) {
 expect(err).to.exist;
 expect(err.toString())
 .to.match(/not found/i)

Chapter 9

[347]

 .and.to.contain(order.id);
 }));
 });

 it('when we ask the DAO to update order "' + order.id + '", ' +
 'then the order "' + order.id + '" can be retrieved',
 function (done) {
 orderDAO.update(order, function (err) {
 expect(err).not.to.exist;

 orderDAO.byId(order.id, assertThatSuccessWith(done,
 function (result) {
 expect(result).to.be.deep.equal(order);
 }));
 });
 });
 }

 orders.forEach(updateAndFindSpec);
 });
 // Skipped for brevity
});

We now added a couple of tests for the byId and update operations, showing how
they behave when they are executed against an empty database. Note how I used
the byId method to write the assertion in the test for update. Let's see what happens
when we already have data in the database:

describe('An Order DAO', function () {
 // Skipped for brevity
 describe('Given that we have created three orders', function () {
 orders.forEach(function (order) {
 beforeEach('insert order "' + order.id + '"', function (done) {
 orderDAO.update(order, done);
 });
 });

 orders.forEach(function (order) {
 it('when the DAO is asked to update "' + order.id + '", ' +
 'it will return the new data when retrieved', function (done) {
 var newOrderData = {
 id: order.id,
 data: order.data.push({
 beverage: {
 id: "latte id",

Testing Against External Systems

[348]

 name: "Latte",
 price: 2.45
 },
 quantity: 3
 })
 };

 orderDAO.update(newOrderData, function (err) {
 expect(err).not.to.exist;

 orderDAO.byId(order.id, assertThatSuccessWith(done,
 function (result) {
 expect(result).to.be.deep.equal(newOrderData);
 }));
 });
 });
 });
 // Skipped for brevity
 });
});

Let's finish the test suite. For this, we will add the tests for removeAll in this
last scenario:

describe('An Order DAO', function () {
 // Skipped for brevity
 describe('Given that we have created three orders', function () {
 // Skipped for brevity
 describe('when the DAO is asked to remove them all', function () {
 beforeEach(function (done) {
 orderDAO.removeAll(done);
 });

 function assertOrderIsRemoved(order) {
 it('when we ask the DAO to retrieve order "' + order.id + '",
 ' +
 'then an error will be returned', function (done) {
 orderDAO.byId(order.id, assertThatFailsWith(done,
 function (err) {
 expect(err).to.exist;
 expect(err.toString())
 .to.match(/not found/i)
 .and.to.contain(order.id);
 }));
 });

Chapter 9

[349]

 }

 orders.forEach(assertOrderIsRemoved);
 });
 });
});

To sum up, we have two basic scenarios, as follows:

• An empty database. Here, we test the update methods when called with
nonexisting orders, and we also test what happens when we try to get a
nonexisting order (since the DB is empty, any order will be nonexisting).
The setup is done with the removeAll method.

• A database that already contains three orders. We do the setup by inserting
the three orders with the update method. Here, we test the removeAll
method, and we also test what happens when we update an existing order.

Note that we still would need to access the DB directly during setup if we
need to drop and recreate the schema. Fortunately, this is not the case in
our example.

In all the tests, we are performing the assertions using the byId method, since it is
the only way to check the new state of the DB. This forces us to define the behavior
of the write methods in terms of byId.

Such an approach is powerful, in the sense that we can parameterize these tests
and use them for any full CRUD DAO. After all, all of them should have at least
this contract. We just need to change the test data set and, maybe, some
configuration options.

The main drawback of this approach is that the tests are not independent of each other.
This is a problem because, if we have a bug in one of the methods, several tests will
fail at the same time, and it will be harder to locate the method in which we have
the bug. For example, if byId has a bug, potentially the whole test suite would fail
because we are using it in all the assertions!

Another disadvantage of this is that we cannot implement each method in a
separated way; we either implement them all together, or the tests will not pass.
This forces us to write most of our tests upfront. This is against the spirit of the
test-first development where we aim to write our software incrementally.

Making the assertions for write operations using read operations is not so bad. After
all, byId is the only way to check what happens to the order list; hence, all the write
method contracts are defined in terms of byId from a logical point of view.

Testing Against External Systems

[350]

My main concern is that we are coupling the tests of removeAll and update. Also note
that, in the test for update, I need to do the setup using update itself! This is definitely
not good. We should be able to test removeAll independently of the update operation,
and we should not do the setup using the same method we are testing.

We can do so if we use a direct database call to recreate the database in a known state
during setup, as we did in the previous section, and then write all of the assertions
only in terms of the read methods of the CRUD. This way, we can make the tests for
update and removeAll independent of each other. Actually, this is the approach I
prefer to test a DAO with a full CRUD API. I leave it to you to write such a test suite
as an exercise.

Testing against a third-party system
As we have seen, when we are testing against a DB, or a filesystem, we have a certain
degree of control, because we can use a low-level API to set up our tests. However,
things are not so easy when we test against an external system owned and controlled
by a third party.

This is a more common scenario nowadays, since it is common to leverage a
web API provided by a third party to enrich and give more value to our application.
Furthermore, with the adoption of the micro-services approach, it can happen
that these third-party web APIs are, in fact, owned by other teams within your
own company!

In general, we cannot directly access the third-party system in order to set it up to
a known state. However, almost all of them offer a CRUD API, so we can use the
technique that we just saw: using the API itself to perform the setup.

There is only one caveat: the third party must offer us an exclusive and stable test
environment. If not, our tests will collide with the ones from other customers of the
system. Fortunately, this is not usually a big deal, since most of the service providers
offer at least a multitenant environment that we can take advantage of. In the worst
case, we should be able to open a test account that is different from the production
account to run our tests.

There is an additional concern when testing against a third-party system: unreliable
connections. The quality of service of a connection against a third-party service
can sometimes be bad. Dropped or slow connections can make our tests slow and
unreliable. Tests can fail just because the connection was too slow and not because
our code is wrong. This makes us distrust our tests, because they can result in giving
us false negatives. At that point, our tests become a liability instead of an investment.
Some practitioners claim this as enough reason to not even try to test against
third-party systems.

Chapter 9

[351]

On the other hand, having tests against third-party systems is not only about testing
our code, but checking whether we understand the contract of the API. Sometimes,
these APIs are not clearly documented, and the communication with the support
team can be slow. In this context, these kinds of tests help us explore how to correctly
use the API. Another advantage is that, if the contract of the API changes, maybe due
to a sudden version change or a bug, our test suite will alert us! These are advantages
that, perhaps, we are not willing to lose.

In a web API, technical details—such as the specific HTTP status code,
which mime type it supports, how to perform some operations, or how to
discover resources—are part of its contract. Our test suite can protect us
against subtle changes in these details.

You should always try to analyze the tradeoffs for your specific situation. The decision
about whether to write or not to write tests against third-party systems must be made
with care for each specific case.

The record-and-replay testing pattern
There is a technique that can help us with the problems mentioned earlier. This is
the record-and-replay testing pattern. In this approach, we replace the third-party
system with a fake one. Instead of implementing the fake service ourselves, we can
use a library that will record the responses of the server and replay them. This is the
workflow for record-and-replay:

1. We run the tests in record mode. Our tests will drive the code that will make
calls against the third-party system and will save the responses to a file. In
addition to saving the requests and responses, the responses will be also
returned to our tests. Sometimes, when we cannot completely set up the
third-party system, we cannot predict which responses it will send. In these
cases, our tests will fail.

2. We take note of the failures of the tests and check which data the service
actually returned. Then, we modify, if necessary, the test suite to expect a
result consistent with the real data returned by the third-party system.

3. Run your tests again in the replay mode. If your code is correct, they should
pass now. If not, it means that you need to fix the code.

4. Repeat this workflow regularly if you wish, maybe every week, to check that
the third-party system API contract has not changed.

Testing Against External Systems

[352]

There is a big difference with a normal test-first workflow: the setup of the third-party
system should not be run in replay mode. In replay mode, our tests will not really
 act against the third-party system; instead, its calls will be intercepted by the
record-and-replay library. There is no sense in running the setup, since all the
calls will be intercepted, and their result will be always the same.

There are several modules that can be used here. I will show you a brief example
using the replay package (https://github.com/assaf/node-replay). This
package will replace the Node.js http package with its own version that will intercept
the requests and responses. The record mode will let all of them pass but in addition,
it will save the responses for each request in a file. In replay mode, it will use the
contents of this file. This implies that replay is only useful as long as we use the
Node.js HTTP module, either directly or through another library, such as request.

Suppose that our product needs to access Twitter, and we want to be able to
encapsulate all the logic for it in a small library, based on promises. This way, we
can create a test double for it and use it in the tests of our business layer. We can also
change the way we access Twitter, via this library—for example, if a new version
of the API appears. To test it, we need to create a couple of test user accounts and
register our app on Twitter. Our test can be something like this:

'use strict';

var newFeed = require('../lib/twitterFeed'),
 chai = require('chai'),
 expect = chai.expect,
 replay = require('replay');

chai.use(require('chai-as-promised'));

describe('A twitter feed', function () {
 var feed;
 beforeEach(function () {
 feed = newFeed({
 // Use your app credentials here!
 });
 });

 function willRetrieveTheLastPublicationsOfAUser(example) {
 var numberOfPublications = example.expectedPublications.length,
 user = example.user;

 it('will retrieve the last ' + numberOfPublications + '
 publications of @' + user, function () {

Chapter 9

[353]

 var result = feed.lastTweets(user, numberOfPublications);

 return expect(result).to.eventually
 .be.deep.equal(example.expectedPublications);
 });
 }

 [
 {
 user: 'mycafeTestX',
 expectedPublications: [
 "insert here contents of tweet 1",
 "insert here contents of tweet 2",
 "insert here contents of tweet 3"
]
 },
 {
 user: 'mycafeTestY',
 expectedPublications: [
 "insert here contents of tweet 1",
 "insert here contents of tweet 2",
 "insert here contents of tweet 3",
 "insert here contents of tweet 4",
 "insert here contents of tweet 5"
]
 }
].forEach(willRetrieveTheLastPublicationsOfAUser);
});

The idea is that our client receives a username and a maximum number of tweets to
search, and returns a promise with the last N tweets published by that user. Nothing
fancy, we need to change our package.json file to add the test scripts:

{
 "name": "replay-record-sample",
 "version": "0.1.0",
 "description": "A sample project of how to test a third party
 API",
 "main": "index.js",
 "scripts": {
 "record": "REPLAY=record mocha -u bdd -R spec
 -t 10000 --recursive",
 "test": "mocha -u bdd -R spec -t 100 --recursive"
 },
 "author": "Enrique Amodeo",

Testing Against External Systems

[354]

 "license": "MIT",
 "devDependencies": {
 "chai": "^1.10.0",
 "chai-as-promised": "^4.1.1",
 "mocha": "^2.0.1",
 "replay": "^1.11.0"
 },
 "dependencies": {
 "q": "^1.1.2"
 }
}

Notice that we installed replay as a development dependency. We also created a
record script that will run our tests in record mode. Now we can issue the npm run
record command and see our test fail. We can fix this in two different ways, which
are explained here:

• Locate the fixtures/api.twitter.com-443 folder. This folder contains
one file per each request/response cycle. In these files, the contents of the
requests and responses have been saved during the test execution. We can
edit the body of the responses to match the result expected in our tests.

• Simply change the expectations in our test code to match the real data.

Now that we have fixed our test expectations, we can run the test suite in replay
mode using npm test. Note that the default mode is replay, so we do not need to
configure the REPLAY environment variable. Unfortunately, our tests are still failing!
What is happening is that replay cannot find a request that matches the ones we are
issuing during the tests. The problem is that replay uses not only the URL and the
query strings to match the requests, but also some HTTP headers. Specifically, it tries
to match the content of the following headers:

• Any header starting with Accept, If-, and X-
• The Authorization header
• The Content-Type header
• The Host header

In addition to this, it tries to match the body of the request, if any. So, to match a
request, all the headers, body, URL, and query strings must match the recorded
request. Only in this case, the response will be replayed.

Chapter 9

[355]

This is a problem because the Twitter API uses OAuth, and OAuth requires a nonce
token, which changes continuously from request to request. This is a typical security
feature designed to avoid replay attacks. Since this token is transported in the
Authorization header, it makes this header change from request to request, so it
will never be matched by the replay library.

The solution is to customize which headers to use in the matching process and tell
replay not to try to match the Authorization header. This can be done by inserting
the following lines of code:

var newFeed = require('../lib/twitterFeed'),
 chai = require('chai'),
 expect = chai.expect,
 replay = require('replay');

chai.use(require('chai-as-promised'));

replay.headers = [
 /^accept/,
 /^body/,
 /^content-type/,
 /^host/,
 /^if-/,
 /^x-/
];

describe('A twitter feed', function () {
 // Skipped for brevity
});

The headers property of the replay object is an array of regular expressions. Any
header that matches one of these regular expressions will be used in the matching
algorithm. What I have done here is simply remove the /^authorization/ regular
expression from this array. Now, if you run the tests, they will pass.

You can use this array not only to remove headers, but also to add new
headers that you really want to use in the matching algorithm.

This problem about security is not exclusive to the replay library, but it is inherent
to the record-and-replay approach. This means that this approach is not able to
test how our library integrates with the security mechanism of the external service,
which is a frequent source of bugs.

Testing Against External Systems

[356]

Summary
Testing against external systems is expensive! One problem is that setting up the
external system in a known state is hard, especially when testing against a third-party
system that is not under our control. The other problem is that they can be slow due to
connectivity problems.

We can do the setup and assertions using a low-level API or the provided client
library directly. This approach generates duplication of code between the test and the
production codebase. Instead, I often prefer to use this kind of low-level API only for
setup and then write the tests of the DAO, or custom service client, using the read
methods of the DAO to write assertions.

If you are testing against a web API, then using the record-and-replay approach is
usually a good alternative, especially if the connection is unreliable, slow, or we do not
have an exclusive and trustworthy test environment. This adds complexity to our test
workflow, since the setup must be generated with a special library that runs the tests
in record mode. In addition, some features, such as integration security tokens, OAuth
nonce tokens, or CSRF protection tokens, cannot really be tested.

Is all this effort worthy of the result? Consider that the amount of code in the
implementation of our DAOs and service clients should be minimal. After all, there
should only be a thin wrapper around a service-client library that is already provided,
and this is often very easy to code. Furthermore, these tests are not very fast and
are subject to glitches, such as slow or unreliable connections, that can make us stop
trusting the tests because of the potential false fails. My advice is to think carefully
about whether you need to invest time and money in these kinds of tests. If you are
going to do it, make sure that you have access to a stable and reliable test environment.

Final Thoughts
This is the final chapter of the book; here, you will find a wrap-up of the testing
approach presented throughout the book, together with some general advice.
In this chapter:

• We will explore the key difference between TDD and BDD
• We will look at an explanation of what distinguishes a good test from a

bad one
• You will learn why integration and end-to-end tests are not good tests
• You will learn the correct granularity for a BDD test
• I will present a summary of which kind of testing approach and which tools

you should use to test each part of your system

TDD versus BDD
There are inherently two test-first approaches: Test Driven Development (TDD) and
Behavior Driven Development (BDD). Some authors consider them to be the same
thing, although I don't incline towards this view.

TDD is the earliest of the two approaches and actually only laid the foundations of
the test-first cycle. This is not enough, since you can apply the technique at any level
of abstraction and in a wide variety of granularity. I have done TDD with a bunch
of totally different granularities: testing single classes in isolation, testing private
methods, testing a "cluster of objects", and so on. Sometimes, these approaches have
been successful, and sometimes not. The key to the success or failure of these tests
was that, sometimes, I was testing the right thing, and at other times, I was testing
something irrelevant, ending with tons of tests that did not say much about whether
the system behaved correctly or not. Does it mean that TDD is wrong (or dead)? No,
it just means that we need to constrain its practice to something that makes sense, and
here is where BDD fits into the story.

Final Thoughts

[358]

Testing whether a low-level component works according to its technical design is not
useful. This approach only works in small systems where there is an almost one-to-one
correlation between behavior and components. In fact, in small systems such as the
ones used in tutorial books, TDD and BDD are very similar. This can prevent readers
from appreciating the difference between them.

In a normal system, the relationship between behavior and components is important
and really hard to manage. So, when a behavior needs to be changed, all of the test
suites give you almost no information about which components need to be changed,
what is most important, and how to update the test suite itself to keep it in sync with
this change. The information on whether a single feature is implemented or not is
scattered across several test suites and not encapsulated in a single test suite. There are
two consequences of this, which are as follows:

• Our test suites will slowly get out of sync with the behavior of the system.
• Our tests have low value, even if we have invested a lot of effort in them.

They will not tell us which behaviors are broken if one test fails, and they
will also not tell us which components need to be updated to accommodate
a change in functionality.

For a long time, most of us have been practicing TDD in a way that is totally
disconnected from the real value of the software—that is, the functionality of the
system (its behavior). We have been thinking that TDD only applies to our work as
engineers and that tests are a technical tool and need only check individual low-level
technical components (classes or functions).

To solve this situation, BDD proposes that the real thing that we should test is whether
the system behaves as expected and not whether a technical component behaves
according to some technical design. So, BDD adds a couple of rules on top of TDD:

• Your test suite must check the behaviors that are meaningful for the user of
your system, your customer, or any other stakeholder

• Whether a single feature is correctly implemented or not must be checked in
a single test suite and not spread over several ones

Both these rules help our test suites to have high value because of the
following reasons:

• We are testing the things that our stakeholders really care about
• If a test fails, we can detect which behaviors are broken

Chapter 10

[359]

• If a test fails, we can detect the cluster of objects that needs to be fixed
• If there is a change in an existing behavior, we can easily locate which tests

to change

This ensures an easy correlation between behavior and tests so that both can
evolve together. It also ensures that the results of the tests are meaningful to us
and the stakeholders.

This does not mean that you should not test individual low-level components, only
that you are not forced to do it. If there is a clear value in testing a single low-level
component, do it; just do not get carried away and force yourself to test all of them
in isolation. Of course, do it in addition to the BDD test suite, not at the expense of it.

The BDD approach sounds easy but, in fact, it is very hard. The problem is that
you cannot really test for the behaviors of your system if you do not have a clear
understanding of them. Most systems are so big that you need to slice them into
smaller parts if you do not want to end up with a big monolith. In practice, we
should apply the following additional best practices:

• Locate all the stakeholders of your system and engage with them in a
collaborative way to find the features of the system.

• Split your system into different subsystems, one per each problem domain.
Each problem domain solves a different problem and has its own language
and stakeholders. We have seen several examples of this with the myCafé
example; UI, web API, order business layer, payments, and so on are the
different problem domains.

• Learn the language of each problem domain and try to define the behaviors
in terms of this language. If possible, try to use Cucumber (or similar) to
validate your assumptions with the stakeholders and, at the same time,
be able to build your test suite on top of it.

• Try to decouple the subsystems as much as possible.

The key to BDD is to be able to interact frequently with the stakeholders, and this
can only be done in a truly agile environment. If we cannot do this, then the BDD
approach will not work. It is not realistic to ask the engineers to write BDD specs if
they cannot interact with the stakeholders to discover and clarify them. In fact, we
can stop considering BDD as a testing approach and start thinking of it as an efficient
way to capture requisites as executable test suites that both sides, engineers and
business people, can understand. Hence, BDD becomes a key practice to bridge the
gap between these two collectives and make them work as a team.

Final Thoughts

[360]

A roadmap to BDD
What is the right granularity for a BDD test? This is an important question that I will
try to answer in this section.

BDD versus integration testing
There are several misconceptions about BDD, but the most popular one is that BDD
implies an integration test of most of the layers of the system. This is actually not
true, and it results from a naïve approach to BDD. It is not uncommon to see BDD
suites that drive the UI and perform the setup against the DB and the assertion phase
using both the UI and the DB. This is not a really good approach, because it results
in brittle and slow tests and BDD specifications that try to address all the problem
domains at the same time.

A good BDD test suite has the following properties:

• It is repeatable, always giving the same result if there were no changes
• It is not expensive to build
• It is fast, so it give you feedback quickly
• It gives information that helps you debug an error
• It is easy to change as the requirements change
• It is meaningful for both the stakeholders and the engineers

These properties are the source of the real value of a test suite, and an integration test
suite, most of the times, has none of the properties mentioned earlier. As we saw in
the previous chapters, these are the reasons why an integration test suite does not
have these properties:

• Such a BDD test suite needs to interact with the UI and, usually, with
external systems too. Testing the UI is slow, and the tests can be broken if
certain changes to the UI are done (even if we do not change business rules).
To make it worse, the UI is a part that changes often in any system. Testing
against external systems is problematic too. On the one hand, the setup can
be difficult to perform. On the other hand, these tests can be nonrepeatable
because we do not have total control of the external system.

Chapter 10

[361]

• What are we really testing with an integration test? The business rules?
How the UI behaves? How we communicate with external systems? How we
publish our business rules as a web API? The problem is that an integration
test suite goes across several problem domains, so we cannot focus on any
of them.

• Related to the previous point, in which domain language are we writing our
BDD? If we decide to use a single language—for example, the business rules
language—we lose a lot of scenarios at the UI level and at the web API level,
because we cannot express them in the business rules language. If we decide to
mix the languages, then we end up with very unreadable and hard-to-maintain
BDD test suites.

• Each distinct problem domain has its own features and scenarios. If we
want to test them together and have a high coverage, we need to test all of
the combination features and scenarios of all the problem domains. This is
clearly not a good idea; it is too expensive.

• If a test fails, which code do I need to change in order to fix the test? An
integration test suite gives us no information about the source of the error.
It can be any component in any subsystem or layer—or even not in our code,
but rather in an external system.

It is much better to try to perform unit tests where each unit under test is tested after
being isolated from the other ones and where each behavior is tested independently
of the others. Unfortunately, the term unit test is strongly associated with the act
of testing individual classes in isolation, so most people will think in a non-BDD
approach when talking about unit tests. That is why I prefer to use the term
isolation tests.

BDD is for testing problem domains
The first step in avoiding the pitfall of integration testing is to realize how you can
slice your system into several subsystems, each one taking care of a single problem
domain. Each one of these subsystems will have a cohesive language and will serve
a subset of our stakeholders, so it is easy to define a very precise and exhaustive BDD
feature set for it.

Final Thoughts

[362]

Slicing a system into problem domains is hard, and sometimes we
can make a mistake while doing it. However, you can easily detect
that you made such a mistake looking for the same problems that an
integration test has: complex and hard-to-maintain tests, features that
are difficult to understand or write, unclear language, failing tests that
are hard to diagnose, and so on. If you start having them, maybe you
should refactor your system into smaller problem domains.

The other step is to slice each subsystem into abstraction layers. There will always
be the domain layer where we implement a set of rules and data models to solve
the domain problem. However, there can be one or more technical layers giving
infrastructure services and in charge of nonfunctional requirements, such as
persistence, caching, networking, and so on.

We need to architecture and design our system in a way that these layers can be
tested independently of one another. This is what we actually have done in this book:
testing the passive view separated from the UI control logic or the DAO separated
from the order-processing logic.

These technical layers should be ideally very thin, and we can decide not to test them
if their code is not complex enough. This is often the case when we are implementing
them using a good framework or library that will reduce the complexity of the code.
In any case, if you decide to test them, you will not have a clear external stakeholder,
but you and your team will be your own stakeholders. In this case, when testing a
technical layer, we are not strictly doing BDD, but traditional TDD.

However, sometimes there are technical layers, such as the web API or maybe a
security system, can be complex. In these cases, we can separate them as another
problem domain and try to use BDD with them. In these cases, the stakeholders
are often specialized engineers or architects. However, we can even have normal
nonengineers as stakeholders. I can imagine that some people from the business
units might have an interest in how the security of your system works, especially
in how to manage the access lists and permissions.

Chapter 10

[363]

A very interesting case is the UI. Clearly, normal users, UX experts, and most
business people are strongly interested in how our UI looks and behaves. Also note
that how to present data to the user and interact with them is a different problem
from how to process transactions in a server according to business rules. It is clear
that the UI is a domain problem different from normal business rules, and so it calls
for a different subsystem.

We can also slice the UI into a domain layer, taking care of validation, navigation,
and orchestration, and the technical layers of a passive view and the client for the
server. We can apply plain BDD to the UI domain layer, but the passive view of the
UI should also be addressed by BDD. After all, it transforms gestures to user actions
and deals how the UI looks. So, the UX experts, users, and business stakeholders are
interested in it. Since there are also a lot of inconsistencies across browsers, the tests
for the passive view can have a high value, unless you are using a cross-browser
framework that allows you to build this layer very easily.

So, we can slice across problem domains and abstraction layers to obtain a set of
subsystems and abstraction layers. For each one of these, we should create a
different test suite! For example, in our myCafé example, we can have test suites
for the following:

• Order management, payment logic, order UI, payment UI, and so on are
subsystems that appear if we slice across the problem domain axis.

• DAOs, service clients, and so on appear if we slice across the abstraction
layers. These are details of our technical design, not really a concern to
other stakeholders. We can optionally test them, but it is not strictly BDD.

• Order and payment system web APIs, security, and so on are somewhat
in the middle. They are technical, but with enough complexity to require
a specialist. These specialists become our stakeholders. There can be some
interest from nonengineers as well.

Final Thoughts

[364]

Concluding the book
In the following figure, we can see a roadmap to the BDD approach presented in
this book:

External
System

External
System

External
System

Order
Management

Payments

Other
Business
Processes

Use BDD
with WebDriverJS
Chapters 6,7,8

Use Plain BDD
Favor Cucumber
Chapters 3 & 4

Use TDD+Mocha
Chapter 9

OR
test in integration
with Web API layer

Use BDD
with Mocha
Chapter 5

Use Plain BDD
Favour cucumberJS

Chapters 3 & 4

Use TDD+Mocha
Chapter 9

View
UI Control

Navigating Models
Service
Clients

Web
API

Business
Rules

DAOs
and Service

Clients

UI Server

A BDD roadmap

This figure is just a rough guide; just remember to use your common sense.
Developing a test suite implies time and effort; if you do not expect to get
enough value in return, just do not do it.

Chapter 10

[365]

Of course, the architecture of your system may be different from the one I have
presented; after all, I have just used one kind of architecture that is popular, but
you might have a different one. However, you should always separate your
domain layers from the technical ones and slice across functional domains.

Finally, here is a final summary of the whole book:

• Always test the core layers where the domain logic resides. Use plain BDD
and favor Cucumber whenever the stakeholders are willing to at least read it.
See Chapter 3, Writing BDD Features and Chapter 4, Cucumber.js and Gherkin.

• It is recommended that you test your web API layer using BDD as explained
in Chapter 5, Testing a REST Web API. If the interfaces of your business rules
layer are consistent enough across business domains, you can create a generic
implementation of this layer for all of them.

• It is also recommended that you test your view layer and how it integrates
with the DOM. Use BDD and WebDriver as explained in Chapter 6, Testing
a UI Using WebDriverJS, Chapter 7, The Page Object Pattern, and Chapter 8,
Testing in Several Browsers with Protractor and WebDriver.

• If you are talking with external systems that are out of your control, avoid
testing; simply try to do this layer as thin as possible. If you need to test it
anyway, see Chapter 9, Testing Against External Systems.

• If you are talking with a server that is under your control, for example the
service client in the UI, you have more options:

 ° Use simple TDD, and replace your network stack with test doubles.
 ° Test the service client integrated with the web API layer. In theory,

the service client is a proxy of the business rule layer, so it must have
the same API. Hence, its implementation is kind of an inverse of the
web API layer and must undo its work. So, in a BDD test suite for
the client-service layer, you should check whether the service client
returns the same result returned by the test double of the business
rule layer after traveling through the network.

 ° Simply use the techniques in Chapter 9, Testing Against
External Systems.

Final Thoughts

[366]

Next steps?
What to do next? We have seen many tools and several ways to approach the testing
of a whole software application. These techniques are not trivial and usually require
some time to master them, but they are not so difficult either! So, my advice is just to
try to practice all the techniques presented in this book, in small pet projects at the
beginning, where you can make mistakes and fail safely. Then, you can try to start
introducing this testing approach in your daily work.

It is important that you get acquainted with these techniques from a practical
perspective. Theory is not enough because you always need to answer the following
question: Would this test suite give me enough of a return? And you cannot answer
this question if you do not have a clear sense of the cost of building the test suite.

Finally, remember that technology changes. Things that nowadays are costly, such as
testing the UI, were simply too cumbersome to do in the past, and maybe they will
be simple to do in the future. So, stay up-to-date with all the testing tool sets.

We have reached the end of the book! I hope it was useful and that you learned
something practical from it.

Summary
We have seen that TDD and BDD are different techniques. BDD is a refinement of
TDD; it emphasizes that the important thing is to test behaviors of the system that
are relevant to the stakeholders and users.

BDD allows us to write more coherent test suites that can evolve at the same
speed as our requirements. A good BDD test suite will give us the ability to track
which behaviors are not working correctly in our system and which tests should
be changed when we need to change the functionality of the system.

Finally, it is important to distinguish between BDD and integration tests.
An integration test checks several problem domains at the same time. This often
leads to confused tests that try to test everything and, in the end, are not very
effective. Instead, a BDD test suite checks a single problem domain in isolation.
This allows the tests to be focused, clear, and easy to write and maintain.

Index
Symbols
200 Ok

API response, testing with 189, 190
--ui option 35
-u option 35

A
addBeverageForm function 287
addMockModule method 323
advanced scenarios

writing 147
advanced setup, Gherkin

about 156, 157
Background section 164
Gherkin-driven example factory 159, 160
implicit setup, versus explicit setup 161-164

afterEach function 63
After hook 175
alert() method 240
all(locator) method 326
allScriptsTimeout option 322
And keyword 133
AngularJS

URL 242
API modeling

best practices 274
API response, with 200 Ok

about 189
empty object, using 190
test, implementing 191, 192

Around hook 175
assertions 42
assert style

URL 45
asynchronous features

callback-based API, testing 89, 90
promise-based API, testing 91
testing 89

B
Background section 164
BDD

about 70, 360
approach 364, 365
properties 360
rules 358
used, for testing problem domains 361, 362
versus integration testing 360, 361
versus TDD 14, 15, 357-359

before function 62
Before hook 174
behavior-driven development. See BDD
Broccoli

URL 313
browserify

used, for packing code 245-248
browsers

testing, with WebDriver 303
business layer, HAL resource

using 195-198
But keyword 133

[368]

C
callback-based API

testing 89, 90
capabilities option 317
Chai

and Sinon, integrating 73, 74
assertion style, using 41-45
should interface, using 45, 46

chai-as-promised package 97, 98
chains 42
chromeDriver option 321
clear() method 232
clearMockModules method 323
click() method 233
code

cleaning 11, 12
running, in several browsers 307-309

command control flows 239
complex UI interaction

defining 235, 236
configuration options, Protractor

allScriptsTimeout option 322
chromeDriver option 321
cucumberOpts option 321
exclude option 321
firefoxPath option 321
getPageTimeout option 322
jasmineOpts option 321
mochaOpts option 321
port option 321
sauceKey option 320
sauceSeleniumAddress option 320
sauceUser option 320
specs option 321

Continuous Integration (CI) 27, 34
cross-cutting scenarios

extracting 216-219
Cucumber.js

about 130
error reporting 145, 146
features 172
features, tagging 172, 173
hooks 174
non-English Gherkin 176
scenarios, tagging 172, 173

step handler 143-145
using 176, 182
World object pattern 138-142

D
DAO

implementing 120-126
treating, as collection 344-350

dataTable method 156
DB

accessing 337-344
DOM interaction

page object, building with 284-294
DOM, reading

page object, building for 279-283

E
embedded resources

testing 210-216
empty object

using 190
enabled property 255
end-to-end testing 223
error reporting 145, 146
example factory pattern

about 108-112
scenario, finishing 112-115

explicit setup
versus implicit setup 161-164

F
failing test

writing 10-13
fakes, test doubles 23
feature, parameterized scenarios

finishing 170-172
features

adding 219, 220
features, Cucumber.js

tagging 172, 173
fields array 255
findElement(locator) method 235
findElements(locator) method 235
findElements method 231

[369]

firefoxPath option 321
flags, Chai

URL 45
frame(nameOrIndex) method 240
framework option 317

G
getId() method 233
getLocation() method 234
GET order feature

API response, testing with 200 Ok 189
exploring 184, 185
HAL resource, testing for orders 193-195
server, setting up 186-188
server, starting 186-188
server, stopping 186-188
testing 183, 184

getOuterHtml() method 234
getPageTimeout option 322
getTagName() method 234
getText() method 233
getWebElement() method 326
Gherkin

about 130
empty order scenario, steps 153-155
example tables 147-152
executing 134-137
first scenario, writing 132, 133
project, preparing 130, 131

Gherkin-driven example factory 159, 160
GhostDriver

URL 304
Given keyword 133
goTo function 278
Grunt

URL 245
Gulp

URL 245

H
HAL

about 179
URL 180

HAL resource
business layer, using 195-198

scenario, finishing 198-201
testing, for orders 193-195

handler function 136
hooks

about 174
After hook 175
Around hook 175
Before hook 174

HTML page
serving 244

HTML scripts
serving 244

I
implicit setup

versus explicit setup 161-164
integration testing

about 180, 224
versus BDD 360, 361

Internet application
setup 242
testing 241, 242
UI control logic 267-270
view reaction, testing to user 260-267
view, testing for HTML update 249-259

isolation tests 361
isSelected() method 234

K
Knockout

URL 242

M
method field 255
Mocha

about 32, 33
and promises 95-97
options 35, 36
test-first cycle 37-41
URL 36
using 176, 182

Mocha, options
-b 35
--bail option 35

[370]

-R 35
--reporter 35
-w 36
--watch option 36

mochaOpts option 317
mocks, test doubles 23
MongoDB

URL 337
myCafé 77, 78

N
navigation

testing 294-300
Node

about 27
installing 28
URL 28

Nodebrew
URL 28

Node Package Manager. See NPM
Node Version Manager (NVM)

about 28
URL 28

non-English Gherkin 176
NPM

about 27
installing 28
project, configuring with 29-32

npm install command 32

O
onPrepare option 317
order actions 202-206, 210
ordering page, myCafé

features, writing 78
order, displaying 79-84
scenarios, coding 86-88
tips, for writing features 84, 85

orders
HAL resource, testing for 193-195

P
package.json

URL 30

page object
best practices 274-277
building, for interacting with DOM 284-294
building, for reading DOM 279-283
navigation, testing 294-300
used, for UI 277, 278

Page Object pattern 273, 274
parameterized scenarios

about 117-119, 165-169
feature, finishing 170-172

parameterized tests
using 56-58

perform method 235
PhantomJS

URL 304
phases, test

act 22
assert 22
Set up/Arrange 22

port option 321
problem domains

testing, BDD used 361-363
project

configuring, with NPM 29-32
promise-based API

promise 92-95
testing 91

promises
about 92-95
and Mocha 95-97
test doubles, used with 99, 100
URL 95

promise, states
fulfilled 92
pending 92
rejected 92

properties, test
requisites 23, 24

Protractor
about 312-318
configuration options 320, 321
tests, running in parallel 319, 320
using 322-330

protractor module
about 313
protractor 313
webdriver-manager 313

Proudly sourced and uploaded by [StormRG]

[371]

Q
Q framework

URL 95

R
record and replay pattern 351-355
record and replay tools 223, 224
Red/Green/Refactor

about 47-56
parameterized tests, using 56-58
setup, organizing 60-63
test scenarios, defining 63, 64

redirectTo method 298
regression test suite 8
relational database 344
replay package

URL 352
request module

URL 192

S
sauceKey option 320
Sauce Labs

URL 320
sauceSeleniumAddress option 320
sauceUser option 320
scenario, HAL resource

finishing 198-201
scenario, Cucumber.js

tagging 172, 173
screenshots

taking 240
scripts

injecting 236-238
loading 243

Selenium 2.0 229
seleniumAddress option 317
Selenium Server

about 309-312
URL 310

setup
organizing 58-63

setup, Internet application
about 242
browserify, used for packing code 245-248

HTML page, serving 244
HTML scripts, serving 244
test HTML page 242, 243
WebDriver session, creating 249

shown property 255
Sinon

and Chai, integrating 73, 74
test doubles, used with 65-70
URL 73
using 73

slave resources
cross-cutting scenarios, extracting 216-219
embedded resources, testing 210-215
features, adding 219, 220
order actions 202-210
testing 202

specs option 317, 321
spies, test doubles 23
step handler 143, 145
storage object pattern 104-108
stubs, test doubles 23
submit() method 233

T
target field 255
TDD

about 70, 357
versus BDD 14, 15, 357-359

test
creating, for UI 225
implementing 191, 192
passing 10
running, in parallel 319, 320

test code
example factory pattern 108-112
organizing 101-104
parameterized scenarios 117-119
storage object pattern 104-108

test doubles
about 22, 23
creating 182, 183
fakes 23
mocks 23, 68
spies 23, 68
stubs 23, 68
with promises 99, 100

[372]

with Sinon 65-70
writing 334, 335

test-driven development. See TDD
test-first approach

about 7, 8
test-first cycle 9

test-first cycle
about 9, 37-41
code, cleaning 11, 12
consequences 13
failing test, writing 10
new failing test, writing 12, 13
test, passing 10

test HTML page 242, 243
testing

against database 337
against external systems 336
against third-party system 350, 351
with PhantomJS 304-306

testing, against database
DAO, treating as collection 344-350
DB, accessing directly 337-344

testing, against third-party system
record and replay pattern 351-355

testing architecture, UI 226, 227
testing, with WebDriver

Selenium Server 309-312
test scenarios

defining 63-65
test structure

about 21, 22
test doubles 22, 23

Then keyword 133
Travis

URL 34
triangulation 48

U
UI

page object, used for 277, 278
test, creating for 225

UI control logic 267-270
UI layer

responsibilities 225
UI logic 228
view 228

UI logic component 228
UI testing

end-to-end testing 223, 224
record and replay tools 223
strategy 223, 224
test, creating for UI 225
testing architecture 226-228

unit testing
defining 16-21

V
view

reacting, to user 260-267
testing, for HTML update 249-259

view component 228
Vows

URL 129

W
web API

about 179, 180
Cucumber.js, using 182
Mocha, using 182
responsibilities 180
testing 180, 181
URL 179

webdriver.ActionSequence object
click() 236
doubleClick() 236
dragAndDrop(element, location) 236
keyDown(key) 236
keyUp(key) 236
methods 235
mouseDown() 236
mouseMove(targetLocation,

optionalOffset) 236
mouseUp() 236

WebDriver API
URL 231

WebDriverJS
about 229-231
command control flows 238, 239
complex UI interaction, defining 235, 236
screenshots, taking 240

[373]

scripts, injecting 236-238
URL 229
used, for controlling frames 240, 241
used, for controlling tabs 240, 241
used, for finding elements 231-234
used, for interacting with elements 231-234

webdriver.Key object 233
WebDriver session

creating 249
When keyword 133
window.onhashchange event

URL 295
window(windowName) method 240
World object pattern 138-142

X
XVFB

URL 304

Thank you for buying
Learning Behavior-driven Development

with JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Cucumber BDD How-to
ISBN: 978-1-78216-348-0 Paperback: 70 pages

A short and quick guide to mastering
behavior-driven software development
with Cucumber

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. A step-by-step process of developing a real
project in a BDD-style using Cucumber.

3. Pro tips for writing Cucumber features
and steps.

4. Introduces some popular and useful third-party
gems used with Cucumber.

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zombie.js, and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code.

2. Use a headless browser to quickly test your
web application every time you make a small
change to it.

3. Use Mocha to describe and test the capabilities
of your web app.

Please check www.PacktPub.com for information on our titles

JavaScript Testing Beginner's
Guide
ISBN: 978-1-84951-000-4 Paperback: 272 pages

Test and debug JavaScript the easy way

1. Learn different techniques to test JavaScript,
no matter how long or short your code might
be. Discover the most important and free tools
to help make your debugging task less painful.
Discover how to test user interfaces that are
controlled by JavaScript. Make use of free
built-in browser features to quickly find out
why your JavaScript code is not working,
and most importantly, how to debug it.
Automate your testing process using
external testing tools.

JavaScript Unit Testing
ISBN: 978-1-78216-062-5 Paperback: 190 pages

Your comprehensive and practical guide to efficiently
performing and automating JavaScript unit testing

1. Learn and understand, using practical
examples, synchronous and asynchronous
JavaScript unit testing.

2. Cover the most popular JavaScript Unit Testing
Frameworks including Jasmine, YUITest,
QUnit, and JsTestDriver.

3. Automate and integrate your JavaScript Unit
Testing for ease and efficiency.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to BDD
	The test-first approach
	The test-first cycle
	Write a failing test
	Make the test pass
	Clean the code
	Repeat!

	Consequences of the test-first cycle

	BDD versus TDD
	Exploring unit testing
	The structure of a test
	Test doubles

	What is a good test?
	Summary

	Chapter 2: Automating Tests with Mocha, Chai, and Sinon
	Node and NPM as a development platform
	Installing Node and NPM

	Configuring your project with NPM
	Introducing Mocha
	Useful options in Mocha
	Our first test-first cycle

	More expressive assertions with Chai
	Working with the "should" interface

	Red/Green/Refactor
	Parameterized tests
	Organizing your setup
	Defining test scenarios

	Test doubles with Sinon
	Is it traditional TDD or BDD?
	Welcome Sinon!
	Integrating Sinon and Chai

	Summary

	Chapter 3: Writing BDD Features
	Introducing myCafé
	Writing features
	Displaying a customer's order
	Tips for writing features
	Starting to code the scenarios

	Testing asynchronous features
	Testing a callback-based API
	Testing a promise-based API
	Interlude: promises 101
	Mocha and promises

	Organizing our test code
	The storage object pattern
	The example factory pattern
	Finishing the scenario

	Parameterized scenarios

	Finishing our feature
	Summary

	Chapter 4: CucumberJS and Gherkin
	Getting started with Gherkin and CucumberJS
	Preparing your project
	Writing your first scenario in Gherkin
	Executing Gherkin
	The World object pattern
	Better step handlers
	Better reporting

	Writing advanced scenarios
	Gherkin example tables
	Consolidating steps
	Advanced setup
	Gherkin-driven example factory
	Implicit versus explicit setup
	The Background section

	Parameterized scenarios
	Finishing the feature

	Useful CucumberJS features
	Tagging features and scenarios
	Hooks
	The before hook
	The after hook
	The around hook

	Non-English Gherkin

	CucumberJS or Mocha?
	Summary

	Chapter 5: Testing a REST Web API
	The approach
	A strategy to test web APIs
	Mocha or CucumberJS?
	The plan

	Testing the GET order feature
	Exploring our feature a bit
	Starting, stopping, and setting up our server
	Testing whether the API responds with 200 Ok
	Should we use a realistic order object?
	Implementing the test

	Testing our HAL resource for orders
	The contract with the business layer
	Finishing the scenario

	Testing slave resources
	The order actions
	Testing embedded resources
	Extracting cross-cutting scenarios
	Homework!

	Summary

	Chapter 6: Testing a UI Using WebDriverJS
	Our strategy for UI testing
	Choosing the right tests for the UI
	The testing architecture

	WebDriverJS
	Finding and interacting with elements
	Complex UI interaction
	Injecting scripts
	Command control flows
	Taking screenshots
	Working with several tabs and frames

	Testing a rich Internet application
	The setup
	The test HTML page
	Serving the HTML page and scripts
	Using browserify to pack our code
	Creating a WebDriver session

	Testing whether our view updates the HTML
	Testing whether our view reacts with the user
	What about our UI control logic?

	Summary

	Chapter 7: The Page Object Pattern
	Introducing the Page Object pattern
	Best practices for page objects

	A page object for a rich UI
	Building a page object that reads the DOM
	Building a page object that interacts with the DOM
	Testing the navigation

	Summary

	Chapter 8: Testing in Several Browsers with Protractor and WebDriver
	Testing in several browsers with WebDriver
	Testing with PhantomJS
	Running in several browsers
	The Selenium Server

	Welcome Protractor!
	Running the tests in parallel
	Other useful configuration options
	Using the Protractor API

	Summary

	Chapter 9: Testing Against External Systems
	Writing good test doubles
	Testing against external systems
	Testing against a database
	Accessing the DB directly
	Treating the DAO as a collection

	Testing against a third-party system
	The record-and-replay testing pattern

	Summary

	Chapter 10: Final Thoughts
	TDD versus BDD
	A roadmap to BDD
	BDD versus integration testing
	BDD is for testing problem domains

	Concluding the book
	Next steps?
	Summary

	Index

