
www.allitebooks.com

http://www.allitebooks.org

Learning Cloudera Impala

Perform interactive, real-time in-memory analytics
on large amounts of data using the massive parallel
processing engine Cloudera Impala

Avkash Chauhan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Cloudera Impala

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-127-5

www.packtpub.com

Cover Image by Vivek Sinha (vs@viveksinha.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Avkash Chauhan

Reviewers
Salman Ahmed

Charles Menguy

Acquisition Editors
Pramila Balan

Joanne Fitzpatrick

Commissioning Editor
Sharvari Tawde

Technical Editors
Kapil Hemnani

Faisal Siddiqui

Copy Editors
Alisha Aranha

Roshni Banerjee

Mradula Hegde

Dipti Kapadia

Aditya Nair

Deepa Nambiar

Adithi Shetty

Project Coordinator
Sherin Padayatty

Proofreader
Lawrence A. Herman

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Avkash Chauhan is a software technology veteran with more than 12 years of
industry experience in various disciplines such as embedded engineering, cloud
computing, big data analytics, data processing, and data visualization. He has an
extensive global work experience with Fortune 100 companies worldwide. He
has spent the last eight years at Microsoft before moving on to Silicon Valley to
work with a big data and analytics start-up. He started his career as an embedded
engineer; and during his eight-year long gig at Microsoft, he worked on Windows
CE, Windows Phone, Windows Azure, and HDInsight. He spent several years
working with the Windows Azure team to develop world-class cloud technology,
and his last project was Apache Hadoop on Windows Azure, also known as
HDInsight. He worked on the HDInsight project since its incubation at Microsoft,
and helped its early development and then deployment on cloud. For the past
three years, he has been working on big data- and Hadoop-related technologies by
developing applications to make Hadoop easy to use for large- and mid-market
companies. He is a prolific blogger and very active on the social networking sites.
You can directly contact him through the following:

• LinkedIn: https://www.linkedin.com/in/avkashchauhan
• Blog: http://cloudcelebrity.wordpress.com/
• Twitter: @avkashchauhan

I would like to thank my wife, two little kids, family, and friends for
their continuous love and immense support in completing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Charles Menguy is a software engineer working in New York City for Adobe
Systems, whose primary focus is dealing with enormous amounts of data. He holds
a Master's degree in Computer Science, with a major in Artificial Intelligence. He is
passionate about all things related to big data, data science, and cloud computing.
As a certified Hadoop developer from Cloudera, he has been working with various
technologies in the Hadoop stack. He contributes back to the community by being an
avid user of StackOverflow.

You can add him to your LinkedIn contacts at http://www.linkedin.com/in/
charlesmenguy/, write to him at menguy.charles@gmail.com, or learn more
about him at http://cmenguy.github.io/.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Impala 7

Impala requirements 9
Dependency on Hive for Impala 10
Dependency on Java for Impala 10
Hardware dependency 10
Networking requirements 11
User account requirements 11

Installing Impala 11
Installing Impala with Cloudera Manager 11
Installing Impala without Cloudera Manager 13

Configuring Impala after installation 14
Starting Impala 15
Stopping Impala 16
Restarting Impala 16
Upgrading Impala 16

Upgrading Impala using parcels with Cloudera Manager 17
Upgrading Impala using packages with Cloudera Manager 17
Upgrading Impala without Cloudera Manager 18

Impala core components 18
Impala daemon 19
Impala statestore 19
Impala metadata and metastore 20
The Impala programming interface 20

The Impala execution architecture 21
Working with Apache Hive 21
Working with HDFS 22
Working with HBase 22

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Impala security 22
Authorization 23

The SELECT privilege 23
The INSERT privilege 23
The ALL privilege 23

Authentication through Kerberos 24
Auditing 24

Impala security guidelines for a higher level of protection 25
Summary 26

Chapter 2: The Impala Shell Commands and Interface 27
Using Cloudera Manager for Impala 27
Launching Impala shell 29
Connecting impala-shell to the remotely located impalad daemon 30
Impala-shell command-line options with brief explanations 30

General command-line options 31
Connection-specific options 32
Query-specific options 33
Secure connectivity-specific options 34

Impala-shell command reference 34
General commands 35
Query-specific commands 36
Table- and database-specific commands 38

Summary 38
Chapter 3: The Impala Query Language and Built-in Functions 39

Impala SQL language statements 40
Database-specific statements 41

The CREATE DATABASE statement 41
The DROP DATABASE statement 41
The SHOW DATABASES statement 42
Using database-specific query sentence in an example 42

Table-specific statements 43
The CREATE TABLE statement 43
The CREATE EXTERNAL TABLE statement 44
The ALTER TABLE statement 44
The DROP TABLE statement 45
The SHOW TABLES statement 45
The DESCRIBE statement 45
The INSERT statement 47
The SELECT statement 47
Internal and external tables 48

Data types 48
Operators 52
Functions 55

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Clauses 57
Query-specific SQL statements in Impala 60
Defining VIEWS in Impala 61
Loading data from HDFS using the LOAD DATA statement 62
Comments in Impala SQL statements 62
Built-in function support in Impala 63

The type conversion function 65
Unsupported SQL statements in Impala 65
Summary 66

Chapter 4: Impala Walkthrough with an Example 67
Creating an example scenario 67

Example dataset one – automobiles (automobiles.txt) 68
Example dataset two – motorcycles (motorcycles.txt) 68
Data and schema considerations 69

Commands for loading data into Impala tables 69
HDFS specific commands 69
Loading data into the Impala table from HDFS 70

Launching the Impala shell 72
Database and table specific commands 72

SQL queries against the example database 74
SQL join operation with the example database 77

Using various types of SQL statements 77
Summary 79

Chapter 5: Impala Administration and
Performance Improvements 81

Impala administration 81
Administration with Cloudera Manager 82
The Impala statestore UI 84

Impala High Availability 84
Single point of failure in Impala 85
Improving performance 85

Enabling block location tracking 85
Enabling native checksumming 86
Enabling Impala to perform short-circuit read on DataNode 86
Adding more Impala nodes to achieve higher performance 87
Optimizing memory usage during query execution 87
Query execution dependency on memory 87
Using resource isolation 87

Testing query performance 88
Benchmarking queries 88

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Verifying data locality 88
Choosing an appropriate file format and compression
type for better performance 89
Fine-tuning Impala performance 90

Partitioning 90
Join queries 90
Table and column statistics 91

Summary 92
Chapter 6: Troubleshooting Impala 93

Troubleshooting various problems 93
Impala configuration-related issues 93

The block locality issue 94
Native checksumming issues 94

Various connectivity issues 94
Connectivity between Impala shell and Impala daemon 94
ODBC/JDBC-specific connectivity issues 95

Query-specific issues 96
Issues specific to User Access Control (UAC) 97
Platform-specific issues 97

Impala port mapping issues 97
HDFS-specific problems 98

Input file format-specific issues 98
Using Cloudera Manager to troubleshoot problems 98

Impala log analysis using Cloudera Manager 99
Using the Impala web interface for monitoring and troubleshooting 101
Using the Impala statestore web interface 102
Using the Impala Maintenance Mode 103
Checking Impala events 104

Summary 104
Chapter 7: Advanced Impala Concepts 105

Impala and MapReduce 105
Impala and Hive 106

Key differences between Impala and Hive 106
Impala and Extract, Transform, Load (ETL) 106
Why Impala is faster than Hive in query processing 107
Impala processing strategy 108
Impala and HBase 108

Using Impala to query HBase tables 109
File formats and compression types supported in Impala 110
Processing different file and compression types in Impala 111

The regular text file format with Impala tables 113

Table of Contents

[v]

The Avro file format with Impala tables 114
The RCFile file format with Impala tables 114
The SequenceFile file format with Impala tables 115
The Parquet file format with Impala tables 115

The unsupported features in Impala 116
Impala resources 117
Summary 117

Appendix: Technology Behind Impala and Integration with
Third-party Applications 119

Technology behind Impala 119
Data visualization using Impala 120

Tableau and Impala 121
Microsoft Excel and Impala 122
Microstrategy and Impala 123
Zoomdata and Impala 124

Real-time query with Impala on Hadoop 125
Real-time query subscriptions with Impala 125

What is new in Impala 1.2.0 (Beta) 126
Index 127

Preface
The changing landscape of Big Data and tools created for a relevant understanding
of it have become very crucial in today's tech industry. The ability to understand
and familarize with such tools allow individuals to creatively and intelligently take
decisions with precision. If you've always wanted to crunch billions of rows of raw
data on Hadoop in a couple of seconds, Cloudera Impala is, hands down, the top
choice for you. Cloudera Impala provides a way to ingest various formats of data
stored on Hadoop and provides a query engine to process it for gaining extremely
important insight.

In this book, Learning Cloudera Impala, you are going to learn everything you need
to know about Cloudera Impala so that you can start your project. The book covers
Cloudera Impala from installation, administration, and query processing, all the way
up to connectivity with other third-party applications. With this book in your hand,
you will find yourself empowered to play with your data in Hadoop, and getting
insight from your data will look like an interesting game to you.

What this book covers
Chapter 1, Getting Started with Impala, covers information on Impala, its core
components, and its inner workings in details. We will cover the Impala execution
architecture, including daemon and statestore, and how they interact together with
the other components. Impala metadata and metastore are also discussed here to
explain how Impala maintains its information. Finally, we will study various ways
to interface Impala.

Chapter 2, The Impala Shell Commands and Interface, explains the various command options
to interact with Impala, mainly using command-line references. In this chapter, we have
covered the Impala command-line interface, explaining various ways Impala shell can
connect to Impala daemon. Once the connection between Impala shell and impalad is
established, we can use the various commands we discussed to connect to Impala.

Preface

[2]

Chapter 3, The Impala Query Language and Built-in Functions, teaches us how to
make great use of Impala shell to interact with data by using the Impala Query
Language, which is based on SQL, while providing a great degree of compatibility
with HiveQL. Hive statements are based on SQL statements, and because Impala
statements are based on SQL, we will learn several similarities and differences
between them. Along with the Impala Query Language, we will also learn various
Impala built-in functions using great examples.

Chapter 4, Impala Walkthrough with an Example, covers most of the learning from the
previous chapter in detail. This way you can see a real-world scenario used with
Impala and understand how and where to use Impala statements in real-world
applications. I have created this detailed example by first creating automobile-specific
datasets, and then using most of the SQL statements with the built-in functions we
discussed in the previous chapter.

Chapter 5, Impala Administration and Performance Improvements, covers two important
topics, Impala administration and performance improvements. Within the Impala
administration section, I will first show you how you can administer Impala using
Cloudera Manager. After that, I will teach you how to verify Impala-specific
information for its correctness using a debugging web server. We will see Impala
logs and Impala daemons through the statestore UI. The next part of Impala admin
is about Impala High Availability, where we will learn the key traits for keeping
Impala running in the event of a problem.

Chapter 6, Troubleshooting Impala, teaches you how to troubleshoot various Impala
issues in different categories. Besides troubleshooting, in the latter part, I will show
you how to utilize Impala logging to learn more about Impala execution, query
processing, and possible issues. My objective is to provide you with some critical
information on troubleshooting and log analysis, so you can manage the Impala
cluster effectively and make it useful for yourself and your team.

Chapter 7, Advanced Impala Concepts, teaches you more about Impala; however, this
information is more advance in nature to help you excel in data processing your
project through Impala. I have described how Impala works side by side with
MapReduce, without using it in the same cluster. I have also explained why Impala
has an edge over Hive, even when using Hive as a key component, on which Impala
is dependent. Finally, we cover details on using HBase with Impala and processing
various Big Data input files on Hadoop with Impala.

Appendix, Technology Behind Impala and Integration with Third-party Applications, covers
the detailed technology behind Impala and real-time query concepts with Impala. I
have also described a few third-party data visualization applications, from Tableau,
Zoomdata, and Microsoft Excel to Microstrategy, which connect with Impala to
provide effective data visualization.

Preface

[3]

What you need for this book
You must have a Hadoop cluster (single-node experimental or multinode
production) up and running to install Impala on it or already have Impala installed
on it. Cloudera CDH 4.3 or above is preferred to install Impala. If you decide to
install Cloudera Impala in your Hadoop Cluster, you can download it from the
following link:

https://www.cloudera.com/content/support/en/downloads/download-
components.html

If you do not have an active Hadoop cluster and still want to learn and try Impala,
you have the option of downloading a Cloudera QuickStart Virtual Machine including
everything from Cloudera, at the following link:

https://www.cloudera.com/content/support/en/downloads.html

Who this book is for
The book, is for those who really want to take full advantage of their Hadoop cluster
by processing extremely large amounts of raw data in Hadoop at real-time speed. You
may be using Hadoop as your raw data storage medium or using Hive to process your
data. You will learn everything you need to start using Impala, to make the best use of
your Hadoop cluster, and leverage any Business Intelligence tools you have in order to
gain insight from your data using Impala.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Copy hdfs-site.xml and core-site.xml from Hadoop cluster to each Impala
node into the Impala configuration folder, /etc/impala/conf."

Keywords in the text are shown as follows: "Impala statements support data
manipulation statements similar to DML (Data Manipulation Language)."

Preface

[4]

Impala shell commands or Impala SQL statements are written as follows:

CREATE TABLE table_name (def data_type)
PARTITIONED BY (partiton_name partition_type);
ALTER TABLE table_name ADD PARTITION
 (partition_type='definition');

When an Impala command or Impala SQL statement is used to show an example,
either console output or query output is also displayed for complete understanding.
In this scenario, either command or query is shown in bold as follows:

[Hadoop.testdomain:21000] > select count(distinct(make)) from
automobiles;
Query finished, fetching results ...
+----------------------+
| count(distinct make) |
+----------------------+
| 10 |
+----------------------+
Returned 1 row(s) in 0.48s

Another example is as follows:

[cloudera@localhost ~]$ hdfs dfs -ls /user/cloudera/automobiles/
Found 1 items
-rw-r--r-- 3 cloudera cloudera 985 2013-10-15 19:17
 /user/cloudera/automobiles/automobiles.txt

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt Publishing book, we have a number of
things to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you would report
this to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt Publishing, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Impala
This chapter covers the information on Impala, its core components, and its inner
workings in detail. We will cover Impala architecture including Impala daemon,
statestore, and execution model, and how they interact together along with other
components. Impala metadata and metastore are also discussed here, to understand
how Impala maintains its information. Finally, we will study various ways to
interface Impala.

The objective of this chapter is to provide enough information for you to kick-start
Impala on a single node experimental or multimode production cluster. This chapter
covers the Impala essentials within the following broad categories:

• System requirement
• Installation
• Configuration
• Upgradation
• Security
• Impala architecture and execution

Impala is for a new breed of data wranglers who want to process the data at
lightening-fast speed using traditional SQL knowledge. Impala provides data
analysts or scientists a way to access data, which is stored on Hadoop at lightening
speed by directly using SQL or other Business Intelligence tools. Impala uses the
Hadoop data processing layer, also called HDFS, to process the data so there is no
need to migrate data from Hadoop to any other middleware, specialized system, or
data warehouse. Impala provides data wranglers a Massively Parallel Processing
(MPP) query engine, which runs natively on Hadoop.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Impala

[8]

Native on Hadoop means the engine runs on Hadoop and uses the Hadoop core
component, HDFS, along with other additional components, such as Hive and HBase.
To process data, Impala has its own execution component, which runs on each
DataNode where the data is stored in blocks. There is a list of third-party applications
that can directly process data stored on Hadoop through Impala. The biggest
advantage of Impala is that data transformation or data movement is not required for
data stored on Hadoop. No data movement means all the processing is happening
where the data resides in the cluster. In other distributed systems, data is transferred
over the network before it is processed; however, with Impala the processing happens
at the place where data is stored, which is one of the premier reasons why Impala is
very fast in comparison to other large data processing systems.

Before we learn more about Impala, let's see what the key Impala features are:

• First and foremost, Impala is 100% open source under the Apache license
• Impala is a native MPP engine, running on the Cloudera Hadoop distribution
• Impala supports in-memory processing for data through SQL-like queries
• Impala uses Hadoop Distributed File System (HDFS) and HBase
• Impala supports integration with leading Business Intelligence tools, such as

Tableau, Pentaho, Microstrategy, Zoomdata, and so on
• Impala supports a wide variety of input file formats, that is, regular text files,

files in CSV/TSV or other delimited format, sequence files, Avro, RCFile,
LZO, and Parquet types

• For third-party application connectivity, Impala supports ODBC drive,
SQL-like syntax, and Beeswax GUI (in Apache Hue) from Apache Hive

• Impala uses Kerberos authentication and role-based authorization with Sentry

The key benefits of using Impala are:

• Impala uses Hive to read a table's metadata; however, using its own
distributed execution engine it makes data processing very fast. So the
very first benefit of using Impala is the super fast access of data from HDFS.

• Impala uses a SQL-like syntax to interact with data, so you can leverage the
existing BI tools to interact with data stored on Hadoop. The engineers with
SQL expertise can benefit from Impala as they do not need to learn new
languages and skills. Additionally, Impala offers higher performance and
execution speed.

• While running on Hadoop, Impala leverages the Hadoop file and data format,
metadata, resource management, and security, all available on Hadoop.

Chapter 1

[9]

• As Impala interacts with the stored data in Hadoop, it preserves full fidelity
of data while analyzing the data, due to aggregations or conformance of
fixed schemas.

• Impala performs interactive analysis directly on the data stored on
Hadoop DataNodes without requiring data movement, which results
in lightening-fast query results, because there are no network bottlenecks
and the time available to move data is zero.

• Impala provides a single repository and metadata store from source to
analysis, which enables more users to interact with a large amount of data.
The presence of a single repository also reduces data movement, which helps
in performing interactive analysis directly on full fidelity data.

Impala requirements
Impala is supported on 64-bit Linux-based operating systems. At the time of writing
this book, Impala was supported on the following operating systems:

• Red Hat Enterprise Linux 5.7/6.2/6.4
• CentOS 5.7/6.2/6.4
• SLES 11 with SP 1 or newer
• Ubuntu 10.04/12.04
• Debian 6.03

As Impala runs on Hadoop, it is also important to discuss the supported Hadoop
version. At the time of writing this book, Impala was supported on the following
Hadoop distributions:

• Impala 1.1 and 1.1.1
 ° Cloudera Hadoop CDH 4.1 or later

• Impala 1.0
 ° ClouderaHadoopCDH 4.1 or later

• Impala 0.7 and older
 ° Cloudera Hadoop CDH 4.1 only

Besides CDH, Impala can run on other Hadoop distributions by compiling the source
code and then configuring it correctly as required.

Getting Started with Impala

[10]

Depending on the latest version of Impala, requirements might change,
so please visit the Cloudera Impala website for updated information.

Dependency on Hive for Impala
Even though the common perception is that Impala needs Hive to function, it is
not completely true. The fact is that only the Hive metastore is required for Impala
to function and Hive can be installed on some other client machine. Hive doesn't
require being installed on the same DataNode where Impala is installed, because as
long as Impala can access the Hive metastore, it will function as expected. In brief,
the Hive metastore stores tables and partitions' specific information, which is also
called metadata.

As Hive uses PostgreSQL or MySQL for the Hive metastore, we can also consider
that either PostgreSQL or MySQL is required for Impala.

Dependency on Java for Impala
For those who don't know, Impala is written in C++. However, Impala
uses Java to communicate with various Hadoop components. In Impala,
the impala-dependencies.jar file located at /usr/lib/impala/lib includes
all the required Java dependencies. Oracle JVM is the officially supported JVM
for Impala and other JVMs might cause problems while running Impala.

Hardware dependency
The source datasets processed by Impala, along with join operations, could be very
large, and because processing is done in the memory, as an Impala user you must
make sure that you have sufficient memory to process the join operations. The
memory requirement is based on your source dataset requirement, which you are
going to process through Impala. You also know that Impala cannot run queries
that have a working set greater than the maximum available RAM. In a case when
memory is not sufficient, Impala will not be able to process the query and the query
will be canceled.

For best performance with Impala, it is suggested to have DataNodes with multiple
storage disks because disk I/O speed is often considered the bottleneck for Impala
performance. The total amount of physical storage requirement is based on the
source data, which you would want to process with Impala.

Chapter 1

[11]

As Impala uses the SSE4.2 CPU instructions set, which is mostly found in the
latest processors, the latest processors are often suggested for better performance
with Impala.

Networking requirements
Impala daemons running in DataNodes can process data stored in local nodes as
well as in remote nodes. To achieve the highest performance, it is advised that Impala
attempts to complete data processing on the local data instead of remote data using a
network connection. To achieve local data processing, Impala matches the hostname
provided to each Impala daemon with the IP address of each DataNode by resolving
the hostname flag to an IP address. For Impala to work with the local data stored
in a DataNode, you must use a single IP interface for the DataNode and an Impala
daemon on each machine. Since there is a single IP address, make sure that the Impala
daemon hostname flags resolve the IP address of the DataNode.

User account requirements
When Impala is installed, a user name impala and group name impala is created,
and Impala uses this username and group name during its life after installation.
You must ensure that no one changes the impala group and user settings, and also
no other application or system activity obstructs the functionality of the impala
user and group. To achieve the highest performance, Impala uses direct reads and,
because a root user cannot do direct reads, Impala is not executed as root. To achieve
full performance with Impala, the user must make sure that Impala is not running as
a root user.

Installing Impala
As Impala is designed and developed to run on the Cloudera Hadoop distribution,
there are two different ways Impala can be installed on supported Cloudera Hadoop
distributions. Both installation methods are described in a nutshell, as follows.

Installing Impala with Cloudera Manager
Cloudera Manager is only available for the Cloudera Hadoop distribution. The
biggest advantage of installing Impala using Cloudera Manager is that most of
the complex configuration is taken care of by Cloudera Manager, and applies to
all depending applications, if applicable. Cloudera Manager has various versions
available; however, to support specific Impala versions, the user must have a proper
Cloudera Manager for successful installation.

Getting Started with Impala

[12]

Once previously described requirements are met, using Cloudera Manager can help
you install Impala. Depending on the Cloudera Manager version, you can install
specific Impala versions. For example, to install Impala version 1.1.1 you would
need Cloudera Manager 4.7 or a higher version, which supports all the features and
the auditing feature introduced in Impala 1.1.1. Just use the Cloudera Manager UI
to install Impala from the list and follow the instructions as they appear. As shown
in the following Cloudera Manager UI screenshot, I have Impala 1.1.1 installed;
however, I can upgrade to Impala 1.2.1 just using Cloudera Manager.

To learn more about the installation of Cloudera Manager, please visit the
Cloudera documentation site at the following link, which will give you
the updated information:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Cloudera-Impala-Release-
Notes/Cloudera-Impala-Release-Notes.html

Chapter 1

[13]

Installing Impala without Cloudera Manager
If you decide to install Impala on your own in your Cloudera Hadoop cluster, you
must make sure that basic Impala requirements are met and necessary components
are already installed. First you must have the correct version of the Cloudera
Hadoop cluster ready depending on your Impala version, and have the Hive
metastore installed either using MySQL or PostgreSQL.

Once you have made sure that the Hive metastore is available in your Cloudera
Hadoop cluster, you can start the Impala installation to all DataNodes as follows:

• Make sure that you have Cloudera public repo set in your OS, so Impala
specific packages can be downloaded and installed on your machine. If you
do not have the Cloudera specific public repo set, please visit the Cloudera
website to get your OS specific information.

• After that, you will need to install the following three packages on
your machine:

 ° Impala
 ° Impala-server
 ° Impala-state-store

• Then, copy hive-site.xml, core-site.xml, and hdfs-site.xml Hadoop
configuration files to the /etc/impala/conf folder, which is the Impala
configuration folder.

• As per Cloudera advice, it is not a good choice to install Impala in
Namenode, so please do not do so, because any problem caused by
Impala may bring your Hadoop cluster down.

• Finally, install Impala shell to a single DataNode or a network-connected
external machine on which you have decided to run queries.

Impala is also compiled and tested to run on the MapR Hadoop
distribution, so if you are interested in running Impala on MapR,
please visit the following link:
http://doc.mapr.com/display/MapR/Impala

Getting Started with Impala

[14]

Configuring Impala after installation
After Impala is installed, you must perform a few mandatory and recommended
configuration settings for smooth Impala operations. Cloudera Manager does some of
the configurations automatically; however, a few of them need to be completed after
any kind of installation. The following is a list of post-installation configurations:

• On Cloudera Hadoop CDH 4.2 or newer distribution, the user must
enable short-circuit reads on each DataNode, after each type of installation.
To enable short-circuit reads, here are the steps to follow on your Cloudera
Hadoop cluster:

1. First configure hdfs-site.xml in each DataNode as follows:
<property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
</property>
<property>
 <name>dfs.domain.socket.path</name>
 <value>/var/run/hadoop-hdfs/dn._PORT</value>
</property>
<property>
 <name>dfs.client.file-block-storage-
 locations.timeout</name>
 <value>3000</value>
</property>

2. If /var/run/Hadoop-hdfs/ is group writable, make sure its group
is the root.

3. Copy core-site.xml and hdfs-site.xml from the Hadoop
configuration folder to the Impala configuration folder at /etc/
impala/conf.

4. Restart all DataNodes.

Chapter 1

[15]

• Cloudera Manager enables "block location tracking" and "native
checksumming" for optimum performance; however, for independent
installation both of these have to be enabled. Enabling block location metadata
allows Impala to know on which disk data blocks are located, allowing better
utilization of the underlying disks. Both "block location tracking" and "native
checksumming" are described in later chapters for better understanding. Here
is what you can do to enable block location tracking:

1. hdfs-site.xml on each DataNode must have the following setting:
<property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
</property>

2. Make sure the updated hdfs-site.xml file is placed in the Impala
configuration folder at /etc/impala/conf.

3. Restart all DataNodes.

• Enabling native checksumming causes Impala to use an optimized native
library for computing checksums if that library is available. If Impala is
installed using Cloudera Manager, "native checksumming" is automatically
configured and no action is needed. However, if you need to enable native
checksumming on your self installed Impala cluster, you must build and
install the libhadoop.so Hadoop Native Library. If this library is not
available, you might receive the Unable to load native-hadoop library for
your platform... using built-in-java classes where applicable message in
Impala logs, indicating that native checksumming is not enabled.

Starting Impala
If you have used Cloudera Manager to install Impala, then you can use the Cloudera
Manager UI to start/shutdown Impala. However, those who installed Impala directly
need to start at least one instance of Impala-state-store and Impala on all DataNodes
where it is installed. In this scenario, you can either use init scripts or you can start the
statestore and Impala directly. Impala uses Impala-state-store to run in the distributed
mode. Impala-state-store helps Impala to achieve the best performance; however, if the
state store becomes unavailable, Impala continues to function.

To start the Impala-state-store, use the following command:

$ sudo service impala-state-store start

Getting Started with Impala

[16]

To start Impala on each DataNode, use the following command:

$ sudo service impala-server start

Impala-state-store and Impala server-specific init scripts are located at /etc/
default/impala, which can be edited if necessary when you want to automate
or start these services depending on certain conditions.

Stopping Impala
To stop Impala services in all nodes where it is installed, use the following command:

$sudo service impala-server stop

To stop any instances of Impala-state-store in the Hadoop Cluster, use the
following command:

$sudo service impala-state-store stop

Restarting Impala
To restart Impala services in all nodes where it is installed, use the following command:

$sudo service impala-server restart

To restart any instances of Impala-state-store in the Hadoop Cluster, use the
following command:

$sudo service impala-state-store restart

Upgrading Impala
Upgrading Impala from an older to a newer version is similar to other application
upgrades on Linux machines. Upgrading Impala requires stopping the currently
running Impala services. Upgrade Impala, and then add extra configurations if
needed, and finally restart Impala services. Here we will learn how we can upgrade
Impala services depending on our initial installation method.

Chapter 1

[17]

Upgrading Impala using parcels with
Cloudera Manager
This method is used only when Impala is installed using Cloudera Packages, but
now you are using Parcels from Cloudera Manager by accessing Cloudera Manager
UI. The steps to be followed are:

1. First remove all the Impala-related packages.
2. Connect to the Cloudera Manager Admin Console.
3. Navigate to the Hosts | Parcels tab. You should see a parcel with a newer

version of Impala that you can upgrade to.
4. Click on Download.
5. Click on Distribute.
6. Click on Activate.
7. Once activation is completed, a Restart button will appear.
8. Click on the Restart button to restart the Impala service.

Upgrading Impala using packages with
Cloudera Manager
The steps to be followed are as follows:

1. Connect to the Cloudera Manager Admin Console.
2. In the Services tab, click on the Impala service.
3. Click on Actions.
4. Click on Stop.
5. Update the Impala server on each Impala node in your cluster.
6. Make sure to update hadoop-lzo-cdh4 depending on whether it is installed

already or not.
7. Update Impala shell on each node on which it is installed.
8. Connect to the Cloudera Manager Admin console.
9. In the Services tab, click on the Impala service.
10. Click on Actions and then on Start.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Impala

[18]

Upgrading Impala without Cloudera Manager
The steps to be followed are as follows:

1. Stop Impala services and Impala-state-store in all nodes where it is installed.
2. Validate if any update-specific configuration is needed and, if so, please

apply that configuration.
3. Update the Impala-server and Impala shell using appropriate update

commands on your Linux OS. Depending on your Linux OS and Impala
package types, you might be using these commands, for example, "yum"
on RedHat/CentOS Linux and "apt-get" on the Ubuntu/Debian Linux OS.

4. Restart Impala services.

Impala core components
In this section we will first learn about various important components of Impala and
then discuss the intricate details on Impala inner workings. Here, we will discuss the
following important components:

• Impala daemon
• Impala statestore
• Impala metadata and metastore

Putting together the above components with Hadoop and an application or
command line interface, we can conceptualize them as seen in the following figure:

Hive Metastore

Impala Statestore

HDFS Namenode

Command
Line Interface

ODBC/JDBC

SQL/3rd party
Applications

Apache Hue

Impalad

Query Planner

Query Coordinator

Query Execution Engine

HDFS Datanode

Let's starts discussing the core Impala components in detail now.

Chapter 1

[19]

Impala daemon
At the core of Impala, there exists the Impala daemon, which runs on each DataNode
where Impala is installed. The Impala daemon is represented by an actual process
named impalad. This Impala daemon process impalad is responsible for processing
the queries, which are submitted through Impala shell, API, and other third-party
applications connected through ODBC/JDBC connectors or Hue.

A query can be submitted to any impalad running on any node, and that particular
node serves as a "coordinator node" for that query. Multiple queries are served by
impalad running on other nodes as well. After accepting the query, impalad reads
and writes to data files and parallelizes the queries by distributing the work to other
Impala nodes in the Impala cluster. When queries are processing on various impalad
instances, all impalad instances return the result to the central coordinator node.
Depending on your requirement, queries can be submitted to a dedicated impalad or
in a load balanced manner to another impalad in your cluster.

Impala statestore
Impala has another important component called Impala statestore, which is
responsible for checking the health of each impalad, and then relaying each impala
daemon health to other daemons frequently. Impala statestore is a single running
process and can run on the same node where the Impala server or any other node
within the cluster is running. The name of the Impala statestore daemon process
is statestored. Every Impala daemon process interacts with the Impala statestore
process providing its latest health status and this information is relayed within the
cluster to each and every Impala daemon so they can make correct decisions before
distributing the queries to a specific impalad. In the event of a node failure due to
any reason, statestored updates all other nodes about this failure, and once such a
notification is available to other impalad no other Impala daemon assigns any further
queries to the affected node.

One important thing to note here is that even when the Impala statestore component
provides a critical update on the node in trouble, the process itself is not critical to
the Impala execution. In an event where the Impala statestore becomes unavailable,
the rest of the node continues working as usual. When statestore is offline, the cluster
becomes less robust, and when statestore is back online it restarts communicating
with each node and resumes its natural process.

Getting Started with Impala

[20]

Impala metadata and metastore
Another important component of Impala is its metadata and metastore. Impala
uses traditional MySQL or PostgreSQL databases to store table definitions. While
other databases can also be used to configure the Hive metastore, either MySQL
or PostgreSQL is recommended. The important details, such as table and column
information and table definitions are stored in a centralized database known as a
metastore. Apache Hive also shares the same databases for its metastore, because of
which Impala can access the table created or loaded by Hive if all the table columns
use the supported data types, data format, and data compression types.

Besides that, Impala also maintains information about the data files stored on
HDFS. Impala tracks information about file metadata, that is, the physical location
of the blocks about data files in HDFS. Each Impala node caches all of the metadata
locally, which can expedite the process of gathering metadata for a large amount of
data, distributed across multiple DataNodes. When dealing with an extremely large
amount of data and/or many partitions, getting table specific metadata could take
a significant amount of time. So a locally stored metadata cache helps in providing
such information instantly.

When a table definition or table data is updated, other Impala daemons must update
their metadata cache by retrieving the latest metadata before issuing a new query
against the table in question. Impala uses REFRESH when new data files are added
to an existing table. Another statement, INVALIDATE METADATA, is also used when
a new table is included, or an existing table is dropped. The same INVALIDATE
METADATA statement is also used when data files are removed from HDFS or a DFS
rebalanced operation is initiated to balance data blocks in HDFS.

The Impala programming interface
Impala provides the following ways to submit queries to the Impala daemon:

• Command-line interface through Impala shell
• Web interface through Apache Hue
• Third-party application interface through ODBC/JDBC

Chapter 1

[21]

The Impala daemon process is configured to listen to incoming requests from the
previously described interfaces via several ports. Both the command-line interface and
web-based interface share the same port; however, JDBC and ODBC use different ports
to listen for the incoming requests. The use of ODBC- and JDBC-based connectivity
adds extensibility to Impala running on the Linux environment. Using ODBC and JDBC
third-party applications running on Windows or other Linux platforms can submit
queries directly to Impala. Most of the third-party Business Intelligence applications
use JDBC and ODBC to submit queries to the Impala cluster and the impalad processes
running on various nodes listen to these requests and process them as requested.

The Impala execution architecture
Previously we discussed the Impala daemon, statestore, and metastore in detail to
understand how they work together. Essentially, Impala daemons receive queries
from a variety of sources and distribute the query load to Impala daemons running
on other nodes. While doing so, it interacts with the statestore for node-specific
updates and accesses the metastore, either stored in the centralized database or in
the local cache. Now to complete the Impala execution, we will discuss how Impala
interacts with other components, that is, Hive, HDFS, and HBase.

Working with Apache Hive
We have already discussed earlier the Impala metastore using the centralized
database as a metastore, and Hive also uses the same MySQL or PostgreSQL database
for the same kind of data. Impala provides the same SQL-like query interface used
in Apache Hive. Since both Impala and Hive share the same database as a metastore,
Impala can access Hive-specific table definitions if the Hive table definition uses the
same file format, compression codecs, and Impala-supported data types for their
column values.

Apache Hive provides various kinds of file-type processing support to Impala. When
using formats other than a text file, that is, RCFile, Avro, and SequenceFile, the data
must be loaded through Hive first and then Impala can query the data from these
file formats. Impala can perform a read operation on more types of data using the
SELECT statement and then perform a write operation using the INSERT statement.
The ANALYZE TABLE statement in Hive generates useful table and column statistics
and Impala uses these valuable statistics to optimize the queries.

Getting Started with Impala

[22]

Working with HDFS
Impala table data are actually regular data files stored in HDFS and Impala uses
HDFS as its primary data storage medium. As soon as a data file or a collection
of files is available in a specific folder of a new table, Impala reads all of the files
regardless of their names, and new data is included in files with the name controlled
by Impala. HDFS provides data redundancy through the replication factor and relies
on such redundancy to access data on other DataNodes in case it is not available on
a specific DataNode. We have already learned earlier that Impala also maintains the
information on the physical location of the blocks about data files in HDFS, which
helps data access in case of node failure.

Working with HBase
HBase is a distributed, scalable, big data storage system that provides random,
real-time read and write access to data stored on HDFS. HBase, a database storage
system, sits on top of HDFS; however, like other traditional database storage
systems, HBase does not provide built-in SQL support. Third-party applications
can provide such functionality.

To use HBase, first the user defines tables in Impala and then maps them to the
equivalent HBase tables. Once a table relationship is established, users can submit
queries into the HBase table through Impala. Join operations can also be formed
including HBase and Impala tables.

To learn more about using HBase with Impala, please visit the
Cloudera website at the following link, for extensive documentation:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_impala_hbase.html

Impala security
Impala is designed and developed to run on top of Hadoop. So you must understand
the Hadoop security model as well as the security provided in the OS where Hadoop
is running. If Hadoop is running on Linux, then a Linux administrator and Hadoop
administrator user can tighten the security, which definitely can be taken into
account with the security provided by Impala. Impala 1.1 or higher uses Sentry Open
Source Project to provide a detailed authorization framework for Hadoop. Impala
1.1.1 supports auditing capabilities in a cluster by creating auditing data, which can
be collected from all nodes and then processed for further analysis and insight.

Chapter 1

[23]

Here, in this chapter, we will talk about the security features provided by Impala. To
start with Impala security, we can consider the following types of security features.

Authorization
Authorization means "who can access the data resources" and "what kind of action is
approved for which user." Impala uses the Linux OS user ID of the user who started
the Impala shell process or another client application. This user ID is associated with
other privileges to be used with Impala. With Impala 1.1, the Open Source Sentry
project is used for authorization. so users can learn more by accessing relevant
information in this regard.

Impala uses the same authorization privilege model that is used with other database
systems, that is, MySQL and Hive. In Impala, privilege is granted to various kinds of
objects in schema. Any privilege that can be granted is associated with a level in the
object hierarchy. For example, if a container object is given privilege, the child object
automatically inherits it.

Currently only Server Name, URI, Databases, and Tables can be used to restrict
privileges; however, partition- or column-level restriction is not supported.

Following this we will learn how a restricted set of privileges determines what you
can do with each object.

The SELECT privilege
The SELECT privilege allows the user to read the data from a table. If users use
SHOW DATABASES and SHOW TABLES statements, only objects for which a user has
this privilege will be shown in the output and the same goes with the REFRESH and
INVALIDATE METADATA statements. These statements will only access metadata for
tables for which the user has this privilege.

The INSERT privilege
The INSERT privilege applies only to the INSERT and LOAD DATA statements, and
allows the user to write data into a table.

The ALL privilege
With the ALL privilege users can create or modify any object. This access privilege
is needed to execute DDL statements, that is, CREATE TABLE, ALTER TABLE, or DROP
TABLE for a table, CREATE DATABASE or DROP DATABASE for a database, or CREATE
VIEW, ALTER VIEW, or DROP VIEW for a view.

Getting Started with Impala

[24]

Here are a few examples of how you can set the described privileges:

GRANT SELECT on TABLE table_name TO USER user_name
GRANT ALL on TABLE table_name TO GROUP group_name

Authentication through Kerberos
Authentication means verifying the credentials and confirming the identity of the
user before processing the request. Impala uses Kerberos security subsystems to
authenticate the user and his or her identity.

In the Cloudera Hadoop distribution, the Kerberos security can be enabled through
Cloudera Manager. Running Impala in a managed environment, Cloudera Manager
automatically completes the Kerberos configuration. At the time of writing this
book, Impala does not support application data wire encryption. Once your Hadoop
distribution has Kerberos security enabled, you can enable Kerberos security in Impala.

To learn more about enabling Kerberos security features with
Impala, please visit the Cloudera Impala documentation website,
where you can find the latest information.

Auditing
Auditing means keeping account of each and every operation executed in the system
and maintaining a record of whether they succeed or failed. Using auditing features,
users can look back to check what operation was executed and what part of the
data has been accessed by which user. The auditing feature helps track down such
activities in the system, so respective professionals can take proper measurements. In
Impala, the auditing feature produces audit data, which is collected and presented in
user-friendly details by Cloudera Manger.

Auditing features are introduced with Impala 1.1.1 and the key features are as follows:

• Enable auditing directory with the impalad startup option using audit_
event_log_dir.

• By default, Impala starts a new audit logfile after every 5,000 queries.
To change this count, use the -max_audit_event_log_file_size option
with the impalad startup option.

• Optionally, the Cloudera Navigator application is used to collect and
consolidate audit logs from all nodes in the cluster.

• Optionally, Cloud Manager is used to filter, visualize, and produce the
audit reports.

Chapter 1

[25]

Here are the types of SQL queries that are logged with audit logs:

• Blocked SQL queries that could not be authorized
• SQL queries that are authorized to execute are logged after analysis is done

and before the actual execution

Query information is logged into the audit log in JSON format, using a single line
per SQL query. Each logged query can be accessed through SQL syntax by providing
any combination of session ID, user name, and client network address.

Impala security guidelines for a higher
level of protection
Now let's take a look at the security guidelines for Impala, which could improve the
security against malicious intruders, unauthorized access, accidents, and common
mistakes. Here is the comprehensive list, which definitely can harden a cluster
running Impala:

• Impala specific guidelines
 ° Make sure that the Hadoop ownership and permissions for Impala

data files are restricted
 ° Make sure that the Hadoop ownership and permissions for Impala

audit logs files are restricted
 ° Make sure that the Impala web UI is password protected
 ° Enable authorization by executing impalad daemons with

–server_name and -authorization_policy_file options
on all nodes

 ° When creating databases, tables, and views, using tables and
other databases structures allow policy rules to specify simple
and consistent rules

• System specific guidelines
 ° Create a policy file that specifies which Impala privileges are

available to users in particular Hadoop groups
 ° Make sure that the Kerberos authentication is enabled and working

with Impala
 ° Tighten the HDFS file ownership and permission mechanism

Getting Started with Impala

[26]

 ° Keeping a long list of sudoers is definitely a big red flag. Keep
the list of sudoers to a bare minimum to stop unauthorized and
unwanted access

 ° Secure the Hive metastore from unwanted and unauthorized access

Summary
In this chapter we covered basic information on Impala, core components, and how
various components work together to process the data with lightening speed. We
have learned about Impala installation, configuration, upgradating, and security
in detail, and in the next chapter we will learn about Impala shell and commands,
which can be used to manage Impala components in a cluster.

The Impala Shell
Commands and Interface

Once impala is installed, configured, and ready to start, the next step is to know
how to interact with Impala in different ways for various reasons. This chapter
explains the various command options to interact with Impala, mainly using
command-line references. In the previous chapter, we also discussed various
ways to install Impala.

In the previous chapter, we understood that impalad is the Impala daemon, which
runs on every node in the cluster and receives queries submitted through various
interfaces such as third-party applications using the ODBC or JDBC connectivity, Web
interface, or API, and finally the Impala shell. In general, the impala-shell is a process
that runs in a node and works as a gateway to connect to impalad through commands.
The Impala shell is used to submit various commands that can set up databases and
tables, insert data into tables, and finally submit queries on stored data.

Using Cloudera Manager for Impala
Before we jump into Impala shell, let's first try using Cloudera Manager to check
the status of Impala. By default, Cloudera Manager configures to run on port 7180.
In your cluster where you have installed Impala using Cloudera Manager, open
Cloudera Manager in your favorite web browser and browse through all services to
check the status of Impala.

www.allitebooks.com

http://www.allitebooks.org

The Impala Shell Commands and Interface

[28]

If Impala daemon (impalad) and Impala statestore (statestored) are installed correctly
and running, you will see them listed as shown in the following screenshot:

As shown in the previous screenshot, both Impala Daemon and Impala StateStore
Daemon are running successfully. However, in a situation where Impala shows the
Stopped status, you can start both the daemons at once just by using the Actions
button on Cloudera Manager, as shown in the following screenshot:

If we list running processes specific to Impala using the Linux ps command, we can
find both the impalad and statestored processes listed as follows:

Impala Daemon (impalad)

impala/usr/lib/impala/sbin-retail/impalad --flagfile=/var/run/cloudera-
scm-agent/process/21-impala-IMPALAD/impala-conf/impalad_flags

Chapter 2

[29]

Impala Statestore Daemon (statstored)

/usr/lib/impala/sbin-retail/statestored --flagfile=/var/run/cloudera-scm-
agent/process/20-impala-STATESTORE/impala-conf/state_store_flags

We can see that each daemon starts with its flag file, and on opening the flagfile
we can learn more about the base settings for both impalad and statestored.

Launching Impala shell
Once ready, you can launch the Impala shell just by typing impala-shell in
the console window. It can run on any machine in your cluster as long as it has
connection availability to Impala daemon. Impala-shell can also run on the same
machine where impalad is running or on a DataNode as well You can launch Impala
shell by just executing the following command in command prompt:

 $impala-shell

After execution, Impala shell's command window will look like the
following screenshot:

The previous impala-shell is connected to impalad, running on the same machine
at localhost and port 21000, where impala-shell is also running. Connecting the
impala-shell using the hostname as localhost when impalad is also running
on the same node is also connected.

If the Impala shell cannot connect to the default server, you may see an Error
connecting: <class 'thrift.transport.TTransport.TTransportException'>, Could
not connect to <hostname>:<port> error message.

To resolve this problem, please make sure that the Impala server is running
and you can connect to that server from the machine where you are trying to run
impala-shell. When the impala-shell session is started, queries can be submitted only
when impala-shell is connected to an instance of impala daemon.

The Impala Shell Commands and Interface

[30]

Connecting impala-shell to the remotely
located impalad daemon
In some cases, impala-shell is installed manually on other machines that are not
managed through Cloudera Manager. In such cases, you can still launch impala-shell
and submit queries from those external machines to a DataNode where impalad is
running. In such a specific scenario, impala-shell is started and connected to remote
hosts by passing an appropriate hostname and port (if not the default, 21000).

To use Impala shell to connect to Impala daemons running on other DataNode
machines, you just need to have a DataNode hostname and a port number where
impalad is configured, to receive queries and pass both hostname and port with the
connect <hostname:port> command, as shown in the following code:

[Not connected] > connect datanode-hostname
[datanode-hostname:21000] >

As you can see, I did not include a port number with the connect command, and
the connection to Impala daemon was made onto the default port 21000. If you have
configured Impala daemon to connect from another port, other than port 21000, then
you would have to include the correct port number with the connect command.

Impala-shell command-line options with
brief explanations
Impala-shell can be launched with other optional parameters to either perform a
specific action or to provide more information about the action. These command line
options are used along with the impala-shell command as a parameter. Some of
these options are created to provide assistance with impala-shell usage, while others
are designed to perform a specific action. For example, the –q or –query option
can run a query directly outside the shell and show the output directly on console
windows, as shown in the following screenshot:

Chapter 2

[31]

Another example is to use the –d option with a specific database name, as shown
in the following screenshot. Once impala-shell starts, it connects to impalad at
localhost through the default port 21000 and uses the selected database. In the
shell we can call any command specific to the database used, which is also shown
in the following screenshot:

The syntax to use the command-line option is shown in the following two examples:

$ impala-shell –q 'select * from mytable;'

$ impala-shell –d students

In the next few sections, we will learn more about these command-line options
within their specific category.

General command-line options
In this section, we will learn about a few command options, which can be used to get
help about Impala-shell or to get the version along with other general details. A list
of general commands are listed in the following table:

Command option Description
-h or --help This option prints the impala shell help details as console

output. You can use this option as follows:
$ impala-shell –h or $impala-shell --help

The Impala Shell Commands and Interface

[32]

Command option Description
-v or --version These options print the current running impala-shell version

and you can use this option as follows:
$impala-shell –v or $impala-shell –version
An example of using the –v option is as follows:
$ impala-shell -v

Impala Shell v1.1.1 (83d5868) built on Fri Aug
23 17:28:05 PDT 2013

-V or --verbose This option enables the verbose output mode, so you will see
lot more information in your output.

--quiet This option disables the verbose output mode.
-c This option continues command execution even when

query failure occurs. This option is useful when multiple
queries are submitted via shell scripts or other means, and
processing does not stop if one or more queries return
failure.

Connection-specific options
These command options can be use to connect specific impalad located remotely or
to connect a specific database after starting impala-shell. A list of connection-specific
command options is in the following table:

Command option Description
-I hostname or
–impalad=hostname

This option connects impala-shell to impalad, using a specific
host-passed hostname. By default, connection is made on port
21000; however, a different port number can be passed with the
hostname as hostname:port. This command is useful when
impala-shell is connected to such an impala daemon, which is
running on a machine other than the current machine running
impala-shell. You can use this command as follows:
$impala-shell –l myhostname:21005

-r or –refresh_after_
connect

This option refreshes Impala metadata after successful
connection. This option is the same as applying the REFRESH
statement after connecting to the Impala server. You can use this
command to refresh metadata just after connecting to impalad as
follows:
$impalad –r

Chapter 2

[33]

Command option Description
-d database_name or
–database database_
name

By default, when impala-shell starts and connects to the Impala
server, it connects to a database named default. Using this
option, you can pass a desired database name to be used as the
default after a successful connection. If you have a database
named logs and want to use it with impala-shell, you will
achieve your objective by using the following command:
$impala-shell –d logs

Query-specific options
These commands are specific to passing queries with the impala-shell command.
Once you use such a command option, the query result can be saved to a file outside
impala-shell or can be printed on the console, depending on your choice. A list of
query-specific command options is shown in the following table:

Command option Description
-q query or
–query=query

This option allows you to issue a single query directly from a
command line. This option is most useful when you have a need
to run impala-shell inside a programming language such as
Python or Perl, or inside a shell script.
If launched from the shell script, the query output will be
displayed on the console or can be collected through the
programming interface, if used. An example of using this option
is as follows:
$ impala-shell –query ''select * from table_name;'

-o filename or
--output_file filename

This option allows you to save the query output to a file.

-B or --delimited This option is use to produce comma-separated, tab-separated,
or other delimited text files as output. The default delimiter is
the TAB character (\t); however, it can be changed using the
–output_delimiter option and passing the desired delimiter
character.

-f query_file_name
or –query_file=query_
file_name

Using this option you can pass a SQL query file that includes
all of the queries you want to pass through impala-shell. An
example of using this option is as follows:
$impala-shell –f myqueryfile.sql

-p or --show_profiles This option is similar to the SQL EXPLAIN statement that
provides a query-execution plan including detailed query
execution steps for every query executed by the impala-shell

The Impala Shell Commands and Interface

[34]

Secure connectivity-specific options
If configured correctly, you can pass the appropriate command-line options
shown in the following table, to use these security options while connecting
impalad from impala-shell.

Command options Description
-k or --kerberos When using this option, the impala-shell connects

to impalad using the Kerberos authentication. Make
sure to have the Kerberos authentication enabled and
working with impalad, otherwise a connection cannot
be established and errors will be displayed.

-s Kerberos_service_name
or –kerberos_service_
name=Kerberos_service_
name

This option instructs impala-shell to connect to impalad
using a particular impalad service principal, as passed
in the option. If Kerberos_service_name is not
specific, Impala is used by default with Kerberos.

Impala-shell command reference
After you launch Impala shell, you can use Impala shell commands to perform
specific tasks. You can also pass these commands to Impala shell using the –q
option as an argument. Some of these commands are referenced from SQL-like
syntax because they are passed to an impala daemon inside impala-shell as SQL-like
statements. Inside Impala shell, all the commands must end with a semicolon, as a
semicolon is used as a command termination sequence. In this section, we will cover
most of these commands, which you can run directly on Impala shell as shown in
following screenshot:

Chapter 2

[35]

In the previous screenshot, as soon as Impala shell is ready, the show databases
command is used to list all the databases. These shell commands are described next,
within their specific section to provide better context around the commands, and to
explain their specific usage.

General commands
You can use the following general commands inside impala-shell to perform the
various actions described:

Command option Description
help You can get more information about the available shell commands

using the help command. Alternatively, using help <command_
name> provides command-specific help. Here is an example:
> help profile;

Prints the runtime profile of the last INSERT or
SELECT query executed.

version Using this command you can get impala-shell and Impala daemon
version information. Following is the output of the version
command:
Shell version: Impala Shell v1.1.1 (83d5868) built
on Fri Aug 23 17:28:05 PDT 2013

Server version: impalad version 1.1.1 RELEASE (build
83d5868f005966883a918a819a449f636a5b3d5f)

history Gives a list of all commands passed into impala-shell. The history
list is stored in file name ~/.impalahistory. You can call
this command inside impala-shell as follows:
> history;

shell or ! Using this command you can run a certain file system command
inside impala-shell. For example if you want to see the current
working directory or file listing in the folder where the Impala
shell is running, you can use the commands as follows:
> !pwd;

> ! ls –l;

refresh Use this command to refresh impala metadata. This command is
the same as the REFRESH command.

connect Use this command to connect Impala shell with impalad on
the remote host and the default port, 21000. If the port is not
21000, then pass the port number along with hostname as
hostname:port.

exit/quit You can use this command to exit from Impala shell.

The Impala Shell Commands and Interface

[36]

Query-specific commands
Your primary objective is to use the Impala shell to perform query operations, and in
this section we can see a few of those query commands with their examples:

Command option Description
set/unset Use this command to manage query options for the current

Impala shell session; use set to include query options and
unset to remove them. Mostly, the set command is used with
specific options for fine tuning or troubleshooting the queries.
To set DEFAULT_ORDER_BY_LIMIT to 10, you can use the set
command as follows:
> set default_order_by_limit=10;

Now, running the set command in the Impala shell returns
the current set query option, as shown in the following
commands:
> set;

Default query options:

 NUM_SCANNER_THREADS: 0

 ABORT_ON_DEFAULT_LIMIT_EXCEEDED: 0

 MAX_IO_BUFFERS: 0

 DEFAULT_ORDER_BY_LIMIT: -1

 BATCH_SIZE: 0

 NUM_NODES: 0

 DISABLE_CODEGEN: 0

 MAX_ERRORS: 0

 ABORT_ON_ERROR: 0

 MAX_SCAN_RANGE_LENGTH: 0

 ALLOW_UNSUPPORTED_FORMATS: 0

 SUPPORT_START_OVER: false

 DEBUG_ACTION:

 MEM_LIMIT: 0

Query options currently set:

 DEFAULT_ORDER_BY_LIMIT: 10

To unset the value, just use the unset command as follows:
> unset default_order_by_limit;

Chapter 2

[37]

Command option Description
profile Using this command, you can get low-level information on

the last processed query. You can use this command to fine-
tune the query performance by understanding the output
of this command. The same command can also be used for
troubleshooting certain issues with the query. The command is
as follows:
> profile;

explain This command is similar to the EXPLAIN query command to
provide an execution plan of a query. An example of using this
command is as follows:

> explain select * from studentlist;

Query: explain select * from studentlist

Query finished, fetching results ...

+--------------------------------+

| Explain String |

+--------------------------------+

| PLAN FRAGMENT 0 |

| PARTITION: UNPARTITIONED |

| |

| 1:EXCHANGE |

| tuple ids: 0 |

| |

| PLAN FRAGMENT 1 |

| PARTITION: RANDOM |

| |

| STREAM DATA SINK |

| EXCHANGE ID: 1 |

| UNPARTITIONED |

| |

| 0:SCAN HDFS |

| table=default.studentlist |

 #partitions=0 size=0B |

| tuple ids: 0 |

+--------------------------------+

Returned 16 row(s) in 2.36s

www.allitebooks.com

http://www.allitebooks.org

The Impala Shell Commands and Interface

[38]

Table- and database-specific commands
Now let's take a look at table- and database-specific commands (shown in the
following table), which you can use inside the Impala shell to play with your
databases and tables. I have explained these commands in great detail in the
following chapters, so these commands are listed here only for reference.

Command option Description
alter Use this command to change the table structure or table settings.
describe Use this command to see information about columns, column

data types, and column comments for a specific table.
insert Use this command to store query results into a table.
drop Use this command to remove a schema object associated with a

table or database.
select Use this command to select a dataset that will process the action,

the same as the SELECT statement.
use Use this command to select a database that will be used to

process a group of queries.

Summary
In this chapter, we have covered the Impala command-line interface, explaining
various ways Impala shell can connect to Impala daemon. Once a connection
between Impala shell and impalad is established, we discussed various commands
that can be used in impala-shell to process impalad. You may have seen that various
commands perform specific tasks, and by using specific command line options, you
can either change the behavior of commands or you can perform the same shell
commands directly outside Impala shell.

In the next chapter, we will continue focusing on Impala Query Language and
Impala built-in functions.

The Impala Query Language
and Built-in Functions

By now you will have a good idea of how Impala works and how different
components interact with each other to support query requests. In the previous
chapter we have learned how the Impala shell interacts with an Impala daemon
running either on the same node or some other DataNode, and how users can use
certain shell commands to perform their tasks through the Impala shell. Now in this
chapter, we will learn how to make great use of the Impala shell to interact with data
by using the Impala Query Language. Along with the Impala Query Language, we
will also learn various Impala built-in functions along with great examples.

Once again, we would like to repeat that each statement must end with a semicolon
in the Impala shell, and you can use multiple statements using copy and paste in
the Impala shell. The Impala interpreter parses each statement by recognizing the
semicolon and considering it as the end of the current statement, and this way it can
parse multiple statements.

In this chapter you will find detailed descriptions of the Impala Query Language,
and to extend the knowledge gained from this chapter, you can refer to another
chapter that explains most of the Impala query sentences with an example.
Chapter 4, Impala Walkthrough with an Example complements this chapter.
Now let's start learning the Impala Query Language.

The Impala Query Language is based on SQL while providing a great degree of
compatibility with HiveQL. Hive statements are based on SQL statements, and
because Impala statements are based on SQL, several statements in both Hive and
Impala are identical; however, some of the statements do show differences. Let's
check the key points regarding how Impala statements are based on SQLs:

• Hive as well as Impala uses the Data Definition Language (DDL).

The Impala Query Language and Built-in Functions

[40]

• To store table structures and their properties, Hive uses metastore, and
Impala uses the same metastore to record the information. For example,
Impala can access the tables created using Hive statements or directly by
using the CREATE TABLE command.

• Data types, that is int, tinyint, smallint, bigint, float, double, boolean,
string, and timestamp, in Impala share the same name and semantics as
Hive for the supported data types.

Now, let's take a quick look at how the Impala Query Language supports HiveQL;
note the following key points:

• Impala statements and clauses are similar to those of HiveQL, such as JOIN,
UNION ALL, ORDERBY, LIMIT, DISTINCT, and AGGREGATE

• Impala statements support data manipulation statements similar to the Data
Manipulation Language (DML)

• SELECT and INSERT statements in Impala function the same as in HiveQL
• Impala also supports INSERT INTO and INSERT OVERWRITE statements
• Several built-in functions in various categories such as mathematical,

conditional, or string are the same in Impala and HiveQL and use the
same name and parameter types

We must understand that not every SQL statement is supported in Impala.
To make it simple, a list of unsupported SQL statements is at the end of this
chapter. Now, let's get to know the most useful SQL language statements,
which are commonly used in Impala.

Impala SQL language statements
With Impala, users can work on various types of data through databases, tables,
and views. Impala uses these SQL statements to process data stored in databases and
tables, and in the next several sections we will study Impala statements using some
examples. Databases and the table metadata is modified differently in both Hive and
Impala. In Hive, you can use ALTER, CREATE, DROP, or INSERT operations to modify
the data; however, in Impala, you will have to use CREATE TABLE, ALTER TABLE, and
INSERT operations to achieve the same objective. Let's start with Database-specific
SQL statements:

Chapter 3

[41]

Database-specific statements
Let's first understand what a database is:

• A database is a logical entity to group related tables into one single namespace.
• With Impala running on a DataNode, physically, a database in Impala is

represented as a directory on HDFS. All internal tables, partitions, and
data files are saved inside the parent directory.

• An Impala database is created inside the Impala directory on HDFS with the
name database_name.db.

• The database directory on HDFS is the same as any other directory on HDFS
and supports all directory operations like any other directory.

Now let's learn a few database-specific statements in Impala.

The CREATE DATABASE statement
When there is a need to create a database, you can use the CREATE DATABASE
statement to create a new database as follows:

CREATE (DATABASE|SCHEMA)
 [IF NOT EXISTS] database_name [COMMENT 'database_comment']
 [LOCATION hdfs_path];

The DROP DATABASE statement
To remove a database from Impala, you can use the DROP DATABASE statement. Once
the DROP DATABASE statement is executed, the corresponding database_name.db
directory from HDFS is removed. The syntax of the DROP DATABASE statement is
as follows:

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name;

There is no protection to the DROP DATABASE statement. If the DROP DATABASE
statement is executed on a database that has tables and data files, all the content
will be removed from the HDFS, and the database directory will be deleted. So,
it is recommended that you must empty the database yourself before calling the
DROP statement.

The Impala Query Language and Built-in Functions

[42]

The SHOW DATABASES statement
To get the list of databases available for Impala, use the SHOW DATABASE statement
with the following syntax:

SHOW DATABASES;

Using database-specific query sentence in an
example
Now, let's see an example of database-specific statements to understand everything
together. If you have just installed Impala, started it, and run SHOW DATABASE, you
will see only one database name, default, as shown in the following example:

[Hadoop.testdomain:21000] > show databases;
Query: show databases
Query finished, fetching results ...
+---------+
| name |
+---------+
| default |
+---------+
Returned 1 row(s) in 0.12s
[Hadoop.testdomain:21000] > create database items;
Query: create database items
[Hadoop.testdomain:21000] > use items;
Query: use items
[Hadoop.testdomain:21000] > create table list (item string, total
int);
Query: create table list (item string, total int)
[Hadoop.testdomain:21000] > show databases;
Query: show databases
Query finished, fetching results ...
+---------+
| name |
+---------+
| default |
| items |
+---------+
Returned 2 row(s) in 0.13s
[Hadoop.testdomain:21000] > drop database items;
Query: drop database items
ERROR: AnalysisException: Cannot drop current default database: items

Chapter 3

[43]

[Hadoop.testdomain:21000] > use default;
Query: use default
[Hadoop.testdomain:21000] > drop database items;
Query: drop database items

The error with DROP is seen because we have items databases
in use, so we need to use some other database to free items
database from use so that we can remove it.

Table-specific statements
After looking at database-specific commands, we will now dig deeper to understand
some table-specific commands. Some of these commands also apply to the partitions
in the table, and when applicable I have used partitions and tables together in my
description and the examples in the following sections.

The CREATE TABLE statement
Because files are stored in a DataNode on the HDFS, tables in Impala work a
little differently. When you use the CREATE TABLE statement, Impala creates an
internal table where Impala manages the underlying data file for the table. When
DROP TABLE is called, the underlying file is physically deleted. The full create table
statement is as follows:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
[(col_namedata_type [COMMENT 'col_comment'], ...)]
[COMMENT 'table_comment']
[PARTITIONED BY
(col_namedata_type [COMMENT 'col_comment'], ...)
]
 [[ROW FORMAT row_format] [STORED AS file_format]]
[LOCATION 'hdfs_path']
data_type
: primitive_type
primitive_type
 :TINYINT | SMALLINT | INT | BIGINT | BOOLEAN
 | FLOAT | DOUBLE | STRING | TIMESTAMP
row_format
: DELIMITED [FIELDS TERMINATED BY 'char' [ESCAPED BY 'char']]
 [LINES TERMINATED BY 'char']
file_format:
: PARQUETFILE | SEQUENCEFILE | TEXTFILE | RCFILE

The Impala Query Language and Built-in Functions

[44]

When a new table is created based on some other table, the LIKE clause is used. There
are many places on the internet to learn about the CREATE TABLE SQL statement.

The CREATE EXTERNAL TABLE statement
While using the CREATE EXTERNAL TABLE syntax, the newly created table points to
an existing data file on HDFS. Using this statement, the file data is not imported from
the existing data file on HDFS to the new table; instead the new table points to the
data file on HDFS while the new table is empty. When external is not defined, the
data is copied to the new table so the table itself has the data. The process to query
the data does not change and still remains the same.

When EXTERNAL is used to create a table, Impala treats the table as an external mean.
The data files are produced outside Impala, and when DROP TABLE is called on that
table, the table is removed; however, the underlying data is kept as is.

Because the data file is read directly from HDFS, if there are any changes to the data
file, you must use the REFRESH statement impala-shell so that Impala can recognize
the changes and can use the updated data file. The statement to create a table with
the EXTERNAL clause is the same as CREATE TABLE, and the only difference is that it
starts with CREATE EXTERNAL TABLE as shown in the following line of code:

CREATE EXTERNAL TABLE table_name;

The ALTER TABLE statement
Sometimes, you may need to modify the structure or properties of the table, and to
achieve this objective the ALTER TABLE statement is used. As Impala shares the table
metastore with Hive, the table metadata is updated using ALTER TABLE, which is
available to any other application using the same metadata. It is important to know
that ALTER TABLE does not actually perform any operation on the actual data; instead,
the alteration is done on metadata. So, to achieve full transformation of the data, you
will need to make those necessary modifications in the data stored in HDFS.

Here is the statement using ALTER TABLE to rename a table:

ALTER TABLE old_table_name RENAME new_table_name;

To change the physical location of the directory in HDFS where Impala looks for
table-specific data files, use the following line of code:

ALTER TABLE table_name SET LOCATION 'directory_name_on_HDFS';

Chapter 3

[45]

You can use the following syntax to change the table data file format to meet Impala
file format requirements:

ALTER TABLE table_name
SET FILEFORMAT { PARQUETFILE | RCFILE | SEQUENCEFILE | TEXTFILE }

Chapter 7, Advanced Impala Concepts, has detailed information
on various file formats supported in Impala.

Creating an empty table along with the partitioning scheme definition and altering
the table partition can be done using the following code:

CREATE TABLE table_name (def data_type)
PARTITIONED BY (partiton_name partition_type);
ALTER TABLE table_name ADD PARTITION
 (partition_type='definition');

The DROP TABLE statement
When there is a need to remove the table from the database, you can use the DROP
TABLE command. The DROP command deletes the table and associated files underneath
in the HDFS directory, unless the table was created with the EXTERNAL clause. Because
the table and data cannot be recovered after deletion, it is suggested that you ensure
you have the correct database in use before issuing the DROP statement. The syntax for
using DROP TABLE is as follows:

DROP TABLE [IF EXISTS] table_name;

The SHOW TABLES statement
When you want to see a list of all tables in a database, use the SHOW TABLE statement
with the following syntax:

SHOW TABLES;
SHOW TABLES [IN database_name];

The DESCRIBE statement
Using the DESCRIBE statement, you can learn more about the table metadata with the
following syntax:

DESCRIBE table_name;

The Impala Query Language and Built-in Functions

[46]

Alternatively, you can use the FORMATTED clause with the DESCRIBE statement, which
will provide various other information about the table, as follows:

DESCRIBE [FORMATTED] table_name;

Here is an example of using DESCRIBE and DESCRIBE FORMATTED to help you
understand the difference between the two.

The following code shows how DESCRIBE displays the output:

[Hadoop.testdomain:21000] > create table students (sno int, name
string);
Query: create table students (sno int, name string)
[Hadoop.testdomain:21000] > describe students;
Query: describe students
Query finished, fetching results ...
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| sno | int | |
| name | string | |
+------+--------+---------+
Returned 2 row(s) in 1.66s

The following screenshot shows how DESCRIBE FORMATTED displays the results to
show the difference:

Chapter 3

[47]

The INSERT statement
The INSERT statement is use to insert data into tables and partitions, which are
already created using the CREATE TABLE statement. Impala can also use the
INSERT statement with the tables that are created in Hive as they both share the
same metastore. The INSERT statement can use various clauses, such as INTO or
OVERWRITE, which change the INSERT statement behavior; so, let's learn more about
the key features of the INSERT statement:

• INSERT INTO statement: This appends data into table
• INSERT OVERWRITE statement: This replaces the data in the table with the

new data

To insert data into a table, you will use the INSERT statement with the SELECT
statement, as shown in the following line of code:

INSERT [INTO | OVERWRITE] TABLE table_name SELECT ….

Each INSERT statement creates new data files in HDFS with unique names, and this
way multiple INSERT INTO statements can be executed simultaneously. It is possible
that INSERT commands were executed on a different Impala daemon (impalad); then,
using the REFRESH table_name command on other nodes will help in syncing the
data into a single table effectively. In general, the INSERT statement is very detailed,
and to learn the various functions that come with it, my suggestion would be to look
at the SQL statements documentation for INSERT.

The SELECT statement
The SELECT statement is used to select data from a table, which is part of the database
currently in use. To use the database, you start the USE statement first and then use the
SELECT statement. Here are some features of the SELECT clause in Impala:

• The DISCTINCT clause can also be used but it is applied per query
• The SELECT clause also uses the WHERE, GROUP BY, and HAVING clauses
• You can also use LIMIT while using ORDER BY with SELECT

I have written several examples by using SELECT with other clauses in this chapter, so
here is the syntax of using the SELECT clause in SQL statements for reference purposes:

SELECT column_name,column_name FROM table_name;
SELECT * FROM table_name;

www.allitebooks.com

http://www.allitebooks.org

The Impala Query Language and Built-in Functions

[48]

Internal and external tables
It is good that we can have a little discussion on internal and external tables while
learning about table-specific statements. When using CREATE TABLE, the newly
created table is considered as the internal table, whereas while using the CREATE
EXTERNAL TABLE statement the tables created are considered as external tables.
The properties of internal tables in Impala are as follows:

• With an internal table, a directory in HDFS is created to store data files
• While using the INSERT statement, the data is stored into files into the

directory at HDFS
• The LOAD DATA statement reads data from the files from HDFS
• DROP TABLE removes the directory along with files in HDFS

Data types
A data type is an attribute that specifies the type of data that the object can hold,
such as integer data, character data, monetary data, date and time data, and binary
strings. In Impala, the data in each and every table belongs to some kind of data
type; so, it is very important to understand various data types supported in Impala.
Each data type has its range and the value belonging to the data type stays within
the range. Impala does not convert any data type to another data type by itself, and if
a conversion is needed the CAST operator can be used to transform some of the data
types to others. I have included the use of CAST operator where it is applicable.

Let's start learning some of most common data types in Impala as follows:

• BOOLEAN: While creating a table, you can define a field or column in the
tables as a BOOLEAN data type, and the Boolean value represents either
true or false choices. These values can be written in uppercase, lowercase,
or mixed case. However, when these values are queried from a table, these
values are returned in lowercase as true or false.
Here is an example of using the boolean operator:
[Hadoop.testdomain:21000] > create table list (item string, listed
boolean);
Query: create table list (item string, listed boolean)

It can be noted that the CAST() operator can be used to convert numeric
values to Boolean values. A value 0 represents false and any non-zero value
is converted to true. String values cannot be converted to BOOLEAN values;
however, BOOLEAN values can be converted to strings, returning 1 for true
and 0 for false.

Chapter 3

[49]

• INT: INT in Impala represents a 4-byte integer type of data when used with
CREATE TABLE or ALTER TABLE. The value of INT in Impala ranges between
-2147483648 and 2147483647, and there is no UNSIGNED subtype with INT.
Here is how Casting works with the INT data type:
Impala automatically converts the INT data type to a larger integer data type
(BIGINT) or a floating-point data type (FLOAT or DOUBLE).
You can use the CAST() operator to convert INT to TINYINT, SMALLINT,
STRING, or TIMESTAMP.
You can also cast an INT value to TIMESTAMP. While using Cast() with INT
N to TIMESTAMP, the resulting value shows N seconds past the start of the
epoch date (January 1, 1970).

• BIGINT: In Impala, BIGINT represents an 8-byte integer type of data when
used with the CREATE TABLE or ALTER TABLE statement. The value of BIGINT
in Impala ranges between -9223372036854775808 and 9223372036854775807,
and there is no UNSIGNED subtype with BIGINT.
Here is how Casting works with the BIGINT data type:
Impala automatically converts BIGINT to a floating-point type
(FLOAT or DOUBLE).
Using the CAST() operator, BIGINT is converted to TINYINT, SMALLINT, INT,
STRING, or TIMESTAMP.
Conversion of BIGINT to TIMESTAMP also works as INT. While using Cast()
with BIGINT N to TIMESTAMP, the resulting value shows N seconds past the
start of the epoch date (January 1, 1970).

• SMALLINT: In Impala, SMALLINT represents a 2-byte integer type of data
when used with the CREATE TABLE or ALTER TABLE statements. The value
of SMALLINT in Impala ranges between -32768 and 32767, and there is no
UNSIGNED subtype with SMALLINT.
Here is how Casting works with the SMALLINT data type:
Impala automatically converts SMALLINT to a larger integer date type
(INT or BIGINT) or a floating-point type (FLOAT or DOUBLE).
Using the CAST() operator, SMALLINT is converted to TINYINT, STRING,
or TIMESTAMP.
SMALLNT conversion to TIMESTAMP also works with INT. While using Cast()
with SMALLINT N to TIMESTAMP, the resulting value shows N seconds past
the start of the epoch date (January 1, 1970).

The Impala Query Language and Built-in Functions

[50]

• TINYINT: In Impala, TINYINT represents a 1-byte integer type of data when
used with the CREATE TABLE or ALTER TABLE statement. The value of TIYINT
in Impala ranges between -128 and 127, and there is no UNSIGNED subtype
with SMALLINT.
Here is how Casting works with the TINYINT data type:
Impala automatically converts TINYINT to a larger integer date type
(SMALLINT, INT, or BIGINT) or a floating-point type (FLOAT or DOUBLE).
Using the CAST() operator, SMALLINT is converted to only STRING
and TIMESTAMP.
TINYINT conversion to TIMESTAMP also works as INT. While using Cast()
with BIGINT N to TIMESTAMP, the resulting value shows N seconds past
the start of the epoch date (January 1, 1970).
More information on the INT data type is available in mathematical
functions also.

• DOUBLE: A DOUBLE data type in Impala represents an 8-byte double,
precision, floating-point data type when used with the CREATE TABLE or
ALTER TABLE statement. The value of DOUBLE in Impala ranges between
4.94065645841246544e-324d and 1.79769313486231570e+308, and this value
can either be positive or negative.
Casting with DOUBLE works, as follows, in Impala:
Impala does not automatically convert DOUBLE to any other type.
The CAST() function can be use to convert DOUBLE values to FLOAT, TINYINT,
SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN.
Exponential notation in DOUBLE literals can be used when casting
from STRING.
As an example, value 1.0e6 represents one million.

• FLOAT: A FLOAT data type in Impala represents a 4-byte single
precision floating-point data type when used with the CREATE TABLE or
ALTER TABLE statement. The value of DOUBLE in Impala ranges between
1.40129846432481707e-45 and 3.40282346638528860e+38, and this value can
either be positive or negative.
Casting with the FLOAT data type works as follows in Impala:
Impala automatically converts FLOAT to a more precise DOUBLE value but
not from DOUBLE to FLOAT.

Chapter 3

[51]

For converting FLOAT to other data types, you can use the CAST() function
and the result will be any one of the TINYINT, SMALLINT, INT, BIGINT,
STRING, TIMESTAMP, or BOOLEAN data types.
Exponential notations can be use in FLOAT when needed. Exponential literals
can also be used when casting from STRING; as an example 1.0e6 represents
one million.

• STRING: A STRING data type holds a maximum of 32767 bytes of data in it
when used with the CREATE TABLE or ALTER TABLE statements. Here are the
key features of using the STRING data type:

 ° It is suggested that you limit the string values to the ASCII character
set for full support.

 ° Multibyte characters can also be used; however, their application
will be limited to query operations. String manipulation, comparison
operators, and the ORDER BY clause may not function correctly with
multibyte characters in the STRING data type.

 ° Impala does not include the metadata definition for ISO-8859-1 or
ISO-8859-2-encoded national language aspect type of data, so you
would need to implement the application-size logic if you want to
support such a requirement.

Here is how casting works with the STRING data type:
Impala does not automatically convert STRING to any other type.
The CAST() function can be used for converting STRING to other data
types, such as TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.
Casting STRING values to BOOLEAN is not permitted; however, BOOLEAN
values 1 and 0 can return as true and false, respectively.

• SUM: SUM is an aggregate function, which returns the sum of the set of
numbers in the table. Here are some key properties of SUM functions:

 ° SUM can be used with numeric columns in a table
 ° You can also use SUM with the numeric result of a function or

expression on a column value
 ° When SUM is applied, rows with NULL values are ignored
 ° If a table is empty, SUM will return NULL as the result
 ° If all the values supplied to MIN are also NULL, SUM will return NULL as

the result

The Impala Query Language and Built-in Functions

[52]

The SUM function can be used in various ways; here are a few syntaxes
using SUM:
SELECT SUM(column_name) FROM table_name;
SELECT SUM(distinct(column_name)) FROM table_name;
SELECT SUM(length(column_name)) FROM table_name;

• TIMESTAMP: A TIMESTAMP in Impala represents a point in time when
the TIMESTAMP data type is used with the CREATE TABLE or ALTER TABLE
statement. The resolution of the time portion of a TIMESTAMP value is
in nanoseconds.
As TIMESTAMP values are time-specific values, they are not stored using the
local time zone; instead, all timestamps in Impala are stored relative to GMT.
Impala automatically converts STRING values of the correct format into
TIMESTAMP values if they are written in any supported time format string.
For example, 1980-12-21 or 2001-01-01 05:05:50 can be converted to
TIMESTAMP values.
Casting an integer or floating-point value N to TIMESTAMP produces a value,
which is N seconds past the start of the epoch date (January 1, 1970).

Now, we are going to learn about how to use operators with Impala SQL statements.

Operators
An operator is a symbol specifying an action that is performed on one or more
expressions. Operators are used with multiple statements in SQL. There are various
kinds of operators in SQL. They are as follows:

• Arithmetic operators
• Logical operators
• The assignment operator
• Scope-resolution operators
• Bitwise operators
• Set operators
• Comparison operators
• The string-concatenation operator
• Compound operators
• Unary operators

Chapter 3

[53]

Explaining each kind of operator is out of our scope here, so we will discuss a few
commonly used operators in Impala as follows.

• BETWEEN: The BETWEEN operator is used with the WHERE clause, and this
operator compares the values between the lower and upper bound given
with the WHERE clause. The comparison is successful if the expression is
greater than or equal to the lower bound and less than or equal to the upper
bound. If the bound values are switched, the lower bound is greater than the
upper bound; the BETWEEN operator does not match any values as a result.
The syntax to use the BETWEEN operator with the WHERE clause is as follows:
expression BETWEEN lower_bound AND upper_bound
Example:
SELECT column_name FROM table_name WHERE value_in_column
 BETWEEN lower_bound AND upper_bound;

Here are a few key things to remember when using the BETWEEN operator
in Impala:
The BETWEEN operator works with any kind of data type; however, it is not
practical to use it with BOOLEAN
Sometimes it is possible that the values provided are in the lower or upper
bound, so you can apply the Cast() operator to those values to convert them
into compatible types
It is also important to note that the BETWEEN operator is typically used with
numeric data types, so other functions can also be used to extract numeric
values, if possible.
While using BETWEEN with a string, it is advisable to use the upper(), lower(),
substr(), or trim() function to operate on the string instead of having them
operated with the BETWEEN operator, because variation in the string length
could change the outcome of the comparison operator in BETWEEN.

• DISTINCT: The SQL DISTINCT operator is used with the SELECT statement
to retrieve only unique data entries, depending on the column list selected
in the table. Here are the key features of the DISTINCT operator when used
with Impala:

 ° The DISTINCT operator returns the unique values from the column
 ° NULL is also included as a value in the column and as part of

the result
 ° The DISTINCT operator can also return unique combinations of

values from multiple columns within the same SELECT statement

The Impala Query Language and Built-in Functions

[54]

 ° The DISTINCT operator can be combined with other functions,
such as COUNT, to aggregate total unique values found in the
reference column

 ° Impala does not support using DISTINCT in more than one aggregate
function in the same query

Here is the syntax and an example of using the DISTINCT operator in Impala:
SELECT DISTINCT column_name FROM table_name;
SELECT DISTINCT column_name1, column_name2 FROM table_name;
SELECT COUNT(DISTINCT column_name) FROM table_name;
SELECT SUM(DISTINCT column_name) FROM table_name;
SELECT SUM(DISTINCT column_name) FROM table_name WHERE
 (column_name CONDITION value);

• LIKE: Sometimes performing wildcard-based comparisons with STRING data
is required, and for this requirement the LIKE operator is used. In Impala, the
LIKE operator is used as a comparison operator to match the STRING type of
data. For a single character match, LIKE uses _ (underscore) and for multiple
characters, the % (percentage) sign is used. Using the % wildcard at the end of
the string to get efficient results is suggested.
The following is the syntax of using the LIKE operator in Impala:
SELECT column_name FROM table_name WHERE column_name LIKE '%';
SELECT column_name from table_name WHERE column_name LIKE '_';
SELECT column_name from table_name WHERE column_name LIKE
 '_' OR column_name LIKE '%';

Now, let's see a few examples of using the LIKE operator in Impala. The
following statement will return all the state names, which are only two
characters and start with the letter C:
SELECT DISTINCT(state_names) from us_state_list WHERE
 state_name LIKE 'C_';

The following statement will return all the names that start with Jo and
can be two or more characters long. In this Impala statement, the result
will include John, Joe, Jo, and Johnson.
SELECT DISTINCT(names) from names_list WHERE names LIKE 'Jo%';

Chapter 3

[55]

Functions
SQL has lots of built-in functions to perform calculations on the data stored in
various columns in tables. There are two different kinds of functions and Impala
uses both kinds:

• Scalar functions: These functions return a single value, which is based
on the input value. Scalar functions are mostly used with the STRING and
TIMESTAMP columns. The most common scalar functions are UCASE, LCASE,
MID, LEN, ROUND, NOW, and FORMAT. Short descriptions of these SQL Scalar
functions follow:

 ° FORMAT(): This function formats the column value to the display per
user preference

 ° NOW(): This function returns the current system time and date
as a value

 ° LEN(): This function returns the length of the text value in the column
 ° ROUND(): This function rounds the numeric column value to the

specified decimal number
 ° MID(): This function extracts specific characters from text values

in a column
 ° UCASE(): This function converts the column text value to all

upper case
 ° LCASE(): This function converts the column text value to all

lower case

• Aggregation Functions: These functions also return a single value after the
calculation is done on column values. Aggregation functions are operated
mostly on numeric column values. The most-used aggregation functions are
AVG, COUNT, MAX, MIN, FIRST, LAST, and SUM. We will learn a few of them in
Chapter 4, Impala Walkthrough with an Example.

Let's go through the details of a few aggregation functions as follows:

• AVG: AVG is the aggregation function that returns the average value from a
group of numbers in the specified column, as supplied in the SQL statement.
The AVG function uses a single argument, which can be numeric or a numeric
result of other functions or expressions applied to the column value. If there
is a row with a NULL value, the AVG function ignores it. For an empty table,
AVG returns NULL, or if all column values are null, AVG will return NULL. The
result data type of an AVG function is DOUBLE.

The Impala Query Language and Built-in Functions

[56]

Here is the syntax of the AVG function; however, it can be used in
various ways:
SELECT AVG(column_name) FROM table_name;
SELECT AVG(LENGTH(column_name)) FROM table_name;
SELECT AVG(ISNULL(value1, value2)) FROM table_name;
SELECT AVG(column_name) FROM table_name WHERE column_value
 CONDITION;
SELECT column_name1, AVG(column_name2) FROM table_name
 GROUP BY column_name1;

• COUNT: COUNT is another aggregation function in Impala, which returns the
number of rows or the number of nonnull rows provided in the statement.
When using COUNT(*), the result includes everything including NULL values.
However, when using COUNT(column_name), the nonnull values from the
specific column_name are calculated. To eliminate duplicate values in COUNT,
you can use the DISTINCT operator with column_name first to pass unique
items into the COUNT function. The result of the COUNT function is of a BIGINT
data type. Here are a few examples and syntaxes of using the COUNT function
in Impala:
SELECT COUNT(*) FROM table_name;
SELECT COUNT(column_name) FROM table_name;
SELECT COUNT(DISTINCT column_name) FROM table_name;
SELECT column_name1, COUNT(column_name2) FROM table_name;
SELECT COUNT(*) FROM table_name WHERE column_value
 CONDITION;
SELECT column_name1, COUNT(column_name2) FROM table_name
 GROUP BY column_name1, column_name2;

• MAX and MIN: MAX is another aggregate function, which returns the
maximum value from a set of numbers, while MIN returns the minimum
value from a set of numbers. Both MAX and MIN support single numeric
arguments or numeric results of a function or any expression applied to a
column value. Both MAX and MIN ignore NULL values, and for empty tables
both return NULL results. The output data type of MAX and MIN is the same as
its input argument data type.
When MAX or MIN is used with the GROUP BY clause, both return one value for
each combination of grouping values. The following is the syntax and a few
examples of using MAX functions:
SELECT MAX(column_name) FROM table_name;

Chapter 3

[57]

Examples:
SELECT MAX(days) FROM full_year_data WHERE month='October'
 and year = '2013';
SELECT MAX(DISTINCT A) FROM table_name;
SELECT column_name1, column_name2, MAX(column_name3) FROM
 table_name GROUP BY column_name1, column_name2;

And here is the syntax and a few examples of using MIN functions:
SELECT MIN(column_name) FROM table_name;

Examples:
SELECT MIN(LENGTH(s)) FROM table_name;
SELECT column_name1, MIN(column_name2) FROM table_name ORDER BY
column_name1 ;
SELECT MIN(Price) AS Order_Price FROM Items;

Clauses
SQL statements require clauses to fulfill the statement condition or make it complete.
For example, the SELECT statement will not be able to fulfill its action unless we
provide what kind of SELECT action is actually needed. Most of these clauses are
used with SELECT; however, some of them may find other uses as well. Now,
lets learn the most common clauses in SQL, which are typically used in Impala.
They are as follows:

• FROM: The SELECT statement cannot be completed without the FROM clause.
The FROM clause specifies one or more tables containing the data that the
query retrieve from. The common syntax for the FROM clause along with a
few examples is as follows:
FROM [table_name,…]
 WHERE…. [Condition];

Examples:
SELECT name, age, class, city, state, country FROM
 studentslist;
SELECT name, age, class, city, state, country FROM
 studentslist WHERE age < 18;

www.allitebooks.com

http://www.allitebooks.org

The Impala Query Language and Built-in Functions

[58]

• WHERE: The next clause in our list is WHERE. The WHERE clause is used in
Impala to extract only those records that fulfill the defined criteria in SQL
statements. WHERE is very popular and is one of the most-used clauses along
with SELECT and FROM. The syntax for the WHERE clause with an example is
as follows:
SELECT column_name,column_name FROM table_name
 WHERE column_name operator value;

Example:
SELECT name, age, class, city, state, country FROM
 studentslist WHERE city = 'San Francisco';

Let's study the condition operators in the following table, which are used
with WHERE:

Operator Description
= Equal
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
BETWEEN Between an inclusive range
LIKE Search for a pattern
IN To specify multiple possible values for a column

• WITH: Sometimes SQL statements can become very complex while dealing
with multiple tables and associated conditions. To make the SQL statement
easier to understand and process, the WITH clause is used before the SELECT
statement to define aliases for the expression that are referenced multiple
times within SELECT statements. Using the WITH clause, you can apply a
single command to the existing SELECT statements without modifying these
statements. The syntax of the WITH clause is shown in the following example:
WITH [common_table_statements];

Example:
WITH myWithEx1 as (SELECT 1), myWithEx2 as (SELECT 2) INSERT into
SELECT * FROM myWithEx1 UNION ALL SELECT * from myWithEx2;

In the previous example, we have defined two aliases, myWithEx1 and
myWithEx2, which are referenced by the SELECT query as defined.

Chapter 3

[59]

• GROUP BY: The GROUP BY statement is used along with aggregate functions
such as COUNT(), AVG(), SUM(), MIN(), or MAX(), to group the results set by
one or more columns defined in the SQL statement.
The syntax of the GROUP BY statement is as follows:
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name;

In the following example, we are counting items on ID from table1 and then
grouping them by ID from table2:
SELECT table1.Name,COUNT(table2.ID) AS TotalOrders FROM table2
LEFT JOIN table1
ON table2.ID=table1.ID
GROUP BY Name;

• ORDER BY: The ORDER BY clause is used with SQL statements to sort the
result data by one or more columns. The sorting is done in ascending order by
default, and to change sort order you can use DESC at the end of the statement.
The syntax of the ORDER BY clause is shown in the following example:
SELECT column_name,column_name
FROM table_name
ORDER BY column_name,column_name ASC|DESC;

Example:
SELECT * FROM citizens ORDER BY state;
SELECT * FROM items ORDER BY price DESC;

• HAVING: The HAVING clause is also used with aggregate functions such as
COUNT(), AVG(), SUM(), MIN(), or MAX(), when a filter operation is conducted
on a SELECT query. This clause also works with GROUP BY in some cases. The
syntax of a HAVING clause is as follows:
SELECT column_name, aggregate_function(column_name) FROM
 table_name
 WHERE column_name operator value GROUP BY column_name
 HAVING aggregate_function(column_name) operator value;

• LIMIT: Sometimes, when you want to limit the results of a SELECT query,
you can use the LIMIT clause to set the maximum number of rows in the
result set. The syntax of the LIMIT clause is as follows:
SELECT column_name(s) FROM table_name LIMIT number;

The Impala Query Language and Built-in Functions

[60]

Query-specific SQL statements in Impala
Now, we will spend some time in understanding the query-specific SQL statements
used in Impala. Most of these statements are exactly the same as they are defined
in SQL, so to learn more, I would suggest you to look at any SQL reference
documentation. Here, I am covering some key information for reference purposes:

• EXPLAIN: Using the EXPLAIN clause, we can learn the execution plan of a
SQL statement by understanding low-level mechanisms that Impala will
use to read and process the data in the whole cluster, and then finally show
the results. You can use the EXPLAIN clause ahead of a SELECT statement as
shown in the following example:
[Hadoop.testdomain:21000] > EXPLAIN SELECT * FROM list;
Explain query: select * from list
PLAN FRAGMENT 0
 PARTITION: UNPARTITIONED

 1:EXCHANGE
 tuple ids: 0

PLAN FRAGMENT 1
 PARTITION: RANDOM

 STREAM DATA SINK
 EXCHANGE ID: 1
 UNPARTITIONED

 0:SCAN HDFS
 table=default.list #partitions=0 size=0B
 tuple ids: 0
REFRESH table_name;

• REFRESH: In a multimode environment, the data files reside on multiple
DataNodes while the Impala shell is interacting with the Impala daemon
(which acts as the data coordinator for all other nodes). Data files can be
updated on other nodes without any update event or information to the
coordinator. In this situation, using the REFRESH clause with the table
name loads the latest metadata and block location of the data files for
a particular table.
Please refer to Chapter 2, The Impala Shell Commands and Interface, to understand
more on how REFRESH works and why it is so important to use.

Chapter 3

[61]

• JOIN: The JOIN clause is used in SQL statements to select data from two or
more tables and then return the result set containing items from some of all
of those tables, depending on the conditions applied. The JOIN query result
set is filtered by including the corresponding join column names in the ON
clause or by comparison operators referencing columns from both tables in
the WHERE clause. To improve JOIN performance, here are some suggestions:

 ° It is advisable to perform the JOIN operation on the biggest table first
and then smaller tables

 ° Join subsequent tables depending on which table has the most
selective filter

The JOIN clause itself is very detailed, so I have introduced it here
only for reference; however, I would suggest you study some SQL
documentation on JOIN to learn more about it.

Defining VIEWS in Impala
A VIEW in SQL is the result set of a stored query defined with a SELECT statement or
the SELECT portion of an INSERT statement. A VIEW can represent a subset of data
contained in a table by limiting the data set depending on the query statement. In
Impala, you can use VIEW to your advantage in the following ways:

• You can use VIEW in place of lengthy subqueries and repeating the same
subquery in many queries

• Reduce maintenance by using VIEW in place of complicated queries across
multiple applications

• You can issue complex queries with a compact and simple syntax
• You can set up granular security in a table by limiting data access to only a

few columns
• You can set up aliases for tables, columns, and JOIN results with a more

informative name

Here are the common VIEW-specific statements in Impala:

• CREATE VIEW

• ALTER VIEW

• DROP VIEW

The Impala Query Language and Built-in Functions

[62]

Loading data from HDFS using the LOAD
DATA statement
As you know, data is stored in HDFS and Impala processes this data. So, when you
need to perform some Extract Transform Load (ETL) activity to load the data from
HDFS to Impala tables, you can use LOAD DATA statements. The key properties of
LOAD DATA statements are as follows:

• The loaded data files are moved from HDFS to the Impala data directory
• You can either give a file name from HDFS or a directory name to load all the

files into an Impala table; however, a wild card pattern is not supported with
the HDFS path

The LOAD DATA statement and examples are as follows:

LOAD DATA INPATH 'hdfs_file_or_directory_path' [OVERWRITE]
 INTO TABLE tablename
 [PARTITION (partcol1=val1, partcol2=val2 ...)]

Examples:

CREATE TABLE students (id int, name string);
LOAD DATA INPATH '/user/avkash/students.txt' INTO TABLE students;

In the previous example, you have to make sure that the students.txt file is located
at HDFS in folder /user/avkash.

Comments in Impala SQL statements
You can write multiple queries into a file and then let Impala run your queries
directly by passing the query file name. When lots of queries are written in a file, you
might require adding comments to specify what each query or a group of queries
are, and adding comments to the query file will help you achieve your objective.
Impala supports the following two kinds of comments with SQL statements:

• -- Sequence (two dashes): All the text after -- Sequence is considered
as a comment and ignored for processing. This comment is used mostly in
commenting a complete line in multiline SQL statements.

• /* this is a comment */:The text inside /* and */ will be considered as a
comment and will not be processed. This comment is used mostly within the
line but it can be stretched into multiple lines as well.

Chapter 3

[63]

Built-in function support in Impala
Impala supports lots of built-in functions in various categories, and these functions
are used to perform several types of data transformation operations, such as
mathematical calculations, string manipulations, and data calculations. You can use
built-in functions with SQL queries to avoid post-processing of data; by using these
functions you can get fully-formatted, calculated, and type changed data as results.
Aggregate functions ignore NULL values rather than returning a NULL result.

These built-in functions can be used directly with a SELECT statement, as shown in
the following example:

SELECT ABS(-1);
SELECT CONCAT('NFL ', 'American Football');
SELECT POWER(3,3);
SELECT CONCAT('State = ',state_name) FROM states WHERE population
 > 10000000;
SELECT SIN(null);
SELECT POWER(2,null);
SELECT MAX(wheels), AVG(windows) FROM automobiles WHERE year
 <1950;

Impala supports the following categories of built-in functions:

• Mathematical functions
• String functions
• Conditional functions
• Date and time functions
• Type conversation functions
• Aggregate functions (which we have already discussed in previous sections)

Now, we will take a look at a few functions from each category and their usage
patterns. Let's starts with mathematical functions, described in the following table:

Function name Usage Return type
ABS(DOUBLE a) To return the absolute value of the argument DOUBLE

COS(DOUBLE a) To return the cosine of the argument DOUBLE

BIN(BIGINT a) To return the binary representation of the integer
value

DOUBLE

FLOOR(DOUBLE a) To return the largest, least, or equal to the
argument

INT

The Impala Query Language and Built-in Functions

[64]

Function name Usage Return type
PI() To return the value of contact Pi DOUBLE

RAND(INT seed) To return a random value between 0 and 1 DOUBLE

Besides these, there are several other mathematical functions in Impala such as SIGN,
SIN, SQRT, TAN, ROUND, POW, NEGATIVE, HEX, DEGREES, and ASIN. To study most of the
functions, please visit the Impala documentation at Cloudera's website. Now, let's
study a few of the common string built-in functions in the following table:

Function name Usage Return type
ASCII(STRING str) To return the numeric ASCII code of the first

character
INT

CONCAT(STRING a,
STRING b..)

To return a single string representing all the
argument values joined together

STRING

LENGTH(STRING s) To return the length of characters in an
argument

INT

REVERSE(STRING a) To return the reverse string of an argument STRING

Besides these, there are many other string functions such as FIND_IN_SET, INSTR,
LOCATE, LOWER, UPPER, LTRIM, REPEAT, RTRIM, SUBSTR, TRANSLATE, TRIM, and UPPER.
Now, we can learn a few conditional functions, as described in the following table:

Function name Usage Return type
CASE An expression to get one or more possible values Argument
COALESCE To return the first specified non NULL argument Argument
IF To test an expression and then produce the result Argument
ISNULL To test if an expression is NULL or not Argument

Besides these, the other conditional functions are NV1 and CASE. Now it is time to
learn a few of the date/time-specific functions, as in the following table:

Function name Usage Return type
NOW() To return the current date and time in

UTC
TIMESTAMP

TO_DATE(STRING date) To convert a date string to a TIMESTAMP
value

TIMESTAMP

YEAR(STRING date) To return the year value from a string
date type

INT

DATEDIFF(date1, date2) To return the number of days between
two dates passed as arguments

INT

Chapter 3

[65]

Other date and time functions not described previously are DATE_ADD, DATE_SUB,
DAY, DAYNAME, DAYOFWEEK, FROM_UNIXTIME, FROM_UTC_TIMESTAMP, HOUR, MINUTE,
MONTH, SECOND, TO_UTC_TIMESTAMP, UNIX_TIMESTAMP, and WEEKOFYEAR.

The type conversion function
For type conversion, Impala uses the CAST() function within strict rules regarding data
types for functional parameters. The CAST() function is mostly used in conjunction
with other SQL statements with other functions to explicitly pass the desired data
types. The syntax for using the CAST operator is shown in the following example:

CAST (expression as TYPE)
SELECT CONCAT ('Today is ', 28 , 'October.');

The previous SQL statement will generate an error as 28 is used as a numeric value,
and the CONCAT function only accepts string values. So we can use the CAST operator
to convert numeric to STRING values as follows:

SELECT CONCAT ('Today is ', CAST(28 as STRING) , 'October.');

I have previously suggested that most of the functions are described in the SQL
documentation, so you can look at specific SQL documentation to learn more
about Impala built-in functions.

Unsupported SQL statements in Impala
At the time of writing this book, Impala's latest version, 1.1.x, does not support the
following SQL features, which are available in HiveQL:

• Nonscalar data types such as maps, array, and struct
• XML and JSON functions
• The LOAD DATA statement to load raw files
• Custom UDF, User Defined Aggregation Functions (UDAF), and User

Defined Table Generating Functions (UDTF) up to Cloudera Impala 1.1.x.
Please check Appendix, Technology Behind Impala and Integration with
Third-party Applications, on support for these functions in Impala 1.2.0 Beta.

• Sampling, Lateral Views, Roles, Custom SerDes, and Multiple DISTINCT

The Impala Query Language and Built-in Functions

[66]

Here is a list of HiveQL statements that are not supported in Impala:

• ANALYZE TABLE

• DESCRIBE COLUMN

• DESCRIBE DATABASE

• EXPORT TABLE

• IMPORT TABLE

• SHOW PARTITIONS

• SHOW TABLE EXTENDED

• SHOW TBLPROPERTIES

• SHOW FUNCTIONS

• SHOW INDEXES

• SHOW COLUMNS

• SHOW CREATE TABLE

Summary
By end of this chapter we have covered various SQL statements written using
Impala Query Language, which can be used either with the Impala shell or directly
from a web interface. When applicable, we have provided small examples of SQL
statements, because in the next chapter we will take the learning from this and the
previous chapters into a full-scale example, and apply these SQL statements to load
data from HDFS and then run queries on it. By the time this book was ready in
print, Impala 1.2.0 Beta was released with new features. It is possible that some of
the features written in this chapter either work differently or require more attention.
Please check the Cloudera documentation for more information regarding this.

Impala Walkthrough
with an Example

In this chapter, we will go over a use case to see Impala concepts in action. This way
you can experience a real-world scenario using Impala, and understand how and
where to use Impala statements in real-world applications. In this chapter, I will be
using a scenario as described in the following sections.

Creating an example scenario
We are going to deal with information related to automobiles. We have two data files
that contain information about automobiles and motorcycles in two separate text
files. The following conceptual image shows that within the Autos database, there
are two tables named Motorcycles and Automobiles.

Motorcycles
Automobiles

Autos

So far, it is imprinted on your mind that Impala is running on DataNode, and the
files in our project are stored on HDFS. First we will load these files from HDFS to
Impala and then we will use SQL statements to process this information through
multiple queries.

Impala Walkthrough with an Example

[68]

Example dataset one – automobiles
(automobiles.txt)
Let's take a look at this example dataset, which has a list of automobile names and
their properties as defined in the schema. The following is the first text file, which
has automobile-specific data:

• File: automobiles.txt
• Schema: make, model, year, fuel-type, numOfDoors, design, type,

cylinders, horsepower, city_hwy_mpg, price
Here is the data in the automobiles.txt file:
Audi,A4,2011,gas,4,sedan,casual,6,476,22-30,45000
Jeep,Compass,2007,gas,3,suv,sport,6,170,24-32,22000
Dodge,Challenger,2013,gas,4,coupe,casual,6,210,20-30,28000
Chevrolet,Volt,2014,electric,4,sedan,casual,0,180,35-40,35000
Toyota,Prius,2013,hybrid,4,sedan,casual,4,134,51-48,32000
BMW,M3,2010,gas,2,coupe,sport,6,300,18-28,41000
BMW,X5,2005,gas,4,suv,sport,6,265,19-26,55000
Toyota,Camry,2009,gas,4,sedan,casual,6,178,25-35,26000
Toyota,Camry,2014,hybrid,4,sedan,sport,6,200,43-39,30000
Honda,Civic,2013,gas,2,coupe,sport,4,140,28-36,18000
Nissan,Leaf,2014,electric,4,sedan,casual,0,107,129-102,29000
Audi,Q7,2013,gas,4,suv,sport,6,333,16-22,60000
Audi,A7 TDI,2014,diesel,4,sedan,sport,6,240,30-25,58000
Mercedes,CLA,2013,gas,4,sedan,casual,4,208,22-28,29000
Fisker,Karma,2014,electric,2,coupe,sport,0,260,85-90,100000

Example dataset two – motorcycles
(motorcycles.txt)
Now let's take a look at another example dataset, which has a list of motorcycle
names and their properties as defined in the schema. The following is the second
text file, which includes motorcycles-specific data:

• File: motorcycles.txt
• Schema: make, model, year, fuelType, wheels, body, style, cc_rpm,

highSpeed, auto, price
Here is the data in the motorcycles.txt file:
Honda,CBR600,1990,gas,2,casual,sport,599,165,false,12000
BMW,R1200RT,1990,gas,2,casual,sport,1170,135,false,20000
Honda,CB900,1995,gas,2,casual,sport,919,135,false,10000

Chapter 4

[69]

Honda,VFR400,1998,gas,2,casual,sport,399,130,false,8000
KTM,Super Duke,2005,gas,2,casual,sport,999,151,false,25000
Triumph,Speed Triple,2001,gas,2,deluxe,sport,1050,150,false,23000
Suzuki,RGV250,2000,gas,2,deluxe,sport,249,127,false,7500
Triumph,Daytona,gas,2005,2,deluxe,sport,675,156,false,16000
Triumph,Street Triple,2010,gas,2,casual,sport,123,141,true,12000
Ducati,1098,2010,gas,2,deluxe,sport,1099,180,false,30000
Harley,Tri Glide,2012,gas,3,deluxe,luxury,1600,180,false,35000
Harley,Iron,2012,gas,casual,luxury,1500,200,false,14000
Bramo,Icon,2012,electric,2,casual,sport,4500,80,false,20000
Zero,Police,2013,electric,2,casual,sport,4300,95,false,25000
Can-am,spider,2014,gas,3,deluxe,luxury,998,120,false,22000

Data and schema considerations
You cannot use a dash (-) with the schema name; instead use an underscore.
In the preceding example's dataset schema, you can see some of the schema
definition are using underscores while others are not.

In your data, you must not have spaces between a separator; otherwise, numeric
values cannot be processed correctly or you will get NULL instead.

Before we go further, I would like to make sure it is understood that
the preceding data is created by me, specifically for reference purpose
to demonstrate Impala query processing. This data is completely
fabricated and does not reflect any correct information.

Commands for loading data into Impala
tables
This section covers activity to load data into Impala tables in two steps. First step
moves the file, which we have created previously, from the local filesystem to HDFS.
In the second step, the data is transferred into Impala tables, from the source file
located on HDFS.

HDFS specific commands
Now we will make sure that the preceding files are located in our Linux files system
as follows:

[cloudera@localhost ~]$ ls -l *.txt
-rw-rw-r-- 1 cloudera cloudera 985 Oct 15 18:48 automobiles.txt
-rw-rw-r-- 1 cloudera cloudera 932 Oct 15 18:49 motorcycles.txt

Impala Walkthrough with an Example

[70]

Our next step is to move these files from the local filesystem to HDFS in separate
folders. Depending on your Hadoop version, you can use either Hadoop fs or
hdfs dfs; however, I have used hdfs dfs as follows:

[cloudera@localhost ~]$ hdfs dfs -mkdir /user/cloudera/automobiles
[cloudera@localhost ~]$ hdfs dfs -mkdir /user/cloudera/motorcycles
[cloudera@localhost ~]$ hdfs dfs -ls /user/cloudera/
Found 2 items
drwxr-xr-x - cloudera cloudera 0 2013-10-15 19:16 /user/
cloudera/automobiles
drwxr-xr-x - cloudera cloudera 0 2013-10-15 19:16 /user/
cloudera/motorcycles
[cloudera@localhost ~]$ hdfs dfs -moveFromLocal automobiles.txt /user/
cloudera/automobiles/automobiles.txt
[cloudera@localhost ~]$ hdfs dfs -moveFromLocal motorcycles.txt /user/
cloudera/motorcycles/motorcycles.txt
[cloudera@localhost ~]$ hdfs dfs -ls /user/cloudera/motorcycles/
Found 1 items
-rw-r--r-- 3 cloudera cloudera 932 2013-10-15 19:19 /user/
cloudera/motorcycles/motorcycles.txt
[cloudera@localhost ~]$ hdfs dfs -ls /user/cloudera/automobiles/
Found 1 items
-rw-r--r-- 3 cloudera cloudera 985 2013-10-15 19:17 /user/
cloudera/automobiles/automobiles.txt

Now, we will load the preceding data into two separate tables in two different
steps, to learn various ways of loading data. The tables we are using here are
external tables instead of internal. For automobile data, I will load them directly
from a script into the automobiles table; and then I will load motorcycle data in the
motorcycles table inside the Impala shell. In the script, I will add another empty
table, automakers. Later, we will join a list of automakers from both tables. All of
this processing will be done in a database named autos.

Loading data into the Impala table from HDFS
Here is the SQL script to create a database autos first, create the automobiles table,
and then load the whole dataset from HDFS. I am also creating an empty table
automakers in the autos_script.sql script as follows:

USE default;
DROP DATABASE IF EXISTS autos;
CREATE DATABASE autos;
USE autos;
DROP TABLE IF EXISTS automobiles;
CREATE EXTERNAL TABLE automobiles

Chapter 4

[71]

(
 make STRING,
 model STRING,
 year INTEGER,
 fuelType STRING,
 numOfDoors INTEGER,
 design STRING,
 type STRING,
 cylinders INTEGER,
 horsePower INTEGER,
 city_hwy_mpg STRING,
 price FLOAT
)
ROW FORMAT DELIMITED FIELD TERMINATED BY ',' STORED AS TEXTFILE
LOCATION '/user/cloudera/automobiles/automobiles.txt';
CREATE EXTERNAL TABLE IF NOT EXISTS automakers
(
 autoMaker STRING
)
ROW FORMAT DELIMITED FIELD TERMINATED BY ',';

Let's understand the preceding script. In the first line, we are setting the default
database and then removing the autos database if it exists. Next, we are creating
a totally new autos database and then using the auto database. After that, we
are dropping the automobiles table if it exists. Then, we are creating a new
automobiles table using the schema as defined earlier. Then, we are passing the
data source text files so the table can be populated with appropriate content. At last,
we will also create another table named automaker and use the IF NOT EXISTS
syntax. This syntax means that this particular table is created only if it does not exist.

Now, we are going to execute the preceding SQL script with the Impala shell using
the following command syntax:

$impala-shell -i Impala-Server-Name:PORT -f SQL_Script_Name.sql

Here is the execution of the preceding SQL script:

[cloudera@localhost ~]$ impala-shell -i localhost.localdomain:21000 -f
autos_setup.sql
Connected to localhost.localdomain:21000
Server version: impalad version 1.0.1 RELEASE (build
df844fb967cec8740f08dfb8b21962bc053527ef)
Query: use default
Query: drop DATABASE IF EXISTS autos
Query: create DATABASE autos
Query: use autos

Impala Walkthrough with an Example

[72]

Query: drop TABLE IF EXISTS automobiles
Query: create EXTERNAL TABLE automobiles (make STRING, model STRING,
autoyear INTEGER, fuelType STRING, numOfDoors INTEGER, design STRING,
autoType STRING, cylinders INTEGER, horsePower INTEGER, city_hwy_mpg
STRING, price FLOAT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE LOCATION '/user/cloudera/automobiles'
Query: drop TABLE IF EXISTS automakers
Query: create EXTERNAL TABLE automakers (autoMaker STRING)

Launching the Impala shell
Now, we will launch the Impala shell and verify if the autos database is created and
both automobiles and automakers are created or not. Let's launch the Impala shell
first as follows:

$impala-shell

Once the Impala shell is started, I have used the autos database first and verified our
steps from the preceding script.

Database and table specific commands
Now, we will use some database and table commands to verify the execution
of the script in the previous sections. Once we see that the database is created
and data is loaded, we can push queries from the Impala shell against our example
database as follows:

[Hadoop.testdomain:21000] > USE autos;
[Hadoop.testdomain:21000] > SHOW tables;
Query finished, fetching results ...
+-------------+
| name |
+-------------+
| automakers |
| automobiles |
+-------------+
Returned 2 row(s) in 0.11s

In the preceding code, we are first using the autos databases and then listing all the
tables within this selected database.

Chapter 4

[73]

In the next step, we will understand each table's schema using the describe
command as shown in the following two examples. The first example is as follows:

[Hadoop.testdomain:21000] > describe automakers;
Query finished, fetching results ...
+------------+--------+---------+
| name | type | comment |
+------------+--------+---------+
| automaker | string | |
+------------+--------+---------+
Returned 2 row(s) in 0.46s

The following is the second example:

[Hadoop.testdomain:21000] > describe automobiles;
Query finished, fetching results ...
+--------------+--------+---------+
| name | type | comment |
+--------------+--------+---------+
make	string	
model	string	
autoyear	int	
fueltype	string	
numofdoors	int	
design	string	
autotype	string	
cylinders	int	
horsepower	int	
city_hwy_mpg	string	
price	float	
+--------------+--------+---------+
Returned 11 row(s) in 0.54s

In the preceding code snippets, you can see how the describe command shows each
field's name and field-type information.

Now, I will create another table named motorcycles and load data from the
/user/cloudera/motorcycles/motorcycles.txt file located in HDFS into
the table as follows:

[Hadoop.testdomain:21000] > CREATE EXTERNAL TABLE IF NOT EXIST
motorcycles (make STRING, model STRING, year INTEGER, fuelType
STRING, wheels INTEGER, body STRING, style STRING, cc_rpm INTEGER,
highSpeed INTEGER, automatic BOOLEAN, price FLOAT) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION '/user/
cloudera/motorcycles' ;

Impala Walkthrough with an Example

[74]

Query: create EXTERNAL TABLE motorcycles (make STRING, model STRING,
year INTEGER, fuelType STRING, wheels INTEGER, body STRING, style
STRING, cc_rpm INTEGER, highSpeed INTEGER, automatic BOOLEAN, price
FLOAT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS
TEXTFILE LOCATION '/user/cloudera/motorcycles'

In the preceding command, we are creating an external table only if it does not exist.
And then we will pass the motorcycles text content from the text file to populate
the table.

Now, we can check the schema of the newly created motorcycles table using the
describe command as follows:

[Hadoop.testdomain:21000] > describe motorcycles;
Query finished, fetching results ...
+-----------+---------+---------+
| name | type | comment |
+-----------+---------+---------+
make	string	
model	string	
year	int	
fueltype	string	
wheels	int	
body	string	
style	string	
cc_rpm	int	
highspeed	int	
automatic	boolean	
price	float	
+-----------+---------+---------+
Returned 11 row(s) in 1.22s

SQL queries against the example
database
Now, let's list all the items from both the automobiles and motorcycles table.
Because we have a long list of items, to save page space we will limit the output
to only the top five items, as follows:

[Hadoop.testdomain:21000] > select * from automobiles limit 5;
Query finished, fetching results ...

Chapter 4

[75]

+-----------+------------+----------+----------+------------+--------
+----------+-----------+------------+--------------+--------+
| make | model | autoyear | fueltype | numofdoors | design |
autotype | cylinders | horsepower | city_hwy_mpg | price |
+-----------+------------+----------+----------+------------+--------
+----------+-----------+------------+--------------+--------+
| Audi | A4 | 2011 | gas | 4 | sedan |
casual | 6 | 476 | 22-30 | 45000 |
| Jeep | Compass | 2007 | gas | 3 | suv |
sport | 6 | 170 | 24-32 | 22000 |
| Dodge | Challenger | 2013 | gas | 4 | coupe |
casual | 6 | 210 | 20-30 | 28000 |
| Chevrolet | Volt | 2014 | electric | 4 | sedan |
casual | 0 | 180 | 35-40 | 35000 |
| Toyota | Prius | 2013 | hybrid | 4 | sedan |
casual | 4 | 134 | 51-48 | 32000 |
+-----------+------------+----------+----------+------------+--------
+----------+-----------+------------+--------------+--------+
Returned 5 row(s) in 1.77s

In the next step, we will use the same select statement with a variation to list
only those motorcycles that have autoyear above 2010, as shown in the following
code snippet:

[Hadoop.testdomain:21000] > select * from motorcycles where year >
2010;
Query finished, fetching results ...
+---------+---------------+------+----------+--------+--------+-------
-+--------+-----------+-----------+-------+
| make | model | year | fueltype | wheels | body | style
| cc_rpm | highspeed | automatic | price |
+---------+---------------+------+----------+--------+--------+-------
-+--------+-----------+-----------+-------+
| Harley | Tri Glide | 2012 | gas | 3 | deluxe | luxury
| 1600 | 180 | false | 35000 |
| Harley | Iron | 2012 | gas | NULL | luxury | 1500
| 200 | NULL | NULL | NULL |
| Bramo | Icon | 2012 | electric | 2 | casual | sport
| 4500 | 80 | false | 20000 |
| Zero | Police | 2013 | electric | 2 | casual | sport
| 4300 | 95 | false | 25000 |
| Can-am | spider | 2014 | gas | 3 | deluxe | luxury
| 998 | 120 | false | 22000 |
+---------+---------------+------+----------+--------+--------+-------
-+--------+-----------+-----------+-------+
Returned 5 row(s) in 0.61s

Impala Walkthrough with an Example

[76]

Now, we will try to get a list of unique automakers from both the automobiles and
motorcycles tables by using the distinct command as follows:

[Hadoop.testdomain:21000] > select distinct(make) from automobiles;
Query finished, fetching results ...
+-----------+
| make |
+-----------+
| Mercedes |
| Audi |
| Nissan |
| Dodge |
| BMW |
| Toyota |
| Fisker |
| Honda |
| Chevrolet |
| Jeep |
+-----------+
Returned 10 row(s) in 0.68s

And for the motorcycles table, we will use the distinct command as follows:

[Hadoop.testdomain:21000] > select distinct(make) from motorcycles;
Query finished, fetching results ...
+---------+
| make |
+---------+
| Can-am |
| Suzuki |
| BMW |
| Zero |
| KTM |
| Bramo |
| Honda |
| Triumph |
| Ducati |
| Harley |
+---------+
Returned 10 row(s) in 0.48s

Chapter 4

[77]

SQL join operation with the example
database
Now, we will try to check which maker is common between both tables and their
models by using the join SQL command as follows:

[Hadoop.testdomain:21000] > select automobiles.make, automobiles.
model, motorcycles.make,motorcycles.model from automobiles JOIN
motorcycles USING (make);
Query finished, fetching results ...
+-------+-------+-------+---------+
| make | model | make | model |
+-------+-------+-------+---------+
BMW	M3	BMW	R1200RT
BMW	X5	BMW	R1200RT
Honda	Civic	Honda	VFR400
Honda	Civic	Honda	CB900
Honda	Civic	Honda	CBR600
+-------+-------+-------+---------+
Returned 5 row(s) in 0.40s

Now, we will insert automakers from both the automobiles and motorcycles tables
into the automakers table by using the Insert Overwrite and Insert Into SQL
statements as follows:

[Hadoop.testdomain:21000] > INSERT OVERWRITE TABLE automakers SELECT
distinct(make) from automobiles;
Inserted 10 rows in 2.00s
[Hadoop.testdomain:21000] > INSERT INTO TABLE automakers SELECT
distinct(make) from motorcycles;
Inserted 10 rows in 0.71s

Using various types of SQL statements
In the automobiles table, I have included a field named city_hwy_mpg. It includes
miles per gallon in the city and highway, separated by a dash (-). Here, I want to
show you how to use the STRING manipulation to get both highway and city miles
per gallon values along with the LIMIT and WHERE clauses:

[Hadooptestdomain:21000] > select city_hwy_mpg, substr(city_hwy_
mpg,1,2), substr(city_hwy_mpg, instr(city_hwy_mpg, "-")+1 , 5) from
automobiles WHERE price > 15000 LIMIT 2;
Query finished, fetching results ...

Impala Walkthrough with an Example

[78]

+--------------+----------------------------+-------------------------
------------------------------+
| city_hwy_mpg | substr(city_hwy_mpg, 1, 2) | substr(city_hwy_mpg,
instr(city_hwy_mpg, '-') + 1, 5) |
+--------------+----------------------------+-------------------------
------------------------------+
| 22-30 | 22 | 30
|
| 24-32 | 24 | 32
|
+--------------+----------------------------+-------------------------
------------------------------+
Returned 2 row(s) in 0.35s

In the preceding code snippet, the substr SQL command is used to select the first
two letters that represent the city_mpg value. After this, instr is used to find the
location of - and then the same substr is used to get the hwy_mpg part of the value.

Now, let's use the COUNT and DISTINCT clause to collect unique automakers
as follows:

[Hadoop.testdomain:21000] > select count(distinct(make)) from
automobiles;
Query finished, fetching results ...
+----------------------+
| count(distinct make) |
+----------------------+
| 10 |
+----------------------+
Returned 1 row(s) in 0.48s

The preceding distinct SQL command removes the duplicate make values to make
them unique and after that the count SQL command counts all these items to return
the result.

Now, you will see how to use the EXPLAIN clause to understand a query execution
as follows:

[Hadoop.testdomain:21000] > explain select * from motorcycles where
price > 10000 and price < 20000;
PLAN FRAGMENT 0
 PARTITION: UNPARTITIONED
 1:EXCHANGE
 tuple ids: 0
PLAN FRAGMENT 1
 PARTITION: RANDOM
 STREAM DATA SINK

Chapter 4

[79]

 EXCHANGE ID: 1
 UNPARTITIONED
 0:SCAN HDFS
 table=autos.motorcycles #partitions=1 size=889B
 predicates: price > 10000.0, price < 20000.0
 tuple ids: 0

The explain command takes the remaining part of the query and then shows how
it is going to handle the query. If you pass the select command with explain, you
will get results about the query execution plan from the optimizer. Depending upon
your query, explain will show you if a partition is used, where the data is stored,
how the results are fetched from the table, and if any index is used or not. You can
use the result from the explain SQL command to do an interactive analysis of your
query and then modify it for faster execution as and if needed. You can also use the
results from explain to troubleshoot specific issues.

Summary
In this chapter, you have learned how to use various SQL statements in Impala. The
example covers various aspects of data transformation and data processing. I hope
by using the preceding examples, you could learn the SQL statements and functions
described in detail in Chapter 3, The Impala Query Language and Built-in Functions. You
can continue working on this autos database and the automobiles and motorcycles
table to learn other SQL clauses and built-in functions as well. The main reason you
should use Impala instead of Hive is the great increase in query-processing speed.
The execution time for the first query in both Apache Hive and Impala will be nearly
the same. However, for the subsequent queries, you will see a tremendous increase
in the speed of query execution. This results in new real-time performance to justify
your use of Impala.

In Chapter 5, Impala Administration and Performance Improvements, we are going to
learn how to administer and manage Impala to improve performance and keep it
running in the high-availability mode.

Impala Administration and
Performance Improvements

After going through all the examples in the previous chapter, I am sure you are able
to process data through Impala queries. Now you will have questions about how to
improve query performance, and this is one of the two key objectives of this chapter.
The other objective is to show effective management of our Impala cluster that will
keep it up and running.

In this chapter, we will cover two important topics: Impala administration and
performance improvements. Within the Impala administration section, I will show you
how you can administer Impala using Cloudera Manager. After that, using debug
web server, I will teach you to verify Impala-specific information for its correctness.
We will see Impala logs and daemons using the statestore UI. The next part of the
Impala admin is about Impala High Availability. We will learn key traits of how to
keep Impala going in the event of a problem.

In the Improving performance section, we will cover various ways to improve and tune
query performance. We will learn to test Impala queries to understand if they are
performing well or not and, if not, what you can do to improve their performance—
either fine-tune the cluster or modify the query statement or its execution. Finally,
let's start with Impala administration.

Impala administration
We have already discussed in previous chapters that you can install and run Impala
with or without Cloudera Manager; however, for simplicity, it is good to have
Cloudera Manager manage your Impala cluster. This will help you spend your
crucial time working with data transformation rather than cluster administration.
In this chapter, I will assume that you are managing your Impala cluster using
Cloudera Manager and provide more information based on that assumption.

Impala Administration and Performance Improvements

[82]

Administration with Cloudera Manager
While describing Cloudera Manager in detail is beyond the scope of this book,
I will try to provide some guidance to you so you can use Cloudera Manager to
administer Impala. Once the Cloudera Manager web-based user interface is in front
of you, just select Service impala1 from the Services list, and then you have multiple
ways to start, stop, and restart both the Impala daemon(s) and statestore service
directly from there. You can also change the Impala configuration, view log files,
manage Impala nodes, and troubleshoot some of the problems just by opening the
Impala debugging interface.

In the next few screenshots, let's see how you can use the Cloudera Manager
web-based user interface to manage Impala:

In the preceding screenshot, you can see the list of Impala daemons and statestore
services running that can be managed. In the Queries tab, you can search the SQL
statement directly from the Impala web interface and look at various graphs and
charts to understand query performance.

In the following screenshot, you can learn configuring Impala auditing features with
Impala 1.1.x and above. This configuration helps you to input an auditing scheme
based on Username, Role, and Host Ip Address and, based on that, you can analyze
the logs directly on the web or download them for further processing.

Chapter 5

[83]

I have detailed Impala logging in Chapter 6, Troubleshooting Impala. However,
because in this chapter we are talking about Impala administration, it is appropriate
to inform you that you can use Cloudera Manager to configure Impala logging based
on Impala services on various nodes and then read those logs at your convenience,
as shown in the following screenshot:

Impala Administration and Performance Improvements

[84]

The Impala statestore UI
When the Impala server is running with Cloudera Manager, you can open the
Impala debugging web interface at port 25000, as shown in the following screenshot.
You can also verify the Impala configuration on the /varz page and logs on the /logs
page, query metrics on /metrics, and do many other things.

Impala High Availability
Impala runs on DataNodes and takes advantage of any High Availability (HA)
configuration available to DataNodes. Impala uses data stored in HDFS, which is the
distributed data storage layer in Hadoop, shared between NameNode and DataNodes.
Hadoop does provide the NameNode High Availability configuration; if you would
like to learn more about it, I would recommend looking at the Hadoop documentation.

To make Impala High Availability, the best option is to take advantage of the HDFS
HA feature. As an Impala cluster administrator, you can upgrade a Hive metastore
to use HDFS HA features. Because Impala depends on Hive metastore, in the event
the primary metastore is not available, it will instantly be available on the other
HDFS HA node without interrupting any significant downtime.

Chapter 5

[85]

Single point of failure in Impala
The best way to start this section is that there is no single point of failure in Impala,
meaning every and all Impala daemons are capable of executing incoming queries. A
specific node failure will impact only those query segments that were distributed on
the affected machine because one single query is distributed across multiple nodes. In
this situation, re-execution of the same query will allow the system to recover from the
problem. For Hadoop cluster stability, it is suggested to run various Impala components
on DataNode. Running Impala on NameNode is not suggested because in an
unfortunate event, Impala on NameNode could cause overall NameNode failure, which
ultimately could impact Hadoop cluster stability. Running Impala on DataNode means
as long as the Hadoop cluster is up and running smoothly, the Impala cluster will
function well, even if there is an issue with failure of a single or a few DataNodes. Also,
if NameNode is highly available, the Impala cluster will be highly available as well.

One thing to remember on the same account is that Impala has dependency on
statestore, which runs only on a single machine. If statestore is not available, it will
not bring Impala to a complete shutdown; however, it does impact its operation and
query distribution.

Improving performance
In this section, we will learn a few helpful pointers to improve performance by
modifying Impala daemon execution and the underlying platform where Impala
performs user actions.

Enabling block location tracking
When queries are executed in Impala, data is read from HDFS that is distributed
across multiple DataNodes in the form of data blocks. If Impala knows more
information about these data blocks on HDFS, the data can be read faster and queries
can achieve faster execution. To enable block location tracking for Impala, you just
need to perform the following steps:

1. Modify the HDFS configuration hdfs-site.xml as follows:
<property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
</property>

2. Copy hdfs-site.xml and core-site.xml from the Hadoop cluster to each
Impala node into the Impala configuration folder, /etc/impala/conf.

3. Restart all DataNodes in your cluster.

Impala Administration and Performance Improvements

[86]

Enabling native checksumming
Computing data checksum for very large amounts of data could add a significant
amount of time. So having a native library to perform checksum helps improve the
performance. You can use the following information to enable native checksumming
in Impala:

• If Impala is installed using Cloudera Manager, native checksumming is
configured automatically and no action is needed.

• To enable native checksumming on your self-installed Impala, you must
build and install the Hadoop native library, libhadoop.so. If this library
is not available, you might receive the following message in Impala logs,
indicating native checksumming is not enabled:
"Unable to load native-hadoop library for your platform... using
built-in-java classes where applicable"

Enabling Impala to perform short-circuit read
on DataNode
Short-circuit read means reading data locally from the filesystem instead of
communicating first with DataNode, and it definitely improves performance.
You must have Cloudera CDH 4.2 or higher to achieve faster and compatible
short-circuit reading. The following guideline is provided based on the
assumption that you have Cloudera CDH 4.2 or higher installed:

1. Modify hdfs-site.xml on each Impala node as follows:
<property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
</property>
<property>
 <name>dfs.domain.socket.path</name>
 <value>/var/run/hadoop-hdfs/dn._PORT</value>
</property>
<property>
 <name>dfs.client.file-block-storage-locations.timeout</name>
 <value>3000</value>
</property>

2. Make sure that /var/run/hadoop-hdfs/ is group writable for root users.
3. Copy hdfs-site.xml and core-site.xml from the Hadoop configuration to

each Impala node configuration at /etc/impala/conf.
4. Restart all DataNodes.

Chapter 5

[87]

Adding more Impala nodes to achieve higher
performance
It is a fact that Impala performance improves if more nodes are added to the cluster.
In the same way, Hadoop performance improves by adding more DataNodes and
TaskTrackers. Having more nodes in the Hadoop cluster will distribute the data to
more clusters, and queries will have more distribution, which ultimately will return
higher performance.

Optimizing memory usage during query
execution
You can improve query performance by restricting the amount of memory consumed
by a query during its execution and you can do that by setting the –mem_limits flag
when starting Impala daemon. This flag will restrict the memory consumed only by a
query; however, there is still memory available for starting Impala to cache metadata
and perform other startup actions.

Query execution dependency on memory
You might wonder about memory limitation impact on query execution as Impala
has a strong dependency on available memory. If dataset size exceeds the available
memory in a machine, the query will fail. The memory usages in Impala are not
directly based on the input dataset size; instead it varies depending on types of
query. An aggregation will require memory equivalent to the number of rows after
grouping; however, join queries require memory equivalent to the combined size of
remaining tables excluding the biggest table.

Using resource isolation
If you are using Cloudera Manager, you have the ability to implement resource
isolation using the cgroups mechanism and it can be achieved by configuring
Cloudera Manager. For more information, please read the Cloudera Manager
documentation on resource isolation.

Impala Administration and Performance Improvements

[88]

Testing query performance
Most user time is spent writing and executing queries in Impala. To understand
if your Impala cluster is performing optimally, you usually measure query
execution time before and after fine-tuning the Impala cluster or your query. The
difference between both measurements explains if you have achieved any positive
improvements. Let's learn how to measure query execution time precisely to make
proper judgments.

Benchmarking queries
When processing terabytes of data from multiple nodes, a query runs for a long time.
If you are printing a query output for a console, the time to render the query output
on the console is still part of the query execution. It is suggested that you disable the
query output on the console by using the –B option with the query. This is because
you can get the closest execution time. The other option is to save query results in a
file using the –o option.

Verifying data locality
We have repeatedly seen that to achieve maximum performance with Impala,
the query must be distributed on every node in the cluster. You can design a query
to be executed on all the nodes in the cluster; however, how can you check if the
query actually ran on all nodes? We are going to find the answer to this question
in this section.

To find out if a query is executed on all nodes, you will have to dig inside the Impala
logs. Make sure you have Impala logging enabled and, after executing the query,
open the logs either on an editor or using Cloudera Manager or Navigator. In the
logs, if you find the following line, it means the query is not distributed and it is not
running on other nodes:

Total remote scan volume = 0

You can search for the presence of remote scan in the log files and, based on
its occurrence, you can troubleshoot this problem on your Impala cluster. More
information related to troubleshooting this problem is explained in Chapter 6,
Troubleshooting Impala.

Chapter 5

[89]

Choosing an appropriate file format and
compression type for better performance
Impala is used to process large amounts of data stored in your Hadoop cluster.
There is no limitation in Hadoop about what type of data can be stored; however,
to improve data access performance in Hadoop, some file types and compression
provide better results than others. Impala can query most of the popular structured
and unstructured file formats available in Hadoop along with compression used in a
file. Here is a list of the supported file formats and compression types in Impala:

File type File format Compression type
Text Unstructured LZO
Avro Structured GZIP, BZIP2, deflate, Snappy
RCFile Structured GZIP, BZIP2, deflate, Snappy
SequenceFile Structured GZIP, BZIP2, deflate, Snappy
Parquet Structured GZIP, Snappy (Default)

Now let's take a look at how choosing a proper file format can improve performance
in Impala:

• Sometimes the original file format in which data is stored does not provide
the required performance. The possible solution here is to create a new table
with a different file format or compression, and then use the INSERT statement
to perform a one-time conversion. This new table will provide comparatively
better performance if you have chosen a new format or compression carefully.

• Processing data, which is compressed, requires disk I/O and CPU cycles to
read and uncompress. However, if data were uncompressed, only the disk
I/O would comprise the primary cost during processing. So if the application
architecture supports processing, uncompressed data does expedite the
performance. With uncompressed data storage, you will end up taking lots
of space on the disk compared to compressed data. So, you will need to take
storage cost into consideration with performance gain.

• Sometimes, changing the file format or compression does not yield any
performance gain; rather it slows down the processing comparatively. In this
scenario, just using the original file and compression format is fine. So, the
lesson here is to understand the file and compression formats properly and
then choose them to derive better performance.

Impala Administration and Performance Improvements

[90]

Chapter 7, Advanced Impala Concepts, has more information about various
file formats and compression types and how to use them in Impala.

Fine-tuning Impala performance
In this section, let's review a few key factors that affect Impala performance.

Partitioning
In this method, data is physically divided from frequently queried fields or columns
into different values. This way, when a query is executed, it processes only a specific
partition or a portion of the data, achieving significant faster results than the full
dataset. In general, data files specific to a single table reside in a single directory.
Using partitioning, you can distribute the data in a way such that a fraction of data
should be read, depending on the query and its data-limiting clause. Once a partition
is applied to a table, the data is physically loaded on a different location on the disk
based on the query parameter, which provides faster access to the data when queried
by the SELECT statement and the partition name.

You can write TABLE specific Impala SQL statements as follows to take advantage of
the PARTITIONED BY method:

• Add a partition when creating a table by adding the PARTITIONED BY clause
as follows:
CREATE TABLE […] PARTITIONED BY

• You can modify an existing table to support partitions by using the ALTER
TABLE statement followed by PARTITONED BY as follows:
ALTER TABLE […] PARTITIONED BY

Join queries
It is a well-known fact that a query operating on multiple tables using the JOIN
operation will take a long time to finish if it is not written correctly. Here are some
techniques you can use in this regard:

• A well-known technique for fine-tuning an Impala join query is to specify
the tables in an optimal order by first having the table that has the maximum
number of records or rows, which are part of the result set. After that, select
the next largest table in terms of the number of rows in the results set, and
finally the smallest table.

Chapter 5

[91]

• Another method to optimize a faster JOIN operation is to use the HINT
clause with JOIN to select a specific Impala query planner. When a SELECT
statement based on JOIN is given to Impala to execute, the Impala query
planner works on it to find the best strategy. The Impala query planner first
checks metadata and the number of records in the result set for each table in
the SELECT statement and then chooses an appropriate JOIN strategy. You
can get this information by using the EXPLAIN clause with your query. If you
think that changing the JOIN strategy will be helpful, you can use the HINT
clause as follows to apply the specific JOIN type. You can learn more about
HINT in any detailed SQL documentation:
SELECT table1.field1, table2.field1 FROM table1 JOIN
 [BROADCAST | SHUFFLE] table2 ON [condition….]

The SQL JOIN operation itself is very large and requires a great deal of
understanding to optimize. While the preceding information is good for
reference purposes, I would suggest reading more details on it in an external
reference document to achieve optimum performance with JOIN queries.

Table and column statistics
In the previous section, we talked about the query planner. Now, we will learn
how the query planner decides which strategy is best for it. The query planner uses
individual column statistics by getting metadata from the metastore if it is available.
All the columns, which are part of the result set in the JOIN query, are calculated for
all the records, which helps the query planner to make its decision.

The Impala query planner also uses statistics for all the tables and partitions from the
metastore and, based on this information, it makes a decision. These table, column,
and partition statistics can be gathered using the ANALYZE TABLE statement by
passing the table name. I would like to inform you that the Impala query planner
does not create this information; instead it depends on Hive for this and the ANALYZE
TABLE statement does work on Hive Shell only for now. The syntax of this SQL
statement is as follows:

ANALYZE TABLE table_name COMPUTE STATISTICS FOR COLUMNS all_column_
list;
ANALYZE TABLE table_name PARTITION (partition_specs) COMPUTE
STATISTICS FOR COLUMNS column_list;

Impala Administration and Performance Improvements

[92]

Summary
In this chapter, we have covered Impala administration and performance
improvement using various methods including Cloudera Manager. We discussed
Impala High Availability, which mainly depends on Hadoop NameNode High
Availability. We studied methods such as enabling block location tracking, native
checksumming, and short-circuit read, that help us read data quickly in the Hadoop
cluster to improve Impala performance. We also discussed how various types of file
and compression formats help us to improve performance and, if not chosen wisely,
the file format or compression could drag down the data processing performance.
We also discussed gaining higher query execution performance by modifying the
query in such as way that its processing is expedited. As most of these topics require
a great deal of background information, having them here in this book as a reference
will definitely help you to understand them and use them to improve your Impala
cluster performance.

The next chapter is all about troubleshooting Impala when experiencing problems.
We will extend our knowledge by learning how to find the root cause of various
problems in the Impala cluster and resolve them quickly.

Troubleshooting Impala
In the first part of this chapter, we are going to learn how to troubleshoot various
Impala issues in different categories. We will use Impala logging to understand more
about Impala execution, query processing, and possible issues. The objective of this
chapter is to provide you some critical information about Impala troubleshooting
and log analysis, so that you can manage the Impala cluster effectively and make it
useful for your team and yourself. Let's start with troubleshooting various problems
while managing the Impala cluster.

Troubleshooting various problems
Impala runs on DataNodes in a distributed clustered environment. So when we
consider the potential issues with Impala, we also need to think about the problems
within the platform itself that can impact Impala. In this section, we will cover most
of these issues along with query, connectivity, and HDFS-specific issues.

Impala configuration-related issues
If you find that Impala is not performing as expected, and you want to make sure
it is configured correctly, it is best to check the Impala configuration. With Impala
installed using Cloudera Manager, you can use the Impala debug web server at port
25000 to check the Impala configuration. Here is a small list describing what you
could see in the Impala debug web server:

• Impala Configuration Variables List:
http://impala_server_name:25000/varz

• Impala Memory consumption details: http://impala_server_
name:25000/memz

• Impala cluster statistics: http://impala_server_name:25000/metrics
• All databases and tables: http://impala_server_name:25000/catalog

Troubleshooting Impala

[94]

The block locality issue
In Chapter 5, Impala Administration and Performance Improvements, we have learned
that enabling "block locality" helps Impala to process queries faster. However, it is
possible that "block locality" is not configured properly and you might not be taking
advantage of such functionality. You can make sure by checking the logs to verify if
you see the following log message:

Unknown disk id. This will negatively affect performance. Check your
hdfs settings to enable block location metadata

If you see the preceding log message, it means that tracking block locality is
not enabled. Therefore, configure it correctly as described in Chapter 5, Impala
Administration and Performance Improvements.

Native checksumming issues
We have also studied in Chapter 5, Impala Administration and Performance
Improvements, that having native checksumming improves performance. If you see
the following log message, it means native checksumming is not enabled and you
need to configure it correctly. This is described in Chapter 5, Impala Administration and
Performance Improvements.

Unable to load native-hadoop library for your platform... using
builtin-java classes where applicable

Various connectivity issues
In this section, we will cover various connectivity scenarios and learn what could go
wrong in each and how to troubleshoot them.

Connectivity between Impala shell and Impala
daemon
When you start Impala shell by passing the hostname using the -i option or the
Impala shell, try connecting to the default Impala daemon that is running on the
local machine. The connection can not be established. You will see a connection
error as shown in following screenshot:

Chapter 6

[95]

To troubleshoot the preceding connection problem, you can try the following options:

• Check if the hostname is correct and a connection between both machines
is working. You can use ping or another similar utility to check the
connectivity between machines.

• Make sure that the machine where the Impala shell is running can resolve the
Impala hostname, and the default port 21000 (or the other configured port) is
open for connectivity.

• Make sure that the firewall configuration is not blocking the connection.
• Check whether the respective process is running on the Impala daemon host

machine. You can use Cloudera Manager or the ps command to get more
information about the Impala process.

ODBC/JDBC-specific connectivity issues
Impala provides connection through the third-party application that uses the
ODBC/JDBC driver running on the machine, which is trying to connect to the
Impala server. The connection may not work due to various reasons, which
are given as follows:

• ODBC use the default 21000 port and JDBC uses the 21050 port in Impala
to provide the connectivity; make sure that the incoming to these ports are
working. Cloudera ODBC connection 2.0 and 2.5 uses the 21050 port when
connecting to Impala.

• If your Impala cluster environment is secured through Kerberos or
another security mechanism, use appropriate settings in the ODBC/JDBC
configuration. In some cases, you may need to contact the application vendor
to receive information about the problem.

• After the connection, you may find that some of the functions are not
working over the ODBC/JDBC connection. It is very much possible that not
all functions are supported, so you may be trying to use an ODBC/JDBC
function that is not supported.

• The JDBC connectivity requires a specific Java Runtime depending on the
JDBC version. Because of the Java Runtime compatibility requirement with
JDBC, you must make sure that you do have a compatible Java Runtime on a
machine that is making the JDBC connection to the Impala server.

Troubleshooting Impala

[96]

Query-specific issues
The very first query-specific issue is a bad query. The Impala query interpreter is
smart in various ways to guide you within the Impala shell for a bad query, or while
using API to execute the query statement a detailed error in the log file about it will
help you. Besides a bad query, you may also experience the following issues:

• You might use an unsupported statement or clause in your query, which will
cause a problem in query execution.

• Using an unsupported data type or a bad data transformation is another
prime reason for such issues and the resulting error or log will be helpful to
troubleshoot what went wrong.

• Sometimes the query is localized. This means that it is not distributed on
other nodes. The problem could be that either the current node could not
connect to the other nodes due to connectivity issues, or the Impala daemon
is not running there. You will have to troubleshoot this issue by using
general connectivity troubleshooting methods between two machines. Also,
make sure Impala daemons are running with proper configuration.

• Queries could return wrong or limited results. This is possible if metadata
is not refreshed in the Impala cluster. Using the REFRESH statement, you
can sync Hive metadata to solve this problem. Also, make sure that Impala
daemons are running on all the nodes.

• If you find that the JOIN operations are failing, it is very mush possible
that you are hitting the memory limitation. While checking Impala logs,
you might look for Out of Memory errors logged to confirm memory
limitation-specific errors. As the JOIN operation is performed among
multiple tables, which requires comparatively large memory to process
the JOIN request, so adding more memory could solve this problem.

• Your query performance could be slow. In the previous chapter, we
discussed various ways to find the trouble and then expedite the
query performance.

• Sometimes, when a query fails in Impala and you could not find a reason, try
running the same query in Hive to see if it works there or not. If it works in
Hive, it could be an Impala-specific configuration or a limitation issue.

Chapter 6

[97]

Issues specific to User Access Control (UAC)
During the Impala installation process, the Impala username and group is created.
Impala runs under this username and accesses system resources within this group.
If you delete this user or group, or modify its access, either Impala will start acting
weird or it will show some undeterministic behavior. If you start Impala under the
root user, it will also impact the Impala execution by disabling direct reading. So if
you suddenly experience such issues, please check Impala user access settings and
make sure that Impala is running as configured.

Platform-specific issues
In this section, I will explain a few platform-specific issues so the an event an Impala
execution is sporadic or not working at all, you can troubleshoot the problem and
find the appropriate resolution.

Impala port mapping issues
Impala has two main services, Impala daemon and statestore, and both these services
are configured to use internal and external ports for effective communication. This is
described in the following table:

Component Port Type Service description
Impalad 21000 External Frontend port to communicate with the Impala

shell
Impalad 21050 External Frontend port for ODBC 2.0
Impalad 22000 Internal Backend port to communicate with each other
Impalad 23000 Internal Backend port to get update from the statestore
Impalad 25000 External Impala web interface for monitoring and

troubleshooting
Statestored 24000 Internal Statestore listen for registration/unregistration
Statestored 25010 External Statestore web interface for monitoring and

troubleshooting

Cloudera ODBC Connector 1.x uses Impala port 21000 to create
connections; however, the latest Cloudera ODBC Connector 2.0
and 2.5 connects to Impala on the 21050 port.

It is important to remember that if any of the preceding port configuration is wrong
or blocked, you will experience various problems and would need to make sure that
the preceding port configuration is correct.

Troubleshooting Impala

[98]

HDFS-specific problems
Impala runs on the DataNode that has dependency on NameNode in the Hadoop
environment. Various HDFS-specific issues such as permission to read or write data
on HDFS, space limitation, memory swapping, or latency could impact the Impala
execution. Any of these issues could introduce instability in HDFS or impact the
whole cluster, depending on how serious the problem is. In this situation, you would
need to work with your Hadoop administrator to resolve these problems and get
Impala up and running.

Input file format-specific issues
Impala can load and query various kinds of datafiles stored on Hadoop. Sometimes
you may receive an error while reading these datafiles or failed query requests. Most
probably it is because either the file format is not supported, or Impala is limited to
only queries and cannot process CREATE or INSERT requests. In the following table,
you can see which file formats are supported and whether Impala can read and
query those files:

File type Format type Compression
type

Is CREATE and
INSERT supported

Is the query
supported?

Text Unstructured LZO Yes Yes
Avro Structured Snappy, GZIP,

deflate, BZIP2
No Query only

(use Hive to
load file)

RCFile Structured Snappy, GZIP,
deflate, BZIP2

CREATE: Yes

INSERT: No
Query only
(use Hive to
load file)

SequenceFile Structured Snappy, GZIP,
deflate, BZIP2

CREATE: Yes

INSERT: No
Query only
(use Hive to
load file)

Parquet Structured Snappy, GZIP Yes Yes

Using Cloudera Manager to troubleshoot
problems
Installing Impala with Cloudera Manager will not only help in installing and upgrading
Impala, but it will also be very helpful in Impala management and troubleshooting.

Chapter 6

[99]

Impala log analysis using Cloudera Manager
In Cloudera Manager, you can navigate to the Diagnose | Logs option to select
Impala-specific log configurations, as shown in the following screenshot:

In the log configuration page, you can select Impala daemon, statestore, and log
types such as INFO, DEBUG, WARN, ERROR, TRACE, or FATAL. This is shown in the
following screenshot:

Troubleshooting Impala

[100]

After Impala-specific log configuration is completed, you can see the Impala log
files on the same page along with log snippets. You can view the whole log files
by just performing one-click operation, as shown in the following screenshot:

Besides this, you can view the Impala log files at console windows by visiting the
/var/log/impala or /var/log/impalad folders. These are the folders where Impala
stores logs by default in each node where impalad is running. The entire log files are
generated at the restart of the impalad process with a timestamp. In these directories,
the Impala log files are as follows:

Log file name The information stored in the log file
impalad.INFO Impala daemon-specific configuration settings
impalad.WARNING Information about all kinds of warnings generated by Impala
impalad.ERROR All kinds of errors and potential problems encountered by

Impala
impalad.FATAL A FATAL error that could stop Impala execution or induce

query failure
statestored.ERROR Statestore-specific errors

Chapter 6

[101]

Impala logs contain detailed information about the Impala daemon and statestore
processes, along with each query processed by Impala. Some of the info, such as
process and machine info, is logged once. However, when queries are processed, all
query details are logged. This is described in the following table:

One time info in the logs at Impala startup Each query-specific detail in the Impala log
Machine name
Impala version
Impala startup flags
CPU and disks information

Query composition
Degree of data locality
Data throughput statistics
Query response time

Using the Impala web interface for monitoring
and troubleshooting
Impala provides the web interface for the Impala process at the 25000 port, as
shown in the following screenshot. This is to check various information, such as
configuration, logs, metrics, queries details, and memory:

Troubleshooting Impala

[102]

Using the Impala statestore web interface
Same as the last section, the statestore web interface is available at the 25010 port
with the same info as the last section. This is shown in the following screenshot:

Chapter 6

[103]

Using the Impala Maintenance Mode
Cloudera Manager provides a configuration named Maintenance Mode that can
help you monitor the whole Impala cluster effectively. With Cloudera Manager,
Maintenance Mode can be set for a service, a role, a host, or a whole cluster. Using
Maintenance Mode as an administrator, you can suppress alerts for the host, role,
service, or full cluster. While in Maintenance Mode, logging still works as it is.
Therefore, even when there are no alerts, all the logs are still saved, so that anyone
can check those logs to meet any specific requirement later. When making specific
changes to the cluster or any specific component, Maintenance Mode helps to reduce
unnecessary change notifications to all users and keeps the noise due to maintenance
very low. The following screenshot shows how you can set your Cloudera Hadoop
cluster into Maintenance Mode:

Troubleshooting Impala

[104]

Checking Impala events
Using Cloudera Manager, you can track various events that are generated by Impala,
events such as activity, error code, file access, user access, exception, command
execution, role, and several others listed in the Diagnose drop-down list, as
shown in the following screenshot:

Summary
In this chapter, we learned various details of Impala troubleshooting through Cloudera
Manager: log analysis, checking events, console output, and so on. We have seen how
Cloudera Manager can be very useful to troubleshoot various problems in Impala as
well as how you can look for potential performance-specific issues in logs. A manual
study of the log is very important to learn more about Impala execution and once you
understood it very well, you can troubleshoot the problem just by revisiting the log.
There are several other factors that can be considered as potential problems that impact
Impala performance. Sometimes, the Hadoop cluster itself is very busy performing
several MapReduce jobs submitted by other issues. This can consume significant
resources from nodes in the Hadoop cluster and ultimately cause problems in Impala
execution. Networking issues, such as a congested network, slow performing network
cards, and network limitations of any kind could also cause potential performance
issues with Impala. In most of these situations, cluster and logs analysis is one of
the best options to find the root cause. Then, apply the specific information that you
learned in this chapter to solve your problem.

Chapter 7, Advanced Impala Concepts, covers various advanced concepts that will
extend Impala to the next level and make it much more useful. In the next chapter,
we will cover a few advanced topics such as HBase integration and HDFS file
formats to increase your knowledge of Impala.

Advanced Impala Concepts
In Chapter 6, Troubleshooting Impala, we discussed various concepts about Impala,
which have definitely given you enough information to let you take charge of Impala
projects and successfully manage them. In this chapter, we are going to learn more
about Impala; however, this information is more advanced in nature, to help you
excel in data-processing projects using Impala. I describe how Impala works side by
side with MapReduce without using it in the same cluster. I also explain why Impala
has an edge over Hive even though Hive is a key component on which Impala is
dependent. Finally, we will cover some details on using HBase with Impala and
processing various Big Data input file formats on Hadoop with Impala.

Impala and MapReduce
The very first thing to note is that Impala does not replace MapReduce or use
MapReduce as a processing engine. Impala processes data much, much faster than
MapReduce and is considered an alternative data-processing framework on Hadoop.
Impala processes data stored at the Hadoop data storage layer using its open source
in-memory processing framework, which does not have an overhead as MapReduce
does. Impala bypasses MapReduce to have native access to data in HDFS using
the distributed query engine designed specially for superfast data processing. As
each Impala daemon processes data locally on DataNode, processing is fast due to
little or no network latency. You must know the fact that MapReduce is an amazing
distributed data-processing framework to process data directly in a distributed
clustered environment on DataNodes; however, executing SQL statements through
the MapReduce framework exhibits performance inefficiencies mainly due to disk
access. Impala overcomes this inefficiency by processing data in memory. Impala
runs side by side with MapReduce by using the same Hadoop core components and
hardware infrastructure. As mentioned earlier and rephrased here again, Impala is
faster because the data is processed in memory; therefore, the memory requirement
for Impala-installed Hadoop clusters is comparatively higher.

Advanced Impala Concepts

[106]

Impala and Hive
In this book, we have always emphasized that Impala uses the Hive metastore as a
catalog only. While Hive uses MapReduce to process its queries, MapReduce takes
charge of distributing the queries and then returning results back to Hive. Impala
uses its own daemons running on one or many or all DataNodes and performs query
process tasks. There are a few key topics where Impala and Hive are very different,
and I have noted some of them in the following section.

Key differences between Impala and Hive
• Impala performs in-memory query processing while Hive does not
• Hive use MapReduce to process queries, while Impala uses its own

processing engine
• Hive can be extended using User Defined Functions (UDF) or writing a

custom Serializer/Deserializer (SerDes); however, Impala does not support
extensibility as Hive does for now

• Impala depends on Hive to function, while Hive does not depend on any other
application and just needs the core Hadoop platform (HDFS and MapReduce)

• Impala queries are subsets of HiveQL, which means that almost every
Impala query (with a few limitation) can run in Hive. But vice-versa is
not true because some of the HiveQL features supported in Hive are not
supported in Impala

Impala and Extract, Transform, Load
(ETL)
Impala provides a complete Big Data solution, which does not require Extract,
Transform, Load (ETL). In ETL, you extract and transform the data from the original
data store and then load it to another data store, also known as the data warehouse.
In this model, the business users interact with the data stored at the data warehouse.
Mostly, data stored in the data warehouse is partial data compared to the primary
data source. Also, users need to perform ETL steps again and again for getting
updated data and this step could take time, causing business users significant delay.
The following are a few key differentiators that prove Impala's advantage over ETL:

• Impala provides full access to primary data to its users without using a
middleman or mid-level processing.

Chapter 7

[107]

• Impala supports end-to-end data processing and analytics solutions on
Hadoop, which helps its users avoid modeling or ETL.

• With Impala, users have direct and full access to data in Hadoop. Impala
users do not require any ETL strategy to work on data. Users can take full
control of data to process it end-to-end and the results from Impala can be
consumed by other application, if needed.

• Impala supports various input file formats that are popular in Big Data, so
using a single system for data processing such as Impala negates the need
for the user to use ETL for data transformation.

Why Impala is faster than Hive in query
processing
We have mentioned many times in this book that Impala is a very fast distributed
data-processing framework, so you might want to know how Impala achieves such
speed or what is behind Impala that makes it so fast. I would answer this question by
providing the following key points:

• While processing SQL-like queries, Impala does not write intermediate
results on disk; instead full SQL processing is done in memory, which
makes it faster.

• With Impala, the query starts its execution instantly compared to
MapReduce, which may take significant time to start processing
larger SQL queries and this adds more time in processing.

• Impala Query Planner uses smart algorithms to execute queries in multiple
stages in parallel nodes to provide results faster, avoiding sorting and shuffle
steps, which may be unnecessary in most of the cases.

• Impala has information about each data block in HDFS, so when processing
the query, it takes advantage of this knowledge to distribute queries more
evenly in all DataNodes.

• Another key reason for fast performance is that Impala first generates
assembly-level code for each query. The assembly code executes faster
than any other code framework because while Impala queries are running
natively in memory, having a framework will add additional delay in the
execution due to the framework overhead.

Advanced Impala Concepts

[108]

Impala processing strategy
Now let's review how Impala starts processing a query when it is submitted through
any of the following ways:

• When a query is submitted, Impala needs two kinds of metadata to start
query processing:

 ° Catalog information using Hive metadata
 ° File metadata using NameNode

• It is strongly recommended to have the Impala daemon running on
all DataNodes, which helps Impala run distributed queries directly
on the stored data; however, if the Impala daemon is not running on all
DataNodes, it still plans to run the query as effectively and as fast as it can.

• At the time of writing this book, Impala only supports in-memory
hash aggregations.

• In the case of the JOIN operation, all of the tables referenced in the JOIN
operation must fit in the aggregate memory on the host or hosts where
Impala is running.

• If the JOIN operation is submitted, Impala will use either broadcast or
partitioned join, depending on the query planner's decision, and follow
the table order provided in the SELECT statement.

• Impala processes all queries in memory, so memory limitation on nodes is
definitely a factor. You must have enough memory to support the resultant
dataset, which could grow multifold during complex JOIN operations.

• If a query starts processing the data and the resultant dataset cannot fit in the
available memory, the query will fail.

Impala and HBase
HBase is a very popular nonrelational database on Hadoop that stores data in a
column-oriented store model. HBase also uses HDFS as its data storage layer and
MapReduce to process data. The key difference between Hive and HBase is that
HBase is a complete nonrelational database running on Hadoop, while Hive is a
SQL-like database that supports SQL statements to process data. As it is another kind
of database, HBase supports the concepts of databases, tables, and columns and uses
SQL statements to submit queries while processing the data in tables on HDFS.

Chapter 7

[109]

Impala does not disappoint us and provides great flexibility to query data in HBase
tables. Impala tables process datafiles stored on HDFS—great for bulk loads and
full-table-scan queries; however, HBase can perform efficient data processing by
performing individual row or range lookups. Impala considers HBase a key-value
store in which the key is mapped to one column in the Impala table and value fields
are mapped to other columns.

While discussing HBase, internals are out of the scope of this book. If you
are working on the HBase table with Impala, I would suggest reading the
appropriate HBase documentation or visiting the Apache HBase website
for the latest documentation, http://hbase.apache.org/.

Here are the steps to work with HBase and Impala together:

1. Use the Hive shell to create a Hive table using CREATE EXTERNAL TABLE and
specific keywords and map Hive tables with HBase tables. We are using the
Hive shell only because certain keywords used in SQL statements are not
supported in Impala.

2. Define the column corresponding to the HBase row key as a string with the
#string keyword or map it to the STRING column.

3. Once the preceding steps are done, the Hive metastore will be updated with
the required information and Impala can perform queries on these tables.

4. Make sure Impala users have read/write access for HBase tables. Using the
GRANT command in HBase shell can do this.

Using Impala to query HBase tables
While querying HBase tables, Impala uses the HBase client API to query data stored
in HBase. You can create external tables in Hive with or without the string key. Here
is an example of creating a table first in HBase and then in Hive for mapping, and
finally, querying it in Impala:

1. Create the HBase table in the HBase shell as follows:
Create 'hbasetable', 'ints', 'strings'
Enable 'hbasetable'

2. Create an external table in the Hive shell with a string row key as follows:
CREATE EXTERNAL TABLE hivetableforhbase_userid (
 UserId string, /* Row Key is set as String */
 UserName string, UserAge int,
 UserDob timestamp)

Advanced Impala Concepts

[110]

 STORED BY
 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 WITH SERDEPROPERTIES (
 "hbase.columns.mapping" =
 ":key,strings:UserID,strings:UserName,ints:UserAge,
 strings:UserBob)
TBLPROPERTIES("hbase.table.name" =
 "hivetableforhbaseuseragg");

3. You can also create another table without a string row key for learning
purposes as follows:
CREATE EXTERNAL TABLE hivetableforhbase (
 UserId int, /* Row Key is not set as String */
 UserName string, UserAge int,
 UserDob timestamp)
 STORED BY
 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 WITH SERDEPROPERTIES (
 "hbase.columns.mapping" =
 ":key,strings:UserID, strings:UserName,
 ints:UserAge, strings:UserBob)
TBLPROPERTIES("hbase.table.name" = "hivetableforhbase");

4. Now we can issue the following query in the Impala shell:
-- When row key is mapped as string column, range predicates are
applied in the scan
SELECT * FROM hivetableforhbase_useragg WHERE UserId = '10';
-- When row key is not transformed into scan parameter (not mapped
as string)
SELECT * FROM hivetableforhbase WHERE id = 10;

File formats and compression types
supported in Impala
Hadoop is used as a data storage system where all kinds of data is stored in various
file formats. To reduce the disk space requirement, the data is stored in a compressed
format so various compression types are used with different kinds of file formats.
Various file formats and compression types create a collection of file formats and
compression combinations for any application to support.

Chapter 7

[111]

Impala does a great job in supporting most of the popular file formats and
compression types, as listed in the following table:

File type Compression type CREATE support INSERT support
Text LZO Yes Yes
Avro GZIP, BZIP2, deflate,

Snappy
No (use Hive) No

RCFile GZIP, BZIP2, deflate,
Snappy

Yes No

SequenceFile GZIP, BZIP2, deflate,
Snappy

Yes No

Parquet GZIP, Snappy (default) Yes Yes

The preceding table also describes if Impala can use the CREATE or INSERT command
with specific file and compression types. For example, with the Parquet file type and
the Snappy or GZIP compression type, Impala can create tables as well as insert data
into those types of tables. Similarly, with the Avro file type, Impala heavily depends
on Hive to provide additional support to process such data formats.

If you have a file format that you know is not supported by Impala, you can first create
the table with data in Hive, and then issue INVALIDATE METADATA in the Impala shell
or through an API. After that, you can query the same Hive table in Impala.

With the arrival of Impala 1.2, support for various file and
compression formats could change, so it is recommended that
you please visit Cloudera Impala documentation for additional
file type and compression support information.

Processing different file and
compression types in Impala
Impala loads files stored in HDFS and these files could be of various types. Some of
these files are stored in HDFS directly from their source, or some of the files could be
the output of MapReduce or Pig or any other application running on Hadoop.

Advanced Impala Concepts

[112]

Impala is limited in terms of supporting various file types on Hadoop; however,
it does cover most popular Big Data file formats, which gives Impala a very wide
range to cover user input requests. If Impala cannot read an input file type, you can
perform the following steps to use a combination of Hive and Impala:

1. Use the CREATE TABLE statement in the Hive shell to create the table with
input data.

2. Use the Impala shell with the INVALIDATE METADATA statement so that it
does not generate unsupported file type errors.

3. Now write query statements in the Impala shell to achieve your objective.

A very important point to note here is that Impala performance mostly depends
on the input file format and the compression algorithm used to compress input
files. Compression is used for two main reasons. First, it requires less disk space to
store files and small file reads require less disk I/O and CPU resources to load files
in memory. Once the file is loaded in memory, it is decompressed in memory only
when the data in the file is required for processing. The following table shows the
list of Impala-supported compression types and their usage patterns and properties:

Compression type Why use it?
Snappy Very fast; it is the fastest in compression and decompression
GZIP It is the best option to save disk space
LZO Use only with text files
BZIP2 Not a top choice but Impala can read input files
Deflate Not a first or second choice; however, can read input files

The following are a few considerations to keep in mind when choosing an
appropriate file format for a table with Impala:

• When CREATE TABLE is used with Impala, text files are the default input
format. It is easier to read for humans and helps troubleshooting problems;
however, it does not provide superfast processing with large amounts of data
due to significant disk read activity.

• When performance is your primary consideration, use Snappy, and when
disk space saving is your primary consideration, use GZIP. LZO can also be
used with text files as an option to expedite things a little.

• If your source files are already in one of Impala's supported type, create
a table in Impala using the same file format in most of the cases unless
changing the format in the Impala table gives you significant improvement
in processing the source data in your file.

Chapter 7

[113]

• If you want to change the file format sometime in Impala, first use CREATE
TABLE to create a table with your desired file type format and then use
the INSERT statement to copy data into the Impala table, which requires
a one-time file conversion from source to Impala.

• Data compression does not always means that you will achieve faster
processing time by saving important time in disk I/O. Data compression
does require CPU cycles to uncompress before processing so it does adds
up time somewhere. Sometimes having uncompressed data provides
significant speed in processing, that the cost to keep it uncompressed in
disk compensating the logic to store uncompressed in disk.

• When using uncompressed text files with Impala, you can just copy them
onto HDFS first. After that, use CREATE TABLE and then use the INSERT
statement to copy them into Impala.

Now let's take a look at some of the SQL statements that you can use with various
input file types in Impala.

The regular text file format with Impala tables
By default, Impala uses the text file format with the CREATE TABLE syntax. When
data is inserted into this table using INSERT, Ctrl+A (Hex 01) is used as a default
delimiter. The default syntax is as follows:

CREATE TABLE users (userID int, username string);

To change the delimiter to, for example, ,, \t, |, or your_choice, you can use the
following syntax:

CREATE TABLE users (userID int, username string) STORED AS
textfile FIELDS TERMINATED BY '\t';

Please visit the Cloudera Impala documentation for text file format
support at the following URL:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_txtfile.html

Advanced Impala Concepts

[114]

The Avro file format with Impala tables
With the Avro file format, you would have to create tables in Hive first, as shown in
the following code snippet:

CREATE TABLE my_avro_table (userID int, userName string)
 ROW FORMAT SERDE
 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 STORED AS INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
 OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 TBLPROPERTIES (
 'avro.schema.literal'='{
 "type": "record",
 "name": "user_record",
 "fields": [
 {"name": "userID", "type": "int"},
 {"name": "userName", "type": "string"}
]}');
INSERT OVERWRITE TABLE my_avro_table SELECT *, "avro"
 FROM functional.alltypes;

Once the file is created in Hive, you can just use it in Impala as any other file
as follows:

SELECT * from my_avro_table;

Please visit the Cloudera Impala documentation for Avro file format
support at the following URL:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_avro.html

The RCFile file format with Impala tables
When you create a table with the RCFile format, without using any existing data use
with the table, the syntax is as follows:

CREATE TABLE my_rcfile_table (userID int, userName string)
STORED AS RCFile;

Chapter 7

[115]

Impala can query RCFile-type tables but cannot write to them, so you would need to
use Hive to write data into the file using the INSERT statement. With Hive, you don't
need to specify the storage file type as Hive takes care of it by default.

Please visit the Cloudera Impala documentation for RCFile file
support at the following URL:
http://www.cloudera.com/content/cloudera-
content/cloudera-docs/Impala/latest/Installing-
and-Using-Impala/ciiu_rcfile.html

The SequenceFile file format with Impala
tables
Like RCFile, Impala supports the creation of tables that can store SequenceFile data.
To create an empty table to store SequenceFile-type data in Impala, you just need to
use the following syntax in the Impala shell:

CREATE TABLE my_sequencefile_table (userID int, userName string)
STORED AS SEQUENCEFILE;

The rest of the steps require you to use Hive for setting up file compression and then
writing data into the table using the appropriate INSERT statement.

Please visit the Cloudera Impala documentation for SequenceFile file
format support at the following URL:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_seqfile.html

The Parquet file format with Impala tables
You might be wondering what the Parquet file format is. I would like to provide a
little information in this context. The Parquet file format is a column-oriented binary
file format that is designed to provide column-specific access to the data. As the data
is stored in columns and all columns are stored separately, lookups are happening on
columns first. This column-oriented access method makes query processing very fast
and efficient, and Impala takes advantage of this file format. Impala provides native
support to create, manage, and query tables based on the Parquet file format.

Advanced Impala Concepts

[116]

The following is the syntax for creating a table that can store the Parquet file format
in Impala:

CREATE TABLE my_parquet_table (userID int, userName string)
 STORED AS PARQUETFILE;

As Impala supports writing the Parquet file format within Impala, you can use the
INSERT statement as shown in the following code snippet to write to your Parquet
file type from other files:

INSERT OVERWRITE TABLE my_parquet_table
 SELECT * FROM other_table_name;

Please visit the Cloudera Impala documentation for Parquet file
format support at the following URL:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_parquet.html

The unsupported features in Impala
Let's take a look at what is not supported in Impala so you can make informed
decisions when choosing Impala as your distributed data-processing framework
on Hadoop:

• Only HDFS is supported for data storage with Impala, and any other data
storage framework or RDBMS is not currently supported.

• Impala does not support dropping or deleting a row in a table. The
alternative is to either drop the table or migrate the required data to
other tables and then delete the entire original table.

• Transforms and window functions are not supported.
• Performing queries on streaming data is not supported.
• Hive UDF and Hive Index are not supported up to Impala 1.1.x; however,

at the time of writing this book, Impala 1.2 Beta was available, which has
support for Scalar UDF and user-defined aggregate (UDA) functions.

• During query processing, unencrypted data is sometimes transmitted
between Impala daemons.

• At the time of writing this book, Hadoop 2.0 achieved the GA milestone;
however, Hadoop-2.0-based YARN is not integrated with Impala.

• Custom Hive SerDes classes are not supported and only native file formats
are supported using the built-in SerDes.

Chapter 7

[117]

Please visit this URL to learn about the new feature set available
in Impala 1.2.x: http://www.cloudera.com/content/
cloudera-content/cloudera-docs/Impala/latest/
Cloudera-Impala-Release-Notes/cirn_new_features.
html?scroll=new_features_121_unique_1.

Impala resources
Let me point you to some very important information about Impala resources that
you can get from the following sources:

• Impala Source: https://github.com/cloudera/impala
• Impala Download: https://www.cloudera.com/content/support/en/

downloads.html

• Impala v1.x Latest Documentation: http://www.cloudera.com/content/
support/en/documentation/cloudera-impala/cloudera-impala-
documentation-v1-latest.html

• Known Issues in Impala: http://www.cloudera.com/content/cloudera-
content/cloudera-docs/Impala/latest/Cloudera-Impala-Release-
Notes/cirn_known_issues.html?scroll=known_issues

Summary
In this chapter, we learned a few advanced concepts for Impala, such as how Impala
relates to MapReduce, Hive, and other frameworks in the Hadoop ecosystem. We
also discussed what makes Impala so fast in processing data and as an Impala user
what you can do to improve processing. We discussed the supported file formats in
Hadoop to combine with Impala depending on the input data type. By now, you will
be prepared to take advantage of in-memory data processing with Impala to process
your various types of source data, stored in Hadoop.

Technology Behind
Impala and Integration

with Third-party Applications
In the last seven chapters, I described the various traits of Impala, and I believe that
you have learned those details as well. Now it is time to finish the book by adding a
few more details, which will help you understand the true potential of Impala.

Technology behind Impala
The technology behind Impala is revolutionary and inspired by a Google research
project named Dremel. Dremel is a scalable ad hoc query-based analysis system
for read-only nested data. Dremel-based implementations can run aggregation
queries over trillions of rows in seconds by combining multilevel executing trees and
columnar data layout. It does not use MapReduce as the core; instead it complements
MapReduce. Impala is considered to be a native Massive Parallel Processing
query engine running on Apache Hadoop. Depending on the type of query and
configuration, Impala excels in data processing performance over traditional
database applications on Hadoop, such as Hive, and processing frameworks, such as
MapReduce, due to the following key reasons:

• Distributed, scalable aggregation algorithms.
• Specialized hardware configuration, such as reducing CPU load, which

increases aggregate I/O bandwidth.
• Using the columnar binary storage format on Hadoop, which adds speed to

query processing. This is done by taking advantage of Parquet file types as
an input source.

Technology Behind Impala and Integration with Third-party Applications

[120]

• Impala extends its reach beyond Dremel and provides support for various
other popular file formats, making its availability and reach beyond Parquet
to multifold users.

• Impala uses the available memory on a machine as a table cache, which
mean queries always process the data that is available in the cache, making
processing super fast by speeding their execution up to 90 times faster than
conventional processing when data is read from a disk.

You can learn more on Google Dremel by referring to a research paper at the
following URL:

http://research.google.com/pubs/pub36632.html

Data visualization using Impala
Visualizing data is as important as processing it. The human brain perceives
pictures faster than reading data in tables, and because of this, data visualization
provides super fast understanding of large amount of data in split seconds. Reports,
charts, interactive dashboards, and any form of infographics are all part of data
visualization and provide deeper understanding of results.

To connect with third-party applications, Cloudera provides ODBC and JDBC
connectors. These connectors are installed on machines where third-party
applications are running, and by configuring the correct Impala server and port
details on those connectors, third-party applications connect with Impala, submit
those queries, and then take results back to the application. The result is then
displayed on third-party applications, where it is rendered on a graphics device
for visualization, displayed in a table format, or further processed depending on
the application requirement. In this section, we will cover a few notable third-party
applications, which can take advantage of Impala's super fast query processing and
then display amazing graphical results.

Appendix

[121]

Tableau and Impala
Tableau Software supports Impala by providing access to tables on Impala using
the Impala ODBC connector provided by Tableau. Tableau is one of the most
prominent data visualization software technologies in recent days and is used
by thousands of enterprises daily to get intelligence out of their data. Tableau is
available for Windows OS, and an ODBC connector is provided by Cloudera to
make this connection a reality. You can visit the following link to download the
Impala connector for Tableau:

http://go.cloudera.com/tableau_connector_download

Once the Impala connector is installed on a machine where the Tableau software
is running and configured correctly, Tableau is ready to work with Impala. In the
following screenshot, Tableau is connected to an Impala server at port 21000 and
then a table located in Impala is selected:

Technology Behind Impala and Integration with Third-party Applications

[122]

Once a table is selected, particular fields are selected, and the data is displayed in a
graphical format in various mind-blowing visualizations. The following screenshot
displays one example showing such a visualization:

Microsoft Excel and Impala
Microsoft Excel is one of the most widely adopted data processing applications used
by business professionals worldwide. You can connect Microsoft Excel with Impala
using another ODBC connector provided by Simba Technology. You can download
the connector from their website at the following URL:

http://www.simba.com/data-connections

Microsoft OLE DB for OLAP, also known as ODBO, defines multidimensional
expressions, or MDX, that are used as a query language to report multi-dimensional
data stores. Most of the OLAP servers support interaction through MDX queries
by Business Intelligence applications and many other third-party applications.
MDX provides flexibility and multidimensional functionality to answer real-world
business questions asked by Business Intelligence applications.

Appendix

[123]

Business users can use Simba MDX Provider to connect to Cloudera Impala tables
from Microsoft Excel PivotTables, by just installing the driver and configuring it
correctly to access Cloudera Impala. In the following screenshot, Microsoft Excel
PivotTable is connected to Cloudera Impala using Simba MDX:

Microstrategy and Impala
Microstrategy is another big player in data analysis and visualization software and
uses an ODBC drive to connect to Impala to render amazing looking visualizations.
The connectivity model between Microstrategy software and Cloudera Impala is
shown as follows:

Technology Behind Impala and Integration with Third-party Applications

[124]

You can use the following URL to learn more about using the
Cloudera ODBC connector for Microstrategy:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Connectors/Cloudera-Connector-for-
MicroStrategy/Cloudera-Connector-for-MicroStrategy.
html

Zoomdata and Impala
Zoomdata is considered to be the new generation of data user interfaces, as it
addresses streams of data instead of sets of data. The Zoomdata processing engine
performs continuous mathematical operations across data streams in real time to
create visualizations on a multitude of devices. The visualization updates itself as
new data arrives and is recomputed by Zoomdata.

As shown in in the following screenshot, you can see that the Zoomdata application
uses Impala as a source of data, which is configured underneath to use of one of the
available connectors to connect to Impala:

Appendix

[125]

Once the connections are made, the user can see amazing data visualizations, as
shown in the following screenshot:

Real-time query with Impala on Hadoop
Impala is marketed as a product that can do real-time queries on Hadoop by
its developer, Cloudera. Impala is an open source implementation based on the
previously mentioned Google Dremel technology that is available free for anyone to
use. Impala is available as a package product that is free to use or can be compiled
from its source, which can run queries in memory to make them real time. In some
cases, depending on the type of data, if the Parquet file format is used as the input
data source, it can expedite the query processing to a multifold speed.

Real-time query subscriptions with Impala
Cloudera provides a Real-time Query (RTQ) subscription as an add-on to a
Cloudera Enterprise subscription. You can still use Impala as a free, open source
product; however, opting for the RTQ subscription allows you to take advantage
of the Cloudera paid service to extend its usability and resilience. By accepting the
RTQ subscription, you can not only have access to Cloudera Technical support, but
you can also work with the Impala development team to provide ample feedback to
shape up the product design and implementation.

Technology Behind Impala and Integration with Third-party Applications

[126]

What is new in Impala 1.2.0 (Beta)
At the time of writing this book, Impala 1.2.0 Beta was available to test with CDH
5.0. Impala 1.2.0 has several features visible to users; however, lots of other features
are under the hood to improve performance, security, and flexibility. A few notable
features are as follows:

• Impala supports user-defined functions (UDF) natively, and users can write
scalar UDF and user-defined aggregate functions (UDA).

• Functions written in C++ and Java can work with Impala as they are.
• Currently, REFRESH statements are required after every use of table-specific

SQL commands, such as CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT,
and LOAD DATA, to update information to the whole cluster. Impala now has
an automatic synchronization mechanism, so there is no need for REFRESH or
INVALIDATE METADATA SQL commands. With the automatic synchronization
mechanism, a newly created service takes charge of updating table or metadata
specific information to the whole Impala cluster as the changes are available.

• Another big update is integration with YARN, in which Impala uses the
YARN resource management framework for adequate resource management
during query processing.

According to Cloudera, Impala 1.2.0 Beta is packaged with Cloudera
CDH 5.0 (Beta) and only works with Cloudera CDH 5.0. Please visit the
following URL for more details:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/1.2.0-beta/Cloudera-Impala-
Release-Notes/cirn_new_features.html

Index
Symbols
-B command 33
-c command 32
! command 35
-database database_name command 33
-d database_name command 33
--delimited command 33
-d option 31
-f query_file_name command 33
-h command 31
--help command 31
-I hostname command 32
-impalad=hostname command 32
-k command 34
--kerberos command 34
-kerberos_service_name=Kerberos_service_

name command 34
-o filename command 33
--output_file filename command 33
-p command 33
-q option 34, 35
-q query command 33
-query=query command 33
--quiet command 32
-r command 32
-refresh_after_connect command 32
--show_profiles command 33
-s Kerberos_service_name command 34
-v command 32
--verbose command 32
--version command 32

A
ABS(DOUBLE a) function 63
aggregation functions

about 55
AVG 55
COUNT 56
MAX 56, 57
MIN 56, 57

ALL privilege 23
alter command 38
ALTER TABLE statement 44, 45
ANALYZE TABLE statement 91
Apache Hive 21
ASCII(STRING str) function 64
auditing 24, 25
authentication

through Kerberos 24
authorization

about 23
ALL privilege 23
INSERT privilege 23
SELECT privilege 23

AVG aggregation function 55
Avro file format 114

URL 114

B
BETWEEN operator 53
BIGINT data type 49
BIN(BIGINT a) function 63
block locality issue 94

[128]

block location tracking
enabling 85

BOOLEAN data type 48
built-in functions 63

C
CASE function 64
CAST() function 50, 65
CAST operator 48
Clause

about 57
FROM clause 57
GROUP BY clause 59
HAVING clause 59
LIMIT clause 59
ORDER BY clause 59
WHERE clause 58
WITH clause 58

Cloudera Manager
administration with 82, 83
Impala events, checking 104
Impala, installing without 13
Impala log analysis 99-101
Impala Maintenance Mode, using 103
Impala statestore web interface, using 102
Impala upgrading, packages used 17
Impala upgrading, parcels used 17
Impala, upgrading with 18
URL 12
used, for installing Impala 11, 12
used, to troubleshoot platform issues 98
using, for Impala 27-29
web interface 101

cluster statistics
URL 93

COALESCE function 64
command-line options

about 30, 31
general 31, 32
query-specific options 33
secure connectivity-specific options 34

command-line options, connection-specific
-d database_name or -database

database_name 33
-I hostname or -impalad=hostname 32
-r or -refresh_after_connect 32

about 32
command-line options, general

-c 32
-h or --help 31
--quiet 32
-V or --verbose 32
-v or --version 32

command-line options, query-specific
-B or --delimited 33
-f query_file_name or -query_file=query_

file_name 33
-o filename or --output_file filename 33
-p or --show_profiles 33
-q query or -query=query 33

command-line options, secure connectivity-
specific

-k or --kerberos 34
-s Kerberos_service_name or -kerberos_

service_name=Kerberos_service_name
34

commands
general commands 35
query-specific commands 36, 37
table- and database-specific commands 38

commands, general
! command 35
connect command 35
exit command 35
help command 35
history command 35
quit command 35
refresh command 35
shell command 35
version command 35

commands, query-specific
explain command 37
profile command 37
set command 36
unset command 36

commands, table- and database-specific
about 38
alter command 38
describe command 38
drop command 38
insert command 38
select command 38
use command 38

[129]

compression types
about 110, 111
processing 111, 112

CONCAT(STRING a, STRING b..)
function 64

Configuration-related issues
about 93
block locality issue 94
native checksumming issues 94

Configuration Variables List
URL 93

connect command 35
connectivity issues

between Impala shell and Impala
daemon 94, 95

JDBC-specific connectivity issues 95
ODBC-specific connectivity issues 95

COS(DOUBLE a) function 63
COUNT aggregation function 56
count SQL command 78
CREATE DATABASE statement 41
CREATE EXTERNAL TABLE

statement 44, 48
CREATE TABLE command 40
CREATE TABLE statement 43

D
data

loading, from HDFS 62
loading, into Impala table,

from HDFS 70, 71
loading, into Impala tables 69
visualizing, Impala used 120

database-specific statements
about 41
CREATE DATABASE statement 41
DROP DATABASE statement 41
SHOW DATABASES statement 42
using, in example 42

Data Definition Language (DDL) 39
Data Manipulation Language (DML) 40
DataNode

short-circuit read, performing 86
dataset

example 67, 68

data type
about 48
BIGINT 49
BOOLEAN 48
DOUBLE 50
FLOAT 50
INT 49
SMALLINT 49
STRING 51
SUM 51
TIMESTAMP 52
TINYINT 50

DATEDIFF(date1, date2) function 64
describe command 38, 73, 74
DESCRIBE statement 45, 46
distinct command 76
DISTINCT operator 53, 54
distinct SQL command 78
DOUBLE data type 50
Dremel 119
drop command 38
DROP DATABASE statement 41
DROP TABLE statement 45

E
example scenario, creating

about 67
automobiles (automobiles.txt) 68
data and schema, considerations 69
motorcycles (motorcycles.txt) 68

exit command 35
EXPLAIN clause 60, 78
explain command 37, 79
external table 48
Extract Transform Load (ETL) 62, 106, 107

F
file format

about 111
selecting 89

FLOAT data type 50
FLOOR(DOUBLE a) function 63
FORMAT() function 55
FROM clause 57

[130]

functions
aggregation function 55
Scalar function 55

G
Google Dremel

URL 120
GROUP BY clause 59

H
hardware

dependency 10
HAVING clause 59
HBase

about 22
and Impala 108, 109
URL 22

HBase tables
querying, Impala used 109, 110

HDFS
about 22
data, loading into Impala table 70, 71
specific commands 69, 70

HDFS-specific problems 98
help command 35
High Availability (HA) 84
Hive

and Impala 106
and Impala, differences 106, 107
dependency, for Impala 10

HiveQL statements 66

I
IF function 64
Impala

administration 81
and Extract, Transform,

Load (ETL) 106, 107
and HBase 108, 109
and Hive 106
and Hive, differences 106, 107
and MapReduce 105
and Microsoft Excel 122
and Microstrategy 123
and Tableau 121, 122

and Zoomdata 124
benefits 8, 9
built-in function support 63-65
Cloudera Manager, using 27-29
compression types 110, 111
compression types, processing 111, 112
configuring, after installation 14, 15
core components 18
dependency on Hive 10
dependency on Java 10
example, scenario 67
execution architecture 21
file formats 110, 111
file format, selecting 89
file formats, processing 111, 112
hardware dependency 10
High Availability (HA) 84
installing 11
installing, with Cloudera Manager 11, 12
installing, without Cloudera Manager 13
issues, URL 117
networking requisites 11
processing, strategy 108
Real-time query, on Hadoop 125
Real-time query subscription 125
requisites 9
resources 117
restarting 16
security 22
single point of failure 85
SQL statements, comments 62
SQL statements, unsupported 65, 66
starting 15
statestore UI 84
stopping 16
technology 119
troubleshooting 93
unsupported features 116
upgrading 16
upgrading, parcels with Cloudera Manager

used 17
upgrading, with Cloudera Manager 18
used, for data visualization 120
user account requisites 11
using, to query HBase tables 109, 110
VIEWS, defining 61
with Apache Hive 21

[131]

with HBase 22
with HDFS 22

Impala 1.2.0 (Beta)
about 126
URL 126

Impala, core components
about 18
Impala daemon 19
Impala metadata and metastore 20
Impala statestore 19
programing interface 20, 21

impalad 27
Impala daemon 19
Impala Daemon (impalad) 28
Impala Download

URL 117
Impala events

checking 104
Impala metadata and metastore 20
Impala nodes

adding 87
Impala performance, fine tuning

about 90
join queries 90
partitioning 90
table and column statistics 91

Impala performance, improving
about 85
block location tracking, enabling 85
Impala, enabling 86
Impala nodes, adding 87
memory usage, optimizing 87
native checksumming, enabling 86
query execution 87
resource isolation, using 87

Impala Query Language 39
Impala Query Planner 107
Impala, security

auditing 24, 25
authentication 24
authorization 23
guidelines 25
Impala specific guidelines 25
system specific guidelines 25

Impala Shell
and Impala daemon,

connectiivty issues 94, 95
command-line options 30, 31
commands 34, 35
connecting, to remotely located impalad

daemon 30
connection-specific options 32
database commands 72, 73
launching 29, 72
query-specific options 33
secure connectivity-specific options 34
table commands 72, 73

impala-shell command 30
Impala Source

URL 117
Impala statestore 19
Impala Statestore Daemon (statstored) 28
Impala tables

Avro file format 114
data, loading from HDFS 70, 71
data, loading in 69
Parquet file format 115
RCFile file format 114
regular Text file format 113
SequenceFile file format 115

Impala v1.x Latest Documentation
URL 117

Input file format-specific issues 98
insert command 38
INSERT INTO statement 47
INSERT OVERWRITE statement 47
INSERT privilege 23
INSERT statement 47
installation

Impala 11
INT data type 49
internal table 48
ISNULL function 64

J
Java

dependency, for Impala 10

[132]

JDBC-specific connectivity issues 95
JOIN clause 61
join queries 90, 91
JOIN query 91

L
LCASE() function 55
LEN() function 55
LENGTH(STRING s) function 64
LIKE operator 54
LIMIT clause 59
LOAD DATA statement 62
log analysis

Cloudera Manager used 99, 100

M
Maintenance Mode 103
MapReduce 105
Massively Parallel Processing. See MPP
MAX aggregation function 56
Memory consumption details

URL 93
Microsoft Excel 122
Microstrategy

about 123
URL 124

MID() function 55
MIN aggregation function 56, 57
MPP 7

N
native checksumming

enabling 86
issues 94

NOW() function 55, 64

O
ODBC-specific connectivity issues 95
ODBO 122
OLAP 122
operator

about 52
BETWEEN 53
DISTINCT 53

LIKE 54
ORDER BY clause 59

P
packages

with Cloudera Manager, used for
upgrading Impala 17

parcels
with Cloudera Manager, used for

upgrading Impala 17
Parquet file format 115
PARTITIONED BY method 90
partitioning 90
PI() function 64
platform-specific issues

about 97
HDFS-specific problems 98
Impala port mapping issues 97

port mapping issues 97
profile command 37

Q
query execution

memory usage, optimizing on 87
on memory 87

query_file=query_file_name command 33
query performance, testing

about 88
data locality, verifying 88
queries, benchmarking 88

query-specific issues 96
query-specific SQL statements

about 60
EXPLAIN clause 60
JOIN clause 61
REFRESH clause 60

quit command 35

R
RAND(INT seed) function 64
RCFile file format 114
Real-time query

with Impala, on Hadoop 125
Real-time Query. See RTQ
REFRESH clause 60

[133]

refresh command 35
regular Text file format 113
resource isolation

using 87
REVERSE(STRING a) function 64
ROUND() function 55
RTQ 125

S
Scalar functions

about 55
FORMAT() function 55
LCASE() function 55
LEN() function 55
MID() function 55
NOW() function 55
ROUND() function 55
UCASE() function 55

select command 38, 79
SELECT privilege 23
SELECT statement 47
SequenceFile file format 115
set command 36
short-circuit read

performing, on DataNode 86
show databases command 35
SHOW DATABASES statement 42
SHOW TABLES statement 45
SMALLINT data type 49
SQL join operation

SQL statements, types 77, 79
with example database 77

SQL language statements
database-specific statements 41
table-specific statements 43

SQL queries
against example database 74, 76

SQL statements
using 79

statestore web interface
using 102

STRING data type 51
substr SQL command 78
SUM data type 51

T
Tableau 121, 122
table-specific statements

about 43
ALTER TABLE statement 44, 45
CREATE EXTERNAL TABLE statement 44
CREATE TABLE statement 43
DESCRIBE statement 45, 46
DROP TABLE statement 45
external table 48
INSERT statement 47
internal table 48
SELECT statement 47
SHOW TABLES statement 45

TIMESTAMP data type 52
TINYINT data type 50
TO_DATE(STRING date) function 64
troubleshooting

configuration-related issues 93
connectivity issues 94
input file format-specific issues 98
platform-specific issues 97
query-specific issues 96
User Access Control (UAC)-specific issues

97
type-conversion function 65

U
UCASE() function 55
unset command 36
use command 38
User Access Control (UAC)-specific

issues 97
user-defined aggregate (UDA) 116, 126
User Defined Aggregation Functions

(UDAF) 65
user-defined functions (UDF) 126
User Defined Table Generating Functions

(UDTF) 65

V
version command 35
VIEWS 61

[134]

W
web interface

for monitoring 101
for troubleshooting 101

WHERE clause 58
WITH clause 58

Y
YEAR(STRING date) function 64

Z
Zoomdata 124

Thank you for buying
Learning Cloudera Impala

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Cluster Deployment
ISBN: 978-1-78328-171-8 Paperback: 126 pages

Construct a modern Hadoop data platform
effortlessly and gain insights into how to manage
clusters efficiently

1. Choose the hardware and Hadoop distribution
that best suits your needs

2. Get more value out of your Hadoop cluster
with Hive, Impala, and Sqoop

3. Learn useful tips for performance optimization
and security

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R

2. Learn data analytics with R and the Hadoop
platform

3. Handle HDFS data within R

4. Understand Hadoop streaming with R

5. Encode and enrich datasets into R

Please check www.PacktPub.com for information on our titles

Scaling Big Data with Hadoop and
Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1. Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks

2. Learn from interesting, real-life use cases for
Big Data search along with sample code

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Securing Hadoop
ISBN: 978-1-78328-525-9 Paperback: 116 pages

Implement robust end-to-end security for your
Hadoop ecosystem

1. Master the key concepts behind Hadoop
security as well as how to secure a
Hadoop-based Big Data ecosystem

2. Understand and deploy authentication,
authorization, and data encryption in a
Hadoop-based Big Data platform

3. Administer the auditing and security event
monitoring system

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with Impala
	Impala requirements
	Dependency on Hive for Impala
	Dependency on Java for Impala
	Hardware dependency
	Networking requirements
	User account requirements
	Installing Impala
	Installing Impala with Cloudera Manager
	Installing Impala without Cloudera Manager

	Configuring Impala after installation
	Starting Impala
	Stopping Impala
	Restarting Impala
	Upgrading Impala
	Upgrading Impala using parcels with Cloudera Manager
	Upgrading Impala using packages with Cloudera Manager
	Upgrading Impala without Cloudera Manager

	Impala core components
	Impala daemon
	Impala statestore
	Impala metadata and metastore
	The Impala programming interface

	The Impala execution architecture
	Working with Apache Hive
	Working with HDFS
	Working with HBase

	Impala security
	Authorization
	The SELECT privilege
	The INSERT privilege
	The ALL privilege

	Authentication through Kerberos
	Auditing

	Impala security guidelines for a higher level of protection
	Summary

	Chapter 2:
The Impala Shell
Commands and Interface
	Using Cloudera Manager for Impala
	Launching Impala shell
	Connecting impala-shell to the remotely located impalad daemon
	Impala-shell command-line options with brief explanations
	General command-line options
	Connection-specific options
	Query-specific options
	Secure connectivity-specific options

	Impala-shell command reference
	General commands
	Query-specific commands
	Table- and database-specific commands

	Summary

	Chapter 3:
The Impala Query Language and Built-in Functions
	Impala SQL language statements
	Database-specific statements
	The CREATE DATABASE statement
	The DROP DATABASE statement
	The SHOW DATABASES statement
	Using database-specific query sentence in an example

	Table-specific statements
	The CREATE TABLE statement
	The CREATE EXTERNAL TABLE statement
	The ALTER TABLE statement
	The DROP TABLE statement
	The SHOW TABLES statement
	The DESCRIBE statement
	The INSERT statement
	The SELECT statement
	Internal and external tables

	Data types
	Operators
	Functions
	Clauses
	Query-specific SQL statements in Impala
	Defining VIEWS in Impala
	Loading data from HDFS using the LOAD DATA statement
	Comments in Impala SQL statements
	Built-in function support in Impala
	The type conversion function

	Unsupported SQL statements in Impala
	Summary

	Chapter 4:
Impala Walkthrough
with an Example
	Creating an example scenario
	Example dataset one – automobiles (automobiles.txt)
	Example dataset two – motorcycles (motorcycles.txt)
	Data and schema considerations

	Commands for loading data into Impala tables
	HDFS specific commands
	Loading data into the Impala table from HDFS

	Launching the Impala shell
	Database and table specific commands

	SQL queries against the example database
	SQL join operation with the example database
	Using various types of SQL statements

	Summary

	Chapter 5:
Impala Administration and Performance Improvements
	Impala administration
	Administration with Cloudera Manager
	The Impala statestore UI

	Impala High Availability
	Single point of failure in Impala
	Improving performance
	Enabling block location tracking
	Enabling native checksumming
	Enabling Impala to perform short-circuit read on DataNode
	Adding more Impala nodes to achieve higher performance
	Optimizing memory usage during query execution
	Query execution dependency on memory
	Using resource isolation

	Testing query performance
	Benchmarking queries
	Verifying data locality

	Choosing an appropriate file format and compression type for better performance
	Fine-tuning Impala performance
	Partitioning
	Join queries
	Table and column statistics

	Summary

	Chapter 6:
Troubleshooting Impala
	Troubleshooting various problems
	Impala configuration-related issues
	The block locality issue
	Native checksumming issues

	Various connectivity issues
	Connectivity between Impala shell and Impala daemon
	ODBC/JDBC-specific connectivity issues

	Query-specific issues
	Issues specific to User Access Control (UAC)
	Platform-specific issues
	Impala port mapping issues
	HDFS-specific problems

	Input file format-specific issues

	Using Cloudera Manager to troubleshoot problems
	Impala log analysis using Cloudera Manager
	Using the Impala web interface for monitoring and troubleshooting
	Using the Impala statestore web interface
	Using the Impala Maintenance Mode
	Checking Impala events

	Summary

	Chapter 7:
Advanced Impala Concepts
	Impala and MapReduce
	Impala and Hive
	Key differences between Impala and Hive

	Impala and Extract, Transform, Load (ETL)
	Why Impala is faster than Hive in query processing
	Impala processing strategy
	Impala and HBase
	Using Impala to query HBase tables

	File formats and compression types supported in Impala
	Processing different file and compression types in Impala
	The regular text file format with Impala tables
	The Avro file format with Impala tables
	The RCFile file format with Impala tables
	The SequenceFile file format with Impala tables
	The Parquet file format with Impala tables

	The unsupported features in Impala
	Impala resources
	Summary

	Appendix:
Technology Behind
Impala and Integration
with Third-party Applications
	Technology behind Impala
	Data visualization using Impala
	Tableau and Impala
	Microsoft Excel and Impala
	Microstrategy and Impala
	Zoomdata and Impala

	Real-time query with Impala on Hadoop
	Real-time query subscriptions with Impala

	What is new in Impala 1.2.0 (Beta)

	Index

