
www.allitebooks.com

http://www.allitebooks.org

Learning Dart

Learn how to program applications with Dart 1.0,
a language specifically designed to produce
better-structured, high-performance applications

Ivo Balbaert

Dzenan Ridjanovic

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Dart

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1191213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-742-2

www.packtpub.com

Cover Image by Javier Barría C (jbarriac@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits
Authors

Ivo Balbaert

Dzenan Ridjanovic

Reviewers
Sergey Akopkokhyants

Tom Alexander

Christophe Herreman

Yehor Lvivski

Christopher McGuire

Acquisition Editors
Saleem Ahmed

Rebecca Youe

 Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Venu Manthena

Amit Singh

Hardik B. Soni

Gaurav Thingalaya

Copy Editors
Roshni Banerjee

Brandt D'Mello

Tanvi Gaitonde

Shambhavi Pai

Lavina Pereira

Adithi Shetty

Laxmi Subramanian

Project Coordinators
Apeksha Chitnis

Wendell Palmer

Proofreader
Clyde Jenkins

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Disha Haria

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Ivo Balbaert is currently a lecturer for (Web) Programming and Databases at CVO
Antwerpen (www.cvoantwerpen.be), a community college in Belgium. He received
a Ph.D. in Applied Physics from University of Antwerp in 1986. He worked for 20
years in the software industry as a developer and consultant in several companies,
and for 10 years as a project manager at the University Hospital of Antwerp. From
2000 onward, he switched to partly teaching and partly developing software
(KHM Mechelen, CVO Antwerp). He also wrote an introductory book in Dutch
about developing in Ruby and Rails: Programmeren met Ruby en Rails, Van Duuren
Media, ISBN: 978-90-5940-365-9, 2009, 420 p. In 2012, he authored a book on the Go
programming language: The Way To Go, IUniverse, ISBN: 978-1-4697-6917-2, 600 p.

www.allitebooks.com

http://www.allitebooks.org

Dzenan Ridjanovic is a university professor who is planning his early
retirement to focus on the development of web applications with Dart, HTML5,
web components, and NoSQL databases. For more than 10 years, he was a
Director of Research and Development in the Silverrun team (http://www.
silverrun.com/), which created several commercial tools for analysis, design,
and development of data-driven applications. He was a principal developer of
Modelibra (http://www.modelibra.org/) tools and frameworks for model-driven
development in Java. Recently, he has been developing the Dartling framework for
design and code generation of Dart models. His projects are at GitHub (https://
github.com/dzenanr), where he is considered a Dart expert (http://osrc.dfm.
io/dzenanr). He writes about his projects at On Dart blog (http://dzenanr.
github.io/). His courses are available at On Dart Education (http://ondart.
me/). He markets his Dart efforts at On Dart G+ Page (https://plus.google.
com/+OndartMe). Dzenan Ridjanovic wrote a book in 2009, under the Creative
Commons License, entitled Spiral Development of Dynamic Web Applications: Using
Modelibra and Wicket (http://www.modelibra.org/).

I want to thank my spouse Amra for her constant care and support,
the Dart team for creating a missing web language, and Ivo Balbaert
for his productive writing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sergey Akopkokhyants is a Java certified technical architect with more than 19
years of experience in designing and developing client and server-side applications.
For the last five years, Sergey has been responsible for customizing and producing
web-oriented applications for wholesale business management solutions projects for
several worldwide mobile communications companies. Sergey is passionate about
web designing and development, and believes that an investment in bleeding edge
technologies will always give a return to both the individual and the organization.
He is also the author and owner of several open source projects on GitHub, including
the Dart Web Toolkit (DWT). Sergey likes sharing knowledge and experience with
others, and helping them to increase their skills and productivity.

Tom Alexander graduated with a Computer Science degree from Rensselaer
Polytechnic Institute. He currently works for TripAdvisor as a software engineer,
where he works on the mobile version of the website.

www.allitebooks.com

http://www.allitebooks.org

Christophe Herreman is a versatile and passionate software architect with more
than 10 years of professional experience. He is also a Certified Scrum Master and has
general knowledge of many tools and platforms. For the last few years, Christophe
has mainly worked on web-based applications in a variety of domains, such as
healthcare, education, traffic control, and electronics. His main tasks have been:
architecture and development of the client software using Flex, ActionScript and
Adobe AIR, HTML, JavaScript, and client-server integrations with Java, .NET, and
PHP; automating the build process with tools such as Maven, Ant, Batch, Jenkins/
Hudson; setting up unit, integration and functional tests; reviewing, auditing,
and improving existing codebases; coaching and mentoring teams. Christophe is
also a regular speaker at conferences and user groups, as well as an active open
source contributor. He's the founder of the Spring ActionScript framework and the
AS3Commons project and a committer on the Apache Flex project. In the past, he
has lectured on software and web development at the University College of West-
Flanders, Belgium. Together with his partner, he runs the Belgium-based software
consultancy firm Stack & Heap (www.stackandheap.com).

Yehor Lvivski thinks that it's never too late to learn and always tries to know
the current trends of the web and predict the future ones. He has always wanted
to be a designer, but later found an area where he can combine both his design and
engineering skills. For the last six years, Yehor was involved in game development,
added a nice interactive UI for a search engine, created his own CSS animations
library, and several open source projects. He really likes to create a great visual
experience. Yehor now works for SpatialKey, and is involved in changing the future
of data analysis. Not only does he like to create things, but he's also an active speaker
at different local and global conferences. He believes that knowledge sharing is the
key point to evolution.

Christopher McGuire is an application developer currently working in Glasgow,
Scotland. He graduated from the University of Strathclyde in 2011 with a B.Sc (Hons)
in Computer Science and currently works for an investment bank. Chris
has experience in developing Enterprise Standard Server applications, primarily
using Java and other object oriented-languages, while also developing web/mobile
front-end applications using native Android/iOS and HTML5. From this, he has
multiple applications published on the Google Play market. In addition to this,
Chris has developed multiple web applications and has a strong interest in new and
emerging technologies, which have led him to become part of the Dart community
and develop several more applications using this language.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Dart – A Modern Web Programming Language 9

What is Dart? 9
Dart is a perfect fit for HTML5 10

A very short history of web programming 11
Dart empowers the web client 11
JavaScript is not the way to go for complex apps 12
Google, GWT, and Dart 13
Advantages of Dart 13

Getting started with Dart 14
Installing the Dart Editor 15

Your first Dart program 16
Getting a view on the Dart tool chain 18

The Dart execution model 18
A bird's eye view on Dart 20

Example 1 – raising rabbits 20
Extracting a function 22
A web version 24

Example 2 – banking 27
Making a todo list with Dart 28
Summary 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Getting to Work with Dart 31
Variables – to type or not to type 32
Built-in types and their methods 35

Conversions 36
Operators 37
Some useful String methods 39
Dates and times 41
Lists 42
Maps 43

Documenting your programs 45
Changing the execution flow of a program 46
Using functions in Dart 49

Return types 49
Parameters 50
First class functions 52

Recognizing and catching errors and exceptions 54
Debugging exercise 56

Summary 57
Chapter 3: Structuring Code with Classes and Libraries 59

A touch of class – how to use classes and objects 60
Visibility – getters and setters 61
Types of constructors 63

Named constructors 64
factory constructors 64
const constructors 66

Inheritance 66
Abstract classes and methods 67
The interface of a class – implementing interfaces 69

Polymorphism and the dynamic nature of Dart 70
Collection types and generics 72

Typing collections and generics 72
The collection hierarchy and its functional nature 74

Structuring your code using libraries 81
Using a library in an app 83
Resolving name conflicts 83
Visibility of objects outside a library 84

Managing library dependencies with pub 85
Unit testing in Dart 88
Project – word frequency 91

Summary 94

Table of Contents

[iii]

Chapter 4: Modeling Web Applications with
Model Concepts and Dartlero 95

A short introduction to Git and GitHub 96
Creating a repository on GitHub and a local version 96
Collaborating on a GitHub project 98

What a model is and why we need it in programming 98
Model concepts – a graphical design tool for our models 99

Working with model concepts 101
Explaining the model 101
Drawing the model 102
Exporting the model 104
What is JSON? 105

Dartlero – a simple domain model framework 108
An example of using Dartlero 110
The categories and links application 116
Summary 119

Chapter 5: Handling the DOM in a New Way 121
Finding elements and changing their attributes 122

Finding elements 124
Changing the attributes of elements 124

Creating and removing elements 127
Handling events 128
Manipulating the style of page elements 130
Animating a game 131

Ping Pong using style(s) 132
How to draw on a canvas – Ping Pong revisited 138

Spiral 1 – drawing a circle and a rectangle 138
Spiral 2 – colored circles and rectangles 142
Spiral 3 – moving a ball 143
Spiral 4 – reorganizing the code 145
Spiral 5 – a bouncing ball 146
Spiral 6 – displaying the racket 146
Spiral 7 – moving the racket using keys 148
Spiral 8 – moving the racket using the mouse 149
Spiral 9 – a real game 150
Spiral 10 – title and replay 151
Spiral 11 – the master version 151

Summary 152

Table of Contents

[iv]

Chapter 6: Combining HTML5 Forms with Dart 153
Spiral 1 – the power of HTML5 forms 153
Spiral 2 – how to validate data with Dart 157

Validation in the model 160
Spiral 3 – how to store data in local storage 161
Spiral 4 – reading and showing data 163
Spiral 5 – changing and updating data 166
Spiral 6 – working with a list of bank accounts 168
Summary 171

Chapter 7: Building Games with HTML5 and Dart 173
The model for the memory game 174
Spiral 1 – drawing the board 175
Spiral 2 – drawing cells 177
Spiral 3 – coloring the cells 179
Spiral 4 – implementing the rules 182
Spiral 5 – game logic (bringing in the time element) 186
Spiral 6 – some finishing touches 187
Spiral 7 – using images 189
Adding audio to a web page 192
Using an audio library – Collision clones 194
Adding video to a web page 199
Summary 201

Chapter 8: Developing Business Applications
with Polymer Web Components 203

How web components change web development 204
Web components with Polymer.dart 205

Declaring and instantiating a web component 206
Two-way data binding in Polymer.dart 209
Creating the polymer_links project 213

Spiral s01 213
Spiral s02 214
Spiral s04 217
Spiral s05 218
Spiral s06 220

Using Polymer for the category links project 222
Adding local storage 229

Applying web components to the project tasks app 231
Add and remove Task propagations 240

Summary 241

Table of Contents

[v]

Chapter 9: Modeling More Complex Applications with Dartling 243
The Dartling domain modeling framework 244
Design of the Travel Impressions model in spirals 247
Generating Travel Impressions code from the model 252
Initializing the Travel Impressions model with Data 254
Testing the Travel Impressions model 258
Defining and using the MVC pattern 267
The TodoMVC app 269

Spiral 0 – generating a class model 270
Spiral 1 – adding todo tasks 271
Spiral 2 – showing how many todo tasks left 273
Spiral 3 – removing a single task and completed tasks 276
Spiral 4 – editing todos (undo and redo) 277
Spiral 5 – displaying completed, remaining, or all todos 279
Spiral 6 – editing a task 280

Summary 281
Chapter 10: MVC Web and UI Frameworks
in Dart – An Overview 283

DQuery 284
Bootjack 285
Dart Web Toolkit (DWT) 286

The dartling_dwt_todo_mvc_spirals project 289
Dart widgets 294
Bee 295
HTML components 295
Rikulo UI 296

Rikulo MVC 300
Hipster-mvc 301
Puremvc 301
StageXL 302
Flash Professional CC – toolkit for Dart 303
Angular.dart 304
Summary 305

Table of Contents

[vi]

Chapter 11: Local Data and Client-Server Communication 307
The options for browser storage 308
Asynchronous calls and Futures 308
Using IndexedDB with Dart 311

Spiral s00 311
Spiral s01 317
Spiral s02 318
Spiral s03 319
Spiral s04 320
Spiral s05 323

Using Lawndart 323
A Dart web server 324
Using JSON web services 324

Spiral s07 329
Summary 332

Chapter 12: Data-driven Web Applications
with MySQL and MongoDB 333

Database drivers for Dart 333
Storing todo data in MySQL 335
Dartlero tasks – a many-to-many model in MySQL 344

The JSON storage 344
MySQL storage 346

MongoDB – a NoSQL database 354
Using the mongo_dart driver to store the todo data in MongoDB 357
Summary 362

Index 363

Preface
Developing a web application or software in general, is still a challenging task. There
is a client/browser side and a server side with databases. There are many different
technologies to master in order to feel comfortable with a full client/server stack.
There are different frameworks with different objectives. There are also different
programming languages that a developer must learn each one more suitable either
for the server or the client side.

Learning Dart will help a developer to become more focused by using Dart both for
clients and servers. Using the same language will ensure that a developer will lose
neither performance nor flexibility. Dart can be used within its virtual machine, or
its code may be compiled to JavaScript. In both cases, the performance benchmarks
show promising scores (https://www.dartlang.org/performance/). Dart is both
an object-oriented and a functional language. With Dart, a mix of both approaches
is possible, providing great professional freedom and a programming background
flexibility. In addition, Dart provides many libraries and tools (http://pub.
dartlang.org/) that allow a developer to focus on the task at hand and not be
concerned with all the aspects of software development.

With Polymer.dart (https://www.dartlang.org/polymer-dart/), a new
approach towards developing web applications with web components will be
discovered, allowing a developer to divide a web page into sections and re-use an
already developed and tested web component for each section. In the near future,
different catalogs of web components will appear, enabling an engineering approach
to software development after waiting for many years. A web component may be
composed from other web components. It may pass data to its components. A web
component may also inherit its behavior from another web component. It may access
an already instantiated web component.

Preface

[2]

Spiral approach
The spiral approach to software learning and development, which preserves a
project history as a series of code snapshots or spirals, is used in this book.

The following three points are important in the spiral approach:

• The history of development is preserved
• Simple solutions are provided first; later on, these solutions may be replaced

by more advanced solutions
• Only concepts used in a spiral are explained

All of these three points are important in teaching and learning technologies.

Learning new software concepts and technologies is a challenging task. Learning
in spirals, from simple to more advanced concepts but with concrete software
applications, helps readers get a reasonable confidence level early on, and motivates
them to learn by providing more useful applications. With each new spiral, the
project grows and new concepts are introduced. A new spiral is explained with
respect to the previous one. The difference between two consecutive spirals is that
the next spiral has the new code introduced and the old code modified or deleted.
This is named learning by anchoring to what we already understand. With a new
spiral, we can come back to what we did previously and improve it. In this way,
learning in spirals can touch the same topic several times, but each time with more
details in a better version.

What this book covers
Learning Dart has 12 chapters. It begins with basic elements of Dart and it ends with a
client/server application that uses MongoDB (http://www.mongodb.org/) for data
persistence on the server side.

Chapter 1, Dart – A Modern Web Programming Language, helps you understand
what Dart is all about. Dart is presented as a major step forward in the web
programming arena.

Chapter 2, Getting to Work with Dart, lets you get a firm grasp on how to program
in Dart. The code and data structures in Dart, and its functional principles, are
explained by exploring practical examples.

Chapter 3, Structuring Code with Classes and Libraries, lets you understand how to use
Dart classes to organize code. Dart libraries are introduced to show how complex
software may be packaged.

Preface

[3]

Chapter 4, Modeling Web Applications with Model Concepts and Dartlero, enables you to
design a small model graphically in the Model Concepts tool, which is developed in
Dart. A model is then represented in Dart as several classes that inherit some data and
operations from classes of the Dartlero model framework, also developed in Dart.

Chapter 5, Handling the DOM in a New Way, helps you to learn how to access HTML
elements in Dart. Some elements will even be created in Dart and placed properly in
the Document Object Model (DOM) of a web page. Dart will also handle user events,
such as a click on a button. Finally, you will be able to create a simple game in Dart.

Chapter 6, Combining HTML Forms with Dart, lets you enter data in a form that will be
validated by HTML5 and Dart. Then, the valid data will be saved in the local storage
of a browser.

Chapter 7, Building Games with HTML5 and Dart, lets you create, step-by-step, a well-
known memory game based on what you have learned already. Each step will be
a new spiral represented as a complete project in Dart Editor. The first spiral will
draw only a rectangle, while the last spiral will be a game that you may show to your
friends.

Chapter 8, Developing Business Applications with Polymer Web Components, helps you
to create several web components by using Polymer.dart. Those web components
will be used in different sections of a single-page application. Three different projects
with web components will be presented in this chapter.

Chapter 9, Modeling More Complex Applications with Dartling, explains how a graphical
model can be transformed into a JSON document and then used to generate a
complete model in Dart, by using the Dartling domain model framework together
with its tools. Dartling follows the Model View Controller (MVC) pattern to separate
a model from its views.

Chapter 10, MVC Web and UI Frameworks in Dart – An Overview, introduces you
to different frameworks already developed in Dart. Because Dart is a brand new
language, those frameworks are at early stages of their useful life.

Chapter 11, Local Data and Client-Server Communication, explains how you can store
application data in a local database named IndexedDB, which will then be sent as a
JSON document to a Dart server. Asynchronous programming with futures will also
be covered in this chapter.

Preface

[4]

Chapter 12, Data-driven Web Applications with MySQL and MongoDB, explains how you
can use database drivers to save (and load) data to (and from) a relational database
and a NoSQL database. Data sent from a browser as a JSON document will easily be
saved in MongoDB in the same JSON form. Two clients will exchange data with the
server so that both of them will be up-to-date.

What you need for this book
In order to benefit from this book, you need to have some basic experience in
programming. It is also useful to have some understanding of HTML and CSS. What
you really need to bring is your enthusiasm to learn how to become a web developer
of the future. All the software used in the book are freely available on the Web:

• https://www.dartlang.org/

• https://github.com/Ivo-Balbaert/learning_dart

• https://github.com/dzenanr

• http://www.mysql.com/

• http://www.mongodb.org/

One of the authors has already taught three times an introductory course to
programming with some material from this book. The book also has its own website
at http://www.learningdart.org/. Other educational resources for Dart can be
found at http://ondart.me/.

Who this book is for
The book is intended for web application programmers, game developers, and
other software engineers. Because of its dual focus (Dart and HTML5), the book
can appeal to both web developers who want to learn a modern way of developing
web applications, and to developers who seek guidance on how to use HTML5.
The audience would include mainstream programmers coming with an object-
oriented background (Java, .NET, C++, and so on) as well as web programmers
using JavaScript, who seek a more structured and tooled way of developing. Both
groups would leverage their existing knowledge and expertise: the first, by offering
them a way of developing modern web applications using techniques they already
know, and the second, by giving them a more productive and engineered way of
developing (business) web applications. The article at the following link describes
well what Dart has to offer for the web developers of the future:
http://news.cnet.com/8301-1023_3-57613760-93/mixbook-sees-perfect-
storm-for-googles-dart-language-q-a/.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The calculateRabbits function calculates and returns an integer value; this is
indicated by the word int preceding the function name."

A block of code is set as follows:

void main() {
 print("The number of rabbits increases as:\n");
 for (int years = 0; years <= NO_YEARS; years++) {
 rabbitCount = calculateRabbits(years);
 print("After $years years:\t $rabbitCount animals");
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

void main() {
 print("The number of rabbits increases as:\n");
 for (int years = 0; years <= NO_YEARS; years++) {
 rabbitCount = calculateRabbits(years);
 print("After $years years:\t $rabbitCount animals");
}

Any command-line input or output is written as follows:

git clone git://github.com/dzenanr/collision_clones.git

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
change this behavior by navigating to Tools | Preferences | Run and Debug, and
change the Break on Exceptions to None."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Dart – A Modern Web
Programming Language

In this chapter we will investigate:

• What Dart is all about
• Why it is a major step forward in the web programming language arena

We will get started with the Dart platform and have a look at its tools. Soon enough
we will be programming and taking a dive in a simple functional todo list program,
so that you realize how familiar it all is.

What is Dart?
Dart is a new general and open source programming language with a vibrant
community developed by Google Inc. and its official website is https://www.
dartlang.org. It was first announced as a public preview on October 10, 2011. Dart
v1.0, the first production release, came out on November 14, 2013, guaranteeing
a stable platform upon which production-ready apps can be built. World class
language designers and developers are involved in this project, namely, Lars Bak and
Kasper Lund (best known from their V8 JavaScript engine embedded in the Chrome
browser, which revolutionized performance in the JavaScript world) and Gilad Bracha
(a language theorist known from the development of the Strongtalk and Newspeak
languages and from the Java specification). Judged by the huge amount of resources
and the number of teams working on it, it is clear that Google is very serious about
making Dart a success.

Take your time to familiarize yourself with the site dartlang.org.
It contains a wealth of information, code examples, presentations,
and so on to supplement this book, and we will often reference it.

Dart – A Modern Web Programming Language

[10]

Dart looks instantly familiar to the majority of today's programmers coming from
a Java, C#, or JavaScript/ActionScript background; you will feel at ease with Dart.
However, this does not mean it is only a copy of what already exists; it takes the best
features of the statically typed "Java-C#" world and combines these with features
more commonly found in dynamic languages such as JavaScript, Python, and Ruby.
On the nimble, dynamic side Dart allows rapid prototyping, evolving into a more
structured development familiar to business app developers when application
requirements become more complex.

Its main emphasis lies on building complex (if necessary), high-performance, and
scalable-rich client apps for the modern web. By modern web we mean it can
execute in any browser on any kind of (client) device, including tablets and smart
phones, taking advantage of all the features of HTML5, and is ported to the ARM-
architecture and the Android platform. Dart is designed with performance in mind,
by the people who developed V8. Because the Dart team at Google believes web
components will be the foundation for the next evolution of web development, Dart
comes out of the box with a web component library (web components are pieces of
web code containing HTML and Dart or JavaScript that you can re-use in different
pages and projects, in other words it is a reliable infrastructure of widgets).

But Dart can also run independently on servers. Because Dart clients and servers
can communicate through web sockets (a persistent connection that allows both
parties to start sending data at any time), it is in fact an end-to-end solution. It is
perfect on the frontend for developing web components with all the necessary
application logic, nicely integrated with HTML5 and the browser document model
(DOM). On the backend server side, it can be used to develop web services, for
example, to access databases, or cloud solutions in Google App Engine or other
cloud infrastructures.

Moreover, it is ready to be used in the multicore world (remember, even your cell
phone is multicore nowadays) because a Dart program can divide its work amongst
any number of separate processes, called isolates, an actor-based concurrency model
as in Erlang.

Dart is a perfect fit for HTML5
To appreciate this fully we have to take a look at the history of client-side
web development.

Chapter 1

[11]

A very short history of web programming
A web application is always a dialog between the client's browser requesting a page
and the server responding with processing and delivering the page and its resources
(such as pictures and other media). In the technology of the early dynamic web (the 90s
of the previous century, extending even until today), the server performed most of the
work: compiling a page, executing the code, fetching data from a data store, inserting
the data in the page templates, and in the end producing a stream of HTML and
JavaScript that was delivered to the browser. The client digested this stream, rendering
the HTML into a browser screen while executing some JavaScript, so processing on
the client side was minimal. The whole range of applications using Perl, Python, Ruby,
PHP, JSP (Java Server Pages), and ASP.NET follows this principle. It is obvious that
the heavy server loads impact negatively the number of clients that could be served, as
well as the response time in these applications. This mismatch is even clearer when we
realize that the power of the client platforms (with their multicore processors and large
memories) is heavily underutilized in this model.

The plugin model, in which the browser started specialized software (such as the
Adobe Flash Player) for handling all kinds of media and other resources, partly tipped
the balance to the client side. Following this trend, a whole range of technologies
for developing Rich Internet applications (RIA) were developed that executed
application code in the browser at the client side instead, ranging from Java applets
around 1995 and Microsoft Active X Objects, culminating in the Adobe Flex and
Microsoft Silverlight frameworks. While they have their merits, it is clear that they are
more like a parasite in the browser; for example, a virtual machine that executes code,
such as ActionScript or C#, that is alien to the browser environment.

Dart empowers the web client
Empowering the client is the way to go, but this should better be done with software
technology intimately linked to the browser itself: HTML and JavaScript. In order to
eliminate the need for alien plugins, the power of HTML needs to be enlarged, and
this is precisely what is achieved with HTML5, for example, with its <audio> and
<video> tags. JavaScript is the ubiquitous language of the Web and it can, as with
Dart, request/send data from/to the server without blocking the user experience
through technologies such as Ajax. But flexible and dynamic as JavaScript may be,
today it is also often called the assembly language for the web.

Dart – A Modern Web Programming Language

[12]

JavaScript is not the way to go for
complex apps
Why is this? JavaScript was from the beginning not designed to be a robust
programming language, despite its name that suggests an affiliation with Java. It was
designed to be a simple interpreted language that could be used by nonprofessional
programmers and that would be complemented by Java for more serious work. But
Java went away to prosper on the server, and JavaScript (JS for short) invaded the
browser space. Today JS is being used to develop big and complex web applications,
with server components such as Node.js, far beyond the original purpose of this
language. Most people who have worked on a large client-side web application
written entirely in JS will sooner or later come to the conclusion that its use in these
applications is overstretched and the language was not meant to build that kind of
software.

Understanding program structure is crucial in large, complex applications: this
makes code maintenance, navigating in code, debugging, and refactoring easier.
But unfortunately JS code is hard to reason about because there is almost no
declarative syntax and it is very hard to detect dependencies between different
scripts that can appear in one web page. JavaScript is also very permissive: almost
anything (spelling mistakes, wrong types, and so on) is tolerated, making it hard to
find errors and unpredictable results. Furthermore, JS allows you to change the way
built-in core objects function, a practice often called monkey patching (for a reason!).
Would you trust a language in which the following statement is true in its entirety
and all of its comparisons?

10.0 == '10' == new Boolean(true) == '1'

Because of this sometimes undefined nature of JS, its performance is often very
unpredictable, so building high-performance web apps in it is tricky.

Chapter 1

[13]

Google, GWT, and Dart
Google is the web firm par excellence: its revenue model is entirely based on its
massive web applications, such as Gmail (some half a million lines of JS), Google
Docs, Google Maps, and Google Search. So it is no wonder that these teams
encountered the difficulties of building a large JS application and strived for a better
platform. Due to the fundamental flaws of JS and its slow evolution, something
better was needed. A first attempt was Google Web Toolkit (GWT) where
development was done in Java, which was then compiled to JS. Although reasonably
successful because it enabled a structured and tooled approach to application
building, again it was clear that the use of Java is somewhat awkward in a web
environment. Thus arose the idea for Dart: a kind of hybrid platform between the
dynamic nature of JS and the structured and toolable languages such as Java and
C#. In order for Dart to run in all modern web browsers, as for GWT, it must be
compiled to JS. Google has provided a special build of Chromium, called Dartium,
that provides a Dart virtual machine (VM) to execute Dart code on-the-fly without
any compilation step (this VM will soon be incorporated into Chrome; for the time
being Chrome can be used to test the JS version of your Dart app).

Advantages of Dart
That way Dart can get a better performance profile than JS (remember that the
same experts who developed the V8 JS VM are forging Dart, see https://www.
dartlang.org/performance/), and at the same time maintain the simple and rapid
development process of JS in the browser: the edit code, save, and refresh browser
cycle to view the latest version, rather than having to stop, recompile, and run for
every little change. Dart delivers high performance on all modern web browsers
and environments ranging from small handheld devices to server-side execution.
When it runs on its own VM, Dart is faster than JS (in Dart v1.0 around two times the
performance of JS). Moreover, through snapshotting (a mechanism inherited from
Smalltalk) a Dart app has a fast application startup time, in contrast to js where all
the source code has to be interpreted or compiled from source.

Dart can execute in the browser, either in its own Dart VM (only in Chrome for the
moment) or compiled to JS, so Dart runs everywhere JS does. The Dart VM can also
run standalone on a client or server.

Dart – A Modern Web Programming Language

[14]

Another big advantage compared with GWT is that Dart is much better integrated
with the web page and like JS can directly manipulate the page elements and the
document structure, that is, the Document Object Model (DOM). Like JS, it has
intimate access to the new HTML5 APIs, for example, drawing with the canvas,
playing audio and video clips, or using the new local storage possibilities. Following
the RIA model mentioned earlier, Dart executes the full application code in the
browser, requesting data from the server and rebuilding the page user interface
when needed. Because Dart wants to be part of the web, not just sit on top, the team
has also built a Dart to JavaScript interop layer, to call JavaScript from Dart and the
other way around. Together with its out-of-browser and server capabilities, Dart is
also conceived for building complex, large-scale web applications. This can be clearly
seen from its object-oriented nature, and Dart code is built with code clarity and
structure (using libraries and packages) in mind.

To summarize:

• Dart compiles to JavaScript
• When run on its VM, Dart is faster than JavaScript
• Dart is better suited for large-scale applications

SERVER

Client (browser)

Dart VM or V8
executing the app

building the view

requesting data / resources

serving data / resources

serving Dart app

requesting web page with Dart app

The Dart web model

Getting started with Dart
The Dart project team wants us to get an optimal development experience, so they
provide a full but lightweight IDE: the Dart Editor, a light version of the well-known
Eclipse environment. Installing this is the easiest way to get started, because it
comprises the full Dart environment.

Chapter 1

[15]

Installing the Dart Editor
Because Eclipse is written in Java, we need a Java Runtime Environment or JRE
(Version 6 or greater) on our system (this is not needed for Dart itself, only for the
Dart Editor). To check if this is already the case, go to http://www.java.com/en/
download/installed.jsp.

If it is not the case, head for http://www.oracle.com/technetwork/java/javase/
downloads/index.html, and click on the JRE DOWNLOAD button, choose the JRE
for your platform and then click on Run to start the installation.

Then go to https://www.dartlang.org/ and click on the appropriate Download
Dart button and under "Everything you need" choose the appropriate button
(according to whether your installed OS is 32 bit or 64 bit) to download the editor.

This is also the page where you can download the SDK
separately, or the Dartium browser (a version of Chrome to
test your Dart apps) or download the Dart source code.

You are prompted to save a file named darteditor-os-xnn.zip, where os can be
win32, linux, or macos, and nn is 32 or 64. Extracting the content of this file will
create a folder named dart containing everything you need: dart-sdk, dartium,
and DartEditor. This procedure should go smooth but if you encounter a problem,
please review https://www.dartlang.org/tools/editor/troubleshoot.html.

In case you get the following error message: Failed to load the JNI shared
library C:\Program Files(x86)\Java\jre6\\bin\client\jvm.dll, do not
worry. This happens when JRE and Dart Editor do not have the same
bit width. More precisely, this happens when you go to www.java.
com to download JRE. In order to be sure what JRE to select, it is safer
to go to http://www.oracle.com/technetwork/java/javase/
downloads/index.html, click on the JRE DOWNLOAD button and
choose the appropriate version. If possible, use a 64-bit versions of JRE
and Dart Editor.

www.allitebooks.com

http://www.allitebooks.org

Dart – A Modern Web Programming Language

[16]

Your first Dart program
Double-click on DartEditor.exe to open the editor. Navigate to File | New
Application or click on the first button below the menu (Create a new Dart
Application...). Fill in an application name (for example, dart1) and choose the
folder where you want the code file to be created (make a folder such as dart_apps
to provide some structure; you can do this while using the Browse button). Select
Command-line application.

With these names a folder dart1 is made as a subfolder of dart_apps, and a source-
file dart1.dart is created in dart1\bin with the following code (we'll explain the
pubspec.yaml and the packages folder in one of the following examples):

void main() {
 print("Hello, World!");
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Here we see immediately that Dart is a C-syntax style language, using { } to
surround code and ; to terminate statements. Every app also has a unique main()
function, which is the starting point of the application.

This is probably the shortest app possible, but it can be even shorter! The keyword
void indicates (as in Java or C#) that the method does not explicitly return an object
(indeed a print only produces output to the console), but return types can be left
out. Furthermore, when a function has only one single expression, we can shorten
this further to the following elegant shorthand syntax:

main() => print("Hello, World!");

Now, change the printed string to "Becoming a Dart Ninja!" and click on
the green arrow button (or press Ctrl + R) to run the application. You should see
something like the following screenshot (where the Files, Apps, and Outline items
from the Tools menu were selected):

Chapter 1

[17]

The Dart Editor

You have successfully executed your first Dart program!

Near the bottom of the screen we see our string printed out, together with the
message exit code=0 meaning all went well.

The Files tab is useful for browsing through your applications, and for creating,
copying, moving, renaming, and deleting files. The Outline tab (available via
Tools | Outline) now only shows main(), but this tool will quickly become very
useful because it provides an overview of the code in the active file.

Because this was a command-line application, we could just as easily have opened
a console in our folder dart1 and executed the command: dart dart1.dart to
produce the same output as shown in the following screenshot:

A Dart console application

To let this work, you must first let the OS know where to find the dart
VM; so, for example, in Windows you change the PATH environment
variable to include C:\dart\dart-sdk\bin, if your Dart installation
lives in C:\dart.

Dart – A Modern Web Programming Language

[18]

Getting a view on the Dart tool chain
Dart comes with batteries included, which means that a complete stack of tools is
provided by Google to write Dart apps, compile, test, document, and publish them.
Moreover, these tools are platform independent (being made for 32- and 64-bit
Linux, OS X, and Windows) and they are integrated in the Dart Editor IDE. The Dart
Editor contains everything a seasoned developer needs to work with confidence on
his app:

• Syntax coloring for keywords
• Autocompletion for class members (by typing . after a name you get a list of

available properties and methods)
• Folding/unfolding code blocks
• Tools for navigating the code (a handy overview of the code with the

Outline, find callers of a method, and so on)
• Full debugging capabilities of both browser and server applications
• Choose your preferred editor style by navigating to Tools | Preferences |

Visual Theme
• Quick fixes for common errors
• Refactoring capabilities
• Direct access to the online API documentation by navigating to Help | API

Reference

The code you make is analyzed while you type, indicating warning (yellow triangles)
or errors (red underscores or stop signs). To get more acquainted and experiment
with these possibilities, go and read the documentation at https://www.dartlang.
org/tools/editor/ and play with one of the samples such as Sunflower or Pop,
Pop, Win! (you can find the samples by navigating to Tools | Welcome Page). From
now on use the editor in conjunction with the code examples of the book, so that you
can try them out and test changes.

The Dart execution model
How a Dart app executes is sketched in the following diagram:

Chapter 1

[19]

(A)

(B)

Dart
source
code

LINUX
OS X
WINDOWS

executed in browser
(Dartium or Chrome)
or on server

executed as ava criptJ S
in all modern browsers

Dart VM

dart2js

Dart execution model

The Dart code produced in the Dart Editor (or in a plugin for Eclipse or IntelliJ) can:

• Execute in the Dart VM, hosted in Dartium or Chrome (Dartium is an
experimental version of Chrome to test out Dart) or directly in the operating
system (the browser VM knows about HTML, the server VM does not, but
can use, for example, IO and sockets, so they are not completely equivalent)

• Be compiled to JS with the dart2js compiler, so that it can run in all recent
browsers

Code libraries in Dart are called packages and the core Dart SDK contains the basic
types and functionalities for working with collection, math, html, uri, json, and
so on. They can be recognized by the syntax dart:prefix, for example, dart:html.
If you want to use a functionality from a library in a code file, you must import it by
using the following as the first statement(s) in your code (dart:core is imported by
default):

import 'dart:html';

The Dart code can be tested with the unit test package, and for documentation you
can use the dartdoc tool (which you can find by navigating to Tools | Generate
Dartdoc in Dart Editor), which generates a local website structured like the official
API documentation on the Web. The pub tool is the Dart package manager: if your
app needs other packages besides the SDK, pub can install them for you (from the
Tools menu item in Dart Editor, select Pub Get or Pub Upgrade) and you can also
publish your apps with it in the web repository http://pub.dartlang.org/.

We will see all of these tools in action in Chapter 2, Getting to Work with Dart.

Dart – A Modern Web Programming Language

[20]

A bird's eye view on Dart
It's time to get our feet wet by working on a couple of examples. All code will be
thoroughly explained step by step; along the way we will give you a lot of tips and
in the next chapter we will go into more detail on the different possibilities, thus
gaining deeper insight into Dart's design principles.

Example 1 – raising rabbits
Our first real program will calculate the procreation rate of rabbits, which is not
only phenomenal but indeed exponential. A female rabbit can have seven litters a
year with an average of four baby rabbits each time. So starting with two rabbits,
at the end of the year you have 2 + 28 = 30 rabbits. If none of the rabbits die and all
are fertile, the growth rate follows the following formula, where n is the number of
rabbits after the years specified:

n(years) = 2 ex (k years)x

Here the growth factor k = ln(30/2) = ln15. Let us calculate the number after each
year for the first 10 years.

Go to File | New Application as before, select Command-line application and
type the following code, or simply open the script from chapter_1 in the provided
code listings. (Don't worry about the file pubspec.yaml; we'll discuss it in the web
version.)

The calculation is done in the following Dart script prorabbits_v1.dart:

import 'dart:math' (1)

void main() {
 var n = 0; // number of rabbits (2)

 print("The number of rabbits increases as:\n"); (3)
 for (int years = 0; years <= 10; years++) { (4)
 n = (2 * pow(E, log(15) * years)).round().toInt(); (5)
 print("After $years years:\t $n animals"); (6)
 }
}

Chapter 1

[21]

Our program produces the following output:

The number of rabbits increases as:

After 0 years: 2 animals
After 1 years: 30 animals
After 2 years: 450 animals
After 3 years: 6750 animals
After 4 years: 101250 animals
After 5 years: 1518750 animals
After 6 years: 22781250 animals
After 7 years: 341718750 animals
After 8 years: 5125781250 animals
After 9 years: 76886718750 animals
After 10 years: 1153300781250 animals

So if developing programs doesn't make you rich, breeding rabbits will. Because we
need some mathematical formulas such as natural logarithms log and power pow,
we imported dart:math in line (1). Our number of livestock n is declared in line
(2); you can see that we precede its name with var. Here, we don't have to indicate
the type of n as int or num (so called type annotations), as Dart uses optional typing.

Local variables are commonly declared untyped as var.

We could have declared it to be of type num (number) or int, because we know that n
is a whole number. But this is not necessary as Dart will derive that from the context
in which n is used. The other num type is called double, used for decimal numbers.
Also the initialization part (= 0) could have been left out. With no initialization var
n; or even int n; gives n the value null, because every variable in Dart is an object.
The keyword null simply indicates that the object has no value yet (meaning it is
not yet allocated in heap memory). It will come as no surprise that // indicates the
beginning of a comment, and /* and */ can be used to make a multi-line comment.

Comment a section of code by selecting it and then
click on Toggle comment in the Edit menu.

Dart – A Modern Web Programming Language

[22]

In lines (3) and (6) we see that within a quoted string we can use escape characters
such as \n and \t to format our output. Line (4) uses the well-known for-loop that
is also present in Dart. In order to have the count of animals as a whole number
we needed to apply the round function. The pow function produces a double and
because 6750.0 animals doesn't look so good, we have to convert the double to an
int with the toInt() function. In line (6), the elegant string substitution mechanism
(also called string interpolation) is used: print takes a string as argument (a string
variable: any expression enclosed within " " or ' ') and in any such quoted string
expression you can substitute the value of variable n by writing $n. If you want
the value of an expression within a string, such as a + b, you have to enclose the
expression with braces, for example, ${a + b}.

You don't have to write the ${n} when displaying a
variable n; just use $n. You can also simply use print(n).

It is important to realize that we did not have to make any class in our program.
Dart is no class junkie like Java or C#. A lot can be done only with functions; but if
you want to represent real objects in your programs, classes is the way to go (see the
Example 2 – banking section).

Extracting a function
This version of our program is not yet very modular; we would like to extract the
calculation in a separate method calculateRabbits(years) that takes the number
of years as a parameter. This is shown in the following code (version 2 line (4) of
prorabbits_v2.dart) with exactly the same output as version 1:

import 'dart:math';

int rabbitCount = 0; (1)
const int NO_YEARS = 10; (2)
const int GROWTH_FACTOR = 15; (3)

void main() {
 print("The number of rabbits increases as:\n");
 for (int years = 0; years <= NO_YEARS; years++) {
 rabbitCount = calculateRabbits(years); (4)
 print("After $years years:\t $rabbitCount animals");
 }
}

int calculateRabbits(int years) { (5)
 return (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt();
}

Chapter 1

[23]

We could have written this new function ourselves, but Dart has a built-in refactoring called
Extract Method. Highlight the line:

n = (2 * pow(E, log(15) * years)).round().toInt();

Right-click and select Extract Method. Dart will do the bulk of
the work for you, but we can still simplify the proposed code by
omitting the parameter n.

The calculateRabbits function calculates and returns an integer value; this is
indicated by the word int preceding the function name. We give the function a type
here because it is top level, but the program would have run without the function-
type indication.

This new function is called by main(). This is the way a Dart program works: all
lines in main() are executed in sequence, calling functions as needed, and the
execution (and with it the Dart VM) stops when the ending } of main() is reached.
We rename the variable n to rabbitCount, so we need no more comments.

Renaming a variable is also a built-in refactoring. Select the
variable (all occurrences are then indicated), right-click, and
select Rename.

A good programmer doesn't like hardcoded values such as 10 and 15 in a program;
what if they have to be changed? We replace them with constant variables, indicated
with keyword const in Dart, whose name is, by convention, typed in capital letters
and parts separated by _, see lines (2) and (3).

Take care of your top-level variables, constants, and
functions because they will probably be visible outside your
program (sometimes called the interface or API of your
program); type them and name them well.

And now for some practice:

1. Examine this second version by going to Tools | Outline.
2. Set a breakpoint on the line rabbitCount = calculateRabbits(years);

by double-clicking in the margin in front.
3. Run the program and learn how to use the features of the Debugger tool

(Press F5 to step line by line, F6 or F7 to step over or out of a function, and F8
to resume execution until the next breakpoint is hit).

Dart – A Modern Web Programming Language

[24]

4. Watch the values of the years and rabbitCount variables.

The output should resemble the following screenshot:

Debugging prorabbits_v2.dart

A web version
As a final version for now, let us build an app that uses an HTML screen where we
can input the number of years of rabbit elevation and output the resulting number of
animals. Go to File | New Application, but this time select Web application. Now a
lot more code is generated that needs explaining. The app now contains a subfolder
web; this will be the home for all of the app's resources, but for now it contains a
stylesheet (.css file), a hosting web page (.html), and a startup code file (in our case
prorabbits_v3.dart). The first line in this file makes HTML functionality available
to our code:

import 'dart:html';

We remove the rest of the example code so only an empty main() function remains.
Look at the source of the HTML page, right before the </body> tag; it contains the
following code:

<script type="application/dart" src="prorabbits_v3.dart"></script>
<script src="packages/browser/dart.js"></script>

Chapter 1

[25]

The first line is evident: our Dart script must be started. But wait, how do we know
that there is a Dart VM available in this browser? This will be checked in the second
JavaScript file, dart.js; the first few lines of code in this file are:

if (navigator.webkitStartDart) {
 // Dart VM is available, start it!
} else {
 // Fall back to compiled JavaScript
}

The Dart VM exists for the moment only in Dartium (soon in Chrome). For other
browsers we must supply the Dart-to-JS compiled scripts; this compilation can be
done in the Editor by navigating to Tools | Generate Javascript. The output size is
minimal: dead js code that is not used is eliminated in a process called tree shaking.
But where does this mysterious script dart.js come from? src="packages/
browser/dart.js" means that it is a package available in the Dart repository
http://pub.dartlang.org/.

External packages that your app depends on need to be specified in the section,
dependencies, in the file pubspec.yaml. In our app this section contains the
following parameters:

name: prorabbits_v3
description: Raising rabbits the web way
dependencies:
 browser: any

We see that our app depends on the browser package; any version of it is OK. The
package is added to your app when you right-click on the selected pubspec.yaml
and select Pub Get: a folder packages is added to your app, and per package a
subfolder is added containing the downloaded code, in our case dart.js. (In Chapter
2, Getting to Work with Dart, we will explore pub in greater depth.)

For this program we replace the HTML <p id="sample_text_id"></p> as shown
in the following code:

<input type="number" id="years" value="5" min="1" max="30">
<input type="button" id="submit" value="Calculate"/>

Number of rabbits: <label id="output"></label>

www.allitebooks.com

http://www.allitebooks.org

Dart – A Modern Web Programming Language

[26]

The input field with type number (new in HTML5) gives us a NumericUpDown
control with a default value 5 and limited to the range 1 to 30. In our Dart code, we
now have to handle the click-event on the button with id as submit. We do this in
our main() function with the following line of code:

query Selector ("#submit").onClick.listen((e) => calcRabbits());

query Selector ("#submit") gives us a reference in the code to the button, listen
redirects to an anonymous function (see Chapter 2, Getting to Work with Dart) to
handle this event e, which calls the function calcRabbits() shown in the following
code:

calcRabbits() {
 // binding variables to html elements:
 InputElement yearsInput = querySelector("#years"); (1)
 LabelElement output = querySelector("#output"); (2)
 // getting input
 String yearsString = yearsInput.value;
 int years = int.parse(yearsString);
 // calculating and setting output:
 output.innerHtml = "${calculateRabbits(years)}";
}

Here in lines (1) and (2), the input field and the output label are bound to the
variables in_years and output. This is always done in the same way: the query
Selector() function takes as its argument a CSS-selector, in this case the ID of the
input field (an ID is preceded by a # sign). We typed in_years as an InputElement
(because it is bound to an input field), that way we can access its value, which is
always a string. We then convert this string to an int type with the function int.
parse(), because calculateRabbits needs an int parameter. The result is shown
as HTML in the output label via string substitution, see the following screenshot:

The screen of prorabbits_v3

Chapter 1

[27]

All objects in Dart code that are bound to HTML elements are instances of the class
Element. Notice how you can change the Dart and HTML code; save and hit refresh
in Dartium (Chrome) to get the latest version of your app.

Example 2 – banking
All variables (strings, numbers, and also functions) in Dart are objects, so they are
also instances of a class. The class concept is very important in modeling entities
in real-world applications, making our code modular and reusable. We will now
demonstrate how to make and use a simple class in Dart modeling a bank account.
The most obvious properties of such an object are the owner of the account, the bank
account number, and the balance (the amount of money it contains). We want to be
able to deposit an amount of money in it that increases the balance, or withdrawing
an amount so as to decrease the balance. This can be coded in a familiar and compact
way in Dart as shown in the following code:

class BankAccount {
 String owner, number;
 double balance;
 // constructor:
 BankAccount(this.owner, this.number, this.balance); (1)
 // methods:
 deposit(double amount) => balance += amount; (2)
 withdraw(double amount) => balance -= amount;
}

Notice the elegant constructor syntax in line (1) where the incoming parameter
values are automatically assigned to the object fields via this. The methods (line (2))
can also use the shorthand => function syntax because the body contains only one
expression. If you prefer the {} syntax, they will be written as follows:

deposit(double amount) {
 balance += amount;
}

The code in main() makes a BankAccount object ba and exercises its methods (see
program banking_v1.dart):

main() {
 var ba = new BankAccount("John Gates",
 "075-0623456-72", 1000.0);
 print("Initial balance:\t\t ${ba.balance} \$");
 ba.deposit(250.0);
 print("Balance after deposit:\t\t ${ba.balance} \$");
 ba.withdraw(100.0);
 print("Balance after withdrawal:\t ${ba.balance} \$");
}

Dart – A Modern Web Programming Language

[28]

The preceding code produces the following output:

Initial balance: 1000.0 $
Balance after deposit: 1250.0 $
Balance after withdrawal: 1150.0 $

Notice how when you type ba. in the editor, the list of BankAccount class members
appears to autocomplete your code. By convention, variables (objects) and functions
(or methods) start with a lower case letter and follow the camelCase notation
(http://en.wikipedia.org/wiki/CamelCase), while class names start with a
capital letter, as well as the word-parts in the name. Remember Dart is case sensitive!

Making a todo list with Dart
Since this has become the "Hello World" for web programmers, let's make a simple
todo list and start a new web application todo_v1. To record our tasks we need an
input field corresponding with InputElement in Dart:

<input id="task" type="text" placeholder=
 "What do you want to do?"/>

The HTML5 placeholder attribute lets you specify default text that appears
in the field.

We specify a list tag (UListElement) that we will fill up in our code:

<ul id="list"/>

The following is the code from todo_v1.dart:

import 'dart:html';

InputElement task;
UListElement list;

main() {
 task = querySelector('#task'); (1)
 list = querySelector('#list'); (2)
 task.onChange.listen((e) => addItem()); (3)
}

void addItem() {
 var newTask = new LIElement(); (4)
 newTask.text = task.value; (5)
 task.value = ''; (6)
 list.children.add(newTask); (7)
}

Chapter 1

[29]

We bind our HTML elements to the Dart objects task and list in lines (1) and (2). In
line (3) we attach an event-handler addItem to the onChange event of the textfield
task: this fires when the user enters something in the field and then leaves it (either
by pressing Tab or Enter). UListElement is in fact a collection of LIElements (these
are its children); so for each new task we make a LIElement (4), assign the task's
value to it (5), clear the input field (6), and add the new LIElement to the list in (7).
In the following screenshot you can see some tasks to be performed:

A simple todo list

Of course this version isn't very useful (unless you want to make a print of your
screen); our tasks aren't recorded and we can't indicate which tasks are finished.
Don't worry; we will enhance this app in the future versions.

Summary
We covered a lot of ground in this introductory chapter, but by now you know the case
for Dart in the context of web applications, where Dart apps can live and how they are
executed, and the various tools to work with Dart, in particular the Dart Editor.

You also got acquainted with some simple command line and web Dart apps and got
a feeling for the Dart syntax. In the next chapter, we explore the various code and
data structures of Dart more systematically and any obscurities that are still there in
your mind will surely disappear. More coming soon to a Dart center near you...

Getting to Work with Dart
In this chapter you will get a firm grasp on how to program in Dart. The code and
data structures in Dart and its functional principles are explained by exploring
practical examples. We will look at the following topics:

• Variables – if, how, and when to type them
• What are the basic types that you can use?
• Documenting your programs
• How to influence the order of execution of a program
• Using functions in Dart
• How to recognize and catch errors and exceptions?

You will see plenty of examples, also revisiting the code from Chapter 1,
Dart – A Modern Web Programming Language. Because most of this will be familiar to
you, we will discuss these topics succinctly and emphasize only that which is new or
different. You can refer to http://www.dartlang.org/docs/dart-up-and-running/
contents/ch02.html if you need more detailed explanations. We encourage you to
play with the code examples, the best way to become familiar with Dart. The full API
reference documentation is available at http://api.dartlang.org. Experiment in the
Dart Editor to find out if in doubt!

Getting to Work with Dart

[32]

Variables – to type or not to type
In our first example (Raising rabbits) in Chapter 1, Dart – A Modern Web Programming
Language, we started by declaring a variable rabbitCount dynamically with var, and
then in the second version we gave it a static type int (refer to the file prorabbits_
v1.dart and prorabbits_v2.dart in Chapter 1, Dart – A Modern Web Programming
Language) and concluded that typing is optional in Dart. This seems confusing and has
provoked a lot of discussion: "is Dart a dynamic language like Ruby or JavaScript, or
a static language like Java or C#?" After all, some of us were raised in the (static) belief
that typed variables are absolutely necessary to check if a program is correct, a task
mainly performed by the compiler (but the Dart VM has no separate compiler step,
and dart2js, the Dart to JS compiler, doesn't check types because JS is fully dynamic).

It turns out that no mainstream language actually has a perfect type system (static
types don't guarantee program correctness) and that not letting a program run because
of an obscure type error blocks the programmer's creativity; however, it is true that
static type checks can prevent bugs. On the other hand, the dynamic belief states that
typing variables hinders the programmer's fantasy (and wears out the fingers). In their
world, grave errors due to wrong types occur only when the program is running; to
avoid such calamities, they have to rely on a rigorous unit testing discipline.

Dart takes a pragmatic middle stand: web programming is already accustomed
to dynamically typed languages that are more flexible, and Dart honors that and
adheres to a system of optional or loose typing. You can start out writing your code
without types while you're still experimenting and doing quick prototyping. In a
more advanced stage, you can annotate (some of) the code with types. This will
enhance the readability of your code for your fellow developers and as such it is
additional documentation. Furthermore, it allows the Dart analyzer tools to check the
code for the types used and report possible errors, so it makes more useful developer
tools possible.

As the app becomes larger and more stable, types can be added to aid debugging
and impose structure where desired, making the code more robust, documented,
and more maintainable. Dart code can evolve from a simple, untyped experimental
prototype to a complex, modular application with types. Moreover, as you will
experience while working in the Dart Editor, with types the IDE (Integrated
Development Environment) can suggest better autocompletion for the properties
and methods of any code object. The two extremes (no typing or everything typed)
are not encouraged.

Chapter 2

[33]

In general, give everything in your code that can be seen publicly a
type (in the sense that it is visible in and can be used from outside
code, sometimes called the interface), such as top-level variables and
functions including their arguments. That way, other apps can use
your code with increased safety.

Using var (or final or const) for an object leaves it untyped, but in fact Dart
internally considers this object to be of type dynamic, the unknown type. The
keyword dynamic is very rarely used in code.

To cope with this dilemma, Dart has two runtime modes (ways of executing programs):

• Checked mode: This is typically used when you develop, debug, and test.
The IDE will warn you when you misuse variables in a typed context (a tool
called the dart-analyzer continuously checks your code, while saving and
even while you type). The types are checked when executing assignments,
when passing arguments to a function, and when returning a result from
a function. By default your program is also run in this mode, breaking the
execution when a (typing) error occurs (you can change this behavior by
navigating to Run | Manage Launches | VM settings and unchecking the
Run in checked mode checkbox).

• Production mode: This is when your program runs for real, that is, it used
by customers. Then Dart runs as a fully dynamic language and ignores type
information, giving a performance boost because the checks don't need to
be performed.

Errors (indicated in the Editor by a white x in a red circle) prevent you from running
the program. For example, delete an ending ; or } from some source code and see
what happens.

Warnings (a black ! in a yellow triangle) indicate that the code might not work. For
example, in the following code snippet (from chapter_2\checked_mode.dart), a
warning is indicated in line (1):

int age = 'Dart'; (1)
print('$age');

The warning sign is shown in front of the line and the string Dart is yellow
underlined. If you hover the cursor over one of these, you see the message: A value
of type 'String' is not assignable to 'int'. If you try to run this example in the default
checked mode in Dart Editor, you'll get the following output:

Unhandled exception:
type 'String' is not a subtype of type 'int' of 'age'.
#0 main (file:///E:/dart/Book/code/chapter_2/checked_mode/bin/
checked_mode.dart:2:14)

Getting to Work with Dart

[34]

But if you uncheck and let it run in production mode, it runs and the normal output
Dart appears in the console. Dart expects the developer to have thoroughly checked
and tested the program:

Warnings do not prevent you from running a program
in production mode in most cases.

A variable is just a nickname for an object, the same object can have multiple
variables referring to it, and a variable name can also switch from one object to
another, such as in the following code:

var name = 'John';
name = 'Lucy'; // name now refers to another String object

But sometimes you don't want this to happen; you want a variable to always point
at the same object (such as immutable variables in functional languages or in other
words a read-only variable). This is possible in Dart using the keyword final, such
as in the following code (refer to final.dart):

final name = 'John';
name = 'Lucy'; // (1) warning!

Now, line (1) generates a warning: Final variables cannot be assigned a value, but
the execution is even stopped in production mode! The keywords var and final
used as such both refer to a dynamic untyped variable, but final can be used
together with a type, as shown in the following code:

final String name = 'John';

The const keyword (that we used already in prorabbits_v2.dart in Chapter 1, Dart
– A Modern Web Programming Language) like final also refers to something whose
value cannot change, but it is more restricted. It must be a literal value (such as 100
or Dart or another const) or a calculation with known numbers, a so-called compile-
time constant. For example, see the following code:

const NO_SECINMIN = 60;
const NO_SECINDAY = NO_SECINMIN * 60 * 24;

The following is an example that shows the difference:

int daysInWeek = 7;
final fdaysInYear = daysInWeek * 52;
const DAYSINYEAR = daysInWeek * 52; // (2) error!

Now, line (2) gives an error:

'const' variables must be constant value.

Chapter 2

[35]

In summary, types are not used for performance optimization and they don't change
program behavior, but they can help you write and maintain your code; a little
typing goes a long way. A combination of tool support, static analysis, checked mode
assertions, and unit tests can make you feel just as safe in Dart as in any statically
typed language, yet more productive.

Built-in types and their methods
Like Ruby, Dart is a purely object-oriented (OO) language, so every variable in Dart
points to an object and there are no primitive types as in Java or C#. Every variable
is an instance of a class (that inherits from the base class Object) and has a type, and
when uninitialized has the value null. But for ease-of-use Dart has built-in types
for numbers, Booleans, and strings defined in dart:core, that look and behave
like primitive types; that is, they can be made with literal values and have the basic
operations you expect (to make it clear, we will use full typing in builtin_types.
dart, but we could have used var as well).

A String (notice the capital) is a sequence of Unicode (UTF-16) characters, for example:

String country = "Egypt";

String chineseForWorld = ' ';��

They can be indicated by paired ' or " (use "" when the string contains ' and vice
versa). Adjacent string literals are concatenated. If you need multiline strings, use
triple quotes ''' or """ (handy for defining chunks of HTML!).

Escape characters are not interpreted when the string is prefixed by r, a so-called
raw string, invaluable when defining regular expressions. The empty string '' or ""
is not the same as null. The following are all legal strings:

String q = "What's up?";
String s1 = 'abc'
 "def";
 print(s1); // abcdef
 String multiLine = '''
 <h1> Beautiful page </h1>
 <div class="start"> This is a story about the landing
 on the moon </div>
 <hr>
 ''';
 print(multiLine);
 String rawStr = r"Why don't you \t learn Dart!";
 // output: Why don't you \t learn Dart!
 print(rawStr);
 var emptyStr = ''; // empty string

www.allitebooks.com

http://www.allitebooks.org

Getting to Work with Dart

[36]

The numeric types are num (number), int (integer), and double; the last two are
subtypes of num:

int n = 42;
double pi = 3.14;

Integers can use hexadecimal notation preceding with 0x, as shown in the following
code:

int hex = 0xDEADBEEF;

And they can be of arbitrary precision, as shown in the following code:

int hugePrimeNumber = 4776913109852041418248056622882488319;

You cannot use this feature if you rely on compilation to JS,
because here we are restricted to JS integers!

Doubles are of a 64-bit precision and can use scientific notation:

double d1 = 12345e-4;

The num type has the usual abs(), ceil(), and floor() methods as well as round()
for rounding. Use either int or num, but double only in the specific case you need a
decimal number that cannot be an integer.

Booleans can only have the value true or false:

bool selected = false;

In contrast to JS where any variable can be evaluated as true or false, Dart does not
permit these strange behaviors in checked mode; in production mode every value
different from true is treated as false.

Conversions
To use numbers as strings use the toString() method and to convert a String to an
int use int.parse():

String lucky = 7.toString();

int seven = int.parse('7');

Likewise, converting a String to a double is done with double.parse():

double pi2 = double.parse('3.1415');

Chapter 2

[37]

If you want to retain only a certain amount of decimal numbers from a double, use
toStringAsFixed():

String pi2Str = pi2.toStringAsFixed(3);
 // 3.142 (notice rounding occurs)

To convert between num types use toDouble() for int to double and toInt() for
double to int (truncation occurs!).

Operators
All operators in Dart follow the normal priority rules; when in doubt or for clarity,
use () around expressions that must be executed first.

We have our familiar number operators (+, -, *, /, and %) in Dart, and assignments
with these can be shortened as +=. Use ~/ to get an integer result from a division.
Likewise, we have pre- and postfix ++ and -- to add or subtract 1 to or from a
number, and <, <=, >, and >= to check the order of numbers or Strings.

Strings a and b can be concatenated with + as a + b,
but string interpolation such as '$a $b' executes
faster, so prefer this.

Numbers have also bitwise and shift operators for manipulating individual bits.

To see if two variables have the same content use == or != for different content.
These expressions result in Boolean values, such as b1 and b2 in this snippet
(brackets are only used for clarity):

var i = 100;
var j = 1000;
var b1 = (i == j);
var b2 = (i!= j);
print('$b1'); // false
print('$b2'); // true

For numbers and strings == is true when both variables have the same value.

== is an operator and can be redefined for any type;
generally it will check whether both arguments have the
same value. Use the identical(a,b) function to check
whether variables a and b refer to the same object.

Getting to Work with Dart

[38]

For Strings both hold true; the same String is only one object in memory, and if the
string variable gets a new value, it references another address in memory. Strings are
immutable.

var s = "strings are immutable";
var t = "strings are immutable";
print(s == t); // true, they contain the same characters
print(identical(s, t)); // true, they are the
 // same object in memory

Boolean values or expressions can be combined with an AND operator (&&) or an OR
operator (||), or negated with a NOT operator (!).

Because we will be working a lot with objects and types in Dart code, it is important
to be able to test if an object is or is! (not) of a certain type (class):

var b3 = (7 is num); // () are not necessary
print('$b3'); // true
var b4 = (7 is! double);
print('$b4'); // true, it's an int

A very useful built-in function that can be used for micro unit testing is assert. Its
parameter is a Boolean expression. When this is true, nothing happens at runtime;
but when it is false, the program stops with an AssertionError. You can sprinkle
them around in your code to test certain conditions that must be true; in the
production mode, assert statements are ignored. So for the last example we could
have written:

assert(b4 == true) or shorter assert(b4)

We will use these throughout the example code, but will not print them in the text
for brevity.

The [] indexing operator is used to obtain an element from a collection (a group of
variables) at a certain index, the first element has index 0.

To convert or cast a variable v to a certain type T, use the as operator: v as T

If v is indeed of that type, all is well and you can access all methods of T, but if this
fails an error is generated.

Chapter 2

[39]

Some useful String methods
Strings are all pervasive and Dart provides handy methods to work with them, for
details refer to the documentation at the following link:

http://api.dartlang.org/docs/releases/latest/dart_core/String.html

We show some examples in string_methods.dart:

• You can test that the owner of a bank account (a String) is not filled in with
owner.isEmpty, which returns a Boolean value:
assert("".isEmpty);

• length() returns the number of UTF-16 characters:
assert('Google'.length == 6);

• Use trim() to remove the leading and trailing whitespace:
assert('\thello '.trim() == 'hello');

• Use startswith(), endswith(), and contains() to detect the presence of
subwords:
var fullName = 'Larry Page';
assert(fullName.startsWith('La'));
assert(fullName.endsWith('age'));
assert(fullName.contains('y P'));

• Use replaceAll() to replace a substring; notice that the original string was
not changed (strings are immutable!):
var composer = 'Johann Sebastian Bach';
var s = composer.replaceAll('a', '-');
print(s); // Joh-nn Seb-sti-n B-ch
assert(s != composer); // composer didn't change

• Use the [] operator to get the character at index i in the string:
var lang = "Dart";
assert(lang[0] == "D");

• Find the location of a substring inside a string with indexOf():
assert(lang.indexOf("ar") == 1);

• Extract a part of a string with substring():

assert("20000 rabbits".substring(9, 13) == 'bits');

Getting to Work with Dart

[40]

When printing any object the toString() method, which returns a String, is
automatically called. If no particular version of this method was provided, the
toString() method from class Object is called, which prints the type of the object,
as shown in the following code:

print('$ba'); // produces Instance of 'BankAccount'

If you need a readable representation of an object, give
its class a toString() method.

In banking_v2.dart we provide the following method:

String toString() => 'Bank account from $owner with
 number $number and balance $balance';

Now print('$ba'); produces the following output:

Bank account from John Gates with number 075-0623456-72
 and balance 1000.0

If you need many operations in building your strings, instead of creating new strings
at each operation and thus using more memory, consider using a StringBuffer
object for better efficiency. A StringBuffer doesn't generate a new String object
until toString() is called. An example is given in the following code:

var sb = new StringBuffer();
sb.write("Use a StringBuffer ");
sb.writeAll(["for ", "efficient ", "string ", "creation "]);
sb.write("if you are ");
sb.write("building lots of strings.");
var fullString = sb.toString();
print('$fullString');
sb.clear(); // sb is empty again
assert(sb.toString() == '');

Chapter 2

[41]

Dates and times
Almost every app needs time info, so how can we do this in Dart? The dart:core
package has a class DateTime for this. In our banking app we could add the
attributes dateCreated and dateModified to our class BankAccount. In the
constructor, dateCreated is initialized to the moment at which the account is
created; in our deposit and withdraw methods we update dateModified. This is
shown in the following code (refer to banking_v2.dart):

class BankAccount {
 String owner, number;
 double balance;
 DateTime dateCreated, dateModified;

 BankAccount(this.owner, this.number, this.balance) {
 dateCreated = new DateTime.now();
 }

 deposit(double amount) {
 balance += amount;
 dateModified = new DateTime.now();
 }
 // other code
}

We can print this out with the following command:

print('Bank account created at: ${ba.dateCreated}');

The output produced is as follows:

Bank account created at: 2013-02-10 10:42:45.387

The method DateTime.parse(dateString) produces a DateTime object from
a String in one of the suitable formats: 20130227 13:27:00 or 2010-01-17. All
weekdays and month names are defined as const int, such as MON and JAN. You can
extract all date parts as an int with methods such as second, day, month, year, as
shown in the following code:

ba.dateModified.weekday

A time span is represented by a Duration object, difference() gives the duration
between two DateTime objects, and you can add and subtract a duration from a
DateTime.

Getting to Work with Dart

[42]

Lists
This is the basic collection type for making an ordered group of objects, it can be of
fixed size (called an array in other languages) or it can grow dynamically. Again
length returns the number of elements in the List; the last element has index length
– 1. An empty List with length equal to 0 and property isEmpty equal to true can
be created in two ways: literal or with a constructor (refer to lists.dart):

var empty = [];
var empty2 = new List(); // equivalent
assert(empty.isEmpty && empty2.isEmpty && empty.length == 0);

We can either define and populate a List with a literal by using [] as in the
following code:

var langs = ["Java","Python","Ruby", "Dart"];

Or we can define a List with a constructor and an add() method:

var langs2 = new List();
langs2.add("C");
langs2.add("C#");
langs2.add("D");
print(langs2); // [C, C#, D]

A read-only List with constant elements resulting in better performance can be
defined as shown in the following code:

var readOnlyList = const ["Java","Python","Ruby", "Dart"];

The [] operator can be used to fetch and set List elements:

var langBest = langs[3];
assert(langBest=="Dart");
langs2[2] = "JavaScript";

But using an index greater than or equal to the List length provokes a RangeError in
runtime (with no compile-time check!):

langs[4] = "F#"; // RangeError !

To check if a List contains a certain item, use the method with that name:

print('${langs.contains("Dart")}'); // true

When you know the type of the list elements, the list itself can be typed; for example,
langs and langs2 are both of type List<String>.

Chapter 2

[43]

A String can be split over a certain character or pattern (which could be a space
" " or even "") producing a List<String>, which can then be further analyzed, as
shown in the following code:

var number = "075-0623456-72";
var parts = number.split('-');
print('$parts'); // produces [075, 0623456, 72]

In simple scenarios data records are written line after line in text files, each line
containing the data of one object. In each line the data fields are separated by a
certain character, such as a ;. We could read in and split each line of the file, and
obtain a List of fields for each object to be shown on a screen or processed further.
Conversely a List can be joined by concatenating all its elements in one String (here
with a separator '-'):

var str = parts.join('-');
assert(number==str);

A list with N elements is used mostly to support an efficient search of the whole
list, or a large number of the list's elements. The time it takes to search a list grows
linearly with N; it is of order O(N).

In summary, a List is an ordered collection of items that can be retrieved or changed
by index (0-based, working via index is fast), and that can contain duplicates. You
can find more useful functions in the API, but we will come back to List again in
the The collection hierarchy and its functional nature section in Chapter 3, Structuring
Code with Classes and Libraries. (For API docs, see the documentation at http://api.
dartlang.org/docs/releases/latest/dart_core/List.html.)

Maps
Another very useful and built-in type is a Map, basically a dictionary of (key:value)
pairs where the value is associated with the key. The number of pairs is the length
of the Map. Keys must be unique, they may not be null, and the lookup of the
value from the key is fast; remember, however, that the order of the pairs is not
guaranteed! Similar to a List, a Map can be created literally with {} as shown in the
following code:

Map webLinks = { 'Dart': 'http://www.dartlang.org/',
 'HTML5': 'http://www.html5rocks.com/'};

The keys must be of type String for a literal Map.

Getting to Work with Dart

[44]

Or it can be created with a constructor (refer to maps.dart):

Map webLinks2 = new Map();
webLinks2['Dart'] = 'http://www.dartlang.org/'; (1)
webLinks2['HTML5'] = 'http://www.html5rocks.com/';

The empty Map created with var map = {} or var map = new Map() has length
as 0; the length of a Map is not fixed. You can fetch the value corresponding to a
certain key with:

var link = webLinks2['Dart']; // 'http://www.dartlang.org/'

If the key is not in the Map, you get null (it is not an error):

var link2 = webLinks2['C']; // null

To check if your Map contains a certain key, use the containsKey() method:

if (webLinks2.containsKey('C'))
 print("The map webLinks2 contains key 'C");
else
 print("The map webLinks2 does not contain key 'C'");
// prints: The map webLinks2 does not contain key 'C'

To obtain a List of the keys or values, use the methods with the same name:

var keys = webLinks2.keys.toList();
print('$keys'); // [Dart, HTML5, ASP.NET]
// getting the values:
var values = webLinks2.values.toList();
print('$values');
// printed output:
// [http://www.learningdart.org/, http://www.html5rocks.com/,
// http://www.asp.net/]

Setting a value is done with the syntax shown in line (1); this applies both to
inserting a new key-value pair in the map, or changing the value for an existing key:

webLinks2['Dart'] = 'http://www.learningdart.org/'; // change
webLinks2['ASP.NET'] = 'http://www.asp.net/'; // new key

A very handy method is putIfAbsent, which makes your code a lot cleaner. It takes
two parameters: a key and a function that returns a value. The method tests if the
key already exists; if not, the function is evaluated and the resulting key-value pair is
inserted in the map (for example, we use a very simple function that directly returns
a value, but this could be a calculation or a database-lookup operation):

webLinks2.putIfAbsent('F#', () => 'www.fsharp.net');
assert(webLinks2['F#']=="www.fsharp.net");

Chapter 2

[45]

Again for performance reasons, use const maps when the keys and values are
literals or constants:

var cities = const {'1':'London','2':'Tokyo','3':'Madrid'};

A Map can also be explicitly typed, for example, a Map with integer keys and String
values:

Map<int, String>

A Map with N elements is used mostly to support an efficient direct access to a
single element of the map based on its key. This will always execute in the same time
regardless of the size of the input dataset; the algorithm is of order O(1).

For the API docs for Map see the documentation at the following link:
https://api.dartlang.org/docs/channels/stable/
latest/dart_core/Map.html

Documenting your programs
Documenting an application is of utmost importance in software engineering and
Dart makes this very easy. The single-line (//) and multiline comments (/* */)
are useful (for example, to comment out code or mark lines with // TODO), and
they have counterparts /// and /** */ called documentation comments. In these
comments (to be placed on the previous line), you can include references to all kinds
of objects in your code (classes, methods, fields, and so on) and the Dartdoc tool (in
Dart Editor go to Tools | Generate Dartdoc) will generate HTML documentation
where these references become links. To demonstrate we will add docs to our
banking example (refer to banking_v2doc.dart):

/**
 * A bank account has an [owner], is identified by a [number]
 * and has an amount of money called [balance].
 * The balance is changed through methods [deposit] and [withdraw].
 */
class BankAccount {
 String owner, number;
 double balance;
 DateTime dateCreated, dateModified;

 BankAccount(this.owner, this.number, this.balance) {
 dateCreated = new DateTime.now();
 }

 /// An amount of money is added to the balance.
 deposit(double amount) {

www.allitebooks.com

http://www.allitebooks.org

Getting to Work with Dart

[46]

 }

 /// An amount of money is subtracted from the balance.
 withdraw(double amount) {

 }
}

This results in the following documentation when viewing banking_v2doc\docs\
index.html in a browser:

Changing the execution flow of a program
Dart has the usual control structures with no surprises here (refer to control.dart).

An if...else statement (with an optional else) is as follows:

var n = 25;
if (n < 10) {
 print('1 digit number: $n');
} else if (n >= 10 && n < 100){
 print('2+ digit number: $n'); // 2+ digit number: 25
} else {
 print('3 or more digit number: $n');
}

Chapter 2

[47]

Single-line statements without {} are allowed, but don't mix the two. A simple
and short if…else statement can be replaced by a ternary operator, as shown in the
following example code:

num rabbitCount = 16758;
(rabbitCount > 20000) ? print('enough for this year!') :
 print('breed on!'); // breed on!

If the expression before ? is true, the first statement is executed, else the statement
after : is executed. To test if a variable v refers to a real object, use: if (v != null)
{ … }.

Testing if an object v is of type T is done with an if statement: if (v is T).

In that case we can safely cast v to type T and access all members of T:

if (v is T) {
 (v as T).methodOfT()
}

For example, if we don't know for sure that ba2 is a BankAccount, the code in line
(1) in the following code will generate an error; we can avoid this with an if test in
line (2):

var ba1, ba2;
ba1 = new BankAccount("Jeff", "5768-346-89", 758.0);
if (ba1 is BankAccount) ba1.deposit(42.0);
print('${ba1.balance}'); // 800.0
(ba2 as BankAccount).deposit(100.0); <-- NoSuchMethodError (1)
if (ba2 is BankAccount) { (2)
 (ba2 as BankAccount).deposit(100.0);
 print('deposited 100 on ba2'); // statement not reached
} else {
 print('ba2 is not a BankAccount'); // ba2 is not a BankAccount
}

We can replace multiple if...else if with a switch case statement; switch tests the
value of an integer or string variable in () against different constant values in case
clauses:

switch(ba1.owner) {
 case 'Jeff':
 print('Jeff is the bank account owner'); // this is printed

 break;
 case 'Mary':
 print('Mary is the bank account owner');
 break;

Getting to Work with Dart

[48]

 default:
 print('The bank account owner is not Jeff, nor Mary');
}

Each case must end with a break or a continue with a label; use default when no
other case matches; multiple cases can be combined.

Repetition can be coded with a for loop if the number of repetitions is known or
with a while or do...while loop if the looping depends on a condition:

var langs = ["Java","Python","Ruby", "Dart"];
for (int i = 0; i < langs.length; i++) {
 print('${langs[i]}');
}

Notice that the condition i value should be less than the length of the List.

If you don't need the index i, the for...in loop provides a simpler alternative:

var s = '';
var numbers = [0, 1, 2, 3, 4, 5, 6, 7];
for (var n in numbers) {
 s = 'sn ';
}
print(s); // 0 1 2 3 4 5 6 7

In each loop the variable n takes the value of the next collection element.

Conditions without counters are best tested in a while loop:

while (rabbitCount <= 20000) {
 print('keep breeding');
 rabbitCount += 4;
}

Don't get involved in an infinite loop by forgetting a statement that changes the
condition! You can always break out from a loop with a break:

while (true) {
 if (rabbitCount > 20000) break;
 rabbitCount += 4;
}

Likewise, skip the execution of the body of the loop with a continue:

s = '';
for (var n in numbers) {
 if (n % 2 == 0) continue; // skip even numbers

Chapter 2

[49]

 s = 'sn ';
}
 print('$s'); // 1 3 5 7

Using functions in Dart
Functions are another tool for changing the control flow; a certain task is delegated
to a function by calling it and providing some arguments. A function does the
requested task and returns a value; the control flow returns where the function was
called. In Java and C#, classes are indispensable and they are the most important
structuring concept.

But Dart is both functional and object oriented. Functions are first-class objects
themselves (they are of type Function) and can exist outside of a class as top-
level functions (inside a class they are called methods). In prorabbits_v2.dart
of Chapter 1, Dart – A Modern Web Programming Language, calculateRabbits is
an example of a top-level function; and deposit, withdraw, and toString from
banking_v2.dart of this chapter are methods, to be called on as an object of the
class. Don't create a static class only as a container for helper functions!

Return types
A function can do either of the following:

• Do something, wherein the return type, if indicated, is void, for example, the
display function in return_types.dart. In fact, such a function does return
an object, namely null (see the print in line (1) of the following code).

• Return an expression exp resulting in an object different from null, explicitly
indicated by a return exp, as in displayStr (line (2)).

The { return exp; } syntax can be shortened to => exp; as shown in display and
displayStrShort; we'll use this function expression syntax wherever possible. exp is
an expression, but it cannot be a statement like if. A function can be an argument
to another function, as display in print, line (1), or in line (4) where the function
isOdd is passed to the function where:

main() {
 print(display('Hello')); // Message: Hello. null (1)
 print(displayStr('Hello')); // Message: Hello. (2)
 print(displayStrShort('Hello')); // Message: Hello.
 print(display(display("What's up?"))); (3)
 [1,2,3,4,5].where(isOdd).toList(); // [1, 3, 5] (4)

Getting to Work with Dart

[50]

}

display(message) => print('Message: $message.');

displayStr(message) {
 return 'Message: $message.';
}

displayStrShort(message) => 'Message: $message.';
isOdd(n) => n % 2 == 1;

}

By omitting the parameter type, the display function is more general; its argument
can be a String, num, Boolean, List, and so on.

Parameters
As all parameter variables are objects, all parameters are passed by reference; that
means that the underlying object can be changed from within the function. Two
types of parameters exist: the required (they come first in the parameter list), and the
optional parameters. Optional parameters that depend on their position in the list
are indicated between [] in the definition of the function. All parameters we have
seen so far in examples were required, but usage of only optional parameter(s) is also
possible, as shown in the following code (refer to parameters.dart):

webLanguage([name]) => 'The best web language is: $name';

When called as shown in the following code, it produces the output shown as
comments:

print(webLanguage()); // The best web language is: null
print(webLanguage('JavaScript')); // The best web language is:
 // JavaScript

An optional parameter can have a default value as shown in the following code:

webLanguage2([name='Dart']) => 'The best web language is: $name';

If this function is called without argument, the optional value is substituted instead,
but when called with an argument, this takes precedence:

print(webLanguage2()); // The best web language is: Dart
print(webLanguage2('JavaScript')); // The best web language is:
 // JavaScript

Chapter 2

[51]

An example with required and optional parameters, with or without default values
(name=value), is as follows:

String hi(String msg, [String from, String to])
 => '$msg from $from to $to';
String hi2(String msg, [String from='me', String to='you'])

 => '$msg from $from to $to';

Here msg always gets the first parameter value, from and to get a value when there
are more parameters in that order (for that reason they are called positional):

print(hi('hi')); // hi from null to null
print(hi('hi', 'me')); // hi from me to null
print(hi('hi', 'me', 'you')); // hi from me to you
print(hi2('hi')); // hi from me to you
print(hi2('hi', 'him')); // hi from him to you
print(hi2('hi', 'him', 'her')); // hi from him to her

When calling a function with optional parameters it is often not clear what the code
is doing. This can be improved by using named optional parameters. These are
indicated by { } in the parameter list, such as in hi3:

String hi3(String msg, {String from, String to}) =>
 '$msg from $from to $to';

They are called with name:value and because of the name the position does not
matter:

print(hi3('hi', to:'you', from:'me')); // hi from me to you

Named parameters can also have default values (name:value):

String hi4(String msg, {String from:'me', String to:'you'}) =>
 '$msg from $from to $to';

It is called as follows:

print(hi4('hi', from:'you')); // hi from you to you

The following list summarizes the parameters:

• Optional positional parameters: [param]
• Optional positional parameters with default values: [param=value]
• Optional named parameters: {param}
• Optional named parameters with default values: {param:value}

Getting to Work with Dart

[52]

First class functions
A function can contain other functions, as calcRabbits contains calc(years) in
prorabbits_v4.dart:

String calculateRabbits(int years) {
 calc(years) => (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt();
 var out = "After $years years:\t ${calc(years)} animals";
 return out;
}

This can be useful if the inner function needs to be called several times within the
outer function, but it cannot be called from outside this outer function. A slight
variation is to store the function in a variable calc that has type Function, as in
prorabbits_v5.dart:

String calculateRabbits(int years) {
 var calc = (years) => (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt(); (1)
 assert(calc is Function);
 var out = "After $years years:\t ${calc(years)} animals";
 return out;
}

The right-hand side of line (1) is an anonymous function or lambda that takes
parameter years and returns the expression after => (the lambda operator). It could
also have been written as follows:

var calc2 = (years) {
 return (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt();
};

In prorabbits_v6.dart, the function calc is made top-level and is passed in the
function lineOut as a parameter named fun:

void main() {
 print("The number of rabbits increases as:\n");
 for (int years = 0; years <= NO_YEARS; years++) {
 lineOut(years, calc(years));
 }
}

calc(years) => // code omitted, same as line(1)
 //in the preceding code

Chapter 2

[53]

lineOut(yrs, fun) {
 print("After $yrs years:\t ${fun} animals");
}

As a variation to the previous code, prorabbits_v7.dart has the inner function
calc, which has no parameter and yet it can use the variable years that exists in
the surrounding scope. For that reason calc is called a closure; it closes over the
surrounding variables, retaining their values.

String calculateRabbits(int years) {
 calc() => (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt();

 var out = "After $years years:\t ${calc()} animals";
 return out;
}

Closures can also be defined as top-level functions, as closure.dart shows. The
function multiply returns a function (that itself takes a parameter i). So mult2 in the
following code is a function that needs to be called with a parameter, for example,
mult2(3):

// short version: multiply(num n) => (num i) => n * i;
// long version:
Function multiply(num n) {
 return (num i) => n * i;
}

main() {
 var two = 2;

 var mult2 = multiply(two); // this is called partial application
 assert(mult2 is Function);
 print('${mult2(3)}'); // 6
}

This closure behavior (true lexical scoping) is most clearly seen in closure2.dart,
where three anonymous functions (each of which retains the value of i) are added
to a List lstFun. When calling them (the call is made with the () operator after the
list element lstFun[i]), they know their value of i; this is a great improvement over
JavaScript.

main() {
 var lstFun = [];
 for(var i in [10, 20, 30]) {
 lstFun.add(() => print(i));
 }

Getting to Work with Dart

[54]

 print(lstFun[0]()); // 10 null
 print(lstFun[1]()); // 20 null
 print(lstFun[2]()); // 30 null
}

While all these code variations might now perhaps seem as just a esthetical, they can
make your code clearer in more complex examples and we'll make good use of them
in the forthcoming apps. The definition of a function comprises its name, parameters,
and return type and is also called its signature. If you find this signature occurring
often in your code, you can define it as a function type with typedef, as shown in
the following code:

typedef int addInts(int a, b);

Then you can use addInts as the type of a function that takes two values of int and
returns an int.

Both in functional and OO programming it is essential to break a large problem into
smaller ones. In functional programming, the decomposition in functions is used
to support a divide-and-conquer approach to problem solving. A last remark: Dart
does not have overloading of functions (or methods or constructors) because typing the
arguments is not a requirement, Dart can't make the distinction. Every function must
have a unique name, and there can be only one constructor named after the class, but
a class can have other constructors as well.

Recognizing and catching errors and
exceptions
As a good programmer, you test your app in all possible conditions. Dart defines
a number of errors for those things that you should remedy in your code, such as
CastError when a cast fails, or NoSuchMethodError when the class of the object
on which the method is called does not have this method, and neither do any of its
parent classes. All these are subclasses of the Error class, and you should code so
that they do not occur. But when something unexpected occurs while running the
app, and the code cannot cope with it, an Unhandled Exception occurs. Especially
input values that are read in from the keyboard, a file, or a network connection can
be dangerous. Suppose input is such a value that is supposed to be an integer (refer
to exceptions.dart); we try to convert it to an int type in line (1):

var input = "47B9"; // value read from input,
 should be an integer
int inp = int.parse(input); (1)

Chapter 2

[55]

While running the program on the console with the command dart exceptions.
dart, our program terminates with an exception:

Unhandled exception:
FormatException: 47B9
#0 int.parse (dart:core-patch:1586:41)
#1 main (file:///E:/dart/code/chapter_2/
 exceptions/bin/exceptions.dart:4:22)

When running in Dart Editor the default behavior is that the debugger kicks in
so that you can examine the exception and the values of all variables (you can
change this behavior by navigating to Tools | Preferences | Run and Debug,
and change the Break on Exceptions to None). The generated FormatException
is clear, the input was in the wrong format. A lot of other exceptions exist such
as IntegerDivisionByZeroException, IOException (failure to read or write a
file), and HttpException (when requesting a page from a web server); they are all
subclasses from the Exception class. When they are generated they are objects that
contain information about the exception. How can we handle this exception so that
our program does not crash? For this Dart follows the familiar try...on/catch...
finally pattern:

• try: To try the dangerous statement(s)
• on/catch: To catch the exception (a specific one that you know can occur or a

general exception) and stop it from propagating
• finally: It contains code (perhaps to clean up, or close files or connections)

that will be executed, whether or not an exception occurs, but it is optional

A minimal exception handler could be as shown in the following code:

try {
 int inp = int.parse(input);
} on FormatException {
 print ('ERROR: You must input an integer!');
}

This prints out the text in the on part. Use catch if you want to examine the
exception object. The last clause in the try statement should be an on Exception
catch(e) or better even a simple catch(e) to stop any type of error or exception. So
the most general exception handler is:

try {
 int inp = int.parse(input);
} on FormatException { // or any other specific exception
 print ('ERROR: You must input an integer!');
} on Exception catch(e) { // Any other exception

www.allitebooks.com

http://www.allitebooks.org

Getting to Work with Dart

[56]

 print('Unknown exception: $e');
} catch(e) { // No specified type, handles all
 print('Something really unknown: $e');
} finally {
 print('OK, I have cleaned up the mess');
}

If you comment out the on FormatException part, you'll see that $e contains
FormatException: 47B9

Should an abnormal condition occur, you can generate or throw an exception in your
code yourself with throw. An example is given in the following code:

var radius = 8;
var area = PI * pow(radius, 2);
if (area > 200) { // area is 201.06192982974676
 throw 'This area is too big for me.';
}

You can also throw a real Exception object with throw new Exception("…").The
keyword throw produces an expression, so it can be used after a => operator like
this:

clearBalance() => throw const UnimplementedError();

This is handy to remind yourself while testing that this method hasn't yet been
implemented! The bottom line is to test your code exhaustively and provide
exception handling for unforeseeable events that your app cannot process in a
normal way.

Debugging exercise
The following little program (debuggingex.dart) results in a RangeError. Use
the debugger from the beginning to see where it goes wrong and correct it. In Dart
Editor, double-click on a narrow column to the left of for (var i=0; i<=lst.
length; i++) { in order to create a breakpoint (a blue circle). Run the program and
use step over to get a new value of the i variable. Correct the program to avoid the
range error. However, don't use try...catch to handle the error because this is a
programmer's mistake!

// calculate and print the squares of the list items:
var lst = [1, 2, 3, 4, 5];

void main() {
 for (var i=0; i<=lst.length; i++) {
 print(lst[i] * lst[i]);
 }
}

Chapter 2

[57]

Summary
By now you have acquired a lot of technical skills and gained insights into how Dart
works. The main ideas to take away from this chapter are:

• The relevance of typing variables in Dart and when to apply them: type
the public API of your app in order to enhance tooling and documentation,
which is produced with the built-in tool Dartdoc

• Dart's constructs are very familiar but the approach is quite refreshing,
leading to elegant code

• In particular, Dart incorporates quite a few functional ways of
coding: functions are quite powerful and working with collections
uses this intensively

In the next chapter we will see that Dart is a familiar object-oriented language
using classes. Generic types are also available, and we show how to use libraries to
structure your growing code. Using external libraries is easy with the pub tool, and
tests can be integrated with the unit testing library.

Structuring Code with
Classes and Libraries

In this chapter we will look at the object-oriented nature of Dart. If you have
prior knowledge of an OO language, most of this chapter will feel familiar.
Nonetheless, coding classes in Dart is more succinct when introducing some nice
new features such as factory constructors and generalizing the use of interfaces.
If you come from the JavaScript world, you will start to realize that classes
can really structure your application.

Data mostly comes in collections. Dart has some neat classes to work with
collections, and they can be used for any type of collections. That's why they are
called generic. As soon as you get a few code files in your project, structuring them
by making libraries becomes essential for code maintainability. Also, your code will
probably use existing libraries written by other developers; to make it easy, Dart has
its own package manager called pub. Automating the testing of code on a functional
level is done with a built-in unit test library.

We will look at the following topics:

• Using classes and objects
• Collection types and generic classes
• Structuring your code using libraries
• Managing library dependencies with pub
• Unit testing in Dart

We will wrap it all up in a small but useful project to calculate word frequencies in
an extract of text.

Structuring Code with Classes and Libraries

[60]

A touch of class – how to use classes
and objects
We saw in Chapter 1, Dart – A Modern Web Programming Language, how a class
contains members such as properties, a constructor, and methods (refer to banking_
v2.dart). For those familiar with classes in Java or C#, it's nothing special and we
can see already certain simplifications:

• The short constructor notation lets the parameter values flow directly into the
properties:
BankAccount(this.owner, this.number, this.balance) { … }

• The keyword this is necessary here and refers to the actual object (being
constructed), but it is rarely used elsewhere (only when there is a name
conflict). Initialization of instance variables can also be done in the so-called
initializer list, in this shorter version of the constructor:
BankAccount(this.owner, this.number, this.balance):
 dateCreated = new DateTime.now();

• The variables are initialized after the colon (:) and are separated by a comma.
You cannot use the keyword this in the initializer expression. If nothing else
needs to be done, the constructor body can be left out.

• The properties have automatic getters to read the value (as in ba.balance)
and, when they are not final or constant, they also have a setter method to
change the value (as in balance += amount).

You can start out by using dynamic typing (var) for properties,
especially when you haven't decided what type a property will
become. As development progresses, though, you should aim to
change dynamic types into strong types that give more meaning
to your code and can be validated by the tools.

Properties that are Boolean values are commonly named with is at the beginning,
for example, isOdd.

A class has a default constructor when there are no other constructors defined.
Objects (instances of the class) are made with the keyword new, and an object is
of the type of the class. We can test this with the is operator, for example if object
ba is of type BankAccount, then the following is true: ba is BankAccount. Single
inheritance between classes is defined by the extends keyword, the base class of
all classes being Object.

Chapter 3

[61]

Member access uses the dot (.) notation, as in ba.balance or ba.withdraw(100.0).
A class can contain objects that are instances of other classes: a feature known as
composition (aggregation). For example, we could decide at a later stage that the
String owner in the BankAccount class should really be an object of a Person class,
with many other properties and methods.

A neat feature to simplify code is the cascade operator (..); with it, you can set a
number of properties and execute methods on the same object, for example, on the
ba object in the following code (it's not chaining operations!):

ba
 ..balance = 5000.0
 ..withdraw(100.0)
 ..deposit(250.0);

We'll focus on what makes Dart different and more powerful than common
OO languages.

Visibility – getters and setters
What about the visibility or access of class members? They are public by default, but
if you name them to begin with an underscore (_), they become private. However,
private in Dart does not mean only visible in its class; a private field (property)—for
example, _owner—is visible in the entire library in which it is defined but not in the
client code that uses the library.

For the moment, this means that it is accessible in the code file where it is declared
because a code file defines an implicit library. The entire picture will become clear in
the coming section on libraries. A good feature that enhances productivity is that you
can begin with public properties, as in project_v1.dart. A Project object has a
name and a description and we use the default constructor:

main() {
 var p1 = new Project();
 p1.name = 'Breeding';
 p1.description = 'Managing the breeding of animals';
 print('$p1');
 // prints: Project name: Breeding - Managing
 the breeding of animals
}

class Project {
 String name, description;
 toString() => 'Project name: $name - $description';
}

Structuring Code with Classes and Libraries

[62]

Suppose now that new requirements arrive; the length of a project name must be
less than 20 characters and, when printed, the name must be in capital letters. We
want the Project class to be responsible for these changes, so we create a private
property, _name, and the get and set methods to implement the requirements (refer
to project_v2.dart):

class Project {
 String _name; // private variable
 String description;

 String get name => _name == null ? "" :_name.toUpperCase();
 set name(String prName) {
 if (prName.length > 20)
 throw 'Only 20 characters or less in project name';
 _name = prName;
 }

 toString() => 'Project name: $name - $description';
}

The get method makes sure that, in case _name is not yet filled in, an empty string is
returned.

The code that already existed in main (or in general, the client code that uses this
property) does not need to change; it now prints Project name: BREEDING -
Managing the breeding of animals and, if a project name that is too long is
given, the code generates an exception.

Start your class code with public properties and, later, change
some of them to private if necessary with getters and/or setters
without breaking client code!

A getter (and a setter) can also be used without a corresponding property instead
of a method, again simplifying the code, such as the getters for area, perimeter, and
diagonal in the class Square (square_v1.dart):

import 'dart:math';

void main() {
 var s1 = new Square(2);
 print('${s1.perimeter}'); // 8
 print('${s1.area}'); // 4
 print('${s1.diagonal}'); // 2.8284271247461903
}

Chapter 3

[63]

class Square {
 num length;
 Square(this.length);

 num get perimeter => 4 * length;
 num get area => length * length;
 num get diagonal => length * SQRT2;
}

SQRT2 is defined in dart:math.

The new properties (derived from other properties) cannot be changed because they
are getters. Dart doesn't do function overloading because of optional typing, but
does allow operator overloading, redefining a number of operators (such as ==, >=,
>, <=, and <—all arithmetic operators—as well as [] and []=). For example, examine
the operator > in square_v1.dart:

bool operator >(Square other) => length > other.length
 ? true : false;

If s1 and s2 are Square objects, we can now write code like this:
if (s2 > s1) { … }.

Use overloading of operators sparingly and only when it seems a
good fit and that it would be unsurprising to fellow developers.

Types of constructors
All OO languages have class constructors, but Dart has some special kinds of
constructors covered in the following sections.

Structuring Code with Classes and Libraries

[64]

Named constructors
Because there is no function overloading, there can be only one constructor with
the class name (the so-called main constructor). So if we want more, we must use
named constructors, which take the form ClassName.constructorName. If the main
constructor does not have any parameters, it is called a default constructor. If the
default constructor does not have a body of statements such as BankAccount();, it
can be omitted. If you don't declare a constructor, a default constructor is provided
for you. Suppose we want to to create a new bank account for a person by copying
data from another of his/her bank accounts, for example, the owner's name. We
could do this with the named constructor BankAccount.sameOwner (refer to
banking_v3.dart):

BankAccount.sameOwner(BankAccount acc) {
 owner = acc.owner;
}

We could also do this with the initializer version:

BankAccount.sameOwner(BankAccount acc): owner = acc.owner;

When we make an object via this constructor and print it out, we get:

Bank account from John Gates with number null and balance null

A constructor can also redirect to the main constructor by using the this keyword
like so:

BankAccount.sameOwner2(BankAccount acc): this(acc.owner, "000-0000000-
00", 0.0);

We initialize the number and balance to dummy values, because this() has to
provide three arguments for the three parameters of the main constructor.

factory constructors
Sometimes we don't want a constructor to always make a new object of the class;
perhaps we want to return an object from a cache or create an object from a subtype
instead. The factory constructor provides this flexibility and is extensively used in
the Dart SDK. In factory_singleton.dart, we use this ability to implement the
singleton pattern, in which there can be only one instance of the class:

class SearchEngine {
 static SearchEngine theOne; (1)
 String name;

Chapter 3

[65]

 factory SearchEngine(name) { (2)
 if (theOne == null) {
 theOne = new SearchEngine._internal(name);
 }
 return theOne;
 }
// private, named constructor
 SearchEngine._internal(this.name); (3)
// static method:
 static nameSearchEngine () => theOne.name; (4)
}

main() {
 //substitute your favorite search-engine for se1:
 var se1 = new SearchEngine('Google'); (5)
 var se2 = new SearchEngine('Bing'); (6)
 print(se1.name); // 'Google'
 print(se2.name); // 'Google'
 print(SearchEngine.theOne.name); // 'Google' (7)
 print(SearchEngine.nameSearchEngine()); // 'Google' (8)
 assert(identical(se1, se2)); (9)
}

In line (1), the static variable theOne (here of type SearchEngine itself, but it could
also be of a simple type, such as num or String) is declared: such a variable is the same
for all instances of the class. It is invoked on the class name itself, as in line (7); that's
why it is also called a class variable. Likewise, you can have static methods (or class
methods) such as nameSearchEngine (line (4)) called in the same way (line (8)).

Static methods can be useful, but don't create a class containing
static methods only to provide common or widely used utilities
and functionality; use top-level functions instead.

In lines (5) and (6), two SearchEngine objects se1 and se2 are created through
the factory constructor in line (2). This checks whether our static variable theOne
already refers to an object or not. If not, a SearchEngine object is created through the
named constructor SearchEngine._internal from line (3); if it had already been
created, nothing is done and the object theOne is returned in both cases. The two
SearchEngine objects se1 and se2 are in fact the same object, as is proven in line
(9). Note that the named constructor SearchEngine._internal is private; a factory
invoking a private constructor is also a common pattern.

Structuring Code with Classes and Libraries

[66]

const constructors
Two squares created with the same length are different objects in memory. If you
want to make a class where each object cannot change, provide it with const
constructors and make sure that every property is const or final, for example, class
ImmutableSquare in square_v1.dart:

class ImmutableSquare {
 final num length;
 static final ImmutableSquare ONE = const ImmutableSquare(1);
 const ImmutableSquare(this.length);
}

Objects are created with const instead of new, using the const constructor in the last
line of the class to give length its value:

var s4 = const ImmutableSquare(4);
var s5 = const ImmutableSquare(4);
assert(identical(s4,s5));

Inheritance
Inheritance in Dart comes with no surprises if you know the concept from Java or
.NET. Its main use is to reduce the codebase by factoring common code (properties,
methods, and so on) into a common parent class. In square_v2.dart, the class
Square inherits from the Rectangle class, indicated with the extends keyword (line
(4)). A Square object inherits the properties from its parent class (see line (1)), and
you can refer to constructors or methods from the parent class with the keyword
super (as in line (5)):

main() {
 var s1 = new Square(2);
 print(s1.width); (1)
 print(s1.height);
 print('${s1.area()}'); // 4
 assert(s1 is Rectangle); (2)
}

class Rectangle {
 num width, height;
 Rectangle(this.width, this.height);
 num area() => width * height; (3)
}

Chapter 3

[67]

class Square extends Rectangle { (4)
 num length;
 Square(length): super(length, length) { (5)
 this.length = length;
 }
 num area() => length * length; (6)
}

Methods from the parent class can be overridden in the derived class without
special annotations, for example, method area() (lines (3) and (6)). An object
of a child class is also of the type of the parent class (see line (2)) and thus can be
used whenever a parent class object is needed. This is the basis of what is called the
polymorphic behavior of objects. All classes inherit from the class Object, but a class
can have only one direct parent class (single inheritance) and constructors are not
inherited. Does author mean an object, the class of this object, its parent class, and
so on (until Object); they are all searched for the method that is called on. A class
can have many derived classes, so an application is typically structured as a class
hierarchy tree.

In OO programming, the class decomposition (with properties representing
components/objects of other classes) and inheritance are used to support a
divide-and-conquer approach to problem solving. Class A inherits from class B
only when A is a subset of B, for example, a Square is a Rectangle, a Manager is
an Employee; basically when class B is more generic and less specific than class A.
It is recommended that inheritance be used with caution because an inheritance
hierarchy is more rigid in the maintenance of programs than decomposition.

Abstract classes and methods
Looking for parent classes is an abstraction process, and this can go so far that the
parent class we have decided to work with can no longer be fully implemented; that
is, it contains methods that we cannot code at this point, so-called abstract methods.
Extending the previous example to square_v3.dart, we could easily abstract
out a parent class, Shape. This could contain methods for calculating the area and
the perimeter, but they would be empty because we can't calculate them without
knowing the exact shape. Other classes such as Rectangle and Square could inherit
from Shape and provide the implementation for these methods.

main() {
 var s1 = new Square(2);
 print('${s1.area()}'); // 4
 print('${s1.perimeter()}'); // 8
 var r1 = new Rectangle(2, 3);

Structuring Code with Classes and Libraries

[68]

 print('${r1.area()}'); // 6
 print('${r1.perimeter()}'); // 10
 assert(s1 is Shape);
 assert(r1 is Shape);
 // warning + exception in checked mode: Cannot instantiate
 // abstract class Shape
 // var f = new Shape();
}

abstract class Shape {
 num perimeter();
 num area();
}

class Rectangle extends Shape {
 num width, height;
 Rectangle(this.width, this.height);
 num perimeter() => 2 * (height + width);
 num area() => height * width;
}

class Square extends Shape {
 num length;
 Square(this.length);
 num perimeter() => 4 * length;
 num area() => length * length;
}

Also, making instances of Shape isn't very useful, so it is rightfully an abstract class.
An abstract class can also have properties and implemented methods, but you cannot
make objects from an abstract class unless it contains a factory constructor that
creates an object from another class. This can be useful as a default object creator for
that abstract class. A simple example can be seen in factory_abstract.dart:

void main() {
 Animal an1 = new Animal(); (1)
 print('${an1.makeNoise()}'); // Miauw
}

abstract class Animal {
 String makeNoise();
 factory Animal() => new Cat(); (2)
}

class Cat implements Animal {
 String makeNoise() => "Miauw";
}

Chapter 3

[69]

Animal is an abstract class; because we most need cats in our app, we decide to give
it a factory constructor to make a cat (line (2)). Now we can construct an object
from the Animal class (line (1)) and it will behave like a cat. Note that we must use
the keyword implements here to make the relationship between the class and the
abstract class (this is also an interface, as we discuss in the next section). Many of
the core types in the Dart SDK are abstract classes (or interfaces), such as num, int,
String, List, and Map. They often have factory constructors that redirect to a specific
implementation class for making an object.

The interface of a class – implementing interfaces
In Java and .NET, an abstract class without any implementation in its methods is
called an interface—a description of a collection of fields and methods—and classes
can implement interfaces. In Dart, this concept is greatly enhanced and there is no
need for an explicit interface concept. Here, every class implicitly defines its own
interface (also called API) containing all the public instance members of the class
(and of any interfaces it implements). The abstract classes of the previous section are
also interfaces in Dart. Interface is not a keyword in the Dart syntax, but both words
are used as synonyms. Class B can implement any other class C by providing code
for C's public methods. In fact, the previous example, square_v3.dart, continues to
work when we change the keyword extends to implements:

class Rectangle implements Shape {
 num width, height;
 Rectangle(this.width, this.height);
 num perimeter() => 2 * (height + width);
 num area() => height * width;
}

This has the additional benefit that class Rectangle could now inherit from another
class if necessary. Every class that implements an interface is also of that type as is
proven by the following line of code (when r1 is an object of class Rectangle):

assert(r1 is Shape);

extends is much less used than implements, but it also clearly has a different
meaning. The inheritance chain is searched for a called method, not the
implemented interfaces.

Structuring Code with Classes and Libraries

[70]

Implementing an interface is not restricted to one interface. A class can implement
many different interfaces, for example, class Cat implements Mammal, Pet {
... }. In this new vision, where every class defines its own interface, abstract classes
(that could be called explicit interfaces) are of much less importance (in fact, the
keyword abstract is optional; leaving it off only gives a warning of unimplemented
members). This interface concept is more flexible than in most OO languages and
doesn't force us to define our interfaces right from the start of a project. The dynamic
type, which we discussed briefly in the beginning of this chapter, is in fact the base
interface that every other class (also Object) implements. However, it is an interface
without properties or methods and cannot be extended.

In summary, interfaces are used to describe functionality that is shared
(implemented) by a number of classes. The implementing classes must fulfill the
interface requirements. Coding against interfaces is an excellent way to provide more
coherence and structure in your class hierarchy.

Polymorphism and the dynamic nature of Dart
Because Dart fully implements all OO principles, we can write polymorphic code,
in which an object can be used wherever something of its type, the type of its parent
classes, or the type of any of the interfaces it implements is needed. We see this in
action in polymorphic.dart:

main() {
 var duck1 = new Duck();
 var duck2 = new Duck('blue');
 var duck3 = new Duck.yellow();
 polytest (new Duck()); // Quack I'm gone, quack! (1)
 polytest (new Person());
 // human_quack I am a person swimming (2)
}

polytest(Duck duck) { (3)
 print('${duck.sayQuack()}');
 print('${duck.swimAway()}');
}

abstract class Quackable {
 String sayQuack();
}

Chapter 3

[71]

class Duck implements Quackable {
 var color;
 Duck([this.color='red']);
 Duck.yellow() { this.color = 'yellow';}

 String sayQuack() => 'Quack';
 String swimAway() => "I'm gone, quack!";
}

class Person implements Duck { (4)
 sayQuack() => 'human_quack';
 swimAway() => 'I am a person swimming'; (5)

 noSuchMethod(Invocation invocation) { (6)
 if (invocation.memberName == new Symbol("swimAway"))
 print("I'm not really a duck!");
 }
}

The top-level function polytest in line (3) takes anything that is a Duck as
argument. In this case, this is not only a real duck, but also a person because class
Person also implements Duck (line (4)). This is polymorphism. This property of a
language permits us to write code that is generic in nature; using objects of interface
types, our code can be valid for all classes that implement the interface used.

Another property shows that Dart also resembles dynamic languages such as Ruby
and Python; when a method is called on an object, its class, parent class, the parent
class of the parent class, and so on (until the class Object), are searched for the
method called. If it is found nowhere, Dart searches the class tree from the class to
Object again for a method called noSuchMethod().

Object has this method, and its effect is to throw a noSuchMethodError. We can use
this to our advantage by implementing this method in our class itself; see line (6) in
class Person (the argument mirror is of type Invocation, its property memberName
is the name of the method called, and its property namedArguments supplies a Map
with the method's arguments). If we now remove line (5) so that Person no longer
implements the method swimAway(), the Editor gives us a warning:

Concrete class Person has unimplemented members from
 Duck: String swimAway().

Structuring Code with Classes and Libraries

[72]

But if we now execute the code, the message I'm not really a duck! is printed
when print('${duck.swimAway()}') is called for the Person object. Because
swimAway() didn't exist for class Person or any of its parent classes, noSuchMethod
is then searched, found in the class itself, and then executed. noSuchMethod can be
used to do what is generally called metaprogramming in the dynamic languages
arena, giving our applications greater flexibility to efficiently handle new situations.

Collection types and generics
In the Built-in types and their methods section in Chapter 2, Getting to Work with Dart,
we saw that very powerful data structures such as List and Map are core to Dart and
not something added afterwards in a separate library as in Java or .NET.

Typing collections and generics
How can we check the type of the items in a List or Map? A List created either as a
literal or with the default constructor can contain items of any type, as the following
code shows (refer to generics.dart):

var date = new DateTime.now();
// untyped List (or a List of type dynamic):
var lst1 = [7, "lucky number", 56.2, date];
print('$lst1'); // [7, lucky number, 56.2,
 // 2013-02-22 10:08:20.074]
var lst2 = new List();
lst2.add(7);
lst2.add("lucky number");
lst2.add(56.2);
lst2.add(date);
print('$lst2'); // [7, lucky number, 56.2,
 // 2013-02-22 10:08:20.074]

While this makes for very versatile Lists most of the time, you know that the items
will be of a certain type, such as int or String or BankAccount or even List,
themselves. In this case, you can indicate type E between < and > in this way: <E>. An
example is shown in the following code:

var langs = <String>["Python","Ruby", "Dart"];
var langs2 = new List<String>(); (1)
langs2.add("Python");
langs2.add("Ruby");
langs2.add("Dart");
var lstOfString = new List<List<String>>(); (2)

(Don't forget the () at the end of lines (1) and (2) because this calls the constructor!

Chapter 3

[73]

With this, Dart can control the items for us; langs2.add(42); gives us a warning
and a TypeErrorImplementation exception when run in checked mode:

type 'int' is not a subtype of type 'String' of 'value'

Here, value means 42. However, when we run in production mode, this code runs
just fine. Again, indicating the type helps us to prevent possible errors and at the
same time documents your code.

Why is the special notation <> also used as List<E> in the API documents for
List? This is because all of the properties and methods of List work for any type E.
That's why the List<E> type is called generic (or parameterized). The formal type
parameter E stands for any possible type.

The same goes for Maps; a Map is in fact a generic type Map<K,V>, where K and V are
formal type parameters for the types of the keys and values respectively, giving us
the same benefits as the following code demonstrates:

var map = new Map<int, String>();
map[1] = 'Dart';
map[2] = 'JavaScript';
map[3] = 'Java';
map[4] = 'C#';
print('$map'); // {1: Dart, 2: JavaScript, 3: Java, 4: C#}
map['five'] = 'Perl'; // String is not assignable to int (3)

Again, line (3) gives us a TypeError exception in checked mode, not in production
mode. We can test the generic types like this:

print('${langs2 is List}'); // true
print('${langs2 is List<String>}'); // true (4)
print('${langs2 is List<double>}'); // false (5)

Structuring Code with Classes and Libraries

[74]

We see that, in line (5), the type of the List is checked; this check works even in
production mode! (Uncheck the Run in Checked Mode checkbox in Run | Manage
Launches and click on Apply to see this in action.) This is because generic types in
Dart (unlike in Java) are reified; their type info is preserved at runtime, so you can
test the type of a collection even in production mode. Note, however, that this is the
type of the collection only. When adding the statement langs2.add(42); (which
executes fine in production mode), the check in line (4) still gives us the value true.
If you want to check the types of all the elements in a collection in production mode,
you have to do this for each element individually, as shown in the following code:

for (var s in langs2) {
 if (s is String) print('$s is a String');
 else print ('$s is not a String!');
}
// output:
// Python is a String
// Ruby is a String
// Dart is a String
// 42 is not a String!

Checking the types of generic Lists gives mostly expected results:

print(new List
<String>() is List<Object>); // true (1)
print(new List<Object>() is List<String>); // false (2)
print(new List<String>() is List<int>); // false (3)
print(new List<String>() is List); // true (4)
print(new List() is List<String>); // true (5)

Line (1) is true because Strings (as everything) are Objects. (2) is false because not
every Object is a String. (3) is false because Strings are not of type int (4) is true
because Strings are also of the general type dynamic. Line (5) can be a surprise:
dynamic is String. This is because generic types without type parameters are
considered substitutable (subtypes of) for any other version of that generic type.

The collection hierarchy and its functional nature
Apart from List and Map, there are other important collection classes, such as
Queue and Set, among others specified in the dart:collection library; most of
them are generic. We can't review them all here but the most important ones
have the following relations (an arrow is UML notation for "is a subclass of"
(extends in Dart):

Chapter 3

[75]

Iterable

Set

ListIterableBase Queue

The collection hierarchy

List and Queue are classes that inherit from Iterable, and Set inherits from
IterableBase; all these are abstract classes. The Map class is also abstract and forms
on its own the root of a whole series of classes that implement containers of values
associated with keys, sometimes also called dictionaries. Put simply, the Iterable
interface allows you to enumerate (or iterate, that is, read but not change) all items
of a collection one-by-one using what is called an Iterator. As an example, you can
make a collection of the numbers 0 to 9 by making an Iterator with:

var digits = new Iterable.generate(10, (i) => i);

The iteration can be performed with the for (item in collection) statement:

for (var no in digits) {
 print(no);
} // prints 0 1 2 3 4 5 6 7 8 9 on successive lines

This prints all the numbers from 0 to 9 successively. Members such as isEmpty,
length, and contains(), which we saw in action with List (refer to lists.dart)
are already defined at this level, but there is a lot more. Iterable also defines very
useful methods for filtering, searching, transforming, reducing, chaining, and so on.
This shows that Dart has a lot of the characteristics of a functional language: we see
lots of functions taking functions as parameters or returning functions. Let us look at
some examples applied to a list by applying toList() to our Iterable object digits:

var digList = digits.toList();

An even shorter and more functional version than for...in is forEach, which takes
as parameter a function that is applied to every item i of the collection in turn. In the
following example, an anonymous function that simply prints the item is shown:

digList.forEach((i) => print('$i'));

Structuring Code with Classes and Libraries

[76]

Use forEach whenever you don't need the index of the item in the loop. This also
works for Maps, for example, to print out all the keys in the following map:

Map webLinks = { 'Dart': 'http://www.dartlang.org/',
 'HTML5': 'http://www.html5rocks.com/' };
webLinks.forEach((k,v) => print('$k')); // prints: Dart HTML5

If we want the first or last element of a List, use the corresponding functions.

If you want to skip the first n items use skip(n), or skip by testing on a condition
with skipWhile(condition):

var skipL1 = digList.skip(4).toList();
print('$skipL1'); // [4, 5, 6, 7, 8, 9]
var skipL2 = digList.skipWhile((i) => i <= 6).toList();
print('$skipL2'); // [7, 8, 9]

The functions take and takeWhile do the opposite; they take the given number of
items or the items that fulfill the condition:

var takeL1 = digList.take(4).toList();
print('$takeL1'); // [0, 1, 2, 3]
var takeL2 = digList.takeWhile((i) => i <= 6).toList();
print('$takeL2'); // [0, 1, 2, 3, 4, 5, 6]

If you want to test whether any of the items fulfill a condition, use any; to test
whether all of the items do so, use every:

var test = digList.any((i) => i > 10);
print('$test'); // false
var test2 = digList.every((i) => i < 10);
print('$test2'); // true

Suppose you have a List and you want to filter out only these items that fulfill a
certain condition (this is a function that returns a Boolean, called a predicate), in our
case the even digits; here is how it's done:

var even = (i) => i.isEven; (1)
var evens = digList.where(even).toList(); (2)
print('$evens'); // [0, 2, 4, 6, 8] (3)
evens = digList.where((i) => i.isEven).toList(); (4)
print('$evens'); // [0, 2, 4, 6, 8]

We use the isEven property of int to construct an anonymous function in line (1).
It takes the parameter i to test its evenness, and we assign the anonymous function
to a function variable called even. We pass this function as a parameter to where, and
we make a list of the result in line (2). The output in line (3) is what we expect.

Chapter 3

[77]

It is important to note that where takes a function that for each item tests a certain
condition and thus returns true or false. In line (4), we write it more tersely in one
line, appropriate and elegant for short predicate functions. Why do we need the call
toList() in this and the previous functions? Because where (and the other Iterable
methods) return a so-called lazy Iterable. Calling where alone does nothing; it is
toList() that actually performs the iteration and stuffs the results in a List (try it
out: if you leave out toList(), in line (4), then the right-hand side is an instance
of WhereIterable).

If you want to apply a function to every item and form a new List with the results,
you can use the map function; in the following example, we triple each number:

var triples = digList.map((i) => 3 * i).toList();
print('$triples'); // [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Another useful utility is to apply a given operation with each item in succession,
combined with a previously calculated value. Concretely, say we want to sum all
elements of our List. We can of course do this in a for loop, accumulating the sum in
a temporary variable:

var sum = 0;
for (var i in digList) {
 sum += i;
}
print('$sum'); // 45

Dart provides a more succinct and functional way to do this kind of manipulation
with the reduce function (eliminating the need for a temporary variable):

var sum2 = digList.reduce((prev, i) => prev + i);
print('$sum2'); // 45

We can apply reduce to obtain the minimum and maximum of a numeric List as
follows:

var min = digList.reduce(Math.min);
print('minimum: $min'); // 0
var max = digList.reduce(Math.max);
print('maximum: $max'); // 9

For this to work, we need to import the math library:

import 'dart:math' as Math;

Structuring Code with Classes and Libraries

[78]

We could do this because min and max are defined for numbers, but what about other
types? For this, we need to be able to compare two List items: i1 and i2. If i2 is
greater than i1, we know the min and max of the two and we can sort them. Dart has
this intrinsically defined for the basic types int, num, String, Duration, and Date.
So in our example, with types int we can simply write:

var lst = [17, 3, -7, 42, 1000, 90];
lst.sort();
print('$lst'); // [-7, 3, 17, 42, 90, 1000]

If you look up the definition of sort(), you will see that it takes as optional
argument a function of type int, compare(E a, E b), belonging to the Comparable
interface. Generally, this is implemented as follows:

• if a < b return -1
• if a > b return 1
• if a == b return 0

In the following code, we use the preceding logic to obtain the minimum and
maximum of a List of Strings:

var lstS = ['heg', 'wyf', 'abc'];
var minS = lstS.reduce((s1,s2) =>
 s1.compareTo(s2) < 0 ? s1 : s2);
print('Minimum String: $minS'); // abc

In a general case, we need to implement compareTo ourselves for the element type
of the list, and it turns out that the preceding code lines can then be used to obtain
the minimum and maximum of a List of a general type! To illustrate this, we will
construct a List of persons; these are objects of a very simple Person class:

class Person {
 String name;
 Person(this.name);
}

We make a List of four Person objects and try to sort it as shown in the
following code:

var p1 = new Person('Peeters Kris');
var p2 = new Person('Obama Barak');
var p3 = new Person('Poetin Vladimir');
var p4 = new Person('Lincoln Abraham');
var pList = [p1, p2, p3, p4];
pList.sort();

Chapter 3

[79]

We then get the following exception:

type 'Person' is not a subtype of type 'Comparable'.

This means that class Person must implement the Comparable interface by
providing code for the method compareTo. Because String already implements this
interface, we can use the compareTo method for the person's names:

lass Person implements Comparable{
 String name;
 Person(this.name);
 // many other properties and methods
 compareTo(Person p) => name.compareTo(p.name);
}

Then we can get the minimum and maximum and sort our Person List in place
simply by:

var minP = pList.reduce((s1,s2) => s1.compareTo(s2)
 < 0 ? s1 : s2);
print('Minimum Person: ${minP.name}'); // Lincoln Abraham
var maxP = pList.reduce((s1,s2) => s1.compareTo(s2)
 < 0 ? s2 : s1);
print('Maximum Person: ${maxP.name}'); // Poetin Vladimir

pList.sort();
pList.forEach((p) => print('${p.name}'));

The preceding code prints the following output (on successive lines):

Lincoln Abraham Obama Barak Peeters Kris Poetin Vladimir

For using Queue, your code must import the collection library by using import
'dart:collection'; because that's the library this class is defined in. It is another
collection type, differing from a List in that the first (head) or the last item (tail) are
important here. You can add an item to the head with addFirst or to the tail with
add or addLast; or you can remove an item with removeFirst or removeLast:

var langsQ = new Queue();
langsQ.addFirst('Dart');
langsQ.addFirst('JavaScript');
print('${langsQ.elementAt(1)}'); // Dart
var lng = langsQ.removeFirst();
assert(lng=='JavaScript');
langsQ.addLast('C#');
langsQ.removeLast();
print('$langsQ'); // {Dart}

Structuring Code with Classes and Libraries

[80]

You have access to the items in a Queue by index with elementAt(index), and
forEach is also available. For this reason, Queues are ideal when you need a first-in
first-out data structure (FIFO), or a last-in first-out data structure (LIFO, called a
stack in most languages).

Lists and Queues allow duplicate items. If you don't need ordering and your
requirement is to only have unique items in a collection, use a Set type:

var langsS = new Set();
langsS.add('Java');
langsS.add('Dart');
langsS.add('Java');
langsS.length == 2;
print('$langsS'); // {Dart, Java}

Again, Sets allow for the same methods as List and Queue from their place in the
collection hierarchy (see the The collection hierarchy figure). They also have the
specific intersection method that returns the common elements between a Set and
another collection.

Here is a handy flowchart to decide which data structure to use:

List

Yes

Yes Yes

No

No No

Map

Access
items by
index?

Queue

Ordered
retrieval

Key
value pairs?

Set

Choosing a collection type

Maps have unique keys (but not values) and Sets have unique items,
while Lists and Queues do not. Lists are ideal for arbitrary access to
items anywhere in the collection (by index), but changing their size can
be costly. Queues are the type to use if you mainly want to operate on
the head or tail of the collection.

Chapter 3

[81]

Structuring your code using libraries
Using classes, extending them, and implementing interfaces are the way to go
to structure your Dart code. But how do we group together a number of classes,
interfaces, and top-level functions that are coupled together? To package an
application or to create a shareable code base, we use a library. The Dart SDK
already provides us with some 30 utility libraries, such as dart:core, dart:math,
and dart:io. You can look them up in your Editor by going to Help | API
Reference or via the URL http://api.dartlang.org. All built-in libraries have
the dart: prefix. We have seen them in use a few times and know that we have to
import them in our code as import 'dart:math'; in prorabbits_v7.dart. Web
applications will always import dart:html (dart:core is the most fundamental
library and so is imported automatically).

Likewise, we can create our own libraries and let other apps import them to use
their functionality. To illustrate this, let us do so for our rabbit-breeding application
(perhaps there is a market for this app after all). For an app this simple, this is not
needed, of course. However, every Dart app that contains a main() function is
also a library even when not indicated. We make a new app called breeding that
could contain all kinds of breeding calculations. We group together all the constants
that we will need in a file called constants.dart, and we move the function that
calculates the rabbit breeding to a file named rabbits.dart in a subfolder called
rabbits. All files now have to declare how they are part of the library. There is one
code file (the library file in the bin subfolder; its file icon in the Editor is shown in
bold) that contains the library keyword; in our example, this is breeding.dart in
line (1):

library breeding; (1)

import 'dart:math'; (2)

part 'constants.dart'; (3)
part 'rabbits/rabbits.dart';

void main() { (4)
 print("The number of rabbits increases as:\n");
 for (int years = 0; years <= NO_YEARS; years++) {
 print("${calculateRabbits(years)}");
 }
}

Structuring Code with Classes and Libraries

[82]

A library needs a name; here it is breeding (all lowercase, and not in quotes); other
apps can import our library through this name. This file also contains all necessary
import statements (line (2)) and then sums up (in no particular order) all source
files that together constitute the library. This is done with the part keyword,
followed by the quoted (relative) pathname to the source file. For example, when
rabbits.dart resides in a subfolder called rabbits, this will be written as:

part 'rabbits/rabbits.dart';

But everything is simpler if all files of a library reside in one folder. So, the library
file presents an overview of all the part files in which it is split; if needed, we can
structure our library with subfolders, but Dart sees all this code as a single file.
Furthermore, all library source files need to indicate that they are part of the library
(we show only rabbits.dart here); again, the library name is not quoted (line (1)):

part of breeding; (1)

String calculateRabbits(int years) {
 calc() => (2 * pow(E, log(GROWTH_FACTOR) *
 years)).round().toInt();

 var out = "After $years years:\t ${calc()} rabbits";
 return out;
}

GROWTH_FACTOR is defined in the file constants.dart.

All these statements (library, import, part, and part of) need to appear at the top
before any other code. The Dart compiler will import a specific source file only once
even when it is mentioned several times. If there is a main entry function in our library,
it must be in the library file (line (4)); start the app to verify that we obtain the same
breeding results as in our previous versions. A library that contains main() is also
a runnable app in itself but, in general, a library does not need to contain a main()
function. The part of annotation enforces that a file can only be part of one library.
Is this a restriction? No, because it strengthens the principle that code must not be
duplicated. If you have a collection of business classes in an app, group them in their
own library and import them into your app; that way, these classes are reusable.

You can start coding your app (library) in a single file. Gradually,
you begin to discover units of functionality of classes and/or
functions that belong together;, then you can move these into part
files, with the library file structuring the whole.

Chapter 3

[83]

Using a library in an app
To show how we can use our newly made library in another app, create a new
application app_breeding; in its startup file (app_breeding.dart), we can call our
library as shown in the following code:

import '../../breeding/bin/breeding.dart'; (1)

int years;

void main() {
 years = 5;
 print("The number of rabbits has attained:");
 print("${calculateRabbits(years)}");
}
// Output:
//The number of rabbits has attained:
//After 5 years: 1518750 rabbits

The import statement in line (1) points to the main file of our library, relative in the
file system to the .dart file we are in (two folder levels up with two periods (..)
and then into subfolder bin of breeding). As long as your libraries retain the same
relative position to your client app (while deploying it in production), this works.
You can also import a library from a (remote) website using a URL in this manner:

import 'http://www.breeding.org/breeding.dart';

Absolute file paths in import are not recommended because they break too easily
when deploying. In the next section, we discuss the best way of importing a library
by using the package manager called pub.

Resolving name conflicts
If you only want one or a few items (variables, functions, or classes) from a library,
you have the option of only importing these by enumerating them after show:

import 'library1.dart' show var1, func1, Class1;

The inverse can also be done; if you want to import everything from the library
excluding these items, use hide:

import 'library1.dart' hide var1, func1, Class1;

Structuring Code with Classes and Libraries

[84]

We know that everything in a Dart app must have a unique name; or, to put it
another way, there can be no name conflicts in the app's namespace. What if we
have to import into our app two libraries that have the same names for some of
their objects? If you only need one of them, you can use show and/or hide. But
what if you need both? In such a case, you can give one of the libraries an alias and
differentiate between both by using this alias as a prefix. Suppose library1 and
library2 both have an object A; you can use this as follows:

import 'library1.dart'; // contains class A
import 'library2.dart' as libr2; // contains class A

var obj1 = new A(); // Use A from library1.
var obj2 = new libr2.A(); // Use A from library2.

Use this feature only when you really have to, for example, to solve name conflicts
or aid in readability. Finally, the export command (possibly combined with show or
hide) gives you the ability to combine (parts of) libraries. Refer to the app export.

Suppose liba.dart contains the following code:

library liba;
abc() => 'abc from liba';
xyz() => 'xyz from liba';

Additionally, suppose libb.dart contains the following code:

library libb;
import 'liba.dart';
export 'liba.dart' show abc;

Then, if export.dart imports libb, it knows method abc but not method xyz:

import 'libb.dart';
void main() {
 print('${abc()}'); // abc from liba
 // xyz(); // cannot resolve method 'xyz'
}

Visibility of objects outside a library
In the A touch of class – how to use classes and objects section, we mentioned that
starting a name with _ makes it private at library level (so it is only known in the
library itself not outside of it). This is the case for all objects: variables, functions,
classes, methods, and so on. Now we will illustrate this in our breeding library.

Chapter 3

[85]

Suppose breeding.dart now contains two top-level variables:

String s1 = 'the breeding of cats'; (1)
var _s2 = 'the breeding of dogs'; (2)

We can use them both in main() but also anywhere else in the library, for example,
in rabbits.dart:

String calculateRabbits(int years) {
 print('$s1 and $_s2');
 //…
 return out;
}

But if we try to use them in the app breeding.dart, which imports breeding, we
get a warning in line (3) of the following code in the Editor; it says cannot resolve
_s2; s1 is visible but _s2 is not.

void main() {
 years = 5;
 // …
 print('$s1 and $_s2'); (3)
}

An exception occurs when the code is run (both in checked and production mode).
Note that, in lines (1) and (2), we typed the public variable s1 as String, while the
private variable _s2 was left untyped. This is a general rule: give the publicly visible
area of your library strong types and signatures. Privacy is an enhancement for
developers used to JavaScript but people coming from the OO arena will certainly
ask why there is no class privacy. There are probably a number of reasons: classes
are not as primordial in Dart as in OO languages, Dart has to compile to JavaScript,
and so on. Class privacy is not needed to the extent usually imagined, and if you
really want to have it in Dart you can do it. Let the library only contain the class that
has some private variables; these are visible only in this class because other classes or
functions are outside this library.

Managing library dependencies with pub
Often your app depends on libraries (put in a package) that are installed in the cloud
(in the pub repository, or the GitHub repository, and so on). In this section, we
discuss how to install such packages and make them available to your code.

Structuring Code with Classes and Libraries

[86]

In the web version of our rabbits program (prorabbits_v3.dart) in Chapter 1,
Dart – A Modern Web Programming Language, we discussed the use of the pubspec.
yaml file. This file is present in every Dart project and contains the dependencies
of our app on external packages. The pub tool takes care of installing (or updating)
the necessary packages: right-click on the selected pubspec.yaml file and choose
Pub Get (or Upgrade, in case you need a more recent version of the packages).
Alternatively, you can double-click on the pubspec.yaml ; then, a screen called
Pubspec Details appears that lets you change the contents of the file itself. This
screen contains a section called Pub Actions where you will find a link to Run Pub
Get). It even automatically installs so-called transitive dependencies: if the package
to install needs other packages, they will also be installed.

Let's prepare for the next section on unit testing by installing the unittest package
with the pub tool. Create a new command-line application and call it unittest_v1.
When you open the pubspec screen, you see no dependencies; however, at the
bottom there is a tab called Source to go to the text file itself. This shows us:

name: unittest_v1
description: A sample command-line application
#dependencies:
unittest: any

The lines preceded with # are commented out in a .yaml file; remove these to make
our app dependent on the unittest package. If we now run Pub Get, we see that a
folder called packages appears, containing in a folder called unittest the complete
source of the requested package. The same subfolders appear under the bin folder.
If needed, the command pub get can also be run outside the Editor from the
command line. The unittest package belongs to the Dart SDK. In the Dart Editor
installation, you can find it at D:\dart\dart-sdk\pkg (substitute D:\dart with
the name of the folder where your Dart installation resides). However pub installs
it from its central repository pub.dartlang.org, as you can see in the following
screenshot. Another file pubspec.lock is also created (or updated); this file is used
by the pub tool and contains the version info of the installed packages (don't change
anything in here). In our example, this contains:

Generated by pub. See: http://pub.dartlang.org/doc/glossary.
html#lockfile
 packages:
 dartlero:
 description:
 ref: null
 resolved-ref: c1c36b4c5e7267e2e77067375e2a69405f9b59ce
 url: "https://github.com/dzenanr/dartlero"
 source: git
 version: "1.0.2"

Chapter 3

[87]

 path:
 description: path
 source: hosted
 version: "0.9.0"
 stack_trace:
 description: stack_trace
 source: hosted
 version: "0.9.0"
 unittest:
 description: unittest

 source: hosted
 version:

The following screenshot shows the configuration information for pubspec.yaml:

Configuring pub specifications for the app

The pubspec screen, as you can see in the preceding screenshot, also gives you the
ability to change or fill in complementary app info, such as Name, Author, Version,
Homepage, SDK version, and Description. The Version field is of particular
importance; with it, you can indicate that your app needs a specific version of a
package (such as 2.1.0) or a major version number of 1 (>= 1.0.0 < 2.0.0); it locks your
app to these versions of the dependencies. To use the installed unittest package,
write the following code line at the top of unittest_v1.dart:

import 'package:unittest/unittest.dart';

Structuring Code with Classes and Libraries

[88]

The path to a Dart source file after package: is searched for in the packages folder.
As a second example and in preparation for the next chapter, we will install the
dartlero package from Pub (although the unittest_v1.dart program will not use
its specific functionality). Add a dependency called dartlero via the pubspec screen;
any version is good. Take the default value hosted from the Source drop-down list
and fill in https://github.com/dzenanr/dartlero for the path. Save this and then
run Pub Get. Pub will install the project from GitHub, install it in the packages folder,
and update the pubspec.lock file. To make it known to your app, use the following
import statement:

import 'package:dartlero/dartlero.dart';

The command pub publish checks whether your package conforms to certain
conditions and then uploads it to pub's central repository at pub.dartlang.org.

Dart Editor stores links to the installed packages for each app;
these get invalid when you move or rename your code folders.
If Editor gives you the error Cannot find referenced
source: package: somepkg/pkg.dart, do this: close the
app in the editor and restart the editor. In most cases, the problem
is solved; if not, clean out the Editor cache by deleting everything
in C:\users\yourname\DartEditor. When you reopen the
app in the Editor the problem is solved.

Here is a summary of how to install packages:

• Change pubspec.yaml and add dependencies through the Details screen
• Run the pub get command
• Add an import statement to your code for every installed package

Unit testing in Dart
Dart has a built-in unit-test framework. We learned how to import it in our app in the
previous section. Every real app, and certainly the ones that you're going to deploy
somewhere, should contain a sufficient amount of unit tests. Test programs will
normally be separated from the main app code, residing in their own directory called
test. Unit testing offers quite a lot of features; we will apply them in the forthcoming
projects. Here we want to show you the basics, and we will do so by creating a
BankAccount object, making some transactions on it, and verifying the results so
that we can trust our BankAccount methods are doing fine (we continue to work in
unittest_v1.dart). Let's create a BankAccount constructor and do some transactions:

var ba1 = new BankAccount("John Gates","075-0623456-72", 1000.0);
ba1.deposit(500.0);

Chapter 3

[89]

ba1.withdraw(300.0);
ba1.deposit(136.0);

After this, ba1.balance is equal to 1336.0 (because 1000 + 500 – 300 + 136 = 1336). We
can test whether our program calculated this correctly with the following statement:

test('Account Balance after deposit and withdrawal', () {
 expect(ba1.balance, equals(1336.0));
});

Or we can use a shorter statement as follows:

test('Account Balance after deposit and withdrawal', () =>
 expect(ba1.balance, equals(1336.0)));

The function test from unittest takes two parameters:

• A test name (String); here, this is Account Balance after deposit
and withdrawal

• A function (here anonymous) that calls the expect function; this function
also takes two parameters:

 ° The value as given by the program
 ° The expected value, here given by equals(expected value)

Now running the program gives this output:

unittest-suite-wait-for-done
PASS: Account Balance after deposit and withdrawal
All 1 tests passed.
unittest-suite-success

Of course, here PASS indicates that our program tested successfully. If this were not
the case (suppose the balance had to be 1335.0 but the program produced 1336.0) we
would get an exception with the message Some tests failed:

unittest-suite-wait-for-done
FAIL: Account Balance after deposit and withdrawal
 Expected: <1335.0>
 but: was <1336.0>
0 PASSED, 1 FAILED, 0 ERRORS

There would also be screen output showing you which test went wrong, the
expected (correct) value, and the program value (it is important to note that the tests
run after all other statements in the method have been executed). Usually, you will
have more than one test, and then you can group them as follows using the same
syntax as test:

Structuring Code with Classes and Libraries

[90]

group('Bank Account tests', () {
 test('Account Balance after deposit and withdrawal', () =>
 expect(ba1.balance, equals(1336.0)));
 test('Owner is correct', () => expect(ba1.owner, equals
 ("John Gates")));
 test('Account Number is correct', () => expect
 (ba1.number, equals("075-0623456-72")));
});

We can even prepare the tests in a setUp function (in this case, that would be
creating the account and doing the transactions, setUp is run before each test) and
clean up after each test executes in a tearDown function (indicating that the test
objects are no longer needed):

group('Bank Account tests', () {
 setUp(() {
 ba1 = new BankAccount("John Gates","075-0623456-72", 1000.0);
 ba1.deposit(500.0);
 ba1.withdraw(300.0);
 ba1.deposit(136.0);
 });
 tearDown(() {
 ba1 = null;
 });
 test('Account Balance after deposit and withdrawal', () =>
 expect(ba1.balance, equals(1336.0)));
 test('Owner is correct', () => expect(ba1.owner, equals
 ("John Gates")));
 test('Account Number is correct', () => expect
 (ba1.number, equals("075-0623456-72")));
});

The preceding code produces the following output:

unittest-suite-wait-for-done
PASS: Bank Account tests Account Balance after
 deposit and withdrawal
PASS: Bank Account tests Owner is correct
PASS: Bank Account tests Account Number is correct
All 3 tests passed.
unittest-suite-success

In general, the second parameter of expect is a so-called matcher that tests
whether the value satisfies some constraint. Here are some matcher possibilities:
isNull, isNotNull, isTrue, isFalse, isEmpty, isPositive, hasLength(m),
greaterThan(v), closeTo(value, delta), inInclusiveRange(low, high) and
their variants. For a more detailed discussion of their use, see the documentation at
http://www.dartlang.org/articles/dart-unit-tests/#basic-synchronous-
tests. We'll apply unit testing in the coming projects, notably in the example that
illustrates Dartlero in the next chapter.

Chapter 3

[91]

Project – word frequency
We will now develop systematically a small but useful web app that takes as
input ordinary text and produces as output an alphabetical listing of all the
words appearing in the text, together with the number of times they appear
(their frequency). For an idea of the typical output, see the following screenshot
(word_frequency.dart):

Word frequency app

The user interface is easy: the text is taken from the textarea tag with id text in the
top half. Clicking on the frequency button sets the processing in motion, and the
result is shown in the bottom half with id words. Here is the markup from word_
frequency.html:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Word frequency</title>
 <link rel="stylesheet" href="word_frequency.css">
 </head>
 <body>
 <h1>Word frequency</h1>

 <section>
 <textarea id="text" rows=10 cols=80></textarea>

 <button id="frequency">Frequency</button>

 <button id="clear">Clear</button>

Structuring Code with Classes and Libraries

[92]

 <textarea id="words" rows=40 cols=80></textarea>
 </section>

 <script type="application/dart"
 src="word_frequency.dart"></script>
 <script src="packages/browser/dart.js"></script>
 </body>
</html>

In the last line, we see that the special script dart.js (which checks for the existence
of the Dart VM and starts the JavaScript version if that is not found) is also installed
by pub. In Chapter 1, Dart – A Modern Web Programming Language, we learned how to
connect variables with the HTML elements through the querySelector function:

variable = querySelector('#id')

So that's what we will do first in main():

// binding to the user interface:
var textArea = querySelector('#text');
var wordsArea = querySelector('#words');
var wordsBtn = querySelector('#frequency');
var clearBtn = querySelector('#clear');

Our buttons listen to click events with the mouse; this is translated into Dart as:

wordsBtn.onClick.listen((MouseEvent e) { ... }

Here is the processing we need to do in this click-event handler:

1. The input text is a String; we need to clean it up (remove spaces and special
characters).

2. Then we must translate the text to a list of words. This will be programmed
in the following function:
List fromTextToWords(String text)

3. Then, we traverse through the List and count for each word the number
of times it occurs; this effectively constructs a map. We'll do this in the
following function:
Map analyzeWordFreq(List wordList)

4. From the map, we will then produce a sorted list for the output area:

List sortWords(Map wordFreqMap)

Chapter 3

[93]

With this design in mind, our event handler becomes:

wordsBtn.onClick.listen((MouseEvent e) {
 wordsArea.value = 'Word: frequency \n';
 var text = textArea.value.trim();
 if (text != '') {
 var wordsList = fromTextToWords(text);
 var wordsMap = analyzeWordFreq(wordsList);
 var sortedWordsList = sortWords(wordsMap);
 sortedWordsList.skip(1).forEach((word) =>
 wordsArea.value = '${wordsArea.value} \n${word}');
 }
});

In the last line, we append the output for each word to wordsArea.

Now we fill in the details. Removing unwanted characters can be done by chaining
replaceAll() for each character like this:

var textWithout = text.replaceAll(',', '').replaceAll
 (';', '').replaceAll('.', '').replaceAll('\n', ' ');

This is very ugly code! We can do better by defining a regular expression that
assembles all these characters. We can do this with the expression \W that represents
all noncharacters (letters, digits, or underscores), and then we only have to apply
replaceAll once:

List fromTextToWords(String text) {
 var regexp = new RegExp(r"(\W\s?)"); (1)
 var textWithout = text.replaceAll(regexp, '');
 return textWithout.split(' '); (2)
}

We use the class RegExp in line (1), which is more often used to detect pattern
matches in a String. Then we apply the split() method of String in line (2)
to produce a list of words wordsList. This list is transformed into a Map with the
following function:

Map analyzeWordFreq(List wordList) {
 var wordFreqMap = new Map();
 for (var w in wordList) {
 var word = w.trim();
 wordFreqMap.putIfAbsent(word, () => 0); (3)
 wordFreqMap[word] += 1;
 }
 return wordFreqMap;
}

Structuring Code with Classes and Libraries

[94]

Note the use of putIfAbsent instead of if...else in line (3).

Then we use the generated Map to produce the desired output in the method
sortWords:

List sortWords(Map wordFreqMap) {
 var temp = new List<String>();
 wordFreqMap.forEach((k, v) => temp.add('${k}:
 ${v.toString()}'));
 temp.sort();
 return temp;
}

The resulting list is shown in the bottom text area. You can find the complete listing
in the file word_frequency.dart.

Summary
Congratulations! You can call yourself a Dart programmer now. By working through
this and the previous chapter, you have acquired a lot of technical skills and gained
insights into how Dart works. The main ideas to take away from this chapter are:

• Modeling the data of your project in classes, perhaps extending another class
or implementing the interface of some classes

• The library concept to structure your code at a higher level using packages
from other developers and eventually publishing your own app with pub

• The basic ways of unit testing a Dart app

In the next chapter, we will graphically design a model for our app and base the code
on a modeling framework, all in Dart.

Modeling Web Applications
with Model Concepts and

Dartlero
Up until now, the apps we discussed were quite simple; there was no real need
to design a model. However, when developing more complex (web) applications,
a good model to start from will lay a more stable foundation for the code. In this
chapter we will build a project from scratch, designing its model graphically, and
start implementing it with a framework. The good thing is that we will use tools
developed in Dart to do this. Because most of the projects we will develop are hosted
on GitHub, we start by looking at how Git and GitHub work. We will cover the
following topics:

• A short introduction to Git and GitHub
• What a model is and why we need it in programming
• Model concepts – a graphical design tool for our models
• Dartlero – a simple domain model framework
• The categories and links model

Modeling Web Applications with Model Concepts and Dartlero

[96]

A short introduction to Git and GitHub
Git is an open source software tool that allows groups of people to work together
harmoniously on the same code project at the same time. So, it's a distributed version
control system. The projects are published in the cloud, for example, in the GitHub
repository https://github.com/ (there are other websites that accept Git projects,
for example, Bitbucket at https://bitbucket.org/). Git maintains local copies of
these projects on your computer(s). For this to work, the Git tool must be installed
locally as well. To get started, create an account on the GitHub website or sign in
if you already have one. Go to the site https://help.github.com/articles/
set-up-git and click on the Download and install the latest version of Git link.
If necessary, choose your OS and then let the wizard install Git on your machine
with the default options. The code from this book resides in the following GitHub
repository: https://github.com/Ivo-Balbaert/learning_dart. To create a local
copy of the code examples:

1. Make a folder where you store your Git downloads (for example, /home/git
or d:\git)

2. Start the Git Bash command-line tool and go to that folder:
cd git

3. Clone the remote repository into your local repository by using the following
command:

git clone git://github.com/Ivo-Balbaert/learning_dart.git

A subfolder learning_dart is created and then all files are copied in it locally.
Afterwards, if you want to get the latest changes from the remote repository, go to
the local directory and use the following command:

git pull

Creating a repository on GitHub and a local
version
This is easy; just follow the steps given here:

1. Sign in into GitHub, click on the New Repository button, and fill in a
repository name, say dart_projects. Then click on the Create Repository
button (we follow the Dart style guidelines here and name it as a directory:
lowercase_with_underscores). Now, your remote repository is created
with the URL https://github.com/your_name/dart_projects.git.

Chapter 4

[97]

2. Create a folder for your local version of this repository, say git/dart_
projects. Start Git bash and go to that folder with cd.

3. Initialize an empty Git repository with the following command:
git init

4. Every project needs a readme file; so create an empty text file README.md in a
simple text editor, and put some useful information in it with Dart Editor (or
your favorite text-editor).

5. We add this file to our local repository with the command:
git add README.md.

In general, the git add command will put all that is inside the directory into
a waiting room (called a staging area or index). The git status command
will show these new changes that are yet to be committed to your project. At
this time, you make these changes permanent by committing our project with
the following command:

git commit -m 'created first version'

Here, -m provides a message. You can also provide a text file called
gitignore to contain files (or patterns of files) that are not to be included in
the version control system.

6. To push your local changes to your remote GitHub repository, use the
following commands:
git remote add origin https://github.com/your_name
 /dart_projects.git

and
git push –u origin master

(You will be asked to authenticate with your GitHub username and
password).

7. The next time you work on your project and want to store the changes in
the repository (local and on GitHub), you can simply use the following
command:
git add .

git commit -m 'verb something'

git push

Modeling Web Applications with Model Concepts and Dartlero

[98]

8. If you deleted a file, just use git rm filename before commit. You can also
indicate a version of your project by giving it a tag, for example, s00:
git tag -a s00 -m 'spiral 00'

9. To push these tags to the remote repository, use the following command:

git push --tags

Collaborating on a GitHub project
If you want to invite someone else to join your project in order to make changes,
select the repository of your project, use the Settings menu, and then select the
Collaborators option. Add that person by using his or her GitHub name. If you
are not alone on your project, you should always start your working session with
the git pull command to get the latest changes and to avoid conflicts. Watch the
videos at this link to get a good introduction to Git: http://git-scm.com/videos.
Also, the basic concepts are explained in this course: https://www.codeschool.
com/courses/try-git.

What a model is and why we need it in
programming
Most applications that go beyond simple exercises are too complex to start
developing them from the start; a model that describes the entities in the application
domain and their relations is needed. To fully support such a domain-driven
development, we need three things:

• A graphical tool for model design and import/export of the model
definitions; this is the Model Concepts tool

• A domain model framework—Dartlero for simple cases and Dartling for
more complicated business domains

• A web component framework for rapid development of dynamic web
applications: the Polymer.dart package

Chapter 4

[99]

The first two were developed by Dzenan Ridjanovic, one of the authors, and the third
was developed by the Google Dart team. All are written in Dart and are available
as free, open source software. The remainder of this chapter will show how to use
model concepts and Dartlero, and we will apply them in constructing a simple
model of categories and links. Web components, which are essentially chunks of
reusable HTML5, are explained in Chapter 8, Developing Business Applications with
Polymer Web Components. We will also build a web component application for the
category-links model. Dartling is discussed in depth in Chapter 9, Modeling More
Complex Applications with Dartling. Both of them will be used in the projects from
Chapter 10, MVC Web and UI Frameworks in Dart – An Overview, onwards. First we
will explore the model concepts.

Model concepts – a graphical design tool
for our models
This project is also hosted on GitHub. To get a local copy open your Git bash
terminal, go to the folder where you want to store the code and issue the
following command:

git clone git://github.com/dzenanr/model_concepts.git

After a few seconds, the model_concepts folder is created. It contains the whole
project. Open the folder in Dart Editor to get a feel of how it is constructed. It
is a web app containing the script tag <script type="application/dart"
src="model_concepts.dart"></script> and it starts the Dart VM with
model_concepts.dart. When you run the app, the graphical designer appears in
Chrome (Dartium). If you want to run it in another browser without Dart VM, first
generate the JavaScript version through Tools | Generate JavaScript, and then
paste the URL in the address window of your favorite browser (something like
http://127.0.0.1:3030/F:/git/model_concepts/web/model_concepts.html).
The web folder contains the HTML file and the startup script model_concepts.dart,
which contains the following code snippet:

import 'dart:html';
import 'package:model_concepts/model_concepts.dart'; (1)

void main() {
 // Get a reference to the canvas.
 CanvasElement canvas = document.query('#canvas'); (2)
 Board board = new Board(canvas); (3)
}

Modeling Web Applications with Model Concepts and Dartlero

[100]

Line (1) loads in the model_concepts library from the packages folder; the original
source code of the library resides in the lib directory. The library header file, also
called model_concepts.dart, shows the dart libraries that we need (html, async,
and convert) as well as all the part files:

library model_concepts;

import 'dart:html';
import 'dart:async';
import 'dart:convert';

part 'board.dart';
part 'box.dart';
part 'item.dart';
part 'json_panel.dart';
part 'line.dart';
part 'menu_bar.dart';
part 'png_panel.dart';
part 'tool_bar.dart';

This app uses canvas painting in HTML5 (we'll explore that bottom-up in the coming
chapters). In line (2), the <canvas> tag with the ID canvas is bound to a canvas object
of the CanvasElement class. Then in line (3), an object of the Board class (the file
board.dart) is instantiated with a reference to this canvas, starting up the program.

We shall not provide further explanation of how the code works here. The
app was built up in versions (called spirals, so far there are 14). On the
On Dart blog (http://dzenanr.github.io/), under the Magic Boxes
posts, you can find a detailed description of how the code evolved from
Spiral s00 to the current app (magic boxes grew into model concepts),
along with a summary of the development on http://goo.gl/DqF7d.
This is a truly great way to learn Dart!

Chapter 4

[101]

When the app starts up, we see the following screen:

Model concepts start screen

Working with model concepts
The purpose of this tool is to graphically design a domain model of your app.
Concepts or entities are drawn as rectangular boxes; these contain items that
represent the attributes. The boxes are connected with lines that represent the
relationships between the entities; their multiplicity (that is, how many entities
of kind B are associated with an entity of kind A, for example, many employees
working in one department) can be indicated with 0..N or 1..1. The tool itself contains
a (tiny) user guide, which is revealed on scrolling down the screen.

Explaining the model
We will learn how to work with this tool by designing the model for our next app: the
category-links application. This app is all about subjects (called categories here) such
as HTML5, Dart, Apple, Google, Programming, the economic crisis, and hyperlinks
(called links here) to web postings about these subjects. Here are some examples of
links for HTML5: www.html5rocks.com, http://diveintohtml5.info/ and
http://animateyourhtml5.appspot.com/. Clearly, a category can have multiple
links but it may also have none; so, the relationship from category to link is 0..N.

Modeling Web Applications with Model Concepts and Dartlero

[102]

Our app (that will be developed in Chapter 8, Developing Business Applications with
Polymer Web Components) will show all categories and the corresponding links for
each category. Furthermore, we will be able to edit, remove, and add categories as
well as links. But first we will draw a model with two concepts (Category/Link) and
one relationship (links). It will look like the following figure:

||Category
code
description

Link
code
url
description

0..N links 1..1

The graphical model of category-links

The category concept has two attributes: a code (name) such as Dart and a
description such as Web programming language, tools, and how to. The code
attribute is drawn in italics because it is an identifier and in bold because its value
is required. The link concept has the code identifier, the required URL attribute,
and an optional description attribute. For example, the URL for Dart could be www.
dartlang.org and the description could be Official Google site for Dart.
In our model, a link has exactly one category, so a 1..1 relation is applied (this is,
a simplification of a more realistic situation where a link could belong to many
categories). A relationship between two concepts has two directions (neighbours).
The category-link direction, where Link is a neighbor of Category, has a min
cardinality of 0 (a category need not have any link) and a max cardinality of N
(many). In addition, it has the link's name. The link-category direction has no name.
Hence, it will not be represented explicitly in Dart; its min and max cardinalities are
in bold and italics. Together with the code, it is the identifier of the link (note that 1..1
is in italics and bold). Within the same category, all links must have a unique code
value. Category is the only entry (|| as a door) into the model. This means that the
model will have a collection of categories and each category will have a collection of
links.

Drawing the model
The steps to draw a model are given as follows:

1. Click on the box tool icon in the tool bar (brown background, refer to the
model concepts' start screen) and create a box for the category concept by
clicking on an empty space in the board.

2. Click on the box to select it (four squares appear in the corners) and click
again to deselect it. The selected box is displayed in the tool bar and you can
enter the name Category for it in the concept field of the tool bar. The name
will not appear in the selected box until you use the Enter key.

Chapter 4

[103]

3. Check the entry checkbox; Category is marked with ||. To move a box, select
it and keep the mouse down while moving it. If there are connecting lines,
they will follow.

The size of selected boxes may be changed by menu items in the View menu. If you
want to create several boxes, double-click on the box tool to stay active. To return to
the select mode, double-click on the select tool.

A box item (an attribute of a concept) may be created by entering its name in the
attribute field of the toolbar and by using the Enter key.

1. Select the identifier from the drop-down list; the default type String is ok.
Enter code and the item appears in the Category box. Repeat the steps for the
item description, but select the attribute from the list.

2. Now design the link concept with its attributes, and mark the URL attribute
from the list as per your requirements.

3. Click on the line tool to create a line between the last two clicked boxes by
clicking on an empty space in the board.

The first box is a parent and the second box is a child. By default, the parent box has
0..N cardinalities. The min is 0 and the max is N. By default, the child box has 1..1
cardinalities. For more details, see the tiny user guide in the program screen beneath
the brown toolbar.

1. To make a PNG image from our model, scroll down to the To image button
above the PNG panel and click on the button. The created image becomes
visible in the panel; right-click to save it to a file (Save Image as) or copy
(Copy Image) and paste it into another file (for example, as documentation).

2. Name the current model in the Model menu as Category_Links and save
it in the local storage of your browser (we will see how this works in Chapter
11, Local Data and Client-Server Communication). In a later session, simply
enter the model name (it is case-sensitive!) and open it.

Modeling Web Applications with Model Concepts and Dartlero

[104]

Exporting the model
Drawing the model clarifies our thoughts about it, but it won't be of much use if
we can't get to code from it. We can export the semantics of a model (only the non-
hidden boxes and lines) in the JSON format by clicking on the From model to json
button above the JSON panel. After doing this, the JSON text appears in the JSON
panel; copy it and save it into a local text file category_links.json. It also works
the other way around: the JSON text may be used to recreate the graphical model
in magic boxes. Paste the JSON text from a previous model into the JSON panel and
click on the From json to model button to visualize the model. For a pretty JSON
version of the model, click on the Pretty json button, but only after clicking on the
From model to json button. Open the .json file in a text editor and see how the
information about our model is contained in it:

{
 "width":990,
 "lines":[
 {
 "box2box1Max":"1",
 "box1Name":"Category",
 "box1box2Min":"0",
 "box2Name":"Link",
 "box1box2Id":false,
 "box2box1Id":false,
 "box2box1Name":"",
 "box1box2Max":"N",
 "box1box2Name":"",
 "box2box1Min":"1",
 "category":"relationship",
 "internal":true
 }
],
 "height":580,
 "boxes":[
 {
 "width":120,
 "entry":true,
 "name":"Category",
 "x":125,
 "height":80,
 "y":63,
 "items":[
 {
 "sequence":10,

Chapter 4

[105]

 "name":"code",
 "category":"identifier",
 "type":"String",
 "init":""
 },
 {
 "sequence":20,
 "name":"description",
 "category":"attribute",
 "type":"String",
 "init":""
 }
]
 },
// omitted analogous entry for link
]
}

What is JSON?
JSON (JavaScript Object Notation) is a simple text format (easy to be read and
written by humans and machines) for representing structured objects and collections,
and exchanging data between applications or computers. For example, when a client
sends data to or receives data from a server through a web service, this data is often
in JSON format. It arose from the open source world, more or less as a competitor to
the heavier XML format; but it is used everywhere now. Any production language
has special functions (in library dart:convert) to make it easy to use, Dart being no
exception. Let us examine a simple JSON example and see how it connects to list and
map: look at the BankAccount object from banking_v3.dart (Chapter 2, Getting to
Work with Dart):

var ba1 = new BankAccount("John Gates","075-0623456-72", 1000.0);

It contains three data items: the owner, the number, and the balance of the account.
The JSON representation of this data (object) is:

{
 "owner": "John Gates",
 "number": "075-0623456-72",
 "balance": 1000.0
}

Modeling Web Applications with Model Concepts and Dartlero

[106]

In a Dart app, this could be typed as a multiline string (see line (1) in json.dart
at code\chapter_3). Looking at it from the Dart perspective, this is a map where
the names of the object properties are the keys and the values are the map's values;
there is a close relationship between objects and JSON (hence the name). This object
notation can be nested (for example, the owner could be an object itself with a name,
address, and telephone number). To express that there are many of these objects, you
can use the [] notation, as in the following code snippet:

[
 {
 "owner": "John Gates",
 "number": "075-0623456-72",
 "balance": 1000.0
 },
 {
 "owner": "Bill O'Connor",
 "number": "081-0731645-91",
 "balance": 2500.0
 }
]

This effectively corresponds to a list of maps in Dart.

You can encode a Dart object into a JSON string with the JSON.encode() function
from the dart:convert library, for example, the bankAccounts variable in line (2).
The resulting JSON can be sent over the network, or it could be the return value of
a call to a web service. The Dart object to encode needs to be of the type null, bool,
int, double, String, List, or Map; any other object needs to have a toJson() method
that is called when encoding. The other way around, decoding a JSON string into a
Dart object is done with the JSON.decode method (see line (3) in json.dart):

import 'dart:convert';

var jsonStr1 = ''' (1)
{
 "owner": "John Gates",
 "number": "075-0623456-72",
 "balance": 1000.0
}
''';
var jsonStr2 = '''
[
 {
 "owner": "John Gates",
 "number": "075-0623456-72",

Chapter 4

[107]

 "balance": 1000.0
 },
 {
 "owner": "Bill O'Connor",
 "number": "081-0731645-91",
 "balance": 2500.0
 }
]
''';
var bankAccounts = [{ "owner": "John Gates","number": "075-0623456-
72",
 "balance": 1000.0 },
 { "owner": "Bill O'Connor", "number": "081-
0731645-91",
 "balance": 2500.0 }];
main() {
 // encoding a Dart object (here a List of Maps) to a JSON string:
 var jsonText = JSON.encode(bankAccounts); (2)
 print('$jsonText'); // all white space is removed
 // decoding a JSON string into a Dart object:
 var obj = JSON.decode(jsonText); (3)
 assert(obj is List);
 assert(obj[0] is Map);
 assert(obj[0]['number']=="075-0623456-72");

 var ba1 = new BankAccount("John Gates","075-0623456-72", 1000.0);
 var json = JSON.encode(ba1);
}

class BankAccount {
 // other properties and methods ...
 String toJson() {
 return '{"owner":"$owner", "number":"$number", "balance:
 "$balance"}';
}

In the previous section, data were exported from model concepts in the JSON
format and this data can be imported in the domain model framework Dartling
(see Chapter 9, Modeling More Complex Applications with Dartling) in order to generate
the code for it. We will use JSON again as the format to store data in, or to send data
to the server, in some of the forthcoming projects. In the dartlero_tasks project of
Chapter 12, Data-driven Web Applications with MySQL and MongoDB, we will read and
write the JSON files. For a more in-depth look, refer to http://en.wikipedia.org/
wiki/JSON.

Modeling Web Applications with Model Concepts and Dartlero

[108]

Dartlero – a simple domain model
framework
We will now discuss Dartlero to get an idea of what a domain model framework
is all about and how you can build upon it. Dartlero is a limited model framework
used in teaching and learning basic data structures in Dart. Get your copy of Dartlero
from Pub or from GitHub with the following command:

git clone git://github.com/dzenanr/dartlero.git

Open the dartlero folder in your Dart Editor. Dartlero's code sits in the lib
folder and the library file dartlero.dart, referencing three part files in the model
subdirectory (lines (3) to (5)):

library dartlero;
import 'package:unittest/unittest.dart';

part 'model/concept_model.dart'; (3)
part 'model/concept_entities.dart'; (4)
part 'model/concept_errors.dart'; (5)

Dartlero is just a library; it cannot be started by itself. We see that the central
concepts are entities and models, and it builds heavily on the built-in List and Map
classes. The code is quite abstract but it is instructive to dig into it (use the editor to
see the code in its entirety). In the concept_entities.dart file, the abstract class
ConceptEntityApi is defined. It describes the properties and methods of an entity
in this framework. We see that an entity has only one property named code (with
get and set), and there are abstract methods to create (newEntity), to copy, and to
transform an entity into a map (toJson) and vice versa (fromJson).

abstract class ConceptEntityApi<T extends ConceptEntityApi<T>>
 implements Comparable {

 String get code;
 set code(String code);
 ConceptEntityApi<T> newEntity(); (1)
 T copy();
 Map<String, Object> toJson(); (2)
 void fromJson(Map<String, Object> entityMap); (3)
}

The newEntity method (line (1)) is used to provide a specific object within the
generic code of the ConceptEntity class. The toJson and fromJson methods (lines
(2) and (3)) provide the export and import of entities, which will be used in the
saving and loading of data.

Chapter 4

[109]

This class is implemented by ConceptEntity, which also contains methods to
display an entity and compare two entities. Although all methods contain code, this
class is meant as an interface to be implemented by concrete entity classes (that's why
it is called ConceptEntity):

abstract class ConceptEntity<T extends ConceptEntity<T>>
 implements ConceptEntityApi {
 // code left out
}

The abstract class ConceptEntitiesApi defines a number of properties and
methods, such as length, forEach, add, toList, and toJson, for a collection of
entities; in fact, it contains a list and a map of entities:

abstract class ConceptEntitiesApi<T extends ConceptEntityApi<T>> {
 int get length;
 bool get isEmpty;
 Iterator<T> get iterator;
 ConceptEntitiesApi<T> newEntities();
 ConceptEntityApi<T> newEntity();
 void forEach(Function f);
// other code left out
}

Again, this class is implemented by the class ConceptEntities:

abstract class ConceptEntities<T extends ConceptEntity<T>>
 implements ConceptEntitiesApi {
 // code left out
}

All of the above classes are defined for a generic type T, for example:

abstract class ConceptEntity<T extends ConceptEntity<T>>

When the framework is applied in a concrete domain, T is replaced by a concrete
type. This type has to be a child class of ConceptEntity<T>. This will become clearer
when we discuss the example in the next section.

In the concept_model.dart file, an abstract class ConceptModelApi is defined,
which is implemented by ConceptModel. This is essentially a map connecting names
to ConceptEntities:

abstract class ConceptModelApi {
 Map<String, ConceptEntitiesApi> newEntries();
 ConceptEntitiesApi getEntry(String entryConcept);
}

Modeling Web Applications with Model Concepts and Dartlero

[110]

abstract class ConceptModel implements ConceptModelApi {
 Map<String, ConceptEntities> _entryMap;
 ConceptModel() {
 _entryMap = newEntries();
}

 ConceptEntities getEntry(String entryConcept) => _
entryMap[entryConcept];
}

The third file concept_errors.dart defines some specific Error classes:

class DartleroError implements Error {
 final String msg;
 DartleroError(this.msg);
 toString() => '*** $msg ***';
}

class JsonError extends DartleroError {
 JsonError(String msg) : super(msg);
}

Dartlero mostly hides the use of the list and map data structures (by looking at
the code, you can see how list and map are used internally). It does not support
identifiers and relationships and it doesn't have a code generator.

An example of using Dartlero
To get a better feeling of what using a framework entails, let us examine the project
that exists as the example folder in the dartlero project and as a separate project
called dartlero_example at GitHub (there are slight differences due to the pub
specifications). Get your copy in a separate folder with:

git clone git://github.com/dzenanr/dartlero_example.git

Then, open the folder dartlero_example in Dart Editor.

This app defines the simplest possible model: a project model with only one concept,
a Project. We will now use the Dartlero framework. The dependency on this
package is indicated in the pubspec.yaml file so that it can be managed by pub:

name: dartlero_example
version: 1.0.0
author: Dzenan Ridjanovic <dzenanr@gmail.com>
description: An example how to use Dartlero, a model framework for
educational purposes.

Chapter 4

[111]

homepage: http://ondart.me/
dependencies:
 dartlero:
 git: git://github.com/dzenanr/dartlero.git

The library file dartlero_example.dart in the lib folder imports Dartlero and
references two files in a subfolder model:

library dartlero_example;
import 'package:dartlero/dartlero.dart';

part 'model/project_entities.dart';
 part 'model/project_model.dart';

In the project_entities.dart file, we see a Project class that extends the
framework class ConceptEntity<Project> and the collection class Projects that
extends the ConceptEntities<Project> class:

class Project extends ConceptEntity<Project> { ... }
class Projects extends ConceptEntities<Project> { ... }

What has happened here? The <Project> type argument is passed to the
ConceptEntity class (or ConceptEntities) and its T parameter is replaced
by Project. If we replace this, the class signature in the abstract class
ConceptEntity<T extends, ConceptEntity<T> becomes more specific: abstract
class ConceptEntity<Project extends ConceptEntity<Project>>.

After that, wherever we see T, Dart (or the Dart Editor) sees project; the same is true
for the ConceptEntities class. This means that a collection of entities will contain
only projects. Thus, if we want to add a task to projects (let's say of the Task type),
Dart Editor will complain. Without generics, Dart Editor would happily accept a new
task in the projects collection. Using generics makes a framework more general. It
can be used with all kinds of concrete types, constraining data so that the model is
valid. The following is the complete code of project_entities.dart:

part of dartlero_example;

class Project extends ConceptEntity<Project> {

 String _name;
 String description;

 String get name => _name;
 set name(String name) {
 _name = name;
 if (code == null) {
 code = name;

Modeling Web Applications with Model Concepts and Dartlero

[112]

 }
 }

 Project newEntity() => new Project();

 Project copy() {
 var project = super.copy();
 project.name = name;
 project.description = description;
 return project;
 }

 String toString() {
 return ' {\n '
 ' ${super.toString()}, \n '
 ' name: ${name}, \n '
 ' description: ${description}\n'
 ' }';
 }

 Map<String, Object> toJson() {
 Map<String, Object> entityMap = super.toJson();
 entityMap['name'] = name;
 entityMap['description'] = description;
 return entityMap;
 }

 fromJson(Map<String, Object> entityMap) {
 super.fromJson(entityMap);
 name = entityMap['name'];
 description = entityMap['description'];
 }

 bool get onProgramming =>
 description.contains('Programming') ? true : false;

 int compareTo(Project other) {
 return name.compareTo(other.name);
 }
}

class Projects extends ConceptEntities<Project> {
 Projects newEntities() => new Projects();
 Project newEntity() => new Project();
}

Chapter 4

[113]

The Project and Projects classes also contain the methods newEntity and
newEntities to create concrete objects, implementing the abstract methods of their
parent classes. A project has a name and a description; some of its methods (such
as copy, toString, toJson, and fromJson) extend the methods inherited from
ConceptEntity by using the super keyword. The inherited compareTo method gets
a new implementation in project: it is completely overridden. Furthermore, Project
adds a new onProgramming method, which is a get only property to see from the
description whether the project has something do to with programming.

The subfolder model also contains project_model.dart with a ProjectModel
class that extends the ConceptModel class from the Dartlero framework. Three
projects are created in the init() method, and the display() method on the model
delegates work to the inherited (from ConceptEntities) display() method on the
projects object. The following is the code from project_model.dart:

part of dartlero_example;

class ProjectModel extends ConceptModel {

 static final String project = 'Project';

 Map<String, ConceptEntities> newEntries() {
 var projects = new Projects();
 var map = new Map<String, ConceptEntities>();
 map[project] = projects;
 return map;
 }

 Projects get projects => getEntry(project);

 init() {
 var design = new Project();
 design.name = 'Dartling Design';
 design.description =
 'Creating a model of Dartling concepts based on MagicBoxes.';
 projects.add(design);

 var prototype = new Project();
 prototype.name = 'Dartling Prototype';
 prototype.description =
 'Programming the meta model and the generic model.';
 projects.add(prototype);

 var production = new Project();

Modeling Web Applications with Model Concepts and Dartlero

[114]

 production.name = 'Dartling';
 production.description =
 'Programming Dartling.';
 projects.add(production);
 }

 display() {
 print('Project Model');
 print('=============');
 projects.display('Projects');
 print(
 '============= ============= ============= '
 '============= ============= ============= '
);
 }
}

In the packages folder, we will see not only dartlero but also unittest, because
Dartlero needs that library. This project model is exercised in the accompanying
test program project_model_test.dart in test/model, and it contains the
following code:

import 'package:unittest/unittest.dart';
import 'package:dartlero/dartlero.dart';
import 'package:dartlero_example/dartlero_example.dart';

testProjects(Projects projects) {
 group("Testing Projects", () {
 setUp(() { ... });
 tearDown(() { ... });
 test('Add Project', () { ... });
 // various other tests
 });
}

initDisplayModel() {
 ProjectModel projectModel = new ProjectModel();
 projectModel.init();
 projectModel.display();
}

testModel() {
 ProjectModel projectModel = new ProjectModel();
 Projects projects = projectModel.projects;
 testProjects(projects);
}

Chapter 4

[115]

main() {
 // initDisplayModel();
 testModel();
}

The main() method calls testModel(), which in turn calls testProjects() that
uses the unittest framework. It contains one group ("Testing Projects", ()
{...} method with setUp, tearDown, and a number of test methods. In the setUp()
function, some projects and a collection containing them are created and displayed.
Running this test program gives the following output:

Project Model
=============

Projects
[
 {
 code: Dartling Design,
 name: Dartling Design,
 description: Creating a model of Dartling concepts based on
MagicBoxes.
 }
]
// some output omitted for brevity //
unittest-suite-wait-for-done
PASS: Testing Projects Add Project
// some output omitted for brevity //
PASS: Testing Projects From JSON to Project Model

All 13 tests passed.
unittest-suite-success

Some of the applied tests are given as follows:

• When instantiating an object:
var design = new Project();
expect(design, isNotNull);

• When adding a project to projects counting the number of Projects:
expect(projects.length,equals(++projectCount));
 var added = projects.add(project);
 expect(added, isTrue);

• When projects is cleared:
expect(projects.isEmpty, isTrue);

Modeling Web Applications with Model Concepts and Dartlero

[116]

• When searching for a project:
var project = projects.find(searchName); expect(project.name,
equals(searchName));

• Testing that every project has a name:

expect(projects.every((p) => p.name != null), isTrue);

So what are the advantages of using a domain model framework? Clearly, by
inheriting from the model classes we get (a lot of) code that we don't have to write
ourselves. So, we get a head start in the functionality of our app. For the simple
Dartlero framework, there are methods such as copy, toJson, fromJson, contains,
find, and display.

The categories and links application
Let us now apply Dartlero to a model with two concepts and one relationship, our
category-links model. Once again, clone the project from GitHub with:

git clone git://github.com/dzenanr/dartlero_category_links.git

The model is implemented in the lib folder of the dartlero_category_links
application (refer to the following screenshot):

The code structure of categories-links

Chapter 4

[117]

There are three dart files in the model folder, one for the model and two for the
two entities. The dartlero_category_links library is defined in the dartlero_
category_links.dart file:

library dartlero_category_links;

import 'package:dartlero/dartlero.dart';

part 'model/category_entities.dart';
part 'model/category_links_model.dart';
part 'model/link_entities.dart';

There are two classes in the category_entities.dart file, one for the entity
definition and the other for a collection of entities. The Category class of the model
extends the ConceptEntity class of Dartlero (line (1)), while the Categories class
inherits its properties and methods from the ConceptEntities class (line (2)):

part of dartlero_category_links;
class Category extends ConceptEntity<Category> { (1)

 String description;
 Links links = new Links();

 Category newEntity() => new Category();

 String toString() {
 return ' {\n '
 ' ${super.toString()}, \n '
 ' description: ${description}\n'
 ' }\n';
 }

 Map<String, Object> toJson() {
 Map<String, Object> entityMap = super.toJson();
 entityMap['description'] = description;
 entityMap['links'] = links.toJson();
 return entityMap;
 }

 fromJson(Map<String, Object> entityMap) {

Modeling Web Applications with Model Concepts and Dartlero

[118]

 super.fromJson(entityMap);
 description = entityMap['description'];
 links.fromJson(entityMap['links']);
 }

 bool get onProgramming =>
 description.contains('programming') ? true : false;

}

class Categories extends ConceptEntities<Category> { (2)
 Categories newEntities() => new Categories();
 Category newEntity() => new Category();
}

The Category class inherits the code property from the ConceptEntity class; it
has its own description and links properties. Note that a parent-child relationship
direction is represented as the links property in the Category class. In addition, the
Category class inherits the public application interface of the ConceptEntityApi
class. The Categories class (line (2)) is simple because most of its behavior is
defined in the ConceptEntities class of Dartlero. The Link and Links classes are
created in a similar way (refer link_entities.dart).

The CategoryLinksModel class extends the ConceptModel class of Dartlero
(refer to category_links_model.dart). The newEntries method in the
CategoryLinksModel class provides the only entry into the model. The init method
creates a few categories and links. The display method shows data of the model
in the console. To see the model in action, run the following programs in the test
folder: category_links_model_test.dart, category_entities_test.dart, or
link_entities_test.dart. They exercise the same methods and tests as we saw in
the first Dartlero example. For example, the model test program calls the init and
display methods:

import 'package:unittest/unittest.dart';
import 'package:dartlero/dartlero.dart';
import 'package:dartlero_category_links/dartlero_category_links.dart';

testModel() {
 CategoryLinksModel categoryLinksModel;
 Categories categories;
 group("Testing Model: ", () {
 setUp(() {
 categoryLinksModel = new CategoryLinksModel();
 categoryLinksModel.init();
 categories = categoryLinksModel.categories;

Chapter 4

[119]

 });
 tearDown(() {
 categories.clear();
 expect(categories.isEmpty, isTrue);
 });
 test('Display model', () {
 categoryLinksModel.display();
 });
 });
}

main() {
 testModel();
}

This code produces output similar to the previous code snippet.

Summary
In this chapter, we acknowledged the importance of defining a domain model before
starting the development of the app. We used a graphical tool (model concepts) to
design a model for categories and links, which can be exported in JSON format. Also,
we saw how JSON can be used in Dart. A simple domain model framework Dartlero
was explored, and we implemented that in two models: a project model and
a category-links model. By doing this, we exercised the knowledge of classes,
interfaces, generics, lists, maps, and unit testing that we acquired in Chapter 2, Getting
to Work with Dart. The next few chapters are more practical in nature. We learned how
to work with the Document Object Model (DOM) in HTML pages, how to build
forms, how to draw, and how to use audio and video in web pages.

Handling the DOM
in a New Way

A Dart web application runs inside the browser (HTML) page that hosts the app;
a single-page web app is more and more common. This page may already contain
some HTML elements or nodes, such as <div> and <input>, and your Dart code will
manipulate and change them, but it can also create new elements. The user interface
may even be entirely built up through code. Besides that, Dart is responsible for
implementing interactivity with the user (the handling of events, such as button-
clicks) and the dynamic behavior of the program, for example, fetching data from a
server and showing it on the screen. In previous chapters, we explored some simple
examples of these techniques. Compared to JavaScript, Dart has simplified the way
in which code interacts with the collection of elements on a web page (called the
DOM tree). This chapter teaches you this new method using a number of simple
examples, culminating with a Ping Pong game. The following are the topics:

• Finding elements and changing their attributes
• Creating and removing elements
• Handling events
• Manipulating the style of page elements
• Animating a game
• Ping Pong using style(s)
• How to draw on a canvas – Ping Pong revisited

Handling the DOM in a New Way

[122]

Finding elements and changing their
attributes
All web apps import the Dart library dart:html; this is a huge collection of functions
and classes needed to program the DOM (look it up at api.dartlang.org). Let's
discuss the base classes, which are as follows:

• The Navigator class contains info about the browser running the app,
such as the product (the name of the browser), its vendor, the MIME types
supported by the installed plugins, and also the geolocation object.

• Every browser window corresponds to an object of the Window class, which
contains, amongst many others, a navigator object, the close, print,
scroll and moveTo methods, and a whole bunch of event handlers, such as
onLoad, onClick, onKeyUp, onMouseOver, onTouchStart, and onSubmit. Use
an alert to get a pop-up message in the web page, such as in todo_v2.dart:
 window.onLoad.listen((e) =>
 window.alert("I am at your disposal"));

• If your browser has tabs, each tab opens in a separate window. From the
Window class, you can access local storage or IndexedDB to store app data on
the client (see Chapter 10, MVC Web and UI Frameworks in Dart – An Overview).

• The Window object also contains an object document of the Document class,
which corresponds to the HTML document. It is used to query for, create,
and manipulate elements within the document. The document also has a list
of stylesheets (objects of the StyleSheet class)—we will use this in our first
version of the Ping Pong game.

• Everything that appears on a web page can be represented by an object
of the Node class; so, not only are tags and their attributes nodes, but also
text, comments, and so on. The Document object in a Window class contains
a List<Node> element of the nodes in the document tree (DOM) called
childNodes.

• The Element class, being a subclass of Node, represents web page
elements (tags, such as <p>, <div>, and so on); it has subclasses, such
as ButtonElement, InputElement, TableElement, and so on, each
corresponding to a specific HTML tag, such as <button>, <input>, <table>,
and so on. (For example, see prorabbits_v3.dart and todo_v1.dart in
Chapter 1, Dart – A Modern Web Programming Language). Every element can
have embedded tags, so it contains a List<Element> element called children.

Chapter 5

[123]

Let us make this more concrete by looking at todo_v2.dart, (a modified version of
todo_v1.dart from Chapter 1, Dart – A Modern Web Programming Language; see the
next screenshot) solely for didactic purposes—the HTML file contains an <input> tag
with the id value task, and a tag with the id value list:

<div><input id="task" type="text" placeholder="What do you want to
do?"/>
 <p id="para">Initial paragraph text</p>
</div>
<div id="btns">
 <button class="backgr">Toggle background color of header</button>
 <button class="backgr">Change text of paragraph</button>
 <button class="backgr">Change text of placeholder in input
field and the background color of the buttons</button>
</div>
<div><ul id="list"/>
</div>

 In our Dart code, we declare the following objects representing them:

 InputElement task;
 UListElement list;

The following list object contains objects of the LIElement class, which are made in
addItem():

 var newTask = new LIElement();

You can see the different elements and their layout in the following screenshot:

The screen of todo_v2

Handling the DOM in a New Way

[124]

Finding elements
Now we must bind these objects to the corresponding HTML elements. For that, we
use the top-level functions querySelector and querySelectorAll; for example, the
InputElement task is bound to the <input> tag with the id value task using: task
= querySelector('#task');.

Both functions take a string (a CSS selector) that identifies the element, where the
id value task will be preceded by #. CSS selectors are patterns that are used in
.css files to select elements that you want to style. There are a number of them, but,
generally, we only need a few basic selectors (for an overview visit http://www.
w3schools.com/cssref/css_selectors.asp).

• If the element has an id attribute with the value abc, use
querySelector('#abc')

• If the element has a class attribute with value abc,
use querySelector('.abc')

• To get a list of all elements with the tag <button>, use
querySelectorAll('button')

• To get a list of all text elements, use querySelectorAll('input[typ
e="text"]') and all sorts of combinations of selectors; for example,
querySelectorAll('#btns .backgr') will get a list of all elements with
the backgr class that are inside a tag with the id value btns

These functions are defined on the document object of the web page, so in code you
will also see document.querySelector() and document.querySelectorAll().

Changing the attributes of elements
All objects of the Element class have properties in common, such as classes,
hidden, id, innerHtml, style, text, and title; specialized subclasses have
additional properties, such as value for a ProgressElement method. Changing the
value of a property in an element makes the browser re-render the page to show the
changed user interface. Experiment with todo_v2.dart:

import 'dart:html';
InputElement task;
UListElement list;
Element header;
List<ButtonElement> btns;
main() {
 task = querySelector('#task');
 list = querySelector('#list');

Chapter 5

[125]

 task.onChange.listen((e) => addItem());
 // find the h2 header element:
 header = querySelector('.header'); (1)
 // find the buttons:
 btns = querySelectorAll('button'); (2)
 // attach event handler to 1st and 2nd buttons:
 btns[0].onClick.listen((e) => changeColorHeader()); (3)
 btns[1].onDoubleClick.listen((e) => changeTextPara()); (4)
 // another way to get the same buttons with class backgr:
 var btns2 = querySelectorAll('#btns .backgr'); (5)
 btns2[2].onMouseOver.listen((e) => changePlaceHolder());(6)
 btns2[2].onClick.listen((e) => changeBtnsBackColor()); (7)
 addElements();
}
changeColorHeader() => header.classes.toggle('header2'); (8)
changeTextPara() => querySelector('#para').text = "You changed my
text!"; (9)
changePlaceHolder() => task.placeholder = 'Come on, type something
in!'; (10)
changeBtnsBackColor() => btns.forEach((b) => b.classes.add('btns_
backgr')); (11)
void addItem() {
 var newTask = new LIElement(); (12)
 newTask.text = task.value; (13)
 newTask.onClick.listen((e) => newTask.remove());
 task.value = '';
 list.children.add(newTask); (14)
}
addElements() {
 var ch1 = new CheckboxInputElement(); (15)
 ch1.checked = true;
 document.body.children.add(ch1); (16)
 var par = new Element.tag('p'); (17)
 par.text = 'I am a newly created paragraph!';
 document.body.children.add(par);
 var el = new Element.html('<div><h4>A small div
 section</h4></div>'); (18)
 document.body.children.add(el);
 var btn = new ButtonElement();
 btn.text = 'Replace';
 btn.onClick.listen(replacePar);
 document.body.children.add(btn);
 var btn2 = new ButtonElement();
 btn2.text = 'Delete all list items';
 btn2.onClick.listen((e) => list.children.clear()); (19)

Handling the DOM in a New Way

[126]

 document.body.children.add(btn2);
}
replacePar(Event e) {
 var el2 = new Element.html('<div><h4>I replaced this div!
</h4></div>');
 el.replaceWith(el2); (20)
}

Comments for the numbered lines are as follows:

1. We find the <h2> element via its class.
2. We get a list of all the buttons via their tags.
3. We attach an event handler to the Click event of the first button, which

toggles the class of the <h2> element, changing its background color at each
click (line (8)).

4. We attach an event handler to the DoubleClick event of the second button,
which changes the text in the <p> element (line (9)).

5. We get the same list of buttons via a combination of CSS selectors.
6. We attach an event handler to the MouseOver event of the third button,

which changes the placeholder in the input field (line (10)).
7. We attach a second event handler to the third button; clicking on it changes

the background color of all buttons by adding a new CSS class to their classes
collection (line (11)).

Every HTML element also has an attribute Map where the keys are the attribute
names; you can use this Map to change an attribute, for example:

 btn.attributes['disabled'] = 'true';

Please refer to the following document to see which attributes apply to which
element:

https://developer.mozilla.org/en-US/docs/HTML/Attributes

Chapter 5

[127]

Creating and removing elements
The structure of a web page is represented as a tree of nodes in the Document Object
Model (DOM). A web page can start its life with an initial DOM tree, marked up
in its HTML file, and then the tree can be changed using code; or, it can start off
with an empty tree, which is then entirely created using code in the app, that is
every element is created through a constructor and its properties are set in code.
Elements are subclasses of Node; they take up a rectangular space on the web page
(with a width and height). They have, at most, one parent Element in which they are
enclosed and can contain a list of Elements—their children (you can check this with
the function hasChildNodes() that returns a bool function). Furthermore, they can
receive events. Elements must first be created before they can be added to the list of
a parent element. Elements can also be removed from a node. When elements are
added or removed, the DOM tree is changed and the browser has to re-render the
web page.

An Element object is either bound to an existing node with the querySelector
method of the document object or it can be created with its specific constructor,
such as that in line (12) (where newTask belongs to the class LIElement—List Item
element) or line (15). If useful, we could also specify the id in the code, such as in
newTask.id = 'newTask';

If you need a DOM element in different places in your code, you
can improve the performance of your app by querying it only
once, binding it to a variable, and then working with that variable.

After being created, the element properties can be given a value such as that in line
(13). Then, the object (let's name it elem) is added to an existing node, for example,
to the body node with document.body.children.add(elem), as in line (16), or to
an existing node, as list in line (14). Elements can also be created with two named
constructors from the Element class:

1. Like Element.tag('tagName') in line (17), where tagName is any valid
HTML tag, such as <p>, <div>, <input>, <select>, and so on.

2. Like Element.html('htmlSnippet') in line (18), where htmlSnippet is
any valid combination of HTML tags.

Use the first constructor if you want to create everything dynamically at runtime;
use the second constructor when you know what the HTML for that element will be
like and you won't need to reference its child elements in your code (but by using the
querySelector method, you can always find them if needed).

Handling the DOM in a New Way

[128]

You can leave the type of the created object open using var, or
use the type Element, or use the specific class name (such as
InputElement)—use the latter if you want your IDE to give you
more specific code completion and warnings/errors against the
possible misuse of types.

When hovering over a list item, the item changes color and the cursor becomes a
hand icon; this could be done in code (try it), but it is easier to do in the CSS file:

#list li:hover {
 color: aqua;
 font-size:20 px;
 font-weight: bold;
 cursor: pointer;
}

To delete an Element elem from the DOM tree, use elem.remove(). We can delete
list items by clicking on them, which is coded with only one line:

 newTask.onClick.listen((e) => newTask.remove());

To remove all the list items, use the List function clear(), such as in line (19).
Replace elem with another element elem2 using elem.replaceWith(elem2), such
as in line (20).

Handling events
When the user interacts with the web form, such as when clicking on a button or
filling in a text field, an event fires; any element on the page can have events. The
DOM contains hooks for these events and the developer can write code (an event
handler) that the browser must execute when the event fires. How do we add an
event handler to an element (which is also called registering an event handler)?. The
general format is:

 element.onEvent.listen(event_handler)

(The spaces are not needed, but can be used to make the code more readable).
Examples of events are Click, Change, Focus, Drag, MouseDown, Load, KeyUp, and so
on. View this as the browser listening to events on elements and, when they occur,
executing the indicated event handler. The argument that is passed to the listen()
method is a callback function and has to be of the type EventListener; it has the
signature: void EventListener(Event e)

Chapter 5

[129]

The event handler gets passed an Event parameter, succinctly called e or ev, that
contains more specific info on the event, such as which mouse button should
be pressed in case of a mouse event, on which object the event took place using
e.target, and so on. If an event is not handled on the target object itself, you can
still write the event handler in its parent, or its parent's parent, and so on up the
DOM tree, where it will also get executed; in such a situation, the target property can
be useful in determining the original event object. In todo_v2.dart, we examine the
various event-coding styles. Using the general format, the Click event on btns2[2]
can be handled using the following code:

 btns2[2].onClick.listen(changeBtnsBackColor);

where changeBtnsBackColor is either the event handler or callback function. This
function is written as:

 changeBtnsBackColor(Event e) => btns.forEach((b) =>
 b.classes.add('btns_backgr'));

Another, shorter way to write this (such as in line (7)) is:

 btns2[2].onClick.listen((e) => changeBtnsBackColor());
 changeBtnsBackColor() => btns.forEach((b) =>
 b.classes.add('btns_backgr'));

When a Click event occurs on btns2[2], the handler changeBtnsBackColor is called.

In case the event handler needs more code lines, use the brace syntax as follows:

 changeBtnsBackColor(Event e) {
 btns.forEach((b) => b.classes.add('btns_backgr'));
 // possibly other code
 }

Familiarize yourself with these different ways of writing event handlers.

Of course, when the handler needs only one line of code, there is no need for a
separate method, as in the following code:

newTask.onClick.listen((e) => newTask.remove());

For clarity, we use the function expression syntax => whenever possible, but you can
inline the event handler and use the brace syntax along with an anonymous function,
thus avoiding a separate method. So instead of executing the following code:

 task.onChange.listen((e) => addItem());

Handling the DOM in a New Way

[130]

we could have executed:

 task.onChange.listen((e) {
 var newTask = new LIElement();
 newTask.text = task.value;
 newTask.onClick.listen((e) => newTask.remove());
 task.value = '';
 list.children.add(newTask);
 });

JavaScript developers will find the preceding code very familiar, but it is also used
frequently in Dart code, so make yourself acquainted with the code pattern ((e)
{...});. The following is an example of how you can respond to key events (in this
case, on the window object) using the keyCode and ctrlKey properties of the event e:

 window.onKeyPress.listen((e) {
 if (e.keyCode == KeyCode.ENTER) {
 window.alert("You pressed ENTER");
 }
 if (e.ctrlKey && e.keyCode == CTRL_ENTER) {
 window.alert("You pressed CTRL + ENTER");
 }
 });

In this code, the constant const int CTRL_ENTER = 10; is used.

(The list of keyCodes can be found at http://www.cambiaresearch.com/
articles/15/javascript-char-codes-key-codes).

Manipulating the style of page elements
CSS style properties can be changed in the code as well: every element elem has a
classes property, which is a set of CSS classes. You can add a CSS class as follows:

 elem.classes.add('cssclass');

as we did in changeBtnsBackColor (line (11)); by adding this class, the new style is
immediately applied to the element. Or, we can remove it to take away the style:

 elem.classes.remove('cssclass');

The toggle method (line (8)) elem.classes.toggle('cssclass'); is a
combination of both: first the cssclass is applied (added), the next time it is
removed, and, the time after that, it is applied again, and so on.

Chapter 5

[131]

Working with CSS classes is the best way to change the style, because the CSS
definition is separated from the HTML markup. If you do want to change the style
of an element directly, use its style property elem.style, where the cascade style of
coding (see Chapter 2, Getting to Work with Dart) is very appropriate, for example:

 newTask.style
 ..fontWeight = 'bold'
 ..fontSize = '3em'
 ..color = 'red';

Animating a game
People like motion in games and a movie is nothing but a quick succession of image
frames. So, we need to be able to redraw our screen periodically to get that effect;
with Dart screen frame rates of 60 fps or higher, this becomes possible. A certain time
interval is represented in Dart as an object of the type Duration. To do something
periodically in Dart, we use the Timer class from the dart:async library and its
periodic method. To execute a function moveBall() at every INTERVAL ms (you
could call it a periodic event), use the following method:

new Timer.periodic(const Duration(milliseconds: INTERVAL),
 (t) => moveBall());

The first parameter is the time period, the second is the callback function that
has to be periodically executed, and t is the Timer object. If the callback function
has to be executed only once, just write a new Timer(.,.) method, omitting the
periodic function. When drawing on canvas, the first thing that the periodically
called function will have to do is erase the previous drawing. To stop a Timer object
(usually in a game-over situation), use the cancel() method.

Another way of doing this is by using the animationFrame method from the window
class, as we will demonstrate in the memory game in Chapter 7, Building Games with
HTML5 and Dart.With this technique, we start gameLoop in the main() function and
let it call itself recursively, as in the following code:

main() {
 // code left out
 // redraw
 window.animationFrame.then(gameLoop);
}

gameLoop(num delta) {
 moveBall();
 window.animationFrame.then(gameLoop);
}

Handling the DOM in a New Way

[132]

Ping Pong using style(s)
To show these DOM possibilities, here is a Ping Pong game using styles, based on
a similar JavaScript project described in the book at http://www.packtpub.com/
html5-games-development-using-css-javascript-beginners-guide/book.
Normally, you would write an HTML Dart game using canvas as we do in the next
section, but it is interesting to see what is possible just by manipulating the styles.
Download the project from GitHub with: git clone git://github.com/dzenanr/
ping_pong_dom.git.

This project was developed in spirals; if you want to see how the code was
developed, explore the seven stages in the subfolder spirals (spiral s07, especially,
contains a function examineCSS() that show you how to read the rules in the
stylesheet of Dart code; also, the game screen contains some useful links to learn
more about reading and changing CSS rules).

The following is the Dart code of the master version; we have commented on it using
line numbers:

import 'dart:html';
import 'dart:async';
const int INTERVAL = 10; // time interval in ms to redraw the screen
const int INCREMENT = 20; // move increment in pixels
CssStyleSheet styleSheet; (1)
var pingPong = { (2)
 'ball': {
 'speed': 3,
 'x' : 195,
 'y' : 100,
 'dx' : 1,
 'dy' : 1
 },
 'key': {
 'w' : 87,
 's' : 83,
 'up' : 38,
 'down' : 40
 },
 'paddleA' : {
 'width' : 20,
 'height' : 80,
 'left' : 20,
 'top' : 60,
 'score' : 0
 },

Chapter 5

[133]

 'paddleB' : {
 'width' : 20,
 'height' : 80,
 'left' : 360,
 'top' : 80,
 'score' : 0
 },
 'table' : {
 'width' : 400,
 'height' : 200
 }
};

main() {
 styleSheet = document.styleSheets[0]; (3)
 document.onKeyDown.listen(onKeyDown); (4)
 // Redraw every INTERVAL ms.
 new Timer.periodic(const Duration(milliseconds: INTERVAL),
 (t) => moveBall()); (5)
}
String ballRule(int x, int y) {
 String rule = '''
 #ball {
 background: #fbbfbb;
 position: absolute;
 width: 20px;
 height: 20px;
 left: ${x.toString()}px;
 top: ${y.toString()}px;
 border-radius: 10px;
 }
 ''';
 return rule;
}
String paddleARule(int top) {
 String rule = '''
 #paddleA {
 background: #bbbbff;
 position: absolute;
 width: 20px;
 height: 80px;
 left: 20px;
 top: ${top.toString()}px;
 }

Handling the DOM in a New Way

[134]

 ''';
 return rule;
}
String paddleBRule(int top) {
 String rule = '''
 #paddleB {
 background: #bbbbff;
 position: absolute;
 width: 20px;
 height: 80px;
 left: 360px;
 top: ${top.toString()}px;
 }
 ''';
 return rule;
}
updateBallRule(int left, int top) {
 styleSheet.removeRule(1);
 styleSheet.insertRule(ballRule(left, top), 1);
}
updatePaddleARule(int top) {
 styleSheet.removeRule(2);
 styleSheet.insertRule(paddleARule(pingPong['paddleA']['top']), 2);
}
updatePaddleBRule(int top) {
 styleSheet.removeRule(3);
 styleSheet.insertRule(paddleBRule(pingPong['paddleB']['top']), 3);
}
onKeyDown(e) {
 var paddleA = pingPong['paddleA'];
 var paddleB = pingPong['paddleB'];
 var key = pingPong['key'];
 if (e.keyCode == key['w']) { (6)
 paddleA['top'] = paddleA['top'] - INCREMENT;
 updatePaddleARule(paddleA['top']);
 } else if (e.keyCode == key['s']) {
 paddleA['top'] = paddleA['top'] + INCREMENT;
 updatePaddleARule(paddleA['top']);
 } else if (e.keyCode == key['up']) {
 paddleB['top'] = paddleB['top'] - INCREMENT;
 updatePaddleBRule(paddleB['top']);
 } else if (e.keyCode == key['down']) {
 paddleB['top'] = paddleB['top'] + INCREMENT;
 updatePaddleBRule(paddleB['top']);

Chapter 5

[135]

 }
}
moveBall() {
 var ball = pingPong['ball'];
 var table = pingPong['table'];
 var paddleA = pingPong['paddleA'];
 var paddleB = pingPong['paddleB'];
 // check the table boundary
 // check the bottom edge
 if (ball['y'] + ball['speed'] * ball['dy'] > table['height']) {
 ball['dy'] = -1; (7)
 }
 // check the top edge
 if (ball['y'] + ball['speed'] * ball['dy'] < 0) {
 ball['dy'] = 1;
 }
 // check the right edge
 if (ball['x'] + ball['speed'] * ball['dx'] > table['width']) {
 // player B lost (8)
 paddleA['score']++;
 document.querySelector('#scoreA').innerHtml
 paddleA['score'].toString();
 // reset the ball;
 ball['x'] = 250;
 ball['y'] = 100;
 ball['dx'] = -1;
 }
 // check the left edge
 if (ball['x'] + ball['speed'] * ball['dx'] < 0) {
 // player A lost (9)
 paddleB['score']++;
 document.querySelector('#scoreB').innerHtml =
paddleB['score'].toString();
 // reset the ball;
 ball['x'] = 150;
 ball['y'] = 100;
 ball['dx'] = 1;
 }
 ball['x'] += ball['speed'] * ball['dx'];
 ball['y'] += ball['speed'] * ball['dy'];
 // check the moving paddles
 // check the left paddle
 if (ball['x'] + ball['speed'] * ball['dx'] < (10)
 paddleA['left'] + paddleA['width']) {

Handling the DOM in a New Way

[136]

 if (ball['y'] + ball['speed'] * ball['dy'] <=
 paddleA['top'] + paddleA['height'] &&
 ball['y'] + ball['speed'] * ball['dy'] >= paddleA['top']) {
 ball['dx'] = 1;
 }
 }
 // check the right paddle
 if (ball['x'] + ball['speed'] * ball['dx'] >= paddleB['left']) {
 if (ball['y'] + ball['speed'] * ball['dy'] <=
 paddleB['top'] + paddleB['height'] &&
 ball['y'] + ball['speed'] * ball['dy'] >= paddleB['top']) {
 ball['dx'] = -1; (11)
 }
 }
 // update the ball rule
 updateBallRule(ball['x'], ball['y']);
}

The screen looks like as shown in the following screenshot:

The screen of Ping Pong DOM

Chapter 5

[137]

Basically, the mechanism is that we change the left and top property values in the
style rules for the ball, paddleA and paddleB in the function ballRule, paddlARule,
and so on. When this new style rule is attached to our document, the HTML element
moves on the screen. In line (1), we declare a stylesheet that we append to our
document in line (3). The variable pingPong in line (2) is a Map with the keys ball,
key, paddleA, paddleB, and table (these correspond with HTML element IDs), and
their values are, themselves, maps containing variables and their values (for example,
top has the value 60). These maps are further referenced using variables, as follows:

 var paddleA = pingPong['paddleA'];

In line (4), an onKeyDown event handler is defined. This tests the key that was
pressed along with if (e.keyCode == key['w']) (line (6)), and so on, and, when
the key is recognized, the value of the top variable in the corresponding paddle Map
is incremented or decremented (the value of Top is 0 at the top of the screen and
increases towards the bottom of the screen. w means that the value is going up; this
means the value of top is decreasing, so we have to subtract INCREMENT from the
current top value, and likewise for the other directions). An updatePaddle(A-B)
Rule function is called; in it, a new style rule is inserted into the stylesheet, updating
the top value for the style rule of the corresponding paddle HTML element (the style
rules are multiline strings).

Let's then see what happens in the periodic function moveBall(). Basically, this
method changes the x and y coordinates of the ball:

 ball['x'] += ball['speed'] * ball['dx'];
 ball['y'] += ball['speed'] * ball['dy'];

However, we have to check a number of boundary conditions (such as the ball
crossing the edges of the table); if the ball is going down toward the bottom edge
of the table (line (7)), dy becomes -1, so the new ball['y'] value will be smaller
and the inverse will occur for when the ball goes along the top edge. If the ball goes
over the right edge (line (8)), Player A wins a point, so their score is updated on the
screen and the ball is reset. In line (9), the inverse is true and Player B wins a point.
In lines (10) and (11), we test for the collision of the ball and paddleA or paddleB
respectively; using paddleA, we want to send the ball to the right, so we set dx = 1;
with paddleB, we want to send it to the left, so dx = -1. Then, in the same way as for
the paddles, we update the style rule for the ball.

Handling the DOM in a New Way

[138]

How to draw on a canvas – Ping Pong
revisited
Canvas is a way to draw graphics on a web page in a straightforward manner. It is
an important part of HTML5 and provides apps with a resolution-dependent bitmap
canvas, which can be used for rendering graphs, game graphics, art, or other visual
images on-the-fly. We will rewrite our Ping Pong game using the canvas drawing
technique (this project is based on the Dart port of the canvas tutorial at http://
billmill.org/static/canvastutorial/ by Chris Buckett (https://github.com/
chrisbu/Bounce)). Download the project from GitHub using git clone git://
github.com/dzenanr/ping_pong.

When you open the project in Dart Editor, you see the latest master version and you
can run and play it immediately. In the spirals subfolder, you see how the project
has grown in 11 stages and we will learn about canvas drawing by exploring this
evolution. The spiral approach to learning is used to advance step-by-step from
simple spirals at the beginning to more complex ones close to the last version of the
project. This is also an excellent development approach that encourages refactoring
and, thus, produces clear, understandable code.

Spiral 1 – drawing a circle and a rectangle
Open the project spirals/ping_pong_01. The goal of this spiral is to display a
small, black circle and a small, white rectangle with a black border; in other words,
to learn how to draw. Take a look at the HTML file—all drawing is done within the
<canvas> tag:

<canvas id="canvas" width="300" height="300">
 Canvas is not supported in your browser.
</canvas>

Adjusting the width and height values to the app's needs, you can also include
text that which will be displayed in older browsers that do not support canvas (it is
widely supported, but only in Internet Explorer from 9.0 onwards). Now we look at
the code of ping_pong.dart in the following spiral:

library ping_pong; (1)

import 'dart:html';
import 'dart:math';

part 'board.dart'; (2)

void main() {

Chapter 5

[139]

 //get a reference to the canvas
 CanvasElement canvas = querySelector('#canvas'); (3)
 Board board = new Board(canvas); (4)
 board.circle(75, 75, 10); (5)
 board.rectangle(95, 95, 20, 20); (6)
}

Following good practice, we make our app a library in line (1). The file containing
the library declaration contains the starting point main(); all other code resides in
other parts (see line (2)). In line (3), we make a reference to <canvas> using an
object of the type CanvasElement (in dart:html). Then, we have to make a context
object (which can be either 2d or webgl (3d)) to draw on:

CanvasRenderingContext2D context = canvas.getContext('2d');

In this app, we will draw on a Board object made in line (4); this object has the
methods circle and rectangle that contain the details for drawing these shapes and
they are called in lines (5) and (6). Line (4) passes the canvas object to the Board
constructor (line (7)) in the part file board.dart, where the context object is created:

part of ping_pong;
class Board {
 CanvasRenderingContext2D context;
 Board(CanvasElement canvas) { (7)
 context = canvas.getContext('2d');
 }
 //draw a circle
 void circle(x, y, r) {
 context.beginPath(); (8)
 context.arc(x, y, r, 0, PI*2, true); (9)
 context.closePath(); (10)
 context.fill(); (11)
 }
 //draw a rectangle
 void rectangle(x, y, w, h) {
 context.beginPath();
 context.rect(x,y,w,h); (12)
 context.closePath();
 context.stroke(); (13)
 }
}

Handling the DOM in a New Way

[140]

When drawing an arbitrary shape, we draw, in fact, a path. This usually involves
a number of steps enclosed within a call to beginPath() (line (8)) and a call to
closePath() (line (10)); this also closes the shape; when drawing basic shapes, such
as lines, rectangles, and circles, as in this example, they can be left out. A black line or
an open figure is drawn using context.stroke(), such as in line (13); for a filled-
in shape, you need to use context.fill(), such as in line (13). When we run this
script, it shows:

The screen of Ping Pong spiral 1

To further explore how lines and arcs are drawn, we create an additional web app
canvas_1:

import 'dart:html';
import 'dart:math';
CanvasRenderingContext2D context;
var width, height;
void main() {
 //get a reference to the canvas
 CanvasElement canvas = querySelector('#canvas');
 width = canvas.width; (1)
 height = canvas.height;
 context = canvas.getContext('2d');
 lines();
 arcs();
}
//drawing lines
void lines() {
 context.moveTo(100, 150);
 context.lineTo(450, 50);

Chapter 5

[141]

 context.lineWidth = 2;
 context.lineCap = 'round'; // other values: 'square' or 'butt'
 context.stroke();
}
//drawing arcs
void arcs() {
 var x = width / 2; (2)
 var y = height / 2;
 var radius = 75;
 var startAngle = 1.1 * PI;
 var endAngle = 1.9 * PI;
 var antiClockWise = false;
 context.arc(x, y, radius, startAngle, endAngle, antiClockWise);
 context.lineWidth = 8;
 context.stroke();
}

We obtain the width and height parameters of the canvas object (line (1)) in order
to draw proportionally to the space that we have, for example, in choosing the center
of a circle (for our arc), such as in line (2).

Canvas uses an (x, y) coordinate system, measured in pixels to locate points: the
origin (0,0) is the upper-left corner of the drawing area, the x axis goes from left
to right, and the y axis from top to bottom. moveTo(x, y) positions the drawing
cursor at the point (x, y) method and the lineTo(x', y') method draws a
straight line from (x, y) to (x', y') when the stroke or fill methods are called;
lineWidth is an obvious property. To draw a circular arc, you use the method
with the same name arc; this method takes no less than six parameters: context.
arc(x, y, radius, startAngle, endAngle, antiClockWise); x and y are the
coordinates of the circle's center; the third parameter is the circle's radius; parameters
startAngle and endAngle are the start and end angles (in radians); the parameter
antiClockWise is true or false (the default value is anticlockwise, that is from
end to start) and defines the direction of the arc between its two end points: see the
next figure for clarification and the example in the arcs() method (comment out the
call to lines()). Now we see how a circle can be drawn by going from a 0 PI angle
to a 2 PI angle, such as in the board.dart line (9), which is called using line (5).

Handling the DOM in a New Way

[142]

starting angle ending angle

0.5 PI

0 PI1 PI

ra
di

us

1.5 PI

center point (x, y)

Drawing an arc

Using the lineTo method, it takes three calls to draw a triangle and four for
a rectangle. The latter case was considered common enough to provide a
rect(x,y,w,h) method (line (12) in board.dart), where x and y are the
coordinates of the upper-left corner, w is the width, and h is the height of the
rectangle; this is applied in the rectangle() method called on board (line (6)).
To erase all drawing in a rectangular area, use the context.clearRect(x,y,w,h)
method (first used in Spiral 3 – moving a ball).

Spiral 2 – colored circles and rectangles
In the project spirals/ping_pong_02, the goal is to display two circles and two
rectangles in different colors; that is: how can we get some color in our drawing?
For that, we need two new properties: context: strokeStyle sets the drawing
color for the border and fillStyle sets the fill color; if you do not use these, black
is the default color. The color itself is given as a string, containing:

• a predefined color name, such as context.strokeStyle = 'red';
• a hexadecimal number, such as context.strokeStyle = '#ff0000';
• an rgba string containing the red, green, blue values (between 0 and 255)

and an alpha value (the opacity of the color having a value between 0 and 1),
such as context.fillStyle ="rgba(55, 55, 0, .75)"

For example, a rectangle method can be given a border color and an inside color
by calling:

 board.rectangle(15, 150, 120, 120,
 "rgba(55, 55, 0, .75)", "rgba(155, 155, 0, .5)");
while the rectangle method is now changed to:
void rectangle(x, y, w, h, strokeStyle, fillStyle) {
 context.beginPath();

Chapter 5

[143]

 context.strokeStyle = strokeStyle;
 context.fillStyle = fillStyle;
 context.rect(x,y,w,h);
 context.stroke();
 context.fill();
 context.closePath();
 }

Do experiment with the possibilities.

We now know everything we need to draw our Ping Pong game; we'll start doing
this and developing the game logic in the next spiral. But, often, you need other
techniques in drawing applications: you'll find more of them in canvas_2.dart
To see clearly what each code section does, comment all code and uncomment
only the section you want to run. In this code file, you can find the methods for
drawing quadratic curves and Bezier curves, combining them in paths, custom
shapes, linear and radial gradients, and drawing images and text. For more details
on the different parameters, refer to http://www.html5canvastutorials.com/
tutorials. You can find a lot more code examples in the GitHub repository
git at http://github.com/dzenanr/ondart_examples especially the folders
ondart_dom, ondart_html5, and ondart_canvas; these accompany the course
presentations found at http://ondart.me/web_programming.md.

Spiral 3 – moving a ball
In the project spirals/ping_pong_03, the goal is to change the position of a small,
black circle (a ball) in a straight line using subsequent calls of the move method.

Run the app: we see a ball moving down diagonally from the upper-left corner to the
right and then disappearing out of sight. In the main file ping_pong.dart, nothing
much has changed; a new part file ball.dart has appeared (line (1)). To describe
the ball and its behavior in the Ball class; and; in line (2), the ball object is created,
giving it a reference to the board object.

library ping_pong;
import 'dart:html';
import 'dart:async';
import 'dart:math';
part 'board.dart';
part 'ball.dart'; (1)
void main() {
 CanvasElement canvas = querySelector('#canvas');
 Board board = new Board(canvas);
 Ball ball = new Ball(board, 0, 0, 10); (2)

Handling the DOM in a New Way

[144]

 new Timer.periodic(const Duration(milliseconds: 10),
 (t) => ball.move()); (3)
}

In ball.dart, we see that in the constructor (line (4)), our ball is drawn by calling
context.arc on the board object.

part of ping_pong;
class Ball {
 Board board;
 int x, y, r;
 int dx = 2;
 int dy = 4;
 Ball(this.board, this.x, this.y, this.r) { (4)
 draw();
 }
 void draw() {
 board.context.beginPath();
 board.context.arc(x, y, r, 0, PI*2, true);
 board.context.closePath();
 board.context.fill();
 }
 void move() {
 board.clear(); (5)
 board.context.beginPath();
 board.context.arc(x, y, r, 0, PI*2, true);
 board.context.closePath();
 board.context.fill();
 x += dx; (6)
 y += dy; (7)
 }
}

In (line (3)) in the main() method in the preceding code, a Timer invokes
periodically the move() method on the ball. In the move() method, the board is
first cleared (line (5)). Within the clear() method, this is done through a new
clearRect() method on the context object:

void clear() {
 context.clearRect(0, 0, width, height);
}

Chapter 5

[145]

In lines (6) and (7), the values of the x and y coordinates of the center of the ball
are increased using dx and dy respectively. As these remain the same, the ball runs
from left to right and top to bottom; it disappears when it leaves the canvas area
determined by the width and height parameters. We will improve on this in Spiral
5 – a bouncing ball; for now, let's give the board object the same dimensions as the
canvas element:

Board(CanvasElement canvas) {
 context = canvas.getContext("2d");
 width = canvas.width;
 height = canvas.height;
}

Spiral 4 – reorganizing the code
In this spiral, we pause and reorganise (refactor) our code a bit (we wrote duplicate
code in draw() and move()—horror!). In our main() method, we now only create
the board object, and call a new method init() on it:

void main() {
 CanvasElement canvas = querySelector('#canvas');
 Board board = new Board(canvas);
 board.init();
}

This method in board.dart creates the ball object, passing it as a reference to the
board object using the this parameter:

 void init() {
 Ball ball = new Ball(this, 0, 0, 10);
 new Timer.periodic(const Duration(milliseconds: 10), (t) =>
 }

The common code in draw() and move() from the Spiral 3 – moving a ball section is
eliminated by letting move() call draw() from ball.dart:

 void draw() {
 board.context.beginPath();
 board.context.arc(x, y, r, 0, PI*2, true);
 board.context.closePath();
 board.context.fill();
 }
 void move() {
 board.clear();
 draw();
 x += dx;
 y += dy;
 }

Handling the DOM in a New Way

[146]

We have applied a fundamental principle called DRY (Don't Repeat Yourself, at least
not in code).

Spiral 5 – a bouncing ball
In most games, the ball has to stay on the board, so let's try to bounce the ball on
the board's edges. The code that lets the ball move is the move() method, so that is
the only code that has to expand. For both coordinates, we now have to check the
boundary that the ball will cross on the board's edge lines:

• For x, this means that (x + dx) must not equal to > board.width (right
border) or equal to < 0 (left border); if any of these situations do occur
(that's why we use or: ||), for example, if (x + dx > board.width || x
+ dx < 0),, the ball must change its direction (the value of x must decrease
instead of increase and vice versa); this we can obtain by reversing the sign of
dx: dx = -dx;

• For y, this means that (y + dy) must not equal to > board.height (bottom
border) and must not equal to < 0 (top border); if it does, for example,
if (y + dy > board.height || y + dy < 0), the ball must change its
direction (y must decrease instead of increase and vice versa); this we can
obtain by reversing the sign of dy: dy = -dy;

Verify that this procedure works (although the movement is rather boring at this stage).

Spiral 6 – displaying the racket
In this spiral, we add a racket that is displayed as a small, black rectangle. From the
beginning of the code, we represent it through its own class in racket.dart. In it,
we provide a constructor and the draw method that uses context.rect; the racket
also has a reference to the board object.

part of ping_pong;
class Racket {
 Board board;
 num x, y, w, h;
 Racket(this.board, this.x, this.y, this.w, this.h) {
 draw();
 }
 void draw() {
 board.context.beginPath();
 board.context.rect(x, y, w, h);
 board.context.closePath();
 board.context.fill();
 }
}

Chapter 5

[147]

To enhance the adaptability of the game, we start by defining a number of constant
values upfront in the Board class:

 const num START_X = 0;
 const num START_Y = 0;
 const num BALL_R = 10;
 const num RACKET_W = 75;
 const num RACKET_H = 10;

These are used in the init() method to construct the ball and racket objects:

void init() {
 ball = new Ball(this, START_X, START_Y, BALL_R);
 racket = new Racket(this, width/2, height-RACKET_H, RACKET_W,
 RACKET_H);
 timer = new Timer.periodic(const Duration(milliseconds: 10),
 (t) => redraw());
 }

Since we now have to draw two objects, we rename the periodic function to
redraw() and give the responsibility to the board object, which calls the draw
methods on the ball and racket objects (lines (1) and (2)).

void redraw() {
 clear();
 ball.draw(); (1)
 racket.draw(); (2)
 if (ball.x + dx > width || ball.x + dx < 0) {
 dx = -dx;
 }
 if (ball.y + dy > height || ball.y + dy < 0) {
 dy = -dy;
 } else if (ball.y + dy > height) { (3)
 if (ball.x > racket.x && ball.x < racket.x + racket.w) {
 dy = -dy;
 } else {
 timer.cancel();
 }
 }
 ball.x += dx;
 ball.y += dy;
 }

Handling the DOM in a New Way

[148]

It also does all the checks for the boundary conditions and we add in line (3) that
the ball is bounced (dy = -dy) only when it touches the racket (ball.x > racket.x
&& ball.x < racket.x + racket.w); if it falls outside the racket, the game is over
and we cancel the timer, stopping the animation (line (4)). Due to the start location
of the ball, the game-over condition does not occur in this spiral.

Spiral 7 – moving the racket using keys
Here, the goal is to move the racket using the left and right keys of the keyboard.
To this end, the racket will have to listen to key events; the following is the code of
racket.dart:

part of ping_pong;
class Racket {
 Board board;
 num x, y, w, h;
 bool rightDown = false; (1)
 bool leftDown = false;
 Racket(this.board, this.x, this.y, this.w, this.h) {
 draw();
 document.onKeyDown.listen(_onKeyDown); (2)
 document.onKeyUp.listen(_onKeyUp);
 }
 void draw() { ... } // see Spiral 6
 _onKeyDown(event) { (3)
 if (event.keyCode == 39) rightDown = true;
 else if (event.keyCode == 37) leftDown = true;
 }
 _onKeyUp(event) { (4)
 if (event.keyCode == 39) rightDown = false;
 else if (event.keyCode == 37) leftDown = false;
 }
}

Chapter 5

[149]

In line (2), we register for the KeyDown event and attach the handler _onKeyDown,
which is also done in the following line for the KeyUp event. _onKeyDown and _
onKeyUp are private methods that could have been used anonymously in the event
definition. In these handlers, we test for the keyCode of the pressed key: the left
arrow has keyCode 37 and the right arrow 39. We catch their state in two Boolean
variables leftDown and rightDown: if the left arrow is pressed, we set leftDown to
true and, when the right arrow is pressed, we set rightDown to true (line (3)). In
the KeyUp event handler in line (4) that fires when the key is released, the boolean
is reset to false. As long as the arrow key is pressed, its corresponding boolean is
true. This is tested in the redraw() method of the Board class, where the following
lines are added before racket.draw():

 if (racket.rightDown) racket.x += 5;
 else if (racket.leftDown) racket.x -= 5;

When the right arrow is pressed, the racket moves to the right and vice versa.

This is the first playable version of our game; but, we see that our racket can disappear
and, perhaps, we want to be able to move the racket using the mouse as well.

Spiral 8 – moving the racket using the mouse
To accomplish moving the racket using the mouse, we listen for a MouseMove event
and attach the event handler to the racket constructor: document.onMouseMove.
listen(_onMouseMove).

We also define two variables that define the canvas width:

 canvasMinX = 0;
 canvasMaxX = canvasMinX + board.width;

We use the preceding code statements to perform a test in the mouse event handler:
if the x coordinate of the mouse pointer (given by event.pageX) is situated in our
canvas, set the x coordinate of our racket object to the same value:

 _onMouseMove(event) {
 if (event.pageX > canvasMinX && event.pageX < canvasMaxX)
 x = event.pageX;
 }

Handling the DOM in a New Way

[150]

Spiral 9 – a real game
The goals for this spiral are as follows:

1. The board should have a border.
2. We want two rackets.
3. The rackets cannot be moved outside the border.

The border is easy; call the border() method from init() to draw a rectangle
around the canvas:

 void border() {
 context.beginPath();
 context.rect(X, Y, width, height);
 context.closePath();
 context.stroke();
 }

We add a second racket to the top of the screen, which moves synchronously
with the bottom racket. Our board object will now contain two racket objects
racketNorth and racketSouth, both of which are created in the init() method:

racketNorth = new Racket(this, width/2, 0, RACKET_W, RACKET_H);
racketSouth = new Racket(this, width/2, height-RACKET_H, RACKET_W,
RACKET_H);

The code from Spiral 7 – moving the racket using keys is applied to both the objects.

The third goal is accomplished by adding a test to the MouseMove event handler:

 _onMouseMove(event) {
 if (event.pageX > board.X && event.pageX < board.width) {
 x = event.pageX - board.X - w/2;
 if (x < board.X) x = board.X;
 if (x > board.width - w) x = board.width - w;
 }
 }

By introducing an X constant for board, we have simplified the condition we saw
in Spiral 8 – moving the racket using the mouse. The racket movements are now more
synchronous with the mouse movement, and the last two if tests make it impossible
for the rackets to go outside the borders of the board. Now we have a minimally
decent game.

Chapter 5

[151]

Spiral 10 – title and replay
In this spiral, we add a title and a button to restart the game; both are done in HTML.
The button is placed in a <div> tag outside the canvas:

<button type="button" id="play">Play</button>

We now change the constructor of board to only start init() when the button with
the ID play is clicked: query Selector('#play').onClick.listen((e) =>
init());

That's it!

Spiral 11 – the master version
No new Dart code is added here, but we improve the display using CSS.
Additionally, some relevant web links are added along with a section for each new
spiral to indicate what is new. Take a look at ping_pong.html (in both the source
and the browser) to learn how to use the document features of HTML5:

• The title within the screen is displayed in a <header> tag.
• The different parts of the document are placed in their own <section> tag

with an appropriate ID, such as side or main; sections can be nested. The
two columns' layout design style is applied using the float property in
layout2.css. The side section is the playground and contains a <button>
tag to start the game, placed within a <footer> tag. The hyperlinks
beneath it are placed within a <nav> tag; the design from link.css uses a
background image to better display the links.

• The <footer> tags are used to separate the different spirals at the bottom of
the screen.

Handling the DOM in a New Way

[152]

The preceding points are shown in the following screenshot:

Ping Pong, the master version

As an exercise, you could decouple the rackets so that we have two independent
players and then keep score of the game (see the DOM version of the game for
inspiration). Also, place the timer interval in a variable if you want to change the
game's difficulty level.

Summary
You now know all the techniques for finding, manipulating, and styling web page
elements using Dart code to change the user interface and you can respond to events
that take place on the page. You have learned how to change the CSS properties in
DOM in order to move game objects, how to draw on a canvas for developing game
screens, and how to build a complete game project. We found that it is advisable to
develop in a spiral way, building upon the previous spirals as the project acquires
more functionality. The different entities are represented by classes; in that way, our
project is naturally modularized. In the next chapter, we will focus on the web page
as a way to show, gather, and validate data, because that's what we will need to do
in business apps.

Combining HTML5
Forms with Dart

In business applications, data is structured through model classes and stored
permanently, but the first step, controlling the input of data, is essential. In this
chapter the new input and validation functionalities of HTML5 are explored. You
will learn how to:

• Process input data by validating them through HTML5 and Dart
• Store and retrieve data in the browser's local storage
• Show data in HTML5 forms

We will expand on our Bank Account example to show these features, gradually
building it up in spirals.

Spiral 1 – the power of HTML5 forms
We will make a form that will enable us to create objects for the BankAccount
class that we encountered in code examples in Chapter 1, Dart – A Modern Web
Programming Language, and Chapter 2, Getting to Work with Dart. Moreover, we will
be able to deposit or withdraw money from these accounts, calculating and adding
interest to them.

For code files of this section, refer to chapter 6\
bank_terminal_s1 in the code bundle.

Combining HTML5 Forms with Dart

[154]

In this first spiral, we construct our model classes and lay out a form to create and
update a bank account, using the new specialized input fields of HTML5. The code
for the classes is kept in the subfolder model and these are part of our application, as
shown in the initial code of bank_terminal_s1.dart:

library bank_terminal;
import 'dart:html';
part '../model/bank_account.dart';
part '../model/person.dart';
void main() {

A bank account is owned by a person, as we see in the starting code of
(bank_account.dart):

part of bank_terminal;
class BankAccount {
 String number;
 Person owner;
 double balance;
 int pin_code;
 final DateTime date_created;
 DateTime date_modified;
 // constructors:
 BankAccount(this.owner, this.number, this.balance, this.pin_code):
date_created = new DateTime.now();
 // rest of code omitted
}

The final item date_created is initialized to the current date in the initializer list
of the constructor. The person's data is kept in objects of a separate Person class in
person.dart:

part of bank_terminal;
class Person {
 // Person properties and methods
 String name, address, email, gender;
 DateTime date_birth;
 // constructor:
 Person(this.name, this.address, this.email, this.gender,
 this.date_birth);
 // methods:
 String toString() => 'Person: $name, $gender';
}

Chapter 6

[155]

After applying some CSS3 to the form attribute, our input screen looks like the
following screenshot:

The Bank Account input screen

We surround all input fields in this form tag: <form name="account"
autocomplete>. The autocomplete attribute makes sure that the browser shows a
list based on values that the user has entered before. When all the data is filled in,
clicking on the button Create account will create the objects and then store them.
The name of the owner certainly is a required field, but how do we enforce this in
HTML5? Take a look at the source code in bank_terminal_s1.html:

<input id="name" type="text" required autofocus/>

Combining HTML5 Forms with Dart

[156]

The required attribute does exactly that: clicking on the button with an empty name
field shows a pop up with the text Please fill out this field; this is achieved by using
the corresponding CSS3 pseudoclass :required:

:required {
 border-color: #1be032;
 box-shadow:
 0 0 5px rgba(57, 237, 78, .5);

 }

The required field pop-up screen

To automatically focus on the Name input field when the screen loads, use the
autofocus attribute. The Email input field is required, but it is also of type email:

 <input id="email" type="email" required/>

Chapter 6

[157]

This will check whether the value conforms to a standard e-mail address pattern
of the form "*@-.-"; likewise, there is also a field of type url. The Birth Date field
is of HTML5 type date. You can type in the date by filling it in the mm/dd/yyyy
pattern, and you can also use the spinner buttons to choose the year. The big down
button shows all days in the selected month, and allows changing the month and
day. The Gender field shows a pre-populated list of values; this can be attached to the
field through the list attribute and the <datalist> tag. The Account Number and
Balance fields use the placeholder attribute to give the user a hint on what the input
should be; this value, however, is not taken as the default input value, hence use the
value attribute instead. To control the input format, use the pattern attribute; for
example, pattern="[0-9]{3}-[0-9]{7}-[0-9]{2}", where the string can be any
valid regular expression. For a HTML5 url field type, use the pattern, "https?://.+".
The Pin code field is of type number, which checks the integer numerical input,
possibly indicating a minimum and maximum value. Try out the validations by
using different input values. Other valid HTML5 input types include color, date,
datetime, datetime-local, month, search, tel (for a telephone number, use it with
a pattern), time, week, range, and url.

Spiral 2 – how to validate data with Dart
If you have tested the Spiral 1 – the power of HTML5 forms version thoroughly, you
would have come across some things that could be improved:

1. The HTML5 control only does its checks when the Create Account button
is clicked on; it would be better if the user is alerted earlier, preferably after
filling in each field.

2. The Birth Date value is checked to be a correct DateTime value, but a value
in the future is accepted.

3. The Gender field will gladly accept other values than M or F.
4. The Balance field accepts a negative number.

So HTML5 doesn't give us full validation possibilities; to remedy and supplement
that, we must add code validation, see bank_terminal_s2.dart:

For code files of this section, refer to chapter 6\
bank_terminal_s2 in the code bundle.

InputElement name, address, email, birth_date, gender;
InputElement number, balance, pin_code;
void main() {
 // bind variables to DOM elements:

Combining HTML5 Forms with Dart

[158]

 name = querySelector('#name');
 address = querySelector('#address');
 email = querySelector('#email');
 birth_date = querySelector('#birth_date');
 gender = querySelector('#gender');
 number = querySelector('#number');
 balance = querySelector('#balance');
 pin_code = querySelector('#pin_code');
 lbl_error = querySelector('#error');
 lbl_error.text = "";
 lbl_error.style..color = "red";
 // attach event handlers:
 // checks for not empty in onBlur event:
 name.onBlur.listen(notEmpty); (1)
 email.onBlur.listen(notEmpty);
 number.onBlur.listen(notEmpty);
 pin_code.onBlur.listen(notEmpty);
 // other checks:
 birth_date.onChange.listen(notInFuture); (2)
 birth_date.onBlur.listen(notInFuture); (3)
 gender.onChange.listen(wrongGender); (4)
 balance.onChange.listen(nonNegative); (5)
 balance.onBlur.listen(nonNegative); (6)
}
notEmpty(Event e) {
 InputElement inel = e.currentTarget as InputElement;
 var input = inel.value;
 if (input == null || input.isEmpty) {
 lbl_error.text = "You must fill in the field ${inel.id}!";
 inel.focus();
 }
}
notInFuture(Event e) {
 DateTime birthDate;
 try {
 birthDate = DateTime.parse(birth_date.value);
 } on ArgumentError catch(e) { (7)
 lbl_error.text = "This is not a valid date!";
 birth_date.focus();
 return;
 }
 DateTime now = new DateTime.now();
 if (!birthDate.isBefore(now)) {
 lbl_error.text = "The birth date cannot be in the future!";
 birth_date.focus();
 }
}

Chapter 6

[159]

wrongGender(Event e) {
 var sex = gender.value;
 if (sex != 'M' && sex != 'F') {
 lbl_error.text = "The gender must be either M (male) or F
 (female)!";
 gender.focus();
 }
}
nonNegative(Event e) {
 num input;
 try {
 input = int.parse(balance.value);
 } on ArgumentError catch(e) {
 lbl_error.text = "This is not a valid balance!";
 balance.focus();
 return;
 }
 if (input < 0) {
 lbl_error.text = "The balance cannot be negative!";
 balance.focus();
 }
}

When the user leaves a field, the blur event fires; so, to check whether a value was
given in the field, use the onBlur event handler. For example, for the name field in line
(1) we show an alert window and use the focus method to put the cursor back in the
field. Notice that the notEmpty method can be used for any input field. Controlling a
given value is best done in the onChange event handler, as we do for birth_date in
line (2); we use a try construct to catch the ArgumentError exception that occurs in
line (7) when no date is given or selected (leave the method with return in the error
case, so that no further processing is done). To ensure that the user cannot leave the
field, call the same method in onBlur (in line (3)). For checking gender and balance,
we also use the onChange handlers (lines (4) and (5)). Check the e-mail address with
a regular expression pattern in an onChange event handler as an exercise. Now we are
ready to store the data; we add the following line after line (6):

 btn_create.onClick.listen(storeData);

In the method storeData, we first create the objects:

storeData(Event e) {
// creating the objects:
Person p = new Person(name.value, address.value, email.value,
gender.value, DateTime.parse(birth_date.value));
BankAccount bac = new BankAccount(p, number.value, double.
parse(balance.value), int.parse(pin_code.value));}

Combining HTML5 Forms with Dart

[160]

Notice that we have to perform data conversions here; the value from the balance
and pin_code Element objects is always a string!

Validation in the model
For a more robust application, we should also include validations in the model
classes themselves, that way, they are independent of the front-end graphical
interface and could be re-used in another application (provided we place them in
their own library to import in this application, instead of using the part construct).
We illustrate this with the number field in BankAccount (the class code in this spiral
also contains the validations for the other fields). First, we make the field private by
prefixing it with an _:

String _number;

Then, we make a get and set method for this property; it is in the setter that we can
validate the incoming value:

 String get number => _number;
 set number(value) {
 if (value == null || value.isEmpty)
 throw new ArgumentError("No number value is given"); (1)
 var exp = new RegExp(r"[0-9]{3}-[0-9]{7}-[0-9]{2}"); (2)
 if (exp.hasMatch(value)) _number = value; (3)
 }

In the model classes, we don't have the possibility to show an error window, but we
can throw an error or exception in line (1). To catch this error, we have to change the
code in storeData, where the BankAccount object is created:

try {
 BankAccount bac = new BankAccount(p, number.value, double.
parse(balance.value),
 int.parse(pin_code.value));
}
 catch(e) {
 window.alert(e.toString());
}

To test the particular format, we make use of the RegExp class in the built in
dart:core library. We construct an object exp of this class by passing the regular
expression as a raw string in line (2); then, we use hasMatch to test whether the
value conforms to the format of exp (line (3)).

Chapter 6

[161]

Using this mechanism, it turns out that we cannot use the short version of the
constructors any more, because a setter can only be called from within the
constructor body; so the BankAccount constructor changes to:

BankAccount(this.owner, number, balance, pin_code):
 date_created = new DateTime.now() {
 this.number = number;
 this.balance = balance;
 this.pin_code = pin_code;
}

Spiral 3 – how to store data in local
storage
When a fully validated bank account object is created, we can store it in local storage,
also called the Web Storage API, that is widely supported in modern browsers. In
this mechanism, the application's data are persisted locally (on the client-side) as a
Map-like structure: a dictionary of key/value pairs. This is yet another example of
the universal use of JSON for storage and transport of data (see Chapter 4, Modeling
Web Applications with Model Concepts and Dartlero). Unlike cookies, local storage does
not expire, but every application can only access its own data, up to a certain limit
depending on the browser. With it, our application can also have an offline mode
of functioning, when the server is not available to store the data in a database. Web
Storage also has another way of storing data called sessionStorage, but this limits
the persistence of the data to only the current browser session. So data is lost when
the browser is closed or another application is started in the same browser window.
In the localStorage mechanism, which we will use here, JSON strings are stored
and retrieved, so we need a two-way mechanism to convert our objects to and from
JSON and the corresponding toJson and fromJson methods in our classes, for
example, in person.dart:

For code files of this section, refer to chapter 6\
bank_terminal_s3 in the code bundle.

 Map<String, Object> toJson() {
 var per = new Map<String, Object>();
 per["name"] = name;
 per["address"] = address;
 per["email"] = email;
 per["gender"] = gender;
 per["birthdate"] = date_birth.toString();
 return per;
 }

Combining HTML5 Forms with Dart

[162]

The preceding method is called from the toJson method in the following
BankAccount class (see bank_terminal_s3\bank_account.dart):

 String toJson() {
 var acc = new Map<String, Object>();
 acc["number"] = number;
 acc["owner"] = owner.toJson();
 acc["balance"] = balance;
 acc["pin_code"] = pin_code;
 acc["creation_date"] = date_created.toString();
 acc["modified_date"] = date_modified.toString();
 var accs = JSON.encode(acc); // use only once for the root
 // object (here a bank account)
 return accs;
 }

We will store our bank account object bac in localStorage using its number
as the key:

window.localStorage["Bankaccount:${bac.number}"] = bac.toJson();

Now we can create bank accounts and store them on the browser's machine. In
Chrome, verify this in Tools | Developer | Tools | Resources | Local Storage |
http:127.0.0.1:port (where port is the port number, usually 3030):

Viewing local storage screen

Chapter 6

[163]

Local Storage can be disabled (by user action, or via an installed plug-in or extension)
so we must alert the user when this needs to be changed; we can do this by catching
the Exception that occurs in this case:

try {
 window.localStorage["Bankaccount:${bac.number}"] =
 bac.toJson();
} on Exception catch (ex) {
 window.alert("Data not stored: Local storage has been
 deactivated!");
}

Local Storage is in fact of type Map<String, String>; so it has a length property;
you can query whether it contains something with isEmpty, and you can loop
through all stored values with:

for (var key in window.localStorage.keys) {
 String value = window.localStorage[key];
}

Spiral 4 – reading and showing data
Having stored our data in local storage, it is just as easy to read this data from local
storage. Here is a simple screen that takes a bank account number as input, and reads
its data when the number field is filled in:

Bank terminal screen

Combining HTML5 Forms with Dart

[164]

For code files of this section, refer to chapter 6\
bank_terminal_s4 in the code bundle.

We clean up our code making main() shorter by calling methods:

void main() {
 bind_elements();
 attach_event_handlers();
}
bind_elements() {
 owner = querySelector('#owner');
 balance = querySelector('#balance');
 number = querySelector('#number');
 btn_other = querySelector('#btn_other');
 error = querySelector('#error');
}
attach_event_handlers() {
 number.onInput.listen(readData);
 btn_other.onClick.listen(clearData);
}

Apply this refactoring from now on when coding a form. When the number is filled
in, its Input event listener is triggered:

number.onInput.listen(readData);

In the readData handler, the value is read from the local storage where the key
contains the bank account number (line (2)). But first, we will check whether our
input sits in the local storage; if not, an error label is shown. The field gets focus and
we leave the method with return (line (1) and following):

readData(Event e) {
 // show data:
 var key = 'Bankaccount:${number.value}';
 if (!window.localStorage.containsKey(key)) { (1)
 error.innerHtml = "Unknown bank account!";
 owner.innerHtml = "----------";
 balance.innerHtml = "0.0";
 number.focus();
 return;
 }
 error.innerHtml = "";
 // read data from local storage:
 String acc_json = window.localStorage[key]; (2)

Chapter 6

[165]

 bac = new BankAccount.fromJson(JSON.decode(acc_json)); (3)
 // show owner and balance:
 owner.innerHtml = "${bac.owner.name}"; (4)
 balance.innerHtml = "${bac.balance.toStringAsFixed(2)}";
}

The bank account object bac is now created in line (3), and the owner and balance
labels can then be filled in line (4). Let's examine this in some detail. The resulting
string acc_json has the structure of a map, and the JSON.decode method of the
convert package transforms this string into a map. We will enhance our model classes
with functionality to convert this map into an object. The best way to do this is with a
named constructor (called appropriately fromJson) that takes this map and makes a
new object from it. So in the person class, we add the following named constructor:

Person.fromJson(Map json) {
 this.name = json["name"];
 this.address = json["address"];
 this.email = json["email"];
 this.gender = json["gender"];
 this.date_birth = DateTime.parse(json["birthdate"]);
}

This is used by the fromJson constructor in the BankAccount class:

BankAccount.fromJson(Map json): date_created =
 DateTime.parse(json["creation_date"]) {
 this.number = json["number"];
 this.owner = new Person.fromJson(json["owner"]);
 this.balance = json["balance"];
 this.pin_code = json["pin_code"];
 this.date_modified = DateTime.parse(json["modified_date"]);
 }

Combining HTML5 Forms with Dart

[166]

Spiral 5 – changing and updating data
Now that we have our bank account back on screen, we add an input field with ID
#number (and of type number) that captures the amount of money that we want to
deposit or withdraw from our account. We add a button "Deposit-Withdrawal" to
initiate that action, and also a button "Add interest" to calculate and add interest to
our account. Our screen now looks like the following screenshot:

Changing data screen

For code files of this section, refer to chapter 6\
bank_terminal_s5 in the code bundle.

Here is the code of bank_terminal_s5.dart (declarations are left out for brevity):

void main() {
 bind_elements(); (1)
 attach_event_handlers(); (2)
 disable_transactions(true); (3)
}
bind_elements() {
 owner = query('#owner');
 balance = query('#balance');
 number = query('#number');
 btn_other = query('#btn_other');
 amount = query('#amount');
 btn_deposit = query('#btn_deposit');
 btn_interest = query('#btn_interest');
 error = query('#error');
}

Chapter 6

[167]

attach_event_handlers() {
 number.onInput.listen(readData);
 amount.onChange.listen(nonNegative);
 amount.onBlur.listen(nonNegative);
 btn_other.onClick.listen(clearData);
 btn_deposit.onClick.listen(deposit);
 btn_interest.onClick.listen(interest);
}
readData(Event e) {
 // same code as in Spiral 4
 // enable transactions part:
 disable_transactions(false); (4)
}
clearData(Event e) {
 number.value = "";
 owner.innerHtml = "----------";
 balance.innerHtml = "0.0";
 number.focus();
 disable_transactions(true);
}
disable_transactions(bool off) {
 amount.disabled = off;
 btn_deposit.disabled = off;
 btn_interest.disabled = off;
}
changeBalance(Event e) {
 // read amount:
 double money_amount = double.parse(amount.value); (5)
 // call deposit on BankAccount object:
 if (money_amount >= 0) bac.deposit(money_amount); (6)
 else bac.withdraw(money_amount);
 window.localStorage["Bankaccount:${bac.number}"] = bac.toJson();
 // show new amount:
 balance.innerHtml = "${bac.balance.toStringAsFixed(2)}";
 // disable refresh screen:
 e.preventDefault(); (7)
 e.stopPropagation();
}
interest(Event e) {
 bac.interest();
 window.localStorage["Bankaccount:${bac.number}"] = bac.toJson();
 (8)
 balance.innerHtml = "${bac.balance.toStringAsFixed(2)}";
 e.preventDefault();
 e.stopPropagation();
}

Combining HTML5 Forms with Dart

[168]

The main() method in lines ((1) and (2)) calls methods to create objects for the
DOM elements, and creates the event handlers. When the screen displays for the first
time, the Amount transaction field and the buttons are best shown as disabled; this
is accomplished by line (3), which calls a handy method disable_transactions to
disable or enable DOM elements by passing a boolean value. When data is shown,
the readData method performs as in Spiral 4, reading and showing data, and the second
part of the screen is enabled line (5). The Deposit-Withdrawal button can perform
both functions whether the amount is greater or less than 0. The double.parse
method in line (5) will not throw an exception, because we checked the number
input. The corresponding methods on the object are called to change its balance in line
(6), for example, the deposit method in BankAccount class:

deposit(double amount) {
 balance += amount;
 date_modified = new DateTime.now();
}

The changed object is again stored in local storage in line (8). The two lines starting
at line (7) are necessary to stop the event from propagating; if they are not used,
the change is not visible because the screen is refreshed immediately. The interest
calculation follows the same pattern.

Spiral 6 – working with a list of bank
accounts
In this spiral, we will read all our Bank Account data from the local storage and
display the numbers in a dropdown list. Upon selection, all details of the bank
account are shown in a table. This is how our page looks, at the start, upon opening
the selection list:

Selecting a bank account number screen

Chapter 6

[169]

For code files of this section, refer to chapter 6\
bank_terminal_s6 in the code bundle.

In this spiral, we will let the code construct the web page:

void main() {
 readLocalStorage(); (1)
 constructPage(); (2)
 sel.onChange.listen(showAccount); (3)
}

In line (1), the account numbers are read from local storage, extracted, and put into
a list:

readLocalStorage() {
 account_nos = [];
 for (var key in window.localStorage.keys) {
 account_nos.add(key.substring(12)); // extract account number
 }
}

The method in line (2) calls two other methods, constructSelect (line (4)) and
constructTable (line (5)), to build up the select list and the empty table respectively:

constructPage() {
// make dropdown list and fill with data:
 var el = new Element.html(constructSelect()); (4)
 document.body.children.add(el);
// prepare html table for account data:
 var el1 = new Element.html(constructTable()); (5)
 document.body.children.add(el1);
 sel = query('#accounts');
 table = query('#accdata');
 table.classes.remove('border');
}
String constructSelect() {
 var sb = new StringBuffer(); (6)
 sb.write('<select id="accounts">');
 sb.write('<option selected>Select an account no:</option>');
 account_nos.forEach((acc) =>
 sb.write('<option>$acc</option>')); (7)
 sb.write('</select>');
 return sb.toString();
}

Combining HTML5 Forms with Dart

[170]

String constructTable() {
 var sb = new StringBuffer();
 sb.write('<table id="accdata" class="border">');
 sb.write('</table>');
 return sb.toString();
}

Both methods constructSelect and constructTable use a StringBuffer method
for efficiency (line (6)) and we use string interpolation (line (7)) to merge the data
with the HTML. Upon selection, using the onChange event (line (3)), the following
method is called:

showAccount(Event e) {
 // remove previous data:
 table.children.clear(); (8)
 table.classes.remove('border'); (9)
 // get selected number:
 sel = e.currentTarget;
 if (sel.selectedIndex >= 1) { // an account was chosen (10)
 var accountno = account_nos[sel.selectedIndex - 1];
 var key = 'Bankaccount:$accountno';
 String acc_json = window.localStorage[key];
 bac = new BankAccount.fromJson(parse(acc_json));
 // show data:
 table.classes.add('border');
 constructTrows();
 }
}

To make sure no previous data is shown, the table is cleared in lines (8) and (9),
and we also make sure that we select one of the accounts with line (10). The rest of
the code is straightforward, using constructTrows to fill in the table. We inserted
all the <tr> tags in one Element.html; because of this we are forced to include a <p>
tag to surround all table rows, because the HTML method needs a surrounding tag.
The following screenshot shows the detail screen:

Chapter 6

[171]

Detailed information of a selected bank account screen

Summary
You have now gained experience with the techniques for building HTML5 screens
with input fields that know how to validate data, further controlling data through
Dart, and storing them in the browser's local storage for offline use. Along the way,
we perfected our skills to work with JSON, and how to (de)construct Dart objects
to/from JSON. All these can be used in the frontend of your business application. If
you need a more complex user interface, web components are the way to go, and we
explore them in detail in Chapter 8, Developing Business Applications with Polymer Web
Components. In the next chapter, we will sharpen our modeling and game-building
skills, adding multimedia functionality to our applications.

Building Games with
HTML5 and Dart

In this chapter, you will use the knowledge of the previous chapters to create a well-
known memory game. But instead of presenting and explaining the code completed
in the previous chapters, a model is designed first, and you work up your way
from a modest beginning to a completely functional game, spiral by spiral. You will
also learn how to enhance the attractiveness of web games with audio and video
techniques. The following topics will be covered in this chapter:

• The model for the memory game
• Spiral 1 – drawing the board
• Spiral 2 – drawing cells
• Spiral 3 – coloring the cells
• Spiral 4 – implementing the rules
• Spiral 5 – game logic (bringing in the time element)
• Spiral 6 – some finishing touches
• Spiral 7 – using images
• Adding audio to a web page
• Using an audio library – Collision clones
• Adding video to a web page

Building Games with HTML5 and Dart

[174]

The model for the memory game
When started, the game presents a board with square cells. Every cell hides an
image that can be seen by clicking on the cell, but this disappears quickly. You must
remember where the images are because they come in pairs. If you quickly click on
two cells that hide the same picture, the cells are "flipped over" and the pictures stay
visible. The objective of the game is to turn over all pairs of matching images in a
very short time.

The code for this project can be downloaded
from GitHub using the following command:

git clone git://github.com/dzenanr/
educ_memory_game.git

After some thinking, we came up with the following model, which describes the data
handled by the application. In our game we have a number of pictures, which could
belong to a Catalog. For example, a travel catalog with a collection of photos from our
trips or something similar. Furthermore, we have a collection of cells, and each cell is
hiding a picture. Also, we have a structure that we will call memory, and this contains
the cells in a grid of rows and columns. Using our Model Concepts graphical design
tool from Chapter 4, Modeling Web Applications with Model Concepts and Dartlero, we
could draw it as shown in the following figure. You can import the model from
the file game_memory_json.txt that contains its JSON representation:

0..N cells
memory

1.1

0..N pictures
catalog

1..10..N

memories

catalog

Catalog||
name
description

name
length
cellLength
recalled
recallCount
bestRecallTime
minTryCount

Memory

row
column
twinRow
twinColumn
hidden

Cell

sequence
imageUri
width
height
size

Picture

0..N

cells

picture

A conceptual model of the memory game

Chapter 7

[175]

The Catalog ID is its name, which is mandatory, but the description is optional. The
Picture ID consists of the sequence number within the Catalog. The imageUri field
stores the location of the image file. width and height are optional properties since
they may be derived from the image file. The size may be small, medium, or large
to help us select an image. The ID of a Memory is its name within the Catalog, the
collection of cells is determined by the memory length, for example, 4 cells per side.
Each cell is of the same length cellLength, which is a property of the memory. A
memory is recalled when all image pairs are discovered. Some statistics must be
kept, such as recall count, the best recall time in seconds, and the number of cell
clicks to recover the whole image (minTryCount). The Cell has the row and column
coordinates and also the coordinates of its twin with the same image. Once the model
is discussed and improved, model views may be created: a Board would be a view
of the Memory concept and a Box would be a view of the Cell concept. Application
would be based on the Catalog concept. If there is no need to browse photos of a
catalog and display them within a page, there would not be a corresponding view.
Now, we start developing this game from scratch.

Spiral 1 – drawing the board
The app starts with main() in educ_memory_game.dart:

library memory;

import 'dart:html';
import 'dart:async';

part 'board.dart';

void main() {
 // Get a reference to the canvas.
 CanvasElement canvas = querySelector('#canvas'); (1)
 new Board(canvas); (2)
}

For code files of this section refer to chapter 7\educ_
memory_game\spirals\s01 in the code bundle.

Building Games with HTML5 and Dart

[176]

As we did in Chapter 5, Handling the DOM in a New Way, we'll draw a board on a
canvas element. So, we need a reference that is given in line (1). The Board view is
represented in code as its own Board class in the board.dart file. Since everything
happens on this board, we construct its object with canvas as argument (line
(2)). Our game board is periodically drawn as a rectangle in line (4) by using the
animationFrame method from the Window class in line (3):

part of memory;

class Board {
 // The board is drawn every INTERVAL in ms.
 static const int INTERVAL = 8;

 CanvasElement canvas;
 CanvasRenderingContext2D context;
 num width, height;

 Board(this.canvas) {
 context = canvas.getContext('2d');
 width = canvas.width;
 height = canvas.height;
 // Draw every INTERVAL in ms.
 window.animationFrame.then(gameLoop); (3)
 }

 void gameLoop(num delta) {
 draw();
 window.animationFrame.then(gameLoop);
 }

 void draw() {
 clear();
 border();
 }

 void clear() {
 context.clearRect(0, 0, width, height);
 }

 void border() {
 context..rect(0, 0, width, height)..stroke(); (4)
 }
}

Chapter 7

[177]

And this is our first result:

The game board

Spiral 2 – drawing cells
In this spiral, we will give our app code some structure: Board is a view, so board.
dart is moved to the view folder. We also introduce here the Memory class from our
model in its own code file memory.dart in the model folder. So, we have to change
the part statements to the following:

part 'model/memory.dart';
part 'view/board.dart';

For code file of this section refer to chapter 7\educ_memory_game\spirals\s02.

The Board view needs to know about Memory. So, we will include it in the Board
class and make its object in the Board constructor:

new Board(canvas, new Memory(4));

The Memory class is still very rudimentary with only its length property:

class Memory {
 num length;
 Memory(this.length);
}

Building Games with HTML5 and Dart

[178]

Our Board class now also needs a method to draw the lines, which we decided to
make private because it is specific to Board, as well as the methods clear() and
border():

void draw() {
 _clear();
 _border();
 _lines();
}

The lines method is quite straightforward; first draw it on a piece of paper and then
translate it to code using moveTo and lineTo. Remember that x goes from top left to
right and y goes from top left to bottom:

void _lines() {
 var gap = height / memory.length;
 var x, y;
 for (var i = 1; i < memory.length; i++) {
 x = gap * i;
 y = x;
 context
 ..moveTo(x, 0)
 ..lineTo(x, height)
 ..moveTo(0, y)
 ..lineTo(width, y);
 }
}

The result is a nice grid:

Board with cells

Chapter 7

[179]

Spiral 3 – coloring the cells
To simplify, we will start using colors instead of pictures to show in the grid. Up
until now, we didn't implement the cell from the model. Let's do that in model\
cell.dart. We start simple by saying that the Cell class has the row, column, and
color properties, and it belongs to a Memory object passed in its constructor:

class Cell {
 int row, column;
 String color;
 Memory memory;
 Cell(this.memory, this.row, this.column);
}

For code files of this section, refer to chapter 7\educ_
memory_game\spirals\s03 in the code bundle.

Because we need a collection of cells, it is a good idea to make a Cells class, which
contains List. We give it an add method and also an iterator, so that we will be able
to use a for…in statement to loop over the collection:

class Cells {
 List _list;

 Cells() {
 _list = new List();
 }

 void add(Cell cell) {
 _list.add(cell);
 }

 Iterator get iterator => _list.iterator;
}

We will need colors that are randomly assigned to the cells. We will also need some
utility variables and methods that do not specifically belong to the model and don't
need a class. Hence, we code them in a folder called util. To specify the colors for
the cells, we use two utility variables: a List variable of colors (colorList), which
has the named colors, and a colorMap variable that maps the names to their RGB
values. Refer to util\color.dart, later on we can choose some fancier colors:

var colorList = ['black', 'blue', //other colors];
var colorMap = {'black': '#000000', 'blue': '#0000ff', //... };

Building Games with HTML5 and Dart

[180]

To generate (pseudo) random values (ints, doubles, or Booleans), Dart has the class
Random from dart:math. We will use the nextInt method, which takes an integer
(the maximum value) and returns a positive random integer in the range from 0
(inclusive) to max (exclusive). We build upon this in util\random.dart to make
methods that give us a random color:

int randomInt(int max) => new Random().nextInt(max);
randomListElement(List list) => list[randomInt(list.length - 1)];
String randomColor() => randomListElement(colorList);
String randomColorCode() => colorMap[randomColor()];

Our Memory class now contains an instance of the class Cells:

Cells cells;

We build this in the Memory constructor in a nested for loop, where each cell is
successively instantiated with a row and column, given a random color, and
added to cells:

 Memory(this.length) {
 cells = new Cells();
 var cell;
 for (var x = 0; x < length; x++) {
 for (var y = 0; y < length; y++) {
 cell = new Cell(this, x, y);
 cell.color = randomColor();
 cells.add(cell);
 }
 }
 }

We know from Chapter 5, Handling the DOM in a New Way, that we can draw a
rectangle and fill it with a color at the same time. So, we realize we don't need to
draw lines as we did in the previous spiral! The _boxes method is called from the
draw animation: with a for…in statement we loop over the collection of cells, and
then call the _colorBox method that will draw and color the cell for each cell:

void _boxes() {
 for (Cell cell in memory.cells) {
 _colorBox(cell);
 }
}

void _colorBox(Cell cell) {
 var gap = height / memory.length;
 var x = cell.row * gap;

Chapter 7

[181]

 var y = cell.column * gap;
 context
 ..beginPath()
 ..fillStyle = colorMap[cell.color]
 ..rect(x, y, gap, gap)
 ..fill()
 ..stroke()
 ..closePath();
}

And now we have a colored board:

The colored board

Building Games with HTML5 and Dart

[182]

Spiral 4 – implementing the rules
But wait, our game can only work if the same color only appears in two cells: a cell
and its twin cell. Moreover, a cell can be hidden or not, that is, the color can be seen
or not? To take care of this, the Cell class gets two new attributes:

 Cell twin;
 bool hidden = true;

For code files of this section, refer to chapter 7\
educ_memory_game\spirals\s04 in the code bundle.

The method _colorBox in the Board class can now show the color of the cell when
hidden is false (line (2)); when hidden = true (the default state) a neutral gray
color will be used for that cell (line (1)):

 static const String COLOR_CODE = '#f0f0f0';

We also gave the gap variable a better name, boxSize:

void _colorBox(Cell cell) {
 var x = cell.column * boxSize;
 var y = cell.row * boxSize;
 context.beginPath();
 if (cell.hidden) {
 context.fillStyle = COLOR_CODE; (1)
 } else {
 context.fillStyle = colorMap[cell.color]; (2)
 }
// same code as in Spiral 3
}

The lines (1) and (2) can also be stated more succinctly with the ternary operator
?. Remember that the drawing changes because the method _colorBox is called via
draw at 60 frames per second and the board can react to a mouse click. In this spiral,
we will show a cell when it is clicked together with its twin cell and then they stay
visible. Attaching an event handler for this is easy. We add the following line to the
Board constructor:

querySelector('#canvas').onMouseDown.listen(onMouseDown);

Chapter 7

[183]

The onMouseDown event handler has to know on which cell the click occurred.
The mouse event e contains the coordinates of the click in its e.offset.x and
e.offset.y (lines (3) and (4) beneath). We obtain the cell's row and column by
using a truncating division ~/ operator dividing the x (which gives the column) and
y (which gives the row) values by boxSize:

void onMouseDown(MouseEvent e) {
 int row = e.offset.y ~/ boxSize; (3)
 int column = e.offset.x ~/ boxSize; (4)
 Cell cell = memory.getCell(row, column); (5)
 cell.hidden = false; (6)
 cell.twin.hidden = false; (7)
}

Memory has a collection of cells. To get the cell with a specified row and column
value, we add a getCell method to memory and call it in line (5). When we have
the cell, we set its hidden property and that of its twin cell to false (lines (6) to
(7)). The getCell method must return the cell at the given row and column. It loops
through all the cells in line (8) and checks each cell whether it is positioned at that
row and column (line (9)). If yes, it returns that cell:

Cell getCell(int row, int column) {
 for (Cell cell in cells) { (8)
 if (cell.intersects(row, column)) { (9)
 return cell;
 }
 }
}

For this purpose, we add an intersects method to the Cell class. This checks
whether its row and column match the given row and column for the current cell
(see line (10)):

bool intersects(int row, int column) {
 if (this.row == row && this.column == column) { (10)
 return true;
 }
 return false;
}

Now, we have already added a lot of functionality, but the drawing of the board
needs some more thinking:

• How to give a cell (and its twin cell) a random color that is not yet used?
• How to attach randomly a cell to a twin cell that is not yet used?

Building Games with HTML5 and Dart

[184]

To this end, we will have to make the constructor of Memory a lot more intelligent:

Memory(this.length) {
 if (length.isOdd) { (1)
 throw new Exception(
 'Memory length must be an even integer: $length.');
 }
 cells = new Cells();
 var cell, twinCell;
 for (var x = 0; x < length; x++) {
 for (var y = 0; y < length; y++) {
 cell = getCell(y, x); (2)
 if (cell == null) { (3)
 cell = new Cell(this, y, x);
 cell.color = _getFreeRandomColor(); (4)
 cells.add(cell);
 twinCell = _getFreeRandomCell(); (5)
 cell.twin = twinCell; (6)
 twinCell.twin = cell;
 twinCell.color = cell.color;
 cells.add(twinCell);
 }
 }
 }
}

The number of pairs given by ((length * length) / 2) must be even. This is only true if
the length parameter of Memory itself is even, so we check that in line (1). Again, we
code a nested loop and we get the cell at that row and column. But when the cell at
that position has not yet been made (line (3)), we continue to construct it and assign
its color and twin. In line (4), we call _getFreeRandomColor to get a color which is
not yet used:

String _getFreeRandomColor() {
 var color;
 do {
 color = randomColor();
 } while (usedColors.any((c) => c == color)); (7)
 usedColors.add(color); (8)
 return color;
}

Chapter 7

[185]

The do…while loop continues as long as the color is already in a list of usedColors
(this is elegantly checked with the functional any from Chapter 3, Structuring Code
with Classes and Libraries). On exiting from the loop, we found an unused color,
which is added to usedColors in line (8) and also returned. Then, we have to set
everything for the twin cell. We search for a free one with the _getFreeRandomCell
method in line (5). Here, the do…while loop continues until a (row, column)
position is found where cell == null, meaning we haven't yet created a cell there
(line (9)). We promptly do this in line (10):

Cell _getFreeRandomCell() {
 var row, column;
 Cell cell;
 do {
 row = randomInt(length);
 column = randomInt(length);
 cell = getCell(row, column);
 } while (cell != null); (9)
 return new Cell(this, row, column); (10)
}

From line (6) onward, the properties of the twin cell are set and it is added to the
list. That's all we need to produce the following result:

Paired colored cells

Building Games with HTML5 and Dart

[186]

Spiral 5 – game logic (bringing in the
time element)
Our app isn't playable yet:

• When a cell is clicked, its color must only show for a short period of time (say
one second)

• When a cell and its twin cell are clicked within a certain time interval, they
must remain visible

For code file for this section, refer to chapter 7\
educ_memory_game\spirals\s05 in the code bundle.

All of this is coded in the mouseDown event handler, and we also need a variable
lastCellClicked of type Cell in the Board class. Of course, this is exactly the
cell which we get in the mouseDown event handler. So, we set this in line (5) in the
following code snippet:

void onMouseDown(MouseEvent e) {
 // same code as in Spiral 4 -
 if (cell.twin == lastCellClicked && lastCellClicked.shown) { (1)
 lastCellClicked.hidden = false; (2)
 if (memory.recalled) memory.hide(); (3)
 } else {
 new Timer(const Duration(milliseconds: 1000), () =>
 cell.hidden = true); (4)
 }
 lastCellClicked = cell; (5)
 }

In line (1), we check whether the last clicked cell was the twin cell, and if this is still
shown. Then we make sure in (2) that it stays visible. shown is a new getter in the
Cell class to make the code more readable: bool get shown => !hidden;. If at
that moment all cells are shown (the memory is recalled), we again hide them all in
line (3). If the last clicked cell was not the twin cell, we hide the current cell after one
second in line (4). recalled is a simple getter (read-only property) in the Memory
class, and it makes use of a Boolean variable in Memory that is initialized to false
(_recalled = false;):

bool get recalled {
 if (!_recalled) {
 if (cells.every((c) => c.shown)) { (6)
 _recalled = true;

Chapter 7

[187]

 }
 }
 return _recalled;
}

In line (6), we test that if every cell is shown then this variable is set to true (the
game is over). every is a new method in Cells and a nice functional way to write
this is given as follows:

bool every(Function f) => list.every(f);

The hide method is straightforward: hide every cell and reset the _recalled
variable to false:

hide() {
 for (final cell in cells) cell.hidden = true;
 _recalled = false;
}

That's it, our game works!

Spiral 6 – some finishing touches
A working program always gives its developer a sense of joy, and rightfully
so. However, this doesn't mean you can leave the code as it is. On the contrary,
carefully review your code for some time to see if there is room for improvement
or optimization. For example, are the names you used clear enough? The color of
a hidden cell is now named simply COLOR_CODE in board.dart, renaming it to
HIDDEN_CELL_COLOR_CODE makes its meaning explicit. The List used in the Cells
class can indicate that it is a List<Cell>, by applying the fact that Dart lists are
generic. The parameter of the every method in the Cell class is more precise—it
is a function that accepts a cell and returns bool. Our onMouseDown event handler
contains our game logic, so it is very important to tune it if possible. After some
thought we see that the code from the previous spiral can be improved; in the line
below the second condition after && is in fact unnecessary:

 if (cell.twin == lastCellClicked && lastCellClicked.shown) {...}

For code files of this section, refer to chapter 7\
educ_memory_game\spirals\s06 in the code bundle.

Building Games with HTML5 and Dart

[188]

When the player has guessed everything correctly, showing the completed screen
for a few seconds will be more satisfactory (line (2)). So, this portion of our event
handler code changes to:

if (cell.twin == lastCellClicked) { (1)
 lastCellClicked.hidden = false;
 if (memory.recalled) { // game over
 new Timer(const Duration(milliseconds: 5000), () =>
 memory.hide()); (2)
 }
} else if (cell.twin.hidden) {
 new Timer(const Duration(milliseconds: 800), () =>
 cell.hidden = true);
 }

And why not show a banner "YOU HAVE WON!"? We will do this by drawing the text
on the canvas (line (3)), so we must do it in the draw() method (otherwise, it would
disappear after INTERVAL milliseconds):

void draw() {
 _clear();
 _boxes();
 if (memory.recalled) { // game over
 context.font = "bold 25px sans-serif";
 context.fillStyle = "red";
 context.fillText("YOU HAVE WON !", boxSize, boxSize * 2); (3)
 }
}

Then the same game with the same configuration can be played again.

We could make it more obvious that a cell is hidden by decorating it with a small
circle in the _colorBox method (line (4)):

 if (cell.hidden) {
 context.fillStyle = HIDDEN_CELL_COLOR_CODE;
 var centerX = cell.column * boxSize + boxSize / 2;
 var centerY = cell.row * boxSize + boxSize / 2;
 var radius = 4;
 context.arc(centerX, centerY, radius, 0, 2 * PI, false); (4)
 }

Chapter 7

[189]

We do want to give our player a chance to start over by supplying a Play again
button. The easiest way is to simply refresh the screen (line (5)) by adding this
code to the startup script:

void main() {
 canvas = querySelector('#canvas');
 ButtonElement play = querySelector('#play');
 play.onClick.listen(playAgain);
 new Board(canvas, new Memory(4));
}

playAgain(Event e) {
 window.location.reload(); (5)
}

Spiral 7 – using images
One improvement that certainly comes to mind is use of pictures instead of colors, as
shown in the Using images screenshot. How difficult would that be? It turns out that
this is surprisingly easy because we already have the game logic firmly in place!

For code files of this section, refer to chapter 7\
educ_memory_game in the code bundle.

In the images folder, we supply a number of game pictures. Instead of the color
property we give the cell a String property (image), which will contain the name
of the picture file. We replace util\color.dart with util\images.dart, which
contains a variable imageList with the image filenames. In util\random.dart, we
replace the color methods with the following code:

String randomImage() => randomListElement(imageList);

Building Games with HTML5 and Dart

[190]

The changes to memory.dart are also straightforward: replace the usedColor
list with List usedImages = []; and the method _getFreeRandomColor with
_getFreeRandomImage, which uses the new list and method:

List usedImages = [];

String _getFreeRandomImage() {
 var image;
 do {
 image = randomImage();
 } while (usedImages.any((i) => i == image));
 usedImages.add(image);
 return image;
}

In board.dart, we replace _colorBox(cell) with _imageBox(cell). The only new
thing is how to draw the image on canvas. For this, we need ImageElement objects.
Here, we have to be careful to create these objects only once and not over and over
again in every draw cycle because this produces a flickering screen. We will store the
ImageElements object in a Map:

var imageMap = new Map<String, ImageElement>();

Then populate this in the Board constructor with a for…in loop over memory.cells:

 for (var cell in memory.cells) {
 ImageElement image = new Element.tag('img'); (1)
 image.src = 'images/${cell.image}'; (2)
 imageMap[cell.image] = image; (3)
 }

We create a new ImageElement object in line (1), giving it the complete file path to
the image file as a src property in line (2) and store it in imageMap in line (3). The
image file will then be loaded into memory only once. We don't do any unnecessary
network access and effectively cache the images. In the draw cycle, we load the
image from our imageMap and draw it in the current cell with the drawImage method
in line (4):

 if (cell.hidden) {
 // see previous code
 } else {
 ImageElement image = imageMap[cell.image];
 context.drawImage(image, x, y); // resize to cell size (4)
 }

Chapter 7

[191]

Using images

Perhaps you can think of other improvements? Why not let the player specify the
game difficulty by asking the number of boxes. It is 16 now. Check that the input
is a square of an even number. Do you have enough colors from which to choose?
Perhaps dynamically building a list with enough random colors is a better idea.
Calculating and storing the statistics discussed in the model would also make
the game more attractive. For ideas, see the Using an audio library – Collision clones
section. Another enhancement from the model is supporting different catalogs of
pictures. Exercise your Dart skills!

Building Games with HTML5 and Dart

[192]

Adding audio to a web page
HTML5 provides us with the <audio> element, which specifies a standard way to
embed an audio file on a web page. No more trouble in installing plugins in your
browsers! It needs a controls attribute to add audio controls, such as play, pause, and
volume (see the following screenshot):

The controls attribute

For code file for this section, refer to chapter 7\audio\
and chapter 7\audio_dart\ in the code bundle.

Of course, you also need to indicate where the browser can find the source of the
sound file through the <source> element and its src attribute. But, we all know that
media files come in different formats, such as MP3, WAV, and OGG. These are the
currently supported file formats, and only Chrome supports all three of them. The
format is described via the type attribute of <source>, as in type="audio/mpeg" for
MP3. Luckily, the <audio> element allows multiple <source> elements, so that we
can link to different audio file formats and the browser will use the first recognized
format. Try it out with audio00.html:

 <audio controls>
 <source src="dog.mp3" type="audio/mpeg" />
 <source src="dog.ogg" type="video/ogg" />
 The audio tag is not supported in your browser.
 Download the audio here.
 </audio>

Best practice is to provide both MP3 and OGG sources in
order to take full advantage of HTML5 audio. The browser
takes the first recognized format.

Chapter 7

[193]

Note that Dartium doesn't support the <audio> format MP3 with local sounds until
now. To set up HTML5 audio in the most robust manner, you can also add the
codecs info to the type attribute, as we did in audio01.html:

<source src="dog.ogg" type="audio/ogg; codecs='vorbis'" />

The source can also be a URL reference as in audio02.html:

src= "http://www.html5rocks.com/en/tutorials/audio/quick/test.mp3"

Refer to http://html5doctor.com/html5-audio-the-state-of-play/ to find out
more information. To use sound in from Dart is very easy too (see audio_dart), just
give the <audio> element an ID so that you can reference it from code like this

 AudioElement thip = querySelector('#thip');
 thip.play();

Now the sound file starts to play. We apply this to enhance our game—we play a
sound when two similar images are found and another when the memory is recalled
(in board.dart):

void onMouseDown(MouseEvent e) {
 // code left out
 if (cell.twin == lastCellClicked) {
 lastCellClicked.hidden = false;
 // play sound found same 2 images:
 AudioElement thip = querySelector('#thip');
 thip.play();
 if (memory.recalled) { // game over
 AudioElement fireballs= querySelector('#fireballs');
 fireballs.play();
 // code left out
}

For more serious sound applications, HTML5 introduced the Web Audio API.
Dart incorporated this in its dart:web_audio library. This package makes it
possible to process, mix, filter, and synthesize sound in your web applications.
A Dart game that uses this is Pop Pop Win, a MineSweeper variant by Kevin Moore.
You can play it at https://www.dartlang.org/samples/ and find the source at
https://github.com/dart-lang/pop-pop-win. You can find more detailed info
on Web Audio at http://www.html5rocks.com/en/tutorials/webaudio/intro/.

If you need less sophistication, you can use the simple_audio library written by John
McCutchan, you can find at https://github.com/johnmccutchan/simple_audio.

Building Games with HTML5 and Dart

[194]

The AudioManager class is the main entry point in this library. You can create
AudioClips and AudioSources with the manager and play clips from sources with
the manager. This library is used in the game Collision clones, which comes next.

Using an audio library – Collision clones
This game shows a field of moving cars of different sizes and colors. The player
controls the red car (initially at the top-left corner) through the mouse cursor.
The objective is to move the red car within the time limit with as few collisions as
possible. The lower the speed limit, the slower the cars. The game runs until the time
limit is over (in minutes). You will lose if the number of collisions during that time
is greater than the time elapsed in seconds. You win if you survive the time limit. If
the red car is hit, it shrinks to a small black car. In order to revive it, move the cursor
to one of the borders of the board. After a certain number of collisions, clone cars
appear. Here is a typical game screen:

Game screen collision clones

For code file of this section, refer to chapter 7\collision_clones
and chapter 7\car_collisions in the code bundle. You can also
get them from GitHub using the following commands:

git clone git://github.com/dzenanr/collision_clones.git

git clone git://github.com/dzenanr/car_collisions.git

Chapter 7

[195]

This is our first example of a web app where all code is assembled in a collision_
clones library that resides in its own lib folder. Because it is also stored in the
packages folder, it can be imported (line (1)) in the startup script web\collision_
clones.dart, where a new object of the class Board is created:

import 'package:collision_clones/collision_clones.dart'; (1)

main() {
 new Board();
}

Now, look at pubspec.yaml:

dependencies:
 browser: any
 simple_audio:
 git: https://github.com/johnmccutchan/simpleaudio.git

We see that the simple_audio library, which was briefly discussed at the end of the
Adding audio to a web page section, is also imported in the lib\collision_clones.
dart library file along with all the other constituent packages and source files:

library collision_clones;

import 'dart:html';
import 'dart:async';
import "dart:json";
import 'dart:math';
import 'package:simple_audio/simple_audio.dart';

part 'view/game_board.dart';
part 'model/cars.dart';
part 'model/score.dart';
part 'sound/audio.dart';
part 'util/color.dart';
part 'util/random.dart';

Again, the view class is called Board (in view\game_board.dart) and its
instantiation starts and animates the game. The viewable objects in this game are the
cars, and specifically the red car. They have corresponding classes in lib\model\
cars.dart and the Board class contains List<Car> and a variable redCar. Because
they share many properties, we let them both inherit from an abstract class Vehicle:

abstract class Vehicle
class Car extends Vehicle
class RedCar extends Vehicle

Building Games with HTML5 and Dart

[196]

The abstract class contains all that is needed to draw a car in its constructor and
the draw method: getting the canvas context, calculating a random position (x, y) and
color code, and the methods on the canvas context we saw in Chapter 5, Handling the
DOM in a New Way, are put to use. The draw method is given as follows:

draw() {
 context
 ..beginPath()
 ..fillStyle = colorCode
 ..strokeStyle = 'black'
 ..lineWidth = 2;
 roundedCorners(context, x, y, x + width, y + height, 10);
 context
 ..fill()
 ..stroke()
 ..closePath();
 // wheels
 context
 ..beginPath()
 ..fillStyle = '#000000'
 ..rect(x + 12, y - 3, 14, 6)
 ..rect(x + width - 26, y - 3, 14, 6)
 ..rect(x + 12, y + height - 3, 14, 6)
 ..rect(x + width - 26, y + height - 3, 14, 6)
 ..fill()
 ..closePath();
}

Every Car object has a different speed specified in its constructor: a random number
that is lower than the speed limit.

Car(canvas, speedLimit) : super(canvas) {
 var speedNumber = int.parse(speedLimit);
 dx = randomNum(speedNumber);
 dy = randomNum(speedNumber);
}

The Car class contains a move method, which is called from displayCars() in
Board, that changes the position (line (1)), taking into account that cars must bounce
from the borders (line(4)). In line (2) we test if the car referred to by this has had a
collision with the red car, and in line (3), we test if this car has had a collision with
the red car:

move(RedCar redCar, List<Car> cars) {
 x += dx; (1)
 y += dy;
 if (redCar.big) {

Chapter 7

[197]

 redCar.collision(this); (2)
 }
 for (Car car in cars) { (3)
 if (car != this) {
 car.collision(this);
 }
 }
 if (x > canvas.width || x < 0) dx = -dx; (4)
 if (y > canvas.height || y < 0) dy = -dy;
 }

The red car creates an AudioManager object (line (1) in the following code snippet)
in its constructor to make a sound when it collides with another car. The red car also
contains some Booleans to determine whether it is in its big or small state and when
it is movable. The onMouseDown and onMouseMove events are defined on document
property of canvas, and are also there in the red car constructor:

 RedCar(canvas) : super(canvas) {
 audioManager = new Audio().audioManager; (1)
 colorCode = bigColorCode;
 width = bigWidth;
 height = bigHeight;
 canvas.document.onMouseDown.listen((MouseEvent e) { (2)
 movable = !movable;
 if (small) {
 bigger();
 }
 });
 canvas.document.onMouseMove.listen((MouseEvent e) { (3)
 if (movable) {
 x = e.offset.x - 35;
 y = e.offset.y - 35;
 if (x > canvas.width) {
 bigger();
 x = canvas.width - 20;
 }
 // some code left out for brevity

The first event handler (line (2)) makes the red car movable after a click on the Play
button at the beginning of the game or after a click on the Stop button. The second
handler (line (3)) makes sure the red car is contained within the board's dimensions
and that it is revived at the limits of the board after a collision. When the red car
collides with another car, the collision method in RedCar invokes smaller():

smaller() {
 if (big) {
 small = true;

Building Games with HTML5 and Dart

[198]

 audioManager.playClipFromSourceIn(0.0, 'game', 'collision');
 colorCode = smallColorCode;
 width = smallWidth;
 height = smallHeight;
 collisionCount++;
 }
}

This plays a typical collision sound from web\sound\collision.ogg. We have
added an Audio class (in lib\sound\audio.dart) that wraps functionality from
the simple_audio library:

class Audio {
 AudioManager _audioManager;

 Audio() {
 _audioManager = new AudioManager('${demoBaseUrl()}/sound');
 AudioSource audioSource = _audioManager.makeSource('game');
 audioSource.positional = false;
 AudioClip collisionSound =
 _audioManager.makeClip('collision', 'collision.ogg');
 collisionSound.load();
 }
 // code left out
 AudioManager get audioManager => _audioManager;
}

The Board class constructs a Score object, a Red Car object, and the other cars.
Then displays them in displayCars() every INTERVAL milliseconds in line (1). In
line (2), the score is updated, displayed, and stored in local storage every ACTIVE
millisecond (see save() and load() in the class Score):

Board() {
 var bestScore = new Score();
 // code left out
 redCar = new RedCar(canvas);
 cars = new List();
 for (var i = 0; i < carCount; i++) {
 var car = new Car(canvas, score.currentSpeedLimit);
 cars.add(car);
 }
 // code left out
 // active play time:
 new Timer.periodic(const Duration(milliseconds: 1000), (t) {
 if (!stopped && redCar.big) { (2)
 // code left out
}

Chapter 7

[199]

Here is a portion of the displayCars() code:

displayCars() {
 // code left out
 clear(); // nested function !
 for (var i = 0; i <cars.length; i++) {
 cars[i].move(redCar, cars);
 cars[i].draw();
 }
 redCar.draw();
 // code left out

The Score class also contains supporting code to keep track of the counters. That's it,
you can find some suggestions for change or improvement in doc\todo.txt.

An important improvement can still be made. The Car class contains both state
information (position, color, and so on) as well as the way to draw itself. The model
should not concern itself with the user interface. This separation is achieved in
the car_collisions variant where everything related to drawing is moved to
the view class Board. Also, in this variant the built-in AudioElement class is used.
Compare both versions and see how the separation makes the project much easier to
understand and maintain.

Adding video to a web page
Adding video to a web page is as easy to do as adding audio: just add a <video>
tag to the HTML with an embedded <source> tag specifying src and type, and
Dartium renders this nicely (see video01.html):

<video poster="wildlife.jpg" controls>
 <source src="wildlife.ogv" type='video/ogg; codecs="theora,
vorbis"' />
 <source src="wildlife.webm" type='video/webm; codecs="vp8,
vorbis"' />
 The video tag is not supported in your browser. Download the
video here.
</video>

For code file of this section, refer to chapter 7\video\
in the code bundle.

Building Games with HTML5 and Dart

[200]

The poster attribute from <video> serves to provide the initial image, see the
following screenshot:

The poster image with the <video> tag

The three important formats you should care about are WEBM, MP4, and OGV. For
MP4, use the following type:

 type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'

Both <audio> and <video> support other attributes, such as autoplay and loop.

For more info, check the following link:
http://www.html5rocks.com/en/tutorials/video/basics/

Calling a video from Dart is nothing more than creating a VideoElement class
that references the <video> tag, as in video2.dart. The loop property shows the
video continuously:

 VideoElement video = querySelector('#video');
 video.loop = true;

Chapter 7

[201]

Summary
By thoroughly investigating two games applying all of Dart we have
already covered, your Dart star begins to shine. For other Dart games, visit
http://www.builtwithdart.com/projects/games/.

http://www.dartgamedevs.org/ is the site where you can find more information
about building games. In the next chapter, we embark on the quest for the holy grail
of modern web development: web components.

Developing Business
Applications with Polymer

Web Components
Web components are the hottest new thing where everybody is looking into and
working on in the web universe. We show you how they fit together with HTML5,
why they are needed in the web applications of the future, and how Dart brings this
to you through Polymer. The following topics will be covered:

• How web components change web development
• Web components with Polymer.dart
• Two-way data binding in Polymer.dart
• The polymer links project
• The category links project
• The project tasks application

Developing Business Applications with Polymer Web Components

[204]

How web components change web
development
Developers in object-oriented languages, such as Java (for example, in Swing) and
C# / VB.NET (for example, in Windows Forms, ASP.NET, WPF, and Silverlight)
are keen to apply inheritance and re-use the components of their app user interfaces
(in short UI). Controls are adapted to specific needs by extending basic UI classes,
and controls are assembled into reusable parts of screens (commonly user or custom
controls). Web developers want to be able to do the same: for example, extend
a <button> tag, or encapsulate a piece of markup for re-use, or have a simple
way to bind data to an HTML element. But until now this wasn't possible in web
development. This is exactly the promise of web components: extending HTML,
they bring to web development what OO-developers expect in their toolkit. Web
components enable you to specialize HTML elements with style and code, and W3C
is actively engaged in the standardization of this technology. They can be thought of
as extending (often they extend <div>, or <section> tags) or even as new
HTML elements: they create encapsulated reusable views to embed in several places
of your application or even across several applications. So web components give you
what you need in order to write data-driven scalable web applications, namely:

• Encapsulation: This is a concept in which structure, style, and behavior are
defined separate from the pages in which the component is used

• Reusability: This is used by importing components into web pages; a direct
consequence from encapsulation

• Data-binding: This is to view (one-way) and change (two-way) model data

The code that we need to write is considerably simplified: Dart doesn't manipulate
the DOM directly anymore. In effect, we won't need to write code referencing DOM
elements to get or change their value, nor do we need to register event handlers
in code as we did in Chapter 5, Handling the DOM in a New Way, and Chapter 6,
Combining HTML5 Forms with Dart.

The first package which the Dart team developed for this was named Web UI, and
some projects were built using it (see Chapter 10, MVC Web and UI Frameworks in
Dart – An Overview). However, in mid July 2013, the Dart team announced Polymer.
dart, a Dart port of the Polymer framework (http://www.polymer-project.org),
in close collaboration with the Google Polymer developers. The Polymer project is a
new library on top of Web (or Custom) Components, Model-Driven Views, Shadow
DOM, and many more emerging standards for the web platform to simplify and
improve the development process. Although the work is still in progress, Polymer
promises to provide a broad set of reusable custom components for developers.

Chapter 8

[205]

Web components with Polymer.dart
The Polymer.dart framework provides a set of Polymer (UI and other) components,
but it will only work in the most recent versions of browsers: IE9, IE10, Safari 6,
Firefox, and the latest Chrome (also for Android). It is important that in Polymer
you can only have a single Dart script tag on an HTML document. Get started with
creating a new Polymer application polymer1 by selecting the project template Web
application (using the polymer library) in Dart Editor:

A new Polymer application

Inspecting pubspec.yaml will reveal the polymer dependency:

dependencies:
 polymer: any

Pub is invoked automatically, and installs polymer and a whole group of packages
needed by polymer (such as mdv, observe, polymer_expressions, shadow_dom, and
so on). We'll now examine in detail how a web component is defined in Polymer.

Developing Business Applications with Polymer Web Components

[206]

Declaring and instantiating a web component
This is what we see when polymer1.html file is run: again a counter button, defined
as a web component (also called a Polymer element):

 The clickable counter in polymer1

The main polymer1.html file contains the following important sections:

 <link rel="import" href="clickcounter.html"> (1)
 <script type="application/dart">
 export 'package:polymer/init.dart'; </script> (2)
 <script src="packages/browser/dart.js"></script>
 </head>
 <body>
 <h1>Polymer1</h1>
 <p>Hello world from Dart!</p>
 <div id="sample_container_id">
 <click-counter count="5"></click-counter> (3)
 </div>
 </body>

In addition to the dart.js file we now need polymer/init.dart in line (2) to
initialize polymer elements automatically. Alternatively, if you do want to replace it
with your own Dart script, be sure to include a call to the initPolymer() method:

main() {
 initPolymer();
 doSomething();
}

In line (3), we see the web component <click-counter>, which as before is
imported through the <link rel ="import"> tag in line (1).

Chapter 8

[207]

A Polymer element definition should always be in its own HTML source
file. That way it is self contained, so it can easily be included by other files to
re-use it in other projects and changes have only to be done in one place.

The name of a component must contain a dash (-); in general, the first half of the name
should make it unique (for example, by including a project or a business name) so
as to avoid conflicts with the other components. Now, let's turn our attention to the
definition of the web component. The structure and style of the <click-counter> web
component is defined in clickcounter.html file inside a <template> in a <polymer-
element> tag whose name attribute in line (4) is the name of the web component:

<polymer-element name="click-counter"> (4)
 <template>
 <style>
 div {
 font-size: 24pt;
 text-align: center;
 margin-top: 140px;
 }
 button {
 font-size: 24pt;
 margin-bottom: 20px;
 }
 </style>
 <div>
 <button on-click="{{increment}}">Click me</button>
 (5)
 (click count: {{count}}) (6)
 </div>
 </template>
 <script type="application/dart"
 src="clickcounter.dart"></script> (7)
</polymer-element>

In general, the <template> section contains markup outlining the UI appearance of
the web component. We observe that an HTML file containing a Polymer element
definition does not need <html>, <head>, or <body> tags. Line (5) shows that
<click-counter> is a button that reacts on the click event by calling an increment
method. Line (6) tells us that a count variable is shown with the polymer expression
{{count}}. This is the typical syntax {{ expression }} used for data binding to an
expression, but as shown in line (5), an event handler is called in the same way.

Developing Business Applications with Polymer Web Components

[208]

The behavior of the component is defined in the Dart script clickcounter.dart
referenced in the <script> tag in line (7). This does a lot of things:

import 'package:polymer/polymer.dart'; (8)
@CustomTag('click-counter') (9)
class ClickCounter extends PolymerElement { (10)
 @published int count = 0; (11)
 ClickCounter.created() : super.created() { } (12)
 void increment() { (13)
 count++;
 }
}

In line (8), the polymer package is imported, @CustomTag in line (9) registers
click-counter as an element in the Polymer framework. Our model is
represented by the ClickCounter class in line (10), which has to inherit from the
PolymerElement class and override its created() constructor in line (12). This is
because Polymer Elements are legitimate HTML elements. Note that the name of the
Dart class is obtained after converting the first letter of each word separated by - to
an uppercase letter, and then removing the -. The Polymer framework provides for
synchronization of the model with screen data. In this case, it is the count variable
that is annotated with @published in line (11) to indicate the simple, one-way
(model to screen) data binding. Finally, it contains the increment method in line
(13), which is called at each button click; this will increase the count variable by 1.
This change will automatically be shown on the web page. In general, the Dart script
implements the behavior of the component and can change (model) data. Each time
a custom element is instantiated as in line (3) in the polymer1.html file, an instance
of the Dart class is created and associated with the custom element. Data bindings in
the template are bound to fields in that instance.

As a best practice, a web component has two files to separate the
HTML markup from the Dart code. In some simple examples, you
will see the code embedded in the <script> tag in the HTML file,
but this is not recommended. When both files have the same name,
it is easier to recognize them as parts of the same component.

Chapter 8

[209]

Developing web applications with web components is a new approach that will
let us divide a page in sections and use a web component for each section. If web
components become reusable in different contexts, we may have a catalog of web
components that would allow us to select and re-use them in a few lines of code.
A page can also contain multiple instances of the same component, each behaving
independently from each other. A polymer element is like a supercharged custom
element, with functionality provided by the Polymer framework. It automatically
allows for simple component registration, and uses the Shadow DOM. This means
that its markup is hidden in the web page in which it is embedded, thus providing
encapsulation by itself. Polymer uses composability of elements as much as possible,
to the extent that the framework advocates proclaim that everything is a component
in Polymer. Let's now examine data binding a bit closer.

Two-way data binding in Polymer.dart
Model Driven View (MDV) is a set of techniques to help you bind data to your
views, in a more direct way than we did in Chapter 6, Combining HTML5 Forms with
Dart. The idea here is simple:

• We have one or more classes (with properties) in a model
• Our app contains one or more views (implemented as web components) for

presenting the model's data (the data binding)

For code files of this section, refer to code\chapter_8\
bank_terminal in the code bundle.

Data binding can be a one-way (model to view) with or without observing
(monitoring) changes in the model: this means data from our model (a variable
or a method that returns a value) is shown (read-only) on the page and we do
this by writing {{var}} in the web page and marking the variable var in code
as: @observable var. When its value changes, the altered value is shown in the
web page. In general, you can show any Dart expression with the notation {{
expression }}, but be careful that the expression doesn't cause any unwanted side
effects by changing variables. Use @published var when var is also an attribute in a
tag. Data binding can also be two-way (model to view and view to model): meaning
data can be shown, but input from the web page also changes Dart variables. In other
words, the data and the web page are then synchronized.

Developing Business Applications with Polymer Web Components

[210]

Data binding combined with event listeners allows us to create simple and
sophisticated views for our model in a declarative way, thereby reducing the need
for manually creating controller objects that do these bindings. They can be exploited
fully only as part of web components, that is to say, polymer elements, and that's
what we will do in the following projects in this chapter. Let's apply this first to our
bank terminal project; we now build a form that also takes an input amount that
is deposited on our account, changing the balance on the screen as shown in the
following screenshot:

Two-way data binding

The startup page bank_terminal.html shows a web component
<bank-app> through:

 <h1>Bank Terminal</h1>
 <bank-app></bank-app>

This web component is linked in with: <link rel="import" href="bank_app.
html">. Our component uses the following markup in bank_app.html file to show
the data:

<polymer-element name="bank-app">
 <link rel="import" href="bank_account.html">
 <template>
 <bank-account bac="{{bac}}"></bank-account> (1)
 </template>
 <script type="application/dart" src="bank_app.dart">
 </script> (2)
</polymer-element>

Chapter 8

[211]

In the template in line (1), a second polymer element named <bank-account> is
instantiated. The script bank_app.dart publishes and initializes the BankAccount
object bac in lines (3) and (4) respectively:

import 'package:polymer/polymer.dart';
import 'package:bank_terminal/bank_terminal.dart';
@CustomTag('bank-app')
class BankApp extends PolymerElement {
 @published BankAccount bac; (3)
 BankApp.created() : super.created() { }
 enteredView() {
 super.enteredView();
 var jw = new Person("John Witgenstein");
 bac = new BankAccount(jw, "456-0692322-12", 1500.0); (4)
 }
}

To do this, we have to override the enteredView method of the PolymerElement
class, and is called when the element is inserted into the document. The bac object
is passed to web component <bank-account> in line (1)in the preceding code. The
markup of this component is found in the bank_account.html file:

 <polymer-element name="bank-account">
 <style> // left out
 <template>
 <table class="auto-style1" on-keypress="{{enter}}>
 <tr>
 <td class="auto-style2">Number</td>
 <td> {{ bac.number }} </td> (1)
 </tr>
 <tr>
 <td class="auto-style2">Owner</td>
 <td> {{ bac.owner.name}} </td> (2)
 <td></td>
 </tr>
 <tr>
 <td class="auto-style2">Starting balance</td>
 <td> {{bac.balance}}</td>
 </tr>
 <tr>
 <td class="auto-style2"> After transaction:</td>
 <td> {{balance}}</td> (3)
 </tr>

Developing Business Applications with Polymer Web Components

[212]

 <tr>
 <td class="auto-style2">Amount transaction</td>
 <td><input id="amount" type="text"/></td> (4)
 <td></td>
 </tr>
 <tr>
 <td><button class="btns" on-click="{{transact}}"> (5)
 Transaction</button></td>
 </tr></table></template>
<script type="application/dart" src="bank_account.dart"></script>

Because the bac object is bound to the component, its properties can be shown like
bac.number in line (1), or even nested properties like in line (2). In line (4), we
take in a money amount, which is bound to a variable with the same name in line
(13) in the accompanying script bank_account.dart (see the following code). A
click on the button in line (5) starts the transact event handler in line (11), which
changes the balance in line (12). To show balance in line (3), we need to mark it
as @published in line (9). In lines (6) to (8), we see the required code to define a
Polymer web component. Line (10) shows the BankAccount.created constructor,
which our web component has to override from the PolymerElement class:

import 'dart:html';
import 'package:polymer/polymer.dart'; (6)
@CustomTag('bank-account') (7)
class BankAccount extends PolymerElement { (8)
 @published var bac;
 @published double balance; (9)
 double amount = 0.0;
 BankAccount.created() : super.created() { } (10)
 enteredView() {
 super.enteredView();
 balance = bac.balance;
 }
 transact(Event e, var detail, Node target) { (11)
 InputElement amountInput =
 shadowRoot.querySelector("#amount");
 if (!checkAmount(amountInput.value)) return;
 bac.transact(amount);
 balance = bac.balance; (12)
 }

Chapter 8

[213]

 enter(KeyboardEvent e, var detail, Node target) {
 if (e.keyCode == KeyCode.ENTER) {
 transact(e, detail, target);
 }
 }
 checkAmount(String in_amount) {
 try {
 amount = double.parse(in_amount); (13)
 } on FormatException catch(ex) {
 return false;
 }
 return true;
 }
}

Creating the polymer_links project
Get the code with: git clone git://github.com/dzenanr/polymer_links.git.
We start our discussion with the first spiral in this project: polymer_links\
polymer_links_s01.

Spiral s01
In this spiral, we just show a web component that contains a list of links of type
String, as shown in the following screenshot:

Spiral s01 of polymer_links

The startup HTML page polymer_links.html imports the web component with:

 <link rel="import" href="links.html">

The component with name web-links is instantiated in the <body> tag of the page:

 <h1>Web Links</h1>
 <web-links></web-links>

Developing Business Applications with Polymer Web Components

[214]

The links.html file contains the UI definition of the component:

<polymer-element name="web-links">
 <template> (1)

 <template repeat="{{webLink in webLinks}}"> (2)

 (3)
 {{webLink}}

 </template>

 </template>
 <script type="application/dart" src="links.dart"></script> (4)
</polymer-element>

The outer template in line (1) is required. The template in line (2) uses a repeat
statement to iterate over the list webLinks: repeat="{{webLink in webLinks}}.
The variable webLink takes on the value of each list item in succession, and is shown
through {{webLink }} on the next line. The list is constructed in the links.dart
script referenced in line (4):

import 'package:polymer/polymer.dart';
@CustomTag('web-links')
class WebLinks extends PolymerElement {
 List webLinks =
 ['http://ondart.me/',
 'https://www.dartlang.org/polymer-dart/'];
 WebLinks.created() : super.created();
}

Spiral s02
Now, we base the web component on a model with one simple concept: a web link.
This has two attributes: a name and a url. The class Link is defined in lib\links.
dart:

library links;
class Link {
 String name;
 Uri url;
 Link(this.name, String link) {
 url = Uri.parse(link);
 }
}

Chapter 8

[215]

It is a best practice to put our model in its own library links in a separate lib folder.
The Polymer framework is based on the statement: everything is a component. This
implies that it is recommended to create a component for the HTML page that starts
the application and this is what we do here. We now introduce a web component
<my-app></my-app> in polymer_links.html that encapsulates the user interface
and is also imported through a <link> tag: <link rel="import" href="my_app.
html">. We show all our links as a <web-links> component in my_app.html, so
component <web-links> is embedded in <my-app>:

<polymer-element name="my-app">
 <link rel="import" href="web_links.html">
 <template>
 <web-links weblinks="{{links}}"></web-links> (1)
 </template>
 <script type="application/dart" src="my_app.dart"></script>
</polymer-element>

This component in its turn is defined in web_links.html and web_links.dart.

Name the definition files of the web component like
the component, replacing - with _ . This keeps a more
complex project with different components structured.

In the my_app.dart file, we find the code for the <my_app> component that
constructs a links collection named links:

import 'package:polymer_links/links.dart';
import 'package:polymer/polymer.dart';
@CustomTag('my-app')
class MyApp extends PolymerElement {
 var links = new List<Link>();
 MyApp.created() : super.created() {
 var link1 = new Link('On Dart', 'http://ondart.me/');
 var link2 = new Link('Polymer.dart'
'https://www.dartlang.org/polymer-dart/');
 var link3 = new Link('Books To Read',
 'http://www.goodreads.com/');
 links..add(link1)..add(link2)..add(link3); (2)
 }
}

Developing Business Applications with Polymer Web Components

[216]

Our component <web-links> is now instantiated through the template in line
(1) in the preceding code; it needs a links variable, which is made in the MyApp
constructor in line (2).

The web component in web_links.html also uses the repeating template introduced
in spiral s01, but now shows the names of the links:

 <template repeat="{{weblink in weblinks}}">

 {{weblink.name}}

 </template>

The web_links.dart file now also imports our model from the links library and
annotates the weblinks variable with @published in line (3) to show its contents:

import 'package:polymer_links/links.dart';
import 'package:polymer/polymer.dart';
@CustomTag('web-links')
class WebLinks extends PolymerElement {
 @published List<Link> weblinks; (3)
 WebLinks.created() : super.created();
}

When you run the preceding code, it looks like the following screenshot:

Spiral s02 of polymer_links

Apart from some added style in spiral s03, the <web-links> component is identical
to that in spiral s02.

Chapter 8

[217]

Spiral s04
In this spiral, we also provide the possibility to add a web link by the user:

Adding a web link

A new link has to be shown; in order to accomplish this, we have to mark the list
with toObservable in my_app.dart file:

 var links = toObservable(new List<Link>());

The definition of the web links component in the web_links.html file now contains
additional UI markup in its <template> tag to enable adding links:

 <div>
 <label for="name">Name</label>
 <input id="name" type="text"/>
 <label for="url">web Link</label>
 <input id="url" type="text"/>

 <button on-click="{{add}}" class="button">Add</button> (1)
 <label id="message"></label>
 </div>
 <!-- repeating template --> </template>
 <script type="application/dart" src="web_links.dart"></script>

The add behavior from line (1) is found in the script web_links.dart:

add(Event e, var detail, Node target) { (2)
 InputElement name = shadowRoot.querySelector("#name"); (3)
 InputElement url = shadowRoot.querySelector ("#url");
 LabelElement message = shadowRoot.querySelector ("#message");
 var error = false;
 message.text = '';
 if (name.value.trim() == '') {
 message.text = 'name is mandatory; ${message.text}';
 error = true;
 }

Developing Business Applications with Polymer Web Components

[218]

 if (url.value.trim() == '') {
 message.text = 'web link is mandatory; ${message.text}';
 error = true;
 }
 if (!error) {
 var weblink = new Link(name.value, url.value);
 weblinks.add(weblink); (4)
 }
 }

Notice how in line (1) the add event handler is called in {{ }}, and in line (2)
we can see that it has three arguments: the third one is a direct reference to the
target element on which the event happened. In lines (3) and the following, we
see how to get a reference to the inner markup of a web component. The familiar
querySelector method call is now preceded by shadowRoot:

 shadowRoot.querySelector("#name");

Spiral s05
In spiral s05, we add the functionality to store our web links in local storage by
adding the code needed to load and save data to the model. The save functionality is
implemented in the web_links.dart script of the <web-links> component. In the
preceding code after line (4), we now add:

 if (!error) {
 // previous code
 save();
}
and this save-method:
save() {
 window.localStorage['polymer_links'] =
 JSON.encode(Model.one.toJson());
}

We want to save our data in JSON format. To this end, our model class Link needs to
know how to transform itself in a Map (with a toJson method) or to construct itself
from a Map (using the Link.fromJson constructor).

Map<String, Object> toJson() {
 var linkMap = new Map<String, Object>();
 linkMap['name'] = name;
 linkMap['url'] = url.toString();
 return linkMap;
}

Chapter 8

[219]

Link.fromJson(Map<String, Object> linkMap) {
 name = linkMap['name'];
 url = Uri.parse(linkMap['url']);
}

Instead of always using List<Link>, let's introduce a Model class that envelops such
a List using a singleton design pattern in line (1) (see lib\links.dart):

class Model {
 var links = new List<Link>();
// singleton design pattern:
 // http://en.wikipedia.org/wiki/Singleton_pattern
 static Model model;
 Model.private();
 static Model get one { (1)
 if (model == null) {
 model = new Model.private();
 }
 return model;
 }
 init() {
 var link1 = new Link('On Dart', 'http://ondart.me/');
 var link2 = new Link('Web UI',
 'http://www.dartlang.org/articles/web-ui/');
 var link3 = new Link('Books To Read',
 'http://www.goodreads.com/');
 Model.one.links
 ..add(link1);
 ..add(link2);
 ..add(link3);
 }
 List<Map<String, Object>> toJson() {
 var linkList = new List<Map<String, Object>>();
 for (Link link in links) {
 linkList.add(link.toJson()); (2)
 }
 return linkList;
 }
 fromJson(List<Map<String, Object>> linkList) {
 if (!links.isEmpty) {
 throw new Exception('links are not empty');
 }
 for (Map<String, Object> linkMap in linkList) {
 Link link = new Link.fromJson(linkMap); (3)
 links.add(link);
 }
 }
}

Developing Business Applications with Polymer Web Components

[220]

The Model class also has toJson and fromJson methods, applying the
corresponding methods for Link class while iterating over its internal list of Link
objects, see lines (2) and (3) in the preceding code. The constructor MyApp()
method in my_app.dart first creates a list in line (4), and then calls the load()
method in line (5) to read the data from local storage:

MyApp.created() : super.created() {
 toObservable(Model.one.links); (4)
 load(); (5)
}
load() {
 String json = window.localStorage['polymer_links'];
 if (json == null) {
 Model.one.init(); (6)
 } else {
 Model.one.fromJson(JSON.decode(json)); (7)
 }
}

If nothing was stored yet, the Model object is initialized via the init() method in
line (6), else it is parsed from local storage in line (7). In line (4), something special
happens: We apply the singleton pattern to make sure that we only have one object
of Model class ever. The getter one in line (1) in the Model class only constructs an
object when model is null, and this object is always returned. Because there is only
one model object, we can safely refer to the unique links object of the model to feed
links within the web component's Dart code.

Spiral s06
Here the possibility is added to remove links, as shown in the following screenshot:

Removing a web link

Chapter 8

[221]

A second button is placed inside the <template> tag of the <web-links>
component:

<button on-click="{{delete}}" class="button">Remove</button>

The delete method is implemented in the script of the web_links.dart component:

 delete(Event e, var detail, Node target) {
 InputElement name = shadowRoot.querySelector("#name");
 InputElement url = shadowRoot.querySelector ("#url");
 LabelElement message = shadowRoot.querySelector("#message");
 message.text = '';
 Link link = links.find(name.value);
 if (link == null) {
 message.text = 'web link with this name does not exist';
 } else {
 url.value = link.url.toString();
 if (links.remove(link)) save(); (8)
 }
 }

It calls in line (8) a remove method in the updated Links class in lib\links.dart.
The Model class now encapsulates:

 var links = new Links();

Instead of:

 var links = new List<Link>();

The Links class now contains:

 var _list = new List<Link>();

The remove method goes like this:

bool remove(Link link) {
 return _list.remove(link);
}

It also has a getter for the private List _list:

 List<Link> get internalList => _list;

This is now called in MyApp.created() as follows:

 toObservable(Model.one.links.internalList);

Developing Business Applications with Polymer Web Components

[222]

Using Polymer for the category
links project
On top of the Category Links model that was discussed in Chapter 4, Modeling Web
Applications with Model Concepts and Dartlero (the model is contained in the lib
folder), we will now build a typical master-detail screen to present and change its
data using web components for displaying, adding, editing, removing, and saving
data, as shown in the following screenshot:

Get the code with: git clone git://github.com/
dzenanr/polymer_category_links.git

The category_links application

Chapter 8

[223]

In the final spiral, there are three web components per concept of the model: table
(for a list), add (to add an element to the list), and edit (to edit an element of the list);
they can be found in the web\component folder. In spiral s00, only the Category entity
is defined as ConceptEntity together with its collection Categories. The script test\
categories_entities_test.dart applies unittest on this model. In spiral s01, we
build a component for the Category entity: this is the first step towards the upper part
of the preceding screenshot. In this spiral, we only show a table with the category data,
using a <category-table> web component, as shown in the following screenshot:

Category_links spiral s01

The polymer_category_links.html page exposes a <polymer-app> web
component defined in the polymer_app.html file:

 <polymer-element name="polymer-app">
 <link rel="import"
 href="component/category/category_table.html"> (1)
 <template>
 <category-table categories="{{categories}}">
</category-table> (2)
 </template>
 <script type="application/dart"
 src="polymer_app.dart"></script>
</polymer-element>

Developing Business Applications with Polymer Web Components

[224]

This contains the <category-table> component in line (2) that shows the data
from the collection categories, which is made and filled with data in line (4) in
polymer_app.dart:

import 'package:polymer_category_links/category_links.dart'; (3)
import 'package:polymer/polymer.dart';
@CustomTag('polymer-app')
class PolymerApp extends PolymerElement {
 @observable Categories categories;
 PolymerApp.created() : super.created() {
 var categoryLinksModel = new CategoryLinksModel();
 categoryLinksModel.init(); (4)
 categories = categoryLinksModel.categories;
 }
}

Line (3) imports the model. The categories variable in the <category-table>
component gets its value from the {{ categories }} polymer expression, where
the categories object in the expression is the property of the <polymer-app>.

In this way, data from the application is passed to the web component. The
<category-table> component is imported through line (1), and is defined in the
category_table.html file:

<polymer-element name="category-table">
 <template>
 // <style> markup omitted
 <table>
 <caption class="marker">
 Categories
 </caption>
 <tr>
 <th>Name</th>
 <th>Description</th>
 </tr>
 <tbody template repeat="{{category in
 categories.toList()}}"> (5)
 <tr>
 <td>{{category.code}}</td>
 <td>{{category.description}}</td>
 </tr>
 </tbody>
 </table>
 </template>
 <script type="application/dart" src="category_table.dart"></script>
</polymer-element>

Chapter 8

[225]

The repeat-template in line (5) iterates through the List to show the categories
declared in the category_table.dart file:

import 'package:polymer_category_links/category_links.dart';
import 'package:polymer/polymer.dart';
@CustomTag('category-table')
class CategoryTable extends PolymerElement {
 @published Categories categories;
 CategoryTable.created() : super.created();
}

In spirals 02, the application is enriched with the add functionality, as shown in the
following screenshot:

Category_links spiral s02

This is achieved through a <category-add> component that is embedded in the
<category-table> component, and that is only shown when showAdd is true:

 <template if="{{showAdd}}">
 <category-add
 categories="{{categories}}">
 </category-add>
 </template>

In the Categories caption (in the table header), a button is added to toggle the
appearance of the add component:

<button id="show-add" on-click="{{show}}">Show Add</button>

Developing Business Applications with Polymer Web Components

[226]

The button is monitored by the Boolean variable showAdd, marked as observable in
the script:

 @observable bool showAdd = false;
 show(Event e, var detail, Node target) {
 ButtonElement addCategory = shadowRoot.querySelector("#show-
 add");
 if (addCategory.text == 'Show Add') {
 showAdd = true;
 addCategory.text = 'Hide Add';
 } else {
 showAdd = false;
 addCategory.text = 'Show Add';
 }
 }

Now the categories data can change, so we must mark it as observable. This is done
in polymer_app.dart through:

categories.internalList = toObservable(categories.internalList);

This internalList is a property of the ConceptEntities class in the Dartlero
model and inherited by the Categories class. It is now shown in category-table
through the following code:

 <tbody template repeat="{{category in
 categories.internalList}}">
 <tr>
 <td>{{category.code}}</td>
 <td>{{category.description}}</td>
 </tr>
 </tbody>

Chapter 8

[227]

Our add component defined in the \category_add.html component contains two
input text fields and an Add button with an add event handler, that checks whether
a name is given and that the category is not yet in use. The code property is inherited
from ConceptEntity in Dartlero and used as a category name; the inherited add
method checks that the code is unique. Here is the code from category_add.dart:

add(Event e, var detail, Node target) {
 InputElement code = shadowRoot.querySelector("#code");
 InputElement description = shadowRoot.querySelector
 ("#description");
 Element message = shadowRoot.querySelector("#message");
 var error = false;
 message.text = '';
 if (code.value.trim() == '') {
 message.text = 'category name is mandatory;
 ${message.text}';
 error = true;
 }
 if (!error) {
 var category = new Category();
 category.code = code.value;
 category.description = description.value;
 if (categories.add(category)) {
 message.text = 'added';
 categories.order();
 } else {
 message.text = 'category name already in use';
 }
 }
 }

Spiral s03 adds an Edit functionality analogous to Add. This is achieved by a
second embedded web component <category-edit>, again shown through a
conditional template:

 <template if="{{showEdit}}">
 <category-edit categories="{{categories}}"
 category="{{category}}">
 </category-edit>
 </template>

Developing Business Applications with Polymer Web Components

[228]

Here, the categories and category properties of the category table component
are passed to the <category edit> component by using the {{categories}} and
{{category }} expressions. We also add a new button in the table row:

 <td><button on-click="{{edit}}" category-
 code={{category.code}}>Edit</button></td>

This button has the following event-handler:

 edit(Event e, var detail, Element target) {
 String code = target.attributes['category-code']; (1)
 category = categories.find(code);
 showEdit = true;
 }

Notice how we get the category code as the value of an attribute in line (1). The
edit component is defined in component\category_edit.html. It is nearly
identical to the add component , but the Name field is read-only. The following is a
snippet of the HTML code:

 <input readonly="true" value="{{category.code}}"/>

 <input id="{{category.code}}-description"
 type="text" size="96" value="{{description}}"/> (2)

To be able to change the description, we have to use a description variable in
line (2), that is marked as @published and set to the category description in the
enteredView method in category_edit.dart in line (3):

@published String description;
 CategoryEdit.created() : super.created();
 enteredView() {
 super.enteredView();
 description = category.description; (3)
 }

The Update button calls the corresponding method in the same script:

 update(Event e, var detail, Node target) {
 category.description = description;
 categories.order(); (4)
 var polymerApp = querySelector('#polymer-app');
 var categoryTable =
 polymerApp.shadowRoot.querySelector('#category-
 table'); (5)
 categoryTable.showEdit = false; (6)
 }

Chapter 8

[229]

The sorting of categories in line (4) is also needed to show the new description. A
previously instantiated web component can also be retrieved by querySelector.
Line (5) uses this to toggle the appearance of the edit component in line (6).

Adding local storage
Spiral s04 adds persistency to the browser local storage; our model Category
class implements the necessary toJson and fromJson methods. In the body of the
<polymer-app> component, a Save button is added, coupled to a save() method in
polymer_app.dart:

save(Event e, var detail, Node target) {
 window.localStorage['polymer_category_links'] =
 JSON.encode(categories.toJson());
 }

The data is read from local storage in the constructor of the <polymer-app>
component in line (1) in the following code (see polymer_app.dart):

PolymerApp.created() : super.created() {
 var categoryLinksModel = new CategoryLinksModel();
 categories = categoryLinksModel.categories;
 String json = window.localStorage['polymer_category_links']; (1)
 if (json == null) {
 categoryLinksModel.init();
 } else {
 categories.fromJson(JSON.decode(json));
 }
 categories.internalList = toObservable(categories.internalList);
}

If the data is not in local storage, the init() method is called, and the model is
populated. Spiral s04 also adds a Remove functionality through a new button in
every table row, which invokes the following method in category_table.dart:

delete(Event e, var detail, Element target) {
 String code = target.attributes['category-code'];
 category = categories.find(code);
 categories.remove(category);
}

Developing Business Applications with Polymer Web Components

[230]

Now how about viewing the links for each category? This is taken care of in spiral
s05, first by adding the Link and Links classes to our model in lib\model\link_
entities.dart. Being good Dartlero citizens, they know to construct themselves
fromJson method and deconstruct toJson method, so they are ready for (local
storage) persistence. Test programs are also provided in test\model. When the app
is run, a Show button is added to every category row. If this is clicked, a new web
component <link-table> appears with the links of the selected category shown;
this was added to <category-table>. This can be seen in the Category_links spiral s01
screenshot, where the Web Link column contains real hyperlinks.

 <template if="{{showCategoryLinks}}">
 <link-table category="{{category}}"></link-table> (2)
 </template>

Here is the code for the Show button:

 <button on-click="{{showLinks}}" category-
 code={{category.code}}>Show</button>

When clicked, the method showLinks from category_table.dart is executed:

 showLinks(Event e, var detail, Element target) {
 String code = target.attributes['category-code'];
 ButtonElement categoryLinks = target;
 if (!showCategoryLinks && categoryLinks.text == 'Show') {
 showCategoryLinks = true;
 category = categories.find(code);
 categoryLinks.text = 'Hide';
 } else if (showCategoryLinks && categoryLinks.text == 'Hide')
 {
 showCategoryLinks = false;
 categoryLinks.text = 'Show';
 }
 }

This code toggles the appearance of the <link-table> component in line (2) in
the preceding code, which also passes the category variable; the <link-table>
component gets this value in its enteredView() method in link_table.dart:

class LinkTable extends PolymerElement {
 @published Category category;
 @published Links links;
 @observable bool showAdd = false;
 enteredView() {
 super. enteredView();
 links = category.links;
 links.internalList = toObservable(links.internalList);
 }

Chapter 8

[231]

The links are shown in a repeating template in the link_table.html file:

 <tbody template repeat="{{link in links.internalList}}">
 <tr>
 <td>

 {{link.code}}

 </td>
 <td>{{link.description}}</td>
 </tr>
 </tbody>

This web component <link-table> also has a Show Add button to activate a
<link-add> component in a conditional template. This is shown when @observable
bool showAdd becomes true and toggled in the code of the show method of the
LinkTable class.

The link-add web component is very similar to category-add, so with what we
discussed here, you should be able to analyze the code for yourself.

Spiral s06 introduces the edit functionality for links through a new <link-edit>
component and finally in spiral s07; you can remove links from a category. Now you
have now all the knowledge to understand the code in these last spirals completely.
Moreover, you are now able to apply the model and build a web components app for
every (1-n) relation between data, such as Departments and Employees, or Orders
and Order Details. We now look at using web components in a (n-m) or many-to-
many relationship.

Applying web components to the project
tasks app
(Get the code with: git clone git://github.com/dzenanr/polymer_project_
tasks.git)

The model that forms the basis for this app is a typical many-to-many relationship
between the two entry concepts Project and Employee: a project has many
employees, and an employee works on many projects. The many-to-many
relationship between Project and Employee is normalized into two one-to-many
relationships by introducing the intermediary Task concept, a Project consists of
many Tasks and an Employee has many Tasks:

Project (1-n) Task and Employee (1-n) Task

Developing Business Applications with Polymer Web Components

[232]

A Project has a name (its ID), a description, and a Tasks collection. An Employee
has an email (its ID), a lastName and a firstName (both required), and a Tasks
collection. A Task has a project, an employee, and a description: its ID is composed
of the IDs of Project and Employee, so an employee can only have at most one task
in a project. The code for this model is based on the Dartlero framework and can be
found in the lib\model folder. If you want to avoid redundancy, one relationship
must be internal and the other one should be external; this is a subjective decision.
Let's say that we will start more often with projects, find a project and display its
tasks. In that case, the Project (1-n) Task relationship is internal. This means that you
will have two hierarchical structures: projects with their tasks and employees only
(employees without tasks). In each task, you will have a reference to its employee.
The data could be saved as two JSON documents in two different files or in local
storage under two different keys. You can see the difference in code by looking at the
toJson methods, for Project in the projects.dart file:

Map<String, Object> toJson() {
 Map<String, Object> entityMap = new Map<String, Object>();
 entityMap['code'] = code;
 entityMap['name'] = name;
 entityMap['description'] = description;
 entityMap['tasks'] = tasks.toJson(); // saving tasks
 return entityMap;
 }

Compared this with the same method for Employee in the employee.dart file:

Map<String, Object> toJson() {
 Map<String, Object> entityMap = new Map<String, Object>();
 entityMap['code'] = code;
 entityMap['lastName'] = lastName;
 entityMap['firstName'] = firstName;
 entityMap['email'] = email;
 return entityMap;
 }

(the same is true for the fromJson methods).

When you load data, you need to recreate the Employee (1-n) Task relationship
in both directions, by using the employee email in each task. After the load, all
relationships become internal and there are no reference IDs in the model (no
employee email in every task, only employee and project properties), which means
that the model in main memory is an object model. On start-up, our app instantiates
the <polymer-app> component in the polymer_project_tasks.html file, which
fires the PolymerApp.created() constructor. Here, the model objects are created
and the data is either loaded from local storage; or if data was not saved yet, it is
initialized by calling the tasksModel.init() method:

Chapter 8

[233]

 static const String EMPLOYEE_TASKS = 'polymer-employee-tasks';
 static const String PROJECT_TASKS = 'polymer-project-tasks';
PolymerApp.created() : super.created() {
 tasksModel = TasksModel.one();
 employees = tasksModel.employees;
 projects = tasksModel.projects;
 // tasksModel.init() // comment load to reinit
 load();
 employees.internalList= toObservable(employees.internalList);(1)
 projects.internalList = toObservable(projects.internalList); (2)
}
load() {
 loadEmployees();
 loadProjects();
}
loadEmployees() {
 String json = window.localStorage[EMPLOYEE_TASKS];
 if (json == null) {
 tasksModel.init();
 } else {
 employees.fromJson(JSON.decode(json));
 }
 employees.order();
}
loadProjects() {
 String json = window.localStorage[PROJECT_TASKS];
 if (json != null) {
 projects.fromJson(JSON.decode(json));
 }
 projects.order();
}

Lines (1) and (2) are necessary so that the web components show employee or
project updates when a new employee or project is added or removed: the List is
observed by toObservable. The web component defined in the polymer_app.html
file shows a Save button:

<button on-click="{{save}}">Save</button>

Developing Business Applications with Polymer Web Components

[234]

The save() method is also contained in the polymer_app.dart file and saves the
data in local storage:

save(Event e, var detail, Node target) {
 saveEmployees();
 saveProjects();
}
saveEmployees() {
 window.localStorage[EMPLOYEE_TASKS] = JSON.
encode(employees.toJson());
}
saveProjects() {
 window.localStorage[PROJECT_TASKS] = JSON.encode(projects.
toJson());
}

The initial screen shows all Projects and all Employees as shown in the
following screenshot:

Start-up of app Project Tasks

Here we use two web components: <project-table> and <employee-table>:

 <project-table id="project-table"
 projects="{{ projects }}">
 </project-table>
 <employee-table id="employee-table"
 employees="{{ employees }}">
 </employee-table>

Chapter 8

[235]

They are imported through:

 <link rel="import" href="component/employee/employee_table.html">
 <link rel="import" href="component/project/project_table.html">

As usual, the code of the components resides in web\component.We see that both
entities have an add functionality, together with edit, remove, and show tasks. The
<employee-table> component defined in the employee_table.html file is indeed
composed of three other components: <employee-add>, <employee-edit>, and
<task-table>, again shown in conditional templates:

 <template if="{{showAdd}}">
 <employee-add employees="{{employees}}"></employee-add>
 </template>
 <template if="{{showEdit}}">
 <employee-edit employees="{{employees}}"
 employee="{{employee}}"></employee-edit>
 </template>
 <template if="{{showTasks}}">
 <task-table id="task-table" employee="{{employee}}">
 </task-table>
 </template>

Controlled by the Boolean variables showAdd, showEdit, and showTasks; these are
all marked as @observable in the EmployeeTable class.

The employees are shown through a repeating template in an HTML table:

 <tbody template repeat="employee in employees.internalList">
 <tr>
 <td>{{ employee.name }}</td>
 <td>{{ employee.email }}</td>
 <td><button on-click="{{edit}}" code="{{employee.code}}>(2)
 Edit</button></td>
 <td><button on-click="{{delete}}" code="{{employee.code}}>
 Remove</button></td>
 <td><button on-click="{{showEmployeeTasks}}"
 code="{{employee.code}}>Show</button></td>
 </tr>
 </tbody>

Developing Business Applications with Polymer Web Components

[236]

The behavior of the <employee-table> component is defined in the employee_
table.dart file:

@CustomTag('employee-table')
class EmployeeTable extends PolymerElement {
 @published Employees employees;
 Employee employee;
 @observable bool showAdd = false;
 @observable bool showEdit = false;
 @observable bool showTasks = false;
 show(Event e, var detail, Node target) {
 ButtonElement showAddButton = $['show-add']; (3)
 if (showAddButton.text == 'Show Add') {
 showAdd = true;
 showAddButton.text = 'Hide Add';
 } else {
 showAdd = false;
 showAddButton.text = 'Show Add';
 }
 }
 edit(Event e, var detail, Element target) {
 String code = target.attributes['code']; (4)
 employee = employees.find(code);
 showEdit = true;
 }
 delete(Event e, var detail, Element target) {
 String code = target.attributes['code'];
 employee = employees.find(code);
 for (var task in employee.tasks) {
 task.project.tasks.remove(task);
 }
 employees.remove(employee);
 showTasks = false;
 }
 showEmployeeTasks(Event e, var detail, Element target) {
 String code = target.attributes['code'];
 ButtonElement tasksButton = target;
 if (!showTasks && tasksButton.text == 'Show') {
 showTasks = true;
 employee = employees.find(code);
 employee.tasks.internalList =
 toObservable(employee.tasks.internalList);
 employee.tasks.order();
 tasksButton.text = 'Hide';
 } else if (showTasks && tasksButton.text == 'Hide') {
 showTasks = false;
 tasksButton.text = 'Show';
 }
 }
}

Chapter 8

[237]

In line (3), we have used $['show-add'] as an alternative way of writing
querySelector('#show-add'). It will probably remind you of jQuery, and is
included in Polymer. Note how the edit event handler (as well as delete and
showEmployeeTasks) gets passed the employee code through line (4), because it is
an attribute of the button (see line (2)). If we expand the three subcomponents of the
<employee-table> component, we get the following screen:

All components of employee activated

The <employee-add> component is defined in the employee_add.html file:

<polymer-element name="employee-add">
 <template>
 <style> // left out </style>

 <label for="first-name">First Name</label>
 <input id="first-name" type="text" size="32"/>

 <label for="last-name">Last Name</label>
 <input id="last-name" type="text" size="32"/>

 <label for="email">Email</label>
 <input id="email" type="text" size="48"/>

Developing Business Applications with Polymer Web Components

[238]

 <button on-click="{{add}}">Add</button>

 </template>
 <script type="application/dart"
 src="employee_add.dart"></script>
 </polymer-element>

The add method in the employee_add.dart file verifies that all fields are filled in. If
so a new Employee object is made and added (only when the employee was new) to
the employees collection:

class EmployeeAdd extends PolymerElement {
 @published Employees employees;
 add(Event e, var detail, Node target) {
 InputElement firstName = $['first-name'];
 InputElement lastName = $['last-name'];
 InputElement email = $['email'];
 Element message = $['message'];
 var error = false;
 message.text = '';
 if (firstName.value.trim() == '') {
 message.text = 'employee first name is required;
 ${message.text}';
 error = true;
 }
 if (lastName.value.trim() == '') {
 message.text = 'employee last name is required;
 ${message.text}';
 error = true;
 }
 if (email.value.trim() == '') {
 message.text = 'employee email is required;
 ${message.text}';
 error = true;
 }
 if (!error) {
 var employee = new Employee();
 employee.firstName = firstName.value;
 employee.lastName = lastName.value;
 employee.email = email.value;
 if (employees.add(employee)) {
 message.text = 'added';
 employees.order(); (1)
 } else {
 message.text = 'employee email already in use';
 }
 }
}

Chapter 8

[239]

The <employee-table> component shows the newly added employee because of
line (1). The UI of the <employee-edit> component is defined in the employee_
edit.html file; update is called in the employee_edit.dart file:

class EmployeeEdit extends PolymerElement {
 @published Employees employees;
 @published Employee employee;
 @published String email;
 EmployeeEdit.created() : super.created();
 enteredView() {
 super.enteredView();
 email = employee.email;
 }
 update(Event e, var detail, Node target) {
 employee.email = email;
 employees.order(); // to see a new email in the list
 var polymerApp = querySelector('#polymer-app');
 var employeeTable =
 polymerApp.shadowRoot.querySelector('#employee-
 table');
 employeeTable.showEdit = false;
 }
}

Deleting an employee is covered in the delete method of the employee_table.dart
file. The Show Tasks button activates the <task-table> component. Its <template>
definition in the task_table.html file repeats over all the tasks:

 <tbody template repeat="{{task in tasks.internalList}}">
 <tr>
 <td>{{task.project.name}}</td>
 <td>{{task.employee.name}}</td>
 <td>{{task.description}}</td>
 <td><button on-click="{{edit}}"
 code="{{task.code}}">Edit</button></td>
 <td><button on-click="{{delete}}"
 code="{{task.code}}">Remove</button></td>
 </tr>
 </tbody>

The browser now shows the name of the employee or project. This component
also envelops two other components: tasks can be added through the <task-add>
component, edited through the <task-edit> component, and can also be removed.

Developing Business Applications with Polymer Web Components

[240]

Add and remove Task propagations
A new task must be related to one project and one employee. This means that a new
task, as one and only one object, must be added to two different collections of tasks,
one for the project and the other for the employee. In this application, the internal
Project-Task relationship is used to add a task to its project. The external Task-
Employee relationship is used to lookup an employee for the new task of the project.
In this application, a task cannot be added to an employee.

When a task is removed from project's tasks, it must also be removed from the
employee's tasks, and vice versa. When a project is removed, its tasks cannot be
accessed anymore. Those tasks must be removed from collections of tasks related
to employees found in the project's tasks. Similarly, when an employee is removed,
his/her tasks cannot be accessed anymore. Those tasks must be removed from
collections of tasks related to projects found in the employee's tasks.

The add and remove propagations of tasks in the model must be reflected in the
display of web components. When a task is updated (description only in this
application), there is no need for update propagations in the model because there is
only one task with the same project and the same employee. However, the same task
(with the same project and the same employee) may be displayed in two different
web components. When this task is updated, the new description must show up in
the display of both web components.

Because it is built in exactly the same way, you should now be able to understand the
other web components: <project-table>, and its subcomponents <project-add>
and <project-edit>, together with <task-table>. Used in the Project context, the
task table also shows a <task-add> component and a remove functionality. Now,
here is the lookup of an employee when adding a task in the task_add.html file:

<select id="employee-lookup">
 <option template repeat="{{employee in
 employees.internalList}}"> {{employee.code}} </option>
</select>

In the add event handler, its value is retrieved with the following code:

SelectElement employeeLookup = $['employee-lookup'];
String code = employeeLookup.value;

Chapter 8

[241]

Summary
This chapter showed you how easy it is to build web apps that work with data using
data-binding and web components in Polymer.dart. We did this by exploring three
projects: links, category-links, and project-tasks-employee; the last two by building
the model starting from the Dartlero framework. Web components through Polymer
will revolutionize the way future web apps are built. In the next chapter, we will
focus on how to build web apps following the MVC pattern and using the Dartling
modeling framework.

Modeling More Complex
Applications with Dartling

In Chapter 4, Modeling Web Applications with Model Concepts and Dartlero,
we discussed the importance of modeling the data in your domain before starting
your app. We used model concepts to represent the model visually, and showed
a simple modeling framework called Dartlero. In this chapter we discuss the full
blown domain modeling framework Dartling, which can take the JSON export
of model concepts as input to generate code for the model, as well as to generate
default app code. We do this by developing the Travel Impressions model and app.

Next, we look at the Model View Controller (MVC) design pattern, and why it is
a good fit for web applications. This is put into practice by developing a todomvc
application in spirals. Again, model concepts and Dartling are used to generate the
basic application code. So, the following are the topics of this chapter:

• The Dartling domain modeling framework
• Design of the Travel Impressions model in spirals
• Code generation of travel impressions from model
• Initializing the Travel Impressions model with data
• Testing the Travel Impressions model
• What is the MVC pattern, and why is it used in

software development
• The TodoMVC app

Modeling More Complex Applications with Dartling

[244]

The Dartling domain modeling framework
Dartling (https://github.com/dzenanr/dartling) is a domain model framework
for development of complex models with many concepts and relationships. It
takes care of a lot of functionality, greatly reducing the amount of code you need
to write. A Dartling model is first designed in the graphical tool model concepts,
as shown in Chapter 4, Modeling Web Applications with Model Concepts and Dartlero.
A Dartling model consists of concepts, concept attributes, and concept neighbors.
Two neighbors make a relationship between two concepts. A relationship has two
directions; each direction going from one concept to another neighbor concept.
Standard one-to-many, many-to-many, and is-a relationships are supported.
When both concepts are the same, the relationship is reflexive. When there are two
relationships between the same but different concepts, the relationships are twins.

The code for a Dartling model is generated from the JSON representation of
a graphical model. The model is initialized with some basic data and tested
(model tests are the best way to start learning Dartling). We can also generate
a default web application whose purpose is to validate the model by a user in
order to discover missing concepts, attributes, and relationships, and improve
the existing ones.

A Dartling model has access to actions, action pre and post validations (these are
validations of data done before and after actions), error handling, select data views,
view update propagations, reaction events, transactions (a transaction is an action
that contains other actions), sessions with the history of actions and transactions,
so that undos and redos on the model may be done.

In Dartling, there may be multiple domains and multiple models within domains,
which can be used together. A model has entry points that are entities. From an
entity in one of the entry entities, child entities may be obtained. Data navigation
is done by following parent or child neighbors. You can add, remove, update,
find, select, and order (sort) data. Actions or transactions may be used to support
unrestricted undos and redos in a domain session. The domain allows any object
to react to actions (action events) in its models.

To understand what else you can do with Dartling, clone it from Git and examine
its API defined in abstract classes with API at the end of their names. The two most
important ones are EntitiesApi and EntityApi; they provide public methods
available in Dartling to handle entities.

Chapter 9

[245]

Dart generics are used to enforce a specific type for a Dartling entity, as shown in the
following code snippet:

abstract class EntitiesApi<E extends EntityApi<E>> implements
Iterable<E> {
 Concept get concept;
 ValidationErrorsApi get errors;
 EntitiesApi<E> get source;

 E firstWhereAttribute(String code, Object attribute);
 E random();
 E singleWhereOid(Oid oid);
 EntityApi singleDownWhereOid(Oid oid);
 E singleWhereCode(String code);
 E singleWhereId(IdApi id);
 E singleWhereAttributeId(String code, Object attribute);

 EntitiesApi<E> copy();
 // sort, but not in place
 EntitiesApi<E> order([int compare(E a, E b)]);
 EntitiesApi<E> selectWhere(bool f(E entity));
 EntitiesApi<E> selectWhereAttribute(String code, Object
attribute);
 EntitiesApi<E> selectWhereParent(String code, EntityApi parent);
 EntitiesApi<E> skipFirst(int n);
 EntitiesApi<E> skipFirstWhile(bool f(E entity));
 EntitiesApi<E> takeFirst(int n);
 EntitiesApi<E> takeFirstWhile(bool f(E entity));
 List<Map<String, Object>> toJson();
 void clear();
 void sort([int compare(E a, E b)]); // in place sort
 bool preAdd(E entity);
 bool add(E entity);
 bool postAdd(E entity);
 bool preRemove(E entity);
 bool remove(E entity);
 bool postRemove(E entity);
}

Modeling More Complex Applications with Dartling

[246]

abstract class EntityApi<E extends EntityApi<E>> implements Comparable
{
 Concept get concept;
 ValidationErrorsApi get errors;
 Oid get oid;
 IdApi get id;
 String code;
 Object getAttribute(String name);
 bool setAttribute(String name, Object value);
 String getStringFromAttribute(String name);
 bool setStringToAttribute(String name, String string);
 EntityApi getParent(String name);
 bool setParent(String name, EntityApi entity);
 EntitiesApi getChild(String name);
 bool setChild(String name, EntitiesApi entities);

 E copy();
 Map<String, Object> toJson();
}

Note that EntityApi implements Comparable, and EntitiesApi implements
Iterable. Thus, all public members of Iterable are available in Dartling entities.
There are several Dartling examples at GitHub you can look at (all URLs have the
same structure, https://github.com/dzenanr/, followed by the name of the
project, for example, https://github.com/dzenanr/art_pen):

• art_pen: This is a drawing tool based on the Logo programming language
for children

• game_parking: This is a game based on Rush Hour
• dartling_examples: This contains different types of relationships
• concept_attribute: This deals with different categories of test data that can

be used in the generation of tests
• travel_impressions: This is the model we discuss to illustrate Dartling in

this chapter
• dartling_todos: This is a web application based on TodoMVC with

Dartling, action undos, and web components

Chapter 9

[247]

Schematically, the following sections show how to:

1. Design a graphical model step-by-step:
 ° Tool to use: Model Concepts (https://github.com/dzenanr/

model_concepts)
 ° End result: Visual model and export to JSON format, model.json

2. Generate code for the Dartling model from model.json:
 ° Tool to use: dartling_gen (which uses Dartling) (https://github.

com/dzenanr/dartling_gen)
 ° The generated app presents data of the model in a web page

inherited from the tool, dartling_default_app (which uses
Dartling, https://github.com/dzenanr/dartling_default_app)

3. Initialize the Dartling model with some basic data.
4. Test the model.

If you want to follow new developments in Dartling, consult On
Dart Blog (http://dzenanr.github.io/) and On Dart Education
(http://ondart.me/).

Design of the Travel Impressions model
in spirals
(The project can be found at https://github.com/dzenanr/travel_impressions.)

We will start the project by designing a domain model in spirals (see the model
directory in the project); this is step one in our schema. This new project will allow
readers to follow our approach in order to make their development of a first web
application with Dartling easier. The project will evolve, but in a way that reflects
the usual project progression with Dartling.

Modeling More Complex Applications with Dartling

[248]

The domain of the new project is Travel. The principal model of the Travel domain
is called Impressions. The objective is to create a web application that will allow
young travelers to inform their families and friends about their impressions of
visited places without losing too much time. With the help from someone in the
family or from a friend, their impressions of visited places may be enriched by
web links. Even a traveler may send only an e-mail message about impressions
of visiting certain places to a friend, and the friend may use the web application
to present impressions about visited places, expressed in the message, to other
interested people in a more informative and pleasing way. Of course, the traveler
can do all of that without help from other people. The first spiral (refer the Travel
Impression model figure) starts with the most important concepts from the
chosen domain. In our Travel domain, the key concepts are: Traveler, Place, and
Impression. In general, a traveler visits many different places and may have an
impression (or more than one) for each one. A place is something of interest for
a traveler. It may be as general as a city, or as specific as a monument in a city.
It may also be a village or a nature spot. The important thing is that a traveler
has impressions about visited places to share with family and friends.

Spiral 1 of the Travel Impressions model

Chapter 9

[249]

The first cut domain model is created in Model Concepts. There are three
concepts and two relationships in the model. Each relationship has two directions.
The direction from the Traveler concept to the Impression concept is also a neighbor
of the Traveler concept. Thus, the Traveler concept has two attributes and one
neighbor (attributes and neighbors are properties). The attributes are firstName
and lastName, and the neighbor is impressions. As in Dart, the names of concepts
and properties are standardized. Since the concept corresponds to a class, its name
starts with a capital letter. An attribute name starts with a small letter, and if a name
is composed of several subnames, each subname starts with a capital letter. Spaces,
hyphens, or underscores are not used in names. Since a neighbor is a relationship
property, its name also starts with a small letter. The meaning of the impression’s
neighbor for the Traveler concept is expressed in the following way: A traveler may
have 0 to N impressions. In the opposite direction, an impression has at least one
and at most one traveler, so it turns to be exactly one traveler. Similarly, a place may
be mentioned in many impressions and an impression is about exactly one place.
The Impression concept is an intersection concept between the Traveler and Place
concepts. This means that a relationship between the Traveler and Place concepts is
many-to-many. A traveler may refer to many places in his or her impressions, and
a place may be noted by many travelers. There are two entry concepts that allow a
user to navigate through the model’s data starting with travelers or places. The two
concepts have the entry sign || in the left section of their title areas.

The relationship between the Traveler and Impression concepts is internal.
The relationship between the Place and Impression concepts is external, which is
indicated by a lighter line. A concept with more than one parent must have only
one internal relationship. This means that impressions may be saved within their
traveler and not within the same place. By introducing internal and external
relationships, whose choice is rather subjective, a model may be decomposed
into hierarchical submodels by starting with entry concepts and following
internal relationships.

Modeling More Complex Applications with Dartling

[250]

What happens if a traveler sends a rather long e-mail message to his family, and
if he describes more than one place in the same message? This common situation
is introduced in a new spiral of the model with some improvements with respect
to the previous spiral. In the spiral approach, each design or development iteration
brings more clarifications and more details. If the reasoning behind the spirals is
recorded in the documentation of the model, it would be easy for newcomers to
get familiar with the model in a step-by-step fashion.

Spiral 2 of the Travel Impressions model

There is a new concept representing a message with impressions of visited places.
A traveler may send many messages on his or her trip. A message may contain
impressions about several visited places. A traveler would send an e-mail and
someone from a circle of family and friends would enter specific impressions about
visited places, by extracting portions of the message text. A traveler must have an
e-mail attribute (as is the case with names, indicated by bold). A message must have
a date when it is sent, a subject of the message, and a full text of the message. An
impression’s text, country, and name of a place are mandatory. The identifier (ID)
of the Traveler concept is its e-mail (indicated by italics). The identifier of the Place
concept consists of the country and name attributes. This means that each place
name must be unique within its country. An impression is identified by its source
message and the place about which the impression is formed (IDs of neighbors).
Thus, the identifier of the Impression concept is composed of two neighbors. A
message is identified by the traveler that sent the message and by the date when the
message was sent. Further analysis leads to the model in the following figure:

Chapter 9

[251]

Spiral 3 of the Travel Impressions model

A place must be located in a specific country. Often, a visited place will be in
a city. However, there are many interesting places that are not located in cities.
A short description may be entered about a new place. Web links that are relevant
to the visited place may be added. If we want to allow a traveler’s friend to help the
traveler by entering some data about his/her trip, the following concept should be
added to the model (refer the following figure):

Spiral 4 of the Travel Impressions model

Modeling More Complex Applications with Dartling

[252]

The following concept represents a many-to-many relationship between travelers
(real and virtual). In addition, there is a small change in the Message concept.
The text attribute is now optional, allowing a traveler with update rights to use
text only in the Impression concept. The model could be further extended with more
concepts, attributes, and relationships. It is a good practice to spend more time on
the model by introducing additional spirals. The new spirals may clarify some issues
and provide new ideas. However, it is also a good practice to start programming
with a less ambitious model, but with the knowledge of a richer model.

Generating Travel Impressions code
from the model
The JSON representation of the last model spiral is generated in the Model
Concepts tool and then copied to the model.json file that is placed in the empty
travel_impressions folder of the new app. The project’s model code is generated
by dartling_gen; this is step two in our schema. In the Run | Manage Launches
of Dart Editor, create a dartling_gen.dart command-line launch pointing to the
following script in the dartling_gen project:

bin/dartling_gen.dart

In the Script arguments, enter the following argument:

--genall projectpath domain model

For the travel_impressions project, the arguments are as follows:

--genall c:/dart/travel_impressions travel impressions

The arguments are similar for the project path in Linux: /home/dart/
travel_impressions.

The --genall argument indicates that the complete project will be generated.
The c:/dart/travel_impressions argument replaces the projectpath
parameter—a path to the project’s folder that contains the model.json file. The
travel argument is the domain name and the impressions argument is the model
name. By running the main function in the bin/dartling_gen.dart file, a project,
with its domain and model, will be generated in the project directory. This project
contains the folders doc, lib, test and web, as well as a pubspec.yaml file, which
specifies our project is dependent on Dartling and dartling_default_app.

Chapter 9

[253]

In the generated project, the lib folder has the gen and travel (domain) folders. The
gen folder also has the travel (domain) folder. The travel folder, both in lib and
gen, has the impressions (model) folder. The gen folder keeps the generic code (not
to be edited!) that is to be regenerated when the model changes. However, the travel
subfolder in lib contains the specific code that is open for changes. The generic code
extends the code in Dartling, and the specific code extends the generic code.

Structure of generated project

Modeling More Complex Applications with Dartling

[254]

But what if the model changes? Then, update the JSON representation of the
model in the model.json file. Regenerate only the lib/gen directory, by
giving these arguments:

--gengen projectpath domain model

The generated code in lib/gen must not be edited by a
programmer. The specific code, which is outside of the lib/
gen folder, will be changed in the evolution of the application.

If you regenerate the whole project, be sure to have its backup to be able to compare
the two versions. If you regenerate only the generic code in the lib/gen folder, you
may need to adjust some specific code. When the complete project is generated, the
content of the model.json file is reproduced in the lib/travel/impressions/
json/model.dart file as the content of its travelImpressionsModelJson variable.
This variable, and not the model.json file, is used in the running of the application.
In this way, you may experiment with some minor changes in the model (for
example, changing essential attributes) without losing the content of the model.
json file. However, if you want to keep those changes, you should update the JSON
file before the next code generation. After the code is generated, the README.md and
travel_impressions_web.html files are usually updated in a minor way to reflect
the project in question. To run the application, the web page travel_impressions_
web.html (in the folder web/travel/impressions) is selected. If you run the app,
it already shows two buttons with text Show Travelers and Show Countries. When
these buttons are pushed, they show a grid with dummy data. The two travel_
impressions_web files (.dart and .html) are the only web files, in addition to CSS
files, in the project. However, they rely on dartling_default_app. The objective of
this application is to validate the model by using its data. The next step is to create
that data.

Initializing the Travel Impressions model
with Data
After the model is designed (refer the Spiral 4 of the Travel Impression Model figure)
and its code is generated, the model is initialized with some basic data starting with
its entries. This is done in the lib/travel/impressions/init.dart file.

initTravelImpressions(var entries) {
 _initCountries(entries);
 _initTravelers(entries);
}

Chapter 9

[255]

We will start with creating a country and some of its places, together with web links,
from the entries parameter.

_initCountries(var entries) {
 var countries = entries.countries;
 var country = new Country(countries.concept);
 country.code = ‘BA’;
 country.name = ‘Bosnia and Herzegovina’;
 countries.add(country);

In the Country concept of the graphical model, there is no code attribute of the
String type. The code attribute is inherited from Dartling. In a concept, you do not
need to use the inherited code attribute. However, if you use it, its values must be
unique. Note that a new country is added to the countries’ entities. Once the first
country is created, its first place may be created.

 var place = new Place(country.places.concept);
 place.name = ‘Bascarsija’;
 place.city = ‘Sarajevo’;
 place.description = ‘old town’;
 place.country = country;
 country.places.add(place);

After a new place is created, its country is established, and it is added to the
country’s places. Then, web links for the Bascarsija place are created.

 var webLink = new WebLink(place.webLinks.concept);
 webLink.url =
 Uri.parse(‘http://en.wikipedia.org/wiki/Baščaršija’);
 webLink.title = ‘Wikipedia’;
 webLink.description =
 “Sarajevo’s old bazaar and the historical and cultural
 center.”;
 webLink.place = place;
 place.webLinks.add(webLink);

 webLink = new WebLink(place.webLinks.concept);
 webLink.url =
 Uri.parse(‘http://en.wikipedia.org/wiki/File: Baščaršija
 _2006.jpg’);
 webLink.title = ‘image’;
 webLink.place = place;
 place.webLinks.add(webLink);

Modeling More Complex Applications with Dartling

[256]

Other countries, places, and web links may be created in a similar way. Travelers,
with their messages and impressions, are created with their entry into the model.

_initTravelers(var entries) {
 var countries = entries.countries;
 var travelers = entries.travelers;

 var traveler = new Traveler(travelers.concept);
 traveler.email = ‘dzenan@gmail.com’;
 traveler.password = ‘dzenan’;
 traveler.firstName = ‘Dzenan’;
 traveler.lastName = ‘Ridjanovic’;
 traveler.description = ‘working hard on Dart projects’;
 travelers.add(traveler);

 var message = new Message(traveler.messages.concept);
 message.subject = ‘first day in Sarajevo’;
 message.traveler = traveler;
 traveler.messages.add(message);

 var country = countries.singleWhereCode(‘BA’);
 var place = country.places.firstWhereAttribute(‘name’,
 ‘Bascarsija’);
 var impression =
 new Impression.withId(message.impressions.concept, place,
 message);
 impression.text = ‘as usual, my first meal is “cevapcici”’;
 message.impressions.add(impression);
 place.impressions.add(impression);

 place = country.places.firstWhereAttribute(‘name’,
 ‘Bjelasnica’);
 impression =
 new Impression.withId(message.impressions.concept, place,
 message);
 impression.text = ‘after “cevapcici”, hiking at Bjelasnica is
 calling’;
 message.impressions.add(impression);
 place.impressions.add(impression);

 place = country.places.firstWhereAttribute(‘name’, ‘Dariva’);
 impression =
 new Impression.withId(message.impressions.concept, place,
 message);
 impression.text = ‘however, short walk will do’;
 message.impressions.add(impression);
 place.impressions.add(impression);

Chapter 9

[257]

The Impression concept has two parents: Message and Place. A place is found within
a country. A country’s code is unique and the singleWhereCode method is used
on the country’s entry to find the country. A place’s name is a part of the identifier
(place within country) and the firstWhereAttribute method is used on country.
places to find the place. Once some basic data is created, a default web application
(web/travel/impressions/travel_impressions.html) may be run to validate
the model by navigating from the model’s entries and discovering missing concepts,
attributes, and relationships. This default application is an example of generic
programming based on the meta model of Dartling. Its code is in the dartling_
default_app project that is imported, based on the pub declaration in the generated
pubspec.yaml file:

name: travel_impressions
author: Your Name
homepage: http://ondart.me/
version: 0.0.1
description: travel_impressions application that uses dartling for its
model.
dependencies:
 browser: any
 dartling:
 git: git://github.com/dzenanr/dartling.git
 dartling_default_app:
 git: git://github.com/dzenanr/dartling_default_app.git

This generates the following code in the web/travel/impressions/travel_
impressions_web.dart file:

import “dart:html”;
import “package:dartling/dartling.dart”;
import “package:dartling_default_app/dartling_default_app.dart”;
import “package:travel_impressions/travel_impressions.dart”;

initTravelData(TravelRepo travelRepo) {
 var travelModels =
 travelRepo.getDomainModels(TravelRepo.travelDomainCode);
 var travelImpressionsEntries =
 travelModels.getModelEntries(TravelRepo.travelImpressionsModel
 Code);
 initTravelImpressions(travelImpressionsEntries);
 travelImpressionsEntries.display();
 travelImpressionsEntries.displayJson();
}

Modeling More Complex Applications with Dartling

[258]

showTravelData(TravelRepo travelRepo) {
 var mainView = new View(document, “main”);
 mainView.repo = travelRepo;
 new RepoMainSection(mainView);
}

void main() {
 var travelRepo = new TravelRepo();
 initTravelData(travelRepo);
 showTravelData(travelRepo);
}

In Dartling, a repository may have many domains and a domain may have many
models. However, in a default web application, only one domain and one model
are used. After the travel repository is created with the Travel domain and the
Impressions model, the model is initialized with some data, and they are shown in
a web page of the default application. Data are also displayed in the Dart Editor’s
console. Note that this is the only code written manually for the time being. The next
step is to test the model, and more specific code will be added to the project.

Testing the Travel Impressions model
After the model is designed, generated, and initialized with some data, the model
should be tested to validate it further. In addition, writing tests applying the
techniques we learned in Chapter 3, Structuring Code with Classes and Libraries,
is the best way to start learning Dartling. Testing is done in the test/travel/
impressions/travel_impressions_test.dart file. The main function creates
a repository based on the JSON definition of the model and passes it to the
testTravelData function:

testTravelData(TravelRepo travelRepo) {
 testTravelImpressions(travelRepo, TravelRepo.travelDomainCode,
 TravelRepo.travelImpressionsModelCode);
}

void main() {
 var travelRepo = new TravelRepo();
 testTravelData(travelRepo);
}

Chapter 9

[259]

The testTravelImpressions function accepts the repository and names of the
domain and the model. In a group of tests, before each test, a setup is done to first
obtain the three variables: models, session, and entries. The models (here only
one) are obtained from the repository based on the domain’s name. A session, with a
history of actions and transactions of Dartling, is created by the newSession method
of the models object. The entries variable for the only model is obtained from the
models object by using the model’s name:

testTravelImpressions(Repo repo, String domainCode, String modelCode)
{
 var models;
 var session;
 var entries;

 Countries countries;
 Country bosnia;
 Oid darivaOid, oid;
 Travelers travelers;
 group(“Testing ${domainCode}.${modelCode}”, () {
 setUp(() {
 models = repo.getDomainModels(domainCode);
 session = models.newSession();
 entries = models.getModelEntries(modelCode);
 expect(entries, isNotNull);

 countries = entries.countries;
 travelers = entries.travelers;
 initTravelImpressions(entries);

 var code = ‘BA’;
 bosnia = countries.singleWhereCode(code);
 darivaOid = bosnia.places.firstWhereAttribute(‘name’,
 ‘Dariva’).oid;
 });
 tearDown(() {
 entries.clear();
 });
 test(“Not empty entries test”, () {
 expect(!entries.isEmpty, isTrue);
 });
 // code left out

Modeling More Complex Applications with Dartling

[260]

The countries and travelers are the entry entities. The initTravelImpressions
function is called to initiate the model with some basic data. After the initialization,
the country Bosnia is found in the countries object, based on its unique code.
A single place, with the Dariva name, is retrieved from the bosnia object and its
oid is kept in the darivaOid variable. The oid attribute is inherited from Dartling.
It is a unique timestamp used as a system identifier in a collection of entities. Each
test has an access to all those variables. After a test is run, the entries object is cleared
so that the setUp function may start from the empty model. The first test is run to
show that the entries object is not empty after the setup. A single country is found by
the singleWhereCode method based on the inherited code attribute. In the Country
concept the code attribute is used, and in the countries object each country must
have a unique code.

 test(‘Find country by code’, () {
 var code = ‘BA’;
 Country country = countries.singleWhereCode(code);
 expect(country, isNotNull);
 expect(country.name, equals(‘Bosnia and Herzegovina’));
 });

A single entity may be found by its user identifier. In the Country concept, the user
identifier is the name attribute.

 test(‘Find country by id’, () {
 Id id = new Id(countries.concept);
 id.setAttribute(‘name’, ‘Bosnia and Herzegovina’);
 Country country = countries.singleWhereId(id);
 expect(country, isNotNull);
 expect(country.code, equals(‘BA’));
 });

If a concept has one attribute identifier (simple identifier), a creation of an ID object
may be avoided by using a shortcut method called singleWhereAttributeId.

 test(‘Find country by name attribute id’, () {
 var name = ‘Bosnia and Herzegovina’;
 Country country = countries.singleWhereAttributeId(‘name’,
 name);
 expect(country, isNotNull);
 expect(country.code, equals(‘BA’));
 });

Chapter 9

[261]

The first entity with an attribute value equal to a value given to the
firstWhereAttribute method is obtained. If that attribute is an identifier, methods
that use identifiers perform faster.

 test(‘Find country by name attribute’, () {
 var name = ‘Bosnia and Herzegovina’;
 Country country = countries.firstWhereAttribute(‘name’, name);
 expect(country, isNotNull);
 expect(country.code, equals(‘BA’));
 });

If an entity is not a member of a collection of entities, a search method will
return null:

 test(‘Find country by name attribute id’, () {
 var name = ‘Poland’;
 Country country = countries.singleWhereAttributeId(‘name’,
 name);
 expect(country, isNull);
 });

The Place concept has a composite identifier, composed of the country neighbor and
the name attribute. If only the name attribute is used, singleWhereAttributeId will
return null:

 test(‘Find country and (not) place by name id’, () {
 var countryName = ‘Bosnia and Herzegovina’;
 Country country = countries.singleWhereAttributeId(‘name’,
 countryName);
 var placeName = ‘Dariva’;
 Places places = country.places;
 Place place = places.singleWhereAttributeId(‘name’,
 placeName);
 expect(place, isNull);
 });

The name attribute may be used to find both a country and its place:

 test(‘Find country and place by name attribute’, () {
 var countryName = ‘Bosnia and Herzegovina’;
 bosnia = countries.firstWhereAttribute(‘name’, countryName);
 expect(bosnia, isNotNull);
 var placeName = ‘Dariva’;
 Places places = bosnia.places;
 Place place = places.firstWhereAttribute(‘name’, placeName);
 expect(place, isNotNull);
 expect(place.city, equals(‘Sarajevo’));
 });

Modeling More Complex Applications with Dartling

[262]

However, the use of identifiers is recommended for performance reasons.

 test(‘Find country and place by id’, () {
 var countryName = ‘Bosnia and Herzegovina’;
 bosnia = countries.singleWhereAttributeId(‘name’, countryName);
 var placeName = ‘Dariva’;
 Places places = bosnia.places;
 Id id = new Id(bosnia.concept);
 id.setParent(‘country’, bosnia);
 id.setAttribute(‘name’, placeName);
 Place place = places.singleWhereId(id);
 expect(place, isNotNull);
 expect(place.city, equals(‘Sarajevo’));
 });

The same results may be obtained by using more elegant method cascades. Note that
the bosnia variable is used in order to avoid searching for the country. Besides, in
the last line, the place’s oid attribute is assigned to the oid variable that will be used
in the next test:

 test(‘Find country and place by id (method cascades)’, () {
 var placeName = ‘Dariva’;
 Places places = bosnia.places;
 Id id = new Id(bosnia.concept)
 ..setParent(‘country’, bosnia)
 ..setAttribute(‘name’, placeName);
 Place place = places.singleWhereId(id);
 expect(place, isNotNull);
 expect(place.city, equals(‘Sarajevo’));
 oid = place.oid;
 });

In the model, the Country concept is an entry. The relationship between the Country
and Place concepts is internal. A place may be searched by its oid starting with the
countries’ entry and following the internal neighbors from the Country concept:

 test(‘Find place by oid by searching from countries down’,
 {
 Place place = countries.singleDownWhereOid(darivaOid);
 expect(place, isNotNull);
 expect(place.name, equals(‘Dariva’));
 });

Chapter 9

[263]

A specific method that does a job of finding an entity based on an identifier value
may be used:

 test(‘Find place by a specific method’, () {
 var placeName = ‘Dariva’;
 Place place = bosnia.places.findById(placeName, bosnia);
 expect(place, isNotNull);
 expect(place.city, equals(‘Sarajevo’));
 });

The findById method is added to the Places class in the lib/travel/
impressions/places.dart file.

 Place findById(String name, Country country) {
 return singleWhereId(new Id(concept)..setAttribute(‘name’,
 name)..
 setParent(‘country’, country));
 }

The city attribute of the Place concept is not required (not in bold in the
Travel Impression model figure) and thus is not an identifier or a part of an
identifier (not in italics). All places in the city of Sarajevo may be selected by the
selectWhereAttribute method. The select methods return a new collection
of entities:

 test(‘Select places in Sarajevo’, () {
 Places places = bosnia.places.selectWhereAttribute(‘city’,
 ‘Sarajevo’);
 expect(places.length, greaterThan(0));
 for (var place in places) {
 expect(place.city, equals(‘Sarajevo’));
 }
 });

A specific read-only property (with only the get method) may be used in an
anonymous function of the selectWhere method to select a subset of entities.

 test(‘Select places by function’, () {
 Places places = bosnia.places.selectWhere((place) =>
 place.old);
 expect(places.length, greaterThan(0));
 for (var place in places) {
 expect(place.description, contains(‘old’)));
 }
 });

Modeling More Complex Applications with Dartling

[264]

The old property with the get method is added to the Places class in the lib/
travel/impressions/places.dart file.

 bool get old => description.contains(‘old’) ? true : false;

The places of the bosnia object are sorted by the city attribute:

 test(‘Sort places by city in Bosnia and Herzegovina’, () {
 bosnia.places.sort(
 (place1, place2) => place1.city.compareTo(place2.city));
 });

A new place is not added because required values for the name attribute and the
country neighbor are missing. The corresponding error messages are added to the
errors property of the places object:

 test(‘Add place required error’, () {
 Places places = bosnia.places;
 var placesCount = places.length;
 var place = new Place(places.concept);
 expect(place, isNotNull);

 var added = places.add(place);
 expect(added, isFalse);
 expect(places.length, equals(placesCount));
 places.errors.display(title:’Add place required error’);

 expect(places.errors.length, equals(2));
 expect(places.errors.toList()[0].category,
 equals(‘required’));
 expect(places.errors.toList()[0].message,
 equals(‘Place.name attribute is null.’));
 expect(places.errors.toList()[1].category,
 equals(‘required’));
 expect(places.errors.toList()[1].message,
 equals(‘Place.country parent is null.’));
 });

The error messages also appear in the console of the Dart Editor.

Chapter 9

[265]

If we want to add a place that already exists according to its identifier, the add
method will not be successful:

 test(‘Add place unique error’, () {
 Places places = bosnia.places;
 var placesCount = places.length;
 var place = new Place(places.concept);
 expect(place, isNotNull);

 place.name = ‘Dariva’;
 place.country = bosnia;
 var added = places.add(place);
 expect(added, isFalse);
 expect(places.length, equals(placesCount));

 places.errors.display(title:’Add place unique error’);
 expect(places.errors.length, equals(1));
 expect(places.errors.toList()[0].category,
 equals(‘unique’));
 });

In Dartling, there are pre- and posthooks for the add and remove methods.
A pre-add hook may be used to validate a specific constraint that is not defined in
the model:

 test(‘Add place pre validation error’, () {
 Places places = bosnia.places;
 var placesCount = places.length;
 var place = new Place(places.concept);
 expect(place, isNotNull);
 place.name =
 ‘A new place with a name longer than 32 cannot be accepted’;
 place.country = bosnia;
 var added = places.add(place);
 expect(added, isFalse);
 expect(places.length, equals(placesCount));
 places.errors.display(title:’Add place pre validation
 error’);
 expect(places.errors.length, equals(1));
 expect(places.errors.toList()[0].category, equals(‘pre’));
 });

Modeling More Complex Applications with Dartling

[266]

The specific preAdd method is defined in the Places class. The method is called by
the add method of Dartling:

 bool preAdd(Place place) {
 bool validation = super.preAdd(place);
 if (validation) {
 validation = place.name.length <= 32;
 if (!validation) {
 var error = new ValidationError(‘pre’);
 error.message =
 ‘${concept.codePlural}.preAdd rejects the
 “${place.name}” ‘
 ‘name that is longer than 32.’;
 errors.add(error);
 }
 }
 return validation;
 }

Finally, a new place is added:

 test(‘Add place’, () {
 Places places = bosnia.places;
 var placesCount = places.length;
 var place = new Place(places.concept);
 expect(place, isNotNull);

 place.name = ‘Ilidza’;
 place.city = ‘Sarajevo’;
 place.country = bosnia;
 var added = places.add(place);
 expect(added, isTrue);
 expect(places.length, equals(++placesCount));
 });

The Travel Impressions app is further worked out to show all data that was input:
countries and their places, the impressions, and web links associated with each place,
or the travelers and their impressions. These screens are not application specific, but
use the views, menu bars, and so on provided in the included library dartling_
default_app, showing the advantage of starting with a modeling framework.

Chapter 9

[267]

Defining and using the MVC pattern
Conceptually, there are several basic modules in almost any software. The model is a
data container and the user interface (UI) is a way to communicate with the model.
A relationship between the model and the UI is bidirectional. Data from the model
is displayed to a user, and a user may change the model’s data. The model may keep
some or all of the data in the main memory and store data in an external storage,
such as files or databases (db). A relationship between the model and the data
storage is also bidirectional. The UI has one or many views of data, which present
data in a format useful to users, and one or many controllers, which channel changes
in data to the model. For example, a web application, after a user request, retrieves
data from a database and displays it in a presentable way. After the user changes
the data, the application updates the database. There is a flow of data between the
UI and the db. For a simple data model and a simple application, the view is often
combined with the model. However, a coupling of those parts produces maintenance
problems. One problem is that the UI tends to change more often than the model of
the db. Another problem is that an application may have business rules that are more
than simple data transmissions. It is important to organize a software application
to allow for easy modifications of its parts. There are many design patterns that
may help in detailing this software architecture. The most popular one, with a long
history of different variations, is the Model View Controller (MVC) pattern.

MVC (http://en.wikipedia.org/wiki/Model-view-controller) is a design
pattern that isolates an application’s data from the UI. In MVC, the Model represents
data of the application and the business rules used to manipulate the data, the View
corresponds to elements of the UI such as text fields, and the Controller manages
details involving communication between the model and views.

Modeling More Complex Applications with Dartling

[268]

There may be many views and only one controller or many views and many
controllers. A view and its controller may be separate or combined together. A
view might have its own model in addition to the model for all views. All those and
other variations exist in different versions of MVC that even got some new names
such as MVP (http://en.wikipedia.org/wiki/Model-view-presenter), MVVM
(http://en.wikipedia.org/wiki/Model_View_ViewModel), MOVE (http://
cirw.in/blog/time-to-move-on), and MDV (http://polymer-project.org/
platform/template.html). There are also many articles about MVC and its
variations (www.mvccentral.net, www.infoq.com/ASP-NET-MVC/articles/). Thus,
for a learner, it is not easy to grasp the essence of MVC. The following sentences
provide this in a nutshell (refer the MVC pattern figure): a user action triggers a
UI event that changes the model’s data by invoking data actions in a controller. A
view registers with the model to be informed about data changes. When a view is
informed about the changes, it reacts by refreshing its display. Implementing this
pattern makes our app obey the Separation of Concerns design principle (the code
of views, controllers, and models are loosely coupled). Thus, the different layers in
MVC can be developed independently from each other, so that the code is better
maintainable. This is especially important for web applications, where the views
are presented in the client’s browser, and the data source (which interacts with the
model) sits on a server. The model and controller code can be executed on the server
(as in traditional web applications) or on the client (as in RIA apps), or distributed.

user

data display change action

data actiondata change

model

controllerview

The MVC pattern

Chapter 9

[269]

It is important to note that the model does not depend on the controller and views.
In other words, there are no references to the controller and views in the model
(and that is the reason why a view registers with the model to be informed about
changes in the data). However, the controller and views depend on the model. In this
way, the model may be developed and tested without the views and controllers. In
addition, new views of the model may be added easily. Even different applications
may use the same model.

The TodoMVC app
We will now show how MVC functions in a Dart version of the famous TodoMVC
application (http://todomvc.com/), which is used as a standard to compare
different web frameworks. This application is developed in spirals in the dartling_
todo_mvc project and it is built by using the Dartling framework for the model.
Download the code from https://github.com/dzenanr/dartling_todo_mvc_
spirals. In the following screenshot, you see a glimpse of the end result (Spiral 6):

The TodoMVC app

The todo items can be added, edited, marked as completed, and deleted; overviews
of all tasks, or only the completed or remaining ones can be shown, and the user has
undo/redo possibilities after making a mistake. Moreover, it is really useful because
the data is stored in local storage (using the JSON format).

Modeling More Complex Applications with Dartling

[270]

Spiral 0 – generating a class model
Spiral 0 does not have any UI; it contains only a simple model with one concept Task
and two properties, title and completed. This is designed in Model Concepts with
domain name Todo and model name Mvc, shown in the following figure:

Task||

title
completed

The TodoMVC model

Its JSON representation is exported, and the code is generated by dartling_gen. In
the generated code (lib/gen/todo/mvc/tasks.dart), we find classes that extend
Dartling base classes:

abstract class TaskGen extends ConceptEntity<Task>
abstract class TasksGen extends Entities<Task>

In the lib/todo folder, developers may specialize the model:

class Task extends TaskGen {
 Task(Concept concept) : super(concept);
}

class Tasks extends TasksGen {
 Tasks(Concept concept) : super(concept);
}

The Task class describes the Task concept and Tasks represents a collection of
tasks. There are some basic tests of the model in the todo_mvc_test.dart file of
the test folder. In the main function, a repository is constructed and passed to the
testTodoMvc function together with the domain name and the model name.

testTodoData(TodoRepo todoRepo) {
 testTodoMvc(todoRepo, TodoRepo.todoDomainCode,
 TodoRepo.todoMvcModelCode);
}

void main() {
 var todoRepo = new TodoRepo();
 testTodoData(todoRepo);
}

Chapter 9

[271]

The model entries of the MvcEntries type are obtained from the models object of the
repository:

var models = repo.getDomainModels(domainCode);
entries = models.getModelEntries(modelCode);

The tasks variable of the Tasks type is the only entry into the model:
tasks = entries.tasks;

All tests are done on the tasks object. The web folder contains a default web
application of the model.

Spiral 1 – adding todo tasks
In this spiral we start using the MVC pattern; new todos can be entered, and an
updated list of todos is displayed. There is a view of todos and a controller to add a
new view. A view and a controller are separated into two different classes: the Todos
view class in the lib/app folder and the TodoApp control class in the same folder.
The web application starts with the main function in the web/dartling_todo_mvc.
dart file:

main() {
 var repo = new TodoRepo();
 var domain = repo.getDomainModels(‘Todo’);
 var model = domain.getModelEntries(‘Mvc’);
 new TodoApp(model.tasks);
}

The todo application controller accepts the model’s tasks while referring to the todos
view. The newTodo element allows a creation of a new task after its title is entered.
The new task is added to the tasks entry of the model:

class TodoApp {
 TodoApp(Tasks tasks) {
 var todos = new Todos();
 InputElement newTodo = query(‘#new-todo’);
 newTodo.onKeyPress.listen((KeyboardEvent e) {
 if (e.keyCode == KeyCode.ENTER) {
 var title = newTodo.value.trim();
 if (title != ‘’) {
 var task = new Task(tasks.concept);
 task.title = title;
 tasks.add(task);
 todos.add(task);
 newTodo.value = ‘’;
 }
 }
 });
 }
}

Modeling More Complex Applications with Dartling

[272]

This new task is also added to the todos view of the model:

class Todos {
 Element _todoList = query(‘#todo-list’);

 add(Task task) {
 var element = new Element.html(‘’’

 <label id=’title’>${task.title}</label>

 ‘’’);
 _todoList.nodes.add(element);
 }
}

In the add method, a new todo list item is created and added to nodes of the todo list.
The new todo and todo list elements are defined in the web/dartling_todo_mvc.
html file.

 <section id=”todo-app”>
 <header id=”header”>
 <h1>todos</h1>
 <input id=”new-todo” placeholder=”What needs to be done?”
autofocus>
 </header>
 <section id=”main”>
 <ul id=”todo-list”>
 </section>
 </section>

Spiral 1b is an example where a view and a controller are combined within the
Todos class. By comparing Spiral 1 and Spiral 1b, you may better understand this
type of variation in the MVC pattern:

class Todos {
 Element _todoList = query(‘#todo-list’);
 Todos(Tasks tasks) {
 InputElement newTodo = query(‘#new-todo’);
 newTodo.onKeyPress.listen((KeyboardEvent e) {
 if (e.keyCode == KeyCode.ENTER) {
 var title = newTodo.value.trim();
 if (title != ‘’) {

Chapter 9

[273]

 var task = new Task(tasks.concept);
 task.title = title;
 tasks.add(task);
 _add(task);
 newTodo.value = ‘’;
 }
 }
 });
 }

 _add(Task task) {
 var element = new Element.html(‘’’

 <label id=’title’>${task.title}</label>

 ‘’’);
 _todoList.nodes.add(element);
 }
}

The TodoApp class becomes a simple application without controller responsibilities:

class TodoApp {
 TodoApp(Tasks tasks) {
 new Todos(tasks);
 }
}

In Spiral 2, the Spiral 1 will be used as its predecessor. However, in Spiral 6, all
views will use the form suggested in Spiral 1b.

Spiral 2 – showing how many todo tasks left
Todos are loaded (saved) from (to) a local storage. A todo may be completed. A
count of todos left is displayed. There is a new Todo class in the lib/app/todo.dart
file to represent a todo in the Todos view. It is a task view with its controller to make
the task complete. The SetAttributeAction class of Dartling is used to update the
complete property of the Task concept. The domain session is used by Dartling to
memorize actions and provide their history, along the lines of the command pattern:
(http://en.wikipedia.org/wiki/Command_pattern).

class Todo {
 Task task;
 Element element;
 InputElement _completed;

Modeling More Complex Applications with Dartling

[274]

 Todo(TodoApp todoApp, this.task) {
 DomainSession session = todoApp.session;
 element = new Element.html(‘’’
 <li ${task.completed ? ‘class=”completed”’ : ‘’}>
 <input class=’completed’ type=’checkbox’
 ${task.completed ? ‘checked’ : ‘’}>
 <label id=’title’>${task.title}</label>

 ‘’’);

 _completed = element.query(‘.completed’);
 _completed.onClick.listen((MouseEvent e) {
 new SetAttributeAction(session, task, ‘completed’,
 !task.completed).doit();
 });
 }

 complete(bool completed) {
 _completed.checked = completed;
 if (completed) {
 element.classes.add(‘completed’);
 } else {
 element.classes.remove(‘completed’);
 }
 }
}

The Todos view implements Dartling’s ActionReactionApi interface in order
to react to actions in the model; it is based on the observer pattern (http://
en.wikipedia.org/wiki/Observer_pattern):

class Todos implements ActionReactionApi {
 TodoApp _todoApp;

 List<Todo> _todoList = new List<Todo>();
 Element _todoElements = query(‘#todo-list’);

 Todos(this._todoApp) {
 _todoApp.domain.startActionReaction(this);
 }

Chapter 9

[275]

The view is registered in the constructor to receive information about data changes.
The Todos view must implement the react method to be updated based on actions
of the model:

 react(ActionApi action) {
 if (action is AddAction) {
 add(action.entity);
 } else if (action is SetAttributeAction) {
 _complete(action.entity);
 }
 _todoApp.updateFooter();
 _todoApp.save();
 }

The add method from the previous spiral is replaced with the doit method on the
new AddAction object in the TodoApp controller:

 new AddAction(session, _tasks, task).doit();

The session is obtained from the domain object that is passed to the constructor of the
controller:

 session = domain.newSession();

Changes in the model are saved in a local storage by the save method:

 save() {
 window.localStorage[‘todos’] = stringify(_tasks.toJson());
 }

A count of todos left to be completed is displayed by the updateFooter method.

Tasks are loaded from a local storage by the following code:

 String json = window.localStorage[‘todos’];
 if (json != null) {
 _tasks.fromJson(parse(json));
 for (Task task in _tasks) {
 _todos.add(task);
 }
 updateFooter();
 }

Note that the todos view is updated here directly, because the fromJson method
from Dartling uses the add method and not the AddAction class.

Modeling More Complex Applications with Dartling

[276]

Spiral 3 – removing a single task and
completed tasks
In Dartling, if several actions are done at the same time, they are combined into a
transaction. To clear (remove) all completed todos, the following code is used in the
controller’s constructor.

 _clearCompleted.onClick.listen((MouseEvent e) {
 var transaction = new Transaction(‘clear-completed’,
 session);
 for (Task task in _tasks.completed) {
 transaction.add(
 new RemoveAction(session, _tasks.completed, task));
 }
 transaction.doit();
 });

In the Tasks class of the model, the completed tasks are selected. This code is added
manually, but not typed:

Tasks get completed => selectWhere((task) => task.completed);

The react method in the Todos view must now consider both individual actions and
transactions:

 react(ActionApi action) {
 updateTodo(SetAttributeAction action) {
 if (action.property == ‘completed’) {
 _complete(action.entity);
 }
 }

 if (action is Transaction) {
 for (var transactionAction in action.past.actions) {
 if (transactionAction is SetAttributeAction) {
 updateTodo(transactionAction);
 } else if (transactionAction is RemoveAction) {
 _remove(transactionAction.entity);
 }
 }

Chapter 9

[277]

 } else if (action is AddAction) {
 add(action.entity);
 } else if (action is SetAttributeAction) {
 updateTodo(action);
 } else if (action is RemoveAction) {
 _remove(action.entity);
 }

 _todoApp.updateDisplay();
 _todoApp.save();
 }

Transaction actions can be found in the past property of the transaction.

Spiral 4 – editing todos (undo and redo)
There is a button for undo and a button for redo in the controller.

 Element _undo = querySelector(‘#undo’);
 Element _redo = querySelector(‘#redo’);

In the click events, the session.past property is used to make unlimited
undos and redos.

 _undo.onClick.listen((MouseEvent e) {
 session.past.undo();
 });

 _redo.onClick.listen((MouseEvent e) {
 session.past.redo();
 });

The reaction to past actions (and transactions) is defined in the controller by the
following code.

class TodoApp implements PastReactionApi {
// code left out
 session.past.startPastReaction(this);

Modeling More Complex Applications with Dartling

[278]

The PastReactionApi interface of Dartling provides the following methods, used
in the controller, where it is decided whether the undo and redo buttons will be
displayed or not.

 reactCannotUndo() {
 _undo.style.display = ‘none’;
 }

 reactCanUndo() {
 _undo.style.display = ‘block’;
 }

 reactCanRedo() {
 _redo.style.display = ‘block’;
 }
 reactCannotRedo() {
 _redo.style.display = ‘none’;
 }

The react method in the view must now consider reactions to the undos and redos:

 react(ActionApi action) {
 updateTodo(SetAttributeAction action) {
 if (action.property == ‘completed’) {
 _complete(action.entity);
 } else if (action.property == ‘title’) {
 _retitle(action.entity);
 }
 }

 if (action is Transaction) {
 for (var transactionAction in action.past.actions) {
 if (transactionAction is SetAttributeAction) {
 updateTodo(transactionAction);
 } else if (transactionAction is RemoveAction) {
 if (transactionAction.undone) {
 add(transactionAction.entity);
 } else {
 _remove(transactionAction.entity);
 }
 }
 }

Chapter 9

[279]

 } else if (action is AddAction) {
 if (action.undone) {
 _remove(action.entity);
 } else {
 add(action.entity);
 }
 } else if (action is RemoveAction) {
 if (action.undone) {
 add(action.entity);
 } else {
 _remove(action.entity);
 }
 } else if (action is SetAttributeAction) {
 updateTodo(action);
 }

 _todoApp.updateDisplay();
 _todoApp.save();
 }

Spiral 5 – displaying completed, remaining, or
all todos
Also, a new todo is not accepted if its text is longer than 64 characters. If so, an error
message is displayed. In the Tasks class of the model, the preAdd method is defined.
This method is called by the add method of Dartling, and if it returns false, the add
method will be rejected:

 bool preAdd(Task task) {
 bool validation = super.preAdd(task);
 if (validation) {
 validation = task.title.length <= 64;
 if (!validation) {
 var error = new ValidationError(‘pre’);
 error.message =
 ‘${concept.codePlural}.preAdd rejects the
 “${task.title}” title, ‘
 ‘because it is longer than 64.’;
 errors.add(error);
 }
 }
 return validation;
 }

Modeling More Complex Applications with Dartling

[280]

After the add action, the following method is called in the controller to display
possible errors:

 possibleErrors() {
 _errors.innerHtml = ‘<p>${_tasks.errors.toString()}</p>’;
 _tasks.errors.clear();
 }

The pre and post add and remove actions in Dartling may be used to define business
rules in the model. A creation of a new todo is moved from the TodoApp controller
to the Todos class that becomes a combination of a view and a controller. It is left for
the reader to study the Todos class and understand how filters are used to show a
subset of todos.

Spiral 6 – editing a task
In Spiral 5, both Todo and Todos classes are views with their corresponding
controllers. The TodoApp class in Spiral 5 is still a controller. In Spiral 6, the events
that change the model are moved from the TodoApp class to new Header and Footer
classes that represent views with their corresponding controllers. In this way, there
are four views (with embedded controllers) in the application: Todo, Todos, Header,
and Footer. TodoApp becomes only the application class that creates views (with
embedded controllers), loads and saves data, and updates displays of the header and
footer sections of the web page:

class TodoApp {
 // code left out
 TodoApp(this.domain) {
 session = domain.newSession();
 MvcEntries model = domain.
getModelEntries(TodoRepo.todoMvcModelCode);
 tasks = model.tasks;

 _header = new Header(this);
 _todos = new Todos(this);
 footer = new Footer(this, _todos);

 _load();
 }
// code left out

The Header class handles undos and redos and the completion of all todos.
The Footer class displays the remaining number of todos, provides different
selections of todos, and clears the completed todos. See the project’s code for details.

Chapter 9

[281]

Summary
This was a deep chapter. We used the domain modeling framework, Dartling, to
build an app, from designing the model to generating and testing application code.
Then, we discussed the universally applied MVC pattern and used it together with
Dartling to build a complete and usable Todo app. In this process, the following
advantages of using a domain modeling framework became apparent:

• Once a model is designed, its code is generated, which is a big deal for
large models

• Although the code for the model is generated, a programmer may add some
specific code that will not be lost if the model is regenerated

• The API of Dartling, for example, for entities, is rich, and it allows handling
of identifiers and relationships, which is not done in Dartlero

• The code in the TodoMVC application clearly shows that, after the code
is generated, there is not much model programming left to do, allowing a
developer to focus on the UI

In the next chapter we’ll get an overview of MVC and UI frameworks built by the
Dart community.

MVC Web and UI
Frameworks in Dart – An

Overview
In this chapter, we investigate some of the more important UI frameworks that exist
in the Dart universe, indicate how and when to use them, and discuss their pros and
cons. For instance, we will discuss whether a framework supports responsive design
and provides an optimal viewing experience—easy reading and navigation with
minimum resizing, panning, and scrolling—across a wide range of devices (from
desktop monitors to mobile phones).

Some of them (DQuery and Bootjack) are ports of, or at least are inspired by, famous
JavaScript frameworks, such as jQuery or Twitter Bootstrap.

DWT (Dart Web Toolkit) is a port of the Google Web Toolkit.

Some packages built on the (now deprecated) Dart Web UI components library
are as follows:

• Dart widgets
• Bee (from Blossom)
• HTML Components

The following libraries heavily use the MVC pattern:

• Rikulo UI (using DQuery and Bootjack)
• Hipster-MVC (no specific UI components)
• PureMVC (no specific UI components)

MVC Web and UI Frameworks in Dart – An Overview

[284]

The others are ports of or built on the Adobe development framework:

• Flash Professional, which is the toolkit for Dart (from Adobe)
• StageXL

Finally, we discuss the porting of Angular.js to Dart using Angular.dart.

DQuery
(Developed by Simon Pai and Tom Yeh from Rikulo, the code for DQuery can
be found at https://github.com/rikulo/dquery, and the API reference is
at http://api.rikulo.org/dquery/latest/dquery.html.)

Every web developer knows and uses jQuery, the JavaScript library that creates
HTML document traversal and manipulation, event handling, animation, and
Ajax much simpler than in pure JavaScript. DQuery (in Version 0.5.1 currently)
is a strongly typed port to Dart of jQuery, meaning that the externally visible
variables are typed, in contrast to jQuery. It remains close to both Dart and jQuery
conventions, so it will particularly appeal to developers who are already fluent with
jQuery. Dart has some of the features of jQuery, but the event system and element
wrapper of the latter still offer additional value, and that's why they have been
ported; besides, DQuery uses the ubiquitous $ notation for element queries instead
of Dart's query and the queryAll functions. Create a new web application project
dquery1 and add dquery: any to the dependencies section in pubspec.yaml to
install the package. Also, add the necessary import statement to dquery1.dart:

import 'package:dquery/dquery.dart';

In the DQuery notation, the template code becomes:

$('#sample_text_id')[0]
..text = "Click me!"
..onClick.listen(reverseText);

Querying with $, in fact, returns an ElementQuery object—a collection
of the elements $elems:

ElementQuery $elems = $('#sample_text_id');

DQuery also has its own class DQueryEvent to register event listeners, as shown in
this code snippet, where the text of the button with the ID btn changes after a click:

 $('#btn').on('click', (DQueryEvent e) {
 $('#btn')[0].text = "Don't do this!";
 });

Chapter 10

[285]

Bootjack
(This is also developed by Simon Pai and Tom Yeh from Rikulo; the code can be found
at https://github.com/rikulo/bootjack, and the API reference is at http://
api.rikulo.org/bootjack/latest/bootjack.html.)

Bootjack is a port of Twitter Bootstrap and is built on DQuery. One of the goals
of Bootjack is to ease the use of working with CSS by supplying a great number of
style resources, as well as pure CSS components, such as breadcrumbs, pagination,
progress bars, thumbnails, labels, and badges. Other Bootstrap UI components
require code apart from DOM/CSS, such as alert, button, dropdown, model, and
tab; these were converted to be used by Dart. To start using Bootjack, add bootjack:
any to your pubspec.yaml, and let pub install the package. (DQuery is automatically
installed because it is a dependent package.) Include the Bootstrap CSS file in your
web page:

<link rel="stylesheet" href="packages/bootjack/css/bootstrap-
 2.3.1.css">

To use Bootjack components, you need to do two things:

1. Attach the right CSS class to your DOM elements, such as btn btn-info,
btn dropdown-toggle, and nav nav-tabs.

2. Call a global function, such as Button.use() or Dropdown.use(), to register
its use. With Bootjack.useDefault(), all controls are registered.

3. The bootjack1 project shows the use of many components. DQuery is also
imported in bootjack1.dart, as shown in the following screenshot.

The bootjack2 project shows the use of the Scrollspy component to navigate,
using a sidebar. (For more info, visit http://blog.rikulo.org/posts/2013/May/
General/bootjack-and-dquery/.)

Bootjack components

MVC Web and UI Frameworks in Dart – An Overview

[286]

Dart Web Toolkit (DWT)
(Developed by Sergey Akopkokhyants, Dart Web Toolkit can be found at
http://dartwebtoolkit.com/.)

You have probably heard of Google Web Toolkit (GWT)—a framework by Google
to develop web applications in Java and compile them to JavaScript, in many ways
a precursor project to Dart. So it will come as no surprise that this project has been
ported to Dart not only to build Dart web apps, but also to facilitate the migration
from an existing Java web application to Dart, leveraging your existing GWT skills
and themes in DWT. It has a rich set of widgets (for example, button, checkbox,
listbox, textarea, and menus), panels, and utility classes that are compatible with
GWT, and it provides you, at this moment (June 2013, Version 0.3.16), with the most
complete toolbox for Dart UI controls, which can be viewed at http://akserg.
github.io/dart_web_toolkit_showcase/. Moreover, it has been tested on Chrome
and FireFox. To start using this framework and create a new web application (say
dwt1), remove the example code and add the following dependency to the project's
pubspec.yaml:

dart_web_toolkit: '>=0.3.0'

Then run pub install (this happens automatically while saving the file). To make
it available to your code add the import statement:

import 'package:dart_web_toolkit/ui.dart' as ui;

Add the following code to main() of dwt1.dart and run the page:

ui.Label label = new ui.Label("Hello from Dart Web Tookit!");
ui.RootLayoutPanel.get().add(label);

and a nice label appears with the text.

It will be clear from this and the following example, that in DWT, everything is
constructed from code. Let's now build a more complete example in the dwt_bank
project, mimicking our bank application bank_terminal_s5 from Chapter 6,
Combining HTML5 Forms with Dart.

Here, follow the code from dwt_bank.dart needed to draw the screen and hook up
the event handling (the rest of the code is identical to that in bank_terminal_s5):

library bank_terminal;

import 'dart:html';
import 'package:dart_web_toolkit/ui.dart' as ui; (1)
import 'package:dart_web_toolkit/i18n.dart' as i18n; (2)

Chapter 10

[287]

import 'package:dart_web_toolkit/event.dart' as event; (3)
import 'dart:convert';

part '../model/bank_account.dart';
part '../model/person.dart';

ui.TextBox number;
ui.Label owner, balance;
ui.IntegerBox amount;
ui.Button btn_deposit, btn_interest;
BankAccount bac;

void main() {
 ui.CaptionPanel panel = new ui.CaptionPanel("BANK APP"); (4)
 panel.getElement().style.border = "3px solid #00c";

 ui.FlexTable layout = new ui.FlexTable(); (5)
 layout.setCellSpacing(6);
 ui.FlexCellFormatter cellFormatter =
 layout.getFlexCellFormatter();

// Add a title to the form
 layout.setHtml(0, 0, "Enter your account number
 and
 transaction amount");
// Add some standard form options
 cellFormatter.setColSpan(0, 0, 2);
 cellFormatter.setHorizontalAlignment(0, 0, i18n.
HasHorizontalAlignment.ALIGN_LEFT);

 layout.setHtml(1, 0, "Number:");
 number = new ui.TextBox(); (6)
 number.addValueChangeHandler(new (7)
 event.ValueChangeHandlerAdapter((event.ValueChangeEvent event)
 {
 readData();
 }));
 layout.setWidget(1, 1, number);
 layout.setHtml(2, 0, "Owner:");
 owner = new ui.Label("");
 layout.setWidget(2, 1, owner);

 layout.setHtml(3, 0, "Balance:");
 balance = new ui.Label("");
 layout.setWidget(3, 1, balance);

MVC Web and UI Frameworks in Dart – An Overview

[288]

 layout.setHtml(4, 0, "Amount:");
 amount = new ui.IntegerBox();
 layout.setWidget(4, 1, amount);

 btn_deposit = new ui.Button((8)
 "Deposit - Withdrawal", new
 event.ClickHandlerAdapter((event.ClickEvent event) {
 deposit(event);
 }));

 layout.setWidget(5, 0, btn_deposit);
 btn_interest = new ui.Button(
 "Add Interest", new event.ClickHandlerAdapter((event.
 ClickEvent event) {
 interest(event);
 }));
 layout.setWidget(5, 1, btn_interest);

 panel.setContentWidget(layout);
 ui.RootLayoutPanel.get().add(panel);
}

In lines (1), (2), and (3), the necessary parts from DWT are imported (UI for the
controls and event for event handling). We use CaptionPanel in line (4) (this
wraps its contents in a border with a caption that appears in the upper-left corner)
and FlexTable in line (5) to lay out our labels and controls in cells; these are
created starting from line (6). Labels are positioned in a cell indicated by its row
and column using the setHtml (row, col, "Text") method and controlled using
the setWidget(row, col, widgetName) method. Event handlers are registered
through a specialized adapter in a very Java-like syntax in lines (7) or (8);
separating both makes them more readable:

btn_deposit = new ui.Button("Deposit - Withdrawal"); btn_deposit.
addClickHandler(new event.ClickHandlerAdapter((event.ClickEvent event) {
 deposit(event);
 }));

Chapter 10

[289]

The screenshot is shown as follows:

The DWT bank terminal screen

The dartling_dwt_todo_mvc_spirals project
(The code can be cloned from https://github.com/dzenanr/dartling_dwt_todo_
mvc_spirals.)

To illustrate DWT with a more elaborate and well-known example, here is our todo-
mvc project from the last chapter, with DWT used for the UI part. We sum what is
implemented in each spiral (besides testing the model):

• Spiral 1: Add a new todo and display a list of todos
• Spiral 2: Load tasks from and save tasks to local storage ActionReactionApi
• Spiral 3: Undo and redo functionality—PastReactionApi

• Spiral 4: Complete todo, remove todo, and start using TodoMVC CSS
• Spiral 5: Add specific code to Task and Tasks, enable and disable the undo

and redo buttons, clear completed todos, add count of the remaining todos,
continue using TodoMVC CSS

• Spiral 6: Add specific code to Task, complete all todos, display all remaining
or completed todos

MVC Web and UI Frameworks in Dart – An Overview

[290]

• Spiral 7: Change the model in the model concepts (title is now id,
completed is now essential) and generate JSON from the model;
generate the code using test/todo/mvc/todo_mvc_gen.dart

• Spiral 8: Add links to Dartling, DWT, and TodoMVC, edit todo
• Spiral 9: Implement standard TodoMVC layout
• Spiral 10: Make a page that looks as similar as possible to the page in the

standard TodoMVC application; for example, the undo and redo buttons
are gone

The following is a screenshot of the end result:

Spiral 9 of DWT_TodoMVC

The DWT-related code is written in lib/app. In order to better understand the code,
start with Spiral 1 and work your way up. The app is started by instantiating an
instance of TodoApp (in main() from web/todo/dartling_dwt_todo_mvc.dart):

new TodoApp(domain);

Chapter 10

[291]

In its constructor (in lib/app/todo_app.dart), the layout of the screen is coded: a
vertical panel with a header and a footer (code from last spiral, doesn't change much
from Spiral 1 to 9):

 var root = ui.RootPanel.get();
 var todoApp = new ui.VerticalPanel();
 todoApp.spacing = 8;
 root.add(todoApp);
 header = new Header(this);
 todoApp.add(header);
 var todos = new Todos(this); (1)
 todoApp.add(todos);
 footer = new Footer(this, todos);
 todoApp.add(footer);

The info text and links at the bottom of the screen are also constructed by a
horizontal panel with anchor controls inside a vertical panel:

 var infoPanel = new ui.VerticalPanel();
 infoPanel.addStyleName('info');
 todoApp.add(infoPanel);
 var todo_edit_info = new ui.Label('Double-click to edit a
 todo');

 infoPanel.add(todo_edit_info);
 var linkPanel = new ui.HorizontalPanel();
 linkPanel.spacing = 4;
 infoPanel.add(linkPanel);

 var dartling = new ui.Anchor()
 ..text="dartling"
 ..href="https://github.com/dzenanr/dartling";
 linkPanel.add(dartling);

 var dwt = new ui.Anchor()
 ..text="DWT"
 ..href="http://dartwebtoolkit.com";
 linkPanel.add(dwt);
 var todoMvc = new ui.Anchor()
 ..text="Todo MVC"
 ..href="http://todomvc.com";
 linkPanel.add(todoMvc);

MVC Web and UI Frameworks in Dart – An Overview

[292]

In line (1), a Todos object is made, which is a vertical panel itself; this happens in
todo.dart (this code is from Spiral 1):

class Todos extends ui.VerticalPanel {
 var _listPanel = new ui.VerticalPanel();

 Todos(Tasks tasks) {
 spacing = 10;
 var newTodo = new ui.TextBox(); (2)
 newTodo.addKeyPressHandler(new (3)
 event.KeyPressHandlerAdapter((event.KeyPressEvent e) {
 if (e.getNativeKeyCode() == event.KeyCodes.KEY_ENTER) {
 var title = newTodo.text.trim();
 if (title != '') {
 var task = new Task(tasks.concept); (4)
 task.title = title;
 tasks.add(task);
 _add(task);
 newTodo.text = '';
 }
 }
 }));
 add(newTodo);

 _listPanel.spacing = 4;
 add(_listPanel);
 }

 _add(Task task) {
 var title = new ui.Label(task.title);
 _listPanel.add(title);
 }

In line (2), an input field for a new todo is created, and in line (3) we see the event
handler that kicks in when the user enters a todo: a new task is made with this todo,
and it is added to the tasks collection; moreover, it is added to the list panel at the
bottom. The class Todos starts reacting to changes in the model by implementing
ActionReactionApi in Spiral 2:

class Todos extends ui.VerticalPanel implements ActionReactionApi {
... }

Chapter 10

[293]

In Spiral 3, a Header class is added that inherits from HorizontalPanel (see
header.dart). At this stage, it only comprises the undo/redo buttons; it implements
this functionality through PastReactionApi from Dartling. The DWT click event
handlers are coded in its constructor (lines (5) and (6)):

class Header extends ui.HorizontalPanel implements PastReactionApi {
 ui.Button _undo;
 ui.Button _redo;

 Header(TodoApp todoApp) {
 // ...
 _undo = new ui.Button((5)
 'undo', new event.ClickHandlerAdapter((event.ClickEvent e)
 {
 session.past.undo();
 }));

 _redo = new ui.Button((6)
 'redo', new event.ClickHandlerAdapter((event.ClickEvent e)
 {
 session.past.redo();
 }));
 }
 // code left out
}

In later spirals, the input functionality is moved from the Todos class to the Header
class. In Spiral 4, a Todo class is introduced as a horizontal panel that comprises the
UI so that the Todos class has to now construct only a Todo object. In Spiral 5, the
Footer class also appears as a horizontal panel; it shows the count of todos left, the
drop-down box to show all, active or completed todos, and a button to remove the
completed todos. In later spirals, Todo as well as Footer become subclasses of the
DWT Composite class using the Grid class to define their internal layout:

class Todo extends ui.Composite {
 ui.CheckBox _completed;
 ui.Label _todo;
 ui.TextBox _todo_retitle;

 Todo(TodoApp todoApp, this.task) {
 // ...
 ui.Grid grid = new ui.Grid(1, 3);
 grid.setCellSpacing(8);
 grid.addStyleName('todo');
 grid.getRowFormatter().setVerticalAlign(
 0, i18n.HasVerticalAlignment.ALIGN_MIDDLE);

MVC Web and UI Frameworks in Dart – An Overview

[294]

 initWidget(grid);

 _completed = new ui.CheckBox();
 // ...
 grid.setWidget(0, 0, _completed);

 _todo = new ui.Label();
 // ...
 grid.setWidget(0, 1, _todo);

 ui.Button remove = new ui.Button(
 'X', new event.ClickHandlerAdapter((event.ClickEvent e) {
 new RemoveAction(session, tasks, task).doit();
 })
);
 remove.addStyleName('todo-button');
 grid.setWidget(0, 2, remove);
 }
 }

To conclude our discussion, the following are some notes from an experienced GWT
developer: http://blog.hackingthought.com/2013/05/notes-from-my-first-
real-dart-web-app.html.

If you want make a project allow Dart to work along with GWT,
take a look at this video and project packed with tips:
http://architects.dzone.com/articles/dart-google-
web-toolkit.

Dart widgets
(http://dart-lang.github.io/widget.dart/, developed by Kevin Moore.)

The Dart widgets project by Kevin Moore builds on the Dart web UI and gives us
a collection of reusable components and effects. It is a port to Dart's Web UI library
from the widely successful Twitter Bootstrap project (http://twitter.github.io/
bootstrap/), which helps web developers build responsive designs for web apps.
This means dynamic widgets, such as accordion, alert, carousel, collapse, dropdown,
tabs, and more, are reborn as actual web components. To see all of them in action,
please refer to http://dart-lang.github.io/widget.dart/, where you can find
more documentation and examples. The code can be found at https://github.
com/dart-lang/widget.dart.

Chapter 10

[295]

This project can also be a source of inspiration for building your own Polymer
components.

Bee
(www.blossom.io/bee, developed by Allan Berger, Nik Graf, and Thomas Schranz
from Blossom.)

Blossom is a firm that develops collaboration and organization tools around project
management; they have been using the whole web technology stack in the process,
including Backbone.js, CoffeeScript, and Python, on the server. Blossom is also a
cutting-edge, single-page web application with Google App Engine as the backend.
In a recent blog post (April 2013, www.ramen.io/tagged/dartlang), Thomas
Schranz discussed why they where switching to Dart: the main reasons were the
fragmentation and lack of cohesion in the JavaScript framework offering, and the fact
that Dart is designed with performance in mind. Bee (as of writing, Version 0.0.2) is a
collection of lightweight and frequently used Dart web components, such as buttons,
popovers, overlays, and input fields. It can be installed via pub using bee:any in
your pubspec.yaml, and importing the necessary lib files in your app, such as:

import 'package:bee/components/loading.dart';
import 'package:bee/components/overlay.dart';
import 'package:bee/components/popover.dart';
import 'package:bee/components/secret.dart';
import 'package:bee/utils/html_helpers.dart';

A component, such as a button, is then used as all web components by importing:

<link rel="import" href="package:bee/components/button.html">

and using the following markup:

<x-button value="text on button"></x-button>

You can expect a Polymer port of this framework soon.

HTML components
(The code is developed by Gabor Szabo and can be downloaded from https://
github.com/szgabsz91/html-components.)

This is already an extensive and impressive collection (46 components in the first
release August 2013) of very usable web page widgets ranging from input, menu,
panel, multimedia to dialog, and even data components such as a datatable,
datagrid, tagcloud, tree, and all kinds of list variants. Experiment with the sample
application at http://html-components.appspot.com/.

MVC Web and UI Frameworks in Dart – An Overview

[296]

Rikulo UI
(http://rikulo.org/projects/ui has been developed by Potix Corporation;
the code is on GitHub https://github.com/rikulo/ui/.)

This is a Dart-based framework using an MVC architecture for web and native
mobile applications using HTML5. Already in its 0.6.7 release (June 2013), and also
integrating the DQuery and Bootjack projects, it is probably the most elaborate Dart
UI framework available today. The apps built with Rikulo not only run in a modern
web browser without any plugin, but can also be built as native mobile applications
accessing the device's resources transparently through a Cordova (Phonegap)
integration called Rikulo Gap. Rikulo Gap runs these resources cross-platform
(and offline if needed) in iOS, Android, Blackberry, Windows Phone, and others.
It has been ported from Cordova to Dart and is a library for accessing the phone's
resources; it can be used with any UI framework. Rikulo brings the programming
philosophy of Dart to the UI by using a structured UI model. Creating and updating
complex layouts can be cumbersome, and this is where Rikulo shines by providing
a layout model allowing flexible and precise control. It is based on positioning
UI elements using coordinates in relation to their parent, so there is no need to
interact with the DOM directly. This means that the UI components are created and
embedded in what is called a view; so a mix of HTML and Dart code isn't going to
work. But if you want to take control over the layout and need more of HTML's and
CSS's capabilities, it is still possible because a view also supports HTML markup.
Rikulo further defines a UXL markup language for defining UI in XML, which
compiles the user interface specified in XML into Dart code. Because Rikulo UI starts
from a different model, it cannot be integrated easily with the Dart web components.
The Rikulo site showcases its framework at http://rikulo.org/examples/; among
the examples are a scrollable list and grid view.

To start using it, create a web project rikulo1, add rikulo_ui: any to its pubspec.
yaml file, and install the package. Then import the following Dart files, depending on
your requirements, to start using its features:

import 'package:rikulo_ui/effect.dart';
import 'package:rikulo_ui/event.dart';
import 'package:rikulo_ui/gesture.dart';
import 'package:rikulo_ui/layout.dart';
import 'package:rikulo_ui/message.dart';
import 'package:rikulo_ui/model.dart';
import 'package:rikulo_ui/view.dart';

Chapter 10

[297]

Not all of these files are always needed; the basis is view.dart because it contains
many UI elements. The website has a tutorial and a very elaborate documentation at
http://docs.rikulo.org/ui/latest/Getting_Started/. Here, we will indicate
the most important concepts and then get on to build our banking screen with
Rikulo. The basic building block is the view, which draws something in a rectangular
area on the screen and can interact with the user; it is an instance of the class View
or one of its subclasses. Similar to the DOM tree of element nodes, in Rikulo, a tree
of views is constructed from what is often named rootView, which is added to the
document of the web page. Every view contains the List<View> children, so we
can have new views with children attached to them through the addChild method.
These children are positioned in the parent view by specifying their layout type,
orientation, and left and top coordinates relative to the parent view. Every view
can handle events, and all Rikulo UI controls, such as button, textbox, checkbox,
radiobutton, and scrollview are subclasses of View.

Because we specify everything through code, the cascading notation is used
abundantly. In the project rikulo1, we made a simple screen to illustrate these
basic techniques:

A basic screen with Rikulo

The main() method in rikulo1.dart contains the code to construct this:

 var root = new View()
 ..layout.type = "linear" // specify layout and CSS
 ..layout.orient = "vertical" // horizontal is default
 ..style.cssText = "font-size: 14px; text-align: center"
 ..addChild(new TextView("Credit card number: "))
 ..addChild(new TextBox())

MVC Web and UI Frameworks in Dart – An Overview

[298]

 ..addChild(new TextView("Verified: "))
 ..addChild(new CheckBox())
 ..addToDocument(); //make it available to the browser

 var hello = new Button("Support our work!")
 ..on.click.listen((event) { // attach click handler (1)
 (event.target as Button).text = "Thanks!!";
 event.target.requestLayout(); // redraw screen (2)
 });
 root.addChild(hello); // attach to root view

The Click event handler is registered in line (1) using a mixture of old and new
Dart syntax. Whenever a change occurs to the screen, the method requestLayout()
must be called, as in line (2), to show this. Every Rikulo web page must include the
following link to some basic CSS settings:

 <link rel="stylesheet" type="text/css"
 href="packages/rikulo_ui/css/default/view.css" />

Besides, it adds the following meta tag, if the app is to be run on mobile devices to
ensure responsive design (it is ignored in desktop browsers):

 <meta name="viewport" content="width=device-width, initial-
scale=1.0, maximum-scale=1.0, user-scalable=no" />

Let's now rewrite our bank terminal screen in Rikulo; this results in:

The bank terminal screen with Rikulo

Chapter 10

[299]

Adding this code to rikulo_bank.dart results in a functional screen, and although
some layout code must be added, the code is remarkably readable:

BankAccount bac;
TextBox number, amount;
TextView owner, balance;
Button btn_deposit, btn_interest;

void main() {
 final View rootView = new View();
 rootView.style.cssText = "border: 1px solid #553; background- color:
lime";
 number = new TextBox();
 owner = new TextView();
 owner.profile.width = "100";
 balance = new TextView();
 amount = new TextBox();
 btn_deposit = new Button("Deposit - Withdrawal");
 btn_deposit.profile.width = "150";
 btn_interest = new Button("Interest");
 number.on.change.listen((event) {
 readData();
 event.target.requestLayout();
 });

 btn_deposit.on.click.listen((event) {
 deposit(event);
 event.target.requestLayout();
 });

 btn_interest.on.click.listen((event) {
 interest(event);
 event.target.requestLayout();
 });

 rootView
 ..layout.text = "type: linear; orient: vertical"
 ..addChild(new TextView("BANK APP"))
 ..addChild(new TextView("Credit card number: "))
 ..addChild(number)
 ..addChild(new TextView("Owner: "))
 ..addChild(owner)
 ..addChild(new TextView("Balance: "))
 ..addChild(balance)

MVC Web and UI Frameworks in Dart – An Overview

[300]

 ..addChild(new TextView("Amount: "))
 ..addChild(amount)
 ..addChild(btn_deposit)
 ..addChild(btn_interest)
 ..addToDocument();
}

Rikulo MVC
For those who like to specify the UI design in an XML format, Rikulo provides the
UXL language to declare UI and store it in a .uxl.xml file. The following is a simple
example of an input dialog:

<Template name="Credit Card">
 <Panel layout="type:linear; orient: vertical; spacing: 8"
 profile="location: center center; width: 180; height: 145">
 Number: <TextBox id="ccNumber" value="$rememberMe" />
 Owner: <TextBox id="owner"/>
 <Button text="Verify"/>
 </Panel>
</Template>

Through a setup with a build script, these files are compiled to a plain Dart code,
which when run, builds the corresponding component tree of the screen. This UXL
format is ideally suited for a declarative definition of the View component of the
MVC model. It is quite elaborate and contains flow control, data, and event binding.
The following are few examples of the same:

For showing a customer name in a textbox:

<TextBox value="${customer.firstName}, ${customer.lastName}"/>

For running a verify method while pressing the button:

<Button text="Verify" on.click="verify"/>

To study UXL in detail, visit http://docs.rikulo.org/ui/latest/UXL/
Fundamentals/UXL_Overview.html.

Using UXL, the Rikulo framework easily allows you to build applications that
conform to the MVC model explained in Chapter 9, Modeling More Complex
Applications with Dartling. In the blog on the Rikulo website, you can find a complete
explanation of a todo app storing the todo items in the local storage and layered
out in separate controllers, models, and views folders: http://blog.rikulo.org/
posts/2012/Dec/General/rikulos-todomvc/.

Chapter 10

[301]

Clone the code from GitHub: git clone git://github.com/rikulo/todoMVC.

Pub contains some MVC frameworks not specifically focused on the UI, which allow
you to implement the Model View Controller design pattern described in Chapter 9,
Modeling More Complex Applications with Dartling. A few among them are mentioned
in the next couple of sections:

Hipster-mvc
(Download the code from the GitHub site: https://github.com/eee-c/hipster-
mvc.)

This framework (now in its Version 0.2.6) is developed by Chris Strom based on
Backbone.js. It is used in the development of the Dart comics example in Dart for
Hipsters, published by The Pragmatic Programmers (find the code at https://github.
com/eee-c/dart-comics). The framework defines a HipsterModel class, and your
app resource class must inherit from this. The class that represents a collection of
your objects must inherit from the HipsterCollection class, and the view class
from HipsterView. To use it, add hipster_mvc: >=0.2.6 to your app's pubspec.
yaml. It is a great starting point for a client app that uses the REST pattern to
communicate with a server.

Puremvc
(Find the code on GitHub at https://github.com/PureMVC/puremvc-dart-
multicore-framework/wiki.)

This is conceptually very deeply elaborated but still a lightweight framework and
is developed by Cliff Hall from Futurescale. It is extensively documented at www.
puremvc.org and exists for a whole range of programming languages (such as
ActionScript, C#, Java, C++, Python, Ruby, and now Dart as well), allowing its use
for a wide variety of platforms (browsers, desktops, mobiles, as well as servers).
The Dart version being at 2.0.4, is a port of the Flash/Flex ActionScript3 reference
implementation of the MultiCore Version, and it is production-ready. Make it
available to your application by adding puremvc: ">=2.0.4 <3.0.0" to your
pubspec.yaml and import it in your app with:

import 'package:puremvc/puremvc.dart';

MVC Web and UI Frameworks in Dart – An Overview

[302]

Its primary goal is to allow modular programming to follow the MVC pattern by
decomposing your app into so-called core actors or cores. Each core is, in fact, a
separate PureMVC subsystem that can communicate with other cores in two ways:

• Synchronously through interfaces
• Asynchronously through pipes

PureMVC implements the MVC tiers as the Multiton classes (see http://
en.wikipedia.org/wiki/Multiton_pattern), which register and manage
communications between the workhorse actors that operate within those tiers; it
also provides a handy frontend to the whole system known as Facade (http://
en.wikipedia.org/wiki/Facade_pattern). Because methods for passing a
message vary from platform to platform, PureMVC implements its own internal
observer notification system for its actors to communicate with each other. These are
not alternatives for events: your application's boundary classes will still interact with
the DOM, services, and PureMVC via events. To dig deeper into this framework,
analyze the Dart demo from https://github.com/PureMVC/puremvc-dart-demo-
reversetext/wiki, which is an elaborate version of the Dart Editor web template
that reverses text when you click on it; you can get the code with:

git clone git://github.com/PureMVC/puremvc-dart-demo-reversetext .

StageXL
(www.stagexl.org developed by Bernhard Pichler)

Adobe with its ActionScript variant of JavaScript and its Flash/Flex developer
suite has been a long time contender in the web development world. But Flash isn't
such a popular choice for web development anymore, and Dart is quite similar to
ActionScript 3. So it comes as no surprise that a solution has been developed to help
migrate Flash projects to HTML5 using Dart. The StageXL library (now at Version
0.8.3, formerly known as DartFlash) does exactly that, being highly compatible with
the battle-proof Flash API but built with Dart. It is a complete and robust Flash-like
engine for Canvas that is built on top of the Dart programming language using the
familiar Flash class hierarchy, with classes such as DisplayObject, MovieClip,
Stage, and Sprite. Working with sound is made simple with the Flash Sound API; a
number of visual effect filters are provided, and an easy-to-use animation framework
called Juggler also comes with it.

Chapter 10

[303]

StageXL is intended for Flash/ActionScript developers who want to migrate their
projects as well as their skills to HTML5. The library's site is up to date and provides
extensive documentation, examples, and tutorials at http://stagexl.org/docs/
wiki-articles.html. To start using it, add the following dependency to your
pubspec.yaml file: stagexl: any; add the following import statement to
your Dart code:

import 'package:stagexl/stagexl.dart';

Flash Professional CC – toolkit for Dart
(Download the software from http://toolkitfordart.github.io/, where you
can also find the documentation.)

Flash Professional (http://www.adobe.com/products/flash.html) is Adobe's
most popular authoring tool for creating vector graphics, animations, games, and
rich Internet applications for the Web. Previously, its content was exported to the
SWF file format, which could be viewed only with the Flash Player plugin. But at
Google I/O 2013, Adobe announced their new and open-sourced toolkit for Dart, a
plugin for Flash Professional CC that allows developers to export their animations
and games to Dart code, HTML5, and the StageXL library. This feature allows Flash
web designers and animators to use the tool they love (Flash Pro) and at the same
time, create content for the modern Web by publishing their content to the Dart
language and HTML5 APIs.

Most of the animation and drawing functionality of Flash Pro is supported in the
toolkit for Dart, such as bitmaps, shapes, movie clips, simple buttons, text fields,
filters, masks, and embedded audio. Dart code is generated for stage items, symbols,
images and sounds. The developer has to write Dart code for the interactive parts of
the content. The toolkit also uses the Dart StageXL library for the Flash runtime. You
can find it as an export panel in Flash Professional CC: its output is a functional Dart
project, partly being auto-generated code, and you can add your business logic in
other code files.

MVC Web and UI Frameworks in Dart – An Overview

[304]

Angular.dart
(See www.angularjs.org, the Dart project is on https://github.com/angular/
angular.dart)

Angular.js (or Angular for short) is a popular open source JavaScript framework,
maintained by Google, for developing single-page applications. Its goal is to make
browser-based apps with MVC capabilities in an effort to make both development
and testing easier. It accomplishes this by using declarative programming for
building UI and wiring software components. It uses a templating system with
a number of so called directives (starting with ng-) to specify customizable and
reusable HTML tags and expressions that moderate the behavior of certain elements;
for example, ng-repeat for instantiating an element for each item from a collection,
or ng-model for 2-way data binding:

<input type="text" ng-model="lastName" placeholder="Your name">

The $scope service detects changes to the model and modifies HTML expressions
in the view via a controller. Likewise, any alterations to the view are reflected in
the model. In June 2013, the Angular team was expanded to announce and work
on a Dart-optimized port of their framework using the same templates but a
separate implementation: large parts of Angular functionality—components such
as $compiler and $scope, basic directives such as ngBind and ngRepeat—have
already been ported over to Dart, and can be used today. Other critical Angular parts
such as Dependency Injection and routes are being ported now. Karma, the Angular
test runner, already works with Dart. An important project in development within
Google uses the Dart version of Angular. So developers can choose to use Angular
either with Dart or with JavaScript. At this moment, Angular is not yet published
on pub, but it soon will; for now it has to be used as a local package by adding the
dependency:

angular:
path: ../..

and importing the package in code as follows:

import 'package:angular/angular.dart';

Check out the hello angular example at https://github.com/jbdeboer/
dart-seed.

Chapter 10

[305]

Summary
We surveyed the available Dart UI frameworks in this chapter. Based on your
previous web technology experience (be it JavaScript, GWT, or Adobe Flash), you
already have some definite choices. For example, there are some beautiful MVC
frameworks or a framework built on Flash. This is a field that is very much in
evolution, so if you are evaluating UI frameworks, a search in pub (pub.dartlang.
org) will certainly be worthwhile. Also, expect to see more and more libraries based
on the Polymer project, discussed in Chapter 8, Developing Business Applications with
Polymer Web Components, when you read this. In the next chapter, we will learn how
to store data on the client with IndexedDB and then send it in the JSON format to
a Dart web server.

Local Data and Client-Server
Communication

Data goes around in applications, but, eventually, new and modified data has to be
stored; this can be done on the client or server. In the previous chapters, we used
local storage (also called web storage) in the browser. Here, we will investigate a
better client-side storage mechanism called IndexedDB and a layer called Lawndart
that automatically chooses the best local storage mechanism available on the client.
Most of the time, the data needs to be available to many people, so it needs to be
stored centrally on a server. We will see how to communicate data between client
and server with JSON, and, in the next chapter, how to store this data in a database
on the server side. Then, we'll see that Dart can be used for both sides of a client-
server app. To do this, we need to learn how Dart works with asynchronous calls
using Futures, and how it can run as a web server. The following are the topics for
this chapter:

• What are the options for browser storage?
• Asynchronous calls and Futures
• How to use IndexedDB with Dart
• Using Lawndart
• A Dart web server
• Using JSON web services

Local Data and Client-Server Communication

[308]

The options for browser storage
Using client-side data storage reduces bandwidth traffic, decreases network response
times (latency), increases UI performance, and, best of all, allows your application
to run offline. The local storage mechanism that we've used until now is a very
simple key/value store and does have good cross-browser coverage. However, it
can only store strings and is a blocking (synchronous) API; this means that it can
temporarily stop your web page from responding while it is doing its job. This can
be bad for performance when your app wants to store or read large amounts of data,
such as images. Moreover, it has a space limit of 5 Mb (this varies with browsers);
you can't detect when you are nearing this limit and you can't ask for more space!
These properties make it only as useful as a temporary data storage tool—better than
cookies, but not suited for reliable, database kind of storage.

On the other hand, IndexedDB is the future of offline, local object storage for your
web app. It has all the advantages of local storage, but no size limit. It is a full-
fledged database; but, being essentially an indexed object store, it belongs to the
family of NoSQL databases (similar to MongoDB and CouchDB on the server). It
is on the track to becoming an official standard and does have Chrome, Firefox,
and Internet Explorer (a version greater than or similar to 10) implementations.
Using indexes, it provides a far better search performance than web storage, but
programming it is more complex. (The equivalent of relational database storage in
the browser also exists and is called Web SQL DB; however, its specification is no
longer maintained and Firefox and Internet Explorer do not support it. That's why
we won't discuss it here.) IndexedDB works in a non-blocking way for our app, and
before we dive into how to use it, we explore Dart's mechanism for programming
non-blocking codes called Futures.

Asynchronous calls and Futures
How should our app handle a situation where it needs a service that can take some
time to return its result, for example, when we have to fetch or store data, read a large
file, or need a response from a web service. Obviously, the app can't wait for this to
end and the result to arrive (the so called synchronous way), because this would freeze
the screen (and the app) and frustrate users. A responsive web app must be able to
call this service and, immediately, continue with what it was doing. Only when the
result returns should it react and call some function on the response data. This is called
working in an asynchronous, non-blocking way, and most of the methods in dart:io
for server-side Dart apps work in this way. Developers with a Java or C# background
would immediately think of starting another thread to do the additional work,
but Dart can't do this; it has to compile to JavaScript, so Dart also works in a
single-threaded model that is tightly controlled by the browser's event loop.

Chapter 11

[309]

On the Web (client as well as server), the code has to execute as asynchronously as
possible in order not to block the browser from serving its user or a server process
from serving its many thousands of client requests. The JavaScript world has long
solved this issue using callbacks; this is a function that is "called" when the result
of the first function call returns ("backs"). In the following code snippet, the first
function that returns the result is doStuff and handle is registered as a callback
that works on the result; when an error occurs (onError), handleError is invoked:

doStuff((result) {
 handle(result);
}, onError: (e) {
 handleError(e);
});

The same mechanism can be used in Dart, but here we have a more elegant way
to handle this with objects appropriately called Futures. Now, we define doStuff
to return a Future; this is a value (which could be an error) that is not yet available
when doStuff is called, but that will be available sometime in the future, after
doStuff has asynchronously executed (indicated using the keyword then). The
same code snippet written using Futures is much more readable:

doStuff()
 .then((result) => handle(result))
 .catchError((e) => handleError(e));

The doStuff method returns a Future object, so it could have been written as:

Future fut1 = doStuff();
fut1.then((result) => handle(result))
 .catchError((e) => handleError(e));

But the first or even the following shorter way is idiomatically used:

doStuff()
 .then(handle)
 .catchError(handleError);

Then, it registers the callback handle and catchError calls handleError when
an error occurs and stops the error from propagating. It could be considered the
asynchronous version of a try/catch construct (there is also a .whenComplete
handler that is always executed and corresponds with finally). The advantage
becomes even more clear when callbacks are nested to enforce the execution
order, because, in the JavaScript way, this results in ugly and difficult-to-read code
(sometimes referred to as callback hell). Suppose a computation doStuff2 has to
occur between doStuff and handle, the first snippet becomes much less readable:

Local Data and Client-Server Communication

[310]

doStuff((result){
doStuff2((result){
handle((result) {
 });
 }, onError: (e) {
 handleError(e);
 });
}, onError: (e) {
 handleError(e);
 });

But, the version using Futures remains very simple:

doStuff()
 .then(doStuff2)
 .then(handle)
 .catchError(handleError);

Through this chaining syntax, it looks like synchronous code, but it is purely
asynchronous code executing; catchError catches any errors that occur in the chain
of Futures. As a simple, but working, example, suppose an app future1 needs to
show or process a large file bigfile.txt and we don't want to wait until this I/O is
completely done:

import 'dart:io'; (1)
import 'dart:async'; (2)

main() {
 var file = new File('bigfile.txt'); (3)
 file.readAsString() (4)
 .then((text) => print(text)) (5)
 .catchError((e) => print(e)); (6)
 // do other things while file is read in
 ... (7)
}

To work with files and directories, dart:io is needed in line (1); the Future
functionality comes from dart:async (line (2)). In line (3), a File object is created,
and, in line (4), the action to read the file in is started asynchronously; but, the
program immediately continues executing lines (7) and beyond. When the file is
completely read through, line (5) prints its contents; should an error e (for example,
a non-existing file) have occurred, this is printed in line (6). You can even leave out
the intermediary variables and write:

Chapter 11

[311]

 file.readAsString()
 .then(print)
 .catchError(print);

You can find more info in the following article:
https://www.dartlang.org/articles/futures-and-
error-handling/

Using IndexedDB with Dart
We will learn how to work with IndexedDB and JSON web services through the
indexed_db_spirals project (https://github.com/dzenanr/indexed_db_
spirals), which is a todo app like the ones we've built in previous chapters,
but that stores its data in IndexedDB. Get a copy of the code with a git clone:
https://github.com/dzenanr/indexed_db_spirals.git.

Spiral s00
In this spiral, todo tasks can be entered, and they are stored in IndexedDB; the
following is a screenshot:

The Tasks screen of Spiral s00

Our model class is called Task, and lives in model.dart; with toDb and fromDb, it
can transform an object to or make an object from a map:

class Task {
 String title;

Local Data and Client-Server Communication

[312]

 bool completed = false;
 DateTime updated = new DateTime.now();
 var key;

 Task(this.title);

 Task.fromDb(this.key, Map value):
 title = value['title'],
 updated = DateTime.parse(value['updated']),
 completed = value['completed'] == 'true' {
 }

 Map toDb() {
 return {
 'title': title,
 'completed': completed.toString(),
 'updated': updated.toString()
 };
 }
}

Besides Task, the model also contains the class TasksStore, which contains
List<Task> and interacts with IndexedDB. In order to do this, we need to import
the dart:indexed_db library to model.dart, which provides the Dart API to use
IndexedDB:

import 'dart:indexed_db';

The web page is view.html and references view.dart; this contains all UI code
setup from the main() entry point:

import 'dart:html';
import 'model.dart';

Element taskElements;
TasksStore tasksStore;

main() {
 taskElements = querySelector('#task-list');
 tasksStore = new TasksStore();
 tasksStore.open().then((_) { (1)
 loadElements(tasksStore.tasks);
 });

Chapter 11

[313]

 InputElement newTask = querySelector('#new-task');
 newTask.onKeyPress.listen((KeyboardEvent e) {
 if (e.keyCode == KeyCode.ENTER) {
 var title = newTask.value.trim();
 if (title != '') {
 tasksStore.add(title).then((task) { (2)
 addElement(task);
 });
 newTask.value = '';
 }
 }
 });

 ButtonElement clear = querySelector('#clear-tasks');
 clear.onClick.listen((MouseEvent e) {
 tasksStore.clear().then((_) { (3)
 clearElements();
 });
 });
}
Element newElement(Task task) {
 return new Element.html('''

 ${task.title}

 ''');
}

addElement(Task task) {
 var taskElement = newElement(task);
 taskElements.nodes.add(taskElement);
}

loadElements(List tasks) {
 for (Task task in tasks) {
 addElement(task);
 }
}

clearElements() {
 taskElements.nodes.clear();
}
}

Local Data and Client-Server Communication

[314]

All interactions with IndexedDB are asynchronous and return Futures; that's why
we use then in lines (1) to (3), respectively, when opening a database and adding
a task or removing all tasks. The callback functions loadElements, addElement, and
clearElements update the screen after the database has been changed (the code is
straightforward; see view.dart). In line (1), we see that, for the parameter of the
then callback function, (_) is written; this means that there is one parameter, but that
we don't need it, so we don't name it. What happens now in line (1) in the preceding
code with the open() call on TaskStore? You can imagine that we need to open the
database or create it the first time the page is requested. This is done with a call to
window.indexedDB.open in line (4) in model.dart:

class TasksStore {
 static const String TASKS_STORE = 'tasksStore';
 final List<Task> tasks = new List();
 Database _db;

 Future open() {
 return window.indexedDB.open('tasksDb00', (4)
 version: 1,
 onUpgradeNeeded: _initDb) (5)
 .then(_loadDb); (6)
 }
// code left out

The open() method takes three parameters: the first two are listed in alphabetical
order by the name of the database and the third, by version number. When the
app is first started on a client, a database with that name and Version 1 is created;
every subsequent time, it is simply opened. At creation, the third parameter
onUpgradeNeeded kicks in to fire an upgrade event, which calls _initDb in line (5).
You can upgrade a database to a higher version by opening it with a new version
number and then an upgrade event takes place and the previous version of the
database doesn't exist anymore. Our database tasksDb00 needs one or more object
stores; these can only be created during an upgrade event. Here, in _initDb, we get
a reference to the database object in line (7) and, in line (8), we create an object
store (that can contain data records) named TasksStore; the value of the constant is
TASKS_STORE:

void _initDb(VersionChangeEvent e) {
 var db = (e.target as Request).result; (7)
 var objectStore = db.createObjectStore(TASKS_STORE (8)
 autoIncrement: true);
}

Chapter 11

[315]

The autoIncrement property, when true, lets the database generate unique primary
keys for you. In a later spiral, we will also create an index to enhance query speed. A
database can contain multiple object stores if needed, and our app can have access to
multiple databases at once. After initialization, the then callback in line (6) kicks in,
calling _loadDb:

Future _loadDb(Database db) {
 _db = db;
 var trans = db.transaction(TASKS_STORE, 'readonly'); (9)
 var store = trans.objectStore(TASKS_STORE);
 var cursors = store.openCursor(autoAdvance: (10)
 true).asBroadcastStream();
 cursors.listen((cursor) { (11)
 var task = new Task.fromDb(cursor.key, cursor.value);
 tasks.add(task);
 });

 return cursors.length.then((_) { (12)
 return tasks.length;
 });
 }

In order to make sure that it is reliable, every operation on the database happens
within a transaction, so that transaction is created in line (9) and attached to the
object store (this is also required for reads; the second argument can be readonly,
readwrite, or versionchange). Database transactions take time, so the results are
always provided via Futures. Getting records from a database is mostly done using a
Cursor object, which is created here in line (10) with the openCursor method on the
object store. The cursors object indicates the current position in the object store and
returns the records one by one through a Stream object automatically because of the
autoAdvance parameter (otherwise, use the next() method). For each record that
returns, a listen event fires the code defined in line (11). Here, the database values
cursor.key and cursor.value are given to the named Task constructor fromDb, so a
new task is created and added to the list. A BroadcastStream method also returns the
length of the cursor as a final event in line (12), which is also the length of the tasks
collection. When a task is added, the add method on the store is called in line (2):

Future<Task> add(String title) {
 var task = new Task(title);
 var taskMap = task.toDb(); (13)

Local Data and Client-Server Communication

[316]

 var transaction = _db.transaction(TASKS_STORE, 'readwrite');
 var objectStore = transaction.objectStore(TASKS_STORE);

 objectStore.add(taskMap).then((addedKey) { (14)
 task.key = addedKey;
 });

 return transaction.completed.then((_) { (15)
 tasks.add(task);
 return task;
 });
 }

The class Task has a toDb method called in line (13) to transform the Task object
into a map. A read/write transaction is created and the add method is called on
the store in line (14) with the task data. This also returns a Future, resulting in the
key generated by the database (addedKey), which is also stored in the task object.
When the transaction completes in line (15), the task is added to the collection and
returned as the Future's result, which is then used in view.dart to update the view.
Removing all objects from the store is easy; calling clear on the store in line (3)
executes:

Future clear() {
 var transaction = _db.transaction(TASKS_STORE, 'readwrite');
 transaction.objectStore(TASKS_STORE).clear();
 return transaction.completed.then((_) {
 tasks.clear();
 });
}

This results in the clearing of the tasks collection and then the updating of the view.
To see the data in your IndexedDB database at any moment, navigate to Chrome
View | Developer | Developer Tools, and then choose Resources from the tabs
along the top of the window:

Chapter 11

[317]

Viewing IndexedDb with developer tools

Spiral s01
No new functionality is added here, but the startup web page is renamed to app.
html and the layout is improved through CSS. Furthermore, the methods are made
private where possible and the app architecture is refactored to MVC by introducing
a library in line (1); all of the UI code is moved from view.dart to the class
TasksView in lib/view/view.dart, and the model code to lib/model/model.dart.
Both are now contained in the library file lib/indexed_db.dart:

library indexed_db; (1)

import 'dart:async';
import 'dart:html';
import 'dart:indexed_db';

part 'model/model.dart';
part 'view/view.dart';

Local Data and Client-Server Communication

[318]

The main Dart file app.dart imports our new library in line (2) and uses a
TasksView object:

import 'package:indexed_db/indexed_db.dart'; (2)

main() {
 var tasksStore = new TasksStore();
 var tasksView = new TasksView(tasksStore);
 tasksStore.open().then((_) {
 tasksView.loadElements(tasksStore.tasks);
 });
}

Spiral s02
Now, we can remove a task or mark it as completed using the X button:

The screen of Spiral s02

To accomplish this, the newElement method is expanded a bit to draw the checkbox
and remove button:

Element _newElement(Task task) {
 return new Element.html('''

 <button class='task-button remove-task'>X</button>
 <input class='task-completed' type='checkbox'
 ${task.completed ? 'checked' : ''}>
 <label class='task-title'>${task.title}</label>

 ''');
 }

Chapter 11

[319]

In _addElement, a click event handler on the X button is added, which removes the
task from the object store:

 tasksStore.remove(task).then((_) {
 _taskElements.nodes.remove(taskElement);
 _updateFooter();
 });

The click event handler then calls the remove method in the class TasksStore to
delete it in the object store:

Future remove(Task task) {
 var transaction = _db.transaction(TASKS_STORE, 'readwrite');
 transaction.objectStore(TASKS_STORE).delete(task.key);
 return transaction.completed.then((_) {
 task.key = null;
 tasks.remove(task);
 });
}

Clicking the checkbox to signal a task as complete invokes an update on the object
store:

taskElement.querySelector('.task-completed').onClick.
listen((MouseEvent e) {
 task.completed = !task.completed;
 task.updated = new DateTime.now();
 tasksStore.update(task);
});

The update method transforms the Task object to a map and calls the
put method on the object store:
Future update(Task task) {
 var taskMap = task.toDb();
 var transaction = _db.transaction(TASKS_STORE, 'readwrite');
 transaction.objectStore(TASKS_STORE).put(taskMap, task.key);
 return transaction.completed;
}

Spiral s03
The new elements in this spiral are: a checkbox above the textbox to mark all tasks
as completed, the number of active (incomplete) tasks is shown at the bottom,
and a button to clear (remove) all completed tasks (their number is indicated in
parentheses) is added. The active and completed tasks are returned by getters in the
class TasksStore, for instance:

Local Data and Client-Server Communication

[320]

List<Task> get activeTasks {
 var active = new List<Task>();
 for (var task in tasks) {
 if (!task.completed) {
 active.add(task);
 }
 }
 return active;
}

In _initDb, we create a new database by changing the name and creating a unique
index on the title by calling createIndex on the object store:

 store.createIndex(TITLE_INDEX, 'title', unique: true);

The click handler for the "complete all tasks" button calls the following method:

Future completeTasks() {
 Future future;
 for (var task in tasks) {
 if (!task.completed) {
 task.completed = true;
 task.updated = new DateTime.now();
 future = update(task);
 }
 }
 return future;
}

In fact, this will only return the future of the last update. In this example, it will
be the last one that completes, but it would be more correct to return a future that
completes when all updates are complete. We'll make improvements in spirals s06
and s07.

All kinds of detailed screen updates are now assembled in _updateDisplay() in
view.dart.

Spiral s04
Now, it has become a fully functional todo application with nice links to all active
and completed task lists, the possibility of editing the task's title, and persisting the
data in IndexedDB, as shown in the following screenshot:

Chapter 11

[321]

 The screen of Spiral s04

The following code changes are worth discussing. In the previous spiral, a unique
index on the title was created, but no error message was shown when a duplicate
task was entered; the double task was simply not added and the IndexedDB error
was ignored. Now, we do better using the catchError method in line (1) and
changing the Keypress event handler of the input field to:

 InputElement newTask = querySelector('#new-task');
 newTask.onKeyPress.listen((KeyboardEvent e) {
 if (e.keyCode == KeyCode.ENTER) {
 var title = newTask.value.trim();
 if (title != '') {
 _tasksStore.add(title)
 .then((task) {
 _addElement(task);
 newTask.value = '';
 _updateFilter();
 })

Local Data and Client-Server Communication

[322]

 .catchError((e) { // IndexedDB error unique index (1)
 newTask.value = '${title} : title not unique';
 newTask.select();
 });
 }
 }
});

The edit functionality is coded as follows when the task title is double-clicked on in
line (2), and a textbox editTitle is shown in line (3) and selected:

 Element title = taskElement.querySelector('.task-title');
 InputElement editTitle = taskElement.querySelector('.edit-title');
 editTitle.hidden = true;
 title.onDoubleClick.listen((MouseEvent e) { (2)
 title.hidden = true;
 editTitle.hidden = false; (3)
 editTitle.select();
 });

The editTitle variable also has an onKeyPress event handler that calls an update
on the store and shows a non-unique error when this occurs.

The model now has a find method based on querying the index in line along with
get in line (4):

Future<Task> find(String title) {
 var trans = _db.transaction(TASKS_STORE, 'readonly');
 var store = trans.objectStore(TASKS_STORE);
 var index = store.index(TITLE_INDEX);
 var future = index.get(title); (4)
 return future
 .then((taskMap) {
 var task = new Task.fromDbWoutKey(taskMap);
 return task;
 });
 }

This is used in the _showActive and _showCompleted methods of the view:

 _showCompleted() {
 _setSelectedFilter(_completedElements);
 for (LIElement element in _taskElements.children) {
 Element titleLabel = element.querySelector('.task-title');
 String title = titleLabel.text;
 _tasksStore.find(title)

Chapter 11

[323]

 .then((task) {
 element.hidden = !task.completed; (5)
 })
 .catchError((e) {});
 }
 }

In line (5), we see that the task in the list is hidden when it is not yet completed.

Spiral s05
In this spiral, the UI and functionality remain the same, but the model is reorganized.
The model code, which contains the class Task and a collection class Tasks (with
methods, such as sort, contains, find, add, remove, and display0 in lib/model/
model.dart), is cleanly decoupled from the data access code: the classes TasksDb
and TasksStore in lib/model/idb.dart. This makes it easier to change or enhance
the model code or to use another data source by switching to a different data access
layer, which is what we do in Spiral s05_1.

Using Lawndart
IndexedDB doesn't (yet) work on all browsers. What if you don't know what browser
your clients will use? Can we still provide universal offline key-value storage? The
solution is Lawndart (https://github.com/sethladd/lawndart), a pub package
that you can import in your app, which has been developed by Seth Ladd as a
Dart reworking of Lawnchair. Lawndart presents an asynchronous, but consistent,
interface to local storage, IndexedDb, and Web SQL. Your app simply works with an
instance of the class Store and the factory constructor will try IndexedDB, Web SQL,
and then, finally, local storage. This is implemented in Spiral s05_1; the only change
with Spiral s05 is that IndexedDB (idb.dart) is replaced with Lawndart (lawndart.
dart). For example, the load method is now written as:

Future load() {
 Stream dataStream = _store.all();
 return dataStream.forEach((taskMap) {
 var task = new Task.fromDb(taskMap);
 tasks.add(task);
 });
}

Study lawndart.dart to see how the interface code changes.

Local Data and Client-Server Communication

[324]

A Dart web server
The Dart VM can also run as a server application on the command line or as
a background job. When creating the application, choose the command-line
application template. Most of Dart's server functionality lives in the dart:io library,
which cannot be used in writing browser Dart apps; in the same way, dart:html
cannot be used on the server. The class HttpServer is used to write Dart servers;
a server listens on a particular host and port for incoming requests and provides
event handlers (so-called request handlers) that are triggered when a request
with incoming data from a client is received. The latter is described by the class
HttpRequest, which is an asynchronous API provided by the browser (formerly
known as Ajax) and has properties, such as method, path, query parameters, and
InputStream with the data. The server responds by writing to the OutputStream of
an HttpResponse object. The following is the code of the project webserver, where
you can easily see all parts interacting:

import 'dart:io';

main() {
 print('simple web server');
 HttpServer.bind('127.0.0.1', 8080).then((server) {
 print('server will start listening');
 server.listen((HttpRequest request) {
 print('server listened');
 request.response.write('Learn Dart by Projects, develop in
 Spirals!');
 request.response.close();
 });
 });
}

Firstly, start the server from the editor or on the command line with dart webserver.
dart. Then, start (any) browser with the URL http://localhost:8080 to see the
response text appear on the client; the print output appears in the server console.

Using JSON web services
In this section, we code a web server that communicates with our clients and runs
the todo app; the todo data is sent to and from the web server in the JSON string
format. Spiral s06 consists of a server and a client part. To run it, first start the
server (lib/server/server.dart) in Dart Editor or from the console; it runs when
you see in the server.dart tab in Dart Editor: Listening for GET and POST on
http://127.0.0.1:8080.

Chapter 11

[325]

(If it does not run, navigate to Run | Manage Launches.) Then start one or more
clients (web/app.html) in Dartium. Locally, the client still saves the data in
IndexedDB. Our screen has two new buttons:

• To server: The client converts the the data to the JSON format and sends it to
the server, where the data is stored in the main memory (post data to server)

• From server: An another client (on a different machine) can request the
server data to update its local database (get data from server)

Server communication in Spiral s06

The following is the client code (from lib/view/view.dart) for To server
(posting data):

ButtonElement toServer = querySelector('#to-server');
 toServer.onClick.listen((MouseEvent e) {
 var request = new HttpRequest(); (1)
 request.onReadyStateChange.listen((_) { (2)
 if (request.readyState == HttpRequest.DONE &&
 request.status == 200) {
 // Data saved OK on server.
 serverResponse = 'Server: ' + request.responseText;
 } else if (request.readyState == HttpRequest.DONE &&
 request.status == 0) {
 // Status is 0...most likely the server isn't running.
 serverResponse = 'No server';
 }
 });

 var url = 'http://127.0.0.1:8080';
 request.open('POST', url); (3)
 request.send(_tasksStore.tasks.toJsonString()); (4)
 });

Local Data and Client-Server Communication

[326]

In line (1), a new client request is made; from line (3), we see that the method is
POST; and in line (4), the data from the tasks collection is sent to the server. Then,
the client listens to a possible server response (the status and responseText) in the
onReadyStateChange event. HttpStatus 200 indicates that everything went fine.
The code for "from server" (getting data) is shown as follows:

ButtonElement fromServer = querySelector('#from-server');
 fromServer.onClick.listen((MouseEvent e) {
 var request = new HttpRequest();
 request.onReadyStateChange.listen((_) {
 if (request.readyState == HttpRequest.DONE &&
 request.status == 200) {
 String jsonString = request.responseText; (5)
 serverResponse = 'Server: ' + request.responseText;
 print('JSON text from the server: ${jsonString}');
 if (jsonString != '') {
 List<Map> jsonList = JSON.decode(jsonString); (6)
 print('JSON list from the server: ${jsonList}');
 _tasksStore.loadFromJson(jsonList) (7)
 .then((_) {
 var tasks = _tasksStore.tasks;
 _clearElements();
 loadElements(tasks);
 })
 .catchError((e) {
 print('error in loading data into IndexedDB from
 JSON list');
 });
 }
 } else if (request.readyState == HttpRequest.DONE &&
 request.status == 0) {
 serverResponse = 'No server';
 }
 });

 var url = 'http://127.0.0.1:8080';
 request.open('GET', url); (8)
 request.send('update-me');
 });

In line (8), we see that this is a GET request; the response from the server containing
the data is stored in jsonString in line (5), decoded in List<Map> in line (6), and
added to IndexedDB through the loadFromJson method (line (7)). Of course, the
print statements are only needed as a way to log what takes place and what can be
left out. We will improve on this code in Spiral s07.

Chapter 11

[327]

But, what happens on the server? The server is started up through the following code:

import 'dart:io';
import 'dart:convert';

const String HOST = "127.0.0.1"; // or: "localhost"
const int PORT = 8080;
List<Map> jsonList;

void main() {
 start();
}

start() {
 HttpServer.bind(HOST, PORT).then((server) {
 server.listen((HttpRequest request) {
 switch (request.method) { (1)
 case 'GET':
 handleGet(request);
 break;
 case 'POST':
 handlePost(request);
 break;
 case 'OPTIONS':
 handleOptions(request);
 break;
 default: defaultHandler(request);
 }
 },
 onError: print); (2)
 })
 .catchError(print)
 .whenComplete(() => print('Listening for GET and POST on
 http://$HOST:$PORT'));
}

In line (1), in the listen handler, we now match the method of the request. Notice
in line (2), the onError handler, which is, in fact, the second optional parameter
of the listen method (onError: print could also be written as onError: (e)
=> print(e) to see an error in trying to start the server on port 80, and then you
get SocketException). Everything between lines (1) and (2) is the (anonymous)
onData handler of listen.

Local Data and Client-Server Communication

[328]

In the "To Server" situation, handlePost is executed:

void handlePost(HttpRequest request) {
 print('${request.method}: ${request.uri.path}');
 request.listen((List<int> buffer) { (3)
 var jsonString = new String.fromCharCodes(buffer);
 jsonList = JSON.decode.(jsonString); (4)
 print('JSON list in POST: ${jsonList}'); (5)
 },
 onError: print);
}

Here, in the listen handler, the client data is loaded in the buffer in line (3) and
then decoded to the List<Map> jsonList variable on the server storing the data in
memory (line (4)), and the server prints to its console in line (5):

POST: /

JSON list in POST: [{title: washing dishes, completed: true, updated:
2013-08-08 15:40:51.999}, {title: walking the dog, completed: true,
updated: 2013-08-08 10:30:47.794}, {title: cleaning the kitchen,
completed: false, updated: 2013-08-08 15:21:44.626}, {title: buying
vegetables, completed: false, updated: 2013-08-08 10:32:20.707}]

In the "From Server" situation, handleGet is executed:

void handleGet(HttpRequest request) {
 HttpResponse res = request.response; (6)
 print('${request.method}: ${request.uri.path}');
 addCorsHeaders(res); (7)
 res.headers.contentType =
 new ContentType("application", "json", charset: 'utf-8');(8)
 if (jsonList != null) {
 String jsonString = JSON.encode(jsonList); (9)
 print('JSON list in GET: ${jsonList}');
 res.write(jsonString); (10)
 }
 res.close(); (11)
}

Here, the response is prepared from line (6) onward; line (8) sets the content type
of the server response to the JSON text. In line (9), the server variable jsonList is
encoded to a JSON string and written into the response stream in line (10), which is
then closed in line (11). The server prints out:

Chapter 11

[329]

GET: /

JSON list in GET: [{title: washing dishes, completed: true, updated:
2013-08-08 15:40:51.999}, {title: walking the dog, completed: true,
updated: 2013-08-08 10:30:47.794}, {title: cleaning the kitchen,
completed: false, updated: 2013-08-08 15:21:44.626}, {title: buying
vegetables, completed: false, updated: 2013-08-08 10:32:20.707}]

and the client then prints out:

JSON list from the server: ... same list as above ...

In line (7), the method addCorsHeaders adds the following so-called CORS (Cross
Origin Resource Sharing) headers to the response:

void addCorsHeaders(HttpResponse response) {
 response.headers.add('Access-Control-Allow-Origin', '*, ');
 response.headers.add('Access-Control-Allow-Methods', 'POST,
 OPTIONS');
 response.headers.add('Access-Control-Allow-Headers', 'Origin, X-
 Requested-With, Content-Type, Accept');
}

In order to prevent cross-site scripting attacks, browser vendors have added a
same-origin policy to their browsers. If your web page comes from a server at URL
domain1, you can only send requests to the same domain1. If the server sends CORS
headers back in the response, the client can also send requests to other servers. In
general, it is not safe to use CORS headers. However, for development purposes, it
is useful to allow them so that you can run apps from Dart Editor that uses 3030 by
default for its internal server.

Spiral s07
But wait! Something is not yet right; the data of a new client overwrites on the
server the data from a previous client, so we have to implement some form of data
integration:

• To server (POST) adds local tasks without conflicting titles to data on the
server

• From server (GET) removes tasks with conflicting titles from local data and
adds tasks without conflicting titles to local data

Local Data and Client-Server Communication

[330]

In handlePost, on the server (bin/server.dart), we now call _integrateDataFro
mClient(jsonList), which contains the algorithm for the merging of tasks:

_integrateDataFromClient(List<Map> jsonList) {
 var clientTasks = new Tasks.fromJson(jsonList);
 var serverTasks = tasks;
 var serverTaskList = serverTasks.toList();
 for (var serverTask in serverTaskList) {
 if (!clientTasks.contains(serverTask.title)) {
 serverTasks.remove(serverTask);
 }
 }
 for (var clientTask in clientTasks) {
 if (serverTasks.contains(clientTask.title)) {
 var serverTask = serverTasks.find(clientTask.title);
 if (serverTask.updated.millisecondsSinceEpoch <
 clientTask.updated.millisecondsSinceEpoch) {
 serverTask.completed = clientTask.completed;
 serverTask.updated = clientTask.updated;
 }
 } else {
 serverTasks.add(clientTask);
 }
 }
}

This means that the server now has to know about the model (class Task/Tasks) to
realize that we now share the model between client and server by making it into a
library (lib/shared_model.dart):

library shared_model;
import 'dart:convert';
part 'model/model.dart';

and importing this in server.dart and idb_client.dart:

import 'package:client_server/shared_model.dart';

First, start the server and then two or more clients, for example, the first in Dartium
and the second in Chrome or another browser (run as JavaScript) (see doc/use.txt)
and juggle a few tasks between them!

Chapter 11

[331]

The code for "From server" (getting data) in lib\view\view.dart is improved using
a Future in HttpRequest in line (1):

fromServer.onClick.listen((MouseEvent e) {
 HttpRequest.getString('http://127.0.0.1:8080')
 .then((result) { (1)
 String jsonString = result;
 serverResponse = 'Server: ' + result;
 print('JSON text from the server: ${jsonString}');
 if (jsonString != '') {
 List<Map> jsonList = JSON.decode(jsonString);
 print('JSON list from the server: ${jsonList}');
 _tasksStore.loadDataFromServer(jsonList)
 .then((_) {
 var tasks = _tasksStore.tasks;
 _clearElements();
 loadElements(tasks);
 })
 .catchError((e) {
 print('error in loading data into IndexedDB from
 JSON list');
 });
 }
 });
});

Also, as an improvement to the completeTasks method in Spiral s03, we have now
this complete method that now guarantees that it will wait until all update tasks are
finished using Future.wait on a list futureList of all the following tasks:

Future complete() {
 var futureList = new List<Future>();
 for (var task in tasks) {
 if (!task.completed) {
 task.completed = true;
 task.updated = new DateTime.now();
 futureList.add(update(task));
 }
 }
 return Future.wait(futureList);
}

Local Data and Client-Server Communication

[332]

Summary
In this chapter, you got acquainted with using Futures in order to call methods
asynchronously. We discussed the pros and cons of browser storage mechanisms
and used the best mechanism (IndexedDB) extensively in a complete reworking of
our todo app. We also looked at Lawndart for when you want to program against
a uniform local storage interface. Then, we started with Dart on the server: how to
write a web server and how to communicate between clients and the server. With
it, we rewrote our app into a real client-server app, and stored data locally on the
clients and in the memory on the server.

However, any system failure can have server memory loss as a result and, most
probably, we do want to have more persistent central data storage; this is the topic
of the following chapter.

Data-driven Web Applications
with MySQL and MongoDB

Data is usually stored on a server in a database; in order to do that, our Dart app
needs a middle layer called a database driver. We'll review which drivers are
already available and then see how you can store and access your data on the server
with MySQL and MongoDB. These are two of the most popular databases: MySQL
is a typical relational database, and MongoDB is a NoSQL database (according to
the following link, http://db-engines.com/en/ranking, MySQL is second in
popularity after Oracle, and MongoDB occupies the sixth place). The following are
the topics covered in this chapter:

• Database drivers for Dart
• Storing the todo data in MySQL
• Dartlero tasks: a many-to-many model in MySQL and JSON
• MongoDB: a NoSQL database
• Using the mongo_dart driver to store the todo data in MongoDB

Database drivers for Dart
The amazing Dart community has already provided a whole spectrum of drivers
((P) means published in the pub repository, pub.dartlang.org).

For the relational databases we have:

• MySQL: An actively developed connector called SQLJocky (P) by James Ots;
we will use this driver in the next section (https://github.com/jamesots/
sqljocky)

Data-driven Web Applications with MySQL and MongoDB

[334]

• PostgreSQL: A driver called postgresql (P) by Greg Lowe
(https://github.com/xxgreg/postgresql)

• SQLite: A native extension library called Dart-sqlite by Sam McCall
(https://github.com/sam-mccall/dart-sqlite/)

• ODBC-driver: A library called dart-odbc (P) by Juan Mellado; this
allows connections to any database vendor (Oracle, MySQL, PostgreSQL,
SQLServer, and so on) with legacy ODBC drivers (http://code.google.
com/p/dart-odbc/)

For the NoSQL databases, the choice is even greater:

• MongoDB: This is a driver called mongo_dart (P) by Vadim Tsushko, Ted
Sander, and Paul Evans; we'll use it in this chapter (https://github.com/
vadimtsushko/mongo_dart). Another client by Vadim Tsushko is an object
document mapper tool called Objectory, which can be used on the client as
well as the server (https://github.com/vadimtsushko/objectory).

• CouchDB: This is a driver called couchclient (P) by Henri Chen. Another
driver called wilt (P) is created by S. Hamblett (https://github.com/
shamblett/wilt).

• Redis: This is a driver called redis-dart by Adam Singer (https://
github.com/financeCoding/redis-dart). Another Redis client called
DartRedisClient (P) is created by Dartist (https://github.com/dartist/
redis_client).

• Riak: This is a driver called riak-dart (P) by Istvan Soos and Ian Jones
(https://code.google.com/p/riak-dart/).

• RethinkDB: This is a driver called rethinkdb (P) by Dave Bettin (https://
github.com/dbettin/rethinkdb).

• HashMap: This is a driver called dart-dirty (P) by Chris Strom, a dirt
simple NoSQL DB that is a persistent, server-side HashMap (https://
github.com/eee-c/dart-dirty).

There also exists an Object Relational Mapper (ORM) framework:

• Dorm: This framework is created by Frank Pepermans. It provides an ORM
mapping on the client, and the goal is to hook it up with existing server-side
ORM solutions (Hibernate, Entity Framework, and so on) (https://github.
com/frankpepermans/dorm).

Chapter 12

[335]

Storing todo data in MySQL
Building further on Spiral s07 from the previous chapter, we will now add the
functionality to store our data on the server in a MySQL database. The project is
named todo_mysql and the code can be obtained from https://github.com/
dzenanr/todo_mysql.

It contains three subprojects: one for the client, which is the same as the client
portion of client_server_db_s07 in the project indexed_db_spirals from Chapter
11, Local Data and Client-Server Communication, and two server projects, both with
MySQL. The server projects are equivalent in functionality: todo_server_mysql
uses MySQL directly and todo_server_dartling_mysql is built with a task model
in Dartling, to show how the database is updated by reacting to changes in the
model. Both the server projects need to talk to MySQL, so they have the dependency
sqljocky: any in their pubspec.yaml, to import the MySQL driver. But, of
course, we also need the database software, so download and install the MySQL
Community Server installer from http://dev.mysql.com/downloads/mysql/. This
is straightforward, but in case you need any help with the installation, visit http://
dev.mysql.com/doc/refman/5.7/en/installing.html.

Be sure that the MySQL server process (mysqld) is started before going further.
Then start the MySQL Workbench tool (contained in the download) and create a
new empty database (schema) with the name todo. We need only one table, task,
which you can easily drag-and-drop using this tool; you can also run the Dart script
from test/mysql_test.dart to create and populate the table with some initial data
(recommended to avoid errors in a creation of the table).

You can now run the app as follows; run the server first:
todo_server_mysql/bin/server.dart

Alternatively, you can run the following in the Dart Editor:

todo_server_dartling_mysql/bin/server.dart

When you run, the output you see in the server.dart tab in Dart Editor is as
follows: Server at http://127.0.0.1:8080.

If it does not run, navigate to Run | Manage Launches (put a path to the project
folder; for example, d:\todo_mysql\todo_server_mysql in the working directory
field in Run | Manage Launches in order to have access to the connection.options
file). Run the first client in Dartium (todo_client_idb/web/app.html), and the
second client as JavaScript (todo_client_idb/web/app.html) in Chrome.

Data-driven Web Applications with MySQL and MongoDB

[336]

Use the client app in Dartium to add, update, or remove a task. The screen hasn't
changed since the screenshot showing the screen in Spiral s04 and the server
communication in Spiral s06 (Chapter 11, Local Data and Client-Server Communication).
Send it by pushing the To Server button where it is stored in the database; check
this by viewing the task table data in MySQL Workbench. The second client can then
retrieve this data using the From Server button. Experiment with the data by adding
other clients; remember, that all the clients also store the data locally in IndexedDB.

How do we go about storing our data in MySQL? We'll first examine the todo_
server_mysql project. The code that interacts with sqljocky sits in lib/model/
mysql.dart and contains the classes TodoDb and TaskTable. The model, together
with the data access layer, is contained in library todo_server_mysql, which is
imported in bin/server.dart.

The code starts executing with the main() function in server.dart: a todoDb object
is made on which (asynchronously) the open method is called, a connection is made
with MySQL, and the task data is loaded in taskTable, and finally the webserver
is started:

void main() {
 var todoDb = new TodoDb();
 todoDb.open().then((_) {
 taskTable = todoDb.taskTable;
 start(); // start webserver
 });
}

In order to connect to a MySQL server and database, we need a minimal set of
configuration settings that our app needs to read: a username, password, database,
hostname, and a port number. These are stored as the key=value pairs in the file
connection.options:

connection.options defines how to connect to a MySQL db
user=root
password=xyz # fill in your own password
port=3306
db=todo
host=localhost

The connection.options file sits right beneath the project directory. In order to
have access to it from our app, or any file with a main method that you run, we need
to navigate to Run | Manage Launches from the Dart Editor menu, and put a path
to the project folder (todo_mysql) in the working directory field. The quickest way to
do this is to run it first; it will fail because it doesn't find the file, but then you have a
readymade Manage Launch window for inserting the right path.

Chapter 12

[337]

To read the contents of such a file in Dart, create an object of the class OptionsFile,
passing it the filename (see line (1) in the following code). This class comes from the
options_file package by James Ots, available from pub; in order to use it, we must
include the following in our library file:

import 'package:options_file/options_file.dart';

Line (3) and onwards, the getString or getInt method is used, which, given the
key name, provides the value. Here is how it is done in the TodoDb class from lib/
model/mysql.dart:

class TodoDb {
 TaskTable _taskTable;
 TaskTable get taskTable => _taskTable;

 Future open() {
 var pool = getPool(new OptionsFile('connection.options')); (1)
 _taskTable = new TaskTable(pool);
 return _taskTable.load();
 }

 ConnectionPool getPool(OptionsFile options) { (2)
 String user = options.getString('user'); (3)
 String password = options.getString('password');
 int port = options.getInt('port', 3306);
 String db = options.getString('db');
 String host = options.getString('host', 'localhost');
 return new ConnectionPool((4)
 host: host, port: port, user: user, password: password,
 db: db);
 }
}

With these values, the method getPool (starting in line (2)) builds a
ConnectionPool object in line (4), which knows everything needed to connect to
the MySQL database. This is returned from this method and assigned to the variable
pool in line (1). On the next line, a TaskTable object is constructed on which the
load method is called. When the server starts, it loads data from MySQL to the
model in the main memory. When the model changes, the database is updated.
Our code continues executing in the class TaskTable:

Data-driven Web Applications with MySQL and MongoDB

[338]

class TaskTable {
 final ConnectionPool _pool;
 Tasks _tasks;

 TaskTable(this._pool) {
 _tasks = new Tasks.withTable(this);
 }

 Tasks get tasks => _tasks;
 bool get isEmpty => tasks.length == 0;

 Future load() { (1)
 Completer completer = new Completer(); (2)
 _pool.query((3)
 'select t.title, t.completed, t.updated '
 'from task t '
).then((rows) { (4)
 var taskMap;
 rows.listen((row) { (5)
 taskMap = {
 'title' : '${row[0]}', (6)
 'completed': '${row[1]}',
 'updated' : '${row[2]}'
 };
 var task = new Task.fromDb(taskMap); (7)
 tasks.load(task);
 },
 onError: (e) => print('data loading error: $e'), (8)
 onDone: () {
 completer.complete(); (9)
 print('all tasks loaded');
 }
);
 });
 return completer.future; (10)
 }

The load method in line (1) executes asynchronously, so it returns a Future (so do
all methods accessing the database). But we also see, here in line (1), the use of an
intermediate instance of the class Completer from the dart:async library.

Chapter 12

[339]

When the asynchronous code becomes more complex, the use of a Completer
method helps write more maintainable and readable code. Using the Completer
method, you can explicitly indicate when the Future value will be available by
calling the complete method as in line (9) in the onDone handler. This signals the
Future that the asynchronous operation has been completed. At the end of the load
method, the Future value is returned in line (10) as completer.future. The code of
the load method can seem daunting at first sight; let's analyze it step-by-step with the
help of the many built-in functions in the editor (another visual theme from Tools
| Preferences can also be useful). MySQL is a relational database, so at some point,
our code will have to construct the SQL statements to be sent to the database for
execution. In line (3), the query method (defined in sqljocky) is called on the pool
object with a SQL string as the parameter; the following is the signature taken from
the pop-up window when the cursor hovers over query:

Future<Results> query(String sql)

As we expected, query returns a Future; so, a then clause has to follow in line (4).
The following is the signature:

Future then(onValue(Results) -> dynamic, { onError(Object) ->
 dynamic})

From this we see that it has an onValue handler to process the results and an
optional onError handler. In our code, we have an anonymous onValue handler
that runs all the way down to stop just before line (10):

The onValue handler in the load method

Data-driven Web Applications with MySQL and MongoDB

[340]

The retrieved rows come in like a stream; the stream getter has a listen method
to subscribe to this stream with the signature:

StreamSubscription<Row> listen(onData(Row) -> void, {
 onError(dynamic) -> void, onDone() -> void, bool cancelOnError}
)

It has an onData handler that is called for every row that comes in, and the optional
onError and onDone handlers. The onData handler is again an anonymous method
and stretches from line (4) just up to line (8). Here, the data is extracted using an
indexing operator row[i]. With string interpolation, we construct a literal map
taskMap from which a Task object is made and added to the tasks collection; so, all
the task data is in the server memory. Then, we see onError, which prints possible
errors, and onDone, which signals the completion of the async operation in line (9).
The value of the Future is returned in line (10).

The _integrateDataFromClient method in bin/server.dart updates the data in
the server memory and the database (we'll see this shortly):

_integrateDataFromClient(List<Map> jsonList) {
 var clientTasks = new Tasks.fromJson(jsonList);
 var serverTasks = taskTable.tasks;
 var serverTaskList = serverTasks.toList();
 for (var serverTask in serverTaskList) {
 if (!clientTasks.contains(serverTask.title)) {
 serverTasks.remove(serverTask); (1)
 }
 }

 for (var clientTask in clientTasks) {
 if (serverTasks.contains(clientTask.title)) {
 var serverTask = serverTasks.find(clientTask.title);
 if (serverTask.updated.millisecondsSinceEpoch <
 clientTask.updated.millisecondsSinceEpoch) {
 serverTask.completed = clientTask.completed;
 serverTask.updated = clientTask.updated;
 }
 } else {
 serverTasks.add(clientTask); (2)
 }
 }
}

Chapter 12

[341]

The remove and add methods in lines (1) and (2) are found in model.dart (use
Open Declaration from the context menu), and in turn they call the delete and
insert methods from mysql.dart. The update method gets called in the completed
and updated setters in model.dart. Let us look a bit deeper at these methods, for
example, the insert method:

Future<Task> insert(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();

 _pool.prepare((1)
 'insert into task (title, completed, updated) values (?, ?,
 ?)'
).then((query) {
 print("prepared query insert into task");

 var params = new List(); (2)
 params.add(taskMap['title']);
 params.add(taskMap['completed']);
 params.add(taskMap['updated']);
 return query.execute(params); (3)
 }).then((_) {
 print("executed query insert into task");

 completer.complete(); (4)
 }).catchError(print); (5)
 return completer.future;
 }

Here, we see that the SQL of the query is first prepared in line (1) (a sort of parse
step in the database), which returns a Future. In the returned result, the task data is
inserted in the ? placeholders using a list that contains the parameter values. This
list is constructed in line (2) and the subsequent lines. Then, the execute method
is called on the query in line (3), again returning a Future. The async operation is
marked as completed in line (4). Note, the error handling in line (5); always include
this while dealing with the database access. Now, you'll be able to understand the
update and delete methods by yourself, as shown in the following code:

Future<Task> update(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();
 _pool.prepare(
 'update task set completed = ?, updated = ? where title = ?'
).then((query) {

Data-driven Web Applications with MySQL and MongoDB

[342]

 print("prepared query update task");
 var params = new List();
 params.add(taskMap['completed']);
 params.add(taskMap['updated']);
 params.add(taskMap['title']);
 return query.execute(params);
 }).then((_) {
 print("executed query update task");
 completer.complete();
 }).catchError(print);
 return completer.future;
 }

 Future<Task> delete(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();
 _pool.prepare(
 'delete from task where title = ?'
).then((query) {
 print("prepared query delete from task");
 var params = new List();
 params.add(taskMap['title']);
 return query.execute(params);
 }).then((_) {
 print("executed query delete from task");
 completer.complete();
 }).catchError(print);
 return completer.future;
}

You have now seen a complete data access layer to a relational database in action!

The second project todo_server_dartling_mysql builds upon the dartling_
todo_mvc_spirals project in Chapter 9, Modeling More Complex Applications with
Dartling. Dartling was used to model tasks and generate a code basis; so the lib/
gen code is the same. The data access code lives in lib/persistence/mysql.dart.
With Dartling, a model is not dependent on MySQL—the model does not call insert,
update, and delete methods (with the SQL code). The TodoDb class, in its constructor,
starts listening to the actions of the Dartling model:

domain.startActionReaction(this);

Chapter 12

[343]

In the react method, the TodoDb class reacts to actions in the Dartling model.

 react(ActionApi action) {
 if (action is AddAction) {
 taskTable.insert((action as AddAction).entity);
 } else if (action is RemoveAction) {
 taskTable.delete((action as RemoveAction).entity);
 } else if (action is SetAttributeAction) {
 taskTable.update((action as SetAttributeAction).entity);
 }
 }

In this way, one may use more than one database with Dartling without updating the
model code. The _integrateDataFromClient method now works with the model's
actions (such as AddAction and RemoveAction):

_integrateDataFromClient(List<Map> jsonList) {
 var clientTasks = new Tasks.fromJson(db.tasks.concept, jsonList);
 var serverTaskList = db.tasks.toList();
 for (var serverTask in serverTaskList) {
 var clientTask =
 clientTasks.singleWhereAttributeId('title',
 serverTask.title);
 if (clientTask == null) {
 new RemoveAction(db.session, db.tasks, serverTask).doit();
 }
 }
 for (var clientTask in clientTasks) {
 var serverTask =
 db.tasks.singleWhereAttributeId('title',
 clientTask.title);
 if (serverTask != null) {
 if (serverTask.updated.millisecondsSinceEpoch <
 clientTask.updated.millisecondsSinceEpoch) {
 new SetAttributeAction(
 db.session, serverTask, 'completed',
 clientTask.completed).doit();
 }
 } else {
 new AddAction(db.session, db.tasks, clientTask).doit();
 }
 }
}

To experiment with this version, first run the bin/server.dart server, and then one
or more clients from todo_client_idb.

Data-driven Web Applications with MySQL and MongoDB

[344]

Dartlero tasks – a many-to-many model
in MySQL
A one-table project is quite unrealistic; let us now revisit the dartlero_project_
tasks application in Chapter 8, Developing Business Applications with Polymer Web
Components. This has a many-to-many relationship between the concepts Project and
Employee, Task being the intermediate concept; data is stored only in the browser's
local storage. In the dartlero_tasks project (code can be cloned from https://
github.com/dzenanr/dartlero_tasks), we have the same model built on Dartlero,
but the data can be stored on the server either in the JSON format or in a MySQL
database. The startup script for both the options is bin/dartlero_tasks.dart. The
model and the data access layer are defined in library dartlero_tasks lib/
model/darlero_tasks.dart.

The JSON storage
If you want to use the JSON file storage, you have to create a command-line launch
for the bin/dartlero_tasks.dart script. In Run | Manage Launches of Dart
Editor, enter two script arguments (--dir and path), for example:

--dir C:/Users/"username"/git/dartlero/dartlero_tasks/json_data
 (on Windows)
--dir /home/username/git/dartlero/dartlero_tasks/json_data (on
 Linux)

By running the main function in the bin/dartlero_tasks.dart file, a model, with
two entry points, will be initialized and saved in the given directory. For each entry
concept, a file with the concept name and the .json extension will be created. The
next time the program is run, data from the two files will be loaded. View the data
in the JSON documents with a text editor, or use a JSON pretty printer. Let's dig into
the code; first, let's examine bin/dartlero_tasks.dart:

import 'package:dartlero_tasks/dartlero_tasks.dart'; (1)

void main(List<String> arguments) {
 var model = TasksModel.one();

 try {
 if (arguments.length == 2 && (arguments s[0] == '--dir')) {
 model.persistence = 'json';

Chapter 12

[345]

 model.jsonDirPath = args[1];
 if (!model.loadFromJson()) { (3)
 model.init();
 model.saveToJson();
 }
 model.display();
 }
 } else if (arguments s.length == 1 && (arguments s[0] == '--mysql'))
{
 // code for MySQL storage
 } else {
 print('No arguments: consult README');
 }
 } catch (e) {
 print('consult README: $e');
 }
}

The arguments are passed to main as a List<String> property with the same name,
on an object from this class, constructed in line (3). The loadFromJson method from
lib/model/model.dart reads in the JSON files with:

 File employeesFile = getFile(employeesFilePath);
 // ... code left out
 String employeesFileText = readTextFromFile(employeesFile);

The getFile and readTextFromFile variables are defined in lib/model/file_
persistence.dart; this file contains all the methods from the project that directly
use dart:io:

part of dartlero_tasks;

Directory getDir(String path) {
 var dir = new Directory(path);
 if (dir.existsSync()) {
 print('directory ${path} exists already');
 } else {
 dir.createSync();
 print('directory created: ${path}');
 }
 return dir;
}

Data-driven Web Applications with MySQL and MongoDB

[346]

File getFile(String path) {
 File file = new File(path);
 if (file.existsSync()) {
 print('file ${path} exists already');
 } else {
 file.createSync();
 print('file created: ${path}');
 }
 return file;
}

addTextToFile(File file, String text) {
 IOSink writeSink = file.openWrite();
 writeSink.write(text);
 writeSink.close();
}

String readTextFromFile(File file) {
 return file.readAsStringSync();
}

The methods in dart:io work asynchronously by default; for example, the create,
exists, open, read, and write methods all return a Future. These should be
used in the real production apps. To simplify the code in our case, we used their
synchronous counterparts, createSync and existsSync, for the directory, reading
the entire content of the file as a string with readAsStringSync. Writing the files is
done when the model saves itself with the saveToJson method in model.dart. This
calls addTextToFile, and here we see that openWrite is called on the file object,
returning an object of the class IOSink, a helper class that is used to write to a file.
It contains a buffer, which must be closed explicitly when the writing is completed.
Take some time to explore the API for dart:io, especially the file methods and
properties. (http://api.dartlang.org/docs/releases/latest/dart_io.html)

MySQL storage
For using the MySQL storage, use the script argument --mysql in Run | Manage
Launches of Dart Editor. There is no need to create a new database (the default
database test will be used), but do not forget to start the MySQL server. Before
running a Dart file with main, put a path to the project folder dartlero_tasks in the
working directory field in Run | Manage Launches, in order to have access to the
connection.options file.

Chapter 12

[347]

Run example/mysql/example.dart to drop and create all the tables; the following
output appears (every script produces some output to monitor its execution):

opening connection

connection open

running example

dropping tables

dropped tables

creating tables

executing queries

created tables

prepared query 1

executed query 1

prepared query 2

executed query 2

prepared query 3

executed query 3

querying

got results

bye

In the following screenshot, you see the project table contents in SQL Workbench
after execution:

Data in the project table

Data-driven Web Applications with MySQL and MongoDB

[348]

The following is the main method:

void main() {
 try {
 OptionsFile options = new OptionsFile('connection.options');
 String user = options.getString('user');
 String password = options.getString('password');
 int port = options.getInt('port', 3306);
 String db = options.getString('db');
 String host = options.getString('host', 'localhost');
 // create a connection
 print('opening connection');
 var pool = new ConnectionPool(host: host, port: port, user:
 user, password: password, db: db);
 print('connection open');
 // create an example class
 var example = new Example(pool);
 // run the example
 print('running example');
 example.run().then((_) {
 // finally, close the connection
 print('bye');
 pool.close();
 });
 } catch(e) {
 print('consult README: $e');
 }
}

Note the try/catch exception handling; reading the options file and opening a
connection with the database can both generate an exception.

The script itself contains some new interesting ways to work with sqljocky. It reads
the options file and makes a ConnectionPool object based on this info. It then makes
an example object and calls run on it:

Future run() {
 var completer = new Completer();
 dropTables()
 .then((_) => createTables())
 .then((_) => addData())
 .then((_) => readData())
 .then((_) => completer.complete())
 .catchError((e) => print(e));
 return completer.future;
}

Chapter 12

[349]

This is a good example of how methods that return a Future can be chained in
a succession of the then calls. This produces elegant and readable code. The
dropTables method uses a TableDropper object to drop a list of tables:

Future dropTables() {
 print("dropping tables");
 var dropper = new TableDropper(pool, ['task', 'employee',
 'project']);
 return dropper.dropTables();
}

The createTables Future uses a QueryRunner object. Its executeQueries method
can execute a list of SQL statements:

Future createTables() {
 print("creating tables");
 var querier = new QueryRunner(pool,
 [
 'create table employee (code varchar(64) not null, '
 'lastName varchar(32) not null, '
 'firstName varchar(32) not null, '
 'email varchar(64) not null, '
 'primary key (code))',

 'create table project (code varchar(64) not null, '
 'name varchar(64) not null, '
 'description varchar(256), '
 'primary key (code))',

 'create table task (code varchar(128) not null, '
 'projectCode varchar(64), '
 'employeeCode varchar(64), '
 'description varchar(256), '
 'primary key (code), '
 'foreign key (projectCode) references project (code), '
 'foreign key (employeeCode) references employee (code))'
]);
 print("executing queries");
 return querier.executeQueries();
 }

The addData Future shows how a prepared SQL statement with parameters
(as before each ? is a parameter that needs a value) can be given a list of Lists,
where each inner list contains all the parameter values for one statement. The
executeMulti method on the query executes the statements in succession:

Data-driven Web Applications with MySQL and MongoDB

[350]

Future addData() {
 var completer = new Completer();
 pool.prepare(
 "insert into employee (code, lastName, firstName, email)
 values (?, ?, ?, ?)"
).then((query) {
 print("prepared query 1");
 var parameters = [
 ["dzenanr@gmail.com", "Ridjanovic", "Dzenan",
 "dzenanr@gmail.com"],
 ["timur.ridjanovic@gmail.com", "Ridjanovic", "Timur",
 "timur.ridjanovic@gmail.com"],
 ["ma.seyer@gmail.com", "Seyer", "Marc-Antoine",
 "ma.seyer@gmail.com"]
];
 return query.executeMulti(parameters);
 }).then((results) {
 print("executed query 1");
 // code left out

The other scripts in the example/mysql folder use the same techniques to populate
each table separately.

The project also contains test scripts exercising the Dart unittest; for example,
test/mysql/employee_test.dart for employee data; the following is the main
code:

main() {
 try {
 var pool = getPool(new OptionsFile('connection.options'));
 dropTables(pool)
 .then((_) => createTable(pool))
 .then((_) => initData(pool))
 .then((_) => testProjects(pool));
 } catch(e) {
 print('consult README: $e');
}

The testing output is:

PASS: Testing employees Select all employees
PASS: Testing employees Select Ridjanovic employees
PASS: Testing employees Select all employees, then select Ridjanovic
employees

Chapter 12

[351]

All 3 tests passed.
unittest-suite-success
selected all employees
count: 1 - code: dzenanr@gmail.com, last name: Ridjanovic, first name:
Dzenan, email: dzenanra@gmil.com
 // other data.

The following is the code of the testing method:

testEmployees(ConnectionPool pool) {
 group("Testing employees", () {
 test("Select all employees", () {
 var count = 0
 pool.query(
 'select e.code, e.lastName, e.firstName, e.email '
 'from employee e '
).then((rows) {
 print("selected all employees");
 rows.stream.listen((row) {
 count++;
 print(
 'count: $count - '
 'code: ${row[0]}, '
 'last name: ${row[1]}, '
 'first name: ${row[2]}, '
 'email: ${row[3]}'
);
 }).onDone(() => expect(count, equals(3)));
 });
 });

 test("Select Ridjanovic employees", () {
 pool.query(
 'select e.code, e.lastName, e.firstName, e.email '
 'from employee e '
 'where e.lastName = "Ridjanovic" '
).then((rows) {
 print("selected Ridjanovic employees");
 rows.stream.listen((row) {
 expect(row[1], equals('Ridjanovic'));
 print(
 'code: ${row[0]}, '
 'last name: ${row[1]}, '
 'first name: ${row[2]}, '

Data-driven Web Applications with MySQL and MongoDB

[352]

 'email: ${row[3]}'
);
 });
 });
 });

 test("Select all employees, then select Ridjanovic employees",
() {
 var futures = new List<Future>(); (1)
 var completer = new Completer();
 futures.add(completer.future); (2)
 var count = 0;
 pool.query(
 'select e.code, e.lastName, e.firstName, e.email '
 'from employee e '
).then((rows) {
 print("selected all employees");
 rows.stream.listen((row) {
 count++;
 print(
 'count: $count - '
 'code: ${row[0]}, '
 'last name: ${row[1]}, '
 'first name: ${row[2]}, '
 'email: ${row[3]}'
);
 }).onDone(() {
 expect(count, equals(3));
 completer.complete();
 });
 });

 Future.wait(futures).then((futures) { (3)
 pool.query(
 'select e.code, e.lastName, e.firstName, e.email '
 'from employee e '
 'where e.lastName = "Ridjanovic" '
).then((rows) {
 print("selected Ridjanovic employees");
 rows.stream.listen((row) {

Chapter 12

[353]

 expect(row[1], equals('Ridjanovic'));
 print(
 'code: ${row[0]}, '
 'last name: ${row[1]}, '
 'first name: ${row[2]}, '
 'email: ${row[3]}'
);
 });
 });
 });
 });
 });
}

In the test ("Select all employees, then select Ridjanovic employees"),
we see how we can wait for the execution of the code until all Futures contained in a
list have terminated. In line (1), List<Future> is defined, and in line (2), a Future
object is added to the list. In line (3), the static method wait is called on Future: it
waits until all the methods in its List argument (here only one) have returned their
Future value. Run test/mysql/project_test.dart to test the projects table:

dropping tables
creating project table
initializing project data
prepared query insert into project
executed query insert into project
unittest-suite-wait-for-done
PASS: Select all projects

All 1 tests passed.
unittest-suite-success
selected all projects
count: 1 - code: Dart, name: Dart, description: Learning Dart.
count: 2 - code: MySql, name: MySql, description: Figuring out MySql
driver for Dart.
count: 3 - code: Web Components, name: Web Components, description:
Learning web components.

Data-driven Web Applications with MySQL and MongoDB

[354]

MongoDB – a NoSQL database
Many NoSQL databases exist in the market today, but MongoDB, by the company
with the same name (http://www.mongodb.org/), is the most popular among
them. An important distinction between relational and NoSQL databases is that
NoSQL databases are schema-less; this means you don't have to define the tables
before inserting data. This in itself, of course, adds a lot to the flexibility and agility
in the use of these databases; for example, adding a new field no longer means
that you have to alter the table and run the SQL update commands. As there are
no SQL queries to be used here, all the data retrieval happens via standard CRUD
calls (create, read, update, and delete). In MongoDB, this is known as insert, find,
update, and remove. MongoDB presents itself as an open source, distributed,
document-oriented database: each data record is actually a document. A table is
called a collection in MongoDB. Documents are stored in a JSON-like format called
Binary JSON (BSON). BSON documents are objects that contain an ordered list
of saved elements; each element comprises a field name, and a value, which is of a
specific type. BSON is designed to be more efficient than JSON, both in storage space
and reading speed, adding to the performance for which MongoDB is known. In a
MongoDB database, you can query data not only through keys and secondary keys,
but also with ranges and regular expressions; indexes can be applied to pretty much
everything, such as 2D and 3D spatial data; there's absolutely no limitation.

To guarantee high availability, a master-slave replication (so-called replica-sets) is
built. For Big Data applications, support for spreading data across multiple servers
(so-called auto-sharding) is a key feature, making MongoDB a very scalable solution.
Install the latest production release for your system from http://www.mongodb.
org/downloads.

This is easy; for details refer http://docs.mongodb.org/manual/installation/.

A number of binaries are installed in the bin map; amongst them are mongod, which
is the server (or daemon) process, and mongo, which is a command-line client. The
following is a good tutorial to get started: http://docs.mongodb.org/manual/
tutorial/getting-started/. Start the mongod server process (for example, from
c:\mongodb\bin on Windows) before going further. If all is well, you should see an
output similar to the following on the console:

Fri Aug 23 10:57:19.256 [initandlisten] MongoDB starting : pid=1568
port=27017 db

path=\data\db\ 64-bit host=predator

Fri Aug 23 10:57:19.258 [initandlisten] db version v2.4.5

Chapter 12

[355]

To close the MongoDB server safely, issue a Ctrl + C in the console. Before using
a Dart driver, let's get acquainted a bit with the Mongo shell, which works with
JavaScript, and communicates directly with MongoDB. Open a console window and
start the command: mongo. The following output appears, telling us that we are using
the default database test and showing us a prompt:

 MongoDB shell version: 2.4.5

 connecting to: test

 >

Suppose we want to save stock data; for example, GOOG (the symbol), Google Inc.
(the company's name), and its current rating 13. We will call our database invest.
Switch to that database with use invest, which returns switched to db invest.
At this point, the database doesn't really exist as it doesn't contain any data. In
MongoDB, data is stored in collections, allowing you to separate documents if
required. Let's create a document and store it as a new collection named stocks:

db.stocks.save({symbol:"GOOG",name:"Google Inc.",rating:13});

Save some other data as follows:

Symbol Company Current rating
MSFT Microsoft Technologies 7
KOG Kodiak Oil & Gas Corp 11
AAPL Apple Inc 11
CSCO Cisco Systems 12

Our collection now contains five documents; retrieve them with db.stocks.find():

{"_id" : ObjectId("521df951abd1215f4673c8ed"), "symbol" : "GOOG",
 "name" : "Google Inc.", "rating" : 13 }
{ "_id" : ObjectId("521df997abd1215f4673c8ee"), "symbol" : "MSFT",
 "name" : "Microsoft Technologies", "rating" : 7 }
{ "_id" : ObjectId("521df9caabd1215f4673c8ef"), "symbol" : "KOG",
 "name" : "Kodiak Oil & Gas Corp", "rating" : 10 }
// 2 other documents left out

The _id attribute is a unique identifier generated by MongoDB, and will be different
in your result. Documents can be way more complex than these, storing various data
types including strings, integers, floats, dates, arrays, and other objects. Suppose we
only want to see the stocks with a rating greater than 11; the query gives us GOOG
and CSCO:

db.stocks.find({rating:{$gt:11}});

Data-driven Web Applications with MySQL and MongoDB

[356]

For example, sorting on the symbol is also easy:

db.stocks.find().sort({symbol: 0});

Add .count() at the end of any find command that will give the number of
documents found. If Microsoft's new CEO comes along and the company's rating
rises to 12, how do we change that in our database via the shell? First, we must get
a variable reference to the document we want to change:

var ms= db.stocks.findOne({symbol: "MSFT"});

Then, make the change as you would in the code:

ms.rating = 12;

Then, save the change with:

db.stocks.save(ms);

Verify with find()that the change is stored. You can create an index in the symbol
field with:

db.stocks.ensureIndex({symbol: 1});

To create a backup, issue the mongodump command. To explore the shell and its
commands further, visit the MongoDB website.

The Mongo shell showing the stocks collection

Chapter 12

[357]

Using the mongo_dart driver to store the
todo data in MongoDB
MongoDB drivers exist for a whole range of programming languages, including
Dart. We will use mongo_dart in our app, which is a server-side driver implemented
purely in Dart. Simply add mongo_dart: any to your app's pubspec.yaml, and
issue pub install. In the code, write:

import 'package:mongo_dart/mongo_dart.dart';

todo_mongodb is a version of todo_server_dartling_mysql, but now use
MongoDB as a persistent data source (clone the project from https://github.com/
dzenanr/todo_mongodb). It contains a client app todo_client_idb, identical to
the one in the previous section, which stores data in IndexedDB. The server part
todo_server_dartling_mongodb can be started by running bin/server.dart;
you should see in the editor or the console:

Server at http://127.0.0.1:8080;

If you see the following exception, it means that the mongod server has not yet
been started:

SocketException: Connection failed (OS Error: No connection could be
made because the target machine actively refused it., errno = 10061),
address = 127.0.0.1, port = 27017.

Run a Dartium client (todo_client_idb/web/app.html) from the editor and a
JavaScript client in Chrome or another browser. Fill in some tasks if you see nothing
to do and click the To Server button. The mongod console outputs that it has created
a data file with index, and that it has inserted a number of rows:

Fri Aug 23 11:19:55.839 [FileAllocator] allocating new datafile \data\
db\todo.1,
filling with zeroes...
Fri Aug 23 11:19:55.842 [conn1] build index todo.tasks { _id: 1 }
Fri Aug 23 11:19:55.844 [conn1] build index done. scanned 0 total
records. 0.002
 secs
Fri Aug 23 11:19:55.846 [conn1] insert todo.tasks ninserted:1
keyUpdates:0 locks(
micros) w:412870 412ms
Fri Aug 23 11:19:56.466 [FileAllocator] done allocating datafile \
data\db\todo.1,
 size: 128MB, took 0.625 secs

Data-driven Web Applications with MySQL and MongoDB

[358]

Synchronize the other clients by clicking their From Server button. To verify that the
data is actually in MongoDB, open a Mongo shell by typing mongo in a console and
issuing the commands to retrieve the documents from the tasks collection in
the todo database:

> use todo

The output will be as follows:

switched to db todo

The command to retrieve the documents is as follows:

> db.tasks.find()

The output will be as follows:

{ "_id" : ObjectId("5217293b479e4132cdecef0e"), "title" :
"administration", "comp

leted" : false, "updated" : ISODate("2013-08-16T09:14:50.569Z") } ...

Running test/mongodb_test.dart is an alternative to create and populate the
database todo with a tasks collection. From the structure of our app, we can deduce
that the data access code resides in lib/persistence/mongodb.dart, which
contains the classes TodoDb and TaskCollection. Let us now see how our Dart code
reaches out to MongoDB. In the main method of the server script, we see:

void main() {
 db = new TodoDb(); (1)
 db.open().then((_) { (2)
 start();
 });
}

Line (1) calls the constructor from TodoDb, and in line (2), the database is opened.
The following is the code from the TodoDb class:

class TodoDb implements ActionReactionApi {
 static const String DEFAULT_URI = 'mongodb://127.0.0.1/';
 static const String DB_NAME = 'todo';

 TodoModels domain;
 DomainSession session;
 MvcEntries model;
 Tasks tasks;

Chapter 12

[359]

 Db db;

 TaskCollection taskCollection;

 TodoDb() { (3)
 var repo = new TodoRepo();
 domain = repo.getDomainModels('Todo');
 domain.startActionReaction(this);
 session = domain.newSession();
 model = domain.getModelEntries('Mvc');
 tasks = model.tasks;
 }

 Future open() {
 Completer completer = new Completer();
 db = new Db('${DEFAULT_URI}${DB_NAME}'); (4)
 db.open().then((_) { (5)
 taskCollection = new TaskCollection(this); (6)
 taskCollection.load().then((_) { (7)
 completer.complete();
 });
 }).catchError(print);
 return completer.future;
 }

 close() {
 db.close();
 }

 react(ActionApi action) {
 if (action is AddAction) {
 taskCollection.insert((action as AddAction).entity);
 } else if (action is RemoveAction) {
 taskCollection.delete((action as RemoveAction).entity);
 } else if (action is SetAttributeAction) {
 taskCollection.update((action as SetAttributeAction).
entity);
 }
 }
}

Data-driven Web Applications with MySQL and MongoDB

[360]

The constructor starting in line (3) does everything necessary to start up the
Dartling model. The open method creates a new MongoDB database in line (4) (with
the substituted value):

db = new Db('mongodb://127.0.0.1/todo);

The Db class comes from mongo_dart; it has an open method called in line (5).
From the then keyword, we see that it returns a Future as expected. As dictated
by Dartling, any change in the app's data calls react to update the model and the
database, as TodoDb listens to actions in the model through the line:

domain.startActionReaction(this));

When an action happens, all listeners are informed about that action in the react
method for listeners. The TaskCollection class, whose object is constructed in
line (6), is the closest we will get to MongoDB in this project, again, using Futures
throughout. The code is as follows:

 class TaskCollection {
 static const String COLLECTION_NAME = 'tasks';
 TodoDb todo;
 DbCollection dbTasks;

 TaskCollection(this.todo) {
 dbTasks = todo.db.collection(COLLECTION_NAME); (8)
 }

 Future load() { (9)
 Completer completer = new Completer();
 dbTasks.find().toList().then((taskList) {
 taskList.forEach((taskMap) {
 var task = new Task.fromDb(todo.tasks.concept, taskMap);
 todo.tasks.add(task);
 });
 completer.complete();
 }).catchError(print);
 return completer.future;
 }

Chapter 12

[361]

 Future<Task> insert(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();
 dbTasks.insert(taskMap).then((_) {
 print('inserted task: ${task.title}');
 completer.complete();
 }).catchError(print);
 return completer.future;
 }

 Future<Task> delete(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();
 dbTasks.remove(taskMap).then((_) {
 print('removed task: ${task.title}');
 completer.complete();
 }).catchError(print);
 return completer.future;
 }

 Future<Task> update(Task task) {
 var completer = new Completer();
 var taskMap = task.toDb();
 dbTasks.update({"title": taskMap['title']}, taskMap).then((_){
 print('updated task: ${task.title}');
 completer.complete();
 }).catchError(print);
 return completer.future;
 }
}

It contains a DbCollection object (also defined in mongo_dart) named dbTasks,
which mirrors the tasks collection in the database through the assignment in line (8)
of the constructor. In line (9), its load method (called in the previous code snippet
in line (7)) calls find() on dbTasks. When the results return, a new Task object is
made for each document, found, and added to the tasks collection. The insert,
delete, and update methods respectively call insert, remove, and update on the
DbCollection object dbTasks. Notice the exceptional handling clause that will
signal any error:

.catchError(print);

Data-driven Web Applications with MySQL and MongoDB

[362]

When a server starts, all data from a database are loaded into the model in the main
memory. When the model changes, these changes are propagated immediately to the
database through actions/reactions. In this approach, a database system is used only
minimally: all searches for the data are done in the main memory without using the
slower database system. With Dartling, a model is not dependent on MongoDB—the
model does not call the insert, update, and remove methods. The use of (only a few
methods of) the mongo_dart driver shields us from using and knowing the slightly
more elaborate MongoDB commands in our Dart code. The complete API reference
of the driver can be found at http://vadimtsushko.github.io/mongo_dart/
mongo_dart/Db.html.

Again, we clearly see the advantages of using a modeling framework and a
well-structured library; our data access code in lib/persistence was all we needed
to adapt while changing from the MySQL version to the MongoDB version!

Summary
This chapter gave you the tools necessary for writing the client-server Dart
applications that store their data in the server databases. You learned how to work
with files, storing data in the JSON format. We also stored our data in a typical
relational database (MySQL), using the sqljocky driver for Dart. Then, we gave you
an intro into the document database system MongoDB, and showed you how to use
it from a Dart app with the mongo_dart connector.

This brings us to the end of our Dart journey in this book. We hope you've enjoyed
it as much as we enjoyed developing the code and writing the text for it. You now
have the tools to develop all sorts of apps using Dart. Join the Dart community
and start using your coding talents! Perhaps we'll meet again in the Dartiverse.

Index
Symbols
$scope service 304
<category-table> component 224
_colorBox method 180, 182
_integrateDataFromClient method 340, 343
_showActive method 322
_showCompleted method 322

A
abstract class 196
abstract methods 67-69
Account Number field 157
Amount transaction field 168
Angular.dart 304
Angular.js 284 304
API 69
application

documenting 45, 46
art_pen 246
asynchronous non-blocking way 308
attributes

of elements, changing 124-126
audio

adding, to web page 192-194
audio library

using 194-199
AudioManager class 194
AudioManager object 197
autoAdvance parameter 315
autocomplete attribute 155
autoIncrement property 315
auto-sharding 354

B
bac object 212
Balance field 157
BankAccount class 153
BankAccount object 160
bank accounts

working with 168-170
Bee 295
Binary JSON (BSON) 354
Bitbucket

URL 96
board, memory game

drawing 175-177
Bootjack

about 285
components, using 285

BroadcastStream method 315
browser storage

options 308

C
calculateRabbits function 23
callbacks 309
cancel() function 131
canvas

about 138
ball, bouncing 146
ball, moving 143-145
circle and rectangle, colored 142, 143
circle and rectangle, drawing 138-142
code, reorganizing 145, 146
master version 151, 152
racket, displaying 146-148
racket moving, keys used 148, 149
racket moving, mouse using 149

[364]

real game 150
title and replay 151

CanvasElement class 100
cascade operator (..) 61
Catalog 174
catchError 310
categories variable 224
Category class 117
category-link direction 102
category-links model 116-119
category links project

polymer used 222-228
cells, memory game

coloring 179, 180
drawing 177, 178

checked mode 33
class

using 60
class model

generating 270, 271
ClickCounter class 208
closure 53
code

name conflict, resolving 83, 84
object visibility, outside library 84, 85
structuring, libraries used 81, 82

Collaborators option 98
collection

hierarchy 74-80
types 72-74

complete method 331
completeTasks method 331
composition (aggregation) 61
concept_attribute 246
ConceptEntitiesApi 109, 118
ConceptEntities class 108, 111, 117
ConceptModel class 113
concept_model.dart file 109
connection.options file 336
const constructors 66
const keyword 34
constructors

const constructors 66
factory constructors 64, 65
named constructors 64
types 63

Cordova (Package) 296
CORS (Cross Origin Resource Sharing) 329
CouchDB 334
CRUD calls (create, read, update,

and delete) 354

D
Dart

about 9, 10, 59
advantages 13
database drivers for 333, 334
data, validating with 157-160
execution model 18
functions 49
program 16
todo list, creating with 28, 29
toolkit for 303
unit testing 88-90
URL 9

dart:convert library 106
dart:html 324
dart:indexed_db library 312
dart:io library 324
dartdoc tool 19
Dart Editor

about 14, 18
Dart code 19
installing 15

Dart, example
banking 27
function, extracting 22-24
rabbits, raising 20-22
web version 24-27

DartFlash 302
Dartium 13
Dartlero

about 108, 243
using, example 110-116

Dartlero tasks
about 344
JSON storage 344-346
MySQL storage 346-351, 353

Dartling 342
Dartling domain modeling framework 244
dartling_dwt_todo_mvc_spirals project

289-294

[365]

dartling_examples 246
dartling_todos 246
Dart SDK 19
Dart virtua machine. See VM
Dart VM. See VM
Dart web server 324
Dart Web Toolkit. See DWT
data

about 153
changing 166-168
reading 163, 164
storing, in local storage 161-163
Travel Impressions model,

initializing 254-258
validating, with Dart 157, 159

database drivers
about 333
NoSQL databases 334
relational databases 333, 334

data binding 204, 209, 210
dates and times 41
DbCollection object 361
dbTasks 361
default constructor 64
delete method 239
deposit method 168
Deposit-Withdrawal button 168
display() method 113
Document Object Model (DOM) 14
domain model framework 98
DORM 334
doStuff 309
double.parse method 168
do while loop 185
DQuery 284
draw() method 188
DWT 283-288

E
ElementQuery object 284
elements

attributes, changing 124, 126
creating 127, 128
finding 122-124
page elements style, handling 130, 131

Email input field 156

encapsulation 204
enteredView method 211
entry points 244
Error class 54
errors 33
events

handling 128-130
every method 187
executeQueries method 349
extends 69

F
Facade

URL 302
factory constructors 64, 65
Files and Apps tab 17
findById method 263
first-in first-out data structure (FIFO) 80
firstWhereAttribute method 261
Flash Professional 303
Footer class 293
fromJson method 108
From model to json button 104
functions

about 49
first class functions 52-56
parameters 50, 51
return types 49, 50

Futures 307

G
game

animating 131
memory game 173
Ping Pong, style(s) used 132-137

game_parking 246
get method 62
Git 96
GitHub

about 301
local version, creating on 96, 97
repository, creating on 96, 97

GitHub project
collaborating on 98

GitHub repository
URL 96

[366]

Google 13
Google Web Toolkit. See GWT
graphical tool 98
Grid class 293
GWT 13, 286

H
handleError 309
HashMap 334
hide method 187
HipsterCollection class 301
HipsterModel class 301
Hipster-mvc 301
HTML5

about 11
forms 153-157

HTML components 295

I
ImageElement object 190
ImageElements object 190
Impressions 248
IndexedDB

about 307
Spiral s00 311-316
Spiral s01 317
Spiral s02 318, 319
Spiral s03 319, 320
Spiral s04 320-323
Spiral s05 323
using, with Dart 311

inheritance 66, 67
initializer list 60
init method 118
init() method 113
initPolymer() method 206
initTravelImpressions function 260
interface 69, 70
internalList property 226
intersects method 183
isEven property 76
Iterator 75

J
JavaScript 11, 12
JavaScript Object Notation (JSON) 105-107
JRE DOWNLOAD button 15
JSON.decode method 165
JSON.encode() function 106
JSON storage 344, 345
JSON web services 324-328

K
Keypress event handler 321

L
last-in first-out data structure (LIFO) 80
Lawndart 307, 323
learning_dart 96
library

dependencies, managing with pub 85-88
objects visibility 84, 85
used, for structuring code 81, 82
using, in app 83

library header file 100
lines method 178
lineTo method 142
link-category direction 102
links

about 101
for HTML5, URL 101

lists 42
load method 338
local storage

adding 229-231
data, storing in 161-163

local version
repository, creating on 96, 97

M
main constructor. See named constructor
main() function 16
main() method 297
maps 43, 45
matcher 90

[367]

Memory class 177
memory game

about 174, 175
board, drawing 175-177
cells, coloring 179, 180
cells, drawing 177, 178
finishing touches 187, 188
images, using 189-191
logic 186, 187
rules, implementing 182-185

metaprogramming 72
methods 49
model

about 98
concepts 99
domain model 101
drawing 102, 103
exporting 104
graphical design tool 99, 100
Travel Impressions code,

generating from 252-254
validation 160
working 101, 102

model_concepts.dart 100
Model View Controller (MVC)

design pattern
about 243
defining 267-269

mongo_dart driver 362
using, to store todo data 357-361

MongoDB
about 333, 334
todo data storing, mongo_dart

driver used 357
mongodump command 356
mouseDown event handler 186
Multiton classes

URL 302
MVP 268
MVVM 268
MySQL

about 333
todo, storing 335-343

MySQL Community Server installer
URL, for installing 335

N
name conflicts

resolving 83, 84
namedArguments property 71
named constructor 64
Name input field 156
newElement method 318
newEntity method 108
nextInt method 180
NoSQL database 354-356
noSuchMethod() method 71
notEmpty method 159

O
Object Relational Mapper

(ORM) framework 334
ODBC-driver 334
onBlur event handler 159
onChange event handler 29, 159
onChange handler 159
onData handler 340
onDone handler 340
onMouseDown event handler 183
onProgramming method 113
openCursor method 315
operator overloading 63
operators 37, 38
Outline tab 17

P
packages 19
page elements

style, manipulating 130, 131
parameters 50, 51
periodic method 131
polymer

local storage, adding 229-231
using, for category links project 222-228

Polymer.dart
Two-way data binding 209-212
web components with 205

polymer_links project
creating 213
Spiral s01 213, 214

[368]

Spiral s02 214, 216
Spiral s04 217, 218
Spiral s05 218, 220
Spiral s06 220, 221

polymorphism 70, 71
poster attribute 200
PostgreSQL 334
production mode 33
program

execution flow, changing 46-48
project

word frequency 91-94
ProjectModel class 113
project tasks app

web components, applying 231-239
properties

using 60
pub

used, for managing library dependencies
85-88

Pub Actions section 86
pubspec screen 87
pub tool 19
Puremvc 301, 302

Q
query() function 26
query method 339

R
racket

moving, keys used 148, 149
moving, mouse used 149

readData handler 164
readData method 168
Redis 334
redo 277, 278
replaceAll() 93
replica-sets 354
repository

creating, on GitHub 96, 97
required attribute 156
RethinkDB 334
return types 49, 50
reusability 204
Riak 334

Rich Internet applications (RIA) 11
Rikulo MVC 300, 301
Rikulo UI 296, 297
rules, memory game

implementing 182-185
runtime modes

checked mode 33
production mode 33

S
same-origin policy 329
sessionStorage 161
setUp function 90
signature 54
snapshotting 13
spirals 100
Spiral s00 311-316
Spiral s01 317
Spiral s02 318, 319
Spiral s03 319, 320
Spiral s04 320-323
Spiral s05 323
Spiral s06 324
Spiral s07 326, 329, 330
SQLite 334
stack 80
StageXL

about 302
URL 302

string 35, 39, 40
StringBuffer method 170
subfolder model 113
synchronous way 308

T
TableDropper object 349
TaskCollection class 360
Task propagations

adding 240
removing 240

TaskTable object 337
testTravelImpressions function 259
this keyword 60
toDb method 316
Todo class 293

[369]

todo data
storing in MongoDB, mongo_dart driver

used 357-361
storing, in MySQL 335-343

TodoDb class 342
todo list

creating, with Dart 28, 29
todo_mongodb 357
TodoMVC app

class model, generating 270, 271
completed todos, displaying 279, 280
remaining todos, displaying 279, 280
single task and completed tasks, removing

276, 277
task, editing 280
testing 269
todos (undo and redo), editing 277, 278
todo tasks, adding 271, 272
todo tasks remaining, showing 273-275

todo tasks
adding 271-273
editing 280
remaining, displaying 273, 275

toJson method 108, 162
toJson() method 106
top-level functions 49
To Server button 336
toString() method 36
travel domain 248
travel_impressions 246
Travel Impressions

generating, from model 252-254
Travel Impressions model

initializing, with data 254-258
in spirals, designing 247-252
testing 258-266

Twitter Bootstrap project
URL 294

Two-way data binding
in Polymer.dart 209-212

typedef 54

U
UListElement 29
undo 277, 278
unittest framework 115
unit testing

in Dart 88-90
unit test package 19

V
variables 32-34
video

adding, to web page 199, 200
view 296
visibility 61, 62
VM 13

W
Web Audio

URL 193
web components

applying, to project tasks app 231-239
declaring 206-208
framework 98
modifications, in web development 204
web applications, developing with 209
with Polymer.dart 205

web development
modifications, by web components 204

web page
audio, adding 192-194
video, adding 199, 200

web programming
history 11

Web SQL DB 308
Web UI 204
whenComplete handler 309

Thank you for buying
Learning Dart

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Learning Kendo UI Web
Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add
exciting features to your web pages without
being a JavaScript expert

1. Learn from clear and specific examples on
how to utilize the full range of the Kendo
UI tool set for the web

2. Add powerful tools to your website
supported by a familiar and trusted
name in innovative technology

3. Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert

HTML5 Web Application
Development By Example
ISBN: 978-1-84969-594-7 Paperback: 276 pages

Learn how to build rich, interactive web applications
from the ground up using HTML5, CSS3, and jQuery

1. Packed with example applications that show
you how to create rich, interactive applications,
and games

2. Shows you how to use the most popular and
widely supported features of HTML5

3. Full of tips and tricks for writing more efficient
and robust code while avoiding some of the
pitfalls inherent to JavaScript

Please check www.PacktPub.com for information on our titles

Easy Web Development with
WaveMaker
ISBN: 978-1-78216-178-3 Paperback: 306 pages

A practical, hands-on guide for amateur developers
to design, develop, and deploy web and mobile
applications using WaveMaker

1. Develop and deploy custom, data-driven,
and rich AJAX web and mobile applications
with minimal coding using the drag-and-drop
WaveMaker Studio

2. Use the graphical WaveMaker Studio IDE to
quickly assemble web applications and learn
to understand the project’s artefacts

3. Customize the generated application and
enhance it further with custom services
and classes using Java and JavaScript

HTML5 for Flash Developers
ISBN: 978-1-84969-332-5 Paperback: 322 pages

Leverage your Flash skill set and learn to create
content using a wide range of HTML5 web
development features

1. Discover and utilize the wide range of
technologies available in the HTML5 stack

2. Develop HTML5 applications with external
libraries and frameworks

3. Prepare and integrate external HTML5
compliant media assets into your projects

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dart – A Modern Web Programming Language
	What is Dart?
	Dart is a perfect fit for HTML5
	A very short history of web programming
	Dart empowers the web client
	JavaScript is not the way to go for
complex apps
	Google, GWT, and Dart
	Advantages of Dart

	Getting started with Dart
	Installing the Dart Editor
	Your first Dart program

	Getting a view on the Dart tool chain
	The Dart execution model

	A bird's eye view on Dart
	Example 1 – raising rabbits
	Extracting a function
	A web version

	Example 2 – banking

	Making a todo list with Dart
	Summary

	Chapter 2: Getting to Work with Dart
	Variables – to type or not to type
	Built-in types and their methods
	Conversions
	Operators
	Some useful String methods
	Dates and times
	Lists
	Maps

	Documenting your programs
	Changing the execution flow of a program
	Using functions in Dart
	Return types
	Parameters
	First class functions

	Recognizing and catching errors and exceptions
	Debugging exercise

	Summary

	Chapter 3: Structuring Code with Classes and Libraries
	A touch of class – how to use classes and objects
	Visibility – getters and setters
	Types of constructors
	Named constructors
	factory constructors
	const constructors

	Inheritance
	Abstract classes and methods
	The interface of a class – implementing interfaces

	Polymorphism and the dynamic nature of Dart
	Collection types and generics
	Typing collections and generics
	The collection hierarchy and its functional nature

	Structuring your code using libraries
	Using a library in an app
	Resolving name conflicts
	Visibility of objects outside a library

	Managing library dependencies with pub
	Unit testing in Dart
	Project – word frequency

	Summary

	Chapter 4: Modeling Web Applications with Model Concepts and Dartlero
	A short introduction to Git and GitHub
	Creating a repository on GitHub and a local version
	Collaborating on a GitHub project

	What a model is and why we need it in programming
	Model concepts – a graphical design tool for our models
	Working with model concepts
	Explaining the model
	Drawing the model
	Exporting the model
	What is JSON?

	Dartlero – a simple domain model framework
	An example of using Dartlero
	The categories and links application
	Summary

	Chapter 5: Handling the DOM in a New Way
	Finding elements and changing their attributes
	Finding elements
	Changing the attributes of elements

	Creating and removing elements
	Handling events
	Manipulating the style of page elements
	Animating a game
	Ping Pong using style(s)
	How to draw on a canvas – Ping Pong revisited
	Spiral 1 – drawing a circle and a rectangle
	Spiral 2 – colored circles and rectangles
	Spiral 3 – moving a ball
	Spiral 4 – reorganizing the code
	Spiral 5 – a bouncing ball
	Spiral 6 – displaying the racket
	Spiral 7 – moving the racket using keys
	Spiral 8 – moving the racket using the mouse
	Spiral 9 – a real game
	Spiral 10 – title and replay
	Spiral 11 – the master version

	Summary

	Chapter 6: Combining HTML5 Forms with Dart
	Spiral 1 – the power of HTML5 forms
	Spiral 2 – how to validate data with Dart
	Validation in the model

	Spiral 3 – how to store data in local storage
	Spiral 4 – reading and showing data
	Spiral 5 – changing and updating data
	Spiral 6 – working with a list of bank accounts
	Summary

	Chapter 7: Building Games with HTML5 and Dart
	The model for the memory game
	Spiral 1 – drawing the board
	Spiral 2 – drawing cells
	Spiral 3 – coloring the cells
	Spiral 4 – implementing the rules
	Spiral 5 – game logic (bringing in the time element)
	Spiral 6 – some finishing touches
	Spiral 7 – using images
	Adding audio to a web page
	Using an audio library – Collision clones
	Adding video to a web page
	Summary

	Chapter 8: Developing Business Applications with Polymer Web Components
	How web components change web development
	Web components with Polymer.dart
	Declaring and instantiating a web component

	Two-way data binding in Polymer.dart
	Creating the polymer_links project
	Spiral s01
	Spiral s02
	Spiral s04
	Spiral s05
	Spiral s06

	Using Polymer for the category
links project
	Adding local storage

	Applying web components to the project tasks app
	Add and remove Task propagations

	Summary

	Chapter 9: Modeling More Complex Applications with Dartling
	The Dartling domain modeling framework
	Design of the Travel Impressions model in spirals
	Generating Travel Impressions code
from the model
	Initializing the Travel Impressions model with Data
	Testing the Travel Impressions model
	Defining and using the MVC pattern
	The TodoMVC app
	Spiral 0 – generating a class model
	Spiral 1 – adding todo tasks
	Spiral 2 – showing how many todo tasks left
	Spiral 3 – removing a single task and completed tasks
	Spiral 4 – editing todos (undo and redo)
	Spiral 5 – displaying completed, remaining, or all todos
	Spiral 6 – editing a task

	Summary

	Chapter 10: MVC Web and UI Frameworks in Dart – An Overview
	DQuery
	Bootjack
	Dart Web Toolkit (DWT)
	The dartling_dwt_todo_mvc_spirals project

	Dart widgets
	Bee
	HTML components
	Rikulo UI
	Rikulo MVC

	Hipster-mvc
	Puremvc
	StageXL
	Flash Professional CC – toolkit for Dart
	Angular.dart
	Summary

	Chapter 11: Local Data and Client-Server Communication
	The options for browser storage
	Asynchronous calls and Futures
	Using IndexedDB with Dart
	Spiral s00
	Spiral s01
	Spiral s02
	Spiral s03
	Spiral s04
	Spiral s05

	Using Lawndart
	A Dart web server
	Using JSON web services
	Spiral s07

	Summary

	Chapter 12: Data-driven Web Applications with MySQL and MongoDB
	Database drivers for Dart
	Storing todo data in MySQL
	Dartlero tasks – a many-to-many model in MySQL
	The JSON storage
	MySQL storage

	MongoDB – a NoSQL database
	Using the mongo_dart driver to store the todo data in MongoDB
	Summary

	Index

