Learning Dart

Learn how to program applications with Dart 1.0, a language
specifically designed to produce better-structured,
high-performance applications

w.allitebooks.co

http://www.allitebooks.org

Learning Dart

Learn how to program applications with Dart 1.0,
a language specifically designed to produce
better-structured, high-performance applications

lvo Balbaert

Dzenan Ridjanovic

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Learning Dart

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013
Production Reference: 1191213

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-742-2
www . packtpub.com

Cover Image by Javier Barria C (jbarriac@yahoo.com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Ivo Balbaert

Dzenan Ridjanovic

Reviewers
Sergey Akopkokhyants

Tom Alexander
Christophe Herreman
Yehor Lvivski

Christopher McGuire

Acquisition Editors
Saleem Ahmed

Rebecca Youe

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Venu Manthena

Amit Singh
Hardik B. Soni

Gaurav Thingalaya

Copy Editors
Roshni Banerjee

Brandt D'Mello
Tanvi Gaitonde
Shambhavi Pai
Lavina Pereira
Adithi Shetty

Laxmi Subramanian

Project Coordinators
Apeksha Chitnis

Wendell Palmer

Proofreader
Clyde Jenkins

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Disha Haria

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Ivo Balbaert is currently a lecturer for (Web) Programming and Databases at CVO
Antwerpen (www . cvoantwerpen.be), a community college in Belgium. He received
a Ph.D. in Applied Physics from University of Antwerp in 1986. He worked for 20
years in the software industry as a developer and consultant in several companies,
and for 10 years as a project manager at the University Hospital of Antwerp. From
2000 onward, he switched to partly teaching and partly developing software

(KHM Mechelen, CVO Antwerp). He also wrote an introductory book in Dutch
about developing in Ruby and Rails: Programmeren met Ruby en Rails, Van Duuren
Media, ISBN: 978-90-5940-365-9, 2009, 420 p. In 2012, he authored a book on the Go
programming language: The Way To Go, [Universe, ISBN: 978-1-4697-6917-2, 600 p.

[vww allitebooks.cond

http://www.allitebooks.org

Dzenan Ridjanovic is a university professor who is planning his early
retirement to focus on the development of web applications with Dart, HTMLS5,
web components, and NoSQL databases. For more than 10 years, he was a
Director of Research and Development in the Silverrun team (http://www.
silverrun.com/), which created several commercial tools for analysis, design,
and development of data-driven applications. He was a principal developer of
Modelibra (http://www.modelibra.org/) tools and frameworks for model-driven
development in Java. Recently, he has been developing the Dartling framework for
design and code generation of Dart models. His projects are at GitHub (https://
github.com/dzenanr), where he is considered a Dart expert (http://osrc.dfm.
io/dzenanr). He writes about his projects at On Dart blog (http://dzenanr.
github.io/). His courses are available at On Dart Education (http://ondart.
me/). He markets his Dart efforts at On Dart G+ Page (https://plus.google.
com/+OndartMe). Dzenan Ridjanovic wrote a book in 2009, under the Creative
Commons License, entitled Spiral Development of Dynamic Web Applications: Using
Modelibra and Wicket (http://www.modelibra.org/).

I want to thank my spouse Amra for her constant care and support,
the Dart team for creating a missing web language, and Ivo Balbaert
for his productive writing.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Sergey Akopkokhyants is a Java certified technical architect with more than 19
years of experience in designing and developing client and server-side applications.
For the last five years, Sergey has been responsible for customizing and producing
web-oriented applications for wholesale business management solutions projects for
several worldwide mobile communications companies. Sergey is passionate about
web designing and development, and believes that an investment in bleeding edge
technologies will always give a return to both the individual and the organization.
He is also the author and owner of several open source projects on GitHub, including
the Dart Web Toolkit (DWT). Sergey likes sharing knowledge and experience with
others, and helping them to increase their skills and productivity.

Tom Alexander graduated with a Computer Science degree from Rensselaer
Polytechnic Institute. He currently works for TripAdvisor as a software engineer,
where he works on the mobile version of the website.

[vww allitebooks.cond

http://www.allitebooks.org

Christophe Herreman is a versatile and passionate software architect with more
than 10 years of professional experience. He is also a Certified Scrum Master and has
general knowledge of many tools and platforms. For the last few years, Christophe
has mainly worked on web-based applications in a variety of domains, such as
healthcare, education, traffic control, and electronics. His main tasks have been:
architecture and development of the client software using Flex, ActionScript and
Adobe AIR, HTML, JavaScript, and client-server integrations with Java, .NET, and
PHP; automating the build process with tools such as Maven, Ant, Batch, Jenkins/
Hudson; setting up unit, integration and functional tests; reviewing, auditing,

and improving existing codebases; coaching and mentoring teams. Christophe is
also a regular speaker at conferences and user groups, as well as an active open
source contributor. He's the founder of the Spring ActionScript framework and the
AS3Commons project and a committer on the Apache Flex project. In the past, he
has lectured on software and web development at the University College of West-
Flanders, Belgium. Together with his partner, he runs the Belgium-based software
consultancy firm Stack & Heap (www.stackandheap.com).

Yehor Lvivski thinks that it's never too late to learn and always tries to know

the current trends of the web and predict the future ones. He has always wanted

to be a designer, but later found an area where he can combine both his design and
engineering skills. For the last six years, Yehor was involved in game development,
added a nice interactive Ul for a search engine, created his own CSS animations
library, and several open source projects. He really likes to create a great visual
experience. Yehor now works for SpatialKey, and is involved in changing the future
of data analysis. Not only does he like to create things, but he's also an active speaker
at different local and global conferences. He believes that knowledge sharing is the
key point to evolution.

Christopher McGuire is an application developer currently working in Glasgow,
Scotland. He graduated from the University of Strathclyde in 2011 with a B.Sc (Hons)
in Computer Science and currently works for an investment bank. Chris

has experience in developing Enterprise Standard Server applications, primarily
using Java and other object oriented-languages, while also developing web/mobile
front-end applications using native Android/iOS and HTML5. From this, he has
multiple applications published on the Google Play market. In addition to this,

Chris has developed multiple web applications and has a strong interest in new and
emerging technologies, which have led him to become part of the Dart community
and develop several more applications using this language.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Dart — A Modern Web Programming Language 9
What is Dart? 9
Dart is a perfect fit for HTMLS5 10
A very short history of web programming 11
Dart empowers the web client 1"
JavaScript is not the way to go for complex apps 12
Google, GWT, and Dart 13
Advantages of Dart 13
Getting started with Dart 14
Installing the Dart Editor 15
Your first Dart program 16
Getting a view on the Dart tool chain 18
The Dart execution model 18
A bird's eye view on Dart 20
Example 1 — raising rabbits 20
Extracting a function 22

A web version 24
Example 2 — banking 27
Making a todo list with Dart 28
Summary 29

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 2: Getting to Work with Dart 31
Variables — to type or not to type 32
Built-in types and their methods 35

Conversions 36
Operators 37
Some useful String methods 39
Dates and times 41
Lists 42
Maps 43
Documenting your programs 45
Changing the execution flow of a program 46
Using functions in Dart 49
Return types 49
Parameters 50
First class functions 52
Recognizing and catching errors and exceptions 54
Debugging exercise 56
Summary 57

Chapter 3: Structuring Code with Classes and Libraries 59

A touch of class — how to use classes and objects 60
Visibility — getters and setters 61
Types of constructors 63

Named constructors 64
factory constructors 64
const constructors 66
Inheritance 66
Abstract classes and methods 67
The interface of a class — implementing interfaces 69
Polymorphism and the dynamic nature of Dart 70
Collection types and generics 72
Typing collections and generics 72
The collection hierarchy and its functional nature 74
Structuring your code using libraries 81
Using a library in an app 83
Resolving name conflicts 83
Visibility of objects outside a library 84
Managing library dependencies with pub 85
Unit testing in Dart 88
Project — word frequency 91
Summary 94

Lii]

Table of Contents

Chapter 4: Modeling Web Applications with

Model Concepts and Dartlero 95
A short introduction to Git and GitHub 96
Creating a repository on GitHub and a local version 96
Collaborating on a GitHub project 98
What a model is and why we need it in programming 98
Model concepts — a graphical design tool for our models 929
Working with model concepts 101
Explaining the model 101
Drawing the model 102
Exporting the model 104
What is JSON? 105
Dartlero — a simple domain model framework 108
An example of using Dartlero 110
The categories and links application 116
Summary 119
Chapter 5: Handling the DOM in a New Way 121
Finding elements and changing their attributes 122
Finding elements 124
Changing the attributes of elements 124
Creating and removing elements 127
Handling events 128
Manipulating the style of page elements 130
Animating a game 131
Ping Pong using style(s) 132
How to draw on a canvas — Ping Pong revisited 138
Spiral 1 — drawing a circle and a rectangle 138
Spiral 2 — colored circles and rectangles 142
Spiral 3 — moving a ball 143
Spiral 4 — reorganizing the code 145
Spiral 5 — a bouncing ball 146
Spiral 6 — displaying the racket 146
Spiral 7 — moving the racket using keys 148
Spiral 8 — moving the racket using the mouse 149
Spiral 9 — a real game 150
Spiral 10 — title and replay 151
Spiral 11 — the master version 151
Summary 152

[iii]

Table of Contents

Chapter 6: Combining HTML5 Forms with Dart 153
Spiral 1 — the power of HTMLS5 forms 153
Spiral 2 — how to validate data with Dart 157

Validation in the model 160
Spiral 3 — how to store data in local storage 161
Spiral 4 — reading and showing data 163
Spiral 5 — changing and updating data 166
Spiral 6 — working with a list of bank accounts 168
Summary 171

Chapter 7: Building Games with HTML5 and Dart 173
The model for the memory game 174
Spiral 1 — drawing the board 175
Spiral 2 — drawing cells 177
Spiral 3 — coloring the cells 179
Spiral 4 — implementing the rules 182
Spiral 5 — game logic (bringing in the time element) 186
Spiral 6 — some finishing touches 187
Spiral 7 — using images 189
Adding audio to a web page 192
Using an audio library — Collision clones 194
Adding video to a web page 199
Summary 201

Chapter 8: Developing Business Applications

with Polymer Web Components 203
How web components change web development 204
Web components with Polymer.dart 205

Declaring and instantiating a web component 206
Two-way data binding in Polymer.dart 209
Creating the polymer_links project 213

Spiral s01 213

Spiral s02 214

Spiral s04 217

Spiral s05 218

Spiral s06 220
Using Polymer for the category links project 222

Adding local storage 229
Applying web components to the project tasks app 231

Add and remove Task propagations 240
Summary 241

[iv]

Table of Contents

Chapter 9: Modeling More Complex Applications with Dartling 243

The Dartling domain modeling framework 244
Design of the Travel Impressions model in spirals 247
Generating Travel Impressions code from the model 252
Initializing the Travel Impressions model with Data 254
Testing the Travel Impressions model 258
Defining and using the MVC pattern 267
The TodoMVC app 269
Spiral 0 — generating a class model 270
Spiral 1 — adding todo tasks 271
Spiral 2 — showing how many todo tasks left 273
Spiral 3 — removing a single task and completed tasks 276
Spiral 4 — editing todos (undo and redo) 277
Spiral 5 — displaying completed, remaining, or all todos 279
Spiral 6 — editing a task 280
Summary 281
Chapter 10: MVC Web and Ul Frameworks

in Dart — An Overview 283
DQuery 284
Bootjack 285
Dart Web Toolkit (DWT) 286
The dartling_dwt_todo_mvc_spirals project 289
Dart widgets 294
Bee 295
HTML components 295
Rikulo Ul 296
Rikulo MVC 300
Hipster-mvc 301
Puremvc 301
StageXL 302
Flash Professional CC — toolkit for Dart 303
Angular.dart 304

Summary 305

[v]

Table of Contents

Chapter 11: Local Data and Client-Server Communication 307
The options for browser storage 308
Asynchronous calls and Futures 308
Using IndexedDB with Dart 31

Spiral s00 311
Spiral sO1 317
Spiral s02 318
Spiral s03 319
Spiral s04 320
Spiral s05 323
Using Lawndart 323
A Dart web server 324
Using JSON web services 324
Spiral s07 329
Summary 332

Chapter 12: Data-driven Web Applications

with MySQL and MongoDB 333
Database drivers for Dart 333
Storing todo data in MySQL 335
Dartlero tasks — a many-to-many model in MySQL 344

The JSON storage 344
MySQL storage 346
MongoDB - a NoSQL database 354
Using the mongo_dart driver to store the todo data in MongoDB 357
Summary 362

Index

363

[vil

Preface

Developing a web application or software in general, is still a challenging task. There
is a client/browser side and a server side with databases. There are many different
technologies to master in order to feel comfortable with a full client/server stack.
There are different frameworks with different objectives. There are also different
programming languages that a developer must learn each one more suitable either
for the server or the client side.

Learning Dart will help a developer to become more focused by using Dart both for
clients and servers. Using the same language will ensure that a developer will lose
neither performance nor flexibility. Dart can be used within its virtual machine, or
its code may be compiled to JavaScript. In both cases, the performance benchmarks
show promising scores (https://www.dartlang.org/performance/). Dart is both
an object-oriented and a functional language. With Dart, a mix of both approaches
is possible, providing great professional freedom and a programming background
flexibility. In addition, Dart provides many libraries and tools (http://pub.
dartlang.org/) that allow a developer to focus on the task at hand and not be
concerned with all the aspects of software development.

With polymer.dart (https://www.dartlang.org/polymer-dart/), a new
approach towards developing web applications with web components will be
discovered, allowing a developer to divide a web page into sections and re-use an
already developed and tested web component for each section. In the near future,
different catalogs of web components will appear, enabling an engineering approach
to software development after waiting for many years. A web component may be
composed from other web components. It may pass data to its components. A web
component may also inherit its behavior from another web component. It may access
an already instantiated web component.

Preface

Spiral approach

The spiral approach to software learning and development, which preserves a
project history as a series of code snapshots or spirals, is used in this book.

The following three points are important in the spiral approach:

* The history of development is preserved

* Simple solutions are provided first; later on, these solutions may be replaced
by more advanced solutions

* Only concepts used in a spiral are explained

All of these three points are important in teaching and learning technologies.

Learning new software concepts and technologies is a challenging task. Learning
in spirals, from simple to more advanced concepts but with concrete software
applications, helps readers get a reasonable confidence level early on, and motivates
them to learn by providing more useful applications. With each new spiral, the
project grows and new concepts are introduced. A new spiral is explained with
respect to the previous one. The difference between two consecutive spirals is that
the next spiral has the new code introduced and the old code modified or deleted.
This is named learning by anchoring to what we already understand. With a new
spiral, we can come back to what we did previously and improve it. In this way,
learning in spirals can touch the same topic several times, but each time with more
details in a better version.

What this book covers

Learning Dart has 12 chapters. It begins with basic elements of Dart and it ends with a
client/server application that uses MongoDB (http://www.mongodb.org/) for data
persistence on the server side.

Chapter 1, Dart — A Modern Web Programming Language, helps you understand
what Dart is all about. Dart is presented as a major step forward in the web
programming arena.

Chapter 2, Getting to Work with Dart, lets you get a firm grasp on how to program
in Dart. The code and data structures in Dart, and its functional principles, are
explained by exploring practical examples.

Chapter 3, Structuring Code with Classes and Libraries, lets you understand how to use
Dart classes to organize code. Dart libraries are introduced to show how complex
software may be packaged.

[2]

Preface

Chapter 4, Modeling Web Applications with Model Concepts and Dartlero, enables you to
design a small model graphically in the Model Concepts tool, which is developed in
Dart. A model is then represented in Dart as several classes that inherit some data and
operations from classes of the Dartlero model framework, also developed in Dart.

Chapter 5, Handling the DOM in a New Way, helps you to learn how to access HTML
elements in Dart. Some elements will even be created in Dart and placed properly in
the Document Object Model (DOM) of a web page. Dart will also handle user events,
such as a click on a button. Finally, you will be able to create a simple game in Dart.

Chapter 6, Combining HTML Forms with Dart, lets you enter data in a form that will be
validated by HTML5 and Dart. Then, the valid data will be saved in the local storage
of a browser.

Chapter 7, Building Games with HTML5 and Dart, lets you create, step-by-step, a well-
known memory game based on what you have learned already. Each step will be

a new spiral represented as a complete project in Dart Editor. The first spiral will
draw only a rectangle, while the last spiral will be a game that you may show to your
friends.

Chapter 8, Developing Business Applications with Polymer Web Components, helps you

to create several web components by using Polymer.dart. Those web components
will be used in different sections of a single-page application. Three different projects
with web components will be presented in this chapter.

Chapter 9, Modeling More Complex Applications with Dartling, explains how a graphical
model can be transformed into a JSON document and then used to generate a
complete model in Dart, by using the Dartling domain model framework together
with its tools. Dartling follows the Model View Controller (MVC) pattern to separate
a model from its views.

Chapter 10, MVC Web and Ul Frameworks in Dart — An Overview, introduces you
to different frameworks already developed in Dart. Because Dart is a brand new
language, those frameworks are at early stages of their useful life.

Chapter 11, Local Data and Client-Server Communication, explains how you can store
application data in a local database named IndexedDB, which will then be sent as a
JSON document to a Dart server. Asynchronous programming with futures will also
be covered in this chapter.

[31]

Preface

Chapter 12, Data-driven Web Applications with MySQL and MongoDB, explains how you
can use database drivers to save (and load) data to (and from) a relational database
and a NoSQL database. Data sent from a browser as a JSON document will easily be
saved in MongoDB in the same JSON form. Two clients will exchange data with the
server so that both of them will be up-to-date.

What you need for this book

In order to benefit from this book, you need to have some basic experience in
programming. It is also useful to have some understanding of HTML and CSS. What
you really need to bring is your enthusiasm to learn how to become a web developer
of the future. All the software used in the book are freely available on the Web:

* https://www.dartlang.org/

®* https://github.com/Ivo-Balbaert/learning dart
® https://github.com/dzenanr

* http://www.mysql.com/

* http://www.mongodb.org/

One of the authors has already taught three times an introductory course to
programming with some material from this book. The book also has its own website
athttp://www.learningdart.org/. Other educational resources for Dart can be
found at http://ondart .me/.

Who this book is for

The book is intended for web application programmers, game developers, and
other software engineers. Because of its dual focus (Dart and HTMLS5), the book
can appeal to both web developers who want to learn a modern way of developing
web applications, and to developers who seek guidance on how to use HTML5.
The audience would include mainstream programmers coming with an object-
oriented background (Java, .NET, C++, and so on) as well as web programmers
using JavaScript, who seek a more structured and tooled way of developing. Both
groups would leverage their existing knowledge and expertise: the first, by offering
them a way of developing modern web applications using techniques they already
know, and the second, by giving them a more productive and engineered way of
developing (business) web applications. The article at the following link describes
well what Dart has to offer for the web developers of the future:
http://news.cnet.com/8301-1023 3-57613760-93/mixbook-sees-perfect-
storm-for-googles-dart-language-g-a/.

[4]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The calculateRabbits function calculates and returns an integer value; this is
indicated by the word int preceding the function name."

A block of code is set as follows:

void main()
print ("The number of rabbits increases as:\n");
for (int years = 0; years <= NO_YEARS; years++) {
rabbitCount = calculateRabbits (years) ;
print ("After Syears years:\t SrabbitCount animals");

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

void main()
print ("The number of rabbits increases as:\n");
for (int years = 0; years <= NO_YEARS; years++) {
rabbitCount = calculateRabbits(years) ;
print ("After Syears years:\t SrabbitCount animals") ;

}
Any command-line input or output is written as follows:

git clone git://github.com/dzenanr/collision clones.git

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
change this behavior by navigating to Tools | Preferences | Run and Debug, and
change the Break on Exceptions to None."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[51]

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[6]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[71

Dart — A Modern Web
Programming Language

In this chapter we will investigate:

e What Dart is all about

* Why it is a major step forward in the web programming language arena

We will get started with the Dart platform and have a look at its tools. Soon enough
we will be programming and taking a dive in a simple functional todo list program,
so that you realize how familiar it all is.

What is Dart?

Dart is a new general and open source programming language with a vibrant
community developed by Google Inc. and its official website is https://www.
dartlang.org. It was first announced as a public preview on October 10, 2011. Dart
v1.0, the first production release, came out on November 14, 2013, guaranteeing

a stable platform upon which production-ready apps can be built. World class
language designers and developers are involved in this project, namely, Lars Bak and
Kasper Lund (best known from their V8 JavaScript engine embedded in the Chrome
browser, which revolutionized performance in the JavaScript world) and Gilad Bracha
(a language theorist known from the development of the Strongtalk and Newspeak
languages and from the Java specification). Judged by the huge amount of resources
and the number of teams working on it, it is clear that Google is very serious about
making Dart a success.

M Take your time to familiarize yourself with the site dartlang.org.
Q It contains a wealth of information, code examples, presentations,
and so on to supplement this book, and we will often reference it.

Dart - A Modern Web Programming Language

Dart looks instantly familiar to the majority of today's programmers coming from

a Java, C#, or JavaScript/ ActionScript background; you will feel at ease with Dart.
However, this does not mean it is only a copy of what already exists; it takes the best
features of the statically typed "Java-C#" world and combines these with features
more commonly found in dynamic languages such as JavaScript, Python, and Ruby.
On the nimble, dynamic side Dart allows rapid prototyping, evolving into a more
structured development familiar to business app developers when application
requirements become more complex.

Its main emphasis lies on building complex (if necessary), high-performance, and
scalable-rich client apps for the modern web. By modern web we mean it can
execute in any browser on any kind of (client) device, including tablets and smart
phones, taking advantage of all the features of HTMLS5, and is ported to the ARM-
architecture and the Android platform. Dart is designed with performance in mind,
by the people who developed V8. Because the Dart team at Google believes web
components will be the foundation for the next evolution of web development, Dart
comes out of the box with a web component library (web components are pieces of
web code containing HTML and Dart or JavaScript that you can re-use in different
pages and projects, in other words it is a reliable infrastructure of widgets).

But Dart can also run independently on servers. Because Dart clients and servers
can communicate through web sockets (a persistent connection that allows both
parties to start sending data at any time), it is in fact an end-to-end solution. It is
perfect on the frontend for developing web components with all the necessary
application logic, nicely integrated with HTML5 and the browser document model
(DOM). On the backend server side, it can be used to develop web services, for
example, to access databases, or cloud solutions in Google App Engine or other
cloud infrastructures.

Moreover, it is ready to be used in the multicore world (remember, even your cell
phone is multicore nowadays) because a Dart program can divide its work amongst
any number of separate processes, called isolates, an actor-based concurrency model
as in Erlang.

Dart is a perfect fit for HTML5S

To appreciate this fully we have to take a look at the history of client-side
web development.

[10]

Chapter 1

A very short history of web programming

A web application is always a dialog between the client's browser requesting a page
and the server responding with processing and delivering the page and its resources
(such as pictures and other media). In the technology of the early dynamic web (the 90s
of the previous century, extending even until today), the server performed most of the
work: compiling a page, executing the code, fetching data from a data store, inserting
the data in the page templates, and in the end producing a stream of HTML and
JavaScript that was delivered to the browser. The client digested this stream, rendering
the HTML into a browser screen while executing some JavaScript, so processing on

the client side was minimal. The whole range of applications using Perl, Python, Ruby,
PHP, JSP (Java Server Pages), and ASP.NET follows this principle. It is obvious that
the heavy server loads impact negatively the number of clients that could be served, as
well as the response time in these applications. This mismatch is even clearer when we
realize that the power of the client platforms (with their multicore processors and large
memories) is heavily underutilized in this model.

The plugin model, in which the browser started specialized software (such as the
Adobe Flash Player) for handling all kinds of media and other resources, partly tipped
the balance to the client side. Following this trend, a whole range of technologies

for developing Rich Internet applications (RIA) were developed that executed
application code in the browser at the client side instead, ranging from Java applets
around 1995 and Microsoft Active X Objects, culminating in the Adobe Flex and
Microsoft Silverlight frameworks. While they have their merits, it is clear that they are
more like a parasite in the browser; for example, a virtual machine that executes code,
such as ActionScript or C#, that is alien to the browser environment.

Dart empowers the web client

Empowering the client is the way to go, but this should better be done with software
technology intimately linked to the browser itself: HTML and JavaScript. In order to
eliminate the need for alien plugins, the power of HTML needs to be enlarged, and
this is precisely what is achieved with HTML5, for example, with its <audio> and
<videos> tags. JavaScript is the ubiquitous language of the Web and it can, as with
Dart, request/send data from/to the server without blocking the user experience
through technologies such as Ajax. But flexible and dynamic as JavaScript may be,
today it is also often called the assembly language for the web.

[11]

Dart - A Modern Web Programming Language

JavaScript is not the way to go for
complex apps

Why is this? JavaScript was from the beginning not designed to be a robust
programming language, despite its name that suggests an affiliation with Java. It was
designed to be a simple interpreted language that could be used by nonprofessional
programmers and that would be complemented by Java for more serious work. But
Java went away to prosper on the server, and JavaScript (JS for short) invaded the
browser space. Today JS is being used to develop big and complex web applications,
with server components such as Node.js, far beyond the original purpose of this
language. Most people who have worked on a large client-side web application
written entirely in JS will sooner or later come to the conclusion that its use in these
applications is overstretched and the language was not meant to build that kind of
software.

Understanding program structure is crucial in large, complex applications: this
makes code maintenance, navigating in code, debugging, and refactoring easier.

But unfortunately JS code is hard to reason about because there is almost no
declarative syntax and it is very hard to detect dependencies between different
scripts that can appear in one web page. JavaScript is also very permissive: almost
anything (spelling mistakes, wrong types, and so on) is tolerated, making it hard to
find errors and unpredictable results. Furthermore, JS allows you to change the way
built-in core objects function, a practice often called monkey patching (for a reason!).
Would you trust a language in which the following statement is true in its entirety
and all of its comparisons?

10.0 == '10' == new Boolean(true) == '1'

Because of this sometimes undefined nature of JS, its performance is often very
unpredictable, so building high-performance web apps in it is tricky.

[12]

Chapter 1

Google, GWT, and Dart

Google is the web firm par excellence: its revenue model is entirely based on its
massive web applications, such as Gmail (some half a million lines of]JS), Google
Docs, Google Maps, and Google Search. So it is no wonder that these teams
encountered the difficulties of building a large JS application and strived for a better
platform. Due to the fundamental flaws of JS and its slow evolution, something
better was needed. A first attempt was Google Web Toolkit (GWT) where
development was done in Java, which was then compiled to JS. Although reasonably
successful because it enabled a structured and tooled approach to application
building, again it was clear that the use of Java is somewhat awkward in a web
environment. Thus arose the idea for Dart: a kind of hybrid platform between the
dynamic nature of JS and the structured and toolable languages such as Java and
C#. In order for Dart to run in all modern web browsers, as for GWT, it must be
compiled to JS. Google has provided a special build of Chromium, called Dartium,
that provides a Dart virtual machine (VM) to execute Dart code on-the-fly without
any compilation step (this VM will soon be incorporated into Chrome; for the time
being Chrome can be used to test the JS version of your Dart app).

Advantages of Dart

That way Dart can get a better performance profile than JS (remember that the

same experts who developed the V8 JS VM are forging Dart, see https://www.
dartlang.org/performance/), and at the same time maintain the simple and rapid
development process of JS in the browser: the edit code, save, and refresh browser
cycle to view the latest version, rather than having to stop, recompile, and run for
every little change. Dart delivers high performance on all modern web browsers
and environments ranging from small handheld devices to server-side execution.
When it runs on its own VM, Dart is faster than JS (in Dart v1.0 around two times the
performance of JS). Moreover, through snapshotting (a mechanism inherited from
Smalltalk) a Dart app has a fast application startup time, in contrast to js where all
the source code has to be interpreted or compiled from source.

Dart can execute in the browser, either in its own Dart VM (only in Chrome for the
moment) or compiled to JS, so Dart runs everywhere JS does. The Dart VM can also
run standalone on a client or server.

[13]

Dart - A Modern Web Programming Language

Another big advantage compared with GWT is that Dart is much better integrated
with the web page and like JS can directly manipulate the page elements and the
document structure, that is, the Document Object Model (DOM). Like JS, it has
intimate access to the new HTML5 APIs, for example, drawing with the canvas,
playing audio and video clips, or using the new local storage possibilities. Following
the RIA model mentioned earlier, Dart executes the full application code in the
browser, requesting data from the server and rebuilding the page user interface
when needed. Because Dart wants to be part of the web, not just sit on top, the team
has also built a Dart to JavaScript interop layer, to call JavaScript from Dart and the
other way around. Together with its out-of-browser and server capabilities, Dart is
also conceived for building complex, large-scale web applications. This can be clearly
seen from its object-oriented nature, and Dart code is built with code clarity and
structure (using libraries and packages) in mind.

To summarize:

* Dart compiles to JavaScript
* When run on its VM, Dart is faster than JavaScript

* Dart is better suited for large-scale applications

Client (browser) . _
requesting web page with Dart app

Dart VM or V8 serving Dart app

executing the app

SERVER

serving data / resources

building the view

requesting data / resources

The Dart web model

Getting started with Dart

The Dart project team wants us to get an optimal development experience, so they
provide a full but lightweight IDE: the Dart Editor, a light version of the well-known
Eclipse environment. Installing this is the easiest way to get started, because it
comprises the full Dart environment.

[14]

Chapter 1

Installing the Dart Editor

Because Eclipse is written in Java, we need a Java Runtime Environment or JRE
(Version 6 or greater) on our system (this is not needed for Dart itself, only for the
Dart Editor). To check if this is already the case, go to http://www.java.com/en/
download/installed. jsp.

If it is not the case, head for http://www.oracle.com/technetwork/java/javase/
downloads/index.html, and click on the JRE DOWNLOAD button, choose the JRE
for your platform and then click on Run to start the installation.

Then go to https://www.dartlang.org/ and click on the appropriate Download
Dart button and under "Everything you need" choose the appropriate button
(according to whether your installed OS is 32 bit or 64 bit) to download the editor.

M This is also the page where you can download the SDK
Q separately, or the Dartium browser (a version of Chrome to
test your Dart apps) or download the Dart source code.

You are prompted to save a file named darteditor-os-xnn.zip, where os can be
win32, linux, or macos, and nn is 32 or 64. Extracting the content of this file will
create a folder named dart containing everything you need: dart-sdk, dartium,
and DartEditor. This procedure should go smooth but if you encounter a problem,
please review https://www.dartlang.org/tools/editor/troubleshoot .html.

In case you get the following error message: Failed to load the JNI shared
library C:\Program Files(x86)\Java\jre6\ \bin\client\jvm.dll, do not
worry. This happens when JRE and Dart Editor do not have the same
» bit width. More precisely, this happens when you go to www. java.
% com to download JRE. In order to be sure what JRE to select, it is safer
T~ togotohttp://www.oracle.com/technetwork/java/javase/

downloads/index.html, click on the JRE DOWNLOAD button and
choose the appropriate version. If possible, use a 64-bit versions of JRE
and Dart Editor.

[15]

[vww allitebooks.cond

http://www.allitebooks.org

Dart - A Modern Web Programming Language

Your first Dart program

Double-click on DartEditor.exe to open the editor. Navigate to File | New
Application or click on the first button below the menu (Create a new Dart
Application...). Fill in an application name (for example, dart1) and choose the
folder where you want the code file to be created (make a folder such as dart_apps
to provide some structure; you can do this while using the Browse button). Select
Command-line application.

With these names a folder dart1 is made as a subfolder of dart apps, and a source-
file dart1.dart is created in dart1\bin with the following code (we'll explain the
pubspec.yaml and the packages folder in one of the following examples):

void main() {
print ("Hello, World!");

}

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

~Q You can download the example code files for all Packt books you have

Here we see immediately that Dart is a C-syntax style language, using { } to
surround code and ; to terminate statements. Every app also has a unique main ()
function, which is the starting point of the application.

This is probably the shortest app possible, but it can be even shorter! The keyword
void indicates (as in Java or C#) that the method does not explicitly return an object
(indeed a print only produces output to the console), but return types can be left
out. Furthermore, when a function has only one single expression, we can shorten
this further to the following elegant shorthand syntax:

main() => print("Hello, World!");

Now, change the printed string to "Becoming a Dart Ninja!" and click on

the green arrow button (or press Ctrl + R) to run the application. You should see
something like the following screenshot (where the Files, Apps, and Outline items
from the Tools menu were selected):

[16]

Chapter 1

Drart Editor

Files = dart1.dart

= dart1 1+ void main() {

' dart1.dart [dart1] 2 print("Becoming a Dart Ninja!");
L Dart SDK 3]
Installed Packages 4

exit code=0
1y a Dart Ninja!

The Dart Editor
You have successfully executed your first Dart program!

Near the bottom of the screen we see our string printed out, together with the
message exit code=0 meaning all went well.

The Files tab is useful for browsing through your applications, and for creating,
copying, moving, renaming, and deleting files. The Outline tab (available via
Tools | Outline) now only shows main (), but this tool will quickly become very
useful because it provides an overview of the code in the active file.

Because this was a command-line application, we could just as easily have opened
a console in our folder dart1 and executed the command: dart dartl.dart to
produce the same output as shown in the following screenshot:

o Command Prompt —

O>dart F:\dart_learning_by projects_git\chapter_i\darti\dartl.dart
a Dart Ninja!

A Dart console application

_ To let this work, you must first let the OS know where to find the dart
% VM,; so, for example, in Windows you change the PATH environment
L variable to include C:\dart\dart-sdk\bin, if your Dart installation
livesin C:\dart.

[17]

Dart - A Modern Web Programming Language

Getting a view on the Dart tool chain

Dart comes with batteries included, which means that a complete stack of tools is
provided by Google to write Dart apps, compile, test, document, and publish them.
Moreover, these tools are platform independent (being made for 32- and 64-bit
Linux, OS X, and Windows) and they are integrated in the Dart Editor IDE. The Dart
Editor contains everything a seasoned developer needs to work with confidence on
his app:

* Syntax coloring for keywords

* Autocompletion for class members (by typing . after a name you get a list of
available properties and methods)

* Folding/unfolding code blocks

* Tools for navigating the code (a handy overview of the code with the
Outline, find callers of a method, and so on)

* Full debugging capabilities of both browser and server applications

* Choose your preferred editor style by navigating to Tools | Preferences
Visual Theme

* Quick fixes for common errors
* Refactoring capabilities

* Direct access to the online API documentation by navigating to Help | API
Reference

The code you make is analyzed while you type, indicating warning (yellow triangles)
or errors (red underscores or stop signs). To get more acquainted and experiment
with these possibilities, go and read the documentation at https://www.dartlang.
org/tools/editor/ and play with one of the samples such as Sunflower or Pop,
Pop, Win! (you can find the samples by navigating to Tools | Welcome Page). From
now on use the editor in conjunction with the code examples of the book, so that you
can try them out and test changes.

The Dart execution model

How a Dart app executes is sketched in the following diagram:

[18]

Chapter 1

executed in browser
(A) (Dartium or Chrome)

Dart or on server LINUX
source 0S X
code (B) WINDOWS

executed as JavaScript
in all modern browsers

Dart execution model

The Dart code produced in the Dart Editor (or in a plugin for Eclipse or Intelli]) can:

* Execute in the Dart VM, hosted in Dartium or Chrome (Dartium is an
experimental version of Chrome to test out Dart) or directly in the operating
system (the browser VM knows about HTML, the server VM does not, but
can use, for example, IO and sockets, so they are not completely equivalent)

* Be compiled to JS with the dart2js compiler, so that it can run in all recent
browsers

Code libraries in Dart are called packages and the core Dart SDK contains the basic
types and functionalities for working with collection, math, html, uri, json, and

so on. They can be recognized by the syntax dart :prefix, for example, dart :html.
If you want to use a functionality from a library in a code file, you must import it by
using the following as the first statement(s) in your code (dart : core is imported by
default):

import 'dart:html';

The Dart code can be tested with the unit test package, and for documentation you
can use the dartdoc tool (which you can find by navigating to Tools | Generate
Dartdoc in Dart Editor), which generates a local website structured like the official
API documentation on the Web. The pub tool is the Dart package manager: if your
app needs other packages besides the SDK, pub can install them for you (from the
Tools menu item in Dart Editor, select Pub Get or Pub Upgrade) and you can also
publish your apps with it in the web repository http://pub.dartlang.org/.

We will see all of these tools in action in Chapter 2, Getting to Work with Dart.

[19]

Dart - A Modern Web Programming Language

A bird's eye view on Dart

It's time to get our feet wet by working on a couple of examples. All code will be
thoroughly explained step by step; along the way we will give you a lot of tips and
in the next chapter we will go into more detail on the different possibilities, thus
gaining deeper insight into Dart's design principles.

Example 1 — raising rabbits

Our first real program will calculate the procreation rate of rabbits, which is not
only phenomenal but indeed exponential. A female rabbit can have seven litters a
year with an average of four baby rabbits each time. So starting with two rabbits,
at the end of the year you have 2 + 28 = 30 rabbits. If none of the rabbits die and all
are fertile, the growth rate follows the following formula, where # is the number of
rabbits after the years specified:

n(years) = 2 x etkxvyears)

Here the growth factor k = In(30/2) = In15. Let us calculate the number after each
year for the first 10 years.

Go to File | New Application as before, select Command-line application and
type the following code, or simply open the script from chapter_1 in the provided
code listings. (Don't worry about the file pubspec.yaml; we'll discuss it in the web
version.)

The calculation is done in the following Dart script prorabbits_v1l.dart:

import 'dart:math' (1)

void main() {
var n = 0; // number of rabbits (2)

print ("The number of rabbits increases as:\n");
for (int years = 0; years <= 10; years++) {
n = (2 * pow(E, log(l5) * years)).round().toInt();

o Ul b W

print ("After S$years years:\t $n animals");

}
}

[20]

Chapter 1

Our program produces the following output:

The number of rabbits increases as:

After 0 years: 2 animals

After 1 years: 30 animals

After 2 years: 450 animals

After 3 years: 6750 animals

After 4 years: 101250 animals
After 5 years: 1518750 animals
After 6 years: 22781250 animals
After 7 years: 341718750 animals
After 8 years: 5125781250 animals
After 9 years: 76886718750 animals
After 10 years: 1153300781250 animals

So if developing programs doesn't make you rich, breeding rabbits will. Because we
need some mathematical formulas such as natural logarithms 1og and power pow,
we imported dart :math in line (1).Our number of livestock n is declared in line
(2); you can see that we precede its name with var. Here, we don't have to indicate
the type of n as int or num (so called type annotations), as Dart uses optional typing.

Local variables are commonly declared untyped as var.
s

We could have declared it to be of type num (number) or int, because we know that n
is a whole number. But this is not necessary as Dart will derive that from the context
in which n is used. The other num type is called double, used for decimal numbers.
Also the initialization part (= 0) could have been left out. With no initialization var
n; or even int n; gives n the value null, because every variable in Dart is an object.
The keyword null simply indicates that the object has no value yet (meaning it is
not yet allocated in heap memory). It will come as no surprise that // indicates the
beginning of a comment, and /* and */ can be used to make a multi-line comment.

Comment a section of code by selecting it and then
A click on Toggle comment in the Edit menu.

[21]

Dart - A Modern Web Programming Language

In lines (3) and (6) we see that within a quoted string we can use escape characters
such as \n and \t to format our output. Line (4) uses the well-known for-loop that
is also present in Dart. In order to have the count of animals as a whole number

we needed to apply the round function. The pow function produces a double and
because 6750.0 animals doesn't look so good, we have to convert the double to an
int with the toInt () function. In line (6), the elegant string substitution mechanism
(also called string interpolation) is used: print takes a string as argument (a string
variable: any expression enclosed within " " or ' ') and in any such quoted string
expression you can substitute the value of variable n by writing $n. If you want

the value of an expression within a string, such as a + b, you have to enclose the
expression with braces, for example, ${a + b}.

You don't have to write the ${n} when displaying a
= variable n; just use $n. You can also simply use print (n).

It is important to realize that we did not have to make any class in our program.
Dart is no class junkie like Java or C#. A lot can be done only with functions; but if
you want to represent real objects in your programs, classes is the way to go (see the
Example 2 - banking section).

Extracting a function

This version of our program is not yet very modular; we would like to extract the
calculation in a separate method calculateRabbits (years) that takes the number
of years as a parameter. This is shown in the following code (version 2 line (4) of
prorabbits_v2.dart) with exactly the same output as version 1:

import 'dart:math';

int rabbitCount = 0; (1)
const int NO YEARS = 10; (2)
const int GROWTH_FACTOR = 15; (3)
void main() {

print ("The number of rabbits increases as:\n");
for (int years = 0; years <= NO_YEARS; years++)
rabbitCount = calculateRabbits (years) ; (4)
print ("After Syears years:\t SrabbitCount animals");
}
}

int calculateRabbits (int years) { (5)
return (2 * pow(E, log(GROWTH_ FACTOR) *
years)) .round () .toInt () ;

[22]

Chapter 1

We could have written this new function ourselves, but Dart has a built-in refactoring called
Extract Method. Highlight the line:

n = (2 * pow(E, log(l5) * years)).round().toInt();

Right-click and select Extract Method. Dart will do the bulk of

the work for you, but we can still simplify the proposed code by
T~ omitting the parameter n.

The calculateRabbits function calculates and returns an integer value; this is
indicated by the word int preceding the function name. We give the function a type
here because it is top level, but the program would have run without the function-
type indication.

This new function is called by main (). This is the way a Dart program works: all
lines in main () are executed in sequence, calling functions as needed, and the
execution (and with it the Dart VM) stops when the ending } of main () is reached.
We rename the variable n to rabbitCount, so we need no more comments.

M Renaming a variable is also a built-in refactoring. Select the
Q variable (all occurrences are then indicated), right-click, and
select Rename.

A good programmer doesn't like hardcoded values such as 10 and 15 in a program;
what if they have to be changed? We replace them with constant variables, indicated
with keyword const in Dart, whose name is, by convention, typed in capital letters
and parts separated by _, see lines (2) and (3).

. Take care of your top-level variables, constants, and
~ functions because they will probably be visible outside your
Q program (sometimes called the interface or API of your
program); type them and name them well.

And now for some practice:

1. Examine this second version by going to Tools | Outline.

2. Set a breakpoint on the line rabbitCount = calculateRabbits (years) ;
by double-clicking in the margin in front.

3. Run the program and learn how to use the features of the Debugger tool
(Press Fb5 to step line by line, F6 or F7 to step over or out of a function, and F8
to resume execution until the next breakpoint is hit).

[23]

Dart - A Modern Web Programming Language

4. Watch the values of the years and rabbitCount variables.

The output should resemble the following screenshot:

[Dart Edifor
i ro> Oy BOR £
Files 1 @ prorabbits v2.dart B2 provabbits_v2.dan
+ = prorabbits_v2 1 import 'dart:math’; r of rabbits increases as:
(i prorabbits_v2.dart [prorabt = 2
i Dart SDK 3 int rabbitCount = 0;
i Installed Packages 4 const int NO_YEARS = 10;
5 const int GROWTH_FACTOR = 15;
L]
7-void main() {
B print{ The number of rabbits increases as:\n”);
9 for (int years = 0; years <= NO_YEARS; years++) [

€10 rabbitCount = calculateRabbits(years);
11 print("After Syears years:\t SrabbitCount animals™);
12}
13 3
14
15 int calculateRabbits(int years) {
16 return (2 * pewl(E, log(GROWTH_FACTOR) * years)).raund().telnt();
17 }
18

s Debugger By B &
i Ao A
prorabbits_v2.dart Mame Value
. ‘l:‘” years 4

isolate-7112 fsusp
* main{)

jsolateStartHarm
* _RawReceivePor

Debugging prorabbits_v2.dart

A web version

As a final version for now, let us build an app that uses an HTML screen where we
can input the number of years of rabbit elevation and output the resulting number of
animals. Go to File | New Application, but this time select Web application. Now a
lot more code is generated that needs explaining. The app now contains a subfolder
web; this will be the home for all of the app's resources, but for now it contains a
stylesheet (. css file), a hosting web page (. html), and a startup code file (in our case
prorabbits_v3.dart). The first line in this file makes HTML functionality available
to our code:

import 'dart:html';

We remove the rest of the example code so only an empty main () function remains.
Look at the source of the HTML page, right before the </body> tag; it contains the
following code:

<script type="application/dart" src="prorabbits v3.dart"s</scripts>
<script src="packages/browser/dart.js"></script>

[24]

Chapter 1

The first line is evident: our Dart script must be started. But wait, how do we know
that there is a Dart VM available in this browser? This will be checked in the second
JavaScript file, dart . js; the first few lines of code in this file are:

if (navigator.webkitStartDart) {

// Dart VM is available, start it!
} else {

// Fall back to compiled JavaScript

}

The Dart VM exists for the moment only in Dartium (soon in Chrome). For other
browsers we must supply the Dart-to-JS compiled scripts; this compilation can be
done in the Editor by navigating to Tools | Generate Javascript. The output size is
minimal: dead js code that is not used is eliminated in a process called tree shaking.
But where does this mysterious script dart .js come from? src="packages/
browser/dart.js" means that it is a package available in the Dart repository
http://pub.dartlang.org/.

External packages that your app depends on need to be specified in the section,
dependencies, in the file pubspec.yaml. In our app this section contains the
following parameters:

name: prorabbits v3
description: Raising rabbits the web way
dependencies:

browser: any

We see that our app depends on the browser package; any version of it is OK. The
package is added to your app when you right-click on the selected pubspec.yaml
and select Pub Get: a folder packages is added to your app, and per package a
subfolder is added containing the downloaded code, in our case dart . js. (In Chapter
2, Getting to Work with Dart, we will explore pub in greater depth.)

For this program we replace the HTML <p id="sample_text_id"></p> as shown
in the following code:

<input type="number" id="years" value="5" min="1" max="30">
<input type="button" id="submit" value="Calculate"/>

Number of rabbits: <label id="output"></label>

[25]

[vww allitebooks.cond

http://www.allitebooks.org

Dart - A Modern Web Programming Language

The input field with type number (new in HTML5) gives us a NumericUpDown
control with a default value 5 and limited to the range 1 to 30. In our Dart code, we
now have to handle the click-event on the button with id as submit. We do this in
our main () function with the following line of code:

query Selector ("#submit").onClick.listen((e) => calcRabbits());

query Selector ("#submit") gives us a reference in the code to the button, listen
redirects to an anonymous function (see Chapter 2, Getting to Work with Dart) to
handle this event e, which calls the function calcRabbits () shown in the following
code:

calcRabbits () {
// binding variables to html elements:
InputElement yearsInput = querySelector ("#years"); (1)
LabelElement output = querySelector ("#output") ; (2)
// getting input
String yearsString = yearsInput.value;
int years = int.parse(yearsString) ;
// calculating and setting output:
output.innerHtml = "${calculateRabbits (years)}";

}

Here in lines (1) and (2), the input field and the output label are bound to the
variables in_years and output. This is always done in the same way: the query
Selector () function takes as its argument a CSS-selector, in this case the ID of the
input field (an ID is preceded by a # sign). We typed in_years as an InputElement
(because it is bound to an input field), that way we can access its value, which is
always a string. We then convert this string to an int type with the function int.
parse (), because calculateRabbits needs an int parameter. The result is shown
as HTML in the output label via string substitution, see the following screenshot:

P SHEE|

Prorabbits v3

Years: 4 : Calculate
Number of rabbits: 101250

The screen of prorabbits_v3

[26]

Chapter 1

All objects in Dart code that are bound to HTML elements are instances of the class
Element. Notice how you can change the Dart and HTML code; save and hit refresh
in Dartium (Chrome) to get the latest version of your app.

Example 2 — banking

All variables (strings, numbers, and also functions) in Dart are objects, so they are
also instances of a class. The class concept is very important in modeling entities

in real-world applications, making our code modular and reusable. We will now
demonstrate how to make and use a simple class in Dart modeling a bank account.
The most obvious properties of such an object are the owner of the account, the bank
account number, and the balance (the amount of money it contains). We want to be
able to deposit an amount of money in it that increases the balance, or withdrawing
an amount so as to decrease the balance. This can be coded in a familiar and compact
way in Dart as shown in the following code:

class BankAccount
String owner, number;
double balance;
// constructor:

BankAccount (this.owner, this.number, this.balance) ; (1)
// methods:

deposit (double amount) => balance += amount; (2)
withdraw (double amount) => balance -= amount;

}

Notice the elegant constructor syntax in line (1) where the incoming parameter
values are automatically assigned to the object fields via this. The methods (line (2))
can also use the shorthand => function syntax because the body contains only one
expression. If you prefer the {} syntax, they will be written as follows:

deposit (double amount) {
balance += amount;

}

The code in main () makes a BankAccount object ba and exercises its methods (see
program banking_vl.dart):

main() {

var ba = new BankAccount ("John Gates",
"075-0623456-72", 1000.0) ;

print ("Initial balance:\t\t ${ba.balance} \$");
ba.deposit (250.0) ;
print ("Balance after deposit:\t\t ${ba.balance} \$");
ba.withdraw(100.0) ;
print ("Balance after withdrawal:\t ${ba.balance} \$");

[27]

Dart - A Modern Web Programming Language

The preceding code produces the following output:

Initial balance: 1000.0 $
Balance after deposit: 1250.0 s
Balance after withdrawal: 1150.0 $

Notice how when you type ba. in the editor, the list of BankAccount class members
appears to autocomplete your code. By convention, variables (objects) and functions
(or methods) start with a lower case letter and follow the camelCase notation
(http://en.wikipedia.org/wiki/CamelCase), while class names start with a
capital letter, as well as the word-parts in the name. Remember Dart is case sensitive!

Making a todo list with Dart

Since this has become the "Hello World" for web programmers, let's make a simple
todo list and start a new web application todo_v1. To record our tasks we need an
input field corresponding with InputElement in Dart:

<input id="task" type="text" placeholder=
"What do you want to do?"/>

The HTMLS5 placeholder attribute lets you specify default text that appears
in the field.

We specify a list tag (UListElement) that we will fill up in our code:
<ul id="list"/>

The following is the code from todo_v1.dart:
import 'dart:html';

InputElement task;
UListElement list;

main()
task = querySelector ('#task'); (1)
list = querySelector ('#list!'); (2)
task.onChange.listen((e) => addItem()); (3)

}

void addItem() {
var newTask = new LIElement () ;
newTask.text = task.value;
task.value = '';
list.children.add (newTask) ;

[28]

Chapter 1

We bind our HTML elements to the Dart objects task and list in lines (1) and (2). In
line (3) we attach an event-handler addItem to the onChange event of the textfield
task: this fires when the user enters something in the field and then leaves it (either
by pressing Tab or Enter). UListElement is in fact a collection of LIElements (these
are its children); so for each new task we make a LIElement (4), assign the task's
value to it (5), clear the input field (6), and add the new LIElement to the list in (7).
In the following screenshot you can see some tasks to be performed:

Simple Todo List

+ supermarket
« laundry
¢ cleaning living room

A simple todo list

Of course this version isn't very useful (unless you want to make a print of your
screen); our tasks aren't recorded and we can't indicate which tasks are finished.
Don't worry; we will enhance this app in the future versions.

Summary

We covered a lot of ground in this introductory chapter, but by now you know the case
for Dart in the context of web applications, where Dart apps can live and how they are
executed, and the various tools to work with Dart, in particular the Dart Editor.

You also got acquainted with some simple command line and web Dart apps and got
a feeling for the Dart syntax. In the next chapter, we explore the various code and
data structures of Dart more systematically and any obscurities that are still there in
your mind will surely disappear. More coming soon to a Dart center near you...

[29]

Getting to Work with Dart

In this chapter you will get a firm grasp on how to program in Dart. The code and
data structures in Dart and its functional principles are explained by exploring
practical examples. We will look at the following topics:

Variables - if, how, and when to type them

What are the basic types that you can use?
Documenting your programs

How to influence the order of execution of a program
Using functions in Dart

How to recognize and catch errors and exceptions?

You will see plenty of examples, also revisiting the code from Chapter 1,

Dart - A Modern Web Programming Language. Because most of this will be familiar to
you, we will discuss these topics succinctly and emphasize only that which is new or
different. You can refer to http://www.dartlang.org/docs/dart-up-and-running/
contents/ch02.html if you need more detailed explanations. We encourage you to
play with the code examples, the best way to become familiar with Dart. The full API
reference documentation is available at http: //api.dartlang.org. Experiment in the
Dart Editor to find out if in doubt!

Getting to Work with Dart

Variables — to type or not to type

In our first example (Raising rabbits) in Chapter 1, Dart - A Modern Web Programming
Language, we started by declaring a variable rabbitCount dynamically with var, and
then in the second version we gave it a static type int (refer to the file prorabbits_
v1.dart and prorabbits_v2.dart in Chapter 1, Dart - A Modern Web Programming
Language) and concluded that typing is optional in Dart. This seems confusing and has
provoked a lot of discussion: "is Dart a dynamic language like Ruby or JavaScript, or
a static language like Java or C#?" After all, some of us were raised in the (static) belief
that typed variables are absolutely necessary to check if a program is correct, a task
mainly performed by the compiler (but the Dart VM has no separate compiler step,
and dart2js, the Dart to JS compiler, doesn't check types because JS is fully dynamic).

It turns out that no mainstream language actually has a perfect type system (static
types don't guarantee program correctness) and that not letting a program run because
of an obscure type error blocks the programmer's creativity; however, it is true that
static type checks can prevent bugs. On the other hand, the dynamic belief states that
typing variables hinders the programmer's fantasy (and wears out the fingers). In their
world, grave errors due to wrong types occur only when the program is running; to
avoid such calamities, they have to rely on a rigorous unit testing discipline.

Dart takes a pragmatic middle stand: web programming is already accustomed

to dynamically typed languages that are more flexible, and Dart honors that and
adheres to a system of optional or loose typing. You can start out writing your code
without types while you're still experimenting and doing quick prototyping. In a
more advanced stage, you can annotate (some of) the code with types. This will
enhance the readability of your code for your fellow developers and as such it is
additional documentation. Furthermore, it allows the Dart analyzer tools to check the
code for the types used and report possible errors, so it makes more useful developer
tools possible.

As the app becomes larger and more stable, types can be added to aid debugging
and impose structure where desired, making the code more robust, documented,
and more maintainable. Dart code can evolve from a simple, untyped experimental
prototype to a complex, modular application with types. Moreover, as you will
experience while working in the Dart Editor, with types the IDE (Integrated
Development Environment) can suggest better autocompletion for the properties
and methods of any code object. The two extremes (no typing or everything typed)
are not encouraged.

[32]

Chapter 2

In general, give everything in your code that can be seen publicly a
M type (in the sense that it is visible in and can be used from outside
Q code, sometimes called the interface), such as top-level variables and
functions including their arguments. That way, other apps can use
your code with increased safety.

Using var (or £inal or const) for an object leaves it untyped, but in fact Dart
internally considers this object to be of type dynamic, the unknown type. The
keyword dynamic is very rarely used in code.

To cope with this dilemma, Dart has two runtime modes (ways of executing programs):

* Checked mode: This is typically used when you develop, debug, and test.
The IDE will warn you when you misuse variables in a typed context (a tool
called the dart-analyzer continuously checks your code, while saving and
even while you type). The types are checked when executing assignments,
when passing arguments to a function, and when returning a result from
a function. By default your program is also run in this mode, breaking the
execution when a (typing) error occurs (you can change this behavior by
navigating to Run | Manage Launches | VM settings and unchecking the
Run in checked mode checkbox).

* Production mode: This is when your program runs for real, that is, it used
by customers. Then Dart runs as a fully dynamic language and ignores type
information, giving a performance boost because the checks don't need to
be performed.

Errors (indicated in the Editor by a white x in a red circle) prevent you from running
the program. For example, delete an ending ; or } from some source code and see
what happens.

Warnings (a black ! in a yellow triangle) indicate that the code might not work. For
example, in the following code snippet (from chapter_2\checked mode.dart), a
warning is indicated in line (1):

int age = 'Dart'; (1)
print ('Sage') ;

The warning sign is shown in front of the line and the string Dart is yellow
underlined. If you hover the cursor over one of these, you see the message: A value
of type 'String' is not assignable to 'int'. If you try to run this example in the default
checked mode in Dart Editor, you'll get the following output:

Unhandled exception:

type 'String' is not a subtype of type 'int' of 'age'.

#0 main (file:///E:/dart/Book/code/chapter 2/checked mode/bin/
checked mode.dart:2:14)

[33]

Getting to Work with Dart

But if you uncheck and let it run in production mode, it runs and the normal output
Dart appears in the console. Dart expects the developer to have thoroughly checked
and tested the program:

in production mode in most cases.

[Warnings do not prevent you from running a program]
s

A variable is just a nickname for an object, the same object can have multiple
variables referring to it, and a variable name can also switch from one object to
another, such as in the following code:

var name = 'John';
name = 'Lucy'; // name now refers to another String object

But sometimes you don't want this to happen; you want a variable to always point
at the same object (such as immutable variables in functional languages or in other
words a read-only variable). This is possible in Dart using the keyword final, such
as in the following code (refer to final.dart):

final name = 'John’';
name = 'Lucy'; // (1) warning!

Now, line (1) generates a warning: Final variables cannot be assigned a value, but
the execution is even stopped in production mode! The keywords var and final
used as such both refer to a dynamic untyped variable, but final can be used
together with a type, as shown in the following code:

final String name = 'John';

The const keyword (that we used already in prorabbits_v2.dart in Chapter 1, Dart
- A Modern Web Programming Language) like £inal also refers to something whose
value cannot change, but it is more restricted. It must be a literal value (such as 100
or Dart or another const) or a calculation with known numbers, a so-called compile-
time constant. For example, see the following code:

const NO_ SECINMIN 60;
const NO_SECINDAY = NO_ SECINMIN * 60 * 24;

The following is an example that shows the difference:

int daysInWeek = 7;
final fdaysInYear = daysInWeek * 52;
const DAYSINYEAR = daysInWeek * 52; // (2) error!

Now, line (2) gives an error:

'const' variables must be constant value.

[34]

Chapter 2

In summary, types are not used for performance optimization and they don't change
program behavior, but they can help you write and maintain your code; a little
typing goes a long way. A combination of tool support, static analysis, checked mode
assertions, and unit tests can make you feel just as safe in Dart as in any statically
typed language, yet more productive.

Built-in types and their methods

Like Ruby, Dart is a purely object-oriented (OO) language, so every variable in Dart
points to an object and there are no primitive types as in Java or C#. Every variable
is an instance of a class (that inherits from the base class object) and has a type, and
when uninitialized has the value null. But for ease-of-use Dart has built-in types

for numbers, Booleans, and strings defined in dart : core, that look and behave

like primitive types; that is, they can be made with literal values and have the basic
operations you expect (to make it clear, we will use full typing in builtin_ types.
dart, but we could have used var as well).

A String (notice the capital) is a sequence of Unicode (UTF-16) characters, for example:

String country = "Egypt";
String chineseForWorld ='tE5'

They can be indicated by paired ' or " (use "" when the string contains ' and vice
versa). Adjacent string literals are concatenated. If you need multiline strings, use
triple quotes ' ' or """ (handy for defining chunks of HTML!).

Escape characters are not interpreted when the string is prefixed by r, a so-called
raw string, invaluable when defining regular expressions. The empty string ' * or "
is not the same as null. The following are all legal strings:

String g = "What's up?";
String sl = 'abc'
Ildefll ;

print (sl); // abcdef
String multilLine = ''!'
<hl> Beautiful page </hl>
<div class="start"> This is a story about the landing
on the moon </divs>
<hr>
llll.
print (multiLine) ;
String rawStr = r"Why don't you \t learn Dart!";
// output: Why don't you \t learn Dart!
print (rawStr) ;
var emptyStr = ''; // empty string

[35]

[vww allitebooks.cond

http://www.allitebooks.org

Getting to Work with Dart

The numeric types are num (number), int (integer), and double; the last two are
subtypes of num:

int n = 42;
double pi = 3.14;

Integers can use hexadecimal notation preceding with 0x, as shown in the following
code:

int hex = OxXDEADBEEF;

And they can be of arbitrary precision, as shown in the following code:

int hugePrimeNumber = 4776913109852041418248056622882488319;

You cannot use this feature if you rely on compilation to JS,
S because here we are restricted to JS integers!
Doubles are of a 64-bit precision and can use scientific notation:

double dl = 12345e-4;

The num type has the usual abs (), ceil (), and floor () methods as well as round ()
for rounding. Use either int or num, but double only in the specific case you need a
decimal number that cannot be an integer.

Booleans can only have the value true or false:

bool selected = false;

In contrast to JS where any variable can be evaluated as true or false, Dart does not
permit these strange behaviors in checked mode; in production mode every value
different from true is treated as false.

Conversions

To use numbers as strings use the toString () method and to convert a String to an
int use int.parse():

String lucky = 7.toString() ;
int seven = int.parse('7');

Likewise, converting a String to a double is done with double.parse():

double pi2 = double.parse('3.1415');

[36]

Chapter 2

If you want to retain only a certain amount of decimal numbers from a double, use
toStringAsFixed():

String pi2Str = pi2.toStringAsFixed(3);
// 3.142 (notice rounding occurs)

To convert between num types use toDouble () for int to double and toInt () for
double to int (truncation occurs!).

Operators

All operators in Dart follow the normal priority rules; when in doubt or for clarity,
use () around expressions that must be executed first.

We have our familiar number operators (+, -, *, /, and %) in Dart, and assignments
with these can be shortened as +=. Use ~/ to get an integer result from a division.
Likewise, we have pre- and postfix ++ and -- to add or subtract 1 to or from a
number, and <, <=, >, and >= to check the order of numbers or Strings.

M Strings a and b can be concatenated with + asa + b,
Q but string interpolation such as ' $a $b' executes
faster, so prefer this.

Numbers have also bitwise and shift operators for manipulating individual bits.

To see if two variables have the same content use == or ! = for different content.
These expressions result in Boolean values, such as b1 and b2 in this snippet
(brackets are only used for clarity):

var i = 100;

var j = 1000;

var bl = (i == j);
var b2 = (i!= j);
print ('$bl'); // false
print ('$b2'); // true

For numbers and strings == is true when both variables have the same value.

_ ==isan operator and can be redefined for any type;
generally it will check whether both arguments have the
— same value. Use the identical (a,b) function to check
whether variables a and b refer to the same object.

[37]

Getting to Work with Dart

For Strings both hold true; the same String is only one object in memory, and if the
string variable gets a new value, it references another address in memory. Strings are
immutable.

var s = "strings are immutable";

var t = "strings are immutable";

print(s == t); // true, they contain the same characters
print (identical(s, t)); // true, they are the

// same object in memory

Boolean values or expressions can be combined with an AND operator (&&) or an OR
operator (| |), or negated with a NOT operator (!).

Because we will be working a lot with objects and types in Dart code, it is important
to be able to test if an object is or is! (not) of a certain type (class):

var b3 = (7 is num); // () are not necessary
print ('$b3') ; // true

var b4 = (7 is! double) ;

print ('$b4') ; // true, it's an int

A very useful built-in function that can be used for micro unit testing is assert. Its
parameter is a Boolean expression. When this is true, nothing happens at runtime;
but when it is false, the program stops with an AssertionError. You can sprinkle
them around in your code to test certain conditions that must be true; in the
production mode, assert statements are ignored. So for the last example we could
have written:

assert (b4 == true) or shorter assert (b4)

We will use these throughout the example code, but will not print them in the text
for brevity.

The [] indexing operator is used to obtain an element from a collection (a group of
variables) at a certain index, the first element has index o.

To convert or cast a variable v to a certain type T, use the as operator:v as T

If v is indeed of that type, all is well and you can access all methods of T, but if this
fails an error is generated.

[38]

Chapter 2

Some useful String methods

Strings are all pervasive and Dart provides handy methods to work with them, for
details refer to the documentation at the following link:

http://api.dartlang.org/docs/releases/latest/dart _core/String.html
We show some examples in string methods.dart:

* You can test that the owner of a bank account (a String) is not filled in with
owner . isEmpty, which returns a Boolean value:

assert ("".isEmpty) ;

* length() returns the number of UTF-16 characters:
assert ('Google'.length == 6);

* Usetrim() toremove the leading and trailing whitespace:
assert ('\thello '.trim() == 'hello');

* Usestartswith(), endswith(), and contains () to detect the presence of
subwords:

var fullName = 'Larry Page';

assert (fullName.startsWith('La')) ;
assert (fullName.endsWith('age')) ;
assert (fullName.contains('y P'));

* Use replaceall () to replace a substring; notice that the original string was
not changed (strings are immutable!):

var composer = 'Johann Sebastian Bach';
var s = composer.replaceAll('a', '-');
print(s); // Joh-nn Seb-sti-n B-ch
assert (s != composer); // composer didn't change
* Use the [] operator to get the character at index i in the string:
var lang = "Dart";
assert (lang[0] == "D");
* Find the location of a substring inside a string with indexOf ():

assert (lang.indexOf ("ar") == 1);
* Extract a part of a string with substring():

assert ("20000 rabbits".substring (9, 13) == 'bits');

[39]

Getting to Work with Dart

When printing any object the tostring () method, which returns a String, is
automatically called. If no particular version of this method was provided, the
toString () method from class object is called, which prints the type of the object,
as shown in the following code:

print ('$ba') ; // produces Instance of 'BankAccount'

Al

~ If you need a readable representation of an object, give
its class a toString () method.

In banking_v2.dart we provide the following method:

String toString() => 'Bank account from Sowner with
number S$number and balance $balance';

Now print ('$ba') ; produces the following output:

Bank account from John Gates with number 075-0623456-72
and balance 1000.0

If you need many operations in building your strings, instead of creating new strings
at each operation and thus using more memory, consider using a StringBuffer
object for better efficiency. A stringBuffer doesn't generate a new string object
until tostring() is called. An example is given in the following code:

var sb = new StringBuffer();

sb.write("Use a StringBuffer ");

sb.writeAll(["for ", "efficient ", "string ", "creation "]);
sb.write("if you are ");

sb.write("building lots of strings.");

var fullString = sb.toString() ;

print ('$fullString') ;

sb.clear(); // sb is empty again

assert (sb.toString() == '');

[40]

Chapter 2

Dates and times

Almost every app needs time info, so how can we do this in Dart? The dart :core
package has a class DateTime for this. In our banking app we could add the
attributes dateCreated and dateModified to our class BankAccount. In the
constructor, dateCreated is initialized to the moment at which the account is
created; in our deposit and withdraw methods we update dateModified. This is
shown in the following code (refer to banking v2.dart):

class BankAccount {
String owner, number;
double balance;
DateTime dateCreated, dateModified;

BankAccount (this.owner, this.number, this.balance) {
dateCreated = new DateTime.now();

deposit (double amount) {
balance += amount;
dateModified = new DateTime.now();

}

// other code

}
We can print this out with the following command:

print ('Bank account created at: ${ba.dateCreated}');

The output produced is as follows:

Bank account created at: 2013-02-10 10:42:45.387

The method DateTime.parse (dateString) produces a DateTime object from

a String in one of the suitable formats: 20130227 13:27:00 or 2010-01-17. All
weekdays and month names are defined as const int, such as MON and JAN. You can
extract all date parts as an int with methods such as second, day, month, year, as
shown in the following code:

ba.dateModified.weekday

A time span is represented by a Duration object, difference () gives the duration
between two DateTime objects, and you can add and subtract a duration from a
DateTime.

[41]

Getting to Work with Dart

Lists

This is the basic collection type for making an ordered group of objects, it can be of
fixed size (called an array in other languages) or it can grow dynamically. Again
length returns the number of elements in the List; the last element has index 1ength
- 1. An empty List with length equal to 0 and property isEmpty equal to true can
be created in two ways: literal or with a constructor (refer to 1ists.dart):

var empty = [];
var empty2 = new List(); // equivalent
assert (empty.isEmpty && empty2.isEmpty && empty.length == 0);

We can either define and populate a List with a literal by using [] as in the
following code:

var langs = ["Java","Python", "Ruby", "Dart"];
Or we can define a List with a constructor and an add () method:

var langs2 = new List () ;
langs2.add("C") ;
langs2.add("C#") ;
langs2.add("D") ;

print (langs2); // [C, C#, DI

A read-only List with constant elements resulting in better performance can be
defined as shown in the following code:

var readOnlyList = const ["Java","Python", "Ruby", "Dart"];
The [] operator can be used to fetch and set List elements:

var langBest = langs[3];
assert (langBest=="Dart") ;
langs2 [2] = "JavaScript";

But using an index greater than or equal to the List length provokes a RangeError in
runtime (with no compile-time check!):

langs[4] = "F#"; // RangeError !
To check if a List contains a certain item, use the method with that name:
print ('${langs.contains ("Dart")}'); // true

When you know the type of the list elements, the list itself can be typed; for example,
langs and langs2 are both of type List<Strings.

[42]

Chapter 2

A String can be split over a certain character or pattern (which could be a space
" v oreven "") producing a List<String>, which can then be further analyzed, as
shown in the following code:

var number = "075-0623456-72";
var parts = number.split('-');
print ('S$parts'); // produces [075, 0623456, 72]

In simple scenarios data records are written line after line in text files, each line
containing the data of one object. In each line the data fields are separated by a
certain character, such as a ;. We could read in and split each line of the file, and
obtain a List of fields for each object to be shown on a screen or processed further.
Conversely a List can be joined by concatenating all its elements in one String (here
with a separator ' - '):

var str = parts.join('-');
assert (number==str) ;

A list with N elements is used mostly to support an efficient search of the whole
list, or a large number of the list's elements. The time it takes to search a list grows
linearly with N; it is of order O(N).

In summary, a List is an ordered collection of items that can be retrieved or changed
by index (0-based, working via index is fast), and that can contain duplicates. You
can find more useful functions in the API, but we will come back to List again in

the The collection hierarchy and its functional nature section in Chapter 3, Structuring
Code with Classes and Libraries. (For API docs, see the documentation at http://api.
dartlang.org/docs/releases/latest/dart core/List. html.)

Maps

Another very useful and built-in type is a Map, basically a dictionary of (key:value)
pairs where the value is associated with the key. The number of pairs is the length
of the Map. Keys must be unique, they may not be null, and the lookup of the

value from the key is fast; remember, however, that the order of the pairs is not
guaranteed! Similar to a List, a Map can be created literally with {} as shown in the
following code:

Map webLinks = { 'Dart': 'http://www.dartlang.org/',
"HTML5': 'http://www.html5rocks.com/'};

The keys must be of type string for a literal Map.

[43]

Getting to Work with Dart

Or it can be created with a constructor (refer to maps.dart):

Map webLinks2 = new Map() ;
webLinks2 ['Dart'] = 'http://www.dartlang.org/'; (1)
webLinks2 ['HTML5'] = 'http://www.html5rocks.com/"';

The empty Map created with var map = {} or var map = new Map () has length
as 0; the length of a Map is not fixed. You can fetch the value corresponding to a
certain key with:

var link = webLinks2['Dart']l; // 'http://www.dartlang.org/'

If the key is not in the Map, you get null (it is not an error):

var link2 = webLinks2['C']; // null

To check if your Map contains a certain key, use the containsKey () method:

if (webLinks2.containsKey ('C'"))

print ("The map webLinks2 contains key 'C");
else

print ("The map webLinks2 does not contain key 'C'");
// prints: The map webLinks2 does not contain key 'C'

To obtain a List of the keys or values, use the methods with the same name:

var keys = webLinks2.keys.toList() ;

print ('Skeys'); // [Dart, HTMLS5, ASP.NET]

// getting the values:

var values = webLinks2.values.toList () ;

print ('Svalues') ;

// printed output:

// [http://www.learningdart.org/, http://www.html5rocks.com/,
// http://www.asp.net/]

Setting a value is done with the syntax shown in line (1); this applies both to
inserting a new key-value pair in the map, or changing the value for an existing key:

webLinks2['Dart'] = 'http://www.learningdart.org/'; // change
webLinks2 ['ASP.NET'] = 'http://www.asp.net/'; // new key

A very handy method is put IfAbsent, which makes your code a lot cleaner. It takes
two parameters: a key and a function that returns a value. The method tests if the
key already exists; if not, the function is evaluated and the resulting key-value pair is
inserted in the map (for example, we use a very simple function that directly returns
a value, but this could be a calculation or a database-lookup operation):

webLinks2.putIfAbsent ('F#', () => 'www.fsharp.net');
assert (webLinks2 ['F#']=="www.fsharp.net") ;

[44]

Chapter 2

Again for performance reasons, use const maps when the keys and values are
literals or constants:

var cities = comnst {'1l':'London','2':'Tokyo','3':'Madrid'};

A Map can also be explicitly typed, for example, a Map with integer keys and String
values:

Map<int, Strings>

A Map with N elements is used mostly to support an efficient direct access to a
single element of the map based on its key. This will always execute in the same time
regardless of the size of the input dataset; the algorithm is of order O(1).

For the API docs for Map see the documentation at the following link:

https://api.dartlang.org/docs/channels/stable/
’ latest/dart core/Map.html

Documenting your programs

Documenting an application is of utmost importance in software engineering and
Dart makes this very easy. The single-line (//) and multiline comments (/* /)

are useful (for example, to comment out code or mark lines with // ToDO), and

they have counterparts /// and /** */ called documentation comments. In these
comments (to be placed on the previous line), you can include references to all kinds
of objects in your code (classes, methods, fields, and so on) and the Dartdoc tool (in
Dart Editor go to Tools | Generate Dartdoc) will generate HTML documentation
where these references become links. To demonstrate we will add docs to our
banking example (refer to banking_v2doc.dart):

[**
* A bank account has an [owner], is identified by a [number]
* and has an amount of money called [balancel].
* The balance is changed through methods [deposit] and [withdraw].
*/
class BankAccount {
String owner, number;
double balance;
DateTime dateCreated, dateModified;

BankAccount (this.owner, this.number, this.balance) {
dateCreated = new DateTime.now () ;

}

/// An amount of money is added to the balance.
deposit (double amount) {

[45]

[vww allitebooks.cond

http://www.allitebooks.org

Getting to Work with Dart
}

/// An amount of money is subtracted from the balance.
withdraw (double amount)

}
}

This results in the following documentation when viewing banking v2doc\docs\
index.html in a browser:

—EEm

2 vl =

Ramnccount BankAccount class

A

new BankACcountistring owner. String rumer, double balance

dzusie balance
DeteTime dataCraated

DeneTime dataModified

number

siring tostringl)

withdraw(couble amount)

Changing the execution flow of a program

Dart has the usual control structures with no surprises here (refer to control .dart).

Anif...else statement (with an optional else) is as follows:

var n = 25;
if (n < 10) {
print ('1 digit number: $n');
} else if (n >= 10 && n < 100){

print ('2+ digit number: $n'); // 2+ digit number: 25
} else {

print ('3 or more digit number: $n');

[46]

Chapter 2

Single-line statements without {} are allowed, but don't mix the two. A simple
and short if..else statement can be replaced by a ternary operator, as shown in the
following example code:

num rabbitCount = 16758;

(rabbitCount > 20000) ? print('enough for this year!')
print ('breed on!') ; // breed on!

If the expression before ? is true, the first statement is executed, else the statement
after : is executed. To test if a variable v refers to a real object, use: if (v != null)

{ -}
Testing if an object v is of type T is done with an if statement: i1f (v is T).

In that case we can safely cast v to type T and access all members of T:

if (v is T) {
(v as T) .methodOfT ()

}

For example, if we don't know for sure that ba2 is a BankAccount, the code in line
(1) in the following code will generate an error; we can avoid this with an if test in
line (2):

var bal, ba2;

bal = new BankAccount ("Jeff", "5768-346-89", 758.0);
if (bal is BankAccount) bal.deposit (42.0);
print ('${bal.balance}'); // 800.0
(ba2 as BankAccount) .deposit (100.0); <-- NoSuchMethodError (1)
if (ba2 is BankAccount) { (2)
(ba2 as BankAccount) .deposit (100.0) ;
print ('deposited 100 on ba2'); // statement not reached
} else {
print ('ba2 is not a BankAccount'); // ba2 is not a BankAccount

}

We can replace multiple i£. . .else if with a switch case statement; switch tests the
value of an integer or string variable in () against different constant values in case
clauses:

switch (bal.owner)
case 'Jeff':
print ('Jeff is the bank account owner'); // this is printed
break;
case 'Mary':
print ('Mary is the bank account owner');
break;

[47]

Getting to Work with Dart

default:

print ('The bank account owner is not Jeff, nor Mary');

}

Each case must end with a break or a continue with a label; use default when no
other case matches; multiple cases can be combined.

Repetition can be coded with a for loop if the number of repetitions is known or
with a while or do...while loop if the looping depends on a condition:

var langs = ["Java", "Python", "Ruby", "Dart"];
for (int i = 0; i < langs.length; i++) {
print ('${langs[il}");

}
Notice that the condition i value should be less than the length of the List.

If you don't need the index i, the for. . . in loop provides a simpler alternative:

var s = '';
var numbers = [0, 1, 2, 3, 4, 5, 6, 71;
for (var n in numbers)
s = '$sSn ';
}
print(s); // 01 2 3 456 7

In each loop the variable n takes the value of the next collection element.

Conditions without counters are best tested in a while loop:

while (rabbitCount <= 20000) {
print ('keep breeding') ;
rabbitCount += 4;

}

Don't get involved in an infinite loop by forgetting a statement that changes the
condition! You can always break out from a loop with a break:

while (true) {
if (rabbitCount > 20000) break;
rabbitCount += 4;

}

Likewise, skip the execution of the body of the loop with a continue:

s = '';
for (var n in numbers) {

if (n % 2 == 0) continue; // skip even numbers

[48]

Chapter 2

s = '$sSn ';

}

print('$s'); // 1 3 5 7

Using functions in Dart

Functions are another tool for changing the control flow; a certain task is delegated
to a function by calling it and providing some arguments. A function does the
requested task and returns a value; the control flow returns where the function was
called. In Java and C#, classes are indispensable and they are the most important
structuring concept.

But Dart is both functional and object oriented. Functions are first-class objects
themselves (they are of type Function) and can exist outside of a class as top-
level functions (inside a class they are called methods). In prorabbits_v2.dart
of Chapter 1, Dart — A Modern Web Programming Language, calculateRabbits is
an example of a top-level function; and deposit, withdraw, and toString from
banking v2.dart of this chapter are methods, to be called on as an object of the
class. Don't create a static class only as a container for helper functions!

Return types

A function can do either of the following:

* Do something, wherein the return type, if indicated, is void, for example, the
display function in return_ types.dart. In fact, such a function does return
an object, namely null (see the print in line (1) of the following code).

* Return an expression exp resulting in an object different from nul1, explicitly
indicated by a return exp, as in displaysStr (line (2)).

The { return exp; } syntax can be shortened to => exp; as shown in display and
displaystrshort; we'll use this function expression syntax wherever possible. exp is
an expression, but it cannot be a statement like i f. A function can be an argument

to another function, as display in print, line (1), or in line (4) where the function
is0dd is passed to the function where:

main() {
print (display('Hello')); // Message: Hello. null (1)
print (displayStr('Hello')); // Message: Hello. (2)
print (displayStrShort ('Hello')); // Message: Hello.
print (display(display ("What's up?"))) ; (3)
[1,2,3,4,5] .where (is0dd) .toList () ; // [1, 3, 5] (4)

[49]

Getting to Work with Dart
}

display (message) => print ('Message: Smessage.');

displayStr (message)
return 'Message: S$message.';

}

displayStrShort (message) => 'Message: S$message.';
is0dd(n) =>n % 2 == 1;

}

By omitting the parameter type, the display function is more general; its argument
can be a String, num, Boolean, List, and so on.

Parameters

As all parameter variables are objects, all parameters are passed by reference; that
means that the underlying object can be changed from within the function. Two
types of parameters exist: the required (they come first in the parameter list), and the
optional parameters. Optional parameters that depend on their position in the list
are indicated between [] in the definition of the function. All parameters we have
seen so far in examples were required, but usage of only optional parameter(s) is also
possible, as shown in the following code (refer to parameters.dart):

webLanguage ([name]) => 'The best web language is: S$name';

When called as shown in the following code, it produces the output shown as
comments:

print (webLanguage ()); // The best web language is: null
print (webLanguage ('JavaScript')); // The best web language is:
// JavaScript

An optional parameter can have a default value as shown in the following code:
webLanguage?2 ([name='Dart']) => 'The best web language is: S$name’';

If this function is called without argument, the optional value is substituted instead,
but when called with an argument, this takes precedence:

print (webLanguage2()); // The best web language is: Dart
print (webLanguage2 ('JavaScript')); // The best web language is:
// JavaScript

[50]

Chapter 2

An example with required and optional parameters, with or without default values
(name=value), is as follows:

String hi(String msg, [String from, String to])
=> '$msg from $from to Sto!';
String hi2 (String msg, [String from='me',6 String to='you'])

=> '$msg from $from to S$to';

Here msg always gets the first parameter value, from and to get a value when there
are more parameters in that order (for that reason they are called positional):

print (hi('hi')); // hi from null to null
print (hi('hi', 'me')); // hi from me to null
print (hi('hi', 'me', 'you')); // hi from me to you
print (hi2 ('hi')) ; // hi from me to you
print (hi2 ('hi', 'him')); // hi from him to you
print (hi2 ('hi', 'him', 'her')); // hi from him to her

When calling a function with optional parameters it is often not clear what the code
is doing. This can be improved by using named optional parameters. These are
indicated by { } in the parameter list, such as in hi3:

String hi3 (String msg, {String from, String to}) =»>
'Smsg from $from to Sto';

They are called with name : value and because of the name the position does not
matter:

print (hi3 ('hi', to:'you',6 from:'me')); // hi from me to you
Named parameters can also have default values (name : value):

String hi4 (String msg, {String from:'me', String to:'you'}) =>
'Smsg from $from to Sto';

It is called as follows:
print (hi4 ('hi', from:'you')); // hi from you to you
The following list summarizes the parameters:

* Optional positional parameters: [param]
* Optional positional parameters with default values: [param=value]
* Optional named parameters: {param}

* Optional named parameters with default values: {param:value}

[51]

Getting to Work with Dart

First class functions

A function can contain other functions, as calcRabbits contains calc (years) in
prorabbits_v4.dart:

String calculateRabbits (int years) {
calc(years) => (2 * pow(E, log(GROWTH FACTOR) *
years)) .round () .toInt () ;
var out = "After $years years:\t ${calc(years)} animals";
return out;

}

This can be useful if the inner function needs to be called several times within the
outer function, but it cannot be called from outside this outer function. A slight
variation is to store the function in a variable calc that has type Function, as in
prorabbits_v5.dart

String calculateRabbits (int years) {
var calc = (years) => (2 * pow(E, log(GROWTH FACTOR) *
years)) .round () .toInt () ; (1)
assert (calc is Function) ;
var out = "After $years years:\t ${calc(years)} animals";
return out;

}

The right-hand side of line (1) is an anonymous function or lambda that takes
parameter years and returns the expression after => (the lambda operator). It could
also have been written as follows:

var calc2 = (years) {
return (2 * pow(E, log(GROWTH_FACTOR) *
years)) .round () .toInt () ;

Vi

In prorabbits_ vé.dart, the function calc is made top-level and is passed in the
function 1ineOut as a parameter named fun:

void main() {
print ("The number of rabbits increases as:\n");
for (int years = 0; years <= NO_YEARS; years++) {
lineOut (years, calc(years));

calc(years) => // code omitted, same as line (1)
//in the preceding code

[52]

Chapter 2

lineOut (yrs, fun)
print ("After $yrs years:\t ${fun} animals");

}

As a variation to the previous code, prorabbits_v7.dart has the inner function
cale, which has no parameter and yet it can use the variable years that exists in
the surrounding scope. For that reason calc is called a closure; it closes over the
surrounding variables, retaining their values.

String calculateRabbits (int years) {
calc() => (2 * pow(E, log(GROWTH FACTOR) *
years)) .round () .toInt () ;

var out = "After $years years:\t ${calc()} animals";

return out;

}

Closures can also be defined as top-level functions, as closure.dart shows. The
function multiply returns a function (that itself takes a parameter i). So mult2 in the
following code is a function that needs to be called with a parameter, for example,
mult2(3):

// short version: multiply(num n) => (num i) => n * i;
// long version:
Function multiply (num n) {

return (num i) => n * i;

main () {
var two = 2;
var mult2 = multiply(two); // this is called partial application
assert (mult2 is Function);
print ('${mult2(3)}"); // 6

}

This closure behavior (true lexical scoping) is most clearly seen in closure2.dart,
where three anonymous functions (each of which retains the value of i) are added

to a List 1stFun. When calling them (the call is made with the () operator after the
list element 1stFun[il), they know their value of i; this is a great improvement over
JavaScript.

main() {
var lstFun = [];
for(var i in [10, 20, 30]) {
lstFun.add(() => print(i));

[53]

Getting to Work with Dart

print (1stFun(0] ()); // 10 null
print (1stFun(1] ()); // 20 null
print (1stFun(2] ()); // 30 null

}

While all these code variations might now perhaps seem as just a esthetical, they can
make your code clearer in more complex examples and we'll make good use of them
in the forthcoming apps. The definition of a function comprises its name, parameters,
and return type and is also called its signature. If you find this signature occurring
often in your code, you can define it as a function type with typedef, as shown in
the following code:

typedef int addInts(int a, b);

Then you can use addInts as the type of a function that takes two values of int and
returns an int.

Both in functional and OO programming it is essential to break a large problem into
smaller ones. In functional programming, the decomposition in functions is used

to support a divide-and-conquer approach to problem solving. A last remark: Dart
does not have overloading of functions (or methods or constructors) because typing the
arguments is not a requirement, Dart can't make the distinction. Every function must
have a unique name, and there can be only one constructor named after the class, but
a class can have other constructors as well.

Recognizing and catching errors and
exceptions

As a good programmer, you test your app in all possible conditions. Dart defines

a number of errors for those things that you should remedy in your code, such as
CastError when a cast fails, or NoSuchMethodError when the class of the object
on which the method is called does not have this method, and neither do any of its
parent classes. All these are subclasses of the Error class, and you should code so
that they do not occur. But when something unexpected occurs while running the
app, and the code cannot cope with it, an Unhandled Exception occurs. Especially
input values that are read in from the keyboard, a file, or a network connection can
be dangerous. Suppose input is such a value that is supposed to be an integer (refer
to exceptions.dart); we try to convert it to an int type in line (1):

var input = "47B9"; // value read from input,
should be an integer
int inp = int.parse (input) ; (1)

[54]

Chapter 2

While running the program on the console with the command dart exceptions.
dart, our program terminates with an exception:

Unhandled exception:

FormatException: 47B9

#0 int.parse (dart:core-patch:1586:41)

#1 main (file:///E:/dart/code/chapter 2/
exceptions/bin/exceptions.dart:4:22)

When running in Dart Editor the default behavior is that the debugger kicks in

so that you can examine the exception and the values of all variables (you can
change this behavior by navigating to Tools | Preferences | Run and Debug,

and change the Break on Exceptions to None). The generated FormatException

is clear, the input was in the wrong format. A lot of other exceptions exist such

as IntegerDivisionByZeroException, IOException (failure to read or write a
file), and Ht tpException (When requesting a page from a web server); they are all
subclasses from the Exception class. When they are generated they are objects that
contain information about the exception. How can we handle this exception so that
our program does not crash? For this Dart follows the familiar try. ..on/catch. ..
finally pattern:

* try: To try the dangerous statement(s)

* on/catch: To catch the exception (a specific one that you know can occur or a
general exception) and stop it from propagating

* finally: It contains code (perhaps to clean up, or close files or connections)
that will be executed, whether or not an exception occurs, but it is optional

A minimal exception handler could be as shown in the following code:

try {
int inp = int.parse (input) ;
} on FormatException {
print ('ERROR: You must input an integer!');

}

This prints out the text in the on part. Use catch if you want to examine the
exception object. The last clause in the try statement should be an on Exception
catch (e) or better even a simple catch (e) to stop any type of error or exception. So
the most general exception handler is:

try {
int inp = int.parse (input) ;

} on FormatException { // or any other specific exception
print ('ERROR: You must input an integer!');

} on Exception catch(e) { // Any other exception

[55]

[vww allitebooks.cond

http://www.allitebooks.org

Getting to Work with Dart

print ('Unknown exception: Se');

} catch(e) { // No specified type, handles all
print ('Something really unknown: $e');

} finally {
print ('OK, I have cleaned up the mess');

}

If you comment out the on FormatException part, you'll see that $e contains
FormatException: 47B9

Should an abnormal condition occur, you can generate or throw an exception in your
code yourself with throw. An example is given in the following code:

var radius = 8;
var area = PI * pow(radius, 2);
if (area > 200) { // area is 201.06192982974676

throw 'This area is too big for me.';

}

You can also throw a real Exception object with throw new Exception("..").The
keyword throw produces an expression, so it can be used after a => operator like
this:

clearBalance () => throw const UnimplementedError () ;

This is handy to remind yourself while testing that this method hasn't yet been
implemented! The bottom line is to test your code exhaustively and provide
exception handling for unforeseeable events that your app cannot process in a
normal way.

Debugging exercise

The following little program (debuggingex.dart) results in a RangeError. Use

the debugger from the beginning to see where it goes wrong and correct it. In Dart
Editor, double-click on a narrow column to the left of for (var i=0; i<=1st.
length; i++) {inorder to create a breakpoint (a blue circle). Run the program and
use step over to get a new value of the i variable. Correct the program to avoid the
range error. However, don't use try. . .catch to handle the error because this is a
programmer's mistake!

// calculate and print the squares of the list items:
var lst = [1, 2, 3, 4, 5];

void main()
for (var i=0; i<=1lst.length; i++) {
print (Ist[i]l * 1stl[il);
1
1

[56]

Chapter 2

& Dart Editor - olEN|
File Edit Refactor Navigate Run Tools Help
i i+ QF BoW
Files 12 15 debuggingexdart | ~Old % Debugger &
1 // eal and print the squar x | [
i chapter_2 2 var Ls 2, 3, 4, 5]; 1 + U debuggingex.dart
« 1 debuggingex 3 1 « B ar
ud;kages packl 4 w;:rm?;:ﬁ)'{a g s e . « ® isolate-7174 [suspended)
ubspec. lock B 1=8; i<= . PR - :
wpubspecyaml | 6 print(lst[i] * Lst[i]); e
& Hin 7 main)
b packages g}
ER

i debugginge:
& Dart SDK
1@ Installed Package

MNarmwe Value
® exception RangeErmor
* top-level
index 5
® this List{5]
< »
Rangefrror: &
< ¥ < » < 3
Writable Smart Insert 91

Summary

By now you have acquired a lot of technical skills and gained insights into how Dart
works. The main ideas to take away from this chapter are:

* The relevance of typing variables in Dart and when to apply them: type
the public API of your app in order to enhance tooling and documentation,
which is produced with the built-in tool Dartdoc

* Dart's constructs are very familiar but the approach is quite refreshing,
leading to elegant code

* In particular, Dart incorporates quite a few functional ways of
coding: functions are quite powerful and working with collections
uses this intensively

In the next chapter we will see that Dart is a familiar object-oriented language
using classes. Generic types are also available, and we show how to use libraries to
structure your growing code. Using external libraries is easy with the pub tool, and
tests can be integrated with the unit testing library.

[57]

Structuring Code with
Classes and Libraries

In this chapter we will look at the object-oriented nature of Dart. If you have
prior knowledge of an OO language, most of this chapter will feel familiar.
Nonetheless, coding classes in Dart is more succinct when introducing some nice
new features such as factory constructors and generalizing the use of interfaces.
If you come from the JavaScript world, you will start to realize that classes

can really structure your application.

Data mostly comes in collections. Dart has some neat classes to work with
collections, and they can be used for any type of collections. That's why they are
called generic. As soon as you get a few code files in your project, structuring them
by making libraries becomes essential for code maintainability. Also, your code will
probably use existing libraries written by other developers; to make it easy, Dart has
its own package manager called pub. Automating the testing of code on a functional
level is done with a built-in unit test library.

We will look at the following topics:

* Using classes and objects

* Collection types and generic classes

* Structuring your code using libraries

* Managing library dependencies with pub
* Unit testing in Dart

We will wrap it all up in a small but useful project to calculate word frequencies in
an extract of text.

Structuring Code with Classes and Libraries

A touch of class — how to use classes
and objects

We saw in Chapter 1, Dart - A Modern Web Programming Language, how a class
contains members such as properties, a constructor, and methods (refer to banking
v2.dart). For those familiar with classes in Java or C#, it's nothing special and we
can see already certain simplifications:

* The short constructor notation lets the parameter values flow directly into the
properties:

BankAccount (this.owner, this.number, this.balance) { .. }

* The keyword this is necessary here and refers to the actual object (being
constructed), but it is rarely used elsewhere (only when there is a name
conflict). Initialization of instance variables can also be done in the so-called
initializer list, in this shorter version of the constructor:

BankAccount (this.owner, this.number, this.balance):
dateCreated = new DateTime.now () ;

* The variables are initialized after the colon (:) and are separated by a comma.
You cannot use the keyword this in the initializer expression. If nothing else
needs to be done, the constructor body can be left out.

* The properties have automatic getters to read the value (as in ba.balance)
and, when they are not final or constant, they also have a setter method to
change the value (as in balance += amount).

You can start out by using dynamic typing (var) for properties,
M especially when you haven't decided what type a property will
Q become. As development progresses, though, you should aim to
change dynamic types into strong types that give more meaning
to your code and can be validated by the tools.

Properties that are Boolean values are commonly named with is at the beginning,
for example, 1s0dd.

A class has a default constructor when there are no other constructors defined.
Objects (instances of the class) are made with the keyword new, and an object is
of the type of the class. We can test this with the is operator, for example if object
ba is of type BankAccount, then the following is true: ba is BankAccount. Single
inheritance between classes is defined by the extends keyword, the base class of
all classes being object.

[60]

Chapter 3

Member access uses the dot (.) notation, as in ba.balance or ba.withdraw(100.0).
A class can contain objects that are instances of other classes: a feature known as
composition (aggregation). For example, we could decide at a later stage that the
String owner in the BankAccount class should really be an object of a Person class,
with many other properties and methods.

A neat feature to simplify code is the cascade operator (. .); with it, you can set a
number of properties and execute methods on the same object, for example, on the
ba object in the following code (it's not chaining operations!):

ba
..balance = 5000.0
..withdraw(100.0)
. .deposit (250.0) ;

We'll focus on what makes Dart different and more powerful than common
OO languages.

Visibility — getters and setters

What about the visibility or access of class members? They are public by default, but
if you name them to begin with an underscore (_), they become private. However,
private in Dart does not mean only visible in its class; a private field (property)— for
example, _owner —is visible in the entire library in which it is defined but not in the
client code that uses the library.

For the moment, this means that it is accessible in the code file where it is declared
because a code file defines an implicit library. The entire picture will become clear in
the coming section on libraries. A good feature that enhances productivity is that you
can begin with public properties, as in project_v1.dart. A Project object has a
name and a description and we use the default constructor:

main()

var pl = new Project();

pl.name = 'Breeding';
pl.description = 'Managing the breeding of animals';
print ('$pl') ;

// prints: Project name: Breeding - Managing
the breeding of animals

}

class Project {
String name, description;
toString() => 'Project name: $name - S$description';

}

[61]

Structuring Code with Classes and Libraries

Suppose now that new requirements arrive; the length of a project name must be
less than 20 characters and, when printed, the name must be in capital letters. We
want the Project class to be responsible for these changes, so we create a private
property, _name, and the get and set methods to implement the requirements (refer
to project v2.dart):

class Project {
String name; // private variable
String description;

String get name => name == null ? "" : name.toUpperCase () ;
set name (String prName) {
if (prName.length > 20)
throw 'Only 20 characters or less in project name';
_name = prName;

}

toString() => 'Project name: S$name - Sdescription';

}

The get method makes sure that, in case _name is not yet filled in, an empty string is
returned.

The code that already existed in main (or in general, the client code that uses this
property) does not need to change; it now prints Project name: BREEDING -
Managing the breeding of animals and, if a project name that is too long is
given, the code generates an exception.

M Start your class code with public properties and, later, change
Q some of them to private if necessary with getters and/or setters
without breaking client code!

A getter (and a setter) can also be used without a corresponding property instead
of a method, again simplifying the code, such as the getters for area, perimeter, and
diagonal in the class Square (square_v1.dart):

im