
www.allitebooks.com

http://www.allitebooks.org

Learning Cocos2d-x Game
Development

Learn cross-platform game development with Cocos2d-x

Siddharth Shekar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Cocos2d-x Game Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-826-6

www.packtpub.com

Cover image by Siddharth Shekar (siddharth.shekar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Siddharth Shekar

Reviewers
Alejandro Duarte

Sergio Martínez-Losa del Rincón

Germán González Rodríguez

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Anila Vincent

Technical Editors
Dennis John

Pankaj Kadam

Gaurav Thingalaya

Project Coordinator
Lima Danti

Copy Editors
Sarang Chari

Dipti Kapadia

Insiya Morbiwala

Aditya Nair

Deepa Nambiar

Proofreaders
Simran Bhogal

Ameesha Green

Clyde Jenkins

Lucy Rowland

Indexers
Mariammal Chettiyar

Rekha Nair

Tejal Soni

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Author

Siddharth Shekar is a game developer with over 4 years of experience in game
development. He has experience in developing games for the Web, mobile, and
desktop using Flash, Cocos2d, Cocos2d-x, Unity 3D, and Unreal Engine. He is the
founder and CEO of Growl Games Studio (http://www.growlgamesstudio.com)
and has developed several games and published them on the iOS, Android, as well
as Windows Phone app stores.

In his spare time, he likes to experiment with the latest game development
frameworks and tools. Apart from playing games, he has an avid interest in
animation and computer graphics and listens to all types of music.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

First and foremost, I would like to thank my mom, Shanti Shekar, and dad, R. Shekar,
for their continuing unconditional love and support and love (this is not a typo).
Thanks to my uncle, Krishna Kumar, for teaching me how to type commands in order
to change drives so that I could play Pong and Space Invaders from the floppy drive
on his PC.

I am also thankful to the team at Cocos2d-x for creating this amazing framework.
Thanks to Jing Chen, Jianhua Chen, Xiaoming Zhang, and Mai Dung for all their
help. A big thanks to the ever-expanding and helpful Cocos2d-x community for
answering all the questions on the forum.

Also, I can't thank enough Andreas from CodeAndWeb, Tom from 71Squared Ltd.,
and Nate from Esoteric Software for their awesome tools; I would have otherwise
spent most of my time developing the tools instead of creating games.

Thanks to Ujjwal Kumar from Microsoft for providing test devices and valuable
technical information, thereby making the writing of the book and the game
development process a lot simpler.

Special thanks to Packt Publishing for putting this book together. I would like to
thank Richard Brookes-Bland and Anila Vincent for helping and guiding me at
every step of the book writing process. Thanks to the technical reviewers, Sergio
Martínez-Losa del Rincón, Alejandro Duarte, and Germán González Rodríguez
for the technical feedback and tips; I have really learned a lot of new things in
this process.

Finally, I would like to thank all my friends for tolerating me all these years,
especially my high school friend N. Venkat for being such a good friend, and my
college friend Kartik Ayyar for introducing me to the world of computer graphics,
animation, and gaming.

This book is dedicated to all those who just want to have fun while making
awesome games.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Alejandro Duarte has been coding since 1994, when he was 13 years old, using
languages such as BASIC, C, C++, Assembler, C#, PHP, Java, Groovy, and Lua. He
focuses mainly on Java technologies for enterprise applications, but always keeps an
eye on the video game development industry and technologies. He has contributed
to several open source and closed source projects based on Cocos2d-x, Processing,
Irrlicht Engine, and the Allegro library.

Alejandro has worked for companies in Colombia and the United Kingdom as a
software developer and consultant. He is the author of Vaadin 7 UI Design by Example
Beginner's Guide, Packt Publishing, and maintains several open source projects hosted
on GitHub.

You can contact him at alejandro.d.a@gmail.com or through his personal blog
at http://www.alejandrodu.com. If you are feeling social, you can follow him on
Twitter at @alejandro_du.

www.allitebooks.com

http://www.allitebooks.org

Sergio Martínez-Losa del Rincón is a computer engineer who loves
programming languages. From his high school days, he has been learning about
programming and computer interactions. He is always learning and discovers
something new every day.

He likes all kinds of programming languages, but he focuses his efforts on mobile
development with native languages such as Objective-C (iPhone), Java (Android),
and Xamarin (C#). He also builds Google Glass applications at work as well as
mobile applications for iPhone and Android devices. He also develops games
for mobile devices with Cocos2d-x and Cocos2d. He is fond of cross-platform
applications too and was the reviewer for the book, Learning Xamarin Studio,
William Smith, Packt Publishing.

He loves challenging problems and is always keen to work with new technologies.
More information about his experience and details can be found at www.linkedin.
com/in/sergiomtzlosa.

Germán González Rodríguez is a software engineer with an MSc in
Telecommunications Engineering and over 5 years of experience working as a game,
app, and web developer on Windows, Mac, iOS, and Android platforms. He has had
a passion for programming video games since an early age. In school, he checked out
hundreds of library books and typed in thousands of lines of BASIC code to make
text adventures on his father's old 386 computer.

After he completed his degree, he worked with an independent video game developer,
Lemon Team, based in Alicante, Spain, until he became a freelance software engineer.
In that time, he had successfully shipped games on the App Store, Google Play
Store, Amazon Appstore, and Windows Store, with more than 2,000,000 installations
combined for companies such as Amazon Game Studios and FreshGames. At present,
he lives in the US and tries to promote sustainability practices as a game developer at a
non-profit organization, Cool Choices, based in Madison, Wisconsin.

I would like to thank my wife, Patricia, for her love, support,
and patience. I love you. Also, thanks to my parents for always
being there. I am who I am today because of you.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Downloading and installing Visual Studio	 9
Downloading and installing the Windows Phone SDK	 10
Downloading and installing Python	 11
Downloading Cocos2d-x	 14
Creating a new project	 16
Coordinate system	 19
Basic classes of Cocos2d-x	 20
Project breakup	 22
Running the project on multiple platforms	 30

Running the project on Windows (desktop mode)	 31
Running the project on Windows RT (tile mode)	 31
Running the project on the iPhone simulator using Xcode	 32
Running the project on an Android simulator using Eclipse	 33

Summary	 33
Chapter 2: Displaying the Hero and Controls	 35

First things first	 36
Displaying the background image	 37
Character movement	 40
Enabling the touch function	 43
Enabling multitouch	 45
Movement with touches	 46
Movement with the accelerometer	 49
Custom controls	 52
Summary	 53

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Enemies and Controls	 55
Creating the enemy class	 55

Adding the enemy movement	 60
Adding the gameplay layer	 62
Creating the projectile class	 66
Adding hero controls	 73
Summary	 79

Chapter 4: Collision Detection and Scoring	 81
Theory of collision detection	 82

Circular collision	 82
Bounding box collision	 85
Pixel perfect collision	 86
Other collision detection methods	 87

Coding collision detection	 89
Keeping track of the score and the game over condition	 92
Storing high scores	 97
Summary	 100

Chapter 5: HUD, Parallax Background, and the Pause Button	 101
Texts and fonts	 101

Literra	 102
Bitmap font generator	 104
GlyphDesigner	 104

Creating the HUD layer and displaying as well as updating scores	 106
Creating the pause button and showing the pause screen	 108
Implementing pause and resuming the game	 111
Adding the scrolling layer class	 112
Creating the parallax scrolling layer	 120
Summary	 121

Chapter 6: Animations	 123
Animation basics	 123

Spritesheet animation	 124
Skeletal animation	 125

TexturePacker	 126
The display section	 129
The Geometry section	 130
The Layout section	 130
Advanced features	 130

Creating a spritesheet for the player	 131
Coding the player animation	 132

Table of Contents

[iii]

Creating and coding enemy animation	 140
Creating the skeletal animation	 142
Coding the player walk cycle	 149
Summary	 151

Chapter 7: Particle Systems	 153
What is a particle system?	 154
Cocos2d-x's inbuilt particle system	 154
Adding the gun muzzle particle system	 155

Particle designing	 157
Particle Designer	 158

Emitter Configuration	 160
Particle Configuration	 161
Color Settings	 161
Texture Settings	 161

Particle2dx	 161
Motion	 163
Color&Shape	 163
Template	 164
InOut	 164
Background	 164

Adding an explosion particle system	 165
Adding particles for jetpack when a player moves upwards	 166
Creating your own particle system	 167
Summary	 172

Chapter 8: Adding Main and Option Menu Scenes	 173
Creating the main menu scene	 174
Loading the menu scene at start of the app	 180
Creating the Options scene	 181
Changing the name of the app	 186
Summary	 187

Chapter 9: Adding Sounds and Effects	 189
Audio in Cocos2d-x	 189
Adding looped background music	 192
Adding sound effects	 193
Adding the mute button	 195
Summary	 199

Chapter 10: Publishing to the Windows Phone Store	 201
A look at the Windows Phone Store	 202
Creating the store account	 202
Preparing/creating the app	 206

Table of Contents

[iv]

Creating the app and setting pricing	 209
Uploading the XAP file, icons, and screenshots for review	 211
Summary	 216

Chapter 11: Porting, References, and Final Remarks	 217
Running the game on the Windows desktop	 218
Running the game on the Android simulator using the Eclipse IDE	 219
Running on the BlackBerry simulator using the Momentics IDE	 229
Running on an iOS simulator using Xcode	 234
Additional learning resources	 237

Cocos2d-x	 237
Cocos2d-Swift	 239
gamedev.stackexchange.com/stackoverflow	 240

Final remarks and a thank you note	 241
Index	 243

Preface
GamesIndustry International (http://www.gamesindustry.biz/articles/2014-
01-14-mobile-gaming-to-push-industry-above-USD100-billion-by-2017)
states that by 2017, the global gaming business will be worth more than $100 billion.
Out of this, the mobile and online gaming business with a compounded annual
growth rate of 23.6 percent will be generating $60 billion.

The mobile phone as a gaming device, although new, is rapidly growing. Every day,
there are new independent developers and small start-ups creating amazing games.
They almost simultaneously release their games at different stores supporting
different platforms to increase revenue.

Creating cross-platform games used to be a tedious task before. You had to code in
different languages that were native to that device's OS, which could take a month
for each platform. With Cocos2d-x, cross-platform game development is more
accessible, as it is free and completely open source. With the same C++ code and
resources, you can code once and deploy on different devices, such as Android,
BlackBerry, iOS, Mac, Linux, Tizen, Win32, WinRT, and Windows Phone.

This book will show you how to create a cross-platform game from the ground up on
a Windows machine for a Windows Phone. Apart from how to develop a game, the
book will also cover how to publish the game on the Windows Phone Store and port
the same game to different platforms, showcasing the true power of Cocos2d-x.

http://www.gamesindustry.biz/articles/2014-01-14-mobile-gaming-to-push-industry-above-USD100-billion-by-2017
http://www.gamesindustry.biz/articles/2014-01-14-mobile-gaming-to-push-industry-above-USD100-billion-by-2017

Preface

[2]

What this book covers
Chapter 1, Getting Started, is an introduction to Cocos2d-x with instructions to
download and install Visual Studio 2012. It also shows you how to download
Cocos2d-x and create a multiplatform project. This chapter guides you through the
procedure to open the project in Visual Studio and run it on the Windows desktop,
Windows Phone 8 simulator, and iOS device simulator.

Chapter 2, Displaying the Hero and Controls, shows you how to display the player
and make it move around with various control mechanisms, such as actions,
accelerometer, touches, and on-screen buttons.

Chapter 3, Enemies and Controls, shows you how to create a custom enemy class
and a bullet class, make the enemy spawn from the right-hand side of the screen at
different heights, and make the enemy move towards the left. The player has to tap
on the left-hand side of the screen to make the hero reach the same height as the
enemy and tap on the right-hand side of the screen to shoot.

Chapter 4, Collision Detection and Scoring, shows the different mechanics of collision
detection and discusses their advantages and disadvantages. We will also see how
to keep a track of our score.

Chapter 5, HUD, Parallax Background, and the Pause Button, shows you how to add a
GUI and a scrolling background layer. It also explains the process of adding a pause
and resume button along with a pause screen.

Chapter 6, Animations, discusses a couple of animation tools and techniques. Questions
such as "What is a spritesheet animation?" and "How is it different from a skeletal
animation?" will be answered. Also, it will show you how to animate characters using
these techniques and how to change the state of the animation using state machines.

Chapter 7, Particle Systems, discusses how to include particles in the game. You will be
taking a look at inbuilt particle systems in Cocos2d-x and creating your own custom
particle system. You'll also get a glimpse of Particle Designer and other tools used to
create particles.

Preface

[3]

Chapter 8, Adding Main and Option Menu Scenes, discusses Options and Play scenes,
creating the main menu and credits scene, and adding GUI buttons on each of the
screens to navigate between them. It also explains the process of loading the main
screen once the game is loaded.

Chapter 9, Adding Sounds and Effects, shows you how to add the background score and
sound effects in the game. It also discusses actions such as pausing and resuming
sounds and effects and adding a mute button in the Options scene. You can also take
a look at different audio formats and how to convert between them using the free
software, Audacity.

Chapter 10, Publishing to the Windows Phone Store, lets you take a look at the Windows
Phone Store. It explains the various steps needed to create a store account, prepare
the app for upload, check the app on the local machine, and publish games on the
Windows Phone Store.

Chapter 11, Porting, References, and Final Remarks, explains how to port the game on
to different platforms, such as iOS and Android, using the same code base. It also
lets you take a look at some of the useful website references, books, and blogs to take
your coding and game development skills to the next level.

What you need for this book
Cocos2d-x can be run on any Mac, Windows, or Linux machine. Although this book
only shows you how to run projects in Windows and Mac, the same concept can be
used for developing on Linux. Although there are simulators to test the code on any
platform, it is advisable to test and build on a device, so a Windows phone/tablet,
Android phone/tablet, iPhone, or iPad is recommended.

Who this book is for
If you are a hobbyist, novice game developer, or programmer who wants to learn
about developing games/apps using Cocos2d-x, this book is for you. To follow
this book, you will need a good understanding of C++. This book is for you if you
are curious about how games are made for handheld devices; if you want to learn
the various tools that are used by industry professionals to speed up the game
development process; and if you ever wanted to know how to create a store account,
upload your app, and publish it on the Windows Phone Store.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The CCScene class can be used as a container of CCLayers."

A block of code is set as follows:

CCScene* HelloWorld::scene()
{
 CCScene *scene = CCScene::create();

 HelloWorld *layer = HelloWorld::create();

 scene->addChild(layer);

 return scene;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 Enemy* e = Enemy::createEnemy(gameplayLayer);
 gameplayLayer->addChild(e);
 e->shoot(0.016);

Any command-line input or output is written as follows:

cd desktop\coco2d-x-2.2.3\tools\project-creator

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Download and select VS2012_WDX_ENU.iso. Click on Next and the download
should begin."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started
In this chapter, we will look at the basics of the Cocos2d-x frameworks and get
the required tools installed to create the Cocos2d-x project. This will include
downloading and installing Visual Studio IDE, Windows Phone SDK, Python,
and Cocos2d-x and creating the project. We will also cover some basics such as
coordinate systems, fundamental classes of Cocos2d-x, and how to run the same
project on different devices running on different platforms.

The topics you will learn in this chapter are as follows:

•	 Downloading and installing Visual Studio
•	 Downloading and installing Windows Phone SDK
•	 Downloading, installing, and configuring Python
•	 Downloading Cocos2d-x
•	 Creating your project and running it on a simulator
•	 The basics of Cocos2d-x, the coordinate system, and project structure
•	 Running the project on multiple platforms

The following are the requirements to get started:

•	 Windows 8.0 (64-bit)
•	 Visual Studio 2012 Express Edition
•	 Windows Phone SDK 8.0
•	 Python Version 2.7.6
•	 Cocos2d-x Version 2.2.3

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[8]

At the time of writing this book, Version 3.0 of Cocos2d-x had already been released.
I am using Version 2.2.3 for this book for the following reasons:

•	 Version 2.2.3 supports a wide array of platforms such as Blackberry,
Windows Phone, Tizen, and Marmalade

•	 There are a lot of tools that are freely available for Version 2.2.3 for
advertisements, in-app purchases, and leaderboard and achievement
integration, which in v3.0 you would have to write yourself at the moment

That being said, I would definitely keep a watch on v3.0 and the platforms it
supports in the future releases. Also, the tools are being updated to support Version
3.0. I would recommend downloading v3.0 from the site and practicing with it once
you have a good understanding of how Cocos2d-x works.

If you wish to run the game on iOS, Android, or Blackberry instead
of Windows Phone 8, you can refer to Chapter 11, Porting, References,
and Final Remarks, and see how to configure the IDE for that OS and
then continue from the next chapter.
For Win32, you can continue with this chapter and you wouldn't
have to install Windows Phone 8 SDK. You can also run the project
on Windows 7 or higher machines, but you will have to make a
small change in the AppDelegate.cpp file, which is mentioned in
Chapter 11, Porting, References, and Final Remarks.

Also, while opening the win32 project developed in Visual Studio 2012 with the
currently installed Visual Studio 2013, you might get some errors. The following
are the steps to be taken to fix this:

1.	 Right-click on the wp8GameComponent project and then click on Properties.
2.	 In General under Configuration Properties, make sure Windows Phone 8.0

(V110) is selected for Platform Toolset.

Cocos2d-x 2.2.3 can be downloaded for all the OSes from
the links in this chapter.

Chapter 1

[9]

Downloading and installing Visual Studio
For this book, I will be using Visual Studio 2012 Express Edition. It can be downloaded
from the Microsoft Download Center at http://www.microsoft.com/en-gb/
download/details.aspx?id=34673. The following are the steps to download and
install Visual Studio:

1.	 Click on Download, as shown in the following screenshot, and select
VS2012_WDX_ENU.iso:

2.	 Click on Next and your download should begin.
3.	 Once downloading is complete, double-click on the ISO file; Windows will

mount it as a disk drive. Double-click on winexpress_full.exe. This should
start the installation of Visual Studio.

4.	 Once installed, move on to the next step in which we will be installing the
Windows Phone SDK.

http://www.microsoft.com/en-gb/download/details.aspx?id=34673
http://www.microsoft.com/en-gb/download/details.aspx?id=34673

Getting Started

[10]

Downloading and installing the Windows
Phone SDK
To test the game on the simulator or device, you will need the Windows Phone
SDK. This can be downloaded from http://dev.windowsphone.com/en-us/
downloadSDK.

Once you go to this link, under SDK 8.0, click on the Download button, as shown in
the following screenshot. This will download WPexpress_full.exe.

Double-clicking on Install will initiate the installation of the SDK and install it on
the machine. If Hyper-V is turned off, after restart, go to the system BIOS and enable
virtualization to enable Hyper-V.

Hyper-V is a virtualization tool that enables you to run the Windows Phone 8
simulator on your PC. Like any virtualization tool, it will use some part of your
current system resources such as hard disk, processor, and RAM and show you
how the game/application will run on the device. But since it uses your current
system resources, it is like running one system inside another system, so the result
won't be exact, as it would be on the device, but at least it will give a good idea of
how the application/game will look on the device. For actual testing, I still would
recommend using an actual device.

http://dev.windowsphone.com/en-us/downloadSDK
http://dev.windowsphone.com/en-us/downloadSDK

Chapter 1

[11]

Downloading and installing Python
You can skip this section if you want to create a Cocos2d-x project on Mac as Python
is preinstalled in OS X, which we will cover in Chapter 11, Porting, References, and
Final Remarks. But for Windows, you will have to install and configure Python.

Download and install Python using the following steps:

1.	 To download Python, go to http://www.python.org/download/ and click
on Python 2.7.6 Windows x86-64 Installer.

2.	 Once downloaded, double-click on the EXE file to start the installation. Once
installed, you will see a Python27 folder in your C: drive.

http://www.python.org/download/

Getting Started

[12]

3.	 Next, you will have to configure Python. Right-click on Computer and
select Properties, as shown in the following screenshot. This will open the
System panel.

4.	 On the System panel, click on the Advanced system settings link on the
left-hand side.

5.	 Now click on the Advanced tab and then click on Environment Variables....
6.	 Under user variables for [user's account name], click on New.... In Variable

name, type in PATH and in Variable value, type in the path c:\Python27;c:\
Python27\Lib\site-packages\;c:\Python27\Scripts, as shown in the
following screenshot:

Chapter 1

[13]

7.	 Click on OK and close the System panel. To check whether Python was
configured correctly, press Windows + R, type in cmd in the Open textbox of
the Run command box, and then click on OK. This will open the command
prompt window.

Getting Started

[14]

8.	 In the command prompt, type in python. This should display the version of
Python installed. In this case, it is 2.7.6. Refer to the following screenshot:

If you see the preceding window, Python is configured correctly. If not, check whether
you have followed the steps correctly and haven't missed anything. Also make sure
that the command is typed exactly as given in step 8. Once Python is installed and
configured, we can move to the next step, which is downloading Cocos2d-x.

Downloading Cocos2d-x
Download Cocos2d-x using the following steps:

1.	 To download Cocos2d-x, go to http://www.Cocos2d-x.org/download and
download Version 2.2.3 from the website.

http://www.Cocos2d-x.org/download

Chapter 1

[15]

2.	 Once downloaded, you can unzip the Cocos2d-x-2.2.3 folder to any folder
on the system; I am extracting it onto the desktop.

3.	 Make sure you are downloading the Cocos2d-x version and not the JS or
HTML5 version of Cocos2d.

4.	 Once downloaded, unzip the folder. With Cocos2d-x downloaded and
extracted, we can now create a new project.

Getting Started

[16]

Creating a new project
Use the following steps to create the project:

1.	 Press Windows + R and type in cmd.
2.	 On the command prompt, type in the following command and press Enter:

cd desktop\coco2d-x-2.2.3\tools\project-creator

3.	 In the project-creator folder, type in the following command and
press Enter:
python ./create_project.py –project wp8Game –package com.
testpackage.wp8Game –language cpp

You will be presented with the screen shown in the following screenshot:

Chapter 1

[17]

Once the project is created in the project folder, you
shouldn't move the folder around as it will lose the
references to Cocos2d-x and the folder required to run
the game.

4.	 Now navigate to the project's folder in Cocos2d-x-2.2.3. You will find the
new folder created, named wp8Game. Double-click on it and you will see the
folder structure, shown as follows:

You can see a Classes folder, a Resources folder, and project folders for all
the different platforms that Cocos2d-x supports.

5.	 Since we are making a game for the Windows Phone platform, double-click
on the proj.wp8-xaml project folder and double-click on wp8Game.sln.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[18]

6.	 When asked for application preference, choose the Windows Phone
option. This will open the project in Visual Studio, as shown in the
following screenshot:

7.	 To run the project on the emulator, select Emulator WVGA 512MB and click
on the green play button. This will take some time to build; once built, the
project should run on the simulator, as shown in the following screenshot:

Chapter 1

[19]

Congratulations on creating a new project! Now that the project is created, let's take
some time to understand the fundamentals of the coordinate system and the basic
classes used in Cocos2d-x that serve as the building blocks for creating any game.

Coordinate system
Coordinate systems are used to determine the position of the objects on the screen.
Cocos2d-x uses a rectangular coordinate system with the bottom-left corner of the
screen being the origin in landscape mode and top-left corner in portrait mode.

From the bottom-left corner of the screen, imagine a line going straight towards the
bottom-right corner, which would be the x axis, and a line going up from the origin
to the top-left corner, which would be the y axis. There is also a z axis that is coming
out of the screen from the origin. This is irrespective of whether you are holding the
device in the landscape or the portrait position. Refer to the following figure:

Since Cocos2d-x is the 2D game development framework, we will be mostly dealing
with the x and y coordinates. The z axis is used mainly for placing objects in front or
behind other objects. To decide which image is above another image, Cocos2d-x has
something called a Z-order. The higher the Z-order, the further away from the screen
that image will be.

A positive z value means that you are placing the object in front of other objects and
a negative z value means that you are placing it behind other objects. For example,
the background image would usually have a Z-order of 0 or -1. And you would
place other objects at a value that is higher than that value since you would want the
background to be behind all the other objects on the screen.

Getting Started

[20]

Also, if you don't specify the Z-order while adding a layer or sprite, the next available
Z-order will be taken by default. For example, if you add a background sprite and
then immediately add the player sprite, the player sprite will be drawn above the
background and you will be able to see both the player and the background. If you
add them the other way around, you won't be able to see the player as the background
is at a higher Z-order than the player and hence the player will be drawn beneath the
background and you will be able to see only the background. You might think the
player is not drawn but in fact the player is being drawn but under the background,
so you don't see it.

The distance is measured in pixels. So assume you have a Nokia 820, which has a
screen resolution of 800 x 480 when viewing the screen in landscape mode, which
means the width of the screen is 800 pixels and the height is 480 pixels. So if you
wanted to place something on the middle of the screen, you would move 400 pixels
from the right of the origin and then go up 240 pixels from the bottom of the screen
to place the object at (400, 240).

Basic classes of Cocos2d-x
The following are the basic classes of Cocos2d-x:

•	 CCScene: A CCScene class is used to make screens such as the menu screen,
game screen, and credits screen. The CCScene class can be used as a container
of CCLayers. It is an abstract entity and you can apply transitions on it to go
between scenes such as the menu scene, gameplay scene, and options scene.

•	 CCLayer: In a scene, you can have different layers to help you organize your
scene better just like in Adobe Photoshop. In games, you would usually have
different layers such as the Heads-up Display (HUD) and background. Also,
CCLayers, unlike CCScenes, have the ability to receive touch and accelerator
events. Inside CCLayers, you can have CCSprites, CCMenus, and so on.

•	 CCSprite: This is the class that is used to display the images on the screen.
The image could be in .png or .jpg format. It has various properties
such as the width and height of the image, setPosition, setScale, and
setRotation, which can be used to manipulate the image's position, scale,
and rotation.

Chapter 1

[21]

•	 CCLabeITTF: This is used whenever you wish to display any text on the
screen. It is mainly used for showing tutorials or level numbers at the start
of the game. The text can also be dynamically changed, for example, while
updating the score during the game. The user can apply styles, fonts, colors,
sizes, and so on on a CCLabeITTF.

•	 CCMenu: This is used for placing the UI elements in the game such as buttons.
CCMenuItems are used to attach the images, position them, and then add
them to CCMenu so that they are displayed on the screen. Although you can
position the CCMenu, it is general practice to position CCMenuItems instead
and keep CCMenu positioned at the origin.

The following is the Gameplay scene from my game, pizzapMania, which shows the
layers in the Gameplay scene in action:

The Gameplay scene can be further divided into the background layer, with Z-order
0, which is a CCLayer containing the background image that is a CCSprite. The
gameplay layer at Z-order 1 contains gameplay elements such as the player and
houses that are all sprites. Finally, the HUD layer, at Z-order 3, has the pause
button and controls that are sprites and score, time elapsed, and coins collected are
CCLabeITTFs that are updated periodically.

If you don't understand what a Z-order is, go through the Coordinate system section
to refresh your memory.

Getting Started

[22]

Here, I have included the controls in the HUD layer itself. You could create a new
layer and add the controls to it so that it is handled separately on a separate layer.
Refer to the following screenshot:

Project breakup
First, let's look at the structure of Solution Explorer:

Chapter 1

[23]

In the Solution Explorer pane, we have the following projects:

•	 Angle project: As Cocos2d-x uses the openGL ES 2.0 graphics library and
Windows uses DirectX to display objects on the screen, the Angle project
converts all the openGL ES code to DirectX. For more information on Angle
projects, you can visit the MSOpenTech GitHub page at https://github.
com/MSOpenTech/angle.

•	 CocosDenshion: This is the audio library. Whenever we want to play a
sound or an effect, we would make use of this project for the audio to play
properly. We will be looking into it when we include music and sound
effects in the game.

•	 libbox2d: This is a physics framework that can be used to make complex
physics-based games. It is written by Erin Catto and it is used by most of
the popular 2D physics-based games such as Angry Birds and Cut the Rope,
to name a few. You can learn more about Box2D at http://box2d.org.

https://github.com/MSOpenTech/angle
https://github.com/MSOpenTech/angle
http://box2d.org

Getting Started

[24]

•	 libChipmunk: Similar to Box2d, Chipmunk is also a physics framework that
can be used to make physics simulation in your games to make it more realistic
and fun. You could either use Box2d or Chipmunk depending on your comfort
level. More can be learned at https://chipmunk-physics.net.

•	 libExtensions: This contains some third-party plugins and helper projects that
you can use out of the box in Cocos2d-x. For example, Spine is a 2D skeletal
animation toolkit that can used to make 2D animations in Cocos2d-x, and
CocosStudio is used to make UI, animations, and scenes using this simple tool.
You can learn more about Spine at http://esotericsoftware.com/ and
CocosStudio at http://www.Cocos2d-x.org/wiki/CocoStudio.

These are the projects that will be included by default in all the projects that you
create. The next two projects are the ones that are created depending on what name
you gave to the project.

In this case, there is the wp8Game project and the wp8GameComponent project. If you
look at other Windows projects such as proj.win32, proj.winrt, or proj.wp8, there
will only be one project with the project name. So why are there two projects here?

The short answer is that, in order to integrate ads and in-app purchases into the
game, we would need to create an XAML project. If your game doesn't have in-app
purchases or ads, you can use the proj.wp8 project instead of proj.wp8-XAML.

You will see that the wp8Game project has a C# in front of it and wp8GameComponent
has a ++ sign in front of it in Visual Studio's Solution Explorer. All of the game logic
would be written in the component project in C++, which while running will talk to
the C# layer and call the ads and in-app purchases in C# when required.

Until we start integrating the ads and in-app purchases, we will mainly be typing
in the code in C++ in the component project. But make sure that the wp8Game
project is set as the current project by right-clicking on the project and selecting the
appropriate option.

Let's look into the classes that actually participate in starting the app and displaying
the objects on the screen. We will look into the wp8Game project later, but for now let's
expand the wp8GameComponent project.

There are a bunch of dependencies, other renderers, input classes, and the classes
folder. In this classes folder, you will find the following three classes:

•	 AppDelegate

•	 HelloWorldScene

•	 AppMacros

Let's look at these in detail.

https://chipmunk-physics.net
http://esotericsoftware.com/
http://www.Cocos2d-x.org/wiki/CocoStudio

Chapter 1

[25]

AppDelegate is the class that is responsible for initiating the application and getting it
ready to display the game/application on the screen of the device or on the simulator.
If you open up the AppDelegate.cpp file, you will find the following functions:

•	 applicationDidFinishLaunching

•	 applicationDidEnterBackground

•	 applicationWillEnterForeGround

Let's look at these functions in detail.

The applicationDidFinishLaunching function is called when the application
is launched. In applicationDidFinishLaunching, there are two variables,
CCDirector and CCEGLView. Both the classes are singleton, meaning that only one
instance of each is created for this project and that instance is shared when required.
Also, it can be accessed from any class at any time, provided the correct header files
are used.

CCDirector is a very important class; it keeps a track of which scene is currently
loaded and takes care of opening a new scene and replacing the current scene with
another scene. Here, we get the shared instance of CCDirector:

CCDirector* pDirector = CCDirector::sharedDirector();

We will go through scenes in a little more depth later
in the chapter.

CCEGLView takes care of checking the resolution of the current device this application
is running on and creates a view so that objects can be displayed on the screen.
Similar to CCDirector, we get the shared instance of it:

CCEGLView* pEGLView = CCEGLView::sharedOpenGLView();

The director also needs to be aware of the view variable, so the newly created view is
given to it:

pDirector->setOpenGLView(pEGLView);

Next, the director is told whether we want the frames per second to be displayed on
the screen:

// turn on display FPS
pDirector->setDisplayStats(true);

Getting Started

[26]

The fps is always displayed at the bottom-left corner of the screen. If we wish to
disable it, we can set true to false. In fact, once the game is done and you are ready
to release it, make sure that you set it to false.

Next, the animation interval is set. Here, the CCDirector class is told how often the
update function should be called:

// set FPS. the default value is 1.0/60 if you don't call this
pDirector->setAnimationInterval(1.0 / 60);

The animation interval is set to 1.0 / 60. So right now, it is set at 60 frames
per second. So the game is updated 60 times in a second. So each frame is called
approximately every 0.0167 seconds.

Now we take the HelloWorld scene and make the application run with the scene by
telling the director to start the application with this scene:

// create a scene. it's an autorelease object
CCScene *pScene = HelloWorld::scene();

// run
pDirector->runWithScene(pScene);

The applicationDidEnterBackground function tells CCDirector that the application
has gone into the background, so the animations and sounds of the game should be
stopped. This is the function that is responsible for pausing your game when you get a
call while playing a game.

The applicationWillEnterForeGround function is similar to
applicationDidEnterBackground. The applicationWillEnterForeGround
function will tell the director to start the animations and sounds as the application
is coming to the foreground.

That is all for the AppDelegate class. Next, we will move on to the HelloWordScene
class, where most of the game logic will be written. In HelloWorldScene.h, you will
see that it starts with #include cocos2d.h, which is the Cocos2d header. It needs to
be included in all the classes that you create if you need access to Cocos2d functions
and properties.

In the interface, you will see that the name of the class is HelloWorld and it inherits
from CCLayer:

class HelloWorld : public cocos2d::CCLayer

The virtual bool init() function is the first function that is called to initiate
the layer. So, this is where you will be initializing the variables and the settings for
the game.

Chapter 1

[27]

In static cocos2d::CCScene* scene(), a new scene is created and the HelloWorld
layer is attached to the scene and the function is returned.

The void menuCloseCallback(CCObject* pSender) statement is a callback function
that is called when you press the close button on the screen. However, this doesn't
work in Windows Phone. But, if you are running this project on an iOS or an Android
device, this function will close the application and return to the home screen.

CREATE_FUNC(HelloWorld) is a macro that creates and initializes the HelloWorld
class by calling its constructor and calling the init function. We will be creating our
own custom create function when we create the enemy class later so that you can
see what a create function looks like.

Let's move forward and open up the HelloWorldScene.cpp file. This file includes
the HelloWorldScene.h file and uses a USING_NS_CC macro to set the namespace to
Cocos2d. You could use using namespace cocos2d; but USING_NS_CC is a macro
that includes CCPlatformMacros.h, which itself has a lot of predefined macros in it,
so you might have to include it separately if required. But for this book, either can
be used:

#include "HelloWorldScene.h"

USING_NS_CC;

Next is the definition for the scene function that returns the current scene after adding
the current layer, which is the HelloWorld layer:

CCScene* HelloWorld::scene()
{
 // 'scene' is an autorelease object
 CCScene *scene = CCScene::create();

 // 'layer' is an autorelease object
 HelloWorld *layer = HelloWorld::create();

 // add layer as a child to scene
 scene->addChild(layer);

 // return the scene
 return scene;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[28]

The scene and layer are autorelease instances, meaning that you don't have to
delete these pointers manually and release them as they are part of a release pool and
will be released automatically.

Next is the init() function, in which you call the init() function of the super class:

if (!CCLayer::init())
{
 return false;
}

Then there are two variables, visibleSize and origin, of type CCSize and CCPoint
respectively. CCSize is a class with two floats—width and height. You can perform
functions such as setting the width and height and you can also check whether two
CCSizes are equal. CCPoint is a class with two floats, x and y, which are used to
define a point in 2D space. You can also do additional operations such as checking
the distance between two CCPoints, get the dot or cross products, and get the angle
between the two points.

The visibleSize variable stores the current resolution of the screen and origin
stores the origin of the current scene. Both are retrieved from the CCDirector
singleton class:

CCSize visibleSize =
 CCDirector::sharedDirector()->getVisibleSize();

CCPoint origin =
 CCDirector::sharedDirector()->getVisibleOrigin();

The origin is always set at the bottom-left corner of the screen by default in landscape
and top-left corner in portrait with the right being the positive x direction and up
being the positive y direction. This is valid whether you are in landscape mode or
portrait mode irrespective of what device you are running or building the game on.

After getting the screen resolution and the origin of the current layer, we can start
placing our object onto the layer.

First, the close button is created that will call the menuCloseCallBack function
when clicked, causing the application to shut down. For this, an instance of
CCMenuItemImage is created, called pCloseItem. It takes four parameters:

•	 The image that is shown when the button is not clicked
•	 Which image should replace the original once the button is clicked
•	 The target class, which in this case is the current class
•	 What function should be called when the button is clicked, so in this case,

we call the menuCloseCallBack function

Chapter 1

[29]

Refer to the following code snippet:

CCMenuItemImage *pCloseItem = CCMenuItemImage::
create("CloseNormal.png",
 "CloseSelected.png",
 this,
 menu_selector(HelloWorld::menuCloseCallback));

Next we set the position of the menu item image and place it at the bottom-right
corner of the screen. This is done by taking the screen's width, subtracting half of the
button's width, and then placing it at half of the button's height above the bottom
of the screen. Both the button's height and width are divided by two as the anchor
points for the image are at the center of the image:

pCloseItem->setPosition(ccp(
origin.x + visibleSize.width - pCloseItem->
 getContentSize().width/2 ,
origin.y + pCloseItem->getContentSize().height/2));

Next, for the menu button to be displayed on the screen, the menu button image
needs to be added to CCMenu. So, we create an instance of the CCMenu class and add
pCloseItem into it. We have to include NULL at the end to tell CCMenu that there are
no more items to be added. The position is set to the bottom-left corner by setting
the position to CCPointZero. Finally, it is added to this layer's display list with a
Z value of 1:

CCMenu* pMenu = CCMenu::create(pCloseItem, NULL);
pMenu->setPosition(CCPointZero);
this->addChild(pMenu, 1);

To display the "Hello World" text on the screen, CCLabeITTF is used. A new instance
of it is created, called pLabel, and it takes three default values, which are:

•	 What text you want to display; this should be within double quotes
•	 The name of the font; this should be in double quotes
•	 The size of the font

Refer to the following code:

CCLabelTTF* pLabel = CCLabelTTF::
 create("Hello World", "Arial", 24);

Getting Started

[30]

Then the position is set by setting the x position in the middle of the screen and the
y position at the height of the screen and subtracting the height of the content size's
text from it. Refer to the following code for more clarity:

pLabel->setPosition(ccp(
origin.x + visibleSize.width/2,
origin.y + visibleSize.height - pLabel->getContentSize().height));

Then the label is added to the display list using the addchild function and keeping
the z depth 1:

this->addChild(pLabel, 1);

And finally, to display the background image, a CCSprite variable is created
called hero and it is given the name and extension of the image to be displayed,
in quotes:

CCSprite* hero = CCSprite::create("HelloWorld.png");

Next, its position is set at the center of the screen:

hero->setPosition(ccp(
visibleSize.width/2 + origin.x,
visibleSize.height/2 + origin.y));

Finally, it is added to the display list with z depth as 0:

this->addChild(hero, 0);

The z depth is kept at zero so that it is behind all the objects that would be created.

The AppMacros.h file is used for resource management to handle different screens.
We will go in detail later in the book when we make the game compatible with
different screen resolutions.

Running the project on multiple platforms
The same project can be run on different platforms. Let's see a few examples of the
same project, running on Windows (desktop mode), Windows RT (tile mode), iOS,
and Android with ease and with no need to rewrite the code for different languages.

Chapter 1

[31]

Running the project on Windows
(desktop mode)
To run the project on Windows desktop, go to the project's folder and open the
proj.win32 folder and double-click on wp8Game.sln in desktop mode.

Once Visual Studio opens, click on Local Machine to build and run the project.
Once built, you should see it running:

Running the project on Windows RT
(tile mode)
To run the project in Windows RT mode, you will need the Visual Studio 2012
Professional or Ultimate edition. The following steps will help you run the project on
Windows RT:

1.	 In the project's folder, instead of proj.win32, open proj.winrt.
2.	 Double-click on wp8Game.sln to open it in Visual Studio 2012.
3.	 Select Local Windows Debugger in the drop-down list next to the green

triangle button on the toolbar and click on it.

Getting Started

[32]

4.	 Once it has been built, it will open in fullscreen mode, as shown in the
following screenshot:

Running the project on the iPhone simulator
using Xcode
You can even take a copy of the Cocos2d-x 2.2.3 folder to a Mac and run it on the
simulator. Just install the Xcode IDE; go to the proj.ios folder and double-click
on the Xcode project and that's all! You should now see the project running on an
iOS simulator:

Chapter 1

[33]

Running the project on an Android simulator
using Eclipse
Running the project on Eclipse on an Android simulator is a long process, so I am
just showing you the output on the Android Virtual Device (AVD):

Later in the book, we will also see how to configure the IDEs to run the project on
an iOS simulator on Mac using the Xcode IDE and on Android simulator using the
Eclipse IDE.

Summary
In this chapter, we learned how to install Visual Studio and the Windows Phone
SDK. We downloaded Cocos2d-x 2.2.3 and created a new multiplatform project. We
opened the project in Visual Studio 2012 and ran the project on the simulator.

We went through each of the projects in the Solution Explorer pane and understood
what each of the projects do. We understood the fundamentals of the coordinate
system and the basic classes in Cocos2d-x that are used to make any kind of game.

Getting Started

[34]

We then dug deeper to understand the different classes such as AppDelegate and
HelloWorldScene, which are responsible for running the game. We also had a closer
look at the individual functions and variables that are used to create, position, and
display the objects on the screen.

If you wish, you can play around with the sprites by changing the position,
rotation, and scale of the sprites to practice what you have learned so far. If you
wish to know more about a class or a function, you can always press F12 and it will
take you to the source file so that you can study it to get a deeper understanding of
the implementation of the class. Don't be afraid to experiment. If you did something
and don't know how to get back, you can always delete the wp8Game folder in the
project and create a new project. Use this time to become familiar with Cocos2d-x
and Visual Studio.

In the next chapter, we will start creating a game in which we will add the hero on
the screen and make him move around using different control mechanics.

Displaying the Hero
and Controls

In the previous chapter, we saw the inside workings of Cocos2d-x, where we saw
which projects and libraries were included. We also looked at the project and folder
structure of a single project and dug deeper into understanding the classes that act as
the basic building blocks for creating any game.

From this chapter, we will look at how to take those building blocks and make a
functional game out of it.

In this chapter, we will see how to display objects, such as the background image
and player, and position them on the screen. Once the player is on the screen, the
next thing we will do is make her move around. We will look at different ways that
the hero can be controlled in.

The things you will learn in this chapter are the following:

•	 How to display the background image
•	 How to display the hero
•	 How to move the hero using the following:

°° Actions
°° Accelerometer
°° Touches
°° Custom controls

Displaying the Hero and Controls

[36]

First things first
As we are going to start creating the game from scratch, let's remove all the code that
is already present in the HelloWorldScene.cpp file.

So, we open up the project by navigating to wp8Game/wp8Game-XAML/wp8Game.
sln in Visual Studio and clicking on the HelloWorldScene.cpp file in the Solution
Explorer pane under the wp8Component project in the classes folder. We then go
to the init() function and remove CCMenuItem, CCMenu, and CCSprite. We need to
make sure that the init() function looks as follows:

bool HelloWorld::init()
{
 //////////////////////////////
 // 1. super init first
 if (!CCLayer::init())
 {
 return false;
 }

 visibleSize = CCDirector::sharedDirector()->getVisibleSize();
 CCPoint origin = CCDirector::sharedDirector()->getVisibleOrigin();

 return true;
}

As Windows doesn't use a close button function, we might as well remove the close
button function from the HelloWorldScene.cpp and HelloWorldScene.h files. So,
we remove the following function from the .h file:

 // a selector callback
 void menuCloseCallback(CCObject* pSender);

Furthermore, we remove the following from the .cpp file:

void HelloWorld::menuCloseCallback(CCObject* pSender)
{
#if (CC_TARGET_PLATFORM == CC_PLATFORM_WINRT) || (CC_TARGET_PLATFORM
== CC_PLATFORM_WP8)
 CCMessageBox("You pressed the close button. Windows Store Apps do
not implement a close button.","Alert");
#else

Chapter 2

[37]

 CCDirector::sharedDirector()->end();
#if (CC_TARGET_PLATFORM == CC_PLATFORM_IOS)
 exit(0);
#endif
#endif
}

Now, we build and run the project to make sure that there are no build errors.
When the build runs, we should see a blank black screen like the following:

Displaying the background image
Now that we have a clean slate, let's start from the top by displaying the
background image.

You might think that, "Wait a second. Are we going to be using a static image for
the background? But the book says it will teach the parallax background." It is true
that we are going to use a static background for the time being so that it is easy to
visualize and see whether proportionately everything looks right on the screen. The
image is just for reference; we will change the static image into a parallax layer later
in the book.

www.allitebooks.com

http://www.allitebooks.org

Displaying the Hero and Controls

[38]

First, we need to copy all the assets from the Resources folder provided with the
chapter into the Resources folder of the project on the drive. The Resources folder
should be in the wp8Game project folder along with the Classes folder, as mentioned
in Chapter 1, Getting Started. After importing the background image and other images
into the Resources folder, we go to the wp8Game project (not the component!) in
the Solution Explorer pane in Visual Studio, click on the triangle beside it to open
the folder structure, and look for the Resources folder. We then right-click on the
Resources folder and navigate to Add | ExistingItem. Now, we navigate to the
Resources folder on the drive that we have copied all the resources of the game on,
select the bookGame_Bg.png file, and finally click on Add. We should now be able to
see the file in the Solution Explorer pane, as follows:

Now, in the init() function, we create a new variable called bg of the type
CCSprite and position it as follows:

 CCSprite* bg = CCSprite::create("bookGame_Bg.png");
 bg->setPosition(ccp(visibleSize.width* 0.5, visibleSize.height *
0.5));
 this->addChild(bg, -1);

Regular C++ users follow the practice of "if you create new, you must delete", which
pertains to creating pointers. However, since CCSprite is an autorelease object of
Cocos2d-x, this is not required in this case.

Now, if we build and run it, the background image will look as follows:

Chapter 2

[39]

Note how the code is exactly the same as the initial default Cocos2d-x background
that was displayed, except that I just put the depth as -1 so that the background
object is behind all the other objects on the screen.

Congratulations! We have displayed the first object on the screen. Let's ship it and
make some money. Well, not so soon. We still need our hero to make it a little more
interesting. The player obviously won't pay a whole lot of money for a pretty picture
to get displayed on the screen.

Next, we will import the hero into the game. So, we follow the same steps to import
the bookGame_tinyBazooka.png file into the project that we did for bg. So, we go to
the Resources tab in the Solution Explorer pane, right-click and select Add Existing
item, select the PNG file, and click on Import.

As we will be accessing the hero sprite all the time, we will make it a global variable
and declare it in the .h file instead of the .cpp file. So, we go to the .h file and create
a new CCSprite variable called hero right below the area where it says public:,
as follows:

CCSprite* hero;

Displaying the Hero and Controls

[40]

Now, below the position where we created bg in the init() function, we type
the following:

 hero = CCSprite::create("bookGame_tinyBazooka.png");
 hero->setPosition(ccp(visibleSize.width * 0.25, visibleSize.height
* 0.5));
 addChild(hero, 5);

We now build and run the project; we should see the hero on the screen, as follows:

Unlike the background object that was placed at the center of the screen, the hero is
placed at 0.25 or 1/4th the width of the screen and at half the height of the screen.
I have placed it at a z depth of 5 so that it is above all the other objects on the screen.
Now, if we add a new child between -1 and 5, it would be placed between the
background and the hero image.

Character movement
For the character to move at a constant speed over a period of time, we need to
basically update the position of the character on the x or y axes, depending on the
requirement of the game.

Chapter 2

[41]

So, to achieve this, we use the scheduleUpdate() function, which is inbuilt
in Cocos2d-x. This function will automatically call the update function over
and over again, depending on the frames per second (fps) that we set for the
applicationDidFinishLaunching() function of the AppDelegate class. If you
remember, we the set the frame rate to be 1/60, which is 60 frames per second,
so that the update function will also be called 60 times per second.

To include the update function, we go to the init() function and add the following
line of code:

this->scheduleUpdate();

This will initialize a regular call to the update function as soon as the scene is
initialized. Next, we need an update function.

Creating a function in Cocos2d-x is similar to creating a function in C++. In the .h
file of HelloWorldScene, we declare a function as follows:

virtual void update(float dt);

Here, we override the virtual update function of the CCSprite super class. The
virtual keyword is not necessary here; it is just to remind us that this is a virtual
function, that's all. The dt part in float dt tells the function after how many
milliseconds the update function is called again; in this case, it is 1/60, which is
approximately 0.0167 seconds.

In the HelloWorldScene.cpp file, we define the function as follows:

 void HelloWorld::update(float dt)
{

}

Now, to check whether the update function is getting called again and again,
we perform a small test by logging something to the output window.

To do so, we right-click on the wp8component project in the Solution Explorer pane
and go to C/C++ | Preprocessor; then, under Preprocessor Definitions, we click
on the arrow mark that is facing downward and add the following at the end of the
code snippet:

COCOS2D_DEBUG=1

This will enable us to log to the output window. Now in the update(float dt)
function that we just created, we add the following line of code:

CCLog("updating");

Displaying the Hero and Controls

[42]

Now, we build and run the project by clicking on the green arrow button at the top.
After running the project, we should see the desired output in the console:

We can stop the player from running by clicking on the orange stop button at the top
of the window. Now, we can start making the character move.

We first make the character move from the left to the right of the screen. To do this,
we add the following lines of code in the update(float dt) function:

 CCPoint p = hero->getPosition();
 hero->setPosition(ccp(p.x + 5, p.y));

We now build and run the project; we will see the hero move in the right direction.

So, what we are doing here is taking the current position of the hero in every frame
and adding 5 to the X value, and then, setting the position of the hero to this new
value. This makes the character move by 5 pixels per frame, which gives movement
to the character:

Chapter 2

[43]

We can see that the hero keeps on going and going, and then goes completely out of
the screen.

So, let's add a condition such that if the hero goes off screen, we reset her to the left
of the screen.

Let's add the following code snippet in our update function below the move function
code we wrote previously:

 if((hero->getPositionX() - hero->getContentSize().width/2)>
visibleSize.width)
 {
 hero->setPosition(ccp(0.0 - hero->getContentSize().width/2,
hero->getPositionY()));
 }

We should see the hero looping around on the screen now. Here, we check whether
the player has gone completely out of the right of the screen by adding half of the
width of the hero to the current position and resetting her to the left of the screen
if the condition is true.

The aforementioned if condition can be written as: if the current x position of the
hero is greater than the width of the screen plus half of the width of the hero, set him
to the back of the screen. We can alternatively check whether the hero's x position
is equal to the width of the screen and then reset her, but then it wouldn't look very
smooth. This is because the hero is reset to the back even when she is not completely
off the screen to the right. So, we add the extra half of the width of the character to
check whether she has gone completely off the screen.

Now that we have understood how to move the character, let's take a look at some
other ways in which the player can be moved.

Let's first take a look at the touch function.

Enabling the touch function
The touch function gives us some basic functions; they can be used to create gestures
such as TAP, DOUBLE TAP, and SWIPE, which are used in majority of the handheld
games these days. Using these functions, we can also create custom gestures depending
on the needs of the game.

We can enable touch on a layer by calling the setTouchEnabled() function on the
layer and setting it to true so that the layer starts listening to touches; without this,
the gestures won't be recognized.

Displaying the Hero and Controls

[44]

Cocos2d-x comes with the following four functions to create different control schemes:

•	 TouchesBegan(): This function is called whenever a finger touches the
screen. Whenever a user touches the screen, a tap is triggered. This is one of
the easiest gestures to create. Every touch function takes two parameters: the
first is a CCSet and the second is a CCEvent. The CCSet is an array that keeps
track of the touch count, such as how many fingers are touching the screen.
If there are three fingers touching the screen at the same time, CCSet keeps
track of data regarding all the three fingers. Every time we touch the screen,
an ID is created from 1 to 5, and it is removed when we remove the finger
from the screen. The CCEvent is an event listener that tells when an event has
been triggered; in this case, it is the touch event.

•	 TouchesMoved(): This function is called when we place a finger(s) and move
it/them on the screen. When we stop moving the finger, the function doesn't
get called, and when we start moving it again, the function gets called over and
over while we are moving our finger. Imagine this to be an update function
that gets called only if our finger is moving on the screen. The TouchesMoved()
function also takes in the two inputs as the TouchesBegan() function, CCSet,
and CCEvent. However, unlike TouchesBegan(), CCSet keeps track of the
fingers whenever they are moving on the screen.

•	 TouchesEnded(): This function is called when we remove a finger that was
previously recognized in the TouchesBegan() function. Using CCSet, we can
track the position and finger that was lifted from the screen.

•	 TouchesCancelled(): This function is called whenever we want to cancel a
touch. This is usually used by the system and called automatically even if we
don't define it, for example, we are playing the game and get a phone call. In
this case, the system automatically calls the TouchesCancelled() function
and cancels the touches for us.

Now that we know what each of these functions does, let's learn how to make use
of them.

In the HelloWorldScene.h file, we declare the following functions:

virtual void ccTouchesBegan(CCSet* pTouches, CCEvent* event);
virtual void ccTouchesMoved(CCSet* pTouches, CCEvent* event);
virtual void ccTouchesEnded(CCSet* pTouches, CCEvent* event);

Chapter 2

[45]

Furthermore, in the HelloWorldScene.cpp file, we include the following code
snippet below the update(float dt) function:

void HelloWorld::ccTouchesBegan(CCSet* pTouches, CCEvent* event)
{

}

void HelloWorld::ccTouchesMoved(CCSet* pTouches, CCEvent* event)
{

}

void HelloWorld::ccTouchesEnded(CCSet* pTouches, CCEvent* event)
{

}

Likewise, in the init() function, we add the following line so that the layer enables
touch on this layer:

this->setTouchEnabled(true);

Now, to test whether the touch is really working, in the ccTouchesBegan()
function, we add CCLog("TouchBegan"), and in the CCTouchesEnded() function,
we add CCLog("TouchesEnded") and remove the CCLog("updating") log from
the update(float dt) function. We then build and run the project. What happens
in the output console? We see that when the screen is touched on, TouchesBegan is
logged, and when we remove the finger, TouchesEnded gets logged.

Enabling multitouch
Now, let's try the same with two fingers; we touch both fingers at the same time,
anywhere on the screen. We see that the TouchesBegan() function got called twice,
and when we remove each finger one by one, the TouchesEnded() function gets
called one after the other.

In Windows Phone and Android, multitouch is enabled automatically. On iOS, we
will have to enable it separately by adding the following below the line EAGLView
*__glView in the function, (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions in the
AppController.mm file:

[__glView setMultipleTouchEnabled:YES];

Displaying the Hero and Controls

[46]

Movement with touches
Now, using touch, we move the player to the touched location on the screen.

To do this, we use CCActions. CCActions are predefined classes of Cocos2d-x that
can be used to perform various functions on an object over a period of time.

We can also combine multiple actions together to perform actions one after the other
using CCSequence. Let's first see how to make the player move from the initial
position to the desired touch location. Also, to ensure that the character doesn't simply
go from point A to B, we add an easing action that will slowly increase the speed of
the character when starting. When reaching the destination, it will slowly decrease the
speed and bring the character to a halt.

To do this, we have to get the location of the touches on the screen. So, in the
TouchesBegan() function, we add the following lines of code:

 CCTouch *touch =(CCTouch*)pTouches->anyObject();

 CCPoint location = touch->getLocationInView();
 location = CCDirector::sharedDirector()->convertToGL(location);

Here, we first create a CCTouch variable named touch and assign the typecasted
pTouches variable to it. We call the anyObject() function of pTouches that we get
the touched object with. The anyObject() function returns the first element it gets in
touch with. If there aren't any, it returns NULL, but it will have information on where
we touched, so we typecast it to the CCTouch variable to get this information. Next,
we create a CCPoint and assign the touched location in the view to it.

We convert the value from the view coordinate system, which has the top-left position
as the origin, to the GL coordinate system, which is in the bottom-left corner of the
screen. So, we convert the location variable and assign it back to itself.

Now, we have the location of the touch on the screen.

Instead of just logging in a text string to the output console, we can also log out
variables to the output console, such as the location of the touch on the console.
Let's try doing that now.

In the CCTouchesBegan() function under location =
CCDirector::sharedDirector()->convertToGL(location);, we add the
following line of code:

CCLog("location: xpos:%f , ypos:%f", location.x, location.y);

Chapter 2

[47]

When we build as well as run the project and touch the screen, it logs out to the
output console the location where we touched on the screen:

Now that we can get the touch location on the screen, let's make the hero move to the
location where we touched on the screen.

However, before that, we delete the following lines in the update (float dt)
function in which we were moving the player to the right of the screen:

 CCPoint p = hero->getPosition();
 hero->setPosition(ccp(p.x + 5, p.y));

 if((hero->getPositionX() - hero->getContentSize().width/2)>
visibleSize.width)
 {
 hero->setPosition(ccp(0.0 - hero->getContentSize().width/2,
hero->getPositionY()));
 }

Now, after we convert the location variable to GL coordinates in the
ccTouchesBegan() function, we add the following lines:

CCMoveTo * actionMove = CCMoveTo::create(1, location);
CCEaseSineInOut *easeInOut = CCEaseSineInOut::create(actionMove);
hero->runAction(easeInOut);

Let's have a look at the code first.

We create an action of the CCMoveTo type, where we give it a time of 1 second, and a
location where it needs the object to be moved, which is the location variable.

We then create another variable named easeInOut of the CCEaseSineInOut type
and give it the previous variable, actionMove, so that the player starts slowly and
stops gradually.

Then, we run easeInOut on the hero. We build and run the project. Now, we tap
anywhere on the screen, and the hero will move to the tapped location on the screen.

www.allitebooks.com

http://www.allitebooks.org

Displaying the Hero and Controls

[48]

Let's take a look at some more actions, delete the CCMoveTo and CCEaseSineInOut
actions in the previous code snippet, and add the following code snippet:

 CCPoint initPos = hero->getPosition();

 CCMoveTo* actionMove = CCMoveTo::create(1, location);

 CCRotateBy *rotateBy = CCRotateBy::create(2.0, 180);

 CCTintTo* tintTo = CCTintTo::create(1.0, 255, 125, 125);

 CCDelayTime* delay = CCDelayTime::create(1.0);

 CCMoveTo *moveToInit = CCMoveTo::create(1, initPos);

 CCSequence *sequence = CCSequence::create(actionMove, rotateBy,
tintTo, delay, moveToInit, NULL);

 hero->runAction(sequence);

Run sequence instead of the easeInout action on the hero. Also, note that we save
the initial position of the object in initPos.

If we tap on the screen now, we will see the following actions occur in a sequential
order. The first action is what we had before; we move the object to the touch
location, and then it is succeeded by the following actions:

•	 CCRotateBy: Like most actions, CCRotateBy takes in the duration for which
the action needs to be performed and the amount by which the object has to
be rotated. The difference between a By action and a To action is that By takes
the current value, adds the value that we pass on to it, and then performs the
action. The To action just performs the action until that value is reached. So in
this case, we will see that every time we tap the screen, the object rotates by
180 degrees. If we replace the action with CCRotateTo, the object will always
be at 180 degrees.

•	 CCTintTo: This is the action used to change the color of the object. Here,
we change the tint to a more reddish color. The first value is the duration of
the action, and then the three variables are the RGB values that each range
from 0 to 255.

Chapter 2

[49]

•	 CCDelayTime: This creates a delay between the previous action and the next
action. Here, we provide a delay of a 1.0 second. Then, we perform a MoveTo
action again and provide the initPos action so the object moves back to its
initial location.

•	 CCSequence: This is responsible for performing all of the aforementioned
actions one after the other. After we have performed all the actions in
sequence, we have to add NULL to tell that there are no more actions to
be performed.

If we want to, we can play around with other CCAction functions, such as
CCRepeateForver, CCRotateTo, and CCMoveB just for fun.

Movement with the accelerometer
Just as we enabled touch and then created the function to handle the touches,
we will enable the accelerometer and add a function that will get the accelerometer's
information and pass it on to this layer.

So, we add the following code to enable the accelerometer:

this->setTouchEnabled(true);

this->setAccelerometerEnabled(true);

Next, we need to add the following function in the HelloWorldScene.h file:

virtual void didAccelerate(CCAcceleration* pAccelerationValue);

Then, we add the following code snippet in the HelloWorldScene.cpp file,
right under the CCTouchesEnded() function:

void HelloWorld::didAccelerate(CCAcceleration* pAccelerationValue)
{

}

Let's now add some code in this function to get data from the accelerometer. We add
the following code to the previous function:

distFraction = visibleSize.height* pAccelrometer->x;

Displaying the Hero and Controls

[50]

Create a global variable named distFraction of the float type
in HelloWorldScene.h.

pAccelrometer->x is the value of acceleration in the y direction when the device is
rotated. The more the device is rotated in a direction, the higher the value.

In the landscape view, the x and y values of the accelerometer are
interchanged. Therefore, to get movement on the y axis on the screen,
we need to get the value of the accelerometer in the x direction.

Perform the following steps to enable movement with the accelerometer:

1.	 We get the distance by which the object should be moved by multiplying
pAccelrometer->x with the visible height. We create a global float variable
named distFraction in the HelloWorldScene.h file and assign the
multiplied value to it:

 distFraction = visibleSize.height* pAccelrometer->x;

2.	 Now, we add the update(float dt) function:
 float maxY = visibleSize.height - hero->getContentSize().
height/ 2;
 float minY = hero->getContentSize().height/ 2;

 float distStep = (distFraction * dt);
 float newY = hero->getPosition().y + distStep;
 newY = MIN(MAX(newY, minY), maxY);
 hero->setPosition(ccp(hero->getPosition().x, newY));

Before we set the position of the player, we will confine the player's
movement in the y direction so that she doesn't go below the bottom
of the screen and above the top of the screen, which is defined by the
maxY and minY variables.

3.	 We create a new float variable named distStep and multiply distFraction
with dt to make it processor-independent so that if we take this code and run
it on the PC or a device with a higher or lower processing power, the distance
moved will be constant and processor-i independent.

Chapter 2

[51]

4.	 We then check whether this newY variable is within the height of the screen.
5.	 Then, the position is finally assigned to the player.
6.	 Now, if we build as well as run and tilt the device up or down, the player

will move up and down.

On iOS and Android, we need an actual device to test the accelerometer, but for
Windows Phone, we can test on the simulator.

To test the accelerometer, we run the code on the simulator:

Once the game is running, we click on the double arrow button >> on the controls
of the simulator to open up the Additional Tools panel. Then, we select the
Accelerometer tab. In this tab, we select Landscape Standing from the Orientation
dropdown. Now, we click on the orange dot in the center of the panel and move
the mouse in the upward direction while still holding the left mouse button; we see
the hero move in the upward direction. If we click and move the orange dot in the
downward direction, the hero will move down. Also note that the hero always stays
within the height of the screen and never goes beyond it.

Displaying the Hero and Controls

[52]

Custom controls
So far, we have seen three different ways to move the character on the screen. There
is one other way to add controls to our games, and that is using regular buttons.
Remember the close button that we removed? We can create CCImageItems and
CCMenu and make them call a function. In this function, we can write the logic
for the movement of the character or any other function that we want the button to
perform when it is clicked on.

So, as a practice, what we can do is create CCMenuItemImage in the init()
function, place it at 0.125 * visibleSize.width and 0.125 * visibleSize.
height, and call the buttonControl() function. As we are creating the game for
devices with multiple resolutions, we never hardcode the values. So, we place the
button at a distance of 1/8th the width in the x direction and at a y distance of 1/8
the height from the origin. For convenience, we can use the same CloseNormal.png
and CloseSelected.png files:

CCMenuItemImage *pCloseItem = CCMenuItemImage::create("CloseNormal.
png", "CloseSelected.png", this, menu_selector(HelloWorld::buttonCont
rol));

 pCloseItem->setPosition(ccp(visibleSize.width * .125, visibleSize.
height * .125));

We create a variable named pMenu of the CCMenu type and add it to the layer:

 CCMenu* pMenu = CCMenu::create(pCloseItem, NULL);
 pMenu->setPosition(CCPointZero);
 this->addChild(pMenu, 1);

In the buttonControl(CCObject* pSender) function, we add the following lines
of code:

CCSprite* test = CCSprite::create("CloseNormal.png ");
test->setPosition(ccp(hero->getPosition().x + hero->getContentSize().
width/2, hero->getPosition().y));
test->setScale(0.5);
this->addChild(test);

Chapter 2

[53]

Now, we build and run the project as well as tap on the close button image at the
bottom left of the screen. What do you see?

Yes, this is the making of the bullets. But wait; they are not moving!

In the next chapter, we will create a more sophisticated version of the bullets; they
will move as soon as they are spawned and delete themselves once they disappear
from the screen.

Summary
So, that concludes the chapter on adding images to the screen and looking at
different movement controls. We covered four different ways to control the character
in this chapter. We saw how to control the character using the update function by
moving them from left to right, and we saw how to move with touch as well as the
accelerometer. We also created our own custom controls using buttons. In the next
chapter, we will take a look at creating our own custom classes for bullets and the
enemy. We will create the AI behavior for the enemy and refine the shooting and
movement control mechanisms for the player.

Displaying the Hero and Controls

[54]

We can still play around with what we learned in this chapter. Let's try doing
the following:

•	 In the update function, make the character go up instead of going right all
the time

•	 Make the player follow our finger when we touch and drag her across
the screen

•	 Using the accelerator, make the character go left and right instead of going
up and down

Having fun is part of learning. So, experiment and try what can be done with what
you learned in this chapter.

Enemies and Controls
In the previous chapter, we saw how to include a character and make it move around.
We also saw the start of shooting mechanics. In this chapter, we will improve upon the
shooting mechanics and also add enemies that will spawn from the right-hand side
of the screen and shoot bullets. The player uses the new control scheme, where they
will be boosted up by taps on the left-hand side of the screen and can shoot the enemy
by firing rockets as well as avoiding the enemy bullets. We have a lot to cover in this
chapter, so let's gets started.

The things you will learn in this chapter are as follows:

•	 Creating the enemy class
•	 Adding the enemy movement
•	 Adding gameplay layer class
•	 Creating the projectile class
•	 Adding hero controls

Creating the enemy class
This is the first time you are creating a class in Cocos2d-x. The class we create will be
a custom class that will spawn the enemy at a certain height on the right-hand side of
the screen and will make them move towards the left-hand side of the screen. Later,
we will make sure that when the enemy has gone beyond the boundary of the screen,
we will remove him. Perform the following steps to create the enemy class:

1.	 Go to the Classes folder under the Solution Explorer pane in Visual Studio
in the wp8GameComponent project.

2.	 Right-click on the Classes folder and add a class.
3.	 Choose C++ class from the Visual C++ tab on the left and click on Add. Note

that we can neither name the class nor specify the location of the class. Type
Enemy as the class name and click on Finish.

Enemies and Controls

[56]

4.	 You can see that the Enemy.h and Enemy.cpp files are created but are not in
the Classes folder. We want to ensure that whatever classes we have are in
the Classes folder and not in any other folder.

5.	 Select both the files in the Solution Explorer pane, right-click on it, and click
on Remove. Don't worry; the files are still in the directory:

6.	 Navigate to your project on the desktop and go to the wp8GameComponent
folder; you will find the classes that you just created over here. Cut the files
and paste them in the Classes folder in the main projects directory.

7.	 Now, go back to Visual Studio and right-click on Classes. This time click
on Add Existing Item and select the Enemy.h and Enemy.cpp files that you
just cut and pasted into the Classes folder. Both the files should be in the
Classes tab, now in the Solution Explorer pane.

Chapter 3

[57]

Henceforth, all the classes will be created in the same way and unfortunately, you will
have to manually remove and add them to the Classes folder each time.

Alternatively you could also create the .h and .ccp file templates with a generic name
that can be modified to whichever class you want to create; place them in the Classes
folder and add it as an existing file in the Solution Explorer pane. Make sure that you
import the right .h file in the .cpp file after changing the name of the files.

In the Enemy.h file, type in the following:

#ifndef __wp8Game__Enemy__
#define __wp8Game__Enemy__

#pragma once

#include "cocos2d.h"
using namespace cocos2d;

class Enemy : public CCSprite
{
public:
 Enemy(void);
 ~Enemy(void);

 static Enemy* createEnemy();
 bool initEnemy();
 void update();

};

#endif

This looks a bit different from the HelloWorldScene class that we had. Remember
that in the HelloWorldScene.h class, we had a CREATE_FUNC macro and no init()
function. Here, we will look at what CREATE_FUNC does by writing our own create
function, which will call our custom defined init() function.

We are including cocos2d.h and using namespace cocos2d, which are required
in all the classes for which we want to use Cocos2d-x properties. If we don't use a
namespace, we will have to add cocos2d:: before calling methods or properties of
the CCSprite class. The enemy class inherits from CCSprite and then there is the
constructor and destructor for the enemy class.

www.allitebooks.com

http://www.allitebooks.org

Enemies and Controls

[58]

The static Enemy* createEnemy(); function is our custom create function that
we have defined. (We define it instead of using the default create function that the
CREATE_FUNC macro would have created.) If you would like to see what the create
function looks like, you can press F12 on the keyboard after highlighting CREATE_FUNC
if you are using Visual Studio, and it will take you to the definition of the function. You
will see that it looks exactly like the create function that we will create.

We also create our own init() function called initEnemy(), which we will have
the liberty to modify if we choose to do so in the future. Then, we will create an
update() function as we want the enemy to move with every frame update. That's
all for Enemy.h; let's move to the Enemy.cpp file. In Enemy.cpp, add the following
lines of code:

#include "Enemy.h"

Enemy::Enemy(void)
{
}

Enemy::~Enemy(void)
{
}

Enemy* Enemy::createEnemy()
{
 Enemy* ob = new Enemy();
 if(ob && ob->initEnemy())
 {
 ob->autorelease();
 return ob;
 }

 CC_SAFE_DELETE(ob);
 return NULL;

}

Before we add the initEnemy() and update() functions, let's take a look at the code
so far.

We include Enemy.h and then define the constructor and destructor for the enemy
class. Next, we define the createEnemy() function. This is the function that you will
call when you want to create an instance of the enemy.

Chapter 3

[59]

So, first we create an instance of the class and initiate it. Then, we check whether the
object has been created and the init() function is called. If it has been created, we
add this object to the autorelease pool and return the object.

Cocos2d-x is a direct port of Cocos2d, written in Objective-C. Objective-C has an
autorelease pool that checks whether the object should be released and deleted from
time to time. If it is not in use anymore, the object is deleted and the memory is
released. However, in C++, we will have to manually release and delete the object.
A convenience is created in Cocos2d-x where we can add the object to a pool that
will release it automatically to emulate the code in Objective-C. If the object is not
initialized, it is deleted.

CC_SAFE_DELETE is another macro that deletes the object from the memory and sets
it to a value equal to 0, which is always with pointers in C++. Finally, the function
returns NULL.

If you would like to know more about Cocos2d, check the Additional learning resources
section in Chapter 11, Porting, References, and Final Remarks. Also, if you would like
to know more about the autorelease pool, go to the Cocos2d-x wiki at http://www.
cocos2d-x.org/wiki/Reference_Count_and_AutoReleasePool_in_Cocos2d-x.

The createEnemy() function calls the initEnemy() function. So, let us look at it now:

bool Enemy::initEnemy()
{
 CCSize visibleSize = CCDirector::sharedDirector()-
>getVisibleSize();

 float mrand = rand()%3 + 1;
 CCLOG("random height %f", mrand);

float h = visibleSize.height * mrand * 0.25 ;

 this->initWithFile("bookGame_enemy.png");
 CCPoint p = ccp(visibleSize.width + this->getContentSize().width/2
, h);
 this->setPosition(p);

 return true;
}

void Enemy::update()

http://www.cocos2d-x.org/wiki/Reference_Count_and_AutoReleasePool_in_Cocos2d-x
http://www.cocos2d-x.org/wiki/Reference_Count_and_AutoReleasePool_in_Cocos2d-x

Enemies and Controls

[60]

{
 CCPoint _mp = this->getPosition();
 CCPoint _Mp = ccpAdd(_mp, ccp(-3, 0));
 this->setPosition(_Mp);
}

In the initEnemy() function, which got called in the createEnemy() function, we
create a new variable of the float type named mrand and assign rand()%3 + 1 to
it. We want the enemies to be created at the right-hand side of the screen at different
heights every time they are created in the game. We want the enemy to be created at
one-fourth, half, or three-fourth of the height of the screen. So, we create a random
number between 1 and 3 so that we can multiply it by 0.25 and the height of the
screen to get the desired result.

The reason why 1 is added at the end while generating the random number is
because rand()%n creates a random number between 0 and n-1. So, we add 1 to
get a number between 1 and 3.

Then, float h is created and the random number is multiplied by 0.25 and the
height of the screen so that irrespective of the device, the enemy will always be
created at one-fourth, one-fifth, or three-fourth of the height of the screen.

Next in the wp8GameComponent project, import the enemy image as we did while
including the player and background. Once this is done, we initialize the class with
the desired image, which in this case is bookGame_enemy.png. Then, we set the
enemy's position to the right-hand side of the screen by adding half the width of the
enemy's image to the width of the screen and placing it at the height at which we
have randomly created the enemy earlier. As the initEnemy() function returns a
bool value, we return true at the end.

Adding the enemy movement
Next, we create the update() function. This is the function that will be called once
every 0.016 second or 60 times in a second. Every time the function gets called, we
will move the enemy 3 pixels to the left and set its position, just as we did for the
player in the last chapter. Note that we are not scheduling an update in the enemy
class, as we already have an update() function scheduled in HelloWorldScene.cpp.
We will just call the enemy update function in the previous update() function in
HelloWorldScene.cpp.

Chapter 3

[61]

To see the enemy being created in HelloWorldScene.h, include the Enemy.h class
at the top of the file. Create a new enemy of the enemy type, Enemy* enemy;. In
HelloWorldScene.cpp, initialize it in the init() function as follows, and make sure
that you do this after you have added the background image:

enemy = Enemy::createEnemy();
this->addChild(enemy);

Also, call the enemy's update function, enemy->update(), before the update
function of HelloWorldScene.cpp. When you build and run this, you should see an
enemy getting spawned from the right-hand side of the screen and moving towards
the left of the screen:

This is pretty cool! But, hey! We don't just want one enemy; we want a whole bunch
of them to spawn so that we can we blow them up. For this, delete the enemy
instance you created in HelloWorldScene.h and remove it from the lines you just
added from the init() and update() functions.

Enemies and Controls

[62]

Adding the gameplay layer
In order to keep all the enemies and bullets in the same layer, we will create a new
layer named GameplayLayer. This is where the gameplay will add and remove
enemies and bullets, update their positions, and check for collisions. So, create a class
named GameplayLayer similar to how you created the enemy class earlier.

Now, make sure that the GameplayLayer.h and GameplayLayer.cpp files are in the
Classes folder. Once you have checked this, open the GameplayLayer.h file and
add the following lines of code to it:

#ifndef __wp8Game__GameplayLayer__
#define __wp8Game__GameplayLayer__

#include "cocos2d.h"
using namespace cocos2d;

class GameplayLayer: public CCLayer
{
public:
 GameplayLayer();
 ~GameplayLayer();
 void update();

private:
 CCSize visibleSize;
 CCArray* enemies;

 CCArray* getEnemiesArray();

 };

#endif /* defined(__wp8Game__GameplayLayer__) */

Here, we create a new class named GameplayLayer and inherit from CCLayer. Then,
we have the constructors as well as destructors, and similar to HelloWorldScene.h,
we create the visibleSize variable of the CCSize type. We also create an update
function, which we will call in HelloWorldScene.cpp to update the layer, and the
getEnemiesArray() function, which will return the enemy array when called.

Next, we create a variable of CCArray named enemies, which will store all the
enemies that we create and keep track of them. We also create an update function
to update information about all the enemies. We keep the constructor, destructor,
as well as the update function public and visibleSize, enemies, and
getEnemiesArray private.

Chapter 3

[63]

CCArrays are arrays or containers that you can use to hold objects. Like any array,
you can add, remove, loop through, or insert objects.

Only the objects of the CCObject type can be added to a CCArray. CCObjects are
basic building blocks with which all objects in Cocos2d-x are made. You can read
more about CCObjects at http://www.cocos2d-x.org/reference/native-cpp/
V2.2/d3/dbf/classcocos2d_1_1_c_c_object.html.

As CCSprites are inherited from CCObject, we can add them to a CCArray and keep
a track of the enemies.

In the GameplayLayer.cpp file, add the following lines of code:

#include "GameplayLayer.h"
#include "Enemy.h"

GameplayLayer::GameplayLayer()
{

visibleSize = CCDirector::sharedDirector()->getVisibleSize();

enemies = new CCArray();

}

GameplayLayer::~GameplayLayer(){}

void GameplayLayer::update()
{

}

CCArray* GameplayLayer::getEnemiesArray()
{
 return enemies;
}

Here, we include the GameplayLayer.h and Enemy.h classes, and in the constructor,
we initialize the visibleSize and enemies variables. We create the destructor as
well as the update function and also define the getEnemiesArray() function; that's
all for the GameplayLayer for now.

In HelloWorldScene.h, include GameplayLayer.h and create a new instance of it
named gameplayLayer of the GameplayLayer type:

GameplayLayer* gameplayLayer;

http://www.cocos2d-x.org/reference/native-cpp/V2.2/d3/dbf/classcocos2d_1_1_c_c_object.html
http://www.cocos2d-x.org/reference/native-cpp/V2.2/d3/dbf/classcocos2d_1_1_c_c_object.html

Enemies and Controls

[64]

In the HelloWorldScene.cpp file, after the point where you created the hero, add the
following lines of code:

gameplayLayer = new GameplayLayer();
this->addChild(gameplayLayer);

Moreover, in the update function, add the update function of the gameplayLayer:

gameplayLayer->update();

We now jump back to the HelloWorldScene.h file and create a new function named
spawnEnemy(float dt). Create it below the update() function we added previously
in the HelloWorldScene.cpp. In it, add the code for creating enemies as follows:

void HelloWorld::spawnEnemy(float dt)
{
 CCLog("spawn enemy");

 Enemy* e = Enemy::createEnemy(gameplayLayer);
 gameplayLayer->addChild(e);
 gameplayLayer->getEnemiesArray()->addObject(e);
}

Here, we are logging out to make sure that the spawnEnemy(float dt) function
is being called. We then create a new instance of Enemy and add it to the gameplay
layer. Also, we add the enemy created in the enemies array of the gameplay layer
by calling the getEnemiesArray() function.

Similar to how we scheduled the update function in the HelloWorldScene.cpp file,
we will schedule the spawnEnemy(float dt) function also so that at every interval,
the new enemy will be spawned and added to the gameplay layer. We do this by
adding the following line of code right under where you scheduled the update
function in the HelloWorldScene.cpp file:

this->schedule(schedule_selector(HelloWorld::spawnEnemy),3.0);

This will call the spawnEnemy() function every 3 seconds. However, we still have
one more thing to do. We have to cycle through all the enemies in the gameplay class
and update the positions of all the enemies that are being created. We can build and
run now, but you won't see enemies on the screen. All of them are being spawned at
the right end of the screen and are not being updated to move to the left-hand side of
the screen. So, let's go to the GameplayLayer.cpp file and add the following code to
the update function:

 if(enemies->count() >= 0)
 {
 for(int i =0; i <enemies->count(); i++)

Chapter 3

[65]

 {
 Enemy* e = (Enemy*)enemies->objectAtIndex(i);
 e->update();

 }
 }

Here, we check whether the enemy count is greater than 0 and then cycle through
all the enemies in the array in the for loop. Typecast it to the Enemy type and call the
update function on that enemy.

Now if you build and run, you should see enemies getting created every 3 seconds at
the right-hand side of the screen and moving towards the left-hand side of the screen
in a straight line:

We also need to make sure that we delete all the enemies that are not visible on
the screen anymore. For this, we have to create a new private CCArray, call it
enemiesToBeDeleted in the GameplayLayer.h file, and initiate the constructor of
the GameplayLayer.cpp file.

Now add the following lines of code in the update function of the GameplayLayer
class, in the for loop:

 if(e->getPositionX() + e->getContentSize().width/2 < 0)
 {
 enemiesToBeDeleted->addObject(e);
 }

Enemies and Controls

[66]

At the end of the update function outside the if condition, add the following lines
of code:

 CCObject* ee = NULL;
 CCARRAY_FOREACH(enemiesToBeDeleted, ee)
 {
 Enemy *target = (Enemy*)(ee);
 enemies->removeObject(target);
 enemiesToBeDeleted->removeObject(target);
 this->removeChild(target, true);
 }

We check whether the enemy is not visible on the screen anymore. If so, add it to the
enemiesToBeDeleted array.

Then, we go through all the objects added to the enemiesToBeDeleted array and
remove the enemy from the enemies and enemiesToBeDeleted arrays; we also
make sure to remove it from the display list.

You can't delete the object within the main loop itself because the player would
experience a lag while playing the game, as the array is getting rearranged if you
delete it in the for loop. So, to avoid the stutter, we add it to another array and once
everything is updated, we remove the object from the arrays and the display list.

If you build and run now, you will see that the game is running smoothly and all the
enemies that are not visible on the screen are getting deleted accordingly.

Creating the projectile class
Now that we have the enemies spawning, we want them to shoot bullets at certain
intervals. The bullets will spawn wherever the enemy is currently located. Once
they have spawned, they should start moving left and once they are out of the
screen, they should be deleted. For this, we create a class named Projectile and
add the Projectile.h and Projectile.cpp files to the Classes folder, as we did
previously for the other classes.

In the Projectile.h file, add the following lines of code:

#ifndef __wp8Game__Projectile__
#define __wp8Game__Projectile__

#pragma once
#include "cocos2d.h"
using namespace cocos2d;

class Projectile : public CCSprite

Chapter 3

[67]

{
public:
 Projectile(void);
 ~Projectile(void);

 int type;
 static Projectile* createProjectile(CCPoint p, int _type);
 bool initProjectile(CCPoint p, int _type);
 void update();

};

#endif

You will see that this is very similar to the enemy class in terms of structure, but
there are some differences. We provide a point at which the projectile will be created
and also give it a type. We will be using the same projectile class to make the hero
shoot rockets. The same class can be used to make enemy bullets and player rockets.
If we provide the type 1 while creating an object of this class, it will create an enemy
bullet; if we provide the type 2, it will create a rocket. Also, the update function will
perform differently depending on the type of the object. For this, we create a member
variable named type of the int type to keep track of the type of projectile.

If it is of the type 1, it will assign the enemy bullet texture and start moving to the left
once it is spawned. If it is of the type 2, it will assign player rocket texture to it; once
the rocket gets spawned, it should start moving to the right.

Next, in the Projectile.cpp file, add the following lines of code:

#include "Projectile.h"

Projectile::Projectile(void)
{
}

Projectile::~Projectile(void)
{
}

Projectile* Projectile::createProjectile(CCPoint p, int _type)
{
 Projectile* ob = new Projectile();
 if(ob && ob->initProjectile(p, _type))
 {

Enemies and Controls

[68]

 ob->autorelease();

 return ob;
 }

 CC_SAFE_DELETE(ob);
 return NULL;

}

Here, similar to the Enemy.ccp file, we include the Projectile.h file, create
the projectile constructor and destructor, and add the definition for the
createProjectile() function. When we call the initProjectile() function,
we provide the position and type of the projectile.

Next, we will define the initProjectile() function:

bool Projectile::initProjectile(CCPoint p, int _type)
{
 CCSize visibleSize = CCDirector::sharedDirector()-
>getVisibleSize();

 type = _type;

 if(type == 1)
 {

 this->initWithFile("bookGame_bullet.png");
 }
 else if (type == 2)
 {
 this->initWithFile("bookGame_rocket.png");
 }

 this->setPosition(p);

 return true;
}

Here we create a local variable named visibleSize of the CCSize type and get
the size of the screen. Then, we assign a type to the global variable we created.
Depending upon the type, we then either initialize with "bookGame_bullet.png"
or "bookGame_rocket.png". Then, the position is set and we return true.

Chapter 3

[69]

Then, we create the update function:

void Projectile::update()
{

 if(type == 1)
 {
 CCPoint _mp = this->getPosition();
 CCPoint _Mp = ccpAdd(_mp, ccp(-7, 0));
 this->setPosition(_Mp);
 }
 else if(type == 2)
 {
 CCPoint _mp = this->getPosition();
 CCPoint _Mp = ccpAdd(_mp, ccp(+7, 0));
 this->setPosition(_Mp);
 }
}

In the update function, again depending on the type of the projectile, we either keep
moving it to the left or the right-hand side with the speed.

That's all for the projectile class. Next, we move to the enemy class and make changes
to it so that the projectile can be spawned at certain intervals.

In the Enemy.h file, include GameplayLayer.h at the start of the file:

#include "GameplayLayer.h"

Change the createEnemy() and initEnemy() functions:

static Enemy* createEnemy(GameplayLayer* _gameplayLayer);
bool initEnemy(GameplayLayer* _gameplayLayer);

The reason we are doing this is because we want all the enemies and projectiles in
the same layer so that they can be managed better, as otherwise, they would be in
different layers.

We create a global public variable, gameplayLayer, of the GameplayLayer type and
create the shoot(float dt) function, which will be scheduled to shoot bullets from
the enemy at an interval:

 void shoot(float dt);

 GameplayLayer* gameplayLayer;

Enemies and Controls

[70]

Next, in the Enemy.cpp file, we make changes to the createEnemy() function
by taking in the _gameplayLayer variable. Also, when we call the initEnemy()
function, we give this variable to the function.

In the initEnemy(GameplayLayer* _gameplayLayer) function, we initialize the
gameplaylayer variables:

 gameplayLayer = _gameplayLayer;

Next, we create a scheduler so that we can call the shoot function at a particular
interval as shown:

this->schedule(schedule_selector(Enemy::shoot),1.3);

schedule_selector is a macro that is used to create a schedule function. A schedule
function calls the required functions after a given duration. The ScheduleUpdate()
function is a special case of the schedule_selector() function, as it is always called
in every frame. Similarly, as we want to call the shoot function every 1.3 seconds,
we create the schedule_selector() function. We can vary this value depending on
how easy or difficult we want the game to be.

Now, we define the shoot(float dt) function as shown in the following code:

void Enemy::shoot(float dt)
{
 //CCLog("[Enemy] shoot");
 CCPoint p = this->getPosition();

 p.x = p.x - this->getContentSize().width/2;
 p.y = p.y - this->getContentSize().height * 0.05;

 Projectile* pr= Projectile::createProjectile(p,1);

 gameplayLayer->addChild(pr);
 gameplayLayer->getEnemyBulletsArray()->addObject(pr);
}

Here, we get the position of the enemy. Make sure to align the bullet's position to
the left tip end of the enemy sprite. This is because it should look as if the bullets are
leaving the tip of the gun.

We place the bullet at the leftmost end of the enemy's sprite by getting the current
x position of the enemy and subtracting half from the enemy sprites' width, as the
enemy's anchor point is at the center of the image. Then, to get the y position of the
gun, from where the bullet should appear, we get the enemy's current y position and
subtract half from the enemy's height.

Chapter 3

[71]

We then create a new variable pr of the Projectile type (Projectile *pr), set
its position to what we calculated, and give it the type 1, as it is the enemy bullet.
We then add it to the gameplay layer that we created and also to the enemyBullets
CCArray through the getEnemyBulletsArray() function, which we will create next.

Open up the GameplayLayer.h file and create two CCArrays, enemyBullets and
enemyBulletsToBeDeleted:

 CCArray* enemyBullets;
 CCArray* enemyBulletsToBeDeleted;

Also, create a public function called getEnemyBulletsArray():

CCArray* getEnemyBulletsArray();

In the constructor of GameplayLayer.cpp, add the following code to initialize
the CCArrays:

 enemyBullets = new CCArray();
 enemyBulletsToBeDeleted = new CCArray();

Define the getEnemyBulletsArray() function:

CCArray* GameplayLayer::getEnemyBulletsArray()
{
 return enemyBullets;
}

Now, similar to how we added the enemies and removed them from the screen, we
will be adding enemy bullets and removing these from the screen. To do this, add
the following piece of code in the update function of the GameplayLayer.cpp file:

 //enemy bullets
 if(enemyBullets->count()> 0)
 {
 for(int i = 0; i < enemyBullets->count(); i ++)
 {
 Projectile* pr = (Projectile*) enemyBullets-
>objectAtIndex(i);
 pr->update();

 if(pr->getPositionX()<= 0)
 {
 enemyBulletsToBeDeleted->addObject(pr);
 }
 }

Enemies and Controls

[72]

 }

 CCObject* eb = NULL;
 CCARRAY_FOREACH(enemyBulletsToBeDeleted, eb)
 {
 Projectile *target = (Projectile*)(eb);
 enemyBullets->removeObject(target);
 enemyBulletsToBeDeleted->removeObject(target);
 this->removeChild(target, true);
 }

CCARRAY_FOREACH is a macro to create a for each loop.

Here we first check whether enemyBullets is greater than 0. Then, cycle through all
the projectiles in the enemyBullets array and update them. Next, we check whether
they have gone beyond the left-hand side of the screen. If they have, add them to the
enemyBulletsToBeDeleted array, as in the case of the enemies array.

Next, after we have updated all the enemyBullet positions, we will go through all
the objects in enemyBulletsToBeDeleted, remove them from the enemyBullets and
enemyBulletsToBeDeleted arrays, and remove them from the layer's display list.

Now if you build and run, the enemies will start shooting bullets:

Chapter 3

[73]

Now that we have the bullets on the screen, we just want them to start shooting
as soon as they are spawned. For this, in the spawnEnemy() function under
the HelloWorldScence.cpp file, after we add the enemy, it will just call the
shoot(float dt) function of the enemy once:

 Enemy* e = Enemy::createEnemy(gameplayLayer);
 gameplayLayer->addChild(e);
 e->shoot(0.016);

Here we just give an arbitrary value to the shoot function. As in Visual Studio,
you have to declare the dt variable as float if you create a function that needs to
be scheduled, otherwise it will give errors. However, in Xcode and Eclipse, this is
not a problem.

Now if you build and run, the enemies will start shooting as soon as they are created
in the right-hand side of the screen.

Adding hero controls
In the previous chapter, we added a small button in the screen where if the player
tapped on that button, the hero created a bullet. That's quite good, but what we
want is that whenever the player taps on the right-hand side of the screen, the rocket
should fire. This is because the button is too small and the player wouldn't have
much time to see where the button is located for him/her to tap on. We will also add
a button on the left-hand side of the screen to boost the hero up whenever the button
is tapped.

For this, let's make some changes to the HelloWorldScene.h and HelloWorldScene.
cpp files. In the .h file, remove void menuCloseCallback(CCObject* pSender);
and add a function named fireRocket() under the spawnEnemy(float dt) function:

void fireRocket();

Also, add two variables named leftButton and rightButton of the CCRect type:

CCRect leftButton, rightButton;

Next, in the HelloWorldScene.h file, you can remove the definition of the
menuCloseBack() function and CCMenuItemIMage as well as the CCMenu variables
in the init() function.

Now, initiate the CCRect class reference in the init() function:

 leftButton = CCRectMake(0, 0,visibleSize.width/2, visibleSize.
height);
 rightButton = CCRectMake(visibleSize.width/2, 0, visibleSize.
width/2, visibleSize.height);

Enemies and Controls

[74]

So, here we are defining two areas on the screen: one is the left half of the screen and
the other is the right half of the screen. A CCRect class reference takes the following
four variables:

•	 The bottom-left x position of the rectangle
•	 The bottom-left y position of the rectangle
•	 The width of the rectangle
•	 The height of the rectangle

So, for leftButton, we provide the bottom-left of the screen, which is (0, 0) for the
x and y positions. For width, we will provide half the width and for height, we will
give the height of the screen. For the rightButton area, we need it to start from the
middle of the bottom of the screen and go to the top right of the screen. So, for the x
position, we provide half the width of the screen and for the y position, we provide
it with 0. For the width and the height, we once again provide half the width and
height of the screen. The resultant screen is as follows:

Now, remember the three-touch function we added in the previous chapter? In the
ccTouchesBegan() function, we add the following lines of code:

if(rightButton.containsPoint(location))

{

 fireRocket();

}

Chapter 3

[75]

We check that if the screen was tapped, which side of the screen it was.
We check whether the location was inside the rightButton rect; if so,
call the fireRocket() function.

Let's define the fireRocket() function. But first, include Projectile.h at
the top of the file:

void HelloWorld::fireRocket()
{
 CCPoint p = hero->getPosition();

 p.x = p.x + hero->getContentSize().width/2;
 p.y = p.y - hero->getContentSize().height * 0.05;

 Projectile* rocket = Projectile::createProjectile(p,2);
 gameplayLayer->addChild(rocket);

gameplayLayer->getPlayerBulletsArray()->addObject(rocket);

}

This is similar to how we added bullets in the enemy class. We get the hero's position
and then we fine-tune the position from where the rocket should be generated;
otherwise, it will look as if the rockets have spawned from within the player.

We then create a new instance of the projectile class named rocket at the desired
position. The type is given as 2, as the player rocket needs to be spawned this time.
Then, we add the rocket to the gameplayLayer and add it to the playerBullets
CCArray using the getPlayerBulletsArray() function, like we created earlier for
the enemy.

In GameplayLayer.h, add a new private CCArray called playerBullets
and a public getPlayerBulletsArray() function that returns a CCArray.
In GameplayLayer.cpp, initialize the playerBullets variable.

Define the getPlayerBulletsArray() function as follows:

CCArray* GameplayLayer:: getPlayerBulletsArray()
{
 return playerBullets;
}

Enemies and Controls

[76]

In the update function, as we have been doing for enemy and enemyBullets, create a
loop to update playerBullets and remove them once they have left the screen:

//player bullets
if(playerBullets->count() >= 0)
{
 for(int i=0; i<playerBullets->count(); i++)
 {
 Projectile* p = (Projectile*)playerBullets->objectAtIndex(i);
 p->update();

 if(p->getPositionX() >= visibleSize.width)
 {
 this->removeChild(p);
 playerBullets->removeObject(p);
 }
 }
}

The only difference is that we don't create another array and store the bullets to
be deleted in it; then, we loop through it again to delete it from the arrays and the
display list. This is because the player's x position is fixed and there won't be any
stuttering if the rockets are deleted, but you can go ahead and add it if you find that
the game is lagging a bit.

So, now all you have to do is build as well as run the project; when you tap on the
right-hand side of the screen, you should see the rockets getting generated:

Chapter 3

[77]

Next, we will add the thrust so that whenever we tap the left part of the screen,
the hero is thrust up and after a while, she should start moving down because
of gravity.

In HelloWorldScene.h, add a CCPoint named gravity:

CCPoint gravity;

Then, initialize it in the init() function in HelloWorldScene.cpp:

gravity = ccp(0, -5);

We will add it to the player's position when they are not being thrusted up.

Also in HelloWorldScene.h, add the following variables so that we can keep a track
of the thrust or jump:

int jumpTimer;
bool jumping;

As always, initialize the variables in the HelloWorldScene.cpp file in the
init() function:

jumping = false;
jumpTimer = 0;

Then, in the ccTouchesBegan() function, add the following exactly under where we
checked if rightButton was tapped:

if(leftButton.containsPoint(location))
{
 jumping = true;
}

Here, we are setting the jump Boolean variable to be true when the left-hand side of
the screen is pressed. Now add the following in the update function:

 if(jumping)
 {
 jumpTimer = 10;
 jumping = false;
 }

 if(jumpTimer>0)
 {
 jumpTimer--;
 CCPoint p = hero->getPosition();
 CCPoint mP = ccpAdd(p,ccp(0,7));
 hero->setPosition(mP);

Enemies and Controls

[78]

 }
 else
 {
 jumpTimer = 0;
 CCPoint p = hero->getPosition();
 CCPoint pM = ccpAdd(p,gravity);
 hero->setPosition(pM);
 }

So, what we are doing here is checking whether the jump variable is set to true. If it
is, we set the jumpTimer variable to 10 and set the jump variable to be false so that
it doesn't set jumpTimer to 10 again in the next frame.

We then check whether jumpTimer is greater than 0. If it is, decrease the value by 1
in every frame and set the hero's position up by 7 in every frame.

As the value of jumpTimer gets less than 0, it goes through the else block and sets
jumpTimer to 0, which starts moving the hero down by adding gravity. Note that
although we are adding, the gravity variable is set such that the y position has a
negative value; so when you add the positions, the hero will start moving down.

Now you can build as well as run the project; if you don't tap the left-hand side of
the screen, the hero will start going down. Once you tap, they will go up and after a
while, they will start moving down again due to gravity.

So this is how you add a simple gravity effect in your games. Also, the same thrust
mechanism can be used to make the player jump.

Although we are able to make the player move up, there is still the problem that the
player goes completely out of the screen both in the up as well as down directions,
which is not what we want. We want the player to be within the boundary of the
screen all the time.

So to ensure that the player is within the screen all the time, we have to add the
following lines of code in the update function:

 float maxY = visibleSize.height - hero->getContentSize().height/2;
 float minY = hero->getContentSize().height/2;

 float newY = hero->getPosition().y ;
 newY = MIN(MAX(newY, minY), maxY);
 hero->setPosition(ccp(hero->getPosition().x, newY));

Chapter 3

[79]

Here, we first set the maxY and minY values for the player, which are
visibleSize.height minus half the height of the player and half the height
of the player, respectively.

Next, we get the current y position of the player and assign it to a local variable, newY.

Then, it is first checked in the MAX function which is a bigger number, newY or minY.
Whichever is bigger is retained and checked against maxY for which is the smaller
number using the MIN function. This number is then stored in newY. Now when you
build and run the game, you should see that the player is always within the boundary
of the screen.

Summary
So, we are finally through with this chapter. We covered a lot of ground in this chapter,
where we added enemies and made them shoot bullets. Also, we added player rockets,
which used the same class as the enemy bullets. We also refined the controls of the
player so that the player can concentrate on playing the game instead of checking
where the fire button is on the screen.

As an exercise, you can create different types of enemies and add different types of
projectile depending on the type of enemy. Depending on the type of enemy, you can
load a different enemy and make them move differently in the update function of the
enemy class. Also, if you wish, you can make him fire different types of projectiles
that have a completely different behavior. I will leave it to you to figure it out on
your own.

We still need to add the collision mechanics and scoring in the game, which we will be
covering in the next chapter.

If you have any trouble understanding the code, remember that you can always go
through the code provided with the book to refer to it anytime.

Collision Detection
and Scoring

Continuing from where we left off in the previous chapter, we will look at collision
detection and keeping track of the score in the game in this chapter. Apart from
just coding collision detection, we will also look at the different types of collision
mechanics in games, be it circular, box, per-pixel, or Box2D collision. Bear in mind
that what we will be going through are just few ways of collision detection. A whole
book can be dedicated to the topic. What is important for any developer is that they
make sure the collision is detected without taxing the CPU too much.

In this chapter, we will cover the following topics:

•	 Theory of collision detection
•	 Circular collision detection
•	 Box collision detection
•	 Per pixel collision detection
•	 Box2D collision detection
•	 Coding collision detection
•	 Keeping track of the score and the game over condition
•	 Storing high score

Collision Detection and Scoring

[82]

Theory of collision detection
In the case of mobile games, the most common forms of collision detection are circle
and rectangle collision. The most popular games on the mobile platform use these
simplistic forms of collision detection. We will look at complex forms of collision
detection and see why, at this stage at least, they are not used in mobile devices.

Circular collision
While detecting a collision between two objects in programs, unlike natural
things that can detect collision automatically, you have to tell the object that it has
collided with something else. This is done by checking whether one part of object is
intersecting with another part of the object or the object itself.

In circular collision, this intersection is calculated with the help of radius. The logic
here is that if the distance between the centers is less than the sum of the radii of the
both the circles, the object is said to be colliding. Imagine two circles, one with radius
R and another small circle with radius r with their respective centers at (x1, y1)
and (x2, y2):

First you would want to calculate the distance between the two points (x1, y1)
and (x2, y2).

The distances of the x and y components are calculated separately by subtracting one
from the other as follows:

float xDist = x2 - x1;
float yDist = y2 - y1;

Chapter 4

[83]

Next, the distance is calculated by using the Pythagoras theorem. So, if you have
forgotten your high school mathematics, the Pythagoras theorem states:

For any right angle triangle, the square of the hypotenuse is equal to the sum of the
squares of the other two sides.

So, using the theorem, we have the following equation in code form:

float dist = sqrt(pow(xDist,2) + pow(yDist,2));

The explanation of this code is as follows:

•	 sqrt: This gets the square root of the number.
•	 pow(xDist, 2): This multiplies the number by itself as many times as the

power has been raised to. In this case, xDist and yDist are multiplied by
themselves twice.

For more information about the math class in CPP, please refer to http://www.
cplusplus.com/reference/cmath/.

Now that the distance is calculated, we check the collision. Assuming that you have a
function that takes in two sprites and returns a Boolean value, you can easily get the
centers of both the sprites using the getPosition() function, as we have always been
doing. If the distance is less than the sum of half of the widths or heights of the sprites,
return true, saying that the collision has occurred; otherwise, we return false:

if(dist < (R + r))
 return true;
else
 return false;

This code will be called over and over about 60 times in a second in the update
function and will check the collision between all the objects that you would want the
collision to be checked between.

So, now a question would arise: if we have cheap collision detection technique, such
as circular collision detection, why not just use this, and why do we have to choose
this over other forms of collision?

http://www.cplusplus.com/reference/cmath/
http://www.cplusplus.com/reference/cmath/

Collision Detection and Scoring

[84]

The answer is that you don't have to use circular collision detection only if you are
using circles. You can use circular collision detection for square objects as well,
because it is equal on all sides. This approximation could be made if the square is
very small and you don't mind the small area near corners where the collision won't
be detected. While developing games, you will choose convenience over too much
precision. This is demonstrated in the following diagram:

You can even use it for small irregular shapes that will fit into a circle, for example,
a small stone, but it is better not used if the object is rectangular in shape. If you use
circular collision to calculate the collision, the collision circle would be at the center
of the enemy. If the player at shoots the enemy's foot, the collision won't be detected,
as chances are that the player's bullet might miss the enemy collision circle and
collision won't be detected. Circular collision is illustrated in the following diagram:

In this diagram, if the blue region in the rectangle is what is defined as the collision
circle and the player shoots anything above or below the circle, the hit won't be
registered. The player would either feel cheated or think that there is a bug in the
game; either way the player won't be interested in your game anymore. So, what do
you do?

Chapter 4

[85]

Bounding box collision
For this, we use rectangular collision. To be more precise, this type of collision
is called Axis Aligned Bounding Boxes (AABB). It is called axis aligned, as the
rectangle at the sides are always aligned or parallel to the x and y axis. It is widely
used in PC/console as well as handheld 2D games. In fact, you can use rectangle or
box collision for circular, rectangular, and square objects.

For checking box collision, instead of checking whether the box is intersecting, we do
a check whether they are not intersecting and return false.

To do this, we define the edges of the box, that is, the left, right, top, and bottom
edges of the box and check for the following conditions:

• The bottom edge of Box 1 is higher than the top edge of Box 2
• The top edge of Box 1 is lower than the bottom edge of Box 2
• The left edge of Box 1 is to the right of the right edge of Box 2
• The right edge of Box 1 is to the left of the left edge of Box 2

In code form, it can be put as follows:

 if ((Box1.Bottom < Box2.Top) ||
(Box1.Top > Box2.Bottom) ||
(Box1.Left > Box2.Right) ||
(Box1.Right < Box1.Left)
)
return false;

 else
return true;

This is all tedious work; fortunately in Cocos2d-x, CCSprites have an inbuilt function
named boundingBox(), which returns a CCRect equal to the rectangle size of the
CCSprite at its current position.

CCRect keeps track of four floats: the bottom left x and y position and the width as
well as height of the rectangle. Further, CCRect itself has an inbuilt function that
checks whether one CCRect intersects with another CCRect.

Collision Detection and Scoring

[86]

So, now you can create a function that takes in two CCSprites similar to the circular
collision and make it return true or false, depending upon whether the rectangles
intersect or not using the following function:

 if (box1Rect.intersectsRect(box2Rect))
 {
 return true;
 }
 else
 {
 return false;
 }

Pixel perfect collision
This form of collision is the most expensive type of collision detection. This is used
when you are colliding with an odd-shaped object and precision is an absolute must.

We accomplish pixel perfect collision by creating a bit mask of the hero and
enemy, where the white areas would represent the colored portion of the player
and enemy respectively.

The following diagram can be used to check collision for the player:

And this is the diagram we would use for the enemy. The purpose of these diagrams
is just to check collision; the player will never see these diagrams, as it will never be
added to the scene:

Chapter 4

[87]

We would check on a pixel-by-pixel basis if the white parts of the hero and enemy
overlap. If the condition is true, the collision is detected; otherwise, the function will
return false.

As you can see, the amount of processing power needed to check collision between
each pixel on the screen is substantial. Moreover, this is just for one object. In our
game, we have more than one enemy at a time, and each of them is also shooting
bullets. Besides, the player is also shooting rockets. All this would require a lot of
processing power and, therefore, would be detrimental to the performance of the
game, as we would not be able to achieve a smooth 60 fps on mobile devices.

It can be still used if you are making games for desktop computers, but for mobile
devices, this is best avoided.

As it is an advanced method of collision detection, the code is a bit complicated and
is beyond the scope of this book. If you would like to know more about pixel perfect
collision, you can refer to https://wiki.allegro.cc/index.php?title=Pixel_
Perfect_Collision so that you can try and implement it in the game.

Other collision detection methods
As I said at the start of the chapter, collision detection could be released as a separate
book in itself because it is such a vast topic. The following are just a few of the other
ways in which collision could be detected:

•	 Point in shape: One of the easiest ways to determine collision is to check
whether a point is inside another object. This is used where touches are
involved, for example, when we checked whether we tapped on the left part
of the screen or the right part of the screen. The object doesn't have to be a
square or a rectangle. You can also check whether a point is inside a triangle,
rectangle, or any other polygon. If the point is inside this shape, it can be said
that collision has occurred.

https://wiki.allegro.cc/index.php?title=Pixel_Perfect_Collision
https://wiki.allegro.cc/index.php?title=Pixel_Perfect_Collision

Collision Detection and Scoring

[88]

•	 Separate axis theorem: This is a special case of AABB where the object's
bounding box is rotated along with the object. In this case, the math for
collision detection is far more complicated, and Cocos2d-x doesn't have it
as part of its collision detection system. But, if your game needs this type
of collision, you would have to create it yourself, or you can use Box2D
for collision detection. You can see how the separate axis theorem works:
http://www.codezealot.org/archives/55.

•	 Box2D: Although we won't be covering Box2D in this book, it should be
noted that even if you don't use Box2D for physics simulation, you can still
use Box2D for collision detection. You can define a custom shape for collision
around an object and check for collision using this shape. The red region in
the following image is the custom collision shape created for this character if
Box2D were to be used for collision detection:

To define custom shapes to be used in Box2D, you can either use a graphics
program and get the coordinates of all the locations, or you can use a convenient
tool developed by the guys at CodeAndWeb called Physics Editor. Physics Editor
integrates its output with many languages, such as Objective-C, C++, Flash, and so
on. It is a very good, professionally used program that saves a lot of time.

http://www.codezealot.org/archives/55

Chapter 4

[89]

You can download this tool from their website at http://www.codeandweb.com/.

Here, you can import the image for which you would like to create a collision shape
and then add a basic shape by clicking on the circle or the pentagon on top of the
view to create a shape. The shape will be drawn in red in the software. You can then
add more vertices by right-clicking and selecting Add Vertex. Once done, you can
publish the data using the Publish button and import it in Cocos2d-X project. In this
way, you can add or delete vertices and define the shape as required.

Collision detection using Box2D can be seen as something between box collision and
pixel collision. You can create the bounding shape for collision, depending on how
much precision you need. It is a good alternative to pixel collision, but you must be
aware of Box2D concepts to include its collision detection features.

Irrespective of which collision method you use, the most important thing that
needs to be kept in mind is that the performance of the game is not compromised;
otherwise, the game won't be fun anymore.

For this game, I have chosen to go with box collision to detect collision between the
objects on the screen. So, let us see how to implement box collision for this game.

Coding collision detection
To detect collision, we add a new function in the GameplayLayer class that will
detect collision between two CCSprites and return a value after checking whether
the collision occurred or not.

Add the following to the GameplayLayer.h file:

bool checkBoxCollision(CCSprite* box1, CCSprite *box2);

And at the end of GameplayLayer.cpp, add the following:

bool GameplayLayer::checkBoxCollision(CCSprite* box1, CCSprite *box2)
{
 CCRect box1Rect = box1->boundingBox();

 CCRect box2Rect = box2->boundingBox();

 if (box1Rect.intersectsRect(box2Rect))

http://www.codeandweb.com/

Collision Detection and Scoring

[90]

 {
 return true;
 }
 else
 {
 return false;
 }
}

This code gets the two sprites that are given to it, and then for each of the sprites, it
builds a collision box depending upon the position, width, and height of the object.

CCRect has an inbuilt function, which we can use if one rectangle is touching the
other rectangle. If it interacts, we return true, and if it doesn't, it returns false as
a result.

Now in the update function, we will have to check for two kinds of collisions. We will
first create a loop, where we will check if the player's rocket hits any of the enemies;
in this case, the player will get one point. We will then create a second loop where the
game gets over if any of the bullets released by any of the enemies hits the player.

Let's do the first part where we check collision between player rockets and enemies.

For this, add the following code in the update function in the GameplayLayer class
right after where we updated the player bullets:

 //player rocket and enemies collision
 if(playerBullets->count() >= 0)
 {
 for(int i=0; i<playerBullets->count(); i++)
 {
 Projectile* p = (Projectile*)playerBullets-
>objectAtIndex(i);

 if(enemies->count() > 0)
 {
 for(int j = 0; j< enemies->count(); j++)
 {
 Enemy* en = (Enemy*)enemies->objectAtIndex(j);

 if(checkBoxCollision(p,en))
 {
 this->removeChild(p);
 playerBullets->removeObject(p);

 enemiesToBeDeleted->addObject(en);

Chapter 4

[91]

 return;
 }
 }
 }
 }
 }

Wow! That is a lot of confusing code. Let's break this down.

What is essentially happening is that we are cycling through each of the players'
rockets and then checking whether each rocket is colliding with any of the enemies
on the screen. So, there is another loop that goes through all the enemies and is
checked with the individual rocket.

If this rocket collides with the any of the enemies, it is removed from the display list
and also from the array, and the enemy is added to the enemiesToBeDeleted array.
We perform a return action to get out of the loop.

Also, make sure that both the for each loops for enemiesToBeDeleted and
enemyBulletsToBeDeleted are moved to the end of the update function, as it
should make sure that they are deleted at the end of the current update cycle.

Now, let's add the collision between the enemy bullets and the player:

 //enemy bullets and player
 if(enemyBullets->count() > 0)
 {
 for(int i =0; i < enemyBullets->count(); i++)
 {
 Projectile* pr = (Projectile*)enemyBullets-
>objectAtIndex(i);

 if(checkBoxCollision(pr, hero))
 {
 enemyBulletsToBeDeleted->addObject(pr);
 return;
 }
 }
 }

Here, we cycle through each of the enemy bullets and check for the collision between
the bullets and player.

Wait a second; the class doesn't know anything called the hero!

Collision Detection and Scoring

[92]

For this, we will have to make some changes to the GameplayLayer class. We will
have to give it an instance of the hero so that it can check the collision against it. So,
in the GameplayLayer.h file, add a CCSprite named hero, and in the constructer,
modify it such that it takes a CCSprite called _hero, as follows:

GameplayLayer(CCSprite* _hero);

And in the constructor of GameplayLayer.cpp, initiate the hero variable you created:

GameplayLayer::GameplayLayer(CCSprite* _hero)
{
 hero = _hero;

 playerBullets = new CCArray();

 enemies = new CCArray();
 enemiesToBeDeleted = new CCArray();

 enemyBullets = new CCArray();
 enemyBulletsToBeDeleted = new CCArray();

 visibleSize = CCDirector::sharedDirector()->getVisibleSize();

}

Now, if you build and run the game, you would be able to shoot at the enemies,
and they would get deleted from view, and when the enemy bullet hits you, it would
be deleted.

We will add scoring next so that we can keep track of the score the player has earned.

Keeping track of the score and the game
over condition
To keep score, each time the player rocket hits the enemy, the player will get one
point. If the enemy reaches the left of the screen or the enemy bullet hits the player,
it should trigger the game over condition.

For this, create two global variables in the GameplayLayer.h file: an int and a
bool variable. The int score variable will keep track of the score, and the bool
gameOver variable will be used to check the game over condition:

 int score;
 bool gameOver;

Chapter 4

[93]

In the constructor, initialize these two variables:

 score = 0;
 gameOver = false;

Next, as per our logic, the game should be over when any of the enemies goes
beyond the left of the screen or any of the enemies' bullets hits the player. So, to
satisfy the condition, add the gameover = true condition while updating the
enemies and checking for the collision between the enemy bullet and the player:

 //enemies
 if(enemies->count() >= 0)
 {
 for(int i =0; i <enemies->count(); i++)
 {
 Enemy* e = (Enemy*)enemies->objectAtIndex(i);
 e->update();

 if(e->getPositionX() + e->getContentSize().width/2 < 0)
 {
 gameOver = true;
 enemiesToBeDeleted->addObject(e);
 }
 }
 }

 //enemy bullets and player
 if(enemyBullets->count() > 0)
 {
 for(int i =0; i < enemyBullets->count(); i++)
 {
 Projectile* pr = (Projectile*)enemyBullets-
>objectAtIndex(i);

 if(checkBoxCollision(pr, hero))
 {
 enemyBulletsToBeDeleted->addObject(pr);
 gameOver = true;
 }
 }
 }

Collision Detection and Scoring

[94]

Next, we have to increase the score by one whenever the player rocket hits the
enemy. So, we shall add the same when we check for collision between the player
rockets and enemies:

 //player rocket and enemies collision
 if(playerBullets->count() >= 0)
 {
 for(int i=0; i<playerBullets->count(); i++)
 {
 Projectile* p = (Projectile*)playerBullets-
>objectAtIndex(i);

 if(enemies->count() > 0)
 {
 for(int j = 0; j< enemies->count(); j++)
 {
 Enemy* en = (Enemy*)enemies->objectAtIndex(j);

 if(checkBoxCollision(p,en))
 {
 score++;

 this->removeChild(p);
 playerBullets->removeObject(p);

 enemiesToBeDeleted->addObject(en);
 return;
 }
 }
 }
 }
 }

Whenever the gameover Boolean variable is set to true, we want the following
to happen:

•	 The player, enemies, bullets, and rockets should stop updating
•	 Enemies shouldn't spawn anymore
•	 All the enemies' bullets should stop spawning
•	 The player shouldn't be able to move the player (hero)
•	 The player also shouldn't be able to shoot rockets

Chapter 4

[95]

So, for the first point, in HelloWorldScene.h, create a new function
named GameOver():

void GameOver();

Define this function in HelloWorldScene.cpp:

void HelloWorld::GameOver()
{

}

Next, enclose all the code in the update function under the if statement block,
which will check whether the game is over. If the gameover condition is not true,
it will allow the code to update:

 if(!gameplayLayer->gameOver)
 {
 //include all code from update function here
 }

If the game gets over, it should go into the else condition where the Gameover()
function would be called. After the if condition in the update function, we add the
following else condition so that the GameOver function is called:

 else
 {
 GameOver();

 }

In the Gameover() function, we add this->unscheduleAllSelectors(); so that
just as we scheduled the update function and the enemySpawn function, this function
will stop scheduling all the scheduled functions.

But you will notice that still the bullets are being spawned by the enemies; for this,
we will loop through all the enemies currently in the scene and unschedule all the
scheduled functions in them. We do this by looping through all the enemies in the
scene in the Gameover() function:

 if(gameplayLayer-> getEnemiesArray()->count() >0)
 {
 for(int i=0; i< GameplayLayer-> getEnemiesArray()->count();
i++)
 {

Collision Detection and Scoring

[96]

 Enemy* en = (Enemy*)gameplayLayer-> getEnemiesArray()-
>objectAtIndex(i);
 en->unscheduleAllSelectors();
 }
 }
 }

Now, we also need to make sure that the player is not able to shoot rockets or move
the hero. So, we make sure tap and fire are only called if the gameover condition is
not true:

 if(!GameplayLayer->gameOver)
 {
 if(leftButton.containsPoint(location))
 jumping = true;
 if(rightButton.containsPoint(location))
 fireRocket();
 }

Now, in terms of gameplay, this is the complete game. You can see the complete
gameplay loop, that is, the game starts; there is some gameplay; you can see the
game score getting updated; if the game ends, the GameOver function is called;
and the game ends.

It looks very strange that the player is never informed of any of this information.
So let's add some text on the screen to tell the players how much they have scored,
and also, we should let them know if the game got over. For this, in the
HelloWorldScene.h file, add a new type of variable, scoreLabel, of the
CCLabelBMFont type, as follows:

CCLabelBMFont* scoreLabel;

In the init() function of HelloWorldScene.cpp, initialize this variable:

scoreLabel = CCLabelBMFont::create("Score: 0", "PixelFont.fnt");

scoreLabel->setPosition(ccp(visibleSize.width * 0.870, visibleSize.
height * 0.9));

this->addChild(scoreLabel, 10);
scoreLabel->setScale(0.5);

Also, include the PixelFont.png and PixelFont.fnt files in your resources
folder. In the next chapter, we will go into the details of what these files are and how
to go about creating them, but for now, just understand that this is used to display
text on the screen using CCLabelBMFont and with the PixelFont font type.

Chapter 4

[97]

Now, this will only create and initialize the font. If you build and play, you will see
that the label is shown but is not updated. So, next we go to the update function and
update the string value to reflect the actual score of the game.

In the update function under the if loop that checks for the gameover condition,
add the following lines of code:

 char scoreTxt[100];
 sprintf(scoreTxt, "Score: %d", gameplayLayer->score);
 scoreLabel->setString(scoreTxt);

Here, create a variable named scoreTxt so that it can take in 100 characters of the
char type. A C++ specific function, sprintF, copies variables. So here, we copy the
current score value and Score: text to the scoreTxt variable. Next, we set the string
of the scoreLabel variable to the scoreTxt variable. Now, when you build and run,
you should see the score getting dynamically updated on the screen.

Next, we will display the GAMEOVER text when the game is over.

In the GameOver() function, add the following lines of code:

CCLabelBMFont* gameOverLabel = CCLabelBMFont::create("GAMEOVER",
"PixelFont.fnt");

gameOverLabel->setPosition(ccp(visibleSize.width * 0.5, visibleSize.
height * 0.6));

this->addChild(gameOverLabel, 10);

Now, whenever the game is over, the GAMEOVER text will appear on the screen,
telling the player that the game is over.

Storing high scores
One of the best ways to ensure that the player keeps playing the game is to make
him/her beat his/her own high score. Cococs2d-x has a very easy way of storing
values in the game, which we will use to compare the previous high score with the
current score. If the current score is higher than previous score, we will replace the
old high score value with the new one.

For this, in the GameOver() function, add the following:

int highScore = CCUserDefault::sharedUserDefault()->getIntegerForKey("
bazookaGameHighScore");

Collision Detection and Scoring

[98]

CCUserDefault is a singleton that stores all the user-defined defaults. But you need
to provide a unique key for each of the variables that you either want to store or
would like to recall.

In this case, I am retrieving a key named bazookaGameHighScore for the integer
value and storing in another integer value named highScore, which will contain the
current high score scored in the key from previous games. As we have not used this
key before for any of the variables before, its current value will be 0.

We compare the previous high score stored in highScore with the current score in
score and check whether it is higher than highScore; if it is, store the current score,
score, as the new high score and perform a flush so that it remembers:

 if(gameplayLayer->score > highScore)
 {
 CCUserDefault::sharedUserDefault()->setIntegerForKey("bazookaG
ameHighScore", gameplayLayer ->score);
 CCUserDefault::sharedUserDefault()->flush();

 CCLabelBMFont* newHighScoreLabel = CCLabelBMFont::create("NEW
HIGH SCORE", "PixelFont.fnt");
 newHighScoreLabel->setPosition(ccp(visibleSize.width * 0.5,
visibleSize.height * 0.5));
 this->addChild(newHighScoreLabel, 10);
 newHighScoreLabel->setScale(0.75);

 CCLabelBMFont* gOscoreLabel = CCLabelBMFont::create("0",
"PixelFont.fnt");
 gOscoreLabel->setPosition(ccp(visibleSize.width * 0.5,
visibleSize.height * 0.4));
 this->addChild(gOscoreLabel, 10);
 gOscoreLabel->setScale(0.75);

 char scoreTxt[100];
 sprintf(scoreTxt, "%d", gameplayLayer->score);
 gOscoreLabel->setString(scoreTxt);

 }
 else
 {
 CCLabelBMFont* newHighScoreLabel =
CCLabelBMFont::create("BETTER LUCK NEXT TIME", "PixelFont.fnt");

Chapter 4

[99]

 newHighScoreLabel->setPosition(ccp(visibleSize.width * 0.5,
visibleSize.height * 0.5));
 this->addChild(newHighScoreLabel, 10);
 newHighScoreLabel->setScale(0.75);

 }

We additionally create a new CCLabelBMFont variable named newHighScoreLabel
and inform the player that he/she has a new high score. Also, we display the new
high score underneath it using the variable called gOScoreLabel by setting it to the
current score, just as we updated the score on the screen.

Also, we add an else condition if the player's current score is less than the current
high score, use the same newHighScoreLabel variable, and set the text to "BETTER
LUCK NEXT TIME" so that he/she is motivated to play the game again and achieve
a higher score.

You can build and run the game now, and you will notice that it stores the score,
and depending on your score, the appropriate message is displayed on the screen.

The following are the screenshots showing both the conditions. The one below is for
the gameover condition:

Collision Detection and Scoring

[100]

And the following screenshot is for when the player gets a new high score:

Summary
In this chapter, we saw various ways in which collisions could be detected in games,
and we implemented box collision detection for the game. We added scoring, the
game over condition, and display text on the screen.

Collision detection is a vital part of any game, and its implementation could make
or break the game. There is a tradeoff between precision and performance when you
use a simple method, such as box collision detection versus pixel perfect collision.
This is where the job of the game designer becomes critical. They have to pay close
attention to the size and shape of the characters. The characters have to be simple so
that they look interesting, and at the same time, we need to make sure that it is easier
to compute collision on the character. An odd-shaped character would call for an
advanced collision detection method, demanding high precision, which would take
more time in testing and debugging, eventually either delaying the project or leading
to reworking on the character from the start causing waste of time, effort, and not to
mention money.

Although I haven't covered Box2D collision detection, I would really encourage
everyone to try and implement it. It takes a bit of time and effort to understand it
but once you get it, it is another tool in your arsenal to compute collisions of objects
with complex or odd shapes.

In the next chapter, we will look at how to create custom fonts for the game and add
a GUI layer, pause button, and scrolling background to the game.

HUD, Parallax Background,
and the Pause Button

In this chapter, we will see how to create a custom font for the game, like the font we
added in the last chapter. We will create a new layer for HUD and the pause button.
We will also create a scrolling background layer and remove the current static image
we have been using so far.

We will cover the following topics in this chapter:

•	 Text and fonts
•	 Creating HUD layer and displaying as well as updating scores
•	 Adding the pause and resume buttons
•	 Implementing pause and resume in the game
•	 Adding the scrolling layer class
•	 Creating the parallax scrolling layer

Texts and fonts
So, you might be wondering why initially in Chapter 1, Getting Started, Cocos2d-x we
used CCLabelTTF, but in the previous chapter, we used CCLabelBMFont. Is there a
difference between them? If there is, how is one type of font different from the other?

The two types of fonts are quite different. CCLabelTTF uses file types with the .ttf
extension or TrueType font, and CCLabelBMFont uses files with the .fnt extension
and are called bitmap fonts.

HUD, Parallax Background, and the Pause Button

[102]

It is always preferred to use bitmap fonts over the TrueType font in games. The text
we see on the screen is actually an image, regardless of whether you use BMFont
or TTF. In the case of TTF, the processor has to do some work in looking up the
character that it has to display and then convert it into an image so that it can
display it on the screen. This will be done each time a character has to be displayed
on the screen, even if it is the same character repeated again. BMFont has 2 files
accompanying each font unlike the TTF, which has just one single file. One file will
be a PNG file with all the characters of the font in it, and the other file will be a data
file of the .fnt type, which will contain the location of each of the characters. So,
when a character has to be displayed on the screen, the system will refer to the .fnt
file, look for the location of the character in it, go to the .png file, and then retrieve
the image. This is very similar to how sprite sheets work. If you don't know what a
sprite sheet is, don't worry, we will be covering it in the next chapter.

In the case of BMFonts, if you want to use the same font for, say, a bigger text (a title)
and a smaller text (to show scores or tutorials), it is better that you have two BMFonts
generated for both types. You could scale the text up or down, but if you are using
a single BMFont file, this would stretch the font and might end up in the pixilation
of the text. On the other hand, as the image glyphs are generated dynamically while
using TrueType fonts, you can specify the height of the text and it will not result in
the pixilation of the text, thereby removing the work of creating two files for the same
font with different heights. You could use TrueType fonts for desktop games, but for
mobiles, it is better to use BMFonts instead of TrueType fonts.

As the images are already made in BMFont, the processor doesn't have to do any
work in converting the font to an image. This saves a lot of processing, which can
be used for other purposes, and moreover as we are mobile developers, every bit of
processing power counts.

Now that we know the difference between the two types of fonts, how do we create
the BMFont?

Literra
Fortunately, there is a website where you can select the TTF type font, make changes
to it, and then download the .fnt file so that you can include it in the game. You can
visit it at http://kvazars.com/littera/.

http://kvazars.com/littera/

Chapter 5

[103]

The site will take a bit of time to load. Once the site loads, you will see two panels:
one on the left and the other on the top of the screen. The panel on the left allows you
to select the font and make changes to the font such as adding a fill, stroke, glow,
shadows, and bevel. There are also the save and load buttons, where you can save
the settings to a file and download it so that you can upload it later when you want
to make changes to the file.

The panel on the top allows you to choose the format type (use TXT for Cocos2d-x),
padding, and export button, which you can press to download the font. The
following screenshot is a pictorial representation of this:

However, what if you want to select a different type of font that is more suitable to
your game? Where can we get more fonts that are free to use and can be used with
Literra? Fortunately, this is quite easy; there is a website, http://www.dafont.com/,
where you can browse through different fonts and download them for free.

http://www.dafont.com/

HUD, Parallax Background, and the Pause Button

[104]

You can download the .ttf type fonts from there, click on the Select Font button on
the left of the screen, select the .ttf file, start making changes to the font as per your
liking, and then export it as a .fnt file. Make sure that you select Text (.fnt) in the
Format dropdown from the top of the panel. The following is how the home page of
dafont.com looks:

Bitmap font generator
If you don't like the idea of websites to make fonts, there is also a software to generate
bitmap fonts by AngelCode called bitmap font generator. You can download it for free
from http://www.angelcode.com/products/bmfont/. Although it is free, I don't
find it to be intuitive, so I personally don't use it all that much. However, if you feel
like using it, go through it, experiment with it, and see if it suits your liking.

GlyphDesigner
Although the previous ways to generate bitmap fonts are free, there is really no
professional software for generating fonts offline. On a Mac system, you can use
GlyphDesigner from 71squared:

http://www.angelcode.com/products/bmfont/

Chapter 5

[105]

GlyphDesigner is a feature-rich, professional grade bitmap font generator. On the
left-hand side panel, you will see all the fonts that are installed in your system, and
on the right-hand side, you have all the settings that you can use to modify the font.

You can save the file if you want to make future changes to the font. Once you are
happy with the font, you can publish it, and it will create the same two files: .png
and .fnt. You can import these files into your Resources directory and start using
it to display the text on the screen.

GlyphDesigner can be used with other game frameworks as well, such as Starling,
MOAI, Corona, Gideros, Marmalade, and Sprite Kit to name a few.

If you want to test it out, you can download the trial version from the Internet and
give it a go. Once you are satisfied, you can purchase the license and start exporting
the font.

You can get the software from http://71squared.com/en/glyphdesigner.

http://71squared.com/en/glyphdesigner

HUD, Parallax Background, and the Pause Button

[106]

Creating the HUD layer and displaying as
well as updating scores
HUD is usually used to display information to the player such as score, health, and
points. In our game, we are going to add the score variable we previously created in
the HelloWorldScene files and move it to this layer for convenience.

Similar to how we created GameplayLayer, we will create HUDLayer. So, now in your
Classes folder in the system, you will have HUDLayer.h and HUDLayer.cpp; add them
in the Solution Explorer panel in the Classes tab by clicking on Add existing file.

In the HUDLayer.h file, add the following code:

#ifndef __wp8Game__HUDLayer__
#define __wp8Game__HUDLayer__

#pragma once
#include "cocos2d.h"
using namespace cocos2d;

class HelloWorldScene;

class HUDLayer : public CCLayer
{
public:
 HUDLayer(void);
 ~HUDLayer(void);

 CCSize visibleSize;
 CCLabelBMFont* scoreLabel;

 void updateScore(int score);

};

#endif

Here, we add the constructor and destructor for the HUDLayer class and add
visibleSize of the CCSize type. We will move the scoreLabel variable we created
in the HelloWorldScene.h file here. We will also create the updateScore function
that will take an integer value named score, which will be used to pass in the
updated score to the function.

Chapter 5

[107]

In the HUDLayer.cpp file, we define all the variables. So, in the HUDLayer.cpp file,
add the following lines of code:

#include "HUDLayer.h"

HUDLayer::HUDLayer()
{
 visibleSize = CCDirector::sharedDirector()->getVisibleSize();

 //moved the score label to the center
 scoreLabel = CCLabelBMFont::create("Score: 0", "PixelFont.fnt");
 scoreLabel->setPosition(ccp(visibleSize.width * 0.50, visibleSize.
height * 0.9));
 this->addChild(scoreLabel, 10);
 scoreLabel->setScale(0.5);

}

HUDLayer::~HUDLayer(void)
{

}

Here in the constructor, we initiate the visibleSize variable and get the dimensions
of the screen.

Then, we move the definition of scoreLabel we had previously created in the
init() function of the HelloWorldScene.cpp file:

Next, in the updateScore() function, we will cut the code that was in the update
function of the HelloWorldScene.cpp file:

void HUDLayer::updateScore(int score)
{
 char scoreTxt[100];
 sprintf(scoreTxt, "Score: %d", score);
 scoreLabel->setString(scoreTxt);
}

That is all for the HUDLayer for now. Next, go to the HelloWorldLayer.h file and
include HUDLayer.h as shown:

#include "HUDLayer.h"

Create a new variable named hudLayer of the HUDLayer type:

HUDLayer* hudLayer;

HUD, Parallax Background, and the Pause Button

[108]

Next, in the HelloWorldScene.cpp file, initiate the hudLayer variable:

hudLayer = new HUDLayer();
this->addChild(hudLayer, 15); //keeping at top most layer

In the update function, add the following code that will update the score every frame:

hudLayer->updateScore(gameplayLayer->score);

Here, you pass in the score from gameplayLayer to hudLayer so that the score
is updated.

That is all. Now your score is on a different layer. You might say that all we did
was move stuff around. This is true, but you also need to make sure that the code is
organized. For a small game like this, it might sound insignificant, but once you start
making complex games, it will get harder and harder to see where you put the score
update function. Also, you now have the HUD as a separate class. You don't have to
rewrite the score function over and over for other games you make. You can include
this class in your new project and make some modifications if needed to make it
work for your new game.

If you build and run your project now, you will see that visually, nothing has
changed on the screen except for one thing: now the score is displayed in the middle
of the screen instead on the side, and we will be adding a pause button that will sit in
the top-right corner of the screen.

Creating the pause button and showing
the pause screen
We are going to add a pause button to the HUDLayer so that when the pause button
is clicked, the game will be paused, and we will also add a resume button so that the
game can be resumed.

For this, in the HUDLayer.h file, create two new variables named pauseMenu and
resumeMenu of the CCMenu type:

 CCMenu* pauseMenu;
 CCMenu* resumeMenu;

Also, create two new functions named pauseGame() and resumeGame():

 void pauseGame(CCObject* pSender);
 void resumeGame(CCObject* pSender);

Chapter 5

[109]

Paste the _bookgame_UI__pause.png and _bookgame_UI__resume.png files to the
Resources folder of the project in your system.

In the HUDLayer.cpp file in the constructor, create the pauseMenuItemImage variable
and add it to the pauseMenu variables:

 CCMenuItemImage*pauseItem = CCMenuItemImage::create("_bookgame_
UI__pause.png",
 "_bookgame_
UI__pause.png", this,
 menu_
selector(HUDLayer::pauseGame));

 pauseItem->setPosition(ccp(visibleSize.width - pauseItem-
>getContentSize().width/2,
 visibleSize.height- pauseItem-
>getContentSize().height/2));

 pauseMenu = CCMenu::create(pauseItem, NULL);
 pauseMenu->setPosition(CCPointZero);
 this->addChild(pauseMenu);

Define the pauseGame() function as shown:

void HUDLayer::pauseGame(CCObject* pSender)
{
 HelloWorld* helloWorld = (HelloWorld*)this->getParent();

 if(!helloWorld->gameplayLayer->gameOver)
 {
 pauseMenu->setTouchEnabled(false);

 CCMenuItemImage* resumeItem = CCMenuItemImage::create("_
bookgame_UI__resume.png",
 "_bookgame_
UI__resume.png", this,
 menu_selecto
r(HUDLayer::resumeGame));

 resumeItem->setPosition(ccp(visibleSize.width * 0.5 ,
 visibleSize.height* 0.5));

 resumeMenu = CCMenu::create(resumeItem, NULL);
 resumeMenu->setPosition(CCPointZero);

HUD, Parallax Background, and the Pause Button

[110]

 this->addChild(resumeMenu);

 helloWorld->gamePaused();
 }
}

Here, we get the parent node of HUDLayer—the node to which HUDLayer was
added as a child (HelloWorldLayer)—so that we can check whether the game is not
over. To do this, we have to include the following at the top of HUDLayer.h:

class HelloWorldScene;

Usually, we have been adding HelloWorldScene.h, but here, we have to add class
to avoid error messages caused by circular dependency. An example of circular
dependency would be when we include HUDLayer.h in HelloWorldScene.h and
when we add HelloWorldScene.h in HUDLayer.h. To avoid this, we give HUDLayer
the class itself. This is called forward declaration.

Next, in the HUDLayer.cpp file, add HelloWorldScene.h as usual. Now you
shouldn't get any errors.

We then set the touch on the pause button to false so that the player is unable to
pause the game over and over again. We create a CCMenuItemImage named resume.
We then provide bookgame_UI__resume.png as the button image and position it.
We will be calling the resumeGame() function once the resume button is pressed.
We then add it to the resumeMenu variable and in turn add resumeMenu to the layer.
Once the game has been paused, we will be calling the gamePaused() function in
HelloWorldLayer, which will be added later in the HelloWorldScene class.

Now, let's define the resumeGame() function:

void HUDLayer::resumeGame(CCObject* pSender)
{
 pauseMenu->setTouchEnabled(true);
 this->removeChild(resumeMenu);

 HelloWorld* helloWorld = (HelloWorld*)this->getParent();
 helloWorld->gameResumed();

}

Once the player clicks the resume button, the previous function will get called. Here,
the touch is enabled again on the removal of pauseMenu and resumeMenu from the
layer. Finally, the gameResumed() function is called from HelloWorldlayer.

Chapter 5

[111]

Implementing pause and resuming the
game
Now, we implement the pause and resume buttons in HelloWorldScene:

We will add the gamePaused() and gameResumed() functions in the
HelloWorldScene class. For this, create two functions in the HelloWorldScene.h:

 void gamePaused();
 void gameResumed();

Next, we define these functions in the HelloWorldScene.cpp file:

void HelloWorld::gamePaused()
{
 this->unscheduleUpdate();
 this->unschedule(schedule_selector(HelloWorld::spawnEnemy));

 if(gameplayLayer->getEnemiesArray()->count() >0)
 {
 for(int i=0; i< gameplayLayer->getEnemiesArray()->count();
i++)
 {
 Enemy* en = (Enemy*) gameplayLayer->getEnemiesArray()-
>objectAtIndex(i);
 en->pauseSchedulerAndActions();
 }
 }
}

Once the game is paused, we unschedule the update and enemy pause functions, cycle
through all the enemies, and unschedule all the functions on the layer. This is similar to
what we did in the gameOver() function. However, now we have to resume the game
as well. Once the game is resumed, we add the gameResumed() function:

void HelloWorld::gameResumed()
{
 this->scheduleUpdate();
 this->schedule(schedule_selector(HelloWorld::spawnEnemy),3.0);

 if(gameplayLayer->getEnemiesArray()->count() >0)
 {
 for(int i=0; i< gameplayLayer->getEnemiesArray()->count();
i++)
 {

HUD, Parallax Background, and the Pause Button

[112]

 Enemy* en = (Enemy*) gameplayLayer->getEnemiesArray()-
>objectAtIndex(i);
 en->resumeSchedulerAndActions();
 }
 }
}

Here, we schedule the update and spawnEnemy() functions in this level, loop through
all the enemies in gameplayLayer, and resume all the schedulers and actions.

Now if you build and run the game, you should see the pause button in the top-right
corner of the game, and once you pause the game, the pause button will appear in
the middle of the screen. Once the resume button is pressed, the game will resume
from where it left off:

Adding the scrolling layer class
Let's add some scrolling background now, as the game looks very boring with a
lifeless static image in the background. Before we actually add the code for scrolling
backgrounds, let's first understand how this effect is created in games.

Chapter 5

[113]

A scrolling background effect is added to:

•	 Create a moving animation so that the scene doesn't look static
•	 Create a depth of field effect to the player

This is usually created by placing two images adjacent to each other and moving
both images in a particular direction. When an image goes off the screen, it is
replaced at the end by the adjacent image. The width of the images has to be the
same as the width of the screen.

Take a look at the following screenshot:

The blue area is the background image, which will be stationary. Then, each image
that we want to scroll will be created as a separate image; a duplicated form of it will
be created and placed at the width of the first image. The green hill that you see here
is not one single image but two images made such that if you create a copy and place
them adjacent to another hill, it would look seamless. So, while creating images for
background scrolling, you have to make sure that there is seamlessness in the design,
otherwise it would break the illusion. Also, both scrolling images need to be placed
at a particular height and both need to be at the same height. Needless to say that
one cannot be above and the adjacent copy cannot be lower or higher.

For example, the hill images here are above the ground at a particular height. Now,
I could have created the image so that I could have started from the bottom of the
screen and added some extra space at the bottom and made it whichever color I
wanted, as I know that anyway the ground will cover it and the player would not
be able to see it. You could do this and it would still work. However, why add this
extra space when we know that the device will have to process it but is redundant,
as the player would never be able to see it. So, we create the image up to a height
that would actually be visible to the player and then just move the image up.

HUD, Parallax Background, and the Pause Button

[114]

To create the illusion of depth, the further away items would have to move slower
and the closer items have to move at a faster rate. So, here we will keep the sky and
the cloud stationary as the movement in real life is so slow that the naked eye doesn't
even see the movement. Next, the hills will move at the very slow pace, the trees and
the bush slightly faster, and at the end the grass moving the fastest. This creates the
illusion of depth. Further, as this is a cartoony vector-styled art, I didn't add blur to
the objects at a distance. Usually, depending upon the art style, you can add blur to
the images at a distance, as objects at a distance are not very clear in reality. Try that
out in real life; it is fun to watch.

Now that you understand how a scrolling background works, let's start coding the
scrolling background.

Before we create a scrolling background layer, we have to create a class that can take
an image, make a copy of it, place it at the distance equal to the width of the screen,
keep updating the positions of both the images, and replace it to the right of the
screen once the image goes off the screen on the left. For this, we will create a new
class named ScrollingBg, add it to the existing Classes folder, and import it in the
Solution Explorer pane in Visual Studio, as we have always been doing. So, create a
class named ScrollingBg.h and ScrollingBg.cpp. The ScrollingBg.h class is
as follows:

#ifndef __wp8Game__ScrollingBg__
#define __wp8Game__ScrollingBg__

#include <iostream>
#include "cocos2d.h"

using namespace std;
using namespace cocos2d;

class ScrollingBg: public CCNode
{
public:

 static ScrollingBg* create(string name, float _speed, float _
yPos);
 bool initScrollingBg(string _name, float _speed, float _yPos);

 CCSprite* gameBg1, *gameBg2;

 float speed;

Chapter 5

[115]

 string name;

 CCSize winSize;

 void update();

};

#endif /* defined(__endlessFlyer__ScrollingBg__) */

The static function takes in a string in which we will pass in the image name that we
would want to scroll. Next, it takes the speed at which we would want this image to
be moved in the x direction. Finally, it takes the height at which the image should be
placed with respect to the bottom of the screen.

The initScrollingBg() function is created, which will initialize the class.

We create two CCSprites, gameBg1 and gameBg2; one will placed at the center of the
screen so that it is visible to the player and the other will be placed off screen on the
right-hand side of the screen adjacent to the first sprite.

Then, we create float and string variables to keep track of the variables passed into
the class. We also create a winSize variable to keep track of the size of the screen.

Finally, we create the update function that updates the position of the images.

Next, let's look at the ScrollingBg.cpp file:

#include "ScrollingBg.h"

ScrollingBg* ScrollingBg::create(string _name, float _speed, float
_yPos)
{
 ScrollingBg* ob = new ScrollingBg();
 if(ob && ob->initScrollingBg(_name, _speed, _yPos))
 {
 ob->autorelease();
 return ob;
 }

 CC_SAFE_DELETE(ob);
 return NULL;

}

HUD, Parallax Background, and the Pause Button

[116]

In the create() function, as we have always been doing, we create an object of the
ScrollingBg class and check whether it has been created. If it is created, we call the
initScrollingBg() function and pass the string, speed, and yPos variables that
we received in the create() function:

bool ScrollingBg::initScrollingBg(string _name, float _speed, float
_yPos)
{
 winSize = CCDirector::sharedDirector()->getWinSize();

 speed = _speed;

 gameBg1 = CCSprite::create(_name.c_str());

 gameBg1->setPosition(ccp(winSize.width * .5, _yPos));
 gameBg1->setAnchorPoint(ccp(0.5,0.0));
 gameBg1->setScaleX(1.01);
 addChild(gameBg1);

 gameBg2 = CCSprite::create(_name.c_str());
 gameBg2->setPosition(ccp(winSize.width * .5 + winSize.width , _
yPos));
 gameBg2->setAnchorPoint(ccp(0.5,0.0));
 gameBg2->setScaleX(1.01);
 addChild(gameBg2);

 return true;
}

In the initialization function, we get the size of the current screen and initialize the
speed. Instead of giving the name of the image manually, as we have always been
doing, we now get the name that was passed in, convert it to a string using the
.c_str() function, and pass it to the create() function of the CCSprite.

The position is set at the center of the screen in the x direction and at the height
specified by the _yPos variable that was passed.

We set the anchor point of the image to the bottom center of the image so that it
becomes easier for us to place the image with respect to the bottom of the screen.
We set the scale slightly higher so that there is no visible gap between the two
scrolling images. Finally, we add the image to the layer.

Chapter 5

[117]

Then, similar to how we did for the first image, we follow the same procedure for the
second sprite also. The only difference being that this image will be placed off screen
and at the width of the current screen:

void ScrollingBg::update()
{

 // scroll bg left or right
 CCPoint bg1pos = gameBg1->getPosition();
 gameBg1->setPosition(ccp((bg1pos.x - speed), bg1pos.y));

 if(gameBg1->getPosition().x < - winSize.width/2)
 gameBg1->setPosition(ccp(winSize.width + winSize.width/2, gameBg1-
>getPosition().y));

 CCPoint bg2pos = gameBg2->getPosition();
 gameBg2->setPosition(ccp((bg2pos.x - speed), bg2pos.y));

 if(gameBg2->getPosition().x < - winSize.width/2)
 gameBg2->setPosition(ccp(winSize.width + winSize.
width/2,gameBg2->getPosition().y));

}

Next in the update function, we set the position of the game1 sprite by subtracting
the x position from the speed at which we want the game1 sprite to move and keep
the y position of the image at the same height as it was set earlier.

We then check whether the image position is inside the bounds of the screen. If it is
beyond the bounds of the screen on the left, we place it at the right of the screen so
that it can start scrolling back to the left again.

For the second sprite, similar to how we did for the first sprite, we follow the same
steps of getting the position, updating the position by the same amount as the first
image, and checking whether the image is inside the bounds of the screen or is set at
the extreme right position of the screen.

This way, we will achieve the scrolling effect in our game. Next, we will add all
the different images at different heights and give them different speeds at which to
move by.

HUD, Parallax Background, and the Pause Button

[118]

Next, similar to how we have been creating new layers in Cocos2d-x, we will create
a new layer class named ScrollingBgLayer, which will hold different images and
will also be responsible for scrolling all the images.

So, we create two new files named ScrollingBgLayer.h and
ScrolliongBgLayer.cpp.

In the ScrollingBgLayer.h file, add the following:

#ifndef __wp8Game__ScrollingBgLayer__
#define __wp8Game__ScrollingBgLayer__

#include <iostream>
#include "ScrollingBg.h"

class ScrollingBgLayer: public CCLayer
{

public:

 ScrollingBgLayer(float speed);
 ~ScrollingBgLayer();

 ScrollingBg* hills;
 ScrollingBg* treesNbush;
 ScrollingBg* ground;
 ScrollingBg* grass;

 void update();

};

#endif

Here on the top, we add the ScrollingBg.h file so that we can make use of the
class here.

In this file, we inherit from the CCLayer class. In the constructor, we take in a float
variable named speed so that we can multiply this with whatever fraction number to
get the desired speed for the particular ScrollingBg layer.

We then create four variables named hills, treesNbush, ground, and grass of
the ScrollingBg type for each of the different files that we will be using to scroll
the image.

Chapter 5

[119]

We also create an update function that will be used to update each of the
ScrollingBg items.

In the ScrollingBgLayer.cpp file, add the following code to the file:

#include "ScrollingBgLayer.h"

ScrollingBgLayer::ScrollingBgLayer(float speed)
{

 CCSize visibleSize = CCDirector::sharedDirector()-
>getVisibleSize();

 CCSprite* bg = CCSprite::create("bookGame_BG.png");
 bg->setPosition(ccp(visibleSize.width* 0.5,visibleSize.height *
0.5));
 this->addChild(bg, -1);

 hills = ScrollingBg::create("bookGame_hills.png", speed * 0.3,
142);
 this->addChild(hills);

 treesNbush = ScrollingBg::create("bookGame_treesNbush.png", speed
* 0.5, 136);
 this->addChild(treesNbush);

 ground = ScrollingBg::create("bookGame_ground.png", speed * 0.8,
0);
 this->addChild(ground);

 grass = ScrollingBg::create("bookGame_grass.png", speed, 0);
 this->addChild(grass);
}

ScrollingBgLayer::~ScrollingBgLayer(){}

First, we cut the bg sprite, which we created in HelloWorldScene.h, and paste it here,
as it is better to keep all the items pertaining to the background in a single layer.

Then, we first create the hills and give them the file they should use. The speed is
then multiplied by a very small amount, 0.3 in this case, so that the hills appear to
move slowly. Finally, we give it the height, which is calculated from the bottom of
the screen, at which it should be placed.

HUD, Parallax Background, and the Pause Button

[120]

We follow the same procedure for the other items.

In the case of treesNbush, we multiply the speed by 0.5 so that they move faster,
but also ensure that it doesn't move too fast. We then place it at 136 pixels above the
bottom of the screen.

For the ground, the speed is multiplied by a much higher fraction, 0.8, as it needs
to move much faster than the other two layers. Keep the height as 0, as the images
touch the bottom of the screen and as we also have a grass item that has alpha and it
would look funny if we placed it above the grass.

Finally, we add the grass item. In this case, we don't multiply the speed with any
fraction amount, as it would be nearest to the screen if you were looking straight
at it and the grass should move at the fastest speed. We also place it at the bottom
of the screen.

Next, we add the update function and call the update function of all the items we
created so that individual items are updated accordingly:

void ScrollingBgLayer::update()
{
 hills->update();
 treesNbush->update();
 ground->update();
 grass->update();
}

Creating the parallax scrolling layer
Next, all we have to do is include the ScrollingBgLayer class
in HelloWorldScene.h.

In HelloWorldScene.h, add the ScrollingBg.h header file:

#include "ScrollingBgLayer.h"

Create a new variable of the ScrollingBgLayer type named scrollingBgLayer:

ScrollingBgLayer* scrollingBgLayer;

Next, in the HelloWorldScene.cpp file, initialize the variable in the init() function:

 scrollingBgLayer = new ScrollingBgLayer(3.0);
 this->addChild(scrollingBgLayer);

Chapter 5

[121]

Here, we give 3.0 as the base speed. The respective speeds of the different objects
will be based on this speed.

Next, call the update function of ScrollingBgLayer in the HelloWorldScenes
update function:

scrollingBgLayer->update();

Now if you build and run the project, you will see the background layer scrolling
from right to left giving the feeling of motion to the scene.

This is how a scrolling background, also known as parallax layer, can be added to
make the scene a little more dynamic than just static images.

However, the characters still look very lifeless. They look like robots. What do you
do to make them come alive? Well, the answer to that question is in the next chapter,
where we look at a different tool to animate the characters in the scene.

Summary
In this chapter, we looked at the difference between the TrueType and bitmap fonts.
Also, we saw different free tools and a professional tool called GlyphDesigner
available to generate bitmap fonts. We then moved on to creating the HUD layer in
which we added the score label, which was previously in the HelloWorldScene file,
and this helped us to clean the code and make the layers a bit more organized.

The pause button was also added to the HUDLayer and successfully implemented,
where if you pressed the pause button, the game would be paused and once the
resume button is clicked, the game resumes from where it was left.

Finally, the scrolling background was also added, which made the game come to life
by creating each image separately and moving at different speeds.

In the next chapter, we will look at character animation basics and some tools that
are used in the industry to create animations and implement these tools in the game.

Animations
In the last chapter, we saw how to bring the scene to life by adding a scrolling
background. In this chapter, we will learn different tools that can be used to animate
the character. Then, using these animations, we will create a simple state machine
that will automatically check whether the hero is falling or is being boosted up into
the air, and depending on the state, the character will be animated accordingly.

We will cover the following in this chapter:

•	 Animation basics
•	 TexturePacker
•	 Creating spritesheet for the player
•	 Coding the player animation
•	 Creating and coding the enemy animation
•	 Creating the skeletal animation
•	 Coding the player walk cycle

Animation basics
First of all, let's discuss what animation is. An animation is made up of different
images that are played in a certain order and at a certain speed, for example, movies
that run images at 30 fps or 24 fps, depending on which format it is in, NTSC or PAL.
When you pause a movie, you are actually seeing an individual image of that movie,
and if you play the movie in slow motion, you will see the frames or images that
make up the full movie.

In games while making animations, we will do the same thing: adding frames and
running them at a certain speed. We will control the images to play in a particular
sequence and interval by code.

Animations

[124]

For an animation to be "smooth", you should have at least 24 images or frames being
played in a second, which is known as fps. Each of the images in the animation is
called a frame.

Let's take the example of a simple walk cycle. Each walk cycle should be of 24
frames. You might say that it is a lot of work, and for sure it is, but the good news
is that these 24 frames can be broken down into keyframes, which are important
images that give the illusion of the character walking. The more frames you add
between these keyframes, the smoother the animation will be. The keyframes for
a walk cycle are Contact, Down, Pass, and Up positions.

For mobile games, as we would like to get away with as minimal work as possible,
instead of having all the 24 frames, some games use just the 4 keyframes to create a
walk animation and then speed up the animation so that player is not able to see the
missing frames. So overall, if you are making a walk cycle for your character, you
will create eight images or four frames for each side. For a stylized walk cycle, you
can even get away with a lesser number of frames.

For the animation in the game, we will create images that we will cycle through
to create two sets of animation: an idle animation, which will be played when the
player is moving down, and a boost animation, which will get played when the
player is boosted up into the air.

Creating animation in games is done using two methods. The most popular form of
animation is called spritesheet animation, and the other is called skeletal animation.

Spritesheet animation
Spritesheet animation is keeping all the frames of the animation in a single file
accompanied by a data file that will have the name and location of each of the
frames. This is very similar to the BitmapFont we used in the previous chapter.

The following is the spritesheet we will be using in the game. For the boost and idle
animations, each of the frames for the corresponding animation will be stored in an
array and made to loop at a particular predefined speed.

Chapter 6

[125]

The top four images are the frames for the boost animation. Whenever the player
taps on the screen, the animation will cycle through these four images appearing
as if the player is boosted up because of the jetpack.

The bottom four images are for the idle animation when the player is dropping
down due to gravity. In this animation, the character will look as if she is blinking
and the flames from the jetpack are reduced and made to look as if they are swaying
in the wind.

Skeletal animation
Skeletal animation is relatively new, and is used in games such as Rayman Origins
that have loads and loads of animations. This is a more powerful way of making
animations for 2D games, because it gives a lot of flexibility to the developer to create
animations that are fast to produce and test.

In the case of spritesheet animations, if you had to change a single frame of
the animation, the whole spritesheet would have to be recreated, causing delay;
imagine having to rework 3000 frames of animations in your game.

If each frame was hand painted, it would take a lot of time to produce the individual
images, causing delay in production time, not to mention the effort and time in
redrawing images.

Animations

[126]

The other problem is device memory. If you are making a game for the PC, it would
be fine, but in the case of mobiles where memory is limited, spritesheet animation is
not a viable option unless cuts are made to the design of the game.

So, how does skeletal animation work? In the case of skeletal animation, each item
to be animated is stored in a separate spritesheet along with the data file for the
locations of the individual images for each body part and object to be animated, and
another data file is generated that positions and rotates the individual items for each
of the frames of the animation. To make this clearer, look at the spritesheet for the
same character created with skeletal animation:

Here, each part of the body and object to be animated is a separate image, unlike the
method used in spritesheet animation where, for each frame of animation, the whole
character is redrawn.

In the next section, we will see how we can create animations using both the methods.

TexturePacker
To create a spritesheet animation, you will have to initially create individual frames
in Photoshop, Illustrator, GIMP or any other image editing software. I have already
made it and have each of the images for the individual frames ready.

Next, you will have to use a software to create spritesheets from images.
TexturePacker is a very popular software that is used by industry professionals to
create spritesheets. You can download it from https://www.codeandweb.com/.
These are the same guys who made PhysicsEditor, which we used to make shapes
for Box2D.

https://www.codeandweb.com/

Chapter 6

[127]

You can use the trial version of this software. While downloading, choose the
version that is compatible with your operating system. Fortunately, TexturePacker is
available for all the major operating systems, including Linux. Refer to the following
screenshot to check out the steps to use TexturePacker:

Animations

[128]

Once you have downloaded TexturePacker, you have three options: you can click to
try the full version for a week, or you can purchase the license, or click on the essential
version to use in the trial version. In the trial version, some of the professional features
are disabled, so I recommend trying the professional features for a week. Once you
click the option, you should see the following interface:

Texture packer has three panels; let's start from the right. The right-hand side panel
will display the names of all the images that you select to create the spritesheet. The
center panel is a preview window that shows how the images are packed. The left-
hand side panel gives you options to store the packed texture and data file to be
published to and decide the maximum size of the packed image. The Layout section
gives a lot of flexibility to set up the individual images in TexturePacker, and then
you have the advanced section.

Let's look at some of the key items on the panel on the left.

Chapter 6

[129]

The display section
The display section consists of the following options:

•	 Data Format: As we saw earlier, each exported file creates a spritesheet that
has a collection of images and a data file that keeps track of the positions on the
spritesheet. The data format usually changes depending upon the framework
or engine. In TexturePacker, you can select the framework that you are using
to develop the game, and TexturePacker will create a data file format that is
compatible with the framework. If you look at the drop-down menu, you can
see a lot of popular frameworks and engines in the list, such as 2DToolkit,
OGRE, Cocos2d, Corona SDK, LibGDX, Moai, Sparrow/Starling, SpriteKit,
and Unity. You can also create a regular JSON file too if you wish.

Java Script Object Notification (JSON) is similar
to an XML file that is used to store and retrieve
data. It is a collection of names and value pairs
used for data interchanging.

•	 Data file: This is the location where you want the exported file to be placed.
•	 Texture format: Usually, this is set to .png, but you can select the one that is

most convenient. Apart from PNG, you also have PVR, which is used so that
people cannot view the image readily and also provides image compression.

•	 Png OPT file: This is used to set the quality of PNG images.
•	 Image format: This sets the RGB format to be used; usually, you would want

this to be set at the default value.
•	 AutoSD: If you are going to create images for different resolutions, this option

allows you to create resources depending on the different resolutions for which
you are developing the game, without the need for going into the graphics
software, shrinking the images and packing them again for all the resolutions.

•	 Content protection: This protects the image and data file with an encryption
key so that people can't steal spritesheets from the game file.

Animations

[130]

The Geometry section
The Geometry section consists of the following options:

•	 Max size: You can specify the maximum width and height of the spritesheet
depending upon the framework. Usually, all frameworks allow up to
4092 x 4092, but it mostly depends on the device.

•	 Fixed size: Apparently, if you want a fixed size, you will go with this option.
•	 Size constraint: Some frameworks prefer the spritesheets to be in the power of

2 (POT), for example, 32x32, 64x64, 256x256, and so on. If this is the case, you
need to select the size accordingly. For Cocos2d, you can choose any size.

•	 Scale: This is used to scale up or scale down the image.

The Layout section
The Layout section consists of the following options:

•	 Algorithm: This is the algorithm that will be used to make sure that the
images you select to create the spritesheet are packed in the most efficient
way. If you are using the pro version, choose MaxRects, but if you are using
the essential version, you will have to choose Basic.

•	 Border Padding / Shape Padding: Border padding packs the gap between
the border of the spritesheet and the image that it is surrounding. Shape
padding is the padding between the individual images of the spritesheets. If
you find that the images are getting overlapped while playing the animation
in the game, you might want to increase the values to avoid overlapping.

•	 Trim: This removes the extra alpha that is surrounding the image, which
would unnecessarily increase the image size of the spritesheet.

Advanced features
The following are some miscellaneous options in TexturePacker:

•	 Texture path: This appends the path of the texture file at the beginning of
the texture name

•	 Clean transparent pixels: This sets the transparent pixels color to #000
•	 Trim sprite names: This will remove the extension from the names of the

sprites (.png and .jpg), so while calling for the name of the frame, you will
not have to use extensions

Chapter 6

[131]

Creating a spritesheet for the player
Now that we understand the different items in the TextureSettings panel of
TexturePacker, let's create our spritesheet for the player animation from individual
frames provided in the Resources folder of the chapter:

1.	 Open the folder in the system, and select all the images for the player that
contains the idle and boost frames. There will be four images for each of the
animations. Select all eight images and click-and-drag all the images to the
Sprites panel, which is the right-most panel of TexturePacker.

2.	 Once you have all the images on the Sprites panel, the preview panel at the
center will show a preview of the spritesheet that will be created:

3.	 Now on the TextureSettings panel, for the Data format option, select
cocos2d. Then, in the Data file option, click on the folder icon on the right
and select the location where you would like to place the data file, and give
the name as player_anim. Once selected, you will see that the Texture file
location also auto populates with the same location. The data file will have a
format of .plist, and the texture file will have an extension of .png.

Animations

[132]

The .plist format creates data in a markup language similar to XML.
Although it is more common on Mac, you can use this data type independent
of the platform you use while developing the game using Cocos2d-x.

4.	 Keep the rest of the settings the same.
5.	 Save the file by clicking on the save icon on the top to a location where the

data and spritesheet files are saved. This way, you can access them easily the
next time if you want to make the same modifications to the spritesheet.

6.	 Now, click on the Publish button and you will see two files, player_anim.
plist and player_anim.png, in the location you specified in the Data file
and Location file options.

7.	 Copy and paste these two files in the Resources folder of the project so that
we can use these files to create the player states.

Coding the player animation
Now that we have the files ready to animate, let's first create a simple animation
loop. Later, we will see how to go from one animation to another depending upon
the player state.

First, let's just play the idle animation.

In the HelloWorldScene.cpp file, right after you added the player to the display list,
type the following code:

 //player animation
 CCSpriteBatchNode* spritebatch = CCSpriteBatchNode::create("play
er_anim.png");

 CCSpriteFrameCache* cache = CCSpriteFrameCache::sharedSpriteFrame
Cache();
 cache->addSpriteFramesWithFile("player_anim.plist");

 hero->createWithSpriteFrameName("player_idle_1.png");
 hero->addChild(spritebatch);

 //idle animation
 CCArray* animFrames = CCArray::createWithCapacity(4);
 char str1[100] = {0};
 for(int i = 1; i <= 4; i++)
 {
 sprintf(str1, "player_idle_%d.png", i);
 CCSpriteFrame* frame = cache->spriteFrameByName(str1);
 animFrames->addObject(frame);

Chapter 6

[133]

 }

 CCAnimation* idleanimation = CCAnimation::createWithSpriteFrames(a
nimFrames, 0.25f);
 hero->runAction(CCRepeatForever::create(CCAnimate::create(idlea
nimation)));

While creating animations, you have to create a SpriteBatchNode and give it the
name of the spritesheet that has all the images that need to be animated; in our case,
it is the player_anim.png file.

Next, we create a new variable of the SpriteFrameCache type named cache, and
give it the name of the data file that has all the information of the location and names
of the individual images in the spritesheet. If you recall, we called it player_anim.
plist, so give this name. Because cache has information about the spritesheet, it
goes through the list and stores all the images in the memory all at once.

All this time, when you wanted an image to be loaded, you would put create, and
give the name of the file. How do you do this in the case of spritesheets? The cache
variable stores the data that is there in the .plist file in memory. So, if you want to
retrieve an image from the spritesheet, you can get the image by asking the cache to
get it from memory.

So, now we say CreateWithFrameName on cache instead of just create and give
it the name of the image of the first frame of the animation, which in this case is
player_idle_1.png, and it will retrieve the first frame from the spritesheet for the
idle animation.

Then, we add the spritesheet to hero.

In the next couple of lines, we store the rest of the idle animation frames that need
to be played in an array so that we can loop it to create the animation. So for this, we
create a new CCArray named animFrames and store the frames one through four in it
that are of the CCSpriteFrame type.

Now to create the animation, we create a variable of the CCAnimation type named
idleanimation; create it with the animFrames array that has all the frames of the
animation, and give it a value of 0.25f, which is the speed at which the animation
will be played.

To actually play the animation, we have to create a new action that will cycle
through all the images in the array and play it at the speed at which we specified.
So, we ask the hero to run with an animation and create an action on the fly of the
CCRepeatForever type, which will repeat an animation of the Animate type over
and over again and give it the idleanimation variable we just created.

Animations

[134]

If you build and run the project now, you will see that the player is now animated,
and without making any change, the previous static image is now replaced with
the animation. The animation also follows the player just as the static image used to
follow. The player will look as if she is blinking and the flames in the jet pack will
look as if they are swaying in the wind.

This looks good, but what if we want a different animation to be played when
something else happens; for example, when we tap the boost, the jet pack should
spew out more flames to look as if there is an actual downward thrust.

For this, just as how we stored the animation for the idle animation, we will create
another set of animation for the boost animation as well. Also, to keep our code a bit
more organized, we will make some changes to HelloWorldScene.h.

In HelloWorldScene.h, we create two enums at the top of the class for the
animations and player states. Depending upon the state of the player, the
corresponding action will be triggered. The following code demonstrates this:

typedef enum ActionState
{
 kActionStateNone = 0,
 kActionStateIdle ,
 kActionStateBoost
};

typedef enum PlayerState
{
 kPlayerStateNone = 0,
 kPLayerStateIdle,
 kPlayerStateBoost
};

In the ActionState enum, we create three states: kActionStateNone is the default
action state, kActionStateIdle is for the idle action, and kActionStateBoost is for
when the boost animation is needed to be played.

Similar to the ActionState enum, we have the PlayerState enum. This is created
to check which state the player is in. kPlayerStateNone is the default player state,
kPlayerStateIdle is called when the player is idle (that is, when she is falling),
and kPlayerStateBoost is called when the player is boosted up.

Next, we create an instance of these two enums:

 ActionState mActionState;
 PlayerState mPlayerState;

Chapter 6

[135]

We also create two actions that we can use to store the animations so that we can call
upon them later to animate:

 CCAction* mIdleAction;
 CCAction* mBoostAction;

We will have to store both the animations in the CCActions instead of just playing
the actions right away. For this, instead of telling the hero to run the animation, we
save the animation action in mIdleAction. So, remove the line of code from the
HelloWorldScene.cpp file:

hero->runAction(CCRepeatForever::create(CCAnimate::create(idleanima
tion)));

Replace it with the following lines:

 mIdleAction = CCRepeatForever::create(CCAnimate::create(idleanima
tion)) ;
 mIdleAction->retain();

We will have to retain mIdleAction by calling the retain() function so that it
doesn't get released and deleted from memory. If you don't perform retain(),
the next time you run mIdleAction on the player, the action will be deleted from
memory and it will give an error, as the code will not able to access it as it will no
longer exist.

Next, just as we stored the idle animation, we will store the boost animation:

 //boost animation
 animFrames->removeAllObjects();
 char str2[100] = {0};
 for(int i = 1; i <= 4; i++)
 {
 sprintf(str2, "player_boost_%d.png", i);
 CCSpriteFrame* frame = cache->spriteFrameByName(str2);
 animFrames->addObject(frame);
 }

 CCAnimation* boostanimation = CCAnimation::createWithSpriteFrames(
animFrames, 0.25f);
 hero->runAction(CCRepeatForever::create(CCAnimate::create(boosta
nimation)));

 mBoostAction = CCRepeatForever::create(CCAnimate::create(boostani
mation)) ;
 mBoostAction->retain();

Animations

[136]

Here, as we did for the idle animations, we add frames for the boost animations
and add them into the mBoostAction variable. Notice that we first empty the
animFrames array before adding the frames for the boost animation.

Also, you should only cycle through as many times as the number of frames your
boost animation has. If you have six frames, i should be from 1 to 6 instead of 4.
Another thing to be cautious of is naming. Here, the names of the frames that are
being added are player_boost_1.png, player_boost_2.png, player_boost_3.
png, and player_boost_4.png. So, with the loop, numbers are being replaced with
the i variable. Make sure that the names of these frames are the names that you
are passing in str3. If they are different, the files won't be loaded, and you will get
errors or unexpected results. For example, if you store the player_idle_%d.png
frames again by mistake into the animFrames and play the mBoostAction animation,
you will be calling the boost animation, but still the idle animation frames will get
played, as this is what is stored.

We have stored the animations; now let's see how to play these animations in the
game. For this, in HelloWorldScene.h, we add three new functions:

 void idleAnim();
 void boostAnim();
 void AnimationStates();

The first two functions will play the desired animation by first checking whether the
animation is already playing or not, and the animation states will have the switch()
function, which will switch between the calling of the animation, depending on the
state of the player.

We define the function as explained in the following code in HelloWorldScene.cpp.
First, let's look at the two functions that will play the animations:

void HelloWorld::idleAnim()
{
 if (mActionState != kActionStateIdle)
 {
 hero->stopAllActions();
 hero->runAction(mIdleAction);
 mActionState = kActionStateIdle;
 }
}

void HelloWorld::boostAnim()

Chapter 6

[137]

{
 if (mActionState != kActionStateBoost)
 {
 hero->stopAllActions();
 hero->runAction(mBoostAction);
 mActionState = kActionStateBoost;
 }
}

In both the animations, we first check whether the animation is already playing. If
it is not playing, we stop all the animations that are currently playing by calling the
stopAllActions() function. Then, we tell the hero to run the desired animation and
set the current state to the new animation state so that the same animation doesn't
get played over and over:

void HelloWorld::AnimationStates()
{
 CCLOG("action state");

 switch(mPlayerState)
 {
 case kPLayerStateIdle:
 this->idleAnim(); break;
 case kPlayerStateBoost:
 this->boostAnim(); break;
 default: break;
 }
}

Now we define the AnimationStates() function, depending upon the player
state defined by the mPlayerState instance. We will check whether the current
player state is kPlayerStateIdle. Then, we call the idleAnim() function, and
then perform a break operation. If the player state is kPlayerStateBoost, we call
the boostAnim() function and then perform break. If the player is in neither of the
states, the break operation is performed.

We will now make changes in the update function that will trigger the different
player states.

Animations

[138]

In the update function, after checking whether the game is over, call the
AnimationStates() function:

this->AnimationStates();

Rather than checking the jumpTimer variable, we modify the code to change the
player states. If the timer is greater than 0, we set the state to kPlayerStateBoost,
because if the timer is greater than 0, it means that the player has tapped to boost the
character up and it will continue to boost the character till the timer is set to 0 again.
If the timer is set to 0, we set it to the player's kPlayerStateIdle state so that the
idle animation can be played:

 if(jumpTimer>0)
 {
 CCLog("boost");

 mPlayerState = kPlayerStateBoost;
 jumpTimer--;
 CCPoint p = hero->getPosition();
 CCPoint mP = ccpAdd(p,ccp(0,7));
 hero->setPosition(mP);
 }
 else
 {
 CCLog("idle");

 mPlayerState = kPLayerStateIdle;
 jumpTimer = 0;
 CCPoint p = hero->getPosition();
 CCPoint pM = ccpAdd(p,gravity);
 hero->setPosition(pM);
 }

If you build and run the game now, you will see that depending upon the state the
player is in, the appropriate animation will be played without telling the player
which animation should be playing every time she goes from one state to the other.

The screenshot shows the character while the idle animation is played:

Chapter 6

[139]

The following is a screenshot of the output when the boost animation is played:

Animations

[140]

What we did here is a very simple example of Finite State Machines (FSM). This
method is used in almost all major games to control the animation of the player or
any other character. Depending upon which state the character is in, you can make it
perform different behaviors or play different animations. There are a lot of examples
on the web that show this technique in action. I really would encourage you to read
more about FSM on the web.

A good reference to start understanding how state machines work in games
is http://www.gamedev.net/page/resources/_/technical/general-
programming/finite-state-machines-and-regular-expressions-r3176.
Although it is not written for Cocos2d-x, with your basic understanding, you can try
to implement it in other games.

Creating and coding enemy animation
Now, let's create a similar spritesheet and data file for the enemy also. All the
required files for the enemy frames are provided in the chapter's Resources folder.
If for some reason you are not able to create the spritesheet, the spritesheet and data
file that I have used in the book are also provided.

So, once you create the spritesheet for the enemy, it should look something like the
following screenshot. Don't worry if the images are shown in the wrong sequence,
just make sure that the files are numbered correctly from 1 to 4 and it is in the
sequence in which the animations needs to be played.

Now, place the enemy_anim.png spritesheet and data file in the Resources folder
in the directory, and add the following lines of code in the Enemy.cpp file to animate
the enemy:

//enemy animation
CCSpriteBatchNode* spritebatch = CCSpriteBatchNode::create("enemy_
anim.png");

CCSpriteFrameCache* cache = CCSpriteFrameCache::sharedSpriteFrameCac
he();

http://www.gamedev.net/page/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176
http://www.gamedev.net/page/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176

Chapter 6

[141]

 cache->addSpriteFramesWithFile("enemy_anim.plist");

 this->createWithSpriteFrameName("enemy_idle_1.png");
 this->addChild(spritebatch);

 //idle animation
 CCArray* animFrames = CCArray::createWithCapacity(4);
 char str1[100] = {0};
 for(int i = 1; i <= 4; i++)
 {
 sprintf(str1, "enemy_idle_%d.png", i);
 CCSpriteFrame* frame = cache->spriteFrameByName(str1);
 animFrames->addObject(frame);
 }

 CCAnimation* idleanimation = CCAnimation::createWithSpriteFrames(a
nimFrames, 0.25f);
 this->runAction (CCRepeatForever::create(CCAnimate::create(idlean
imation))) ;

This is very similar to the code for the player. The only difference is that for the
enemy, instead of calling the function on the hero, we call it to the same class. So,
now if you build and run the game, you should see the enemy being animated.

The following is the screenshot from the updated code. You can now see the flames
from the booster engine of the enemy. Sadly, she doesn't have a boost animation but
his feet swing in the air.

Animations

[142]

Now that we have mastered the spritesheet animation technique, let's see how to
create a simple animation using the skeletal animation technique.

Creating the skeletal animation
Using this technique, we will create a very simple player walk cycle. For this,
there is a software called Spine by Esoteric Software, which is a very widely used
professional software to create skeletal animations for 2D games. The software can
be downloaded from the company's website at http://esotericsoftware.com/
spine-purchase:

http://esotericsoftware.com/spine-purchase
http://esotericsoftware.com/spine-purchase

Chapter 6

[143]

There are three versions of the software available: the trial, essential, and
professional versions. Although majority of the features of the professional version
are available in the essential version, it doesn't have ghosting, meshes, free-form
deformation, skinning, and IK pinning, which is in beta stage. The inclusion of these
features does speed up the animation process and certainly takes out a lot of manual
work for the animator or illustrator.

To learn more about these features, visit the website and hover the mouse over these
features to have a better understanding of what they do.

You can follow along by downloading the trial version, which can be done by
clicking the Download trial link on the website.

Spine is available for all platforms including Windows, Mac, and Linux. So
download it for the OS of your choice. On Mac, after downloading and running the
software, it will ask to install X11, or you can download and install it from http://
xquartz.macosforge.org/landing/. After downloading and installing the plugin,
you can open Spine. Once the software is up and running, you should see the
following window:

Now, create a new project by clicking on the spine icon on the top left. As we can see
in the screenshot, we are now in the SETUP mode where we set up the character.

http://xquartz.macosforge.org/landing/
http://xquartz.macosforge.org/landing/

Animations

[144]

On the Tree panel on the right-hand side, in the Hierarchy pane, select the Images
folder. After selecting the folder, you will be able to select the path where the
individual files are located for the player. Navigate to the player_skeletal_anim
folder where all the images are present. Once selected, you will see the panel
populate with the images that are present in the folder, namely the following:

•	 bookGame_player_Lleg

•	 bookGame_player_Rleg

•	 bookGame_player_bazooka

•	 bookGame_player_body

•	 bookGame_player_hand

•	 bookGame_player_head

Now drag-and-drop all the files from the Images folder onto the scene. Don't
worry if the images are not in the right order. In the Draw Order dropdown in the
Hierarchy panel, you can move the different items around by drag-and-drop to
make them draw in the order that you want them to be displayed. Once reordered,
move the individual images on the screen to the appropriate positions:

You can move around the images by clicking on the translate button on the bottom
of the screen. If you hover over the buttons, you can see the names of the buttons.

We will now start creating the bones that we will use to animate the character.

Chapter 6

[145]

In the panel on the bottom of the Tools section, click on the Create button. You
should now see the cursor change to the bone creation icon. Before you create a bone,
you have to always select the bone that will be the parent. In this case, we select the
root bone that is in the center of the character.

Click on it and drag downwards and hold the Shift key at the same time.
Click-and-drag downwards up to the end of the blue dress of the character; make
sure that the blue dress is highlighted. Now release the mouse button. The end point
of this bone will be used as the hip joint from where the leg bones will be created for
the character.

Now select the end of the newly created bone, which you made in the last step, and
click-and-drag downwards again holding Shift at the same time to make a bone that
goes all the way to the end of the leg. With the leg still getting highlighted, release
the mouse button.

To create the bone for the other leg, create a new bone again starting from end of
the first bone and the hip joint, and while the other leg is selected, release the mouse
button to create a bone for the leg.

Now, we will create a bone for the hand. Select the root node, the node in the middle
of the character while holding Shift again, and draw a bone to the hand while the
hand is highlighted.

Create a bone for the head by again selecting the root node selected earlier. Draw
a bone from the root node to the head while holding Shift and release the mouse
button once you are near the ear of the character and the head is highlighted.

You will notice that we never created a bone for the bazooka. For the bazooka,
we will make the hand as the parent bone so that when the hand gets rotated, the
bazooka also rotates along. Click on the bazooka node on the Hierarchy panel (not
the image) and drag it to the hand node in the skeleton list.

You can rotate each of the bones to check whether it is rotating properly. If not, you
can move either the bones or images around by locking either one of them in its
place so that you can move or rotate the other freely by clicking either the bones or
the images button in the compensate button at the bottom of the screen.

Animations

[146]

The following is the screenshot that shows my setup. You can use it to follow and
create the bones to get a more satisfying animation.

To animate the character, click on the SETUP button on the top and the layout will
change to ANIMATE. You will see that a new timeline has appeared at the bottom.
Click on the Animations tab in Hierarchy and rename the animation name from
animation to runCycle by double-clicking on it.

We will use the timeline to animate the character. Click the Dopesheet icon at the
bottom. This will show all the keyframes that we have made for the animation.
Because we have not created any, the dopesheet is empty.

To create our first keyframe, we will click on the legs and rotate both the bones so
that it reflects the contact pose of the walk cycle. Now to set a keyframe, click on
the orange-colored key icon next to Rotate in the Transform panel at the bottom of
the screen. Click on the translate key, as we will be changing the translation as well
later. Once you click on it, the dopesheet will show the bones that you just rotated,
and also show what changes you made to the bone. Here, we rotated the bone, so
you will see Rotation under the bones, and as we clicked on the translate key, it will
show the Translate also.

Chapter 6

[147]

Now, frame 24 is the same as frame 0. So, to create the keyframe at frame 24, drag the
timeline scrubber to frame 24 and click on the rotate and translate keys again.

To set the keyframe at the middle where the contact pose happens but with
opposite legs, rotate the legs to where the opposite leg was and select the keys to
create a keyframe.

For frames 6 and 18, we will keep the walk cycle very simple, so just raise the
character above by selecting the root node, move it up in the y direction and click
the orange key next to the translate button in the Transform panel at the bottom.
Remember that you have to click it once in frame 6 and then move the timeline
scrubber to frame 18, move the character up again, and click on the key again to
create keyframes for both frames 6 and 18.

Now the dopesheet should look as follow:

Now to play the animation in a loop, click on the Repeat Animation button to the
right of the Play button and then on the Play button.

You will see the simple walk animation we created for the character.

Next, we will export the data required to create the animation in Cocos2d-x.

Animations

[148]

First, we will export the data for the animation. Click on the Spine button on top and
select Export. The following window should pop up. Select JSON and choose the
directory in which you would want to save the file, and click on Export:

That is not all; we have to create a spritesheet and data file just as we created one in
texture packer. There is an inbuilt tool in Spine to create a packed spritesheet.

Again, click on the Spine icon, and this time select Texture Packer. Here, in the input
directory, select the Images folder from where we imported all the images initially.
For the output directory, select the location to where the PNG and data files should
be saved.

If you click on the settings button, you will see that it looks very similar to what we
saw in TexturePacker. Keep the default values as they are.

Click on Pack and give the name as player. This will create the .png and .atlas
files, which are the spritesheet and data file, respectively:

Chapter 6

[149]

You have three files instead of the two in TexturePacker. There are two data files and
an image file. While exporting the JSON file, if you didn't give it a name, you can
rename the file manually to player.json just for consistency.

Drag the player.atlas, player.json, and player.png files into the project folder.

Finally, we come to the fun part where we actually use the data files to animate
the character.

For testing, we will add the animations to the HelloWorldScene.cpp file and check
the result. Later, when we add the main menu, we will move it there so that it shows
as soon as the game is launched.

Coding the player walk cycle
If you want to test the animations in the current project itself, add the following to
the HelloWorldScene.h file first:

#include <spine/spine-cocos2dx.h>

Include the spine header file and create a variable named skeletonNode of the
CCSkeletalAnimation type:

extension::CCSkeletonAnimation* skeletonNode;

Next, we initialize the skeletonNode variable in the HelloWorldScene.cpp file:

 skeletonNode = extension::CCSkeletonAnimation::createWithFile
("player.json", "player.atlas", 1.0f);
 skeletonNode->addAnimation("runCycle",true,0,0);
 skeletonNode->setPosition(ccp(visibleSize.width/2 , skeletonNode-
>getContentSize().height/2));
 addChild(skeletonNode);

Here, we give the two data files into the createWithFile() function of
CCSkeletonAnimation. Then, we initiate it with addAnimation and give it the
animation name we gave when we created the animation in Spine, which is
runCycle. We next set the position of the skeletonNode; we set it right above
the bottom of the screen. Next, we add the skeletonNode to the display list.

Animations

[150]

Now, if you build and run the project, you will see the player getting animated
forever in a loop at the bottom of the screen:

On the left, we have the animation we created using TexturePacker from
CodeAndWeb, and in the middle, we have the animation that was created using
Spine from Esoteric Software.

Both techniques have their set of advantages, and it also depends upon the type and
scale of the game that you are making. Depending on this, you can choose the tool
that is more tuned to your needs. If you have a smaller number of animations in your
game and if you have good artists, you could use regular spritesheet animations.
If you have a lot of animations or don't have good animators in your team, Spine
makes the animation process a lot less cumbersome.

Either way, both tools in professional hands can create very good animations that
will give life to the characters in the game and therefore give a lot of character to the
game itself.

Chapter 6

[151]

Summary
This chapter took a very brief look at animations and how to create an animated
character in the game using the two of the most popular animation techniques used
in games. We also looked at FSM and at how we can create a simple state machine
between two states and make the animation change according to the state of the
player at that moment.

For more on animation, you can refer to books such as Animator's Survival Kit,
Richard E. Williams, Faber and Cartoon Animation, Preston Blair, Walter Foster
Publishing. These two books are being referred to by animators all around the
world, as they have created and perfected the art of cartoon animation.

In the next chapter, we will look at how to make the game even more eye popping by
looking at different ways of creating particle effects and adding them to the game.

Particle Systems
In this chapter, we will look at Cocos2d-x's inbuilt particle system and the different
particles you can create with just a few lines of code. Later, we will look at how to
create a mock particle system of our own using a basic creation system. We will also
look at the software that can be used to create complex particle systems.

Using these different methods and techniques, we will create particles for the game.
These particles will be used to spawn particles when the player shoots, for a jet
particle effect while boosting the hero up, and for a small explosion particle effect
when the enemy is hit by a rocket.

You will learn the following in this chapter:

•	 What is a particle system?
•	 Cocos2d-x's inbuilt particle system
•	 Adding the gun muzzle particle system
•	 Particle designing
•	 Adding an explosion particle system
•	 Adding a particle for jetpack when the player moves up
•	 Creating your own particle system

Particle Systems

[154]

What is a particle system?
A particle system is a collection of sprites or particles. Each particle system has an
emitter from where the particles will be created. A particle system also determines
the behavior of the particles in the system. Hence, it can be said that a particle is the
smallest entity that creates the particle system.

A very easy example of a particle system is Rain. Rain is a particle system, and each
raindrop is a particle and a cloud has a lot of emitters from where the droplets or
particles are created.

We create a particle system instead of just creating individual particles, as with a
particle system, you can create different kinds of effects using the same particle.
For example, we saw Rain, which is a particle system; what if we wanted another
effect such as water coming out of the faucet. Here, the particle is the same, a water
droplet, but a rain droplet behaves differently. In the case of water falling from
the faucet, each drop falls with a force and is created with a single emitter—the
faucet outlet. So, we can change the particle system to have one emitter and give
the particles an initial downward force; this way, we will have the same particle
behaving differently instead of coding the system from scratch again.

In Cocos2d-x, each particle is an image that is controlled by a particle system that has
one or more emitters. An emitter controls the spawning, movement, and destruction
of the particle system.

To render the particle system, CCParticleSystemQuad is created that has the particle
system of any size and allows for the rotation and scaling of the entire particle system.

Cocos2d-x's inbuilt particle system
Cocos2d-x is included with some popular inbuilt particle systems that can be used
right away without the need to design your own particle system; these include Fire,
Fireworks, Sun, Galaxy, Flower, Meteor, Spiral, Explosion, Smoke, Snow, and Rain.

The way to create any of these particle systems is shown as follows:

CCParticleSystemQuad* m_emitter = new CCParticleSystemQuad();
m_emitter = CCParticleExplosion::create();
this->addChild(m_emitter);

Chapter 7

[155]

You first create an emitter; here, we call it m_emitter of type CCParticleSystemQuad.
Then, we assign the type of particle system that we would like to create. Here, we
use CCParticleExplosion to create an explosion effect, and finally, we add it to the
display list.

Adding the gun muzzle particle system
You can add the previous code in the fireRocket function in the HelloWorldScene.
cpp file and then build and run it. You will see the particles getting generated at
the origin, but the explosion is a bit huge and looks very colorful. Let's make some
changes so that it looks like a muzzle smoke.

Between the create and addchild functions, add the following:

 m_emitter->setPosition(ccpAdd(hero->getPosition(), ccp(hero-
>getContentSize().width/2 ,0)));

 m_emitter->setStartColor(ccc4f(1.0, 1.0, 1.0, 1.0));
 m_emitter->setEndColor(ccc4f(0.0, 0.0, 0.0, 0.0));

 m_emitter->setTotalParticles(10);
 m_emitter->setLife(0.25);
 m_emitter->setSpeed(2.0);
 m_emitter->setSpeedVar(30.0);

We take the current position of the hero and add the width of the character to it so
that it gets created at the nozzle of the gun and not at the center of the player.

Then, we set the starting color of the particle to white. The setStartColor function
takes a value of CCColor4f; the shortcut to create it is ccc4f. It takes float values
from 0 to 1, which is 0-255 converted to float. rgba stands for red, green, blue, and
alpha. Just as how we set the start color, we will also set the end color of the particle.
We set the end color to black and also set the alpha to zero so that each particle
transitions from white to black and also fades away in the end.

Particle Systems

[156]

We can also set the number of particles; we've currently set the total number of
particles to 10. Set the life of each particle to 0.25 so that it fades away 250 milliseconds
after creation. We also give it a speed of 2.0 and set the speed variance to 30.0 so that
each particle, when it is generated, has a unique value; otherwise, they will all have the
same speed and, instead of the smoke particle, it would look like a ring. Build and run
the game now, you will see a small puff of smoke when you shoot the rocket:

There are also modes that can be set for the emitter, such as gravity and radius.

If you want the particles to be affected by gravity, you can use the gravity mode as
shown in the following code snippet:

 //** gravity
 m_emitter->setEmitterMode(kCCParticleModeGravity);
 m_emitter->setGravity(ccp(0,90));

You can set kCCParticleModeGravity for the emitter and set the gravity to
whichever angle you want in both x and y directions. Here, I have set the y value
to 90 so that gravity acts upward and the smoke appears to be rising up.

If you want to see a radial effect on the particle, you can use the Radius mode,
as shown in the following code snippet:

 //** mode radius
 m_emitter->setEmitterMode(kCCParticleModeRadius);
 m_emitter->setStartRadius(0);

Chapter 7

[157]

 m_emitter->setStartRadiusVar(50);
 m_emitter->setRotatePerSecond(2);
 m_emitter->setRotatePerSecondVar(5);

Similar to the gravity mode, you can set the mode to Radius with
kCCParticleModeRadius. Here, we have set the start radius to 0, variance to 50,
and have added and set the rotation per second to 2 and its variance to 5.

If you now build and run, you will see the particle getting generated and
then collapsing.

There are a lot of settings that can be tinkered with in the Cocos2d-x particle system.
You can check out more about the particle systems and modes in the Cocos2d-x wiki
page at http://www.cocos2d-x.org/wiki/Particles.

To try different types of particle systems, you use the create function with any of
the following and modify the settings to get the desired effect you require:

•	 CCParticleFire

•	 CCParticleFireworks

•	 CCParticleSun

•	 CCParticleGalaxy

•	 CCParticleFlower

•	 CCParticleMeteor

•	 CCParticleSpiral

•	 CCParticleExplosion

•	 CCParticleSmoke

•	 CCParticleSnow

•	 CCParticleRain

Particle designing
Tweaking values and building each time to see if the correct effect is reached can be
very tedious, especially as there are so many variables to modify. Moreover, what if
you wanted to create a more complex particle system that has two or three particles
in it, such as an explosion that has fire, smoke, and sparks coming all at the same
time. How would you design such particle systems that have more than one particle
in them? Obviously, you can create three more emitters, check the timing for each,
and set the tinker with the preset Cocos2d-x particles system and achieve the effect,
but this would just take too much of your time and energy.

Particle Systems

[158]

For this purpose, particle designers can be used to make changes to the variables
because they provide a user-friendly GUI to change the values. They would either
provide sliders or input boxes, which can be used to modify values that you want to
get the desired result.

We will first look at Particle Designer—a Mac-only application that is used by
industry professionals to create awesome particle systems, and then, we will look
at Particle2dx—a website that you can use to make particle designing completely
OS independent.

Particle Designer
Particle Designer is a professional particle designer application only for the Mac.
You can download the trial version from http://71squared.com. We used their
other application, GlyphDesigner, while creating custom fonts. Particle Designer
is used by companies such as EA, Disney, and Zynga, to name a few.

After you have installed it, open Particle Designer. The following is the screenshot of
Particle Designer while I was creating the jetBoost particle system for the game:

Chapter 7

[159]

The panel on the left-hand side shows the different particle systems and emitters for
each system you create. The middle panel is the preview window that shows all the
systems and emitters in action. The panel on the right-hand side is what is used to
manipulate the different values to create the desired effect.

In the left-hand side, or on the Particle Systems panel, you can add as many particle
systems and emitters as you wish by clicking on the Add System and Add Emitter
buttons, respectively, at the bottom of the window. Each system can have more than
one emitter in it. So you can create an explosion particle with each system having
one emitter each for fire, smoke, and spark. You will be able to see how the final
effect looks like in the Preview window immediately and tweak it on the fly using
the sliders:

When you are satisfied with the effect, you can export the Plist by clicking on the
Export button at the bottom. The .plist extension is used for Cocos2d-x, so click the
gear to the right-hand side of the Export button to change the data type to .plist
and change the location to where you want the files to be saved. You can even embed
the image in the Plist by clicking the Ember button against the emitter. This way, you
will have all the required items to create the particle in the file itself; otherwise, you
would have to include the texture image and the Plist for each system separately.

Particle Systems

[160]

In the Preview panel, you can set the stage color by clicking on the Stage Color button
on the bottom. Also, you can set the desired layout for the Preview panel by clicking
on the Phone and Layout button in the bottom-right corner of the Preview panel.

Let's now look at the right-hand side panel; it has the following four tabs:

•	 Emitter Configuration
•	 Particle Configuration
•	 Color Settings
•	 Texture Settings

Some variables have a variance factor that will generate a random number and add
or subtract it with the base value.

Emitter Configuration
The following are the options under Emitter Configuration:

•	 Duration: This controls the duration of the particle system. You can give any
float value for the milliseconds for which the particle would be active, or you
can give it -1 to create the particle continuously.

•	 Source Position Variance X and Y: This increases or decreases the area of
the emitter by changing the variance values. If you want the particles to be
always generated from the same location, you can keep it at 0.

•	 Maximum Particles: This controls the maximum number of particles that
will be present on the screen at any given time.

•	 Emit Angle: This is the angle at which the particle gets created.
•	 Emit Angle Variance: This creates a random number and adds or subtracts

from the initial angle. Otherwise, all particles will be created at the same
base angle.

•	 Speed: This is the initial speed of the particle.
•	 Speed Variance: This creates a random number and adds or subtracts from

the Speed value to give a unique speed value to the newly created particle.
•	 X and Y Gravity: This controls the gravity in the x and y directions.
•	 Radial Acceleration: This controls the radial acceleration of each particle.
•	 Tangential Acceleration: This controls the tangential acceleration. This will

give the particle a spiral movement.

Chapter 7

[161]

Particle Configuration
The following are the options under Particle Configuration:

•	 Lifespan: This controls for how long each particle needs to be alive before
being removed. The difference between Duration and Lifespan is that
Duration is for the whole system, and Lifespan is just for a single particle.

•	 StartSize: This is the size of the particle at the start of its generation.
•	 EndSize: This is the size of the particle at the end of its lifespan.
•	 Start Rotation: This is the rotation angle of the particle at its creation.
•	 End Rotation: This is the rotation angle at the end of the lifespan.

Color Settings
The following are the options under Color Settings:

•	 Start and End Color: You can either click on the Color bar to select the color
from the color wheel or you can use the slider or the input box to select the
red, green, blue, and alpha values for the start and end of a particle.

•	 Blend Source and Destination: This gives more freedom for the kind of
blend function you would like to you use for the particle. GL_ONE and
GL_ONE_MINUS_SRC_ALPHA are used in source and destination for additive
blending. You can play around with it to get a feel of what each combination
of source and destination values do.

Texture Settings
In Texture Settings, you can change the default texture for the particle being used
to whatever texture you require for the effect. For the explosion particle, I used a
cartoony cloud image to give a cartoony look to the explosion.

Particle2dx
Particle2dx is another tool to design particles. Unlike Particle Designer, which only
works on Mac OS systems, Particle2dx is web based. This means that irrespective
of whether you are creating the game on Mac, Window, or Linux, you can use it to
create particles.

Particle Systems

[162]

You can go to http://particle2dx.com for more information; it might take a while
to load, but once it is loaded, you should be able to see it loaded with the default
particle system as shown in the following screenshot:

In the top-left corner, you can select the simulator device; by default, it shows
the iPhone 4 resolution of 640 x 960, but if you click on it, you will get a variety
of resolutions that you can use, including Android resolutions. Next to it is the
Background view size button that you can click to have a small, medium, or a
large view. At the bottom of the Preview window, you have the Stats Grid slider
that you can use to increase or decrease the grid size in pixels. Both these settings
are just for preview, this won't affect the particle in anyway.

To the right-hand side, you can see the current emitter named Emit1. You can click
on the plus sign next to it to create another particle emitter. You can switch between
the two particles by clicking on the name of particle emitter. Below Emit1 Plist,
you can see the Color&Shape, Motion, Template, InOut, and Background buttons.
Click on the Motion tab; let's look at it in detail.

Chapter 7

[163]

Motion
By default, the mode is set to Gravity; you can change it to Radius by clicking on it.

The following are the options present under it:

•	 Duration: If you want the particles to be generated forever, you can select -1,
or if you want to only create the particle once, then you can move the slider
to the duration the particle system needs to be creating the particles.

•	 Lifetime: This variable controls the time period for which each particle
created should be alive. You can increase or decrease the value to see the
meteor tail increase or decrease depending upon the value. There is also
a variance slider that randomizes the lifetime of each particle when it is
generated. Some particles live longer than the other if you move this slider.

•	 EmissionRate: As the name suggests, this controls how quickly the new
particles should be generated.

•	 Angle: This controls the angle at which each particle will be moved as soon
as they are created. This can also be controlled by clicking-and-dragging the
dial on the box below named Angle.

•	 EmitArea: You can click-and-drag a box that represents the emitter size,
or you can click-and-drag to create a horizontal rectangle box instead of a
small square. The PosVar slider at the bottom can also be used instead of
clicking-and-dragging a box.

•	 Gravity: You can click-and-drag to rotate the direction of the gravity. It is set
at 1000 and 740 by default. There is also a slider named GravityXY to control
the direction and value of the gravity.

•	 Speed: This is used to control the speed of the particle.
•	 AccelRad: This controls the radial acceleration.
•	 AccelTan: This is used to change the tangential acceleration.

Color&Shape
Click on Color&Shape; here, you can change the color and shape of the particle.

In the shape section, you can select the shape of the particle that you would like
to use. You can click on the hexagon, circle, square, star, and so on to get the
desired shape of the particle. You can also drag-and-drop any PNG image onto the
DropPNG box to use it as the shape of the particle.

In the color section, you can select the color for the particle. Also, you can select the
blend mode to be Additive or Normal.

Particle Systems

[164]

Each particle can either have a fixed color and size, or you can vary the color of the
particle over time by changing the Start and End values.

The Size option changes the size of the particle; the slider under it is the variance
that creates particles of different sizes.

The Spin option determines the initial spin for each of the particle and the variance
controls the randomness of the spin for each of the particle.

The options, a, r, g, and b, are the controls for alpha, red, green, and blue values,
respectively. You can modify the rgba values for each of the particle by setting an
initial value, and change the variance value to randomly created particles with
colors close to the initial color set.

Template
Template has some predefined particle systems that you can use. You have particles
for BG, Water, Fire, FireWorks, Explosion, Meteor, Snow, Click, Smoke, and Magic,
similar to the 11 that are predefined in Cococs2d-x. Click on each of them to see how
each particle effect looks.

InOut
In InOut, you can import or export the particle that you created.

The following are some of the options available with it:

•	 Import: You can drag-and-drop the Plist or JSON file to make changes to
them or just see how the particle system looks like.

•	 Export: Here, you can export the Plist/ALLJSON file of the particle system
that you created, which you can import in the game.

•	 Separated Export: Here, you can name the particle system and download the
data file and the PNG separately to import in the game.

Background
In this section, you can change the background of the simulator. You can either
change the color and alpha of the background or upload your own background or
foreground image.

Chapter 7

[165]

Adding an explosion particle system
From the resources provided for the chapter, add the smoke.plist, smoke.png,
dusts.plist, and dust.png files to the resources folder in the game.

Now, in the GameplayLayer.cpp file, add the following lines of code in the player
rocket and enemy collision check right under where we increment the score:

CCParticleSystemQuad * smokeParticle = CCParticleSystemQuad::create("
smoke.plist");
smokeParticle->setPosition(en->getPosition());
this->addChild(smokeParticle);
smokeParticle->setAutoRemoveOnFinish(true);

CCParticleSystemQuad * dustParticle = CCParticleSystemQuad::create("
dusts.plist");
dustParticle->setPosition(en->getPosition());
this->addChild(dustParticle);
dustParticle->setAutoRemoveOnFinish(true);

Here, we create new instances of CCParticleSystemQuads named smokeParticle
and dustParticle. We then give the Plist of the particle that we want to create,
in this case, we give smoke.plist and dusts.plist. Then, we set the position of
the particle, which is the position of the enemy when the rocket hits the player.
We then add it to the display list by using the addChild function. Finally, we set
setAutoRemoveOnFinish to true, because as we want the emitted particle to be
removed from the display list once the particle has finished emitting. That is all.
Now you can build and run the game to see the explosion effect take place whenever
an enemy is shot.

If you want to the see how the particle was generated and what are the values for
each of the emitters, you can open smoke.plist in any text editor application such
as Notepad++ or TextWrangler and you will be able to see the headings for each of
the variables and the values against them. You can use the same values in Particle
Designer to recreate the same particles.

Particle Systems

[166]

Adding particles for jetpack when a
player moves upwards
Similar to how we created the explosion effect, we will create the flame particle
effect. However, as we require the player's position at all times, we will create
a global CCParticleSystemQuad instance named flameParticle in the
HelloWorldScene.h file.

Import the jetBoost.plist and jetBoost.png files from the resources folder for
the chapter and place them in the resources folder of the game.

Next, right under where we added the hudLayer in the init function in
HelloWorldScene.cpp file, add the following lines of the code:

flameParticle = CCParticleSystemQuad::create("jetBoost.plist");
flameParticle->setPosition(ccpAdd(hero->getPosition(), ccp(-hero-
>getContentSize().width * 0.25, 0)));
this->addChild(flameParticle);

Here, we create a new CCParticleSystemQuad instance with the jetBoost.plist
file, and then, we give the position from where we want the particle to be created.
We give the hero's position and subtract the hero's width from the position in the
x axis and add 0 to the y axis so that the particle is generated at the left extreme
position of the hero sprite. We then add it to the display list of the layer. As we want
this effect to be playing continuously, we don't set setAutoRemoveOnFinish to true.

In the update function, we reset the position of flameParticle in every frame so
that it follows the hero wherever she goes. So, in the update function, right after we
update the value of hudLayer, we add the following line, which is the repetition of
the setPosition value in the init function for flameParticle:

flameParticle->setPosition(ccpAdd(hero->getPosition(), ccp(-hero-
>getContentSize().width * 0.25, 0)));

Now if you build and run, you will see the particles are following the hero; it would
also look as if it is getting created when the player is boosted up.

Chapter 7

[167]

Creating your own particle system
In this section, we will create a small mock particle system that will create an image
of the enemy and gun and make it look as if she is spinning and falling down once
hit by the rocket. As we have already deleted the enemy, we just have to spawn the
new enemy and gun sprites and remove it from the display list after a while. For this,
we will create a class that will take an image, spin it, and make it fall down.

Create a new class called ParticleSpin and create the respective .h and .cpp files.
Next, add the following to the ParticleSpin.h file:

#ifndef __wp8Game__ParticleSpin__
#define __wp8Game__ParticleSpin__

class ProjectileObject;

#include <iostream>

#include "cocos2d.h"
using namespace cocos2d;

class ParticleSpin: public CCSprite
{
 ParticleSpin();
 ~ParticleSpin();

 CCPoint speed;
 CCPoint gravity;
 float spinCounter;

public:
 bool init();
 static ParticleSpin* create(CCPoint _cp, char *fileName);

 void update(float dt);
};

#endif /* defined(__sdpdd__ProjectileSpin__) */

Here, we have created a new class similar to how we have created classes that inherit
from the CCSprite before; the only difference this time being that while creating,
we give a CCPoint for where the sprite will be created and a char that will store the
filename of the sprite or image that has to be created.

Particle Systems

[168]

We also create variables named Speed and Gravity of the CCPoint type and a float
variable named spinCounter that are kept private.

Next, in the ParticleSpin.cpp file, we add the following.

#include "ParticleSpin.h"

ParticleSpin::ParticleSpin()
{
 spinCounter = 0;
}

ParticleSpin::~ParticleSpin()
{}

ParticleSpin* ParticleSpin::create(CCPoint _cp, char *fileName)
{
 ParticleSpin *pc = new ParticleSpin();
 if(pc && pc->initWithFile(fileName))
 {
 pc->setPosition(_cp);
 pc->init();
 pc->autorelease();
 return pc;
 }

 CC_SAFE_DELETE(pc);
 return NULL;
}

In the constructor, we initialize the spinCounter value. In the create function,
we take the position and filename and pass it on to the initWithFile function.
Then, we set the position to _cp and call the init function once the pc object has
been created:

bool ParticleSpin::init()
{

 gravity = ccp(0,-0.25);

 speed.x = CCRANDOM_MINUS1_1() * 2.0f;
 speed.y = rand()% 3 + 1 ;

 CCLOG("speed x %f", speed.x);

 return true;
}

Chapter 7

[169]

In the init function, we initiate the gravity with the value of x equal to 0 and y equal
to -0.25. For the x value of the speed, we get a float value between -2.0 to 2.0 and the
y value of the speed is assigned a value randomly from 1 to 3. We log the x speed just
to check the value:

void ParticleSpin::update(float dt)
{
 spinCounter+=dt*4;

 CCPoint initpos = this->getPosition();

 CCPoint finalpos;
 finalpos.x = initpos.x + speed.x;
 speed.y += gravity.y;
 finalpos.y = initpos.y + speed.y + gravity.y;

 this->setPosition(finalpos);

 this->setRotation(CC_RADIANS_TO_DEGREES(spinCounter * speed.x));

}

In the update function, we multiply the value of dt four times. You change this
value according to how fast or slow you want the object to rotate. We get the initial
position of the player and assign it to initPos. We then create a finalPos variable
of the CCPoint type. The value of speed.x is added to initpos.x and stored in
finalpos.x. The speed.y is incremented by gravity.y. Then, finalpos.y is
assigned the addition of initpos.y, speed.y, and gravity.y.

The position of the current object is set to finalPosition and the rotation is set to
the speedCounter times the x value of speed. As the angle needs to be in degrees, we
convert the value from radians to degrees using the CC_RADIANS_TO_DEGREES macro.

We now create a new class named ParticleLayer in which we will give the two
images. In the ParticleLayer.h file, add the following:

#ifndef __wp8Game__ParticleLayer__
#define __wp8Game__ParticleLayer__

#include <iostream>

#include "cocos2d.h"
#include "ParticleSpin.h"
using namespace cocos2d;

class ParticleLayer: public CCLayer

Particle Systems

[170]

{

public:
 ParticleLayer(CCPoint p);
 ~ParticleLayer();

 ParticleSpin* enemyDie;
 ParticleSpin* enemyGun;

 void removeSelf(float dt);
 void update(float dt);
};

#endif /* defined(__sdpdd__ProjectileSpin__) */

Here, we first include ParticleSpin.h and then the class is inherited from CCLayer.
The constructor also takes in a CCPoint variable. Next, two ParticleSpin objects
are created with the names enemyDie and enemyGun. We also create two functions
named removeSelf and update that will be scheduled in the constructor.

In the ParticleLayer.cpp file, add the following:

#include "ParticleLayer.h"

ParticleLayer::ParticleLayer(CCPoint p)
{
 enemyDie = ParticleSpin::create(p, "EnemyDie.png");
 this->addChild(enemyDie);

 enemyGun = ParticleSpin::create(p, "EnemyGun.png");
 this->addChild(enemyGun);

 this->scheduleOnce(schedule_selector(ParticleLayer::removeSe
lf),2.0);
 this->schedule(schedule_selector(ParticleLayer::update));
}

ParticleLayer::~ParticleLayer(){
}

void ParticleLayer::update(float dt)
{
 enemyDie->update(dt);
 enemyGun->update(dt);
}

void ParticleLayer::removeSelf(float dt)

Chapter 7

[171]

{
 this->unscheduleUpdate();
 this->removeFromParent();
}

In the constructor, we initiate the enemyDie and enemyGun variables by giving in the
position and the names of the PNG files that have to be created. So make sure that
you import the EnemyDie.png and EnemyGun.png files in the resources folder.

Next, we schedule the update and the removeSelf functions that are scheduled to be
called after 2 seconds.

In the update function, we update the enemyDie and enemyGun variables and
removeSelf function we unschedule the update function, and call the
removeFromParent function that will remove the layer once the function is called.

Finally, in the GameplayLayer.cpp file, we include ParticleLayer.h, and in the loop
where we check for the hero's rocket and enemy collision, add the following code:

ParticleLayer* pLayer = new ParticleLayer(en->getPosition());
this->addChild(pLayer);

Now, when you build and run, you will see the enemy and gun getting spun around
after getting hit by the rocket:

It may be possible that the game might lag because there are so many particles. If
there is a lag in the low-end phones, only activate the particles in phones whose
height is greater than 480. It is quite easy to implement; I leave it as an exercise for
you guys.

Particle Systems

[172]

Summary
In this chapter, we saw Cocos2d-x's inbuilt particle system, as well as a couple of
other ways in which you can design a particle system from the ground up. We
included particles for effects such as smoke, explosion, and jet in the game. We also
created a mock particle system in which we created an effect to show as if the enemy
is falling down after getting hit by the rocket.

If you want, as an exercise, you can also create a hit effect for the player when she
gets hit by the enemy. You can use any of the single images we used to create the
spritesheet for the player and pass it on as the image into the PlayerSpin class and
add it to HelloWorldScene.cpp file.

In the next chapter, we will add a game screen and options screen and create a GUI
so that a player can go back to the main menu once the game is over. We will also
create a score reset button in the options screen that will reset the score of the player.

Adding Main and
Option Menu Scenes

In this chapter, we will be finally adding the main and option menu scenes to the
game. Till now, when the game launches, it directly goes to the HelloWorldScene.
Instead, we create the MainMenuScene that will be loaded first, which will have the
buttons to open the game and options menu. Pressing the play button will launch
the HelloWorldScene, and pressing the options button will open up the Options
scene, where the player will be able to reset the score. A home button will be added
to the HelloWorldScene and Options scene so that the player can get back to
the MainMenuScene.

The topics covered in this chapter are as follows:

•	 Creating the main menu scene
•	 Loading the main menu scene at start of the app
•	 Creating the Options scene
•	 Changing the name of the app

Adding Main and Option Menu Scenes

[174]

Creating the main menu scene
To create the main menu scene, create MainMenuScene.h and MainMenuScene.cpp in
which we will create all the properties and methods to call the main menu.

In MainMenuScene.h, add the following:

#ifndef __wp8Game__MAINMENU_SCENE__
#define __wp8Game__MAINMENU_SCENE__

#include "cocos2d.h"
#include "ScrollingBgLayer.h"

using namespace cocos2d;

class MainMenu : public cocos2d::CCLayer
{
public:

 virtual bool init();

 ScrollingBgLayer* scrollingBgLayer;

 void optionsScene(CCObject* pSender);
 void playGame(CCObject* pSender);
 void update(float dt);

 static cocos2d::CCScene* scene();
 CREATE_FUNC(MainMenu);

 void MoveDownFinished(CCNode* sender);
 void MoveUpFinished(CCNode* sender);

};

#endif

Here, we make this class inherit from CCLayer and then create the init() function,
which returns a bool value. We also create a variable of the ScrollingBgLayer
type and also include ScrollingBgLayer.h, as we will be adding the scrolling
background layer, just as we did in HelloWorldScene.h. We then create two functions
named optionsScene() and playGame(), which take in a CCObject, as we will be
using these functions to call the play game or options button, once the respective
buttons are clicked. An update function is also created, as we will need to update
the SrcrollingBGLayer. We create a static function named scene() that returns a
CCScene, and we also create a MainMenu() function using the CREATE_FUNC shortcut.

Chapter 8

[175]

We also create two more functions named MoveUpFinished() and
MoveDownFinished(), which take in a CCNode. This will be used to move
the game title up and down using actions.

Let's move on to the MainMenuScene.cpp file:

#include "MainMenuScene.h"
#include "HelloWorldScene.h"
#include <spine/spine-cocos2dx.h>

CCScene* MainMenu::scene()
{
 CCScene *scene = CCScene::create();
 MainMenu *layer = MainMenu::create();
 scene->addChild(layer);
 return scene;
}

Here, we first add the headers: MainMenuScene.h, HelloWorldScene.h, and spine-
cocos2dx.h. As we will be changing the scene to HelloWorldScene, once the play
button is clicked, we need to include it. Also, as we saw in Chapter 6, Animations,
we will add the walk cycle we created using the spine skeletal animation to the
MainMenuScene; we are adding the header for the spine here.

Next, we create the scene() function, which creates an empty scene and
returns it. Here, we create a variable scene of the CCScene type, create an empty
layer of the MainMenu type, add it to the scene, and then return, just as we did
in HelloWorldScene.h.

There is a lot of code in the init() function; let's look through it in detail.

We first create the visibleSize and origin variables of the CCSize and CCPoint
types, respectively, and get the screen width as well as the height and origin of
the device.

Next, we initiate the scrollingBgLayer variable and give it a default value of 3.0,
just as we did in the HelloWorldScene.cpp file.

Next, we create a variable named nameLabel of the CCLabelBMFont type. We create
it with what we want our game to be named. I have chosen Ms.tinyBazooka, so I
just initiate it with that string and give it the font I will be using, which is the
PixelFont.fnt file we created using GlyphDesigner.

We set the position of the label at half of the width of the screen and at 0.8 times the
height of the screen.

Adding Main and Option Menu Scenes

[176]

Finally, we add the label to the layer:

CCSize visibleSize =
CCDirector::sharedDirector()->getVisibleSize();

CCPoint origin =
CCDirector::sharedDirector()->getVisibleOrigin();

scrollingBgLayer = new ScrollingBgLayer(3.0);
this->addChild(scrollingBgLayer);

CCLabelBMFont *nameLabel =
CCLabelBMFont::create("Ms.tinyBazooka", "PixelFont.fnt");

nameLabel->setPosition(visibleSize.width/2,
 isibleSize.height * 0.8);

this->addChild(nameLabel);

After creating and adding the label to the layer, we want the label to start moving
up so that we call the MoveDownFinished() function to make it go up again, and
once it has moved up, we will call the MoveUpFinished() function to call the
MoveDownFinished() function again to make it go up again. This will create an up
and down motion of the label.

So, to make it move up, we first create a variable named actionMove of the CCMoveTo
type, as we want to create an action of the CCMoveTo type. This takes two inputs:
the first is the time period for which this action will be performed and second is the
position to which it should move to. So, here we give one, as we want the action to
be performed for 1 second, and then, we get the current position of the label and ask
it to move up by 20 pixels.

Once the CCMoveTo action has been performed, we want it to call the
MoveUpFinished() function. Similar to the earlier instance, we create an action
named actionMoveDone of the CCCallFuncN type; here, it takes in two variables:
first is the object on which this action needs to be performed and the second is the
function that needs to be called; so here, we give the nameLabel variable and the
MoveUpFinished() function.

As we also want the label to go up and down smoothly instead of the abrupt
movements, we create a smoothening effect that will make it move smoothly. For
this, we create a CCEaseSineInOut effect with the name easeInOut and make it
perform this action on the actionMove action we created earlier.

Chapter 8

[177]

Next, we run the action on nameLabel of the CCSequence type, which will call the
easeInOut action first and then call actionMoveDone, once the previous action has
been performed:

 //actions
 CCMoveTo* actionMove =CCMoveTo::create(1, CCPoint(nameLabel-
>getPosition().x,nameLabel->getPosition().y + 20));
 CCCallFuncN* actionMoveDone = CCCallFuncN::create(nameLabel,
callfuncN_selector(MainMenu::MoveUpFinished));
 CCEaseSineInOut *easeInOut = CCEaseSineInOut::create(actionMove);
 nameLabel->runAction(CCSequence::create(easeInOut, actionMoveDone,
NULL));

Next, we just cut and paste the code to run the skeletal animation from
HelloWorldScene.cpp and paste it here:

extension::CCSkeletonAnimation* skeletonNode = extension::CCSkeletonAn
imation::createWithFile("player.json", "player.atlas", 1.0f);
skeletonNode->addAnimation("runCycle",true,0,0);

skeletonNode->setPosition(ccp(visibleSize.width * .125 ,
 visibleSize.height * 0.2 - skeletonNode-
>getContentSize().height/2));

addChild(skeletonNode);

We then create two CCMenuItemImages named pPlayerItem and pOptionsItem and
set the button images to _bookgame_UI_play.png and _bookgame_UI_options.
png, respectively. We then set the corresponding function to be called for the
buttons. The playGame() function is called when the play button is clicked, and the
optionsScene() function is called when the options button is clicked.

We then set the position of the items by setting the play button at the center of the
screen and the options button at 0.75 times of the width and center it along the height:

CCMenuItemImage *pPlayItem = CCMenuItemImage::create("_
bookgame_UI_play.png", "_bookgame_UI_play.png", this, menu_
selector(MainMenu::playGame));

pPlayItem->setPosition(ccp(visibleSize.width/2, visibleSize.height *
0.5));

CCMenuItemImage *pOptionsItem = CCMenuItemImage::create("_bookgame_UI_
options.png", "_bookgame_UI_options.png", this, menu_selector(MainMenu
::optionsScene));

pOptionsItem->setPosition(ccp(visibleSize.width * 0.75, visibleSize.
height * 0.5));

Adding Main and Option Menu Scenes

[178]

Then, a CCMenu is created named pMenu, and it is created by giving the two button
items we created earlier. We then set its position and add it to the layer:

// create menu, it's an autorelease object
CCMenu* pMenu = CCMenu::create(pOptionsItem,pPlayItem, NULL);
pMenu->setPosition(CCPointZero);
this->addChild(pMenu, 10);

We want the player to know what the current high score is so that he/she will be
motivated to beat this score. For this, we create a new label and call it newHighScore,
we set its position, and add it to the layer. We also scale it down by half so that it fits
in the screen:

CCLabelBMFont* newHighScoreLabel =
CCLabelBMFont::create("CURRENT HIGH SCORE", "PixelFont.fnt");

newHighScoreLabel->setPosition(ccp(visibleSize.width * 0.5,
visibleSize.height * 0.15));

this->addChild(newHighScoreLabel, 10);
newHighScoreLabel->setScale(0.5);

We then create another label named highScoreLabel by passing in an arbitrary
value, which we will be dynamically changing, and the font name. We then set its
position and add it to the layer.

Next, we create a new variable of the int type named highScore, which will contain
the current high score that we have been saving in the gameOver() function in
HelloWorldScene.cpp. We then create scoreTxt of the char type, copy the value
from highScore to scoreTxt, and then set the string value of highScoreLabel to
the current high score. This is demonstrated in the following code:

CCLabelBMFont* highScoreLabel = CCLabelBMFont::create("0", "PixelFont.
fnt");
highScoreLabel->setPosition(ccp(visibleSize.width * 0.5, visibleSize.
height * 0.1));
this->addChild(highScoreLabel, 10);
highScoreLabel->setScale(0.5);

int highScore = CCUserDefault::sharedUserDefault()->getIntegerForKey("
bazookaGameHighScore");

char scoreTxt[100];
sprintf(scoreTxt, "%d", highScore);
highScoreLabel->setString(scoreTxt);

Chapter 8

[179]

At the end of the init() function, we finally schedule the update and return true:

this->scheduleUpdate();

return true;

Now that we are done with the init() function, let's implement the other functions
also. Next is the update() function; in the update() function, we call the update()
function of the scrollingBgLayer:

void MainMenu::update(float dt)
{
 scrollingBgLayer->update();
}

To replace the current scene with the HelloWorldScene when the play button is
clicked, in the playGame() function, we create a new CCScene variable named
mScene and get the scene from the HelloWorld class. We then call the shared
instance of CCDirector, call the replaceScene() function, and ask it to replace
the current scene with mScene:

void MainMenu:: playGame(CCObject* pSender)
{
 CCScene *mScene = HelloWorld::scene();
 CCDirector::sharedDirector()->replaceScene(mScene);
}

Similarly, we create the optionsScene() function. Later in the chapter, after we
create the options menu, we will call this function to replace the current scene with
the options menu scene:

void MainMenu::optionsScene(CCObject* pSender)
{
 //code to replace Options scene
}

Similar to how we moved the label in the init() function, the MoveUpFinished()
function will be called once the label has finished moving up. Here, the label will
be moved down again. The difference is that we first typecast the sender to the
CCSprite type and then we ask it to go down by 20 pixels instead of up. Also, we
run the action on the typecasted sprite at the end. Once it has finished moving down,
it will call the MoveDownFinished() function, which moves the object up again and
call the MoveUpFinished() function, which creates an up and down motion cycle:

void MainMenu::MoveDownFinished(CCNode* sender)
{
 //CCLOG("move down fin");
 CCSprite *sprite = (CCSprite *)sender;

Adding Main and Option Menu Scenes

[180]

 CCMoveTo* actionMove =CCMoveTo::create(1.0, CCPoint(sprite-
>getPosition().x, sprite->getPosition().y + 20.0));
 CCCallFuncN* actionMoveDone = CCCallFuncN::create(sprite,
callfuncN_selector(MainMenu::MoveUpFinished));
 CCEaseSineInOut *easeInOut = CCEaseSineInOut::create(actionMove);
 sprite->runAction(CCSequence::create(easeInOut, actionMoveDone,
NULL));
}
void MainMenu::MoveUpFinished(CCNode* sender)
{
 //CCLOG("move up fin");
 CCSprite *sprite = (CCSprite *)sender;
 CCMoveTo* actionMove =CCMoveTo::create(1.0, CCPoint(sprite-
>getPosition().x, sprite->getPosition().y - 20.0));
 CCCallFuncN* actionMoveDone = CCCallFuncN::create(sprite,
callfuncN_selector(MainMenu::MoveDownFinished));
 CCEaseSineInOut *easeInOut = CCEaseSineInOut::create(actionMove);
 sprite->runAction(CCSequence::create(easeInOut, actionMoveDone,
NULL));
}

Loading the menu scene at start of
the app
To load the main menu scene instead of the HelloWorldScene on startup, open the
AppDelegate.cpp file. Here on the top, include MainMenuScene.h. In the
applicationDidFinishLaunching() function, find the following line of code:

CCScene *pScene = HelloWorld::scene();

Replace it with the following code:

CCScene *pScene = MainMenu::scene();

That is all; now if you build and run it, you will see the main menu loaded:

Chapter 8

[181]

Now if you click on the play button, the game will start. How to go back to the main
menu? We will add a button in the gameover() function, which will take us back to
the main menu, but first let's create the option menu.

Creating the Options scene
Similar to how we created the MainMenuScene, we will create OptionsMenuScene.h
and OptionsMenuScene.cpp and include them in the Solution Explorer pane.

In the OptionsMenuScene.h file, add the following code:

#ifndef __wp8Game__OPTIONSMENU_SCENE__
#define __wp8Game__OPTIONSMENU_SCENE__

#include "cocos2d.h"
#include "ScrollingBgLayer.h"

using namespace cocos2d;

class OptionsMenu : public cocos2d::CCLayer
{

Adding Main and Option Menu Scenes

[182]

public:

 virtual bool init();

 ScrollingBgLayer* scrollingBgLayer;

 static cocos2d::CCScene* scene();
 void update(float dt);

 void reset(CCObject* pSender);
 void mainMenu(CCObject* pSender);

 CREATE_FUNC(OptionsMenu);
};

#endif

Here once again, we include ScrollingBgLayer.h, inherit from CCLayer, and
add in the usual code, as we did in the MainMenuScene.h class. Here, we add two
functions named reset() and mainMenu(), which will reset the score and take us
back to the main menu once the respective buttons are clicked.

Next, we add the following in the OptionsMenuScene.cpp file.

We include the MainMenuScene.h file and create the scene function, which will
return the current screen, which has the OptionsMenu layer added to it:

#include "OptionsMenuScene.h"
#include "MainMenuScene.h"

CCScene* OptionsMenu::scene()
{
 CCScene *scene = CCScene::create();
 OptionsMenu *layer = OptionsMenu::create();
 scene->addChild(layer);
 return scene;
}

Next, in the init() function, we get visibleSize and the origin. Create the
ScrollingBgLayer and add it to the layer. We create a nameLabel similar to
MainMenuScene and name it as OptionsMenu:

// on "init" you need to initialize your instance
bool OptionsMenu::init()
{
 CCSize visibleSize =

Chapter 8

[183]

 CCDirector::sharedDirector()->getVisibleSize();

 CCPoint origin =
 CCDirector::sharedDirector()->getVisibleOrigin();

scrollingBgLayer = new ScrollingBgLayer(3.0);
this->addChild(scrollingBgLayer);

CCLabelBMFont *nameLabel = CCLabelBMFont::create("Options
Menu","PixelFont.fnt");
nameLabel->setPosition(visibleSize.width/2, visibleSize.height * 0.8);
this->addChild(nameLabel);

Also, two CCMenuItemImages are created named presetItem and pmainMenuItem,
which will call the reset() and mainMenu() functions when pressed. These are then
added to CCMenu and pMenu, and then, pMenu is added to the layer. Then, we
schedule the update and return true:

CCMenuItemImage *presetItem = CCMenuItemImage::create("_bookgame_UI__
resume.png", "_bookgame_UI__resume.png",
 this, menu_
selector(OptionsMenu::reset));

presetItem->setPosition(ccp(visibleSize.width * 0.5 - visibleSize.
width * 0.125, visibleSize.height * 0.5));

CCMenuItemImage *pmainMenuItem = CCMenuItemImage::create("_bookgame_
UI_mainmenu.png",
 "_bookgame_UI_mainmenu.png",
 this,
 menu_selector(OptionsMenu::mainMenu));

pmainMenuItem->setPosition(ccp(visibleSize.width * 0.5 + visibleSize.
width * 0.125, visibleSize.height * 0.5));

CCMenu* pMenu = CCMenu::create(pmainMenuItem, presetItem, NULL);
pMenu->setPosition(CCPointZero);
this->addChild(pMenu, 10);

this->scheduleUpdate();

return true;

}

Adding Main and Option Menu Scenes

[184]

In the update() function, we call the update() function of the
scrollingBgLayer variable:

void OptionsMenu::update(float dt)
{
 scrollingBgLayer->update();
}

Next, we define the mainMenu() and reset() functions. In the mainMenu()
function, we get the scene from the MainMenu class and then call CCDirector to
replace the current scene with the MainMenu scene, similar to how we called the
HelloWorldScene in MainMenuScene once the play button was clicked:

void OptionsMenu:: mainMenu(CCObject* pSender)
{
 CCScene *mScene = MainMenu::scene();
 CCDirector::sharedDirector()->replaceScene(mScene);
}

In the reset() function, we set the value for key, which we have been using to store
the high score of the game, using the UserDefault variable to 0 and perform a flush
so that the current high score value is replaced with 0:

void OptionsMenu::reset(CCObject* pSender)
{
 CCUserDefault::sharedUserDefault()->setIntegerForKey("bazookaGameH
ighScore", 0);
 CCUserDefault::sharedUserDefault()->flush();
}

Now, in MainMenuScene.h, include OptionsMenuScene.h, and in the optionsMenu
function, add the following code.

 CCScene *mScene = OptionsMenu::scene();
 CCDirector::sharedDirector()->replaceScene(mScene);

This will replace the current scene with the OptionsMenuScene. Now if you click
on the gear button on the main menu, the OptionsMenuScene will replace the main
menu scene, as shown in the following screenshot.

Now if you press the reset button, the score will be reset, and if you press the home
button, it will take you back to the main menu scene.

Chapter 8

[185]

Now, we need to add the home button to the HelloWorldScene class as well so that
after the game is over, we can go back to the main menu to replay the game.

In HelloWorldScene.h, add the following function:

void mainMenuScene(CCObject* pSender);

Then, in the GameOver() function in the HelloWorldScene.cpp file, add a
CCMenuItemImage, pass in the reset image, and make it call the previous function
when the button is clicked, similar to how we did in the options menu scene:

CCMenuItemImage *mainmenuItem = CCMenuItemImage::create("_bookgame_UI_
mainmenu.png", "_bookgame_UI_mainmenu.png", this, menu_selector(HelloW
orld::mainMenuScene));
mainmenuItem->setPosition(ccp(visibleSize.width/2, visibleSize.height
* 0.2));
CCMenu *mainMenu = CCMenu::create(mainmenuItem, NULL);
mainMenu->setPosition(CCPointZero);
this->addChild(mainMenu);

Finally, add the mainMenuScene() function as follows. Also, include
MainMenuScene.h at the top of the file:

void HelloWorld::mainMenuScene(CCObject* pSender)
{
 CCScene *mScene = MainMenu::scene();
 CCDirector::sharedDirector()->replaceScene(mScene);
}

Adding Main and Option Menu Scenes

[186]

Now after the game is over, the main menu GUI button should appear.

Changing the name of the app
Next, in the Solution Explorer pane in the wp8Game project, expand Properties and
click WMAppManifest.xml. On the main screen, under ApplicaitonUI, change the
display name to Ms.tinyBazooka. Now if you build it, you will see the app name
has been changed to reflect the changes we just made.

As you might expect, we will be visiting this later when we will change the
icon of the application and make further changes before uploading the file on
to Windows Store:

Chapter 8

[187]

Summary
In this chapter, we have finally created the main menu and options menu for the
game. We also modified the AppDelegate file to load the MainMenuScene once the
game has been loaded. We also created buttons on all the scenes so that we can
navigate between the different screens.

We also created the option to reset the score of the game in the options menu and
changed the default app name to actual name of the game.

We are not too far from uploading the game on to Windows Store. We will add
audio in the next chapter, where we will add sound effects and background music
in the game.

Adding Sounds and Effects
This is the final phase of development of the game. In this section, we will look at
how to add background music and sound effects in the game. We will also look at
the different formats that each platform supports and see how we can convert the
audio formats for the different platforms using freeware. Also, we will add a toggle
button that will pause and resume the background music.

The topics covered in this chapter are as follows:

•	 Audio in Cocos2d-x
•	 Adding looped background music
•	 Adding sound effects
•	 Adding the mute button

Audio in Cocos2d-x
As Cocos2d-x supports various platforms, it needs to support the audio formats
in each of the platforms as well. It is recommended that you use platform-specific
format for your game to avoid any issues that might arise due to incompatibility.
You can visit the Cocos2d-x wiki to know more about the different formats: http://
www.cocos2d-x.org/wiki/Audio_formats_supported_by_CocosDenshion_
on_different_platforms. I will just highlight formats for some of the popular
platforms and operating systems.

Adding Sounds and Effects

[190]

Cocos2d-x also supports different formats for background music and sound effects
for the same platforms, but it is highly recommended that you use the same format
for both the background music and sound effects just to avoid confusion. The
following table shows the preferred format for the different platforms:

Platform/OS Format

Windows Phone 8, Windows Desktop, and Windows App .mid and .wav

iOS and Mac .mp3 and .caf

Ubuntu, Android, Blackberry, and Tizen .ogg

Now that we know what format to use for which platform, let's look at a software
that can be used to convert files into different formats. For instance, we might have
an audio in the .mp3 format. If we port this game to iOS, it would be fine, but as we
are developing it for the Windows Phone 8 platform, we will have to convert this to
the .wav file:

Chapter 9

[191]

For this purpose, there is a free software called Audacity, which can be downloaded
for free from its website, http://audacity.sourceforge.net/download/. The
best thing about using Audacity is that it is available cross-platform. So, if you are
developing the game on Mac, Windows, or Linux, you can use it without the need to
switch between platforms.

As we are developing for the Windows Phone platform, we will be using the .wav
format. As the .wav files are bigger in size than .mp3 and .ogg, you can use mono
sound instead of stereo sound to reduce the file size. To convert the .mp3 file to the
.wav file, we will perform the following steps:

1.	 Launch the application, select the file you want to convert, and open it
with Audacity.

2.	 Navigate to File | Export and then select the format to which you would like
the file to be converted. For Windows, you will choose Save as type WAV
(Windows) signed 16-bit PCM.

3.	 For the File Name field, give a suitable name, select the location to which you
would like to save the file, and click on Save.

4.	 The software will take a bit of time to convert the file format, but once it is
done, you will see that the file has been changed to the .wav file format.

Just to check whether the file has been converted properly and there are no
unwanted sounds in the file, double-click on the file to listen to the playback.

If you have more than one file to convert, you can use the Apply Chain feature to
convert all the files you opened. By default, it will convert to .mp3, but you can set it
to convert to other formats also. To do this, perform the following:

1.	 Go to File | EditChain. In the Chains panel, on the left-hand side, click on
Add and name it wav convert.

2.	 Now at the bottom of the right panel, click on Insert. You will see an option,
Export Wav. Double-click on it and click on OK.

3.	 Now, if you navigate to File | ApplyChain and select wav convert, all the
files would be converted to the .wav file format.

Adding Sounds and Effects

[192]

Adding looped background music
Cocos2d-x has a separate engine for the sound named CocosDenshion and uses
the SimpleAudioEngine.h header. Whenever you want to include calls for any of
its function, you will have to include this header. Similar to the CCDirector class,
the Simple Audio Engine is also a singleton class that you will use to start, pause,
resume, and stop a particular background sound or effect.

As you would have noticed, there are two types of audio in games—background
music, which lasts for about usually 30 seconds to a minute and gets looped over
time, and there are sound effects that get played when a certain event occurs, such as
shooting a bullet or enemy getting hurt and it lasts a couple of seconds. Both files are
called separately using different functions in Cocos2d-x.

Also, the sound effects and background music need to be preloaded earlier to avoid
any delay in playback; otherwise, the first time when you play a sound instead of
playing the file instantly, the system will have to load the file first. This will result in
a delay in the playback of the sound.

So, first let's load and play the background music as soon as the game has been
launched. In AppDelegate.cpp, include the SimpleAudioEngine header as follows:

#include "SimpleAudioEngine.h"

Copy the sound files into the Resources folder of the project. In the Solution
Explorer pane, navigate to Wp8Game | Assets | Resources, and load the seven
sound files that are included in the chapter's Resources folder.

Once the resources are loaded, in the applicationDidFinishLoading() function,
add the following code snippet after the setAnimationInterval() function:

CocosDenshion::SimpleAudioEngine::sharedEngine()->preloadBackgroundMus
ic("bgMusic.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>playBackgroundMusic("bgMusic.wav",true);

Here, first we get the shared instance of SimpleAudioEngine and ask it to preload
the bgMusic.wav file, and in the next line, we ask it to play the file. The play function
takes in two variables: the first is the name of the file and second is boolean. You can
set it to true if you want the music to loop the track continuously.

Chapter 9

[193]

Also, in applicationDidEnterBackground and applicationDidEnterForeground,
make sure that the following two lines are uncommented respectively:

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>pauseBackgroundMusic();

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>resumeBackgroundMusic();

This will make sure that the background music will pause/resume as the application
enters the background/foreground. Now, if you build and run the game, you should
hear the background music playing.

Adding sound effects
Next, we will add the sound effects for the game, but as with the background
music, we have to preload the files in advance. So right under where we played the
background music in applicationDidFinishLaunching, add the following code to
preload files for six sound effects:

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>preloadEffect("enemyKill.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>preloadEffect("fireRocket.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>preloadEffect("gunshot.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>preloadEffect("playerKill.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()->preloadEffect("pop.
wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>preloadEffect("rocketExplode.wav");

Notice that the code looks very similar to how we loaded the background music.
The only difference being that instead of preloadBackgroundMusic, now we
have preloadEffect.

Once the sound effects have been loaded, we can now play the effects.

Adding Sounds and Effects

[194]

First, in MainMenuScene.cpp, we want the pop sound to be played when player
clicks on the play or options button. So, in the playGame() and optionsScene()
functions, add the following code:

CocosDenshion::SimpleAudioEngine::sharedEngine()->playEffect("pop.
wav");

Similarly, in the OptionsMenuScene.cpp file, add the previous code in the
mainMenu() and reset() functions. Also in the HelloWorldScene.cpp file, add it
in the mainMenuScene() function, and in the HUDLayer.cpp file, add it in the
pauseGame() and resumeGame() functions.

Now, whenever you click a button on the screen, you will hear a pop sound. Let's
now add the other sound effects in the game.

In the HelloWorldScene.cpp file, in the fireRocket() function, add the sound
effect for the rocket being fired:

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>playEffect("fireRocket.wav");

In the update function in the GameplayLayer.cpp file where we check for collision
between the rocket and enemy right after where we update the score, add the
following code that plays the enemy getting killed and the rocket explosion sounds:

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>playEffect("enemyKill.wav");

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>playEffect("rocketExplode.wav");

In the same file where we check for collision between the player and enemy bullet,
before setting gameover to be true, add the following code to play the enemy
kill sound:

CocosDenshion::SimpleAudioEngine::sharedEngine()-
>playEffect("playerKill.wav");

Finally, to add the sound effect when the enemy shoots a bullet, we open Enemy.cpp
and add the following code in the shoot() function:

CocosDenshion::SimpleAudioEngine::sharedEngine()->playEffect("gunshot.
wav");

That is all. Now, if you build and run the project, you will hear the sound effects
in action.

Now, there is still one more feature you can add, that is, you can disable or enable
the background if you don't want it to keep playing in the background.

Chapter 9

[195]

Adding the mute button
In order to keep track of whether the background music has been muted, we will
create a user default variable of the bool type, which will help the system remember
whether the mute button was pressed the last time or not. If it was muted the last
time, the game will pause the music; if not, it will start resuming the music.

To toggle between mute on and off, we will use a new button type named toggle,
which will go between the two button states. Let's go ahead and implement it.

First, in the AppDelegate.cpp file, add the following line right before calling the
pauseBackgroundMusic() and applicationDidEnterBackground() functions in
the resumeBackgroundMusic() and applicationDidEnterForeground functions
respectively. This will get the current state of the button from UserDefault. Notice
that this time, we are using a boolean variable instead of an int variable, which we
have been using to keep track of scores earlier:

bool isPaused = CCUserDefault::sharedUserDefault()-
>getBoolForKey("tinyBazooka_kSoundPausedKey");

Next, enclose pauseBackgroundMusic() and resumeBackgroundMusic() in the
applicationDidEnterBackground() and applicationWillEnterForground()
functions, respectively in the following if statement so that they are called only if
isPaused returns false:

// This function will be called when the app is inactive. When comes a
phone call, it's be invoked too
void AppDelegate::applicationDidEnterBackground() {
 CCDirector::sharedDirector()->stopAnimation();

 // if you use SimpleAudioEngine, it must be pause
 bool isPaused = CCUserDefault::sharedUserDefault()-
>getBoolForKey("tinyBazooka_kSoundPausedKey");

 if(isPaused == false)
 {
 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>pauseBackgroundMusic();
 }
}

// this function will be called when the app is active again
void AppDelegate::applicationWillEnterForeground() {
 CCDirector::sharedDirector()->startAnimation();

 // if you use SimpleAudioEngine, it must resume here

Adding Sounds and Effects

[196]

 bool isPaused = CCUserDefault::sharedUserDefault()-
>getBoolForKey("tinyBazooka_kSoundPausedKey");

 if(isPaused == false)
 {
 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>resumeBackgroundMusic();
 }
}

Next in the init() function of MainMenuScene.cpp, to check whether the
background music needs to be played at the start of the game, we check whether
the value of the UserDefault variable is paused or not. If it is paused, pause the
background music at the start; otherwise, let it resume:

 //check if background music needs to be played

 bool isPaused = CCUserDefault::sharedUserDefault()-
>getBoolForKey("tinyBazooka_kSoundPausedKey");

 if(isPaused == true)
 {
 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>pauseBackgroundMusic();
 }
 else
 {
 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>resumeBackgroundMusic();
 }

Now that we have all the conditions established, let's create the pause and resume
toggle buttons in the OptionsMenuScene, where we will set the value for the
UserDefault variable.

In OptionsMenuScene.h, add the following CCMenuItem variables and the
SoundOnOff() function, which will be called once the toggle button is pressed:

 CCMenuItemImage* soundOnItem;
 CCMenuItemImage* soundOffItem;

 voidSoundOnOff(CCObject* sender);

Chapter 9

[197]

In the init() function in OptionMenu, add the following code right after where we
set the position for pmainMenuItem:

//sound onoff items
soundOnItem = CCMenuItemImage::create("_bookgame_UI_soundON.png","_
bookgame_UI_soundON.png", this,NULL);

soundOffItem = CCMenuItemImage::create("_bookgame_UI_soundOFF.png","_
bookgame_UI_soundOFF.png", this,NULL);

We first initiate the soundOnItem and soundOffItem variables by giving the two
images that needs to be initiated with. Next, we get the state of CCUserDefault for
the desired key:

bool isPaused = CCUserDefault::sharedUserDefault()-
>getBoolForKey("tinyBazooka_kSoundPausedKey");

We then create a variable named soundToggleItem of the CCMenuItemToggle
type. We initiate it by first checking whether the isPaused variable is true. If it is
false, we initiate it with soundOnItem first and then soundOffItem. Otherwise, if
the isPaused variable is true, we give it soundOffItem first and then soundOnItem.
Then, as always, we set the position of soundToggleItem:

CCMenuItemToggle* soundToggleItem;

if(isPaused == false)
{
soundToggleItem = CCMenuItemToggle::createWithTarget(this,menu_selecto
r(OptionsMenu::SoundOnOff),
soundOnItem, soundOffItem,NULL);
}
else
{
soundToggleItem = CCMenuItemToggle::createWithTarget(this,menu_selecto
r(OptionsMenu::SoundOnOff),
soundOffItem, soundOnItem,NULL);
}

soundToggleItem->setPosition(ccp(visibleSize.width* 0.5, visibleSize.
height * 0.5));

Next, we add soundToggleItem to the CCMenu items:

CCMenu* pMenu = CCMenu::create(pmainMenuItem,
presetItem,soundToggleItem, NULL);

Adding Sounds and Effects

[198]

Finally, we implement the SoundOnOff() function.

We first convert the sender type to CCMenuItemToggle. Then, we call the pop sound,
as this function is called whenever the toggle button is clicked. Then, it is checked
whether the selected item is soundOffItem or soundOnItem. If it is soundOffItem,
we set the key for UserDefault to true, pause the background music, and
perform a flush so that it gets stored in memory. Otherwise, if the selected item is
soundOnItem, we set the key to false, resume the background music, and flush the
value. Have a look at the following code:

void OptionsMenu::SoundOnOff(CCObject* sender)
{
 CCMenuItemToggle *toggleItem = (CCMenuItemToggle *)sender;

 CocosDenshion::SimpleAudioEngine::sharedEngine()->playEffect("pop.
wav");

 if (toggleItem->selectedItem() == soundOffItem)
 {
 CCUserDefault::sharedUserDefault()-
>setBoolForKey("tinyBazooka_kSoundPausedKey", true);
 CCUserDefault::sharedUserDefault()->flush();

 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>pauseBackgroundMusic();

 }
 else if (toggleItem->selectedItem() == soundOnItem)
 {
 CCUserDefault::sharedUserDefault()-
>setBoolForKey("tinyBazooka_kSoundPausedKey", false);
 CCUserDefault::sharedUserDefault()->flush();

 CocosDenshion::SimpleAudioEngine::sharedEngine()-
>resumeBackgroundMusic();
 }
}

Chapter 9

[199]

Now if you look at the options menu, you will see the sound button and you will be
able to toggle between the two button states, and that is all:

Summary
So, in this chapter, we saw how the audio engine in Cocos2d-x works and the different
formats it supports for different operating systems. We also saw Audacity—a free
audio software—that can be used to convert the audio formats for different platforms.
Then, we preloaded the background music and sound effects and saw how to play the
files in the game. Finally, we also included pause and resume toggle buttons, which
can be used to pause and resume the background music.

With this, the game is ready to be prepared for uploading on to the App Store. In the
next chapter, we will see how to create an icon for the game and look at the various
steps to create your Windows Phone Store account as well as upload the game on to
the store.

Publishing to the
Windows Phone Store

Finally, we arrive at the chapter we have been waiting for—we will now publish our
app on to the Windows Phone Store. In this chapter, we will look at the Windows
Phone Store and create a store account so that we can publish our newly created app.
Then, we will create the necessary icons, banners, and screenshots to upload on to
the Windows Phone Store. We will then create the app file, which would be needed
to be uploaded on to the Windows Phone Store. Finally, we will upload the file, icon,
and screenshots and publish the app on to the store.

This chapter will cover the following:

•	 A look at the Windows Phone Store
•	 Creating the store account
•	 Preparing/creating the app
•	 Creating the app and setting pricing
•	 Uploading the XAP file, icons, and screenshots for review

Publishing to the Windows Phone Store

[202]

A look at the Windows Phone Store
You can go to the Windows Phone Store by visiting http://www.windowsphone.
com/en-in/store. Like any virtual store, the Windows Phone Store is where all
the published apps are put up for sale. Shortly after we upload our game and it
gets approved, you can come and check it out right here. You can obviously browse
through the store and download free apps. To download apps on to your device, you
will have to register using your Windows password and give some basic details so
that the store can locate your phone and download the app/game to your device.

In the Apps+Games tab, there are four tabs that you can navigate through:
Spotlight, Apps, Games, and Purchase History. They are explained as follows:

•	 Spotlight: In Spotlight, you will find the latest and best games that are
highlighted. There are five categories: Topfree, New+Rising, Top Paid, Best
Rated, and Collections. On the right-hand side of the heading for each of the
categories, you can click on the button that allows us to see the full listing of
the apps in that category.

•	 Apps: In the Apps tab, you can sort the apps according to Top Free,
New+Rising, Top Paid, and Best Rated by clicking on the respective tab. On
the left-hand side, you can also filter through the apps in the category of your
choice. There are about 16 categories to choose from, such as entertainment,
music+ video, tools + productivity, sports, and business.

•	 Games: In the Games tab, you can sort the apps according to XBOX, Top
Free, New + Rising, Top Paid, and Best Rated. You can also select according
to the genre of your choice by clicking on action + adventure, card + board,
classics, educational, family, music, and platformer.

•	 Purchase History: If you already have a store account and have previously
downloaded some games, you can look at the purchases you made previously.

Creating the store account
To create a new store account, visit https://dev.windowsphone.com/en-us/join
and refer to the following steps:

1.	 You will need a Windows Dev Center account for this, but don't worry, you
can create one after clicking on the Accept and Continue button. To create an
account, you need to have a credit card or a token that is given to you if you
are part of the BizSpark or DreamSpark program.

Chapter 10

[203]

2.	 In the next step, you will be asked to enter or create the Windows Dev Center
account. You can keep the same login and password that you use to get into
any Windows OS.
Once inside, you will be asked to select an account type. If you are an
individual developer, you can choose the individual account; otherwise,
select the company account. If you select the company account, keep all
the details regarding your company ready, which you will need in order
to fill up the details and finish up the registration process:

3.	 Select Country/region and then select Enroll Now. I have selected Individual,
but the process for Company is similar.

Publishing to the Windows Phone Store

[204]

4.	 In the next section, you will be asked to provide the account details. Here,
you will need to fill in the first name, last name, e-mail address, phone
number, website, and postal address. Select the preferred e-mail language,
and in the display information, type in your name:

5.	 Once you click on Next, you will be asked to accept the terms and conditions
to proceed further. Take a printout of it, sit with your attorney, and go through
it in detail. If you are okay with it, click on the checkbox to accept the terms
and conditions and click on Next to proceed to the next stage.

6.	 Next, we make the payment. So, get your credit card or keep your token
number ready. If you are purchasing through the credit card, fill in the details
of the credit card and also provide the billing address in order to process the
payment. Click on Next to proceed to the next section.

Chapter 10

[205]

7.	 In the Purchase section, you will check all the information that you have
provided till now. Go through it in detail and if you feel the need to change
anything, click on the Back button and make the necessary changes. This is a
very important stage, so take your time and check and recheck all the details.
When you are satisfied, click on the Purchase button and your order will
start processing.

8.	 Once the process is complete, you will be greeted with the following screen
and now you are ready to upload your apps/games. You should also receive
a welcome e-mail from Microsoft confirming the same.

9.	 As we will be publishing a free app, we don't have to set up a payment
account or a tax profile, and as we won't be placing any Microsoft ads, we
don't need to provide details for ad-funded apps. You can go back any time
and provide these details:

Publishing to the Windows Phone Store

[206]

Preparing/creating the app
In the previous chapter, we changed the display name of the app; we will now
change the icon of the app so that it gets displayed when the app gets installed.

In the wp8Game project, in the Solution Explorer pane, double-click on
WMAppManifest.xml under the Properties folder. In the Application UI tab,
we will make the necessary modifications to it:

Chapter 10

[207]

Change Display Name and Tile Title to the name of the game if this is not already
done. In Description, add a small description about the game. Keep the Navigation
Page as default.

For the app icon, navigate to Cocos2d-x2.2.3\projects\wp8Game\proj.wp8-
xaml\wp8Game\wp8Game\Assets and replace the default ApplicationIcon.png
image with the image provided in the Resources folder of the chapter. This image
should be 100 x 100 pixels.

Next, for the supported resolutions, uncheck wxga and 720p and make sure wvga is
checked. In Tile Template, set it to Template Flip. For small, medium, and large Tile
Images, replace the appropriate tile images in the Cocos2d-x-2.2.3\projects\
test\proj.wp8-xaml\test\test\Assets\Tiles folder shown as follows:

•	 Small: FlipCycleTileSmall.png
•	 Medium: FlipCycleTileMedium.png
•	 Large: FlipCycleTileLarge.png

Now when you build and run the project, you should see the app icon, and you should
also be able to cycle through the icons once you pin the app to the start screen:

Finally, like I said in Chapter 1, Getting Started, we have to disable the fps information
from being displayed on the bottom left of the screen. Open AppDelegate.cpp and
set setDisplayStats to false in the applicationDidFinishLaunching() function:

pDirector->setDisplayStats(false);

Now select Release instead of Debug before building the project.

Publishing to the Windows Phone Store

[208]

As the debug mode has a lot of extra checks, initializers, and features that help
in debugging the code, it is not optimized like the release version. As it is not
optimized, the game will run slower that the release mode. So, make sure that you
build your app in the release mode, as we will be taking the .XAP file generated and
uploading the release version of the .XAP file to the Windows Phone Store.

The .XAP file is ready to be uploaded and distributed, but before we do this, let's
test the app locally on the device by sideloading the application on to the device.
Sideloading is the process of transferring data between two local devices unlike
upload or download, which are between a local and remote machine.

On the Windows main screen, type in Application Deployment and select the
application. Once the application opens, select the Target as Device, and in XAP,
click on the Browse button and navigate to cocos2d-x-2.2.3\projects\test\
proj.wp8-xaml\test\test\Bin\ARM\Release:

Select the PhoneDirect3DXamlAppInterop_Release_ARM.xap file. Before clicking
on Deploy, make sure that the device is connected and unlocked. Also, if you have
the application already installed on the device, uninstall it before deploying. Once
deployed, click on the icon, start the game, and test whether it is working properly. If
there are any bugs or improvements that you would like to make, make the necessary
changes, build it in the release mode, and test it to your satisfaction. Once you are
satisfied, we can upload the .XAP package on to the app store.

Chapter 10

[209]

Creating the app and setting pricing
To submit an app, go to the app submission portal at https://dev.windowsphone.
com/en-us/dashboard and click on the Submit App button on the top-right area of
the screen. Once the page opens, we have to fill in the details in the required section
first. In the App Info section, we will create the app by giving it a name, setting the
price, and entering other information to create the app. So, click on the 1 (blue)
button next to App Info to enter the required details:

Publishing to the Windows Phone Store

[210]

Here, in the Name field, fill in the name of the app that you would like to create.
The name of the app should be the same one that you entered for the name in
WMApplicationManifest.xml. If the name has been taken, you will have to choose a
different name, make changes in the manifest file, and rebuild the game for upload.

In the App category section, select the type of the app; as we are uploading a
game, select Game and in the subcategory, select the genre of the game such as
Action+Adventure, Classic, and Educational:

Chapter 10

[211]

In the Pricing section, select the base price. As we will be publishing a free game, we
keep it at 0. Leave the offer free trial checkbox unchecked, as we are not offering a
free trial for the game.

If you want to create a commercial game, you can input at what price you want to
see the game. However, you will need to complete the tax and banking info to be
able to start charging your customers. For this, go to the Account Summary section
under Accounts, and fill in the required details.

Leave the Market distribution box checked to distribute to all available markets at
the base price, as we want people all over the world to enjoy our game.

If you click on More options, you will see that there are additional options for you
to change. For Distribution channel, by default Public store is selected. If you want,
you can select Beta and beta test your game by providing the application to beta
testers who can provide you with feedback to fix bugs and polish your game for the
end user to have a better user experience while playing your game.

In the Publish section, you can choose to either provide a date on which you want
your app to be released, or you can let it be set to default, in which case the app will
be published immediately once it is ready to be published.

If you have acquired certifications for the game, you can include it in the next
section; otherwise, this is not required.

Click on Save. You will now be taken back to the Submit App page.

Uploading the XAP file, icons, and
screenshots for review
Next, click on the blue icon on the left of Upload and Describe your packages:

Publishing to the Windows Phone Store

[212]

Once the page loads, under Packages, click on Add new and navigate to the .XAP
file we used to deploy on the device and click on Open. You are now uploading the
package on to the site. Once done, the details regarding the app will be generated:

Here, you can see the name of the file, its size, and which OS and resolution
it supports.

Next, in the Package Store Listing Info, you need to provide the description for the
store and provide keywords for the app. You will have to upload the app icon and
screenshots for it to be displayed along with the app on the app store. If you wish
to attach promotional images, you can do so by uploading the background image,
square icon, and wide icon accordingly. The size of the image is mentioned on top
of where you will be uploading the images. Make sure that the size and format of
the image is same as required, otherwise it won't be accepted. To upload the images,
click on the plus icon on the type of image that you want to upload, select the image
from your directory, and click on Open.

Chapter 10

[213]

Once you have uploaded all the images, you can click on Save:

You will be again taken back to the Submit App page. If you are adding in app
advertising of Microsoft, want to select custom price for a region, or enable map
services, you can do so by going into these sections in the Options sections,
otherwise you can click on Review and Submit.

Publishing to the Windows Phone Store

[214]

Once you click on Submit, you will be taken to the Review and Submit page, where
you will have the opportunity to review the details of the app. If everything is in
order, you can click on Submit at the bottom.

After successful submission of the app, you will get a screen as follows telling you
that the app was submitted successfully, otherwise it will show the details that are
still required for you to submit the app. If the submission fails, don't worry, you can
make the required changes and submit again as many times as you want.

Depending upon the features you add on to the app, it might take from one to five
business days to get the app certified. Once the app has cleared the certification
process, you will receive an e-mail from Microsoft informing you that the app is
ready to publish on the Windows Phone Store. If you have selected the app to be
published automatically, once the app has been certified, the app will be available
on the app store and ready for download by everyone. If there is anything additional
required to be done for the certification process to complete, you will receive an
e-mail saying so. Upon this, you will have to log in to your account, review the
document, fix the required query, and reupload the XAP file.

Once the app is successfully published, it will show in the dashboard as published in
the developer portal. It will also have a link to the app on the Windows Phone Store,
which you can click to get to the page. You can even search for the app on the device
by going to the store and searching for the app by the name of the app or developer.

Chapter 10

[215]

The following is a screenshot of Ms.tinyBazooka on the Windows Phone Store. You
can download it for your device at http://www.windowsphone.com/en-in/store/
app/ms-tinybazooka/773469ec-26dd-480e-986c-0f31355b1f7d:

Publishing to the Windows Phone Store

[216]

Summary
In this chapter, we have seen how to upload the app on the store by first and
foremost creating and preparing the XAP file ready to be uploaded on the Windows
Phone Store. We went through the process of creating a store account, saw how to
create a new app, and then filled in all the required information for the application to
be prepared for certification process.

In the next chapter, which is the final chapter, we will see how to make the same app
run on different platforms, such as iOS, Android, Blackberry, and Windows Phone,
without changing a single line of code.

Porting, References,
and Final Remarks

Hurray! You have finally done what you always wanted, that is, to publish your
game in the app store. However, there are other stores such as Google Play, iTunes,
BlackBerry World, and Amazon Appstore. How can you make the game run on so
many different devices and OSs so that you can upload it on to these stores?

In this chapter, we will see how to do this. The main reason for choosing Cocos2d-x
is the ease with which you can port the game with the same code and run it on
different devices running completely different OSs. Obviously, some small changes
will need to be made, but it is still better than spending months recoding the same
game for different platforms.

Since we have been working on Windows all this time, we will first take a look at
how to build the game for Android and BlackBerry simulators. Later, we will move
on to a Mac machine to build the same project for iOS. However, if you have been
following on the Mac until now, don't worry, as the same steps can be used to run
the code for Android and BlackBerry on the Mac as well—you just have to remember
to download the respective versions for Mac instead of Windows.

The topics covered in this chapter are as follows:

•	 Running the game on the Windows desktop
•	 Running on an Android simulator using the Eclipse IDE
•	 Running on the BlackBerry simulator using the Momentics IDE
•	 Running on an iOS simulator using Xcode
•	 Additional learning resources
•	 Summary, final remarks, and a thank you note

Porting, References, and Final Remarks

[218]

Running the game on the Windows
desktop
To run the game on the Windows desktop, go to the Cocos2d-x-2.2.3 project folder
and instead of going to the proj.wp8Game - XAML folder, go to the proj.win32
folder. Right-click on the .sln file and open it with Visual Studio.

After the project opens up, go to the Solutions Explorer and right-click on the
wp8Game project; right-click on the classes folder and select Add Existing Item.
Navigate to the classes folder in the wp8Game project folder and select all the files
except the AppDelegate and HelloWorldScene files and click on Add.

Next, since our game is designed to run on an 800 x 480 resolution, we have to
change the window size to the same. In the AppDelegate.cpp file, add the following
lines of code in the applicaitonDidFinishLaunching function:

CCDirector* pDirector = CCDirector::sharedDirector();
CCEGLView* pEGLView = CCEGLView::sharedOpenGLView();

#if (CC_TARGET_PLATFORM == CC_PLATFORM_WIN32)
 pEGLView->setFrameSize(800,480);
#endif

pDirector->setOpenGLView(pEGLView);

As the preceding code is just to run the game on the Windows desktop, Cocos2d-x
has platform-specific macros that you can use when you a want a particular set
of code to be implemented only while running on a specific platform. Here, CC_
TARGET_PLATFORM is the current platform that the game is running on. The preceding
code checks whether the current platform is WIN32; if it is, then the code following it
will be executed.

Similar to checking for Win32, you can also check whether the game is running
on platforms such as iOS and Android by checking CC_TARGET_PLATFORM against
CC_PLATFORM_IOS, CC_PLATFORM_ANDROID, and so on. This comes in handy
particularly when you have to play a different audio format file depending on
the platform.

Now, run the game by clicking on the Local Windows Debugger button at the top
and it should start building. That's all! You can play the game on your desktop now.
Left-click on the Play button to start playing.

To play the game, left-click on the left-hand side of the screen to go up and down
and click on the right-hand side of the screen to shoot.

Chapter 11

[219]

You can see that the game runs the same without making much of a change to the
code. In fact, you are running the game without making a single change to the
gameplay code.

Running the game on the Android
simulator using the Eclipse IDE
Making the game run on Android is a bit tedious; the process for BlackBerry and iOS
is comparatively easier, but let's get into this first.

To run the game on Android, you will need the following:

•	 Android SDK (ADT Bundle): This includes the Eclipse IDE and SDK
•	 Android NDK: This is required to the compile the C++ code
•	 JDK or JRE: This is required otherwise Eclipse won't work
•	 Cygwin: This is needed to run the build command if you are running it on

Windows; it is not required for Mac or Linux

Porting, References, and Final Remarks

[220]

Download the SDK for your platform from http://developer.android.com/sdk/
index.html.

Once downloaded, unzip to a folder on a drive and remember the location as it will
be needed later. The unzipped folder will contain two folders; one folder is called
Eclipse, which has the IDE, and the other folder is called sdk, which contains the
different versions of SDK. We will be downloading the SDK through Eclipse later.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Chapter 11

[221]

You can start Eclipse by going to the folder and double-clicking on the eclipse.exe
file. If you already have JDK or JRE installed, it should open up without any errors;
otherwise, download JRE or JDK from the following links. Although it should be okay
if you download JRE, it is usually better to download JDK. Make sure you download
for the correct OS. Also, make sure that if you're using a 64-bit OS, you download the
64-bit version of the software.

•	 JDK: http://www.oracle.com/technetwork/java/javase/downloads/
jdk7-downloads-1880260.html

•	 JRE: http://www.oracle.com/technetwork/java/javase/downloads/
jre7-downloads-1880261.html

Once installed, you should be able to start Eclipse.

The next step will be to download the NDK. Download it from
https://developer.android.com/tools/sdk/ndk/index.html:

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
https://developer.android.com/tools/sdk/ndk/index.html

Porting, References, and Final Remarks

[222]

After downloading it, extract the contents. It is better to create a new folder and
to cut-and-paste the ADT bundle and NDK in the same folder so that everything
related to Android development is in the same location. Let's call this folder
AndroidKit for future references.

Next, you will have to download Cygwin. This can be downloaded from https://
www.cygwin.com/; after downloading it, you can install it by double-clicking on the
EXE file. Click on Next until you reach the following screen:

Type make in the Search box, navigate to Devel, and click on make: the GNU version
of the 'make' utility. Once you click on it, it will change from Skip to Keep. Now, click
on Next and it will start downloading the module.

https://www.cygwin.com/
https://www.cygwin.com/

Chapter 11

[223]

Now that we have downloaded and installed all that we need, we will have to set it
up just like how we set up Python.

If you are running the game on Mac, you won't be setting the environment variables.
For the Android SDK, open Eclipse, go to Preferences, click on the Android tab
on the left-hand side panel, and click on Browse to navigate to the SDK location.
To link the NDK root folder, open the build_native.sh file with a text editor in the
proj.Android folder and, after AppName, add NDK_ROOT pointing to the ROOT folder
in your directory, as shown in the following line of code:

NDK_ROOT=/Users/siddharthshekar/Documents/Androidkit/ndk-r8c

You will have to include the NDK root location in all the future projects that
you'll create.

Open up the Environment Variables dialog like we did in Chapter 1, Getting
Started, and create a user variable name called ANDROID_SDK; this will contain
the location of the Android SDK on the drive. For the value, give the location of
the SDK on your machine; in my case, it is E:__Android_Kit\adt-bundle-
windows-x86_64-20140624\sdk. Make sure that it points to the sdk folder and
not just the root folder. Click on OK.

Next, we will set up the NDK root location. Similar to how we did before, create
a new user variable name called NDK_ROOT. This will contain the root folder of the
NDK. For the variable value, give the root of the NDK folder; in my case, it is
E:__Android_Kit\android-ndk-r9d. Click on OK when you are done.

For Cygwin, you can use the Path variable that you already created while configuring
Python. For the variable value, add ;C:\cygwin64\bin after what you entered for
Python. Don't forget the semicolon at the beginning.

We finally have everything set up to open up Eclipse and bring the Android project
in it. So, double-click on Eclipse to open it. Once it is open, right-click on the Package
Explorer window to the left and click on Import. Under the Android tab, select
Existing Android Code into Workplace and click on Next. In the root directory,
click on the Browse button, navigate to the wpGame project folder, select the
proj.android folder, and click on OK.

Porting, References, and Final Remarks

[224]

There will still be some errors; to fix these, we have to import the cocos2d folder.
So, right-click on Project Properties and select Java Build Path from the panel on the
left-hand side. Click on the Link Source button and navigate to the src folder under
Cocos2d-x-2.2.3/cocos2dx/platform/java and then click on OK.

Chapter 11

[225]

For the folder name, type cocos2d-x-src and click on OK. Now there shouldn't be
any errors in the project.

Next, we download SDKs so that we can support all lower-end devices. Before this,
go to Windows and Preferences. Select Android in the left-hand side panel, and
check whether the location of SDK Location is the same one that you entered in the
Environment Variables dialog. Now, go to the Window menu, click on Android
SDK Manager, and click on the checkboxes next to Android 4.4.2, 4.3, and 4.2.2
in the Android SDK Manager dialog (as shown in the next screenshot). This will
install the API's 17, 18, and 19. You can also install a lower version to make the game
compatible with lower-end devices.

Porting, References, and Final Remarks

[226]

Click on the Install Packages button, accept the license, and click on Install. This will
start downloading the SDKs, as shown in the following screenshot:

Open up the Android Manifext.xml file with a text editor and change the minimum
SDK version to 17 as shown:

<uses-sdk android:minSdkVersion="17"/>

Next, we have to create an Android Virtual Device to test the game on. Click on the
Window menu and select Android Virtual Device Manager. Click on the Create
button on the right-hand side.

For the AVD Name, type 480p. In Device, select Nexus S(4.0", 480x800: HDPI) and
select 4.4.2- API Level 17 as the target. If you want, you can select WVGA800 for
the skin. For RAM, in the Memory options, type 343 and let VM Heap be 32. For
internal storage, select 200 and for Emulation Options, check Use Host GPU. Click
on OK and close the Android Virtual Device Manager window.

Chapter 11

[227]

For the project to run, we also need to include all the C++ files that we had created
for this project. In the Package Explorer window, under Project, navigate to the jni
folder, open Android.mk in a text editor, and add the following lines of code:

LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp\
 ../../Classes/Enemy.cpp\
 ../../Classes/HUDLayer.cpp\
 ../../Classes/MainMenuScene.cpp\
 ../../Classes/OptionsMenuScene.cpp\
 ../../Classes/ParticleLayer.cpp\
 ../../Classes/ParticleSpin.cpp\
 ../../Classes/Projectile.cpp\
 ../../Classes/GameplayLayer.cpp\
 ../../Classes/ScrollingBg.cpp\
 ../../Classes/ScrollingBgLayer.cpp

Make sure there are no typos and the files are spelled exactly as they are with the proper
extensions. Also, make sure that there are no unnecessary spaces or slashes between
characters, otherwise the code will not compile.

Remember that each time you add a new class, you have to include the .cpp file.

Now, let's build the project. Double-click on the Cygwin64 terminal shortcut on the
desktop. Type CD ", drag-and-drop the proj.android folder in the window, and
then close the quotes. Hit the Enter key and it will navigate to the folder. Type ls
and it will show the contents of the folder:

Porting, References, and Final Remarks

[228]

To start building the project, type ./build_native.sh along with the dot and the
slash in front. Now the project should start building. Once the build completes,
go to Eclipse. If you run the project now, you will find that there are some errors.
To disable them, right-click on the project and go to Properties. In the Properties
window, navigate to C/C++ General | Code Analysis, uncheck all the boxes, and
click on OK.

Now, right-click on the project and click on Run As Android Application. Your
project should run. If you get an error regarding the CloseNormal.png file, then
there is a problem with permissions. For this, in the Project Explorer window in
Eclipse, right-click on build_native.sh, select Open with text editor, and change
lines 60 and 64 as shown. This will provide permissions to access the assets folder:

cp -rfp "$file" "$APP_ANDROID_ROOT"/assets

cp -p "$file" "$APP_ANDROID_ROOT"/assets

Now if you build and run, it should start running on the AVD, as shown in the
following screenshot. You can press 7 or 9 on the NumPad of the keyboard to rotate
the view:

Phew!! Now you have the game running on the Android simulator. Next, we will see
how to get the same game running on the BlackBerry simulator.

Chapter 11

[229]

Running on the BlackBerry simulator
using the Momentics IDE
To run the game on the BlackBerry simulator, you will need the Momentics IDE,
which you can download from the BlackBerry developer website at developer.
blackberry.com/native/download.

Select your operating system and click on the big blue Momentics IDE 2.1 button
to start downloading the IDE. We will download the simulator separately through
the IDE.

Once downloaded, double-click on the EXE file to install it. After installing,
double-click on the Momentics IDE shortcut to launch it. Click on OK when asked
for the default workspace. Once the application launches, it will automatically start
looking either for a device or a simulator. If you have a device connected, select it or
select No Device. Uncheck Download BlackBerry Simulator and click on Next. In
the API Level dropdown, select Version 10.0 and click on Next. If you select a higher
version, the project will not run on the simulator. If you have a device, it will check
the API level for the device and start downloading the respective SDK.

We also need to download the simulator. There are three dropdowns next to the
Hammer, Play, and Stop buttons. Under the third dropdown from the left, select
Manage Devices, click on the Simulator tab, and then select Begin Simulator Setup.
From the list, select Simulator for BlackBerry Native SDK 10.0 and click on Install
against it. This will start downloading the simulator.

Once the SDK and simulator are downloaded, you need to install to run the simulator.
On Mac, you will need VMWare Fusion. You can download it for Windows from
http://www.vmware.com/products/workstation/workstation-evaluation or for
Mac from http://www.vmware.com/products/fusion/.

Install VMWare Workstation or Fusion. Once installed, Momentics automatically
opens the virtual machine using this. Otherwise, click on Open a Virtual Machine
and select the .vmx file present in the simulator folder where you installed the IDE.

developer.blackberry.com/native/download
developer.blackberry.com/native/download
http://www.vmware.com/products/workstation/workstation-evaluation
http://www.vmware.com/products/fusion/

Porting, References, and Final Remarks

[230]

After the simulator boots up, you can connect it to the IDE so that it starts building
on the simulator. Go to the Simulator section again from the drop-down menu and
click on Autopair. If it doesn't pair automatically, punch in the IP address that is at
the bottom-left corner of the simulator. Once it is paired, click on Connect and you
can test the game on the simulator.

With the simulator connected, we can import the project. Right-click on Project
Explorer and click on Import. In General, select Existing Project into workspace.
Next, click on Browse and select the root folder of Cocos2d-x.

Chapter 11

[231]

First, click on Deselect All and then select the Box2D, Chipmunk, cocos2dx, and
CocosDenshion, extensions, and wp8Game BlackBerry projects from the list and
click on Finish. Now all the projects will get imported into the IDE. Make sure none
of the checkboxes in the options or the working sets are selected.

Before we build, there is small change that we have to make in the Cocos2d-x-2.2.3
folder otherwise the project won't build and will give errors.

In the extensions project in the Project Explorer window go to GUI, then EditBox,
and then double-click on the CCEditBoxImplWp8.cpp and CCEditBoxImplWp8.h
files. In the .h file right before where the ExtensionMacros.h file is included, add
the following code:

#include "cocos2d.h"
#if (CC_TARGET_PLATFORM == CC_PLATFORM_WINRT) || (CC_TARGET_PLATFORM
== CC_PLATFORM_WP8)

At the end of the file after #endif add another #endif.

Porting, References, and Final Remarks

[232]

Next, we have to do the same in the .cpp file, but this time, do it after the two
include files. You don't have to include cocos2d.h again. Just include the #if and
#endif statements at the top and bottom, respectively.

Now select all the projects in the Project Explorer window, right-click on it, navigate
to Build Configuration | Set Active and set it to Simulator. If you are using a
device, select Device-Debug with all the projects selected, right-click, and this time
click on Build Project.

After the projects are built, there is just one small modification that needs to be made
to the bar-descriptor.xml file of the wp8Game project in order to make the game
work in the landscape mode. Add the following line in the intialWindow section of
the code:

 <initialWindow>
 <systemChrome>none</systemChrome>
 <transparent>false</transparent>
 <aspectRatio>landscape</aspectRatio>
 </initialWindow>

Select the wp8Game project from the second drop-down menu from the top and click
on the Play button. If everything has been done correctly, the game should now run
on the simulator.

As shown in the next screenshot, in the simulator, you will see that the game runs
but the background seems to be distorted and everything seems out of alignment.
This is because all assets are designed for a resolution of 800 x 480. That's why it
looked fine on the Windows Phone 8 and Android simulators. The resolution of a
BlackBerry phone is 1280 x 768, so the images do not fit the screen.

To overcome this, we have to create asset sets for all the sets of resolutions for which
the game needs to work on and put them in the resources folder. Depending on the
resolution of the device on which the game is running, Cocos2d-x needs to be told to
shift to the resources that are more suited for the device.

Chapter 11

[233]

You can take a look at the Making a Universal App tutorial written for Cocos2d-x to
see how to make the game adapt to different screen resolutions. The tutorials can be
found at http://www.raywenderlich.com/48180/cocos2d-x-tutorial-making-
a-universal-app-part-1.

http://www.raywenderlich.com/48180/cocos2d-x-tutorial-making-a-universal-app-part-1
http://www.raywenderlich.com/48180/cocos2d-x-tutorial-making-a-universal-app-part-1

Porting, References, and Final Remarks

[234]

Running on an iOS simulator using Xcode
To bring the project onto Mac, you can simply copy the whole Cocos2d-x-2.2.3
folder from your Windows machine and paste it anywhere on the Mac machine and
that's all. There are no additional steps required.

If you would like to know how to create the project on Mac, open up the terminal
and navigate to Cococs2d-x-2.2.3/tools/project-creator and type the
command we typed to create the project in Windows; but here you don't have to
type python first:

Chapter 11

[235]

To run the game on Xcode on Mac, you will have to first install Xcode on your
machine if you haven't already done so. You can click on the store, search for Xcode,
and start downloading it, as shown in the following screenshot. Any version of
Xcode is fine if you are running on the simulator. If you have a device, then you will
have to pay $100 and create a developer account to test your game on the device.

Porting, References, and Final Remarks

[236]

Once you have installed Xcode, you can open up the wp8Game.xcodeproj file in the
proj.ios folder under the Wp8Game folder. Once the project opens in Xcode, open
the classes folder in Xcode and you will see that except for the AppDelegate and
HelloWorldScene files, the rest of the classes are missing. You have to copy the rest
of the classes from the classes folder in the system to the classes folder in the
Xcode project. Select all the required files and drag-and-drop them to the classes
folder in Xcode.

In the Choose options for adding these files dialog, uncheck Copy items into
destination group's folder (if needed). If you don't uncheck it, it will throw an error
as the files in the folder already exist in the system.

Now, similarly, you have to drag-and-drop all the assets from the resources folder of
the system to the resources folder in the Xcode project. Once again, make sure that
Copy items into destination group's folder (if needed) is unchecked.

With all the files in place, it is just a matter of clicking the Play button in the top of
the Xcode window.

Once the project is successfully built, the game will start running on the simulator,
as shown in the following screenshot:

Chapter 11

[237]

Additional learning resources
For additional resources, there are a lot of websites, blogs, and forums that you can
visit to improve your game development skills.

Cocos2d-x
For any questions regarding Cocos2d-x, its official website (http://www.
cocos2d-x.org/) has a Learn section where you can access the Wiki, API
References, and Documentation tabs.

It also has a Showcase section where the games created with Cocos2d-x are
highlighted. So, when you create your next awesome game, you can showcase it
there for promotional purposes.

Cocos2d-x has a very strong community. You can access it using the Community tab.
The Forums are the strongest resource. You can post your query by creating a topic,
and in most cases, there will be someone from the community who will respond to
you within a couple of hours. It also has a search feature where you can search for
the problem and possible solutions will immediately pop up in a list for you to go
through so that you don't have to wait for the solution.

http://www.cocos2d-x.org/
http://www.cocos2d-x.org/

Porting, References, and Final Remarks

[238]

You can even help the community by raising a new issue that you found so that
others can see it and at least know that a problem exists. If you have the solution
for it, well and good; post it so that others facing the same problem can know
how to get around it.

The Hub tab under the Community tab has a lot of tools that are available to
make game development easier. There are some tools that are developed by the
community. If you create a tool for Cocos2d-x, you can share it here (as shown)
so that others can enjoy your creation:

Chapter 11

[239]

Cocos2d-Swift
Since Cocos2d-x is a part of Cocos2d, which is written in Objective-C, you might also
want to check out Cocos2d at http://www.cocos2d-swift.org/, especially if you
are familiar with Objective-C.

Once you have understood how Cocos2d-x classes work, you will be able to see the
similarities between the code bases of both. With this knowledge, you can port cool
effects and shaders from Cocos2d to Cocos2d-x.

It is also helpful if you want to integrate things such as ads and in-app purchases in
the iOS version of your game as you might end up writing a small Objective-C class
and a bridge class to integrate with your C++-based game. The following screenshot
shows the official site of Cocos2D-Swift:

The site, www.raywenderlich.com, has a collection of tutorials that cover a range
of topics from game development to core graphics and OpenGL ES to basic
mathematics that are used in games. It also covers a lot of game development
frameworks apart from Cocos2d-x.

http://www.cocos2d-swift.org/
www.raywenderlich.com

Porting, References, and Final Remarks

[240]

There is also a tutorial on how to make a universal game using Cocos2d-x which will
work on all iOS and Android devices. If you want to make a multiresolution game,
I suggest you check out the tutorial.

The site also has tutorials on how to create games such as Angry Birds, Jetpack Joyride,
and so on, which you can go through and get a basic understanding of how these
games are made and how the mechanics in the games are programmed.

You can also purchase Beat' em up, Platformer, and Space Game starter kits from the
site, which are all written in Cocos2d. As I mentioned earlier, you can refer to the
code and see how you can port these games to Cocos2d-x.

gamedev.stackexchange.com/stackoverflow
Sometimes, you might just want a specific answer to a specific problem. You can ask
the same question in the forum, but as the forums are accessed by all kinds of people,
novice and expert, you might not get the right answer, or the answer you get might
be for an older version.

On stackoverflow.com and gamedev.stackexchange.com both questions and
answers are rated on quality, so if you find an answer to your problem, you can sift
through the answers and select the answer that was most helpful to you. Also, you
can rate others, answers and questions so that others having a similar problem know
which answer was most helpful for the problem.

stackoverflow.com
gamedev.stackexchange.com

Chapter 11

[241]

However, be careful because if you answer too many questions incorrectly, or ask a
question that has already been asked before a couple of times, you will be banned
from answering or asking questions. So, search thoroughly before asking questions
and, while answering, make sure your answer actually works. The following is a
screenshot of Stack Overflow:

Final remarks and a thank you note
In this chapter, we saw how to run the same game that we developed for a Windows
Phone and made it work on other platforms by setting up the different IDEs as well
as running the game on the different device simulators.

What we have covered in this book is just the tip of the iceberg. Literally, each of the
topics in the book could have a book of its own. There are still lots that we couldn't
cover, such as Box2D, importing and exporting data using XML, ad integration,
and IAP. This is mainly because of the complex nature of the topics, as they require
learning additional concepts.

I hope the book was informative and educational. With these basic skills and tools,
a variety of games can be made. Most of the time, the best games are the ones that
find very creative ways of using simple mechanics to create a completely different
gameplay experience.

If you have any questions, I am very active in the Cocos2d-x forum; just shout out
and I will respond. Even if you don't have any questions and if you see my post,
just stop to say hi and get in touch.

Porting, References, and Final Remarks

[242]

I also have a blog at http://growlgamesstudio.tumblr.com/ where I mostly post
about Cocos2d-x and provide helpful tips. Do check it out and leave a comment
if you find it helpful. You can also check out the games we make at Growl Games
Studio (www.growlgamesstudio.com) using Cocos2d-x and also get in touch with us
using the Contacts section. Also, don't forget to like our Facebook page, https://
www.facebook.com/GrowlGamesStudio, so that you can get the latest updates on
our games and Cocos2d-x. The following screenshot shows my blog:

I can't tell you how excited I am about bringing this book to you, and I am looking
forward to seeing your creations.

Thanks for reading this book and happy game development!

http://growlgamesstudio.tumblr.com/
www.growlgamesstudio.com
https://www.facebook.com/GrowlGamesStudio
https://www.facebook.com/GrowlGamesStudio

Index
Symbols
.fnt file extension 101
.mp3 file

converting, to .wav file 191
.plist extension 159
.ttf file extension 101

A
accelerometer

movement, enabling with 49-51
Android SDK

URL, for downloading 220
Android simulator

Cocos2d-x project running, Eclipse used 33
game executing, with Eclipse IDE 219-228

Android Virtual Device (AVD) 33
Angle project 23
animation

about 123, 124
skeletal animation 125, 126
spritesheet animation 124, 125

app
creating 209-211
preparing 206-208
pricing, setting 209-211
submitting 209-211

app icon
creating 206-208
uploading, for review 211-214

applicationDidFinishLaunching
function 25

applicationWillEnterForeGround
function 26

Apply Chain feature 191
app name

modifying 186
Audacity

about 191
URL, for downloading 191

audio, Cocos2d-x
about 189-191
background music 190
sound effects 190

audio formats
.caf file 190
.mid file 190
.mp3 file 190
.ogg file 190
.wav file 190

autorelease pool
about 59
reference link 59

Axis Aligned Bounding Boxes (AABB). See
bounding box collision

B
background image

displaying 37-39
Background, Particle2dx 164
bitmap font generator

about 104
URL, for downloading 104

bitmap fonts 101
BlackBerry simulator

game executing, with Momentics
IDE 229-233

[244]

bool gameOver variable 92
bounding box collision 85
Box2D

about 88
URL 23
using 88, 89

C
CCArray 63
CCDelayTime action 49
CCDirector class 25
CCLabelBMFont

about 101
versus CCLabelTTF 102

CCLabelTTF
about 21, 101
versus CCLabelBMFont 102

CCLayer class, Cocos2d-x 20
CCMenu class, Cocos2d-x 21
CCObjects

about 63
reference link 63

CCRotateBy action 48
CC_SAFE_DELETE macro 59
CCScene class, Cocos2d-x 20
CCSequence action 49
CCSprite class, Cocos2d-x 20
CCTintTo action 48
character movement

about 40-43
enabling, with touches 46-49

Chipmunk
URL 24

circular collision 82-84
Cocos2d-Swift

learning resources 239
URL 239

Cocos2d-x
audio 189-191
classes 20
coordinate systems 19, 20
downloading, steps 15
functions, for control schemes 44
Gameplay scene 21, 22
inbuilt particle system 154

learning resources 237, 238
URL 14, 237
URL, for particle system 157

Cocos2d-x, classes
CCLabeITTF 21
CCLayer 20
CCMenu 21
CCScene 20
CCSprite 20

Cocos2d-x project
breakup 22-30
creating 17-19
running, on Android simulator

with Eclipse 33
running, on multiple platforms 30
running, on Windows (desktop mode) 31
running, on Windows RT (tile mode) 31
Solution Explorer structure 22

Cocos2d-x project, running on multiple
platforms

about 30
on Android simulator, Eclipse used 33
on iPhone simulator, Xcode used 32
on Windows RT (tile mode) 31
Windows (desktop mode) 31

Cocos2d-x Version 2.2.3
advantages 8

CocosDenshion 23
CocosStudio

URL 24
collision detection

about 82
bounding box collision 85
circular collision 82-84
coding 89-92
other methods 87
pixel perfect collision 86, 87

collision detection, other methods
Box2D 88, 89
point in shape 87
separate axis theorem 88

Color Settings, Particle Designer
about 161
Blend Source and Destination 161
Start and End Color 161

[245]

Color&Shape, Particle2dx 163
coordinate system 19, 20
createEnemy() function 58
custom controls 52, 53
custom particle system

creating 167-171
Cygwin

URL, for downloading 222

D
display section, TexturePacker

about 129
AutoSD 129
Content protection 129
Data file 129
Data Format 129
Image format 129
Png OPT file 129
Texture format 129

E
Eclipse

used, for executing game on Android
simulator 219-228

used, for running Cocos2d-x project on
Android simulator 33

emitter 154
Emitter Configuration, Particle Designer

about 160
Duration 160
Emit Angle 160
Emit Angle Variance 160
Maximum Particles 160
Radial Acceleration 160
Source Position Variance X and Y 160
Speed 160
Speed Variance 160
Tangential Acceleration 160
X and Y Gravity 160

enemy animation
coding 140-142
creating 140-142

enemy class
creating 55-60

enemy movement
adding, with update() function 60, 61

explosion particle system
adding 165

F
Finite State Machines. See FSM
fireRocket function 155
flame particle effect

creating 166
fonts

about 101, 102
bitmap font generator 104
GlyphDesigner 104, 105
Literra 102, 103
URL, for downloading 103

frame 124
frames per second (fps) 41, 124
FSM

about 140
reference link 140

functions, Cocos2d-x
TouchesBegan() 44
TouchesCancelled() 44
TouchesEnded() 44
TouchesMoved() 44

G
game

creating, from scratch 36
executing, on Android simulator with

Eclipse IDE 219-228
executing, on BlackBerry simulator with

Momentics IDE 229-233
executing, on iOS simulator

with Xcode 234-236
executing, on Windows desktop 218
requisites, for executing on Android 219

gamedev.stackexchange.com 240
game execution requisites, for Android

Android NDK 219
Android SDK (ADT Bundle) 219
Cygwin 219
JDK/JRE 219

[246]

game over condition
checking 92-97

Gameover() function 95
gameplay layer

adding 62-66
Geometry section, TexturePacker

about 130
Fixed size 130
Max size 130
Scale 130
Size constraint 130

GlyphDesigner
about 104, 105
URL, for downloading 105

gun muzzle particle system
adding 155-157

H
Heads-up Display. See HUD
hero controls

adding 73-78
high score

storing 97-100
HUD 20, 101
HUD layer

creating 106-108
score, displaying on 106-108
score, updating on 106, 107

I
inbuilt particle system, Cocos2d-x

about 154
Explosion 154
Fire 154
Fireworks 154
Flower 154
Galaxy 154
Meteor 154
Rain 155
Smoke 154
Snow 154
Spiral 154
Sun 154

initEnemy() function 58

InOut, Particle2dx 164
installation, Python 11-14
installation, Spine 143
installation, Visual Studio 9
installation, Windows Phone SDK 10
int score variable 92
iOS simulator

game executing, with Xcode 234-236
iPhone simulator

Cocos2d-x project running, Xcode used 32

J
Java Script Object Notification (JSON) 129
JDK

URL, for downloading 221
jetpack

particles, adding 166
JRE

URL, for downloading 221

L
Layout section, TexturePacker

about 130
Algorithm 130
Border Padding / Shape Padding 130
Trim 130

libbox2d 23
libChipmunk 24
libExtensions 24
Literra

about 102, 103
URL 102

looped background music
adding 192

M
main menu scene

creating 174-179
loading, on startup 180

math class, CPP
reference link 83

Microsoft Download Center
URL 9

[247]

Momentics IDE
URL, for downloading 229
used, for executing game on BlackBerry

simulator 229-233
Motion, Particle2dx

AccelTan 163
Angle 163
Duration 163
EmissionRate 163
EmitArea 163
Gravity 163
Lifetime 163
Speed 163

movement
enabling, with accelerometer 49-51

MSOpenTech GitHub
URL 23

multitouch
enabling 45

mute button
adding 195-199

N
NDK

URL, for downloading 221

O
Options scene

creating 181-186

P
parallax scrolling layer

creating 120
Particle2dx

about 158-162
Background 164
Color&Shape 163
InOut 164
Motion 163
Template 164
URL 162

Particle Configuration, Particle Designer
about 161
End Rotation 161
EndSize 161
Lifespan 161
Start Rotation 161
StartSize 161

Particle Designer
about 158-160
Color Settings 161
Emitter Configuration 160
Particle Configuration 161
Texture Settings 161
URL, for downloading 158

particles
adding, for jetpack 166

particle system
about 154
designing 157

pause button
creating 108-110
implementing 111, 112

pause screen
displaying 108-110

Physics Editor
about 88
URL, for downloading 89

pixel perfect collision
about 86, 87
URL 87

player
spritesheet, creating for 131, 132

player animation
coding 132-140

player walk cycle
coding 149

point in shape 87
power of 2 (POT) 130
pricing, app

setting 209, 211
projectile class

creating 66-73
Pythagoras theorem 83
Python

downloading 11-14
installing 11-14

[248]

R
radius (R) 82
Rain 154
requisites, Cocos2d-x 7
resume button

implementing 111, 112

S
schedule_selector macro 70
scheduleUpdate() function 41
score

displaying, on HUD layer 106-108
tracking 92-97
updating, on HUD layer 106-108

screenshots, app
uploading, for review 212-214
URL, for downloading 215

scrolling layer class
adding 112-119

separate axis theorem
about 88
URL 88

setStartColor function 155
setTouchEnabled() function 43
sideloading 208
Simple Audio Engine 192
skeletal animation

about 125, 126
using 142-149

Solution Explorer pane, Cocos2d-x project
CocosDenshion 23
libbox2d 23
libChipmunk 24
libExtensions 24

sound effects
adding 193, 194

Spine
about 142
downloading 143
installing 143
URL 24
URL, for downloading 142

Spine, versions
essential 143
professional 143
trial 143

spritesheet
creating, for player 131, 132

spritesheet animation 124, 125
stackoverflow.com 240
store account

creating 202-205

T
Template, Particle2dx 164
texts

fonts 101, 102
Texture Settings, Particle Designer 161
TexturePacker

about 126-128
advanced features 130
display section 129
Geometry section 130
Layout section 130
URL, for downloading 126

TexturePacker, miscellaneous options
Clean transparent pixels 130
Texture path 130
Trim sprite names 130

touches
character movement, enabling with 46-49

TouchesBegan() function 44
TouchesCancelled() function 44
TouchesEnded() function 44
TouchesMoved() function 44
touch function

enabling 43-45
TrueType font 101

U
update() function

used, for adding enemy movement 60, 61

[249]

V
virtual bool init() function 26
Visual Studio

downloading 9
installing 9

VMWare Fusion
URL, for downloading 229

W
Win32 8
Windows desktop

Cocos2d-x project, running on 31
game, executing on 218

Windows Phone SDK
downloading 10
installing 10
URL 10

Windows Phone Store
about 202
account, creating 202-205
URL 202

Windows RT (tile mode)
Cocos2d-x project, running on 31

X
XAP file

uploading, for review 211-214
Xcode

used, for executing game on
iOS simulator 234-236

used, for running Cocos2d-x project on
iPhone simulator 32

Thank you for buying
Learning Cocos2d-x Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home to
books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also
runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source
project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Cocos2d-x by Example
Beginner's Guide
ISBN: 978-1-78216-734-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1.	 Learn to build multidevice games in simple,
easy steps, letting the framework do all the
heavy lifting.

2.	 Spice things up in your games with
easy-to-apply animations, particle effects,
and physics simulation.

3.	 Quickly implement and test your own
gameplay ideas, with an eye for optimization
and portability.

Creating Games with cocos2d for
iPhone 2
ISBN: 978-1-84951-900-7 Paperback: 388 pages

Master cocos2d through building nine complete
games for the iPhone

1.	 Games are explained in detail, from the design
decisions to the code itself.

2.	 Learn to build a wide variety of game types,
from a memory tile game to an endless runner.

3.	 Use different design approaches to help you
explore the cocos2d framework.

Please check www.PacktPub.com for information on our titles

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-84951-400-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development
using cocos2d

1.	 Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process.

2.	 Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting.

3.	 Full of fun and engaging recipes with modular
libraries that can be plugged into your project.

Cocos2d for iPhone 0.99
Beginner's Guide
ISBN: 978-1-84951-316-6 Paperback: 368 pages

Make mind-blowing 2D games for iPhone with this
fast, flexible, and easy-to-use framework!

1.	 A cool guide to learning cocos2d with iPhone to
get you into the iPhone game industry quickly.

2.	 Learn all the aspects of cocos2d while building
three different games.

3.	 Add a lot of trendy features such as particles
and tilemaps to your games to captivate
your players.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Downloading and installing Visual Studio
	Downloading and installing the Windows Phone SDK
	Downloading and installing Python
	Downloading Cocos2d-x
	Creating a new project
	Coordinate system
	Basic classes of Cocos2d-x
	Project breakup
	Running the project on multiple platforms
	Running the project on Windows
(desktop mode)
	Running the project on Windows RT
(tile mode)
	Running the project on the iPhone simulator using Xcode
	Running the project on an Android simulator using Eclipse

	Summary

	Chapter 2: Displaying the Hero
and Controls
	First things first
	Displaying the background image
	Character movement
	Enabling the touch function
	Enabling multitouch
	Movement with touches
	Movement with the accelerometer
	Custom controls
	Summary

	Chapter 3: Enemies and Controls
	Creating the enemy class
	Adding the enemy movement

	Adding the gameplay layer
	Creating the projectile class
	Adding hero controls
	Summary

	Chapter 4: Collision Detection
and Scoring
	Theory of collision detection
	Circular collision
	Bounding box collision
	Pixel perfect collision
	Other collision detection methods

	Coding collision detection
	Keeping track of the score and the game over condition
	Storing high score
	Summary

	Chapter 5: HUD, Parallax Background, and the Pause Button
	Texts and fonts
	Literra
	Bitmap font generator
	GlyphDesigner

	Creating the HUD layer and displaying as well as updating scores
	Creating the pause button and showing the pause screen
	Implementing pause and resuming the game
	Adding the scrolling layer class
	Creating the parallax scrolling layer
	Summary

	Chapter 6: Animations
	Animation basics
	Spritesheet animation
	Skeletal animation

	TexturePacker
	The display section
	The Geometry section
	The Layout section
	Advanced features

	Creating a spritesheet for the player
	Coding the player animation
	Creating and coding enemy animation
	Creating the skeletal animation
	Coding the player walk cycle
	Summary

	Chapter 7: Particle Systems
	What is a particle system
	Cocos2d-x's inbuilt particle system
	Adding the gun muzzle particle system
	Particle designing
	Particle Designer
	Emitter Configuration
	Particle Configuration
	Color Settings
	Texture Settings

	Particle2dx
	Motion
	Color&Shape
	Template
	InOut
	Background

	Adding an explosion particle system
	Adding particles for jetpack when a player moves upwards
	Creating your own particle system
	Summary

	Chapter 8: Adding Main and
Option Menu Scenes
	Creating the main menu scene
	Loading the menu scene at start of
the app
	Creating the Options scene
	Changing the name of the app
	Summary

	Chapter 9: Adding Sounds and Effects
	Audio in Cocos2d-x
	Adding looped background music
	Adding sound effects
	Adding the mute button
	Summary

	Chapter 10: Publishing to the
Windows Phone Store
	A look at the Windows Phone Store
	Creating the store account
	Preparing/creating the app
	Creating the app and setting pricing
	Uploading the XAP file, icons, and screenshots for review
	Summary

	Chapter 11: Porting, References,
and Final Remarks
	Running the game on the Windows desktop
	Running a game on the Android simulator using the Eclipse IDE
	Running on the BlackBerry simulator using the Momentics IDE
	Running on an iOS simulator using Xcode
	Additional learning resources
	Cocos2d-x
	Cocos2d-Swift
	gamedev.stackexchange.com/stackoverflow

	Final remarks and a thank you note

	Index

