
www.allitebooks.com

http://www.allitebooks.org

Learning Ext JS
Fourth Edition

Create powerful web applications with the new and

improved Ext JS 5 library

Carlos A. Méndez

Crysfel Villa

Armando Gonzalez

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Ext JS
Fourth Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2008

Second edition: October 2010

Third edition: January 2013

Fourth edition: July 2015

Production reference: 1290715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-438-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors

Carlos A. Méndez

Crysfel Villa

Armando Gonzalez

Reviewers

Davor Lozić

Olivier Pons

Juris Vecvanags

Commissioning Editor

Ashwin Nair

Acquisition Editor

Shaon Basu

Content Development Editor

Akashdeep Kundu

Technical Editor

Menza Mathew

Copy Editors

Vikrant Phadke

Angad Singh

Ameesha Smith-Green

Project Coordinator

Milton Dsouza

Proofreader

Sais Editing

Indexer

Tejal Daruwale Soni

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Carlos A. Méndez is a freelance developer and graphic designer living in México,
with expertise in web development since 2000 and Windows development since 1998.
He has also worked with Ext JS since version 2.x up to the present day. Since 1998,
he has developed and designed administrative applications for accounting, payroll,
inventory, human resource control, restaurants, hotels, and much more—applications
that are in production and up to date.

Trying to explore creativity with a deep passion, Carlos has created many Ext JS
components and VB components for private companies and was also involved
in graphic design, such as illustrations and small animations used for interactive
presentations by some companies in México. He always has a passion for creating
and learning new things on the Web.

He is the founder and development manager of the company
administrationonline.com, which is focused on administrative applications. Carlos
is involved in many projects around the world and also provides support and
maintenance to many Ext JS projects ranging from 2.x to 5.x.

First of all, I would like to thank my mother and brother for their
support and help in realizing this project. Thanks to my best friend,
Nacir Garcia Junior, for his support and friendship over these last
years. Also, thanks to my father and uncles, whose challenges,
work pressures, and work and personal knowledge were passed on
through all these years in matters of design and business logic. These
have brought me where I am today. Without all you guys, I would
not have been able to accomplish many achievements and goals.
Thanks, everybody!

www.allitebooks.com

http://www.allitebooks.org

Crysfel Villa is a software engineer with more than 8 years of experience with
JavaScript. He started his career as a web developer working with HTML and basic
JavaScript in the late 1990s but then started focusing on server-side technologies,
such as PHP and Java J2EE.

Before he started working with the Ext JS library, he loved to work with MooTools,
but in late 2007, he started learning about an awesome new library that was
emerging as an open source project. At that time, version 2.0 of the Ext JS library had
just been released, and Crysfel started using this new library for medium-to-large
projects in the agency that he used to work for.

In early 2010, he started working as a freelancer. He began training teams on Ext JS
for private companies; writing a blog with tutorials, tips, and tricks; developing
custom components on Ext JS for his clients; and working on open source projects to
share his knowledge with the world.

More recently, Crysfel has been getting into new technologies such as Angular JS
and React Native. If you want to ind out more about his work, you can follow him
on Twitter (@crysfel) or download his open source projects from GitHub (crysfel).

Writing this book was very hard, especially when you are a busy
person and really like to get involved in exciting things. I want to
give special thanks to my wife, Hazel, who supported me in every
step of the process. Without her, this wouldn't have been possible.
She read all the scripts before I submitted them. She usually found
some mistakes or things to clarify. Her work on this project
is priceless.

Thanks to my parents and brothers, who used to keep asking
me very often about the project and provided me with the moral
support to work and complete this dream. Also, I want to thank all
my closest friends for the moral support that they gave me. Special
thanks to my best friends, Carlos and Gina, who often pushed me to
continue working on this project.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Davor Lozić is a senior software engineer interested in many subjects,
especially computer security, algorithms, and data structures. He creates web
applications in CakePHP and Ext JS, and in his spare time, he reads books about
modern physics, graph databases like Neo4j, and related subjects. You can check out
his website at http://warriorkitty.com, where you can contact him. He likes cats
because cats are great! If you would like to talk about any aspect of technology,
or if you have great and funny pictures of cats, feel free to contact him.

Olivier Pons is a senior developer who has been building websites
since 1997. He's a teacher at the University of Sciences (IUT) of Aix-en-Provence,
France. In ISEN (Institut Supérieur de l'Électronique et du Numérique) and École
d'Ingénieurs des Mines de Gardanne, he teaches state-of-the-art web techniques,
such as the MVC fundamentals, Symfony, Wordpress, PHP, HTML, CSS, jQuery,
jQuery Mobile, Node.js, AngularJS, Apache, NoSQL, Linux basics, and advanced
VIM techniques. He has already done some technical reviews, including Packt
Publishing's Ext JS 4 First Look, jQuery Hotshots, jQuery Mobile Web Development
Essentials, Wordpress Complete, and jQuery 2.0 for Designers Beginner's Guide,
among others.

In 2011, Olivier left a full-time job as a Delphi and PHP developer to concentrate on
his own company, HQF Development (http://hqf.fr). He currently runs a number
of websites, including http://krystallopolis.fr, http://artsgaleries.com,
http://www.battlesoop.fr, http://www.livrepizzas.fr, http://www.
papdevis.fr, and http://olivierpons.fr, which is his own web development
blog. He's currently learning Unity and building a game on his own. He works as a
consultant, teacher, and project manager and sometimes helps major companies as a
senior/highly skilled developer.

www.allitebooks.com

http://warriorkitty.com
http://hqf.fr
http://krystallopolis.fr
http://artsgaleries.com
http://www.battlesoop.fr
http://www.livrepizzas.fr
http://www.papdevis.fr
http://www.papdevis.fr
http://olivierpons.fr
http://www.allitebooks.org

Juris Vecvanags started a career in the IT ield in early 90s. At that time, he had
the chance to work with a broad range of technologies and share his knowledge with
Fortune 500 companies as well as private and government customers.

Before moving to Silicon Valley, he owned a well-established web design start-up
in Europe. Juris is currently employed as a solutions architect at Sencha, where he
helps customers write better apps for both desktop and emerging mobile platforms.
He contributes to the Ext JS framework as well as dedicates his time to write custom
components and add new features.

When it comes to web technologies, this invaluable experience serves as his ground
to be a trusted advisor and competent reviewer. When Juris is away from the ofice,
you can ind him speaking at meetups in the San Francisco Bay Area, Chicago, and
New York. Among the topics he covers are Node.js, Ext JS, and Sencha Touch.

He is passionate about cutting-edge technologies and everything related
to JavaScript.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents

Preface ix

Chapter 1: An Introduction to Ext JS 5 1

Considering Ext JS for your next project 2

Getting started with Ext JS 3

Downloading Ext JS 4

Setting up and installing Ext JS 5 5
Sencha Cmd 5

Why so many iles and folders? 6
Folders that changed in version 5 from previous versions 7

Looking at the whole picture 8

Our irst program 9
Writing the Ext JS code 11

Adding interaction to the program 13

Tools and editors 15

XAMPP or WAMP 15

Aptana 16
Sencha Architect 17

What's new in Ext JS 5? 19
Summary 22

Chapter 2: The Core Concepts 23

The class system 24

Naming conventions 24

Writing your irst class 25
Simple inheritance 28

Preprocessors and postprocessors 31

Mixing many classes (the use of mixins) 34
An explanation of mixins 37

Using the mixinConig property 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Conigurations 40
Statics methods and properties 43

Explanation 45

The Singleton class 46
Aliases 47

Loading classes on demand 50

Enabling the loader 51

Working with the DOM 52

Getting elements 53

Query – how do we ind them? 55
DOM manipulation – how do we change it? 57

Summary 59
Chapter 3: Components and Layouts 61

The component life cycle 61

The initialization phase 63
The rendering phase 66
The destruction phase 69
The life cycle in action 70

About containers 73

Types of containers 78

The viewport 78

The panel 79
Panels versus containers 80

The Window component 81

The layout system 82

The Border layout 82

The Fit layout 84

The Card layout 85

The Accordion layout 86
The Anchor layout 87

More layouts 89
Comments about using layouts 89
Summary 91

Chapter 4: It's All about the Data 93
Ajax 94

Passing parameters to an Ajax request 98
Setting timeout for Ajax request calls 99

Table of Contents

[iii]

Models 100

Mappings 103
Validators 105
Custom ield types 108
Relationships 110

One-to-many associations 111

One-to-one associations 113

Working with the store 115

Adding new elements 116
Looping through the records/models in the store 118

Retrieving the records in the store 119
By index position 119
First and last records 119
By range 119
By ID 120

Removing records 120
Retrieving remote data 121

Ajax proxy 121

Readers 124
The XML reader 125

Sending data 127

Summary 132

Chapter 5: Buttons and Toolbars 133
Event-driven development 133

Creating a simple button 136

Setting icons on buttons 138

Icon alignment on buttons 140
Handling button events 141

Segmented buttons 142

Adding menus 144

Toolbars 148

Toolbar button groups 150
The breadcrumb bar 153

Handling selections in the breadcrumb bar 156
The main menu for our application 158

Summary 163

Table of Contents

[iv]

Chapter 6: Doing It with Forms 165

The form component 165

The anatomy of the ields 172
The available ields 172

The TextField class 174

The number ield 177
The ComboBox ield 179
The Tag ield 183
The Date ield 184
The Checkbox and the CheckboxGroup ields 187
The Radio and RadioGroup buttons 188

The ield container 190
Triggers 192
Submitting the data 194
Summary 197

Chapter 7: Give Me the Grid 199
The data connection (models and stores) 200

A basic grid 202

Columns 204

The column row number 206
The number column 207
The template column 207
The date column 208
The Boolean column 208
The check column 209
The action column 209

Column renderers 211

The Widget column 214

Selection models 218

Grid listeners 221

Features 224

Ext.grid.feature.Grouping 224

Ext.grid.feature.GroupingSummary 226
Ext.grid.feature.RowBody 228

Ext.grid.feature.Summary 229
Plugins 230

Ext.grid.plugin.CellEditing 230
Ext.grid.plugin.RowEditing 233

Table of Contents

[v]

Grid paging 236

Ininite scrolling 238
Summary 241

Chapter 8: DataViews and Templates 243

The data connection (model and store) 244

A basic DataView 245

Handling events in DataView 247

Templates 248

Ext.Template 248

Ext.XTemplate 250
A more complex DataView component 253

Summary 256

Chapter 9: The Tree Panel 257

A basic tree panel 258

The TreeStore 261

Tree nodes 263

Adding and removing nodes 264

The check tree 270

The tree grid panel 272

Summary 275

Chapter 10: Architecture 277

The MVC and MVVM patterns 278

Model-View-Controller (MVC) 278

Model-View-ViewModel (MVVM) 279
Creating our irst application 280

The views 282

The controller 287
Listening to events 288

Opening modules 291
Creating a module 292

ViewController 296
ViewModel 299
Binding and data binding 301

Router – implementing and using 311

Summary 314

Table of Contents

[vi]

Chapter 11: The Look and Feel 315

Setting up our environment 315

The packages folder 317

Variables 320

Advanced theming 323

Changing the component's style 323

Adding new gradients 324

Styling the tabs 326
Adding custom fonts to our theme 327

Different styles for the same component 330

Supporting legacy browsers 339
Summary 342

Chapter 12: Responsive Conigurations and Tablet Support 343
Overview 344

New themes 346
Neptune touch and Crisp touch 346

Implementing responsiveness to the application 347

Creating responsiveness 348

Investigating the output 352

Checking all panels 354

Summary 361

Chapter 13: From Drawing to Charting 363

Basic drawing 364
Adding interaction 369
Charts 373

Legend 374

Axis 374

Series 375

Themes 375

Series examples 376

Bar charts (building our irst chart) 376
Pie charts 381

More charts 385

Introducing chart themes 386

Enhancing our application with charts 388

Summary 393

Table of Contents

[vii]

Chapter 14: Finishing the Application 395
Preparing for deployment 396

The app.json ile 397
The Sencha command 398

Customizing the build.xml ile 400
Compressing the code 401
Packaging and deploying 404

Testing the application 405

Summary 405

Chapter 15: What's Next? 407

Forums 407

Resources 409
Third-party plugins (commercial) 412

Third-party plugins (free) 414

The future 414

Final thoughts 414

Summary 415

Index 417

[ix]

Preface
Over the past few years, Ext JS has become a popular and powerful JavaScript
framework for desktop application development. For an Ext JS developer, the
learning curve is not very easy/fast and I have seen cases where developers learning
this framework ind it to be a slow process. While writing this book I was thinking
about the easiest and most comprehensible points so that you can understand the
basics, just as I would have liked to learn about the framework if I was in your place.

This book is intended for developers who have the desire to learn and begin using
this framework for their applications, and also for developers who have not started
using the current version. It is written as an easy-to-follow guide that will help you
understand the basics and fundamentals of the framework. If you have experience
with previous versions of the framework, this book may clear many of your doubts
about upgrading and how things happen in version 5.x.

This book covers all of the basic information you need to know to start development
with this nice and powerful framework.

What this book covers
Chapter 1, An Introduction to Ext JS 5, covers an explanation of how to start by getting
the framework (downloading the ile) and setting up the basic requirements you
need in order to begin coding. This chapter also provides an explanation of how the
framework is structured, how to set up some required tools, and gives a quick peek
at the product, Sencha Architect.

Chapter 2, The Core Concepts, is about the framework's class system, and tells you how
to use object-oriented programming with Ext JS. Also, this chapter explains how to
extend classes, how to inherit properties, and the use of the Loader system in order
to deine and require dependencies in a dynamic way.

Preface

[x]

Chapter 3, Components and Layouts, explains how components work, how they are
created, their life cycle, and how to take advantage of all this. Here, you also learn
about types of containers and the layout system, which will help you create amazing
UIs with little effort.

Chapter 4, It's All about the Data, explains how the framework handles and
manipulates data to display information using data-aware widgets or components.

Chapter 5, Buttons and Toolbars, shows you how to make use of component events;
listen to events; (mainly) create buttons, toolbars, and menus; and set the most basic
conigurations for these components.

Chapter 6, Doing It with Forms, talks about the form component, the available ields
that we can use in our forms, and how to collect and submit data.

Chapter 7, Give Me the Grid, covers the basics of the most popular component, the
Grid panel, in the framework, how to implement it, its column model, and custom
data renderers for displaying data. We also see how to listen to events in the Grid
panel and look at some plugins and features (speciic capabilities) that can be
implemented in the grid.

Chapter 8, DataViews and Templates, explains how to make use of DataViews and
templates to create data-aware views, implement a nice organization of our data,
and set styles and custom logic for the representation of data.

Chapter 9, The Tree Panel, covers the use of the tree panel component and its
implementation. It also explains how to create stores and data for this component.

Chapter 10, Architecture, is one of the most important chapters in the book. It shows
how to create an application using the MVC and MVVM patterns. This is done in
order to create applications that can be scalable and easy to maintain. The MVVM
pattern, which is a powerful pattern for reducing code, is introduced in version 5.

Chapter 11, The Look and Feel, demonstrates how to create new themes inside the
framework and applications by giving our applications a new look and some color
changes (themes). Also, you learn how to create speciic component-style UIs using
Compass and Sass.

Chapter 12, Responsive Conigurations and Tablet Support, explains how we can use
touch screen themes and how to set responsive conigurations in components in
order to make those components responsive-aware.

Preface

[xi]

Chapter 13, From Drawing to Charting, talks about the basics of drawing and chart
creation. We see how to create charts by the use of the SVG/VML engines. This
chapter also explains how to add the Chart package to applications and the theme
engine introduced in version 5.

Chapter 14, Finishing the Application, covers how to prepare our application for
the production environment and deployment, covering the most essential parts for
inal production.

Chapter 15, What's Next?, shows you where to get more feedback and resources such
as forums, other useful resources to get information tutorials from, and so on. This
chapter also gives a sneak peek into some useful plugins (commercial and free).

What you need for this book
The web browsers recommended for use are as follows:

• Google Chrome: http://www.google.com/chrome

• Firefox: https://www.mozilla.org/en-US/firefox/new/

• Firefox for developers: https://www.mozilla.org/en-US/firefox/
developer/

These browsers come in handy because they come with debugging tools for
easy development.

For a web server with PHP support, use this:

• Xampp: https://www.apachefriends.org/index.html

For the database, use the following:

• MySQL: http://dev.mysql.com/downloads/mysql/ (this also comes
bundled in Xampp)

For Sencha Cmd and the required tools, use these:

• Sencha Cmd: http://www.sencha.com/products/sencha-cmd/download

• Ruby 1.8 or 1.9: http://www.ruby-lang.org/en/downloads/

• Sass: http://sass-lang.com/

• Compass: http://compass-style.org/

www.allitebooks.com

http://www.google.com/chrome
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.apachefriends.org/index.html
http://dev.mysql.com/downloads/mysql/
http://www.sencha.com/products/sencha-cmd/download
http://www.ruby-lang.org/en/downloads/
http://sass-lang.com/
http://compass-style.org/
http://www.allitebooks.org

Preface

[xii]

• Java RTE (version 1.7.0): http://www.oracle.com/technetwork/java/
javase/downloads/java-se-jre-7-download-432155.html

• Apache ANT: http://ant.apache.org/bindownload.cgi

• Ext JS (of course): http://www.sencha.com/products/extjs/

We will use Ext JS 5.1.1 in this book.

Who this book is for
If you are new developers who are beginners in Ext JS, developers familiar with Ext JS
who want to augment the skills of creating better applications, or developers who
haven't yet used version 5.x and want to know more about it, this is the book for you.

Users should possess a basic knowledge of HTML/JavaScript/CSS/Sass/Compass,
and an understanding of JSON, XML, and any server-side language (such as PHP,
ASP, JAVA, and so on) is required.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Inside the app/view folder, we remove
all existing iles (the initial skeleton), and proceed to create the initial view our
application will have."

A block of code is set as follows:

Ext.define('myApp.model.modulesModel', {

 extend: 'Ext.data.Model',

 requires: [

 'Ext.data.field.String',

 'Ext.data.field.Boolean',

 'Ext.data.field.Integer'

],

 fields: [

http://www.oracle.com/technetwork/java/javase/downloads/java-se-jre-7-download-432155.html
http://www.oracle.com/technetwork/java/javase/downloads/java-se-jre-7-download-432155.html
http://ant.apache.org/bindownload.cgi
http://www.sencha.com/products/extjs/

Preface

[xiii]

 {type: 'string', name: 'description'},

 {type: 'boolean', name: 'allowaccess'},

 {type: 'int', name: 'level'},

 {type: 'string', name: 'moduleType', defaultValue: ''},

 {type: 'string', name: 'moduleAlias', defaultValue: ''},

 {type: 'string', name: 'options'}

]

});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Ext.define('myApp.store.modulesTreeDs', {

 extend: 'Ext.data.TreeStore',

 requires: [

 'myApp.model.modulesModel',

 'Ext.data.proxy.Ajax'

],

 constructor: function(cfg) {

 var me = this;

 cfg = cfg || {};

 me.callParent([Ext.apply({

 storeId: 'mymodulesTreeDs',

 autoLoad: true,

 model: 'myApp.model.modulesModel',

 proxy: {

 type: 'ajax',

 url: 'serverside/data/menu_extended.json'

 }

 }, cfg)]);

 }

}); Any command-line input or output is written as follows:

sencha -sdk /path/to/ext generate app myApp /path/to/myApp

Preface

[xiv]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Try to
write something in the Customer ID ield and you will see that it is read-only."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xv]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you ind a mistake in one of our books—maybe a mistake in
the text or the code—we would be grateful if you would report this to us. By doing
so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you ind any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata
are veriied, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that
title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

[1]

An Introduction to Ext JS 5
When learning a new technology such as Ext JS, some developers face a hard time
to begin with, so this book will give you the best possible way to start to understand
this technology more than any other source. We have to go from the library
documentation to blogs and forums looking for answers, trying to igure out how the
library and all the components work together. Even though there are tutorials in the
oficial learning center, it would be great to have a guide to learn the library from the
basics to a more advanced level; this is the main goal of this book.

Ext JS is a state of the art framework to create Rich Internet Applications (RIAs).
The framework allows us to create cross-browser applications with a powerful set of
components and widgets. The idea behind the framework is to create user-friendly
applications in rapid development cycles, facilitate teamwork (MVC or MVVM), and
also have a long-term maintainability.

Ext JS is not just a library of widgets anymore; the brand new version is a framework
full of new exciting features for us to play with. Some of these features are the new
class system, the loader, the new application package, which deines a standard way
to code our applications, and much more awesome stuff.

The company behind the Ext JS library is Sencha Inc. They work on great products
that are based on web standards. Some of the most famous products that Sencha also
have are Sencha Touch and Sencha Architect.

In this chapter, we will cover the basic concepts of the framework of version 5.
You'll learn how to set up the library or SDK and create our irst program, get to
know the available tools to write our code, and take a look at some of the new
features in Ext JS 5.

• Considering Ext JS for your next project

• Getting started with Ext JS—our first program

An Introduction to Ext JS 5

[2]

• Tools and editors

• What's new in Ext JS 5?

Considering Ext JS for your next project
Ext JS is a great library to create RIAs that require a lot of interactivity with the user.
If you need complex components to manage your information, then Ext is your best
option because it contains a lot of widgets such as the grid, forms, trees, panels, and
a great data package and class system.

Ext JS is best suited for enterprise or intranet applications; it's a great tool to develop
an entire CRM or ERP software solution. One of the more appealing examples is the
Desktop sample (http://dev.sencha.com/ext/5.1.0/examples/desktop/index.
html). It really looks and feels like a native application running in the browser. In
some cases, this is an advantage because the users already know how to interact with
the components and we can improve the user experience.

Ext JS 5 came out with a great tool to create themes and templates in a very simple
way. The framework for creating themes is built on top of Compass and Sass, so
we can modify some variables and properties and in a few minutes we can have a
custom template for our Ext JS applications. If we want something more complex
or unique, we can modify the original template to suit our needs. This might be
more time-consuming depending on our experience with Compass and Sass.

Compass and Sass are extensions for CSS. We can use expressions, conditions,
variables, mixins, and many more awesome things to generate well-formatted CSS.
You can learn more about Compass on their website at http://compass-style.org/.

The new class system allows us to deine classes incredibly easily. We can develop
our application using the object-oriented programming paradigm and take advantage
of the single and multiple inheritances. This is a great advantage because we can
implement any of the available patterns such as MVC, MVVM, Observable, or any
other. This will allow us to have a good code structure, which leads us to have easy
access for maintenance.

Another thing to keep in mind is the growing community around the library; there
are lots of people around the world that are working with Ext JS right now. You can
even join the meeting groups that have local reunions frequently to share knowledge
and experiences; I recommend you to look for a group in your city or create one.

http://dev.sencha.com/ext/5.1.0/examples/desktop/index.html
http://dev.sencha.com/ext/5.1.0/examples/desktop/index.html
http://compass-style.org/

Chapter 1

[3]

The new loader system is a great way to load our modules or classes on demand.
We can load only the modules and applications that the user needs just in time.
This functionality allows us to bootstrap our application faster by loading only
the minimal code for our application to work.

One more thing to keep in mind is the ability to prepare our code for deployment.
We can compress and obfuscate our code for a production environment using the
Sencha Cmd, a tool that we can run on our terminal to automatically analyze all the
dependencies of our code and create packages.

Documentation is very important and Ext JS has great documentation, which is very
descriptive with a lot of examples, videos, and sample code so that we can see it in
action right on the documentation pages, and we can also read the comments from
the community.

Getting started with Ext JS
So, let's begin with Ext JS! The irst thing we should do is download the framework
from the oficial website, http://www.sencha.com/products/extjs/. The version
available at the time of writing this book is 5.1.1.

There are three types of license:

• The open source license: If you are creating or want to develop an
open source application compatible under the GNU GPL license v3
(http://www.gnu.org/copyleft/gpl.html).

• The commercial license: You need to buy this if you are planning/wanting
to develop a closed source project and want to keep the source code as your
own property. Usually used by corporations, banks, or enterprises.

• The commercial OEM: If you want to use Ext JS to create your own
commercial SDK or web application builder, or use it as frontend for
some embedded device, then this comes into the picture. As this type of
license can vary, it's customized for each customer.

You can see more detailed information about this subject at
http://www.sencha.com/products/extjs/licensing.

http://www.sencha.com/products/extjs/
http://www.gnu.org/copyleft/gpl.html
http://www.sencha.com/products/extjs/licensing

An Introduction to Ext JS 5

[4]

Downloading Ext JS
If you download Ext JS directly from http://www.sencha.com/products/download/,
this will be a 30-day trial version of Ext JS and you will also be required to enter some
personal information in order to get the trial. To obtain the GPL version, you can get
it from http://www.sencha.com/legal/GPL/. We can also use the available Content
Delivery Network (CDN), as shown in the following table, so that we don't need to
store the library on our own computer or server:

Theme Links

Classic • CSS file: http://cdn.sencha.com/ext/trial/5.1.1/
packages/ext-theme-classic/build/resources/ext-
theme-classic-all.css

• JavaScript file: http://cdn.sencha.com/ext/trial/5.1.1/
build/ext-all.js

Neptune • CSS file: http://cdn.sencha.com/ext/trial/5.1.1/
packages/ext-theme-neptune/build/resources/ext-
theme-neptune-all.css

• JavaScript file: http://cdn.sencha.com/ext/trial/5.1.1/
build/ext-all.js

• Theme JS Overrides: http://cdn.sencha.com/ext/
trial/5.1.1/packages/ext-theme-neptune/build/ext-
theme-neptune.js

Crisp • CSS file: http://cdn.sencha.com/ext/trial/5.1.1/
packages/ext-theme-crisp/build/resources/ext-theme-
crisp-all.css

• JavaScript file: http://cdn.sencha.com/ext/trial/5.1.1/
build/ext-all.js

• Theme JS Overrides: http://cdn.sencha.com/ext/
trial/5.1.1/packages/ext-theme-crisp/build/ext-
theme-crisp.js

http://www.sencha.com/products/download/
http://www.sencha.com/legal/GPL/
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-classic/build/resources/ext-theme-classic-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-classic/build/resources/ext-theme-classic-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-classic/build/resources/ext-theme-classic-all.css
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/ext-theme-neptune.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/ext-theme-neptune.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-neptune/build/ext-theme-neptune.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/resources/ext-theme-crisp-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/resources/ext-theme-crisp-all.css
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/resources/ext-theme-crisp-all.css
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/build/ext-all.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/ext-theme-crisp.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/ext-theme-crisp.js
http://cdn.sencha.com/ext/trial/5.1.1/packages/ext-theme-crisp/build/ext-theme-crisp.js

Chapter 1

[5]

Setting up and installing Ext JS 5
After you download the Ext JS Library (ZIP ile), extract the contents to a working
folder. For the irst time, you will probably get overwhelmed by the size of the ZIP
ile and by the number of iles and folders, but don't worry, the purpose of each ile
and the content of each folder will be explained shortly.

Sencha Cmd
Besides the Ext JS library, we need to download the Sencha Cmd (command tool).
This tool is intended to be a cornerstone for building applications, creating workspaces,
and new themes, and the ability to minify and deploy our applications to a production
environment.

Download this tool at http://www.sencha.com/products/sencha-cmd/ and
also check that the following requirements are met in order for Sencha Cmd to
work properly:

• JRE Sencha Cmd requires Java Runtime Environment version 1.7 to support
all functionality, however, most features will work with 1.6 (the minimum
supported version).

• Ruby differs by OS:

 ° Windows: Download Ruby from http://rubyinstaller.org.
Get the .exe file version of the software and install it.

 ° Mac OS: Ruby is preinstalled. You can test whether Ruby is
installed with the Ruby -v command.

 ° Linux-based OS: Use sudo apt-get install ruby 2.0.0 to
download Ruby.

Run the Sencha Cmd setup, follow the instructions, and after installing Sencha Cmd,
we need to verify the installation. Proceed to open the command line and type the
following command:

sencha

On Windows environments, it's recommended that you
restart the system after installation in order to get the
proper environment variables applied.

www.allitebooks.com

http://www.sencha.com/products/sencha-cmd/
http://rubyinstaller.org
http://www.allitebooks.org

An Introduction to Ext JS 5

[6]

After typing the command Sencha, we should see the following output:

Why so many iles and folders?
This is a natural question when you look at the downloaded iles and folders for the
irst time, but every ile and folder is there for a purpose and now you're going to
learn it:

• The build folder contains compiled files of the SDK and is ready to be
used. This folder is very useful to start with in Ext JS without the need to
use Sencha Cmd. From version 5, this folder also contains examples and
ready-to-use Ext JS themes located in packages (folder).

• The examples folder contains the source code of the examples. These examples
are built to show what we can do with the library. However one significant
change in version 5 is that this folder needs to be compiled using Sencha Cmd
in order to be deployed/compiled into the build folder.

• The overrides folder contains JavaScript files used to add extra functionality
and behavior to components and widgets and they are also used when an
application or code is compiled.

• The packages folder is where the styles and images are located; we can also
find the Sass files to create our custom theme in here. Sass is an extension of
CSS3 to improve the language; we can use variables, mixins, conditionals,
expressions, and more with Sass. From version 5 onward, this folder also
contains more folders, which are Locales, Ext JS Core, Charts, Aria,
and many more.

Chapter 1

[7]

• The src folder contains the source code files that are part of the framework.
Each file represents a class/object so we can read it easily, and every folder
corresponds to the namespace assigned to the class. For example, the Ext.
grid.Panel class is in a file called Panel.js, which in a folder called grid
(src/grid/Panel.js).

• The welcome folder contains the styles and images that are shown when we
open the index.html file in the root folder.

If you look at the root folder, you can also see other JavaScript files. Basically,
they are the compressed, debug, and development versions of the library.

• The bootsprap-*.js files contain information about the framework;
these files are used by ext*.js files in order to load the required files
(the src folder or packages folder).

• The ext-all.js file loads the complete library with all the components,
utilities, and classes.

• The ext-all-debug.js file is the same as the ext-all.js file. The difference
is that this file will show console logs and we can use this file to debug our
application.

• The ext.js file is the core and foundation layer for Ext JS. If we use this file,
we're not loading the whole library; this file contains only the class system,
the loader, and a few other classes. We can use the Ext.Loader class to load
just the required classes and not the entire framework.

Folders that changed in version 5 from previous

versions
Developers that use previous versions of Ext JS may ind the new folder structure
confusing, and may notice that some of folders disappeared in version 5. The
signiicant changes to folders are listed below. The builds folder no longer exists;
instead, we should use the build folder.

• The locale folder has been moved to the packages/ext-locale folder.
In version 5, Locales have a more complex folder structure and we also now
have the ext-locale-language.js file and ext-locale-language-debug.
js file. By default, the components are displayed in English, but you can
translate them to any other language.

• The jsbuilder folder was removed, now in version 5 we will use Sencha
Cmd to build and compress our source code.

An Introduction to Ext JS 5

[8]

• The ext*-dev.js file was removed in version 5, as according to Sencha,
there was much confusion about the use of these files. On Sencha Touch
these files were merged and following the same pattern as Sencha Touch
on Ext JS. *-dev.js files and ext*-debug.js files were merged into one.

• The resources folder was removed, so now we need to use the packages
folder.

• The docs folder was removed, so as of version 5, developers should check
the documentation and guides at http://docs.sencha.com/. Also, there is
an alternative to download the offline documentation selection (offline docs)
from the link in the documentation menu:

Now that you have a basic understanding of the downloaded iles and folders, we
can advance to the next step of "getting started."

Looking at the whole picture
Before we start writing code, you need to learn and understand a few concepts
irst. Ext JS is divided into three layers, as shown in the following screenshot.
The purpose of these layers is to share code with Sencha Touch, a framework
to create mobile web applications.

http://docs.sencha.com/

Chapter 1

[9]

In the Ext Foundation layer, the Ext object is created, as well as some useful
utilities and the class system that allows us to extend classes, override methods
and properties, add mixins and conigurations to classes, and many more things.

To understand more about mixins, see http://docs.
sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/
Ext.Mixin.

The Ext Core layer contains the classes that manage the Document Object Model
(DOM), the setting and iring of events, support for Ajax requests, and classes to
search the DOM using CSS selectors. Also now, part of Ext.Core is the data package
(classes related to data such as ields, store, and so on). As of version 5.1, Ext JS Core
will have common shared code with Sencha Touch (the next major release).

Finally, the Ext JS 5 layer contains all the components, widgets, and many more
features that you're going to be learning about in this book.

Our irst program
We need to set up our workspace to write all the examples of this book. Let's create
a folder named learning-ext-5. For now, we don't need a web server to host our
examples, but in the following chapters we are going to use Ajax; therefore, it's a
good idea to use your favorite web server to host our code from these irst examples.

In our new folder, we are going to create folders that contain the examples for
each chapter in this book. At this point, we have a folder called chapter_01 that
corresponds to this chapter and other called extjs-5.1.1 that contains the Ext JS
framework. Both folders are located on the same level.

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.Mixin
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.Mixin
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.Mixin

An Introduction to Ext JS 5

[10]

Inside the chapter_01 folder, we're going to create a ile called myfirstapp.html,
where we need to import the Ext library and create a JavaScript ile called app.js
that will contain our JavaScript code:

Open the myfirstapp.html ile in your favorite editor and type the following code:

<!doctype html>

<html>

<head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta charset="utf-8">

 <title>My first application</title>

 <!-- Importing the stylesheet (theme neptune) -->

 <link rel="stylesheet" type="text/css" href="../
 ext-5.1.1/build/packages/ext-theme-neptune/build/resources/
 ext-theme-neptune-all.css">

 <!-- Importing the Extjs library -->

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <!-- Importing overrides Js code special for theme neptune -->

 <script src="../ext-5.1.1/build/packages/ext-theme-neptune/build/
 ext-theme-neptune.js"></script>

 <!-- Importing our application -->

 <script type ="text/javascript" src="app.js"></script>

Chapter 1

[11]

</head>

<body> </body>

</html>

Downloading the example code

You can download the example code iles for all Packt Publishing
books you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
iles e-mailed directly to you.

Writing the Ext JS code
The previous code shows how to import the library for a development environment.
First, we import the stylesheet that is located at ext-5.1.1/build/packages/ext-
theme-neptune/build/resources/ext-theme-neptune-all.css. The second step
is to import the whole library from ext-5.1.1/build/ext-all.js. The third step
is to import a JavaScript ile that contains overrides so the theme can work properly
(speciic adjustments on this theme).

Now we're ready to write our code in the app.js ile.

Before we can start creating widgets, we need to wait until the DOM is ready
to be used and Ext JS is loaded and parsed. Ext JS provides a function called
Ext.onReady, which executes a callback automatically when all the nodes in
the tree can be accessed. Let's write the following code in our app.js ile:

Ext.onReady(function(){

 alert("This is my first Extjs app !");

});

An alternative to this code can also be:

Ext.application({

 name : 'MyFirstApplication',

 launch : function() {

 Ext.Msg.alert("Hello"," my first Ext JS app");

 }

});

One of the advantages of using Ext JS is that the library only uses one single object in
the global scope called Ext to allocate all the classes and objects within the framework.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

An Introduction to Ext JS 5

[12]

If you open the HTML ile in your favorite browser, you will see something like the
following screenshot:

Feel free to use your favorite browser to work through the examples
in this book. I recommend you use Google Chrome because it has
more advanced developer tools and it's a fast browser. If you are a
Firefox fan, you can download the Firebug plugin; it's a powerful
tool that we can use for debugging in Firefox.

If for some reason we can't see the alert message in our browser, it's because we
haven't deined the correct path to the ext-all.js ile. If you look at the JavaScript
console, we'll probably see the following error:

Uncaught ReferenceError: Ext is not defined

This means that the ext-all.js ile is not imported correctly. We need to make sure
everything is correct with the path and refresh the browser again.

Chapter 1

[13]

Adding interaction to the program
Now that we know how to execute code when the DOM is ready, let's send an alert
message from the Ext library. Using the Ext.MessageBox alias Ext.Msg object,
we can create different types of messages such as an alert, conirmation, prompt,
progress bar, or even a custom message:

Ext.onReady(function(){

 //alert("This is my first Extjs app !");

 Ext.Msg.alert("Alert","This is my first Ext js app !");

});

The output for the preceding lines of code is shown in the following screenshot:

If you're not getting any errors in the JavaScript console but still
you can't see the message on the screen, as seen in the preceding
screenshot, make sure you have inserted the stylesheet correctly.

In this case, we're using the alert method of the Ext.Msg object. The irst parameter
is the title of the message and the second parameter is the content of the message.
That was easy, right? Now let's create a conirmation dialog box:

Ext.onReady(function(){

 Ext.Msg.alert("Alert","This is my first Ext JS app !");

 Ext.Msg.confirm("Confirm","Do you like Ext JS 5?");

});

An Introduction to Ext JS 5

[14]

We use the confirm method to request two possible answers from the user. The irst
parameter is the title of the dialog box and the second parameter is the question or
message we want to show to the user:

Before the conirmation dialog box appeared, there was an alert that didn't show
up. One important thing to keep in mind is that the messages and alerts from the
Ext library don't block the JavaScript loop, unlike the native browser dialog box.
This means that if we add another alert or custom message after the confirm
method is called, we will not see the conirmation dialog box anymore.

So far, we have shown a conirmation dialog box requesting two possible answers
from the user, but how can we know the user's response in order to do something
according to the answer? There's a third parameter in the conirmation dialog box,
which is a callback function that will be executed when the user clicks on one of
the two answers:

Ext.onReady(function(){
 Ext.Msg.alert("Alert","This is my first Ext JS app !");
 Ext.Msg.confirm("Confirm","Do you like Ext JS 5?",
 function(btn){
 if (btn === "yes") {
 Ext.Msg.alert("Great!","This is great!");
 } else {
 Ext.Msg.alert("Really?","That's too bad.");
 }
 });
});

Chapter 1

[15]

The callback function is executed after the user clicks on the Yes or No button or
closes the conirmation dialog box. The function receives the value of the clicked
button as a parameter, which is Yes or No; we can do whatever we want inside the
callback function. In this case, we're sending a message depending on the given
answer. Let's refresh our browser and test our small program to watch our changes.
Conirmations are usually asked when a user wants to delete something, or maybe
when they want to trigger a long process, basically anything that has only two options.

Tools and editors
Before we go any further, it's important we use some tools in order to be more
productive when building our code and our applications. There are many editors
in the market we can use to write code. Let's review some of them that will be
useful in this book.

XAMPP or WAMP
XAMPP is an open source distribution of Apache that contains MySQL, PHP,
and Perl, and is easy to install and easy to use. XAMPP can provide us with a
local web development environment that is easy to handle without the need
to test on a public server or hosting.

XAMPP is available for Windows (32-bit), Linux, and OS X versions and you
can download XAMPP at https://www.apachefriends.org/index.html.

WAMP is another free package containing Apache, MySQL, and PHP, especially
designed for the Windows OS. You can get it at http://www.wampserver.com/en/.
WAMP comes in 32-bit and 64-bit versions according to your Windows OS.

In order to test the code or review some Ext JS examples, we will need a web server
(Apache) or IIS to get the proper functionality and AJAX responses that the examples
and code require.

www.allitebooks.com

https://www.apachefriends.org/index.html
http://www.wampserver.com/en/
http://www.allitebooks.org

An Introduction to Ext JS 5

[16]

Aptana
The Aptana editor is an IDE from Appcelerator. It's based on Eclipse but optimized
for web applications. It's an open source project and free of charge.

Among other IDEs, Aptana contains an autocomplete functionality for JavaScript
and Ext JS, a JavaScript validator, a CSS and HTML validator, a JavaScript debugger,
Bundles, and more:

Aptana is a great tool when working with Python, Ruby, or PHP as the backend of
our projects. It contains tools to work with those out-of-the-box languages and also
contains tools to deploy your application in the cloud using Heroku or Engine Yard.

Chapter 1

[17]

Sencha Architect
The Sencha Architect desktop application is a tool that will help you design and
develop an application faster than coding it by hand. The idea is to drag and drop
the components into a canvas, and then add the functionality. The Sencha Architect
desktop application is a product from Sencha Inc. that aims to help developers deine
components with a few clicks. We can create an Ext JS or Sencha Touch project.
We can get a free trial from the oficial website of Sencha. We can also buy the
license there.

The current Sencha Architect version is 3.1.0. This works for Ext JS
versions 4.x and 5.x. Previous versions of Sencha architect, such as
2.x will not work for Ext JS 5.

One of the advantages that Architect has is that you can drag-and-drop components
into the work zone and this tool will create (generate) the basic code of the components
and/or the part(s) you are working with.

An Introduction to Ext JS 5

[18]

Also, you can switch to the code view and see the results so far (some parts of the Ext
JS classes/components can be edited but not all of them). You can see the code view
in the following screenshot:

The intention of this book is not to teach you about Sencha Architect, it's for you to
understand and learn Ext JS and create applications without the need to use Sencha
Architect. Later, if you feel you need to use Sencha Architect or want to give a try, it
may be easier once you know the basics and essentials that are covered in this book.

Chapter 1

[19]

What's new in Ext JS 5?
Ext JS 5 introduces a great number of new features, and most of them will be
covered in the upcoming chapters when we have a closer look, but for the moment
we will briely mention some of the signiicant additions in version 5:

• Tablet support and new themes: This has introduced the ability to create
apps compatible with touch-screen devices (touch-screen laptops, PCs, and
tablets). The Crisp theme is introduced and is based on the Neptune theme.
Also, there are new themes for tablet support, which are Neptune touch and
Crisp touch.

• New application architecture – MVVM: Adding a new alternative to
MVC Sencha called MVVM (which stands for Model-View-ViewModel),
this new architecture has data binding and two-way data binding, allowing
us to decrease much of the extra code that some of us were doing in past
versions. This new architecture introduces:

 ° Data binding

 ° View controllers

 ° View models

• Routing: Routing provides deep linking of application functionality and
allows us to perform certain actions or methods in our application by
translating the URL. This gives us the ability to control the application
state, which means that we can go to a specific part or a direct link to our
application. Also, it can handle multiple actions in the URL.

• Responsive configurations: Now we have the ability to set the
responsiveConfig property (new property) to some components, which
will be a configuration object that represents conditions and criteria on which
the configurations set will be applied, if the rule meets these configurations.
As an example:

responsiveConfig: {

 'width > 800': { region: 'west' },

 'width <= 800':{ region: 'north' }

}

• Data package improvements: Some good changes came in version 5 relating
to data handling and data manipulation. These changes allowed developers
an easier journey in their projects, and some of the new things are:

 ° Common Data (the Ext JS Data class, Ext.Data, is now part of the
core package)

An Introduction to Ext JS 5

[20]

 ° Many-to-many associations

 ° Chained stores

 ° Custom field types

• Event system: The event logic was changed, and is now a single listener
attached at the very top of the DOM hierarchy. So this means when a
DOM element fires an event, it bubbles to the top of the hierarchy before
it's handled. So Ext JS intercepts this and checks the relevant listeners you
added to the component or store. This reduces the number of interactions
on the DOM and also gives us the ability to enable gestures.

• Sencha Charts: Charts can work on both Ext JS and Sencha Touch, and
have enhanced performance on tablet devices. Legacy Ext JS 4 charts were
converted into a separate package to minimize the conversion/upgrade.
In version 5, charts have new features such as:

 ° Candlestick and OHLC series

 ° Pan, zoom, and crosshair interactions

 ° Floating axes

 ° Multiple axes

 ° SVG and HTML Canvas support

 ° Better performance

 ° Greater customization

 ° Chart themes

• Tab Panels: Tab panels have more options to control configurations such
as icon alignment and text rotation. Thanks to new flexible Sass mixins,
we can easily control presentation options.

• Grids: This component, which has been present since version 2.x, is one of
the most popular components, and we may call it one of the cornerstones
of this framework. In version 5, it got some awesome new features:

 ° Components in Cells

 ° Buffered updates

 ° Cell updaters

 ° Grid filters (The popular "UX" (user extension) has been rewritten
and integrated into the framework. Also filters can be saved in the
component state.)

 ° Rendering optimizations

Chapter 1

[21]

• Widgets: This is a lightweight component, which is a middle ground
between Ext.Component and the Cell renderer.

• Breadcrumb bars: This new component displays the data of a store
(a specific data store for the tree component) in a toolbar form. This new
control can be a space saver on small screens or tablets.

• Form package improvements: Ext JS 5 introduces some new controls and
significant changes on others:

 ° Tagfield: This is a new control to select multiple values.

 ° Segmented buttons: These are buttons with presentation such as
multiple selections on mobile interfaces.

 ° Goodbye to TriggerField: In version 5, TriggerField is deprecated
and now the way to create triggers is by using the Text field
and implementing the triggers on the TextField configuration.
(TriggerField in version 4 is a text field with a configured button(s)
on the right side.)

 ° Field and Form layouts: Layouts were refactored using HTML and
CSS, so there is improvement as the performance is now better.

• New SASS Mixins (http://sass-lang.com/): Several components that
were not able to be custom-themed now have the ability to be styled in
multiple ways in a single theme or application. These components are:

 ° Ext.menu.Menu

 ° Ext.form.Labelable

 ° Ext.form.FieldSet

 ° Ext.form.CheckboxGroup

 ° Ext.form.field.Text

 ° Ext.form.field.Spinner

 ° Ext.form.field.Display

 ° Ext.form.field.Checkbox

http://sass-lang.com/

An Introduction to Ext JS 5

[22]

• The Sencha Core package: The core package contains code shared between
Ext JS and Sencha Touch and in the future, this core will be part of the next
major release of Sencha Touch. The Core includes:

 ° Class system

 ° Data

 ° Events

 ° Element

 ° Utilities

 ° Feature/environment detection

Summary
In this chapter, you learned how to set up and install Ext JS 5 and Sencha Cmd too.
You also learned about the content of the folders included in the Ext JS 5 SDK, and
the differences between folders in version 4 and version 5. We mentioned some
useful tools that will be essential for this book; however, many developers may
not like them or may not feel comfortable with these tools, so feel free to use your
favorite tools and editors.

Through the course of this book, you are going to learn about the use of Ext JS 5,
and we will cover the most important parts, features, and components, and many
more classes and tools. At the end of this book, we will complete a small real-world
application so you can get an idea of how to implement Ex JS for your next and
future projects.

In the next chapter, we will focus on the Ext JS 5 core concepts and DOM manipulation.

[23]

The Core Concepts
In this chapter, you're going to learn about the class system, which was irst
introduced in Ext JS version 4. You are also going to learn how to load classes
dynamically and how to interact with the Document Object Model (DOM) to
modify the structure of the DOM tree for our convenience.

You should know that JavaScript is classless (prototype-oriented); however,
we can emulate it using the prototype object and other techniques. One of the
major features of Ext JS is that since version 4, all the code in the framework
was developed with a class-based structure. Along with naming conventions, it's
easy to learn and understand, and keep the code organized, structured, and easy
to maintain.

Knowing and understanding the concept of the Object-Oriented Programming
System (OOPS) is very important. This book may not be a focused guide on the
concept of OOPS, but you are going to learn how we can use and implement this
concept in Ext JS.

The following are the main topics in this chapter, which you need to understand well
before moving on to other parts of the library:

• The class system

• Loading classes on demand

• Working with the DOM

The Core Concepts

[24]

The class system
In version 4, the class system was completely redesigned and new features were
added. It became a more powerful way to extend and create classes. And Ext JS 5
keeps the same structure and consistency as version 4.

In order to create classes, Ext JS uses the Ext.ClassManager object internally to
manage the associations between the names, aliases, or alternate names we deine.
And all classes (existing and new) use Ext.Base as the base code.

It's not recommended to use these classes directly; instead we should use the
following shorthands:

• Ext.define: This shorthand is used to create a new class, extend a class,
or whenever we need to apply some override(s) in a class.

• Ext.create: This shorthand creates a new instance of a class, using either
the fullname class, the alias class, or the alternate name class. Using any
of these options, the class manager handles the correct mapping to create the
class. We can also use this shorthand to create objects from an existing class.

• Ext.widget: This shorthand is used to create a widget using the xtype (alias)
property or a configuration object.

Alias is a short name for a class, which is usually easy to remember
and handle in code, for example, Ext.grid.column.Action
has an alias that is actioncolumn. The full list can be found here:
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/
api/Ext.enums.Widget.

Naming conventions
Ext JS uses consistent naming conventions throughout the framework. This allows
you to have classes, namespaces, ilenames, and so on, to keep an organized structure.
As part of the coding conventions used by Sencha, there are some basic rules:

• Names may use alphanumeric characters, and you can use numbers, but
as a convention, rule numbers may be used for technical terms. The use of
underscores or hyphens may not be used as a convention rule, but it is not
impossible to use them. For example:

 ° MyApp.utils-common.string-renderers (not good)

 ° MyApp.utils.Md5encyption (good)

 ° MyApp.reportFormats.FM160 (good)

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Widget
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Widget

Chapter 2

[25]

• Names should be grouped into packages/namespaces, spaced using object
dot-notation as (namespace).(namespace).(class). You cannot repeat
the top-level namespace followed by the class name. For example:

 ° MyApp.EmployeeApp (good)

 ° MyApp.EmployeeApp.EmployeeClass (not good; also this will be
interpreted as a property rather than a class)

• The name for the top-level classes should be camel-cased. The groups
and namespaces grouping of the top-level class should be in lowercase
(again as a convention but not forbidden). For example:

 ° MyApp.grids.EmployeesGrid

 ° MyApp.data.clients.SalesReport

• As a rule and also to avoid possible errors, classes that are not part of the
framework should never use Ext as the top-level namespace, unless you are
creating an Ext.ux component. However, as a rule if you are using plugins
or third-party components, be sure that the name(s) you are using do not
collide or interfere with these plugins/components.

Writing your irst class
So now let's create our irst class using the irst shorthand in the preceding list.
In a new ile called classes_01.js, we need to write the following code:

Ext.define('Myapp.sample.Employee',{

 name: 'Unknown',

 constructor: function (name){

 this.name= name;

 console.log('class was created – name:' + this.name);

 },

 work: function(task){

 alert(this.name + ' is working on: ' + task);

 }

});

var patricia = Ext.create('Myapp.sample.Employee', 'Patricia Diaz');

patricia.work('Attending phone calls');

In this code, we deined the name of the class as a string 'Myapp.sample.Employee'
as the irst parameter of the Ext.define function. Then we set the name property and
two methods: constructor and work.

www.allitebooks.com

http://www.allitebooks.org

The Core Concepts

[26]

When a new class is created, Ext will use the constructor method as a callback and
it will be executed each time a new instance is created, giving us the chance to apply
the initial conigurations to the class. If constructor is not deined, Ext will use an
empty function and also the initial properties of the class will be the default values.

We now have the class already deined in the code, and a new instance of the class is
created in the following code:

var patricia = Ext.create('Myapp.sample.Employee','Patricia Diaz');

We are telling Ext JS to create a new instance of the Myapp.sample.Employee class
and passing a one-string parameter, Patricia Diaz, right after the execution of the
code where the constructor method will be executed:

constructor: function(name){

 this.name = name;

 console.log('class was created – name:' + this.name);

},

Finally, we invoke the work method, which will make an alert appear in the browser:

So far we have been handling one value in the class, and the usual way for most
developers to do this is that we handle multiple values when creating classes, so let's
change the code as shown in the following sample:

Ext.define('Myapp.sample.Employee',{

 name: 'Unknown',

 lastName: 'Unknown',

 age: 0,

 constructor: function (config){

 Ext.apply(this, config || {});

Chapter 2

[27]

 console.log('class created – fullname:' + this.name + ' ' +
 this.lastName);

 },

 checkAge:function(){

 console.log('Age of ' + this.name + ' ' + this.lastName + ' is:'
 + this.age);

 },

 work: function(task){

 console.log(this.name + ' is working on: ' + task);

 }

});

var patricia = Ext.create('Myapp.sample.Employee',{

 name:'Patricia',

 lastName:'Diaz',

 age:21

});

patricia.checkAge();

patricia.work('Attending phone calls');

Let's review the changes. The parameter in the constructor method was changed to
config, so now we will pass an object as a parameter to the constructor method.
Ext.apply(this, config || {}); will allow us to copy all the properties of the
config parameter to the class properties.

In order to run the example, we need to create an HTML page containing the following
code snippet, and import the Ext JS library and the client class ile (classes_01.js),
and after that we can execute the preceding code.

<!doctype html>

<html>

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta charset="utf-8">

<title>My first ExtJS class</title>

<script src="../ext-5.1.1/build/ext-all.js"></script>

<script type ="text/javascript" src="classes_01.js"></script>

</head>

<body> </body>

</html>

Open the HTML ile in your favorite browser and the JavaScript console by pressing
Ctrl + Shift + I (shortcut for Windows users) or Cmd + Option + I (shortcut for Mac
users) to open the developer tools in Google Chrome.

The Core Concepts

[28]

If you're using Firefox, the shortcut to show the JavaScript console is Ctrl + Shift +
K (for Windows users) or Cmd + Option + K (for Mac users). We should see two log
messages in the JavaScript console as shown in the following screenshot:

The irst message is printed in the console by the constructor method that is
executed when the Employee class is created. The second message is printed when
we have called the checkAge method and accessed the age property. Finally after
we have called the work method, the third message will appear.

Once we have the instance of the Employee class, we can modify its properties by
assigning the new value. If we refresh our browser, we will see a new message in
the console and it will have the new value. We can create as many instances as
we want from our class and every one of them will have the same properties and
methods. However, we can change their values individually or even pass an object
to the constructor with the properties that we want to change.

Simple inheritance
When we create a class using the Ext.define method, we're extending from the
Ext.Base class. This class contains abstract methods that will be inherited by all
the subclasses so we can use them at our convenience.

Chapter 2

[29]

In our previous example, the Employee class extends from the Base class. We didn't
have to do anything special to accomplish that. By default, if we don't conigure a
class to extend from any other class, it extends from the Base class, and we should
keep this in mind.

Most of the classes in the Ext library extend from the Ext.Base class, however there
are a few core classes that don't. The following screenshot shows the inheritance tree
for the Button and Model components:

Ext.Base

Ext.AbstractComponent

Ext.Component

Ext.data.Model

Ext.button.Button

As we can see in the previous image, the root of the tree is the Ext.Base class,
which means that the Button and Model components share the same methods
deined in the Ext.Base class.

In order to extend from any other class, we need to deine the extend property to
our new class as follows; this will allow us to inherit all the methods and properties
from the parent.

Ext.define('Myapp.sample.Supervisor',{

extend: 'Myapp.sample.Employee',

constructor: function (config){

 Ext.apply(this, config || {});

 console.log('class B created – fullname:' + this.name +

 ' ' + this.lastName);

},

supervise: function(employee){

 var employeefullname = employee.name + ' ' +

 employee.lastname;

 console.log(this.name + ' is supervising the work of '

+ employeefullname);

}

});

The Core Concepts

[30]

Here we have created a class that extends from the Myapp.sample.Employee
class just by adding the extend property and assigning the name of the superclass
in extend:'Myapp.sample.Employee'. Also, we added a new method called
supervise, which will be available only to the Supervisor class.

Let's make a duplicate of the iles in the irst example, and rename the HTML ile
to classes_02.html and the JavaScript ile to classes_02.js. Now, change the
script tags that point the src property to the new JavaScript ile instead. At the
end of the code in the classes_02.js ile, add the following code:

var robert = Ext.create('Myapp.sample.Supervisor',{

 name: 'Robert',

 lastName: 'Smith',

 age: 34

});

robert.checkAge();

robert.work('Administration of the office');

robert.supervise(patricia);

We used the Ext.create method to create an instance of the Supervisor class.
In this example, we're passing new parameters. After the Supervisor class is
created, we run the same methods from Employee class, and we also run the
new method supervise.

Let's open the HTML ile in our browser and look at the JavaScript console.
We should see the new logs from the Supervisor class.

Chapter 2

[31]

As we can see in this inheritance example, this property is also useful when we want
to extend classes/widgets such as Ext.panel.Panel and create our own panel while
giving special and extra functionality that the panel does not provide.

Preprocessors and postprocessors
Every class in Ext JS is an instance of the Ext.Class class. When we use the
Ext.define method to deine a class, we are in fact creating an instance of the
Ext.Class class.

According to the documentation, the Ext.Class class is a factory. This doesn't mean
that our classes extend from the Ext.Class class. As mentioned before, all classes
extend from the Ext.Base class. What this really means is that when we use the
Ext.create method, Ext runs processes behind the scenes. Each process is a task
with a speciic purpose in the whole process of creating the class.

A process may be asynchronous or not, for example, we have a preprocessor
that loads all the dependencies for our new class if they are not already loaded.
When the preprocessor inishes its tasks, the next process is executed until the
list is empty and then our new class is created.

A preprocessor is a process that runs before the instance of an Ext.Class class is
created, or in other words, before our new class is created. Each of the processes
deined will change the behavior of our class, if necessary.

A postprocessor is a process that runs after our new class is created. There is a
process to make our class a singleton, to deine alternative names for our class,
and for a few other processes.

There are a few processes deined by the Ext library, but we can deine our own
and add them to the process queue if we want.

The question now is what processes are we talking about? And what do they do?
If we want to see the list of registered processes, we can execute the following lines
of code:

var pre = Ext.Class.getDefaultPreprocessors(),

post = Ext.ClassManager.defaultPostprocessors;

console.log(pre);

console.log(post);

The Core Concepts

[32]

By running the previous code in a browser, we should see the following messages in
the JavaScript console:

["className", "loader", "extend", "privates", "statics",
"inheritableStatics", "platformConfig", "config", "cachedConfig",
"mixins", "alias"]

["alias", "singleton", "alternateClassName", "debugHooks",
"deprecated", "uses"]

The following screenshot represents the low of the class creation with the
preprocessors and postprocessors:

Ext.Class

singleton

className

extend

statics

con�g

mixins

cachedCon�g

alias

alternateClassName

uses

De�ne Callback

This is what happens when we create a class. All the preprocessors run before the
class is ready, modifying the result. The postprocessors on the other hand run when
the class is ready to be used.

For example, the loader process looks for the dependencies and if they are not
present, it tries to load them synchronously. After all the dependencies are ready, it
passes the control to the Ext.Class class in order to continue with the next process.
The following process in the queue is extend, which is responsible for copying all
the prototype methods and properties from the superclass to the subclass.

Chapter 2

[33]

The following table shows a brief description of all the preprocessors that may be
executed to create a new class:

Preprocessors Description

className This defines the namespace and the name of the class
loader This looks for the dependencies and if they don't exist

already, then it tries to load them
extend This inherits all the methods and properties from the

superclass to the new class
statics This creates the defined static methods or properties

for the current class
inheritableStatics This inherits the static methods or properties from

the superclass, if applicable
config This creates the getters and setters for the

configuration properties
mixins This inherits all the methods and properties from the

mixin classes
alias This sets the alias for the new class

Once the class is created, the following postprocessors are executed:

Postprocessor Description

alias This registers the new class to the class manager and
its alias

singleton This creates a single instance of the new class
alternateClassName This defines alternative names for the new class created
uses This imports the classes that will be used, along with the

new class

Sometimes processes won't run, so if this is the case we need to check out how
we have conigured and deined our classes. Sometimes, letters in lowercase and
uppercase can make a big difference, so keep in mind that class names and property
names have to be in the correct uppercase and lowercase syntax; otherwise, these
processes or properties will be ignored.

Now that you have a basic understanding of how the class system works, we can
advance on to how we can deine our classes using the process logic and take
advantage of them.

The Core Concepts

[34]

Mixing many classes (the use of mixins)
So far, you have learned about simple inheritance, but we can also mimic multiple
inheritances using the mixins processor. The concept is really simple: we can mix
many classes into one. As a result, the new class will have access to all the properties
and methods from the mixed classes.

Continuing with the previous classes, Employee and Supervisor, let's organize
those classes a bit more. Occupations in the company can vary depending on the
needs of the organizations; a secretary has different tasks to perform from a manager
or an accountant. So we are going to separate the required tasks each occupation
has to perform, and this way we will have some different classes with the tasks that
people in the company can perform according to the occupation each one has.

The following diagram shows an example:

Let's make a duplicate of the classes_02.js ile and rename it classes_04.js; also
make a duplicate of the classes_02.html HTML ile and change the JavaScript ile
reference to classes_04.js. And now we proceed to make some new changes in the
classes_04.js ile. After the code where we deined the employee class, let's write
the following code:

// Mixins

Ext.define('Myapp.sample.tasks.attendPhone',{

 answerPhone:function(){

 console.log(this.name + ' is answering the phone');

 }

});

Ext.define('Myapp.sample.tasks.attendClient',{

 attendClient:function(clientName){

 console.log(this.name + ' is attending client: ' + clientName);

Chapter 2

[35]

}

});

Ext.define('Myapp.sample.tasks.attendMeeting',{

attendMeeting:function(person){

 console.log(this.name + ' is attending a meeting with ' +
 person);

}

});

Ext.define('Myapp.sample.tasks.superviseEmployees',{

superviseEmployee:function(supervisor, employee){

 console.log(supervisor.name + ' is supervising : ' +
 employee.name + ' ' + employee.lastName);

}

});

For the sake of simplicity, we're just sending a log message to the console on each
method. But we can do anything else needed. Now let's deine the occupation
classes, which contain a few methods (tasks) according to what each occupation
can do.

As an example, a manager will not answer the phone, as this is the task of a secretary,
and a secretary will not supervise any employee, as that is a task for a manager.

Ext.define('Myapp.sample.Secretary',{

 extend:'Myapp.sample.Employee',

 mixins:{

 answerPhone: 'Myapp.sample.tasks.attendPhone'

 },

 constructor: function (config){

 Ext.apply(this, config || {});

 console.log('Secretary class created – fullname:' + this.name
 + ' ' + this.lastName);

 }

});

Ext.define('Myapp.sample.Accountant',{

 extend:'Myapp.sample.Employee',

 mixins:{

 attendClient: 'Myapp.sample.tasks.attendClient',

 attendMeeting: 'Myapp.sample.tasks.attendMeeting'

 },

 constructor: function (config){

 Ext.apply(this, config || {});

 console.log('Accountant class created – fullname:' + this.name
 + ' ' + this.lastName);

www.allitebooks.com

http://www.allitebooks.org

The Core Concepts

[36]

 }

});

Ext.define('Myapp.sample.Manager',{

 extend:'Myapp.sample.Employee',

 mixins:{

 attendClient: 'Myapp.sample.tasks.attendClient',

 attendMeeting: 'Myapp.sample.tasks.attendMeeting',

 supervisePersons:'Myapp.sample.tasks.superviseEmployees'

 },

 constructor: function (config){

 Ext.apply(this, config || {});//this.name= config.name;

 console.log('Manager class created – fullname:' + this.name +
 ' ' + this.lastName);

 },

 supervise: function(employee){

 console.log(this.name + ' starts supervision ');

 this.mixins.supervisePersons.superviseEmployee(this,
 employee);

 console.log(this.name + ' finished supervision ');

 }

});

Here we created three classes (Secretary, Accountant, and Manager). Each class
extends the Employee class and on each class, a new coniguration has been added:
mixins:{...}. And lastly, let's insert the following code at the end:

// Usage of each class

var patricia = Ext.create('Myapp.sample.Secretary', {
 name:'Patricia', lastName:'Diaz', age:21 });

patricia.work('Attending phone calls');

patricia.answerPhone();

var peter = Ext.create('Myapp.sample.Accountant', {name:'Peter',
 lastName:'Jones', age:44 });

peter.work('Checking financial books');

peter.attendClient('ACME Corp.');

peter.attendMeeting('Patricia');

var robert = Ext.create('Myapp.sample.Manager', {name:'Robert',
 lastName:'Smith', age:34 });

robert.work('Administration of the office');

robert.attendClient('Iron Tubes of America');

robert.attendMeeting('Patricia & Peter');

robert.supervise(patricia);

robert.supervise(peter);

Chapter 2

[37]

Once the code is ready, refresh the browser and you should see something like the
following screenshot in the JavaScript console:

An explanation of mixins
Each class is based on the Employee class. We then deined the employees tasks
(as classes) such as Myapp.sample.tasks.attendMeeting and this was incorporated
(mixed) into the respective class using the mixin{...} coniguration.

At the end, we have each class with methods like the ones in the following table:

Classes/Employee type Methods
Secretary • work

• answerPhone
Accountant • work

• attendClient

• attendMeeting
Manager • work

• attendClient

• attendMeeting

• supervise

The Core Concepts

[38]

Note that the supervise method deined in Manager uses the next code:

this.mixins.supervisePersons.superviseEmployee(this, employee);

This code lets us call the correct function deined in Myapp.sample.tasks.
superviseEmployees. Now let's make validations and perform other operations
before we run the superviseEmployee function.

Using the mixinConig property
Using the mixinConfig property makes the mixin class able to provide before or
after hooks that are not involved in the class (that is, the class we are going to be
working with).

An easy way to understand this is that before and after settings can be conigured to
make some actions linked to the method being called. So the mixinConfig settings
will be working as a monitor (observable) and when the attached function is called,
then will execute the method set on each coniguration.

Also, the derived class cannot adjust parameters to the hook methods when these
methods are called. In the next example, we are going to create a mixinConfig in
order to execute methods before and after answering the cell phone (the Secretary
class).

The following code implements the mixinConfig for the Secretary class:

Ext.define('Myapp.sample.tasks.attendCellPhone',{

 extend: 'Ext.Mixin',

 /* answerCellPhone is the attached function for before and after
 and will execute the method defined in the answerCellPhone
 property on each configuration object (before / after)

 */

 mixinConfig:{

 before:{

 answerCellPhone:'cellPhoneRinging'

 },

 after:{

 answerCellPhone:'finishCall'

 }

 },

 cellPhoneRinging: function(){

 console.log('cell phone is ringing you may attend call');

 },

 finishCall: function(){

Chapter 2

[39]

 console.log('cell phone call is over');

 }

});

Now we need to modify the Secretary class as show in the following code:

Ext.define('Myapp.sample.Secretary',{

 extend:'Myapp.sample.Employee',

 mixins:{

 answerPhone: 'Myapp.sample.tasks.attendPhone',

 util:'Myapp.sample.tasks.attendCellPhone'

 },

 constructor: function (config){

 Ext.apply(this, config || {});//this.name= config.name;

 console.log('Secretary class created – fullname:' + this.name
 + ' ' + this.lastName);

 },

 answerCellPhone:function(){

 console.log(this.name + ' is answering the cellphone');

 }

});

Refresh the browser and you should see something like the following screenshot in
the JavaScript console:

The Core Concepts

[40]

The important thing about mixins is that we can create classes to do speciic tasks
and then mix those classes into one. This way, we can reuse the same classes over
and over again.

In the Ext library, classes such as Ext.util.Observable, Ext.util.Floating,
Ext.state.Stateful, and others are treated like mixins, as each class knows how
to do speciic things. This is something great for big applications and we should
think wisely how we're going to structure our big application before we start coding.

Conigurations
Another great feature that started in Ext JS version 4 is the addition of conigurations.
Usually when we create a class, we set conigurations so we can change the values
and behavior of our class depending on the input parameters. Since Ext JS 4, this
process is really easy by adding a preprocessor to handle the conigurations for us.

Here we have an example on how the version prior to version 4 had to deine
conigurations/properties on the classes:

Ext.define('Myapp.sample.Employee',{

 name:'Unknown',

 lastName: 'Unknown',

 age: 0,

 constructor: function (config){

 Ext.apply(this, config || {});//this.name= config.name;

 console.log('class A created – fullname:' + this.name +
 ' ' + this.lastName);

 },

 work: function(task){

 console.log(this.name + ' is working on: ' + task);

 },

 setName: function(newName){

 this.name = newName;

 },

 getName: function(){

 return this.name;

 }

});

Chapter 2

[41]

In versions prior to version 4, we had to code the setName and getName methods in
order to change properties in the class, which was time-consuming for developers.
Since version 4, the config property on classes let us avoid all this extra work thanks
to the Ext JS preprocessors before the class is created. The features of the coniguration
are as follows:

• Configurations are encapsulated from other class members.

• Getter and setter methods for every config property are created
automatically in the class prototype if they are not already defined.

• An apply method (for example, setName, will change its property name) is
also generated for every config property. The auto-generated setter method
calls the apply method internally before setting the value. You may override
the apply method for a config property if you need to run custom logic
before setting the value. If apply does not return a value, the setter will not
set the value.

If you intend/plan to create a new class or component and you are extending
the Ext.Base class for this, then it's required that you call/use the initConfig()
method. On classes that are already using the config property, you don't have the
need to call the initConfig() method.

For the next exercise, let's create a new ile called config_01.js and a HTML called
config_01.html. Place the necessary reference to the Ext JS library we have made
in the previous samples and let's work on the code for the config_01.js ile, which
will be as follows:

Ext.define('Myapp.sample.Employee',{

 config:{

 name: 'Unknown',

 lastName: 'Unknown',

 age: 0,

 isOld: false

 },

 constructor: function (config){

 this.initConfig(config);

 },

 work: function(task){

 console.log(this.name + ' is working on: ' + task);

 },

 applyAge: function(newAge) {

 this.setIsOld ((newAge >= 90));

 return newAge;

 }

});

The Core Concepts

[42]

In the preceding code, we performed the following steps:

1. We wrapped the properties of the Employee class in the config object.

2. In the constructor method, we changed the old code and set only this.
initConfig(config);.

3. After creating the class, it will have the setters and getters methods for the
properties: name, lastName, and age. Note that by setting up the class this
way, we will have four new methods for each property. As an example,
the following are the new methods related to age:

 ° getAge

 ° setAge

 ° applyAge (this custom method will be launched automatically
when setAge is invoked)

4. After deining our class with the config object as a property, let's place the
following code in the config_01.js ile after the class deinition for a test:
var patricia = Ext.create('Myapp.sample.Employee',{

 name: 'Patricia',

 lastName: 'Diaz',

 age: 21,

 isOld:false

});

console.log("employee Name = " + patricia.getName());

console.log("employee Last name = " +
 patricia.getLastName());

console.log("employee Age = " + patricia.getAge());

patricia.work('Attending phone calls');

patricia.setName('Karla Patricia');

patricia.setLastName('Diaz de Leon');

patricia.setAge (25);

console.log("employee New Name=" + patricia.getName());

console.log("employee New Last name=" +
 patricia.getLastName());

console.log("employee New Age = " + patricia.getAge());

patricia.work('Attending phone calls');

var is_old='';

is_old= (patricia.getIsOld() == true)? 'yes' : 'no' ;

console.log("is patricia old? : " + is_old) ;

patricia.setAge(92);

Chapter 2

[43]

is_old='';

is_old= (patricia.getIsOld() == true)? 'yes' : 'no' ;

console.log("is patricia old? : " + is_old);

As you can see in the highlighted code, we are using the setters and getters methods
created automatically by initConfig(config). When we changed the age of the
employee using patricia.setAge(92), the applyAge method was invoked that
changed the isOld property in the class. Let's take a look at the console:

Statics methods and properties
The statics methods belong to the class and not to the instance; therefore we can
use statics methods without an instance. Static members in a class can be deined
using the statics config. Again we alter the previous code to the following code:

Ext.define('Myapp.sample.Employee',{

 statics:{

 instanceCount: 0,

 payrollId: 1000,

 nextId : function(){

 return (this.payrollId + this.instanceCount);

 }

 },

 config:{

 name: 'Unknown',

The Core Concepts

[44]

 lastName: 'Unknown',

 age: 0,

 isOld: false,

 payrollNumber: 0

 },

 constructor: function (config){

 this.initConfig(config);

 this.setPayrollNumber(this.statics().nextId());

 this.self.instanceCount ++;

 },

 work: function(task){

 console.log(this.getName() + ' is working on: ' + task);

 },

 applyAge: function(newAge) {

 this.setIsOld ((newAge >= 90));

 return newAge;

 },

 getTotalEmployees: function(){

 return this.statics().instanceCount;

 }

});

var patricia = Ext.create('Myapp.sample.Employee', {

 name: 'Patricia',

 lastName: 'Diaz',

 age: 21,

 isOld: false

});

console.log("patricia payrollId = " +
 patricia.getPayrollNumber());

console.log("total employees = " + patricia.getTotalEmployees());

var peter = Ext.create('Myapp.sample.Employee', {

 name: 'Peter',

 lastName: 'Pan',

 age: 16,

 isOld: false

});

console.log("Peter payrollId = " + peter.getPayrollNumber());

console.log("total employees = " + patricia.getTotalEmployees());

console.log("instance(s) of employee class = " +
 Myapp.sample.Employee.instanceCount);

Chapter 2

[45]

Explanation
We created the statics coniguration in the Employee class:

statics:{

 instanceCount: 0,

 payrollId: 1000,

 nextId : function(){

 return (this.payrollId + this.instanceCount);

 }

},

These values will be static to all instance classes. In the class config property,
we added payrollNumber:0,; this number will be assigned automatically in
the constructor method:

this.setPayrollNumber(this.statics().nextId());

this.self.instanceCount ++;

The instanceCount will be incremented thanks to the this.self.instanceCount++
code. When you use the this.self code inside the class, keep in mind that we are
referring globally to the Myapp.sample.Employee class itself.

In this case, we created two instances of the classes Patricia and Peter so let's
refresh the browser and we should see something like the following screenshot
in the JavaScript console:

www.allitebooks.com

http://www.allitebooks.org

The Core Concepts

[46]

The Singleton class
By deinition, a singleton class can't be instantiated more than once. It should be
the same instance all the time. Ext allows us to create singleton classes very easily
with one postprocessor.

If we want a class to be singleton, we only need to set the singleton property to
true. This will ire the correct postprocessor. As practice, we need to change / add
the following code at the beginning of the previous ile and save it as singleton_01.
js:

Ext.define('Myapp.CompanyConstants',{

 singleton: true,

 companyName: 'Extjs code developers Corp.',

 workingDays: 'Monday to Friday',

 website: 'www.extjscodedevelopers.com',

 welcomeEmployee: function (employee){

 "Hello " + employee.getName() + ", you are now working for " +
 this.companyName;

 }

});

As this class will be the only one and unique instance in our entire application code,
there's no need to create a new instance or use Ext.create. We simply call it by its
name, for example:

alert(Myapp.CompanyConstants.companyName);

// will alert "Extjs code developers Corp."

After creating each Employee class instance(s) inside the code, let's add the
following lines:

var patricia = Ext.create('Myapp.sample.Employee', {

 name:'Patricia',

 lastName:'Diaz',

 age:21,

 isOld:false

});

console.log(Myapp.CompanyConstants.welcomeEmployee(patricia));

var peter = Ext.create('Myapp.sample.Employee', {

 name:'Peter',

 lastName:'Pan',

 age:16,

 isOld:false

});

console.log(Myapp.CompanyConstants.welcomeEmployee(peter));

Chapter 2

[47]

Let's save the ile and refresh the browser and we should see something like the
following screenshot showing the JavaScript console:

The singleton classes are commonly used to hold constants, conigurations, and
common functions (commonly referred to as utility classes) for our application
such as the base path of our application, the path where the images are located,
and things like that.

Aliases
An alias is a short name for a class. The class manager maps /adds the alias name
with the actual class object. By convention, an alias should be all in lowercase.

This feature is really useful when using the xtype property to create widgets. Let's
create a JavaScript ile and name it alias_01.js and place the following code in it:

Ext.define('Myapp.sample.EmployeePanel',{

 extend: 'Ext.panel.Panel',

 alias: 'widget.employeePanel',

 alternateClassName: 'mycustomemployeepanel',

 title: 'Employee Panel',

 html: 'Employee content here..!'

});

The Core Concepts

[48]

In the previous code, we're setting the alias property with a short name. We're also
using the widget preix to indicate we're creating a component. A component is a
class such as a window, grid, or panel.

Also in the code we deined the alternateClassName property, which lets us deine
other alternative names for our class. This property can be a string or an array object
with multiple names, for example, ['employeepanel','customEmployeePanel',
'employeeboard'].

In Ext JS, we have a list of namespaces to use for aliases:

• feature: This is used for Grid features

• plugin: This is used for plugins

• store: This is used for Ext.data.Store

• widget: This is used for components

Now let's create our class using the alias name. We have a few options to do this:

Ext.onReady (function(){

 Ext.create('widget.employeePanel',{

 title: 'Employee Panel: Patricia Diaz...',

 height:250,

 width:450,

 renderTo: Ext.getBody()

 });

});

As an alternative, we can also use the following code:

Ext.onReady (function(){

 Ext.widget('employeePanel',{

 //using the xtype which is employeePanel

 title: 'Employee Panel: Patricia Diaz...',

 height:250,

 width:450,

 renderTo: Ext.getBody()

 });

});

Also, create the HTML ile named alias_01.html. Make the changes to the HTML
ile so it will look like the following code:

<!doctype html>

<html>

<head>

Chapter 2

[49]

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta charset="utf-8">

 <title>Extjs - Alias</title>

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/build/
packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css">

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <script src="../ext-5.1.1/build/packages/ext-theme-neptune/build/
ext-theme-neptune.js"></script>

 <script type ="text/javascript" src="alias_01.js"></script>

</head>

<body style="padding:15px;"></body>

</html>

Run the ile in your browser and you may have a similar result as shown in the
following screenshot:

Let's check out the explanation. We deined the new class Myapp.sample.
EmployeePanel extending the Ext JS class component Ext.panel.Panel. As this
class is in fact a widget, we declared the alias as widget.employeePanel. As we
said previously, Ext.ClassManager handles the declaration of our extended class
(the internal use of preprocessors and postprocessors) and deines/maps the alias
for later use. So when we create a new instance of the new class Myapp.sample.
EmployeePanel, Ext JS will know how to handle and execute the code properly.

The Core Concepts

[50]

Also, we have other ways to reference the new class:

 Ext.ClassManager.instantiateByAlias("widget.employeePanel",{

 renderTo: Ext.getBody()

 });

 // OR

 Ext.createByAlias("widget.employeePanel",{

 renderTo: Ext.getBody()

 });

In this case, Ext.createByAlias is the shorthand of Ext.ClassManager.
instantiateByAlias; they work the same way and usually it's easier to use the
second option. Also we can refer to the new class by using its xtype property on
a coniguration object, such as the following code:

var win = Ext.create("Ext.window.Window",{

 title: "Window", width:350, height:250,

 items: [{ xtype: "employeePanel" }]

});

win.show();

Remember when extending a class, try to extend the class that
gives you the properties and methods you really need in order
to create your new class. Sometimes, it's bad practice to extend
a class/widget such as Ext.panel.Panel, if we are not going
to take full advantage of the functionality it can provide us. In
this case, perhaps it's more convenient to extend the panel base
class, which is the Ext.container.Container class.

Loading classes on demand
When we develop large applications, performance is really important. We should
only load the scripts we need; this means that if we have many modules in our
application, we should separate them into packages so we would be able to load
them individually.

Ext JS, since version 4, allows us to dynamically load classes and iles when we need
them, also we can conigure dependencies in each class and the Ext library will load
them for us.

Chapter 2

[51]

You need to understand that using the loader is great for development, that way
we can easily debug the code because the loader includes all the classes one by
one. However, it's not recommended to load all the Ext classes in production
environments. We should create packages of classes and then load them when
needed, but not class by class.

In order to use the loader system, we need to follow some conventions when
deining our class.

• Define only one class per file.

• The name of the class should match the name of the JavaScript file.

• The namespace of the class should match the folder structure. For example,
if we define a class MyApp.customers.controller.Main, we should have
the Main.js file in the MyApp/customers/controller path.

Enabling the loader
The loader system is enabled or disabled depending on the Ext ile that we import to
our HTML ile. If we import the ext-all or ext-all-debug ile inside the extjs/
build folder, the loader is disabled because all the classes in the Ext library are loaded
already. If we import the ext-all and ext-all-debug iles inside the extjs folder,
the loader is enabled because only the core classes in the Ext library are loaded.

If we need to enable the loader, we should do the following at the beginning of the
JS ile:

Ext.Loader.setConfig({

 enabled: true

});

The previous code will allow us to load the classes when we need them. Also there's
a preprocessor that loads all the dependencies for the given class if they don't exist.

In order to start loading classes, we need to set up the paths where the classes are,
and we can do that in two different ways. We can use the setConfig method to
deine a paths property as follows:

Ext.Loader.setConfig({

 enabled:true,

 paths:{

 MyApp:'appcode'

 }

});

The Core Concepts

[52]

The paths property receives an object containing the root namespace of our
application and the folder where all the classes are located in this namespace. So
in the previous code when we refer to Myapp, Ext JS will look inside the appcode/
folder. Remember that we can add as many paths or location references as needed.

Once we have enabled and conigured the loader correctly, we can start loading our
classes using the require method:

Ext.require([

 'MyApp.Constants',

 'MyApp.samples.demoClass'

]);

The require method creates a script tag behind the scenes. After all the required
iles are loaded, the onReady event is ired. Inside the callback, we can use all the
loaded classes.

If we try to load the classes after the require call, we'll get an error because the
class won't exist until it's downloaded and created. This is why we need to set the
onReady callback and wait until everything is ready to be used.

In this case, open the loader_01.html ile and check that the ile has the correct
paths (that script tags are correct) to the ext.js ile instead of ext-all.js, and run
the ile in the browser. If you look at the Network trafic tab in the development
tools, you will notice the iles that were only loaded, which in fact are a few classes
(only the classes that Ext JS really need to run the code). Also, the speed of execution
of these classes was faster than the previous code samples when we were loading the
complete ext-all.js ile located in the build folder.

Working with the DOM
Ext JS provides an easy way to deal with the DOM. We can create nodes, change
styles, add listeners, and create beautiful animations, among other things without
worrying about the browser's implementations. Ext JS provides us with a cross-
browser compatibility API that will make our lives easier.

The responsible class for dealing with the DOM nodes is the Ext.Element class.
This class is a wrapper for the native nodes and provides us with many methods
and utilities to manipulate the nodes.

Manipulating DOM directly is considered bad practice and none of
the DOM markup should be placed in the index ile. This example
exists only for illustrative purposes.

Chapter 2

[53]

Getting elements
The Ext.get method let us retrieve a DOM element encapsulated in the Ext.dom.
Element class, retrieving this element by its ID. This will let us modify and manipulate
the DOM element. Here is a basic example:

<!doctype html>

<html>

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta charset="utf-8">

<title>Extjs - Loader</title>

<link rel="stylesheet" type="text/css" href="../ext-5.1.1/build/
packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css">

<script src="../ext-5.1.1/ext-all.js"></script>

<script src="../ext-5.1.1/build/packages/ext-theme-neptune/build/ext-
theme-neptune.js"></script>

<script type="text/javascript">

 Ext.onReady(function(){

 var mymainDiv = Ext.get('main');

 var mysecondDiv = Ext.dom.Element.get('second');

 });

</script>

</head>

<body style="padding:10px">

<div id="main"></div>

<div id="second"></div>

</body>

</html>

Usually to get an element, we use Ext.get, which is an alias/shorthand for
Ext.dom.Element.get.

When passing an ID, it should not include the # character that
is used for a CSS selector.

In the div variable, we have an instance of the Ext.Element class containing a
reference to the node that has main as its ID.

The Core Concepts

[54]

We may use the setStyle method in order to assign some CSS rules to the node.
Let's add the following code to our example:

div.setStyle({

 width: "100px",

 height: "100px",

 border: "2px solid #444",

 margin: "80px auto",

 backgroundColor: "#ccc"

});

Here we are passing an object with all the rules that we want to apply to the node.
As a result, we should see a gray square in the center of our screen:

If we want to add a CSS class to the node, we can use the addCls method. We can
also use the removeCls method if we want to remove a CSS class from the node.
Let's see how to use the addCls method:

div.addCls("x-testing x-box-component");

div.removeCls("x-testing");

There are a lot of methods we can use to manipulate the node element. Let's try some
animations with our element:

div.fadeOut()

.fadeIn({

 duration:3000

});

The fadeOut method slowly hides the element by changing the opacity progressively.
When the opacity is zero percent, the fadeIn method is executed by changing the
opacity by 100 percent in three seconds.

You should take a look at the documentation (http://docs.sencha.com/) in order
to know all the options we have available, as there we can ind examples of code to
play with.

http://docs.sencha.com/

Chapter 2

[55]

Query – how do we ind them?
Ext JS allows us to query the DOM to search for speciic nodes. The query engine
supports most of the CSS3 selector speciications and the basic XPath.

The responsible class that does the job is the Ext.dom.Query class; this class contains
some methods to perform a search.

The Ext.dom.Query class is a singleton class so there is no need
to declare it as a new instance to search DOM elements. Also it's
important to know about CSS selectors, so this will help us to
understand how we may select one or many elements.

The following code is an HTML document that contains a few tags so we can search
for them using the Ext.dom.Query class:

<!doctype html>

<html>

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta charset="utf-8">

<title>Extjs - manipulating the DOM </title>

<script src="../ext-5.1.1/build/ext-all.js"></script>

<script type="text/javascript">

Ext.onReady(function(){

 var myElements = Ext.dom.Query.select('#main .menu ul li');

 myElements = Ext.get(myElements);

 myElements.setStyle({

 display: "inline",

 backgroundColor: "#003366",

 margin: "3px",

 color: "#FFCC00",

 padding: "3px 20px",

 borderRadius: "10px",

 boxShadow: "inset 0 1px 15px #6699CC"

 });

 var h1 = Ext.select("#main div[class=content] h1");

 h1.setStyle("color","#003399");

});

</script>

</head>

<body style="padding:10px;">

 <div id="main">

The Core Concepts

[56]

 <div class="menu">

 Home

 About us

 </div>

 <div class="content">

 <h1>Learning Ext JS 5!</h1>

 <p>This is an example for the DomQuery class.</p>

 </div>

 </div>

</body>

</html>

In order to perform the search, we'll use the select method from the Ext.dom.
Query class, and we pass a CSS selector as the only parameter, #main .menu ul li.
The myElements variable became an array with two elements. Ext wraps the nodes
into an Ext.CompositeElementLite collection.

After that, we convert the collection (each element in the array) to a Ext.dom.
Element object using the myElements = Ext.get(myElements); instruction.

The myElements.setStyle({...}); instruction takes the action of applying
the style (coniguration object) to each one of the elements (in the array), using
the Ext.dom.Element methods to accomplish this. The following screenshot
represents the result of the code:

Chapter 2

[57]

DOM manipulation – how do we change it?
We can create and remove nodes from the DOM very easily. Ext JS contains a
DomHelper object/class, which provides an abstraction layer and gives us an
API to create DOM nodes or HTML fragments.

Let's create an HTML ile, import the Ext library, and then use the DomHelper
object to append a div element to the document's body:

Ext.onReady(function(){

 Ext.DomHelper.append(Ext.getBody(),{

 tag: "div",

 style: {

 width: "100px",

 height: "100px",

 border: "2px solid #333",

 margin : "20px auto"

 }

 });

});

We used the append method; the irst parameter is where we want to append
the new element (or DOM node). In this case, we're going to append it to the
document's body.

The second/next parameter is a string or object specifying the element that we are
going to append; it's important that we specify the tag property, which deines
the type/kind of element (DOM element) that we desire to append to the element
deined in the irst parameter.

In this case, we previously deined a div element to be appended in the document's
body, but we can deine any other tags as deined in the HTML speciication. We
can deine styles, classes, children, and any other property that an HTML element
supports. Let's add some children to our previous example:

Ext.DomHelper.append(Ext.getBody(),{

 //...

children : [{

 tag : "ul",

 children : [

 {tag: "li", html: "Item 1"},

 {tag: "li", html: "Item 2"}

]

 }]

});

The Core Concepts

[58]

We have added an unordered list to the main div element. The list contains two
children that are list elements. We can have as many children as needed.

There's another method that we can use if we want to create a node, but we want
to insert it into the DOM later:

var h1 = Ext.DomHelper.createDom({

 tag: "h1",

 html: "This is the title!"

});

Ext.getBody().appendChild(h1);

When we use the createDom method, we create a new node in the memory.
We probably append this node to the DOM later on, or maybe not. In this example,
we have appended it to the document's body.

We know how to create and append nodes to the DOM, but what if we want to
remove elements from the DOM? In order to remove the element from the DOM,
we need to use the remove method on the Ext.Element class:

Ext.fly(h1).remove();

The previous code is calling the Ext.fly method. This method is similar to the
Ext.get method but the difference is that Ext.fly gets the element and does
not store this element in memory; really it's for a single use or a one time-reference.
The Ext.get method stores the element in memory to be reused in other classes or
application code.

So Ext.fly returns an instance to the Ext.Element class containing a reference to
the node element. Once we have the node in the wrapper, we can call the remove
method and the node will be removed from the DOM.

Chapter 2

[59]

Summary
When using Ext JS, we need to change our mind and see everything as an object or
class. We need to think carefully how we're going to organize the classes, as this will
help us in the future chapters. Also you learned how to work with OOP with the
class system in Ext JS.

You also learned about the loader system to import our classes dynamically,
managing dependencies for us, and only loading what we need. At the end of
this chapter, you learned about the DOM and how to perform a search in order
to manipulate the nodes easily.

In the next chapter, you'll learn about the layout system, a powerful way to create
and manage our layouts. Using and combining several types of layouts will help
us to create unique interfaces.

[61]

Components and Layouts
One of the greatest features in Ext JS is the ability to create complex layouts to
arrange our components in different ways using the layout system and containers.
Since the early versions of the library, Ext JS has had a great layout system. Since
Version 4.x, there are new layouts and some other parts have been redesigned in
order to have better performance and usability.

In this chapter, you're going to learn about how components work, learn the
container types, how to use layouts, and how to make use of nested layouts to
achieve complex designs.

We're going to cover the following topics in this chapter:

• Components

• Containers

• The layout system

• Available layouts

The component life cycle
Before we move into the layout systems and widgets, you should know a few
concepts about how components work.

Every component in the Ext JS framework extends from the Ext.Component
class. This class extends from the Ext.Component, or by its alternate class name
Ext.AbstractComponent class, which provides shared methods for components
across the framework.

Components and Layouts

[62]

To understand more about component hierarchies,
see http://docs.sencha.com/extjs/5.1/
core_concepts/components.html and

When we create components such as panels, windows, grids, trees, and any other,
there's a process called "the component lifecycle" that you should understand.

It is important for us to know the things that occur during each of the phases in
the lifecycle process. This will help us to create custom components or extend the
existing ones.

Basically, there are three phases in the component's lifecycle: the initialization
process, the rendering process, and the destruction process.

The initialization phase initializes our new instance and it gets registered on the
component manager; then, the rendering phase will create all the required nodes on
the DOM, and then the destruction phase will be executed when the component is
destroyed, removing listeners and nodes from the DOM:

Initialization DestructionRendering

The Ext.AbstractComponent/Ext.Component class directs the lifecycle process,
and every class that extends from the Component class will participate in the lifecycle
automatically. All the visual components (widgets) extend from these classes and if
we're planning to create our own custom components, we should extend from those
classes too.

In order to have a better understanding of all three phases, let's create a panel
component and see what's going on in each phase step by step:

var panel = Ext.create("Ext.panel.Panel",{

 title: "My First panel",

 width: 400,

 height: 250,

 renderTo: Ext.getBody()

});

http://docs.sencha.com/extjs/5.1/core_concepts/components.html
http://docs.sencha.com/extjs/5.1/core_concepts/components.html

Chapter 3

[63]

When talking about the width and height of components,
the unit measure is handled in pixels.

The initialization phase
The main purpose of this phase is to create the instance of the component according
to the conigurations that we deined. It also registers our new component in the
component manager and a few other things. The following screenshot shows all the
steps in this phase:

Apply

Con�guration
 Unique ID

Common

events

Instantiate

Plugins

InitComponent
Registration in

Comp. Manager.
Events & StatefulInitialize

Plugins

Render phase

starts

Let's see all the steps in this phase in detail:

1. The irst step is to apply the coniguration properties to the generated
instance of the class that we are creating. In the previous code, the title,
width, height, and renderTo properties will be copied to the instance
of the panel, as well as to any other property that we decide to deine.

2. The second step is to deine common events, such as enable, disable, or show.
These are common events for every component.

3. The next step is to assign an ID to the instance. If we deine an ID in the
coniguration object, then the instance will use that ID. In our example,
we didn't specify an ID. In this case, an autogenerated ID is assigned.

Components and Layouts

[64]

Assigning IDs to our components is considered bad practice. We need
to avoid doing that because they should be unique. If we work on a big
project with other developers, there's a big chance that we may repeat
IDs. Duplicating IDs will drive us to unexpected behaviors, because
the component's ID is used in the DOM elements when rendering the
component, causing one component to maybe disappear.

4. In the fourth step, the creation process veriies whether we have deined
plugins in our coniguration and tries to create all the required instances
for those plugins. A plugin is an additional functionality for our instances.
In our previous example, we didn't deine any plugin, so this step is skipped.

5. In the ifth step, the initComponent function is executed. We should override
this method in our subclasses if we want to execute code when the instance is
being created.

There are many more methods that are defined by the
Component class. These template methods are intended to
be overridden in the subclasses to add specific functionality
in different phases of the lifecycle.

6. In this step, the new instance is added to the Ext.ComponentManager
object. This means that every component that we create will be stored in
the component manager, allowing us to get any reference by using the
Ext.getCmp method and passing the ID as a parameter:
//getting a component by its ID

var panel = Ext.getCmp("panel-1234");

console.log(panel);

The getCmp method is great for debugging applications. We can get
the ID of any component by looking at the DOM elements. Then, we
can get the instance and inspect the state of our object, but it's not
encouraged to use this method in our code. Instead, we may use the
Ext.ComponentQuery.query method as an example as follows:

Ext.ComponentQuery.query('panel')

This example will retrieve an array (of xtype panel or Ext.panel.
Panel) that exists/is already created.

Chapter 3

[65]

7. The Component class contains two mixins, one for the event management
and the other for the state of our components. In this step, the two mixins
are initialized by calling their constructor.

8. If we have deined plugins, they should be already instantiated in the
previous step, and now they have to be initialized by calling the init()
method of each plugin and by passing our component instance as a
parameter. You will learn how plugins work and how to create one from
scratch later in this book.

If the renderTo property has been deined in the conigurations, the rendering phase
starts in this step, which means that all the required nodes that visually represent our
component will be inserted into the DOM. If we don't deine this property, nothing
happens, and we are responsible for rendering our instance whenever we need to:

var panel = Ext.create("Ext.panel.Panel",{

 title: "My First panel",

 width: 400,

 height: 250

});

panel.render(Ext.getBody());

If we want to render our component later, we can call the render method of
our instance and pass the place where we want to add our new component as a
parameter. In the previous code, we are rendering our panel on the body of our
document, but we can also set the ID of the node where we want to place our
component, for example:

panel.render("some-div-id");

Note: if the component is inside another component or container
then there is no need to call the panel.render method as this
will be rendered when the container is created / rendered.

Components and Layouts

[66]

The rendering phase
The rendering phase only occurs if the component is not rendered already. In this
phase, all the required nodes will be inserted to the DOM, the styles and listeners
will be applied, and we will be able to see and interact with our new component.
The following diagram shows the steps that are executed during this phase:

Beforerender

�red

Container property

is required

Is a Floating

component

OnRender method

executed

Visibility mode
Mouse

over/out

Render Method

executed
Initialize

contents

Afterrender method

executed

Afterrender event

�red

Listeners are

Initialized

Hide component

(if needed)

Disable component

(if needed)

Now, let's understand the preceding diagram in a step-by-step manner:

1. In the irst step, the beforeRender event is ired. If some of the listeners
return false, then the rendering phase stops.

2. In the second step, the process checks whether the component that is being
rendered is a loating component, such as a menu or a window, to assign the
correct z-index property. z-index is a CSS property that speciies the stack
order of an element. The greater number assigned will be always in front of
the other elements.

3. The third step is to initialize the container by creating the container
property, which refers to the DOM element, where the new component will
be rendered. The container property is an Ext.dom.Element instance.

Chapter 3

[67]

4. In the fourth step, the onRender method is executed. The el property is
created, which contains the main node element of the component. We can
deine a template for our components; if we do that, then the template will
be created and appended to the main node in this step. We can override the
onRender method in our subclasses to append speciic nodes to the DOM.

5. The next step is to set the visibility mode. There are three modes for hiding
the component's element (display, visibility, or offset).

6. If the overCls property is set, then a listener for the mouse over and mouse
out is set to add or remove the css class for each state. We can set some CSS
rules to these classes to modify the look of our components.

7. In the seventh step, the render event is ired. The component's instance is
passed as a parameter to the listeners.

8. The eighth step is to initialize the content. There are three ways to set the
content of the component:

1. We can define an html property with tags and nodes that will be
added to the content of our new component.

2. We can define the contentEl property that should be the ID
of an existing DOM element. This element will be placed as the
component content.

3. We can define a tpl property with a template to be appended to
the content. Also, we should define a data property with an object
containing the replacements in our template. We will talk about
templates in future chapters.

9. The following code shows the three ways to add HTML content to a
component. We should use only one way at a time.
//Using the HTML property

Ext.create("Ext.Component",{

 width: 300,

 height: 150,

 renderTo: Ext.getBody(),

 html: "<h1>Hello!</h1><p>This is an example
 of content</p>"

 });

//Using an existing DOM element with an ID content

Ext.create("Ext.Component",{

 width: 300,

 height: 150,

 renderTo: Ext.getBody(),

Components and Layouts

[68]

 contentEl: "content"

});

//Using a template with data

Ext.create("Ext.Component",{

 width: 300,

 height: 150,

 renderTo: Ext.getBody(),

 data: {name:"Veronica", lastName:"Sanchez"},

 tpl: ["<h1>Content</h1><p>Hello {name} {lastName}!</p>"]

});

10. Returning to the render phase, the next step is to execute the afterRender
method. If the component contains children, these are rendered in this step
too. We're going to talk about containers later.

11. In the tenth step, the afterRender event is ired. We can listen to this event
in our subclasses to perform some actions when all the required nodes are
rendered in the DOM.

12. In the eleventh step, all the listeners that depend on the new nodes
are initialized.

13. The last step is to hide the main component node if the hidden property is set
to true in our conigurations parameter. And also, if the disabled property
is set to true, then the component executes the disable method, which adds
some CSS classes to the main node to make the components appearance
disabled and mark the disabled lag as true.

The following code shows an example of how the rendering phase works. We are
starting the whole process by calling the render method:

var mycmp = Ext.create("Ext.Component",{

 width: 300,

 height: 150,

 data: {

 name:"Veronica",

 lastName:"Sanchez"

},

 tpl:["<h1>Content</h1><p>Hello {name} {lastName}!</p>"]

});

//The rendering phase starts for this component

mycmp.render(Ext.getBody());

Chapter 3

[69]

By knowing the steps that are executed inside of the render phase, we will be able
to overwrite the methods such as onRender, render, or afterRender in our own
classes. This is very useful when creating new components or widgets.

The destruction phase
The main idea of this phase is to clean the DOM, remove the listeners, and clear the
used memory by deleting objects and arrays. It's very important to destroy all of our
components when we don't want them anymore. The destroy phase will be executed
when the user inishes the task with our component, for example, if we create a
window and this window's property closeAction is set to destroy (this value is set
by default), the destroy phase will be invoked when the user closes the window.

The following diagram shows the steps that are executed in this phase:

beforedestroy

event �red

Removed

parent reference

beforedestroy

method executed

OnDestroy method

executed

Destroy plugins
Removes

DOM nodes

Destroy event

�red
Removed

from Component

Manager

1. The destruction phase starts by iring the beforeDestroy event. If any listener
returns false, then the destruction is stopped; otherwise, if the destruction
continues and the component is loating, then this is unregistered from the
loating manager.

2. The second step executes the beforeDestroy method. Some subclasses use
this method to remove their children or to clear memory.

3. In the third step, if the component that is being destroyed is a child of another
component, then the parent reference to this component is removed.

4. In the fourth step, the onDestroy method is executed. We should extend this
method in order to destroy our component properly, and also make sure that
child components being added are destroyed and that the custom listeners
we create are cleaned up.

Components and Layouts

[70]

5. The ifth step tries to destroy all the plugins, if there are any, and also state
that mixins are being destroyed.

6. If the component is rendered, then in the sixth step, all the nodes from the
DOM are purged (listeners) and are removed from the document.

7. In the next step, the destroy event is ired. We can listen for this event and
perform some actions if needed.

8. The last step is to unregister the instance of the component from the
component manager and clear all the events.

One important thing to keep in mind is that we should always remove and clear
the memory that we're using in our components, as well as the nodes in the DOM
that we have added before. We should override the appropriate methods in order
to destroy our components correctly.

If we want to eliminate a component, we can execute the destroy method of the
component. This method will trigger the destroy phase and all the previous steps
will be executed:

//The destroy phase starts for this component

cmp.destroy();

The lifecycle in action
Now that we know the process of the creation of a component, we can create our
own component, taking advantage of the lifecycle to customize our component.
The following example shows the methods that we can override to add the
functionality that we need in any of the available steps of the lifecycle:

Ext.define('Myapp.sample.CustomComponent',{

 extend: 'Ext.Component',

 initComponent: function(){

 var me = this;

 me.width = 200;

 me.height = 100;

 me.html = {

 tag: 'div',

 html: 'X',

 style: { // this can be replaced by a CSS rule

 'float': 'right',

 'padding': '10px',

 'background-color': '#e00',

 'color': '#fff',

 'font-weight': 'bold',

Chapter 3

[71]

 'cursor': 'pointer'

 }

 };

 me.myOwnProperty = [1,2,3,4];

 me.callParent();

 console.log('Step 1. initComponent');

 },

 beforeRender: function(){

 console.log('Step 2. beforeRender');

 this.callParent(arguments);

 },

 onRender: function(){

 console.log('Step 3. onRender');

 this.callParent(arguments);

 this.el.setStyle('background-color','#ccc');

 },

 afterRender : function(){

 console.log('4. afterRender');

 this.el.down('div').on('click',this.myCallback,this);

 this.callParent(arguments);

 },

 beforeDestroy : function(){

 console.log('5. beforeDestroy');

 this.callParent(arguments);

 },

 onDestroy : function(){

 console.log('6. onDestroy');

 delete this.myOwnProperty;

 this.el.down('div').un('click',this.myCallback);

 this.callParent(arguments);

 },

 myCallback : function(){

 var me = this;

 Ext.Msg.confirm('Confirmation','Are you sure you want to close
 this panel?',function(btn){

 if(btn === 'yes'){

 me.destroy();

 }

 });

 }

});

Components and Layouts

[72]

The previous class overrides the template methods. This term is used for the
methods that are automatically executed during the lifecycle. From the previous
code, we can see how to add content using the html property, how to add listeners
to the elements that we create, and more importantly, how to destroy and clear our
events and custom objects.

In order to test our class, we need to create a HTML ile called lifecycle_03.html
ile, include the Ext JS library, and our class, and then we need to create the instance
of our class as follows:

Ext.onReady(function(){

 Ext.create('Myapp.sample.CustomComponent',{

 renderTo : Ext.getBody()

 });

});

As a result, we will see something like the following screenshot in our browser:

Chapter 3

[73]

As we can see, there are four messages in the JavaScript console. These messages
were sent by each of the methods that we have overridden. We can also see the
order of the execution based on the lifecycle. Now, if we want to destroy this
component, we need to click the red button at the top-right. This action will call
the destroy method that is responsible for clearing the nodes from the DOM,
events, and objects from memory.

Understanding the lifecycle of the components in Ext JS is essential in order to add
custom events/listeners so we can provide proper functionality and custom code in
our application.

About containers
At this point, we know all the steps of the lifecycle. If you remember, in the rendering
phase there's a step where the children of the components are rendered too. Now we're
going to learn about containers and how we can add children to a component.

The Ext.container.Container class is responsible for managing children and to
arrange those using layouts. If we want our class to contain other components, we
should extend from this class. It's worth saying that this class extends from Ext.
Component, so we'll be able to use the component lifecycle in our subclasses too:

Ext.Component

Ext.container.Container

Alias
Ext.AbstractContainer

Ext.Container

Components and Layouts

[74]

All classes that extend Ext.Container will be able to have children using the items
property or use the add method to append a new component as a child. Let's check
out the following code snippet:

Ext.define("MyApp.sample.MyContainer",{

 extend: "Ext.container.Container", //Step 1

 border: true,

 padding: 10,

 initComponent: function(){

 var me = this;

 Ext.each(me.items,function(item){ //Step 2

 item.style = {

 backgroundColor:"#f4f4f4",

 border:"1px solid #333"

 };

 item.padding = 10;

 item.height = 100;

 });

 me.callParent();

 },

 onRender: function(){

 var me = this;

 me.callParent(arguments);

 if(me.border){ //Step 3

 me.el.setStyle("border" , "1px solid #333");

 }

 }

});

In the code example, we set var me=this;. This is in order to present that me or this is
referring to the scope of the current object/class being handled or manipulated.

The previous class extends from the Ext.container.Container class. Now we can
use the layout system to arrange the children of the container.

When extending from the Container class, we can use the items property to deine
the children of the main container. We're looping the items property, which is an
array, to add some basic styles. We're using the initComponent method that is
executed automatically in the creation phase. We shouldn't forget to call the super
class by executing the callParent method.

Chapter 3

[75]

The last step overrides the onRender method. After executing the callParent
method, we can have access to the el property that is a reference to the main node
of our component. If the border property is set to true, we will add CSS styles to
display a border around the main element's node.

Once we have deined our class, we can create an instance of it. Let's create an HTML
page including the Ext library and our class in order to execute the following code:

Ext.onReady(function(){

 Ext.create("MyApp.sample.MyContainer",{

 renderTo: Ext.getBody(),

 items: [{

 xtype: "component",

 html: "Child Component one"

 },{

 xtype: "component",

 html: "Child Component two"

 }]

 });

});

We're creating the instance of our class as usual. We added the items property as an
array of components. We can deine as many components as we need because our
class is a container.

In this example, we are using the xtype property to deine each inner component,
but we could also create an instance of the component's child and then pass the
reference into the items array.

Using the xtype property allows us to create components easier
than handling the complete class name, and we also use fewer
lines of code. When the main container is created, all their children
are created as well. We'll ind all the available xtype properties
in the documentation. Usually xtype is next to the class name.
To see all the xtypes available in Ext JS, visit http://docs.
sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.
enums.Widget.

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Widget
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Widget
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Widget

Components and Layouts

[76]

The following screenshot shows three components. One is the main component that
contains two children. We have achieved this by extending from the Container class
and using the items property.

When using containers, we can use a property called defaults that allows us to
apply the same properties (default values/conigurations) to all of the children in
the main container. Let's add some default values to our previous example:

Ext.onReady(function(){

 Ext.create("MyApp.sample.MyContainer",{

 renderTo: Ext.getBody(),

 defaults: {

 xtype : "component",

 width : 100

 },

 items :[{

 html:"Child Component one" //xtype:"component",

 },{

 html:"Child Component two" //xtype:"component",

 }]

 });

});

Chapter 3

[77]

The defaults property receives an object containing all the conigurations that we
want to apply to the components inside the items array. In this case, we have added
the width and xtype properties. This way, we don't have to repeat the same lines of
code for each component:

As we can see in the previous screenshot, the sizes of the two children are the same.
We can also override a default property by simply adding the property that we want
to be different to the speciic child.

Every time, we ind properties that are repeated in each child
component. It's recommended to use the defaults property to
apply all the properties deined in defaults at once. This will
reduce the lines of code and will prevent code duplication. If we
deine the same property in any of the children, the default value
will be overridden.

Components and Layouts

[78]

Types of containers
Ext JS uses several components as containers, and each one of them has its own
foundation from the Ext.container.Container class. Some of the most common
containers are as follows:

Container Description

Ext.panel.Panel This component extends Ext.container.Container and is
a container with specific functionality. It is also one of the most
common containers used in Ext JS.

Ext.window Window This component extends the Ext.panel.Panel class and is
intended to be used as an application window. Windows are
floating components and can be resized and dragged. Also,
windows can be maximized to fill the viewport.

Ext.tab.Panel This component also extends the Ext.panel.Panel class
container and has the ability to contain other Ext.panel.
Panel components, creating one tab per panel in its header
section. Also, the tab panel uses the card layout to manage its
child components.

Ext.form.Panel The form panel extends the Ext.panel.Panel class and
provides a standard container for forms. Essentially, it is a
Panel container that creates a basic form for managing field
components.

Ext.Viewport This container represents the application area (browser
viewport). It renders itself to the document body and resizes
itself to the size of the browser viewport.

Note that each container has the property layout; this property will give us the
ability to present its child components in different ways to arrange them.

The viewport
The viewport, as we mentioned before, represents the viewable application area
and the best practice is that there has to be only one viewport created on the web page. To
create a basic viewport, let's use the following code:

Ext.onReady(function(){

 Ext.create('Ext.container.Viewport',{

 padding:'5px',

 layout:'auto',

Chapter 3

[79]

 style : {

 'background-color': '#fc9',

 'color': '#000'

 },

 html:'This is application area'

 });

});

It's recommended that no matter what application you build,
whether plain code or an application using MVC or MVVM
architecture, the use of the viewport component is needed.

The panel
The panel component (Ext.panel.Panel) is one of the most commonly used
components in Ext JS. A panel can contain other panels or even other components.

Let's create our irst panel by instantiating the Ext.panel.Panel class. We need to
create an HTML page, import the Ext JS library, and then execute the following code
when the DOM is ready to be used:

Ext.onReady(function(){

 var MyPanel = Ext.create("Ext.panel.Panel",{

 renderTo: Ext.getBody(),

 title: 'My first panel...',

 width: 300,

 height: 220,

 html:'Here goes some <i>content</i>..!'

 });

});

Components and Layouts

[80]

As you can notice, we have created the instance of the Panel class in the same way
we created a component in previous examples (the container examples). The only
difference is that we have added a new coniguration called title with the text we
want to show as the title of our panel.

Panels versus containers
As we have seen, containers create a basic HTML DOM element containing HTML
or child components that we insert into the container. Panels, on the other hand, create
extra sections (such as header and tools) and have more functionality (methods and
functions) than containers. Some highlights and common parts of the panel are shown
in the following screenshot:

Chapter 3

[81]

The Window component
A window is basically a loating panel with more features. The Window component
extends from the Panel class. This means that we can use all the methods and
properties that the panel has. Also, we can drag a window from the header bar,
close it, and maximize it, among other things. Let's create a .html ile as follows
that imports the Ext library and runs the code when the DOM is ready:

 var win = Ext.create("Ext.window.Window",{

 title: 'My first window',

 width: 300,

 height: 200,

 maximizable: true,

 html: 'this is my first window'

 });

 win.show();

Another alternative for this code can be:

 Ext.create("Ext.window.Window",{

 title: 'My first window',

 width: 300,

 height: 200,

 maximizable: true,

 html: 'this is my first window'

 }).show();

The only difference in our previous code and the panel's code is the maximizable
property that allows us to maximize the window. We've removed the renderTo
property too and used the show method to render and display the window.

Components and Layouts

[82]

By default, the window is closable, but we can make it non-closable by setting
the closable property to false. We can move the window across the screen by
dragging the header. We can also resize the window with the mouse for each of
the four sides.

There are many more options for the window component. You should take a look
at the API documentation and play around with this component.

The layout system
One of the greatest features of the Ext JS library is the ability to create layouts in an
easy way. We can deine ixed layouts or luid layouts using the right classes.

At this point, you know how a container works. We can arrange the children of a
container by setting a layout. If we don't deine a layout to our containers, by default
the auto layout will be used. In our previous examples, we used the auto layout and
as we could see, the children or HTML are displayed one after another.

There are many available layouts we can use to arrange our components, such as
accordions, cards, columns, and so on.

We can ind all the available layouts in the Ext.layout.container package. Go to
the documentation and look into the layouts enum class: http://docs.sencha.com/
extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Layout.

Here we will see many classes, each representing a type of layout. Some of the most
common layouts are:

• The Border layout

• The Fit layout

• The Card layout

• The Accordion layout

• The Anchor layout

The Border layout
The Border layout divides the container space into ive regions (multiple panes):
north, south, west, east, and center. We can place our children in any of the
regions, but we are always required to use the center region.

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Layout
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.enums.Layout

Chapter 3

[83]

In the following code, we will deine the layout as border. We will also deine the
center, west, and south regions for the border layout:

Ext.onReady(function(){

 Ext.create('Ext.panel.Panel', {

 width: 500, height: 300,

 title: 'Border Layout',

 layout: 'border',

 items: [{

 xtype: 'panel',

 title: 'South Region is resizable',

 region: 'south', // region

 height: 100,

 split: true // enable resizing

 },{

 xtype: 'panel',

 title: 'West Region',

 region:'west', // region

 width: 200,

 collapsible: true, //make panel/region collapsible

 layout: 'fit',

 split: true // enable resizing

 },{

 title: 'Center Region',

 region: 'center',

 layout: 'fit',

 margin: '5 5 0 0',

 html:'Main content goes here'

 }],

 renderTo: Ext.getBody()

 });

});

We have made the West region a collapsible panel. If we click on the small arrow
located in the header or in the division bar, we'll see that the panel will collapse to
the left-hand side. Also, we have deined our South panel to be split. This allows
us to resize the South panel by dragging the separation bar with our mouse.

You can directly place another component(s) that supports a
region in order to avoid over-nesting of components.

Components and Layouts

[84]

The Fit layout
This layout is intended to be used for only one child. It allows us to expand the inner
component to the size of the container. The child component takes all the available
space in the container component. When the parent is resized, the child size is updated
too to it the new dimensions. Let's make the code for this layout:

Ext.onReady(function(){

 var win = Ext.create("Ext.window.Window",{

 title: "My first window",

 width: 300,

 height: 200,

 maximizable: true,

 layout: "fit",

 defaults: {

 xtype: "panel",

 height: 60,

 border: false

 },

 items: [

 {title: "Menu", html: "The main menu"},

 {title: "Content", html: "The main content!"}

]

 });

 win.show();

});

In the previous code, we only added the layout property. In this case, we're setting
a string with the name of the layout, but we can also set an object and deine some
conigurations for the selected layout. In fact, every layout is a class that accepts
conigurations.

Chapter 3

[85]

The following screenshot shows how the fit layout arranges the children of the
container component:

As you can see, even though we deined two children components to the window,
it only shows one. If we resize the main window, we should see that the Menu panel
is expanded to it the new size of the window.

The Card layout
The Card layout can manage multiple child components, so if we need to create
a wizard or display only one component at a time, we should use this layout.
This layout extends the fit layout class, which means that only one component can
be visible at any given time and will ill all the available space in the container.

We can also set the initial displayed component by its index using the index from the
items array. And we can move the components easily by calling the next or prev
method. Let's check out the code for the Card layout:

Ext.onReady(function(){

 var win = Ext.create("Ext.window.Window",{

 title: "My first window",

 width: 300,

 height: 200,

 maximizable: true,

Components and Layouts

[86]

 layout: "card",//Step 1

 defaults:{ xtype: "panel", height: 60, border: false },

 items: [{

 title: "Menu",

 html: "The main menu"

 },{

 title: "Content",

 html: "The main content!"

 }]

 });

 win.show();

 setTimeout(function(){

 win.getLayout().setActiveItem(1); //Step 2

 },3000);

});

The previous code creates a window component with two panels. We set the layout
of the window to card in step one.

In step two, we get the layout instance by calling the getLayout method after 3
seconds and change the initial item using the setActiveItem(1) method to show
the Content panel. We can also use the prev and next methods from the layout
instance to show the next and previous card.

The Accordion layout
Similar to the Card layout, this layout allows us to show one component at a time in
an expandable Accordion style. We will see the header of the inner components and
we're going to be able to expand and collapse the components by clicking on their
title bars. Let's check the following code for the Accordion layout:

var win = Ext.create("Ext.window.Window",{

 title: "My first window",

 width: 300,

 height: 200,

 maximizable: true,

 layout: "accordion",

 defaults: { xtype: "panel" },

 items:[

 {title: "Menu", html: "The main menu" },

 {title: "Content", html: "The main content!" },

 {title: "3rd Panel", html: "Content here...!" }

]

});

Chapter 3

[87]

Modifying the previous code, we have only changed/deined the Accordion
layout and added a new panel to the items array. We'll see something like the
following screenshot:

When using the Accordion layout, we'll see only one panel expanded at a time.
The expanded panel will take the available height to be displayed. It doesn't matter
if we resize the container.

In the Accordion layout, it is important to point out that we
only need to use the Ext.panel.Panel class or subclasses of
the Ext.panel.Panel class.

The Anchor layout
This layout enables the anchoring of contained elements (child elements) relative to
the container's dimensions. If the parent container is resized, then the child elements
will be resized according to the rules applied to these child elements.

By default, AnchorLayout will calculate anchor measurements based on the size of
the container itself. But if the container is using the AnchorLayout property, it will
supply an anchoring-speciic config property of anchorSize. If the anchorSize
property is speciied, the layout will use it as a virtual container for the purposes of
calculating the anchor measurements based on it instead the container itself.

Components and Layouts

[88]

Let's make some changes to the previous examples and set the code like this:

 Ext.onReady(function(){
 var win = Ext.create("Ext.window.Window",{
 title: "My first window",
 width: 300,
 height: 300,
 maximizable : true,
 layout: "anchor",
 defaults: {xtype: "panel", height: 60, border: false},
 items: [
 {
 title: "Menu", html: "panel at 100% - 10 px",
 anchor:'-10'
 },{
 title: "Content", html: "panel at 70% of anchor",
 anchor:'70%'
 },{
 title: "3rd Panel", html: "panel at 50% width and 40% height
 of anchor", anchor:'50% 40%', bodyStyle:'background-color:
 #fc3;'
 }
]
 });
 win.show();
});

The screen will look like the following screenshot:

Chapter 3

[89]

When we use the anchor property with only one value, anchoring will be used on
the width of the component, for example, anchor:'70%' will cover 70% of the parent
container's width. Using anchor:'-10' will cover 100% minus 10 pixels of the parent
container's width. Lastly, when using two values, the anchoring will be applied to the
width and height as in the last panel from the code: anchor:'50% 40%'.

More layouts
So far we have seen the basic layouts (most frequently used). To see more layouts
in action, such as HBox Layout, VBox Layout, Table Layout, and so on, and to also
see how they work, please visit http://dev.sencha.com/ext/5.1.0/examples/
kitchensink/#layouts.

Comments about using layouts
Consider that you can nest layouts using combinations of containers and layouts,
and also remember to ensure the right coniguration each layout needs. In upcoming
chapters, we will use layout nesting and containers-layout combinations so that you
can have a more precise idea of how to combine these. Meanwhile, you can try to
nest, combine, and play with the layout system.

One of the common mistakes that Ext JS beginners make is with the overnesting
components; this can sometimes harm performance. You need to use layouts and
set the proper type of container with adequate planning, for example:

Ext.onReady(function(){

 Ext.create('Ext.panel.Panel', {

 width: 500, height: 300,

 title: 'Border Layout',

 layout: 'border',

 items: [

 {// Incorrect Nesting

 xtype: 'panel',

 title: 'West Region',

 region:'west',

 width: 200,

 collapsible: true,

 layout: 'fit'

 items:[{

 xtype: 'form',

 url: 'myForm.php'

 items[

http://dev.sencha.com/ext/5.1.0/examples/kitchensink/#layouts
http://dev.sencha.com/ext/5.1.0/examples/kitchensink/#layouts

Components and Layouts

[90]

 // Fields here

]

 }]

 },{

 title: 'Center Region',

 region: 'center',

 layout: 'fit',

 margin: '5 5 0 0',

 html:'Main content goes here'

 }],

 renderTo: Ext.getBody()

 });

});

As you can see, in the West region we are setting a panel that contains a form
(Ext.form.Panel). In this case, we are overnesting, because if you see the
documentation, Ext.form.Panel is extending a Panel component and this will
cause our browser to make more DOM. This can also reduce memory because we are
creating two components instead of one; the right way should be:

{

 xtype: 'form',

 title: 'West Region',

 region:'west',

 width: 200,

 collapsible: true,

 url: 'myForm.php'

 items[

 // Fields here

]

}

This way, the form panel acts the same way as any panel. We reduce one component
with many properties, methods, and events that are not necessary and will only
consume resources.

Chapter 3

[91]

Summary
In this chapter, you learned about the component's lifecycle. We don't need
to remember every step that is executed in each phase, but we should know
the methods that we can override in our subclasses, so that we can add speciic
functionality in one of the three phases. When creating our custom components, it's
very important to remember that we need to destroy all our references and internal
components that we have created. This way, we'll free memory.

You also learned about the basic containers and most common used layouts, and how
to add other components to a container and arrange them according to our needs.

In the next chapter, we're going to talk about the data package. You'll learn about the
models, stores, and associations, and so many more exciting things.

It's All about the Data
In this chapter, we're going to learn about the use of the data package in Ext JS. Also,
we will talk about Ajax, Data Models, Data Stores, and the available readers and
writers that we can use in order to store our data locally.

The data package is what will let us load and save data in our code or application(s).
It's important to have a solid understanding of the data package so we can link or
bind data into Ext JS components. The data package contains multiple classes to
handle data, but there are some main classes which will be used almost always. Take
a look at the following igure:

Ext JS creates an abstract layer with a lot of classes and conigurations; the idea is to
use these classes when dealing with information. All the widgets and components that
show information use the data package to manipulate and present the data easily.

It's important to mention that a web server is required for this chapter
and the following chapters. It doesn't matter which one you decide to
use because we are not using any speciic server-side technology.

It's All about the Data

[94]

Ajax
Before we start learning about the data package it's important to know how we can
make an Ajax request to the server. The Ajax request is one of the most useful ways
to get data from the server asynchronously. This means that the JavaScript loop is not
blocked while the request is being executed and an event will be ired when the server
responds; this allows us to do anything else while the request is being performed.

If you are new to Ajax, I recommend you read more about it. There are thousands of
tutorials online, but I suggest you read this simple article at https://developer.
mozilla.org/en-US/docs/AJAX/Getting_Started.

Ext JS provides a singleton object (Ext. Ajax) that is responsible for dealing with
all the required processes to perform a request in any browser. There are a few
differences in each browser, but Ext JS handles these differences for us and gives us
a cross browser solution to make Ajax requests.

Let's make our irst Ajax call to our server. First, we will need to create an HTML ile
and import the Ext library. Then, we can add the following code inside the script tag:

Ext.Ajax.request({
 url:"serverside/myfirstdata.json"
});
console.log("Next lines of code...");

Using the request method, we can make an Ajax call to our server. The request
method receives an object containing the conigurations for the Ajax call. The only
coniguration that we have deined is the URL where we want to make our request.

It's important to note that Ajax is asynchronous by default. This means that once the
request method is executed the JavaScript engine will continue executing the lines
of code following it, and it doesn't wait until the server responds. You can also run
Ajax in a synchronous way, setting the property Ext.Ajax.async = false.

For more details, take a look at http://docs.sencha.com/
extjs/5.1/5.1.1-apidocs/#!/api/Ext.Ajax-cfg-async.

In the previous code, we did not do anything when the server responded to our
request. In order to get the response date, we need to conigure a callback function
to execute when the server responds, and also, we have functions for success or
failure. Let's modify our previous example to set up those callbacks:

Ext.Ajax.request({

 url:"serverside/myfirstdata.json",

 success: function(response,options){

https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.Ajax-cfg-async
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.Ajax-cfg-async

Chapter 4

[95]

 console.log('success function executed, here we can do some
 stuff !');

 },

 failure: function(response,options){

 Ext.Msg.alert("Message", 'server-side failure with status code
 ' + response.status);

 },

 callback: function(options, success, response){

 console.log('Callback executed, we can do some stuff !');

 }

});

The success function will be executed only when the server responds with a
200-299 status, which means that the request has been made successfully. If the
response status is 403, 404, 500, 503, and any other error status, the failure
callback will be executed.

Each function (success or failure) receives two parameters. The irst parameter is the
server response object, where we can ind the response text and headers. The second
parameter is the coniguration option that we used for this Ajax request, in this case the
object will contain three properties: the URL and the success and failure callbacks.

The callback function will be executed always, no matter if it's a failure or success.
Also, this function receives three parameters: options is a parameter to the request
call, success is a Boolean value according to if the request was successful or not, and
the response parameter is an XMLhttpRequest object that contains the information
of the response.

At this point, we have our callbacks set, but we're not doing anything inside yet.
Normally, we need to get the data response and do something with it; let's suppose
we get the following JSON in our response:

{

 "success": true,

 "msg": "This is a success message..!"

}

In the Ext JS community, one of the preferred formats to send and
receive data to the server is JSON; Ext JS can also handle XML.
JSON stands for JavaScript Object Notation. If you are not familiar
with JSON, you can visit http://www.json.org/ in order to
understand more about JSON.

http://www.json.org/

It's All about the Data

[96]

For the success function to take interaction with the data returned, we need to
decode the returned JSON data (which comes in text format), and convert the text to
an object so we can access its properties in our code. Let's change the following code
in the success callback:

success: function(response,options){

 var data = Ext.decode(response.responseText);

 Ext.Msg.alert("Message", data.msg);

},

First we get the server response as a text using the responseText property from the
response object. Then, we use the Ext.decode method to convert the JSON text into
JavaScript objects and save the result in a data variable.

After we have our data object with the server response, we will show an alert
message accessing the msg property from the data object. Let's keep in mind that
if we want to show something using the DOM, we need to put our code inside the
onReady method that we have learned in the previous chapter.

Ext.Ajax.request({

 url: "serverside/myfirstdata.json ",

 success: function(response,options){

 console.log('success function executed, here we can do some
 stuff !');

 },

 failure: function(response,options){

 console.log('server-side failure with status code ' +
 response.status);

 },

 callback: function(options, success, response){

 if(success){

 var data= Ext.decode(response.responseText);

 Ext.Msg.alert("Message", data.msg);

 }

 }

});

It's important for the server-side iles to return a proper, error-free
response; this means that we need to be sure that the server-side iles have
the proper syntaxes and no warning or error show (PHP as an example).

Also, it's important to specify, the Header on the server side to ensure
proper content. For example, header('Content-Type: application/
json');.

Chapter 4

[97]

If we refresh our browser to execute the code we have modiied, we should see
something like the following screenshot:

Now, let's assume that we want to use XML instead of JSON. We will create the
request in a very similar way to our previous code. The following code should be
saved in a new ile at serverside/data.xml:

<?xml version="1.0" encoding="UTF-8"?>

<response success="true">

<msg>This is a success message in XML format</msg>

</response>

Then, let's proceed to change the URL and the code in the success callback,
as follows:

Ext.Ajax.request({

 url: "serverside/myfirstdata.xml",

 success: function(response,options){

 var data = response.responseXML;

 var node = xml.getElementsByTagName('msg')[0];

 Ext.Msg.alert("Message", node.firstChild.data);

 },

 failure: function(response,options){

 Ext.Msg.alert("Message", 'server-side failure with status code
 ' + response.status);

 }

});

It's All about the Data

[98]

We use the responseXML property to get the tree of nodes, and then we get the node
with a msg tag. After that, we can get the actual text using the firstChild.data
property from the previous node. If we execute the code, we will see something very
similar to our previous example with JSON.

As we can notice, it is easier to work with JSON. We just need to decode the text and
then we can use the objects. XML is a little bit complicated, but we can also use this
format if we feel comfortable with it.

Passing parameters to Ajax request
It's usually in our applications that we need to pass some parameters to the Ajax
request in order to get the proper information. To pass parameters we will use the
following code:

Ext.Ajax.request({

 url: "serverside/myfirstparams.php",

 method: 'POST',

 params: {

 x:200,

 y:300

 },

 success: function(response,options){

 var data = Ext.decode(response.responseText);

 Ext.Msg.alert("Message", data.msg);

 },

 failure: function(response,options){

 Ext.Msg.alert("Message", 'server-side failure with status code'
 + response.status);

 Ext.Msg.alert("Message", 'server-side failure:' +
 response.status);

 }

});

Using the params property, we can set an object of parameters. In this case, we will
send only two parameters: x and y, but we can send as many as we need. Notice that
we set the method property with the POST value; by default, Ext JS uses the GET value
for this property, and if we use GET, the values will be embedded on the URL for
request. When we run this code, we'll get the following screenshot:

Chapter 4

[99]

Notice that you can return strings in an HTML format (msg value
in this case) to give visual enhancements to the response if you are
using Ext.Msg.alert

Setting timeout to Ajax request calls
Sometimes, but not all the time, the server may take too long to respond, so,
by default, Ext JS has a conigured time of 30 seconds to wait for the response.
According to our needs, we can decrease or increase this time by setting the timeout
property on the Ajax request coniguration. The next example shows us how:

Ext.Ajax.request({

 url: "serverside/myfirstparams.php",

 method: 'POST',

 params: {x:200, y:300},

 timeout: 50000,

 success: function(response,options){

 var data = Ext.decode(response.responseText);

 Ext.Msg.alert("Message", data.msg);

 },

 failure: function(response,options){

 Ext.Msg.alert("Message", 'server-side failure with status code
 ' + response.status);

 Ext.Msg.alert("Message", 'server-side failure:' +
 response.status);

 }

});

It's All about the Data

[100]

We have increased the timeout property to 50 seconds (50000 milliseconds); now
our request will be dropped after 50 seconds of waiting for the response.

You can assign a global timeout value for the whole application
setting, changing the value in Ext.Ajax.timeout (by default it
has the value of 30000). The previous example shows how to set
timeouts on independent calls.

If we look into the documentation, we will ind some other conigurations, such as
the scope of the callbacks, headers, cache, and so on. We should read the docs and
play with those conigurations too, but the ones that we have covered here are the
most important ones to learn.

Now we know how to get data using Ajax, but we also need a way to deal with that
data. Ext JS provides us with a package of classes to manage our data in an easy way;
let's move forward to our next topic.

Models
Models represent objects or entities inside our application, for example, Clients,
Users, Invoices, and so on. Those models will be used by the data stores. We can
deine as many models as we need inside our application.

A model may contain ields, validations, and relationships between other models.
We can also set a proxy to persist and pull our data.

As of version 5.x, ield deinitions can be optional unless you
need conversion, validations, or set an implicit data type. For
more information, take a look at http://docs.sencha.com/
extjs/5.1/whats_new/5.0/whats_new.html#Models.

To create a model, let's write the following code:

Ext.define('Myapp.model.Client',{

extend:'Ext.data.Model', // step 1

idProperty:'clientId ', // step 2

fields:[// step 3

 {name: 'clientId', type: 'int'},

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'website' , type: 'string'},

http://docs.sencha.com/extjs/5.1/whats_new/5.0/whats_new.html#Models
http://docs.sencha.com/extjs/5.1/whats_new/5.0/whats_new.html#Models

Chapter 4

[101]

 {name: 'status' , type: 'string'},

 {name: 'clientSince', type: 'date', dateFormat:'Y-m-d H:i'}

]

});

As you can notice, we are deining the model in the same way as we deined a class;
in step one we extend from the Ext.data.Model class, which is the one responsible
for adding all the functionality to our models.

In the second step we are deining the property in our JSON response that will
contain the ID of each record instance. In this case we are going to use the clientId
ield, but if we don't deine the clientId coniguration, the model will automatically
use and generate a property called id by default.

In the third step we deine the ields for our model. The value of this property is an
array; each element in the array is an object containing the coniguration for each
ield. In this case we set the name and type of ield, and the last ield (date) contains a
dateFormat property.

Depending on the type of ield, we can add some speciic properties.
For example, to date type ield, we can add a dateFormat property.
To see more, check documentation on the Ext.data.field branch.

The available types of data are as follows:

• String

• Integer

• Float (recommended for use when you are using decimal numbers)

• Boolean

• Date (remember to set the dateFormat property to ensure correct date parse
and interpretation of the date value)

• Auto (this ield implies that no conversion is made to the data received)

Once we have deined our model, we can create an HTML ile. Let's import the Ext
library and our Client class ile to test our model as follows:

var myclient = Ext.create('Myapp.model.Client',{

 clientId:10001,

 name:'Acme corp',

 phone:'+52-01-55-4444-3210',

 website:'www.acmecorp.com',

 status:'Active',

It's All about the Data

[102]

 clientSince:'2010-01-01 14:35'

});

console.log(myclient);

console.log("My client's name is = " + myclient.data.name);

console.log("My client's website is = " + myclient.data.name);

Using the create method we can instantiate our model class, the second parameter
is an object with the data that our model (virtual record) will contain. Now, we will
be able to use the get and set methods to read and write any of the deined ields:

// GET METHODS

var nameClient = myclient.get('name');

var websiteClient = myclient.get('website');

console.log("My client's info= " + nameClient + " - " +
 websiteClient);

// SET Methods

myclient.set('phone','+52-01-55-0001-8888'); // single value

console.log("My client's new phone is = " +
 myclient.get('phone'));

myclient.set({ //Multiple values

 name: 'Acme Corp of AMERICA LTD.',

 website:'www.acmecorp.net'

});

console.log("My client's name changed to = " +
 myclient.get("name"));

console.log("My client's website changed to = " +
 myclient.get("website"));

The previous code shows how to read and write our data. The set method allows
us to modify one ield, or even many ields at the same time, by passing an object
containing the new values.

If we inspect the invoice instance, we'll ind that all the information is held in a
property called data. We should always use the get and set methods to read and
write our models, but if for some reason we need to have access to all the data in our
model, we can use the data object as follows:

//READ

console.log("My client's name:" + myclient.data.name);

console.log("My client's website:" + myclient.data.website);

// Write

myclient.data.name = "Acme Corp ASIA LTD.";

myclient.data.website = "www.acmecorp.biz";

Chapter 4

[103]

A nice alternative to this code and a better way for set and get data is:

//READ

console.log("My client's name:" + myclient.get("name"));

console.log("My client's website:" + myclient.get("website"));

// Write

myclient.set("name", "Acme Corp ASIA LTD. ");

myclient.set("website", "www.acmecorp.biz");

We can read and write any ields in our model. However, setting a new value in this
way is not good practice at all. The set method performs some important tasks when
setting the new value, such as marking our model as dirty, saving the previous value
so that we can reject or accept the changes later, and some other important steps.

Mappings
When deining a ield inside the model, we can deine where the data will be taken
for a ield with the property mapping. Let's say it's a path, alternate name, which
Ext JS will be used in order to populate the ield (data) from the data received from
the server such as a JSON ile or a XML ile. Let's have a look at the following
JSON example:

{

 "success" :"true",

 "id":"id",

 "records":[

 {

 "id": 10001,

 "name": "Acme corp2",

 "phone": "+52-01-55-4444-3210",

 "x0001":"acme_file.pdf"

 }

]

}

Here we can see on the JSON (or perhaps XML) example that the response comes
a ield with the name x0001. It can happen on some responses that the name of
the ield has a special code (depending on the database or data design), but in our
code, this ield is the contract ile of the customer. So, using the mapping property,
we can populate the ield, setting the mapping property for our ield, like the
following example:

Ext.define('Myapp.model.Client',{

extend: 'Ext.data.Model',

It's All about the Data

[104]

idProperty: 'clientId ',

fields:[

 {name: 'clientId', type: 'int' },

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'contractFileName', type: 'string', mapping:'x0001'}

]

});

As you can see, we are deining the contractFileName ield, which will be using the
x0001 data/ield from the response; in our code there is no need to make reference
for x0001; we will just handle it in our code as contractFileName. To see it in
action, run the mapping_01.html ile from the example code. Open your console
window and you will see something similar to the following screenshot:

At this moment there is no need to examine all of the code. Advancing in this
chapter, you will understand all the code in this example. The purpose is for you to
understand the mapping property.

Chapter 4

[105]

Validators
A nice feature since version 4 of Ext JS is the ability to validate our data directly in
the model. We can deine rules for each ield and run the validations when we need
to. In order to deine validations into our models we only need to deine a property
called validators that contains an array of rules that will be executed when the
validator engine runs. Let's add some validators to our previous model as follows:

Ext.define('Myapp.model.Client',{

extend:'Ext.data.Model',

idProperty:'clientId ',

fields:[

 {name: 'clientId', type: 'int' },

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'website' , type: 'string'},

 {name: 'status' , type: 'string'},

 {name: 'clientSince' , type: 'date', dateFormat: 'Y-m-d H:i'}

],

validators:{

 name:[

 { type:'presence'}

],

 website:[

 { type:'presence', allowEmpty:true},

 { type:'length', min: 5, max:250 }

]

}

});

When adding validations, we use objects to deine each rule. The type property
deines the type of rule that we want to add. There are a few types built within the
library, such as inclusion, exclusion, presence, length, format, and e-mail; these are
very common validations. We can also add new types of validations as needed.

When we deine a rule, it is required to always use the type properties, but some rules
require the use of other extra parameters. The type property represents a function
within the Ext.data.validator subclasses. We can read the documentation of this
object to see what speciic parameters are needed for each rule.

It's All about the Data

[106]

Let's make some new changes to our previous HTML ile and save them with a
new name:

//Step 1

var myclient = Ext.create('Myapp.model.Client',{

 clientId : '10001',

 name : 'Acme corp',

 phone: '+52-01-55-4444-3210',

 website: 'www.acmecorp.com',

 status: 'Active',

 clientSince: '2010-01-01 14:35'

});

if (myclient.isValid()){ //Step 2

 console.log("myclient model is correct");

}

console.log(myclient);

console.log("My client's name is = " + myclient.data.name);

console.log("My client's website is = " + myclient.data.website);

// SET methods //Step 3

myclient.set('name','');

myclient.set('website','');

if (myclient.isValid()){//Step 4

 console.log("myclient model is correct");

} else {

//Step 5

 console.log("myclient model has errors");

 var errors = myclient.validate();

 errors.each(function(error){

 console.log(error.field,error.message);

 });

}

The steps are explained as follows:

• Step 1: We instantiated our Client model using some data.

• Step 2: We executed the isValid method, which in this case returns true
because all the information is correct.

• Step 3: We changed the model's values (name and website).

Chapter 4

[107]

• Step 4: We executed the isValid method again to test the validators; in this
case the result will be false.

• Step 5: The validate method (myclient.validate();) will return
a collection with the failed validations. Then, the code will iterate this
collection to make the output for the ields and error messages.

The collection returned by the validate method is an instance of
the class Ext.data.ErrorCollection, which extends from
Ext.util.MixedCollection. Therefore, we can use each
method to iterate in a simple way.

When we execute the previous example we will see in the console some messages
according to the low of the code. Initially, it will display a message saying that
validations were successful. After changing the values, the messages will begin
displaying the errors on the name and website ields. Take a look at the following
screenshot from the console window/tool:

It's All about the Data

[108]

Custom ield types
Usually we need to use some types of ields over and over, across different data
models, in our application. On Ext 4, there was the practice to create custom
validators. On version 5, it's recommended to create custom ield types instead of
custom validations. Using the following code, we will create a custom ield:

Ext.define('Myapp.fields.Status',{

 extend: 'Ext.data.field.String', //Step 1

 alias: 'data.field.status',//Step 2

 validators: {//Step 3

 type: 'inclusion',

 list: ['Active', 'Inactive'],

 message: 'Is not a valid status value, please select the
 proper options[Active, Inactive]'

 }

});

The steps are explained as follows:

1. We extend the new ield based on Ext.data.field.String.

2. We deine the alias this ield will have. It's recommended that the alias
does not repeat or override an existent name from the Ext.data.field
subclasses.

3. We set the validator(s) the ield will have.
Let's make some changes to our Client model:

Ext.define('Myapp.model.Client',{

extend:'Ext.data.Model',

idProperty:'clientId ',

fields:[

 {name: 'clientId', type: 'int' },

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'website' , type: 'string'},

 {name: 'status' , type: 'status'}, //Using custom field

 {name: 'clientSince' , type: 'date', dateFormat: 'Y-m-d H:i'}

],

validators:{

 ...

}

});

Chapter 4

[109]

On the model, we made the change {name: 'status', type: 'status'} using the
alias we set on the custom ield (alias: 'data.field.status'). Now, let's create
the code for test:

var myclient = Ext.create('Myapp.model.Client',{

 clientId: '10001',

 name: 'Acme corp',

 phone: '+52-01-55-4444-3210',

 website: 'www.acmecorp.com',

 status: 'Active',

 clientSince: '2010-01-01 14:35'

});

if(myclient.isValid()){

 console.log("myclient model is correct");

}

// SET methods

myclient.set('status','No longer client');

if(myclient.isValid()){

 console.log("myclient model is correct");

} else {

 console.log("myclient model has errors");

 var errors = myclient.validate();

 errors.each(function(error){

 console.log(error.field,error.message);

 });

}

If you get confused on how to prepare the code, please check the
customfields_01.html and customfields_01.js iles in
the chapter_04 folder from the source code.

It's All about the Data

[110]

After we run our HTML ile, we will get the following output on the console screen:

As you can see, myclient.set('status','No longer client'); tries to use
a value not deined for the acceptable values deined on the custom ield Myapp.
fields.Status, so this will get us a validation error for the model.

Using this technique, we can create and reuse many custom ield types across many
models in our application. Notice that we can extend from the following classes:
Ext.data.field.Field, Ext.data.field.Boolean, Ext.data.field.Date, Ext.
data.field.Integer, Ext.data.field.Number, and Ext.data.field.String.

As we talked in Chapter 2, The Core Concepts, about extending classes, it's important
that you choose which class to extend according to your needs, to avoid using
unnecessary extra code if you don't need it.

Relationships
We can create relationships between models to relate our data. For example, a Client
has many contact employees, Services, branches, and many more things. Each item is
an object with properties. For example:

• Employees for contact (name, title, gender, email, phone, cell phone, and
so on)

Chapter 4

[111]

• Services (service ID, service name, service price, branch where service
is provided)

Ext JS 5 extends support to create one-to-many, one-to-one, and many-to-many
associations in a very easy way.

One-to-many associations
One-to-many associations are created in the following way:

Ext.define('Myapp.model.Client',{

 extend:'Ext.data.Model', // step 1

 requires: ['Myapp.model.Employee'],

 idProperty:'id ',

 fields:[....],

 hasMany:{

 model:'Myapp.model.Employee',

 name:'employees',

 associationKey: 'employees'

 }

});

Using the hasMany property, we can deine the association. In this example, we're
assigning an array of objects because we can create as many associations as we need.
Each object contains a model property, which deines the model with the Client
class that will be related.

Additionally, we may deine the name of the function that will be created in our
Client class to get the items related. In this case, we used employees; if we don't
deine any name, Ext JS will pluralize (add an "s") the name of the child model.

Now we need to create the Employee class. Let's create a new ile located at
appcode/model/Employee.js:

Ext.define('Myapp.model.Employee',{

 extend:'Ext.data.Model',

 idProperty:'id ',

 fields:[

 {name: 'id', type: 'int' },

 {name: 'clientid' , type: 'int'},

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'email' , type: 'string'},

 {name: 'gender' , type: 'string'}

]

});

It's All about the Data

[112]

There's nothing new in the previous code, just a regular model with a few ields
describing an item of an employee. In order to test our relationship, we need to
create an HTML ile importing the Ext JS library and our two models. Then, we can
test our models as follows:

var myclient = Ext.create('Myapp.model.ClientWithContacts',{

 id: 10001,

 name: 'Acme corp',

 phone: '+52-01-55-4444-3210',

 website: 'www.acmecorp.com',

 status: 'Active',

 clientSince: '2010-01-01 14:35'

});

//Step 2

myclient.employees().add(

{

 id:101, clientId:10001, name:'Juan Perez', phone:'+52-05-2222-333',
 email:'juan@test.com', gender:'male'},

{

 id:102, clientId:10001, name:'Sonia Sanchez', phone:
'+52-05-1111-444', email:'sonia@test.com',gender:'female'}

);

//Step 3

myclient.employees().each(function(record){

 console.log(record.get('name') + ' - ' + record.get('email'));

});

The steps are explained as follows:

1. We are creating the Client class with some data.

2. We are executing the employee method. When we deine our relationship,
we set the name of this method using the name property in the association
coniguration. This method returns an Ext.data.Store instance; this class
is a collection to manage models in an easy way. We also add two objects
to the collection using the add method; each object contains the data for the
Employee model

3. We are iterating the items collection from our Client model. Using the get
method, we print the description for each Employee model to the console; in
this case, we have only two models in our store.

Chapter 4

[113]

One-to-one associations
To create a one-to-one association, we will create a new class which has a one-to-one
relation with a client or customer:

Ext.define('Myapp.model.Contract',{

 extend:'Ext.data.Model',

 idProperty:'id ',

 fields:[

 {name: 'id', type: 'int' },

 {name: 'contractId', type: 'string'},

 {name: 'documentType', type: 'string'}

]

});

As you can see this is a plain model. Now on the Customer class we
will define it as follows:

Ext.define('Myapp.model.Customer',{

 extend:'Ext.data.Model',

requires: ['Myapp.model.Contract'],

 idProperty:'id ',

fields:[

 {name: 'id', type: 'int'},

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'website' , type: 'string'},

 {name: 'status' , type: 'string'},

 {name: 'clientSince' , type: 'date', dateFormat: 'Y-m-d H:i'},

 {name: 'contractInfo' , reference: 'Contract', unique:true}

]

});

If you notice, we added a new ield called contractInfo, but in this case, instead
of the property type we used the property reference. This property will point to the
entity Contract. As with the previous example, let's modify the JS code, as shown
in the following:

var myclient = Ext.create('Myapp.model.Customer',{

 id: 10001,

 name: 'Acme corp',

 phone: '+52-01-55-4444-3210',

 website: 'www.acmecorp.com',

 status: 'Active',

 clientSince: '2010-01-01 14:35',

It's All about the Data

[114]

 contractInfo:{

 id:444,

 contractId:'ct-001-444',

 documentType:'PDF'

 }

});

You will notice that this time we set the data directly on the model coniguration on
the code contractInfo:{...}. So, now if you check on the console, it has to appear
something like the following screenshot:

As you can see, contractInfo is an object inside the data which has the same ields
deined on the Contract model. Now, if you don't deine the contractInfo or
some other property from the contractInfo object, then these properties will not be
added to the model (record). As shown in the next example, contractInfo was not
deined, and you can see the result in the following screenshot (after Second test):

Chapter 4

[115]

Working with the store
As mentioned before, a store is a collection of models that acts as a client cache to
manage our data locally. We can use this collection to perform tasks such as sorting,
grouping, and iltering the models in a very easy way. We can also pull data from
our server using one of the available proxies and a reader to interpret the server
response and ill the collection.

A store is usually added to widgets/components to display data. Components
such as the grid, tree, combo box, or data view use a store to manage the data. We
will learn about these components in future chapters. If we create a custom widget,
we should use a store to manage the data too. This is why this chapter is really
important; we use models and stores to deal with the data.

It's All about the Data

[116]

In order to create a store, we need to use the Ext.data.Store class. The following
example will use the Customer model that we already have worked, and will extend
the store to create a collection of customers:

Ext.define('MyApp.store.Customers',{

 extend : 'Ext.data.Store', //Step 1

 model : 'Myapp.model.Customer' //Step 2

});

The steps are explained as follows:

• Step 1: To deine a store, we need to extend from the Ext.data.Store class.
This class is responsible for dealing with the models.

• Step 2: We associated the model that our store will be using. It is required to
specify a valid model class; in this case, we're using our Customer class that
we have been working on in the previous example.

Once we have our store class deined, we are going to create an HTML page to run
our test. Let's import the Ext library, our Customer model, and our Customers store:

var store = Ext.create("MyApp.store.Customers");

//counting the elements in the store

console.log(store.count());

We can use the create method to instantiate our store class; in this example, we
don't need to pass any parameter, but we could do it as any other class.

If we would like to know the number of items that are contained in our store, we
can use the count method. In this case, we're printing the number returned on the
JavaScript console, which is zero, because our store is empty at this moment.

Adding new elements
Adding elements to the collection is very simple. We need to create a Customer
model with data, and we will use the add or insert method to add the new item to
our store, as shown in the following code:

//Step 1 (define /create new model instance)

var mynewcustomer = Ext.create('Myapp.model.Customer',{

 id: 10001,

 name: 'Acme corp',

 phone: '+52-01-55-4444-3210',

 website : 'www.acmecorp.com',

 status: 'Active',

Chapter 4

[117]

 clientSince: '2010-01-01 14:35',

 contractInfo:{

 id:444,

 contractId:'ct-001-444',

 documentType:'PDF'

 }

});

store.add(mynewcustomer); //Step 2

console.log("Records in store:" + store.getCount());

The steps are explained as follows:

• Step 1: We created the model that we want to add to our store; we also set
values to some of the ields.

• Step 2: We executed the add method to append our model to the collection.
It's important to know that using the add method will always insert the
model in the last position of the collection.

Finally, we count our items again and we will see a number 1 in our JavaScript console.

We can also add a new item by just sending an object containing the data, and the
add method will create the model instance for us, as shown in the following example:

//Method 2 for add Records

 store.add({

 id: 10002,

 name: 'Candy Store LTD',

 phone: '+52-01-66-3333-3895',

 website : 'www.candyworld.com',

 status: 'Active',

 clientSince: '2011-01-01 14:35',

 contractInfo:{

 id:9998,

 contractId:'ct-001-9998',

 documentType:'DOCX'

 }

 });

 console.log("Records in store:" + store.getCount());

When running the previous code, we will see a number 2 in the JavaScript console.

It's All about the Data

[118]

We can even add many items at once by passing an array of models to the add
method, as shown in the following example:

 // Method 3 for add multiple records

 var mynewcustomer = Ext.create('Myapp.model.Customer', { ...});

 var mynewcustomerb = Ext.create('Myapp.model.Customer', {

 ...});

 store.add([mynewcustomer, mynewcustomerb]);

 console.log("Records in store:" + store.getCount());

We have added two models in the same method call, but we can pass whatever
models we need in the array.

If we see the console, there will be a number 4 printed because we have four
elements in our collection. As mentioned before, if we use the add method, the new
element will be placed in the last position of the collection, but what if we want to
add the new element to the irst position, or maybe somewhere else? We can use the
insert method to add the new element wherever we need.

Looping through the records/models in the

store
So far, we know how to retrieve the number of elements in the existing store. Now
we can iterate through the elements of the store by using the each method as follows:

store.each(function(record, index){

 console.log(index, record.get("name"));

});

The each method receives a function as the irst parameter. This function will
be executed for every record of the store; the anonymous function receives two
parameters for our convenience: the record and index parameters for each iteration.

We can also set the scope where the anonymous function will be executed by passing
a second parameter to the each method with the object where the anonymous
function will be executed.

In our previous example, we only printed the index and name properties in our
model, but we can access any property or method deined in our Customer model.

Chapter 4

[119]

Retrieving the records in the store
Once we have content in our store, we can retrieve objects or perform a search of the
collection of models. There are several ways of retrieving models. We are going to
look at the most common ways.

By index position
If we only want to get a model at a speciic position, we can use the getAt method
from the store as follows:

var modelTest = store.getAt(2);

console.log(modelTest.get("name"));

In our previous example, we get the model that is in the third position of the
collection. The irst position in the store uses the index 0, so if we want to get the
third element, we use the index 2. In our example, the name printed should be
Modern Cars of America.

First and last records
There are also methods to retrieve the irst element of the collection and the last
element; for this, we can execute the first and last methods from the store class,
as shown in the following code:

var first = store.first();

var last = store.last();

console.log(first.get("name"), last.get("name"));

Our previous code will print the name of the irst and last element in our store; in
this case, we will see the name of Acme Corp and Extreme Sports Los Cabos.

By range
There are times when we need to get many records at once, so there's a method
called getRange to retrieve a list of records. We may deine the limits, or we can
even get all the records in the collection, as shown in the following code snippet:

var list = store.getRange(1,3);

Ext.each(list,function(record,index){

 console.log(index,record.get("name"));

});

In the previous code, we were retrieving records from the index number 1 to the
index number 3. We are going to see three elements in our JavaScript console.

It's All about the Data

[120]

By ID
We can retrieve a record directly by its ID, as shown in the following code:

var record = store.getById(10001);

console.log(modelTest.get("name"));

Removing records
We have been adding and accessing records in our store, but if we would like to
remove records from the store, we'd have three ways of doing this task:

store.remove(record);

store.each(function(record,index){

 console.log(index,record.get("name"));

});

We executed the remove method and passed the model from where we wanted to
delete the record. In our previous code, we were passing the model variable that we
created before. If we look at the JavaScript console, we will see that the irst record
does not exist anymore.

We can also remove many records at once. We only need to pass an array of models
to the remove method, and those models will be removed from the store, as shown in
the following code:

store.remove([first,last]);

store.each(function(record,index){

 console.log(record.get("name"));

});

When we execute the code, we will see that the two additional records are gone. We
should not see those names in the JavaScript console.

There are times when we may not have the reference to the model that we want to
delete. In those cases, we can remove a record by its position in the store, as shown in
the following code:

store.removeAt(2);

store.each(function(record,index){

 console.log(index,record.get("name"));

});

The removeAt method accepts an index; the record located at this position will be
removed. Now we can only see two names in the JavaScript console.

Chapter 4

[121]

If we want to remove all the records in our store, we only need to call the removeAll
method and the store will be cleared.

store.removeAll();

console.log("Records:",store.count());

At this moment, our store is empty. If we execute the count method, we will get zero
as a result. Now we know how to add, retrieve, and remove records from our store.

Retrieving remote data
So far, we have been working with local data, and hard-coding our information to
create a store of records. But in real world applications, we will have our data in a
database, or maybe we'll get the information using web services.

Ext JS uses proxies to send and retrieve the data to and from the source. We can use
one of the available proxies to conigure our store or model.

Proxies in Ext JS are in charge of handling the data/information of a data model;
we can say that the proxy is a class that handles and manipulates the data (parsing,
organizing, and so on), so the store can read and save or send data to the server.

A proxy uses a reader to decode the received data, and a writer to encode the data
to the correct format and send it to the source. We have three available readers to
encode and decode our data: the Array, JSON, and XML readers. But we have only
two writers available; only for JSON and XML.

There are many types of proxies at our disposal. If we want to change our source
of data, we should only change the type of proxy and everything should be ine.
For example, we may deine an Ajax proxy for our store or model, and then we can
change it for a local storage proxy.

Ajax proxy
In order to use this proxy, we need to set up a web server to make the Ajax requests
correctly. If we don't have a web server to test our code, we can use the WAMP
or XAMPP server (see Chapter 1, An Introduction to Ext JS 5). Using a web server is
required so that we can make Ajax requests correctly.

When we have everything ready, we can modify our previous example, where we
created the Customers class to add the required proxy.

Ext.define('Myapp.store.customers.Customers',{

 extend:'Ext.data.Store',

It's All about the Data

[122]

 model: 'Myapp.model.Customer',

 proxy:{

 type:'ajax',

 url: 'serverside/customers.php',

 reader: {

 type:'json',

 rootProperty:'records'

 }

 }

});

The previous code adds a new property to the store called proxy. We are setting a
coniguration object containing three properties. The type property deines the type
of proxy that we're going to use. In this case, we speciied ajax, but we can use any
of the available proxies.

The url property deines the resource that we will request using Ajax. It's important
to mention that the URL must be in the same domain so that we 'don't get any errors
when making the Ajax request. If you plan to use a cross-domain URL then it's
recommended that you use the JSONP proxy, or if you have control over the server
side, then enable CORS.

To know more about CORS, please take a look at the following URLs:

• http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_
control_CORS

The third property is reader; this property is an object containing properties that
will specify how the data will be handled (loaded) by Ext JS. It's important that we
deine a reader, otherwise the store won't be able to load the data properly.

So, at this point, we can load the data from our web server using Ajax. In order to
test our code, let's create an HTML ile importing the Ext library, our model(s), and
our store:

 //Step 1

 var store = Ext.create("Myapp.store.customers.Customers");

 //Step 2

 store.load(function(records, operation, success) {

 console.log('loaded records');//Step 3

 Ext.each(records, function(record, index, records){

 console.log(record.get("name") + ' - ' +
 record.data.contractInfo.contractId);

 });

 });

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Chapter 4

[123]

The steps are explained as follows:

• Step 1: We create the store as usual and save the reference in a variable.

• Step 2: We execute the load method. This method internally executes the
read operation, makes the Ajax call to the server, and then loads the data into
the store. The function that we give to the load method as a parameter is a
callback that will be executed after the records are loaded into the store. We
are doing it in this way because Ajax is asynchronous, and we never know
when the server is going to respond.

• Step 3: The last step iterates through the records of the store and prints the
name for each invoice in the JavaScript console.

Before we execute our example, we should create the serverside/customers.json
ile. We're going to use JSON to encode the data, as follows:

{

 "success":true,

 "id":"id",

 "records":[

 {

 "id": 10001,

 "name": "Acme corp2",

 "phone": "+52-01-55-4444-3210",

 "website": "www.acmecorp.com",

 "status": "Active",

 "clientSince": "2010-01-01 14:35",

 "contractInfo":{

 "id":444,

 "contractId":"ct-001-444",

 "documentType":"PDF"

 }

 },{

 "id": 10002,

 "name": "Candy Store LTD",

 "phone": "+52-01-66-3333-3895",

 "website": "www.candyworld.com",

 "status": "Active",

 "clientSince": "2011-01-01 14:35",

 "contractInfo":{

 "id":9998,

 "contractId":"ct-001-9998",

 "documentType":"DOCX"

 }

 }

]

}

It's All about the Data

[124]

We have an object that contains an array of objects that hold our information; each
object contains the same properties as that of our Customer model, and also the
relation one-to-one from the Contract model.

Now, if we execute the test, we will see two records in the console. If we execute the
count method in our store, we will see that it only contains two elements.

Readers
Readers let Ext JS understand how to handle the response and ill the store with
models containing the correct information.

As we saw in the previous example we used:

reader: {

 type:'json',

 rootProperty:'records'

}

The type property deines how our information is decoded. In this case, we are
assigning the json type to the property, but we can also use the xml or array type
if needed.

The rootProperty allows us to deine the name of the property in the server
response, where all objects containing the information for our models are located.
This property should be an array in our JSON response. In this case, we set records
because our JSON response uses that name, but it could be anything. If we have
nested objects, we can use a dot (.) to go as deep as we need. For example, let's
suppose we get the following response:

{

 "success" :"true",

 "id":"id",

 "output":{

 "appRecords":[{ our data }],

 "customerRecords":[{ our data }]

 }

}

The previous response contains the array of information inside of an object output;
we need to conigure our reader, so it should be able to read this response correctly.
We need to change the rootProperty as follows:

reader: {

 type:'json',

 rootProperty:'output.customerRecords'

}

Chapter 4

[125]

We have only modiied the rootProperty using a dot to get one level deeper. We
can go as deep as we need. It doesn't matter how many levels we have to go, but we
need to make sure that we are setting this coniguration correctly, pointing to the
array of data where our models will be illed.

Let's test our code again (proxy_02.js) by refreshing the browser. Now, we'll see
the same output as before.

XML reader
The XML reader makes some relative changes to JSON, because in this case, we need
to specify some other properties in the reader, to ensure the XML is well interpreted
by Ext JS. Take a look at the following code:

 proxy:{

 type:'ajax',

 url: 'serverside/customers.xml',

 reader: {

 type: 'xml',

 rootProperty: 'data',

 record:'customer',

 totalProperty: 'total',

 successProperty: 'success'

 }

 }

We have only changed the url property to our reader, so that it points to an XML ile
that contains our information, instead of the JSON ile. The properties we are using
are as follows:

• The type property was set to xml. This way, our reader will be able to read
the server response correctly.

• The rootProperty deines the Element (node) in XML that Ext JS will check
to look for records (sub nodes).

• We also added record. This property allows us to deine the tag where the
information will be in the XML response; in this case, we used customer.

• Finally, we added totalProperty and successProperty, which are nodes
deining some values that the store will read for functionality.

Now, let's create the XML ile that holds our information. This ile should be called
serverside/customers.xml, and will contain the following code:

<?xml version="1.0" encoding="UTF-8"?>

<data>

 <success>true</success>

It's All about the Data

[126]

 <total>2</total>

 <customer>

 <id>10001</id>

 <name>Acme corp2</name>

 <phone>+52-01-55-4444-3210</phone>

 <website>www.acmecorp.com</website>

 <status>Active</status>

 <clientSince>2010-01-01 14:35</clientSince>

 <contractInfo>

 <id>444</id>

 <contractId>ct-001-444</contractId>

 <documentType>PDF</documentType>

 </contractInfo>

 </customer>

 <customer>

 <id>10002</id>

 <name>Candy Store LTD</name>

 <phone>+52-01-66-3333-3895</phone>

 <website>www.candyworld.com</website>

 <status>Active</status>

 <clientSince>2011-01-01 14:35</clientSince>

 <contractInfo>

 <id>9998</id>

 <contractId>ct-001-9998</contractId>

 <documentType>DOCX</documentType>

 </contractInfo>

 </customer>

</data>

First, we have deined the root node that contains the invoices information. This root
node is called data. If we change the name of this node, then we should also change
the root property in our reader to match this node.

Each customer node contains the data for our models/records. We have deined a
new record property in our reader coniguration to set the name of the node, where
the information should be in our XML response.

Now, let's test our changes by refreshing our browser. If everything goes ine,
we will see the same response as in the previous examples. Take a look at the
next screenshot:

Chapter 4

[127]

The result is exactly the same as when we used the JSON reader, however, if we go
to the Network tab in the developers tools, we can see that in this case, the server is
responding with XML.

By using readers, we can switch easily from using JSON or XML as our source of
data. We don't have to change anything else in our code, but just conigure each URL
and reader correctly.

Sending data
After adding, editing, or modifying records into the store, we should send the data
to our server. Ext JS allows us to do this by the use of a writer property (it has to set
in the proxy). This writer will encode the data depending on the type of writer (JSON
or XML). In order to archive this, let's create the CustomersSending.js ile in the
path appcode/store/customers. We will use the previous models we have created
and place the following code:

Ext.define('Myapp.store.customers.CustomersSending',{

 extend:'Ext.data.Store',

 model: 'Myapp.model.Customer',

 autoLoad:false,

 autoSync:true,

 proxy:{

 type:'ajax',

It's All about the Data

[128]

 url: 'serverside/customers.json',

 api: {

 read : 'serverside/customers.json',

 create : 'serverside/process.php?action=new',

 update : 'serverside/process.php?action=update',

 destroy : 'serverside/process.php?action=destroy'

 },

 reader: {

 ()type:'json',

 rootProperty:'records'

 },

 writer:{

 type:'json',

 encode:true,

 rootProperty:'paramProcess',

 allowSingle:false,

 writeAllFields:true,

 root:'records'

 },

 actionMethods:{

 create: 'POST',

 read: 'GET',

 update: 'POST',

 destroy: 'POST'

 }

 }

});

The notable changes made on the code are:

1. We set the api property: On this property, we will set URLs for each CRUD
action method (create, read, update, and destroy).

2. We set the writer property as a coniguration object: Here, the important
properties in the object are:

 ° type:'json': This property will send the data in JSON format to
the server.

 ° encode: This property will make Ext JS encode the information before
passing it to the server.

 ° rootProperty: This property will be the name of the parameter
containing the information.

 ° writeAllFields: This property will pass all the records to the server.
If we set it to false, then they will be sent only to the modified fields.

Chapter 4

[129]

3. We set the ActionMethods property: This property will set how the
parameters that are passed by the store will be sent. In the code example, we
set POST method for create, update, and destroy, and we set GET for read.

Do note that create, update, and destroy will be
triggered when the proper action takes place with the
data. For example, if we add a new model/record in the
store, then it will launch the create action, encoding and
passing the data set in api property.

Now, let's create the HTML ile sending_01.html, as follows:

<!doctype html>

<html>

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta charset="utf-8">

<title>Extjs - Sending 01</title>

<link rel="stylesheet" type="text/css" href="../ext-5.1.1/build/
packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css">

<script src="../ext-5.1.1/build/ext-all.js"></script>

<script src="../ext-5.1.1/build/packages/ext-theme-neptune/build/ext-
theme-neptune.js"></script>

<script type ="text/javascript" src="sending_01.js"></script>

</head>

<body style="padding:10px;"></body>

</html>

And inally, the sending_01.js ile looks as follows:

Ext.Loader.setConfig({

 enabled: true,

 paths:{ Myapp:'appcode' }

});

Ext.require([

 'Ext.data.*',

 'Myapp.model.Contract',

 'Myapp.model.Customer',

 'Myapp.store.customers.CustomersSending'

]);

Ext.onReady(function(){

var store = Ext.create("Myapp.store.customers.CustomersSending");
//Step 1

It's All about the Data

[130]

 store.load({ // Step 2 load Store in order to get all records

 scope: this,

 callback: function(records, operation, success) {

 console.log('loaded records');

 Ext.each(records, function(record, index, records){

 console.log(record.get("name") + ' - ' +
 record.data.contractInfo.contractId);

 });

 var test=11;

 console.log('Start adding model / record...!');

 // step 3 Add a record

 var mynewCustomer = Ext.create('Myapp.model.Customer',{

 clientId : '10003',

 name: 'American Notebooks Corp',

 phone: '+52-01-55-3333-2200',

 website : 'www.notebooksdemo.com',

 status : 'Active',

 clientSince: '2015-06-01 10:35',

 contractInfo:{

 "id":99990,

 "contractId":"ct-00301-99990",

 "documentType":"DOC"

 }

 });

 store.add(mynewCustomer);

 // step 4 update a record

 console.log('Updating model / record...!');

 var updateCustomerModel = store.getAt(0);

 updateCustomerModel.beginEdit();

 updateCustomerModel.set("website","www.acmecorpusa.com");

 updateCustomerModel.set("phone","+52-01-33-9999-3000");

 updateCustomerModel.endEdit();

 // step 5 delete a record

 console.log('deleting a model / record ...!');

 var deleteCustomerModel = store.getAt(1);

 store.remove(deleteCustomerModel);

 }

 });

});

Chapter 4

[131]

In Step 1, we create the store instance. In Step 2, we load the records (load function);
after the records are loaded, the callback function will be executed. At this point, the
store has two records that come from the JSON ile. So, we are ready to begin with
the operations create, update, and delete.

In Step 3, we create a model/record; we set the data of this model/record, and then
we add it to the store. As we set the property autoSync: true in the store, Ext JS
will send the data to the server.

In Step 4,we update a record; in this case, we modiied two properties and then
called the endEdit() method of the model/record. After this method inishes, the
store will launch the update URL and pass the data to the server.

And inally in Step 5, we select the second model/record of the store with store.
getAt(1). Then, we tell the store to remove the record, and the record is deleted
from the store. This will make Ext JS launch the destroy URL that we set.

Take a look at the following screenshot and notice the network behavior:

In the screenshot, you will notice the request call for the update action. There is
also the paramProcess variable sent to the server that contains all the data from the
updated model/record. Now we need to work on the php (or server page), so that it
performs the required actions in the server page.

It's All about the Data

[132]

Summary
In this chapter, we had been working with data; we learned how to create models
with ields, mappings, validations, and relationships. We also worked with a
collection of models using the store class, and learned the basics for retrieving data
using proxies, JSON readers, and XML readers. In the upcoming chapters, we will
learn how to handle more advanced features available in the stores.

It's important to mention that every widget in Ext JS that displays data uses a store
and models (Grids, Combos, Data views, and so on) to manage all the data. When
we modify a model in our store, the widget will automatically refresh its view. For
example, if we have a grid and we want to delete a record, we only need to use the
remove method from the store. By doing this, the grid will automatically update the
rows and the deleted rows won't appear anymore.

In the next chapter, we are going to learn about events, and how we can respond
to the user interaction. So far, we haven't used events, but they are one of the most
important parts of the JavaScript development world.

Buttons and Toolbars
When working with buttons and toolbars, we will deinitely need to arrange them
whenever we use window or panel components. Toolbars are a great way of adding
buttons and menus, and we can create button groups. However, we also need to
understand how to handle events to execute actions. We can add actions to our
widgets using callbacks and events to process user interaction.

In this chapter, you are going to learn how to create buttons and toolbars and how to
handle an event (or events) in order to begin with user interaction on the Ext JS UI.

Event-driven development
Before we start talking about components, you need to understand how events
and listeners work behind the scenes. The irst thing you need to learn is the
observable pattern.

Basically, the observable pattern is designed to allow entities or objects to
communicate with each other using events. When a certain action occurs inside an
object or component, this object should broadcast an event to whoever is listening.

For example, when a button is clicked on, it ires the click event. When a row of a
grid is clicked on, the grid ires the itemclick event. All components have deined
events and they are ired when an action occurs.

The component that is iring the event doesn't know who will listen to its messages,
but its responsibility is to let others know that something has happened. Then,
maybe other components will do something about it, or nothing at all.

The Ext.util.Observable base class allows us to add, ire, and listen to events from
a speciic object or component and perform actions when that event is executed.

Buttons and Toolbars

[134]

All widgets included in the Ext JS library have the Ext.util.Observable class
mixed in, so all widgets ire events that we can listen to perform actions and bring
our widgets to life.

As mentioned before, we can deine and ire new events on our custom components
using the same Ext.util.Observable class.

Copy the singleton_01.js ile (from the code iles of chapter 02). Then, we have
to add the following changes to the Employee class:

Ext.define('Myapp.sample.Employee',{

mixins: {observable: 'Ext.util.Observable'},

 Code.....

 constructor: function(config){

 Code.....

 this.mixins.observable.constructor.call(this, config);

 },

 quitJob: function(){

this.fireEvent('quit', this.getName(), new Date(), 2,

 1, 'more params...');

 }

});

As you can notice, the Employee class now contains the mixin—the Ext.util.
Observable class. Also, inside the constructor function, this mixin is initialized by
the this.mixins.observable.constructor.call(this, config); code. This
means that Ext.util.Observable will be aware of any event launch inside the
employee class, whenever it happens.

To understand more about mixins, see http://docs.sencha.com/
extjs/5.1/5.1.1-apidocs/#!/api/Ext.Mixin.

The quitJob function, when called, will launch the quit event, passing the
this.getName(), new Date(), 2, 1, 'more params...' parameters.

In previous versions of Ext JS, we had to add the addEvent(...)
method to create, or deine, the proper event (or events) inside the class.
If you are upgrading from version 4, be aware of this change. Version 5 is
more lexible about it.

Now, we need the code to listen to the 'quit' event when it's launched. In Ext JS,
we have the listeners property that is used for such purposes (listen/handle
events). Let's modify the code where we instantiate the class:

http://docs.sencha.com/extjs/5.1/5.1.0-apidocs/#!/api/Ext.Mixin
http://docs.sencha.com/extjs/5.1/5.1.0-apidocs/#!/api/Ext.Mixin

Chapter 5

[135]

var patricia = Ext.create('Myapp.sample.Employee', {

 name:'Patricia',

 lastName:'Diaz',

 age:21,

 isOld:false,

 listeners:{

 'quit':function(EmployeeName, quitDate, param, paramb, paramc){

 console.log('Event quit launched');

 console.log('Employee:' + EmployeeName);

 console.log('Date:'+ Ext.util.Format.date(
 quitDate,'Y-m-d H:i'));

 console.log('Param :' + param);

 console.log('Param B:' + paramb);

 console.log('Param C:' + paramc);

 }

 }

});

console.log(Myapp.CompanyConstants.welcomeEmployee(patricia));

patricia.quitJob();

The listeners property was included in the coniguration object (the new Employee
class), so in this way, we can intercept and handle the quit event whenever it
happens. Let's run the code in our browser and check out the console output, as
shown in the following screenshot:

Buttons and Toolbars

[136]

When talking about events and handlers, it's important to mention that
we are talking about Ext JS and how it's coded, handled, or used in
the framework, and we must make a clariication that this is not pure
JavaScript behavior.

At this point, we have deined our event and the listener that will handle it. Another
common way of adding the listener is by using the on method, which is a shorthand
method of addListener:

patricia.on({

 'quit':function(EmployeeName, quitDate, param, paramb, paramc){

 console.log('Event quit launched');

 console.log('Employee:' + EmployeeName);

 console.log('Date:' + Ext.util.Format.date(quitDate,
 'Y-m-d H:i'));

 console.log('Param :' + param);

 console.log('Param B:' + paramb);

 console.log('Param C:' + paramc);

 }

});

patricia.quitJob();

Remember that it's important to add a listener (or listeners) before executing the
desired method (or methods). Events are the way we can execute certain sets of
actions when events occur. As we can see in the previous example, the Employee
class is responsible only for broadcasting the event when the quitJob method is
called. The class itself doesn't care about who may be listening, but on the outside,
an object is listening and will react according to the messages received.

The ability to add, ire, and listen to custom events is a very powerful feature in Ext JS.

Creating a simple button
Now that you have a basic understanding of how to handle events, it's time we
began working with components and widgets. First of all, we will go for buttons. In
order to create buttons, we will need to use the Ext.button.Button class. This class
will handle all the "ins and outs" of a single button.

Let's create the code for our irst button:

var myButton = Ext.create('Ext.button.Button', {

 text:'My first button',

 tooltip:'Click me...!',

 renderTo:Ext.getBody()

Chapter 5

[137]

});

In this code, we create an instance of the Button class and passed some
conigurations. Usually, a button has many more conigurations, but for the moment,
these are enough.

The text property will set the text shown when the button is rendered on the
document (using Document Object Model (DOM)).

The renderTo property will allow us to set the place where the document body is
going to be created/inserted (using DOM). Here, the button will be placed in the
document's body.

Let's run the sample in the browser. You will see something similar to the
following screenshot:

By default, the button has the scale property equal to small, but we can change the
size to medium and large. The scale property lets us deine the size of the button.
Also related to the scale property is the fact that we can set different icon sizes for
the buttons depending on the scale. For the moment, let's change the code, and now
we are going to create two more buttons:

 var myButton = Ext.create('Ext.button.Button', {

 text:'My first small button',

 scale:'small',

 renderTo:Ext.getBody()

 });

 var myButtonB = Ext.create('Ext.button.Button', {

 text:'My first medium button',

 scale:'medium',

 renderTo:Ext.getBody()

 });

Buttons and Toolbars

[138]

 var myButtonC = Ext.create('Ext.button.Button', {

 text:'My first large button',

 scale:'large',

 renderTo:Ext.getBody()

 });

This code will create three buttons using different scales, as shown in this screenshot:

Note that we can also set a custom size using the width and height properties. This
is possible because the Button class extends from Component class.

Setting icons on buttons
It's frequently seen that on any application, we use icons to differentiate the action
buttons. In order to set the icons (images) on any button, we will use the iconCls
property to set a CSS class (rule) that will add the image as the background.
Previously, when we talked about the scale property, the idea was to use the
following sizes:

Scale Size

Small 16 x 16 pixels
Medium 24 x 24 pixels
Large 32 x 32 pixels

Chapter 5

[139]

Let's create some new CSS rules inside the last code (HTML ile), as follows:

.addicon-16{

 background:transparent url('images/add_16x16.png') center 0
 no-repeat !important;

}

.addicon-24{

 background:transparent url('images/add_24x24.png') center 0
 no-repeat !important;

}

.addicon-32{

 background:transparent url('images/add_32x32.png') center 0
 no-repeat !important;

}

We deined three CSS classes (rules), one for each available scale. Note that you can
use your very own icons as well. The preceding code assumes that we have a folder
called images with three different images inside it. In order to make our example
work, we need to include those images in that folder. Feel free to use your own
images for this example.

Once we have our CSS in place, we need to set one of them for each of our buttons:

 var myButton = Ext.create('Ext.button.Button', {

 text:'My first small button',

 iconCls:'addicon-16',

 scale:'small',

 renderTo:Ext.getBody()

 });

 var myButtonB = Ext.create('Ext.button.Button', {

 text:'My first medium button',

 iconCls:'addicon-24',

 scale:'medium',

 renderTo:Ext.getBody()

 });

 var myButtonC = Ext.create('Ext.button.Button',{

 text:'My first large button',

 iconCls:'addicon-32',

 scale:'large',

 renderTo:Ext.getBody()

 });

Buttons and Toolbars

[140]

Using the iconCls property, we can relate any CSS class to the button. If we refresh
our browser, we can see that each button has an icon, as shown here:

Icon alignment on buttons
By default the, icon is aligned to the left-hand side, but we can set the position to the
top, bottom, and right-hand side too. We do this using the iconAlign property. Let's
use the following code:

 var myButtonA = Ext.create('Ext.button.Button',{

 text:'left icon',

 iconCls:'addicon-16',

 iconAlign:'left',

 renderTo:Ext.getBody()

 });

 var myButtonB = Ext.create('Ext.button.Button',{

 text:'top icon',

 iconCls:'addicon-16',

 iconAlign:'top',

 renderTo:Ext.getBody()

 });

 var myButtonC = Ext.create('Ext.button.Button',{

 text:'right icon',

 iconCls:'addicon-16',

 iconAlign:'right',

 renderTo:Ext.getBody()

 });

 var myButtonD = Ext.create('Ext.button.Button',{

Chapter 5

[141]

 text:'bottom icon',

 iconCls:'addicon-16',

 iconAlign:'bottom',

 renderTo:Ext.getBody()

 });

The use of iconAlign sets the alignment of the icon. If we refresh our browser,
we can see how every button has the icon in a different position, as shown in the
following screenshot:

Handling button events
Once we have our buttons in place, it is very likely that we want to add some actions
when they are clicked on. In the coming chapters, we will see how to listen to events
using the MVVM pattern. For now, we will listen to events directly on the buttons.

The Button class makes use of the Observable class (internally) by using it as a
mixin; therefore, we can listen to events using the addListener method.

Every component has many predeined events that we can use. If we go through
the documentation, we can see all the available events, with a description of when
the event is ired and what parameters are received by the listeners. In this case, the
Button class contains the click event, which is ired when the button is clicked on
by the user. We can listen to this event using the on (a shorthand method for the
addListener method) method:

myButtonA.on('click', function(){

 Ext.Msg.alert("Click event", "You clicked left icon button..!");

});

In the previous code, we used the on method to listen to the click event. When this
event is ired, it will show a conirmation message.

Buttons and Toolbars

[142]

If we refresh our browser and click on the irst button, we should see the
following message:

We can do whatever we want inside the callback function. In this case, we are only
showing an alert message, but we can also load a store to pull some data from our
server. We can show a window component or create a panel with a form inside.

There are many more events that we can listen to, for example, show, hide, enable,
disable, and so on. For more event names, refer to the Ext JS documentation.

We can deine any number of listeners to the same event, and when the event is ired,
all the listeners will be executed.

Segmented buttons
A new addition in version 5 is segmented buttons, and they give us the possibility to
show buttons as part of a group. In fact, the use of segmented buttons is actually the
use of a speciic container for a group of buttons. For this, we need to use the Ext.
button.Segmented class by treating it similar to any container (which was discussed
in previous chapters).

Using the previous example iles (button_04.js and button_04.html), let's
create a duplicate of these iles and save them with the names button_05.js and
button_05.html. Now, let's change the title of the buttons, remove the iconAlign
property, and add the following after the last line of the code:

var mySegmentedbuttons = Ext.create('Ext.button.Segmented',{

 renderTo:'segmentedbuttons',

 vertical:false,

 items:[{

Chapter 5

[143]

 xtype: 'button', text:'1st button', iconCls:'addicon-16'

 },{

 text:'2nd button', iconCls:'addicon-16'

 },{

 text:'3th button', iconCls:'addicon-16'

 },{

 text:'4th button', iconCls:'addicon-16'

 }]

});

Let's run the example in the browser, and we will get the following result:

As you can notice, the second row of buttons is the segmented button container
rendered, and the buttons look nicer than those in the irst row (plain buttons on the
same row and not grouped). Notice that the irst button and the last button in the
segmented button container have rounded corners, compared to the irst row where
each button has rounded corners.

Also, we can set the group in a vertical way by setting the vertical:true property.
Check out the following screenshot to understand this:

By default, the Ext.button.Segmented class treats each item as a button. In the
example code, we set the xtype property to the irst button. The other three
buttons don't have that property and still Ext JS treated each item as a button
coniguration object.

Buttons and Toolbars

[144]

Segmented buttons, as you can see, are mainly for the purpose of visual aesthetics
and give a better look. According to Sencha, this is:

"A very common presentation for multiple selection on mobile."

Adding menus
There are times when we need to create a menu (or menus) to allow the user to
choose from the available options. We can achieve this by setting the menu property
of the buttons. This will create a loating menu for the selected button, and it will be
shown when the user clicks on the button.

Let's create a button that contains a menu with options. For the following example,
we need to create an HTML page, import the Ext JS library, and listen for the DOM
ready event. Inside the callback, we should modify the code that creates our button,
as shown here:

 var myButton = Ext.create('Ext.button.Button',{

 text:'Add payment method...',

 iconCls:'addicon-32',

 iconAlign:'left',

 scale:'large',

 renderTo:'normalbuttons',

 menu:[

 {text:'Master Card'},

 {text:'Visa'},

 {text:'PayPal'},

 {text:'Other...'}

]

 });

As we can see in the previous code, the menu property receives an array of objects.
This array will be used to create an instance of the Ext.menu.Menu class. This class is
responsible for managing and displaying the loating menu.

It is also important to say that each object inside the array uses the menu item as
the default xtype. As a result, we should see something like what is shown in the
following screenshot when we open our HTML ile in our browser:

Chapter 5

[145]

In the previous code, we used object literals to create our menu. If we want to use
constructors instead of the literals, we should create an instance of the Ext.menu.
Menu and Ext.menu.Item classes, as follows:

//Step 1

var menuItemA = Ext.create('Ext.menu.Item',{text:'Master card'});

//Step 2

var menu = Ext.create('Ext.menu.Menu',{

items : [//Step 3

 menuItemA, // Variable

 Ext.create('Ext.menu.Item',{text:'Visa'}), // constructor

 {text:'Paypal'} //object config

]

});

var myButton = Ext.create('Ext.button.Button',{

 text:'Add payment method...',

 iconCls:'addicon-32',

 iconAlign:'left',

 scale:'large',

 renderTo:'normalbuttons',

 menu:menu

});

In Step 1, we created an instance of the Ext.menu.Item class. In Step 2, we created
an instance of the Ext.menu.Menu class, and its items property in Step 3 contains a
mixed array. The irst element is the menuItemA variable, the second is a constructor
for the Ext.menu.Item class, and the third is a coniguration object that will become
an Ext.menu.Item class:

items : [//Step 3

 menuItemA, // Variable

 Ext.create('Ext.menu.Item' ,{

 text:'American Express'

Buttons and Toolbars

[146]

 }), // constructor

 {text:'Other'} //object config

]

Once we have created our menu, we add our instance to the menu property of the
button. When the button is created, it detects that the menu property is not an array
and it's an instance of the Menu class.

As a result, we have two buttons with a menu containing the same options, as shown
in this screenshot:

Adding a menu is really easy. Now, if we want to add some functionality to these
options, we need to set a listener for each item in the menu. If we go through the
documentation, we'll ind that the Ext.menu.Item class contains a click event.
This is the event that we need to listen to, to perform some actions when it is
ired. However, there are many ways by which we can attach event handlers to a
component, or widget. To demonstrate this, let's add a bit more code, as shown in
the following example:

var myButton = Ext.create('Ext.button.Button',{

 text:'Add payment method...',

 iconCls:'addicon-32',

 iconAlign:'left',

 scale:'large',

 renderTo:'normalbuttons',

 menu:[{

 text:'Master Card',

 listeners:{ // Option 1

 click:function(){

 Ext.Msg.alert("Click event", "You selected Master Card..!");

 }

 }

 },{

 text:'Visa', //Option 2

 handler: onMenuItemClick

 },{

 text:'PayPal',

Chapter 5

[147]

 listeners:{ //Option 3

 'click':{fn: onMenuItemClick , single:true}

 }

 },{

 text:'Other...',

 handler: onMenuItemClick

 }]

});

function onMenuItemClick (itemBtn, Event){

 var optionString = itemBtn.text;

 Ext.Msg.alert("Click event","You selected " + optionString +
 " ..!");

}

Now, let's check out the options in the code:

1. In Option 1, we added a listeners property to the coniguration object
which will raise an alert when clicked.

2. In Option 2, we used a property called handler. This property will bind
the click event to the onMenuItemClick function name that is set on the
property. Also, the function will receive two parameters (item and event).

3. In Option 3, we again used the listeners property, but for the click event.
We passed a coniguration object with two properties: fn and single. The
fn property will specify the function to be executed, and single will specify
that the execution will be only made once. After the irst execution, Ext JS
will remove the event handler.

It's important to read how to add event listeners on components, or
widgets, and test the different ways of accomplishing this. Not all the
time will we need to use the same ways; it depends on the functionality
you need. Knowing the variations of add listeners can save us from
writing much extra code for or applications.

You might have noticed that the second and the last menu items have the handler:
onMenuItemClick property, so both of them are pointing to the same function. This
function will recognize which button was pressed/clicked on by accessing them with
the itemBtn parameter passed to that function. In this case, we need access only to
the text property:

var optionString = itemBtn.text;

Buttons and Toolbars

[148]

Refresh the browser, test each option, and see how the listeners work on each button.

It's important to say that we can add as many levels of submenus as we need using
the menu property. However, from my personal experience I won't recommend
cascading your menus too deeply because the user experience will be affected.

Toolbars
Once we have known the basics about buttons and menus, we can move on to the
next component, which is the toolbar. As is very common in applications that have
toolbars in order to access our application modules, windows, and so on, the toolbar
component acts as a container where we can arrange our buttons the way we need.

Since version Ext JS 4, it has been possible to deine a toolbar in any of the four sides
of our containers (north, south, east, and west). We can also add more toolbars to
each side (more than one). It's important to mention that a toolbar is usually used on
containers such as a panel, window, or grid, or on subclasses of containers on which
it can be placed.

Let's start creating a basic example of a toolbar at the top of a panel. So, let's create an
HTML ile, set the reference to the Ext JS library, and write the following code in the
DOM ready callback:

var myPanel = Ext.create('Ext.panel.Panel' ,{

 title: 'My first toolbar...',

 width: 450,

 height: 200,

 dockedItems: [{ //Step 1

 xtype : 'toolbar',

 dock: 'top', //Step 2

 items: [

 {text: 'New record'},

 {text: 'Edit record'},

 {text: 'Remove record'}

]

 }],

 renderTo:Ext.getBody()

});

Chapter 5

[149]

Now, let's review the steps in this code:

1. In Step 1, we deined the dockedItems property. Here we can deine an
array of components. Any component can be placed, or docked, on any of the
four sides (left, top, right, or bottom).

2. In Step 2, we deined where the toolbar is going to be docked. In this case,
the dock property is equal to top. If the dock property is missing or not
deined, by default, Ext JS will set it to top.

Usually, toolbars are deined as docked items, but we can deine other components,
such as grids, panels, and forms, among others. One more thing to highlight from the
previous code is that, by default, the components in the items array of the toolbar
are buttons. That's why we didn't set explicitly an xtype.

We can also add any other component to the toolbar, such as textfield, combo box,
and radiobutton.

Let's add a few more buttons with icons, as shown in the following code:

items:[

 {text:'New', iconCls:'addicon-16'},

 {text:'Edit', iconCls:'editicon-16'},

 {text:'Remove', iconCls:'deleteicon-16'},

 {text:'Export', iconCls:'export-16'},

 {text:'Print', iconCls:'print-16'},

 {text:'Help', iconCls:'help-16'}

]

Once we have made the changes, we need to create the CSS classes (rules) that will set
the image as the background. Let's add the rules to our HTML ile or CSS style ile:

.addicon-16{ background:transparent url('../images/add_16x16.png')
center 0 no-repeat !important; }

.deleteicon-16{ background:transparent url('../images/delete.png')
center 0 no-repeat !important; }

.editicon-16{ background:transparent url('../images/pencil.png')
center 0 no-repeat !important; }

.help-16{ background:transparent url('../images/help.png') center 0
no-repeat !important; }

.print-16{ background:transparent url('../images/printer.png') center
0 no-repeat !important; }

.export-16{ background:transparent url('../images/page_go.png') center
0 no-repeat !important; }

Buttons and Toolbars

[150]

Remember that you can change images or add more images and CSS classes (rules).
Let's run the browser. You may see something similar to this:

The screenshot shows the new buttons with an icon. By default, the icons are aligned
to the left and the buttons are horizontally aligned.

Toolbar button groups
A nice feature in Ext JS is that we can group toolbar buttons thanks to the
Ext.container.ButtonGroup class or by using the xtype:'buttongroup'. This
class is a subclass of Ext.panel.Panel that lets us group buttons in a toolbar. Again,
let's change the previous code to arrange our buttons in the toolbar, as is done by the
following code:

var myPanel = Ext.create('Ext.panel.Panel',{

 title:'My first toolbar...',

 width:600,

 height:200,

 dockedItems:[{ //Step 1

 xtype : 'toolbar',

 dock: 'top', //Step 2

 items:[

 { xtype:'buttongroup',

 title:'Actions',

 items:[

 {text: 'New', iconCls: 'addicon-16'},

 {text: 'Edit', iconCls: 'editicon-16'},

 {text: 'Remove', iconCls: 'deleteicon-16'}

Chapter 5

[151]

]

 },{

 xtype: 'buttongroup',

 title: 'Print / Export & Help',

 items:[

 {text: 'Export', iconCls: 'export-16'},

 {text: 'Print', iconCls: 'print-16'},

 {text: 'Help', iconCls: 'help-16'}

]

 }

]

 }],

 renderTo:Ext.getBody()

});

We added two button groups to the toolbar and, instead of adding the buttons
directly to the toolbar, we did it on each button group in the items property. Also, we
deined a title for each button group. Now, let's check out the following screenshot,
which shows the output:

By default, the buttongroup xtype created has placed the buttons horizontally (three
columns for each group). We can change this look using the column property:

var myPanel = Ext.create('Ext.panel.Panel',{

 title:'My first toolbar...',

 width:600,

 height:200,

 dockedItems:[{ //Step 1

 xtype : 'toolbar',

 dock: 'top', //Step 2

Buttons and Toolbars

[152]

 items:[

 { xtype:'buttongroup',

 title:'Actions',

 columns:2,

 items:[

 {text:'New', iconCls:'addicon-32', scale:'large',
 rowspan:2, iconAlign:'top' },

 {text:'Edit', iconCls:'editicon-16'},

 {text:'Remove', iconCls:'deleteicon-16'}

]

 },{

 xtype:'buttongroup', title:'Print / Export & Help',

 defaults:{scale:'large', iconAlign:'top'},

 items:[

 {text:'Export', iconCls:'export-32'},

 {text:'Print', iconCls:'print-32'}

]

 },{

 xtype:'buttongroup', title:'Help',

 items:[

 {text:'Help', iconCls:'help-32', scale:'large',
 iconAlign:'bottom' }

]

 }

]

 }],

 renderTo:Ext.getBody()

});

In the previous code, we set the columns property to 2 in the irst button group.
This means that the buttons in that group will be organized in two columns. One
important thing to observe closely is the rowspan property of the new button. This
property is set to 2, which means that the new button will use two rows. We also
modiied the size of some buttons to large, and updated the iconCls property to
use images of size 32 pixels (width and height).

With these few changes in place, we'll have a better layout and organized buttons,
giving the inal user interface a very elegant look and feel, as shown in this screenshot:

Chapter 5

[153]

Remember that we can use as many columns as we want, and as we did in our
previous example, we can mix button sizes (scales) too.

The breadcrumb bar
A new addition in Ext JS version 5 is the breadcrumb bar. This bar displays hierarchical
data from a TreeStore as a trail of breadcrumb buttons. In Chapter 9, The Tree Panel,
we will talk about the tree store in more detail, and also check out more speciic
information about TreeStore.

Let's begin with creating a new HTML ile and our JS code. First of all, we need to
deine our store that contains data for the breadcrumb bar with the following code:

Ext.define('Myapp.sample.store.mainMenu', {

 extend: 'Ext.data.TreeStore',

 root: {

 text: 'My app',

 expanded: true,

 children: [{

 text: 'Modules',

 expanded: true,

 children: [

 {leaf: true, text: 'Employees'},

 {leaf: true, text: 'Customers'},

 {leaf: true, text: 'Products'}

]

 },{

Buttons and Toolbars

[154]

 text: 'Market',

 expanded: true,

 children: [

 {leaf: true, text: 'Sales'},

 {leaf: true, text: 'Budgets'},

 {leaf: true, text: 'SEO'},

 {leaf: true, text: 'Statistics'}

]

 },{

 text: 'Support',

 iconCls:'help-16',

 children: [

 {leaf: true, text: 'Submit a ticket'},

 {leaf: true, text: 'Forum'},

 {leaf: true, text: 'Visit our web site'}

]

 },

 {leaf: true, text: 'Reports'},

 {leaf: true, text: 'Charts'}

]

 }

});

Let's review what we made in the previous code step by step:

• Our new store/class, Myapp.sample.store.mainMenu, extends the Ext.
data.TreeStore class.

• The root property inside the store is the initial node / data model that the
TreeStore will contain, and its child nodes / data models are inside the
children property, which is an array of nodes, or data models.

As you can notice, the data inside the root property (node) is structured in a tree-like
manner. This will be interpreted by the breadcrumb bar to create the buttons, menus,
and submenus inside its body. Now, let's declare, or create, the breadcrumb bar in
the following way:

//step 1

var myMenuStore = Ext.create('Myapp.sample.store.mainMenu',{});

var myPanel = Ext.create('Ext.panel.Panel',{

 title:'My first breadcrumb bar...',

 width:600,

 height:200,

 dockedItems:[{ //Step 2

 xtype : 'breadcrumb',

 dock: 'top',

Chapter 5

[155]

 store: myMenuStore,

 showIcons: true,

 selection: myMenuStore.getRoot().childNodes[2].childNodes[0]

 }],

 renderTo:Ext.getBody()

});

Step one is the creation of an instance previously deined 'Myapp.sample.store.
mainMenu', then we proceed to create the container myPanel.

Also, just as we declared the toolbar for the panel, we now set the breadcrumb bar by
setting the xtype property to breadcrumb. Also notice that we have other properties,
such as:

• The store: myMenuStore property is indicating to the breadcrumb where it's
going to retrieve the data to create its proper components (buttons, menus,
and so on).

• The showIcons:true property will control whether or not to show icons on
the buttons.

• The selection property will set the initial selected node/data model.
We can use root for set the irst element in the store, or in this case, we
set myMenuStore.getRoot().childNodes[2].childNodes[0], which is
selecting the Submit a ticket node, or data model.

Run the ile in the browser. We will get something similar to the following screenshot:

As you can see, at this moment, the breadcrumb is showing three buttons: My App,
Support, and Submit a ticket. The irst two buttons that you see contain a menu
displaying its child elements (the children deined in the store). Also, you can notice
that the irst and last button have gray icons. These are, in fact, default icons assigned

Buttons and Toolbars

[156]

by Ext JS. The second button has a help icon that was deined in the store:

{

 text: 'Support', iconCls:'help-16',

 children: [

 {leaf: true, text: 'Submit a ticket'},

 {leaf: true, text: 'Forum'},

 {leaf: true, text: 'Visit our web site'}

]

}

Click on the irst button and you will see the second and third disappear, as shown
in this screenshot:

Now, let's open the menu from the irst button and select Reports. A new button will
appear on the breadcrumb bar, like this:

Handling selections in the breadcrumb bar
So, we have created the breadcrumb, but we need a way to control it when it changes
the selection. The breadcrumb has the event selection change, which will be ired
each time we click on a button or a menu item created inside the breadcrumb bar.

Let's change the dockedItems property to the following code to control the change
of selection:

dockedItems:[{

 xtype : 'breadcrumb',

 dock: 'top',

 store: myMenuStore,

 showIcons: true,

 selection: myMenuStore.getRoot().childNodes[2].childNodes[0],

 listeners:{

Chapter 5

[157]

 'selectionchange':{

 fn:function(mybreadcrumb, node, eOpts){

 var panel = mybreadcrumb.up('panel');

 panel.update('This is the zone for:' + node.data.text +
 '');

 },

 delay:200

 }

 }

}],

We added the listeners property and set the handler for selectionchange. The
function will receive three parameters. The irst one is the instance of the breadcrumb
bar deined in mybreadcrumb, the second parameter is the selected node (data
model) deined in node, and the third parameter is the options object passed to the
Ext.util.Observable.addListener listener deined in eOpts.

Refresh the browser and change the selections to see the app in action, as follows:

Now, when we change the selection, the panel's contents will be updated with the
'This is the zone for:' + node.data.text + '' text, where node.
data.text is the value we set previously on each one of the root's children in the store.

So far, as a new component in version 5, the breadcrumb is a nice addition when
we need huge menus, submenus, or many complex ways to access parts of our
application. Using it on tablets will be a real space saver.

Buttons and Toolbars

[158]

The main menu for our application
At this point, we are going to go through an exercise to create the main menu for
our inal application. As of yet, we haven't worked so much on the application itself,
mainly because you have been learning the basics about the Ext framework, but from
now on, we can focus more on small pieces that will be reused for our inal app.

The following screenshot shows how we need to design the main menu for our
invoice management application:

Sencha Architect is very useful for creating prototypes quickly and also
for screen examples/wire framing. The previous screenshot was created
on Sencha Architect version 3.1.x using the classic theme for a better
understanding of how the components are to be placed.

As we can see from the screenshot, we need to create a toolbar docked at the top
and another toolbar docked on the bottom. The irst toolbar will contain two buttons
(each one with its own menu) and one text item, Ext.toolbar.TextItem, for
displaying the username. The second toolbar, which will be docked at the bottom,
will have a text item and a help button at the right side.

Also, for this exercise, we will need a component to take up all of the available space
in the browser (document body). So far, we have been using panels as containers, but
this time, we are going to use a Viewport.

Chapter 5

[159]

The Ext.container.Viewport component takes up all of the available space and
always listens to the resize event of the window's browser to recalculate the new
dimensions every time the user resizes the browser.

It is good practice to have only one Viewport per application, as this will
be our workspace inside the web page (document).

Let's start by creating a class that extends from the Viewport class. As this is only an
exercise—and later, we will reuse part of the code—there is not much to worry about
ile locations and other things. So, to create the Viewport, let's start with this code:

Ext.define('MyApp.view.Viewport',{

 extend: 'Ext.container.Viewport',

 layout: 'fit',

 initComponent: function(){

 var me = this;

 me.items = [{

 xtype: 'panel',

 }];

 me.callParent();

 }

});

The Viewport class extends from the container component, which means that we
can use any of the available layouts. In this case, we are going to use a fit layout,
because we want to expand the children of the Viewport.

As mentioned before, if we want to dock a component to any of the four sides,
we need to use a panel. The following code adds an empty panel to the Viewport
as a child:

me.items = [{

 xtype: 'panel',

}];

We are using the fit layout to expand the panel to it all of the Viewport. Now we
can set the docked items for this empty panel and dock a toolbar at the top:

dockedItems: [{

 xtype: 'toolbar', docked:'top',

 items: [{

 text: 'Home', iconCls: 'home-16',

 menu:[

 {text: 'Categories', iconCls: 'categories-16'},

Buttons and Toolbars

[160]

 {text: 'Products', iconCls: 'products-16'},

 {text: 'Clients', iconCls: 'clients-16' },

 {text: 'Invoices', iconCls: 'invoices-16'}

]

 },{

 text: 'Help', iconCls: 'help-16',

 menu: {

 xtype: 'menu',

 items: [

 {xtype: 'menuitem', text: 'Submit a support ticket'},

 {xtype: 'menuitem', text: 'Forum'},

 {xtype: 'menuitem', text: 'About...'}

]

 }

 },

 {xtype: 'tbfill'},

 {xtype: 'tbtext', text: 'User: Brett Fravre'}

]

}]

As in the previous code samples (toolbar), we have now added two new elements to
the toolbar, which are as follows:

• tbfill or Ext.toolbar.Fill: This is an item that will act as a placeholder,
forcing the next elements to render in the right-justiied way inside the
toolbar container

• tbText or Ext.toolbar.TextItem: This is an item that renders text or
HTML directly on the toolbar

Before testing, we need to declare the instance of the Viewport class we deined:

Ext.onReady(function(){

 Ext.create("MyApp.view.Viewport");

});

Indeed, the Viewport doesn't need the renderTo property, because it will
automatically get the document body. For the moment, we need to create the HTML
ile and run the example. We will get something similar to the following screenshot:

Chapter 5

[161]

Now, let's create the bottom toolbar with this code:

dockedItems : [{

 xtype : 'toolbar', docked:'top',

 //your code here…

},

{

 xtype : 'toolbar', dock:'bottom',

 items : [

 {xtype: 'tbtext', text: 'Status :Connected'},

 {xtype: 'tbfill' },

 {text:'', iconCls: 'help-16'}

]

}]

As you can notice, we added another toolbar item with the dock property with a value
of bottom. Its children are tbtext, tbfill and a button coniguration object that will
be on the right side of the toolbar. Refresh the browser and check the result, as follows:

Buttons and Toolbars

[162]

You'll be able to notice the following:

• The text item has the text property set to Status :Connected,
which is an HTML text.

• When we use the tbfill item, it ills the space between (pushes the next
components deined to the right) the previous element deined and the next
element deined after the tbfill element.

We can also use an arrow (->) to create an instance of the tbfill/Ext.
toolbar.Fill class item.

Finally, we need to check out what the menu items look like, as shown in the
following screenshot:

Also see the menu under the Help button, as shown in this screenshot:

Remember that in these examples, we are using the Neptune theme, so changing the
themes in Ext JS may vary the visual results of buttons and toolbars.

Also, it's important after this lesson that you test how to declare event handlers and
how to set items (as a coniguration object, a constructor, and an array) in different
ways. This will make you be sure of what type of code you need in some cases and
save you coding time in other cases.

Chapter 5

[163]

Summary
In this chapter, you learned about the basics of how to handle events and how
we can add, ire, and listen to events. You also learned about buttons, segmented
buttons, menus, toolbars, and the new breadcrumb bar.

At this point, we can use the addListener or on methods to add some actions when
buttons and options are clicked on, but in the next chapters, you are going to learn
about how to listen for events in a more convenient way.

Also, we created as an exercise a few toolbars, and we will use them in upcoming
chapters for our inal application. In the next chapter, you will learn about the basics
of forms that use listeners, and different ways to set items and properties inside
coniguration objects.

[165]

Doing It with Forms
Ext JS comes with powerful widgets for collecting and editing data. We have the
form component and many types of input widgets. These include the textield,
textarea, radio, checkbox, combobox, slider, and many more types.

In this chapter, you are going to learn about the components we can use to collect
data in our applications. Also, we will work on some parts to be reused for our inal
application, as well as create some forms.

The following topics will be covered in this chapter:

• The form component

• The available ield types
• The ield container
• Submitting data

The form component
Ext JS contains a component called Ext.form.Panel. This component is a subclass
of Ext.panel.Panel and uses Ext.form.Basic as a required class. This class is
fundamental for handling the form's submission.

Doing It with Forms

[166]

When designing applications, it's important to mention that a previous analysis
may be clear for us, so we create blocks (code, forms, components, and so on)
that can be reused in other modules. The following screenshot represents a part
of our application. We can see that the form component will need to have certain
functionalities, such as create, edit, delete, and so on.

As you can see, the form prototype on the right side contains a title, one toolbar at
the top, one toolbar at the bottom, and then six ields. Now we can begin creating the
form as a separate component. As in our previous code samples, we extend our new
class from the Ext.form.Panel class:

Ext.define('MyApp.view.CustomerForm01', {

 extend: 'Ext.form.Panel',

 alias: 'widget.customerform01',

 height: 280,

 width: 448,

 bodyPadding: 6,

 title: 'Customer (....)',

 items: [],

 dockedItems: []

});

This code so far does not do very much. We are creating the base code to extend
later in the form panel. As you can see, this code sets some default attributes, such as
height, width, bodyPadding, and title. So far, the items and docked properties
are empty.

Chapter 6

[167]

Keep in mind the conventions deined in Chapter 2, The Core Concepts, when creating
classes. So, we need to create the ile and place the previous code in the appcode/
view/CustomerForm01.js path.

As in the previous code samples, let's create the HTML ile and run it to test our
basic coniguration:

<!doctype html>

<html>

<head>

 <meta http-equiv=”X-UA-Compatible” content=”IE=edge”>

 <meta charset=”utf-8”>

 <title>Extjs - Form 01 </title>

 <link rel=”stylesheet” type=”text/css” href=”../ext-5.1.1/build/
packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css”>

 <script src=”../ext-5.1.1/build/ext-all.js”></script>

 <script src=”../ext-5.1.1/build/packages/ext-theme-neptune/build/
ext-theme-neptune.js”></script>

<link rel=”stylesheet” type=”text/css” href=”../shared/styles/buttons.
css”>

<script type =”text/javascript” src=”form_01.js”></script>

</head>

<body style=”padding:6px;”>

</body>

</html>

Now let's create the form_01.js ile with the following code:

Ext.Loader.setConfig({

 enabled: true,

 paths:{Myapp:'appcode'}

});

Ext.require([

 'Ext.form.*',

 'Ext.toolbar.*',

 'Ext.button.*',

 'Myapp.view.CustomerForm01'

]);

Ext.onReady(function(){

 var mypanel = Ext.create('Myapp.view.CustomerForm01',{

 title:'My first customer form...',

 renderTo: Ext.getBody()

 });

 console.log ('Ok');

});

Doing It with Forms

[168]

Let's run and test the basic code. We will get a result similar to this:

The form panel is created without any content or items. Remember that we can add
any available component and widget, so now let's add some ields. Let's change the
items property as shown in the following code:

items: [{

xtype: 'numberfield',

anchor: '60%',

 fieldLabel: 'Customer ID'

},{

xtype: 'textfield',

anchor: '-18',

fieldLabel: 'Name'

},{

xtype: 'textfield',

fieldLabel: 'Phone'

}]

The items property now has three ields: one number ield and two text ields. Also,
we set the anchor property on two ields, and the third is without it.

By default, Ext.form.Panel uses the anchor layout, which is
explained in Chapter 3, Components and Layouts.

Chapter 6

[169]

Let's refresh our browser and see the next result, as follows:

Okay, so now we have three ields in our form, and you can notice that each ield
has a different width. From Ext JS version 4 onward, we can set them individually
for each ield, such as labelWidth, labelAlign, and other properties. We have two
useful properties inside the form panel, which are defaultType and defaults.

The defaultType property lets us set the default xtype for each ield (where the
xtype property is not deined), and the defaults property lets us deine many
conigurations that will be applied to all child items (if it's possible to apply them).
Let's make the following change to the form class:

Ext.define('MyApp.view.CustomerForm01', {

 extend: 'Ext.form.Panel',

 alias: 'widget.customerform01',

 height: 280,

 width: 448,

 bodyPadding: 6,

 defaultType:'textfield',

 defaults:{

 anchor:'-18',

 labelWidth:90,

 labelAlign:'right'

 },

 title: 'Customer (....)',

 items: [{

Doing It with Forms

[170]

 fieldLabel: 'Customer ID',

 },{

 fieldLabel: 'Name',

 },{

fieldLabel: 'Phone',

}],

 dockedItems: []

});

Now all the three items/ields will have anchor, labelWidth, and labelAlign at
the same frequency. Let's refresh the browser and see the result, which should be
like this:

We converted the three ields to textfield. Also, the label alignment was set to the
right and all have the same width. As you can see, the use of defaultType and
defaults is very convenient, so we will have to code only a few lines in our ile, and
this code will be applied to many ields/components.

Therefore, according to our Customers form, let's create the other ields and the
toolbars. Let's change the items property as follows:

items: [{

xtype: 'numberfield',fieldLabel: 'Customer ID',

},{

 fieldLabel: 'Name',

},{

fieldLabel: 'Phone',

},{

fieldLabel: 'Web site',

},{

xtype: 'datefield',fieldLabel: 'Client since',

Chapter 6

[171]

},{

xtype: 'combobox',fieldLabel: 'Status',

}],

Now let's create the toolbars (as shown in Chapter 5, Buttons and Toolbars):

dockedItems: [{

 xtype: 'toolbar',

 dock: 'bottom',

 items: [{

 xtype: 'tbfill'

 },{

 xtype: 'button',

 iconCls: 'save-16',

 text: 'Save...'

 }]

},{

 xtype: 'toolbar',

 dock: 'top',

 items: [{

 xtype: 'button',

 iconCls: 'addicon-16',

 text: 'New'

 },{

 xtype: 'button',

 iconCls: 'editicon-16',

 text: 'Edit'

 },{

 xtype: 'tbfill'

 },{

 xtype: 'button',

 iconCls: 'deleteicon-16',

 text: 'Delete'

 }]

}]

Notice that we are reusing the same CSS classes as in Chapter 5, Buttons
and Toolbars. However, you can use new classes and other icons as well.

We have inished our irst form, but it is not doing anything yet. We will add the
functionality shortly. For now, let's just move forward and check out the other
sections in order to understand more about Ext JS's available ields.

Doing It with Forms

[172]

The anatomy of the ields
Ext JS provides many components to give the user a great experience when using
their applications. The following ields are components we can use in a form or
outside of it.

For example, we can add a text ield or a combobox inside a toolbar instead of
buttons, so in this way, we can place ields inside the toolbar in order to make them
act like ilters or search options.

Every input ield extends the Ext.Component class. This means that every ield has
its own life cycle and events and can also be placed on any container.

There's also a class called Ext.form.field.Base that deines common properties,
methods, and events across all form ields. This base class also extends from the Ext.
form.Labelable and Ext.form.field.Field classes (by the use of mixins).

The Labelable class gives the ield the ability to display a label and errors in every
subclass, such as textields, comboboxes, and so on.

The Field class gives the ields the ability to manage their value, because it adds
a few important methods, such as the getValue and setValue methods, to set
and retrieve the current value of the ield. This class also introduces an important
concept, the raw value.

A great example of the raw value is when we pull data from our server and get a
date value in string format. The raw value is in plain text, but the value of the date
ield should be in a native Date object so that we can work easily with dates and
times. We can always use the raw value, but it's recommended to use it instead. It is
a Date object in this example.

The available ields
Ext JS provides many widgets that we can use to collect and edit data in our forms.
You are going to learn about the most useful widget and conigurations that you can
use to create beautiful forms. Some of the ields we are going to see are as follows:

• text

• number

• combobox and tag

• date

• checkbox and checkboxGroup ields
• radio and radioGroup ields

Chapter 6

[173]

The ields that we are going to cover are the basic ones. Ext JS provides many more
ields, which can be seen in the Ext JS examples, and also many of them are based on
subclasses from these. For the following examples, we are going to create a class that
extends from the Form class and holds the ields that we are going to explain in detail
later on:

Ext.define('Myapp.view.AvailableFields01', {

 extend: 'Ext.form.Panel',

 alias: 'widget.availablefields01',

 requires: ['Ext.form.*'],

 height: 280,

 width:448,

 bodyPadding: 6,

 title: 'Available Fields',

 defaultType:'textfield',

 defaults:{

 anchor:'-18',

 labelWidth:100,

 labelAlign:'right'

 },

 initComponent: function() {

 var me = this;

 var myItems = me.createFields();

 Ext.applyIf(me,{items: myItems});

 me.callParent(arguments);

 },

 createFields: function (){

 var newItems=[];

 return newItems;

 }

});

In this example we set the initComponent function. Here, we can create code for
different events: initialization, ield validation, and so on. In this case, we are calling
the createFields function in order to get the ields we need to set on the
property Items.

Also, we deined the createFields function. This is where we are going to set the
other ields while we are advancing in this chapter.

Using a function to deine the items array is a great way of writing
our code for readability. Also, if you wish to extend this class, we can
override this method and add more components to your form in the
subclass.

Doing It with Forms

[174]

The TextField class
We have already used the TextField class to create our Customer form panel, and
we used the xtype property to create it. We can always create the instance using the
Ext.create method, and the class that we should instantiate is Ext.form.field.
Text.

This class extends from the Ext.form.field.base class and is intended to manage
text as a string value. It deines some important events, such as keydown, keypress,
and keyup. These events are very useful for catching the keys that the user enters in a
textield component.

It's important to keep in mind that if we want to use these events, we need to set
the enableKeyEvents property to true. Therefore, let's change our createFields
function to the following code:

 createFields: function (){

 var newItems=[];

 // Step 1

 var myTextField = Ext.create('Ext.form.field.Text',{

 fieldLabel:'Name',

 name:'firstname',

 enableKeyEvents : true

 });

 // Step 2 (assign listener to the text field)

 myTextField.on({

 keyup:{

 fn:function(thisField, evt, eOpts){

 if(evt.getCharCode() === evt.ENTER){

 if (thisField.getValue()!=''){

 Ext.Msg.alert('Alert','Welcome: '+

thisField.getValue());

 }

 }

 }

 }

 });

 newItems.push(myTextField);

 return newItems;

}

In Step 1, we created a new instance of the Ext.form.field.Text class and set the
fieldLabel, name, and enableKeyEvents properties.

Chapter 6

[175]

In the second step, we attached an event listener to the ield. In this case, the ield
will react to the keyup event. So, every time the user releases a key on the keyboard,
the callback function will be executed. In the code, we wait for the user to press the
Enter key, and when that happens, the code shows an alert message with the value
entered on the text, if there is any value for the ield.

Ext JS provides a wrapper for the native event object. This wrapper
deines many constants, such as the Enter key. We can see all the
available constants in the Ext JS documentation, in the Ext.event.
Event class.

Okay, now let's run the code or refresh the browser to see how the text ield works.
You may see something like this:

As we can see in the previous example, all the ields extend from the Observable
class. Therefore, we are able to add events and listeners to all form ields. We should
take a look at the documentation to see all the available events that we can use to
our advantage.

Other common properties frequently used on text ield are minLength and
maxLength. These two properties allow on ield restrictions and possesses a range of
a minimum number and a maximum number of input characters that the ield can
accept. Let's change the text ield properties to implement these features:

var myTextField = Ext.create('Ext.form.field.Text',{

 fieldLabel:'Name',

 name:'firstname',

Doing It with Forms

[176]

 enableKeyEvents : true,

 minLength : 4,

 minLengthText: 'Name is too short, at least {0} chars..!',

 maxLength : 25,

 maxLengthText: 'Name is too long, max length is {0} chars..!'

});

The minLength property is set to 4, so Ext JS will handle/ensure that the minimum
length is met, otherwise the ield will be marked as invalid and with an error. See the
following screenshot to understand this:

As you can notice, this ield is marked as invalid (with an error), thanks to the red
border. Now let's place the mouse over the ield, and a tool tip will appear.

By default, ields in Ext JS have a property called msgTarget. This property will set
how the error message should be displayed on the ield. The most common values
for this property are qtip, under, and side. Also, Ext JS allows us to customize the
error message with the help of the minLengthText and maxLengthText properties.
Consider the following line of code:

minLengthText: 'Name is too short, at least {0} chars..!',

In the preceding line of code, the {0} part will be like a variable/placeholder to be
replaced automatically by Ext JS, using the minLength value if the min length is
not fulilled.

You can deine the msgTarget property in all the ield components that
Ext JS handles, and you can also assign customized messages for errors
according to your needs.

It's important to mention that we should take a look at the documentation to see all
the available coniguration options, properties, and events that we can use to our
advantage, and use them according to our needs.

Chapter 6

[177]

The number ield
When dealing with numbers, Ext JS has a number ield that only accepts numbers
as values. In this way, we can ensure that the user will not be able to introduce any
invalid characters. We can also customize the value range to be accepted (minimum
and maximum values), decimal places, and much more. This ield comes with
integrated spinners/triggers to let us increase or decrease the value in it.

Let's add the following code to our createFields function:

createFields: function (){

 var newItems=[];

 ...

 newItems.push(myTextField);

 var myAgeField = Ext.create('Ext.form.field.Number',{

 fieldLabel:'Age',

 name:'age',

 minValue: 18,

 maxValue: 70,

 allowDecimals : false

 });

 var myIncomeField = Ext.create('Ext.form.field.Number',{

 fieldLabel:'Income',

 name:'income',

 minValue: 0,

 allowDecimals : true,

 decimalPrecision : 2,

 negativeText : 'The income cannot be negative..!',

 msgTarget:'side'

 });

 newItems.push(myAgeField);

 newItems.push(myIncomeField);

 return newItems;

}

Doing It with Forms

[178]

We are adding two ields, one for age and the other for income. The age ield has
a validation value range from 18 to 70; other values will make this ield invalid.
The income ield, on the other hand, allows decimals (allowDecimals: true,
decimalPrecision: 2,), but does not allow negative values. Otherwise, we will get
the The income cannot be negative..! message error. Now refresh the browser and
test the new ields; you should see something like the following screenshot:

Check out the Income ield; we set the msgTarget property to side. This creates an
alert icon next to the ield (to the right side), and when we place the mouse arrow
over the icon, the tooltip appears showing the error message set in the negativeText
property. Also notice that the age ield is marked as invalid because the value is 5.

Notice that on the right side of the ield, there is the spinner/trigger (up arrow and
down arrow). This lets us increase the value according to the step property. By
default, it is set to 1, but we can change it. Let's make a small change to the income
ield; we add the step property and set its value to 500. Refresh browser and check
the increment when pressing the up button from the spinner, as shown here:

Finally, we need to make a change to the age ield. This ield doesn't require the
spinner to be there, so it's ine for us to hide the spinner from the numeric ield with
the hideTrigger property:

Chapter 6

[179]

var myAgeField = Ext.create('Ext.form.field.Number',{

 fieldLabel:'Age',

 name:'age',

 minValue: 18,

 maxValue: 70,

 allowDecimals: false,

 hideTrigger:true

});

In this way, the spinners will not be shown and we will have something similar to a
text ield, with the ability to accept only numbers.

If you set more triggers to this ield, the hideTrigger property will
also consider them to be hidden (we will talk about triggers later).

There are many more conigurations for this ield, such as the ability to change the
decimal separator so that only numbers without decimals will be allowed, and many
more options that we can use to our advantage.

Even if we accept numbers (a text ield or number ield), it's important
to set validations on the server side and never rely on the client side.
Not using server-side validation may be subject to code injections.

The ComboBox ield
The ComboBox ield is one of the most widely used widgets in Ext JS. This type of
ield lets us display a list of options (select input). It is a very lexible component that
we can customize to our needs.

Also, these types of ields rely on the data package (store), which you have learned
earlier in this book (Chapter 4, It's All about the Data). We are going to use the Store
class with a local data to ill our combobox. So let's create the code for our combobox
in our createFields function:

//Combobox Step 1 (store)

var occupationStore = Ext.create('Ext.data.Store',{

 fields: ['id', 'name'],

 data : [

 {id: 1 ,name: 'CEO' },

 {id: 2 ,name: 'Vicepresident' },

 {id: 3 ,name: 'Marketing manager' },

Doing It with Forms

[180]

 {id: 4 ,name: 'Development manager' },

 {id: 5 ,name: 'Sales manager' }

]

});

//Combobox Step 2 (create field)

 var myFirstCombo = Ext.create('Ext.form.ComboBox', {

 fieldLabel: 'Occupation',

 name:'employeeoccupation',

 store: occupationStore,

 queryMode: 'local',

 displayField: 'name',

 valueField: 'id'

});

newItems.push(myFirstCombo);

Step 1 is the deinition of the store with static (local) data that the combobox will
use. Also note that this store is not using an existing model (as seen in Chapter 4, It's
All about the Data); Ext JS internally creates the model, thanks to the ield's property
that we set on the store.

In Step 2, we create Ext.form.ComboBox, deining the name for the fieldLabel
property as the previous ields. But there are some new conigurations set in order to
make the combobox work properly.

First, we set the store property. The combobox will use it to display the data
(options). The queryMode property set to local indicates to the combobox not to
load data of the store in a remote way (when the list of options is displayed). Finally,
we set how the combobox ield will display and handle the selected option with the
displayField and valueField properties.

Chapter 6

[181]

Let's save the changes and refresh our browser to see the following result:

We are watching the combobox we created. Now set the focus on the combobox ield
and type de. You can see that the combobox will automatically reduce the list, as
shown in this screenshot:

Internally, the combobox will try to ilter its store's data according to what the user is
typing to reduce the range of selection and make a quick selection process (for better
user experience).

Doing It with Forms

[182]

Now, since we are using a store to hold the displayed data, we can use an AJAX
proxy to get the content of the store from our server. Try changing the code in the
store like this:

 var occupationStore = Ext.create('Ext.data.Store',{

 fields : ['id','name'],

 autoLoad:true,

 proxy:{

 type:'ajax' ,

 url :'serverside/occupations.json',

 reader:{

 type:'json',

 root:'records'

 }

 }

 });

Now we need to create the occupations.json ile. Create and save it inside the /
serverside folder and place the following code in it:

{

 “success”:true,

 “id”:”id”,

 “records”:[

 {“id”: 1 ,”name”: 'CEO' },

 {“id”: 2 ,”name”: 'Vicepresident' },

 {“id”: 3 ,”name”: 'Marketing manager' },

 {“id”: 4 ,”name”: 'Development manager' },

 {“id”: 5 ,”name”: 'Sales manager' }

]

}

As you can see, we only changed the proxy of the store. We also deined an AJAX
proxy and a JSON reader. Now, if we refresh our browser, we can see that the data
loads remotely.

This is one of the greatest advantages of Ext JS. We can change things very easily
because Ext is built with small classes that can be switched at any time. It's very
common that we need to do something when an option from the list is selected; for
example, loading another combobox or hiding or showing some other ields. We can
listen to the select event and perform the required actions:

myFirstCombo.on('select',function(combo,records){

 Ext.Msg.alert('Alert',records[0].get('name'));

 });

Chapter 6

[183]

The previous code listens to the select event and only shows an alert message with
the name of the selected record. Here, we can do whatever we need, such as loading
the data of another combobox depending on the selection of the irst. The callback
receives the array of records selected; it's an array because we can also conigure our
combobox to allow the user to select more than one option.

We can use any of the available events to perform some actions, but one of the most
important events for this widget is the select event.

The Tag ield
In version 5, the tag ield was introduced. It is a subclass of the combobox. Its
creation is similar, but it allows us to make multiple selections. Let's add this code to
our createFields function:

var zonesStore = Ext.create('Ext.data.Store',{

 fields : ['id','name'],

 data : [

 {id: 1 ,name: 'Zone A' },

 {id: 2 ,name: 'Zone B' },

 {id: 3 ,name: 'Zone C' },

 {id: 4 ,name: 'Zone D' },

 {id: 5 ,name: 'Zone E' }

]

});

 var myFirstTag =Ext.create('Ext.form.field.Tag', {

 fieldLabel: 'Select zone',

 store: zonesStore,

 displayField: 'name',

 valueField: 'id',

 filterPickList: true,

 queryMode: 'local'

 });

 newItems.push(myFirstTag);

As you can see, the process is similar to that of the combobox. In this case, we have a
new property called filterPickList. This property will make sure that the selected
options aren't displayed again when expanding the options list.

Doing It with Forms

[184]

Upon refreshing the browser, we see the following result:

You can erase a selected item by clicking on the X sign on the right side of each
selected option. Also, you can see that the selected options are not repeated in
the list. One of the disadvantages of this ield is that depending on the number of
selections you have made, the size (height) of the ield will grow.

The Date ield
Ext JS provides an easy way to collect dates; we have at our disposal a date picker
that will handle the selection of a date using a fancy calendar, or by allowing the user
to type the date in the format we deine. The most basic usage is by setting only the
name and the label of the ield, as shown in this code:

 var datefield = Ext.create('Ext.form.field.Date',{

 fieldLabel: 'Birthday',

 name: 'birthday'

 });

Chapter 6

[185]

This will give us the following output:

We deined our date ield in a very simple way, but there are many more
conigurations we can use. Let's dig a bit more to customize these ields to meet
our requirements.

By default, the format used to display the date is m/d/Y (05/22/2012). This is a
common format used in the U.S., but not in other countries. To deine a custom
format for a different region or country, we need to use the format property,
as follows:

 var datefield = Ext.create('Ext.form.field.Date',{

 fieldLabel: 'Birthday',

 name: 'birthday',

 format: 'd/m/Y',

 submitFormat: 'Y-m-d'

 });

 newItems.push(datefield);

We can use any format to display the date, and also set the format that we want the
ield to be in when we submit the form or retrieve it and when we get the values.
Deining the submitFormat property is very important because it is this format
that we will be using under the hood; in this example, we use a format common in
databases.

Doing It with Forms

[186]

The m/d/Y format refers to the commonly used mm/dd/yyyy format.
This may be confusing, but we should take a look at the Ext.Date
object documentation to see all the supported formats that we can use.

Right now, the user is able to type in the ield to enter the date in the correct format.
However, using slashes may slow down the user's typing. We can allow alternative
formats to make things easier for them; for example, we can deine d-m-Y as a valid
format and as many other formats as needed:

 var datefield = Ext.create('Ext.form.field.Date',{

 fieldLabel: 'Birthday',

 name: 'birthday',

 format:'d/m/Y',

 submitFormat:'Y-m-d',

 altFormats: 'd-m-Y|d m Y|d.m.Y'

 });

Using the altFormats property, we can deine all the formats we want. We only
need to separate each format by a pipe character (|), and those formats will be
used to parse the text to a date object. We should not use the pipe inside any of the
formats because there is no way to escape this character. A format like m|d|Y will
not work.

We have many more properties available, such as minValue and maxValue, and the
ability to disable some speciic dates, such as weekends and holidays:

var datefield = Ext.create('Ext.form.field.Date',{

fieldLabel: 'Deliver Date',

 name: 'deliverdate',

 format:'d/m/Y',

 submitFormat:'Y-m-d',

 altFormats: 'd-m-Y|d m Y|d.m.Y',

 disabledDates: ['31/12/2014','01/01/2015']

});

If we want to disable a range of days, we can use regular expressions to match the
dates that we want to disable. Some examples are as follows:

//disable everyday in march 2012

disabledDates: ['../03/2012']

//disable everyday in march for every year

disabledDates: ['../03/..']

Chapter 6

[187]

//disable the 05 and 21 of march for every year

disabledDates: ['05/03','21/03']

We can also use the select event which is ired when the user selects a date. We can
do whatever we need inside the callback function, just as we did in the combobox.

The Checkbox and the CheckboxGroup ields
We have the option of using a single checkbox to set a single record as active or
inactive. Or maybe, we can have a group of options that we need to display and
allow the user to select a few of them. Let's add a single checkbox to our form:

 var mysinglecheckbox = Ext.create('Ext.form.field.Checkbox',{

 fieldLabel:' ',

 labelSeparator:' ',

 boxLabel: 'employee has hobbies ? ',

 name: 'hobbies'

 });

 newItems.push(mysinglecheckbox);

Here, we have created our checkbox. We are using the boxLabel property to set the
label of our checkbox. It's important to know that we are setting the fieldLabel and
labelSeparator properties as empty space. Therefore, the checkbox will be aligned
correctly. If we set fieldLabel as an empty string, then Ext JS will assume that no
ield label has been created, and this may cause something like what is shown in the
following screenshot:

Now we have our checkbox in place. Having a single checkbox is great, but there are
times when we need to deine a few more options. We can use a group of checkboxes
to arrange the components horizontally, vertically, or in columns:

//Step 1

var groupCheckboxes = Ext.create('Ext.form.CheckboxGroup',{

 fieldLabel: 'Hobbies',

 columns: 2,

 items: [

 {name: 'hobby',boxLabel: 'Videogames',inputValue: 'vg'},

 {name: 'hobby',boxLabel: 'Sports',inputValue: 'sp'},

Doing It with Forms

[188]

 {name: 'hobby',boxLabel: 'Card games',inputValue: 'cg'},

 {name: 'hobby', boxLabel:'Movies',inputValue: 'mv'},

 {name: 'hobby', boxLabel:'Collecting toys',inputValue: 'ct'},

 {name: 'hobby', boxLabel:'Music',inputValue: 'ms'},

 {name: 'hobby', boxLabel:'Others...',inputValue: 'ot'}

]

});

newItems.push(groupCheckboxes);//Step 2

In the irst step, we created an instance of the CheckboxGroup class. We deined
the label of the group and gave each item a checkbox, with its label and value. We
arranged the items in two columns. In the last step, we added the group to the
returning array so that it appears in our form, like this:

The Radio and RadioGroup buttons
Radio buttons are useful when we want to force the user to select only one item from
a small group of choices. If we want to present more choices, a combobox is an easier
widget to code and use.

A radio button is very similar to a checkbox. In fact, the radio button extends from
the Checkbox class. This means that radio buttons also have the same properties and
methods as the checkbox. Now let's proceed to add two radio ields to our form:

 var radioYes = Ext.create('Ext.form.field.Radio',{

 name: 'option',

 fieldLabel: 'Employee has a car?',

 labelSeparator : '',

 boxLabel: 'Yes',

 inputValue : true

Chapter 6

[189]

 });

 var radioNo = Ext.create('Ext.form.field.Radio',{

 name: 'option',

 hideLabel:true,

 boxLabel: 'No',

 inputValue: false

 });

 newItems.push(radioYes, radioNo);

We are creating two instances of the Radio class in exactly the same manner as we
created the Checkbox class. During the creation of the Checkbox class, we added two
radio buttons to the returning array. The following screenshot shows what the two
radio buttons that were created look like:

It is important to assign the same name to the radio buttons so that only one option
can be selected among the available options.

As we can see in the previous screenshot, the radios are arranged one on top of the
other because they were declared as separate instances. But what if we want to align
them horizontally? We can use a radiogroup component, which is the most common
practice for radio buttons, and set the number of columns as two. In this way, we
will have our two radio buttons in the same line:

var radioGroup = {

 xtype: 'radiogroup',

 fieldLabel: 'Employee level',

 columns: 2,

 vertical:true,

Doing It with Forms

[190]

 items: [

 { boxLabel: 'Beginner', name: 'rb', inputValue: '1' },

 { boxLabel: 'Intermediate', name: 'rb', inputValue: '2'},

 { boxLabel: 'Advanced', name: 'rb', inputValue: '3',

 checked: true

 },

 { boxLabel: 'Ninja', name: 'rb', inputValue: '4' }

]};

newItems.push(radioGroup);

This is very similar to what we did with the checkbox group. We can deine as many
radio buttons as we need, and all of them will be arranged in two columns, as shown
in the following screenshot:

Note that in the radio with boxLabel:'Advanced', we set a property called checked.
This will allow us to set the initially selected radio button.

The ield container
There are times when we need to group more ields or components other than
checkboxes and radio buttons. Ext JS provides a ield container for grouping of any
type of ield.

Chapter 6

[191]

One of the advantages of using a ield container is the ability to use a layout; we
can use any of the available layouts in the framework. You learned about layouts in
previous chapters.

The following code shows how we can group a textield and a combobox to show
these ields in the same line. Now we have to add two new ields and the ield
container:

var myFieldContainer = {

 xtype: 'fieldcontainer', //step 1

 height: '',

 fieldLabel: 'Shoes / Dress size',

 layout: { type: 'hbox', align: 'stretch' }, //step 2

 items: [{

 xtype: 'numberfield',

 flex: 1,

 hideLabel:true

},{

 xtype: 'splitter' //Step 3

 },{

 xtype: 'combobox',

 flex: 1,

 hideLabel:true,

 labelWidth: 10,

 store:Ext.create('Ext.data.Store',{

 fields : ['id','name'],

 data: [

 {id:1 ,name:'small'},

 {id:2 ,name:'medium'},

 {id:3 ,name:'large'},

 {id:4 ,name:'Xl'},

 {id:5 ,name:'XXL'}

]

 }),

 queryMode: 'local',

 displayField: 'name',

 valueField: 'id'

 }

]

};

newItems.push(myFieldContainer);

First, we deined a conig object and set the xtype property to 'fieldcontainer'.
In step 2, we deined the layout property that fieldcontainer will use for the
items contained in it. The layout used was flex in order to make it lexible.

Doing It with Forms

[192]

In the third step, we created a splitter object (Ext.resizer.Splitter). In this
way, we can create a small gap between the two ields. Finally, we set invisible labels
using hideLabel:true on the combobox and numberfield properties respectively.

This was done because fieldcontainer will handle the fieldLabel property
shown in the form. The form shown in this screenshot relects the changes in
our code:

This is how we can arrange the ields—in any way we want. Using the ield container
is a great way to accomplish this task. We can add as many components as we need,
and also use any available layout for the ield container component.

Triggers
In Ext JS version 5, the Trigger ield was deprecated, and now triggers are set inside
text ields. So now, we can add one or many triggers to a single ield.

In order to work with triggers, let's write the following code:

var myTriggers = Ext.create('Ext.form.field.Text' , {

 fieldLabel: 'My Field with triggers',

 triggers: {

 searchtext: {

 cls: 'x-form-search-trigger',

Chapter 6

[193]

 handler: function() {

 Ext.Msg.alert('Alert', 'Trigger search was clicked');

 this.setValue('searching text...');

 }

 },

 cleartext: {

 cls: 'x-form-clear-trigger',

 handler: function() {

 Ext.Msg.alert('Alert', 'Trigger clear was clicked');

 this.setValue('');

 }

 }

 }

});

newItems.push(myTriggers);

First, we created an instance of the Ext.form.field.Text class, and set the
triggers property, which will be a coniguration object deining one or more
triggers. In this case, we deined two: searchtext and cleartext. Each trigger has
two properties:

• cls: This is used to deine the icon that the trigger will use
• handler: This is the function that will be executed when the trigger is

clicked on

Now let's check the handler of one trigger:

cleartext: {

 cls: 'x-form-clear-trigger',

 handler: function() {

 Ext.Msg.alert('Alert', 'Trigger clear was clicked');

 this.setValue('');

 }

}

Doing It with Forms

[194]

When the cleartext handler is executed, an alert message will be displayed and
then the this.setValue(''); code will be executed. It's important to mention that
the scope of the trigger's handler will be the component, which in this case is the
instance of Ext.form.field.Text that we created. So, when this.setValue('');
is executed, it will clear the value/text in the component itself. Refresh the browser
and test the handlers of each trigger. You will see something similar to the
following screenshot:

Submitting the data
So far, we have seen how to create and conigure the components to collect data
using the available widgets, but we need to do something with it. Ext JS provides
different ways to submit the captured data to our server.

The Ext.form.Panel class contains an instance of the Ext.form.Basic class.
This class is used to manage the data within the form, such as validations, settings,
retrieving data from the ields, submitting and loading data from the server, and
so on.

Let's make some slight changes to our irst form:

Ext.define('Myapp.view.CustomerForm02', {

 ...

 initComponent: function() {

 var me = this;

 me.dockedItems= [{

 xtype: 'toolbar',

Chapter 6

[195]

 dock: 'bottom',

 items: [

 {

 xtype: 'tbfill'

 },{

 xtype: 'button',

 iconCls: 'save-16',

 text: 'Save...',

 handler:function(){ //step one

 this.submitMyForm();

 },

 scope:this

 }

]

 }];

 Ext.applyIf(me,{});

 me.callParent(arguments);

 },

 submitMyForm:function (){ step 2

 var me = this;

 me.getForm().submit({

 url:'serverside/submitaction.php',

 success: function(form, action){

 Ext.Msg.alert('Success', 'Successfully saved');

 },

 failure: function(form,action){

 Ext.Msg.alert('Failure', 'Something is wrong');

 }

 });

 }

});

We deined a handler on the Save button and executed the submitMyForm function
deined in the form panel. So, when the button is clicked on, the submitMyForm
function is executed.

In the second step, we deined the submitMyForm function. In this function, we get
what is in the basic form and then execute the submit method. This method receives
an object with the URL where the AJAX request will be made and the success/failure
callback.

The submit method executes an AJAX request using the POST method and sends
all of the data inside the form (either the input by the user or the hidden ields).
The way we get these parameters on the server side depends on the technology
we are using.

Doing It with Forms

[196]

For example, if we are using PHP, we can use something like the following code:

<?php

 $name = $_POST['cust_name'];

 $phone = $_POST['cust_phone'];

....

When you handle values in the server-side iles (PHP, ASP, and so on)
you need to be careful to treat and validate POST values in order to
avoid injections or hacking attempts.

You can check out how parameters are passed, as shown in the windows in the
following screenshot:

Chapter 6

[197]

The server code provided here is just an example and is not complete. The
implementation of that is beyond the scope of this book. However, based on the
received data, you can take that information and do whatever you need to do with it.

Summary
In this chapter, you learned about forms and the basic ields that you can use to
collect and edit data. We have many options and conigurations available, and
we can use them to customize our forms. The ield container is one of the new
components added since version 4 of the Ext JS framework, and it allows us to
arrange ields using any of the available layouts in the framework, giving us a
powerful layout system.

You also learned about the new trigger coniguration on text ields and how to
submit data.

In the following chapter, you will learn about the grid component. This is one of
the most powerful widgets in the framework because it's very lexible, with lots of
plugins and conigurations.

Chapter 7

[199]

Give Me the Grid
The grid component is one of the most popular and widely used components of the
Ext JS library. It allows us to display, sort, group, and perform many more operations
in easy ways, thanks to the use of plugins and features. We can show grids with a
large amount of data and get a nice performance from our application.

In this chapter, we are going to see how the Grid panel works and look at the basic
conigurations that we need. We will cover the following topics in this chapter:

• The basic Grid panel

• Columns

• Renderers

• Widgets and the widget column

• Selection models

• Grid listeners

• The Grid's features

• The Grid's Plugins—CellEditing and RowEditing

• Grid paging

• Ininite scrolling

Give Me the Grid

[200]

The data connection (models and stores)
The main function of the Grid panel is to display data, so this means that we always
need to use a store. In Chapter 4, It's All about the Data, we talked about the use of
data packages (models and stores). Like other components, the grid uses the data
in the store in order to display it. It's usually seen that Ext JS has classes that have
their own responsibilities. On one hand, the grid is responsible for displaying data,
while on the other hand, the responsibility of the store is to fetch, update, erase, and
manipulate data.

At this moment, in order to advance further, we need to use the Customer data
model used in the One-to-one association section of Chapter 4, It's All about the Data.
The code is as follows:

Ext.define('Myapp.model.Customer'{

 extend:'Ext.data.Model', // step 1

 requires: ['Myapp.model.Contract'],

 idProperty:'id', // step 2

 fields:[// step 3

 {name: 'id' , type: 'int'},

 {name: 'name' , type: 'string'},

 {name: 'phone' , type: 'string'},

 {name: 'website' , type: 'string'},

 {name: 'status' , type: 'string'},

 {name: 'country' , type: 'string'},

 {name: 'sendnews', type: 'boolean'},

 {name: 'clientSince', type: 'date', dateFormat: 'Y-m-d H:i'},

 {name: 'contractInfo', reference: 'Contract', unique:true }

]

});

As you may remember, we created a customer model that extends from Ext.data.
model and has all the properties (ields) of the data that we need for each client. Now
it's time to create the store that our irst grid will use to display the data:

Ext.define('Myapp.store.customers.Customers', {

 extend: 'Ext.data.Store',

 model: 'Myapp.model.Customer',

 autoLoad: true,

 proxy:{

 type: 'ajax',

 url: 'serverside/customers.json',

 reader: {type:'json', rootProperty:'records'}

 }

});

Chapter 7

[201]

Finally, we need the customers.json ile, which may contain the response data that
our store will retrieve:

{

 "success" :"true",

 "id":"id",

 "records":[

 {

 "id": 10001,

 "name": "Acme corp2",

 "phone": "+52-01-55-4444-3210",

 "website": "www.acmecorp.com",

 "status": "Active",

 "clientSince": "2010-01-01 14:35",

 "sendNews": true,

 "contractInfo":{

 "id":444,

 "contractId":"ct-001-444",

 "documentType":"PDF"

 }

 },{

 "id": 10002,

 "name": "Candy Store LTD",

 "phone": "+52-01-66-3333-3895",

 "website": "www.candyworld.com",

 "status": "Active",

 "clientSince": "2011-01-01 14:35",

 "sendNews": false,

 "contractInfo":{

 "id":9998,

 "contractId":"ct-001-9998",

 "documentType":"DOCX"

 }

 }

]

}

Okay, so far we have deined the data connection for our irst example. In a real-world
application, we may need to get information from the server with the help of the store's
proxies, such as XML, JSON, and so on.

Give Me the Grid

[202]

A basic grid
Once we have deined our data package (model and store), we are ready to create
our irst grid. In this example, we are going to create the customers grid, as shown in
the following code:

Ext.onReady(function(){

 var myStore = Ext.create("Myapp.store.customers.Customers");

 var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250,

 width: 800,

 title: 'My customers',

 columns: [{

 width: 70,

 dataIndex: 'id',// *** model field name

 text: 'Id'

 },{

 width: 160,

 dataIndex: 'name', //***

 text: 'Customer name'

 },{

 width: 110,

 dataIndex: 'phone',//***

 text: 'Phone'

 },{

 width: 160,

 dataIndex: 'website',//***

 text: 'Website'

 },{

 width: 80,

 dataIndex: 'status',//***

 text: 'Status'

 },{

 width: 160,

 dataIndex: 'clientSince',//***

 text: 'Client Since'

 }],

 store: myStore,

 renderTo: Ext.getBody()

 });

});

Chapter 7

[203]

In this code, we created a grid that renders itself in the document body of our
web page. We assigned the store property to myStore, which is an instance of
the customers store, so the grid will get the data from this store in order to
display information.

An array was deined in the columns property. This array contains object
conigurations for each column that the grid's view will have.

In this case, each object (column coniguration object) contains three properties:
width, dataIndex, and text. The dataIndex property is responsible for assigning,
which data ield will be linked to the column.

The model ields' names have to match the column's data
index so that the grid renders the data properly.

Let's run this page in our browser. You may get something similar to the
following screenshot:

Now that you have your irst Grid panel, note that the Client since and Phone
columns in some cases show some dots (…). This is because the content in the cell
exceeds the width of the column. In the next part, we will cover more details about
columns and see how to ix the display and other things related to columns.

Give Me the Grid

[204]

Columns
The Columns property in the Grid panel is for deining which columns the grid will
have, show, hide, and so on. The Columns property can be an array of coniguration
objects or just a coniguration object.

By default, each column is sortable, and also each column header has a menu that
shows up when we click on the right-hand side of the column header. The column's
menu lets us sort data and show or hide columns on the grid. Now take a look at the
following screenshot:

Ext JS offers many types of columns, and all are located under the Ext.grid.column
namespace. In the next code, we are going to explain how the basic types of column
work by modifying the code, as shown here:

columns: [{

 xtype: 'rownumberer'

},{

 xtype: 'numbercolumn',

 width: 70,

 dataIndex: 'id',

 text: 'Id',

 format: '0' //0,000.00

},{

 xtype: 'templatecolumn',

 text: 'Country',

 tpl: '<div><div class="flag_{[values.country.toLowerCase()]}">'
 + ' </div> {country}</div>'

},{

 xtype: 'gridcolumn',

 width: 150,

Chapter 7

[205]

 dataIndex: 'name',

 text: 'Customer name'

},{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 width: 110,

 text: 'Client Since',

 format: 'M-d-Y'

},{

 xtype: 'booleancolumn',

 dataIndex:'sendnews',

 width: 120,

 text: 'Send News?',

 falseText: 'No',

 trueText: 'Yes'

},{

 xtype: 'checkcolumn',

 dataIndex:'sendnews',

 width: 120,

 text: 'Send News ?'

},{

 xtype: 'actioncolumn',

 width: 90,

 text: 'Actions',

 items: [{

 iconCls: 'editicon-16',

 tooltip: 'Edit customer',

 handler: function(grid, rowIndex, colIndex){

 var rec = grid.getStore().getAt(rowIndex);

 alert("Edit customer:" + rec.get('name'));

 }

 },{

 iconCls: 'sendmail-16',

 tooltip: 'Send email to customer',

 handler: function(grid, rowIndex, colIndex){

 var rec = grid.getStore().getAt(rowIndex);

 alert("Send email to :" + rec.get('name'));

 }

 }]

}],

Give Me the Grid

[206]

Let's refresh our browser or ile. We will see something like what is shown in the
following screenshot:

Now let's begin checking each column in detail.

The column row number
This column provides automatic row numbering. Usually, it does not need other
settings, unless you want to customize width or alignment (by default, it is right),
as seen in these examples:

Chapter 7

[207]

The number column
The number column is intended for use when we need to render numeric values and
we can specify the proper numeric format using the format property:

{

 xtype: 'numbercolumn',

 dataIndex: 'id',

 text: 'Id',

 format: '0' //default value 0,000.00

}

You can see some format variations in the following screenshot:

We can have multilanguage/localization support in our applications.
To learn more, see http://docs.sencha.com/extjs/5.1/
core_concepts/localization.html.

The template column
The template column renders the value by the use of a template coniguration object
for an Ext.XTemplate class, so we deine the Xtemplate in the tpl property:

{

 xtype: 'templatecolumn',

 text: 'Country',

 dataIndex: 'country',

 tpl: '<div><div class="flag_{[values.country.toLowerCase()]}">' +
 ' </div> {country}</div>'

}

In this case, when using a template column, it's recommended to use simple templates,
otherwise it may compromise the performance of our app (because of the large amount
of data).

http://docs.sencha.com/extjs/5.1/core_concepts/localization.html
http://docs.sencha.com/extjs/5.1/core_concepts/localization.html

Give Me the Grid

[208]

The date column
This type of column renders a passed date according to our locale settings or a
deined format set in the coniguration settings:

{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 text: 'Client Since',

 format: 'M-d-Y'

}

The output should look like the following screenshot:

To understand more about date formats, check out Ext.Date
and Ext.util.format in the Ext JS documentation.

The Boolean column
This column helps us render Boolean values in our grids in an easy way. With the
trueText and falseText properties, we can deine the text to display in each case.
In our example, we are setting the Yes and No values respectively on each property:

{

 xtype: 'booleancolumn', // important to define the boolean column

 dataIndex:'sendnews',

 text: 'Send News?',

 falseText: 'No',

 trueText: 'Yes'

}

Chapter 7

[209]

The check column
This type of column renders a checkbox on each column cell and type of column,
and this lets us toggle with a checkbox the value of the related ield for each row.
This type of column is recommended for use on grids that are intended to have an
editing functionality:

{

 xtype: 'checkcolumn',

 dataIndex:'sendnews',

 text: 'Send News ?'

}

As you can see in the preceding image, the screenshot on the left side has data as
shown in the original data. In the screenshot on the right side, we checked the box in
the second row and a red triangle appeared in the top-left corner. This indicates to us
that the record has had a change, but it has not yet been conirmed to be updated in
the store/model.

The action column
This type of column lets us render one or many icons that will have a handler for
each icon, letting us perform individual code for each desired action:

{

 xtype: 'actioncolumn',

 text: 'Actions',

 items: [{

 iconCls: 'editicon-16',

 tooltip: 'Edit customer',

 handler: function(grid, rowIndex, colIndex){

 var rec = grid.getStore().getAt(rowIndex);

 alert("Edit customer:" + rec.get('name'));

 }

 }]

}

Give Me the Grid

[210]

One nice feature of this column is that we can set one action icon based on some
conditions, like this:

items: [{

 getClass: function(v, meta, rec) {

 if (rec.get('sendnews')==0) {

 return 'sendmailblock-16';

 } else {

 return 'sendmail-16';

 }

 },

 getTip: function(v, meta, rec) {

 if (rec.get(' ')==0) {

 return 'Do not Send';

 } else {

 return 'Send Email for news...!';

 }

 },

 handler: function(grid, rowIndex, colIndex) {

 var rec= grid.getStore().getAt(rowIndex),

 action = (rec.get('sendnews')==0 ?'' : 'Send');

 if (action==''){

 Ext.Msg.alert('Alert..!', "you can't send news...!");

 } else {

 Ext.Msg.alert(action, action +' news to '+ rec.get('name'));

 }

 }

}]

This new coniguration object will produce an output as follows:

Now that we have described the basic column types, you are ready to learn how
column renderers work. Do not forget to take a look at the Ext JS documentation so
that you can learn more about individual columns and their properties; then you can
combine them according to your needs.

Chapter 7

[211]

Column renderers
Column renderers give us the ability to customize the behavior and rendering of the
cells inside a grid's panel. A renderer is tied to a particular column, and will run for
each cell that it has to display/create in that column.

In the Ext JS library, many renderers are already set inside the Ext.util.Format
class, such as Ext.util.Format.dateRenderer, Ext.util.Format.uppercase, and
many more functions. To deine a renderer in a column, we must add the renderer
property, as shown in the following code:

{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 text: 'Client Since',

 format: 'M-d-Y H:i',

 renderer: function(value, metaData, record, rowIndex, colIndex,
 store, view){

 // Our code here....

 }

}

As we see, the function has some parameters, which are as follows:

• value: This is the data value for the current cell.

• metaData: This is a collection of metadata related to the current cell, such
as tdCls, tdAttr, and tdStyle. This parameter is useful for changing or
overriding the style (or styles) set by default by Ext JS.

• record: This is the data model for the current row.

• rowIndex: This is the current index of the row being worked on.

• colIndex: This parameter is the current index of the column.

• store: This is the current data store (the grid's store).

• view: This is the grid's view.

When using a renderer, we need to return a string that will be the inal output for the
function (the cell display value). So now, let's add some renderers to our customer's
grid, as follows:

columns: [{

 xtype: 'rownumberer',

 align:'center'

},{

Give Me the Grid

[212]

 xtype: 'numbercolumn',

 dataIndex: 'id',

 text: 'Id',

 format: '0' //0,000.00

},{

 xtype: 'templatecolumn',

 text: 'Country',

 dataIndex: 'country',

 tpl: '<div><div class ="flag_{[values.country.toLowerCase()]}">'
 + ' </div> {country}</div>'

},{

 width: 190,

 dataIndex: 'name',

 text: 'Customer name',

 // Renderer # 1

 renderer: function(value, metaData, record, rowIndex, colIndex,
 store, view){

 if (record.get('country')!="USA"){

 metaData.tdCls = 'customer_foregin';

 }

 return value;

 }

},{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 align: 'center',

 width: 150,

 text: 'Client Since',

 format: 'M-d-Y H:i',

 // Renderer # 2

 renderer: function(value, metaData, record, rowIndex, colIndex,
 store, view){

 if (value.getFullYear() < 2014){

 metaData.tdStyle = " font-size:0.9em; color:#666; ";

 }

 return Ext.util.Format.date(value, 'Y-M-d');

}

},{

 width: 150,

 dataIndex: 'status',

Chapter 7

[213]

 align:'center',

 text: 'Status',

 // Renderer # 3

 renderer: function(value, metaData, record, rowIndex, colIndex,
 store, view){

 var myclass= 'cust_' + value.toLowerCase();

 metaData.tdCls = myclass;

 if (value.toLowerCase()=='inactive'){

 metaData.tdStyle = " font-size:0.9em; ";

 } else if (value.toLowerCase()=='suspended'){

 metaData.tdStyle = " font-size:0.9em; ";

 metaData.tdAttr = 'bgcolor="ffc6c6"';

 }

 return value;

 }

}],

In the previous code, we assigned renderers to three columns of the grid. Here is
their explanation:

• Renderer #1: This is assigned to the Customer name column, and the
function checks whether the customer is from USA or a foreign country.
If it's a foreign country, then will apply the customer_foregin class to the
cell by changing the value of metaData.tdCls. As you can see, we are using
values from other ields to set a style for the customer name value.

• Renderer #2: In this one assigned to the Client since column, we check
the year in which the customer began with us, and also check whether the
year is earlier than 2014. Then we will change the style (color and font size).
Also if you notice, this is a date column, but as soon as we set renderer, the
format property will no longer be of any use because the renderer is the one
responsible for the output.

• Renderer #3: Here, we assign a class upon the var myclass= 'cust_' +
value.toLowerCase(); to the Status value. Also, depending on the value,
the class name will change the style and attributes of the Grid's cell when
those conditions are met; for example, cust_active, cust_prospect,
and so on.

It's important that renderers should not be too
complicated or large in code, because this may
compromise the performance and rendering
time of the loaded records.

Give Me the Grid

[214]

Let's see how the grid may look after these changes, as shown here:

The Widget column
Ext JS 5 introduced in the last version a lightweight class called widget and a new
type of grid column called widget column. Widgets are similar to components. They
mainly consist of an Ext.dom.Element and associated listeners. Also, they are not
derived from Ext.Component. Components have a more complex life cycle.

For some review, check out the explanation of a component's life cycle
in Chapter 3, Components and Layouts.

As a tradition, the lexibility and power that Ext JS offers let us create our custom
widgets, and also, the library comes with some basic widgets, such as these:

• Progress Bar (Ext.ProgressBarWidget or progressbarwidget)

• Slider (Ext.slider.Widget or sliderwidget)

• Sparklines (Ext.sparkline.*):

 ° Line (sparklineline)

 ° Bar (sparklinebar)

 ° Discrete (sparklinediscrete)

 ° Bullet (sparklinebullet)

 ° Pie (sparklinepie)

 ° Box (sparklinebox)

 ° TriState (sparklinetristate)

Chapter 7

[215]

As we can't cover all of these in this chapter, we will check out only
three of them. You can refer to the documentation to learn how to
enhance or play with the properties of these widgets.

For our new example of widget columns, we will irst create our model and store:

Ext.define('Myapp.model.CustomerWidgets',{

 extend: 'Ext.data.Model', // step 1

 idProperty: 'id', // step 2

 fields: [// step 3

 {name: 'id', type: 'int'},

 {name: 'name', type: 'string'},

 {name: 'progress', type: 'float'},

 {name: 'piesequence'}

]

});

Our store will be the following:

var myStore = Ext.create('Ext.data.ArrayStore',{

 model: 'Myapp.model.CustomerWidgets',

 data:[

 [10001,"Acme corp2", 0.75, [30,14,20,36]],

 [10002,"Candy Store LTD", 0.9, [50,14,20,16]],

 [10003,"Modern Cars of America", 0.35, [15,10,39,36]],

 [10004,"Extreme Sports Los Cabos", 0.174, [30,29,5,18]

]

});

So now, let's create our grid in the same way as before, and we will focus on the
column model, as shown in this code:

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250,

 width: 800,

 title: 'My customers',

 columns: [{

 xtype: 'rownumberer',

 align:'center'

 },{

 xtype: 'numbercolumn',

 dataIndex: 'id',

 text: 'Id',

Give Me the Grid

[216]

 format: '0'

 },{

 width: 200,

 dataIndex: 'name',

 text: 'Customer name'

 },{

 xtype: 'widgetcolumn',

 text: 'Project Advances',

 dataIndex: 'progress',

 widget: {

 xtype: 'progressbarwidget',

 textTpl: [' <div style="font-size:0.9em;">{
 percent:number("0")}% done.</div> ']

 }

 },{

 xtype: 'widgetcolumn',

 text: 'Slider',

 width: 100,

 dataIndex: 'progress',

 widget: {

 xtype: 'sliderwidget',

 minValue: 0,

 maxValue: 1,

 decimalPrecision: 2,

 listeners: {

 change: function(slider, value) {

 if (slider.getWidgetRecord) {

 var rec = slider.getWidgetRecord();

 if (rec) { rec.set('progress', value); }

 }

 }

 }

 }

 },{

 xtype: 'widgetcolumn',

 width: 100,

 align:'center',

 dataIndex:'piesequence',

 text: 'Pie chart',

 widget: { xtype: 'sparklinepie' }

 }],

 store: myStore,

 renderTo: Ext.getBody()

});

Chapter 7

[217]

We added three columns with xtype equal to widgetcolumn. On the irst widget
column, we set dataIndex and text as normal, and we added the widget property.
This property is a coniguration object, like creating any other new component.

The xtype was set to progressbarwidget, and we set the textTpl property. This
will work in the same way as an Ext.XTemplate object.

In the second widget column, we set dataIndex the same as in the irst widget
column in order to make/update and interact with the values in the grid. In this case,
the widget xtype was set to sliderwidget, and we added some speciic properties
of this widget, such as minValue, maxValue, and decimalPrecision.

We added a listener for the event change. It will be triggered when we move the
slider, so it will update the progress ield's value.

The third widget column is set with xtype as sparklinepie. This means that it
will render a pie chart in the grid's cell. The dataIndex property for this column is
piesequence, and you may notice that this value is an array that contains the values
for each piece of the pie chart.

• Let's run the example code. We may see this result:

Now for the test, let's move the slider in row number 3 and see how the value in the
third column changes as we move it, as shown in these two screenshots:

Give Me the Grid

[218]

Having widgets in a grid's columns can be very useful for integrating more user
interaction and functionality. Keep in mind, however, that as long as the data grows,
or on larger datasets, it may slow down the performance of the grid.

Selection models
So far, we have seen how to create a basic grid and set the columns for displaying
data. Selection models are an important part of the Grid panel, because they will let
us set the manner in which we can interact in terms of selections (data selection) in
the grid's view.

The two main selection models on the framework are Ext.selection.RowModel,
where single or multiple rows are selected, and Ext.selection.CellModel,
where individual grid cells are selected.

By default, the Grid panel uses rowmodel when it's not deined (as in our
previous examples).

In the next example code, we need to use the code in which we set the action column
icons, and make some changes (irst of all, make a duplicate of the code). In the grid
coniguration, let's add the selModel property:

selModel:{

 selType:'rowmodel',

 mode:'SINGLE'

}

The mode property can have one of these three values:

• SINGLE: This allows selection of one item at a time

• SIMPLE: This allows us to make a simple selection of multiple items
one by one

• MULTI: This allows us to select multiple items using the Ctrl and Shift keys

Now let's change the action column, as shown in the following code:

{

 xtype: 'actioncolumn',

 width: 90,

 text: 'Actions',

 items: [{

 iconCls: 'editicon-16',

 tooltip: 'Edit customer',

Chapter 7

[219]

 handler: function(grid, rowIndex, colIndex){

 var mysm = grid.getSelectionModel();

 var selection = mysm.getSelection();

 var record = selection[0];

 alert('You are going to edit ' + record.get('name'));

 }

 }]

}

Here is the explanation: when the user clicks on the pencil icon irst, we set var
mysm with the grid.getSelectionModel() method. This method will return us the
current instance of the grid's selectionModel object. Then we set the selection
variable with the mysm.getSelection() method. This method will return an array
of the currently selected record/model (only one item), because we set the selection
model mode to SINGLE.

The record variable will be the irst element in the array (the selection variable), so
we set the record equal to selection[0].

Let's run our example. We may get this result:

In this example, you can notice that only one row can be selected at a time (click on
the row or use the keyboard navigation keys), so we won't be able to select multiple
rows unless we change the mode property in the selModel property coniguration.

Give Me the Grid

[220]

Now the cell model behaves differently. Let's change the selModel property to
cellmodel and refresh the browser. You will notice that only one cell has been
selected, as follows:

Notice the blue border around the country cell on row 2. This means that only the
cell with row 2 and column 1 is selected. Let's change the action columns to the
following code:

{

 xtype: 'actioncolumn',

 width: 90,

 text: 'Actions',

 items: [{

 iconCls: 'editicon-16',

 tooltip: 'Edit customer',

 handler: function(view, rowIndex, colIndex){

 var model = view.getNavigationModel();

 var columnName = model.column.text;

 var columnDataIndex = model.column.dataIndex;

 var myData = model.record.get(columnDataIndex);

 alert('You are going to edit column: '+ columnName + ' with
 the value: ' + myData);

 }

 }]

}

In this code, what we did was this: irst, we retrieved the column object coniguration
from the grid view with the view.getNavigationModel() code. Then we retrieved
the value for the columnName and columnDataIndex variables. After these variables
were set, we got the data value of the selected cell with the model.record.
get(columnDataIndex) code, because in the model object the related selected record
and cell are also included. Let's look at the following screenshot, where we can see
our code in action:

Chapter 7

[221]

Grid listeners
The event listener is a core feature in the components of the Ext JS library. The Grid
panel is not an exception. Because of its nature, this panel has a very well designed
set of listeners that allow us to process all kinds of events.

Taking our last example (the rowmodel selection), let's write some code to add event
listeners to our grid. The code will look similar to this:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();

 //Step 1

 var myEventsArea = Ext.create('Ext.form.field.TextArea',{

 itemId:'myResultArea',

 width : 400,

 height : 200,

 renderTo:'myResults'

 });

 var myStore = Ext.create("Myapp.store.customers.Customers");

 var myGrid = Ext.create('Ext.grid.Panel',{

 // Grid config

 listeners:{ //Step 2

 render:{

 fn:function(grid, eOpts){

 var myResult= Ext.ComponentQuery.query('#myResultArea')[0];

 var currentText= '\n' + myResult.getValue();

 myResult.setValue('Grid has render' + currentText);

 }

 },

 select:{

 fn:function(grid, record, index, eOpts){

 var myResult = Ext.ComponentQuery.query(
 '#myResultArea')[0];

 var currentText= '\n' + myResult.getValue();

Give Me the Grid

[222]

 myResult.setValue('Record #(' + (index + 1) + ')
 selected' + currentText);

 }

 },

 itemclick:{

 fn:function(grid, record, item, index, ev, Opts){

 var myResult = Ext.ComponentQuery.query(
 '#myResultArea')[0];

 var currentText= '\n' + myResult.getValue();

 var myNewMsg = 'Item #' + (index+1) + " was clicked (
 customer id=" + record.data.id + ")";

 myresult.setValue(myNewMsg + currentText);

 }

 },

 itemkeydown:{

 fn:function(grid, record, item, index, ev, eOpts){

 var myResult = Ext.ComponentQuery.query(
 '#myResultArea')[0];

 var currentText= '\n' + myResult.getValue();

 var myNewMsg = '';

 var myKey = ev.getKey();

 if (myKey === ev.DELETE){

 myNewMsg = "Delete Record";

 } else if (myKey == ev.RETURN){

 myNewMsg = "Edit customer #" + record.data.id + "";

 } else if ((myKey === ev.N && ev.shiftKey)||
 myKey=== ev.F8){

 myNewMsg = "Add new record";

 } else if ((myKey === ev.D && ev.shiftKey)){

 myNewMsg = "view detail of customer #" +
 record.data.id + "";

 } else if (myKey ===ev.F9){

 myNewMsg = "Other action...";

 } else {

 return;

 }

 myResult.setValue(myNewMsg + currentText);

 }

 }

 }

 });

});

The steps of this code are explained as follows:

• Step 1: We created a Text Area ield to show the event results (the grid's
event listeners).

Chapter 7

[223]

• Step 2: We added the listeners property (as a coniguration object) to the
grid's coniguration in the listeners:{...} code.

• Step 3: Inside the listeners property, we added four listeners. Each one,
when triggered, will display new text in the text area ield. The listeners are
as follows:

 ° render: This one will be triggered when the grid has been rendered
(finish render).

 ° select: This event is triggered when a record is selected.

 ° Itemclick: This is triggered when an item (inside the grid view)
is clicked.

 ° Itemkeydown: This is triggered when a key is pressed down while
an item is currently selected. On this last listener, we set to show a
message only if the following combinations are pressed: Delete, Enter,
N + Shift, D + Shift, F8, and F9. You can make any combination you
want as long as you don't make a combination used by the browser.

As you can notice, each listener has different parameters. To ind out exactly how
many and what each parameter does, check out the Ext JS documentation at http://
docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.grid.Panel, and go
to the events section/menu.

Now let's refresh our browser and view the output, like this:

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.grid.Panel
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.grid.Panel

Give Me the Grid

[224]

Test the example and the key combinations to see the output in the text area. You
will also notice how the events we set behave. Moreover, remember that it is not
always required to add listeners, or even add all listeners, but it's very useful to
perform certain actions on real-world applications according to your needs.

Features
The Ext.grid.feature.Feature class is a new class included since Ext JS 4, and
designed for being a type of plugin speciic for the Grid panel. In older versions of
the framework, plugins were the way of adding custom functionality to grids, but
the Sencha team has created a more organized way of doing this.

With this class, we can inject additional functionality into certain points of the grid's
creation cycle. Since Ext JS 4, we have four main classes that extend from the Ext.
grid.feature.Feature class, as covered in the following sections.

Ext.grid.feature.Grouping
This feature displays the grid rows in groups. The coniguration has to be done in the
grid with the feature property, and has to be done on the grid store as well.

First, we have to change our store a little, as shown in the following code:

Ext.define('Myapp.store.customers.Customers',{

 extend:'Ext.data.Store',

 model: 'Myapp.model.Customer',

 groupField: 'country',

 autoLoad:true,

 proxy:{

 type:'ajax',

 url: 'serverside/customers.json',

 reader: {

 type:'json',

 rootProperty:'records'

 }

 }

});

Chapter 7

[225]

Here in the store, we added a new property, groupField. This property will tell the
store and grid which ield to group by. Now we will add the following code for the
grid in our example:

var myGroupingFeature = Ext.create('Ext.grid.feature.Grouping',{

 groupHeaderTpl: '{columnName}: {name} ({rows.length} Customer{
 [values.rows.length > 1 ? "s" : ""]})',

 hideGroupedHeader: false,

 startCollapsed: false

});

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250,

 width: 900,

 title: 'My customers',

 columns: [/* columns here....*/],

 features:[myGroupingFeature],

 store: myStore,

 selModel:{

 selType:'rowmodel',

 mode:'SINGLE'

 },

 renderTo: 'myGrid'

});

In the myGroupingFeature variable, we created an instance of the grouping feature
class, and so we assigned three properties:

• groupHeaderTpl: This is a string template that decides how we are going
to show the group title (in the next chapter, you will learn about templates
in more detail)

• hideGroupedHeader: This property speciies whether we are going
to show the column speciied for the grouping or not (in this case, the
country column)

• startCollapsed: This is used to specify whether to show all groups
collapsed or expanded

Give Me the Grid

[226]

Inside the grid's coniguration, we set the features property as an array with
an element called myGroupingFeature. Keep in mind that we can add more than
one feature to the grid. Let's run our code, and we will see something similar to
this screenshot:

Ext.grid.feature.GroupingSummary
This feature adds an aggregate summary row at the bottom of each group that is
deined by the Ext.grid.feature.Grouping feature. This feature has several built-
in summary types, such as count, sum, min, max, and average.

Let's add a grouping summary feature to our grid, as shown in the following code.
Use the previous example's code as a base:

var myGroupingSummaryFeature = Ext.create(
 'Ext.grid.feature.GroupingSummary',{

 groupHeaderTpl: '{columnName}: {name}',

 hideGroupedHeader: true,

 startCollapsed: false

});

Now we will change the column (ID) coniguration, as follows:

{

 xtype: 'numbercolumn',

 width: 100,

 dataIndex: 'id',

 text: 'Id',

 format: '000.00',

 summaryType: 'count',

 summaryRenderer: function(value){

 return Ext.String.format('{0} student{1}',

 value, value !== 1 ? 's': '');

 }

}

Chapter 7

[227]

Then let's add another column to the grid:

{

 xtype: 'numbercolumn',

 dataIndex:'employees',

 width: 160,

 format: '0',

 text: 'Customer Employees',

 summaryType: 'sum'

}

In this type of feature (groupingSummary), we need to set the summaryType property
on the desired columns and specify which type of summary will perform. In the case
of the column ID, we set the summaryRenderer property, which is a function. This
function will be called before displaying a value; it's optional, and if it's not deined,
the default calculated value will be shown:

summaryRenderer: function(value){

 return Ext.String.format('{0} student{1}',

value, value !== 1 ? 's': '');

Let's run our example, and we may get the following result:

At the bottom of each group, we will see in the columns (Id and Customer
Employees) the summary result we deined for each column (count and sum).

Give Me the Grid

[228]

Ext.grid.feature.RowBody
This feature adds an extra TR->TD->DIV for each grid row that contains any
markup. This grid feature is useful for associating additional data of a particular
record. It also exposes additional events to the grid view, such as rowbodyclick,
rowbodydbclick, and rowbodycontextmenu.

Now let's add the row body feature to our grid, as shown in the following code:

// Step 1

var myRowBodyFeature = Ext.create('Ext.grid.feature.RowBody',{

 getAdditionalData:function (data, index, record, orig){ //Step 2

 return {

 rowBody:'Website :
 <a href="http://' + record.data.website + '" target=
 "_blank">' + record.data.website + ''

 };

 }

});

In the Grid features property, set it to this:

features:[myRowBodyFeature], // Step 2

The steps are explained as follows:

• Step 1: We deined the rowbody feature

• Step 2: In the getAdditionalData method, we rendered the total data of
our client in the rowBody property

With this coniguration, we will have the output as shown in the following screenshot:

Chapter 7

[229]

Ext.grid.feature.Summary
This is the last grid feature we are going to explain. This feature adds a summary row
at the bottom of all the grid rows with aggregate totals for a column. The coniguration
for the columns that you want to set the summary type for is exactly the same as we
saw in the groupingsummary feature. Let's create the feature, as follows:

var mySummaryFeature = Ext.create('Ext.grid.feature.Summary',{

 dock:'bottom'

});

Indeed, this feature does not have many properties. The most commonly used is
the dock property, and its valid values are top and bottom. Let's set the features
property to this:

features:[mySummaryFeature],

Now let's run the example. We may see this output:

Let's change the property dock to top and refresh our browser to see this:

Give Me the Grid

[230]

Without setting any coniguration property for the feature (the dock property), the
result is the following:

Plugins
The Grid's plugins provide custom/extra functionality for the component.

Overall, plugins in Ext JS don't need to extend another class, but the idea/purpose is
to give extra functionality and behavior to existing components.

For the Grid panel, we have some plugins already implemented in the Ext JS library.
The most commonly used are Ext.grid.plugin.CellEditing and Ext.grid.
plugin.RowEditing.

These two extend Ext.grid.plugin.Editing, and their primary function is to
provide the grid with the ability to make cells and rows editable.

Ext.grid.plugin.Editing should never be used directly
because it is the base class for Ext.grid.plugin.CellEditing
and Ext.grid.plugin.RowEditing.

Also, to make the columns editable, it is recommended to set the editor property in
the column coniguration.

Ext.grid.plugin.CellEditing
This plugin makes a single cell in our grid editable. We can edit only a single cell
at a time. The editor is deined in the editor property on each of the column's
conigurations. If we don't deine an editor in a column, it will be skipped by the
editor plugin.

It's recommended that we always choose an appropriate ield type to match
our data, so if we were using a date type, it would be useful to use an
Ext.form.field.Date class.

Chapter 7

[231]

Let's start coniguring our grid and columns:

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250, width: 980, title: 'My customers',

 columns: [{

 xtype: 'rownumberer',

 width: 50,

 align:'center'

 },{

 xtype: 'numbercolumn',

 width: 100, dataIndex: 'id', text: 'Id',

 format: '000.00'

 },{

 width: 200,

 dataIndex: 'name',

 text: 'Customer name',

 editor:{ //Step 1

 xtype:'textfield',

 allowBlank:false,

 minLength:4,

 maxLength:70

 }

 },{

 xtype: 'datecolumn',

 dataIndex: 'clientSince', width: 150,

 text: 'Client Since',

 format: 'M-d-Y H:i',

 editor:{ //Step 1

 xtype: 'datefield',

 maxValue: new Date()

 }

 },{

 xtype: 'checkcolumn', //Step 2

 dataIndex:'sendnews',

 width: 120,

 text: 'Send News ?'

 },{

 xtype: 'numbercolumn',

 dataIndex:'employees',

 width: 160,

 format: '0',

 text: 'Customer Employees'

 }],

Give Me the Grid

[232]

 store: myStore,

 selModel:{selType:'cellmodel'}, //Step 3

 plugins:{ptype:'cellediting',clicksToEdit:2}, //Step 4

 renderTo: 'myGrid'

});

In our previous code, we added the cellediting plug in. The steps are explained
as follows:

• Step 1: We deined the editor property on some columns (Customer name
and Client since). The editor property was deined as any Ext JS ield
("We talked about ields in Chapter 6, Doing It with Forms).

• Step 2: The Send News ? column, which we deined as checkcolumn,
automatically creates the editor (checkbox) for this cell.

• Step 3: We deined the grid's selection model as cellmodel.

• Step 4: We set the plugins property with a conig object, set the ptype
(plugin type) property to cellediting, and added the clicksToEdit:2
property. This means when we double-click, we can begin editing the cell.

So let's run the example in our browser. We double-click on the Client Since cell, as
shown in the following screenshot, and we can begin to edit:

Chapter 7

[233]

Change the value and press Enter. This will conirm the edit action for the cell. If you
press Esc, then the edit action will be canceled. Now, after editing the cell, we will see
that a red triangle has appeared in the top-left corner. This means that the record has
changed and the new value is not yet committed as changed in the record (model) in
our store.

Ext.grid.plugin.RowEditing
This plugin adds full row editing capabilities to the Grid panel. When editing begins,
each editable column will show the ield for editing, a Save button, and a Cancel
button, which will be displayed in the dialog for editing. Let's conigure our grid for
the RowEditing plugin:

var rowEditing = Ext.create('Ext.grid.plugin.RowEditing', {

 clicksToMoveEditor: 1,

 autoCancel: false

}); //Step 1

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250, width: 980, title: 'My customers',

 columns: [{

 xtype: 'rownumberer',

 width: 50,

 align:'center'

 },{

 xtype: 'numbercolumn',

 width: 100,

 dataIndex: 'id',

 text: 'Id',

 format: '000.00'

 },{

 width: 200,

 dataIndex: 'name',

 text: 'Customer name',

 editor:{

 xtype:'textfield',

Give Me the Grid

[234]

 allowBlank:false,

 minLength:4,

 } //Step 4

 },{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 width: 150,

 text: 'Client Since',

 format: 'M-d-Y H:i',

 editor:{

 xtype: 'datefield',

 maxValue: new Date()

 }

 },{

 xtype: 'checkcolumn',

 dataIndex:'sendnews',

 width: 120,

 text: 'Send News ?'

 },{

 xtype: 'numbercolumn',

 dataIndex: 'employees',

 width: 160,

 format: '0',

 text: 'Customer Employees'

 }],

 store: myStore,

 selModel: {selType:'rowmodel'}, //Step 3

 plugins: [rowEditing], //Step 4

 renderTo: 'myGrid'

});

The preceding code creates a Grid panel with a row editing plugin. The steps are
explained as follows:

1. Step 1: We deined our row editing plugin in var rowEditing
2. Step 2: we deined the editors on the columns in the grid
3. Step 3: We set the selModel property to rowmodel, which in fact is not so

indispensable

4. Step 4: Then we set the plugins property to [rowEditing]

Now, when we begin to edit the row, we can navigate through the row with the Tab
key. To cancel the edit action, we can use the Esc key, and conirm the edit action
with Enter.

Chapter 7

[235]

Let's run the example. This last coniguration outputs the grid shown in the
following screenshot:

You can notice in the output that Id and Customer Employees have no ield. This
means that those columns are read-only, because we did not deine an editor in their
conigurations. Also, you might have noticed the Update and Cancel buttons in the
middle part below the row. These buttons can be clicked on to conirm each action.

When a column has no editor set, it is recommended that you use the editRenderer
property. This renderer works as the normal column renderer property, but this
property works when the row is edited:

{

 xtype: 'numbercolumn',

 dataIndex:'employees',

 width: 160,

 format: '0',

 text: 'Customer Employees',

 editRenderer: function(value){

 return 'can\'t edit'

 }

}

This will give us the following output:

Give Me the Grid

[236]

Grid paging
The Grid panel supports paging through a large set of data with the help of a
PagingToolbar item. To accomplish this we have to make some modiications to
our store and add a PagingToolbar item to our grid. For this, we need to create our
store, as shown in the following code:

Ext.define('Myapp.store.customers.CustomersC',{

 extend:'Ext.data.Store',

 model: 'Myapp.model.Customer',

 pageSize: 3,

 autoLoad:true,

 proxy:{

 type:'ajax',

 url: 'serverside/customersc.php',

 reader: {

 type:'json',

 rootProperty:'records',

 totalProperty:'total'

 },

 actionMethods :{read:'POST'}

 }

});

In the deinition of our store, we declared a pageSize property of 3 and deined a
proxy so that we can get the data from the server. Thus, we will be able to paginate
our data.

Then we deine our grid and the PagingToolbar item that this grid will have:

var myStore = Ext.create("Myapp.store.customers.CustomersC");

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250,

 width: 980,

 title: 'My customers',

 columns: [{

 xtype: 'numbercolumn',

 width: 100,

 dataIndex: 'id',

 text: 'Id',

 format: '000.00'

 },{

 width: 200,

 dataIndex: 'name',

Chapter 7

[237]

 text: 'Customer name'

 },{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 width: 150,

 text: 'Client Since',

 format: 'M-d-Y H:i'

 },{

 xtype: 'checkcolumn',

 dataIndex: 'sendnews',

 width: 120,

 text: 'Send News ?'

 },{

 xtype: 'numbercolumn',

 dataIndex:'employees',

 width: 160,

 format: '0',

 text: 'Customer Employees'

 }],

 store: myStore,

 selModel:{selType:'rowmodel'},

 bbar: [{

 xtype: 'pagingtoolbar',

 store: myStore,

 displayInfo: true,

 displayMsg: 'Displaying customers {0} - {1} of {2}'

 }],

 renderTo: 'myGrid'

});

In the previous code, we declared a PagingToolbar item on the bbar property of
our grid. Here, we assigned the same store of our grid so that the PagingToolbar
item references the same store. The previous code generates the output shown in
the following screenshot:

Give Me the Grid

[238]

Notice that at the bottom of the grid, there is a toolbar with many parts (buttons,
text, and so on). Also, it's indicating the number of pages (2) and the Displaying
customers 1-3 of 6 information text.

Ininite scrolling
Ext JS offers us an alternative to the PagingToolbar item. In Ext JS 4, a new type
of grid, called the ininite scrolling grid, was introduced. In Ext JS 5, that grid is
deprecated, and now it depends on Ext.data.BufferedStore. To understand
more about the buffered store, see http://docs.sencha.com/extjs/5.1/5.1.1-
apidocs/#!/api/Ext.data.BufferedStore.

So, Ext.data.BufferedStore gives the grid the ability to render thousands of
records without needing the PagingToolbar item. The grid should be bound to a
store with a pageSize property that will load data dynamically according to the
pageSize property.

Let's see an example. First, we need to add some coniguration to our store:

Ext.define('Myapp.store.clients',{

 extend:'Ext.data.BufferedStore',

 model: 'Myapp.model.Customer',

 autoLoad: true,

 leadingBufferZone: 150,

 pageSize: 100,

 proxy:{

 type:'ajax',

 url: 'serverside/clients.php',

 reader: {

 type:'json',

 rootProperty:'records',

 totalProperty:'total'

 }

 }

});

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.data.BufferedStore
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.data.BufferedStore

Chapter 7

[239]

In our previous store coniguration, we declared a pageSize property of 100 and set
the leadingBufferZone property to 150. Setting the leadingBufferZone property
indicates the number of extra rows to keep cached on the leading side of the scrolling
buffer as the scrolling proceeds.

Now let's see the deinition of our grid, as shown in the following code:

var myGrid = Ext.create('Ext.grid.Panel',{

 height: 250,

 width: 550,

 title: 'My clients (buffered)',

 columns: [{

 xtype: 'rownumberer', width: 50

 },{

 xtype: 'numbercolumn',

 width: 100, dataIndex: 'id', text: 'Id',

 format: '0'

 },{

 width: 200, dataIndex: 'name',

 text: 'name'

 },{

 width: 200, dataIndex: 'lastname',

 text: 'lastname'

 }],

 store: myStore,

 loadMask: true,

 selModel:{

 pruneRemoved: false

 },

 renderTo: 'myGrid'

});

In the Grid coniguration, we set selModel with the pruneRemoved:false property.
According to the Sencha documentation:

"When using paging or a Ext.data.BufferedStore, records which are cached in the
Store's data collection may be removed from the Store when pages change, or when
rows are scrolled out of view. For this reason pruneRemoved should be set to false
when using a buffered Store."

Give Me the Grid

[240]

With these conigurations made, we will get the output shown in the following
screenshot:

If we check out the Developer tools (Safari or Chrome), we will see this:

As we keep scrolling, the AJAX requests that the store will be setting different
parameters (page number and start) and will be changing in order to get the proper
data for the grid.

Now let's see how clients.php is composed:

<?php

 $success= true;

 $total = 2000;

 $page = $_GET['page'];

 $start = $_GET['start'];

 $limit = $_GET['limit'];

 $datause = array();

 for ($i= ($start +1); $i<= ($start + $limit); $i++){

 $datause[] = array(

 'id'=> $i,

 'name'=> 'name ' . $i,

Chapter 7

[241]

 'lastname'=> 'lastname ' . $i

);

 }

 echo json_encode(

 array(

 'success'=>$success,

 'total'=>$total,

 'records'=>$datause

)

);

?>

This code will create dummy data for the request made by the store as we scroll.

Note that the grid will stop when it reaches
2,000 records.

Summary
In this chapter, you learned how to conigure the basics for our Grid panels so that
we can get the best out of them when developing our applications. It is important to
know what a Grid panel's capabilities are and how can we add custom functionality
using column renderers, grid features, and grid plugins.

It's also important that you perform tests and play with different combinations
(conigurations and event listeners) so that you can recognize which ones you ind
more comfortable to use, depending on the different scenarios you may need for
your applications. Most of the time, it's impossible to learn 100 percent all the Grid
conigurations or event listeners, but remember that you can always take a look at
the Ext JS documentation.

In the next chapter, we will take a look at and learn about data views and templates
in Ext JS. This chapter may help you enhance more things (visual appearance) in
your grids (renderers and presentations using templates).

[243]

DataViews and Templates
The DataView component has a function similar to the grid—showing data in a
formatted way—but it can be lighter or heavier, depending on how it's handled.
When we say "formatted way", we mean that we use a template to render an HTML
output for each record in the store.

For the rendering process, the DataView uses an Ext.XTemplate class, so we can
give the proper output (HTML) and style to each record in the store. This component
is very useful when you want to render data in a customized way and also don't
require the functionality of the grid.

In this chapter, you'll learn how the Ext.view.View class (DataView) and the
Ext.XTemplate class work together.

The topics we are going to cover in this chapter are as follows:

• The data connection (models and stores)

• A basic DataView

• Handling events in DataView

• Templates

• A more complex DataView component

In all the examples in this chapter's code, we will be using many
CSS codes that will give our examples/DataView items some nice
formatting and visual appearance. The full CSS code is given at the
end of this chapter.

DataViews and Templates

[244]

The data connection (model and store)
As we saw in Chapter 7, Give Me the Grid, the grid needs the use of a data store in
order to display contents. The DataView component works the same way. In Chapter
4, It's All about the Data, we talked about the use of data packages (models and
stores). So, let's begin using the following model:

Ext.define('Myapp.model.Users',{

 extend:'Ext.data.Model', // step 1 (extend datamodel)

 idProperty:'id',

 fields:[// step 2 (field definition)

 {name: 'id', type: 'int'},

 {name: 'firstName', type: 'string'},

 {name: 'lastName', type: 'string'},

 {name: 'twitter_account', type: 'string'},

 {name: 'active', type: 'boolean'},

 {name: 'avatar', type: 'string'}

]

});

In the previous code, we have our user model deinition. This code goes into the
model's deinition folder of our application. This model will get the data through the
ajax calls that are deined in the type property of the store's proxy.

The url property will be serverside/users.json, and the way the readers will
fetch the data will be in a json format. They will get the data from the records node
of our data response. Now let's deine our store in the following way:

Ext.define('Myapp.store.users',{

 extend:'Ext.data.Store',

 model: 'Myapp.model.Users',

 autoLoad:true,

 proxy:{

 type:'ajax',

 url: 'serverside/users.json',

 reader: {

 type:'json',

 totalProperty:'total',

 rootProperty:'records'

 }

 }

});

Chapter 8

[245]

A basic DataView
Now, that we have our data connection set, we are going to deine the view of our
application:

//Step 1

var myTpl = [

'<tplfor=".">',

'<div class="user">{firstName} {lastName}</div>',

'</tpl>'

].join('');

//Step 2

var myDataview = Ext.create('Ext.view.View', {

 store: myStore, //step 3

 tpl: myTpl, //step 4

 padding:6,

 emptyText: 'No users available'

});

In the previous code, we deined our user's DataView. So, let's see the code step
by step:

1. We created the template coniguration in var myTpl so that the DataView
can use it.

2. We created an instance of the Ext.view.View class in the myDataview
variable.

3. Then we added the data source of our view in step 3.

4. We set the template in the DataView by setting the tpl:myTpl property.

5. Finally, we have the emptyText property, which is text to be displayed when
our view has nothing to show (no records).

Once we have our data connection and view deined, we are ready to write the code
for the output:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();

 var myStore = Ext.create('Myapp.store.users');

 var mytpl = [

 '<tplfor=".">',

 '<div class="user">{firstName} {lastName}</div>',

 '</tpl>'

].join('');

 var myDataview = Ext.create('Ext.view.View', {

 store: myStore,

DataViews and Templates

[246]

 tpl: myTpl,

 padding: 6,

 itemSelector: 'div.user',

 emptyText: 'No users available'

 });

 var MyPanel = Ext.create('Ext.panel.Panel',{

 title: 'My Dataview',

 height: 295,

 width: 450,

 items: [myDataview],

 renderTo: 'myPanel'

 });

});

This code deines a panel that will contain our DataView and give us the
following output:

Chapter 8

[247]

Handling events in DataView
Once we have our DataView deined, we are going to see some basic event handling
for it. To do this, we need to add some new properties to our view deinition so that
we can assign events:

 var myDataview = Ext.create('Ext.view.View', {

 store: myStore,

 tpl: myTpl,

 padding: 6,

 itemSelector: 'div.user', //Step 1

 emptyText: 'No users available'

 });

We added the itemSelector property (Step 1). It deines which DOM node
item will be used to select each item (data model) with which the DataView
will be working.

You can use CSS selectors to deine the itemSelector property.

And now, let's add the event listener:

var myDataview = Ext.create('Ext.view.View', {

store: myStore,

 tpl: myTpl,

 padding: 6,

 itemSelector: 'div.user',

 emptyText: 'No users available',

 listeners: {

 itemclick: {

 fn:function(view, record, item, index, evt, eOpts){

 Ext.Msg.alert(

 "Dataview record selected", record.get('firstName') +
 " " + record.get('lastName') + " has been selected"

);

 }

 }

 }

});

DataViews and Templates

[248]

In the previous code, we added an event listener to our DataView, which is executed
when we click on one of our DataView's items. The following screenshot shows us
the result:

So far, this is the basic way to add event listeners to the DataView. You may check
out the Ext JS documentation to see other available events, and play with this
application to check out the most appropriate listeners for your application.

Templates
In the Ext JS library, we have two types of templates: Ext.Template and Ext.
XTemplate. Let's see what the main differences between these two classes are:

• Ext.Template represents an HTML fragment. This one, in my personal
opinion, can be used in small things or simple representations.

• Ext.XTemplate extends the Ext.Template class and provides advanced
functionality.

Ext.Template
Let's look an example of Ext.Template:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();

 var myTemplate = new Ext.Template([//Step 1

 '<div class="container">','<div class="header">',

 '',

Chapter 8

[249]

 '{titlecontents}
','</div>',

 '<div class="bookscontainer">','',

 '<img src="images/{book_a}"
 width="112"
 height="138"
 alt=""
 data-qtitle="Hot book"
 data-qtip="This is another great book for EXT JS!" />',

 '','',

 '<img src="images/{book_b}"
 width="112"
 height="138"
 alt=""
 data-qtitle="Trend book"
 data-qtip="This is another great book for EXT JS!" />',

 '','</div>','<div class="footer">',

 '<a href="{url}"
 target="_blank">Click here to see more',
 '</div>', '</div>'

]);

myTemplate.compile(); //Step 2

 myTemplate.append('myPanel', { //Step 3

 logo: 'Packt.png',

 titlecontents: 'Visit PACK PUB for great deals...!',

 book_a: '4005OScov.jpg.png',

 book_b: '6846OS.jpg.png',

 url: 'https://www.packtpub.com/'

 });

});

Let's review the previous code step by step:

1. We deine our template Ext.Template, which will show a nice format, with
some images, some description, and a link to https://www.packtpub.com.

2. We compile our template (Ext JS creates the template as an internal function)
in order to render faster.

3. We append our template to the HTML <div> element with the myPanel ID in
our page, and also pass some data (as an object) as the second parameter in
the myTemplate.append function of our template.

https://www.packtpub.com

DataViews and Templates

[250]

The following screenshot shows the result of the previous code:

Ext.XTemplate
Now, let's talk about the Ext.XTemplate class. This class is more complex than the
Ext.Template class because it supports advanced functionality, such as these:

• Auto-filling arrays using templates and subtemplates

• Conditional processing with basic comparison operators

• Basic math function support

• Executing arbitrary inline code with special built-in template variables

• Custom member functions

Ext.XTemplate provides the template mechanism for Ext.view.View, so when we
use the DataView, we will have all the Ext.XTemplate capabilities available. Let's
see a basic example of an Ext.XTemplate implementation:

Ext.onReady(function(){

 var myStore = Ext.create('Myapp.store.users');

 var myXTemplate = new Ext.XTemplate(//Step 1

 '<tplfor=".">', //Step 2

 '<div class="user">',

 'Record number {[xindex]} - {firstName} {lastName} - ',

Chapter 8

[251]

//Step 3

 '<tpl if="active ==0">', //Step 4

 'user is Inactive (need
 activation)',

 '<tpl else>',

 'user is active',

 '</tpl>',

 '- Reference number for user :',

 '{id+1000}', //Step 5

 '</div>',

 '</tpl>'

);

 myStore.on({ //Step 6

 'load':{

 fn:function(store, records, success, eOpts){

 var data = [];

 Ext.each(records, function(record, index, records){

 data.push(record.data);

 },this);

 var myEl = Ext.get('myPanel');

 myXTemplate.overwrite(myEl, data); //Step 7

 },

 scope:this

 }

 });

 myStore.load();

});

In Step 1, we created the instance of a new Ext.XTemplate class and deine the
overall HTML structure.

In Step 2, we set in the template (HTML) structure the <tplfor="."> text. This
means that a loop will be made, repeating the template for each item in the data array.

Then in Step 3, we deined 'Record number {[xindex]} - {firstName}
{lastName} - ',. This means that {firstName} and {lastName} will be
populated/replaced with the speciic value from the data object. The {[xindex]}
variable is contained in the scope of the template, and this will return us the index of
the loop we are in (1-based).

DataViews and Templates

[252]

In Step 4, we set an if condition inside the template, and perform the evaluation
according to the condition we have set:

'<tpl if="active ==0">',

'user is Inactive....',

'<tpl else>',

'user is active',

'</tpl>',

Notice that the condition has to start with <tpl...> and end with </tpl>. This is
an important thing to remember when setting conditionals inside the XTemplate
content.

In Step 5, we used an '{id+1000}' math condition. XTemplate lets us perform
mathematical operations, and these can be applied directly to numeric data values.

In Step 6, we added the listener to the store's load event. This event will handle
and pass the data of each model/record as an array so that we can populate the
XTemplate content.

Finally, in Step 7, we called the myXTemplate.overwrite method to overwrite
the inner HTML of the element with the data applied to the template. Let's run the
example in our browser. We will get something like this:

It's important that you do more exercises, checking out the documentation of Ext.
XTemplate in order to know how to add functions, subtemplates, and so on. Now
that you have learned the basics of how templates work, we are ready to perform a
more complex example.

Chapter 8

[253]

A more complex DataView component
A DataView component is a great component in the Ext JS library. In the next
example, we are going to list the users in the application and activate or deactivate
them with a double click on the user record. Let's add some new lines to our
previous DataView code:

 var myXTemplate = new Ext.XTemplate(//step 1

 '<tplfor=".">',

 '<div class="user {[this.getActiveclass(values.active)]}">',

 '<div class="user_row">',

 '<div class="user_img">',

 '<img src="images/{twitter_account}.jpg" width="37"
 height="37">',

 '</div>',

 '<div class="usr_name">{firstName} {lastName}
',

 '{twitter_account}',

 '</div>',

 '</div>',

 '</div>',

 '</tpl>',

 {

 getActiveclass:function(value){

 return (value!=0)?"active":"inactive";

 }

 });

Here, we are creating an instance of the Ext.XTemplate class. In this code, we added
a function inside the template called getActiveclass. This class will return the
value depending on the value of active in the data, and it is called by the {[this.
getActiveclass(values.active)]} code.

Now let's change the DataView:

var myDataview = Ext.create('Ext.view.View', {

 store: myStore,

 tpl:myXTemplate,

 padding:6,

 itemSelector: 'div.user',

 emptyText: 'No users available',

 listeners:{

 itemdblclick':{

 fn:function(view, record, item, index, event, eOpts){

 var item = Ext.fly(item);

 if(record.get('active')){
 Ext.fly(item).removeCls('active');

DataViews and Templates

[254]

 Ext.fly(item).addCls('inactive');

 }else{

 Ext.fly(item).removeCls('inactive');

 Ext.fly(item).addCls('active');

 }

 record.data.active = !record.data.active;

 }

 }

}

});

Here, we changed the tpl property to tpl:myXTemplate, assigning the XTemplate
variable to the property. Also, we added the listener with the itemdblclick event.
This function will change the value of active in our model/record.

Now that we have our code complete, we can see the inal result, as shown in the
following screenshot:

Here is the complete CSS code for the example:

/* Dataview examples */

.user{cursor:pointer;}

.user{

 margin-left: 5px;

 margin-top: 3px;

 padding: 5px;

 background-color: #CCC;

 display: block;

Chapter 8

[255]

 border: 1px solid #333;

 border-radius: 5px;

 overflow:hidden;

 width:220px;

 float:left;}

.user_row{

 position:relative;

 display:block;

 overflow:visible;}

.usr_titles{

 float: left;

 padding-top:6px;}

.user_img{

 padding:2px;

 border: 1px solid #036;

 margin-right:4px;

 width:43px;

 height:42px;

 float: left;

 background-color:#FFF;}

.active{

 opacity:1;

 background: #E6FFE6;}

.inactive{

 opacity:.5;

 background: #F5F5F0;}

.usr_name{

 color:#036;

 font-size:14px;

 font-weight:bold; }

.usr_account{

 color:#666;

 font-size:11px;

 font-style:italic;}

/* template example */

.container{ padding:4px; }

.container .header{

 font-size:14px;

 font-weight:bold;

 color:#333; }

.container .bookscontainer{

 margin-top:5px;

 padding:5px;

DataViews and Templates

[256]

 border:#333 solid 1px;

 overflow:auto;

 display:block;

 background-color:#999;}

.book{

 padding:3px;

 float:left;

 width:auto;

 margin-right:4px;

 display:block;}

.container .footer{

 clear:both;

 border-top:medium #F60 solid;

 margin-top: 5px; }

/* Xtemplate example */

.user{

 font-size:12px;

 color:#333;

 cursor:pointer; }

.activeuser{color:#096; }

.inactiveuser{

 color:#900;

 font-weight:bold;}

Summary
The DataView is a very lexible component, and it is useful when we want to render
data in customized ways. It is easy to use and has a powerful API. Because of the
lexibility of the Ext.XTemplate class, we can do a variety of things using these two
components.

In this chapter, you learned how the DataView class works. We saw how to use stores,
models, and views to format the data we want to render. In Ext JS, a DataView is
used commonly with templates, and the Ext.XTemplate class offers a lot of useful
conigurations to validate and format our data. It is very important to know the
capabilities of Ext.view.View compared to the features of Ext.grid.Panel because in
terms of performance, it is sometimes much better to use a DataView.

In the next chapter, we will see another awesome component, which is Ext.tree.
Panel. This component is one of the well-designed and powerful components in the
Ext JS library, so keep reading.

[257]

The Tree Panel
The Ext.tree.Panel class is a component in Ext JS, and also a great tool that allows
us to display and use hierarchical data. A good example of this is a ile directory
application.

Ext.tree.Panel extends from Ext.panel.Table, which is the same class that
the Ext.grid.Panel extends from. Features such as columns, sorting, iltering,
renderers, dragging and dropping, plugins, and extensions are expected to work in
Ext.tree.Panel as well. The main difference between the Ext.grid.Panel and
Ext.tree.Panel classes is in the way they render data.

It's important to mention that this component is also data aware, so for it, we must
use Ext.data.TreeStore, which is a data store specially designed to work with the
tree panel. In this chapter, you'll learn how Ext.tree.Panel works, its versatility,
and ease of use.

The topics we are going to cover in this chapter are as follows:

• A basic tree panel

• Ext.data.TreeStore

• Tree nodes

• Adding and removing nodes

• The check tree

• The grid tree

The Tree Panel

[258]

A basic tree panel
In this example, we are going to display a simulation of a ile directory using the
Ext.tree.Panel component. So, our irst step for creating a tree panel is to deine
our data using the Ext.data.TreeStore class. After this example, we will explore
the Ext.data.TreeStore class deeper. Let's start with the following code:

var MyTreeStore = Ext.create('Ext.data.TreeStore',{

 storeId: 'myTreeStoreDS',

 root: {

 text: 'My Application',

 expanded: true,

 children: [{

 text: 'app',

 children:[

 { leaf:true, text: 'Application.js' }

]

 },{

 text: 'controller',

 expanded: true,

 children: []

 },{

 text: 'model', expanded:true,

 children: [

 { leaf:true, text: 'clients.js' },

 { leaf:true, text: 'providers.js'},

 { leaf:true, text: 'users.js' }

]

 },{

 text: 'store',

 children: [

 { leaf:true, text: 'clients.js' },

 { leaf:true, text: 'providers.js' },

 { leaf:true, text: 'users.js' }

]

 },{

 text: 'view',

 children: [

 { leaf:true, text: 'BasicTreePanel.js' },

 { leaf:true, text: 'TreeStorePanel.js' }

]

 },{

 text: 'resources',

 children: [

Chapter 9

[259]

 { text: 'images' },

 { text: 'css',

 children: [

 { leaf:true, text: 'main.css' },

 { leaf:true, text: 'clients.css' }

]

 }

]

 }]

 }

});

In the preceding code, we have the data (store) deinition for our tree panel. First, we
have to understand our tree data source format. This data format is different from
the store data source format we have used in previous chapters. In this component,
the store needs to have a root node, which will be containing the data for our tree.
This node will be the main (irst) node of our tree, from which the rest of the nodes
will be drawn.

When we talk about a tree store's records, usually the common term is node. This
node has some speciic properties (ields) that make it possible for the component to
handle and draw data. As an example, properties such as expanded, text, and leaf
are some common properties each node has to have. Now let's create our panel:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();

 var MyTreeStore = // [previous code];

 var MyTreePanel = Ext.create('Ext.tree.Panel',{

 title: 'My tree panel',

 width: 250,

 height: 350,

 frame: true,

 store: MyTreeStore,

 renderTo: 'myPanel'

 });

});

The Tree Panel

[260]

The Ext.tree.Panel class extends from Ext.Panel.Table and Ext.Panel.Panel,
so we can use it in a similar way as the grid and panel components. This also means
that the behavior will be very similar. So, let's run the code in our browser and check
the result, as follows:

In the example, we are using the Neptune theme. You can see that Ext JS, by
default, automatically sets the icons on each node in the tree according to the nature
of the node (whether it has children or not). The following image shows theme
comparisons:

Chapter 9

[261]

As we have seen in this example, the coniguration and use of an Ext.tree.Panel
component is very simple, but there are some properties that we need to know so we
can understand this component better.

The TreeStore
The TreeStore (Ext.data.TreeStore) is a special store in the Ext JS library. It is
designed especially for working with the tree structure, which is Ext.tree.Panel in
this case. As this class extends Ext.data.Store which in turn sequentially extends
Ext.data.AbstractStore, you will notice that the behavior is similar to Ext.data.
Store.

When we deine our stores, we need to specify a data model. In this case (TreeStore),
if we don't specify a model, then Ext JS will create an implicit data model using the
Ext.data.NodeInterface class, which will lead to creating a model for our store.

Let's see an example of loading data from the server into our Ext.data.TreeStore
class:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();

 //Store Definition

 var MyTreeStore = Ext.create('Ext.data.TreeStore',{

 autoLoad: true,

 storeId:'myTreeStoreDS',

 proxy:{

The Tree Panel

[262]

 type: 'ajax',

 url: 'serverside/menu.json'

 }

 });

 var MyTreePanel = Ext.create('Ext.tree.Panel',{

 title: 'My app menu',

 width: 270,

 height: 370,

 frame: true,

 store: MyTreeStore,

 renderTo: 'myPanel'

 });

});

As you can notice, the tree class coniguration becomes very simple. We have just
added a store, and now we only need to specify the code to render the panel. So, we
will get the following result:

Take some time to review and see how the serverside/menu.
json ile is created. Also examine its structure, in order to make
similar JSON structures.

Chapter 9

[263]

Take note, if you are using PHP, ASP, or other server-side technologies, it's advisable
that you check and ensure that you create a correct JSON/XML output in order to
make the tree panel work properly.

Tree nodes
The Ext.data.NodeInterface class is a set of methods that are applied to the model
to decorate it with a node API. This means that when we use a model with a tree, the
model will have all the tree-related methods. This class also creates extra ields on
the model to help maintain the tree state and the UI.

The most common ield conigurations are the following:

• text: This property configures the text to show up on the node label.

• root: This property is true if this is the root node.

• leaf: If this property is set to true, it indicates that this child can have no
children. The expand icon/arrow will not be rendered for this node.

• expanded: This is true if the node is expanded.

• iconCls: This property configures the CSS class to apply for this node's icon.

• children: This configures an array of child nodes.

• checked: This property is set to true or false to show a checkbox alongside
this node.

For better understanding, take a look at the following diagram:

The Tree Panel

[264]

Remember that you don't always need to deine all the ields (common in the node)
in the output—just all of the most relevant. Also, you can add custom ields, for
example, the country, document ID, tax ID, and so on. The ields will also be uniied
in the store model.

Adding and removing nodes
We can even add nodes dynamically to our tree panel. This is very handy because
when we use the tree panel, in most cases, we will end up facing this requirement.
Here, we will see how we can solve this problem.

In the following example, we are going to add nodes dynamically to our tree panel.
In order to familiarize you with the upcoming chapters that cover this example, we
will use MCV architecture. Let's start creating a ile to be saved in chapter_09/
appcode/view/ as nodeForm.js, and place the following code:

// JavaScript Document

Ext.define('Myapp.view.nodeForm', {

 extend:'Ext.form.Panel',

 alias: 'widget.mynodeForm',

 requires: [

 'Ext.toolbar.Toolbar', 'Ext.toolbar.Fill',

 'Ext.button.Button', 'Ext.form.field.Text',

 'Ext.form.RadioGroup', 'Ext.form.field.Radio'

],

 border: false,

 frame: true,

 height: 137,

 width: 323,

 bodyPadding: 10,

 header: false,

 title: '',

 dockedItems: [{

 xtype: 'toolbar',

 dock: 'bottom',

 items: [

 {xtype: 'tbfill'},

 {xtype: 'button', text: 'Save node', action: 'savenode'}

]

 }],

 items: [{

 xtype: 'textfield',

 fieldLabel:'Name',

 name:'nodetext',

Chapter 9

[265]

 anchor: '100%',

 allowBlank: false,

 enableKeyEvents: true,

 listeners:{

 keyup:function(o, e){

 if(e.button==31){

 this.setValue(this.getValue() + " ");

 }

 }

 }

 },{

 xtype: 'radiogroup', fieldLabel: 'is leaf ?',

 items: [

 {xtype: 'radiofield',

 name:'usenodetype',

 boxLabel: 'No',

 inputValue:0},

 {xtype: 'radiofield',

 name:'usenodetype',

 boxLabel: 'yes',

 inputValue:1,

 checked: true}

]

 }],

 initComponent: function(){

 this.callParent();

 }

});

In this ile, we are extending Ext.form.Panel as in the previous. This form will be
used to create new nodes in our tree panel. Now let's create a new ile in chapter_09/
appcode/controller/, named nodeForm.js, and add the following code:

Ext.define('Myapp.controller.nodeForm', {

 extend:'Ext.app.Controller',

 refs: [{

 ref: 'myform',

 selector: 'mynodeForm',

 xtype: 'mynodeForm'

 autoCreate: false,

 }],

 init: function() {

 this.control({

 'button[action=savenode]': {

 click: this.savenewNode

The Tree Panel

[266]

 }

 });

 },

 savenewNode: function() {

 var myTree = Ext.ComponentQuery.query('#menuTreePanel')[0];

 var myTreesm = myTree.getSelectionModel();

 if (myTreesm.hasSelection()){ //check if has selection

 var mynode = myTreesm.getSelection()[0];

 //get first selection item

 } else {

 var mynode = myTree.getRootNode();

 }

 var values = this.getMyform().getValues();

 var newNode = {

 text: values.nodetext,

 leaf: (values.usenodetype==1)?true:false

 };

 mynode.insertChild(0, newNode);

 var mybtn = Ext.ComponentQuery.query('#addnodebutton')[0];

 mybtn.menu.close();

 }

});

This ile (controller) will be in charge of controlling actions (the Save button)
launched in the form. This is possible thanks to the refs property in the controller.
Now, in the savenewNode function, what we do is as follows:

1. We query for the tree panel component with the Ext.ComponentQuery.
query('#menuTreePanel')[0] code (this is not always recommended to use
in real-world apps), and get the selection model from the tree component.

To query a component by ID is not considered best practice. This is because
the ID may be repeated and you can lose control. You can use the refs
property to control component behavior, or you can rely on component
queries at the component level, using the up and down methods to retrieve
the speciic component you want. For more information see http://www.
sencha.com/blog/top-10-ext-js-development-practices-to-
avoid-2/ and also http://docs.sencha.com/extjs/5.1/5.1.1-
apidocs/#!/api/Ext.ComponentQuery.

2. We check whether there is any selection existing inside our tree component.
If so, then we get the selected node, otherwise we will select the root node.

http://www.sencha.com/blog/top-10-ext-js-development-practices-to-avoid-2/
http://www.sencha.com/blog/top-10-ext-js-development-practices-to-avoid-2/
http://www.sencha.com/blog/top-10-ext-js-development-practices-to-avoid-2/
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.ComponentQuery
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.ComponentQuery

Chapter 9

[267]

3. We create a data object with the values we need for our new node (remember
how things work with the Ext.data.NodeInterface class), and insert the
new node into the selected node. When you run the example, you will notice
the type of node (the leaf value equals to yes or no) by watching the icon that
is assigned to the node.

4. Finally, we close the menu from the button (the form will be placed and used
as a menu item later in this example).

Now let's write our main code:

Ext.Loader.setConfig({ //Step 1

 enabled: true,

 paths:{ Myapp: 'appcode'}

});

Ext.require([//Step 2

 'Ext.*',

 'Myapp.view.nodeForm',

 'Myapp.controller.nodeForm'

]);

var myForm = Ext.create('widget.mynodeForm'); //Step 3

Ext.application({ //Step 4

 name: 'Myapp',

 controllers: ['nodeForm'],

 launch: function() {

 Ext.tip.QuickTipManager.init();

 //Step 5

 var MyTreeStore = Ext.create('Ext.data.TreeStore',{

 autoLoad: true,

 storeId: 'myTreeStoreDS',

 proxy:{ type:'ajax', url:'serverside/menu.json'}

 });

 var MyTreePanel = Ext.create('Ext.tree.Panel',{

 itemId: 'menuTreePanel',

 title: 'My app menu',

 width: 270,

 height :370,

 frame: true,

 store: MyTreeStore,

 tbar:[{

 text: 'Add',

 itemId: 'addnodebutton',

 iconCls: 'addicon-16',

 menu:{

 enableKeyNav: false,

The Tree Panel

[268]

 items: myForm

 }

 },{

 text: 'Delete',

 iconCls: 'deleteicon-16',

 handler:function(){ //Step 5

 var myTree = Ext.ComponentQuery.query('#menuTreePanel')[0];

 var myTreesm = myTree.getSelectionModel();

 if (myTreesm.hasSelection()){

 //check if has selection

 var mynode = myTreesm.getSelection()[0];

 //get first selection item

 mynode.remove(true);

 // True (for destroy the node)

 } else {

 Ext.Msg.alert('Alert..!', "please select a node in the
 tree...!");

 }

 }

 }],

 renderTo: 'myPanel'

 });

 }

});

Here's what this code does:

1. In Step 1, we deine the Ext loader and set the path for the Myapp workspace
as appcode.

2. In Step 2, we tell Ext JS what we require. In this case, we tell it to load
Ext.*, which means that the Ext JS loader will load all classes. If you don't
want to do this, then you can use Ext.tip.*, Ext.data.*, Ext.tree.*, and
Ext.form.*. So, in this way, we are only loading the most necessary classes
to make our code work.

In real-world applications, it is advised that you never use Ext.*
for the Ext JS loader. You should specify only the classes used, and
this will avoid loading classes that you will not be using in the
application. In this way, the code will be lighter than when loading
the entire Ext JS framework for your application.

Chapter 9

[269]

3. Then in Step 3, create an instance of the Myapp.view.nodeForm class using
the myForm variable.

4. In Step 4, instead of using Ext.onReady, as in previous examples, we
use Ext.application. This will be a similar function, waiting for all the
necessary classes to load, and then beginning (executing the launch function)
with this code. We deine the name of the application as Myapp, and also
deine which controllers the application will use.

5. In Step 5, we create the data store for the Tree panel loading JSON data
remotely, and deine our tree panel. This new tree panel has a toolbar
(deined in the tbar property) with two buttons. The irst one contains a
menu that has our form (myForm) as a menu item. The second button will be
a button for deleting the selected node, and we have deined in this case the
handler directly on the button and not on the controller.

For people who have little experience with MVC or MVVM architecture,
all of this can be quite complex or a hard experience. So, in this example,
we are trying to mix traditional code with MVC. Thus, you (if you do
not have experience) will be able to get more familiar with it at a slower
pace, instead of a barrage of information and terms that you may not
understand.

The function (handler) set in the button for the delete action will do the following:

1. We query for the tree panel component and get the selection model from the
tree component.

2. We check whether there is any selection existing inside our tree component,
and if so, then we get the selected node. Otherwise, we alert the user that
they have to select a tree node in order to complete the action.

3. If a node is selected, then we call the mynode.remove(true) action.
The true parameter will tell Ext JS to destroy the node completely from
the Tree. Otherwise, Ext JS will hide the node for future reuse, if needed.

The getSelectionModel() function was irst used in
Chapter 7, Give Me the Grid. The behavior of this function is
quite similar to the Grid component.

The Tree Panel

[270]

Now let's run our example. We may get results similar to what is shown in the
following screenshots. They show examples of adding and removing nodes.

The check tree
The tree panel also has the ability to add checkboxes to its nodes. To do this, we need
to add one more property to each node in the data source that we are applying to the
tree panel.

Let's use the irst example of this chapter, and we will change the root property
(data) as follows:

root: {

 text: 'My Application',

 expanded: true,

 checked:false,

 children: [{

 text: 'app',

 checked:false,

 children:[

 { leaf:true, text: 'Application.js', checked:false }

]

 },{

 text: 'controller', expanded: true, children: [],

 checked:false

 },{

Chapter 9

[271]

 text: 'model', expanded:true, checked:false,

 children: [

 {leaf:true, text: 'clients.js', checked:false},

 {leaf:true, text: 'providers.js', checked:false},

 {leaf:true, text: 'users.js', checked:false}

]

 },{

 text: 'store', checked:true,

 children: [

 {leaf:true, text: 'clients.js', checked:false},

 {leaf:true, text: 'providers.js', checked:true},

 {leaf:true, text: 'users.js', checked:false}

]

 },{

 text: 'view', checked:false,

 children: [

 {leaf:true, text: 'BasicTreePanel.js', checked:false},

 {leaf:true, text: 'TreeStorePanel.js', checked:false}

]

 },{

 text: 'resources', checked:false,

 children: [

 {text: 'images', checked:false},

 {text: 'css', checked:false,

 children: [

 {leaf:true, text: 'main.css', checked:false},

 {leaf:true, text: 'clients.css', checked:false}

]

 }

]

 }]

}

In order to make this work properly, you need to ensure that each
node has the checked property (true or false), otherwise the
checkboxes may not appear.

The Tree Panel

[272]

So, after the change, let's run our ile in the browser. We will see something like this:

The tree grid panel
The tree grid panel has the power of the tree, mixed with the lexibility of the
grid panel. This tree coniguration is very handy when we want to show more
information in our tree panel. As a matter of fact, the tree grid is an Ext.tree.Panel
with its columns coniguration being the same as in the grid. It also needs some
dependencies (Ext JS require) from the grid component, such as columns and others.

You can use the same column types as in the grid component (date, checkbox,
template, widgets, and so on). For this example, we need to create the column
deinitions that our tree panel will be using. It is the same process as is used when
we deine columns for a grid component.

In this example, we are going to list our Menu (the previous example's data) bar in
an extended way, like a permission assignment for the user proile

First, we will create our data model to specify ields that are not considered for a tree
data model:

Ext.define('Myapp.model.Tree', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'description', type: 'string'},
 {name: 'level', type: 'int'},
 {name: 'allowaccess', type: 'boolean'}
]
});

Chapter 9

[273]

Now, taking the second code example ile as the code base, let's modify it and change
it like this:

Ext.onReady(function(){

 Ext.tip.QuickTipManager.init();
 var MyTreeStore = Ext.create('Ext.data.TreeStore',{
 autoLoad: true,
 model: 'Myapp.model.Tree',
 storeId: 'myTreeStoreDS',
 proxy:{
 type: 'ajax',
 url: 'serverside/menu_extended.json'
 }
 });
 var MyTreePanel = Ext.create('Ext.tree.Panel',{
 title: 'User profile - Select access for user...',
 width: 670,
 height: 430,
 frame: true,
 store: MyTreeStore,
 columns:[{
 //column provide tree structure
 xtype: 'treecolumn',
 text: 'Module',
 dataIndex:'text',
 flex: 1,sortable: true
 },{
 xtype: 'templatecolumn',
 text: 'Module description',
 flex: 2,
 sortable: true,
 dataIndex:'description',
 align: 'left',
 tpl: Ext.create('Ext.XTemplate',
 '<div class="levelcolor_{level}">{description}</div>')
 },{
 xtype: 'checkcolumn',
 header: 'Allow access',
 dataIndex: 'allowaccess',
 width: 100,
 stopSelection: false,
 menuDisabled: true
 }
],
 renderTo:'myPanel'
 });
});

The Tree Panel

[274]

As you can notice, this code is essentially the same as our second code example in
this chapter, but the differences are as follows:

• We added a data model to the TreeStore

• We added the columns configuration to the tree panel definition

So now, let's run our example. We will have something like this:

As you can see, the tree grid component and the grid component are very similar in
columns (visual result and behavior) selection. You can create as many columns as
you want (remember that they must be considered in the model).

Chapter 9

[275]

Summary
In this chapter, you learned the basics of creating tree panels and the available
variants of the way in which we can use tree components.

The Ext JS library has implemented a very robust component that supports all
the common conigurations we need when developing our applications to it the
customer's needs. As with all components in the library, it is very important to know
in which situation we should use which component and the style of the component.

Remember that when developing an Ext JS application, we don't need to know all
the properties of the classes by memory. We can always go and search in the API
documentation.

In the next chapter, we are going to see the Ext JS Architecture and you will learn
more about the MVC and MVVM patterns. Also, we will see data binding (view
models), routers, and so on, which are used to create a more robust application.

Architecture
In order to create a better code and organization structure, improve teamwork, and
also reduce the amount of code to be written, the MVC pattern was irst introduced
in Ext JS 4. To go further, Ext JS 5 introduced the MVVM pattern, which is another
pattern to be used for our applications.

These patterns are quite similar, but the difference is that MVVM introduces a feature
called view model (VM) that manages the changes between models' data. Also, the
view's representation (by data bindings) gives developers the ability to reduce the
code even further, which is occasionally hard to manage for some and a tedious task
for others.

In the third code example in Chapter 9, The Tree Panel, we used the MVC pattern to
give you an idea of what will be coming in this chapter. Now we can go further by
covering these topics:

• MVC and MVVM patterns

• Creating a more robust application – our irst application using both patterns
• Adding interaction (controllers) and making use of data binding

(ViewModel)

• Using routers (a new feature in version 5)

Keep in mind that the discussion on MVC and MVVM varies depending on the
coding languages and frameworks, among others. So, when we talk about Ext JS's
MVC or MVVM, we will also see how Sencha Ext JS handles these patterns.

Architecture

[278]

The MVC and MVVM patterns
If you are new to these patterns, this section will tell you how the patterns work so
that you can get an idea on what to expect. So, let's start with the general concepts:

• Model: The collection of ields and data. This is used with stores to present
data, use it with our components, or interact with our code. Refer to Chapter
4, It's All about the Data, for more details.

• View: This is the visual part where the end user will be interacting. Types of
container components—grids, panels trees and so on—are all views.

• Controller: These are special containers (classes) where we will put the code
that makes our application work (handles events and methods). This will be
like an intermediary between the model and the view.

• ViewController: This is a controller that will be attached to a speciic view
instance and will manage that speciic view and its child components. Each
time a view is created, a new instance of the ViewController will be created
for that speciic view.

• ViewModel: This is a class that handles a data object and lets us bind its
data to our view making changes and interactions with the view. Also,
the ViewModel acts in way similar to the ViewController (new instance is
created for the new instance of the view).

Model-View-Controller (MVC)
MVC is and architectural pattern. This pattern is divided into three parts, allowing
us to organize the base code into logical representations, depending on their
functions. The following diagram shows a basic schema of how this pattern works:

Chapter 10

[279]

Model-View-ViewModel (MVVM)
MVVM is the new architectural pattern introduced in this version. The idea of
this pattern is to provide additional advantages of data binding. In this way, the
model and the framework internally interact more, with the idea of minimizing
the application logic for manipulation of the view. Despite the name Model-
View-ViewModel, the MVVM pattern may still utilize controllers (this is, kind of,
confusing sometimes because some developers may choose to call it an MVC + VM
architecture).

This diagram shows a basic schema of how this pattern works:

As an example, the idea behind the ViewModel is to bind the data with the text ields
within the form so that we won't have to code the way in which those ields will
be populated. Instead setting data binding to the ields, make it easier for us to ill
in the ields.

It's important to mention that Sencha always recommends the latest
features so that you can take advantage of the framework. However,
remember that you can always use the architecture you want (individual,
mixed, and so on). Also by using these patterns—MVC or MVVM—it's
going to be easier to share code with others, understand other people's
code, and integrate code by new developer (or developers) into our
project. For more information about MVC and MVVM patterns, you can
always check out the related documentation and articles at http://www.
sencha.com/blog or http://docs.sencha.com/.

http://www.sencha.com/blog
http://www.sencha.com/blog
http://docs.sencha.com/

Architecture

[280]

Creating our irst application
So far, all the chapters in this book have given an understanding of the basics in
Ext JS. Now we are going to apply this knowledge to create our application. Let's
start by opening our console tool (this depends on the operating system you are
using: Windows, OS X, or Linux), and we will use the Sencha CMD tool. Create
a folder inside your web server (XAMPP or WAMP) called myApp and type the
following command:

sencha -sdk /path/to/ext generate app myApp /path/to/myApp

Change the paths to the proper locations of your SDK (Ext JS's folder) and the folder
the application will be in. After executing the command, you will see something like
this (for Windows):

When you have multiple versions of the Sencha CMD tool, if you type
sencha, then the last version will be used. If we want to use a previous
version, then we have to type sencha-x.x.x.x, where x.x.x.x is the
version of the Sencha CMD tool we are going to use. As you can notice in
the previous image we used sencha-5.1.1.39.

Now, let's check out the folder. You will see the following output inside the folder:

Chapter 10

[281]

The Sencha CMD tool has created a basic application skeleton, from which we will
start working. Now let's test it; open index.html. You should see something similar
to this screenshot:

Remember to use the proper Sencha CMD tool to check compatibility
between the Ext JS framework's versions. Refer to http://docs.
sencha.com/cmd/5.x/compatibility_matrix.html for more
information about which framework's version the CMD tool supports.

http://docs.sencha.com/cmd/5.x/compatibility_matrix.html
http://docs.sencha.com/cmd/5.x/compatibility_matrix.html

Architecture

[282]

So now, we are ready to begin working on our application.

At this point, you can use the example code of this chapter. Copy or
replace the iles from the code inside the basic skeleton generated and run
it in your browser.

The views
Now that we have created the initial skeleton, let's proceed to create our initial view
in the application. Inside the app/view folder, we remove all existing iles (the initial
skeleton), and proceed to create the initial view our application will have. Let's start
with the myViewport.js ile, with the following code:

Ext.define('myApp.view.myViewport', {

 extend: 'Ext.container.Viewport',

 alias: 'widget.myviewport',

 requires: [

 'myApp.view.appZone',

 'Ext.panel.Panel'

],

 layout: 'border',

 items: [{

 xtype: 'panel',

 region: 'north',

 height: 76,

 itemId: 'appHeader',

 bodyPadding: 0,

 cls: 'appheaderbg',

 title: '',

 header: false,

 html: '<div class="appheader appheaderbg"><img src=
 "resources/images/myapp_logo.png"/></div>',

 },{

 xtype: 'appzone',

 region: 'center',

 itemId: 'myappZone'

 }]

});

Here, we are creating the basic layout of the viewport. It will have a border layout
and contain two components; the header will be a panel (region: 'north'), and the
main zone (region:'center') will be a component with xtype: 'appzone'. This
will be a new view, or class, that we will create. Again, in the app/view folder, create
a new ile called appZone.js and place the following code in it:

Chapter 10

[283]

Ext.define('myApp.view.appZone', {

 extend: 'Ext.panel.Panel',

 alias: 'widget.appzone',

 // Alias property let us define the xtype to appzone on the
 viewport previously

 requires: [

 'myApp.store.modulesTreeDs',

 'Ext.tab.Panel',

 'Ext.tab.Tab',

 'Ext.tree.Panel',

 'Ext.tree.View'

],

 layout: 'border',

 header: false,

 title: '',

 items: [{

 xtype: 'tabpanel',

 region: 'center',

 itemId: 'mainZone',

 header: false,

 title: '',

 items: [{

 xtype: 'panel',

 itemId: 'startappPanel',

 title: 'Dashboard',

 bodyPadding: 5,

 html:'myApp Dashboard',

 region: 'center'

 }]

 },{

 xtype: 'panel',

 itemId: 'accessPanel',

 region: 'west',

 split: true,

 width: 180,

 layout: 'fit',

 title: 'App modules',

 items: [{

 xtype: 'treepanel',

 header: false,

 title: 'My Tree Panel',

 store: Ext.create('myApp.store.modulesTreeDs', {

 storeId: 'accessmodulesDs'

}), //'modulesTreeDs'

Architecture

[284]

 rootVisible: false

 }]

 }]

});

In this ile, we create a panel with a layout border, and it contains two components.
The irst component is a tab panel component, where we will place our module's
contents, such as tabs.

The second component is a tree panel component from where we will have access
to the application modules. As we explained in Chapter 9, The Tree Panel, the
component will require a tree store and a data model. So now, we need to create
the iles for this task.

In the app/model folder, create the modulesModel.js ile and place the following
code in it:

Ext.define('myApp.model.modulesModel', {

 extend: 'Ext.data.Model',

 requires: [

 'Ext.data.field.String',

 'Ext.data.field.Boolean',

 'Ext.data.field.Integer'

],

 fields: [

 {type: 'string', name: 'description'},

 {type: 'boolean', name: 'allowaccess'},

 {type: 'int', name: 'level'},

 {type: 'string', name: 'moduleType', defaultValue: ''},

 {type: 'string', name: 'moduleAlias', defaultValue: ''},

 {type: 'string', name: 'options'}

]

});

Then, in the app/store folder, create the modulesTreeDs.js ile, as follows:

Ext.define('myApp.store.modulesTreeDs', {

 extend: 'Ext.data.TreeStore',

 requires: [

 'myApp.model.modulesModel',

 'Ext.data.proxy.Ajax'

],

 constructor: function(cfg) {

 var me = this;

 cfg = cfg || {};

Chapter 10

[285]

 me.callParent([Ext.apply({

 storeId: 'mymodulesTreeDs',

 autoLoad: true,

 model: 'myApp.model.modulesModel',

 proxy: {

 type: 'ajax',

 url: 'serverside/data/menu_extended.json'

 }

 }, cfg)]);

 }

});

The store is using the new model we created ('myApp.model.modulesModel'),
and also you can see the URL on the proxy coniguration object. This means that
inside our application folder (root level) we need to create a new folder called
'serverside/data' and place the menu_extended.json ile created/used in
Chapter 9, The Tree Panel, in it.

Now let's add an image for use as a logo in our header to the resources/images
folder, or copy the image located in the example code in the shared/images/logo
folder. Create a new CSS ile called style.css inside the resources/css folder, and
place the following code in it:

.appheader {width:100%; padding:5px;}

.appheaderbg {background-color:#CCC;}

.appheader img {width:185px;}

Let's link the CSS ile in the index.html ile, and we will get this:

<!DOCTYPE HTML>

<html manifest="">

<head>

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta charset="UTF-8">

<title>myApp</title>

<!-- The line below must be kept intact for Sencha Cmd to build your
application -->

<script id="microloader" type="text/javascript" src="bootstrap.js"></
script>

 <link rel="stylesheet" type="text/css" href="resources/css/style.
css">

</head>

<body></body>

</html>

Architecture

[286]

Finally, let's open the app.js ile (the root level of our application) and change it
as follows:

Ext.Loader.setConfig({});

Ext.application({

 name: 'myApp',

 views: [

 'myViewport',

 'appZone'

],

 launch: function() {

 Ext.create('myApp.view.myViewport');

 }

});

In the Ext.application coniguration, the launch function will be called
automatically when the page (index.html) has completely loaded. As you may have
noticed in the previous examples, we had used the Ext.onReady method, so now
Ext.application works in a similar fashion, but this method is the main entry point
for applications.

Also, it's important to set the name of the application with the name: 'myApp'
property. This will set the workspace we have been using with the classes in order
to make Ext JS load the iles properly. At this point, we are ready to make the initial
launch in our browser. We run the index.html ile in our browser, and we may get
the following output:

Chapter 10

[287]

This process can also be made in Sencha Architect 3.x, and there are some
initial templates with similar layouts. However, the main purpose of this
book is not to describe Sencha Architect. Rather, it is about you learning
how to work from scratch.

The controller
Now that we have the initial part, we are going to begin adding the interaction code
to the tree panel. For this, we are going to create a basic controller (MVC-style) in
order to control access to the app's modules.

Let's create a new ile called app.js inside the app/controller folder and place the
following code in it:

Ext.define('myApp.controller.app' , {

extend: 'Ext.app.Controller',

requires: [

 'myApp.view.appZone',

 'myApp.view.myViewport'

],

config: { },

init: function() {

console.log ('app controller init');

}

});

In this code, we extend the Ext.app.Controller class. This class contains several
methods that will help us listen to events and save references. Basically, we are going
to add our logic in here.

As for the second step, we have deined a method called init. This method will be
executed when our controller is created. This method is like a constructor for our
class; it will be the irst code executed in our controller. In here, we usually create
the listeners.

Now we have an empty controller that only shows a message on the JavaScript
console. We need to add this controller to our application deinition. Open the
app.js ile at the root level and make the following change:

Ext.application({

 name: 'myApp',

 controllers: ['app'],

 views: [

 'myViewport',

Architecture

[288]

 'appZone'

],

 launch: function() {

 Ext.create('myApp.view.myViewport');

 }

});

Here we are setting the controllers that are used in the application.

Listening to events
Once we have our controller in place, let's add some actions to our view. We will
need to open modules when the user double-clicks on any child node (leaf:true)
in the access panel. Now what we need to do is add a listener to the itemdblclick
event that belongs to the tree panel.

We do that using the control method that is deined in the Controller class that
we are extending. Let's change the controller code as follows:

Ext.define('myApp.controller.app', {

 extend: 'Ext.app.Controller',

 requires:[

 'myApp.view.appZone',

 'myApp.view.myViewport'

],

 config:{

 refs:{

 myappzone:{

 selector:'appzone',

 xtype:'appzone',

 autoCreate:false

 }

 }

 },

 init: function() {

 console.log('app controller init');

 var me=this;

 this.control({

 'appzone #accessPanel treepanel' :{

 itemdblclick: me.handleAccess

 }

 });

 },

Chapter 10

[289]

 handleAccess:function (cmpView, record, itemx, index, evt, eOpts){

 console.log('handle access for: ' + record.data.text);

 var me=this, moduleData = record.data;

 if (moduleData.hasOwnProperty('moduleType')){

 var typeModule = moduleData.moduleType;

 if (typeModule==''){

 return;

 } else if (typeModule=='link'){

 me.executeLink(moduleData);

 } else if (typeModule=='window'){

 me.runWindow(moduleData);

 } else if (typeModule=='module'){

 me.addModule(moduleData);

 }

 }

 },

 addModule:function(Data){

 console.log('Adding Module: ' + Data.options);

 },

 runWindow:function(Data){

 console.log('Execute window: ' + Data.options);

 },

 executeLink:function(Data){

 console.log('launch Link: ' + Data.options);

 }

});

First we set a refs property inside the coniguration object in order to set a reference
name for our view (in this case, the appzone class) so that the controller will
recognize the view by the name of myappzone.

In the init function, we set the controller's control coniguration. The control
property will set event listeners to the referenced elements and makes use of a
selector (see the Ext.ComponentQuery documentation for more details), appzone
#accessPanel treepanel in this case.

Ext JS will know that it has to add the event listener for the itemdblclick event to
the treepanel component inside the appzone view, and also inside the component
with the itemId property with the value of accessPanel.

Architecture

[290]

Now, in our JSON ile called menu_extended.json inside the serverside/data
folder, let's make changes on some elements:

1. Find the node element for Customers and set it as follows:
{

 "leaf": true,

 "text": "Customers",

 "allowaccess": false,

 "description": "Customer administration",

 "level": 3,

 "moduleType": "module",

 "options": "myApp.view.modules.customers"

}

2. Then, ind the node element for "Submit a ticket", and set it like this:
{

"leaf": true,

"text": "Submit a ticket",

"allowaccess": false,

"description": "Submit support tickets",

"level": 3,

"moduleType": "window",

"options": "myApp.view.ticket"

}

3. As the last step, ind the Forum element and make the following changes:

{

"leaf": true,

"text": "Forum",

"allowaccess": false,

"description": "Go to Forum",

"level": 3,

"moduleType": "link",

"options": "http://www.sencha.com/forum/"

}

Onto these three elements/nodes inside our JSON ile, we added some new properties
in order to control the behavior of the access modules. Let's run our application in
the browser and also open the developer tools/console to check the behavior of
the listener. Click on the Customers node, then on Submit a ticket, and inally on
the Forum node. Our console/developer tools will look like what is shown in the
following screenshot:

Chapter 10

[291]

We can see that the listener is responding properly according to each type of module
we are going to control inside the app.

Opening modules
Now that we have the listener working, we will create the code for meant for
opening each of the modules (even though we haven't yet created each module; we
will do this later). So, let's change the controller ile again. Change the addModule,
runWindow, and executeLink functions as follows:

addModule:function(data){

 console.log('Adding Module: ' + data.options);

 var me=this;

 var myZone = me.getMyappzone();

 var ModulesTab = myZone.query('tabpanel #mainZone')[0];

 var existModule= false;

 for (var i=0;i<ModulesTab.items.items.lenght;i++){

 if (ModulesTab.items.items[i].xtype==data.moduleAlias){

 existModule= true;

 break;

 }

 }

 if (existModule){

 ModulesTab.setActiveTab(i);

 return;

 } else {

 var mynewModule = Ext.create(data.options);

 ModulesTab.add(mynewModule);

Architecture

[292]

 ModulesTab.setActiveTab((ModulesTab.items.items.lenght -1));

 return;

 }

},

runWindow:function(data){

 console.log('Execute window: ' + data.options);

 Ext.Msg.alert("Window module", "here we show window:" +
 data.text+ "");

},

executeLink:function(data){

 console.log('launch Link: ' + data.options);

 window.open(data.options);

}

This previous code will provide us with functionality for accessing our modules.
Now, let's begin creating the view for the customer's module.

Creating a module
Before we create the customer module, we are going to reuse the code written in
Chapter 7, Give Me the Grid. To be more precise, we are going to use the code made in
example 07 and make slight changes. First, for the model, we'll use the following code:

Ext.define(' myApp.model.Customer',{

 extend: 'Ext.data.Model',

 requires: ['myApp.model.Contract'],

 idProperty: 'id',

 fields: [

 {name: 'id', type: 'int'},

 {name: 'name', type: 'string'},

 {name: 'phone', type: 'string'},

 {name: 'website', type: 'string'},

 {name: 'status', type: 'string'},

 {name: 'clientSince', type: 'date', dateFormat: 'Y-m-d H:i'},

 {name: 'country', type: 'string'},

 {name: 'sendnews', type: 'boolean'},

 {name: 'employees', type: 'int'},

 {name: 'contractInfo', reference: 'Contract', unique:true}

]

});

For the Customers ile, add the following code:

Ext.define('myApp.store.Customers', {

 extend: 'Ext.data.Store',

Chapter 10

[293]

 requires: [

 'myApp.model.Customer',

 'Ext.data.proxy.Ajax',

 'Ext.data.reader.Json'

],

 constructor: function(cfg) {

 var me = this;

 cfg = cfg || {};

 me.callParent([Ext.apply({

 storeId: 'Customers',

 autoLoad: true,

 model: 'myApp.model.Customer',

 proxy: {

 type: 'ajax',

 url: 'serverside/data/customers.json',

 actionMethods: {read:"POST"},

 reader: {

 type: 'json',

 rootProperty: 'records',

 useSimpleAccessors: true

 }

 }

 }, cfg)]);

 }

});

Remember that these two models need to be saved in the app/model folder. Now,
we create the Grid panel (which will be a new view inside our application), save the
ile as customers.js in the app/view/modules folder, and write the code as follows:

Ext.define('myApp.view.modules.customers', { //step 1

 extend: 'Ext.grid.Panel',

 requires: [

 'myApp.view.modules.customersController',

 'Ext.grid.column.Number',

 'Ext.grid.column.Date',

 'Ext.grid.column.Boolean',

 'Ext.view.Table',

 'Ext.button.Button',

 'Ext.toolbar.Fill',

 'Ext.toolbar.Paging'

],

 xtype: 'customersmodule', //step 2

 alias: 'widget.customersmodule',

 controller: 'customersmodule',

Architecture

[294]

 frame: true,

 closable: true,

 iconCls: '',

 title: 'Customers...',

 forceFit: true,

 listeners: {//step 3

 'afterrender': {fn: 'myafterrender'},

 'render': {fn: 'myrenderevent'}

 },

 initComponent: function() { //step 4

 var me = this;

 me.store = me.createCustomersStore();

 me.columns = [/* columns definition here… */];

 me.dockedItems= [/* items here… */];

 me.callParent();

 },

 createCustomersStore:function(){

 return Ext.create('myApp.store.Customers');

 }

});

Let's understand the preceding code step by step:

1. First, we deined the 'myApp.view.modules.customers' class. It extends
the Ext.grid.Panel panel class.

2. Then, we deined the xtype, alias, and controller properties in order to
make the application to recognize the type of component we are using"—
customersmodule"—and also the controller (view controller) that this view
will use.

3. We deined the grid listeners (render and afterrender) with the following
code:
 listeners: { //step 3

 afterrender: {fn: 'myafterrender'},

 render: {fn: 'myrenderevent'}

 },

So, these afterrender and render functions will be handled by the
ViewController.

4. Finally, in the initComponent function, we deine the other properties that
our view will have (this is useful when we have to set the properties based
on coniguration or special permissions) or some parts (child components of
the view that could change).

Chapter 10

[295]

Now, the columns coniguration for our view is the following:

me.columns =[{

 xtype: 'rownumberer',

 width: 50,

 align:'center'

},{

 xtype: 'numbercolumn',

 width: 70,

 dataIndex: 'id',

 text: 'Id',

 format: '0'

},{

 xtype: 'templatecolumn',

 text: 'Country',

 dataIndex: 'country',

 tpl: '<div><divclass="flag_{[values.country.toLowerCase()]}">' +
 ' </div> {country}</div>'

},{

 xtype: 'gridcolumn',

 width: 210,

 dataIndex: 'name',

 text: 'Customer name'

},{

 xtype: 'datecolumn',

 dataIndex: 'clientSince',

 width: 120,

 text: 'Client Since',

 format: 'M-d-Y',

 align:'center'

},{

 xtype: 'booleancolumn',

 dataIndex:'sendnews',

 width: 100,

 align:'center',

 text: 'Send News?',

 falseText: 'No',

 trueText: 'Yes'

}];

Architecture

[296]

The code for dockedItems is as follows:

me.dockedItems=[{

 xtype: 'toolbar', dock: 'top',

 items: [{

 xtype: 'button',

 text: 'New...',

 iconCls:'addicon-16',

 action:'newrecord',

 listeners: {click:'btnactionclick'}

 },{

 xtype: 'button',

 text: 'Edit...',

 iconCls:'editicon-16',

 action:'editrecord',

 listeners: {click:'btnactionclick'}

 },{

 xtype: 'button',

 text: 'Delete...',

 iconCls:'deleteicon-16',

 action:'deleterecord',

 listeners: {click:'btnactionclick'}

 },{

 xtype: 'tbfill'

 },{

 xtype: 'button',

 text: 'Help.',

 iconCls:'help-16',

 action:'showhelp'

 }]

}];

ViewController
As we talked before, the view controller needs to be attached to the view, and every
time a new instance of the view is created, a new instance of the ViewController will
also be created. In version 5, this new feature was implemented for the reason that
sometimes, to create a module, developers used only one controller for many views
(wrapping all as a module; this was a chaotic issue for maintaining code).

Chapter 10

[297]

For this new module (customers) that we have created, we are going to use the
view controller. Now, inside the app/view/modules folder, create another ile called
customersController.js (this will be the ViewController for the view), and place
the following code:

Ext.define('myApp.view.modules.customersController', {

 extend: 'Ext.app.ViewController',

 alias: 'controller.customersmodule',

 config: {

 control: {

 // Other alternative on how to listen some events

 'customersmodule button[action=showhelp]': {

 click: 'btnactionclick'

 }

 }

 },

 init: function() {

 console.log('customers view controller init');

 },

 myrenderevent:function(cmpx, eOpts){

 console.log('Grid - customers render event');

 },

 myafterrender:function(cmpx, eOpts){

 console.log('Grid - customers afterrender event');

 },

 btnactionclick:function(btnx, evt, eOpts){

 console.log('Button clicked : ' + btnx.action);

Architecture

[298]

 }

});

In this code, we deined the ViewController for our customer's view. Check out the
name; it is myApp.view.modules.customersController, and it extends the Ext.
app.ViewController class. The alias we used is controller.customersmodule,
and it is related to our view's controller: 'customersmodule' property. In this
way, Ext JS will know the proper relation between the view and the ViewController.

Also, you might have noticed that in the customers view, we have a toolbar
(dockeditems), and we set on the irst three buttons the listeners for each button, but
on the help button, we didn't. Now, inside the ViewController, we place this code:

config:{

 control: {

 // Other alternative on how to listen some events

 'customersmodule button[action=showhelp]': {

 click:'btnactionclick'

 }

 }

},

This code will be will be listening/waiting for the Help button to be clicked on to
run the btnactionclick function deined in the view. So, as of now, our code must
work, run the app in our browser, and access the Customers module. We will see
something like this:

Chapter 10

[299]

Now, click on the buttons inside the new module and check the console output
(using developer tools/Firebug). You may see this:

We can see that our view and its ViewController are linked correctly and responding
as we need. Now, let's create the form responsible for adding new customer records.
On this new form, we will implement the ViewModel, linking its data and the form's
behavior by the use of data bindings.

ViewModel
The ViewModel in Ext JS is a class that manages a data object. It will monitor
changes and interact with those interested in its data. This class is also able to link
to a parent ViewModel (the hierarchy in components/views), which means that it
allows child views to inherit the data of the parent ViewModel.

In version 5, components have a new conig property called bind, and this allows us
to associate any coniguration with the data coming from the ViewModel.

As we talked previously, the ViewModel will create a new instance once its
associated view instance is created. Now, create the ViewModel ile for the
Customers form, name it as customerFormViewModel.js, place it inside the
app/view/forms folder, and add the following code in it:

Ext.define('myApp.view.forms.customerFormViewModel', { //step 1

extend:'Ext.app.ViewModel',

alias:'viewmodel.customerform',

data:{ //step 2

Architecture

[300]

 action: 'add',

 ownerCmp: null,

 rec: null

},

formulas:{ //Step 3

 readOnlyId:function(get){

 return (get('action')!=='add');

 },

 ownerNotNull:function(get){

 var cmpx = get('ownerCmp');

 return (cmpx!==null && cmpx!==undefined);

 },

 refName:function(get){

 var value='';

 if (get('action')!=='add'){ //Edit action

 var id = get('rec.id'), custname =get('rec.name');

 if (custname===''){ custname ='(not defined)'; }

 value = 'Editing : ' + id + ' - ' + custname + "..." ;

 } else {

 value = 'New customer...';

 }

 //Step 4

 var xtypeOwner= this.getView().ownerCt.getXType();

 if (xtypeOwner=="customerwindow"){

 this.getView().ownerCt.setTitle(value);

 }

 Return value;

 }

 }

});

Let's explain the preceding code step by step:

1. We deined the class extending Ext.app.ViewModel, and also set the
viewmodel.customerform alias so that we can later reference this
ViewModel as customerform.

2. We set the default data coniguration object. It will be overwritten when we
create our new (view).

3. We set the formulas property inside the coniguration of ViewModel.
The formulas object is an object that deines named values whose value is
managed by functions, so we can manipulate the values. In this case, we set
three new properties, named readOnlyId, ownerNotNull, and refName.

Chapter 10

[301]

4. If you look carefully at the formulas.refname function, you will notice that
we are using this.getView(). This method allows us to access our (linked)
view class/instance and manipulate it.

Binding and data binding
In Ext JS 5, one new addition in the components is the bind conig, which allows us
to associate data from the ViewModel. So, using bind, we can bind the appropriate/
desired coniguration, and whenever the bound value changes, this conig will
automatically be updated.

To refer to the proper data inside the model, we need to use bind descriptors:

• Direct bind: This value is passed directly without changes, like this
for example:

bind:{ value: '{firstName}'}

• Bind template: We can produce customized strings as in Ext.Template.
An example of this is shown here:

bind:{ title: 'Hello {firstName} {lastName}..!'}

• Boolean bind: This is useful for binding a Boolean conig, like this
for example:

{!isAdmin.checked}

You can check out the Ext JS documentation to see all the available ways
of binding data and more advanced examples.

Now, let's create the view ile for the customers form, name it customerForm.js
inside the app/view/forms folder, and place the following code in it:

Ext.define('myApp.view.forms.customerForm', { //Step 1

 extend: 'Ext.form.Panel',

 alias: 'widget.customerform',

 xtype: 'customerform',

 requires:[

 'Ext.form.field.Number',

 'Ext.form.field.Date',

 'Ext.form.field.ComboBox',

 'Ext.toolbar.Toolbar',

 'Ext.toolbar.Fill',

 'Ext.button.Button',

Architecture

[302]

 'myApp.view.forms.customerFormViewController',

 'myApp.view.forms.customerFormViewModel',

 'myApp.model.Customer'

],

 controller: 'customerform', //Step 2

 ViewModel: {type: 'customerform' }, //Step 2

 bodyPadding: 6,

 header: false,

 title: 'Customer...',

 bind:{ title: '{refName}' }, //Step 3

 defaults:{

 labelAlign: 'right',

 labelWidth: 80,

 msgTarget: 'side',

 anchor: '-18'

 },

 items: [{

 xtype: 'numberfield',

 fieldLabel: 'Customer ID',

 name: 'id',

 anchor: '100%',

 maxWidth: 200,

 minWidth: 200,

 hideTrigger: true,

 bind:{ value:'{rec.id}', readOnly:'{readOnlyId}'}//Step 3

 },{

 xtype: 'textfield',

 fieldLabel: 'Name',

 name: 'name',

 bind: '{rec.name}' //Step 3

 },{

 xtype: 'textfield',

 fieldLabel: 'Phone',

 name: 'phone',

 bind: '{rec.phone}' //Step 3

 },{

 xtype: 'textfield',

 fieldLabel: 'Web site',

 name: 'website',

 bind: '{rec.website}' //Step 3

 },{

 xtype: 'datefield',

 anchor: '60%',

 fieldLabel: 'Client since',

Chapter 10

[303]

 name:'clientSince',

 submitFormat: 'Y-m-d',

 bind:'{rec.clientSince}' //Step 3

 },{

 xtype: 'combobox',

 fieldLabel: 'Country',

 name: 'country',

 store: Ext.create('Ext.data.Store', {

 fields: ['id', 'name'],

 data : [

 {"id": "USA", "name": "United States of America"},

 {"id": "Mexico", "name": "Mexico"}

]

 }),

 valueField: 'id',

 displayField: 'name',

 bind:'{rec.country}' //Step 3

 },{

 xtype: 'combobox',

 fieldLabel: 'Status',

 name: 'status',

 store: Ext.create('Ext.data.Store', {

 fields: ['id', 'name'],

 data: [

 {"id": "Active", "name": "Active"},

 {"id": "Inactive", "name": "Inactive"},

 {"id": "Suspended", "name": "Suspended"},

 {"id": "Prospect", "name": "Prospect"},

]

 }),

 valueField: 'id',

 displayField: 'name',

 bind: '{rec.status}' //Step 3

 },{

 xtype: 'numberfield',

 anchor: '60%',

 fieldLabel: '# Employees',

 name:'employees',

 bind:'{rec.employees}' //Step 3

 },{

 xtype:'checkbox',

 fieldLabel: 'Send news ?',

 boxLabel:'check if yes/uncheck if no...!',

 name:'sendnews',

Architecture

[304]

 inputValue:1,

 bind:'{rec.sendnews}' //Step 3

 }],

 dockedItems: [{

 xtype: 'toolbar', dock: 'bottom',

 items: [{

 xtype: 'tbfill'

 },{

 xtype: 'button',

 iconCls: 'save-16',

 text: 'Save...', action:'savecustomer'

 },{

 xtype: 'button',

 iconCls: 'cancelicon-16',

 text: 'Close / Cancel',

 action:'closeform',

 bind:{ hidden:'{ownerNotNull}'}

 }]

 }],

 initComponent: function(){

 // place your code....

 this.callParent();

 },

 listeners:{ //Step 4

 'titlechange':{

 fn:function(panelx, newtitle, oldtitle, eOpts){

 if (panelx.rendered){

 panelx.ownerCt.setTitle(newtitle);

 }

 }

 },

 'afterrender':{

 fn:function(panelx, eOpts){

 panelx.ownerCt.setTitle(panelx.title);

 },

 single:true

 }

 }

});

Chapter 10

[305]

Here is a step-by-step explanation of the preceding code:

1. We created the class extending Ext.form.Panel because this component/class
will be reused in the Chapter 12, Responsive Conigurations and Tablet Support.

2. We deined the controller and the ViewModel with the {type:
'customerform'} code, which references the ViewModel.

3. With the bind property, we linked all other properties inside the
customerForm coniguration as well as the form's ields. Also, we checked all
the bindings we are making, and we can use a string or an object to deine.
In the case of strings, the default bind for some components (example ields)
will be the value property.

4. Notice that we set the bind conig on the close button as bind :{
hidden:'{ownerNotNull}'}. This will ensure that if formPanel has an
owner container or was set in the coniguration, then the button will appear,
otherwise it won't.

5. We used some event listeners to monitor title changes in our extended form
panel. You can notice that in the coniguration, we set header:false, but we
bind the title of formPanel to be changed by the ViewModel. So when the
title changes, thanks to the ViewModel, our ownerCt component (if it exists
and is set to a value) will change the title.

Finally, create the ile named customerFormViewController.js inside the app/
view/forms folder and add the following code to it:

Ext.define('myApp.view.forms.customerFormViewController', {

 extend: 'Ext.app.ViewController',

 alias: 'controller.customerform',

 config: {

 control: {

 'customerform button[action=savecustomer]': {

 click:'saveCustomer'

 },

 'customerform button[action=closeform]': {

 click:'formClose'

 }

 }

 },

 init: function() {

 console.log('customers form view controller init');

 },

 formClose: function(cmpx, eOpts){

 console.log('Closing Form');

 var closeCmp= this.getViewModel().get('ownerCmp');

Architecture

[306]

 if(closeCmp!==null && closeCmp!==undefined){

 var xtypeUsed = closeCmp.getXType();

 if (xtypeUsed ==='panel' || xtypeUsed ==='gridpanel' ||
 xtypeUsed ==='window' || xtypeUsed ==="customerwindow"){

 closeCmp.close();

 }

 }

 return;

 },

 saveCustomer:function(btnx, evt, eOpts){

 var action= this.getView().getViewModel().get('action');

 console.log('Performing action in form : ' + btnx.action);

 if(action=='add'){

 if(this.getView().getForm().isValid()) {

 var newCustomerData =this.getView().getForm().getValues();

 var mycustomer = Ext.create('myApp.model.Customer',
 newCustomerData);

 this.getView().gridModule.getStore().add(mycustomer);

 Ext.Msg.alert('Ok', 'New customer added successfully..!');

 this.formClose();

 } else {

 Ext.Msg.alert('Error!', 'There are' + 'some errors in the
 form , please check' + ' the information!');

 return;

 }

 } else { //Edit action

 if (this.getView().getForm().isValid()){

 var newCustomerData = this.getView().getForm().
 getValues();

 var Record = this.getView().gridModule.getStore().getById(
 newCustomerData.id);

 var editResult = Record.set(newCustomerData);

 if (editResult!=null){

 Record.commit();

 Ext.Msg.alert('Ok', 'Customer edited successfully.!');

 this.formClose();

 } else {

 Ext.Msg.alert('Error.!', 'Error updating customer.!');

 return;

 }

 } else {

 Ext.Msg.alert('Error..!', 'There are some errors in the
 form, please check the information..!');

 return;

 }

Chapter 10

[307]

 }

 }

});

The controller ile will add the save and close functionality to our form's buttons, so
let's save our iles. Now we are going to create a new view that will act as a wrapper
for our customerForm view. So now, create the customerWindow.js ile inside the
app/view/forms folder and place the following code in it:

Ext.define('myApp.view.forms.customerWindow', { //Step 1

 extend: 'Ext.window.Window',

 alias: 'widget.customerwindow',

 xtype: 'customerwindow',

 requires: [

'myApp.view.forms.customerWindowViewController',

 'myApp.view.forms.customerForm'

],

 controller: 'customerwindow', //Step 2

height: 368,

width: 489,

iconCls: 'customer-16',

layout:'fit',

 closable:true,

 minimizable:true,

 title: '',

 tools:[{ //Step 3

 type:'restore',

 tooltip: 'Restore window...',

 handler: function(event, toolEl, panelHeader) {

 var cmpx=panelHeader.up('window');

 if (cmpx.collapsed){

 cmpx.expand();

 }

 }

 }],

 initComponent: function() {

 var me=this;

//Step 4

var myForm =Ext.create('myApp.view.forms.customerForm',{

 gridModule: me.gridModule,

 ViewModel:{

 data:{

 action:me.action,

 ownerCmp: me,

 rec: me.record || null

Architecture

[308]

 }

 }

 });

 me.items=[myForm];

 me.callParent(arguments);

 }

});

Let's understand the preceding code step by step:

1. In Step 1, we deined our class.
2. Then, we deined the controller.
3. We created a tool for handling the code for restoring the window after it

is minimized.

4. Inside the initComponent function, we created an instance of the
customerForm class, which this window will contain. You might see that
inside the coniguration object, we set ViewModel and its data. This will
make Ext JS create an instance of the customerForm ViewModel and apply
this data.

Finally, here's the controller for our window class:

Ext.define('myApp.view.forms.customerWindowViewController', {

 extend: 'Ext.app.ViewController',

 alias: 'controller.customerwindow',

 config: {

 control:{

 'customerwindow':{

 'minimize':'mywindowMinimize',

 'expand':'myExpand'

 },

 }

 },

 mywindowMinimize:function(cmpx, eOpts){

 console.log('customerWindow minimizing..!');

 cmpx.collapse();

 cmpx.alignTo(Ext.getBody(),'tr-tr');

 },

 myExpand:function(cmpx, eOpts){

 cmpx.center();

 }

});

Chapter 10

[309]

Basically, this controller will control when the window minimizes and when it is
restored. It will center the window in our web page or browser document.

It's important to be careful with the names and typos (uppercase and
lowercase letters), because a bad typo will represent a JS error. This
is because Ext JS will not recognize the names in our MVC or MVVM
architecture correctly.

At this point, we can run our application. Open the customer's module, select a
record, and then click on the Edit button. You will see something similar to the
following screenshot:

Notice that the ields were correctly illed in with the data from our Store and model
(record) inside the form. Try to write something in the Customer ID ield and you
will see that it is read-only. Now let's make a change in the customer's name ield.
You will see this:

Architecture

[310]

Did you see how the window's title changes as the value of the Name ield changes?
If you empty the Name ield, you will see (not deined), because you set this inside
the code of refName on the formulas coniguration in the ViewModel.

Now minimize the window and edit another record. This is what you will see:

Check out how the minimized window went to the top-right corner of the window/
document. Also, we have another window editing another record. Here, each window
(instance of the customerWindow class) is an individual instance that contains its own
ViewModel and ViewController, and they do not mess with each other.

Remember that you can mix MVC, MVVM, or MVC + VM in the same application.
It's up to you to decide which one suits your needs best according the modules or
requirements that you have to work on. The main idea is to reduce code as much as
possible. Also, these code examples have not very complex, so you get an idea and
understanding of what Ext JS can offer you with respect to architecture.

Chapter 10

[311]

Router – implementing and using
Another new addition in version 5 is the use of routers in our application. Routing
can be used to track an application's state through the use of the browser history
stack. It also allows deep linking into the application, which allows a direct link to
a speciic part of your application. As an example, open the Kitchen Sink example
(Sencha's own examples), as shown here:

The #basic-panels part of the URL is called the hash or fragment identiier. The
browser ires an event, called hashchange, that is recognized by our application, and
we can use it and react according to the value (or values) assigned to it.

So, in this URL example, if you copy the URL, close the browser, reopen it, and paste
the URL, the application will open with the last module (view) you were in. In this
case, it is the basic-panels example.

To implement this in our application, let's make some slight changes to the app.js
ile. At the end of the ile (code), insert the following code:

 init:function() {

 this.setDefaultToken('');

 }

The setDefaultToken method will set defaultToken to be used when the
application launches, if one is not present. Now, in the app/controller/app.js ile,
make the following changes to the handleAccess function:

handleAccess: function(cmpView, record, itemx, index, evt, eOpts){

 console.log('Action for handle access : ' + record.data.text);

 var me=this, moduleData = record.data;

 if (moduleData.hasOwnProperty('moduleType')){

 var typeModule = moduleData.moduleType;

 if (typeModule==''){

 return;

 } else if(typeModule=='link'){

 me.executeLink(moduleData);

 } else if (typeModule=='window'){

 me.runWindow(moduleData);

 } else if (typeModule=='module'){

Architecture

[312]

 //Change to be made for router

 if (moduleData.options=="myApp.view.modules.customers"){

 this.redirectTo('customers', true);

 return;

 } else {

 me.addModule(moduleData);

 }

 }

 }

},

The redirectTo method will update the hash. By default, it will not execute
the routes if the current token and the token passed are the same. We pass the
customers parameter and true. The irst parameter will set the hash string, and the
second will force the update of the hash regardless of the current token. In the same
ile, update the config property to the following:

 config:{

 refs:{

 myappzone:{

 selector:'appzone',

xtype:'appzone',

autoCreate:false

 }

 },

 routes:{

 ':id': {

 action: 'handleRoute',

 before: 'beforeHandleRoute'

 }

 }

 },

Here, we set the routes methods for each event (before and action). At the end of
this ile, we insert the functions we set the handleRoute and beforeHandleRoute
routes:

beforeHandleRoute: function(id, action) {

 if (id!='customers'){

 Ext.Msg.alert("Route error", "invalid action...!");

 action.stop();

 } else {

 action.resume();

 }

},

handleRoute: function(id) {

Chapter 10

[313]

 if (id=='customers'){

 var myStore=this.getMyappzone().query('treepanel')[0].
 getStore();

 var myRecord = myStore.findNode('text', 'Customers');

 if (myRecord!=undefined){

 this.addModule(myRecord.data);

 } else {

 Ext.Msg.alert("Route error", "error getting customers data
 access...!");

 }

 }

}

The beforeHandleRoute method is executed before doing anything (if there is a
hash), so if everything is okay, we need to call the action.resume() function to let
Ext JS to continue executing the route. Otherwise, with action.stop(), the router
will do nothing.

The handleRoute function will get the record data from the tree panel (access
modules) and will launch the addModule function to create the desired module (in
this case, the Customers module).

So now, run the application and open the customer module. You will see that the
hash has been updated. After being updated the hash reloads the web page. Then,
see the results, as follows:

Architecture

[314]

Also, it's important to mention that routes can be conigured to accept more
parameters, and we can set conditions to validate hash values in order to add a bit
more security to our application.

Summary
It's recommended to have good architecture so that you can easily manage and
maintain the code, and generate good teamwork, if the case applies. Developers build
architectures in their own personalized taste and fashion, so following an architecture
pattern can be easier when involving new developers in your project.

Remember to analyze the requirements you have so that you can properly choose
the pattern that suits you the most, otherwise you are likely to write more code than
you need.

You can check out more information at the Sencha documentation or blog to
understand more advanced topics about controllers, viewModel, data binding, and
view Controllers, among others. The link to visit is http://docs.sencha.com/
extjs/5.1/application_architecture/application_architecture.html.

From the pages of this chapter, you learned how to organize your code using classes
and following the MVC, MVC, MVVM, or MVC + VM pattern to assign the right task
to each class. Using a controller to write our logic for the views and giving life to our
components is a great way to keep our code clean and organized.

Demonstrating the complete application is beyond the scope of this book, so you can
try adding other modules to this example on your own using the same logic or steps,
and adapting each module as required.

In the next chapter, we will cover custom themes and UI themes for our components,
and give them a different look.

 http://docs.sencha.com/extjs/5.1/application_architecture/application_architecture.html
 http://docs.sencha.com/extjs/5.1/application_architecture/application_architecture.html

The Look and Feel
One of the challenges in Ext JS applications is to create a speciic look and feel, for
example, branding or setting the company's or the client's desired colors into the
application. Usually, the Ext JS UI is known for its classic light blue theme. In Ext JS
versions older than version 4, it was dificult to customize and create themes due to
the theme's architecture.

Since version 4, a new architecture/base code was implemented, which gave us the
ability to change colors, gradients, fonts, and so on in the Theme globally and per
component. Now we can also create different styles for the same component using
the ui property.

In this chapter, you are going to learn how to create new themes. We will
create a theme for the main application that we have been working on since the
previous chapter.

We will cover the following topics in this chapter:

• CSS, Compass, and SASS

• Advanced theming

• Different styles on the same component

• Support for legacy browsers

Setting up our environment
Before we start creating our new theme and UIs, we need to install some tools
onto our computer. These tools will help us write our theme in Ext JS, because
we are going to use Compass and SASS to generate our CSS code and give a
new feel to our application.

The Look and Feel

[316]

SASS, also known as Syntactically Awesome Style Sheets (http://sass-lang.
com/), is an extension of CSS that allows us to use variables, nested rules and mixins,
and it's more thoroughly compatible with CSS syntax. This will allow us to create
style sheets with less effort.

COMPASS (http://compass-style.org/) is a SASS framework designed to make
more work more smooth and eficient. Let's call it a library of tools and the best
practices for manipulating SASS. In the end, the compiled output will be CSS iles.

In order to use both tools (SASS and Compass), we need to have Ruby installed on
our computer. Ruby is a dynamic language and is popular among web developers
worldwide. For the moment, don't worry if you are not familiar with using this
language, because we are not going to write apps or code with it. It is needed so that
Compass and SASS can work properly in our OS.

So let's download and install Ruby. If you are using Windows, you ought to know
that there are installers speciic for this, and they make it easier to get started. We
can ind installers and downloads of Ruby at https://www.ruby-lang.org/en/
downloads/. If you are using Mac, you will need to install XCode, Ruby, and all its
dependencies. Also, you can use the RVM project to install any version of Ruby on
the same machine; this works for Linux systems as well.

At the time of writing this book, the latest version of Ruby is 2.2.1, but on Windows,
I have found that version 1.9.3p448 works ine. Install Ruby, and once it is
installed, usually on Windows OS 7 or greater, you may need it to set up the PATH
environment variable. After doing this on Windows OS 7 or greater, restart Windows
so that PATH can work properly.

Now let's open a terminal (on Windows, go to Start | All Programs | Accessories |
Command Prompt). A window will open, and you have to type the
following command:

$ruby –v

This command should give us the version of Ruby already installed. We should see
something like this:

http://sass-lang.com/
http://sass-lang.com/
http://compass-style.org/
https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/

Chapter 11

[317]

Now, Ruby comes with a package (command) tool called gem. We are going to use
this tool to install Compass. In our terminal (Command Prompt), we execute the
following command:

$gem install compass

This command downloads and installs all of the software and dependencies required
in order for it to work properly, as in this case as Compass needs SASS this will be
installed too. After inishing the installation, run the following commands:

$compass –v

$sass -v

If everything goes correctly, we will see the version of each gem (package) installed
on our system. So now, we are ready to start working with our custom theme (the
irst theme for some people).

The packages folder
As we've seen in Chapter 1, An Introduction to Ext JS 5, we talked about the folder
structure in version 5. We also said that the resources folder disappeared, and in
its place, we have now the packages folder. This folder contains many subfolders
that are used to build our application and also contains theme folders (CSS, images,
SASS, and so on).

Theme folders were reorganized in this version in order to provide a cleaner and
organized way to create new themes. Also, we can say that themes were hierarchically
constructed. This means that Ext JS themes extend a package in order to be created.

The Look and Feel

[318]

 Look at the following diagram to understand how the hierarchy is set for themes:

So, after showing this hierarchy, it's advisable to say that Neptune and Classic are
the most frequent themes to be extended to create a custom theme. This is because
both of these themes contain all of the necessary code for creating new themes.

Extending the Neutral theme can be considered a very abstract theme, and will
require much work, such as adding many variable overrides code. Nevertheless, it
can be extended.

So, to create our irst theme, irst of all, we need to open our console (Command
Prompt), and go to our application's directory (the app workspace) inside the myapp/
folder. Once we are there, we type the following command:

sencha –sdk [path to SDK] generate theme –extend ext-theme-neptune my-
custom-theme

As we are creating our custom theme for our application, the path to the SDK will be
the ext/ folder inside our workspace (the myapp/ext folder). Now type this:

sencha –sdk ext generate theme –extend ext-theme-neptune my-custom-
theme

Chapter 11

[319]

After the command completes, we will see the ext/packages folder (inside the
myapp/ folder) with a new structure, like this:

It's always recommended to generate and use the application's
workspace to create a new theme, and always avoid using the Ext JS
framework's folder.

Now that we have our initial theme base, let's update some application iles in order
to use the new theme inside our application. In the root of our application folder, we
search for the app.json ile and locate the following line:

"theme": "ext-theme-neptune",

Change it to this one:

"theme": "my-custom-theme",

Then save the changes. So far, we have made the settings for our application to use
the theme named my-custom-theme. If we run the application, it will look like we
are using the Neptune theme. This is because our new theme so far is exactly the
same as the Neptune theme and doesn't have any changes. For the moment, we are
ready to proceed and we can begin working with our new theme.

The Look and Feel

[320]

Variables
In Ext JS themes, there are a lot of variables that we can change to customize our
theme, such as variables for colors, fonts, margins, borders, and many more things.
To change and add variables, we need to use the Compass code syntax.

In Compass, we can deine variables using the dollar ($) sign. Every time we ind a
word that starts with the dollar sign, it means that it's a variable that we can read or
assign a value to. The following lines of code show some examples of variables:

$background-color: #f3f3f3;

$font-size: 1.5em;

$header-height: 45px;

$custom-text: 'This is a text value';

As shown in the previous code, we can assign a value using a colon (:). We can also
use colors, sizes, or texts as values. We need to use a semicolon (;) every time we
end a statement.

As we are extending the Neptune theme, so far, our theme has no variables set. Ext JS
uses the Neptune theme's values until we deine our own variables in our theme. For
the theme's variables, we have two types:

• Global variables: These will be values used throughout the theme.

• Component-speciic variables: These variables will be used at a
component-speciic level. But be aware that if a component is extending
another, then the values will be shared. For example, we change the variable
values for Ext.panel.Panel. This means that Ext.grid.Panel, which is
extending Ext.panel.Panel, will then inherit the changes we made to
the theme.

In the Ext JS documentation, we can ind the global variables at http://docs.
sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS.

For speciic components, we can ind them at the locations marked here:

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS

Chapter 11

[321]

Now, to set our global variables, let's go to the ext/packages/my-custom-theme/
sass/var folder, and create a new ile called Component.scss. Inside this ile, we are
going to write the following code:

/* My Custom Theme SCSS Component file */

$color: #6d6d6d !default;

$base-color: #0d7179 !default;

Here, we are setting two variables: $color will be the font/text color used throughout
the theme, and $base-color will be the color base for almost all our components. Save
the ile, and in your console tool, go to the theme's folder (ext/packages/my-custom
-theme/). Let's use the Sencha CMD tool and type the following:

sencha package build

This command will generate the build folder inside our theme folder. This new
folder will contain the compiled CSS and resources ready to be used in our app.
After executing this command, you will see something similar to the next screenshot:

The Look and Feel

[322]

In Windows OS, this command sometimes hangs on the [INF] Capturing
theme image line, so be sure that you are using the correct Java Runtime
Environment (JRE), which needs to be version 1.7. Speaking from
personal experience using other versions hangs indeinitely and needs to
be stopped by pressing Ctrl + C.

Now, we need to apply the changes made in app.json to our app's root folder
(myapp/). In order to fully use our new themes, let's go back to our root directory
(application workspace root) and type this:

sencha app watch

This command is intended to monitor changes made in our app, refresh some/many
iles, and recompile as needed.

When you change your theme's variables, it's recommended that you use
some other instance of the console tool and recompile it. The sencha
app watch command will be on the irst instance, running and checking
changes, and when a change occurs in the theme, the Sencha CMD tool
will update the iles of the application so that we can see the updated
changes.

Now let's run the application. We may get the following result:

Chapter 11

[323]

Notice the base color (blue is no longer used). Now it's using the color we set in the
$base-color variable. Also, the black color used in text has changed to a gray color.

Note that we can use any color according to the design we want. At this point, you
can start playing or experimenting with many or all variables, and see how the
theme is affected.

Advanced theming
In this section, we will cover some common situations where we need to modify
the original theme (the extended theme). This is frequently used for branding or
visual purposes.

Changing the component's style
For this example, we are going to change the style of the Ext.toolbar.Toolbar
component, so let's go to the ext/packages/my-custom-theme/sass/var/ folder
and create a folder called toolbar. Inside this folder, create a ile named
Toolbar.scss and place the following code in it:

$toolbar-background-color: rgba(188,188,188,1);

$toolbar-background-gradient: recessed;

Save the ile. Now, in your console tool, go to the ext/packages/my-custom-theme/
folder and compile your theme:

sencha package build

Next, let's refresh our app, open the Customers module, and check the changes, as
shown here:

Notice that the toolbar's background color and gradient have changed in your app.
This change, which we have already made, will be applied to all the toolbars and
(components that extend toolbar class) in our custom theme.

The Look and Feel

[324]

To understand how to apply styles to other components, take a look at the Neptune
theme inside the sass/var folder. You will notice that there is a folder structure and
there are iles for each component type, like this:

Adding new gradients
Sometimes, the default gradients set in Ext JS themes are not all of the ones we desire
to be using. Even though there are some gradients deined in the theme variables,
such as matte, glossy, bevel, recessed, and so on, these may not be the choices we
want to include in our theme.

So, it's important to mention that we should not touch the ext-theme-base or
ext-theme-neutral. This is because these are basic for other themes and we may
compromise something critical. So, we can override these gradients inside our theme.

Therefore, we need to deine a new type of gradient for our toolbar component, and
it needs to be the one we are 100 percent sure we desire. To accomplish this task, we
need to go into this directory:

/ext/packages/my-custom-theme/sass/etc/

In this folder, you will see a ile with the name all.scss. Open it; it may be empty
or blank. So, place the following code in it:

@import 'mixins';

This code will tell the compiler to use the mixins ile. In this case, the theme compiler
will look for the mixins.scss ile located in the same folder. As this ile does not
exist yet, we proceed to create it and then place the following code:

@import 'mixins/background-gradient';

Chapter 11

[325]

Once again, we are making a setting to ensure that another ile will be used. Now
this ile needs to be named background-gradient.scss, but it has to be inside the
mixins folder, so let's create the folder and the ile. Once that is done, we place the
following code:

@function linear-gradient-recessed ($direction, $bg-color) {

 @return linear-gradient(left, color_stops(#fbb040, #cccccc));

}

This last ile has the purpose of overriding one of the default gradients set in Ext JS
(theme base). You can see all the available gradients deined in Ext JS at http://
docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS-css_mixin-

background-gradient.

Remember that we are using the ext folder inside our application's workspace (the
structure generated by the Sencha CMD tool and when we created the basic skeleton
for our initial application in Chapter 10, Architecture). Save the ile, then go to the
Toolbar.scss ile located in the ext/packages/my-custom-theme/sass/var/
toolbar/ folder, and make the following change:

/*$toolbar-background-color: rgba(188,188,188,1); */

$toolbar-background-gradient: recessed;

Save the ile. In your console tool, go to the ext/packages/my-custom-theme/
folder and compile your theme once again:

sencha package build

Now let's refresh and also wait for that sencha app watch command to detect
changes (if not, then run it again to be sure of the changes made in your app, and
refresh the browser). We may see the following result:

Notice that the gradient (customized for our needs) has been applied to the toolbar.

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS-css_mixin-background-gradient
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS-css_mixin-background-gradient
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Global_CSS-css_mixin-background-gradient

The Look and Feel

[326]

It's recommended that before you make these types of changes, and also if you are
new to Compass and SASS, check out the documentation of both in order to know
exactly what you are doing, and also to have the right syntax in the SCSS iles. Some
useful links about this theme are:

• http://compass-style.org/reference/compass/css3/images/

• http://compass-style.org/examples/compass/css3/gradient/

The SASS documentation can be found at http://sass-lang.com/
documentation/file.SASS_REFERENCE.html.

Styling the tabs
In our next exercise we will change the tabs' style. In fact, thanks to the new theme
architecture in version 5, this will also be easy to do and it's a very similar process.
Let's start creating a new folder called tab inside the ext/packages/my-custom-
theme/sass/var/ folder, and also create a new ile called Tab.scss. Now place the
following code inside this new ile:

/* Tab Custom style for my-custom-theme */

$tab-base-color: #65a9e0;

$tab-base-color-active: #c5c5c5;

$tab-base-color-disabled: #597179;

$tab-color-active: #333333;

In this code, we are changing four properties:

• $tab-base-color: The base color of the tabs (normal appearance)

• $tab-base-color-active: The base (background) color the active tab will
have

• $tab-base-color-disabled: The base color when the tab is disabled

• $tab-color-active: The color of the text when the tab is active

Save the ile. Now we are ready to compile the theme again, so in our console tool, we
go to the ext/packages/my-custom-theme/ folder. Let's compile our theme again:

sencha package build

Also, remember to check the sencha app watch command if needed. Now let's take
a look at our browser (refresh the page) and check the result, as follows:

http://compass-style.org/reference/compass/css3/images/
http://compass-style.org/examples/compass/css3/gradient/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html

Chapter 11

[327]

You can see that the Active tab has a gray color and the text color is dark gray. The
Normal tabs have a blue color and a white text color (we didn't change this, so its
color comes from the Neptune theme we extended). Now we check out the old
version of our theme, as shown in the following screenshot, to see the difference:

Remember that you can use the DOM inspector to ind the CSS class
(or classes) that is used to add styles to an element or component that
you want to modify. The Google Chrome or Safari developer tools
are great for this. You can also use Firebug if you are more used to
Firefox for development.

Adding custom fonts to our theme
Frequently, many developers and designers feel the need to change the font in
the theme.

Also, this task has become part of the trend around web apps—using different
font-face types to give a better look to screens and UIs. This task has become more
popular nowadays.

So, we need a custom font. A popular place to get them is Google fonts or FONT
Squirrel, so let's go to http://www.fontsquirrel.com/fonts/open-sans and
download @font-face kit.

http://www.fontsquirrel.com/fonts/open-sans

The Look and Feel

[328]

This font-face kit contains the font iles and also the CSS iles ready for embedding
into web pages. Now let's extract the font in a temporary folder and create a new
folder named fonts.

Inside the ext/packages/my-custom-theme/resources folder, create a folder
named open-sans and copy the content from the web fonts/opensans_regular_
macroman folder to the new folder. At this moment, you should have something
similar to the following screenshot:

Now that we have our fonts, we open the stylesheet.css ile and locate the
following code:

@font-face {

 font-family: 'open_sansregular';

 src: url('OpenSans-Regular-webfont.eot');

 src: url('OpenSans-Regular-webfont.eot?#iefix') format(
 'embedded-opentype'),

 url('OpenSans-Regular-webfont.woff') format('woff'),

 url('OpenSans-Regular-webfont.ttf') format('truetype'),

 url('OpenSans-Regular-webfont.svg#open_sansregular') format(
 'svg');

 font-weight: normal;

 font-style: normal;

}

Chapter 11

[329]

Copy this code and paste it at the beginning of the Component.scss ile located
in the ext/packages/my-custom-theme/sass/var/ folder. Also, add the
following variable:

$font-family: open_sansregular;

In the end, the Component.scss ile will look like this:

@font-face {

 font-family: 'open_sansregular';

 src: url('../resources/fonts/open-sans/
 OpenSans-Regular-webfont.eot');

 src: url('../resources/fonts/open-sans/
 OpenSans-Regular-webfont.eot?#iefix') format(
 'embedded-opentype'),

 url('../resources/fonts/open-sans/
 OpenSans-Regular-webfont.woff') format('woff'),

 url('../resources/fonts/open-sans/OpenSans-Regular-webfont.ttf')
 format('truetype'),

 url('../resources/fonts/open-sans/OpenSans-Regular-webfont.svg
 #open_sansregular') format('svg');

 font-weight: normal;

 font-style: normal;

}

$font-family: 'open_sansregular';

$color: #6d6d6d !default;

$base-color: #0d7179 !default;

Notice that we changed the URL in the @font-face styles. This is because when we
compile the theme, the compiled CSS will be looking at the font in the path relative
to the CSS ile location. Also, we added a new variable called $font-family and set
the value to open_sansregular so that the font family for all our themes will be the
font-face value we added at the beginning.

Let's save the ile and repeat the process of compiling the theme:

sencha package build

The Look and Feel

[330]

Also, remember to check the sencha app watch command, if needed. Now let's take
a look at our browser (refresh the page) for the result, which should be like this:

Notice how the font family has changed in our theme (screen). Now, after carrying
out these common tasks on themes, we are ready to advance to creating individual
UIs for the same component.

Different styles for the same component
In an application, it's common to have different styles of buttons, windows, panels,
and so on. For example, in our application, we can deine different styles for a panel
(according to the type of data we are going to show in there) and different styles for
the toolbars inside panels, or for different types of buttons.

In this case, the ui property is essential for this kind of task. Every widget in Ext JS
has a ui property, which contains preixes for the CSS classes. In this way, we can
deine speciic classes for every component. In the following exercise, we are going to
create the dashboard for our application and give a custom ui property to each one
of the panels inside the dashboard.

Chapter 11

[331]

Our layout for the dashboard will be like this:

The idea is that we assign each panel a different style, so the Featured panel will
be purple, the News panel will be dark blue, and inally Tips will be orange. Also,
the title's text and the icons for the panel's tools need to change color. So let's start
modifying the app/view/appZone.js ile and change the items property so that it
will look like the following code:

//...

items: [{

 xtype: 'tabpanel',

 region: 'center',

 itemId: 'mainZone',

 header: false,

 title: '',

 items: [{

 xtype: 'panel',

 itemId: 'startappPanel',

 title: 'Dashboard',

 iconCls: 'home-16',

 bodyPadding: 5,

 region: 'center', //html:'myApp Dashboard',

 layout: 'anchor',

 items:[{

The Look and Feel

[332]

 xtype: 'container',

 margin: '0px 5px 0px',

 layout: 'anchor',

 items: [{

 xtype: 'panel',

 frame: true,

 height: 200,

 margin: '0px 5px 0px 5px',

 title: 'Featured',

 bodyPadding: 4,

 html: 'Place contents for FEATURED zone',

 tools: [{

 xtype: 'tool',

 type: 'prev'

 },{

 xtype: 'tool',

 type: 'next'

 }]

 }]

 },{

 xtype: 'container',

 height: 200,

 layout: {

 type: 'hbox',

 align: 'stretch'

 },

 items: [{

 xtype: 'panel',

 flex: 2,

 frame: true,

 height: 150,

 html: 'Place contents for NEWS zone',

 margin: '0px 5px 0px 5px',

 bodyBorder: true,

 bodyPadding: 4,

 title: 'News',

 tools: [{

 xtype: 'tool',

 type: 'gear'

 },{

 xtype: 'tool',

 type: 'refresh'

 }]

 },{

Chapter 11

[333]

 xtype: 'panel',

 flex: 2,

 frame: true,

 height: 200,

 html: 'Place contents for TIPS zone',

 margin: '0px 5px 0px 5px',

 bodyBorder: true,

 bodyPadding: 4,

 title: 'Tips',

 tools: [{

 xtype: 'tool',

 type: 'search'

 },{

 xtype: 'tool',

 type: 'help'

 }]

 }]

 }]

 }]

 },{

 xtype: 'panel',

 itemId: 'acessPanel',

 region: 'west',

 split: true,

 width: 180,

 iconCls:'app-modules',

 layout: 'fit',

 title: 'App modules',

 items: [{

 xtype: 'treepanel',

 header: false,

 title: 'My Tree Panel',

 store: Ext.create('myApp.store.modulesTreeDs',{
 storeId:'accessmodulesDs',

 rootVisible: false

 })

 }]

}]

This code will create the layout we intend to use for our panels. So now, we
are going to begin creating the UI (custom style) for each panel as we have
previously discussed .

The Look and Feel

[334]

In the ext/packages/my-custom-theme/sass/src folder, let's create a new folder
called panel and also create a Panel.scss ile. Inside the Panel.scss ile, let's place
the following code:

@include extjs-panel-ui(

 $ui:'featuredpanel',

 $ui-header-background-color: #5e1b5e,

 $ui-border-color: #5e1b5e,

 $ui-header-border-color: #5e1b5e,

 $ui-body-border-color: #5e1b5e

);

@include extjs-panel-ui(

 $ui:'featuredpanel-framed',

 $ui-header-background-color: #5e1b5e,

 $ui-border-color: #5e1b5e,

 $ui-header-border-color: #5e1b5e,

 $ui-body-border-color: #5e1b5e,

 $ui-border-width: 5px,

 $ui-border-radius: 4px

);

Here, we deined two UIs: one for the framed version and the other for the non-
framed version of the panel. Save the ile and wait for sencha app watch to detect
changes. If not, then compile the theme. Now, in the Featured panel's properties, set
the ui property as shown in the following code:

 xtype: 'panel',

 ui:'featuredpanel',

 frame: true,

This property, ui, will tell Ext JS to use/assign the CSS generated for that panel
component. Also, because we have set frame:true, the CSS used will be for the
framed version. Let's refresh the application, and we may get the following result:

Chapter 11

[335]

Notice that the Featured panel is now purple and the other panels are using the
default color from the theme. This is because of the ui property we assigned and
the CSS generated in the theme. Note that we used $ui:'featuredpanel-framed'
in our .scss ile. This created the CSS to be used when the panel has the frame
property set to true.

If we change this property to false, then the visuals will not quite be correct. This
means that we will have to create another set (UI) for the non-framed panels. Let's
change our Panel.scss one more time, and we will add the pending UI sets for the
other panels. At the end of the ile, let's add this:

@include extjs-panel-ui(

 $ui:'newspanel',

 $ui-header-background-color: #003264,

 $ui-border-color: #003264,

 $ui-header-border-color: #003264,

 $ui-body-border-color: #003264

);

@include extjs-panel-ui(

 $ui:'newspanel-framed',

 $ui-header-background-color: #003264,

 $ui-border-color: #003264,

 $ui-header-border-color: #003264,

 $ui-body-border-color: #003264,

The Look and Feel

[336]

 $ui-border-width: 5px,

 $ui-border-radius: 4px

);

@include extjs-panel-ui(

 $ui:'tipspanel',

 $ui-header-color:#6d6d6d,

 $ui-header-background-color: #ff9900,

 $ui-border-color: #ff9900,

 $ui-header-border-color: #ff9900,

 $ui-body-border-color: #ff9900,

 $ui-tool-background-image:'tools/tool-sprites-purple');

@include extjs-panel-ui(

 $ui:'tipspanel-framed',

 $ui-header-color:#6d6d6d,

 $ui-header-background-color: #ff9900,

 $ui-border-color: #ff9900,

 $ui-header-border-color: #ff9900,

 $ui-body-border-color: #ff9900,

 $ui-tool-background-image:'tools/tool-sprites-purple',

 $ui-border-width: 5px,

 $ui-border-radius: 4px

);

In this code, we are adding the UI for the newspanel framed version and non-framed
version, and also the tipspanel UI. Notice that in tipspanel, we added one more
property/variable—$ui-tool-background-image. This property will set the image
to be used for the tools.

Here, we can change the image to get a purple color. Place the image in the
resources/images/tools/ folder. Also, the image must be named tool-sprites-
purple.png. Save the ile. Now we need to set the ui property for each panel. For
the News panel, set it like this:

xtype: 'panel',

ui: 'newspanel',

frame: true,

Use the following code for the Tips panel:

xtype: 'panel',

ui: 'tipspanel',

frame: true,

Chapter 11

[337]

Save the changes and wait for the code to be refreshed by sencha app watch. If it is
not refreshed, compile the theme. Refresh the browser and look at the output, which
should be like this:

Now each panel will have its own color assigned according to the UI property set
on it. In the Tips panel, check out how the tool's color has changed, as shown in the
following screenshot, thanks to the new image we set:

It's important to notice that at this moment, each panel has the frame: true
property, so we need to test a non-framed panel in this case as we set the code for
newspanel (framed and non-framed), let's use this for our test. Change the code
for the Tips panel as follows:

{

 xtype: 'panel',

 ui:'tipspanel',

 frame: true,

 flex: 2,

 height: 200,

 margin: '0px 5px 0px 5px',

The Look and Feel

[338]

 bodyBorder: true,

 bodyPadding: 4,

 title: 'Tips',

 tools: [{

 xtype: 'tool',

 type: 'search'

 },{

 xtype: 'tool',

 type: 'help'

 }],

 layout:'fit',

 items:[{

 xtype: 'panel',

 ui: 'newspanel',

 title: 'Sub panel using UI newspanel',

 html: 'this is a non framed panel..!

 Place contents for TIPS zone',

 border: true,

 bodyBorder: true

 }]

}

Now check out the output. It should be like this:

Notice that the subpanel is using the newspanel UI and it is nested inside a panel
with another custom UI. The procedure for creating custom UIs for components/
widgets we have worked on applies to other components as well.

Chapter 11

[339]

It's important to mention that, as we create more UIs, the output CSS ile (or iles)
for our theme will keep growing. So, it's important to use only the UIs necessary for
your applications.

Supporting legacy browsers
So far, we have created a theme that looks nice on most modern browsers, such as
Google Chrome, Firefox, Opera, and Safari, but there is a chance that we want to
support Internet Explorer. At this moment, if we open our application using IE,
the theme may not work well. This is because IE doesn't support many of the new
goodies of CSS3.

So, we need the Sencha CMD tool when compiling or building the theme makes
sliced images for our custom theme. In this way, older IE versions or browsers that
not support CSS3's new goodies will then be able to look almost the same, thanks
to the use of images. To do this, let's open the my-custom-theme/sass/example/
custom.js ile. Now you will see this line commented:

//Ext.theme.addManifest();

Change it to the following:

Ext.theme.addManifest(

 {

 xtype: 'widget.panel',

 ui: 'featuredpanel'

 },

 {

 xtype: 'widget.panel',

 ui: 'newspanel'

 },

 {

 xtype: 'widget.panel',

 ui: 'tipspanel'

 }

);

In this code, we are specifying which widgets in our custom theme will be sliced (for
images). Now we need to build the theme once again with this line:

sencha package build

The Look and Feel

[340]

When the process completes, we have to verify that it worked. Go to the my-custom-
theme/build/resources/images/panel path, which is a new folder created by the
compilation process. You will see something like this:

Now let's rebuild our application in order to get the latest resources in it:

sencha app build development

An alternative can be this:

sencha app build production

Then load the page in IE 8, or if you have the latest version, you can use developer
tools and emulate the page to serve as IE 8 or less. You will get the following result:

Chapter 11

[341]

If you check out the developer tools (Network), you may ind something like this:

The Look and Feel

[342]

Notice that IE is using images for rounder corners and the look is the same as it is in
modern browsers that only use CSS3.

Finally, the best way to learn and progress is to check out the coniguration iles inside
themes such as Neptune, Classic, and others to see how the skeleton is created. Also,
see the coniguration iles. In this way, you can get more ideas about achieving other
things you may want to perform.

Summary
In this chapter, you learned how to create new themes. We can create complex designs
and even completely change the look and feel of the default theme used in our
application. Don't be afraid to change original iles to it your needs or to play with
them. You can always get the original back from the SDK package of the Ext JS library.

One of the great things here is that we can create new themes and change values
according to our needs. We also have the ui property and many looks for the
same component.

In the next chapter, you will learn about responsive conigurations and table support
in Ext JS 5, which is a nice feature added in version 5x.

[343]

Responsive Conigurations
and Tablet Support

Ext JS version 5 now gives support for touch screen devices, such as tables, touch
screen laptops, and other devices. This can be implemented with a little effort. As
we saw in Chapter 11, The Look and Feel, Ext JS 5 introduced more themes to the
framework. Two of these new themes are called Neptune Touch and Crisp Touch.
Some of the themes can be seen in the following image:

Responsive Conigurations and Tablet Support

[344]

These new themes will be the base for handling touch screen input from the user.
They have touch-friendly dimensions in their design.

In this chapter, we will cover these topics:

• An overview of touch support. Under this, we will cover Touch-screen-
friendly themes and Neptune Touch and Crisp Touch.

• How to implement responsive configurations.

Overview
By using Event normalization, Ext JS 5 is able to run itself on touch screen devices.
This normalization runs in an invisible way that translates mouse events into their
equivalent functionality for the touch device. Consider the following example:

myDivElement.on('mousedown', function(e) {

 // event handling logic here

});

This is translated to the following:

myDivElement.on('touchstart', function(e) {

 // event handling logic here

});

Alternatively, it can be translated to this:

myDivElement.on('pointerdown', function(e) {

 // event handling logic here

});

These translations will be made depending on how the device supports each of them.
It's important to mention that Ext JS cannot translate all touch interactions, so the
events that are not translated must be covered on an individual basis.

If you are new to mobile development or touch screen devices, you
can learn more about them at http://www.html5rocks.com/en/
mobile/touch/ and http://developer.android.com/design/
patterns/gestures.html.

http://www.html5rocks.com/en/mobile/touch/
http://www.html5rocks.com/en/mobile/touch/
http://developer.android.com/design/patterns/gestures.html
http://developer.android.com/design/patterns/gestures.html

Chapter 12

[345]

Elements can ire synthesized "gesture" events. So, as Ext JS contains a part of Sencha
touch as the basis for the event system, it's possible to handle gestures. For some
examples of gestures, look at the following diagram:

For browsers, there are three basic events (Start, Move, and End), and for each of
these events there are three types of pointers, touch, and mouse events as described
in the table:

Event Touch Pointer Mouse

Start touchstart pointerdown mousedown

Move touchmove pointermove mousemove

End touchend pointerup mouseup

Events such as drag, swipe, long press, pinch, rotate, and tap can be listened to like
any other event in Ext JS 5; here is an example:

Ext.get('myDivElement').on('pinch', doSomething);

This means that Ext JS 5 will allow any gesture to respond to any type of input. So as
an example, single-point gestures, such as Tap and Swipe, can be triggered using a
mouse as well.

Now, some important points we need to highlight about this topic are as follows:

1. Ext JS 5 does not perform normalization on events such as mouseover, mouse
out, mouse enter, and mouse leave, so when developing applications, we
need to look for alternative events to implement these interactions.

2. If you intend to create a custom component that provides touch screen
support for end users, then you need to adjust some events as needed.

3. At the time of writing this book, Ext JS 5 only has support for Safari, Chrome,
and IE10+. The Android browser is not supported. Although this much is the
only support described by Sencha, Firefox supports it in smooth way.

Responsive Conigurations and Tablet Support

[346]

New themes
As we have mentioned, Ext JS 5 contains new themes (touch friendly). These themes
have custom CSS and some JS overrides that are meant to create a friendly touch
device theme and let the user have better control.

Using themes such as Classic, Gray, Neptune, or Crisp in a device such as a tablet or
touch device can be quite a painful experience, because users need to zoom into the
web document in order to make elements (buttons, icons and so on) bigger so that
they can make a touch action properly. Also, the components may not respond to
these events.

So, a distinctive feature is that these new themes have bigger fonts and icon sizes in
order to handle touch actions easily and give the user a friendlier experience.

If you are creating a new theme for touch screen support, it is recommended that you
use Neptune touch or Crisp touch.

Neptune touch and Crisp touch
The Neptune Touch and Crisp Touch themes extend the Neptune base theme, and
also have the touch-sizing package as the base.

Chapter 12

[347]

Note; the difference between Neptune touch and Crisp touch is the visual style, but
they both work in the same way and keep the same touch-friendly dimensions. Now
let's take a look at the difference between Neptune and Neptune touch, as shown here:

Notice how the size of the touch theme increases, allowing end users to be able to
select, tap (click), and so on, in an easy way. On the other hand, Neptune becomes
quite hard to handle in touch screen devices.

Implementing responsiveness to the

application
For implementing responsiveness in our applications we have two fundamental
classes in Ext JS, and those are:

• Ext.plugin.Responsive

• Ext.mixin.Responsive

These two classes work in the same way but there is a difference, as follows:

• Ext.plugin.Responsive must be used for already created components

• Ext.mixin.Responsive must be used for classes or components that we
create or extend

Responsive Conigurations and Tablet Support

[348]

Creating responsiveness
Let's create a simple HTML ile, name it responsive_01.html, and add the
following content:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Responsive - 01 - basic sample</title>

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/packages/
ext-theme-neptune-touch/build/resources/ext-theme-neptune-touch-all.
css">

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <script src="../ext-5.1.1/packages/ext-theme-neptune-touch/build/
ext-theme-neptune-touch.js"></script>

 <script src="responsive_01.js"></script>

</head>

<body>

</body>

</html>

Now let's create the responsive_01.js ile and place the following code in it:

Ext.Loader.setConfig({

 enabled: true

});

Ext.onReady(function(){

 Ext.create('Ext.container.Viewport',{

 padding:'0px',

 layout:'border',

 items: [{

 xtype: 'panel',

 title: 'North Region',

 header: false,

 region: 'north',

 split: false,

 minHeight: 75,

 maxHeight: 75,

 plugins: 'responsive',

 html:'<div>Content of Header Zone (W >800) ..!</div>',

 responsiveConfig: {

 'width < 800': {

 hidden:true

 },

 '(desktop && width >= 800)':{

Chapter 12

[349]

 bodyStyle: {

 'background-color':'#f1f1f1','color': '#277cc0'

 },

 hidden:false

 },

 '(tablet || phone)': {

 hidden:true

 }

 }

 },{

 xtype: 'panel',

 title: 'Main Menu', //region:'west',

 header: false,

 bodyPadding: '5px',

 collapsible: false, // make collapsible

 region: 'north',

 hidden: true,

 split: false,

 minHeight: 75,

 maxHeight: 75,

 bodyPadding: '10px',

 bodyStyle: {

 'background-color':'#fbb040',

 'color':'#663399',

 'font-weight':'bold',

 'font-size':'1.25em'

 },

 html:'<div>My Menu (w < 800) Zone..!</div>',
 plugins: 'responsive',

 responsiveConfig: {

 'width < 800': {

 hidden:false

 },

 '(desktop && width >= 800)': {

 hidden:true

 },

 '(tablet || phone)': {

 hidden:false,

 html:'<div>My Menu (phone or table) Zone..!</div>',

 }

 }

 },{

 xtype: 'panel',

 title: 'West Region', //region:'west',

Responsive Conigurations and Tablet Support

[350]

 bodyPadding: '5px',

 width: 300,

 collapsible: true, // make collapsible

 region: 'west',

 split: true,

 html: '<div>Content of WEST Zone..!</div>',

 plugins: 'responsive',

 responsiveConfig: {

 '(desktop && width < 800)': {

 hidden:true

 },

 '(desktop && width >= 800)': {

 hidden:false

 },

 '(phone)': {

 hidden:true

 },

 '(tablet && width < 800)': {

 hidden:true

 },

 '(tablet && width >= 800)': {

 hidden:false

 }

 }

 },{

 title: 'Center Region',

 region: 'center',

 html: 'Main content goes here',

 plugins: 'responsive',

 responsiveConfig:{

 'desktop':{

 title: 'Center Region - Desktop'

 },

 '!(desktop) && (tablet)':{

 title: 'Center Region - Tablet'

 },

 '!(desktop) && (phone)':{

 title: 'Center Region - phone' }

 }

 },{

 xtype: 'panel',

Chapter 12

[351]

 title: 'South Region is resizable',

 header: (Ext.platformTags.phone ||
 Ext.platformTags.tablet)?false:true,

 region: 'south',

 bodyPadding: '5px',

 height: 200,

 split: true ,

 html: '<div>Content of South Zone..!</div>',

 plugins: 'responsive',

 responsiveConfig: {

 '(desktop && width < 800)': {

 hidden: true,

 header: false,

 title: '',

 height: 100,

 maxHeight: 175

 },

 '(desktop && width >= 800)': {

 hidden:false,

 header:true,

 title: 'South Region is resizable',

 height: 120 ,

 maxHeight: 175

 },

 '!(desktop)': { // Tablets and phones (will work)

 hidden: false,

 header: true,

 minHeight: 75,

 maxHeight: 75,

 height: 75,

 bodyStyle: {'background-color':'#66cc99','color': '#333333'}

 }

 }

 }]

 });

});

Responsive Conigurations and Tablet Support

[352]

Save the ile (or iles). For now, let's run the code and see the output in our browser.
We should get something like the following output:

Investigating the output
As you can see we set an initial viewport, and it contains a panel in the border layout
with North, West, Center, and South regions.

Now, in the responsive_01.js ile, you can notice that in some items (mostly panel
components), we set two new properties to these:

plugins: 'responsive',

responsiveConfig: {

}

Chapter 12

[353]

First, as we are using direct components (not extending) as in Ext.panel.Panel,
we use the Ext.plugin.Responsive class by its abbreviation, responsive. Then
we set the responsiveConfig property (object). This object will contain some keys/
conditions that will be applied to the component when the condition is met. Let's
check the irst item (the panel for the North region):

plugins: 'responsive',

responsiveConfig: {

 'width < 800': {

 hidden: true

 },

 '(desktop && width >= 800)':{

 bodyStyle: {'background-color':'#f1f1f1','color': '#277cc0'},

 hidden: false

 },

 '(tablet || phone)': {

 hidden: true

 }

 }

We can see that the following:

1. The irst criteria, width < 800, ensures that if the document has a width less
than 800, then the component will be hidden.

2. The second condition, (desktop && width >= 800), ensures that if the
platform we are running the app on is a desktop and the width of the page/
document is greater than or equal to 800, then the component will be shown
(not hidden), and the bodyStyle attribute will have some background color
and text color.

3. The third condition, (tablet || phone), ensures that if the platform
running the code is a tablet or phone, then the component will be hidden.

For a list of other values considered in the scope of the book,
and for more documentation, see http://docs.sencha.com/
extjs/5.1/5.1.1-apidocs/#!/api/Ext.plugin.Responsive.

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.plugin.Responsive
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.plugin.Responsive

Responsive Conigurations and Tablet Support

[354]

For a property to be part (inside) of responsiveConfig, the hidden property in this
case, you must be sure that the component has a setter method. Now let's resize the
browser, make the size (width) less than 800 pixels, and see how it changes, like this:

Notice that now the irst panel's (inside the panel with the border layout) criteria,
width < 800, has been met, so the header is hidden. The second panel's criteria,
which is the same (width < 800), also met the requirement, but the second panel
has become visible. Also notice that the south panel has become hidden (not visible).
This was because the criteria in its responsiveConfig property, (desktop &&
width < 800), was met.

Checking all panels
An important question that you might be asking yourself is: where are the
desktop, phone, and tablet deined? The answer is that these values are set in Ext.
platformTags, which is an object containing information about the current device/
platform where the code is running.

Chapter 12

[355]

It's important that you don't forget to set the plugin property on
each of the items (direct components), otherwise the responsive
changes you desire, won't work.

Now let's look at the South panel's responsiveConfig property:

plugins: 'responsive',

responsiveConfig: {

 '(desktop && width < 800)': {

 hidden: true,

 header: false,

 title: '',

 height: 100,

 maxHeight: 175

 },

 '(desktop && width >= 800)': {

 hidden: false,

 header: true,

 title: 'South Region is resizable',

 height: 120 ,

 maxHeight: 175

 },

 '!(desktop)': { // Tablets and phones (will work)

 hidden: false,

 header: true,

 minHeight: 75,

 maxHeight: 75,

 height: 75,

 bodyStyle: {

 'background-color':'#66cc99',

 'color': '#333333'

 }

 }

 }

In this case, notice that responsiveConfig has three criteria, and all of these share
common properties, such as hidden, header, title, height, and maxHeight. But the
third criterion has two other properties that are not shared in the irst two, which are
bodyStyle and minHeight.

In this situation, we must be careful because when the third criteria is met,
bodyStyle and minHeight will become permanent property values for the
component, even if they satisfy other criteria. So, it's important to change the same
properties to restore the previous state of the properties.

Responsive Conigurations and Tablet Support

[356]

Notice the third criteria is '!(desktop)'. So, this will be applied to tablets, phones,
or other devices that are not considered as desktop. Look at the following screenshot
taken from the Xcode iOS emulator (iPhone):

Chapter 12

[357]

Now take a look at a screenshot of a tablet in landscape orientation:

One important thing to look at is the following code in the south panel. Initially, in
the coniguration we set the following parameter:

header: (Ext.platformTags.phone || Ext.platformTags.tablet)?
 false:true,

Responsive Conigurations and Tablet Support

[358]

In this case (header), is initially set in the creation object by the platform, because
this property cannot change dynamically due to responsive changes made to the
component by the framework. If we don't set this property, we will get something
like this:

So far, the way we worked with responsiveConfig using Ext.plugin.Responsive,
is similar to the way we had worked with Ext.mixin.Responsive. Look at the
following code:

Ext.Loader.setConfig({

 enabled:true

});

Ext.define('Myapp.sample.customPanel',{

 extend: 'Ext.panel.Panel',

 alias: 'widget.customPanel',

 title: 'my Extended Panel',

 header: true,

Chapter 12

[359]

 html: '',

 mixins: ['Ext.mixin.Responsive'],

 responsiveConfig: {

 '(tablet)': {

 html: 'my panel (desktop) content here..!',

 bodyStyle: {

'background-color':'#6d6d6d',

'color': '#ffffff'

}

 },

 '(desktop)':{

 html: 'my panel (desktop) content here..!',

 bodyStyle: {

'background-color':'#c4801c',

'color': '#ffffff'

}

 },

 '(phone)': {

 html: 'my panel (phone) content here..!',

 bodyStyle: {

'background-color':'#5e1b5e',

'color': '#ffffff'

}

 }

 }

});

Ext.onReady(function(){

 Ext.create('Ext.container.Viewport',{

 layout:'fit',

 items: [{

 xtype: 'customPanel',

 title: 'my Sample Panel',

 html:'<div>Content Panel</div>'

 }]

 });

});

Responsive Conigurations and Tablet Support

[360]

Notice that we are extending the Ext.panel.Panel class, so we set the
mixins property with the Ext.mixing.Responsive value, and then set the
responsiveConfig property in the class, as in the irst example. We set the
conditions for responsiveness/platform. Now let's run the code in the phone
(emulator) or desktop. We may get the following result:

Then, on the phone, we will get the following screen:

Chapter 12

[361]

So basically, Ext JS handles responsiveness in a very easy, and not too complicated,
way. Also remember that we must use the simple responsiveConfig property.
Don't try to add too advanced code or implement functions for mobile phones. Also,
it's important to point out that Ext JS is not made for phones. On phones, we must
use Sencha touch. Ext JS is intended to be good-looking and functional for tablets.

Summary
In this chapter, you learned the importance of themes, that is, Neptune touch and
Crisp touch, which are the base themes for tablets and touch screen devices. You can
create other new themes based on these themes, as we saw in Chapter 11, The Look
and Feel.

Also, you learned how to apply responsive conigurations to components in an easy
way using criteria, or conditions, and platformTags (Ext.platfomTags) such as
desktop, tablet, and phone.

Remember that for tablets or other touch screen devices, it's important to set the CSS
properly in order to get a good look and also nice functionality such as font size,
icon sizes (24 x 24 is the recommended size), and other styles for improvement and
creating a better user experience. Ext JS 5 is not intended for phones, but can work
nicely on tablets.

You can try adding responsive conigurations to the basic application made in
Chapter 10, Architecture. If you do this, remember to change the theme to Neptune
touch or Crisp touch in order to test the application on tablets and other touch screen
devices. Also remember that you can try or play as many criteria, or conditions, in
order to make this concept clearer.

In the next chapter, we will see the basis for creating charts in Ext JS 5.

Chapter 13

[363]

From Drawing to Charting
Ext JS offers a complete drawing library just as it did in its previous version. This
drawing library is intended to be used with the chart components. However, the
Sencha team has not only focused on the charting components, but has also decided
to implement a more versatile set of tools that form the core of the charting library.

This means that we can use the drawing package to implement cross-browser
custom graphics. The drawing package contains an Ext.draw.Surface class that
abstracts graphics implementation and enables the developer to create arbitrarily
shaped sprites that respond to the user. It also provides a rich set of animations.

The topics we are going to cover in this chapter are as follows:

• Basic drawing

• Adding interactions

• Charts (we will cover types such as legend, axis, gradients, and series)

• Series examples (in this section, Bar, Pie, and 3D bars will be described)

Now, before we begin, it's important to mention that Draw and Chart classes are not
part of the Ext JS 5 framework as basic classes; they are included as two packages:

• ext-charts (charts and draw classes): This is a legacy package compatible with
version 4, and is located in the ext-5.x.x/packages/ext-charts folder

• sencha-charts (charts and draw classes): This is a brand new package
speciic for Ext JS 5, and is located in the ext-5.x.x/packages/sencha-
charts folder

From Drawing to Charting

[364]

We will see later how to include these classes in our code and our application.

If you are new to SVG and VML, check out these resources so that you
can understand what we are talking about a bit more:

• http://www.w3schools.com/svg/

• http://www.w3.org/Graphics/SVG/

• http://www.w3.org/TR/NOTE-VML

• https://msdn.microsoft.com/en-us/library/
ee384217%28v=vs.85%29.aspx

Basic drawing
Ext JS handles drawing by the use of SVG and Canvas (this depends on the browser
capabilities). It's important to mention that Canvas is actually the default engine.

If you are migrating your code from Ext JS version 4 to 5, it's
important that you check out the changes and notes about upgrading,
because they are not the same. Also, the source code of charts and
draw classes (properties, methods, and so on) is quite different.
You can read more about this at http://docs.sencha.com/
extjs/5.1/whats_new/5.0/charts_upgrade_guide.html.

Let's create our irst code. It will draw some shapes and sprites, and we will see how
the draw package works. Create the initial HTML ile with the following code:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Draw - 01 - basics</title>

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/packages/
ext-theme-neptune/build/resources/ext-theme-neptune-all.css">

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <script src="../ext-5.1.1/packages/ext-theme-neptune/build/ext-
theme-neptune.js"></script>

 <script src="draw_01.js"></script>

</head>

<body>

</body>

</html>

http://www.w3schools.com/svg/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/NOTE-VML
https://msdn.microsoft.com/en-us/library/ee384217%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ee384217%28v=vs.85%29.aspx
http://docs.sencha.com/extjs/5.1/whats_new/5.0/charts_upgrade_guide.html
http://docs.sencha.com/extjs/5.1/whats_new/5.0/charts_upgrade_guide.html

Chapter 13

[365]

Now, let's create the draw_01.js ile and place the following code in it:

Ext.Loader.setConfig({

 enabled: true,

 paths: {

 'Ext.draw': '../ext-5.1.1/packages/ext-charts/src/draw'

 }

});

Ext.require([

 'Ext.*',

 'Ext.draw.*'

]);

Ext.onReady(function(){

 var myDrawCmp = Ext.create('Ext.draw.Component', {

 viewBox: false,

 itemId:'mypaneldraw',

 items:[{

 type: 'circle',

 radius: 8,

 x: 250,

 y: 18,

 fill: 'blue',

 zIndex: 2

 },{

 type: 'rect',

 x: 0,

 y: 69,

 width: 200,

 height: 6,

 fill: 'blue'

 },{

 type: 'ellipse',

 cx: 265,

 cy: 215,

 rx: 40,

 ry: 25,

 fill: '#66cc33',

 globalAlpha: 1,

 stroke : '#993399',

 'stroke-width':2

 },{

 type: "path",

From Drawing to Charting

[366]

 path: "M 230 110 L 300 110 L 265 190 z",

 globalAlpha: 1,

 fill: '#16becc',

 lineWidth: 2

 },{

 type: 'text',

 x: 50,

 y: 50,

 text: 'Sencha',

 'font-size':'38px',

 fillStyle: 'blue'

 },{

 type: "image",

 src: "images/apple-touch-icon.png",

 globalAlpha: 0.9,

 x: 205,

 y: 20,

 height: 100,

 width: 100,

 listeners: {

 dblclick: function(){

 Ext.Msg.alert('Logo',

 'event dblclick on Sencha logo');

 }

 }

 }]

 });

 Ext.create('Ext.Window', {

 title:'drawing components',

 closable:true,

 resizable:false,

 width: 600,

 height: 300,

 layout: 'fit',

 items: [myDrawCmp]

 }).showAt(30,50);

});

Notice that in this example (the basic Ext JS code style), we set the loader properties
in the following code:

paths: {

 'Ext.draw': '../ext-5.1.1/packages/ext-charts/src/draw'

}

Chapter 13

[367]

Also notice that in these draw examples, we are using a legacy package (it is
compatible with Ext 4). Here, we are telling Ext JS that the namespace called Ext.
draw will have the following location, or path.

This is done so that Ext JS (Ext.Loader) knows where the classes that belong to the
Ext.draw namespace are located, and it loads all the classes needed/involved. Also,
in the require section, we set this:

Ext.require([

 'Ext.*',

 'Ext.draw.*'

]);

This code means that Ext JS needs to load all the Ext.draw classes so that it can
work properly. Another alternative is to set speciic classes, as is shown in the
following example:

Ext.require([

 'Ext.*',

 'Ext.draw.Container',

 'Ext.draw.Surface',

 'Ext.draw.sprite.Sprite',

 'Ext.draw.sprite.Rect'

]);

Now, let's save the ile and run our example in our browser. We may get the
following result:

From Drawing to Charting

[368]

In the preceding screenshot, we can see our elements (sprites), created for you to
understand a bit more. Now, look at this diagram:

In order to create elements (sprites), Ext JS needs to create a surface element. This
surface element needs to be contained within Ext.draw.Container. So, in the end,
the elements (sprites) are rendered (created) inside the surface element.

In the preceding example, we deined an instance of Ext.draw.Component that
contains six sprite elements:

• circle: To draw circles, you can change the radius with the radius property.

• rect: To draw rectangles, set the width and height properties in the
coniguration object.

• ellipse: To draw ellipses, you have to set these four properties:

 ° The cx attribute defines the x coordinate of the center of the ellipse

 ° The cy attribute defines the y coordinate of the center of the ellipse

 ° The rx attribute defines the horizontal radius

 ° The ry attribute defines the vertical radius

• path: This is one of the most powerful sprite types. With it, you can create
arbitrary shapes using the SVG path syntax.

• text: This creates text elements as sprites. The font/font size can be set using
the font property, or font-size:'38px', as shown in the preceding example.

• image: This type renders images as sprites. You need to set the source path
with the src property. Also, width and height can be important.

Chapter 13

[369]

As we said before, sprites are elements rendered on a drawing surface. Depending
on the type of sprite, the properties can be different. You can refer to http://www.
w3schools.com/svg/ and http://www.w3.org/Graphics/SVG/ to learn more
about them.

It is very important that you be careful about which package
you include in the app or code, and based on that, play with the
properties of each sprite in order to get a good result.

Also keep in mind that Draw components were created in order to
be the drawing engine for Charts, so if you plan to create a game or
SVG animation, you can use other libraries or frameworks that are
intended speciically for those purposes.

Adding interaction
We can add events, animation, and custom behavior to sprites. The main feature of
this class is that we aren't tied to a speciic shape or structure, and it is browser and
device agnostic.

In the previous example, you might have noticed that we have the following code:

{

 type: "image",

 src: "images/apple-touch-icon.png",

 globalAlpha: 0.9,

 x: 205,

 y: 20,

 height: 100,

 width: 100,

 listeners: {

 dblclick: function(){

 Ext.Msg.alert('Logo', 'event dblclick on Sencha logo');

 }

 }

}

So, we can add or attach listeners to our sprite elements and add interaction. Let's
create a new example—irst, the HTML page:

<!doctype html>

<html>

<head>

http://www.w3schools.com/svg/
http://www.w3schools.com/svg/
http://www.w3.org/Graphics/SVG/

From Drawing to Charting

[370]

<meta charset="utf-8">

<title>Draw - 02 - Interactivity</title>

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/
 build/packages/ext-theme-neptune/build/resources/
 ext-theme-neptune-all.css">

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <script src="../ext-5.1.1/build/packages/ext-theme-neptune/
 build/ext-theme-neptune.js"></script>

 <script src="draw_02.js"></script>

</head>

<body>

</body>

</html>

And now, let's place the following code in the draw_02.js ile:

Ext.Loader.setConfig({

 enabled: true,

 paths: {

 'Ext.draw': '../ext-5.1.1/packages/ext-charts/src/draw'

 }

});

Ext.require([

 'Ext.*',

 'Ext.draw.*'

]);

Ext.onReady(function(){

 var myDrawCmp = Ext.create('Ext.draw.Component', {

 viewBox: false,

 itemId:'mypaneldraw',

 style:'background-color:#999999',

 items: [{

 type: 'text',

 x: 10,

 y: 10,

 text: 'My Pac-Man',

 'font-size':'18px', //fontSize: 38,

 fillStyle: 'blue'

 },{

 type: 'rect',

 x: 0,

 y: 45,

 width: 600,

Chapter 13

[371]

 height: 60,

 fill: '#ffffff',

 zIndex: 1

 },{

 type: "image",

 src: "images/inkyghost.gif",

 x: 100,

 y: 50,

 height: 50,

 width: 50,

 zIndex: 2

 }

]

 });

 var myWindow = Ext.create('Ext.Window', {

 title: 'drawing components',

 closable: true,

 resizable: false,

 width: 600,

 height: 300,

 layout: 'fit',

 items: [myDrawCmp]

 });

 myWindow.on({

 afterRender{

 fn:function(cmpx, eOpts){

 var myPacman = Ext.create('Ext.draw.Sprite', {

 type: "image",

 src: "images/pacman02.gif",

 x: 10,

 y: 50,

 height: 50,

 width: 50,

 zIndex: 3

 });

 myDrawCmp.surface.add([

 myPacman,{

 type: "image",

 src: "images/inkyghost.gif",

 x: 160,

 y: 50,

From Drawing to Charting

[372]

 height: 50,

 width: 50,

 zIndex: 2

 }

]);

 myDrawCmp.surface.renderAll();

 var runner = new Ext.util.TaskRunner();

 var task = runner.newTask({ //start a task

 run:function() {

 var xp=0;

 var itemPacman= myDrawCmp.surface.items.items[4];

 var itemGhost= myDrawCmp.surface.items.items[2];

 var itemGhostB= myDrawCmp.surface.items.items[3];

 var xp =itemPacman.attr.x; xp+=4;

 if (xp>=600){ xp= (-200); }

 var xg =itemGhost.attr.x; xg+=4;

 if (xg>=600){ xg= (-150); }

 var xgg =itemGhostB.attr.x; xgg+=4;

 if (xgg>=600){ xgg= (-100); }

 itemPacman.setAttributes({x:xp}, true);

 itemGhost.setAttributes({x:xg}, true);

 itemGhostB.setAttributes({x:xgg}, true);

 },

 interval: 30,

 scope: this

 });

 task.start(); // start the task

 },

 delay: 400,

 scope: this

 }

});

 myWindow.showAt(30,50);

});

Chapter 13

[373]

Here, in this code, we created a drawing surface and added four sprites (one text and
three image type sprites). If we run our code, we may see something like this:

We used Ext.util.TaskRunner to move the image sprites (Pac-Man and the ghosts)
on the drawing surface at an interval of 30 milliseconds. Once the sprites get out of
bounds (zone), the images will start over from the beginning.

Charts
Now that you have an idea of how the drawing package works, you are ready to see
how the Ext JS library uses package capabilities in the chart package.

The chart package is a set of classes that deine a chart container to manage axes,
legends, series, labels, tips, Cartesian and radial coordinates, and speciic series, such
as Pie, Area, Bar, Radar, Gauge, and so on.

As we have said before, charts is a package inside the framework and doesn't come
as part of the core or widgets, so we need to deine it on Ext.Loader, and also inside
our application's app.json ile (we will cover this later).

From Drawing to Charting

[374]

It's important to mention that every chart must have three components: data, axes,
and a series. These components can be seen in the following diagram:

In the previous igure, you can see the basic parts of a chart and some
custom elements.

Legend
The chart coniguration object accepts a legend parameter to enable legend items for
each series and set the position of the legend, as follows:

legend: {

 docked: 'left' // possible values are left, top, bottom, right

}

Axis
The axis package contains an abstract axis class that is extended by the Axis and
Radial classes. There are axes for categorical information (Category axis) and axes
for quantitative information, such as a numeric axis. There is also a time axis that is
used to render information over a speciic period of time.

Chapter 13

[375]

Series
A series class is an abstract class extended by Line or Scatter visualizations. This
class contains code that is common to these series, such as event handling, animation,
shadows, gradients, common offsets, and so on. A series class will contain an array
of items, with information about the positioning of each element. It also contains a
shared drawSeries method that updates all positions for the series and then renders
the series.

Themes
Ext JS 5.1.1 shipped charts with several built-in themes that you could select for your
charts. However, building custom themes was not a documented process. With this
release, we have been provided with the ability to make our own color palettes, and
much more. A theme for charts is a class derived from Ext.chart.theme.Base and
given an alias that starts with the following:

"chart.theme."

A basic theme can be as simple as this:

Ext.define('App.chart.theme.Awesome', {

 extend: 'Ext.chart.theme.Base',

 alias: 'chart.theme.awesome',

 singleton: true,

 config: {

 baseColor: '#4d7fe6'

 }

});

From here on, you can add any number of other conigurations to style your
series, axes, and markers. To see all the options, check out the Ext.chart.theme.
Base reference for the available conigurations at http://docs.sencha.com/
extjs/5.1/5.1.1-apidocs/#!/api/Ext.chart.theme.Base.

To use the preceding theme, you have to simply set the theme coniguration in
your charts:

theme: 'awesome'

http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.chart.theme.Base
http://docs.sencha.com/extjs/5.1/5.1.1-apidocs/#!/api/Ext.chart.theme.Base

From Drawing to Charting

[376]

Series examples
Now we will see some of the basic charts in the Ext JS framework. Remember that
we cannot cover all of them here, but those that we won't see are quite similar in
coniguration and behavior.

Bar charts (building our irst chart)
Bar charts are easy to understand. That's why they are commonly used to
display categorical data. Let's create our chart using the basic way (not inside the
application). So, let's create our HTML ile, name it chart_01.html, and add the
following code:

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Chart - 01 - basics</title>

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/build/
packages/ext-theme-neptune/build/resources/ext-theme-neptune-all.css">

 <link rel="stylesheet" type="text/css" href="../ext-5.1.1/
packages/sencha-charts/build/neptune/resources/sencha-charts-all.css">

 <script src="../ext-5.1.1/build/ext-all.js"></script>

 <script src="../ext-5.1.1/build/packages/ext-theme-neptune/build/
ext-theme-neptune.js"></script>

 <script src="chart_01.js"></script>

</head>

<body>

</body>

</html>

Notice that inside the HTML ile, we are adding a new resource—sencha-charts.

all.css. These iles will provide us with the necessary CSS classes for the charts.
Now, let's make the JavaScript code for the chart_01.js ile:

Ext.Loader.setConfig({

 enabled: true,

 paths: {

 'Ext.chart': '../ext-5.1.1/packages/sencha-charts/src/chart',

 'Ext.draw': '../ext-5.1.1/packages/sencha-charts/src/draw'

 }

});

Ext.require([

 'Ext.*',

Chapter 13

[377]

 'Ext.draw.*',

 'Ext.chart.*'

]);

Ext.onReady(function(){

 var myChartStore = Ext.create('Ext.data.ArrayStore',{

 storeId:'salesStore',

 fields:[

 {name: 'id', type: 'int'},

 {name: 'region', type: 'string'},

 {name: 'sales', type: 'float'} ,

 {name: 'salesb', type: 'float'}],

 data:[

 [10001 ,"North", 1500.55 , 1450.66],

 [10002 ,"South", 2344.99 , 3200.45],

 [10003 ,"East", 1750.44 , 950.55],

 [10004 ,"West", 3000.00 , 3200.55],

 [10005 ,"Central", 4523.45 , 1963.44],

 [10006 ,"OverSeas", 2489.55, 2786.12]

]

 });

 var mychart= Ext.create('Ext.chart.CartesianChart', {

 store: myChartStore,

 insetPadding: {

 top: 50,

 left: 25,

 right: 25,

 bottom: 15

 },

 interactions: 'itemhighlight',

 axes: [{

 type: 'numeric',

 position: 'left',

 title: {

 text: 'Sales 1st to 3th Quarter',

 fontSize: 14,

 fillStyle:'#0d7179'

 },

 fields: 'sales'

 }, {

 type: 'category',

 position: 'bottom',

From Drawing to Charting

[378]

 title: {

 text: 'Sales by Branch',

 fontSize: 18,

 fillStyle:'#277cc0'

 },

 fields: 'region'

 }],

 series: {

 type: 'bar',

 title:['Main branch','Branch B'],

 xField: 'region',

 yField: 'sales',

 style:{

 strokeStyle: '#999999',

 fillStyle: '#cccc99'

 },

 highlight:{

 strokeStyle: '#990000',

 fillStyle: '#ffcc66',

 lineDash: [5, 3]

 },

 label: {

 field:'sales',

 display:'insideEnd'

 }

 },

 sprites: {

 type: 'text',

 text: 'My Company - 2015',

 fontSize: 22,

 fillStyle: '#993366',

 width: 100,

 height: 30,

 x: 40, // the sprite x position

 y: 25 // the sprite y position

 }

 });

 Ext.create('Ext.window.Window', {

 title: 'Charts 101',

 closable:true,

 resizable:true,

 height: 400,

 width: 650,

Chapter 13

[379]

 layout: 'fit',

 html:'My Chart',

 items:[mychart]

 }).show();

});

Here is the explanation of the preceding code:

1. The irst step is to set the paths for the classes in Ext.Loader.setConfig so
that Ext JS recognizes where to get information.

2. We set in the Ext.require code what we require (classes) so that those
classes are loaded before executing our code.

3. Then, we create a data store (Ext.data.ArrayStore) with some dummy
data that our chart will be using.

4. We create the mychart= Ext.create('Ext.chart.CartesianChart'
variable.

The explanation of the coniguration object (mychart) is as follows: irst, we set
the store (data). Then, we deine some properties, such as insetPadding and
interactions. The insetPadding is the internal padding on the drawing surface
of the chart.

Interactions are optional modules that can be plugged into a chart to allow the
user to interact with the chart and its data in special ways. The current supported
interaction types include the following:

• Panzoom: This allows pan and zoom of axes

• Itemhighlight: This allows highlighting of series data points

• Iteminfo: This allows displaying of details of a data point in a pop-up panel

• Rotate: This allows rotation of pie and radar series

We set the axes with an object. The irst object is the numeric type and this axis will
be the representation in the left position for the sales ield. The second axis will be
the representation for the region ield (North, West, and so on). Notice that for each
object, inside the axes property, we added something like this:

title: {

 text: 'Sales 1st to 3th Quarter',

 fontSize: 14,

 fillStyle:'#0d7179'

},

From Drawing to Charting

[380]

This code is meant for setting the style and properties on the Axis. If you check
it out, you will realize that it is like setting the properties for a text type sprite
(drawing part).

We set the series for the chart. First, we speciied the type as bar, and set the xfield
and yfield properties so that the chart will know how to arrange its information.

The style property lets us change the appearance of the series (colors). If we don't
set this property, Ext JS will handle the default theme (colors for the chart). The
highlight property decides how the style will be for the bar when it receives the
user interaction.

In the label property, we set the manner in which the values will appear on each
bar element inside the chart. In this case, they will be inside the bar at the end.
However, if the value is greater than the bar, it will be placed outside. See the
following screenshot:

Observe how the irst and third bars in the chart display the values outside
themselves. This is because the space is not enough to display them inside the bar.
But if we resize the window, then the appearance of those bars will change.

Finally, we set the property sprites with one element, as follows:

sprites: {

 type: 'text',

 text: 'My Company - 2015',

 fontSize: 22,

 fillStyle: '#993366',

 width: 100,

 height: 30,

 x: 40,

Chapter 13

[381]

 y: 25

}

This will create a static text sprite inside the chart so that we can have a title. Also,
we create an instance of the Ext.window.Window class that will be the container for
our chart.

Let's run the example in our browser and see the results, as shown here:

This process will apply to other types of charts as well, but it's important that
according to the type of chart we are generating, we are able to modify the axes
and series properties to display our data inside the chart correctly. You can see
the Charts kitchen sink example to understand more about other types of charts.

Pie charts
Pie chart visualization is a very common visualization for displaying quantitative
information of different categories. Like other charts, coniguring a pie chart is very
fast and simple. We only need to know how the series work in this type of chart.

Let's make a duplicate of the previous example and change the following code:

Ext.onReady(function(){

 var myChartStore = Ext.create('Ext.data.ArrayStore',{

 storeId:'salesStore',

 fields:[

 {name: 'id', type: 'int'},

From Drawing to Charting

[382]

 {name: 'region', type: 'string'},

 {name: 'sales', type: 'float'}

],

 data:[

 [10001 ,"North", 15.55],

 [10002 ,"South", 23.99],

 [10003 ,"East", 17.44],

 [10004 ,"West", 30.00],

 [10005 ,"Central", 4.1],

 [10006 ,"OverSeas", 2.55]

]

 });

 var mychart= Ext.create('Ext.chart.PolarChart', {

 store: myChartStore,

 insetPadding: {

 top: 50,

 left: 25,

 right: 25,

 bottom: 15

 },

 innerPadding: 20,

 interactions: ['rotate', 'itemhighlight'],

 theme: 'default-gradients',

 legend: {docked: 'bottom'},

 series: {

 type: 'pie',

 angleField:'sales', // xField

 label: {

 field:'region',

 calloutLine: {

 length: 60,

 width: 3

 }

 },

 highlight: true,

 tooltip: {

 trackMouse: true,

 renderer: function(storeItem, item) {

 this.setHtml(storeItem.get('region') + ': ' +
 storeItem.get('sales'));

 }

 }

 },

Chapter 13

[383]

 sprites: {

 type: 'text',

 text: 'My Company - 2015',

 fontSize: 22,

 fillStyle: '#993366',

 width: 100,

 height: 30,

 x: 40, // the sprite x position

 y: 25 // the sprite y position

 }

});

Ext.create('Ext.window.Window', {

 title: 'Charts 101',

 closable:true,

 resizable:true,

 height: 400,

 width: 650,

 layout: 'fit',

 html:'My Chart',

 items:[mychart]

}).show();

Now, let's run our browser and see the result, as follows:

From Drawing to Charting

[384]

Refer to the highlighted code to see the difference:

• The mychart variable was set as a polar chart component with: Ext.
create('Ext.chart.PolarChart'...

• We added the theme property on the charts to default-gradients. This
property will give a gradient look to the pie elements (slices).

• In the series property, we changed the type to pie and set angleField
to sales (angleField is an alias of the xField property). We also set the
tooltip property such that when the mouse is over a slice, the tooltip (for
that slice) will appear, as shown in the following screenshot:

• Interactions for the chart are set to interactions:['rotate',
'itemhighlight'],. With this new interaction type, rotate, we can
rotate the pie chart, like this:

Chapter 13

[385]

More charts
So far, we have seen the bar and pie charts (Cartesian and polar charts), but Ext JS
comes with many more chart types. One nice introduction in version 5.1 is the 3D
chart, which looks like this:

Some more chart types that we can generate are as follows:

• 3D Category: Pie 3D and Bar 3D

• Normal charts: Area, Bar, CandleStick, Gauge, Line, Polar, Radar, Scatter,
Stacked and Cartesian

You can see all the types in the Charts Kitchen Sink example. In the beginning, when
you use the charts or try to create new charts, it can be an overwhelming task, so
check out the documentation. Also, I recommend that you take a look at the source
code (ext-charts and sencha-charts) to understand how charts work.

From Drawing to Charting

[386]

Introducing chart themes
Chart themes are classes that contain preconigured looks for our charts. This one has
been added to the Ext JS framework since version 5.0.1. So, for you to get a clearer
idea, let's take a look at the ext-5.x.x/packages/sencha-charts/src/chart/
theme folder. You will see many iles, as shown here:

These iles or themes (classes) extend the Ext.chart.theme.Base class. Also, these
classes are singleton (singleton:true) in order to use the same instance when
referenced. As an example, let's make a duplicate of the irst code example (bar chart):

1. Deine a new chart theme as follows:
Ext.require([

 'Ext.*',

 'Ext.draw.*',

 'Ext.chart.*'

]);

Ext.define('Ext.chart.theme.myChartTheme', {

 extend: 'Ext.chart.theme.Base',

 singleton: true,

 alias: [

Chapter 13

[387]

 'chart.theme.mychartTheme',

 'chart.theme.myChartTheme'

],

 config: {

 baseColor: '#65a9e0',

 gradients: {

 type: 'linear',

 degrees: 90

 }

 }

});

Ext.onReady(function(){

 // CODE...

You can see that inside the code, we deined a new class extending Ext.
chart.theme.Base. We also set two different values in the alias property
just in case a bad typographical error (uppercase or lowercase) occurs. Inside
the coniguration object, we set the baseColor and gradient properties.

2. Now, in the chart conig object, we need to add this property:
theme: {

 type: 'mychartTheme'

},

3. Remove previously deined styles so that the theme won't be overridden.
Save the ile and run in the browser to see the result, like this:

From Drawing to Charting

[388]

Notice how the blue color (the base color) and gradient conigurations in our chart
theme were applied to each bar. The highlighted property was set in the chart
coniguration. So, themes can be quite useful when we are using many charts in our
applications. This will avoid setting code for every chart every time, and we will be
reducing much of our code.

Enhancing our application with charts
The examples covered so far were in traditional code (basic examples using the
Ext JS framework directly), but what happens when we want to embed the charts in
an MVC or MVVM app? Well! First of all, we need to add a reference to the proper
code package that we want to use:

1. So, let's begin by opening the app.json ile (the application code used in
chapters 10, 11, and 12) and locating this code:
"requires": [

],

2. For use in Ext JS charting, let's change it to this:
"requires": [

"sencha-charts"

],

Or for legacy charts (Ext JS 4), change to:

"requires": [

"ext-charts"

],

3. After this change, save the ile. Now, let's use the Sencha CMD tool. Open the
CMD tool and type this:
sencha app build

4. By using this command, we ensure that our code as well as Ext JS and the
Chart package are included in our application. So, after the build ends, let's
monitor the changes in our application using this line:
sencha app watch

This procedure will make sure that the desired package is included in our
application. So, now, let's create the view for our chart inside the app (we
will reuse part of the code from our previous examples).

Chapter 13

[389]

5. Let's create the ile (view) called myChartSample.js in the folder app/view,
and place the following code:
Ext.define('myApp.view.myChartSample',{

 extend: 'Ext.panel.Panel',

 alias: 'widget.myChartSamplePanel',

 xtype: 'mychartPanel',

 requires: [

 'Ext.draw.*',

 'Ext.chart.*'

],

 bodyPadding: 5,

 iconCls: 'chartx-16',

 closable: true,

 title: 'My Chart',

 layout: 'fit',

 initComponent: function() { //step 4

 var me= this;

 var myChartStore= Ext.create('Ext.data.ArrayStore',{

 storeId: 'salesStore',

 fields:[

 {name: 'id', type: 'int'},

 {name: 'region', type: 'string'},

 {name: 'sales', type: 'float'},

 {name: 'salesb', type: 'float'}

],

 data:[

 [10001 ,"North", 1500.55 , 1450.66],

 [10002 ,"South", 2344.99 , 3200.45],

 [10003 ,"East", 1750.44 , 950.55],

 [10004 ,"West", 3000.00 , 3200.55],

 [10005 ,"Central", 4523.45 , 1963.44],

 [10006 ,"OverSeas", 2489.55, 2786.12]

]

 });

 var mychart= Ext.create('Ext.chart.CartesianChart', {

 store: myChartStore,

 insetPadding: {

 top: 50, left: 25,

 right: 25, bottom: 15

 },

 interactions: 'itemhighlight',

 axes: [{

 type: 'numeric',

From Drawing to Charting

[390]

 position: 'left',

 title: {

 text: 'Sales 1st to 3th Quarter',

 fontSize: 14,

 fillStyle: '#0d7179'

 },

 fields: 'sales'

 }, {

 type: 'category',

 position: 'bottom',

 title: {

 text: 'Sales by Branch',

 fontSize: 18,

 fillStyle: '#277cc0'

 },

 fields: 'region'

 }],

 series: {

 type: 'bar',

 title: ['Main branch','Branch B'],

 xField: 'region',

 yField: 'sales',

 style:{

 strokeStyle: '#999999',

 fillStyle: '#cccc99'

 },

 highlight:{

 strokeStyle: '#990000',

 fillStyle: '#ffcc66',

 lineDash: [5, 3]

 },

 label: {

 field: 'sales',

 display: 'insideEnd'

 }

 },

 sprites: {

 type: 'text',

 text: 'My Company - 2015',

 fontSize: 22,

 fillStyle: '#993366',

 width: 100,

 height: 30,

Chapter 13

[391]

 x: 40, // the sprite x position

 y: 25 // the sprite y position

 }

 });

 me.items = [mychart];

 me.tbar = ['->', {

 text: 'Download',

 handler: function() {

 var chart = me.down('cartesian');

 chart.download({

 filename: 'MyCompany_chart2015'

 });

 }

 }];

 me.callParent();

 }

});

So, this is our View ile. Now notice that we added a toolbar and a button whose
handler function gets the chart component by its alias (xtype) and calls the
download function. This will cause the chart to be exported as an image ile (PNG
format by default).

For more information on this, navigate to the documentation
page at Ext.chart.CartesianChart to check out the full list of
possible configurations.

1. Now, open the app/controller/app.js ile and add the new view to the
requires property, like this:
requires:[

 'myApp.store.modulesTreeDs',

 'myApp.view.appZone',

 'myApp.view.myViewport',

 'myApp.view.myChartSample'

],

2. Then, open the serverside/data/menu_extended.json ile and set the
access for the view:
{

 "leaf": true,

 "text": "Charts",

 "allowaccess":false,

 "description":"Generate charts",

From Drawing to Charting

[392]

 "level":2,

 "moduleType":"module",

 "iconCls":"charts-16",

 "options":"myApp.view.myChartSample",

 "moduleAlias":"myChartSamplePanel"

}

3. Now we are ready to run our application, so let's open it in the browser and
see the result, as follows:

4. Finally, click on the Download button, save the image in your hard drive,
and see the ile.

As you can see, implementing charting in our application is not as hard as it looks.
Now it's up to you to create real-world charts (and also to get the data for them). In
these examples, we used an Array store, but remember that as it's a data store, you
can always get information (data) from JSON and XML as well.

Chapter 13

[393]

Summary
In this chapter, you learned the basics of drawing and applying properties to
sprites (elements), and also the fundamentals of creating basic charts. We saw how
chart themes can be quite useful for applying styles to our charts, and also how to
integrate ext-charts and sencha-charts into our applications.

Remember to check out the SVG documentation and not to confuse Legacy charts
with Sencha charts; you may get confused and use the wrong one, but don't despair.
And remember to use these resources if something is not working properly with the
draw or chart options.

In the next chapter, we will see how to complete our application and prepare it
for deployment.

[395]

Finishing the Application
Since Ext JS version 4, we can compile our application using the Sencha CMD
tool. This compilation gathers the required classes/JavaScript code and necessary
resources in order to build our application for a production environment.

It's better to compile the code in order to protect the source code, and also minimize
the size of the JS iles, so that it will optimize the loading speed for our application.
Also, while compiling the code, we must ensure that we have the necessary
JavaScript classes and code in order to run our app, and also to avoid uploading the
entire Ext JS framework on the server.

In this chapter, you are going to learn the basics of how to prepare our application
and deploy it in a production environment. But before going further, please check
the following properties in your application:

• Make sure that the code has the correct code syntax. Be aware of trailing
commas (,) and also have the semicolon (;) properly set in the JavaScript
instructions. We need to have good code quality in order to compile the code.

• If you are on a Windows OS, it's recommended that you have several
versions of Sencha CMD installed, because not all Sencha CMD versions
compile the code with the proper character encoding. So, if you are using
special characters (Latin or others), this may be a major factor, because it can
change the encoding of the strings in your application. For this, you will need
to test and see which version suits your needs.

Also, it's important to mention that part of the build process (that is, some iles,
especially XML) are iles that are to be used by Apache Ant. So, if you want to create
advanced builds then it's important that you know a bit more about Apache Ant
from http://ant.apache.org.

http://ant.apache.org

Finishing the Application

[396]

Preparing for deployment
So far, we have seen how to architect our JavaScript code, created classes and
layers for speciic tasks, and written maintainable and scalable code; but we need to
prepare our application for a production environment.

In Chapter 2, The Core Concepts, we talked about the loader system in Ext 4, and you
learned that classes have dependencies, and these dependent classes can be loaded
automatically when requiring the main class.

In Chapter 10, Architecture, we created a basic application skeleton and also most
of our application. So far in this chapter, our application is in the development
environment, and also this environment made sure that Ext JS classes (also our own
classes) were dynamically loaded when the application required to use them. In this
environment, it's really helpful to load each class in a separate ile. This will allow us
to debug the code easily, and ind and ix bugs.

In Chapter 11, The Look and Feel, and Chapter 12, Responsive Conigurations and Tablet
Support, we enhanced our app a bit more.

Now, before we start compiling, we must know the three basic parts of our
application, as marked here:

Chapter 14

[397]

• app.json: This file contains specific details about our application. Also,
Sencha CMD processes this file first.

• build.xml: This file contains a minimal initial Ant script, and imports a task
file located at .sencha/app/build-impl.xml.

• .sencha: This folder contains many files related to, and are to be used for,
the build process.

The app.json ile
As we said before, the app.json ile will contain information about the settings
of our application. Open the ile and take a look. In previous chapters, we made
changes to this ile, such as the theme that our application is going to use:

"theme": "my-custom-theme-touch",

Alternatively, we can use the normal theme:

"theme": "my-custom-theme",

The other change we made in previous chapters was this:

"requires": [

 "sencha-charts"

],

This was to specify that we are going to use the charts / draw classes in our
application (the chart package for Ext JS 5). Now, at the end of the ile, there is an ID
for the application:

"id": "7833ee81-4d14-47e6-8293-0cb8120281ab"

After this ID, we can add other properties. As an example, suppose our application
will be generated for Central and South America. Then we need to include the locale
(ES or PT), so we can add the following:

,"locales":["es"]

We can also add multiple languages:

,"locales":["es","pt","en"]

This will cause the compilation process to include the corresponding locale iles
located at ext/packages/ext-locale/build.

However, this book can't cover each property in the ile, so it's recommended that
you take a deep look into the Sencha CMD documentation at: http://docs-origin.
sencha.com/cmd/5.x/microloader.html to learn more about the app.json ile.

http://docs-origin.sencha.com/cmd/5.x/microloader.html
http://docs-origin.sencha.com/cmd/5.x/microloader.html

Finishing the Application

[398]

The Sencha command
To create our production build, we need to use the Sencha Command. This tool will
help us in our purpose.

If you are running Sencha CMD on Windows 7 or Windows 8, it's
recommended that you run the tool with "administrator privileges".

So let's type this in our console tool:

[path of my app]\sencha app build

In my case (Windows OS 7; 64-bit), I typed:

K:\x_extjsdev\app_test\myapp>sencha app build

After the command runs, you will see something like this in your console tool:

Chapter 14

[399]

So, let's check out the build folder inside our application folder. We may have the
following list of iles:

Notice that the build process has created these:

• resources: This file will contain a copy of our resources folder, plus one or
more CSS files starting with myApp-all

• app.js: This file contains all of the necessary JS (Ext JS core classes,
components, and our custom application classes)

• app.json: This is a small manifest file compressed

• index.html: This file is similar to our index file in development mode,
except for the line:

<script id="microloader" type="text/javascript" src="bootstrap.
js"></script>

This was replaced by some compressed JavaScript code, which will act in a
similar way to the micro loader.

Finishing the Application

[400]

Notice that the serverside folder, where we use some JSON iles (other cases can be
PHP, ASP, and so on), does not exist in the production folder. Well, the reason is that
that folder is not part of what Sencha CMD and build iles consider.

Normally, many developers will say, "Hey, let's copy the folder and let's move on."
However, the good news is that we can include that folder with an Apache Ant task

Customizing the build.xml ile
We can add custom code (Apache Ant style) to perform new tasks and things we
need in order to make our application build even better. Let's open the build.xml
ile. You will see something like this:

<?xml version="1.0" encoding="utf-8"?>

<project name="myApp" default=".help">

<!-- comments... -->

<import file="${basedir}/.sencha/app/build-impl.xml"/>

<!-- comments... -->

</project>

So, let's place the following code before </project>:

 <target name="-after-build" depends="init">

 <copy todir="${build.out.base.path}/serverside"
 overwrite="false">

 <fileset dir="${app.dir}/serverside" includes="**/*"/>

 </copy>

 </target>

</project>

This new code inside the build.xml ile establishes that after making the whole
building process, if there is no error during the Init process then it will copy the
(${app.dir}/ serverside) folder to the (${build.out.base.path}/serverside)
output path. So now, let's type the command for building the application again:

sencha app build –c

In this case, we added -c to irst clean the build/production folder and create a
new set of iles. After the process completes, take a look at the folder contents, and
you will see this:

Chapter 14

[401]

Notice that now the serverside folder has been copied to the production build
folder, thanks to the custom code we placed in build.xml ile.

Compressing the code
After building our application, let's open the app.js ile. We may see something like
what is shown here:

Finishing the Application

[402]

By default, the build process uses the YUI compressor to compact the JS code
(http://yui.github.io/yuicompressor/). Inside the .sencha folder, there are
many iles, and depending on the type of build we are creating, there are some iles
such as the base ile, where the properties are deined in defaults.properties. This
ile must not be changed whatsoever; for that, we have other iles that can override
the values deined in this ile. As an example for the production build, we have the
following iles:

• production.defaults.properties: This file will contain some properties/
variables that will be used for the production build.

• production.properties: This file has only comments. The idea behind this
file is that developers place the variables they want in order to customize the
production build.

By default, in the production.defaults.properties ile, you will see something
like the following code:

Comments

more comments......

build.options.logger=no

build.options.debug=false

enable the full class system optimizer

app.output.js.optimize=true

build.optimize=${build.optimize.enable}

enable.cache.manifest=true

enable.resource.compression=true

build.embedded.microloader.compressor=-closure

Now, as an example of compression, let's make a change and place some variables
inside the production.properties ile. The code we will place here will override
the properties set in defaults.properties and production.defaults.
properties. So, let's write the following code after the comments:

build.embedded.microloader.compressor=-closure

build.compression.yui=0

build.compression.closure=1

build.compression=-closure

With this code, we are setting up the build process to use closure as the JavaScript
compressor and also for the micro loader. Now save the ile and use the Sencha CMD
tool once again:

sencha app build

http://yui.github.io/yuicompressor/

Chapter 14

[403]

Wait for the process to end and 'take a look at app.js.

You can notice that the code is quite different. This is because the code compiler
(closure) was the one that made the compression. Run the app and you will notice no
change in the behavior and use of the application.

As we have used the production.properties ile in this example, notice that in the
.sencha folder, we have some other iles for different environments, such as:

Environment File (or files)

Testing testing.defaults.properties and
testing.properties

Development development.defaults.properties
and development.properties

Production production.defaults.properties and
production.properties

It's not recommended that you change the *.default.properties ile. That's the
reason of the *.properties ile, so that you can set your own variables, and doing
this will override the settings on default ile.

Finishing the Application

[404]

Packaging and deploying
Finally, after we have built our application, we have our production build/package
ready to be deployed. We will have the following structure in our folder:

Now we have all the iles required to make our application work on a public server.
We don't need to upload anything from the Ext JS folder because we have all that we
need in app.js (all of the Ext JS code and our code). Also, the resources ile contains
the images, CSS (the theme used in the app), and of course our serverside folder.
So now, we need to upload all of the content to the server:

And we are ready to test the production in a public server.

Chapter 14

[405]

Testing the application
Finally, after uploading the application to our server, we can begin testing, operating,
and using it. Remember that the code is compiled, so it will be hard to debug. This
is because we don't know the exact line of code, the complexity of the code, and
so on. If there are any errors, it's important that you return to your development
environment, ix the version, test again to see what the error was, recompile, and
upload the new iles or the entire package to the server.

Also, there are some considerations you must remember:

1. Try to use the Sencha CMD version that suits your needs. Some new versions
may throw some warnings. For this, you may test whether the production
build works properly and as expected.

2. Also check the output JS ile and verify that the strings were properly treated
and the encoding was not changed. If the encoding was changed, then try
again with other Sencha CMD versions (this issue is mainly on Windows OS
environments).

3. For more advanced topics and a full reference, check out the Sencha CMD
documentation at http://docs.sencha.com/cmd/5.x/, and also the
Apache Ant documentation at https://ant.apache.org/manual/.

4. Always keep good syntax in code and avoid errors.

5. Check the paths where you place the Ext.ux components and other required
packages.

Summary
In this chapter, we talked about compiling and preparing our application for a
production environment. This step has become quite important since version 4.
Using Sencha CMD and also coniguring JSON or XML iles to build a project
can sometimes be an overwhelming situation, but don't panic! Check out the
documentation of Sencha and Apache.

Take a look at the JSON and XML iles in examples, mainly in the kitchen sink
example. This example has very complex JSON and XML iles for building the
application, which can give you some pointers to new ideas on how to work with it.

Also, remember that there's no reason to be afraid of testing and playing with the
conigurations. It's all part of learning and knowing how to use Sencha Ext JS.

http://docs.sencha.com/cmd/5.x/
https://ant.apache.org/manual/

[407]

What's Next?
Throughout this book, we have seen how to use the Ext JS framework version 5 and
build rich Internet applications. However, you must remember that this book doesn't
cover all the elements of the framework itself, so it's quite useful to know some
resources, such as knowledge sharing sites. This chapter's main purpose is to give
references to some resources and also to comment about some plug-ins, commercial
and free.

Forums
The Sencha website is, in fact, the main resource for Ext JS and other Sencha products.
Also this forum comes in Japanese and Portuguese.

The Sencha forum at http://www.sencha.com/forum/

http://www.sencha.com/forum/

What's Next?

[408]

This is the main page for Sencha, and it has forums for all its products, and also new
releases. Premium forums are only for those who have a support subscription. The
difference between premium forums and plain forums is that premium forums have
a short response time.

ExtMX – the Spanish-language community for the Ext JS framework (http://extjs.mx/)

ExtMX is a Spanish-language community for the Ext JS framework, where they
host tutorials. They also provide resources for courses or training. To access more
features, you may need to create a user account (it's free).

http://extjs.mx/

Chapter 15

[409]

Resources
Also, there are other useful sites (resources) where you can ind more information,
tips, tutorials, and so on. Some of them are discussed in this section.

The Learn from Saki website contains many tutorials and code samples, and also
offers commercial plug-ins for the framework's versions 4 and 5 (the prices are
moderated). Registration is required, and some tutorials require membership in
order for you to access them.

Learn from Saki at http://extjs.eu

http://extjs.eu

What's Next?

[410]

Loiane Groner is a Brazilian author who is an expert in Ext JS and other technologies.
She also has written many books about Ext JS. The following screenshot shows her
website where she has discussed Ext JS:

Loiane Groner's page at http://loianegroner.com/

http://loianegroner.com/

Chapter 15

[411]

Sencha Dev Tricks is another JavaScript experts' blog site. It has many good tutorials
and tips.

The Sencha Dev Tricks page at http://www.ladysign-apps.com/developer/

http://www.ladysign-apps.com/developer/

What's Next?

[412]

Sencha has the following vimeo channel, with many videos about their products.
There are also tutorials, videos about conferences, webinars, and so on. This is a nice
resource for learning some tricks from the oficial developers.

The vimeo page at https://vimeo.com/sencha

Third-party plugins (commercial)
The framework also comes with third-party components and plugins. Some of them
are commercial, and are nice components that bring great power to applications. A
few of them are described in this section.

Bryntum, shown as follows, has a very nice Gantt component and a scheduler
component, among other products, such as Siesta (a JavaScript testing tool).

https://vimeo.com/sencha

Chapter 15

[413]

Bryntum at http://www.bryntum.com

Previously we mentioned the Learn from Saki website at http://www.extjs.eu as
a useful resource for learning. Here, we are talking about the plugins and extensions
it provides. This site has many plugins (mainly made for the Grid component) such
as Multi search, Grid search, Multi sort, and Mini pager.

http://extjs.eu

http://www.bryntum.com
http://www.extjs.eu

What's Next?

[414]

Third-party plugins (free)
Also, the community across the world has published some free plug-ins and
components. You can search for them primarily in the main forum on Sencha's
website at http://www.sencha.com/forum/. However, Ext JS version 5 does not
have many free plugins available.

Almost all the free plugins are/were made for version 4.x. Some of them may be
compatible, while some others may not be, due to code changes from version 4 to 5.
Still, some developers have made porting and compatible versions for Ext JS 5.

However, due the similarity of the framework's architecture, it's also possible to
download plugins made for version 4 and give them a try in version 5. Yet, be aware
that these plugins may require a few modiications in order to make them work on
Ext JS version 5.

The future
As web technologies and new features become supported in browsers, sooner or
later, the tendency and the direction of the Sencha company will be to merge Ext
JS and Sencha Touch into a single framework. So, the most logical thing is to call
it "Ext JS 6", but no worries! What you learn in this book will be very useful for the
next version because Ext JS 4's and 5's classes, coding style, extending classes, and
patterns such as MVC or MVVM will be available in version 6 as well. So, it will be
much easier for you to understand what all this is about.

This is what you need to keep in mind:

• Wait for a stable release

• Check out the documentation for changes, new things, and what will be
required for the migration of version 5 apps to version 6

• What Sencha CMD tool's version 6 can handle and what it cannot

Final thoughts
Ext JS 5 is a nice and powerful framework that can make powerful applications with
no hard work. Worldwide, it's one of the most powerful frameworks for application
development, and it will continue to be so for a long time. However, the tool will
not do the work itself. We need to plan, design accurately, and understand how this
framework works things out, so that it can make life easier for us and also speed up
the development process.

http://www.sencha.com/forum/

Chapter 15

[415]

As an example, you can combine other libraries, such as jQuery, with the same
application. The trick is that you need to test and understand how these, being
combined on the same application or web page, can coexist without conlicting
with each other.

Although, it is possible to use Ext JS and jQuery, it's not
recommended to combine both, because Ext JS classes can
produce the same functionality and results. So, there is no
need to mix them, unless it's imperative for your project.

Summary
In this chapter, we talked a bit about some useful resources you can refer to learn
more about Sencha Ext JS 5, and expand your knowledge about this framework.
If you have understood the basics, you will manage to accomplish great things.

Keep in mind that this framework is not plain JavaScript but a mix of many
things, such as HTML5, CSS, DOM manipulation, SASS, and so on. You also
need to understand the basics in order to know how to manipulate things around
the framework. You can create plugins, new components, and wrappers for other
scripts, and do much more.

Personally, I recommend that you take a look at the source code in order to
understand the internals and also see how things work so that you can build more
advanced things. Compared to other frameworks (such as Angular JS), this one may
be hard to understand at the beginning, but it's deinitely more powerful. So keep
practicing and testing, and happy Ext JS 5 coding!

[417]

Index

A

Accordion layout 86, 87
action column 209, 210
advanced theming

about 323
component's style, modifying 323
custom fonts, adding in theme 327-330
new gradients, adding 324, 325
tabs, styling 326, 327

Ajax
about 94
URL, for article 94

Ajax call
making, to server 94-98

Ajax proxy 121
Ajax request

about 94
parameters, passing to 98, 99

Ajax request calls
timeout, setting to 99, 100

aliases 47-50
anatomy, of ields 172
Anchor layout 87-89
Apache Ant

URL 395
app.json ile 397
application

creating 280, 281
deploying 404
enhancing, with charts 388-392
packaging 404
testing 405

Aptana 16
axis package 374

B
bar charts 376
basic DataView 245, 246
basic drawing 364-368
basic grid 202, 203
basic tree panel 258-261
binding 301-310
bind template 301
Boolean bind 301
Boolean column 208
border layout 282
breadcrumb bar

about 153-156
selections, handling in 156, 157

Bryntum 412
build.xml ile

about 397
customizing 400, 401

button events
handling 141, 142

buttons
icons, setting on 138, 139

C

Card layout 85, 86
Category axis 374
charts

about 373
application, enhancing with 388-392
axis package 374
legend 374
series class 375
themes 375
types 385

[418]

Charts kitchen sink example 381
chart themes 386-388
checkbox 187
checkbox Group 187
Check Column 209
check tree 270-272
classes

loading, on demand 50
mixing 34-37

class system
about 24
aliases 47-50
class, writing 25-28
conigurations 40-43
naming conventions 24, 25
postprocessors 31-33
preprocessors 31-33
properties 43
simple inheritance 28-30
Singleton class 46, 47
statics methods 43

column renderers 211-213
column row number 206
columns

about 204, 206
action column 209, 210
Boolean column 208
Check Column 209
column row number 206
date column 208
number column 207
template column 207

combobox ield 180-183
commercial license, Ext JS 3
commercial OEM, Ext JS 3
COMPASS

about 316
URL 316

complex DataView component 253, 254
component

styles, using for 330-339
component life()cycle

about 61, 62
destruction phase 69, 70
initialization phase 63-65
rendering phase 66-68
working 70-73

component-speciic variables 320
conigurations 40-43
containers

about 73-77
Ext.form.Panel 78
Ext.panel.Panel 78
Ext.tab.Panel 78
Ext.Viewport 78
Ext.window.Window 78
versus panel 80

Content Delivery Network (CDN) 4
controller

about 287, 288
listening, to events 288-291
modules, opening 291, 292

Controller 278
CORS

URL 122
Crisp theme 19
Crisp Touch 343, 346
custom ield types 108-110

D

data
sending 127-131
submitting 194-197

data binding 301-310
data connection 200, 201
data connection (model and store) 244
DataView

events, handling in 247, 248
date column 208
date ield 184-186
deployment

preparing for 396, 397
destruction phase, component

life()cycle 69, 70
direct bind 301
Document Object Model (DOM)

about 9, 23, 137
elements, obtaining 53, 54
query 55, 56
working with 52

DOM manipulation 57, 58

[419]

E

editors
about 15
Aptana 16

enhancements, Ext JS 5
breadcrumb bars 21
data package improvements 19
event system 20
form package improvements 21
grids 20
MVVM architecture 19
New SASS Mixins 21
new themes 19
responsive conigurations 19
routing 19
Sencha Charts 20
Sencha Core package 22
tablet support 19
tab panels 20
widgets 21

environment
setting up 315-317

event-driven development 133-136
event normalization 344, 345
events

handling, in DataView 247, 248
listening to 288-291

Ext.Ajax-cfg-async
URL 94

ext-charts package 363
Ext Charts Upgrade Guide

URL 364
Ext.chart.theme.Base

URL 375
Ext.data.BufferedStore

URL 238
Ext.data.NodeInterface class 263
Ext.draw.Component

sprite elements 368
Ext.enums.Widget

URL 24
ext folder 325
Ext.form.Panel component 78

Ext.grid.feature.Feature class 224
Ext.grid.feature.Grouping 224, 226
Ext.grid.feature.GroupingSummary 226, 227
Ext.grid.feature.RowBody 228
Ext.grid.feature.Summary 229, 230
Ext.grid.Panel 223
Ext.grid.plugin.CellEditing 230-232
Ext.grid.plugin.RowEditing 233-235
Ext JS

about 1, 2
considering, for project 2
downloading 4
iles 6, 7
folders 6, 7
layers 8
URL, for downloading 4
URL, for oficial website 3

Ext JS 5
enhancements 19-21
installing 5
modiied folders 7, 8
setting up 5

Ext JS code
writing 11

Ext JS, licenses
commercial license 3
commercial OEM 3
open source license 3

ExtMX
about 408
URL 408

Ext.panel.Panel component 78
Ext.plugin.Responsive

URL 353
Ext.tab.Panel component 78
Ext.Template

about 248
example 248, 249

Ext.tree.Panel class 257
Ext.Viewport component 78
Ext.window.Window component 78
Ext.XTemplate

about 248
example 250-252

[420]

F

features
about 224
Ext.grid.feature.Grouping 224, 226
Ext.grid.feature.GroupingSummary 226-

228
Ext.grid.feature.RowBody 228
Ext.grid.feature.Summary 229, 230

ield conigurations,
Ext.data.NodeInterface class

checked 263
children 263
expanded 263
iconCls 263
leaf 263
root 263
text 263

ield container 190, 191
ields

about 172, 173
anatomy 172
checkbox 187
checkbox Group 187
combobox ield 180-183
date ield 184-186
number ield 177-179
radio button 188-190
radioGroup button 188-190
tag ield 183, 184
TextField class 174-176

irst program
about 9, 11
Ext JS code, writing 11, 12
interaction, adding to 13-15

Fit layout 84, 85
FONT Squirrel

URL 327
form component 165-171
forums

about 407
plain forums 408
premium forums 408

fragment identiier 311

G

gem 317
global variables

about 320
reference link 320

GNU GPL license v3
URL 3

GPL version, Sencha
URL 4

gradients
reference link 325

grid listeners 221-223
grid paging 236, 237
grids

features 20

H

hash 311

I

icon alignment, on button 140, 141
icons

setting, on buttons 138, 139
ininite scrolling 238-241
initialization phase, component

life()cycle 63-65
interaction

adding 369-373
adding, to program 13-15

invoice management application
main menu, designing for 158-162

J

Java Runtime Environment (JRE) 322
JavaScript Object Notation (JSON)

about 95
URL 95

[421]

L

layouts
about 89
reference link 89
using 89, 90

layouts enum class
URL 82

layout system
about 82
Accordion layout 86, 87
Anchor layout 87, 89
Border layout 82, 83
Card layout 85, 86
Fit layout 84, 85

Learn from Saki website 409
legacy browsers

supporting 339-342
legend 374
loader system

enabling 51, 52
localization

reference link 207

M

main menu
designing, for invoice management

application 158-162
mappings 103, 104
menus

creating 144-148
mixinConig property

using 38-40
mixins

about 37, 38
reference link 134

models
about 100
creating 100-102
looping through 118
mappings 103, 104
reference link 100

Model-View-Controller (MVC)
about 2, 278
URL, for documentation 279

Model-View-ViewModel (MVVM)
about 2, 278, 279
URL, for documentation 279

module, creating
about 292-295
ViewControllers 296-299
ViewModels 299, 300

modules
opening 291, 292

N

Neptune Touch 343, 346
nodes

adding 264-270
removing 264-270

number column 207
number ield 177-179
numeric axis 374

O

Object-Oriented Programming System
(OOPS) 23

one-to-many association
creating 111, 112

one-to-one association
creating 113, 114

open source license, Ext JS 3

P

packages folder 317-319
panel

about 79
versus containers 80

parameters
passing, to Ajax request 98, 99

pie chart 381-384
plain forums 408

[422]

plugins
about 230
Ext.grid.plugin.CellEditing 230-232
Ext.grid.plugin.RowEditing 233-235

postprocessors
about 31, 32
alias 33
alternateClassName 33
singleton 33
uses 33

premium forums 408
preprocessors

about 31, 32
alias 33
className 33
conig 33
extend 33
inheritableStatics 33
loader 33
mixins 33
statics 33

properties 43
properties, ellipse element

cx 368
cy 368
rx 368
ry 368

properties, myGroupingFeature variable
groupHeaderTpl 225
hideGroupedHeader 225
startCollapsed 225

R

radio button 188-190
radioGroup button 188-190
readers

about 124
XML reader 125, 126

records
looping through 118
removing, from store 120, 121

records, retrieving in store
about 119
by ID 120
by index position 119

by range 119
irst and last records 119

relationships
about 110
one-to-many association 111, 112
one-to-one association 113, 114

remote data, retrieving
about 121
Ajax proxy used 121-124
readers used 124, 125

rendering phase, component
life()cycle 66-68

resources 409-412
responsiveness, implementing to

application
about 347
output, investigating 352-354
panels, checking 354-361
responsiveness, creating 348-352

Rich Internet Applications (RIAs) 1
router

implementing 311-314
using 311-314

Ruby
URL, for downloading 5

S

SASS
about 316
URL, for documentation 326

SASS Mixins
URL 21

segmented buttons 142, 143
selection models 218-220
selections

handling, in breadcrumb bar 156, 157
Sencha

URL, for documentation 54
URL, for forum 414

Sencha Architect
about 1, 17, 158
advantages 17

sencha-charts.all.css 376
sencha-charts package 363

[423]

Sencha Cmd
about 5
URL, for downloading 5

Sencha command
build.xml, customizing 400, 401
code, compressing 401-403
using 398-400

Sencha Core package 22
Sencha Dev Tricks

about 411
URL 412

Sencha Licensing
URL 3

Sencha Touch 1
series class 375
series examples

about 376
bar chart, creating 376-381
pie chart, creating 381-384

shorthands
Ext.create 24
Ext.deine 24
Ext.widget 24

simple button
creating 136-138

Singleton class 46, 47
sprite elements, Ext.draw.Component

circle 368
ellipse 368
image 368
path 368
rect 368
text 368

sprites 369
statics coniguration

example 45
statics methods 43
store

new elements, adding to collection 116, 117
records, removing from 120, 121
working with 115, 116

styles
using, for component 330-339

SVG
URL 364

Syntactically Awesome Style

Sheets. See SASS

T

tag ield 183, 184
template column 207
template methods 72
templates

about 248
Ext.Template 248, 249
Ext.XTemplate 248-252

TextField class 174-176
text type sprite 380
themes 346, 375
third-party plugins (commercial) 412, 413
third-party plugins (free) 414
time axis 374
timeout

setting, to Ajax request calls 99, 100
toolbar button groups 150-153
toolbars 148, 149
tools

about 15
Sencha Architect 17
WAMP 15
XAMPP 15

tree grid panel 272-274
tree nodes 263, 264
TreeStore 261, 262
triggers 192, 193

V

validators 105, 107
variables

about 320-323
component-speciic variables 320
global variables 320

View 278
ViewController 278, 296-299
ViewModel 278, 299, 300
viewport 78
views 282-286
VML

URL 364

[424]

W

WAMP
about 15
URL 15

Widget Column 214-218
Window component 81, 82

X

XAMPP
about 15
URL 15

XML reader 125, 126
xtype property

about 75
URL 75

Y

YUI compressor
URL 402

Thank you for buying

Learning Ext JS
Fourth Edition

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Ext JS
ISBN: 978-1-78216-400-5 Paperback: 358 pages

Learn how to build powerful and professional
applications by mastering the Ext JS framework

1. Build an application with Ext JS from scratch.

2. Learn expert tips and tricks to make your web
applications look stunning.

3. Create professional screens such as login,
menus, grids, tree, forms, and charts.

Ext JS 4 Web Application

Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style.

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application.

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips.

Please check www.PacktPub.com for information on our titles

Enterprise Application

Development with Ext JS

and Spring
ISBN: 978-1-78328-545-7 Paperback: 446 pages

Develop and deploy a high-performance Java web
application using Ext JS and Spring

1. Embark on the exciting journey through the
entire enterprise web application development
lifecycle.

2. Leverage key Spring Framework concepts to
deliver comprehensive and concise Java code.

3. Build a real world Ext JS web application that
interacts with dynamic database driven data.

Oracle Application Express 4.0

with Ext JS
ISBN: 978-1-84968-106-3 Paperback: 392 pages

Deliver rich desktop-styled Oracle APEX applications
using the powerful Ext JS JavaScript library

1. Build robust, feature-rich web applications
using Oracle APEX and Ext JS.

2. Add more sophisticated components and
functionality to an Oracle APEX application
using Ext JS.

3. Build your own themes based on Ext JS into
APEX - developing templates for regions,
labels, and lists.

4. Create plug-ins in your application workspace
to enhance the existing built-in functionality of
your APEX applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Ext JS 5
	Considering Ext JS for your next project
	Getting started with Ext JS
	Downloading Ext JS
	Setting up and installing Ext JS 5
	Sencha Cmd

	Why so many files and folders?
	Folders that changed in version 5 from previous versions

	Looking at the whole picture

	Our first program
	Writing the Ext JS code
	Adding interaction to the program

	Tools and editors
	XAMPP or WAMP
	Aptana
	Sencha Architect

	What's new in Ext JS 5
	Summary

	Chapter 2: The Core Concepts
	The class system
	Naming conventions
	Writing your first class
	Simple inheritance
	Preprocessors and postprocessors
	Mixing many classes (the use of mixins)
	An explanation of mixins
	Using the mixinConfig property

	Configurations
	Statics methods and properties
	Explanation

	The Singleton class
	Aliases

	Loading classes on demand
	Enabling the loader

	Working with the DOM
	Getting elements
	Query – how do we find them?
	DOM manipulation – how do we change it?

	Summary

	Chapter 3: Components and Layouts
	The component lifecycle
	The initialization phase
	The rendering phase
	The destruction phase
	The lifecycle in action

	About containers
	Types of containers
	The viewport
	The panel
	Panels versus containers

	The Window component

	The layout system
	The Border layout
	The Fit layout
	The Card layout
	The Accordion layout
	The Anchor layout

	More layouts
	Comments about using layouts
	Summary

	Chapter 4: It's All about the Data
	Ajax
	Passing parameters to Ajax request
	Setting timeout to Ajax request calls

	Models
	Mappings
	Validators
	Custom field types
	Relationships
	One-to-many associations
	One-to-one associations

	Working with the store
	Adding new elements
	Looping through the records/models in the store
	Retrieving the records in the store
	By index position
	First and last records
	By range
	By ID

	Removing records

	Retrieving remote data
	Ajax proxy
	Readers
	XML reader

	Sending data
	Summary

	Chapter 5: Buttons and Toolbars
	Event-driven development
	Creating a simple button
	Setting icons on buttons
	Icon alignment on buttons
	Handling button events

	Segmented buttons
	Adding menus
	Toolbars
	Toolbar button groups

	The breadcrumb bar
	Handling selections in the breadcrumb bar

	The main menu for our application
	Summary

	Chapter 6: Doing It with Forms
	The form component
	The anatomy of the fields

	The available fields
	The TextField class
	The number field
	The ComboBox field
	The Tag field
	The Date field
	The Checkbox and the CheckboxGroup fields
	The Radio and RadioGroup buttons

	The field container
	Triggers
	Submitting the data
	Summary

	Chapter 7: Give Me the Grid
	The data connection (models and stores)
	A basic grid
	Columns
	The column row number
	The number column
	The template column
	The date column
	The Boolean column
	The check column
	The action column

	Column renderers
	The Widget column
	Selection models
	Grid listeners
	Features
	Ext.grid.feature.Grouping
	Ext.grid.feature.GroupingSummary
	Ext.grid.feature.RowBody
	Ext.grid.feature.Summary

	Plugins
	Ext.grid.plugin.CellEditing
	Ext.grid.plugin.RowEditing

	Grid paging
	Infinite scrolling
	Summary

	Chapter 8: DataView and Templates
	The data connection (model and store)
	A basic DataView
	Handling events in DataView
	Templates
	Ext.Template
	Ext.XTemplate

	A more complex DataView component
	Summary

	Chapter 9: The Tree Panel
	A basic tree panel
	The TreeStore
	Tree nodes
	Adding and removing nodes
	The check tree
	The tree grid panel
	Summary

	Chapter 10: Architecture
	The MVC and MVVM patterns
	Model-View-Controller (MVC)
	Model-View-ViewModel (MVVM)

	Creating our first application
	The views
	The controller
	Listening to events
	Opening modules

	Creating a module
	ViewController
	ViewModel
	Binding and data binding

	Router – implementing and using
	Summary

	Chapter 11: The Look and Feel
	Setting up our environment
	The packages folder
	Variables
	Advanced theming
	Changing the component's style
	Adding new gradients
	Styling the tabs
	Adding custom fonts to our theme

	Different styles for the same component
	Supporting legacy browsers
	Summary

	Chapter 12: Responsive Configurations and Tablet Support
	Overview
	New themes
	Neptune touch and Crisp touch

	Implementing responsiveness to the application
	Creating responsiveness
	Investigating the output
	Checking all panels

	Summary

	Chapter 13: From Drawing to Charting
	Basic drawing
	Adding interaction
	Charts
	Legend
	Axis
	Series
	Themes

	Series examples
	Bar charts (building our first chart)
	Pie charts

	More charts
	Introducing chart themes
	Enhancing our application with charts
	Summary

	Chapter 14: Finishing the Application
	Preparing for deployment
	The app.json file

	The Sencha Command
	Customizing the build.xml file
	Compressing the code
	Packaging and deploying

	Testing the application
	Summary

	Chapter 15: What's Next?
	Forums
	Resources
	Third-party plugins (commercial)
	Third-party plugins (free)
	The future
	Final thoughts
	Summary

	Index

