
www.allitebooks.com

http://www.allitebooks.org

Learning HBase

Learn the fundamentals of HBase administration and
development with the help of real-time scenarios

Shashwat Shriparv

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning HBase

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1181114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-594-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Shashwat Shriparv

Reviewers
Ashutosh Bijoor

Chhavi Gangwal

Henry Garner

Nitin Pawar

Jing Song

Arun Vasudevan

Commissioning Editor
Akram Hussain

Acquisition Editor
Kevin Colaco

Content Development Editor
Prachi Bisht

Technical Editor
Pankaj Kadam

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Project Coordinator
Sageer Parkar

Proofreaders
Bridget Braund

Maria Gould

Lucy Rowland

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Shashwat Shriparv was born in Muzaffarpur, Bihar. He did his schooling from
Muzaffarpur and Shillong, Meghalaya. He received his BCA degree from IGNOU,
Delhi and his MCA degree from Cochin University of Science and Technology,
Kerala (C-DAC Trivandrum).

He was introduced to Big Data technologies in early 2010 when he was asked to
perform a proof of concept (POC) on Big Data technologies in storing and processing
logs. He was also given another project, where he was required to store huge binary
files with variable headers and process them. At this time, he started configuring,
setting up, and testing Hadoop HBase clusters and writing sample code for them.
After performing a successful POC, he initiated serious development using Java
REST and SOAP web services, building a system to store and process logs to Hadoop
using web services, and then storing these logs in HBase using homemade schema
and reading data using HBase APIs and HBase-Hive mapped queries. Shashwat
successfully implemented the project, and then moved on to work on huge binary
files of size 1 to 3 TB, processing the header and storing metadata to HBase and
files on HDFS.

Shashwat started his career as a software developer at C-DAC Cyber Forensics,
Trivandrum, building mobile-related software for forensics analysis. Then, he
moved to Genilok Computer Solutions, where he worked on cluster computing,
HPC technologies, and web technologies. After this, he moved to Bangalore from
Trivandrum and joined PointCross, where he started working with Big Data
technologies, developing software using Java, web services, and platform as Big
Data. He worked on many projects revolving around Big Data technologies, such
as Hadoop, HBase, Hive, Pig, Sqoop, Flume, and so on at PointCross. From here, he
moved to HCL Infosystems Ltd. to work on the UIDAI project, which is one of the
most prestigious projects in India, providing a unique identification number to every
resident of India. Here, he worked on technologies such as HBase, Hive, Hadoop,
Pig, and Linux, scripting, managing HBase Hadoop clusters, writing scripts,
automating tasks and processes, and building dashboards for monitoring clusters.

www.allitebooks.com

http://www.allitebooks.org

Currently, he is working with Cognilytics, Inc. on Big Data technologies, HANA, and
other high-performance technologies.

You can find out more about him at https://github.com/shriparv and
http://helpmetocode.blogspot.com. You can connect with him on LinkedIn
at http://www.linkedin.com/pub/shashwat-shriparv/19/214/2a9. You
can also e-mail him at dwivedishashwat@gmail.com.

Shashwat has worked as a reviewer on the book Pig Design Pattern, Pradeep
Pasupuleti, Packt Publishing. He also contributed to his college magazine, InfinityTech,
as an editor.

www.allitebooks.com

https://github.com/shriparv
http://helpmetocode.blogspot.com
http://www.linkedin.com/pub/shashwat-shriparv/19/214/2a9
http://www.allitebooks.org

Acknowledgments

First, I would like to thank a few people from Packt Publishing: Kevin for
encouraging me to write this book, Prachi for assisting and guiding me throughout
the writing process, Pankaj for helping me out in technical editing, and all other
contributors to this book.

I would like to thank all the developers, contributors, and forums of Hadoop,
HBase, and Big Data technologies for giving the industry such awesome technologies
and contributing to it continuously. Thanks to Lars and Noll for their contribution
towards HBase and Hadoop, respectively.

I would like to thank some people who helped me to learn from life, including
teachers at my college—Roshani ma'am (Principal), Namboothari sir, Santosh sir,
Manjush ma'am, Hudlin Leo ma'am, and my seniors Jitesh sir, Nilanchal sir, Vaidhath
sir, Jwala sir, Ashutosh sir, Anzar sir, Kishor sir, and all my friends in Batch 6. I
dedicate this book to my friend, Nikhil, who is not in this world now. Special thanks
to Ratnakar Mishra and Chandan Jha for always being with me and believing in
me. Thanks also go out to Vineet, Shashi bhai, Shailesh, Rajeev, Pintu, Darshna,
Priya, Amit, Manzar, Sunil, Ashok bhai, Pradeep, Arshad, Sujith, Vinay, Rachana,
Ashwathi, Rinku, Pheona, Lizbeth, Arun, Kalesh, Chitra, Fatima, Rajesh, Jasmin, and
all my friends from C-DAC Trivendrum college. I thank all my juniors, seniors, and
friends in college. Thanks to all my colleagues at C-DAC Cyber Forensic: Sateesh
sir, my project manager; Anwer Reyaz. J, an enthusiast who is always encouraging;
Bibin bhai sahab; Ramani sir; Potty sir; Bhadran sir; Thomas sir; Satish sir; Nabeel
sir; Balan sir; Abhin sir; and others. I would also like to thank Mani sir; Raja sir; my
friends and teammates: Maruthi Kiran, Chethan, Alok, Tariq, Sujatha, Bhagya, and
Mukesh; Sri Gopal sir, my team leader; and all my other colleagues from PointCross. I
thank Ramesh Krishnan sir, Manoj sir, Vinod sir, Nand Kishor sir, and my teammates
Varun bhai sahab, Preeti Gupta, Kuldeep bhai sahab, and all my colleagues at HCL
Infosystems Ltd. and UIDAI. I would also like to thank Satish sir; Sudipta sir; my
manager, Atul sir; Pradeep; Nikhil; Mohit; Brijesh; Kranth; Ashish Chopara; Sudhir;
and all my colleagues at Cognilytics, Inc.

www.allitebooks.com

http://www.allitebooks.org

Last but not the least, I would like to thank papa, Dr. Rameshwar Dwivedi; mummy,
Smt. Rewa Dwivedi; bhai, Vishwas Priambud; sister-in-law, Ragini Dwivedi; sweet
sister, Bhumika; brother-in-law, Chandramauli Dwivedi; and new members of my
family, Vasu and Atmana.

If I missed any names, it does not mean that I am not thankful to them, they all are in
my heart and I am thankful to everyone who has come in my life and left their mark.
Also, thanking is not in any order.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ashutosh Bijoor (Ash) is Chief Technology Officer at Accion Labs India Private
Limited. He has over 20 years of experience in the technology industry with customers
ranging from start-ups to large multinationals in a wide range of industries, including
high tech, engineering, software, insurance, banking, chemicals, pharmaceuticals,
healthcare, media, and entertainment. He is experienced in leading and managing
cross-functional teams through an entire product development life cycle.

Ashutosh is skilled in emerging technologies, software architectures, framework
design, and agile process definition. He has implemented enterprise solutions as
well as commercial products in domains such as Big Data, business intelligence,
graphics and image processing, sound and video processing, and advanced text
search and analytics.

His e-mail ID is ashutosh.bijoor@accionlabs.com. You can also visit his website
at http://bijoor.me.

Chhavi Gangwal is currently associated with Impetus Infotech (India) Pvt. Ltd. as
a technical lead. With over 7 years of experience in the IT industry, she has worked
on various dimensions of social media and the Web and witnessed the rise of Big
Data first hand.

Presently, Chhavi is leading the development of Kundera, a JPA 2.0-compliant
object-datastore mapping library for NoSQL data stores. She is also actively involved
in the product management and development of multitude of Big Data tools. Apart
from a working knowledge of several NoSQL data stores, Java, PHP, and different
JavaScript frameworks, her passion lies in product designing and learning the latest
technologies. Connect with Chhavi on https://www.linkedin.com/profile/
view?id=58308893.

www.allitebooks.com

http://bijoor.me
https://www.linkedin.com/profile/view?id=58308893
https://www.linkedin.com/profile/view?id=58308893
http://www.allitebooks.org

Nitin Pawar started his career as a release engineer with Veritas Systems, and so,
the quality of software systems is always the main goal in his approach towards
work. He has been lucky to work in multiple work profiles at companies such as
Yahoo! for almost 5 years, where he learned a lot about the Hadoop ecosystem. After
this, he worked with start-ups in analytics and Big Data domains, helping them
design backend analytics infrastructures and platforms.

He enjoys solving problems and helping others facing technical issues. Reviewing
this book gave him a better understanding of the HBase system, and he hopes that
the readers will like it too.

He has also reviewed the book Securing Hadoop, Sudheesh Narayanan, and a video,
Building Hadoop Clusters [Video], Sean Mikha, both by Packt Publishing.

Jing Song has been working in the software industry as an engineer for more than
14 years since she graduated school. She enjoys solving problems and learning about
new technologies in the Computer Science domain. Her interests and experiences
lie across multiple tiers such as web-frontend GUI to middleware, middleware to
backend SQL RDBMS, and NoSQL data storage. In the last 5 years, she has mainly
focused on enterprise application performance and cloud computing areas. Jing
currently works for Apple as a tech lead, leading various Java applications from
design to implementation and performance tuning.

Arun Vasudevan is a technical lead at Accion Labs India Private Limited. He
specializes in Business Analytics and Visualization and has worked on solutions in
various industry verticals, including insurance, telecom, and retail. He specializes in
developing applications on Big Data technologies, including Hadoop stack, Cloud
technologies, and NoSQL databases. He also has expertise on cloud infrastructure
setup and management using OpenStack and AWS APIs.

Arun is skilled in Java J2EE, JavaScript, relational databases, NoSQL technologies,
and visualization using custom-built JavaScript visualization tools such as D3JS.
Arun manages a team that delivers business analytics and visualization solutions.

His e-mail address is arun.vasudevan@accionlabs.com. You can also visit his
LinkedIn account at https://www.linkedin.com/profile/view?id=40201159.

www.allitebooks.com

https://www.linkedin.com/profile/view?id=40201159
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

I would like to thank god for giving me this opportunity.
I dedicate this book to baba, dadi, nana, and nani.

Table of Contents
Preface 1
Chapter 1: Understanding the HBase Ecosystem 7

HBase layout on top of Hadoop 8
Comparing architectural differences between RDBMs and HBase 9
HBase features 9
HBase in the Hadoop ecosystem 11

Data representation in HBase 12
Hadoop 13

Core daemons of Hadoop 14
Comparing HBase with Hadoop 15

Comparing functional differences between RDBMs and HBase 15
Logical view of row-oriented databases 17
Logical view of column-oriented databases 17

Pros and cons of column-oriented databases 18
About the internal storage architecture of HBase 19
Getting started with HBase 20

When it started 20
HBase components and functionalities 23
ZooKeeper 23

Why an odd number of ZooKeepers? 25
HMaster 25
RegionServer 27
Client 28
Catalog tables 28

Who is using HBase and why? 29
When should we think of using HBase? 30
When not to use HBase 30
Understanding some open source HBase tools 31
The Hadoop-HBase version compatibility table 33

Table of Contents

[ii]

Applications of HBase 33
HBase pros and cons 34
Summary 35

Chapter 2: Let's Begin with HBase 37
Understanding HBase components in detail 38

HFile 38
Region 39
Scalability – understanding the scale up and scale out processes 40

Scale in 41
Scale out 42

Reading and writing cycle 45
Write-Ahead Logs 46
MemStore 46

HBase housekeeping 47
Compaction 48

Minor compaction 48
Major compaction 48

Region split 49
Region assignment 50
Region merge 50
RegionServer failovers 51

The HBase delete request 51
The reading and writing cycle 51

List of available HBase distributions 52
Prerequisites and capacity planning for HBase 52

The forward DNS resolution 53
The reverse DNS resolution 53

Java 55
SSH 55

Domain Name Server 56
Using Network Time Protocol to keep your node on time 58
OS-level changes and tuning up OS for HBase 58

Summary 60
Chapter 3: Let's Start Building It 61

Downloading Java on Ubuntu 61
Considering host configurations 67

Host file based 67
Command based 67
File based 68
DNS based 70

Table of Contents

[iii]

Installing and configuring SSH 70
Installing SSH on Ubuntu/Red Hat/CentOS 71
Configuring SSH 71

Installing and configuring NTP 72
Performing capacity planning 73
Installing and configuring Hadoop 74

core-site.xml 80
hdfs-site.xml 81
yarn-site.xml 82
mapred-site.xml 83
hadoop-env.sh 83
yarn-env.sh 84

Slaves file 84
Hadoop start up steps 84
Configuring Apache HBase 85

Configuring HBase in the standalone mode 86
Configuring HBase in the distributed mode 87

hbase-site.xml 88
HBase-env.sh 89
regionservers 89

Installing and configuring ZooKeeper 91
Installing Cloudera Hadoop and HBase 93

Downloading the required RPM packages 93
Installing Cloudera in an easier way 94

Installing the Hadoop and MapReduce packages 95
Installing Hadoop on Windows 96
Summary 99

Chapter 4: Optimizing the HBase/Hadoop Cluster 101
Setup types for Hadoop and HBase clusters 101
Recommendations for CDH cluster configuration 103
Capacity planning 105
Hadoop optimization 106

General optimization tips 106
Optimizing Java GC 107
Optimizing Linux OS 107
Optimizing the Hadoop parameter 108
Optimizing MapReduce 108

Rack awareness in Hadoop 109
Number of Map and Reduce limits in configuration files 110

Table of Contents

[iv]

Optimizing HBase 112
Hadoop 112
Memory 114
Java 114
OS 115
HBase 115

Optimizing ZooKeeper 117
Important files in Hadoop 118
Important files in HBase 119
Summary 119

Chapter 5: The Storage, Structure Layout, and Data Model
of HBase 121

Data types in HBase 123
Storing data in HBase – logical view versus actual physical view 123

Namespace 125
Commands available for namespaces 125

Services of HBase 126
Row key 127
Column family 127
Column 127
Cell 127
Version 127
Timestamp 128

Data model operations 128
Get 128
Put 129
Scan 129
Delete 130

Versioning and why 130
Deciding the number of the version 132

Lower bound of versions 132
Upper bound of versions 132

Schema designing 133
Types of table designs 137
Benefits of Short Wide and Tall-Thin design patterns 139
Composite key designing 140

Real-time use case of schema in an HBase table 141
Schema change operations 141

Calculating the data size stored in HBase 143
Summary 144

Table of Contents

[v]

Chapter 6: HBase Cluster Maintenance and Troubleshooting 145
Hadoop shell commands 146

Types of Hadoop shell commands 146
Administration commands 147
User commands 156
File system-related commands 160

HBase shell commands 167
HBase administration tools 177

hbck – HBase check 177
HBase health check script 179

Writing HBase shell scripts 180
Using the Hadoop tool or JARs for HBase 180
Connecting HBase with Hive 182
HBase region management 183

Compaction 183
Merge 184

HBase node management 184
Commissioning 184
Decommissioning 185

Implementing security 185
Secure access 186

Requirement 186
Kerberos KDC 186
Client-side security configuration 187

Client-side security configuration for thrift requests 188
Server-side security configuration 188
Simple security 188

Server-side configuration 189
Client-side configuration 190

The tag security feature 190
Access control in HBase 191

Server-side access control 197
Cell-level access using tags 197
Configuring ZooKeeper for security 198

Troubleshooting the most frequent HBase errors and
their explanations 199

What might fail in cluster 200
Monitoring HBase health 201

HBase web UI 201
ZooKeeper command line 201
Linux tools 202

Summary 204

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

Chapter 7: Scripting in HBase 205
HBase backup and restore techniques 205

Offline backup / full-shutdown backup 206
Backup 206
Restore 207

Online backup 208
The HBase snapshot 208
The HBase replication method 210
Miscellaneous utilities 213
CopyTable 213
HTable API 214
Backup using a Mozilla tool 215

HBase on Windows 215
Scripting in HBase 216

The .irbrc file 217
Getting the HBase timestamp from HBase shell 219
Enabling debugging shell 220
Enabling the debug level in HBase shell 220
Enabling SQL in HBase 220

Contributing to HBase 220
Summary 221

Chapter 8: Coding HBase in Java 223
Setting up the environment for development 224

Building a Java client to code in HBase 224
Data types 228
Data model Java operations 229

Read 229
Get() 229
Scan() 233

Write 237
Put() 237

Modify 239
Delete() 239

HBase filters 241
Types of filters 242

Client APIs 248
Summary 250

Chapter 9: Advance Coding in Java for HBase 251
Interfaces, classes, and exceptions 251
Code related to administrative tasks 253
Data operation code 258
MapReduce and HBase 260

Table of Contents

[vii]

RESTful services and Thrift services interface 265
REST service interfaces 265
Thrift 266

Coding for HDFS operations 267
Some advance topics in brief 271

Coprocessors 271
Types of coprocessors 271

Bloom filters 272
The Lily project 272

Features 273
Summary 273

Chapter 10: HBase Use Cases 275
HBase in industry today 275
The future of HBase against relational databases 276
Some real-world project examples' use cases 276

HBase at Facebook 276
Choosing HBase 276
Storing in HBase 277
The architecture of a Facebook message 277
Facts and figures 278

HBase at Pinterest 278
The layout architecture 279

HBase at Groupon 280
The layout architecture 280

HBase at LongTail Video 281
The layout architecture 282

HBase at Aadhaar (UIDAI) 282
The layout architecture 282

Useful links and references 283
Summary 284

Index 285

Preface
This book will provide a top-down approach to learning HBase, which will be
useful for both novices and experts. You will start learning configuration, code to
maintenance, and troubleshooting—a kind of all-in-one HBase knowledge bank.
This will be a step-by-step guide, which will help you work on HBase. The book will
include day-to-day activities using HBase administration, and the implementation
of Hadoop, plus HBase cluster setup from ground approach. The book will cover a
complete list of use cases and explanations to implement HBase as an effective Big
Data tool. It will also help you understand the layout and structure of HBase. There
are lots of books available on the market on HBase, but they lack something in them;
some of them focuses more on configuration and some on coding, but this book will
provide a kind of start-to-end approach, which will be useful for a person with zero
knowledge in HBase to the person proficient in HBase. This book is a complete
guide to HBase administration and development with real-time scenarios and an
operation guide.

This book will provide an understanding of what HBase is like, where it came from,
who all are involved, why should we consider using it, why people are using it,
when to use it, and how to use it. This book will give overall information about the
HBase ecosystem. It's more like an HBase-confusion-buster book, a book to read and
implement in real life. The book has in-depth theory and practical examples on HBase
features. This theoretical and practical approach clears doubts on Hadoop and HBase.
It provides complete guidance on configuration/management/troubleshooting
of HBase clusters and their operations. The book is targeted at administration and
development aspects of HBase; administration with troubleshooting, setup, and
development with client and server APIs. This book also enables you to design
schema, code in Java, and write shell scripts to work with HBase.

Preface

[2]

What this book covers
Chapter 1, Understanding the HBase Ecosystem, introduces HBase in detail, and
discusses its features, its evolution, and its architecture. We will compare HBase
with traditional databases and look at add-on features and the various underlying
components, and its uses in the industry.

Chapter 2, Let's Begin with HBase, deals with the HBase components in detail,
their internal architecture, communication between different components, how it
provides scalability, as well as the HBase reading and writing cycle process, HBase
housekeeping tasks, region-related operations, the different components needed for
a HBase cluster configuration, and some basic OS tuning.

Chapter 3, Let's Start Building It, lets us proceed ahead with building an HBase
cluster. In this chapter, you will find information on the various components and the
places we can get it from. We will start configuring the cluster and consider all the
parameters and optimization tweaks while building the Hadoop and HBase cluster.
One section in the chapter will focus on the various component-level and OS-level
parameters for an optimized cluster.

Chapter 4, Optimizing the HBase/Hadoop Cluster, teaches us to optimize the
HBase cluster according to the production environment and running cluster
troubleshooting tasks. We will look at optimization on hardware, OS, software,
and network parameters. This chapter will also teach us how we can optimize
Hadoop for a better HBase.

Chapter 5, The Storage, Structure Layout, and Data Model of HBase, discusses HBase's data
model and its various data model operations for fetching and writing data in HBase
tables. We will also consider some use cases in order to design schema in HBase.

Chapter 6, HBase Cluster Maintenance and Troubleshooting, covers all the aspects of
HBase cluster management, operation, and maintenance. Once a cluster is built and
in operation, we need to look after it, continuously tune it up, and troubleshoot in
order to have a healthy HBase cluster. We will also study the commands available
with HBase and Hadoop shell.

Chapter 7, Scripting in HBase, explains an automation process using HBase and shell
scripts. We will learn to write scripts as an administrator or developer to automate
various data-model-related tasks. We will also read about various backup and
restore options available in HBase and how to perform them.

Preface

[3]

Chapter 8, Coding HBase in Java, teaches Java coding in HBase. We will start with basic
Java coding in HBase and learn about Java APIs available for client requests. You
will also learn to build a basic client in Java, which can be used to contact an HBase
cluster for various operations using Java code.

Chapter 9, Advance Coding in Java for HBase, focuses more on Java coding in HBase.
It is a more detailed learning about all the different kind of APIs, classes, methods,
and interfaces available in Java for HBase. You will also see the different kind of
web services or thrift services, which you can use to ease up the coding and using
the inbuilt service and not implementing the entire architecture code in Java. This
chapter has a section that includes a discussion of some special features of HBase
and some open source projects available, which can be used in coordination with
HBase for a production cluster and a project.

Chapter 10, HBase Use Cases, discusses the use cases in the industry, which are being
used with HBase as their underlying technology.

What you need for this book
The following are the prerequisites you must have before starting with this book:

• Any flavor of Linux (Ubuntu, Red Hat, Debian, CentOS, Fedora, openSUSE,
or any other Linux flavor)

• Oracle Java v1.6 or higher

You can go for any one of the following sets.

If you prefer Apache:

• Apache Hadoop
• Apache HBase
• ZooKeeper

If you prefer Cloudera:

• Cloudera Hadoop
• Cloudera HBase
• Cloudera ZooKeeper

Preface

[4]

Who this book is for
If you are an administrator or developer who wants to enter the world of Big Data
and BigTable and would like to learn about HBase, this is the book for you. This
book starts with the basic theory and has a practical approach to make it suitable
for all readers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This includes information about the location of the .META. table."

A block of code is set as follows:

Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "logtable");
Scan scan = new Scan();
scan.setMaxVersions(2);
ResultScanner result = table.getScanner(scan);
for (Result result: scanner) {
 System.out.println("Rows which were scanned : " +
 Bytes.toString(result.getRow()));
}

Any command-line input or output is written as follows:

sudo yum clean all;

sudo yum install hadoop-hdfs-namenode

sudo yum install hadoop-hdfs-secondarynamenode

sudo yum install hadoop-0.20-mapreduce-tasktrackerhadoop-hdfs-
datanode

sudo yum install hbase

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "In the Network
Connections window, click on Edit... and enter the information accordingly."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Understanding the
HBase Ecosystem

HBase is a horizontally scalable, distributed, open source, and a sorted map
database. It runs on top of Hadoop file system that is Hadoop Distributed File
System (HDFS). HBase is a NoSQL nonrelational database that doesn't always
require a predefined schema. It can be seen as a scaling flexible, multidimensional
spreadsheet where any structure of data is fit with on-the-fly addition of new column
fields, and fined column structure before data can be inserted or queried. In other
words, HBase is a column-based database that runs on top of Hadoop distributed
file system and supports features such as linear scalability (scale out), automatic
failover, automatic sharding, and more flexible schema.

HBase is modeled on Google BigTable. It was inspired by Google BigTable,
which is compressed, high-performance, proprietary data store built on the Google
file system. HBase was a developed as a Hadoop subproject to support storage of
structural data, which can take advantage of most distributed files systems (typically,
the Hadoop Distributed File System known as HDFS).

The following table contains key information about HBase and its features:

Features Description
Developed by Apache
Written in Java
Type Column oriented
License Apache License
Lacking features of
relational databases

SQL support, relations, primary, foreign, and unique key
constraints, normalization

www.allitebooks.com

http://www.allitebooks.org

Understanding the HBase Ecosystem

[8]

Features Description
Website http://hbase.apache.org

Distributions Apache, Cloudera

Download link http://mirrors.advancedhosters.com/apache/hbase/

Mailing lists • The user list: user-subscribe@hbase.apache.org
• The developer list: dev-subscribe@hbase.apache.

org

Blog http://blogs.apache.org/hbase/

HBase layout on top of Hadoop
The following figure represents the layout information of HBase on top of Hadoop:

There is more than one ZooKeeper in the setup, which provides high availability
of master status; a RegionServer may contain multiple rations. The RegionServers
run on the machines where DataNodes run. There can be as many RegionServers as
DataNodes. RegionServers can have multiple HRegions; one HRegion can have one
HLog and multiple HFiles with its associate's MemStore.

http://hbase.apache.org
http://mirrors.advancedhosters.com/apache/hbase/
http://blogs.apache.org/hbase/

Chapter 1

[9]

HBase can be seen as a master-slave database where the master is called HMaster,
which is responsible for coordination between client application and HRegionServer. It
is also responsible for monitoring and recording metadata changes and management.
Slaves are called HRegionServers, which serve the actual tables in form of regions.
These regions are the basic building blocks of the HBase tables, which contain
distribution of tables. So, HMaster and RegionServer work in coordination to serve
the HBase tables and HBase cluster.

Usually, HMaster is co-hosted with Hadoop NameNode daemon process on a server
and communicates to DataNode daemon for reading and writing data on HDFS. The
RegionServer runs or is co-hosted on the Hadoop DataNodes.

Comparing architectural differences
between RDBMs and HBase
Let's list the major differences between relational databases and HBase:

Relational databases HBase
Uses tables as databases Uses regions as databases
File systems supported are FAT,
NTFS, and EXT

File system supported is HDFS

The technique used to store logs
is commit logs

The technique used to store logs is Write-Ahead
Logs (WAL)

The reference system used is
coordinate system

The reference system used is ZooKeeper

Uses the primary key Uses the row key
Partitioning is supported Sharding is supported
Use of rows, columns, and cells Use of rows, column families, columns, and cells

HBase features
Let's see the major features of HBase that make it one of the most useful databases
for the current and future industry:

• Automatic failover and load balancing: HBase runs on top of HDFS,
which is internally distributed and automatically recovered using multiple
block allocation and replications. It works with multiple HMasters
and region servers. This failover is also facilitated using HBase and
RegionServer replication.

Understanding the HBase Ecosystem

[10]

• Automatic sharding: An HBase table is made up of regions that are
hosted by RegionServers and these regions are distributed throughout the
RegionServers on different DataNodes. HBase provides automatic and
manual splitting of these regions to smaller subregions, once it reaches
a threshold size to reduce I/O time and overhead.

• Hadoop/HDFS integration: It's important to note that HBase can run on top
of other file systems as well. While HDFS is the most common choice as it
supports data distribution and high availability using distributed Hadoop,
for which we just need to set some configuration parameters and enable
HBase to communicate to Hadoop, an out-of-the-box underlying distribution
is provided by HDFS.

• Real-time, random big data access: HBase uses log-structured merge-tree
(LSM-tree) as data storage architecture internally, which merges smaller
files to larger files periodically to reduce disk seeks.

• MapReduce: HBase has a built-in support of Hadoop MapReduce
framework for fast and parallel processing of data stored in HBase.

You can search for the package org.apache.hadoop.
hbase.mapreduce for more details.

• Java API for client access: HBase has a solid Java API support (client/server)
for easy development and programming.

• Thrift and a RESTtful web service: HBase not only provides a thrift
and RESTful gateway but also web service gateways for integrating and
accessing HBase besides Java code (HBase Java APIs) for accessing and
working with HBase.

• Support for exporting metrics via the Hadoop metrics subsystem: HBase
provides Java Management Extensions (JMX) and exporting matrix for
monitoring purposes with tools such as Ganglia and Nagios.

• Distributed: HBase works when used with HDFS. It provides coordination
with Hadoop so that distribution of tables, high availability, and consistency
is supported by it.

Chapter 1

[11]

• Linear scalability (scale out): Scaling of HBase is not scale up but scale out,
which means that we don't need to make servers more powerful but we
add more machines to its cluster. We can add more nodes to the cluster on
the fly. As soon as a new RegionServer node is up, the cluster can begin
rebalancing, start the RegionServer on the new node, and it is scaled up,
it is as simple as that.

• Column oriented: HBase stores each column separately in contrast with
most of the relational databases, which uses stores or are row-based storage.
So in HBase, columns are stored contiguously and not the rows. More about
row- and column-oriented databases will follow.

• HBase shell support: HBase provides a command-line tool to interact with
HBase and perform simple operations such as creating tables, adding data,
and scanning data. This also provides full-fledged command-line tool using
which we can interact with HBase and perform operations such as creating
table, adding data, removing data, and a few other administrative commands.

• Sparse, multidimensional, sorted map database: HBase is a sparse,
multidimensional, sorted map-based database, which supports multiple
versions of the same record.

• Snapshot support: HBase supports taking snapshots of metadata for getting
the previous or correct state form of data.

HBase in the Hadoop ecosystem
Let's see where HBase sits in the Hadoop ecosystem. In the Hadoop ecosystem,
HBase provides a persistent, structured, schema-based data store. The following
figure illustrates the Hadoop ecosystem:

Understanding the HBase Ecosystem

[12]

HBase can work as a separate entity on the local file system (which is not really
effective as no distribution is provided) as well as in coordination with Hadoop
as a separate but connected entity. As we know, Hadoop provides two services,
a distributed files system (HDFS) for storage and a MapReduce framework for
processing in a parallel mode. When there was a need to store structured data
(data in the form of tables, rows and columns), which most of the programmers are
already familiar with, the programmers were finding it difficult to process the data
that was stored on HDFS as an unstructured flat file format. This led to the evolution
of HBase, which provided a way to store data in a structural way.

Consider that we have got a CSV file stored on HDFS and we need to query from
it. We would need to write a Java code for this, which wouldn't be a good option. It
would be better if we could specify the data key and fetch the data from that file. So,
what we can do here is create a schema or table with the same structure of CSV file
to store the data of the CSV file in the HBase table and query using HBase APIs, or
HBase shell using key.

Data representation in HBase
Let's look into the representation of rows and columns in HBase table:

Chapter 1

[13]

An HBase table is divided into rows, column families, columns, and cells. Row keys
are unique keys to identify a row, column families are groups of columns, columns
are fields of the table, and the cell contains the actual value or the data.

So, we have been through the introduction of HBase; now, let's see what Hadoop
and its components are in brief. It is assumed here that you are already familiar
with Hadoop; if not, following a brief introduction about Hadoop will help you
to understand it.

Hadoop
Hadoop is an underlying technology of HBase, providing high availability, fault
tolerance, and distribution. It is an Apache-sponsored, free, open source, Java-based
programming framework which supports large dataset storage. It provides distributed
file system and MapReduce, which is a distributed programming framework. It
provides a scalable, reliable, distributed storage and development environment.
Hadoop makes it possible to run applications on a system with tens to tens of
thousands of nodes. The underlying distributed file system provides large-scale
storage, rapid data access. It has the following submodules:

• Hadoop Common: This is the core component that supports the other
Hadoop modules. It is like the master components facilitating communication
and coordination between different Hadoop modules.

• Hadoop distributed file system: This is the underlying distributed file
system, which is abstracted on the top of the local file system that provides
high throughput of read and write operations of data on Hadoop.

• Hadoop YARN: This is the new framework that is shipped with newer releases
of Hadoop. It provides job scheduling and job and resource management.

• Hadoop MapReduce: This is the Hadoop-based processing system that
provides parallel processing of large data and datasets.

Other Hadoop subprojects are HBase, Hive, Ambari, Avro, Cassandra (Cassandra
isn't a Hadoop subproject, it's a related project; they solve similar problems in
different ways), Mahout, Pig, Spark, ZooKeeper (ZooKeeper isn't a Hadoop
subproject. It's a dependency shared by many distributed systems), and so on.
All of these have different usability and the combination of all these subprojects
forms the Hadoop ecosystem.

Understanding the HBase Ecosystem

[14]

Core daemons of Hadoop
The following are the core daemons of Hadoop:

• NameNode: This stores and manages all metadata about the data present
on the cluster, so it is the single point of contact to Hadoop. In the new
release of Hadoop, we have an option of more than one NameNode
for high availability.

• JobTracker: This runs on the NameNode and performs the MapReduce
of the jobs submitted to the cluster.

• SecondaryNameNode: This maintains the backup of metadata present
on the NameNode, and also records the file system changes.

• DataNode: This will contain the actual data.
• TaskTracker: This will perform tasks on the local data assigned by

the JobTracker.

The preceding are the daemons in the case of Hadoop v1 or earlier. In newer versions
of Hadoop, we have ResourceManager instead of JobTracker, the node manager
instead of TaskTrackers, and the YARN framework instead of a simple MapReduce
framework. The following is the comparison between daemons in Hadoop 1 and
Hadoop 2:

Hadoop 1 Hadoop 2

HDFS

• NameNode
• Secondary NameNode
• DataNode

• NameNode (more than
one active/standby)

• Checkpoint node
• DataNode

Processing

• MapReduce v1
• JobTracker
• TaskTracker

• YARN (MRv2)
• ResourceManager
• NodeManager
• Application Master

Chapter 1

[15]

Comparing HBase with Hadoop
As we now know what HBase and what Hadoop are, let's have a comparison
between HDFS and HBase for better understanding:

Hadoop/HDFS HBase
This provide file system for distributed storage This provides tabular column-oriented

data storage
This is optimized for storage of huge-sized files
with no random read/write of these files

This is optimized for tabular data with
random read/write facility

This uses flat files This uses key-value pairs of data

The data model is not flexible Provides a flexible data model
This uses file system and processing framework This uses tabular storage with built-in

Hadoop MapReduce support
This is mostly optimized for write-once
read-many

This is optimized for both read/write
many

Comparing functional differences
between RDBMs and HBase
Lately, we are hearing about NoSQL databases such as HBase, so let's just understand
what actually HBase has and lacks in comparison to conventional relational databases
that have existed for so long now. The following table differentiates it well:

Relational database HBase
This supports scale up. In other words,
when more disk and memory processing
power is needed, we need to upgrade it to
a more powerful server.

This supports scale out. In other words,
when more disk and memory processing
power is needed, we need not upgrade
the server. However, we need to add new
servers to the cluster.

Understanding the HBase Ecosystem

[16]

Relational database HBase
This uses SQL queries for reading records
from tables.

This uses APIs and MapReduce for
accessing data from HBase tables.

This is row oriented, that is, each row is a
contiguous unit of page.

This is column oriented, that is, each column
is a contiguous unit of page.

The amount of data depends on
configuration of server.

The amount of data does not depend on
the particular machine but the number of
machines.

It's Schema is more restrictive. Its schema is flexible and less restrictive.

This has ACID support. There is no built-in support for HBase.
This is suited for structured data. This is suited to both structured and

nonstructural data.
Conventional relational database is mostly
centralized.

This is always distributed.

This mostly guarantees transaction
integrity.

There is no transaction guaranty in HBase.

This supports JOINs. This does not support JOINs.
This supports referential integrity. There is no in-built support for referential

integrity.

So with these differences, both have their own usability and use cases. When
we have a small amount of data that can be accommodated in RDBMS without
performance lagging, we can go with RDBMS.

When we need more Online Transaction Processing (OLTP) and the transaction
type of processing, RDBMS is easy to go. When we have a huge amount of data
(in terabytes and petabytes), we should look towards HBase, which is always
better for aggregation on columns and faster processing.

We have gone through the word, column-oriented database, in the previous
introduction; now let's discuss the difference between the column-oriented databases
and the row-oriented databases, which are the traditional relational databases.

These column-oriented database systems have been shown to perform more
than an order of magnitude, better than traditional row-oriented database
systems on analytical workloads found in data warehouse systems, decision system,
and business intelligence applications. These are more I/O-efficient for write-once
read-many queries.

Chapter 1

[17]

Logical view of row-oriented databases
The following figure shows how data is represented in relational databases:

Logical view of column-oriented databases
The following figure shows how logically we can represent NoSQL/column-oriented
databases such as HBase:

Row-oriented data stores store rows in a contiguous unit on the page, and the number
of rows are packed into a page. They are much faster for small numbers of rows and
slow for aggregation. On the contrary, column-oriented data stores columns in a
contiguous unit on the page, columns may extend up to millions of entries, so they
run for many pages. These are much faster for aggregation and analytics. The root of
column-oriented database systems can be traced to the 1970 when transposed file first
appeared. Column-oriented data stores are better for compression than row-oriented
data stores. The following is the comparison between these two:

Row-oriented data stores Column-oriented data stores

These are efficient for addition/modification
of records

These are efficient for reading data

They read pages containing entire rows They read only needed columns

www.allitebooks.com

http://www.allitebooks.org

Understanding the HBase Ecosystem

[18]

Row-oriented data stores Column-oriented data stores

These are best for OLTP These are not so optimized for
OLTP yet

This serializes all the values in a row together,
then the value in the next row, and so on

This serializes all the value of
columns together and so on

Row data are stored in contiguous pages in
memory or on disk

Columns are stored in pages in
memory or on disk

Suppose the records of a table are stored in the pages of memory. When they need
to be accessed, these pages are brought to the primary memory, if they are not
already present in the memory.

If one row occupies a page and we need all specific column such as salary or rate
of interest from all the rows for some kind of analytics, each page containing the
columns has to be brought in the memory; so this page in page out will result in a lot
of I/O, which may result in prolonged processing time.

In column-oriented databases, each column will be stored in pages. If we need to
fetch a specific column, there will be less I/O as only the pages that contain the
specified column needed to be brought in the main memory and read, and we
need not bring and read all the pages containing rows/records henceforth into the
memory. So the kind of queries where we need to just fetch specific columns and
not whole record(s) or sets is served best in column-oriented database, which is
useful for analytics wherein we can fetch some columns and do some mathematical
operations such as sum and average.

Pros and cons of column-oriented databases
The following are pros of column-oriented database:

• This has built-in support for efficient and data compression.
• This supports fast data retrieval.
• Administration and configuration is simplified. It can be scaled out and

hence is very easy to expand.
• This is good for high performance on aggregation queries (such as COUNT,

SUM, AVG, MIN, and MAX).
• This is efficient for partitioning as it provides features of automatic sharding

mechanism to distribute bigger regions to smaller ones.

Chapter 1

[19]

The following are cons of column-oriented database:

• Queries with JOINs and data from many tables are not optimized.
• It records and deletes lot of updates and has to make frequent compaction

and splits too. This reduces its storage efficiency.
• Partitioning or indexing schemes can be difficult to design as a relational

concept is not implicit.

About the internal storage architecture
of HBase
The following figure shows the principle algorithm and data structure HBase works
on, that is, LSM-tree, and the way of merging, and precedes the explanation:

HBase stores file using LSM-tree, which maintains data in two separate parts that
are optimized for underlying storage. This type of data structure depends on two
structures, a current and smaller one in memory and a bigger one on the persistent
disk, and once the part in memory becomes bigger than a certain limit, it is merged
with the bigger structure that is stored on the disk using a merge sort algorithm and
a new in-memory tree is created for newer insert requests. It transforms random data
access into sequential data access, which improves read performance, and merging is
a background process, which does not affect the foreground processing.

Understanding the HBase Ecosystem

[20]

Getting started with HBase
We will discuss this section in a bit questionnaire manner, and will come to
understand HBase with the help of scenarios and conditions.

When it started
The following figure shows the flow of HBase: birth, growth, and current status:

It all started in 2006 when a company called Powerset (later acquired by Microsoft)
was looking forward to building a natural language search engine. The person
responsible for the development was Jim Kellerman and there were also many other
contributors. It was modeled around the Google BigTable white paper that came out
in 2006, which was running on Google File System (GFS).

It started with a TAR file with a random bunch of Java files with initial HBase code.
It was first added to the contrib directory of Hadoop as a small subcomponent of
Hadoop and with the dedicated effort for filling up gaps; it has slowly and steadily
grown into a full-fledged project. It was first added with Hadoop 0.1.0 and as it
become more and more feature rich and stable, it was promoted to Hadoop subproject
and then slowly with more and more development and contribution from the HBase
user and developer group, it has became one of the top-level projects at Apache.

The following figure shows HBase versions from the beginning till now:

Chapter 1

[21]

Let's have a look at the year-by-year evolution of HBase's important features:

• 2006: The idea of HBase started with the white paper of Google BigTable
• 2007: Data compression on the per column family was made available,

addition and deletion of column families online was added, script to start/
stop HBase cluster was added, MapReduce connecter was added, HBase
shell support was added, support of row and column filter was added,
algorithm to distribute region was evenly added, first rest interface was
added, and hosted the first HBase meetup

• 2008: HBase 0.1.0 to 0.18.1, HBase moved to new SVN, HBase added as a
contribution to Hadoop, HBase become Hadoop subproject, first separate
release became available, and Ruby shell added

• 2009: HBase 0.19.0 to 0.20.*, improvement in writing and scanning, batching
of writing and scanning, block compression, HTable interface to REST,
addition of binary comparator, addition of regular expression filters, and
many more

• 2010 till date: HBase 0.89.* - 0.94.*, support for HDFS durability,
improvement in import flow, support for MurmurHash3, addition of
daemon threads for NameNode and DataNode to indicate the VM or
kernel-caused pause in application log, tags support for key value, running
MapReduce over snapshot files, introduction of transparent encryption of
HBase on disk data, addition of per key-value security, offline rebuilding
.META. from file system data, snapshot support, and many more

For more information, just visit https://issues.apache.
org/jira/browse/HBASE and explore more detailed
explanations and more lists of improvements and the addition
of new features.

• 0.96 to 1.0 and Future: HBase Version 1 and higher, add utility for adorning
HTTP context, fully high availability with Hadoop HA, rolling upgrades,
improved failure detection and recovery, cell-level access security, inline cell
tagging, quota and grouping, reverse scan, rolling upgrade, and it will be
more useful for analytics purposes and helpful for data scientists

While we wait for new features in v1.0; we can always visit
http://hbase.apache.org for the latest releases and features.
Here is the link from where we can download HBase versions:
http://apache.mirrors.tds.net/hbase/stable

https://issues.apache.org/jira/browse/HBASE
https://issues.apache.org/jira/browse/HBASE
http://hbase.apache.org
http://apache.mirrors.tds.net/hbase/stable

Understanding the HBase Ecosystem

[22]

Let's now discuss HBase and Hadoop compatibility and the features they
provide together.

Prior to Hadoop v1.0, when DataNode used to crash, HBase Write-Ahead Log—the
logfiles that maintain the read/write operation before the final writing is done to
the MemStore—would be lost and hence the data too. This version of Hadoop
integrated append branch into the main core, which increased the durability for
HBase. Hadoop v1.0 has also implemented the facility of disk failure, making
RegionServer more robust.

Hadoop v2.0 has integrated high availability of NameNode, which also enables HBase
to be more reliable and robust by enabling the multiple HMaster instances. Now with
this version of HBase, upgrading has become easy because it is made independent of
HDFS upgrades. Let's see in the following table how recent versions of Hadoop have
enhanced HBase on the basis of performance, availability, and features:

Criteria Hadoop
v1.0

Hadoop v2.0 Hadoop v2.x

Features Durability
using
hflush()

• hsync()

• snapshot
• hard linking (https://issues.apache.org/jira/

browse/HDFS-3370)
• HBase-aware block placement

Performance Short-
circuit
read

• Native CRC
• Datanodekeepalive

• Direct write API (HBase
provides the utility classes
and the ImportTSV tool
itself to write directly into
HFile. Then, using the
IncrementalLoadHFile,
these files are loaded into the
regions managed by RS. Once
these two steps are over, client
can read the data normally)

• Zero copy API (in this
operation, the CPU does not
copy data from one memory
area to another. This is used to
save on processing power and
memory when sending files
over a network)

• Direct codec API (used
at server side for writing
cells to WAL as well as for
sending edits as part of the
distributed-splitting process)

https://issues.apache.org/jira/browse/HDFS-3370
https://issues.apache.org/jira/browse/HDFS-3370

Chapter 1

[23]

Miscellaneous features in newer HBase are HBase isolation and
allocation, online-automated repair of table integrity and region
consistency problems, dynamic configuration changes, reverse
scanning (stop row to start row), and many other features; users
can visit https://issues.apache.org/jira/browse/
HBASE for features and advancement of each HBase release.

HBase components and functionalities
Here let's discuss various components of HBase and their components recursively:

• ZooKeeper
• HMaster
• RegionServer
• Client
• Catalog tables

ZooKeeper
ZooKeeper is a high-performance, centralized, multicoordination service system for
distributed application, which provides a distributed synchronization and group
service to HBase.

It enables the users and developer to focus on the application logic and not on the
coordination with the cluster, for which it provides some API that can be used by
the developers to use and implement coordination task such as master server, and
managing application and cluster communication system.

In HBase, ZooKeeper is used to elect a cluster master in order to keep track of
available and online servers, and to keep the metadata of the cluster. ZooKeeper
APIs provide:

• Consistency, ordering, and durability
• Synchronization
• Concurrency for a distributed clustered system

https://issues.apache.org/jira/browse/HBASE
https://issues.apache.org/jira/browse/HBASE

Understanding the HBase Ecosystem

[24]

The following figure shows ZooKeeper:

It was developed at Yahoo Research. And the reason behind the name ZooKeeper
is that in Hadoop system, projects are based on animal names, and in discussion
regarding naming this technology, this name emerged as it manages the availability
and coordination between different components of a distributed system.

ZooKeeper not only simplifies the development but also sits on the top distributed
system as an abstraction layer to facilitate the better reachability to the components
of the system. The following figure shows the request and response flow:

Let's consider a scenario wherein we have a few people who want to fill 10 rooms
with some items. One instance would be where we will show how they find their way
to the room to keep the items. Some of the rooms will be locked, which will lead the
people to move on to other rooms. The other instance would be where we can allocate
some representatives with information about the rooms, condition of rooms, and state
of rooms (open, closed, fit for storing, not fit, and so on). We can then send them with
items to those representatives for the information. The representative will guide the
person towards the right room, which is available for storage of items, and the person
can directly move to the specified room and store the item. This will not only ease the
communication and the storage process but also reduce the overhead from the process.
The same technique can be applied in the case of the ZooKeepers.

Chapter 1

[25]

ZooKeeper maintains a tree with ZooKeeper data internally called a znode. This can
be of two types:

1. Ephemeral, which is good for applications that need to understand whether
a specific distributed resource is available or not.

2. The persistent one will be stored till a client does not delete it explicitly
and it stores some data of the application too.

Why an odd number of ZooKeepers?
ZooKeepers are based on a majority principle; it requires that we have a quorum of
servers to be up, where quorum is ceil(n/2), for a cluster of three nodes ensemble
means two nodes must be up and running at any point of time, and for five node
ensemble, a minimum three nodes must be up. It's also important for election
purpose for the ZooKeeper master. We will discuss more options of configuration
and coding of ZooKeeper in later chapters.

HMaster
HMaster is the component of the HBase cluster that can be thought of as NameNode
in the case of Hadoop cluster; likewise, it acts as a master for RegionServers running
on different machines. It is responsible for monitoring all RegionServers in an HBase
cluster and also provides an interface to all HBase metadata for the client operations.
It also handles RegionServer failover, and region splits.

There may be more than one instance of HMaster in an HBase cluster that provides
High Availability (HA). So, if we have more than one master, only one master is
active at a time; at the start up time, all the masters compete to become the active
master in the cluster and whichever wins becomes the active master of the cluster.
Meanwhile, all other master instances remain passive till the active master crashes,
shuts down, or loses a lease from the ZooKeeper.

In short, it is a coordination component in an HBase cluster, which also manages and
enables us to perform an administrative task on the cluster.

Let's now discuss the flow of starting up the HMaster process:

1. Block (do not serve requests) until it becomes active HMaster.
2. Finish initialization.
3. Enter loop until stopped.
4. Do cleansing when it is stopped.

Understanding the HBase Ecosystem

[26]

HMaster exports some of the following interfaces that are metadata-based methods
to enable us to interact with HBase:

Related to Facilities
HBase tables Creating table, deleting table, enabling/disabling table, and

modifying table
HBase column families Adding columns, modifying columns, and removing columns
HBase table regions Moving regions, assigning regions, and unassign regions

In HBase, there is a table called .META. (table name on file system), which keeps
all information about regions that is referred by HMaster for information about
the data. By default, HMaster runs on port number 60000 and its HTTP Web UI is
available on port 60010, which can always be changed according to our need.

HMaster functionalities can be summarized as follows:

• Monitors RegionServers
• Handles RegionServers failover
• Handles metadata changes
• Assignment/unassignment of regions
• Interfaces all metadata changes
• Performs reload balancing in idle time
• It publishes its location to client using ZooKeeper
• HMaster Web UI provides all information about HBase cluster (table,

regions, RegionServers and so on)

If a master node goes down
If master goes down, in this scenario, the cluster may continue working normally
as clients talk directly to RegionServers. So, cluster may still function steadily. The
HBase catalog table (.META. and -ROOT-) exists as HBase tables and it's not stored
in master resistant memory. However, as master performs critical functions such as
RegionServers' failovers and region splits, these functions may be hampered and
if not taken care will create a huge setback to the overall cluster functioning, so the
master must be started as soon as possible.

So now, Hadoop is HA enabled and thus HBase can always be made HA using
multiple HMasters for better availability and robustness, so we can now consider
having multiple HMaster.

Chapter 1

[27]

RegionServer
RegionServers are responsible for holding the actual raw HBase data. Recall that in a
Hadoop cluster, a NameNode manages the metadata and a DataNode holds the raw
data. Likewise, in HBase, an HBase master holds the metadata and RegionServer's
store. These are the servers that hold the HBase data, as we may already know that in
Hadoop cluster, NameNode manages the metadata and DataNode holds the actual
data. Likewise, in HBase cluster, RegionServers store the raw actual data. As you
might guess, a RegionServer is run or is hosted on top of a DataNode, which utilizes
the underlying DataNodes at underlying file system, that is, HDFS.

The following figure shows the architecture of RegionServer:

RegionServer performs the following tasks:

• Serving regions(tables) assigned to it
• Handling client read/write requests
• Flushing cache to HDFS
• Maintaining HLogs
• Performing compactions
• Responsible for handling region splits

www.allitebooks.com

http://www.allitebooks.org

Understanding the HBase Ecosystem

[28]

Components of a RegionServer
The following are the components of RegionServers

• Write-Ahead logs: This is also called edit. When data is read/modified to
HBase, it's not directly written in the disk rather it is kept in memory for
some time (threshold, which we can configure based on size and time).
Keeping this data in memory may result in a loss of data if the machine goes
down abruptly. So to solve this, the data is first written in an intermediate
file, which is called Write-Ahead logfile and then in memory. So in the case
of system failure, data can be reconstructed using this logfile.

• HFile: These are the actual files where the raw data is stored physically on
the disk. This is the actual store file.

• Store: Here the HFile is stored. It corresponds to a column family for a table
in HBase.

• MemStore: This component is in memory data store; this resides in the main
memory and records the current data operation. So, when data is stored in
WAL, RegionServers stores key-value in memory store.

• Region: These are the splits of HBase table; the table is divided into regions
based on the key and are hosted by RegionServers. There may be different
regions in a RegionServer.

We will discuss more about these components in the next chapter.

Client
Client is responsible for finding the RegionServer, which is hosting the particular
row (data). It is done by querying the catalog tables. Once region is found, the
client directly contacts RegionServers and performs the data operation. Once this
information is fetched, it is cached by the client for further fast retrieval. The client
can be written in Java or any other language using external APIs.

Catalog tables
There are two tables that maintain the information about all RegionServers and
regions. This is a kind of metadata for the HBase cluster. The following are the
two catalog tables that exist in HBase:

• -ROOT-: This includes information about the location of .META. table
• .META.: This table holds all regions and their locations

Chapter 1

[29]

At the beginning of the start up process, the .mMeta location is set to root from
where the actual metadata of tables are read and read/write continues. So, whenever
a client wants to connect to HBase and read or write into table, these two tables
are referred and information is returned to client for direct read and write to the
RegionServers and the regions of the specific table.

Who is using HBase and why?
The following is a list of just a few companies that use HBase in production. There
are many companies who are using HBase, so we will list a few and not all.

• Adobe: They have an HBase cluster of 30 nodes and are ready to expand it.
They use HBase in several areas from social services to structured data and
processing for internal use.

• Facebook: They use it for messaging infrastructure.
• Twitter: They use it for a number of applications including people search,

which relies on HBase internally for data generation, and also their
operations team uses HBase as a time series database for cluster-wide
monitoring/performance data.

• Infolinks: They use it for process advertisement selection and user events
for our in-text advertising network.

• StumbleUpon: They use it with MapReduce data source to overcome
traditional query speed limits in MySQL.

• Trend Micro: They use it as cloud-based storage.
• Yahoo!: They are use HBase to store document fingerprint for detecting

near-duplicates. They have a cluster of a few nodes that run HDFS,
MapReduce, and HBase. The table contains millions of rows; we use
this for querying duplicated documents with real-time traffic.

• Ancestry.com: This company uses it for DNA analysis.
• UIDAI: This is an Indian government project; they use HBase for storing

resident details.
• Apache: They use it for maintaining wiki.
• Mozilla: They are moving Socorro project to HBase.
• eBay: They use HBase for indexing site inventory.

And we can keep listing, but we will stop it here and for further
information, please visit http://wiki.apache.org/hadoop/
Hbase/PoweredBy.

http://wiki.apache.org/hadoop/Hbase/PoweredBy
http://wiki.apache.org/hadoop/Hbase/PoweredBy

Understanding the HBase Ecosystem

[30]

When should we think of using HBase?
Using HBase is not the solution to all problems; however, it can solve a lot of
problems efficiently. The first thing is that we should think about the amount of data;
if we have a few million rows and a few read and writes, then we can avoid using it.
However, think of billions of columns and thousands of read/write data operations
in a short interval, we can surely think of using HBase.

Let's consider an example, Facebook uses HBase for its real-time messaging
infrastructure and we can think of how many messages or rows of data Facebook
will be receiving per second. Considering that amount of data and I/O, we can
currently think of using HBase. The following list details a few scenarios when
we can consider using HBase:

• If data needs to have a dynamic or variable schema
• If a number of columns contain more null values (blank columns)
• When we have a huge number of dynamic rows
• If our data contains a variable number of columns
• If we need to maintain versions of data
• If high scalability is needed
• If we need in-built compression on records
• If a high volume of I/O is needed

There are many other cases where we can use HBase and it can be beneficial, which
is discussed in later chapters.

When not to use HBase
Let's now discuss some points when we don't compulsorily have to use HBase just
because everyone else is using it:

• When data is not in large amounts (in TBs and more)
• When JOINs and relational DB features are needed
• Don't go with the belief "every one is using it"
• If RDBMS fits your requirements, use RDBMS

Chapter 1

[31]

Understanding some open source
HBase tools
The following is the list of some HBase tools that are available in the
development world:

• hbaseexplorer: This tool provides UI for HBase; using this tool, we can
perform the following operations:

 ° Data visualization
 ° Table creation, deletion, and cloning
 ° Table statistics
 ° Scans

For reference, go to http://sourceforge.net/projects/
hbaseexplorer/.

• Toad for Cloud Databases: This is the tool to connect to HBase and perform
various functions.

For reference, go to http://www.toadworld.com/
products/toad-for-cloud-databases/default.aspx.

• HareDB HBase Client: This is an HBase client, which can be used more
easily with its user-friendly interface, which makes it a GUI tool for HBase
(including PIG and high speed Hive Query)

For reference, go to http://sourceforge.net/projects/
haredbhbaseclie/.

• hrider: The hrider is a UI application that provides an easier way to view or
manipulate the data saved in the HBase.

For reference, go to https://github.com/NiceSystems/
hrider.

http://sourceforge.net/projects/hbaseexplorer/
http://sourceforge.net/projects/hbaseexplorer/
http://www.toadworld.com/products/toad-for-cloud-databases/default.aspx
http://www.toadworld.com/products/toad-for-cloud-databases/default.aspx
http://sourceforge.net/projects/haredbhbaseclie/
http://sourceforge.net/projects/haredbhbaseclie/
https://github.com/NiceSystems/hrider
https://github.com/NiceSystems/hrider

Understanding the HBase Ecosystem

[32]

• Hannibal: This is a tool for Apache HBase region monitoring.

For reference, go to https://github.com/sentric/
hannibal.

• Performance Monitoring & Alerting (SPM): SPM is a proactive performance
monitoring, anomaly detection, and alerting solution available in the Cloud
(SaaS) as well as own premise. SPM can monitor Solr, Elasticsearch, Hadoop,
HBase, ZooKeeper, Kafka, Storm, Redis, JVM, system metrics, custom
metrics, and more.

For reference, go to http://sematext.com/spm/.

• Phoenix: This tool is a SQL skin over HBase, delivered as a client-embedded
JDBC driver, powering the HBase use cases at Salesforce.com. Phoenix
targets low-latency queries (milliseconds), as opposed to batch operation
via MapReduce.

For reference, go to https://github.com/forcedotcom/
phoenix and http://phoenix.apache.org/.

• Impala: Cloudera Impala is a parallel processing SQL query engine, which
runs in Apache Hadoop. The Apache-licensed, open source Impala project
combines modern, scalable, parallel database technology with the power of
Hadoop. Users can directly query data stored in HDFS and Apache HBase
without requiring data movement or transformation.

For reference, go to http://www.cloudera.com/
content/cloudera-content/cloudera-docs/Impala/
latest/Cloudera-Impala-Version-and-Download-
Information/Cloudera-Impala-Version-and-
Download-Information.html.

https://github.com/sentric/hannibal
https://github.com/sentric/hannibal
http://sematext.com/spm/
https://github.com/forcedotcom/phoenix
https://github.com/forcedotcom/phoenix
http://phoenix.apache.org/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Version-and-Download-Information/Cloudera-Impala-Version-and-Download-Information.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Version-and-Download-Information/Cloudera-Impala-Version-and-Download-Information.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Version-and-Download-Information/Cloudera-Impala-Version-and-Download-Information.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Version-and-Download-Information/Cloudera-Impala-Version-and-Download-Information.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Version-and-Download-Information/Cloudera-Impala-Version-and-Download-Information.html

Chapter 1

[33]

The Hadoop-HBase version compatibility table
As there are compatibility issues in almost all systems; likewise, HBase also has
compatibility issues with Hadoop versions, which means all versions of HBase can't
be used use on top of all Hadoop versions. The following is the version compatibility
of Hadoop-HBase that should be kept in mind while configuring HBase on Hadoop
(credit: Apache):

Hadoop
versions HBase 0.92.x HBase 0.94.x HBase 0.96.0 HBase 0.98.0

Hadoop 0.20.205 Supported Not supported Not supported Not
supported

Hadoop 0.22.x Supported Not supported Not supported Not
supported

Hadoop 1.0.0-
1.0.2 Supported Supported Not supported Not

supported

Hadoop 1.0.3+ Supported Supported Supported Not
supported

Hadoop 1.1.x Not tested enough Supported Supported Not
supported

Hadoop 0.23.x Not supported Supported Not tested
enough

Not
supported

Hadoop
2.0.x-alpha Not supported Not tested

enough Not supported Not
supported

Hadoop 2.1.0-
beta Not supported Not tested

enough Supported Not
supported

Hadoop 2.2.0 Not supported Not tested
enough Supported Supported

Hadoop 2.x Not supported Not tested
enough Supported Supported

We can always visit https://hbase.apache.org for more updated version
compatibility between HBase and Hadoop.

Applications of HBase
The applications of HBase are as follows:

• Medical: HBase is used in the medical field for storing genome sequences
and running MapReduce on it, storing the disease history of people or an
area, and many others.

https://hbase.apache.org

Understanding the HBase Ecosystem

[34]

• Sports: HBase is used in the sports field for storing match histories for better
analytics and prediction.

• Web: HBase is used to store user history and preferences for better
customer targeting.

• Oil and petroleum: HBase is used in the oil and petroleum industry to
store exploration data for analysis and predict probable places where oil
can be found.

• e-commerce: HBase is used for recording and storing logs about customer
search history, and to perform analytics and then target advertisement for
better business.

• Other fields: HBase can be used in many other fields where it's needed to
store petabytes of data and run analysis on it, for which traditional systems
may take months. We will discuss more about use cases and industry
usability in further chapters.

HBase pros and cons
Let's now briefly discuss HBase pros and cons.

The following are some advantages of HBase:

• Great for analytics in association with Hadoop MapReduce
• It can handle very large volumes of data
• Supports scaling out in coordination with Hadoop file system even on

commodity hardware
• Fault tolerance
• License free
• Very flexible on schema design/no fixed schema
• Can be integrated with Hive for SQL-like queries, which is better for DBAs

who are more familiar with SQL queries
• Auto-sharding
• Auto failover
• Simple client interface
• Row-level atomicity, that is, the PUT operation will either write or fail

Chapter 1

[35]

The following are some missing aspects:

• Single point of failure (when only one HMaster is used)
• No transaction support
• JOINs are handled in MapReduce layer rather than the database itself
• Indexed and sorted only on key, but RDBMS can be indexed on some

arbitrary field
• No built-in authentication or permissions

So overall, we can say if we are in a position to neglect these cons, we can go with
HBase which provides many other benefits that are not there in RDBMS. We can see
that it's still an evolving technology with Hadoop and with time, it will become more
mature and rich, which will make it one of the best tools for analytical database and
distributed fault tolerant database. It is an open source Apache project where users
and developers can contribute and add more and more features.

Hadoop HBase and a combination of some other Hadoop subproject can do wonders
in the data analysis field; using these technologies, the data can be a hidden treasure,
which were stored somewhere uselessly as a dump and now they can be very
beneficial for understanding various prospects of a specific industry.

Summary
So in this chapter, we discussed the introductory aspects of HBase and related
projects. We have also discussed HBase's components and their place in the HBase
ecosystem. This chapter then provided a brief historical context for HBase and we
have related it with some common uses of HBase in the industry.

In the next chapter, we will begin with HBase, understanding the different
considerations and prerequisites for getting started with HBase. We will also discuss
some of the concerns a new user might face during their first encounter with HBase.

Let's Begin with HBase
In the previous chapter, we learned in depth about HBase and its ecosystem. In this
chapter, we will discuss HBase and its components in a bit more detail. This chapter
will guide you through understanding the prerequisites and assumptions that one
has to make when one starts using HBase. It will also focus on the requirements to
configure HBase cluster and the parameters that you need to keep in mind to have
a healthy and helpful HBase. You will also get to know HBase components and
their deployment considerations. Let's take a look at the topics that we are going
to discuss in this chapter:

• HFile
• HBase region
• Scalability
• Reading and writing cycle
• Write-Ahead Logs
• MemStore
• Some HBase housekeeping concepts
• Region operations
• Capacity planning
• List of available HBase distributions
• Prerequisites for HBase

www.allitebooks.com

http://www.allitebooks.org

Let's Begin with HBase

[38]

Understanding HBase components
in detail
To understand the components of HBase, let's start from the bottom, from HFile
to RegionServers, and then progress towards the master. There can be one to n
RegionServers, one to n DataNodes, and one to n ZooKeeper nodes. Refer to the
following figure:

HFile
HFile is designed after Google SSTable, which is a reinterpretation of Google's
implementation based on their Bigtable paper. It was implemented after HBase
v0.20.0; earlier, an alternate file format, that is, MapFile was being temporarily
used. An HFile internally consists of HFile blocks that are its building blocks.

Go through the links https://hbase.apache.org/book/
apes03.html and https://issues.apache.org/jira/
browse/HBASE-3857, and also go through the PDF files present on
the previous link for an actual file representation of HFile on the disk.

https://hbase.apache.org/book/apes03.html
https://hbase.apache.org/book/apes03.html
https://issues.apache.org/jira/browse/HBASE-3857
https://issues.apache.org/jira/browse/HBASE-3857

Chapter 2

[39]

Region
Regions are the basic blocks of RegionServers that provide distribution, availability,
and storage for columns and column families on an HBase cluster. The overall
structure goes like this:

HBase table Table representation in HBase
Region Region that constitutes the HBase table
Store Store is per column family for every region, for each HBase table
MemStore This exists for each region of the table and for each store
Store file This exists for each region of the table and each MemStore
Block This is the basic building block of store files

On HDFS, the structure looks like in the following figure:

In the preceding figure, /hbase refers to the HBase directory on HDFS, /table is
inside the /hbase directory, and so on. Once we have an HBase running cluster, we
can navigate on HDFS to see the storage structure of the HBase directory. We can
visit the Web UI of Hadoop NameNode and the /hbase directory that is created
when we configure and start the daemon processes, such as HMaster RegionServers.
The /hbase directory's name depends on what we assign for the hbase.rootdir
setting in the HBase configuration. By navigating to the path, we can understand the
logical storage of the HBase root directory on top of HDFS; the following diagram
shows how the Write-Ahead Log (WAL) structure is stored on HDFS.

Let's Begin with HBase

[40]

HLogs are the files that save all edit logs to HStore files. These are HBase WALs.
Internally, it performs logfile rolling. There is one HLog file per RegionServer, and
write-ahead (writing changes to a logfile and then performing the actual write) is
performed on this logfile for every region on a particular RegionServer. This HLog
file consists of multiple on-disk files. The following diagram shows the structure of
HLog files on HDFS. In this figure, /.logs stands for the ./logs directory inside the
HBase directory on HDFS.

Scalability – understanding the scale up and
scale out processes
In the previous chapter, we learned about the HBase scale out process; let's see what
it means and how it's done. Let's discuss scale out and scale up, and which is better
for what. In the case of HBase, it scales out and does not scale up, which is provided
by the underlying HDFS file system and Hadoop, which is a distributed system and
can scale out on the fly with just an addition of new machines, whenever it's needed.
In HBase, we can always add a new Hadoop DataNode; on DataNodes, we can host
many RegionServers for higher scalability. Refer to the following figure:

Chapter 2

[41]

Scale in
You must be aware of the fact that the traditional scaling of the system, application,
and database depends on the capacity of the system on which they are hosted. This is
called vertical scaling, where an application is migrated to a more powerful machine
with more memory, processing power, and storage. In this type of scaling, there are
limited powerful servers; a server cannot keep on growing in order of processing
power, or even memory-wise, as there is always a limit to it at any given point in
time. There might be only a specific processor, a server, or an OS available, which
might support a specific amount of memory at one time, and which can't grow
beyond this limit. So, these types of systems are not very scale friendly. This process
of scaling vertically is really heavy on finance.

In this type of system, there is always a more powerful, centralized machine that
is responsible for handling all the operations. With the increase in data size or the
processing power requirement, the system struggles, and it is at that time that we
need to upgrade the system to a better configuration. Some problems of scale up or
vertically scaled systems are as follows:

• Data migration and software and hardware upgradation
• Application reconfiguration
• Reconfiguration overhead

Some benefits of scale up systems are: less and one-time configuration till upgrade,
less power, less cooling system, less space, and a centralized system.

Let's Begin with HBase

[42]

Scale out
On the contrary, scale out or scale horizontally means virtually adding processing
power, memory, and storage to the system. Here, servers are not replaced with
a more powerful server, but a new machine is added to the system when there
is a need for more storage, processing power, and main memory. Here, in this
system, multiple machines work virtually as a single system to provide large-scale
processing power. Let's discuss why we should choose the scale out-based system.
Refer to the following figure for better understanding:

Chapter 2

[43]

A scale out-based system enables us to have a redundant and high availability
system. It is cost effective, which means that there is no need to invest in high-end
machines, no application migration overhead, and servers can be located in many
locations. It is suitable for massive parallel computing, where a number of machines
take up the workload evenly. The following figure shows the HBase scaling method:

In HBase, we can add new RegionServers on the fly; for this, new DataNodes are
added, the RegionServer daemon is started on these DataNodes, and scalability is
obtained. In short, we first add a number to the cluster, and then start the DataNode
and RegionServer daemons on the newly added node.

Let's talk about HBase communication between daemons (nodes). The different
daemons and the HBase nodes communicate with each other using Remote
Procedure Call (RPC), which enables the HBase components to make calls to in-built
functions. It also enables each component to behave towards these calls as if they were
local. This in turn enables the procedures or subroutines to be executed to a different
address space, such as another computer system. This kind of intercommunication
prevents the rewriting of the server architecture code.

Let's Begin with HBase

[44]

The following figure shows the RPC flow:

In HBase, HBaseRPC is the class that facilitates HBase to use RPC among the
components. It is based on the Java dynamic proxy pattern. It uses an invoker
class that implements InvocationHandler to intercept client-side method calls,
and then it marshalls the method name and argument through HBaseClient.
The communication between client and server using RPC works as follows:

1. The client contacts ZooKeeper to find who the active HMaster is and what
the location of the root RegionServer is.

2. Then, the client communicates RegionServer using HRegionInterface
to read/write the table.

3. Client applications talk to HMaster using HMasterInterface in order to
dynamically create a table, add a column family, and for other operations.

4. Then, HMaster communicates to RegionServers using HRegionInterface
to open, close, move, split, or flush the region.

Chapter 2

[45]

5. Active HMaster data and the root RegionServer location are cached into
ZooKeepers by HMaster.

6. RegionServer then reads the data from ZooKeeper to get information about
log-splitting tasks, which is updated to fetch a task report status.

7. RegionServer then communicates with HMaster using
HMasterRegionInterface to convey information such as the loading
of RegionServer, errors with RegionServer, and the start up process
of RegionServers.
Sometimes, RegionServer also communicates with the root region or the
meta region, with the help of HRegionInterface, to check the current status
of a region or to create a new daughter region while region splitting.

8. This communication is repeated with a tick time interval or a threshold
time interval to keep everything updated.

Reading and writing cycle
Now, let's see how the read-and-write operation takes place in HBase diagrammatically:

Let's Begin with HBase

[46]

Let's discuss and understand how the read-and-write operation takes place in and
from HBase tables. In HBase, the client does not write data to HFile directly; it is first
written to WAL and then to HBase MemStore, which is shared by an HStore in the
main memory and then flushed to HFile later. Refer to the following figure:

Write-Ahead Logs
Write-Ahead Logs facilitate the data reliability and reside on HDFS; each
RegionServer hosts a single WAL. In the case of a RegionServer crash where
MemStore is not flushed, WAL is used to restore the data to a new RegionServer.
So, only once data is written successfully to WAL and MemStore, the write operation
is said to be successful.

MemStore
MemStore acts as an in-memory write buffer with a default size of 64 MB. Once data
in MemStore reaches the threshold (which is by default 40 percent of the heap size
or 64 MB), it is flushed to a new HFile on HDFS for persistence. The 64 MB HFile
is not related to block size here; Hadoop internally manages block allocation and
storage. HBase does not play a role in the underlying mechanism of block replication
or dividing HFiles into blocks. Each column family might have many HFiles, but the
HFile will only belong to a specific column family.

Chapter 2

[47]

Now, let's take a look at the process flow of reading from HBase. The reading process
starts when the client initiates a read request; the client gets the RegionServer and
region information, and it communicates this to the acquired RegionServer. At
the acquired RegionServer, the client first tries to read from MemStore; if hit, the
read activity completes; if it's a miss, it navigates to block cache. Finally, it reaches
out to HFile to read the required row of data. If there is a missing record, the
corresponding HFile is loaded into the memory that contains the required row of
data. So, MemStore and block cache provide real-time access to data for performance
purposes, and HFile provides persistent, on-demand data.

Block cache follows the least recently used (LRU) algorithm. Every RegionServer has
a single block cache that keeps the most frequently accessed data from HFile in the
main memory, which results in reducing the disk seek for data access time.

HBase housekeeping
As data is being added to HBase, it writes an immutable file to store. Each store is
made up of column families, and regions consist of these row-key ordered files as it's
immutable. So, there will be more files rather than one on the fly. Due to many files, the
I/O will be slower, and hence lag in reading and writing, resulting in slower operation.
To overcome these types of problems, HBase uses the compaction methodology; let's
look into it now. Refer to the following figure for a better understanding:

www.allitebooks.com

http://www.allitebooks.org

Let's Begin with HBase

[48]

Compaction
As the name suggests, compaction makes files more compact and, hence, efficient to
read up files. When new data is written to HBase, HFile is generated and the number
of HFiles might increase the I/O overhead. So, to minimize this, the HFiles are
merged to one HFile periodically. As MemStore gets filled, a new HFile is created.
If these files are not merged in time, there will be a huge overhead on the system.
Compaction is nothing but the merging of two or more HFiles using the N-way
merge sort algorithms, since HFiles are already in a sorted order. Once files are
merged, the new file is loaded and the older file is discarded or deleted.

There are different types of compactions; let's look at them now.

Minor compaction
Minor compaction takes place on multiple HFiles in HStore. In this type of
compaction, a number of adjacent HFiles are picked up, merged, and rewritten into
a larger single HFile. When this is done, the deleted or expired files are not removed,
they are still present in the resulting HFile. Files to be merged in minor compaction
are chosen heuristically. Minor compaction affects the HBase performance and,
therefore, there is a limit on the number of files to be merged; by default, it is 10.

Major compaction
Major compaction folds all the HFiles together to form a single HFile. In this type
of compaction, the deleted and expired records are discarded, and the active and
non-deleted files are kept. Generally, it is manually triggered on large clusters. Major
compaction is not a region merge, but it happens with HStore. In this, all the HFiles
of a column family are merged. This compaction can also be triggered on an entire
table. This is a time-consuming process and an expensive operation; it also affects
the performance, so it must be triggered when there are fewer requests to the cluster.
Refer to the following figure:

Chapter 2

[49]

Region split
Region split is done by RegionServers. In a RegionServer, once a region becomes
overloaded or exceeds the threshold value of 256 MB, it is spliced into new regions.
The flow of region splitting is shown in the following figure:

Let's Begin with HBase

[50]

The following is the flow of region splitting, as illustrated in the preceding figure:

1. The region to be split is made offline by RegionServer.
2. A region is spliced into two regions.
3. The newer daughter region information is updated in the .META. table.
4. The new daughter region formed is opened and made available.
5. The region split information is passed to HMaster for an update.

Region assignment
This is one of the main tasks of HMaster. Let's see how it works:

1. HBase HMaster calls AssignmentManager for region assignment.
2. AssignmentManager looks into the current region assignment scenario in

the .META. table. If the region assignment is correct and valid, it keeps the
region; if region assignment is invalid or incorrect, LoadBalancerFactory
creates DefaultLoadBalancer.

3. Then, DefaultLoadBalancer assigns a new region to RegionServer.
4. The whole assignment process is updated into the .META. table.
5. Once this is done successfully, the assigned region is opened and made

available by the corresponding RegionServer.

Region merge
As new regions are created on a region-size threshold, and since this might result in
greater number of regions, it might bring high cost on memory, I/O, and throughput
performance. When the RegionServer number threshold is at its maximum (usually,
100 per RegionServer), region merge is initiated by RegionServer. This process flows
as follows:

1. The client initiates the process for region merge and sends an RPC region
merge request to HMaster.

2. HMaster moves regions together to RegionServer and sends requests for a
region merge operation.

3. RegionServer makes regions offline to be merged, and regions are merged.
4. The metadata of regions that are merged are deleted from the .META. table,

and the new merged region's metadata is updated/added to the .META. table.
5. The resulting region is then made online and available for reading, and

HMaster is updated for the region information.

Chapter 2

[51]

RegionServer failovers
When RegionServer fails, the region on the server goes offline and is not available for
read or write. Once this happens, and HMaster detects it, the assignment of regions
will be made invalid. The region assignment to another RegionServer will be initiated,
and it will follow the same steps we discussed in the region assignment process.

All other information on regions and operations on them will be discussed in
Chapter 6, HBase Cluster Maintenance and Troubleshooting.

The HBase delete request
When HBase receives a delete request for some data, it does not delete it
immediately. The data that needs to be deleted is marked as a tombstone using
the tombstone marker. It is a predicate deletion, which is a feature supported by
LSM-trees on which HBase is based. This is done because HFile is immutable, and
deletion of this is not available inside HFile on HDFS. One of the major compactions
takes place when the marked record or data is discarded, and a new HFile is created
without the marked data.

The reading and writing cycle
The following figure shows us how the overall reading and writing is done in HBase:

Let's Begin with HBase

[52]

As we can see in the preceding figure, whenever a write request is sent, it is first
written to WAL and then to MemStore, and when MemStore and WAL reach the
threshold, it is flushed to the disk file for persistence. Also, when client needs to read
some data, it queries the .META. table and then contacts the specific RegionServer;
if data is found, it is returned to client, else the read activity continues from WAL
to MemStore, and then to HFile, to read data where it is found.

List of available HBase distributions
Let's see the list of HBase distributions that we can use. While building up the HBase
cluster, we need to keep in mind that if we use the distribution of a specific vendor,
we must use the Hadoop distribution of the same vendor. This is required for
compatibility and ease of configuration.

Some major distributions of Hadoop/HBase are as follows:

• Apache (http://hbase.apache.org/)
• Cloudera (http://www.cloudera.com)
• Hortonworks (http://hortonworks.com)
• MapR (http://www.mapr.com)

There are also many other distributions that are still evolving.

Prerequisites and capacity planning
for HBase
When we start configuring the HBase cluster, we always need to keep some
considerations in mind. First things first, before configuring HBase, our Hadoop
cluster must be up and running well.

Here, we will discuss various parameters from OS to network and from disk to
processing and memory considerations. We will discuss some prerequisites for
HBase and various factors that affect the cluster functioning. If our Hadoop is
healthy, HBase will be healthy too, so we have to consider a good, healthy, and
smoothly running Hadoop cluster on top of which we can have a full-fledged,
healthy, and smoothly running HBase cluster.

http://hbase.apache.org/
http://www.cloudera.com
http://hortonworks.com
http://www.mapr.com

Chapter 2

[53]

In this section, we will discuss the considerations for a Hadoop as well as an
HBase cluster. Then, in the following chapters, we will discuss the full-fledged,
step-by-step cluster configuration using the top-down method to configure a
Hadoop cluster, and then an HBase cluster, running in different modes that are
standalone, pseudo-distributed, and fully distributed clusters of Apache and
Cloudera distributions.

HBase uses a local hostname to report its IP address, so the cluster network and
its machines must be forward and backward (reverse) DNS resolvable. Let's now
discuss forward and backward (reverse) DNS resolution in brief. Take a look at the
following figure:

The forward DNS resolution
The forward DNS resolution uses the domain name to find the IP address of a
machine in the network. This is also known as a Domain Name System, where
a domain name server finds out or tells the equivalent IP address.

The reverse DNS resolution
The reverse DNS resolution uses an IP address to find out the hostname of a
machine. This is important in configuration, as both resolutions are important and
each machine in the cluster must be able to communicate with other machines using
the hostname and the IP address.

Let's Begin with HBase

[54]

Every machine must be accessible using the hostname
as well as the IP address for proper functioning of the
HBase cluster.

The following figure shows the basic prerequisites for configuring an HBase cluster:

We will need a Linux distribution for a full-fledged production cluster. If we need
support, we can go with the enterprise or paid versions of Linux, such as the Red
Hat Enterprise edition, Debian-based distros with enterprise support. If we don't
want to invest initially, we can go with free versions of these distros, such as CentOS,
Ubuntu, or any other Linux distro. HBase clusters can be configured on Mac too, and
there is another option to build testing and evaluation.

An HBase cluster can be configured on Windows too, which is not good for
production. However, people who just want to test and evaluate it, and are not in a
position to switch to Linux directly, can opt for this option. For this, we will need to
install Cygwin (a software package that enables us to run native apps on Windows)
on Windows and configure HBase cluster on it.

Chapter 2

[55]

Java
We need to have Java installed on our system. This is one of the basic requirements
as all the daemon processes run under JVM. We will discuss installing Java on
various platforms such as Ubuntu, Red Hat distributions, and some other Linux
distributions in the following chapters, where we will build up a cluster step-by-step.
We must install Sun Java 6 (formally, Oracle Java) or a later version.

We can go for RPM versions of Red Hat distros and archive (tar) files for other distros.

In fact, Java is a must for Hadoop configuration, and we can configure HBase on top
of Hadoop once Hadoop is running fine. The following is what Apache says about
Java for Hadoop/HBase:

Hadoop requires Java 7 or a late version of Java 6. It is built and tested on both
OpenJDK and Oracle (HotSpot)'s JDK/JRE.

You can find more details on Java requirements at http://wiki.
apache.org/hadoop/HadoopJavaVersions.

SSH
We can configure SSH for easy server-to-host communication. If our cluster is inside
a secure network, we can configure a passwordless SSH. This is not compulsory, but
if configured, we can use all HBase scripts, such as start-hbase.sh and others, if a
passwordless SSH is configured.

SSH is cryptographic for secure communication between machines on a network,
remote, remote execution, and other secure networks between two networked
computers. It connects via an insecure network, a server and a client running,
and programs. We will discuss configuring SSH on various platforms in the
upcoming chapters.

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://wiki.apache.org/hadoop/HadoopJavaVersions

Let's Begin with HBase

[56]

The following figure shows how nodes communicate using the SSH (SSH is used
only for configuration purposes, and HBase does not use it to communicate between
its daemons) protocol:

Domain Name Server
HBase uses a local hostname to report its IP address. Related to this, we can have
a host file-based DNS, or we need to set up a Domain Name Server to resolve the
machines in a clustered network for production servers.

The primary network interface is used by HBase for communication, so we need to
configure a hostname for our primary interface.

The following are the simple steps which we can use to verify correct DNS
configurations to avoid issues related to DNS with HBase configuration and operation:

1. Set a hostname for each machine in the cluster.
2. Check if forward and reverse domains are the resolving means with which

you can access nodes using both an IP and a hostname.
3. Use a DNS verification tool to verify the correctness.

Chapter 2

[57]

The following diagram shows where and how we need to change the DNS settings:

To be on the safe side, try to have both the host file- and DNS-based resolution
policies. If DNS fails sometimes, the operation is not disrupted and nodes might
communicate with each other even in the case of a DNS failure. Everything depends
on the two important parameters, namely, the host file-based resolution and
the DNS-based resolution policy. You can always change this parameter in the
hbase-site.xml file to override the setting that is in hbase-default.xml,
according to any network interface. You need to use one of the following files:

• hbase.master.dns.interface

• hbase.regionserver.dns.interface

If we configure our settings related to DNS, and the host resolution is accurate
from the beginning, we can avoid a lot of issues that come up with RegionServers,
ZooKeepers, and other components.

We can use the following commands in Linux to verify the settings for correctness
and reachability, and once we are confident that the DNS-related settings are all
correct, recheck, verify, and then move forward:

dig, nslookup, ping

The loopback IP must be set to 127.0.0.1 instead of 127.0.1.1 for the localhost.

Let's Begin with HBase

[58]

Using Network Time Protocol to keep your node
on time
The Network Time Protocol is a networking time protocol that keeps the machine
time updated. In an HBase cluster, all machines must have a synchronized time. This
service might be available; we need to enable it. If it is not available, we can always
install it using a package manager available on the Linux distros we are using.
Take a look at the following diagram:

The preceding diagram shows how an NTP server functions with HBase. We will see
how to install this service at the configuration stage.

OS-level changes and tuning up OS for HBase
HBase tends to open a lot of files in operation, so we need an OS tune up and
changes for better performance and trouble-free operations. Two parameters
that we need to change in Linux distros are as follows:

• Nproc: Number of processes active at a time under a user
• Ulimit: Number of open files at a time under a specific user

Chapter 2

[59]

To set nproc and ulimit values, we need to change it in the limits.conf file
found in Linux. To check the content of this file, we need to execute the ulimit -a
command. The following screenshot shows the existing and needed setting changes
related to the OS level:

To find this file, navigate to the /etc/security directory (/etc/launchd.conf on
OS X) that can be opened and modified in any text editor. The file can be changed
from a command line too. For a permanent effect, we need to change it into a
limit.conf file and save it to make it persistent.

In a newly installed system, the value for open files is usually 1024, which is not
enough for setup as HBase opens a lot of files during read/write operations and
processing, and it also starts a lot of new processes and subprocesses while running.
Not properly configuring these parameters might result in a lot of runtime errors
such as java.io.IOException (too many open files), OutOfMemoryException,
and others; all the frequent exceptions will be discussed in the Troubleshooting the
most frequent HBase errors and their explanation section of Chapter 6, HBase Cluster
Maintenance and Troubleshooting. These parameters are not universal but can be set
according to the existing system configuration. This also depends on the amount of
heap memory available. On a node with good configuration, we can set the range
between 24 K and 65 K, or more if required. However, there is a limit that depends
on the system resources; changing these values incorrectly might break down
the system.

Let's Begin with HBase

[60]

There are two types of limits; they are hard limit and soft limit:

• Soft limits are the currently enforced limits
• Hard limits mark the maximum value that cannot be exceeded by setting a

soft limit

So, we need to have the same value for both the hard and soft limits. However, soft
limits will always be less than or equal to the hard limit. To change the hard limit, we
need root access to the system, but the soft limit can be changed by the process. The
hard limit is set by processes with superuser privileges, and it cannot be exceeded by
processes running with lower privileges.

Once HBase and Hadoop starts functioning, it initiates the opening of more files
or starts more processes that reach the OS limit. So, if we don't set it properly, the
OS tends to kill this process, or due to the restriction, we will not be able to create a
new required process or open a new file to read or write, which will cause runtime
exception and affect the cluster. In fact, it might break down an HBase daemon or
node. After changing the value, we need to reboot the system.

Summary
In this chapter, we discussed components of HBase and its subcomponents. We
also discussed various initial configurations related to the network, OS, and so on,
which are good to configure at the beginning for better operation and performance
of an HBase cluster. As per the system requirements, we can say that we will have
a Hadoop cluster running, where NameNode will have more memory to hold
metadata, average processing power, and storage. These are not really required by
NameNode because it serves requests, and all the other operations such as read/write
and processing take place at the slave nodes. For the slave nodes, we need to have
more memory in memory files—more dedicated storage defines the storage capacity
of a node, and hence the cluster, and it also means a high processing time because the
real processing takes place on these machines.

We also discussed the prerequisites and basic requirements before building up. In
the next chapter, we will start building the cluster, and will discuss advance and
configuration parameters. We will start building the Hadoop and HBase clusters
and also learn how to build a live cluster that can run in different modes.

Let's Start Building It
This chapter will guide users to get started and have a complete configured cluster.
It will also show the ways in which they can verify and test the cluster. We will
download and install various components such as Java, and will see configurations
related to Hadoop/HBase such as DNS configuration. Then, we will discuss the
installation and configuration of Hadoop, HBase, and other components such as
ZooKeeper, and we will go through various files involved in the configuration
process. We will also learn to configure Apache Hadoop/HBase and Cloudera
Hadoop. We have a small section in this chapter that will help you configure
Hadoop on Windows.

In this chapter, we will cover the following topics:

• Installing and configuring SSH
• Installing and configuring NTP
• Configuring Apache Hadoop
• Configuring Apache HBase
• Installing and configuring ZooKeeper
• Installing Cloudera Hadoop and HBase

Downloading Java on Ubuntu
The following are the links from where we can download the required files:

• Java: http://www.oracle.com/technetwork/java/javase/downloads/
index.html

• Apache Hadoop: http://www.apache.org/dyn/closer.cgi/hadoop/
common/

• Apache HBase: http://apache.mirrors.hoobly.com/hbase/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://apache.mirrors.hoobly.com/hbase/

Let's Start Building It

[62]

• Cloudera: The following are the different versions you can opt for:
 ° CDH4: http://www.cloudera.com/content/cloudera-content/

cloudera-docs/CDH4/latest/CDH-Version-and-Packaging-
Information/cdhvd_topic_7.html

 ° CDH5: http://www.cloudera.com/content/support/en/
documentation.html

First, we need to know whether our installed OS is 64 bit or 32 bit; we can check this
using the uname –a command.

If you use a 32-bit OS, the output will be as follows:

Linux infinity 3.5.0-17-generic #28-Ubuntu SMP Tue Oct 9 19:31:23 UTC
2012 i686 i686 i386 GNU/Linux

I686 denotes 32 bit

If you use a 64-bit OS, the output will be as follows:

Linux infinity 3.5.0-17-generic #28-Ubuntu SMP Tue Oct 9 19:31:23 UTC
2012 x86_64x86_64x86_64 GNU/Linux

Here x86_64* will denote 64-bit

Alternatively, you can use the file /sbin/init command to check the version
of OS.

The 32-bit OS will give the following output:

/sbin/init: ELF 32-bit LSB shared object, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0xa0c5c22661e7197bbb64908bafd674ec2e782bb6, stripped

The 64-bit OS will give the following output:

/sbin/init: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0xa0c5c22661e7197bbb64908bafd674ec2e782bb6, stripped

Java installation can always be verified issuing the java –version command. By
default, it displays the version of installed Java; if Java is not installed, this command
will show the output as not found. It is advisable that we remove OpenJDK and
install Oracle JDK.

After we get information about the version of OS, we can download the equivalent
Java version, either 64 bit or 32 bit, from the link mentioned earlier.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH-Version-and-Packaging-Information/cdhvd_topic_7.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH-Version-and-Packaging-Information/cdhvd_topic_7.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH-Version-and-Packaging-Information/cdhvd_topic_7.html
http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

Chapter 3

[63]

It is suggested that we use a 64-bit OS for Hadoop and other
ecosystem components.

We will consider 64-bit OS and JDK 8. You can always go with lower or higher
versions of Java, but it must be 1.6 or above. Now, let's see the installing process
of JDK on Ubuntu and CentOS.

The following are the installation steps of Java on Ubuntu using GUI (we configure
it on Ubuntu here):

1. To download the latest version of Java, visit http://www.oracle.com/
technetwork/java/javase/downloads/index.html. You will be directed to
the web page, which is similar to the one shown in the following screenshot:

Otherwise, you can use the following link to download the version of Java,
the one I am using, JDK 8:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

2. Once JDK is downloaded, we can proceed to install and configure it. Though
we downloaded Java using a GUI, we'll proceed to configure it using a
command line.
Now, let's start installing Java. We will use the downloaded
jdk-7u45-linux-x64.tar.gz file.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Let's Start Building It

[64]

Note that the filename varies according to which
downloaded version of Java you are using.

3. Enter the following command to remove OpenJDK from the system. It's up to
us whether we leave OpenJDK or remove it; if there is any component on the
machine that requires OpenJDK, we can leave it as it is, or remove it using
the following command.
sudo apt-get purge openjdk*

4. Create a directory for Java installation, using the following command:
sudo mkdir -p /usr/local/Java

5. Copy the downloaded compressed TAR file to the /usr/local/java
directory:
sudo cp -r jdk-7u45-linux-x64.tar.gz /usr/local/java

6. Change the current directory to the Java directory we created in the
previous step:
cd /usr/local/java

7. Extract the compressed file to /usr/local/java:
sudo tar -xvzfjdk-7u45-linux-x64.tar.gz

8. List out the extracted file using the ls command; it will display JDK or
another name, according to the downloaded file.

9. Rename the JDK file to jdk, as follows:
mv jdk-7u45-linux-x64 jdk

10. Create the Java_Home environment variable to point to the JRE
installation directory:
JAVA_HOME=/usr/local/java/jdk

11. Add the path of the Java home directory to the PATH variable of the system:
PATH=$PATH:$HOME/bin:$JAVA_HOME/bin

12. Add JRE_HOME to the variable:
JRE_HOME=/usr/local/java/jdk/jre

13. Add the path of the JRE directory to the system path:
PATH=$PATH:$HOME/bin:$JRE_HOME/bin

Chapter 3

[65]

14. Add the runtime Java home:
export JAVA_HOME

15. Add the runtime JRE home:
export JRE_HOME

16. Update the entire path with Java and JRE:
export PATH

17. To make these variables permanent and global, we can add commands from
step 10 to 16 in the /etc/profile or .bashrc file for the current user. If
we execute these commands on a command line, the variables will be set as
temporary variables, and once the system is restarted, they will be lost. So, it
is always recommended that these commands be added to the specified file
for consistency.

18. Now, the following command lines will make a Ubuntu system aware of
where Java is installed and set it as the Java alternative. This will enable
us to talk to Java by just typing in Java, javac, or javws.
The following command will set an alternate Java available on the system:
sudo update-alternatives --install "/usr/bin/java" "java"
"/usr/local/java/jdk/jre/bin/java" 1

The following command will set the javac path:
sudo update-alternatives --install "/usr/bin/javac" "javac"
"/usr/local/java/jdk/bin/javac" 1

The following command will set the javaws path:
sudo update-alternatives --install "/usr/bin/javaws" "javaws"
"/usr/local/java/jdk/jre/bin/javaws" 1

The following lines make Java (that we are configuring) the default for
the system:
sudo update-alternatives --set java /
usr/local/java/jdk/jre/bin/java

The following command will set the Java runtime environment for the
system:
sudo update-alternatives --set javac
/usr/local/java/jdk/bin/javac

The following command will set the Java compiler for the system:
sudo update-alternatives --set javaws
/usr/local/java/jdk/bin/javaws

Let's Start Building It

[66]

The following command will set Java Web Start for the system:
sudo update-alternatives --set javaws
/usr/local/java/jdk/jre/bin/javaws

The following command will reload the variable set in the profile file:
/etc/profile

The following command will check whether Java is installed properly:
java –version

If the installation is a success, it should give the installed Java version as
the output. Once you get the correct Java version as the output, you have
successfully installed Java.

Just like the way we installed Java in the preceding steps, we can install Java on
CentOS, Red Hat, or Debian, but if needed, we can install Java using the .rpm
package on CentOS/Red Hat, which is a bit easier and cleaner to install. Let's see
this too:

1. Download the .rpm package of JDK from the following link:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

2. Once downloaded, we can execute the following commands to install it:
If you are on Debian, the following command is used to log in to root
for installation:
sudo -

If you are on Red Hat, the following command is used to log in to root for
installation:
sudo su -

Now, type in the filename of the .rpm package you downloaded:
rpm –Uvhjdk-8-linux-x64.rpm

Set a Java alternative using the following command:
alternatives --install /usr/bin/java java
/opt/jdk1.6.0_37/jre/bin/java 20000

The following command will output a list of available Java versions; here, we
can select the default Java version that we installed:

alternatives --config Java

3. Then, type in Java –version to verify the successful installation of Java.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Chapter 3

[67]

After the successful installation of Java, we can move forward to configure and
install SSH in Ubuntu and Red Hat distros. We already discussed what SSH is in the
previous chapter, now let's see how to install and configure it to make the Hadoop/
HBase nodes communicate with each other. We will set a passwordless SSH so that
the scripts are shipped with Hadoop and HBase.

It is not compulsory to set up SSH as these processes can run and communicate with
each other as they can communicate using HTTP or RPC with SSH when the daemon
process is started. However, we will install SSH such as start-all.sh, start-dfs.
sh, start-mapred.sh, and start-HBase.sh as it helps us to administrate daemons
easily from a single node. We will also install scripts that come with Hadoop/HBase
and we will need a passwordless setup to communicate with all machines in the
cluster and start or stop processes from a single point, that is, from the NameNode
or HMaster node. So, let's set up SSH now.

Considering host configurations
Host and DNS configurations play a very import role in communication among
the components of Hadoop and HBase. So, we need to have the host domain name
forward and backward resolvable. This section will cover the different methods to
consider for host configurations.

Host file based
First, we set a hostname for the machine; we change the hostname of the node by
changing it into a hostname file, which is found in the /etc/ directory. We can
use a command or edit the hostname file.

Command based
The following command sets the new hostname for the system, but if we want to
make it persistent, we need to open the hostname file from the /etc/ directory
and change it in the file:

sudo hostname <name we need to give for the system>

Have a look at the following example:

sudo hostname slave1.infinity.com

Let's Start Building It

[68]

File based
Open the file with the following command:

vi /etc/hostname

Alternatively, you can directly use the following command to give a hostname we
want to set, for example, infinity1.techinfinity.com:

echo [hostname] > /etc/hostname

Likewise, we can set the hostname in this file for all the nodes we need to have
in our cluster.

After changing it in the host file, we need to open the hosts file in the /etc/
directory, which is used for file-based networking. When we open this file
using vi /etc/hosts, we will find something like the following lines:

127.0.0.1 localhost

127.0.1.1 <some default name>

We need to change these lines to:

127.0.0.1 localhost

#127.0.1.1 <some default name>

192.168.0.2 slave1.infinity.com

Use ifconfig to get the IP address assigned to your Ethernet adapter. You can use
ifconfig –a. This will display all the addresses assigned to your machine; just
check for the Ethernet. It is better that you assign a static IP to your system because
dynamic IP addresses tend to change on reboot. After assigning an IP address and
hostname to the file, we add all other machines' IPs and hostnames to all host files in
all the machines in the cluster so that they can communicate with each other. Follow
this method to set a static IP to the machine:

1. Type in the following command to open a file:
sudo vi /etc/network/interfaces

2. Once the file is opened, make the following changes:
auto eth0

ifaceeth0inet static

address 192.168.0.2

netmask 255.255.255.0

network 192.168.0.0

Chapter 3

[69]

broadcast 192.168.0.255

gateway 192.168.0.1

dns-nameservers 192.168.0.1

3. Make changes according to your network settings. You can also make
changes using GUI in Ubuntu. Have a look at the following screenshot
for reference:

4. In the Network Connections window, click on Edit... and enter the
information accordingly.

5. After making these changes, we can reboot the system or restart the
networking services. These changes should be made in all the machines in
the cluster. Keep in mind that you need to provide a unique name for all the
machines. Restart the networking service using the following command:
sudo /etc/init.d/networking restart

For Red Hat/CentOS operating systems, it can be done in the
same way.

6. So, once we finish configuring a hosts file, we will have a hosts file on
different systems, as follows:

127.0.0.1 localhost

#127.0.1.1 <some default name>

192.168.0.2 slave1.infinity.com

192.168.0.3 slave2.infinity.com

Let's Start Building It

[70]

192.168.0.4 slave3.infinity.com

192.168.0.5 slave4.infinity.com

192.168.0.6 slave5.infinity.com

Once we successfully set up the hostname and IP address correctly, a lot of problems
can be avoided during cluster setup.

DNS based
For DNS-based host configurations, we need to have the IP addresses of all machines
and equivalent hostnames. Then, the IP address and hostname pair must be added
to the DNS server. For this, we need to have a DNS server that resolves the host
to IP. Setting up a DNS server is out of the scope of this book, refer to https://
help.ubuntu.com/community/Servers#DNS or https://access.redhat.com/
site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Identity_
Management_Guide/Working_with_DNS.html for details.

Installing and configuring SSH
In this section, we will look at the steps to install and enable a passwordless SSH. It's
always better that you have a dedicated Linux user for Hadoop and HBase processes.
Let's create a user for Hadoop and HBase and name it hbasehadoop. We will use this
user to start and stop all Hadoop/HBase daemon processes. Once the user is created,
we can generate SSH for the same and set up a passwordless SSH on all machines.
This user must exist on all machines in the cluster. Also, this user must be provided a
root access if we need to install SSH using this user, else we can create a simple user
just to start and stop the process, and we can install using the existing root user. The
following figure will give you a clear picture:

https://help.ubuntu.com/community/Servers#DNS
https://help.ubuntu.com/community/Servers#DNS
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Identity_Management_Guide/Working_with_DNS.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Identity_Management_Guide/Working_with_DNS.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Identity_Management_Guide/Working_with_DNS.html

Chapter 3

[71]

To add a user, the current user must be a root user. So, switch to the root user using
the following command before setting up a password:

useraddhbasehadoop

To set a password for the hbasehadoop user, use the following command:

passwdhbasehadoop

From now on, we can use this user to start, stop, and configure Hadoop/HBase.

Installing SSH on Ubuntu/Red Hat/CentOS
Install SSH if it's not installed already. Use the following commands for this:

sudo apt-get install openssh-server

The preceding command will install an SSH server.

sudo apt-get install openssh-client

The preceding command will install an SSH client.

Once this installation successfully finishes, we can start configuring SSH.

Configuring SSH
Follow these steps to configure SSH:

1. The following command will generate a key-pair file in the current
user's .ssh folder, which is in the home folder for the user. Just press
Ctrl + H to show hidden files:
ssh-keygen -t rsa -P ""

2. After issuing this command, just keep pressing Enter; don't enter the filename
or anything else. It will show the following output:
Generating public/private rsa key pair.

3. Next, the Linux terminal will ask you to enter the file in which to save the
key; just press Enter.

4. After this, you will get the shell prompt back. Type in the following
command:
cat $HOME/.ssh/id_rsa.pub>> $HOME/.ssh/authorized_keys

Let's Start Building It

[72]

This will create authorized_keys in the .ssh folder and put your public key
in it so that you just need to type in sshlocalhost the next time, and it will
log in to localhost without asking for the password.

5. Change the permission of the .ssh directory to 600 for security. This
directory will be found in the home directory of the user for which key
has been generated.

6. Once a public/private key pair is generated, we need to copy and paste this
public key to the authorized_keys file on the machine, which we need to
log in to or start/stop the process without a password.

Installing and configuring NTP
In this section, we will install and configure NTP on Ubuntu and CentOS/Red Hat.

First, we will look at the steps to install and configure NTP on Ubuntu. Ubuntu
comes preinstalled with ntpdate, and this service runs automatically and updates
time data at system startup. If we need a more frequent update, we can set up a cron
job for the same. For this, we can create a script file such as updateTimeDate.sh and
include the following lines:

#!bin/sh
ntpdate ntp.ubuntu.com

Set this as a crontab job to update the system date more frequently, keep in mind
that this file must be the same, and note that the frequency of crontab must be the
same for all the nodes in the cluster.

We can use the sudontpq –np command to check if the NTP service is
running properly.

It can also be installed using the following commands, if it is not already installed:
sudo aptitude update

sudo aptitude install ntp

The aptitude command was formerly used as apt-get.

On CentOS or Red Hat, we need to install the NTP client and set an NTP server
to keep the time and date updated throughout the cluster. The following are the
commands using which we can install and configure an NTP client service on nodes:
sudo yum install ntp

sudo /sbin/chkconfigntpd on

Chapter 3

[73]

The first command will install an NTP service, and the second command will enable
it to run on the boot-up process. If needed to be more frequent, a cron can be written
for the same. Once the setup is complete, verify them as follows:

• Java: Use the java -version command. This must give a JDK version that
we installed.

• SSH: Test SSH by connecting to all machines, for example, ssh <hostname>.
If you can connect to the machine without using a password, the SSH setup
is successful. If you get any errors, delete the .ssh directory in the home
directory, regenerate the key again using the aforementioned method,
and reboot your machine once.

• NTP: Check the time of all the systems. There must not be more than a
30-second difference between the times of the different machines.

• DNS/host file: Use commands such as nslookup, dig, and ping for
correctness and reachability of the machines in the cluster. Check this
using both the IP and hostname.

Verify twice, and let's move forward.

Performing capacity planning
Hadoop and HBase were developed to run commodity hardware so that we can
have hundreds of commodity machines and configure a Hadoop/HBase cluster. As
data becomes costlier or important, we prefer some good machines so as to provide
a robust cluster operation.

We have two scenarios—one in which we have many low-end machines, and
another in which we have less number of machines for a cluster to be configured. In
the first scenario, what we can do is set the replication factor more as we have many
machines with storage and memory, and by setting a higher replication of data,
we can make sure that data is available even if a machine fails frequently. For this
scenario, we must have a good configuration machine that hosts NameNode, because
it's a crucial component of the cluster and a proper back-up plan for metadata. In
the second scenario, we might have less number of machines, so it is suggested
that these machines must be well configured.

Let's Start Building It

[74]

The following table shows the typical configuration requirements for machines for a
cluster, which also depends upon the use case or the storage requirement of the user:

CPU Number of nodes Memory Storage Network
8-24
cores

• One primary node
• One HMaster
• One secondary node
• One back-up HMaster
• One JobTracker
• Five to n nodes,

TaskTracker, and
RegionServers

The number of nodes depends
upon the attached storage and
amount of data needed to be
stored. It is always suggested
to have more number of nodes
with an average amount of
storage attached.

8 GB to 128
GB of memory
is required.
This depends
upon the kind
of processing
needed; if
more primary
memory is
available,
processing
will be
faster. It also
depends upon
the daemon
processes we
need to run on
each node.

Storage
depends on
the number
of nodes and
data to be
stored. We
should have a
higher number
of nodes with
low disk
storage, for
example, 10
nodes with 2
TB of storage
attached.

A fiber-cable-
based network
will be great, but
a cable-based
network with
faster switches
will also work.
Machines in
cluster, if kept on
more than one
rack, are always
better. Generally,
we should
have 1 GBPS
to 10 GBPS for
better network
transfers and
reduce network
congestion.

For better configuration, we can have these HBase/Hadoop daemons hosted on
separate machines. It all depends on the use case of the user and the type and
amount of data to be stored and processed on the cluster. It can be calculated as:
if we have a replication of 3 and 2 TB of data is to be stored, we must have around
10 TB of storage available in the cluster, around 6 TB for storage, and the rest
for processing and intermediate temporary files, for which we can have either 5
DataNodes with 2 TB each or 10 DataNodes with 1 TB each, which depends on
user preference.

Installing and configuring Hadoop
We will consider Hadoop installation using two methods: using a TAR file on
Ubuntu and using the .rpm file on Red Hat distros. We will have a basic, running
Hadoop cluster, and then we will set up an HBase cluster in detail. Execute the
following steps:

1. Download Hadoop v2, the stable version of which is available at http://www.
webhostingjams.com/mirror/. If you want a version other than the one we
use here, you can always visit http://www.webhostingjams.com/mirror/
apache/hadoop/common/ and download the version that you want to install.

http://www.webhostingjams.com/mirror/
http://www.webhostingjams.com/mirror/
http://www.webhostingjams.com/mirror/apache/hadoop/common/
http://www.webhostingjams.com/mirror/apache/hadoop/common/

Chapter 3

[75]

2. We can download Hadoop using the wget command, as follows:
Wget <full link of file which you get by clicking on the link
and getting copy link address in web browser>

Alternatively, we can also open this link in a browser and download it. Once
this file is downloaded, we need to extract and copy it to the location where
we need to keep it.
We can find the configuration files that need to be changed in the Hadoop-
<version> directory. All configuration files that need to be changed can
be found at Hadoop-<version>/etc/hadoop. We have two options for
configuration: one in which we can keep the files in the same structure it
exists and make changes, and another in which we copy the file to the
/etc directory of the file system and create a symbolic link in the current
directory. For a start up configuration, we will keep it as it is and start
the configuration.

3. Once extracted, we have a folder structure as shown in the next screenshot:

The left-hand side of the preceding screenshot shows the older directory structure of
Hadoop Version 1 or previous versions, and the right-hand side shows the directory
layout of Version 2 or above.

Let's Start Building It

[76]

Let's discuss some important directories from the preceding screenshot briefly,
which are important to be considered while configuration and working:

• bin: This directory contains Hadoop binary files
• conf: This directory contains configuration files
• lib: This directory contains JAR files or Hadoop precompiled library files
• sbin: This directory exists in the newer versions of Hadoop and contains

scripts to start/stop clusters and scripts for some other administrative tasks
• etc: This is the directory in the newer versions of Hadoop containing

configuration files

For an older version of Hadoop, we need to change the
configuration files inside the conf directory and start/stop
cluster using files in the bin directory. In the newer versions of
Hadoop, the configuration needs to be done in the etc/hadoop
directory, and start/stop processes can be initiated using the
scripts found in the sbin directory.

Now, let's start building the Apache Hadoop cluster. The following are the steps
to install and configure Apache Hadoop:

1. To download Hadoop, change the directory to the desired location
as follows:
Cd ~/Downloads

2. Get Hadoop using the following command:
wget http://www.carfab.com/apachesoftware/hadoop/common/
stable/hadoop-2.2.0.tar.gz

Refer to the following screenshot:

Chapter 3

[77]

3. Once this file is downloaded, let's copy it to some location and extract it:
mv hadoop-2.2.0.tar.gz ~/hbinaries

tar –xvzfhadoop-2.2.0.tar.gz

mv hadoop-2.2.0 hadoop

cd ~/hbinaries

Have a look at the next screenshot:

4. Once a file is downloaded, extracted, and moved to the desired location,
we can start configuring Hadoop. So, when we list them out, we find the
following directory structure. We need to go to the etc folder where the
configuration files lie:

Let's Start Building It

[78]

5. The following two categories of files are found in etc/hadoop:

 ° Default: These are the default files with default values; we need not
touch or edit these files:
core-default.xml: This contains common default properties for the
whole cluster
hdfs-default.xml: This contains HDFS-related default settings
yarn-default.xml: This contains the YARN framework-related
default settings
mapred-default.xml: This contains MapReduce-related
default settings

 ° Site-specific files: These are the files where we make changes, and
the values in these files will override the values in default files:
core-site.xml: The values given in this file override the core-
default.xml settings
hdfs-site.xml: The values given in this file override the hdfs-
default.xml settings
yarn-site.xml: The values given in this file override the yarn-
default.xml settings
mapred-site.xml: The values given in this file override the mapred-
default.xml settings

We have some runtime files where we need to make changes, such as the hadoop-
env.sh file that runs as an initial script for the Hadoop start up process. In this file,
we set runtime variables such as a Java path and heap memory settings, and we
execute the Java processes.

So, we can think of the *-default files as the files that are by default shipped with
Hadoop with preset parameters and values. If we need to change some parameter
value, we can add it to site-specific files such as *.site.xml.

These files are in the XML format, they start and end with a <configuration>
tag, and all parameters lie in between the two tags. Inside <configuration>, we
have <property><name>{name of parameter}|</name><value>{value of
the parameter}</value><description>{explanation about the tag}</
description>.

Chapter 3

[79]

The following is a sample configuration file:

Hadoop runs in three modes. We will not discuss these in detail, only briefly so that
we can understand the mode of operations:

• Standalone mode: This is the default mode that can run without any
configuration changes as it is downloaded, extracted, and initiated. This has
minimal configuration requirements. It does not use a distributed file system,
but a local file system, and it does not initiate any Hadoop daemon processes.
This mode is not suitable; it is just to check Hadoop testing.

• Pseudo-distributed mode: This can be seen as a cluster on a single
machine. In this mode, Hadoop virtually runs as a cluster, but not on many
machines. In this mode, Hadoop uses a distributed file system and runs
all Hadoop daemons, and all these daemons run under a single JVM. This
can be used to visualize a Hadoop cluster, testing purpose, code testing, or
testing environment.

• Fully distributed mode: In this mode, the cluster is spread on many nodes
as master and slave nodes. The daemons of Hadoop run on separate
machines and they are best for a production environment. Each machine
will have its own JVM and daemons (such as NameNode and DataNode)
on separate machines.

Configuring pseudo- and fully distributed configuration is almost the same. Once
configured as pseudo, we can distribute configuration files to other nodes, with some
changes in configuration files, and can make it a fully distributed cluster.

Let's Start Building It

[80]

Now, let's make changes in the required files. For this, what we can do is open these
files in any text editor such as gedit or nano, or we can use command-line editing
tools such as vi or vim.

Make changes or put values according to your machine name; here,
it is listed as per the current machine configuration.

Here, we will configure the newer version (V2) of Hadoop, which uses YARN for the
MapReduce framework for configuration of older versions (1 or lower) of Hadoop
and HBase. Follow these links to learn how to configure it step by step:

https://www.youtube.com/watch?v=Mmqv-CvSTaQ

http://helpmetocode.blogspot.com

Some configurations parameters are mentioned in the following sections.

core-site.xml
The core-site.xml configuration file overrides the default values for the core
Hadoop properties.

The following is the configuration for Hadoop newer versions:

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://infinity:9000</value>
 <description>Namenode address</description>
 </property>
</configuration>

The following is the configuration for Hadoop older versions:

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://infinity:9000</value>
 <description>Namenode address</description>
 </property>
</configuration>

The hostname might vary according to your machine name, and you can give any
unused port number.

https://www.youtube.com/watch?v=Mmqv-CvSTaQ
http://helpmetocode.blogspot.com

Chapter 3

[81]

hdfs-site.xml
The hdfs-site.xml file contains the site-wide property to enable/disable the
features such as various paths and tuning parameters. You will see the following
code in this file:

<configuration>

 <property>
 <name>dfs.namenode.name.dir</name>
 <value>/disk1/namenodemetacopy1,/disk2/amenodemetacopy2
 </value>
 <description>This is the directory where hadoopmetadata will
 be stored, always better to have more than one copy of
 metadata directory for robustness</description>
 </property>

 <property>
 <name>dfs.blocksize</name>
 <value>134217728</value>
 <description>This is block size of Hadoop that depends on data
 you are hosting. We can keep it from 6</description>
 </property>

 <property>
 <name>dfs.datanode.data.dir</name>
 <value>/disk1/datadirectory1,/disk1/datadirectory2</value>
 <description>This parameter defines where actual data will be
 stored on DataNodes. We can give one or more directory paths
 separated by commas. There should be proper permission on the
 directory which we specify here.</description>
 </property>

 <property>
 <name>dfs.replication</name>
 <value>5</value>
 <description>This defines the replication factor for not-so-
 valuable data and huge amount of data. We can keep it lower and
 for costly data, we can keep it higher. This defines how many
 copies of each block of a file will be kept on the cluster and
 this is how reliably the data will be stored if machines
 fail.</description>
 </property>

Let's Start Building It

[82]

 <property>
 <name>dfs.namenode.handler.count</name>
 <value>200</value>
 <description>Defines number of NameNode threads higher value
 means more datanodes.</description>
 </property>

</configuration>

yarn-site.xml
The YARN framework-related configuration is stored in the yarn-site.xml file.
Have a look at the following code:

<configuration>

 <property>
 <name>yarn.resourcemanager.address</name>
 <value>infinity:9002</value>
 <description>This is host where yarn manger will be hosted
 </description>
 </property>

 <property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>infinity:9003</value>
 <description>Yarn scheduler address</description>
 </property>

 <property>
 <name>yarn.resourcemanager.admin.address</name>
 <value>infinity:9004</value>
 <description>Management interface of resource manager
 </description>
 </property>

 <property>
 <name>yarn.resourcemanager.resource-tracker.address</name>
 <value>infinity:9005</value>
 <description>resource manager resource tracker interface
 </description>
 </property>

Chapter 3

[83]

 <property>
 <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class
 </name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 <description>Specifies mapreduce framework to be used
 </description>
 </property>

 <property>
 <name>yarn.scheduler.maximum-allocation-mb</name>
 <value>1000</value>
 <description>Max memory forschedular</description>
 </property>

</configuration>

mapred-site.xml
The mapred-site.xml file contains the MapReduce framework-related
configurations. Have a look at the following code:

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 <description>Framework to be used for map reduce</description>
 </property>
 </configuration>

There are many other configuration parameters that can be found in the *-default.
xml files and added to the *-site.xml files to override the default parameters. We
will discuss more parameters and their optimal values in Chapter 6, HBase Cluster
Maintenance and Troubleshooting, and Chapter 7, Scripting in HBase.

hadoop-env.sh
The hadoop-env.sh file contains the environment and runtime variables, which is
as follows:

export JAVA_HOME=<path of Java here>
export HADOOP_CONF_DIR=<hadoopconf directory path here>
export HADOOP_HEAPSIZE=<amount of memory available to jvm>

Let's Start Building It

[84]

yarn-env.sh
The yarn-env.sh file contains the YARN framework-related runtime and
environment configuration:

export JAVA_HOME=<path of Java here>
export YARN_CONF_DIR=<configuration conf directory of yarn/hadoop>
JAVA_HEAP_MAX=-Xmx1000m

Slaves file
The slaves file contains the list of hosts where DataNode daemons will run. The
following are the host names of DataNode machines:

datanode1
datanode2
datanode3

Add the nodes where you want to host DataNode services.

After all these changes are made, verify the paths and parameters in these files. Once
verified, we can move forward to start Hadoop services. Once all Hadoop services
start successfully, we can move forward to configure HBase.

Hadoop start up steps
Let's get started with Hadoop using the following steps:

1. Format NameNode.
Before starting up the Hadoop daemons, we need to format NameNode. This
is like formatting a new disk. We know that just as we bring a new disk drive
and format it to a file system (FAT, NTFS, ExtFS), we format NameNode.
This process creates a logical layer of HDFS on top of the file system.

<hadoop directory path> can be added to the system path
to call the hadoop command directly. Follow http://www.
cyberciti.biz/faq/unix-linux-adding-path/ for
various options.

The following line will format NameNode and make it available to read and
write files from HDFS. This command prepares the HDFS file system:

<hadoop directory path>/bin/hdfsnamenode –format
<cluster name>

http://www.cyberciti.biz/faq/unix-linux-adding-path/
http://www.cyberciti.biz/faq/unix-linux-adding-path/

Chapter 3

[85]

2. Once NameNode is formatted successfully without any errors, let's start the
Hadoop daemons:
sbin/hadoop-daemon.sh start namenode

sbin/hadoop-daemons.sh start datanode

sbin/yarn-daemon.sh start resourcemanager

sbin/yarn-daemons.sh start nodemanager

sbin/yarn-daemon.sh start historyserver

3. Once all the processes start, we can check it using the following command:
ps –ef|grep Java

Use the following command found in <Java home>/bin/jps:

Jps

4. For easy access of jps, we can create an alias and just type jps. It will
display the Java process running; jps stands for Java process. As all
Hadoop daemons are Java processes, jps displays the daemons running:
alias jps=<Java path>/bin/jps

Now, we can directly access the jps command.

5. To stop the Hadoop cluster, we can use:

sbin/hadoop-daemon.sh stop namenode

sbin/hadoop-daemons.sh stop datanode

sbin/yarn-daemon.sh stop resourcemanager

sbin/yarn-daemons.sh stop nodemanager

sbin/yarn-daemon.sh stop historyserver

Now, let's move forward and configure HBase.

Configuring Apache HBase
As we have already set up Java, SSH, NTP, DNS, and Hadoop, let's configure HBase.
HBase runs in these modes:

• Standalone: This mode uses file systems to store tables and data, not HDFS.
All the daemon processes run under a single JVM. This mode is suitable for
testing purposes, but if you want to have real power of HBase, you need to
configure it with Hadoop.

Let's Start Building It

[86]

• Distributed: This can be divided into the following two modes:

 ° Pseudo-distributed: This uses HDFS file systems. All daemon
processes run under a single JVM on a single machine. This is best
for testing purposes; it also provides the power of Hadoop and can
be configured with fewer resources on a single machine.

 ° Fully distributed: This uses HDFS as an underlying file system.
All of its daemon processes run under different JVMs on different
machines. This mode is best for the production environment.

Configuring HBase in the standalone mode
Configuring HBase in a standalone mode is simple since we don't have to make
many configuration changes. We can just download the TAR file, extract it,
and start the daemons. HBase configured in this mode will not use HDFS, but
file://, to store data files on top of the local file system.

Download the HBase binary from http://apache.mirrors.pair.com/hbase/.
Here, we will use the latest compatible version of HBase. Refer to the compatibility
table to understand which HBase we need to download for which Hadoop.

Use the following command to download the desired HBase binary:
wget http://apache.mirrors.pair.com/hbase/<version to
download .tar>

Once the download is complete, extract the TAR file and move it to a location where
you want to configure it, such as the ~/hbinaries/hbase path:

tar –xvzfhbase-0.94.18.tar.gz //extract tar

mv hbase-0.94.18 hbase //rename to hbase

mv hbase ~/hbinaries/hbase //move to configuration location

cd ~/hbinaries/hbase // go to ~/hbinaries/hbase directory

http://apache.mirrors.pair.com/hbase/

Chapter 3

[87]

The following is how the terminal window looks like:

Once extracted, move the file to the desired location to start the process as it is. It will
store the tmp files, log files, and other files to the default locations, which are defined
in the *-default.xml file, mostly in the /tmp or current directory. This is why the
standalone mode is not advisable as everything gets lost once the system is started.
On every reboot or start up process, the content of the /tmp directory is removed.

This mode can be used version of to get familiar with the directory structure, start
up HBase, and run some basic HBase commands. Now, let's configure HBase in the
distributed mode.

Configuring HBase in the distributed mode
We can configure a pseudo-distributed mode and distribute the configuration files
to nodes that we like to have in the cluster where we need to run RegionServers.
So, let's configure HBase in the distributed mode.

The following are the files that need to be changed or configured:

• hbase-site.xml: This is an HBase site-specific file. We can add
configurations related to the HBase root and log directories in this file.
All default settings from the hbase-default.xml file can be overridden
in this file.

• hbase-env.sh: We can define runtime variables such as Java path,
RegionServer-related options, and JVM settings in this file.

• regionservers: This file contains all the node names where we want to host
or run our RegionServer daemon.

Now, let's set the values and start configuring.

Let's Start Building It

[88]

hbase-site.xml
Let's see the configuration we need to add in the hbase-site.xml file:

<configuration>

 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://infinity:9000/hbase</value>
 <description>Here, we need to enter Hadoop NameNode address
 followed by the hbase directory name where hbase files are to be
 stored.</description>
 </property>

 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 <description>This parameter decides whether HBase will run in
 local mode or distributed mode.</description>
 </property>

 <property>
 <name>hbase.tmp.dir</name>
 <value>/mnt/disk1/tmp</value>
 <description>Using this parameter, we specify tmp directory for
 HBase.</description>
 </property>

 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>infinity</value>
 <description>Using this parameter, we can specify ZooKeeper host
 machines addressee.</description>
 </property>

 <property>
 <name>hbase.zookeeper.property.clientPort</name>
 <value>2081</value>
 <description>port at which client can connect to zookeeper
 </description>
 </property>

</configuration>

Chapter 3

[89]

HBase-env.sh
We can define runtime parameters in this file. This file will include the following lines:

export JAVA_HOME=<path of Java here>

In the preceding line, we mention the Java path.

export HBASE_HEAPSIZE=8000

In the preceding line, we mention the heap memory size.

export HBASE_MANAGES_ZK=true

The preceding command will be false if it is in the fully distributed mode and
ZooKeepers are installed as separate instances on different machines. For the
pseudo-distributed mode, or if we need to manage HBase's built-in ZooKeeper, we
need to keep it to true; if we have a separate ZooKeeper, we can make it false.

regionservers
In this file, we list all the servers we need to run RegionServers:

infinity

All set, now let's start HBase. This is in the pseudo-distributed mode, so Hadoop
must run first. Start the Hadoop processes, and then we will start HBase:

bin/start-hbase.sh

In the preceding command, we run the script that will start all the required
processes.

Alternatively, we can start HBase in the following ways:

1. Start the ZooKeeper:
bin/hbase-daemon.sh start zookeeper

2. Start the HMaster:
bin/hbase-daemon.sh start master

3. Start the RegionServer:

bin/hbase-daemon.sh start regionserver

This will start HBase in the pseudo-distributed mode with all the processes running
on the same server. If we need to make HBase fully distributed, we will have
to add all the DataNode addresses to a regionserver file, wherein we will run
HBase RegionServers.

Let's Start Building It

[90]

There is a small difference between the pseudo-distributed and fully distributed
modes. First, we will add the following settings to hbase-site.xml and add the
hostnames of DataNode where we need to host our RegionServer. In this setup, we
will have separate instances of ZooKeeper (odd number). Start a master server on the
NameNode server, RegionServers on different DataNodes, and ZooKeeper processes.

There are two ways to start it; if a passwordless SSH is configured and the master
server is able to connect to all DataNodes, we can use start-hbase.sh, which will
start HMaster on NameNode and RegionServers on the listed DataNodes.

We must first start all ZooKeepers, and then we can run the start-hbase.sh script.
Another method is to start processes using hbase-daemon.sh to start HMaster on
the NameNode server and RegionServer on DataNodes, for which we need to run
this script in the same way we called in starting hbase in pseudo mode.

A few settings that we need to add or change in hbase-site.xml are as follows:

<property>
 <name>hbase.zookeeper.quorum</name>
 <value>zkhost1:2181,zkhost2:2181,zkhost3:2181</value>
 <description>List of zookeeper instances</description>
</property>

<property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/mnt/disk1/zookeeperData</value>
 <description>zk data directory path</description>
</property>

We also need to add DataNode addresses in the regionserver file, as follows:

datanode1
datanode2
datanode3

Change the line export HBASE_MANAGES_ZK=true to export HBASE_MANAGES_
ZK=false in hbase-env.sh file. This will instruct HBase not to use the inbuilt
ZooKeeper as there exist separate ZooKeeper instances. The preceding configuration
in hbase-site.xml will tell where ZooKeeper instances are running, and data
directories for the ZooKeeper location are defined by the second parameter.

After making these changes, we can restart the cluster, and these settings will
be loaded.

Chapter 3

[91]

Once all these settings are complete, we need to copy the configuration files to other
nodes too.

Now, let's see how to install and configure ZooKeeper instances. It is advisable that
we configure odd number of ZooKeeper instances. Let's consider that we want three
servers. Download a ZooKeeper copy on these three servers and make changes in the
zoo.cfg file that lies in ZooKeeper's conf directory.

Installing and configuring ZooKeeper
The following is the step-by-step process to download, install, and configure
ZooKeeper:

1. The download link for ZooKeeper is http://apache.mirrors.
lucidnetworks.net/zookeeper/.
So, let's download the latest release of ZooKeeper using the
following command:

wget http://apache.mirrors.lucidnetworks.net/zookeeper/stable
/zookeeper-3.4.6.tar.gz

2. Extract it as follows:
tar –xvzfzookeeper-3.4.6.tar.gz

3. Rename this file for an easy naming convention:
mv zookeeper-3.4.6.tar.gz zookeeper

4. Move it to a desired location:
mv zookeeper ~/hbinaries/

cd ~/hbinaries/zookeeper/conf

vim zoo.cfg

5. Now, add the following lines:
dataDir=/mnt/disk1/zookeeperData#Assuming the layout of the
reader's filesystem>

tickTime=2000

clientPort=2181

Here, dataDir is the location where the memory snapshot database of
ZooKeeper will be stored, tickTime is the heartbeat interval for session
timeout in milliseconds, and clientPort is the port where the client
connection will be accepted and ZooKeeper listens.

http://apache.mirrors.lucidnetworks.net/zookeeper/
http://apache.mirrors.lucidnetworks.net/zookeeper/

Let's Start Building It

[92]

6. After configuring ZooKeeper, we can start ZooKeeper as follows:
./zkServer.sh start

Alternatively, we can use the following command:
bin/zkServer.sh start

So, this is the method to configure a standalone ZooKeeper. However, in a
production environment, we have more than one distributed ZooKeeper instances
for high availability, which can be configured by configuring ZooKeeper individually
at different servers. What we can do is configure, as described earlier, and copy the
same directory at different servers. We need to make the following changes in the
zoo.cfg file to make it distributed and a highly available ZooKeeper cluster.

We need to copy the ZooKeeper directory to all the servers that we have for an
instance, and the configuration file will be same for all; we can make changes
and copy the same configuration file to all servers.

The following command will create the zoo.cfg file:

vim zoo.cfg

Add the following lines to this file:

initLimit=5

syncLimit=2

server.1=zookeeperinstance1:2888:3888

server.2=zookeeperinstance2:2888:3888

server.3=zookeeperinstance3:2888:3888

Here, initLimit is the timeout to connect to the leader ZooKeeper, syncLimit is
the maximum time difference between the leader and follower ZooKeepers, and
server.1, server.2, and server.3 are servers where ZooKeeper instances are
running. The port number is to enable communication between instances.

Once these configurations are complete, we can start all the instances of ZooKeeper
one by one. Out of these three ZooKeepers, a leader will be elected randomly, which
will become active; the other two will work in coordination to master. If any one of
these ZooKeepers fails, other ZooKeepers will be elected as a master.

We have an option to work with ZooKeeper CLI, a command-line shell, using
which we can connect to different ZooKeepers and perform operations such as
getting information about ZooKeeper components, which we will discuss in
Chapter 6, HBase Cluster Maintenance and Troubleshooting.

Chapter 3

[93]

We can start with ZooKeeper command line interface (CLI), as follows:

bin/zkCli.sh –server <IP of the zookeeper>

Alternatively, we can use the following command:

./zkCli.sh –server <IP>

Executing this command will connect to the ZooKeeper IP and provide a
command-line shell where we can execute commands.

Installing Cloudera Hadoop and HBase
Now, let's see how to install and configure the Cloudera distribution of Hadoop.
There are two options for Cloudera Hadoop installation:

• Using the tarball (TAR file)
Cloudera Hadoop tars of CDH4/CDH5 can be downloaded from
http://www.cloudera.com/content/support/en/documentation.html.

• Using the package file (RPM on Red Hat distros)

If you use tarball, follow the same method as was previously mentioned for both
Ubuntu and Red Hat distros. There are other methods too, which use the .rpm
package, which we will discuss now.

Downloading the required RPM packages
In this section, we will see links to download the required RPM packages
for installation.

The following is the link to download RPM packages for the CDH4 version
of Hadoop:

http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/x86_64/

The following is the link to download RPM packages for the CDH4 version
of HBase:

http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/x86_64/

http://www.cloudera.com/content/support/en/documentation.html
http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/x86_64/
http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/x86_64/

Let's Start Building It

[94]

The following are the links to download RPM packages for the CDH4 version
of ZooKeeper:

• http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/
x86_64/zookeeper-3.4.5+26-1.cdh4.7.0.p0.17.el6.x86_64.rpm

• archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/4/RPMS/x86_64/
zookeeper-server-3.4.5+26-1.cdh4.7.0.p0.17.el6.x86_64.rpm

After downloading these packages, we can install different components on machines
assigned for specific components.

For a single node setup, we can install all these RPM packages on a single server,
as follows:

Rpm –ivh<rpm package name.rpm>

For a fully distributed cluster, we will install the Hadoop and HBase RPM packages
on all nodes; the NameNode, JobTracker, and master RPM packages on the
NameNode server; the DataNode, TaskTracker, and RegionServer RPM packages on
DataNodes; and the ZooKeeper RPM package on servers assigned for ZooKeepers.

Keep in mind that to install RPM packages, we need root user
access. After installing these RPM packages, change the permission
and ownership of the Hadoop/HBase directory to the user.
Usernames will be used to start, stop, and handle the cluster.

After changing the permission and ownership, the configuration process is the same
as configuring TAR files. We need to add the parameters as we added them in the
Configuring Apache HBase section; the startup and stop processes are also the same.

Installing Cloudera in an easier way
There is another easy method to install Cloudera, which is as follows:

1. Download Cloudera:
Wget http://archive.cloudera.com/cdh4/one-click-
install/redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm

Chapter 3

[95]

2. Install and configure local Cloudera using the downloaded RPM package:
sudo yum --nogpgchecklocalinstall<Cloudera rpm downloaded
cloudera-cdh-4-0.x86_64.rpm>

3. Install CDH4.
The following command will add a repository key:

sudo rpm --import

http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/RPM-GPG-
KEY-cloudera

Installing the Hadoop and MapReduce
packages
Let's install Hadoop and other components such as NameNode, DataNode,
MapReduce, secondary NameNode, and so on using the yum command available
in RHEL distributions:

1. Install the components using the following commands:
sudo yum clean all;

sudo yum install hadoop-hdfs-namenode

sudo yum install hadoop-hdfs-secondarynamenode

sudo yum install hadoop-0.20-mapreduce-tasktrackerhadoop-hdfs-
datanode

sudo yum install hbase

2. Verify whether these components installed successfully using the rpm –
qa<hadoop/hbase> command:
You can start and stop the processes using the following commands:

/usr/lib/hadoop/bin/hadoop-daemon.sh<start/stop><daemon name>

/usr/lib/hbase/bin/hbase-daemon.sh<start/stop><daemon name>

Let's Start Building It

[96]

3. Be careful of the sequence of starting and stopping HBase and Hadoop
daemon processes.
If we use start-all.sh, start-dfs.sh, start-mapred.sh, or start-
yarn.sh to start the HBase/Hadoop cluster, it takes care of the sequence of
starting and stopping the process. However, if we use Hadoop-daemon.sh or
HBase-daemon.sh to start Hadoop/HBase processes, we should follow the
following sequence:

1. Hadoop startup process:

NameNode DataNodes SecondaryNameNode JobTracker TaskTrackers

2. Hadoop shutdown process:

JobTracker TaskTracker NameNode DataNodes SecondaryNameNode

3. HBase startup process:

ZooKeepers HMaster RegionServers

4. HBase shutdown process:

RegionServers HMaster ZooKeepers

Installing Hadoop on Windows
We can install Hadoop on Windows in order to evaluate its power, before migrating
and configuring full-sized production cluster on a Linux machine. Bear in mind that
this configuration is suitable for evaluation or testing purposes only. For a full-fledged
production cluster, we need to have a Linux distribution for cluster setup.

1. Download and install Cygwin from http://www.cygwin.com.
This is a tool that provides native Linux programs to run on Windows.

2. Download Hadoop, HBase, and Zookeeper. It's better not to download the
most recent version as Cygwin does not have full-fledged support. Cluster
using Cygwin will just give us the feeling of a cluster when we don't want
to directly switch to the Linux OS and first evaluate it on Windows.

http://www.cygwin.com

Chapter 3

[97]

3. Copy the downloaded Hadoop file to c:\cygwin\usr\local, which is the
default location of Cygwin when installed.

4. Open Cygwin and extract Hadoop, HBase, and ZooKeeper TAR, which we
copied inside the Cygwin folder. We will find it at the /usr/local location.
After extracting, make the following changes to these particular files:
In the core-site.xml file, make the following changes:
<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9100</value>
 <description>the value can be either localhost or
 127.0.0.1 </description>
</property>

In the mapred-site.xml, make the following changes:
<property>
 <name>mapred.job.tracker</name>
 <value>localhost:9101</value>
 <description>the value can be either localhost or
 127.0.0.1 </description>
</property>

In the hdfs-site.xml file, make the following changes:

<property>
 <name>dfs.replication</name>
 <value>1</value>
</property>
<property>
 <name>dfs.permissions</name>
 <value>false</value>
</property>

5. After this, we just format NameNode and start the process; we also
install HBase.
Extract the HBase TAR file. Create a symbolic link to JRE, which must be
present in Windows, using the following command:
ln -s /cygdrive/c/Program\ Files/Java/<jre present in system>
/usr/local/Java/<jre present in system >

The preceding command will create a soft link to JRE and make JRE available
to Cygwin for Hadoop and HBase.

Let's Start Building It

[98]

6. Change hbase-env.sh; add the following lines:
export JAVA_HOME=/usr/local/Java/<jre name given>
export HBASE_IDENT_STRING=$HOSTNAME
export HBASE_MANAGES_ZK=true

7. Then, change the hbase-site.xml file and add the following lines:
<property>
 <name>hbase.rootdir</name>
 <value>file:///C:/cygwin/tmp/hbaseroot</value>
</property>

<property>
 <name>hbase.tmp.dir</name>
 <value>C:/cygwin/tmp/hbaseroot/temp</value>
</property>

Now, we can start HBase using the following command:

bin/start-hbase.sh

Alternatively, you can use the following command:

./start-hbase.sh

Bear in mind that this will not be suitable for production or serious code
testing. If we need a real Hadoop cluster, we must have a Linux/Mac/
Oracle OS or similar.
Follow the steps given on http://wiki.apache.org/hadoop/
Running_Hadoop_On_OS_X_10.5_64-bit_(Single-Node_
Cluster) to install and run Hadoop on OS X.

Another way to get Ubuntu on Windows is to install the OS in a virtual machine and
configure Hadoop/HBase. Use the following links to do so.

• Configure the Hadoop, HBase, Hive, or Pig cluster using the following links:
 ° https://www.youtube.com/watch?v=Mmqv-CvSTaQ

 ° https://www.youtube.com/watch?v=c8ReD7gLfGo

• Configure the fully distributed Hadoop cluster using a virtual machine,
by browsing the following links:

 ° https://www.youtube.com/watch?v=gIRubPl20oo

 ° https://www.youtube.com/watch?v=pgOKKl5P0to

 ° https://www.youtube.com/watch?v=8CrgPUaNfjk

http://wiki.apache.org/hadoop/Running_Hadoop_On_OS_X_10.5_64-bit_(Single-Node_Cluster)
http://wiki.apache.org/hadoop/Running_Hadoop_On_OS_X_10.5_64-bit_(Single-Node_Cluster)
http://wiki.apache.org/hadoop/Running_Hadoop_On_OS_X_10.5_64-bit_(Single-Node_Cluster)
https://www.youtube.com/watch?v=Mmqv-CvSTaQ
https://www.youtube.com/watch?v=c8ReD7gLfGo
https://www.youtube.com/watch?v=gIRubPl20oo
https://www.youtube.com/watch?v=pgOKKl5P0to
https://www.youtube.com/watch?v=8CrgPUaNfjk

Chapter 3

[99]

After installation and configuration, we can perform a file-system-related operation
using Hadoop HDFS binary and HBase shell, which we will see in detail in the
next chapter.

For configuration files, it is always better to have a separated
directory on a common mount point to all nodes, and a soft
link in either an HBase or a Hadoop directory pointing to it.
Processes can be started using the --config keyword on
command lines while starting and stopping the processes.

Summary
In this chapter, we learned the steps to install and configure all prerequisites of
Hadoop and HBase, Hadoop distributions, and HBase. We also learned how to
install, configure, and test a cluster on Windows using Cygwin. We learned about
various Apache/Cloudera Hadoop and HBase distributions available and started
the daemon processes of Hadoop/HBase.

In the next chapter, we will see the basic operations that we can perform with
the Hadoop HBase cluster using a command line, and we will then look into the
optimizing and other important parameters in different files.

Optimizing the
HBase/Hadoop Cluster

Different workloads have different characteristics, so experiment with different
tuning options before finalizing. We cannot achieve the optimum performance for
HBase without optimizing Hadoop as HBase runs on top of Hadoop. So, we will first
see the optimization parameters of Hadoop and then continue optimizing HBase.

In this chapter, we will discuss the following topics:

• Hadoop and HBase cluster types
• Hardware requirements
• Capacity planning
• Hardware, network, and operating system considerations
• The optimization of different components in a cluster configuration
• Different configuration files in Hadoop/HBase

Setup types for Hadoop and
HBase clusters
Now, let's see the files and their parameters in Hadoop, using which optimization
can be performed. Mentioned next are examples of Hadoop/HBase cluster types.
When we configure a Hadoop/HBase cluster, we can have the following types of
clusters, according to their usability:

• Standalone: This cluster type is suitable for development work where one
machine can host all the daemon processes or we have a single machine with
many virtual machines on a single system. This type of cluster is good for
evaluation and testing purposes.

Optimizing the HBase/Hadoop Cluster

[102]

• Small: We can have less than or equal to 20 nodes with different processes
running of different machines. It is good for small productions with less
data and processing requirements.

• Medium: This cluster type can have 20 to 1000 nodes with HA, three
to five ZooKeepers, and DataNodes, which is better for full-fledged
production clusters.

• Large: This cluster type can have 1000 or more nodes with huge storage
capacity and several machines for high dataset-processing power, which
is best for large-scale setups and processing clusters.

The hardware requirement for these clusters depends on the user scenario. It is best
to have more machines with an average amount of storage (GBs to TBs) attached and
a more-than-average amount of primary memory (8 GB to 128 GB) for DataNodes.
Assigning a huge amount of primary memory for the heap is also not very advisable
as lengthy garbage collection might affect the performance.

Let's see an example cluster for the following components:

• NameNode/HMaster: This is one of the most critical components of a
Hadoop cluster, so we need to have this machine as the best and most robust
machine. It must not fail as frequently as DataNodes fail, but if NameNodes
fail, the whole cluster goes down.
The recommended hardware configuration for NameNode is as follows:

 ° 16 GB to 64 GB memory
 ° 2 x (8 to 24) core processor or 2 x 16 core processor
 ° SATA ~1 TB disk and one network mounted disk for secondary

backup of metadata; this must be of 7200 RPM (Solid State Drives
are preferred)

 ° 2 x 1 GB Ethernet controller

As all the metadata is cached in the main memory for faster performance,
so the main memory should be of good speed and quality. More memory
space means a larger number of files can be hosted by the cluster as it
enables bigger namespaces on NameNode.
Not much storage is required on NameNode, so less disk space is needed.
We must have at least two disk locations for the metadata for two copies:
one attached to the machine and another network-mounted fixed disk. The
metadata is loaded in the main memory and the persistent copy of it with
edit logs is kept on a disk.

Chapter 4

[103]

• JobTracker: This can run on a NameNode machine or be separately hosted.
The hardware configuration requirement will be the same as NameNode.
It does not require much storage space as it distributes the job, so not much
storage and processing power is required.

• DataNode/TaskTracker/RegionServers: The actual data resides on these
nodes, so we need more storage and processing power for these machines if
the number of machines is high. We can have the average storage, memory,
and processing power for fewer machines. In the cluster, we need to have
more powerful machines, as recommended previously:

 ° 24 to 128 GB of memory
 ° 2 x (8 to 16/24) core processor
 ° 2 x 4 (2 TB disk) with 7200 RPM
 ° 2 x 1 GB Ethernet controller

Recommendations for CDH cluster
configuration
The hardware specification might vary according to the amount of data to be stored
and the type of processing power required. It is recommended to use the following
configurations:

• 1 to 4 TB hard disks
• Two (8 to 24 core) processors, running at least 2 to 2.5 GHz
• 64 to 512 GB of memory
• Bonded Gigabit Ethernet or 10 Gigabit Ethernets

Now, let's explain these hardware components in more detail:

• CPU: The workload depends on this hardware component. It is
recommended that we have a medium-clock-speed CPU with two slots for
DataNodes. Why medium? This is because the high-end processor cost of
a setup rises quickly, so we can have a comparatively cheaper CPU with
more machines than use fewer machines with high-end processors. So, it is
recommended to have 8 to 24 core processors with medium CPU cycle for
less power consumption.

Optimizing the HBase/Hadoop Cluster

[104]

• Power: This is also a component to consider when configuring a Hadoop
cluster because power consumption tends to go up with high-end or a higher
number of machines, and hence increases the cost to maintain air cooling and
the environment setup. There must be a constant power supply with failover
for constant operations. Also, there must be proper air conditioning for the
cluster environment.

• RAM: We need only the amount of memory that will be sufficient to keep
processors busy in processing instead of keeping it waiting for data to be
brought to the main memory for processing. So, 8 GB to 48 GB of RAM looks
adequate for a system inside a cluster. HBase tends to use a lot of memory
and keeps files in the main memory (if in-memory tables are enabled). So,
for clusters subhosting HBase, we can consider more memory than what we
have for Hadoop-only clusters. If caching is enabled in HBase, the entire table
is tried to be kept in the main memory, so depending upon the components
(DataNode, RegionServer, and TaskTracker) being hosted, we might have to
add or reduce RAM. Whatever requirements we specify are a global resource
not only for the Hadoop/HBase heap but also for the system. If we have more
memory in the system, we can change the heap memory on requirement.

• Disk: The disk must have high-speed (7200 RPM) SATA drives. This disk
storage varies with the amount of data we need to have on the cluster and
number of machines. It is not advisable to have a machine loaded with huge
disk space because if it fails, there will be a huge overhead in re-replicating
the blocks. We can have machines with locally attached disks, but they
must also have network-attached disks. So, for local disks, if a machine
fails, the data can't be used, but if it is network attached, the same disk can
be attached with other machines (newly configured) and be used to report
the data to NameNode. As an example, we can say that we can have one to
four disks attached to machines of capacities calculated on the basis of data
storage requirement if we have Solid State Drives (SSDs) that also boost the
throughput a lot.

• Network: Hadoop/HBase tends to transfer data between nodes while
running tasks, accessing data, or writing data to the cluster, so it is advisable
to have a high-speed network between the nodes, and also a high-speed
network switch. For a small or medium cluster, 1 GB/s network is enough
to do the work; for bigger clusters, 10 GB/s network is preferable. The
network load also depends on the type of analytical computing in the cluster.
Some operations, such as sorting and shuffling, tend to transfer a lot of data
between the nodes, and hence, the bandwidth matters a lot; if adequate
bandwidth is not available, there will be more timeout errors and issues such
as RegionServer failing, ZooKeeper timeouts, bad connection error, and no
route to host errors. For smaller clusters, it's better to have a single switch for
better performance; for bigger clusters, we can have multiple fast switches.

Chapter 4

[105]

Capacity planning
Suppose we have around 2 TB data with a replication factor of 3, which means 3 * 2 =
6 TB, which in turn means that 2 TB of extra space is still needed. So, for 2 TB of data,
we can have a cluster with 4 to 8 DataNodes, totaling 8 TB of storage disk.

This extra space is needed for an intermediate temporary file that is generated during
read/write operations and MapReduce jobs. If the data on which we run MapReduce
is huge and the MapReduce code processes the whole data that requires a huge
HDFS storage to store the temporary and intermediate result files, we will need to
provide enough disk storage, the absence of which will result in a lot of failing tasks
and blacklisted nodes. It is advisable to have 25 to 50 percent more storage than the
original data size (without a replication factor) on the cluster; the minimum should
be 25 percent more of the whole data size if we want to run a MapReduce task
without much failing.

So, we can apply an approximate formula, as follows (not a universal formula, but
might be used to calculate the storage required):

T = (S*R) *1.25 (approximately for intermediate files)

Here, S is the size of data to store on HDFS, R is the replication factor, and T is the
total space.

This is the case of a cluster where we need to run MapReduce jobs frequently. For the
clusters where we don't need to run jobs, but just store files and read/write, we can
have a formula such as S * R + some extra amount of disk space.

So, for example, if we have 2 TB of data, we can calculate the total space A = (2*3)
+6*(1/4) which will total to 7.5 (approximately).

Thus, if we assign 8 TB (four nodes with 2 TB each or five nodes with 1.5 TB each)
for this cluster, we can ensure proper functioning of the cluster; also, this can be
managed as the amount of data grows. We need to add more nodes or storage to the
cluster as data grows. This size is the size available for HDFS and not for the whole
system, so if we have 2 TB storage for each node, then we must have at least 2.5 or 3
TB for the system.

We can calculate the number of DataNodes in a cluster as Number of DataNodes =
(total size required / amount of disk space allocated per nodes) + Disk space for the system
(for other resources).

Optimizing the HBase/Hadoop Cluster

[106]

So, if 100 TB is required to be stored, and each node is attached with 5 TB of space,
the number of DataNodes will be 100 / 5 = 20 (at least).

If we have compression enabled, the storage requirement might reduce. There is
no universal formula; however, we can use the aforementioned formula for an
approximate estimation.

Hadoop optimization
If we have an optimized Hadoop cluster, a lot of problems are easily solved for other
Hadoop ecosystem components on the cluster, for example HBase. So, now let's see
some of the factors using which we can optimize Hadoop.

General optimization tips
These are some general optimization tips that will help us to optimize Hadoop:

• Create a dedicated Hadoop/HBase user to run the daemons.
• Try to use SSD for the NameNode metadata.
• The NameNode metadata must be backed up periodically; it can be either

on an hourly or daily basis. If it contains very valuable data, it must be
backed up every 5 to 10 minutes. We can write crons to copy with the
metadata directory.

• We must have multiple metadata directories for NameNode, which can
be specified using the parameters dfs.name.dir or dfs.namenode.name.
dir; one can be located at local disk and another at network mount location
(NFS). This provides redundancy of metadata, and robustness, in case
of failure.

• Set dfs.namenode.name.dir.restore to true to enable NameNode to try
and recover previously failed dfs.namenode.name.dir directories during
checkpointing.

• Master node must be RAID enabled with RAID 1 architecture (mirrored pair).
• Keep a lot of space for NameNode's log directory. These logs help us to

debug or troubleshoot.
• Since Hadoop is I/O bound, we must select the best possible (with respect

to speed and throughput) storage.

Chapter 4

[107]

Optimizing Java GC
Follow these steps for Java GC optimization:

• Use the latest version of Java
• Use parallel GC for Java
• Disable adaptive sizing in JVM and fix the lower and higher values of

heap memory
• Enable JVM reuse so that we can set the values of the mapred.job.reuse.

jvm.num.tasks parameter to the number of tasks we want to reuse JVM

Optimizing Linux OS
Use these techniques for Linux OS optimization:

• The atime and noatime attributes are the Linux file system attributes that
enable Linux to record the created and accessed times for a file; disabling
these attributes gives significant gains to performance. This property can
be set in fstab (file systems table) fount at /etc/fstab as follows:
/mnt/dev1/Vol1 / ext4 defaults,noatime,nodiratime1 1

• Enable a file system's read-ahead buffer to enable caching of blocks of files
for faster access. We can set it using the following command:
blockdev --setra32768 /dev/sda

• Disable vm.swappiness using the following command:
sysctl -w vm.swappiness= 0

This value should be 0 or less than 10.

• Increase ulimit to a higher value; the default value, 1,024, is not adequate
so make it between 32K to 34K, depending upon the system resources.

• We should always have time synchronization in clusters. We will discuss
how to do it using the NTP service.

• Keep your OS bug free, apply available patches, and keep it updated
(before updating, check for compatibility with Hadoop/HBase).

Optimizing the HBase/Hadoop Cluster

[108]

Optimizing the Hadoop parameter
The following are the steps that will help us to optimize the Hadoop parameter:

• Enabling trash will help if a file is deleted accidently; we will see how
to do this in administration chapter.

• Keep the number of threads higher for RPC calls; this can be done using the
following parameters:

 ° The dfs.namenode.handler.count and mapred.jobtracker.
handler.count parameters, by default, are 10, and we can change
it to between 50 and 100, depending upon the memory available.

 ° The dfs.datanode.handler.count parameter for the DataNode
handler count, the default for which is 3, makes it higher between
5 and 10 if more HDFS clients have to read/write from a cluster.
The higher the number of threads, the higher the consumption of
memory, so set this parameter accordingly, don't make it too high.

 ° Set dfs.replication to lower or higher according to the cost and
size of data. If the size of data is huge and it's not very costly, we can
keep it between 2 and 3; if data size is very valuable and less costly,
keep it between 3 and 5 or so.

 ° The dfs.block.size parameter defines the block size. It's better to
keep it between 64 MB and 256 MB, depending upon the file's size on
HDFS. For files less than 100 MB, a block of 64 MB will be better, and
for files greater than 100 MB, or files whose size is in GBs, a 256 MB
block will be better.

These and other parameters must be adjusted according to
the setup and amount of resources available.

Optimizing MapReduce
To optimize MapReduce, use the following techniques:

• mapreduce.tasktracker.http.thread (renamed to mapreduce.
tasktracker.http.threads in Hadoop 2.0) defines the number of worker
threads for the HTTP server. By default, it is 40; make it between 80 and 100
for large clusters.

• mapreduce.task.io.sort.factor defines the sort factor and must be
kept higher to reduce disk access. This also defines the number of open
files at a time.

Chapter 4

[109]

• If mapreduce.map.speculative is set to true, jobs will be executed in
parallel; it speeds up the execution process in case some tasks fail (jobs that
take a lot of time, that is, more than an hour or two, should be set to false).

• Compression of Map and Reduce outputs must be set to true for larger
clusters and false for smaller clusters (-jobconfmapred.output.
compress=true).

• Use the maximum number of mappers and reducers. This should be
set according to the number of the CPU core in node. We will see how
to set it later.

• There are a few other parameters that must be fiddled with according to the
cluster size and type of jobs running.

Rack awareness in Hadoop
In a production environment, we should enable rack awareness for a more robust
cluster as it might happen that the whole rack will go down due to a problem with
the central switch for this specific rack, or there might be a fire that will affect all the
machines on the rack. If we enable and set up a cluster with rack awareness, we can
avoid the whole cluster going down and always access the data that lies on nodes on
other racks; meanwhile, the affected rack can be brought up. Now, let's see how to
enable and configure this feature.

To make the cluster rack aware, we can write a script that enables the master node
to assign data blocks according to the topology for high availability in case of a rack
failure. For this, we need to include a parameter in the hadoop-site.xml file, which
is topology.script.file.name (net.topology.script.file.name in Hadoop
2); for this, we give the path of the executable script that returns a list of IPs or
hostnames and the rack where they reside:

<property>
 <name>topology.script.file.name</name>
 <value>/home/shashwat/hadoop/conf/hadoopRackAwareness.sh
 </value>
</property>

The following is the hadoopRackAwareness.sh script:

#!/bin/sh
#SourceFrom : http://wiki.apache.org/hadoop/topology_rack_awareness_
scripts
#Credit : Apache Wiki

Optimizing the HBase/Hadoop Cluster

[110]

HADOOP_CONF=/home/shashwat/hadoop
while [$# -gt 0] ; do
nodeArg=$1
exec< ${HADOOP_CONF}/IPRackFile.list
 result=""
while read line ; do
ar=($line)
if ["${ar[0]}" = "$nodeArg"] ; then
result="${ar[1]}"
fi
done
shift
if [-z "$result"] ; then
echo -n "/default/rack "
else
echo -n "$result "
fi
done

The following is the content of IPRackFile.list:

192.168.1.10 /rack1
192.168.1.11 /rack1
192.168.1.12 /rack1
10.3.0.3 /rack2
10.3.0.4 /rack2
10.3.0.5 /rack2
192.3.0.4 /rack3
192.3.0.5 /rack3
192.3.0.6 /rack3

After making these changes, restart the cluster and issue this command that will
show a new line with the rack information:

bin/hadoop dfsadmin –report

Number of Map and Reduce limits in configuration
files
For the number of Map and Reduce limits, we need to consider the following
parameters:

• The maximum number of Map task slots to run simultaneously on a single
TaskTracker:
mapred.tasktracker.map.tasks.maximum

Chapter 4

[111]

• The maximum number of Reduce task slots to run simultaneously on
a single TaskTracker:
mapred.tasktracker.reduce.tasks.maximum

To set these two values, we need to consider available CPU cores, disk, and memory.
Suppose we have an eight core processor, and if the job is CPU intensive, we can set
four Maps that will finish. Then, the reducer will start; for less CPU-intensive jobs,
we can keep map task at 40 and reduce task at 20. After fixing these, we need to see
if there is a long wait, and then we can reduce the number so as to make the process
faster. We must understand that if we set too big a number, there will be a lot of
context switching and swapping of data between memory and disk, which might
reduce the overall slow processing, so we need to make it balanced according to the
system resources we have.

For further reading, go to http://wiki.apache.org/hadoop/
HowManyMapsAndReduces.

Considering and deciding the maximum number of Map
and Reduce tasks
Let's see how we can set the maximum number of Map and Reduce tasks. It is not
always correct to run a lot of tasks (MapReduce) at a time because if they can't fit
in the memory, tasks tend to fail or take a lot of time. So, we need to consider the
maximum number of MapReduce tasks that can run at a time on TaskTracker, and
according to the number of CPU cores available in the system, we fit only a certain
number of task data in memory and don't swap in or swap out data as it increases
I/O and hence degrades performance.

The following table lists the number of Map and Reduce tasks according to the
existing number of CPU cores and memory:

CPU core Memory Number of Map task(s) Number of Reduce task(s)
1 1 GB 1 1
1 5 GB 1 1
4 5 GB 4 2
16 32 GB 16 8
16 64 GB 16 8
24 64 GB 24 12
24 128 GB 24 12

http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/HowManyMapsAndReduces

Optimizing the HBase/Hadoop Cluster

[112]

Programmatically, we can set the number of Map and Reduce tasks too, which
can override the value we set in configuration files. Generally, we can calculate
it as follows:

mapred.tasktracker.map.tasks.maximum = 2 + cpu_numer * 2/3
mapred.tasktracker.reduce.tasks.maximum = 2 + cpu_numer * 1/3

Optimizing HBase
For some systems, memory-related settings that we discussed for Hadoop are
common to HBase. So, let's discuss HBase-specific optimization in brief. We
will also look at component-wise HBase optimization.

Let's start with Hadoop.

Hadoop
Add the following parameter to the hdfs-site.xml and hbase-site.xml files:

<property>
 <name>dfs.support.append</name>
 <value>true</value>
</property>

The preceding code will enable sync on HDFS, which is essential for durable HBase
data synchronization and durability. After making this change, we need to restart
the cluster.

The following code decides the number of open files on DataNode and should be
kept high as HBase keeps a lot of files open. This must be kept to 4096 or above,
according to the size of the HBase cluster and amount of data and operation being
run on it:

<property>
 <name>dfs.datanode.max.xcievers</name>
 <description>dfs.datanode.max.transfer.threads in newer version
 </description>
 <value>4096</value>
</property>

Chapter 4

[113]

The following code enables a network socket to wait for a longer time to write, and it
is a good tweak up for environments where heavy transactions take place:

<property>
<name>dfs.datanode.socket.write.timeout</name>
<value>0</value>
<description>In hdfs-site.xml</description>
</property>

<property>
<name>dfs.socket.timeout</name>
<value>0</value>
<description>default is 60000 increase it to 360000 if not adequate
then make it 0 for unlimited in hdfs-site.xml</description>
</property>

The following code enables the compression of intermediate files when we run
mapreduce jobs; this reduces writing time drastically:

<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.GzipCodec</value>
</property>

Also, adjust the following parameters and check the performance:

• mapred.map.tasks

• mapred.tasktracker.map.tasks.maximum

• mapred.reduce.tasks

• mapred.tasktracker.reduce.tasks.maximum

• mapred.map.child.java.opts

• mapred.reduce.child.java.opts

Change Linux epoll limit fs.epoll.max_user_instances = 1024 to /etc/
systel.conf. This will set the Linux open-file-limit polling (this setting limits the
number of files that a single user/process can have open).

Optimizing the HBase/Hadoop Cluster

[114]

Memory
HBase needs a lot of memory space. There are options to enable tables to be in memory
while creating a table. If there are in-memory tables, we will require a good amount of
RAM, which provides not only memory but also better allocation to different daemons.
Out of 100 percent of memory, use around 70 percent for the Hadoop/HBase heap
of main memory; this also depends upon the amount of memory available. It is not
advisable to assign very huge heap sizes because during GC, there might be huge
pauses that may result in RegionServers being reported as down. So, for HBase and
Hadoop, 16 to 48 GB of memory is good enough for an average cluster. Always keep
in mind to leave a good amount of memory for the system too so that if the system
starves, the daemons of Hadoop and HBase will starve too.

Java
Use the following steps:

1. Install the latest version of Java (read more about Java 7 and garbage
collection at http://www.infoq.com/articles/G1-One-Garbage-
Collector-To-Rule-Them-All).

2. Disable OS swapping.
3. Enable parallel GC using the following parameter:

-XX:+UseParallelGC

4. Increase the ParallelGCThread number:
-XX:ParallelGCThreads=<4 or More >

5. Disable adaptive memory sizing by fixing the Max and Min heaps to the
same value.

6. Disable explicit GC to prevent developers perform GC using code:
-XX:+DisableExplicitGC

These settings can be implemented in the Hadoop and HBase
env configuration file.

http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All

Chapter 4

[115]

OS
The techniques for optimization are as follows:

• /proc/sys/fs/file-max: This is the number of maximum concurrently
open files. Change its limit to at least between 32K and 64K in the
cat /proc/sys/fs/file-max file by setting fs.file-max.

• /proc/sys/net/ipv4/tcp_max_syn_backlog: This is the maximum
number of remembered connection requests, which still did not receive
an acknowledgment from the connecting client. The default value is 1024
for systems with more than 128 MB of memory and 128 for low-memory
machines. If a server suffers and gets overloaded, try to increase this number
to a somewhat bigger value and analyze. This setting can be changed in /etc/
sysctl.confusing configuration net.ipv4.tcp_max_syn_backlog.

• /proc/sys/net/core/somaxconn: This decides the limit of socket listen
backlog, known in user space as SOMAXCONN. The default value is 128.
The value should be increased substantially to support bursts of request.
For example, to support a burst of 512 requests, set SOMAXCONN to 512.
Changes can be made using the /etc/rc.d/rc.local or /etc/sysctl.conf
script to keep these changes persistent.

• Use a 64-bit OS for a bigger RAM and address space.

HBase
Now, let's discuss a parameter that we can play with to have an optimized HBase
cluster. Before finalizing the parameters, we must have a benchmarking on our
target cluster; there are a lot of benchmarking options available, which we will
discuss later, and once we see a good response time, we can finalize and put the
cluster in production.

We have many disks attached to DataNodes. These settings tell us when DataNodes
should be shut down if a disk fails; it's better to set it to 1 because if a volume fails,
it can be treated as dead and the whole correct data can be replicated to a healthy
DataNode so as to prevent corruption. This setting can be added to a Hadoop site file.

<property>
 <name>dfs.datanode.failed.volumes.tolerated</name>
 <value>1</value>
</property>

Optimizing the HBase/Hadoop Cluster

[116]

The following configuration decides the number of threads kept alive to handle the
request of data from the user table; this value can be lowered in the case of a higher
number of writes and can be increased if there are few writes.

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>10</value>
</property>

The default value for the following property is true. If HBase cluster is running on
Hadoop, it can be turned off using the false value. If required can be turned on for
special cases such as nodes getting blacklisted frequently due to many failed tasks
the specific TaskTracker performed:

<property>
 <name>mapred.map.tasks.speculative.execution</name>
 <value>true</value>
</property>

The default value of the following property is true. If the HBase cluster is running
on Hadoop, it can be turned off using the false value. If the Reduce task is running,
it can be turned on for special cases such as TaskTrackers getting blacklisted due to
many task failures:

<property>
 <name>mapred.reduce.tasks.speculative.execution</name>
 <value>true</value>
</property>

The default value for the following property is 30, which is the number of RPC
listeners. If there are a huge number of write and read requests, try increasing and
decreasing according to the number of requests:

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>30</value>
</property>

The following property defines the HStore file size, the default for which is 10 GB. If
we need to run a HBase MapReduce job on the cluster, we can reduce this splitting size
to a lower value because the number of Maps depends on the region size. There is one
mapper for one region, and if a region size is very big, Map tasks will take more time:

<property>
 <name>hbase.hregion.max.filesize</name>
 <value> 10737418240 </value>
</property>

Chapter 4

[117]

The following property defines the buffer for an HTable client. We can increase to
reduce RPC calls, but increasing it requires more memory, so a balance value should
be given, and there should be more buffer and memory and faster and less RPC calls:

<property>
 <name>hbase.client.write.buffer</name>
 <value>2097152</value>
</property>

The following property defines the number of rows fetched when scan.next
(method to read records from an HBase table) is called. The default value is 100,
but we can increase (1000 to 10,000) it for better and faster fetching of rows; a bigger
value will, however, eat up more memory:

<property>
 <name>hbase.client.scanner.caching</name>
 <value>10</value>
</property>

So, the preceding are the settings which, when given correct values, increase HBase
performance. These settings are fiddled with according to the cluster setup and size
and the amount and type of data on the cluster.

Optimizing ZooKeeper
As mentioned in Chapter 1, Understanding the HBase Ecosystem, ZooKeeper provides
distributed synchronization and group service to HBase. It is one of the necessities of
HBase, and hence, we have to optimize it. Use the following setting for optimization:

<property>
 <name>zookeeper.session.timeout</name>
 <value>3000</value>
</property>

The default value for this setting is 3 minutes. This decides how often master should
check for server crashes. We can decrease it so that the server crashes can be noticed
quickly, but if this value decreases, we need to take care of GC. In the case of full
GC, the server might not respond while running fine, and it might be reported as
crashed. This configuration can be overridden in the hbase-site.xml file.

This value should be increased if there is a timeout while writing to the HBase
cluster. If it is too small, and while writing huge amounts of data to HBase, GC
happens, resulting in the pause of server responses, and hence timeout, this is due
to improper JVM tuning. If JVM is tuned correctly, we can keep this value lower for
more responsiveness.

Optimizing the HBase/Hadoop Cluster

[118]

The number of ZooKeeper instances must always be an odd number (we already
discussed the reason behind this). Try to configure a higher number of ZooKeepers.
So, for nodes around 20, we should have five to seven ZooKeepers. You can increase
the number later, according to the sizing of the cluster.

Enable the ZooKeeper data directory at a safe location, and not the default HBase
temp, so that the logs and data can be checked in the case of some failure.

Important files in Hadoop
We will look at some important files that we need to consider. We will also see why
these files are important in Hadoop. The following is the list of files:

• Hadoop-default files: The following is the list of files that are shipped with
Hadoop, which contains the default settings. Users must not change settings
inside this file; rather, the changes must be done in site-specific files, which
are listed in Hadoop overridden files.

 ° mapred-default.xml

 ° core-default.xml

 ° hdfs-default.xml

 ° yarn-default.xml

 ° httpfs-default.xml

• Hadoop configuration files to override default values: These are the files
that are site specific or the values inside these files override the default
parameters. So, changes must be made or new parameters must be added
to these files:

 ° mapred-site.xml

 ° core-site.xml

 ° hdfs-site.xml

 ° yarn-site.xml

 ° httpfs-site.xml

• Hadoop configuration files to specify runtime parameters: These are
the runtime files that provide Java-related settings and memory and
daemon-related settings:

 ° hadoop-env.sh

 ° httpfs-env.sh

 ° mapred-env.sh

 ° yarn-env.sh

Chapter 4

[119]

We can make changes in site-specific and env files. In env files, we need to add Java
settings, JVM-related settings, Java path, Hadoopconfdir, log directory, and some
other settings.

Important files in HBase
Similar to Hadoop, we have a few files in HBase that need to be considered. Let's
have a look at them:

• HBase-default files: The following file needs to be considered from
this category:

 ° hbase-default.xml

• HBase overridden files: The following file needs to be considered from
this category:

 ° hbase-site.xml

• HBase runtime files: The following file needs to be considered from
this category:

 ° hbase-env.sh

Summary
In this chapter, we learned that we should run more than one instance of HMaster
for high availability and whether we can run two to three HMasters per rack if the
cluster is big enough. We should run separate instances of five to seven ZooKeepers
on separate hardware machines in a production cluster. Some ZooKeepers can be
cohosted (on a production cluster, ZooKeeper machines must be hosted separately).
We should keep the time synchronized between all the nodes in an HBase cluster.
Run HBasehbck, which checks HBase and tells us if there are any errors in HBase;
also, we should make it as a cron job to see the status of the cluster. Run the HBase
balancer with data throughout the region server; how to do this will be discussed
in Chapter 6, HBase Cluster Maintenance and Troubleshooting.

We will discuss more about HBase's data types, how data is stored in HBase (Logical
View/Actual Physical view), and services such as table, row, column family, column,
and cells that HBase offers in the next chapter. It will also focus on data operations,
versioning, schema designing, and some other interesting and important topics as
per data design, data layout, and internal and external views.

The Storage, Structure
Layout, and Data Model

of HBase
As the chapter name implies, this chapter is an in-depth discussion on the storage
and structure layout of HBase. It will also cover data models and their operations
in HBase. We will look at some important topics such as tables, columns, column
families, cells, and metadata in HBase. The chapter will end with a section that is
based on schema designing, and it will cover types of table design and its benefits.

In this chapter, we will discuss the following topics:

• A data model of HBase
• Namespaces
• Data model commands
• Versioning of records
• Row key design tips
• Schema designing basics

The Storage, Structure Layout, and Data Model of HBase

[122]

Let's get started with a conceptual and physical view of data stored in HBase tables.
Then, we will discuss the various components of HBase storage.

HBase is not very relational design centric, but it is open to a more flexible design,
based on a user's requirements, which enables the user to have a more flexible and
scalable table layout. It provides a single index facility on row keys, which is called
the primary key in the relational world. We can avoid very large read-and-write
operations in HBase by dividing rows into column families and columns, and this
supports both horizontal and vertical scaling of tables.

An HBase table consists of the following components:

• Row
 ° Column family

• Column
 ° Cell

So, we can think of rows consisting of a column family, a column family is made up
of columns, and the columns are made up of cells. The data in a table is accessed
using row keys.

We can give any name to the row key (but we have some suggested parameters for
row key design, which we will discuss later). When we name a column family, it
should be logical to group columns. Column qualifiers are specified as follows:

<columnFamily>:<columnName>

We are now aware of the data model in HBase. Let's move forward to explore the
data types in HBase.

Chapter 5

[123]

Data types in HBase
There are no fancy data types such as String, INT, or Long in HBase; it's all
byte array. It's a kind of byte-in and byte-out database, wherein, when a value is
inserted, it is converted into a byte array using the Put and Result interfaces. HBase
implicitly converts the data to byte arrays through a serialization framework, stores
it into the cell, and also gives out byte arrays. It implicitly converts data to equivalent
representation while putting and getting the value.

So, in short, we can say that HBase cells only hold byte arrays. Put and Result
methods handle encoding and decoding of objects.

Anything that can be converted into bytes, from a simple string to an image file, can
be stored in HBase, but it too is converted into bytes and can then be stored (or as
long as it's a serializable object). We can have values up to 10 to 15 MB stored in an
HBase cell. If any value is bigger, we need not store it into HBase, what we can do
is store the file on HDFS and then store the filepath in HBase. It is not advisable to
convert a huge file or value into byte arrays and store it in HBase; however, HDFS
can be used to host files with an underlying distribution and file metadata into an
HBase table.

HBase provides APIs that serialize and deserialize different data to be put into an
HBase table and fetched from an HBase table. We will see this in Java coding for HBase
in Chapter 8, Coding HBase in Java, and Chapter 9, Advance Coding in Java for HBase.

Storing data in HBase – logical view
versus actual physical view
At a conceptual level, an HBase table can be seen as a sparse set of rows, but in actual
storage, it is stored as per a column family. While defining a table, columns can be
added or specified on the run in a column family. We must decide the number and
name of the column family at the time of table creation, but columns can be added
as required at any point in time while storing the data, and this is the beauty of
schema-free when we use HBase.

The Storage, Structure Layout, and Data Model of HBase

[124]

The following is the logical view of how data is stored in HBase, but in actual these
are stored separately with column families:

Row
keys

Time_Stamp Column family 1 (CF1) Column family 2 (CF2)

CF1:Col 1 CF1:Col 2 CF2:Col 3 CF2:Col4 CF2:Col 5
Row1 Time stamp 1 Value 3 Value 4 Value 5

Row2 Time stamp 2 Value 6 Value 7 Value 8 Value 9 Value 10

Row2 Time stamp 3 Value 11 Value 12 Value 13

So, in physical storage, this table will be stored in two parts, column family 1 and
column family 2, and data can be accessed from different column families.

A column is always represented and accessed using the column family name as
prefix (columnfamilyname: columnname) so that we know which column family
is accessed. The columns that do not contain values are not stored. We can see this
column-family-wise representation in the following two tables that represent the
logical view of data storage, as shown in the preceding table.

The following tables represent the tables that will be stored as column-family-based
tables:

Row keys Time_Stamp Column family 1 (CF1)

CF1:Col 1 CF1:Col 2
Row2 Time stamp 2 Value 6 Value 7

Row2 Time stamp 3 Value 11 Value 12

Row keys Time_Stamp Column family 2 (CF2)

CF2:Col 3 CF2:Col4 CF2:Col 5
Row1 Time stamp 1 Value 3 Value 4 Value 5

Row2 Time stamp 2 Value 8 Value 9 Value 10

In the earlier releases of HBase, we did not have a database concept; however, there
was the table concept. The newer version of HBase introduces a concept called
namespace (supported in HBase 0.96 and later versions) that groups tables logically,
giving a more structured, organized representation, and storage of tables. Let's
discuss it now.

Chapter 5

[125]

Namespace
A namespace is a logical grouping of tables, similar to relation databases in
group-related tables. The following is the typical representation of namespaces:

Now, let's now discuss the components of a namespace:

• Table: All tables are member of some namespace. If a namespace is not
defined, the table belongs to a default namespace. One table can only be
the member of a single namespace.

• RegionServer group: A namespace might have a default RegionServer
group. Therefore, the table created will be a member of the RegionServer
group of the defined namespace.

• Permission: A namespace enables us to define Access Control Lists (ACLs).
For example, the write permission will give permission for table creation
and other operations such as read, delete, and update.

• Quota: This enforces the limit of the number of tables and regions a
namespace can contain.

• Predefined namespaces: The following are the predefined namespaces:
 ° default: This namespace is for all the tables for which a namespace is

not defined.
 ° system: The .ROOT. and .META. tables and tables in ACLs are loaded

before any other table.

Commands available for namespaces
The following are the commands available for namespaces:

• alter_namespace

• create_namespace

• describe_namespace

• drop_namespace

The Storage, Structure Layout, and Data Model of HBase

[126]

• list_namespace

• list_namespace_tables

We will see the uses of these commands when we discuss shell commands in HBase.
Keep in mind that these commands are available with HBase Version 0.96.0 and
above. So, namespaces can be created, removed, and altered. A table belongs to
the namespace that's decided at time of table creation, which adds the table to the
specified namespace. We can create namespaces as follows:

Create_<namespace name>

Have a look at the following example:

create_namespace student_namespace

Then, we can create tables in specific namespaces, as follows:

create'<namespace_name : table_name>', 'column_family_name'

Have a look at the following example:

create 'student_namespace:student_table','student_detail'

Once a namespace is created and a table is added to it, the path on HDFS will look
like the following:

<ROOT PATH>/data/<NAMESPACE NAME>/<TABLE NAME>

Services of HBase
The HBase data model terminology is listed as follows:

• Table
• Row
• Column family
• Column
• Cell

Let's have a look at each of them in detail.

Chapter 5

[127]

Row key
This is a unique key for each record in an HBase table. It is represented as a byte
array internally. No matter what data (string, long, date, or serialized) we choose as
the row key, internally, on the disk, or in memory, it will be converted to byte arrays,
and then stored. For example, Emp_ID can be the row key for an employee table.

Column family
This entity of an HBase table groups different columns of the table. Suppose we have
columns such as name, dob, salary, city, phone, pin, and landmark in an employee
table. We can group these columns as Basic_Detail(name, dob, salary) and
Address(city, phone, pin, landmark) as two column families. The benefit is
that you can retrieve the columns faster as column families are stored separately in
HBase on the disk.

Column
Each field in a row is called a column family. We can have columns such as name,
dob, salary, city, phone, and pin in an employee table.

Cell
These are the smallest or basic units of storage inside a column where the
actual value of a field is stored. Cells can be accessed using the <row, column
family:column,version> tuple. The default version is 1.

Version
HBase is able to maintain more than one value for a cell of tuple (row, column
family, and column), which is called the version of a record. The version is specified
in long integers and based on a timestamp. By default, HBase keeps three versions of
records. However, we can change it to the number of versions we need. For example,
if we have frequent data change and need to retain previous values too, we can have
versioning. Fetching the value form HBase gives the latest value, and we can get the
specific version by specifying it.

The Storage, Structure Layout, and Data Model of HBase

[128]

Timestamp
With every insertion of data, the current timestamp becomes associated with the
value. This denotes when the specific value was inserted into a table.

We can visualize the version and timestamp in the following diagram:

So, for each version of record, we have a timestamp attached to it, and we can have
more than one version or copy of a record in an HBase table. If you want to save
space, you can set the version to 1; if you want the number of previous records, you
can set the value to 3. Once the maximum version is reached, the earliest record
is overwritten.

Data model operations
The operations that are the basic blocks of data model are Get, Put, Scan, and
Delete, using which we can read, write, and delete records from an HBase table.
We will discuss these operations in detail now.

Get
The Get operation can fetch certain records from an HBase table. It is similar to the
select [fields] where RowKey=<Row Key value here> statement in relational
databases, where we fetch a row from the table.

Chapter 5

[129]

The following is the representation of Get:

public Result get(Get get)throws IOException

In the preceding code, the Get operation can be provided as a single get object
out of a list of get objects as get(List<Get> gets). It is specified by Get in the
HTableInterface interface given by HBase. The Get operation receives the get
parameter, which objects the data that is to be fetched from the table. It returns data
of the particular row, which is specified in the get object as an HBase Result object,
and this throws IOException when not able to read.

We will see how to use these methods in Java in Chapter 8, Coding HBase in Java, and
Chapter 9, Advance Coding in Java for HBase.

On HBase shell, it can be used as follows:

get 'table name', 'row key',<filters>

Put
The Put operation adds a new row of data to a table or updates/overrides a specific
row of data. It is executed through HTable.put() or HTable.batch(), which is a
batch write operation.

This takes put as parameter. We can see its use as follows:

public void put(Put put) throws InterruptedIOException,RetriesExhauste
dWithDetailsException

This also takes a single put object or a list of put objects to write a set of values
in a table.

Scan
The Scan operation can be used to read multiple rows of data in contrast to Get
where we need to specify a set of rows to read data. However, in the case of a scan,
we can iterate through a range of rows or all the rows in a table.

It can be used as follows (Java code):

HBaseConfiguration conf = HBaseConfiguration.create();
HTable table1 = new HTable(conf, "hbaseTable");
Scan scanObj = new Scan();
ResultScannerrs = htable.getScanner(scanObj);

Also, we can iterate through a result-set object and get each row in the result object.

The Storage, Structure Layout, and Data Model of HBase

[130]

Delete
The Delete operation removes a row or a set of rows from a table. It is executed
through HTable.delete(). Once a row is set to be deleted, it is marked as tombstone,
and once compaction takes place, the row is finally deleted or removed from a table.

public void delete (Delete delete) throws IOException

delete is specified as an interface of HTableInterface, takes the delete
object or delete list as a parameter, and throws IOException if any intermediate
exception occurs.

The Delete happens for the following:
• Delete: This is for a specific version of a column
• Delete column: This is for all versions of a column
• Delete family: This is for all columns of a particular column family

Versioning and why
As we already discussed version for a record, there is a tuple consisting of {row,
column, version} that defines a cell and its value. We can have as many versions as
we want, but the number of versions should be decided optimally as it is storage
dependent. It means the more versions, the more disk space it requires (it is possible
to have an unbounded number of cell versions).

The version is denoted using a long value. The versioned values are stored in
descending order so as to keep the most recent value on top. So, when we fetch
records, the most recent version is returned.

Let's consider a scenario to version HBase.

Suppose we have an employee database with the employee_history table where
we need to keep all the details of a person's previous company. We can enable
versioning (increase to whatever number we like to have after a default of 3) and
keep all previous and current details of the employee, such as their employment
history and scenarios similar to this.

We can visualize the version and its value in the following diagram, where we
have Employee_Employment_History_Table (which can be associated with the
employee table) containing a column family as Employment_History and columns as
Companies, Salaries, and Posts Held, with version of records as 3; this means we
can have three values for each column. As we store the value, the current value will
always be fetched. So suppose there is a person named A, then Companies column
can contain values such as Acompany1, Acompany2, and Acompany3 specifying the
companies the person worked with.

Chapter 5

[131]

The following table shows how we can get the salary or other column value of an
employee (current and previous):

Now, let's see how to fetch the versions of the record.

As we discussed, Get is used to fetch records from a table, so we can use Get.
setMaxVersion(number of version we need to return). Using this function,
we can read a specified number of records. We can see the code example as follows:

Get get = new Get(Bytes.toBytes("rowkey"));
get.setMaxVersions(5);
Result resultSet = HTableObj.get(get);

So, this will return five versions of a record. Likewise, we can specify 1, 2, 3, or the
other versions we want to fetch. This will not return not only Version 5, but all five
versions of the record.

A detailed explanation of versions in various operations such as Get, Put, and
Delete will be discussed in the upcoming chapters.

The Storage, Structure Layout, and Data Model of HBase

[132]

Deciding the number of the version
Now, let's discuss the maximum and minimum numbers of a version we can consider
for a table. This information is maintained using HColumnDescriptor, which contains
information about a column family, such as the number of versions and compression
settings. This acts as input for table creation and addition of columns.

Lower bound of versions
The default lower bound of version is 0, which means it is disabled. The minimum
number of rows a version uses is in conjunction with Time To Live (TTL), and we
can have 0 or more for a version, according to the requirements of the use case.
Using 0 for version will prevent the writing of more than one value to the cell.

Upper bound of versions
The default upper bound for a version is 3, which keeps three copies (inserted on the
basis of a timestamp) of a row. It is advised that the maximum number should not
be very large as it is storage-centric too. So, more or less 100 can be thought of as the
upper bound, which is not a hard limit, as we can go with bigger numbers too. The
maximum number of version is solely based on the use case data to be stored in an
HBase table.

Once the maximum limit of the version is reached, and if we try to insert any new
data, the latest value will be overwritten and we will get the latest inserted value
plus the previously maintained version.

Keeping the value very high will drastically increase the size of a store file (if all the
cells contain value), leading to the requirement of more storage and overhead on
reading the store file too.

On HBase shell, we can define it as follows:

hbase>create 'Tablewithversion', {NAME => 'colFamily1', VERSIONS =>
50}

The preceding command will create a table that will maintain 50th version of
previous data for a row in a table. Suppose we need to change the version already
defined, we can use the following command:

hbase>alter <Tablewithversion> {NAME =>'colFamily1', VERSIONS => 100}

The preceding command will change the number of version from 50 to 100.

Chapter 5

[133]

This version feature of HBase can be used as a data-retention technique
of HBase where we can use more versions to keep the history data. The
option-defining TTL is also a method to keep the data up to a certain
point in time; the TTL will keep the specific data until the timestamp is
defined. Using these two features, we can have historical data for a table.
It is just table based, so we can have different versions for different tables
according to the requirements of data stored in the table.
When TTL expires, the whole data will be deleted and no version will be
available, so we need to choose TTL so that the table data is not marked to
be deleted after a specific timestamp. In the newer version of HBase, we
have an option to define versions to be kept even after the time is expired
or TTL is overpassed.
For instance, have a look at the following:

keep <specific number of version of data>

The maximum number of data copies can be the number of versions
we define.
Keep the data till <TTL>. This will keep the data till <TTL> (time to live)
expires. In newer version of HBase, data remains there even after TTL
is expired.
If we need to keep the deleted value and not remove it from the table, we
can define it as follows:
hbase>KEEP_DELETED_CELLS=>true

This is done using HBase shell, and if we need to do it through Java code
API, we can do so as follows:
HColumnDescriptor.setKeepDeletedCells(true)

Schema designing
HBase does not support any kind of joins, but it provides the single-indexing
strategy on the row key. HBase schema design supports denormalization with
nested entities. These nested entities are nothing but a column whose name is the
unique identifier for the nested entity and whose value is the entire record mashed
together. Since HBase allows dynamic column definition, there's no problem. Here's
a great way to scale your joins. Additionally, with column families, large rows can be
partitioned to small data chunks that can be read individually from a disk.

Schema or table design must be done at the initial phase, and we can add or remove
columns on the fly, but we need to design our RowKey of table and column families
at the initial schema design phase.

The Storage, Structure Layout, and Data Model of HBase

[134]

Some points that we might consider while designing a schema are as follows:

• The row key is a very important aspect of schema design to consider. Row
keys are indexed and provides the O(1) operation, which provides constant
scheduling of fetching the data with a constant lookup speed.

• Create a composite key by combining multiple values together, which can be
used to set the relation between more tables.

• In HBase, schema design revolves around application design.
• HBase minimizes IO by keeping the column family and row together.
• While designing the row key, column names are to be chosen intelligently as

these are stored with the value in memory. So, design should minimize the
column names; instead of a big column name such as employee_salary, we
can have a name such as esal or similar.

• We should use row atomicity as a design tool. HBase supports atomicity at
the row level, which means if we need to update two tables atomically, we
will find it difficult to update in one go. If we need atomicity on two tables,
migrate one of the tables into another as nested entities.

Now, let's discuss it further.

As we have already discussed, the HBase data model is quite different from
relational database systems. So, let's ask some questions that will help us design
it in a better way:

• What should the row key structure be? What all should it contain? What
fields of different tables should it be made up of?

• How many versions should there be for each row?
• What information should be stored in the cell?
• How many column families should there be and how should they be named?
• Although we can add columns to column families on the fly even at the

operation time, is it better to define or decide what and how many columns
there are, and what their names should be?

• How many columns are there for each column family?

Chapter 5

[135]

Row key design is one of the most important design considerations. This is very
important to read and write data into an HBase table. So, to define and design,
we should consider different factors, which are as follows:

• Number of tables in the design.
• Indexing will be done on a row key.
• A table is sorted on the basis of a row key. Each region tells about the start

and stop row in the region, and the region stores the sorted list of rows from
the start to end row key.

• Everything is sorted as a byte array. There are no other data types such
as string, integer, long, and so on when it comes to data stored in HBase
table internally.

• HBase guarantees atomicity only on a row key and multirow transaction
is not supported; these might be introduced in future versions of HBase
(above 0.98).

• Column families to be defined at the time of table creation.
• Column creation/addition is dynamic and can be added or defined at write

time too.
• HFile is sorted on the row key, qualifier, and timestamp.

Let's consider a scenario-based schema design now.

Suppose we have a scenario in which we need to design a table on a student-course
relationship; we will have the following relation types as shown in the following
figure:

Now, let's consider some use cases of table requirement design, such as how it is
represented in RDBMS and HBase.

The Storage, Structure Layout, and Data Model of HBase

[136]

We generally have this scenario while designing a Student-Course relationship; so in
RDBMS, we know that this can be represented as follows:

Student Studcourse_Relation Courses
Stud_ID (Primary Key)
Stud_Name
Stud_Age
Stud_Sex
Stud_Address

Stud_ID
Course_ID
Type

Course_ID (Primary Key)
Course_Title
Note
Instructor_ID

In HBase, the same thing can be represented as follows as there is no relation
constrains, so we can implement this in many ways. Here is one we can implement:

So, the Student table and detail might look like the following:

Row_Keys Column_Family (Student_Details_CF)
Stud_ID Column (Student_Deatils) Column (courseID)

Student_Deatils:Stud_Name
Student_Deatils:Stud_Age
Student_Deatils:Stud_Sex
Student_Deatils:Stud_Address

CourseID:course_ID

The Course table looks like the following:

Row_Keys Column_Family (Course_Details_CF)
Course_ID Column (Course_Deatils) Column (StudentID)

Course_Deatils:Course_Title
Course_Deatils:Course_Note
Course_Deatils:Course_Instructor_ID

StudentID:Stud_ID

Chapter 5

[137]

So, here we can set the relation on the basis of Student_ID and Course_ID; for
example, getting the student ID and details from the first Student table and
their equivalent courses from the Course table based on Student_ID from the
Course table.

The second use case we will consider in this situation is how a user performs some
task. So, we will see how to design a table and keep track of user activities.

Since we are recording a user activity, we will design the row key accordingly, which
will contain a combination of userID, timestamp, and eventID.

User_Events Event
RowKey (userID + timestamp +
eventID) (Primary Key)
User_Name
Note

EventID
EventName

So, the first table, User_Events, will contain user details with the row key as a
combination of a unique keys, current timestamps, event IDs, and user name, and
will keep a note about the user or activity. The second table, which will be for event
details, will have a set of events such as write, read, delete, update, edit, and so on.
This information will be stored in the second Event table, and we can fetch all the
operation performed by the user using these two tables.

Types of table designs
We can have two types of designs while considering a table. They are as follows:

• Short and Wide: This design pattern can be considered in the following cases:
 ° There is a small number of columns
 ° There is a large number of rows

• Tall-Thin: This design pattern can be considered in the following cases:

 ° There is a large number of columns
 ° There is a small number of rows

The Storage, Structure Layout, and Data Model of HBase

[138]

Now, let's consider a use case of blogging data, which needs to be created to store
the blog entries to HBase. In this scenario, a user writes blog entries and saves
data to HBase cell.

So, let's consider the scenario of a blogging website such as http://blogspot.com,
http://wordpress.com, or any other blogging website where a user logs in, enters
the content, and posts it. Internally, the content is stored in a table either as a column
value or as a text file on a file system, and then it's linked to the database.

There can be two conditions that we can consider in the case of a design HBase table,
which are as follows:

• Each row might represent a single user (one row for a user and columns
with the blog entries)

• Each blog as a single row for which we will need to read multiple rows
to read the blogs of a single user

Now, let's consider the following cases.

In a short-and-wide table design, we have all blogs stored in a single row
and column family in an HBase table. Each newly created blog is stored in
a dedicated column.

We will refer to the row ID here as User ID and to the column family as
BlogEntriesCF; we will represent it as BECF.

Columns are added on the fly whenever a user creates a blog entry, and as columns,
we will have a fixed string plus a timestamp attached to it, such as BEntry plus
TimeStamp, which we will represent as BT.

RowKey
(User_ID)

BECF

BECF:BT BECF:BT BECF:BT BECF:BT BECF:BT BECF:BT …

WriterA HbaseEntry HadoopEntry … … … … …

WriterB HadoopEntry MongoEntry … … … HiveEntry …

Writerc … … … SqoopEntry … HBaseEntry …

… … … … … … … …

sWriter(N) … … … … … Nth …

This table grows horizontally with new columns that are added on the fly as the
contents are added. In this case, the table grows towards the right-hand side,
and not downwards, with new columns being added more quickly.

http://blogspot.com
http://wordpress.com

Chapter 5

[139]

So, here we can read a whole row to get entries by a specific writer.

In a Tall-Thin table design, the table grows downwards more quickly than towards
the right-hand side. Once new rows (user IDs attached with timestamps) are added
with new blog entries, the blog entries are attached to a fixed column family and
column. We can visualize this scenario as follows:

RowKey (UserID+TimeStamp)
BlogEntriesCF
BlogEntriesCF:Entries

WriterATimeStamp1 HBaseEntry
WriterBTimeStamp2 HadoopEntry
WriterATimeStamp3 HadoopEntry
… …
… …
… …
WriterCTimeStampN EntryN

Benefits of Short Wide and Tall-Thin
design patterns
Now, let's see the benefits of both the design patterns:

Tall-Thin Short Wide
If we query using a row ID, it will
skip rows faster

This has to be queried using a column name
that will not skip rows or store files

Not good for atomicity Better for atomicity
Better for scalability Not as good for scalability as Tall-Thin is

It's best to consider the Tall-Thin design as we know it
will help in faster data retrieval by enabling us to read the
single column family for user blog entries at once instead of
traversing through many rows. Also, since HBase splits take
place on rows, data related to a specific user can be found at
one region server.

The Storage, Structure Layout, and Data Model of HBase

[140]

We will talk more about use case base schema design and coding in Chapter 10,
HBase Use Cases. Now, here are some more tips about row key considerations:

• Avoid generating continuous row key-like sequences or timestamps as this
might result in the hanging up of the reading process during heavy writes.

• Always keep the names of column families and row keys smaller in size as
we know when a cell is stored it is preceded by a column name and column
family name, so if we have bigger name, it will add up to the data storage
size. So, for example, instead of StudentNameColumn, we can keep the
column name as SNC, or something of this sort.

• Row keys can be stored in their binary representations as opposed to string
representations as it will require less space of storage.

• If we need to reverse the scan of our table, we can add a reverse
timestamp with the row key for faster scanning, for example, row key +
(maxTimestamp-current).

Designing an efficient row key results in faster and optimized scanning/reading and
writing process. This is why we need to consider a good row key, column family,
and column name design.

Composite key designing
Composite keys can be created comprising various fields clubbed together to form
a row key. This can be done as UserID + Seperator + DateString + SeperatorCharter +
UserSessionID.

We can use the start and stop row keys in the HBase scan key to read a specific range
of data we want to read. Let's see a scenario where we need to read the data and how
to set the start and stop keys in the scan:

• To read all the sessions for a given user, we can specify the start row
as userId:
HBase > table 'tableToScan',{STARTROW=>'userId'}

In Java, we can specify it as:
Scan s=new Scan(userID)
Table.getScanner(s)

It's the same in the following cases.

Chapter 5

[141]

• To find a specific session of a user, we can specify the full row key as the start
row key

• To find all sessions of a user or the session in a specific date range, we can
specify UserID + SeperatorCharacter + DateString as the start and end row keys

Likewise, we can do different combinations to get specific ranges and the
required data.

Real-time use case of schema in an HBase table
Here, we will list some use cases in the industry that use HBase as a backend
to manage their applications and infrastructure.

There are many companies that use HBase in their production environment
successfully, such as Trend Micro, eBay, Yahoo!, Facebook, and many other
analytical-based companies. Some of the examples where this is being used include
communications in Facebook messages, which are maintained in HBase, Trend
Micro for security purposes, Nielsen for measurement purposes, Jive Software
for enterprise collaboration, OCLC for digital media, Ancestry.com Inc. for DNA
matching, and Box Inc. for machine data analysis.

Schema change operations
Schema and table management of an HBase table can be done through the Alter
command. Using this command, we can perform the following operations:

• Modify column family schema
• Add column families
• Remove column families
• Change table-related settings such as maximum file size, MemStore flush

size, read-only, and so on

In 0.94 and later versions of HBase, we rename a table using the snapshot feature,
as follows:

hbase> disable 'TableToRename'

hbase> snapshot 'TableToRename', 'NewTable'

hbase>clone_snapshot 'NewTable', 'newTableToRename'

hbase>delete_snapshot 'NewTable'

hbase> drop 'TableToRename'

The Storage, Structure Layout, and Data Model of HBase

[142]

Now, let's discuss some schema-change-related operations.

We can change the versioning of a column family. Suppose we have a default version
for a column family as 3, and lately, we realize that we need to have version 4, we
can change the versioning as follows:

hbase> alter 'tableToAlter', {NAME => 'ColFam',VERSIONS => 4}

To remove or delete an existing column family, we can do it as follows:

hbase> alter 'tableToAlter', {NAME => 'colFam',METHOD => 'delete'}

If we need to enforce the maximum size of a column family to 256 MB, we can use
the following command:

hbase> alter 'tableToAlter',{NAME=> 'colFam', METHOD => 'table_att',
MAX_FILESIZE => 268435456}

If we need to add a new column family to an HBase table, we need to disable it first
and then define a new name with already existing names, as shown in the following
snippet. Suppose we have a table with colFam1, and we need to add colFam2, we
can do it as follows:

hbase>disable 'tableToAlter'

hbase> alter 'tableToAlter' {NAME=>'colFam1',NAME=>'colFam2'}

hbase>enable 'tableToAlter'

We have the option of performing multiple operations in a single command. Suppose
we need to change the versions of two column families, we can do it as follows:

hbase> alter
'tableToAlter',{NAME=>'colFam1',VERSIONS=>2}'{NAME=>'colFam2',VERSION
S=>5},{NAME=> 'toDeleteColFam',METHOD => 'delete}

Likewise, we can perform many operations in a single line of alter command. We
can also see the status of the alter command, as follows:

hbase>alter_status 'tableToAlter'

We will talk more about the shell command in Chapter 6, HBase Cluster Maintenance
and Troubleshooting, with more options.

We should always keep in mind that changes do not take immediate
effect; they take place at the next major compaction. Until then, the
old definition remains active.

Chapter 5

[143]

There exists a project on GitHub using which we can easily create XML-based
schema. For more information on the project, visit:

• https://github.com/larsgeorge/hbase-schema-manager

• https://github.com/ivarley/scoot

Calculating the data size stored in HBase
In the case of any database, whether it is RDBMS or NoSQL, we always need to
find out the record size in order to plan the storage size needed, or to in order do a
capacity planning. Even a few bytes per record might bring drastic changes to the
data storage size that we estimate. For example, suppose we have one extra byte
attached to each record, and we have around one billion records, and this extra
byte requires around 1 GB of storage space on the disk.

Now, let's consider this data size calculation in case of HBase. Let's consider a table
named employee, where we have fields such as the row key, the column family,
the column, and the value. In HBase, each value is stored as fully qualified, so for
each column of a record, it is accompanied with the row key we assign. So, let's
now consider the space requirement.

As HBase stores data in the key-value format, let's now do the approximation. We
will consider the row key as student1.

Key
size

Value
size

Row
size

Row
data

Col
fam
size

Col
fam
data

Column
size

Timestamp Key
type

Actual
value

Int
(4)

Int(4) Short(2) Byte
array

Byte
(1)

Byte
array

Byte
array

Long (8) Byte
(1)

Byte
array

Let's calculate the requirement of fixed size, which is 4 + 4 + 2 + 1 + 8 + 1 and equals
20 bytes. For other parts, we need to calculate the byte array sizes of the different
values, so the total size is Total = fixed size + variable size.

Suppose we have one billion records, then the total size will be around 40 bytes * one
billion = 40 billion bytes, which will be around 40 GB, and therefore, we can calculate
according to the number of columns and rows in HBase. There is the option of
compression in an HBase table, using which we can minimize the requirements
of storage drastically.

https://github.com/larsgeorge/hbase-schema-manager
https://github.com/ivarley/scoot

The Storage, Structure Layout, and Data Model of HBase

[144]

We can implement compression while creating the table, as follows:

hbase>create 'tableWithCompression',
{ NAME =>'colFam',COMPRESSION =>'SNAPPY'}

This will implement the Snappy compression algorithm on the records inserted in
an HBase table. There are also other compression algorithms we can use as Snappy,
such as LZF, LZO, and ZLIB.

Some benchmarking on the use of algorithm follows, so use of algorithms should be
decided accordingly. Have a look at the following table:

Algorithm IO performance Compression ration achieved
ZLIB Performance

degraded
Best compression provided around (45 percent to
50 percent)

LZO Around 4 percent to 6
percent

Around 41 percent to 45 percent

LZF Around 20 percent to
22 percent)

Around 38 percent to 40 percent

Snappy Around 24 percent to
28 percent)

Around 38 percent to 41 percent

Also, the compression depends on the type of data present in the table, so
compression ration should be accordingly selected. Suppose we need more
compression but less performance, we can always go with ZLIB, and if we need
performance with an average compression, we can choose Snappy or whichever
suits our data in the table.

Summary
In this chapter, we discussed schema designing basics, the data model of HBase, and
data model operations that we can perform on an HBase table.

We also focused on designing different types of row keys, naming preferences,
and suggestions for better optimization. The chapter also covers different use cases
and how a schema can be designed based on it. There was a section that discussed
namespaces and versioning of the records. In the next chapter, we will discuss the
administration tasks and processes in HBase in detail.

HBase Cluster Maintenance
and Troubleshooting

We have already learned about setting up the Hadoop and HBase clusters. Now, we
will learn the aspects we need to consider to maintain the cluster and keep it up and
running. This chapter will help readers make their HBase cluster more reliable by
making it high available.

In this chapter, we will concentrate on the operational part of HBase. We will discuss
the following topics:

• Introduction to the HBase administration
• HBase shell
• Different administration tools for HBase
• Using Java in HBase shell for various tweaks
• HBase and shell scripting for HBase
• Connecting hive with HBase to run Hive Query Language (HQL)

queries from hive
• Implementing securities in HBase
• Frequently occurring errors and their solutions
• Other miscellaneous topics

As HBase runs on top of Hadoop, before starting with the HBase administration, let's
look at Hadoop administration tasks and aspects in brief.

Here is the list of available Hadoop shell commands and steps on how to use them.

HBase Cluster Maintenance and Troubleshooting

[146]

Hadoop shell commands
A binary is present inside the bin directory. We can call the following Hadoop
command if we need to know all the commands available:

<Hadoop directory path>bin/hadoop

In the version previous to Hadoop v1, we can use the preceding command.
However, in the later versions, we have to use the following command:

<Hadoop directory path>bin/hdfs

A binary without any parameter will display the list of available commands.
We can check the actual implementation of Hadoop shell and its Java source at
https://github.com/shot/hadoop-source-reading/blob/master/src/core/
org/apache/hadoop/fs/FsShell.java.

We can use bin/hadoop or bin/hdfs based on the version of
Hadoop we have. In the newer versions of Hadoop, it is advisable
to use HDFS instead of Hadoop. Here, we will use bin/hadoop,
but you can use any one of the commands, depending on the
version you are using.

Types of Hadoop shell commands
Let's take a look at the Hadoop shell commands. However, first we will look at the
generic options available with the aforementioned bin/hadoop and bin/hdfs.
The following is the syntax:

hdfs [--config <configuration dir>] [command] [generic_options]
[command_options]

The following table will explain to you the parameters of the preceding command:

Parameters Explanation
--config Using this parameter, we can define the current and

active configuration directory as we might have more
than one configuration parameter or directory for the
cluster. We can define it as follows:
hadoop --config
/home/shashwat/hadoop2/config1

-D parameter-
name=parameter value

Here, we can give runtime parameters that are found
in the configuration files. We can pass command-line
runtime parameters.

https://github.com/shot/hadoop-source-reading/blob/master/src/core/org/apache/hadoop/fs/FsShell.java
https://github.com/shot/hadoop-source-reading/blob/master/src/core/org/apache/hadoop/fs/FsShell.java

Chapter 6

[147]

Parameters Explanation
-jt <local> or
<jobtrackerHostname:port>

Using this, we can pass the JobTracker address host
address while dealing with MapReduce.

-files <files list
separated by comma>

In this parameter, we provide a list of files to be
copied and required for a job running on the Hadoop
cluster while submitting. This copies the required
resource files for the job.

-libjars <list of jar
files required for job
to run command separated
file list>

Here, we can list out the library JAR files that are
needed for the job to run, which will be included in
the Java classpath.

-archives <list of
archieve files comma
separated>

Here, we can list the files that are to be extracted for
the job resource.

All the earlier options are valid in the cases of the fs,
dfs, dfsadmin, fsck, job, and fetchdt commands.

We categorized Hadoop shell commands into the following three types:

• Administration commands
• User commands
• File-system-related commands

Let's explore the commands under the above mentioned types.

Administration commands
The following is the list of administration commands:

• balancer: Using this command, we can balance data distribution throughout
the cluster. Sometimes, it so happens that a few of the DataNodes become
overloaded when write operations happen at pace. This might also happen
when a new DataNode is added but underutilized. We can stop this
command anytime using Ctrl + C.
The syntax for this command is as follows:
hdfs balancer [-threshold <threshold value>]

The following is the example:
hdfs balancer - threshold 20

HBase Cluster Maintenance and Troubleshooting

[148]

The balancer process is iterative. The threshold value gives us a long value
in the range of 1 to 100. The balancer generally tries to equalize the data uses
throughout all the DataNodes, and tries to keep it within the range [average
- threshold, average +threshold].
The smaller the value of the given threshold, the more balanced the cluster is.
While balancing the cluster, it uses a lot of network bandwidth. We
can control it using another administration command, dfsadmin –
setBalanacerBandwidth <bandwidth>, so the balancer will use a specified
percentage of the available bandwidth. This should be set to prevent read/
write exceptions during the cluster operation. This setting can also be
changed using the dfs.balance.bandwidthPerSec (value in bytes per
second) parameter found in the default file in Hadoop, wherein we can
specify it, or we can set it at runtime using the dfsadmin command.
The balancer will pick DataNodes with disk usage above the higher
threshold (seen as over utilized DataNode) and try to find blocks from
these DataNodes to be copied into a DataNode that's underutilized. In
the second round, a balancer selects DataNodes that are overutilized, and
moves the blocks to nodes where utilization is below average. The third
round will choose nodes with utilization above average to move data to
underutilized nodes.

For more details on balancer (flow, architecture, and
administration), visit https://issues.apache.org/jira/
browse/HADOOP-1652. Here, PDF files are available on the
balancer architecture; you can also visit http://hadoop.
apache.org/docs/current/hadoop-project-dist/
hadoop-common/CommandsManual.html#balancer.

• daemonlog: This command is used to set the logging level for each Hadoop
daemon process. This comes handy when we debug a problem with Hadoop,
and therefore this command can be used to increase or decrease the log level
for debugging purposes. This log-level modification can be done through
configuration or Hadoop daemon web pages. However, it is better that an
administrator does it through a command line.
This command accepts two parameters, namely get and set. Get is used
to get the information about the log level, and set is used to set the log level.
The following is the syntax to get the log level information:
-getlevel <host:port> <name>

https://issues.apache.org/jira/browse/HADOOP-1652
https://issues.apache.org/jira/browse/HADOOP-1652
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#balancer
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#balancer
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#balancer

Chapter 6

[149]

The preceding command gets the log level information of the daemon
processes running at the specified host and port by internally connecting
to http://<host>:<port>/logLevel?log=<name>.
The host, <host>, gets the log level information from the port, <port>, on
which the service is running.
The <name> parameter specifies the hostname from which to get the log
level. This is a fully qualified classname of the daemon performing the
logging process.
Example of it is org.apache.hadoop.mapred.JobTracker for the
JobTracker daemon.
The following is the syntax to set the log level:
-setlevel <host:port> <name> <level>

The preceding command sets the log level of the daemon running at
the specified host by internally connecting to http://<host>:<port>/
logLevel?log=<name>.
The host, <host>, sets the log level on the port, <port>, on which the service
is running. The <name> parameter specifies the daemon on which to set the
log level. The <level> parameter specifies the log level to set the daemon.
The following command is an example of how to get the log level:
hdfs daemonlog -getlevel host:<port>
org.apache.hadoop.mapred.JobTracker

The following command is an example of how to set the log level:
hdfs daemonlog -setlevel host:
<port>org.apache.hadoop.mapred.JobTracker <ERROR or DEBUG>

You can also find the description of the daemonlog
command at http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-common/
CommandsManual.html#daemonlog.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#daemonlog
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#daemonlog
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#daemonlog

HBase Cluster Maintenance and Troubleshooting

[150]

• datanode: This command is used to start or stop the DataNode daemon
processes. The following is the syntax:
hdfs datanode [-rollback]

The rollback option helps to roll back DataNode to the previous version.
If the upgrade process is in progress and something goes wrong, we need
to restore the DataNode metadata to the previous existing version. If the
command is specified without any parameter, it will start the DataNode
daemon, if it's not already running.

You can also find the description of the datanode
command at http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-common/
CommandsManual.html#datanode.

• dfsadmin: This command runs the dfsadmin client for the Hadoop cluster to
perform administration commands. We can check the actual implementation
in Java at https://github.com/facebook/hadoop-20/blob/master/src/
hdfs/org/apache/hadoop/hdfs/tools/DFSAdmin.java. The following is
the syntax:
hdfs dfsadmin [GENERIC_OPTIONS] [-report] [-safemode enter |
leave | get | wait] [-refreshNodes] [-finalizeUpgrade]
[-upgradeProgress status | details | force]
[-metasave filename] [-setQuota <quota><dirname>]
[-clrQuota <dirname>......<dirname>] [-help [cmd]]
[-restoreFailedStorage true|false|check]

The following list will give us an explanation of different parameters in this
command. We already discussed the generic options earlier, and it remains
the same here.

 ° report: This parameter with the hdfs command displays the basic
status of the cluster and HDFS file system.
For example, have a look at the following command:
hdfs dfsadmin –status

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#datanode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#datanode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#datanode
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/tools/DFSAdmin.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/tools/DFSAdmin.java

Chapter 6

[151]

The following is what you will get as output:

 ° safemode: Safe mode is the condition when Hadoop prevents
reading of data from the cluster, and meanwhile, loads and updates
the metadata during a start up process. We have a command to get
and set information. Safe mode is the state of NameNode in which it
is in a read-only mode, where NameNode does not accept changes
to the namespace and deleted blocks are not replicated.
This command has parameters such as -safemode <enter /leave
/ get | wait>, where leave forces Hadoop to come out of the safe
mode explicitly, get gets the status of NameNode, whether it is in the
safe mode, and wait makes NameNode wait till it comes out of the
safe mode.
If you force Hadoop to come out of the safe mode, it means you are
asking Hadoop to come out without updating the metadata, and this
will lead to corruption of data most of the time. However, if at all it's
necessary to force Hadoop to leave the safe mode, first verify, check,
and try to see what is there in the logs of NameNode.
Hadoop enters the safe mode automatically at startup, and it leaves
the safe mode by itself once it has reached the minimum percentage
of blocks needed for a replication condition to fulfill (based on the
replication factor).

HBase Cluster Maintenance and Troubleshooting

[152]

NameNode can also enter the safe mode manually, but then, it can
also only be taken out of this safe mode manually.
This parameter of dfsadmin can be used as follows:
hdfs dfsadmin –safemode [<get/enter/leave/wait>]

Let's see one example:
hdfs dfsadmin –safemode get

The following screenshot shows the output of the preceding command:

 ° refreshNodes: This parameter of the command makes Hadoop read
configurations such as hosts again, and excludes files to update the
set of DataNodes that are allowed to connect to NameNodes that
should be or are already decommissioned. For example, have a look
at the following command:
hdfs dfsadmin -refreshNodes

 ° finalizeUpgrade: When we issue the dfsadmin command with this
parameter, it will make an upgrade permanent. It does so by deleting
the previous version of directories on DataNodes and NameNode.
This completes the upgrade process and is not downgradable.

 ° upgradeProgress: This parameter of the command has three
options: status, detail, and force. It also fetches the information
on the Hadoop upgrade process.

 ° metasave: This parameter saves the NameNode primary data
structures to a file. The file contains one line for each of the following:
• DataNodes' hearts beating with NameNode
• Blocks waiting to be replicated
• Blocks currently being replicated
• Blocks waiting to be deleted

Chapter 6

[153]

 ° setQuota: This parameter is used to set the quota for each directory
as a long integer value that puts a hard limit on the number of names
in the directory tree. It reports errors if one of the following is true:
• N is not a positive integer
• The user is not an administrator
• The directory does not exist or is a file
• The directory exceeds the new quota

 ° clrQuota: This parameter clears the quota for each directory. An
error is reported if one of the following is true:
• The directory does not exist or is a file
• The user is not an administrator; clearQuota does not fault if

the directory has no quota

 ° help: This displays the help for all the commands.
 ° restoreFailedstorage: This parameter turns automatic attempts

on or off to restore failed storage data. If a failed storage comes online
again, the system will attempt to restore edits and/or fsimage during
checkpoint. The check option will return the current setting. This
parameter has options such as true, false, and chec.

You can also find the description of the dfsadmin
command at http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-common/
CommandsManual.html#dfsadmin.

• mradmin: This command runs a MapReduce client. The following is
the syntax:
hadoop mradmin [generic_options] [-refreshqueueacls]

The -refreshqueueacls parameter refreshes the queue ACLs used by
Hadoop to check access during submissions of the job by the user. The
properties present in mapred-queue-acls.xml are reloaded by the
queue manager.
Some other options of this command are as follows:

 ° The -refreshQueues option to refresh a job queue
 ° The -refreshUserToGroupsMappings option to refresh user groups
 ° -refreshSuperUserGroupsConfiguration

 ° -refreshNodes

 ° -help [cmd]

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#dfsadmin
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#dfsadmin
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#dfsadmin

HBase Cluster Maintenance and Troubleshooting

[154]

You can also find the description of the mradmin
command at http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-common/
CommandsManual.html#mradmin.

• jobtracker: This command runs an instance of a MapReduce node if the
daemon is not already started. The following is the syntax:
Hadoop jobtracker [-dumpConfiguration]

The -dumpConfiguration option dumps the configuration used by
JobTracker, along with the queue configuration in JSON format, into a
standard output used by JobTracker, and then exits.

You can also find the description of the jobtracker
command at http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-common/
CommandsManual.html#jobtracker.

• namenode: This command runs a NameNode instance. The following is
the syntax:
hadoop namenode [-format] / [-upgrade] / [-rollback] /
[-finalize] / [-importCheckpoint]

The following table describes the parameters of this command:

Command options Description

-format This parameter of the command should be used only once,
at the first time, when a new cluster is configured. The
command with this parameter formats the file system to
HDFS and prepares the file system.
This parameter must not be used for a working and in-
production cluster as whole data will be destroyed.

-upgrade This initiates the upgrade process to a newer version.

-rollback This roll backs the upgrade process if something goes wrong.
This must be used after stopping the cluster and distributing
the old Hadoop version files on it.

-finalize Once all NameNodes and DataNodes are upgraded
successfully, this command commits the changes; this
removes the previous state of the HDFS file system.
After using this command, rollback will not work.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#mradmin
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#mradmin
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#mradmin
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#jobtracker
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#jobtracker
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#jobtracker

Chapter 6

[155]

Command options Description

-importCheckpoint This loads the image file data from a checkpoint directory
and saves it into the current directory. The checkpoint
directory is read from the fs.checkpoint.dir property.

For more details on this, go to http://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-hdfs/
HdfsUserGuide.html and http://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-common/
CommandsManual.html#namenode.

• secondarynamenode: This command starts the secondary NameNode
instance. The following is the syntax:
hadoop secondarynamenode [-checkpoint [force]] /
[-geteditsize]

The following list explains the parameters of this command:
 ° checkpoint [-force]: This performs checkpointing at the

secondary NameNode if the EditLog size is greater than or
equal to the fs.checkpoint.size.
If -force is used, perform checkpoint irrespective of the
EditLog size.

 ° geteditsize: This prints out the EditLog size.

You can also find the description of this command at
http://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-common/CommandsManual.
html#secondarynamenode.

• tasktracker: This starts the TaskTracker node; the syntax for this is
as follows:
hadoop tasktracker

You can also find the description of this command at
http://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-common/CommandsManual.
html#tasktracker.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#namenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#namenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#namenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#secondarynamenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#secondarynamenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#secondarynamenode
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#tasktracker
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#tasktracker
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#tasktracker

HBase Cluster Maintenance and Troubleshooting

[156]

User commands
The following is the list of user commands:

• archive: This command is used to create Hadoop achieve files. Its syntax is
as follows:
hadoop archive -archiveName NAME <src> <dest>

• distcp: This command is used to copy a file from one cluster to another or
to the same cluster at a different location. This uses the MapReduce task
to copy files parallel. Its syntax is:
hadoop distcp <source url> <destination url>

Have a look at the following example:

hadoop distcp hdfs://hadoop1:9000/files
hdfs://hadoop2:9000/filesdir

• fs: Instead of this command, we use hdfs dfs, which we will discuss in the
next section with all of its various options.

• fsck: This command is used to find the inconsistencies in HDFS. It reports
problems with various files, for example, missing blocks for a file or under-
replicated blocks. This is not a Hadoop shell command. It can be run as:
hdfs fsck [GENERIC_OPTIONS] <path> [-move | -delete |
-openforwrite] [-files [-blocks [-locations | -racks]]]

The following is the description of the parameters of this command:

Command options Description
path This defines the path to be checked
-move This moves corrupted files to /

lost+found

-delete This deletes corrupted files
-files This prints out files being checked
-openforwrite This prints out files opened for write
-list-corruptfileblocks This prints the list of missing blocks and

files they belong to
-blocks This prints out the block report
-locations This prints out locations for every block
-racks This prints the network topology for

DataNode locations

Chapter 6

[157]

By default, the fsck command ignores files opened for write; we can use
-openforwrite to report such files. They are generally tagged CORRUPT or
HEALTHY depending on their block allocation status.
The following screenshot shows the output of fsck:

• fetchdt: This retrieves delegation tokens from NameNode. Authentication
is a two-party authentication protocol based on Java SASL Digest-MD5. The
token is obtained during job submissions and submitted to JobTracker as part
of the job submission. Find more details at http://hortonworks.com/wp-
content/uploads/2011/10/security-design_withCover-1.pdf.
The following is the syntax:
fetchdt <opts> <token file>

The following table will describe to you the different command options:

Command options Description
--webservice <url> This is the URL to contact a NameNode on
--renewer <name> This is a name of the delegation token renewer
 --cancel This cancels the delegation token
--renew This renews the delegation token, which must be fetched

using the --renewer <name> option
--print This prints the delegation token

http://hortonworks.com/wp-content/uploads/2011/10/security-design_withCover-1.pdf
http://hortonworks.com/wp-content/uploads/2011/10/security-design_withCover-1.pdf

HBase Cluster Maintenance and Troubleshooting

[158]

• jar: This runs a JAR file. Users can bundle their MapReduce code in a JAR
file and execute it using the command, the syntax of which is as follows:
hadoop jar <jar> [mainClass] arguments

The following is an example of this command:

hadoop jar hadoop-mapreduce-examples-*.jar pi 20 20

• Job: This is used to submit a job. It can be known as a Hadoop or mapred job.
The following is the syntax :
JobClient <command> <args>

 [-submit <job-file>]

 [-status <job-id>]

 [-counter <job-id> <group-name> <counter-name>]

 [-kill <job-id>]

 [-set-priority <job-id> <priority>]

 [-events <job-id> <from-event-#> <#-of-events>]

 [-history <jobOutputDir>]

 [-list [all]]

 [-list-active-trackers]

 [-list-blacklisted-trackers]

 [-list-attempt-ids <job-id> <task-type> <task-state>]

 [-kill-task <task-id>]

 [-fail-task <task-id>]

The following table will guide you through the command options:

Command options Description

-submit job-file This is used to submit the job.

-status job-id This prints the map and reduces the completion
percentage and all job counters.

-counter job-id group-
name counter-name

This prints the counter value of a job.

-kill job-id This is used to kill the job.

-events job-id from-
event-# #-of-events

This prints the events' details received by JobTracker
for the given range of values.

Chapter 6

[159]

Command options Description

-history [all]
jobOutputDir

This prints job details of failed and killed jobs. More
details about the job, such as successful tasks and
task attempts, made for each task can be viewed by
specifying the [all] option.

-list [all] This is used to display jobs that are yet to be
completed. The -list all option displays all jobs.

-kill-task task-id This is used to kill the task using a task ID.

-fail-task task-id This lists out the failed tasks of a failed job and the
number of attempts.

-set-priority job-id
priority

Using this switch, we can change the priority of a
job to any one of these priority values: VERY_HIGH,
HIGH, NORMAL, LOW, and VERY_LOW.

• pipes: This command enables Hadoop to MapReduce code written in
C++. This library is supported on 32-bit Linux installations. The following
is the syntax:
hadoop pipes [-conf <path>] [-jobconf <key=value>, <key=value>,
...] [-input <path>] [-output <path>]
[-jar <jar file>] [-inputformat <class>] [-map <class>]
[-partitioner <class>] [-reduce <class>] [-writer <class>]
[-program <executable>] [-reduces <num>]

The following are the descriptions of the command options:

Command options Description
-conf path This is the path to where configuration for a job exists
-jobconf key=value,
key=value, ...

This adds/overrides configurations for jobs

-input path This is the path to the input directory
-output path This is the path to the output directory
-jar jar file This is the JAR filename
-inputformat class This is a InputFormat class
-map class This is Java Map class
-partitioner class This is a Java partitioner
-reduce class This is a Java Reduce class
-writer class This is a Java RecordWriter class
-program executable This is an executable URI
-reduces num This is the number of Reduces

HBase Cluster Maintenance and Troubleshooting

[160]

• version: This displays the Hadoop version. Its syntax is as follows:
hadoop version

File system-related commands
The hdfs dfs command provides shell-based Hadoop commands that directly
interact with Hadoop Distributed File System (HDFS) as well as other file
systems that Hadoop supports, such as Local FS, HFTP FS, S3 FS, or others.

This command can be executed using the following syntax:

[hadoop fs <args>]

Alternatively, we can also use:

[hdfs dfs args]

Let's discuss these dfs commands briefly:

Options Description
-appendToFile This appends files to HDFS. These files can be local or inputs to

be written on HDFS.
Have a look at the following example:

• hdfs dfs -appendToFile file /user/data/
appendedfile

• hdfs dfs -appendToFile file file0 /user/
data/appendedfile

• hdfs dfs -appendToFile localfile
hdfs://<namenode>/user/data/appendedfile

• hdfs dfs -appendToFile - hdfs://<namenode>/
user/data/appendedfile

This parameter reads the input from stdin.

-cat This displays the content of a file on stdout. The following is
the syntax:
hdfs dfs –cat <file URI>

Here is an example:
hdfs dfs -cat hdfs://<namenode>/file

Chapter 6

[161]

Options Description
** -chgrp This changes the group of a file or directory. –R is used for

recursive. The syntax is:
hdfs dfs –chgrp [-R] [owner][:[group]]<URI>

Here are some examples:
hdfs dfs –chgrp –R hadoop:hadoop hdfs://namenode/
dir

hdfs dfs –chgrp hadoop:hadoop hdfs://namenode/file

For permission-related information, visit http://hadoop.
apache.org/docs/r1.2.1/hdfs_permissions_guide.
html.

** -chmod This changes the access mode of a file or directory. –R is used for
recursive.
The syntax is as follows:
hdfs dfs –chmod <mode> <URI>

Here are some examples:
hdfs dfs –chmod 777 hdfs://namenode/filename

hdfs dfs –chmod –R 777 hdfs://namenode/directory

For more on permission and mode, visit http://hadoop.
apache.org/docs/r1.2.1/hdfs_permissions_guide.
html.

** -chown This changes the owner of a directory or file, we use –R for
recursive.
The syntax is as follows:
hdfs dfs –chown [–R] <user or owner:group><URI>

Here is an example:
hdfs dfs –chown –R shashwat:hadoop
hdfs://namenode/directory

-copyFromLocal This copies files from a local drive to an HDFS file system.
The syntax is as follows:
hdfs dfs –copyFromLocal <Local file/ Local
Directory><URI>

Here are some examples:
hdfs dfs –copyFromLocal /user/home/Shashwat/file1
hdfs://namenode/newdir

hdfs dfs –copyFromLocal /user/home/Shashwat/dir
hdfs://namenode/newdir

http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_permissions_guide.html

HBase Cluster Maintenance and Troubleshooting

[162]

Options Description
-copyToLocal This copies files from HDFS to local drives. Adding ignorecrc

will force it not to check crc after copying, and the crc option
will print the crc details.
This is the syntax:
hdfs dfs –copyToLocal [-ignorecrc] [-crc]
<URI><Local
file/ Local Directory>

Here are some examples:
hdfs dfs –copyToLocal hdfs://namenode/newdir
/user/home/Shashwat

hdfs dfs –copyToLocal hdfs://namenode/newdir
/user/home/Shashwat

-count This counts the number of directories, files, and bytes under the
given path. –q is also added to get quota.
The following is the syntax:
hdfs dfs –count [–q] <path>

Here's an example:
hdfs dfs –count /dir

-cp This is used to copy files from one HDFS location to another on
the same Hadoop cluster or other Hadoop clusters.
This is the syntax:
hdfs dfs –cp <Source URI> <Destination URI>

Here are some examples:
hdfs dfs –cp /user/file1 /user/dir1/

-du This displays the size of the directories and files under the given
path.
This is the syntax:
hdfs dfs –du [-S] [-h] <URI>

Adding options –S will give the summarized (aggregated) size,
and –h will give it in a human-readable format (in MB, GB, and
so on).
Here are some examples:
hdfs dfs –du -s /user/dire

hdfs dfs –du /user/dir

hdfs dfs –du –s –h /user/dir

-dus This is equivalent to –du –s and displays the size of directories
or files as an aggregated summary.

Chapter 6

[163]

Options Description
-expunge When we delete files, and trash is enabled on HDFS, deleted files

go to trash, but not directly deleted from HDFS. This command
enables us to empty the trash.
This is the syntax:
hdfs dfs –expunge

-get This is equivalent to –copyToLocal.
This is the syntax:
hdfs dfs –get <HDFS location> <local destination>

Here is an example:
hdfs dfs –get hdfs://namenode/dir /tmp

-getmerge This concatenates the source and destination, and copies them to
a local directory.
This is the syntax:
hdfs dfs -getmerge <src> <localdst> [addnl]

-ls This lists out files and folders in a given path.
Here is the syntax:
hdfs dfs –ls <directory path>

This is the example:
hdfs dfs –ls /

-lsr This lists out files and folders recursively; the syntax and uses are
same as –ls.

-mkdir This creates a directory on HDFS.
This is the syntax:
hdfs dfs –mkdir <directory path to be created>

Here are some examples:
hdfs dfs -mkdir /user/hadoop/dirtocreate

hdfs dfs -mkdir /user/hadoop/dirtocreate
/user/hadoop/dirtocreate1

-moveFromLocal This copies a file from the local directory and deletes the source
file on the source path.
This is the syntax:
dfs -moveFromLocal <localsrc> <dst>

-moveToLocal This moves the file from HDFS to a local destination.
This is the syntax:
hdfs dfs -moveToLocal [-crc] <src> <dst>

HBase Cluster Maintenance and Troubleshooting

[164]

Options Description
** -mv This moves a file or directory from one HDFS location to another,

either on the same cluster or to different clusters.
This is the syntax:
hdfs dfs -mv <source> <dest>

Here are some examples:
hdfs dfs -mv /user/shashwat/file /user/shashwat/
file1

hdfs dfs -mv hdfs://namenode/file hdfs://namenode/
file

-put This copies a single source or multiple sources from the local file
system to the destination file system. It also reads the input from
stdin and writes to the destination file system.
This is the syntax:
hdfs dfs –put <source local> <destination HDFS>

Here are some examples:
hdfs dfs –put /tmp/userfilelocal
hdfs://namenode/dirtarget

hdfs dfs -put - hdfs://nn.example.com/hadoop/
hadoopfile

Giving – (hyphen) instead of source path will take input from
stdin.

** -rm This deletes a specified file. If the –skipTrash option is
specified, the trash, if enabled, will be bypassed, and the
specified file or files will be deleted immediately. This can be
useful when it is necessary to delete files from an over-quota
directory.
This is the syntax:
hdfs dfs -rm [-skipTrash] URI [URI …]

Here are the examples:
hdfs dfs -rm hdfs://namenode/file

hdfs dfs -rm hdfs://namenode/file hdfs://namenode/
file1

hdfs dfs –rm /user/files/file

** -rmr This deletes files/directories recursively.
This is the syntax:
hdfs dfs -rmr [-skipTrash] URI [URI …]

Here is an example:
hdfs dfs -rmr /user/shashwat/dirTodelete

Chapter 6

[165]

Options Description
-setrep This is a helpful command for specifying the replication

of existing files on HDFS explicitly. –R is added to set the
replication factor recursively.
This is the syntax:
hdfs dfs -setrep [-R] <path>

Here is an example:
hdfs dfs -setrep -w 5 -R /user/shashwat/dir

Here, –w will wait until it is replicated and -R will perform the
operation recursively.

-stat This displays the statistics of the given argument file/directory.
This is the syntax:
hdfs dfs -stat URI [URI …]

Here is an example:
hdfs dfs -stat /user/Shashwat/file

-tail This displays the trailing content of a file on HDFS, which
is the same as the tail command in Linux. –f is added to
continuously tail the file content.
This is the syntax:
hdfs dfs -tail [-f] URI

Here are some examples:
hdfs dfs -tail /user/Shashwat/file.log

hdfs dfs –tail -f /user/Shashwat/file.log

-test This tests the condition with the following options:
• -e checks to see whether the file exists; it returns 0 if true
• -z checks to see whether the file is of zero length; it

returns 0 if true
• -d checks to see whether the path is a directory; it returns

0 if true

This is the syntax:
hdfs dfs -test -[ezd] URI

Here are some examples:
hdfs dfs -test -e /user/Shashwat/file

hdfs dfs -test -z /user/Shashwat/file

hdfs dfs -test -d /user/Shashwat/file

HBase Cluster Maintenance and Troubleshooting

[166]

Options Description
-text hdfs dfs –cat will display the file content correctly when the

file is text based. If we need to read a sequential binary file or
compressed file, cat will not do, so we have to use this command.
The allowed formats are ZIP and TextRecordInputStream.
This is the syntax:
hdfs dfs -text <src>

Here is an example:
hdfs dfs -text /user/Shashwat/mr/_part01

-touchz This command creates a zero-length file on HDFS.
This is the syntax:
hdfs dfs -touchz URI [URI …]

Here are some examples:
hdfs dfs -touchz hdfs://namenode/user/Shashwat/file

hdfs dfs -touchz /user/Shashwat/file

Commands preceding ## are important admin commands.
Commands preceding ** are the commands to be used with caution as they might result
in data loss.

Difference between copyToLocal/copyFromLocal
and get/put
If HDFS contains the path /user/files/file, and if the local disk also contains
the same path, the HDFS API won't know which one we mean, unless we specify a
scheme such as file:// or hdfs://. It might pick the path we did not want to copy.

Therefore, we have -copyFromLocal, which prevents us from mistakenly copying
the wrong file by limiting the parameter we give to the local file system.

The put command is for users who know which scheme to put in front. It is
confusing, sometimes, for new Hadoop users to decide or specify which file
system they are currently in and where their files actually are.

copyFromLocal is similar to the put command, except that the source is restricted
to a local file reference.

copyToLocal is similar to the get command, except that the destination is restricted
to a local file reference.

Chapter 6

[167]

For the latest Hadoop documentation, visit http://hadoop.
apache.org/docs/ and select the Hadoop version.

Now, let's start with HBase administration and operation tasks.

HBase shell commands
HBase shell is a JRuby-based shell that provides an interface to HBase to perform
operations such as creating tables and other operations. We can go to HBase shell
using the following command:

hbase shell

Alternatively, we can use the following command, depending on the directory you
are in or whether the environment variable is set:

bin/hbase shell

Once we type in one of the previous commands, we will get a prompt:

hbase(main):026:0>

At this prompt, we can type in the commands. We can always type help to get the
list of available commands, and help command_name to get help on the particular
command, as follows:

hbase(main):026:0> help

Similarly, with a particular command, it is as follows:

hbase(main):026:0> help 'scan'

Let's look at the commands and their descriptions.

Commands Description
General Commands
status This shows the server status, for example:

5 servers, 0 dead, 25.0000 average load

This has three switches, as follows:
hbase> status 'simple'

hbase> status 'summary'

hbase> status 'detailed'

http://hadoop.apache.org/docs/
http://hadoop.apache.org/docs/

HBase Cluster Maintenance and Troubleshooting

[168]

Commands Description
whoami This shows the current HBase user. The following is the example:

hbase> whoami

version This shows the version of HBase.
list This shell command will list out the existing tables in HBase.

The syntax is as follows:
list

list 'stud.*'

count This counts the number of records in a specified table. The syntax is
as follows:
count 'tableName'

The count shows every 1,000 rows by default. The count interval
might be optionally specified. Scan caching is enabled on count scans
by default. The default cache size is 10 rows. If our rows are small in
size, we increase this parameter.
Have a look at the following example:
hbase> count 't1'

hbase> count 't1', INTERVAL => 100000

hbase> count 't1', CACHE => 1000

hbase> count 't1', INTERVAL => 10, CACHE => 1000

This default HBase counter takes a lot of time to count if there is a lot
of records. So, we have the HBase MapReduce JAR file to fasten this
operation, which can be called as follows:
hadoop jar hbase.jar rowcount tablenametocount

This counter runs the MapReduce task much faster than the count
in HBase.

describe This describes the table given as parameter; information about the
table structure will be displayed.
The syntax is as follows:
describe 'NameOfThetableToDescribe'

exist If we have thousands of tables, and we need to check whether a table
exists in HBase, we can use this command. If there are fewer tables,
we can easily verify using a list, and if there are lots of tables, we
might find it difficult to scroll through the list of tables, so we can use
this command to check.
The syntax is as follows:
exists 'tableToCheck'

Chapter 6

[169]

Commands Description
is_enabled This checks whether a table is enabled. The syntax is as follows:

is_enabled 'tableToCheck'

is_disabled This checks whether a table is disabled.
The syntax is as follows:
is_disabled 'tableToCheck'

show_filters This displays a list of filters available in HBase.
Have a look at the following example:
hbase> show_filters

Data-manipulation commands
alter Using this command, we can alter the table and column family

schema. Here, we pass the table name and a dictionary specifying
a new column family schema.
The following command adds a new column family colFam to table:
alter 'table', {NAME => 'colFam', VERSIONS => 1}

Alternatively, to keep a maximum of two cell versions, use the
following command:
hbase> alter 'table', NAME => 'fam1', VERSIONS => 2

To delete the f1 column family in table t1, use the following
command:
hbase> alter ''table'', NAME => 'fam1', METHOD =>
'delete'

A shorter version of the previous command is:
hbase> alter 'table', 'delete' => 'fam1'

We can also change table-scope attributes such as MAX_FILESIZE,
MEMSTORE_FLUSHSIZE, READONLY, and DEFERRED_LOG_FLUSH.
For example, to change the maximum size of a family to 128 MB,
we use:
hbase> alter ''table'', METHOD => 'table_att',
MAX_FILESIZE => '134217728'

There can be more than one alteration in a single line of command:
hbase> alter ''table'', {NAME => 'fam1'},
{NAME => 'fam2', METHOD => 'delete'}

alter_status This gives the status of the alter command.
Have a look at the following example:
hbase> alter_status 'talblebingaltered'

HBase Cluster Maintenance and Troubleshooting

[170]

Commands Description
alter_async This command does not wait for all regions to receive the schema

changes, whereas alter does.
Have a look at the following example:
hbase> alter_async 't1', NAME => 'f1', METHOD =>
'delete'

disable This disables a table for dropping or modification. The syntax is as
follows:
disable 'tableToDisable'

disable_all This disables all the tables matching the given regex.
Have a look at the following example:
hbase> disable_all 'tab*'

drop This deletes a table from HBase. So, before dropping the table, it must
be disabled, otherwise it will throw an exception that the table is not
disabled.
Have a look at the following examples:
disable 'tableToDrop'

drop 'tableToDrop'

drop_all This drops all of the tables matching the given regex.
Have a look at the following example:
hbase> drop_all 'tab*'

enable This enables the table after modification.
The syntax is as follows:
enable 'NameOfDisabledTableToEnable'

enable_all This enables all of the tables matching the given regex.
Have a look at the following example:
hbase> enable_all 'tab*'

delete This deletes a cell value in a row.
The syntax is as follows:
Delete 'table','row1','colFam1:name'

So, this will delete a name value in row1.

Chapter 6

[171]

Commands Description
deleteall This deletes an entire row of a table or a column specified.

The syntax is as follows:
deleteall 'table','row1'

This will delete the entire row1:
deleteall 'table','row1','colFam:name'

This will also delete column names from row1.
truncate This disables the table, drops the table, and recreates schema. So,

when we use drop, we need to disable the table manually, and then
drop. If we just want to drop data and not the schema, we can use
truncate; it automatically drops and recreates the schema of the
dropped table:
hbase> truncate

Data-creation commands
create This command is used to create a new table with a specified schema.

The syntax is as follows:
create 'tablename','cf1'

This will create a table with a column family cf1, and we can then
put data in the table and dynamically add columns.
Have a look at the following examples.
The following command will create a tableToCreate table with the
column family colFam1, with five versions of records:
hbase> create 'tableToCreate', {NAME => 'colFam1',
VERSIONS => 5}

This will create a tableToCreate table with column families
colFam1, colFam2, and colFam3:
hbase> create 'tableToCreate', {NAME => 'colFam1'},
{NAME => 'colFam2'}, {NAME => 'colFam3'}

The shorthand of the previous commands are:
hbase> create 'tableToCreate', 'colFam1',
'colFam2', 'colFam3'

hbase> create 'tableToCreate', {NAME => 'colFam1',
VERSIONS => 1, TTL => 2592000, BLOCKCACHE => true}

put This puts/writes a value at a specified cell in a table or timestamp
coordinate. To put a cell value into table t1 at row r1 under column
c1 marked with the time ts1, use:
hbase> put 't1', 'r1', 'c1', 'value', ts1

HBase Cluster Maintenance and Troubleshooting

[172]

Commands Description
Data-reading commands
scan This command iterates through the rows in the table and displays

on stdout. This lists all the records in the table. A scanner might
contain TIMERANGE, FILTER, LIMIT, STARTROW, STOPROW,
TIMESTAMP, MAXLENGTH, or COLUMNS. If no columns are specified,
all columns will be scanned. To scan all members of a column family,
leave the qualifier empty, as in 'col_family:'.
Have a look at the following example:
hbase> scan '.META.'
hbase> scan '.META.', {COLUMNS =>
'info:regioninfo'}
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT
=> 10, STARTROW => 'xyz'}
hbase> scan 't1', {FILTER =>
org.apache.hadoop.hbase.filter.ColumnPaginationFilt
er.new(1, 0)}
hbase> scan 't1', {COLUMNS => 'c1', TIMERANGE =>
[1303668804, 1303668904]}

For experts, there is an additional option, -- CACHE_BLOCKS --,
which switches block caching for the scanner on (true) or off
(false). By default, it is enabled.
Have a look at the following example:
hbase> scan 't1', {COLUMNS => ['c1', 'c2'],
CACHE_BLOCKS => false}

get This gets row or cell contents and passes table names, rows, and
optionally, a dictionary of column(s), timestamps, time ranges, and
versions.
The following is the example:
hbase> get 'tableName', 'row1'
hbase> get 'tableName', 'row1', {TIMERANGE =>
[ts1, ts2]}
hbase> get 'tableName', 'row1', {COLUMN => 'c1'}
hbase> get 'tableName', 'row1', {COLUMN =>
['c1', 'c2', 'c3']}
hbase> get 'tableName', 'row1', {COLUMN =>
'c1', TIMESTAMP => ts1}
hbase> get 'tableName', 'row1', {COLUMN =>
'c1', TIMERANGE => [ts1, ts2], VERSIONS => 4}
hbase> get 'tableName', 'row1', {COLUMN =>
'c1', TIMESTAMP => ts1, VERSIONS => 4}
hbase> get 'tableName', 'row1', 'c1'
hbase> get 'tableName', 'row1', 'c1', 'c2'
hbase> get 'tableName', 'row1', ['c1', 'c2']

Chapter 6

[173]

Commands Description
get_counter This returns a counter cell value at a specified table/row/column

location. A cell should be managed with an atomic increment
function on HBase, and the data should be binary encoded.
The following is the example:
hbase> get_counter 't1', 'r1', 'c1'

incr This increments a cell value at a specified table/row/column
location.
To increment a cell value in table t1 at row r1 under column c1 by 1
(which can be omitted) or 10, do:
hbase> incr 't1', 'r1', 'c1'

hbase> incr 't1', 'r1', 'c1', 1

hbase> incr 't1', 'r1', 'c1', 10

get_table Using this, we can assign a table to a variable and perform operations
such as put, get, and scan.
Have a look at the following example:
t = get_table 'stud'

t.scan()

Miscellaneous admin commands
close_region This closes a single region. The close operation is done without the

master's involvement (it will not know of the closing operation).
Once the region is closed, it will stay closed. Use assign to reopen/
reassign. Use unassigned or move to assign the region elsewhere
on cluster.
Have a look at the following example:
hbase> close_region 'REGIONNAMEToMove'

hbase> close_region 'REGIONNAME',
'REGIONSERVER_IP:PORT'

assign This assigns a region and adds true to force the assignment of a
region. If a region is already assigned, this will just go ahead and
reassign the region.

balance_
switch

This enables/disables the balancer and returns the previous
balancer state.
Have a look at the following example:
hbase> balance_switch true

hbase> balance_switch false

balancer HBase has a built-in feature that is called balancer, which by default
runs every 5 minutes, and once started, it will try to equal out the
assigned region per RegionServer. This will show if the balancer for
HBase is enabled.

HBase Cluster Maintenance and Troubleshooting

[174]

Commands Description
compact This compacts all regions in a specified table.
flush This flushes all regions in a specified table.

Have a look at the following example:
hbase> flush 'TABLENAMEToFlush'

hbase> flush 'REGIONNAMEToFlush'

major_
compact

This command runs a major compaction on a specified table.

move This moves a region.
Have a look at the following example:
hbase> move 'ENCODED_REGIONNAME'

hbase> move 'ENCODED_REGIONNAME', 'SERVER_NAME'

split This splits the table or an individual region.
unassign This command unassigns the RegionServer.
zk_dump This gives the dump status of an HBase cluster, as seen by

ZooKeeper.
HBase is rooted at /hbase. The following is how it shows the dump
status:
Master address: shashwat.com:60000
Region server holding ROOT: shashwat.com:60020
Region servers:
shashwat.com:60020
Quorum Server Statistics:
shashwat.com:2181
Zookeeper version: <version number>, built on
<date time>
Clients:
/127.0.0.1:50641[1](queued=0,recved=3,sent=65)
/127.0.0.1:50637[1](queued=0,recved=13,sent=226)
/127.0.0.1:50644[1](queued=0,recved=14,sent=198)
/127.0.0.1:50643[1](queued=0,recved=63,sent=65)
/127.0.0.1:51874[0](queued=0,recved=1,sent=0)
/127.0.0.1:50713[1](queued=0,recved=63,sent=63)
Latency min/avg/max: 0/8/210
Received: 53
Sent: 626
Outstanding: 0
Zxid: 0x32f0
Mode: standalone
Node count: 1

Chapter 6

[175]

Commands Description
hlog_roll This starts writing log messages to a new file. The name of

RegionServer should be given as the parameter.
Have a look at the following example:
hbase> hlog_roll

add_peer This adds a peer cluster to replicate to. The ID must be
short and the cluster key must be composed as: hbase.
zookeeper.quorum:hbase.zookeeper.property.
clientPort:zookeeper.znode.parent.
This gives a full path for HBase to connect to another cluster.
Have a look at the following example:
hbase> add_peer '1', "server1.cie.com:2181:/hbase"

hbase> add_peer '2', "zk1,zk2,zk3:2182:/hbase-1"

list_peers This lists all replication peer clusters.
Have a look at the following example:
hbase> list_peers

disable_peer This stops the replication stream to the specified cluster, but still
keeps track of new edits to replicate.
Have a look at the following example:
hbase> disable_peer '1'

enable_peer This restarts the replication to the specified peer cluster, continuing
from where it was disabled.
Have a look at the following example:
hbase> enable_peer '1'

remove_peer This stops the specified replication stream and deletes all the meta
information kept about it. The following is the example:
hbase> remove_peer '1'

start_
replication

This restarts all the replication features.
Have a look at the following example:
HBase> start_replication

stop_
replication

This stops all the replication features. The state in which each stream
stops is undetermined.
Have a look at the following example:
hbase> stop_replication

HBase Cluster Maintenance and Troubleshooting

[176]

Commands Description
Security commands
grant This command is used to grant user-specific rights. Grant

permissions are either zero or more letters from the set RWXCA: R for
read, W for write, X for execute, C for create, and A for admin.
Have a look at the following example:
hbase> grant 'shashwat', 'RWXCA'

hbase> grant 'shashwat', 'RWC', 'table1', 'colFam',
'sal'

revoke This takes back/revokes access rights.
Have a look at the following example:
hbase> revoke 'shashwat', 'table', 'ColFam', 'sal'

user_
permission

This shows all permissions for a particular user.
Have a look at the following example:
hbase> user_permission

hbase> user_permission 'tabStud'

Namespace-related commands
create_
namespace

This command is used to create a namespace.
Have a look at the following example:
hbase>create_namespace 'tableStudgroup'

hbase>create 'snamespace:table', 'colfam'

This will create a table in the snamespace namespace with the
column family colfam.

drop_
namespace

This is used to drop a namespace. Have a look at the following
example:
hbase>drop_namespace 'snamespace'

alter_
namespace

This alters an existing namespace.
The syntax is as follows:
hbase>alter_namespace 'snamespace', {METHOD =>
'set', 'PROPERTY_NAME' => 'PROPERTY_VALUE'}

list_
namespace

This lists out namespaces.
Have a look at the following example:
hbase>list_namespace

Chapter 6

[177]

Commands Description
list_
namespace_
tables

This lists tables in the namespace.
Have a look at the following example:
hbase> list_namespace_tables 'namespace'

describe_
namespace

This displays the namespace description.
Have a look at the following example:
hbase > describe_namespace 'name'

For internal implementation and source code, visit https://
github.com/apache/hbase/blob/master/hbase-shell/
src/main/ruby/shell.rb.

Keep in mind that not all commands will run on all the versions
of HBase. However, most of the commands will run on the latest
version of HBase shell.

HBase administration tools
Here, we will discuss HBase administrating tools that are already available. We will
also study the HBase check (hbck) and the HBase health check script a bit more.

hbck – HBase check
The hbck command is used to check/repair HBase. This command finds out
inconsistencies in the HBase cluster, if they exist, and gives a formatted output
for them. This command/tool checks for region consistency and table integrity
problems. It works in two modes:

• Read-only mode: This only displays inconsistencies if they exist
• Read-write-repair mode: This reports inconsistencies and tries to repair them

It is good to repair inconsistencies that have lower risk while executing a repair
hbck command. These region consistency repairs are localized-single-region repairs,
which only modify in-memory data, wrong ZooKeeper data, or patch holes in the
metadata table (an inconsistency exists if every possible row key doesn't resolve to
exactly one region, and if every region isn't assigned and deployed on exactly one
RegionServer and metadata-related issue).

https://github.com/apache/hbase/blob/master/hbase-shell/src/main/ruby/shell.rb
https://github.com/apache/hbase/blob/master/hbase-shell/src/main/ruby/shell.rb
https://github.com/apache/hbase/blob/master/hbase-shell/src/main/ruby/shell.rb

HBase Cluster Maintenance and Troubleshooting

[178]

The options to repair region consistencies include:

• -fixAssignments: This repairs unassigned, incorrectly assigned, or
multiple time assigned regions. To fix these problems, we can run the
following command:
hbase hbck –fixAssignments

• -fixMeta: This removes meta rows when corresponding regions are not
present in HDFS and adds a new metarow if the regions are present in HDFS
and not in META. Use the following command to fix assignment and Meta:
hbase hbck -fixAssignments -fixMeta

There are a few table integrity problems that are of low risk. The first two are:
degenerate where startkey == endkey regions and backwards regions where
startkey > endkey. These problems are automatically handled by sidelining the
data to a temporary directory (/hbck/xxxx). The third low-risk class is HDFS region
holes. This can be repaired using the -fixHdfsHoles option to fabricate new empty
regions on the file system. If holes are detected, we can use -fixHdfsHoles and
should include -fixMeta and -fixAssignments to make the new region consistent.

Have a look at the following example:

hbase hbck -repairHoles

Now, let's see the region-related fixes.

We need to run the hbase hbck -details command so that you isolate repair
attempts only upon problems that the checks identify, so that we can really
understand where the exact problem lies and where the specific problem can
be targeted.

Some other repair options are as follows:

• -fixHdfsOrphans: This is used to adopt a region directory that has missing
region metadata

• -fixHdfsOverlaps: This has the ability to fix overlapping regions
• -repair: This can be used to repair all the region inconsistencies
• -maxMerge<n>: This can be used to merge a maximum number of

overlapping regions

Chapter 6

[179]

• -sidelineBigOverlaps: This sidelines the regions to non-overlapping
regions if more than one big regions overlap

• -maxOverlapsToSideline<n>: This option works by sidelining large
overlapping regions, and sidelines a maximum of <n> regions

Some other cases that are to be considered are as follows:

• Use the following command to fix if Meta is not properly assigned:
hbase hbck -fixMetaOnly -fixAssignments

• Use the following command if the HBase version file is missing:
hbase hbck - fixVersionFile

• Use the following command if Root and META are corrupt:
hbase org.apache.hadoop.hbase.util.hbck.OfflineMetaRepair

• Use the following command when an offline split parent occurs:
hbase hbck -fixSplitParents

You can check for help with the following command:
hbase hbck –help

HBase health check script
The HBase health check script is available in the example directory of HBase, the
source of which we can find at http://svn.apache.org/viewvc/hbase/trunk/
hbase-examples/src/main/sh/healthcheck/healthcheck.sh.

The following parameters can be configured in order to automate this script and set
the interval of the health check:

hbase.node.health.script.location

hbase.node.health.script.timeout

hbase.node.health.script.frequency

hbase.node.health.failure.threshold

The default frequency is after every 60 seconds, but we can set it accordingly.

The failure threshold defaults to 3, which is the number of times the health check
will be tried before being set as a failure of check.

http://svn.apache.org/viewvc/hbase/trunk/hbase-examples/src/main/sh/healthcheck/healthcheck.sh
http://svn.apache.org/viewvc/hbase/trunk/hbase-examples/src/main/sh/healthcheck/healthcheck.sh

HBase Cluster Maintenance and Troubleshooting

[180]

Writing HBase shell scripts
We can write a set of commands in a file and run it as:

hbase shell <path_to_script/scriptname>

Alternatively, we can write it as follows:

hbase org.jruby.Main <path_to_script/scriptname>

HBase shell might contain all the available HBase shell commands. Also, we can
write a Linux shell command embedded with HBase commands.

Using the Hadoop tool or JARs for HBase
In a driver class provided by Hadoop, we can run HBase JAR files utilizing the
features of Hadoop and using the following command:

hadoop jar <HBase Jar file path>/hbase-*.jar<program name>

The program names we can use here are:

• completebulkload: This is for a bulk data load
• copytable: This is to export a table data from the local to peer cluster
• export: This is to export data from an HBase table to HDFS as a sequence file
• import: This is to import data written by export
• importtsv: This is to import data in TSV format to HBase
• rowcounter: This is to count rows in an HBase table using MapReduce
• verifyrep: This is to compare the data from tables of different clusters

We will discuss the preceding methods in the next chapter, where we will also
discuss the backup/restore process. Likewise, we can call the HBase JAR file with
Hadoop. The following are the Hadoop tools:

• HFile tool: This tool helps us to read an HFile content in text format. We can
use it as:
hbase org.apache.hadoop.hbase.io.hfile.hfile

This is a very useful tool, as hfile is not in human-readable format, and if
we need to see the content, this tool fits well.

Chapter 6

[181]

• FSHLog tool: This tool can be used to read WAL files in human-readable
format. We can use it as:
hbase org.apache.hadoop.hbase.regionserver.wal.FSHLog --dump
<hbaselocationlogfile>

We can also use it to split log files, as follows:
hbase org.apache.hadoop.hbase.regionserver.wal.FSHLog --split
<hbaselocationlogfile>

We have HLogPrettyPrinter, which prints the contents of the HBase log file
and WALPlayer to replay WAL log files.

• Counting rows or cell efficiently: An inbuilt HBase counter is much slower
as it scans through the HBase tables and huge tables take a lot of time. So,
if we need to count the number of records or number of cells for a table,
we have an option, using which we can do it in less time. This runs the
MapReduce task for the same.
Use the following command to count rows as a MapReduce task:
hbase org.apache.hadoop.hbase.mapreduce.RowCounter <tablename>

The preceding command will show the number of rows in a specified HBase
table. For more detailed statistics of records, we can use CellCounter or
RowCounter, which we will see next.
A cell counter results in detailed counts; it provides the following
once completed:

 ° The number of rows in the table
 ° The number of column families across all rows
 ° The number of qualifiers across all rows
 ° The number of occurrences of each column family
 ° The number of occurrences of each qualifier
 ° The number of versions of each qualifier

We can use CellCounter as follows:

hbase org.apache.hadoop.hbase.mapreduce.CellCounter
<tablename><outputDir> [regex or prefix]

• Offline compaction tool: This can be used to run compactions in the offline
mode. It can be run as follows:
hbase org.apache.hadoop.hbase.regionserver.CompactionTool

HBase Cluster Maintenance and Troubleshooting

[182]

Connecting HBase with Hive
We can map an HBase table to Hive (browse https://hive.apache.org if you
don't know about Hive already) and run Hive queries that support Hive Query
Language (HQL) almost in the same way as SQL on an HBase table. This is good for
developers or users who possess a good knowledge of SQL.

For this, we need to create a table in HBase. Let's start the process:

Create a table in Hive as follows:

create 'hivehbasetable', 'name'

Put some data into it:

put 'hivehbasetable', 'row1', 'name:firstname', 'shashwat'

put 'hivehbasetable', 'row1', 'name:lastname', 'shriparv'

put 'hivehbasetable', 'row1', 'name:title', 'mr'

We need some JAR files for this association (Hive needs to be told where these JARs
are), which are as follows:

• Guava.<version>.jar

• Hive-Hbase handler.<version>.jar

• HBase.<version>.jar

• Zookeeper.<version>.jar

Then, we will create an external table in Hive, which will map the HBase table to
Hive. Start Hive with following command:

hive --auxpath /usr/lib/hive/lib/hbase.jar,/usr/lib/hive/lib/hive-
hbase-handler-<version>.jar, /usr/lib/hive/lib/zookeeper.jar,
/usr/lib/hive/lib/guava-<version>.jar

To prevent library-related errors, use the following command:

CREATE EXTERNAL TABLE hivehbasetablemapped (key string, userid
string, bookid string, rating int) STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH
SERDEPROPERTIES ("hbase.columns.mapping" =
":key,name:firstname,name:lastname,name:title") TBLPROPERTIES
("hbase.table.name" = "hivehbasetable");

https://hive.apache.org

Chapter 6

[183]

Alternatively, you can use the following command:

CREATE TABLE hivehbasetablemapped (key string, userid string, bookid
string, rating int) STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH
SERDEPROPERTIES ("hbase.columns.mapping" =
":key,name:firstname,name:lastname,name:title") TBLPROPERTIES
("hbase.table.name" = "hivehbasetable");

Difference between external and internal tables in Hive
When we drop an internal table, it drops both the data and metadata.
When we drop an external table, it only drops the metadata. This
means Hive is ignorant about the data now. It does not touch the
data itself.

Here, the first column is the key column, which will be taken as HBase RowKey. If
we have some numeric column, we can use age:age#field in the mapping.

Once we finish the preceding process successfully, we can execute a SQL query in
Hive as follows:

hive > select * from hivehbasetablemapped;

We can also perform other operations on Hive.

For further details on this, visit https://cwiki.apache.org/
confluence/display/Hive/HBaseIntegration.

HBase region management
In this section, we will discuss various operations, such as compaction, merging,
and splitting, which we can perform on the HBase region.

Compaction
Compaction is done to reduce the number of StoreFiles. Once the number of
StoreFiles is reduced, more efficiency and performance can be gained. It is a
high-resource-hungry process. Running this will result in a single StoreFile
per store. Major compactions also process delete markers and maximum versions.

ttps://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
ttps://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

HBase Cluster Maintenance and Troubleshooting

[184]

We already discussed compaction, so we will see how to perform this:

hbase >major_compact

In Java, use HBaseAdmin.majorCompact, which we will look at in Chapter 7, Scripting
in HBase, and Chapter 8, Coding HBase in Java.

Read more on compaction in detail at http://hbase.apache.org/
book/regions.arch.html#compaction.

Merge
We can use the merge command in adjoining regions in the same table to
increase performance:

hbase org.apache.hadoop.hbase.util.Merge <tablename>
<region name> <region name>

HBase node management
In this section, we will discuss adding (commissioning) and removing
(decommissioning) nodes from an HBase cluster.

Commissioning
Let's discuss the commissioning of nodes in an HBase cluster.

Prepare the machine, check the permissions twice, and check the connectivity, host
entry, and host resolution. Once done and twice checked, copy the configuration file
following the same path structure at the new machine, and start RegionServer using
the following command:
hbase-daemon.sh start regionserver

Once this command is executed, RegionServer will automatically register with
HMaster and start receiving local data. At the beginning, the newly added node will
not have any data, and if balancer is not disabled, it will start moving new regions
to the new RegionServer.

If the start and stop process is done using ssh and HBase script, add the newly added
node host name to the conf/regionservers file.

So, commissioning is just like checking the new machine, copying the configuration
files, and starting the process if we want to say it in one line.

http://hbase.apache.org/book/regions.arch.html#compaction
http://hbase.apache.org/book/regions.arch.html#compaction

Chapter 6

[185]

Decommissioning
Decommissioning means removing a node (RegionServer) from the cluster. This
process is not easy as commissioning a node. However, here we need to take care
of things before removing the node from the cluster. Let's discuss this here.

First, disable the load balancer, because if it is running, it might create some
inconsistencies due to the ongoing data transfer process. So, let's list the
decommissioning process in steps:

1. Stop/disable the load balancer using the following command:
hbase>balance_switch false

2. Stop RegionServer on the node, which must be decommissioned as follows:
hbase> hbase-daemon.sh stop regionserver

3. When RegionServer is stopped, it will close all the regions and shut down.
4. The ephemeral node of RegionServer will expire in ZooKeeper.
5. The master will notice that RegionServer is down and treat it as crashed.
6. Reassignment of regions served by RegionServer will be done.

Since this stopping method might take time, we can use the graceful shutdown. It
unloads regions from RegionServer, allowing the node to be terminated without
impacting data availability. It is in contrast to the first option that results in a short
window of data unavailability, which HBase takes to recognize the failure and does
the recovery. The script that is used for this is available in the bin directory of HBase
and named graceful_stop.sh.

So, let's have a look at the steps:

1. Issue the following command:
bin/graceful_stop.sh <RegionServer_Hostname>

2. Always enable the balancer switch in the case of a graceful stop.
3. For the remaining steps, refer to the steps 2 to 6 in the preceding set of

instructions.

Implementing security
Let's discuss various security implementations provided by HBase. Here, we
will consider that Kerberos is set up and Hadoop is secured using this type of
authentication. Now, let's see the security aspects in HBase.

HBase Cluster Maintenance and Troubleshooting

[186]

Secure access
With a new version of HBase after Version 0.92, we get an option of enabling
ACL-based protection on column families or table levels, and an optional SASL
authentication of clients.

Now, let's see how to configure HBase and the client for connecting to secure
HBase resources.

Requirement
First, let's see the Hadoop requirement. We must set the following parameters
to true as we need good user authentication for Hadoop too:

hbase.security.authentication

hadoop.security.authentication

So, securing HBase is not enough, we need to secure Hadoop too.

Kerberos KDC
We need to have a Kerberos Key Distribution Centre (Kerberos KDC) configured.
A Hadoop setup should be secured for an HBase, which is configured to handle
requests from a secure client. HBase needs Kerberos credentials to be able to interact
with the secured Kerberos-enabled Hadoop (HDFS).This authentication should be
done using a keytab file. We need to create a keytab file (read more at https://
kb.iu.edu/d/aumh for this), and it should be put where HMaster and RegionServer
daemons are deployed. This file should be readable only to user accounts, using
which these daemons are started.

A Kerberos principal is made up of three parts of the <user name>/<domain name>@
domain.com form, and we need to add the following configuration to the hbase-
site.xml file on all the machines:

<property>
<name>hbase.regionserver.kerberos.principal</name>
<value>hbase/_hostname@REALM.COM</value>
</property>
<property>
<name>hbase.regionserver.keytab.file</name>
<value>/home/hbase/conf/keytab.krb5</value>
</property>
<property>

https://kb.iu.edu/d/aumh
https://kb.iu.edu/d/aumh

Chapter 6

[187]

<name>hbase.master.kerberos.principal</name>
<value>hbase/_hostname@REALM.COM</value>
</property>
<property>
<name>hbase.master.keytab.file</name>
<value>/home/hbase/conf/keytab.krb5</value>
</property>

All the HBase client users should be given a Kerberos principal that should have a
password assigned with it. The client principal's maxrenewlife can be set so that
it can be renewed only after the HBase client process is complete:

addprinc -maxrenewlife 4days

Client-side security configuration
To configure client-side security, add the following lines to hbase-site.xml:

The client must be logged in to Kerberos from KDC or keytab via the kinit
command before it can communicate with an HBase cluster:

<property>
<name>hbase.security.authentication</name>
<value>kerberos</value>
</property>
<property>
<name>hbase.rpc.protection</name>
<value>privacy</value>
</property>

The second parameter will encrypt communication. When writing a client for HBase,
we need to include the following piece of code in the client code:

Configuration config = HBaseConfiguration.create();
config .set("hbase.rpc.protection", "privacy");
HTable tablename= new HTable(conf, tablename);

If we enable encrypted communication, performance will degrade, so
decide accordingly.

HBase Cluster Maintenance and Troubleshooting

[188]

Client-side security configuration for thrift requests
For a thrift request configuration, we need to add the following lines in
hbase-site.xml:

<property>
<name>hbase.thrift.keytab.file</name>
<value>/user/shashwat/hbasekey.keytab</value>
</property>
<property>
<name>hbase.thrift.kerberos.principal</name>
<value>$USERNAME/_HOSTNAME@HDOMAINNAME</value>
</property>

$USERNAME and $KEYTAB should be changed according to the setup on the system.
For the rest of the APIs, we need to add hbase.rest.keytab.file and hbase.
rest.kerberos.principal with the parameters.

Server-side security configuration
We can enable security at the server level too, for which we need to add the
following lines of code in the hbase-site.xml file:

<property>
<name>hbase.security.authentication</name>
<value>kerberos</value>
</property>
<property>
<name>hbase.security.authorization</name>
<value>true</value>
</property>
<property>
<name>hbase.coprocessor.region.classes</name>
<value>org.apache.hadoop.hbase.security.token.TokenProvider
</value>
</property>

After adding the configuration, we need to fully shut down and restart the cluster.

Simple security
This method is not secure to operate an HBase cluster. This setup prevents a user
from making mistakes. It can be used as an access control on a development system
without setting up Kerberos. This method does not prevent hacking attacks, but
stops wrong data operations by users on the database.

Chapter 6

[189]

Server-side configuration
Add the following lines of xml code in hbase-site.xml on the server machine's file
in versions before 0.94:

<property>
<name>hbase.security.authentication</name>
<value>simple</value>
</property>
<property>
<name>hbase.security.authorization</name>
<value>true</value>
</property>
<property>
<name>hbase.coprocessor.master.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>
<property>
<name>hbase.coprocessor.region.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>

For HBase Version 0.94 and above, add the following in the hbase-site.xml file:

<property>
<name>hbase.rpc.engine</name>
<value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>
</property>
<property>
<name>hbase.coprocessor.master.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>
<property>
<name>hbase.coprocessor.region.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>

After making this change, a restart of a cluster is needed to load the
configuration changes.

HBase Cluster Maintenance and Troubleshooting

[190]

Client-side configuration
Add the following code to all the hbase-site.xml files at client machines with
HBase version before 0.94:

<property>
<name>hbase.security.authentication</name>
<value>simple</value>
</property>

For HBase Version 0.94, add the following lines in the hbase-site.xml file on
client machines:

<property>
<name>hbase.rpc.engine</name>
<value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>
</property>

If hbase.security.authentication in client and server-side site files does not
match, the client will not be able to communicate with the cluster.

We need to assign proper rights to thrift and rest so that the client can communicate
through these services. Also, we need to assign administrator rights to thrift and
rest APIs users, which can be done as follows:

For rest, use the following command:

grant 'rest_server', 'RWCA'

For thrift, use the following command:

grant 'thrift_server', 'RWCA'

The tag security feature
As we already know, every cell in an HBase table is attached with metadata. HBase
Version 0.98 and later provides features of tag with cell format. HFile version 3 and
Versions 0.98 onwards support tags, and this feature can be turned on using the
following configuration:

<property>
<name>hfile.format.version</name>
<value>3</value>
</property>

Chapter 6

[191]

Every cell can now have zero or more tags attached to it. All the tags have a type and
tag byte array. The types 0 to 31 are reserved for system tags, 1 is reserved for ACL,
and 2 is reserved for visibility tags.

To attach a tag to a cell during the put operation, we can do it as:

Put.add(byte[] colfamily, byte [] col, byte [] val, Tag[] tagname)

Put.add(byte[] colfamily, byte[] col, long timestamp, byte[] value,
Tag[] tagname)

The following are the links you can visit for other security-related
resources:

• http://hadoop.apache.org/docs/r2.3.0/hadoop-
project-dist/hadoop-common/SecureMode.html

• http://www.cloudera.com/content/cloudera-content/
cloudera-docs/CDH4/4.3.0/CDH4-Security-Guide/
CDH4-Security-Guide.html

• http://dev.hortonworks.com.s3.amazonaws.com/
HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_
manually_book/content/rpm-chap14-2-3-hbase-zk.
html

Access control in HBase
HBase Version 0.92 and later supports an optional ACL-control-based protection
on column families and tables. The access control mechanism is mature enough
in relational databases. It was lacking in the earlier versions of HBase, however,
in the newer versions, HBase is capable of implementing the security mechanism.
ZooKeeper also needs to be configured for secure access. Secure authentication to
ZooKeeper must be enabled, or else, it will be possible to ruin HBase access control
by direct client access to ZooKeeper.

Enabling Remote Procedure Calls (RPC) and ACL enables users to be authenticated
clients on HBase. User data is private until a special permission is granted to it
explicitly. So, according to importance, we have four operation permission types:
READ, WRITE, CREATE, and ADMIN.

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/SecureMode.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/SecureMode.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Security-Guide/CDH4-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Security-Guide/CDH4-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Security-Guide/CDH4-Security-Guide.html
http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap14-2-3-hbase-zk.html
http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap14-2-3-hbase-zk.html
http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap14-2-3-hbase-zk.html
http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap14-2-3-hbase-zk.html

HBase Cluster Maintenance and Troubleshooting

[192]

The following table shows the permission types and mapping in HBase:

Permissions Operations Operation description

Read Get Reading a record

 Exists Checking the existence of a table

 Scan Scanning and reading all records
of a table

Write Put Writing to table

 Delete Deleting records

 Lock/UnlockRow Locking a record

 IncrementColumnValue Incrementing a column value

 CheckAndDelete/put Writing and updating

Create Create Creating tables

 Alter Altering tables

 Drop Deleting tables

 Bulk load Loading bulk data in HBase

Admin Enable/disable Enabling/disabling a table

 Snapshot/Restore/clone Backing up plans and operations

 Split Splitting a region

 Flush Flushing a region

 Compact Compacting a region

 Major compact Major compacting a region

 Grant Granting user permissions or
rights

 Revoke Revoking access rights

 Shutdown Shutting down clusters

More references can be found at http://hbase.apache.org/0.94/book/
hbase.accesscontrol.configuration.html.

http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html
http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html

Chapter 6

[193]

These permissions can be granted on any level with the CREATE and
ADMIN permissions on a table level.
The following are the access controls which can be implemented on tables:

• Read: Reading from any column family in a table
• Write: Writing to any column family in a table
• Create: Altering table attributes; adding, altering, or dropping

column families; and dropping the table.
• Admin: Altering table attributes; adding, altering, or dropping

column families; and enabling, disabling, or dropping the table.

The following are the access controls which can be implemented on
column families:

• Read: Reading from the column family
• Write: Writing to the column family

Besides these permissions, we should have a global super user permission too.

The super user is the principal user specified in the HBase conf file that has access to
HBase as the root user in a UNIX system. Normally, this is the principal user that the
HBase processes authenticate themselves and run on a box. A super user can create
tables, switch the balancer on or off, or take other actions with global consequences;
it has permissions on all resources. Tables in HBase have a metadata attribute: OWNER,
who owns the table and has all the permissions (global) on the table. A user who
creates the table has, by default, global permission and can be modified at the time
of table creation or during an alter operation by setting or changing the OWNER table
attribute. Only a single user principal can own a table at a time. A table owner has all
permissions over a given table.

Now, let's look at the ACL matrix:

ACL Description

Scope Scope is the top-down approach. For example, global
permissions will have rights from NameSpace to Cell,
and permissions on cell will have permissions only on cell
values.
Global
Namespace
Table
Column family
Columns
Cell

HBase Cluster Maintenance and Troubleshooting

[194]

ACL Description

Permissions Permission goes in a one-to-one manner. For example,
permission to read does not give permission to write,
and permission to write will not give permission to read.
Permission should be given explicitly, as needed.
Super user
Administrator (A)
Create (C)
Read (R)
Write (W)
Execute (X)

More references can be found at http://hbase.apache.org/0.94/book/
hbase.accesscontrol.configuration.html.

The hbase:meta table is accessible to all the users. The administrator
has all the rights and permissions.
For CheckAndPut and CheckAndDelete, a user needs both read
and write permissions. Increment and append operations do not
require read rights.
Permission should be specified explicitly, for example, if a user needs
permission to read, write, and execute, it should be specified as RWX.
D and do not grant any other permissions.

Now, let's see the interfaces that facilitate these permissions and rights for an
HBase user.

We can see the internal layout of it in the source code at the following
links:

• https://github.com/apache/hbase/blob/master/
hbase-server/src/test/java/org/apache/hadoop/
hbase/security/access/TestAccessController.
java

• https://github.com/apache/hbase/blob/master/
hbase-server/src/main/java/org/apache/hadoop/
hbase/security/access/AccessController.java

We can also check the source code of HBase inside the downloaded
HBase directory.

http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html
http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html
https://github.com/apache/hbase/blob/master/hbase-server/src/test/java/org/apache/hadoop/hbase/security/access/TestAccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/test/java/org/apache/hadoop/hbase/security/access/TestAccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/test/java/org/apache/hadoop/hbase/security/access/TestAccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/test/java/org/apache/hadoop/hbase/security/access/TestAccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/main/java/org/apache/hadoop/hbase/security/access/AccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/main/java/org/apache/hadoop/hbase/security/access/AccessController.java
https://github.com/apache/hbase/blob/master/hbase-server/src/main/java/org/apache/hadoop/hbase/security/access/AccessController.java

Chapter 6

[195]

The following table shows the interfaces that facilitate the permission aspect
in HBase:

Interfaces Operations Minimum scope Minimum
permission(s)

Master createTable Global A

modifyTable Table A|CW

deleteTable Table A|CW

truncateTable Table A|CW

addColumn Table A|CW

modifyColumn Table A|CW

deleteColumn Table A|CW

disableTable Table A|CW

disableAclTable None Not allowed
enableTable Table A|CW

move Global A

assign Global A

unassign Global A

regionOffline Global A

balance Global A

balanceSwitch Global A

shutdown Global A

stopMaster Global A

snapshot Global A

clone Global A

restore Global A

deleteSnapshot Global A

createNamespace Global A

deleteNamespace Namespace A

modifyNamespace Namespace A

flushTable Table A|CW

getTableDescriptors Global|Table A

mergeRegions Global A

HBase Cluster Maintenance and Troubleshooting

[196]

Interfaces Operations Minimum scope Minimum
permission(s)

Region preOpen Global A

openRegion Global A

preClose Global A

closeRegion Global A

preStopRegionServer Global A

stopRegionServer Global A

mergeRegions Global A

append Table W

delete Table|CF|CQ W

exists Table|CF|CQ R

get Table|CF|CQ R

getClosestRowBefore Table|CF|CQ R

increment Table|CF|CQ W

put Table|CF|CQ W

flush Global A|CW

split Global A

compact Global A|CW

bulkLoadHFile Table W

prepareBulkLoad Table CW

cleanupBulkLoad Table W

checkAndDelete Table|CF|CQ RW

checkAndPut Table|CF|CQ RW

incrementColumnValue Table|CF|CQ RW

ScannerClose Table R

ScannerNext Table R

ScannerOpen Table|CQ|CF R

Endpoint invoke Endpoint X

AccessController grant Global|Table|NS A

revoke Global|Table|NS A

userPermissions Global|Table|NS A

checkPermissions Global|Table|NS A

More references can be found at http://hbase.apache.org/0.94/book/hbase.
accesscontrol.configuration.html.

http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html
http://hbase.apache.org/0.94/book/hbase.accesscontrol.configuration.html

Chapter 6

[197]

Server-side access control
For server-side access control, add the following lines in hbase-site.xml:

<property>
<name>hbase.coprocessor.master.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>
<property>
<name>hbase.coprocessor.region.classes</name>
<value>org.apache.hadoop.hbase.security.token.TokenProvider,
 org.apache.hadoop.hbase.security.access.AccessController</value>
</property>

Cell-level access using tags
In versions of HBase before 0.98, permission facility was on table-and-column family
levels only; in Version 0.98, a new feature of tag was introduced that provided the
facility to implement security on a cell level.

For this, ACL can be specified, as follows, using APIs (in Java):

Mutation.setACL(String username, Permission permissions)

Mutation.setACL(Map<String, Permission>permissions)

For example, suppose a user needs write access, we can implement it while putting
data in tables, as follows:

put.setACL("username", new Permission(Permission.Action.READ))

For the tag feature to be enabled, we need to enable HFile V3, as follows:

<property>
<name>hfile.format.version</name>
<value>3</value>
</property>

This code can be added to HBase-site.xml.

Using shell, we can add it as follows:

• The grant permission:
grant <user|@group> <permissions> [<table> [<column family>
[<column qualifier>]]]

HBase Cluster Maintenance and Troubleshooting

[198]

• The revoke permission:
revoke <user|@group> [<table> [<column family>
[<column qualifier>]]]

• The alter permission:
alter 'tablename', {OWNER => 'username|@group'}

• The user permission:
user_permission <table>

Configuring ZooKeeper for security
Let's look at how we can configure security in ZooKeeper:

1. Create a service principal for the ZooKeeper server using the syntax
zookeeper/<domain Name>@<REALM>, where <domain.name> is the host
where the ZooKeeper server runs REALM—the name of the Kerberos realm:
kadmin: addprinc -randkey zookeeper/infinity@KERBINFI.COM

2. Create a keytab file for the ZooKeeper server:
kadmin

kadmin: xst -k zookeeper.keytab zookeeper/domainname

3. Copy the zookeeper.keytab file to the ZooKeeper conf directory on the
ZooKeeper server. The owner of this file should be the user under which
ZooKeeper will run.

4. Add the following lines to the ZooKeeper conf file, zoo.cfg (/etc/
zookeeper/conf/):
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthentica
tionProvider

jaasLoginRenew=3600000

5. Set up Java authentication and authorization service by creating a jaas.conf
file in the ZooKeeper configuration directory, and content should be as
follows:
Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/zookeeper/conf/zookeeper.keytab"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/<your domain>@<KERBEROS REALM>";
};

Chapter 6

[199]

6. Add the following setting to the java.env file located in the ZooKeeper
configuration directory, or create and add the following lines:
export JVMFLAGS="-Djava.security.auth.login.config=
/etc/zookeeper/conf/jaas.conf"

If there are multiple ZooKeeper servers in the ensemble, steps should be
repeated for each ZooKeeper server.

7. Restart ZooKeeper to take effect.

To verify whether the preceding changes took effect, we can perform the
following steps:

1. Start the client as follows:
zookeeper-client -server hostname:port

2. Create a protected znode from within the ZooKeeper CLI using the
following command:
create /znode1 znode1data sasl:zkcli@{{REALM}}:cdwra

3. Verify the znode is created and the ACL is set correctly, as follows:
getAcl /znode1

4. The results from getAcl should show the proper scheme and permissions
were applied to the znode.

Read more about Kerberos at http://web.mit.edu/kerberos/
and kadmin at http://linux.die.net/man/8/kadmin.

Troubleshooting the most frequent
HBase errors and their explanations
The following are the places that index information about Hadoop/HBase
and other project exceptions, and where we can search for information about
Hadoop/HBase errors:

• http://search-hadoop.com

• #hbase on irc.freenode.net
• A mailing list of HBase at http://hbase.apache.org/mail-lists.html

http://web.mit.edu/kerberos/
http://linux.die.net/man/8/kadmin
http://search-hadoop.com
http://hbase.apache.org/mail-lists.html

HBase Cluster Maintenance and Troubleshooting

[200]

Now, let's see the frequent errors and solutions for these:

For troubleshooting, a log is an excellent place to look into. Now, let's see the default
log locations of various daemon processes:

• NameNode: <hadoop home path>/logs/hadoop-<user>-namenode-
<hostname>.log

• DataNode: <hadoop home path>/logs/hadoop-<user>-datanode-
<hostname>.log

• JobTracker: <hadoop home path>/logs/hadoop-<user>-jobtracker-
<hostname>.log

• TaskTracker: <hadoop home path>/logs/hadoop-<user>-tasktracker-
<hostname>.log

• HMaster: <hadoop home path>/logs/hbase-<user>-master-<hostname>.
log

• RegionServer: <hadoop home path>/logs/hbase-<user>-regionserver-
<hostname>.log

Also, look in /var/log/<rest are same>
for logs of different HBase components.

The following are the different logging levels we can set in order to change the size.
According to the details in logs, we require:

• ALL

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

• OFF

What might fail in cluster
Different Java versions on cluster machines can cause problems. Different versions of
Hadoop and HBase cause problems too.

Chapter 6

[201]

The following are the components that might fail in operation, which we can look
into while debugging:

• Disk: Corrupt disk
• Operating System: Bugs, wrong optimization parameters, and over

utilization on hardware
• Network: Connectivity and bandwidth chocking
• Memory: Bad memory and overloaded memory

Monitoring HBase health
In this section, we will see the various methods for administrators to monitor and
manage HBase.

HBase web UI
There are two tools under this category:

• Master web interface
• RegionServer web interface

Master
http://<hbase-master>:<port> is the hostname where HMaster is running and
port is 60010 for older version and 16010 for newer versions (0.98 and above).

RegionServer
http://<hbase-regionserver>:<port> is the hostname where RegionServers
are running and port is 60030 for older version and 16030 for newer versions
(0.98 and above).

ZooKeeper command line
The ZooKeeper shell can be started as follows:

hbase zkcli -server host:port <cmd><args>

The arguments we can have in the preceding command are:

• connect host:port

• get path [watch]

• ls path [watch]

HBase Cluster Maintenance and Troubleshooting

[202]

• set path data [version]

• delquota [-n|-b] path

• quit

• printwatches on|off

• create [-s] [-e] path data acl

• stat path [watch]

• close

• ls2 path [watch]

• history

• listquota path

• setAcl path acl

• getAcl path

• sync path

• redo cmdno

• addauth scheme auth

• delete path [version]

• setquota -n|-b val path

For help, type in just a command name without any parameter.

Linux tools
The following are the Linux tools that we can use:

• top: This is the Linux command to see live processes and resource uses
• free -m: This is used to see memory uses
• jps: This command is used to see the Java running process. This binary is in

the Java bin directory
• tail/head: This is used to see the content of log files
• ps –ef|grep Java: This is used to see HBase running daemons
• jstack: This prints Java stack traces of Java threads for a given Java process,

core file, or remote debug server

Chapter 6

[203]

Set up OpenTSDB to monitor HBase more closely using the information given at
http://opentsdb.net/setup-hbase.html.

For Cloudera distribution, the Cloudera manager can be used for monitoring and
administration.

Now, let's see some exceptions and solutions:

Exceptions Solution
java.io.IOException: Call to /<host
name> failed on local exception: java.
io.EOFException org.apache.hadoop.ipc.
Client.wrapException(Client.java:1139) at
org.apache.hadoop.ipc.Client.call(Client.
java:1107)

This is used to add/replace the
hadoop-core.jar file from
Hadoop, being used in the HBase
lib directory.

FATAL org.apache.hadoop.hbase.
master.HMaster: Unhandled
exception. Starting shutdown.java.
lang.IllegalArgumentException:
13955@<hostname>

 at ***

INFO org.apache.hadoop.hbase.master.
HMaster: Aborting

INFO org.apache.zookeeper.ClientCnxn:
EventThread shut down

This is used to add/replace the
commons-lang-*.jar file from
Hadoop, being used in the HBase
lib directory.

ERROR org.apache.hadoop.hbase.master.
HMasterCommandLine: Failed to start
master

java.lang.RuntimeException: Failed
construction of Master: class org.apache.
hadoop.hbase.master.HMaster

Caused by: java.lang.
ClassNotFoundException: org.apache.
commons.configuration.Configuration

This is used to add/replace the
commons-configuration-*.
jar file from Hadoop, being used
in the HBase lib directory.

ERROR org.apache.hadoop.hbase.master.
HMaster: Cannot start master

Caused by: java.net.ConnectException:
Call to <hostname>/<ipaddress> failed
on connection exception: java.net.
ConnectException: Connection refused

This is used to remove the
localhost and 127.0.1.1 entry
from the /etc/hosts file.

ScannerTimeoutException or
UnknownScannerException

This is used to reduce the
setCaching value, which might
be an option.

http://opentsdb.net/setup-hbase.html

HBase Cluster Maintenance and Troubleshooting

[204]

Exceptions Solution
Master starts, but RegionServers do not Master believes RegionServers

have an IP of 127.0.0.1, which
is a local host and resolves to
master's local host. RegionServers
erroneously inform the master that
their IP addresses are 127.0.0.1.
It changes the 127.0.0.1 entry to
<hostname>.

java.io.IOException.(Too many open files) This increases ulimit and nproc.
xceiverCount exceeds This increases the value in

the dfs.datanode.max.
transfer.threads property.

java.lang.OutOfMemoryError: unable to
create new native thread in exceptions

This increases ulimit and nproc

RegionServer lease timeouts This tunes up GC/check whether
NTP is installed and configured
or not.

No live nodes contain current block
and/or YouAreDeadException

These errors can occur either when
running out of OS file handles
or in periods of severe network
problems where the nodes are
unreachable. Check for nproc and
ulimit.

ZooKeeper SessionExpired events Increase the zookeeper.
session.timeout and hbase.
zookeeper.property.
tickTime parameters.

Visit http://hbase.apache.org/book/trouble.html for more exceptions and the
latest error documentations.

Summary
In this chapter, we discussed administrative parts of HBase such as the introduction
to HBase administration, HBase shell, and different administrating tools for HBase.
This chapter also covered topics such as how to use Java in HBase shell for various
tweaks, HBase, shell scripting for HBase, and how to connect Hive with HBase to
run HQL queries from Hive. We also looked at how we can implement security in
HBase, the frequently occurring errors, and their solutions. In the next chapter, we
will look into scripting and backup strategies.

http://hbase.apache.org/book/trouble.html

Scripting in HBase
This chapter will talk about various scripts and other options that we can consider
and write to master HBase operations and functions. We will also look at the
remaining value additions, techniques, and some more exceptions and errors
that you might face in HBase.

In this chapter, we will discuss the following topics:

• HBase backup and restore methodologies
• HBase on Windows
• Scripting in HBase
• Value addition
• More on exceptions and errors in HBase

HBase backup and restore techniques
Now, we will see the HBase backup and restore methods as it is very important
for any technology to be able to restore and create a backup of the data to avoid
data loss.

We will now discuss these methods in detail. There are two kinds of HBase
methodologies in general. The following are HBase backup methods that we
can choose according to our requirement and setup:

• Offline backup / full-shutdown backup
 ° Use the hadoop distcp command

Scripting in HBase

[206]

• Online backup
 ° Snapshots
 ° Replication
 ° Export
 ° CopyTable
 ° HTable API
 ° Offline backup of HDFS data
 ° Backup using a Mozilla tool
 ° HDFS replication

Let's get started with offline backup.

Offline backup / full-shutdown backup
This method includes full-shutdown backup of HBase on a file system, using the
distcp command that runs the MapReduce task. It copies the parallel data from one
location to another, which can be a backup location on the same cluster or another
backup cluster. This method is not recommended on a live cluster or a cluster that
needs zero downtime. If users can invest in a downtime, we can go with this method.

Backup
Suppose we have an HDFS location as hdfs://namenode:9000/hbase, where the
complete HBase data is located. Here, we can copy the whole location to either
the same cluster or another cluster using distcp.

The following is the syntax of distcp:

hadoop [Generic Options] distcp

 [-p [rbugp]] [-i] [-log] [-m] [-overwrite]

 [-update] [-f <URI list>] [-filelimit <n>] [-sizelimit <n>]

 [-delete] <source> <destination>

More on this command can be found at http://hadoop.apache.org/
docs/r1.2.1/distcp2.html.

http://hadoop.apache.org/docs/r1.2.1/distcp2.html
http://hadoop.apache.org/docs/r1.2.1/distcp2.html

Chapter 7

[207]

If you prefer the former way, use the following command to create the backup in the
same cluster.

hadoop distcp hdfs://Infinity1:9000/hbase
hdfs://Infinity1:9000/hbaseBackup/backup1

This preceding command will copy the hbase directory as it is in /hbaseBackup/
backup1 on the HDFS location of the same cluster.

If you prefer the latter way, you can create a backup in different clusters using the
following command:

hadoop distcp hdfs://Infinity1:9000/hbase
hdfs://Infinity2:9000/hbaseBackup/backup1

This preceding command will copy the hbase directory as it is in /hbaseBackup/
backup1 on the HDFS location on another cluster.

Note that for the distcp command to work, we need to have
JobTracker and TaskTracker running as they are needed for
MapReduce tasks.
While copying, we have parameters such as –overwrite and
–update; we can use these combinations too.

If something goes wrong, we can copy the target directory to the HBase directory.
This method copies the full file system directory, so will take the same amount of
space on HDFS. It is better to have a separate backup cluster or copy this data
offline to the tapes.

Restore
In the restore method, restoring can be done in the same way by copying data using
distcp from the target to source cluster from where data was copied.

This method is not always preferable as it requires a full
shutdown of clusters, which needs a downtime that will
impact the business requirement and SLAs. So, this method
is the least preferable way of backup.

Scripting in HBase

[208]

Online backup
The online backup process is preferred as there is no need to shut down the cluster,
and it does not hamper the operation of the cluster, and thus, we don't need a
downtime. This class of backup category has the following methods to take and
restore the backup. Let's discuss these.

The HBase snapshot
The HBase snapshot enables us to take a snapshot of a table without fiddling with
RegionServers. Snapshot in HBase is a set of metadata information that allows the
administrator to get back to the previous working state of the table. A snapshot is not
a copy of the table data, but just a layout of the data present on the HBase cluster. We
can think of it as a set of operations to keep track of metadata (table info and regions)
and data (HFiles, MemStore, and WALs). No data is copied during the process of
taking a snapshot of a table.

There are two types of snapshots, online and offline.

Online
Online snapshots can be taken when a table is enabled and active for I/O operations.
In this case, the master receives the snapshot request and asks each RegionServer
to take a snapshot of the regions for which it is responsible.

Offline
Offline snapshots can be taken when the table is disabled and not ready for I/O
operations. The master performs this operation, and the time required to perform
this operation is determined mainly on the time taken by HDFS NameNode
to provide the list of files.

Read more about snapshots at the following links:
• https://blog.cloudera.com/blog/2013/03/

introduction-to-apache-hbase-snapshots/
• http://blog.cloudera.com/blog/2013/06/

introduction-to-apache-hbase-snapshots-part-
2-deeper-dive/

https://blog.cloudera.com/blog/2013/03/introduction-to-apache-hbase-snapshots/
https://blog.cloudera.com/blog/2013/03/introduction-to-apache-hbase-snapshots/
http://blog.cloudera.com/blog/2013/06/introduction-to-apache-hbase-snapshots-part-2-deeper-dive/
http://blog.cloudera.com/blog/2013/06/introduction-to-apache-hbase-snapshots-part-2-deeper-dive/
http://blog.cloudera.com/blog/2013/06/introduction-to-apache-hbase-snapshots-part-2-deeper-dive/

Chapter 7

[209]

Now, we will see how to take a snapshot and back up data using the offline method:

1. Set the required configuration. We need to add the following lines in
hbase-site.xml to enable this feature:
<property>
 <name>hbase.snapshot.enabled</name>
 <value>true</value>
 </property>

Restart the cluster once this change is made.

2. Go to HBase shell and execute the following command to take a snapshot:
hbase > snapshot 'emptable', 'baksnapshot01082014'

3. Use the following command to list snapshots:
hbase > list_snapshots

4. Delete a snapshot using the following command:
hbase > delete_snapshot 'baksnapshot01082014'

5. Clone a table from a snapshot, as follows:
hbase > clone_snapshot 'baksnapshot01082014', 'newSnapTable'

6. Restore a snapshot as follows:
hbase > disable 'table'

hbase > restore_snapshot ' baksnapshot01082014'

7. We can use MapReduce to take snapshot to another HDFS cluster.
The org.apache.hadoop.hbase.snapshot.ExportSnapshot tool copies
all the data related to a snapshot (HFiles, logs, and snapshot metadata) to
another cluster:
hbase class org.apache.hadoop.hbase.snapshot.ExportSnapshot -
snapshot snapshot01082014 -copy-to hdfs://infinity:9000/hbase
-mappers 8 -bandwidth 100

So, here eight map jobs will run to export all snapshots to another cluster
with a limiting bandwidth of 100 MB/s.

Scripting in HBase

[210]

The HBase replication method
The HBase replication method provides a mechanism to copy or replicate data
from one HBase cluster setup to another. It can serve as a disaster recovery solution
and contribute to provide higher availability at the HBase layer. This method
works when the data is being pushed from one cluster to another, where pusher
is the master and taker is the slave setup. This replication, or pushing, happens
asynchronously. This provides high availability of an HBase cluster too. The basis
of this replication is based on HLog from each RegionServer. There are three types
of replication as follows:

• Master-slave: In this type of replication, the data is pushed from one cluster
to the target cluster. This happens in a single direction. So, the source cluster
can have its own tables, and the target cluster might have its own too. We can
use the target cluster for the source data replication.

• Master-master: In this method, data (that might be in the same or a different
table) is sent in both the directions between two clusters. So, both the clusters
might act as master as well as slave at the same time, pushing and getting
the data.

• Cyclic: In this setup, more than two HBase clusters take part in the
replication setup. One cluster can have various possible combinations
of master-slave and master-master setups between any two clusters.

Setting up cluster replication
The following are the prerequisites to set up cluster replication:

• All machines from both the clusters should be able to communicate with each
machine in the two clusters

• Both the clusters must have the same Hadoop/HBase version
• Each table to be replicated should contain the same column families; in other

words, the same schemes and tables must exist on every cluster with the
exact same name

• For multiple slaves, master-master, or cyclic replications, HBase Version 0.92
or higher is needed

• The package that is responsible for cluster replication is org.apache.
hadoop.hbase.replication

Chapter 7

[211]

The following are the deployment steps to set up cluster replication:

1. Open the hbase-site.xml file and put the following lines of code in it:
<property>
 <name>hbase.replication</name>
 <value>true</value>
</property>

These changes will need a full cluster restart for configuration to be loaded.

2. Run the following command from the master-cluster-HBase shell:
add_peer 'ID' 'CLUSTER_KEY'

Here, ID should be a short integer and for CLUSTER_KEY, follow this template:

hbase.zookeeper.quorum:hbase.zookeeper.property.
clientPort:zookeeper.znode.parent

3. Once we have the peer added, we need to enable replication on column
families. The first method is to alter the table and change the replication
scope for the column family using the following command:
disable 'table'

alter 'table', {NAME => 'colFam', REPLICATION_SCOPE => '1'}

enable 'table'

Here, putting 0 means it will not replicate, and putting 1 means it has
to replicate.

4. To list the peers, execute the following command:
hbase > list_peers

For replication-related commands, refer to the previous chapter.

5. We can verify the setup by looking into any RegionServer log where we
can find:
Considering 1 rs, with ratio 0.1
Getting 1 rs from peer cluster # 0
Choosing peer <ipaddress_regionserver>:<regionServerPort>

6. If the preceding lines are present in the RegionServer logs, setup is
replicating, and we can also verify this from the target cluster.

Scripting in HBase

[212]

7. To stop replication at any point in time, we can use the stop_replication
command at the source-HBase shell.

Internal working, core and advanced concepts, and more updated
information about replication can be obtained from the following links:

• http://hbase.apache.org/replication.html
• http://blog.cloudera.com/blog/2012/07/hbase-

replication-overview-2/
• http://www.cloudera.com/content/cloudera-content/

cloudera-docs/CDH4/4.3.0/CDH4-Installation-Guide/
cdh4ig_topic_20_11.html

Backup and restore using Export and Import commands
In this section, we will have a look at the Export and Import commands in detail.

Export
The Export utility is provided by the HBase JAR file, which writes the HBase table
content to a sequence file on HDFS (on the same cluster or another cluster). This runs
as a MapReduce job, and using HBase API, reads each row one by one and writes it
to the HDFS location. Using this, we can take a full and incremental backup of a live
cluster as it takes the start and end timestamps as parameters.

The syntax for this is as follows:

hbase org.apache.hadoop.hbase.mapreduce.Export <tablename>
<outputdir> [<versions> [<starttime> [<endtime>]]]

Here, tablename is the table that is to be exported; outputdir is the target where
the output sequence file will be written, which can be an HDFS location on the
same cluster or on different clusters; versions implies the number of version to
be exported; starttime and endtime are the timestamp between which the data's
timestamp should lie to be able to be exported.

Import
The import utility is used to read the exported sequence file—an output of the
Export command—to be restored in an HBase table, a new table, or an existing
table. If data already exists, it will be overwritten.

The syntax for this is as follows:

hbase org.apache.hadoop.hbase.mapreduce.Import <tablename>
<inputdir>

http://hbase.apache.org/replication.html
http://blog.cloudera.com/blog/2012/07/hbase-replication-overview-2/
http://blog.cloudera.com/blog/2012/07/hbase-replication-overview-2/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Installation-Guide/cdh4ig_topic_20_11.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Installation-Guide/cdh4ig_topic_20_11.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/4.3.0/CDH4-Installation-Guide/cdh4ig_topic_20_11.html

Chapter 7

[213]

Here, tablename is the name of the table where data is to be imported/restored and
inputdir is the path where the data exists or where it will be exported using the
Export command.

The Export and Import commands work well with a live cluster and can also be run
as Hadoop MapReduce using the following commands:

hadoop jar <full path of> hbase-*.jar export <tablename> <outputdir>
[<versions> [<starttime> [<endtime>]]]

hadoop jar <full path of> hbase-*.jar import <tablename> <inputdir>

We can pass the runtime parameter in these commands as -D mapred.output.
compress=true, and other required parameters can be given after export operation.

If the export operation is done using HBase v0.94, and the same data has to be
imported from a newer version, we can specify the runtime parameter as follows:

hbase -Dhbase.import.version=0.94
org.apache.hadoop.hbase.mapreduce.Import <tablename> <inputdir>

Miscellaneous utilities
ImportTsv is a utility that loads data from a Tab-separated Value (TSV) format into
an HBase table. The syntax for the same is as follows:

hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -
Dimporttsv.columns=a,b,c <tablename> <hdfs-inputdir>

For more on this utility, visit the following links:
• http://hbase.apache.org/book/ops_mgt.

html#importtsv
• http://hbase.apache.org/book/ops_mgt.

html#completebulkload

CopyTable
The CopyTable tool can copy a part of the table, or the whole table, to the same
cluster, or to another cluster. The target table should already be present with the
same schema.

The following is the syntax to use this tool:

hbase org.apache.hadoop.hbase.mapreduce.
CopyTable [general options] [--starttime=X] [--endtime=Y]
[--new.name=NEW] [--peer.adr=ADR] <tablename>

http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/ops_mgt.html#completebulkload
http://hbase.apache.org/book/ops_mgt.html#completebulkload

Scripting in HBase

[214]

The following are the options of the preceding syntax:

• rs.class: This is the hbase.regionserver.class of the peer cluster. It's
specified if different from the current cluster.

• rs.impl: This is the hbase.regionserver.impl of the peer cluster.
• startrow: This is the start row.
• stoprow: This is the stop row.
• starttime: This is the beginning of the time range. If no endtime is

specified, it means from starttime to forever.
• endtime: This is an end of the time range. This will be ignored if no

starttime is specified.
• versions: This is the number of cell versions to copy.
• new.name: This is the name of a new table.
• peer.adr: This is the address of the peer cluster given in the hbase.

zookeeer.quorum:hbase.zookeeper.client.port:zookeeper.znode.
parent format.

• families: This is a comma-separated list of families to copy. To copy from
cf1 to cf2, give sourceCfName:destCfName. To keep the same name, just
give cfName.

• all.cells: This copies deleted markers and deleted cells.

The only argument is tablename, which is the name of the table to copy.

Have a look at the following example:

hbase org.apache.hadoop.hbase.mapreduce.CopyTable --new.name=Copynew
table

Here, new.name is the name of the copied table, and table is the one to be copied.

HTable API
We can always write our own custom application that utilizes the public API
(http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/
HTable.html) and queries the table directly. We can do this through MapReduce
jobs in order to utilize the framework's distributed-batch-processing advantages,
or through any other means of our design. However, this approach requires a
deep understanding of Hadoop development and all the APIs and performance
implications of using them in your production cluster.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html

Chapter 7

[215]

Backup using a Mozilla tool
The in-depth explanation of backup using a Mozilla tool is out of the scope of this
book, so visit the following links for more information on this:

• https://github.com/mozilla-metrics/akela/blob/master/src/main/
java/com/mozilla/hadoop/Backup.java

• http://blog.mozilla.org/data/2011/02/04/migrating-hbase-in-the-
trenches/

The following table shows the comparison between different backup processes:

Backup
process

Effect on
performance

Data size Downtime
requirement

If incremental
backup is
possible or not

Time for
recovery

Snapshots Minimal Very small On restore No Seconds

Replication Minimal Huge None Yes Seconds

Export High Huge None Yes High

CopyTable High Huge None Yes High

API Medium Huge None Yes High

Distcp Downtime Huge Yes No Long

We have another option of backup, and it is to increase the
replication factor of an HBase cluster, which will be maintained on
the Hadoop level and provide more availability and robustness.
However, this will need more space, and if space is not a constraint,
we can use this hassle-free backup method.

HBase on Windows
We already saw the configuration of Hadoop/HBase on Windows, so we will
look at the distribution or service that Microsoft provides, HDinsight, which is
a cloud-based Apache Hadoop service provided by Microsoft. It says:

• Scale to petabytes on demand
• Process unstructured and semistructured data
• Develop in Java, .NET and more
• No hardware to buy or maintain
• Pay only for what you use

https://github.com/mozilla-metrics/akela/blob/master/src/main/java/com/mozilla/hadoop/Backup.java
https://github.com/mozilla-metrics/akela/blob/master/src/main/java/com/mozilla/hadoop/Backup.java
http://blog.mozilla.org/data/2011/02/04/migrating-hbase-in-the-trenches/
http://blog.mozilla.org/data/2011/02/04/migrating-hbase-in-the-trenches/

Scripting in HBase

[216]

• Spin up a Hadoop cluster in minutes
• Visualize your Hadoop data in Excel
• Easily integrate on-premises Hadoop clusters

It also provides the Hadoop Azure service for Hadoop.

More can be studied at http://azure.microsoft.com/en-us/
documentation/services/hdinsight/.

Scripting in HBase
We have seen how to do scripting in HBase. In this chapter, we will see some more
scripting tips and tricks, which will enable an administrator to perform various tasks
in HBase by automating. We can write scripts in Ruby, shell script, and a script that's
a combination of HBase commands.

Now, let's consider a case where we need to create a table with two column families
and two columns, and then insert some data. The script for the same is as follows:

Here, we used a vi editor. Users can use any editor of
his/her preference.

vi hbasescript.script

create 'table','data',

for i in '0'..'2' do

for j in '0'..'2' do

for k in '0'..'2' do

put 'table', "row-#{i}#{j}#{k}","data:column#{j}#{k}",
"name#{j}#{k}" end end end

After saving this script, we can run the following script:

hbase shell hbasescript.script

We can also do the same thing by going to HBase shell:

hbase > for i in '0'..'5' do \

hbase >* put "utable", "rowKey_#{i}", "address:address",
"address#{i}"\

hbase>* end

http://azure.microsoft.com/en-us/documentation/services/hdinsight/
http://azure.microsoft.com/en-us/documentation/services/hdinsight/

Chapter 7

[217]

The preceding commands will insert five rows in the utable.

The preceding script will create a table and put 10 rows of data in the table. Likewise,
we can write scripts to load data into the table and perform various operations such
as inserting data from a text or CSV file.

We can run an HBase command to create an HBase table without going to the HBase
shell, as follows:

echo "create 'tableToCreate', 'colFamily'" | hbase shell

Now, we will see a script to scan the table between two rows:

vi scanTable.sh

#!/bin/bash

 TableToScan=$1

RowStart=$2

RowEnd=$3

exec hbase shell <<EOF scan "${TableToScan}", {RowStart =>
"${RowStart}", RowEnd => "${RowEnd}"}

EOF

This code must be called ./scanTable.sh emptable row100 row1000. This will
display rows between row100 and row1000 (which are passed as parameters to the
script) from the emptable table.

The .irbrc file
As we know, HBase uses Ruby shell, and this can be customized using the .irbrc
file to perform commands such as clearing, maintaining history in HBase shell, and
so on. If this file does not already exist in a user's home directory, we can create it and
put the following content, which will enable us to use the clear command on HBase
shell to clear the screen and maintain a command history for HBase shell:

1. From the home directory, issue the following command and add the
following lines to the file:
vi .irbrc

#Clear HBase shell command

def clear

 system('clear')

end

Scripting in HBase

[218]

hadoop_home="<your hadoop home path here>"

#Enable history(commands executed previously will be
preserved) in hbase shell

require "irb/ext/save-history"

#No. of commands to be saved. 50 here

IRB.conf[:SAVE_HISTORY] = 50

The location to save the history file

IRB.conf[:HISTORY_FILE] = "#{ENV['HOME']}/.irb-save-history"

#List given HDFS path from hbase shell

def ls(path)

 directory="/"+path

 system("#{hadoop_home}/hadoop fs -ls #{directory}")

end

#<hadoop home path> is the full path of the hadoop directory

Kernel.at_exit do

 IRB.conf[:AT_EXIT].each do |i|

 i.call

 end

end

2. Save this file, and now we can execute the clear and directory commands
from HBase shell as:
hbase > clear

hbase > ls <directory ls>

3. We can also assign variables to commands on HBase shell, and use it
as follows:
hbase > var = create 'table','colFam'

4. Now, we can use var to perform operations on the table, as follows:
hbase > var.scan

We will scan table, and likewise, we can use the put, get, and other
commands of HBase with this variable.

Chapter 7

[219]

5. If a table is already created, we can assign a variable for an HBase command,
as follows:
hbase > var = get_table 'table'

6. Now, we can use the var variable on HBase shell to perform various
operations on the given table, as follows:
hbase > var.scan

hbase . var.put 'row','colfam:name','shashwat'

hbase > var.disable

Likewise, we can use all the commands related to a table.

Getting the HBase timestamp from
HBase shell
We can use HBase shell to get the date and time converted to the HBase timestamp,
which is useful while specifying the timestamp in some commands in HBase,
as follows:

hbase > import java.text.SimpleDateFormat

hbase > import java.text.ParsePosition

hbase > SimpleDateFormat.new("").
parse("", ParsePosition.new(0)).getTime()

The following is an example:

hbase > SimpleDateFormat.new("yy/MM/dd HH:mm:ss").
parse("14/07/01 09:00:00", ParsePosition.new(0)).getTime()

These three commands will give the specified date-time data in HBase timestamp,
which we can use to scan or for some other commands.

For example, here we need a timestamp in the get command, as follows:

get 'tableToGetDataFrom', 'row1',
{COLUMN => 'colFam:Name', TIMESTAMP => 1317945301466}

We can get the date-time data from an HBase timestamp, as follows:

hbase > import java.util.Date

hbase > Date.new(1317945301466).toString()

This will show the equivalent date-time format of the specified timestamp.

Scripting in HBase

[220]

Enabling debugging shell
We can execute the following command to enable more output on HBase shell about
the commands we are executing:

hbase > debug

This will display more of the stack trace while being on HBase shell and
executing commands.

Enabling the debug level in HBase shell
We can enable the debug level on HBase shell using the following command:

hbase shell –d

Enabling SQL in HBase
Let's see a separate project that enables us to fetch data from HBase using
SQL commands, which we already know; consider the following taken from
http://phoenix.apache.org:

"Apache Phoenix is a SQL skin over HBase delivered as a client-embedded JDBC
driver targeting low latency queries over HBase data. Apache Phoenix takes your
SQL query, compiles it into a series of HBase scans, and orchestrates the running
of those scans to produce regular JDBC result sets."

We can configure to enable SQL facility in HBase using the
following link, and play with SQL queries on HBase:
http://phoenix.apache.org

A good place to get a list of scripts is https://github.com/
search?q=hbase+script&ref=cmdform.

Contributing to HBase
In this section, we will see how we can contribute to the HBase community and add
our creativity and coding to HBase by fiddling with the HBase source code. The
following links contain the lists of users who have contributed to the HBase project:

https://hbase.apache.org/team-list.html

http://phoenix.apache.org
http://phoenix.apache.org
https://github.com/search?q=hbase+script&ref=cmdform
https://github.com/search?q=hbase+script&ref=cmdform
https://hbase.apache.org/team-list.html

Chapter 7

[221]

The best way to contribute is to go through the source code of HBase, and then apply
it as a committer if you think you can add something useful to the HBase source.
Development can be started using any Java IDE, and the source where we can get
the HBase source code is:

git clone git://git.apache.org/hbase.git

svn co http://svn.apache.org/repos/asf/hbase/trunk hbase-core-trunk

A step-by-step development process is listed at http://hbase.apache.org/book/
developer.html.

Some leftovers and value-addition links
Automating Hadoop/HBase using Puppet can be learned at
the following:

• https://github.com/viirya/puppet-hbase

• https://github.com/thattommyhall/
cloudera-cdh3-puppet

Summary
In this chapter, we discussed various backup and restore techniques, namely offline
and online backup, and their types. We also learned scripting tips and tricks in
HBase. In the next chapter, we will start with the basic Java coding, and then
move on to much more advanced Java coding.

http://hbase.apache.org/book/developer.html
http://hbase.apache.org/book/developer.html
https://github.com/viirya/puppet-hbase
https://github.com/thattommyhall/cloudera-cdh3-puppet
https://github.com/thattommyhall/cloudera-cdh3-puppet

Coding HBase in Java
In this chapter, we will start coding HBase using Java. First, we will see coding
for the basic HBase APIs, and in the next chapter, we will discuss more advanced
development. In this chapter, we will discuss the following topics:

• Data model operations using Java
• Setting up the development environment
• Data types
• Available clients
• Client APIs

We will also see some other miscellaneous coding styles.

First, we will look into setting the development environment for Java development
in HBase, and then talk about IDEs, the required JAR files, and other aspects.

We can use any Java IDE to write HBase code such as Eclipse, NetBeans, IntelliJ, or
others of your preference. We will consider Eclipse for development.

For HBase API coding, we just need an IDE that suits us or we are familiar with. We
need Java, Maven, SVN, and IDE to play with, modify, and add new features into the
HBase source code.

Here, we will concentrate on HBase development using HBase APIs and JAR files.

Coding HBase in Java

[224]

The following are the links to download IDEs:
• Eclipse: http://www.eclipse.org
• NetBeans: https://netbeans.org
• IntelliJ: http://www.jetbrains.com/idea/
• JCreator: http://www.jcreator.com

As per my preference, it is better to settle for Eclipse as it's free and
widely available. We can find step-by-step instructions on how to set up
Eclipse with optimized parameters at https://ist.berkeley.edu/
as-ag/tools/howto/install-eclipse-win.html.

Setting up the environment for
development
Start your IDE. From here, we will consider Eclipse as a development IDE. So, start
Eclipse and create a new Java project. Once the project is created, add JAR files to the
project needed for development. We will go through this process step by step.

Building a Java client to code in HBase
HBase provides HTable as a client that is responsible for finding RegionServers
where a particular data is present. It is done by reading the HBase metadata,
hbase:meta (called .META. in the older versions of HBase), which includes a
key-value pair.

Let's discuss the format in short here:

• Key: It contains region key information about the table, region, and region
ID in the following format:
[table], [region start key], [region id]

• Value: This contains info:regioninfo (org.apache.hadoop.hbase.
HRegionInfo with fields such as table name, start key, regionID, replicaID,
encoded name, end key, split, and offline), info:server (the server port for
RegionServer), and info:serverstartcode (the start time of RegionServer).

A more detailed layout and information about HRegionInfo
can be found at http://hbase.apache.org/apidocs/org/
apache/hadoop/hbase/HRegionInfo.html.

http://www.eclipse.org
https://netbeans.org
http://www.jetbrains.com/idea/
http://www.jcreator.com
https://ist.berkeley.edu/as-ag/tools/howto/install-eclipse-win.html
https://ist.berkeley.edu/as-ag/tools/howto/install-eclipse-win.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HRegionInfo.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HRegionInfo.html

Chapter 8

[225]

After getting the required RegionServer details, the client contacts the RegionServer
serving the needed region, and the read/write operation can then happen without
contacting the master.

This fetched information is stored at client side for further faster operation. If a
region dies in between, the client queries the updated catalog table once again
for RegionServer and region information, and the information stored at the client
location is updated. A cluster might run without a master for some time; however,
if the master is stopped, it must be restarted as soon as possible because it handles
important tasks that we already discussed.

If we have a standalone HBase mode, we need not run any client configuration
as everything runs on a single server, and the client can contact HBase from here
itself. We need to specify the ZooKeeper address in the configuration for the client
as there might be many masters; ZooKeeper keeps track of the masters' addresses.
Usually, we maintain the ZooKeeper address in HBase-site.xml. For this, we need
a ZooKeeper address and the port at which it is running. There might be more than
one comma-separated ZooKeeper running for fully distributed clusters.

The first important thing is to make a client aware where our ZooKeeper, HMaster,
and other components are running, for which we must include the conf directory
of HBase. We need to include some library files (JARs) in the classpath of our ide
Java project.

These required library files are shipped with HBase and Hadoop. The following are
the JAR files found in the HBase/hadoop directory, which we can add to the class
path in Eclipse, as follows:

• The following is the code for the HBase lib files:
hbase (hbase-<version>.jar)
log4j (log4j-<version>.jar)
slf4j-api (slf4j-api-<version>.jar)
slf4j-log4j (slf4j-log4j12-<version>.jar)
zookeeper (zookeeper-<version>.jar)

• The following is the code for the Hadoop lib files:
commons-configuration (commons-configuration-<version>.jar)
commons-lang (commons-lang-<version>.jar)
commons-logging (commons-logging-<version>.jar)
hadoop-core (hadoop-core-<version>.jar)

Coding HBase in Java

[226]

We can replace <version> with the version number we are using in the current
Hadoop/HBase setup.

Let's start building the Java project:

1. Right-click on Project in Eclipse, and then click on Build Path, and Configure
Build Path.... Go to the Libraries tab and add JARs, as shown in the
following screenshot:

2. After adding the required resource files, move ahead with the coding. When
this is done, the HBase client will look for the ZooKeeper address and port
number from where it can connect to the active master and then to the
required RegionServer. The client looks for the configuration property
that lists the running ZooKeeper instances:
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>zookeeper1,zookeeper2,zookeeper3</value>
 </property>

Chapter 8

[227]

3. To enable clients to communicate with HBase, we need to do either of
the following:

 ° Include the conf directory in CLASSPATH
 ° Create a configuration for the client using the HBaseConfiguration

class in the client code

Here, we can specify the configuration explicitly, as shown in the following
code snippet. If running in local standalone mode, use these settings:

Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", "localhost");

4. For fully distributed clusters where there are many instances of ZooKeeper
running, we can specify all the ZooKeepers separated by commas, as follows:
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum",
"zookeeper1,zookeeper2,zookeeper3");

We also have to specify the port if we are not using the default ZooKeeper
port, that is, 2181. If we changed it in the configuration, we need to add the
following line too:
conf.set("hbase.zookeeper.property.clientPort","2181");

5. Once this is done, try to run the code and check whether these three lines
throw an exception or the connection is successful. We can use the following
code to check the connectivity to ZooKeeper:
import java.io.IOException;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.util.Bytes;

public class HBaseClientExample throws MasterNotRunningException,
ZooKeeperConnectionException {

 {
 public static void main(String[] args) throws
 IOException {

Coding HBase in Java

[228]

 try {

 HBaseAdmin.checkHBaseAvailable(conf);
 } catch (Exception e) {
 System.err.println("Exception at " + e);
 System.exit(1);
 }
 Configuration conf = HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", "infinity");
 conf.set("hbase.zookeeper.property.clientPort",
 "2181");
 HTable table = new HTable(conf, "table");
 HBaseAdmin admin = new HBaseAdmin(conf);

 try {
 HBaseAdmin.checkHBaseAvailable(conf);
 System.out.println("connection made ! ");
 } catch (Exception error) {
 System.err.println("Error connecting HBase:
 " + error);
 System.exit(1);
 }
 }
 }

This code will try to connect to HBase using the given configuration.
If successful, it will print connection made !; otherwise, it will print
the error message.

Data types
Let's have a look at the data types available in HBase. In HBase, everything is a byte.
It is a byte in and a byte out, which means everything that has to be written in HBase
needs to be converted/encoded to a byte array, and while reading, it can again be
converted/decoded to an equivalent representation. This facility is provided by
the put and result interfaces. So, no matter what the type of data is, as long as it
can be converted to a byte array, it can be stored in an HBase table. The input data
type might be an integer, image, or object, or a long or string. All of these can be
converted to a byte array and stored in an HBase table.

Chapter 8

[229]

Since we can store any type of data, it does not imply that we can convert and store
huge amounts of data into an HBase cell as there is a practical limit; more than 20
MB is a big thing to ask for. So, it's better that we choose smaller data that can be
converted and stored in an HBase cell, and for huge amounts of data, we can choose
other options such as storing it on an HDFS file system, and storing the path in the
HBase cell to avoid very prolonged read operations. Lengthy read operations might
prevent client calls.

In the next section, we will look at various types of data, converting and storing it in
HBase tables using put, or reading the data to equivalent representations using
get and scan.

Data model Java operations
There are some operations that can be performed on HBase data; these are known
as HBase data model operations. These operations might have tasks such as reading
from, writing to, and modifying data into HBase. Now, we will see the following
data model operations:

• Read operations using Get() and Scan()
• Write operations using Put()
• Modify operations using Delete()

Read
In this section, we will see the data models that are useful to read data from an
HBase table.

Get()
Get() reads a row from a table. It can read a single or a set of rows based on the
specified condition. It returns a result that contains data in key-value pairs or a map
format. This method is provided by HTable classes and executed as HTable.get
(condition). It returns a row specified as a row key or one that's based on a
matching filter.

Constructors
Using the following constructors, we can create an object to access the HBase APIs to
read the data:

Result get (byte [] RowKey) throws IOException
Result get (Get get) throws IOException

Coding HBase in Java

[230]

Supported methods
The following are the methods using which we can read different records from
HBase. These methods consist of reading rows of data, locking rows for reading,
setting filters for specific records, and others; these are listed as follows:

• getRow(): This method returns the row key when specified with Get
object instances.

• getRowLock(): This method returns the row lock on a specified row.
• getLockId(): This method returns the lock ID for a locked row.
• getTimeRange(): This method sets a time range for a Get instance object.
• setTimeStamp(): This is used for setting the minimum and maximum values

to the given timestamp.
• setFilter() and getFilter(): These are special filters that can be used to

select specific columns or cells based on a variety of conditions about filters.
We will discuss this in detail in the next section.

• setCacheBlocks() and getCacheBlocks(): These enable caching.
• numFamilies(): This retrieves the size of the family map containing the

families using the addFamily() or addColumn() calls.
• hasFamilies(): This checks whether a family column is added to the current

instance of the Get class.

The most updated list of Get methods can be found at
https://hbase.apache.org/apidocs/org/apache/
hadoop/hbase/client/Get.html.

The following are the options that one has while using the Get class:

• Get everything of a row data for which we specify the row key
• Get column families from a row for which we add the addFamily filter for

each column family to retrieve
• To get a specific column, we add an addColumn filter to Get
• To get columns written within a time range, we can add setTimeRange

to the Get class
• For data written at a specific time, we can add setTimeStamp
• As we know, an HBase record maintains more than one version of data,

so we can set the limit on the number of versions to return by setting
setMaxVersion

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html

Chapter 8

[231]

• To add a string-related or any other filter, we can use setFilter
• The Get method can be called on a row key, a get object, or in batch modes

using a specified list of get in the get list, List<Get>

Let's have a look at a few examples. Here is the basic code to use Get:

Configuration config =
HBaseConfiguration.create();
HtableObject tableObject = new HtableObject(config,
"tableObjectnametoreadfrom");
Get get = new Get(Bytes.toBytes("RowID"));
Result result = tableObject.get(get);
byte[] nameVal= result.getValue(Bytes.toBytes("details"),
Bytes.toBytes("name"));
System.out.println("Name : " + Bytes.toString(nameVal));

The preceding code will read a name column from the Detail column family of a
table. To read data, we need to pass rows, column families, and columns as byte
arrays using the Bytes.toBytes() method, which converts string parameters to
byte arrays.

Now, let's see how we can use multiple gets:

Configuration config =
HBaseConfiguration.create();
HtableObject tableObject = new HtableObject(config,
"tableObjectnametoreadfrom");
List<Get> listOfGets = new ArrayList<Get>();
listOfGets.add(new Get(Bytes.toBytes("rowKey1")));
listOfGets.add(new Get(Bytes.toBytes("rowKey2")));
listOfGets.add(new Get(Bytes.toBytes("rowKey3")));
Result[] records = tableObject.get(listOfGets);
 for (Result r : records) {
 System.out.println("Row Key:" +r.getRow());
 }

This will iterate through the result object and display all the rows matched. This
might return map or result that we will discuss in the result class after scan().
Likewise, we can use the preceding methods to utilize the power of Get.

A full code on Get is as follows:

import org.apache.hadoop.hbase.util.Bytes.*;
import java.io.IOException;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;

Coding HBase in Java

[232]

import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
public class GetExample {
 public static void main(String[] args) throws IOException
{
 Configuration config =
 HBaseConfiguration.create();
 try { HTable tableObj = new HTable(config,
 "logtable");
 Get getObject = new Get(toBytes("rowKey1"));
 Result getResult = tableObj.getObject(getObject);
 print(getResult);
 getObject.addColumn(toBytes("colFam"),
 toBytes("col2"));
 getResult = tableObj.getObject(getObject);
 print(getResult);
}catch (Exception e)
{
System.out.println("error in reading data");
}
finally
{
tableObj.close();}

 }
 private static void print(Result getResult) {
 System.out.println("Row Key: " +
 Bytes.toString(getResult.getRow()));
 byte [] value1 =
 getResult.getValue(toBytes("colFam"),
 toBytes("column1"));
 System.out.println("colFam1:colum1="+
 Bytes.toString(value1));
 byte [] value2 =
 getResult.getValue(toBytes("colFam"),
 toBytes("column2"));
 System.out.println("colFam1:column2="+
 Bytes.toString(value2));
 }
}

Chapter 8

[233]

The following are miscellaneous data methods:

• boolean exists(Get getobj) throws IOException: Using this method,
we can check whether the get operation we specify will return a result or the
result will be null.

• Result getRowOrBefore(byte[] rowkey, byte[] colFamily) throws
IOException: Using this method, we can get a row just before the
specified row.

Scan()
Scan through the table for all data or sets of data based on filters. This is used like
get, but to get more than one record based on the filter specified. In Scan(), we
can specify the start row from where scanning will start and the stop row where
scanning will stop. We can also specify the time range as a filter to get data between
a given time range. To know more about scan optimization methods, visit http://
hbase.apache.org/book/perf.reading.html#perf.hbase.client.caching.

Constructors
The following are the constructors that we can use:

• Scan(): This constructor is used to create scan operations that scan through
all the rows

• Scan(byte [] startRow): This constructor forces a lower bound on the row
from where the scan will start

• Scan(byte [] startRow, byte [] stopRow): This forces scanners to scan
between the specified start and end rows only

• Scan(byte [] startRow, Filter filter): This implements a start row
and Filter, which we will discuss later in this chapter

• Scan(Get get): Scan is done on the basis of conditions in the get
object instance

• Scan(Scan scan): Scan is done based on conditions in another scan object

These constructors can be used for various types of limiting, or filters can be applied
in order to limit the scan to the required scope of data, avoiding the useless scanning
of data in a table.

http://hbase.apache.org/book/perf.reading.html#perf.hbase.client.caching
http://hbase.apache.org/book/perf.reading.html#perf.hbase.client.caching

Coding HBase in Java

[234]

Methods
Here, we will learn about the methods used to read data using scan:

• getStartRow(): This is used to retrieve the start row of the scanning
operation.

• getStopRow():This is used to retrieve the stop row of the scanning
operation.

• setStartRow():This is used to set the start row of the scanning operation.
• setStopRow():This is used to set the stop row of the scanning operation.
• getTimeRange(): This gets the associated timestamp or time range of

the Get instance.
• setTimeRange(): This sets the associated timestamp or time range of

the Get instance.
• getMaxVersions(): This gets the highest version of the configured record.
• setMaxVersions(): This sets the maximum version to return.
• getFilter(): We can get the currently assigned filter using this method. It

might return null if no filter is set. We will discuss filters later in this chapter.
• setCacheBlocks(): This sets block caching for scans.
• getCacheBlocks(): This gets block caching for scans.
• numFamilies(): This is used to get the size of the family map.
• hasFamilies(): This checks whether column families have been added to

the scan.
• getFamilies(): This retrieves the column families.
• setFamilyMap(): This sets the family map.
• getFamilyMap(): This retrieves the family map.
• setFilter(): This applies a filter to the scan query.

So, let's understand what we can do to customize scans to get the desired result:

• To scan the entire data, we can use the empty scan constructor as Scan
scanobj=new Scan()

• To modify caching, we can use setCaching() or HTable.
setScannerCaching(int), or we can limit the result size by using
setMaxResultSize(int)

• To get all the columns from a column family, we can add addFamily to
scan objects

Chapter 8

[235]

• To get single columns, we can add addColumn to scan objects
• To get columns only in a time range, we can specify setTimeRange in

scan objects
• To get columns written in a specific timestamp, we can set setTimeStamp
• To get a specific number of versions for a column, we can set setMaxVersions
• To get the maximum number of values returned for each call in the result,

we can set setBath for next() call
• To add a filter, we can set setFilter
• To enable/disable server-side block caching, we can set setCacheBlock()

to true/false

Now, let's see some examples of Scan:

Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "logtable");
Scan scan = new Scan();
scan.setMaxVersions(2);
ResultScanner result = table.getScanner(scan);
for (Result result: scanner) {
 System.out.println("Rows which were scanned : " +
 Bytes.toString(result.getRow()));
}

The preceding code will scan through logtable and print all the rows in the table.
Now, we will see how to scan rows in between two rows, as follows. It will scan
between row100 and row1000:

Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "logtable");
Scan scan = new Scan (Bytes.ToBytes ("row100"), Bytes.toBytes
("row1000");
scan.setMaxVersions(2);
ResultScanner result = table.getScanner(scan);
for (Result result: scanner) {
 System.out.println("Rows which were scanned : " +
 Bytes.toString(result.getRow()));
}

The following is the full-fledged code to display on scan:

import org.apache.hadoop.hbase.util.Bytes.toBytes;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;

Coding HBase in Java

[236]

import org.apache.hadoop.hbase.client.tableToScan;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.util.Bytes;
public class scanExampleFull {
 public static void main(String[] args) throws IOException {
 Configuration config = HBaseConfiguration.create();
 tableToScan tableToScan = new tableToScan
 (config, "HBaseSamples");
 scan(tableToScan, "row1000", "row10000");
 scan(tableToScan, "row0", "row200");
 tableToScan.close();}
 private static void scan(tableToScan tableToScan, String
 startingRowKey, String stoppingRowKey) throws IOException {

 Scan scan = new Scan(toBytes(startingRowKey),
 toBytes(stoppingRowKey));
 scan.addColumn(toBytes("detailColFam"),
 toBytes("Namecolumn"));
 ResultScanner scanner = tableToScan.getScanner(scan);
 for (Result result : scanner){
 byte [] value = result.getValue(
 toBytes("detailColFam"), toBytes("Namecolumn"));
 System.out.println(" " +
 Bytes.toString(result.getRow()) + " => " +
 Bytes.toString(value));
 }
 scanner.close();
 }
}

We can perform the scan in batches. The following code will display how to do this:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.util.Bytes.toBytes;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
public class scanInBatch {

Chapter 8

[237]

 public static void main(String[] args) throws IOException {
 Configuration config = HBaseConfiguration.create();
 HTable tableToScanObj = new HTable(config, "logTable");
 Scan scanObj = new Scan();
 scan.addFamily(toBytes("columns"));
 scanDisplayData(tableToScanObj, scanObj);
 scan.setBatch(2);
 scanDisplayData(tableToScanObj, scanObj);
 tableToScanObj.close();
 }
 private static void scanDisplayData(HTable tableToScanObj,
 Scan scanObj) throws IOException {
 System.out.println("Batch Number : " + scanObj.getBatch());
 ResultScanner resultScannerObj =
 tableToScanObj.getScanner(scanObj);
 for (Result result : resultScannerObj){
 System.out.println("Data : ");
 for (KeyValue keyValuePairObj : result.list()){
 System.out.println(Bytes.toString
 (keyValuePairObj.getValue()));
 }
 }
 resultScannerObj.close();
 }
}

The most updated list of constructors/methods can be found at
https://hbase.apache.org/apidocs/org/apache/hadoop/
hbase/client/Scan.html.
Optimization of scanners can be found at http://hbase.apache.org/
book/perf.reading.html.

Write
HBase provides the facility of writing data into HBase using the Put class. To write
the data into HBase, we use the Put() method.

Put()
The Put() method is available to write records and data into an HBase table. This
method takes parameter as row key and a put object. Using this we can write a row
or set of rows of data in an HBase table.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/book/perf.reading.html
http://hbase.apache.org/book/perf.reading.html

Coding HBase in Java

[238]

Constructors
The following are the constructors:

• Put(byte[] rowKey)

• Put(byte[] rowKey, long timeStamp)

• Put(byte[] rowKey, RowLock rowLock)

• Put(byte[] rowKey, long timeStamp, RowLock rowLock)

Methods
To perform writing, we instantiate the put object with the row ID that needs to be
inserted. We can use the following methods to perform the put(insert) task:

• add (byte[] columnFamName, byte[] columnName, byte[]
cellValue): This adds the specified column and value for the column
to the put operation

• add (byte[] columnFamName, byte[] columnName, long timeStamp,
byte[] cellValue): This adds the specified column and value for the
column to the put operation, with the timestamp and cell value

• add (byte[] columnFamName, ByteBuffer columnName, long
timeStamp, ByteBuffer cellValue): This adds the specified column and
value for the column to the put operation, with the given timestamp and its
version to the put operation

• add (Cell keyValue): This adds a key-value pair to the put operation.

The following is an example of a put operation:

import java.io.IOException;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
public class ExampleofPutOperation {
 public static void main(String[] arguments) throws IOException {
 Configuration config = HBaseConfiguration.create();
 HTable toWriteDataInTable = new HTable(config, "logTable");
 Put putObj = new Put(toBytes("logdataKey1"));
 putObj.add(toBytes("colFamily"), toBytes("columnName1"),
 toBytes("internetexplorer"));
 putObj.add(toBytes("colFamily"), toBytes("columnName2"),
 toBytes("123456"));

Chapter 8

[239]

 toWriteDataInTable.put(putObj);
 toWriteDataInTable.close();
 }
}

This code will put a row named logdataKey1 in the logTable table with the
colFamily column family, which will have two columns, columnName1 and
columnName2, which contain the internetexplorer and 123456 values, respectively.

More updated information on the put APIs and list of methods can be
found at https://hbase.apache.org/apidocs/org/apache/
hadoop/hbase/client/Put.html.

Modify
HBase provides the Delete class and methods to delete and modify the columns in
HBase tables.

Here, we will discuss methods such as deleting values from a table, using which we
can modify table data.

Delete()
Using the Delete class and methods provided, we can delete a row or set of rows
and a record or a set of records from an HBase table using specified parameters.

Constructors
The following are the constructors:

• Delete(byte[] rowKey)

• Delete(byte[] rowKeyArray, int rowKeyOffset, int rowKeyLength)

• Delete(byte[] rowKeyArray, int rowKeyOffset, int rowKeyLength,
long timestamp)

• Delete(byte[] rowKey, long timestamp)

• Delete(byte[] rowKey, long timestamp, rowKeyLock rowKeyLock)

• Delete(Delete delObj)

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html

Coding HBase in Java

[240]

Methods
The following methods are available with the Delete class to perform the deletion of
columns, column families, or a record in the HBase table:

• deleteColumn(byte[] family, byte[] qualifier): This is used to delete
the latest version of a given column

• deleteColumn(byte[] family, byte[] qualifier, long timestamp):
This is used to delete the specified version of a given column

• deleteColumns(byte[] family, byte[] qualifier): This is used to
delete all versions of a given column

• deleteColumns(byte[] family, byte[] qualifier, long timestamp):
This is used to delete all versions of a given column with a timestamp that's
less than or equal to the given timestamp

• deleteFamily(byte[] family): This is used to delete all versions of all
columns of a given column family

• deleteFamily(byte[] family, long timestamp): This is used to delete
all columns of a given family with a timestamp less than or equal to the
given timestamp

• deleteFamilyVersion(byte[] family, long timestamp): This is used
to delete all column versions of a given family with a timestamp equal
to the given timestamp

• setTimestamp(long timestamp): This is used to set the timestamp of the
delete operation

The following code is an example of Delete():

import org.apache.hadoop.hbase.util.Bytes.toBytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.HTable;
import java.io.IOException;
public class DeleteOperationExample {
 public static void main(String[] arguments) throws IOException {
 Configuration config = HBaseConfiguration.create();
 HTable tableToDeleteDataFrom = new HTable(config, "logTable");
 Delete deleteobj1 = new Delete(toBytes("rowIDToDelete"));
 tableToDeleteDataFrom.delete(deleteobj1);

Chapter 8

[241]

 Delete deleteobj2 = new Delete(toBytes("2ndRowIDToDelete"));
 delete1.deleteColumns(toBytes("columnFamily"),
 toBytes("columnName"));
 tableToDeleteDataFrom.delete(deleteobj2);
 tableToDeleteDataFrom.close();
 }
}

This code will delete two rows in first delete. It will delete the entire row, and in the
second delete operation, it will delete the given column for a column family.

More updated delete APIs and methods can be found at https://
hbase.apache.org/apidocs/org/apache/hadoop/hbase/
client/Delete.html.
All the latest HBase APIs can be found at the following links:

• http://hbase.apache.org/apidocs/allclasses-
noframe.html

• http://hbase.apache.org/apidocs/index-all.html

HBase filters
As the name suggests, filter means to extract or take out only required data and
discard useless or excess data. HBase provides a good number of filters, which we
can use in get and scan operations to extract or fetch only the needed data from
HBase, preventing scanning-not-required data.

HBase filters are a powerful feature that can greatly enhance effectiveness while
working with data stored in tables. The two read functions for HBase, get()
and scan(), support direct access to data and the use of a start and end key,
respectively. We can limit the data retrieved by adding limiting selectors to the
HBase query. These include column families, column qualifiers, timestamps,
ranges, and version numbers.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Delete.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Delete.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Delete.html
http://hbase.apache.org/apidocs/allclasses-noframe.html
http://hbase.apache.org/apidocs/allclasses-noframe.html
http://hbase.apache.org/apidocs/index-all.html

Coding HBase in Java

[242]

We can represent HBase filter uses as shown in the following diagram, where we
specify filters in get or scan. It fetches data from different RegionServers where
these filters are shipped using RPC calls and compared with the local data at
RegionServers:

Types of filters
Now, let's see different types of filters and their uses. Before discussing this, we will
see the operator on which filters depend for comparison:

Operator type Description
BitComparator.BitwiseOp This performs the bitwise comparison. The following are

the enum constants:
• AND (and)
• OR (or)
• XOR (xor)

You can read more on this operator at http://hbase.
apache.org/apidocs/org/apache/hadoop/
hbase/filter/BitComparator.BitwiseOp.html.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BitComparator.BitwiseOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BitComparator.BitwiseOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BitComparator.BitwiseOp.html

Chapter 8

[243]

Operator type Description
CompareFilter.CompareOp This is a generic type of filter that is to be used to

compare. It can take operators such as equal, greater
and not equal. This is also a byte [] comparator. The
following are the enum constants:

• EQUAL

• GREATER

• GREATER_OR_EQUAL

• LESS

• LESS_OR_EQUAL

• NO_OP

• NOT_EQUAL

You can read more on this operator at http://hbase.
apache.org/apidocs/org/apache/hadoop/
hbase/filter/CompareFilter.CompareOp.html.

Filter.ReturnCode These are the return code for the filter value. The
following are the enum constants:

• INCLUDE: This is used to include the cell
• INCLUDE_AND_NEXT_COL: This is used to seek

the next column by skipping and also include the
cell

• NEXT_COL: This is used to move to the next
column by skipping

• NEXT_ROW: This is used to move to the next row
by skipping

• SEEK_NEXT_USING_HINT: This is used to move
to the next key that's given as a hint using a filter

• SKIP: This is the skip cell
You can read more on this operator at http://hbase.
apache.org/apidocs/org/apache/hadoop/
hbase/filter/Filter.ReturnCode.html.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/CompareFilter.CompareOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/CompareFilter.CompareOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/CompareFilter.CompareOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.ReturnCode.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.ReturnCode.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.ReturnCode.html

Coding HBase in Java

[244]

Operator type Description
FilterList.Operator These are the conditions for more than one filter in a filter

list. The following are the enum constants:
• MUST_PASS_ALL

• !AND

• MUST_PASS_ONE

• !OR

You can read more on this operator at http://hbase.
apache.org/apidocs/org/apache/hadoop/
hbase/filter/FilterList.Operator.html.

We have seen the operators used in combination with filters. We will see the use of
this in example code; now, let's understand the list of filters available:

Filter types Description
BinaryComparator This filter is used for binary

comparison lexicographically. It
compares against the given byte
array, using Bytes.compareTo
(byte[], byte[]).
Have a look at the following
example:
SingleColumnValueFilter
colValFilterbinary =
new
SingleColumnValueFilte
r(Bytes.toBytes("detai
l"),
Bytes.toBytes("name")
,CompareFilter.Compare
Op.GREATER_OR_EQUAL, new
BinaryComparator(Bytes
.toBytes("shash")));

BinaryPrefixComparator This is a binary comparator filter that
compares byte arrays at the prefix
level.

BitComparator This filter comparator performs the
given bitwise operation on each of
the bytes with the given byte array.

ByteArrayComparable This is the base class for byte array
comparators.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FilterList.Operator.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FilterList.Operator.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FilterList.Operator.html

Chapter 8

[245]

Filter types Description
ColumnCountGetFilter This is the filter that gives the first N

number of columns on rows only.

ColumnPaginationFilter This is based on the
ColumnCountGetFilter; it takes
two arguments, limit and offset, and
is used for pagination.

ColumnPrefixFilter This filter is used to get keys with
columns that match a specified
prefix.

ColumnRangeFilter This filter is used to select columns
between the min-column and max-
column values.

CompareFilter This is a generic filter used to filter by
comparison.

DependentColumnFilter This filter is used to add intercolumn
timestamp matching cells with a
corresponding timestamp.

FamilyFilter This filter is based on column
families.

Filter This is the interface for row and
column filters, which can be directly
applied within RegionServer.

FilterList Using this, we can implement
a logical comparison. This is an
ordered list or a set of other filters
accompanied by comparison
operators that must satisfy the
conditions implied in the filter list
while comparison. The following are
the comparison operators:

• FilterList.Operator.
MUST_PASS_ALL (AND)

• FilterList.Operator.
MUST_PASS_ONE (OR)

FirstKeyOnlyFilter This filter returns only the first
KeyValue from each row.

FirstKeyValueMatchingQualifiersFilter This filter checks for the specified
columns in KeyValue.

Coding HBase in Java

[246]

Filter types Description
FuzzyRowFilter This filter is based on fuzzy row keys.
InclusiveStopFilter This filter stops after the given row.
KeyOnlyFilter This filter will only return the key

component of each KeyValue.
MultipleColumnPrefixFilter This is used to select keys with

columns that match a given prefix.
NullComparator This is a binary comparator; it

lexicographically compares against
the given byte array using Bytes.
compareTo (byte[], byte[]).

PageFilter This filter limits results to a specific
page size.

ParseConstants This holds a set of constants related
to parsing filter strings used by
ParseFilter.

ParseFilter This allows users to specify a filter
via a string.

PrefixFilter This passes results that have same
row prefixes.

QualifierFilter This is a filter based on column
qualifiers.

RandomRowFilter This includes rows based on a
chance.

RegexStringComparator This is a regular expression-based
filter.

RowFilter This is used to filter based on the row
key.

SingleColumnValueExcludeFilter This checks a single column value,
but does not return the tested
column.

SingleColumnValueFilter This is used to filter cells based on
value.

SkipFilter This is a filter that filters an entire
row if any one of the row cell checks
do not pass the comparison.

SubstringComparator This is a filter based on substrings in
a value.

Chapter 8

[247]

Filter types Description
TimestampsFilter This is a filter based on timestamps of

the data.
ValueFilter This filter is based on column values.
WhileMatchFilter This filter will continue till the match

is found.

So, we have seen the list of filters that can be used in read methods; they are Get()
and Scan(), which are used to filter out the unnecessary data and fetch only the
required data. The following is a sample code that contains the use of filters in
read methods:

import java.io.IOException;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.filter.ValueFilter;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.util.Bytes.toBytes;

public class FilterExample {
 public static void main(String[] arguments) throws IOException {
 Configuration config = HBaseConfiguration.create();
 HTable hbaseTableObj = new HTable(config, "logTable");
 Scan scanObj = new Scan();
 scanObj.setFilter(new ValueFilter(CompareOp.EQUAL, new
 SubstringComparator("shash")));
 ResultScanner resultScannerObj =
 hbaseTableObj.getScanner(scanObj);
 for (Result result : resultScannerObj){
 byte [] value = result.getValue(toBytes("ColFamily"),
 toBytes("columnName"));
 System.out.println(Bytes.toString(value));
 }
 resultScannerObj.close();
 hbaseTableObj.close();
 }
}

Coding HBase in Java

[248]

The following example shows how we can use a list of filters that is not a single filter
but a combination of many, and this is done using a filter list:

import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.filter.FilterList;
import org.apache.hadoop.hbase.filter.FilterList.Operator;
import org.apache.hadoop.hbase.filter.FirstKeyOnlyFilter;
import java.io.IOException;
import org.apache.hadoop.hbase.util.Bytes.toBytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.filter.KeyOnlyFilter;
import org.apache.hadoop.hbase.util.Bytes;
public class ExampleOfFilterList {
 public static void main(String[] arguments) throws IOException {
 Configuration config = HBaseConfiguration.create();
 HTable hbaseTableObj = new HTable(config, "logTable");
 Scan scanObj = new Scan();
 FilterList filterListObj = new
 FilterList(Operator.MUST_PASS_ALL);
 filterListObj.addFilter(new KeyOnlyFilter());
 filterListObj.addFilter(new FirstKeyOnlyFilter());
 scanObj.setFilter(filterListObj);
 ResultScanner resultScannerObj =
 hbaseTableObj.getScanner(scanObj);
 for (Result result : resultScannerObj){
 byte [] value = result.getValue(toBytes("colFamName"),
 toBytes("colName"));
 System.out.println("Value found :" +Bytes.toString(value));
 }
 resultScannerObj.close();
 hbaseTableObj.close();
 }
}

Client APIs
HBase provides a list of client APIs, classes, and interfaces to build clients for HBase.
These clients can communicate with HBase to perform various operations such
as administrating codes. The following is the list of all the interfaces, classes, and
exceptions related to the client:

Chapter 8

[249]

Interfaces Classes

• Admin

• Attributes

• ClusterConnection

• HConnection

• HTableInterface

• HTableInterface
Factory

• MetaScanner.Meta
ScannerVisitor

• NonceGenerator

• ResultScanner

• RetryingCallable

• Row

• AbstractClientScanner

• Action

• Append

• ClientScanner

• ClientSideRegionScanner

• ClientSmallReversedScanner

• ClientSmallScanner

• ConnectionUtils

• DelegatingRetryingCallable

• Delete

• Get

• HBaseAdmin

• HConnectable

• HConnectionManager

• HTable

• HTableFactory

• HTableMultiplexer

• HTableUtil

• HTableWrapper

• Increment

• MetaCache

• MetaScanner

• MetaScanner.DefaultMeta
ScannerVisitor

• MetaScanner.MetaScanner
VisitorBase

• MetaScanner.TableMeta
ScannerVisitor

• MultiAction

• MultiResponse

• Mutation

• Operation

• OperationWithAttributes

• PerClientRandomNonceGenerator

• Put

• Query

• RegionCoprocessorServiceExec

• RegionReplicaUtil

• RegionServerCallable

• Result

• RetriesExhaustedException.
ThrowableWithExtraContext

• ReversedClientScanner

• ReversedScannerCallable

• RowMutations

• RpcRetryingCaller

• RpcRetryingCallerFactory

• RpcRetryingCallerWithReadReplicas

• Scan

• ScannerCallable

• TableSnapshotScanner

• UnmodifyableHTableDescriptor

Enums

• Consistency

• Durability

• IsolationLevel

Exceptions

• NoServerForRegion
Exception

• RegionOffline
Exception

• RetriesExhausted
Exception

• RetriesExhaustedWith
DetailsException

• ScannerTimeout
Exception

• WrongRowIO
Exception

Information on the classes, exceptions, and APIs with updated
information can be found at http://hbase.apache.org/
devapidocs/index.html.

http://hbase.apache.org/devapidocs/index.html
http://hbase.apache.org/devapidocs/index.html

Coding HBase in Java

[250]

Summary
In this chapter, we discussed the Java coding for HBase and various data model
operations such as reading, writing, and modifying data in an HBase table. We also
saw filters to read required-only data. The chapter also covers code for APIs. In the
next chapter, we will see administrative programing; some advance coding concepts
such as administrative code, available interfaces, classes, and exceptions in HBase;
writing MapReduce for HBase; and details about rest and thrift API services.

Advance Coding in Java
for HBase

In this chapter, we will learn about some more advance coding on topics such as
administrative tasks; available interfaces, classes, and exceptions in HBase; writing
a MapReduce for HBase; and operations on HDFS. We will also discuss details on
REST and Thrift API services and other advance topics such as coprocessors, bloom
filters, and available HBase tools for value addition.

In this chapter, we will cover the following topics:

• Interfaces, classes, and exceptions in HBase
• Java code for performing administrative tasks
• Data operation codes
• MapReduce in HBase
• REST/Thrift web service introduction
• Advance concepts in HBase
• Information about some add-on projects

Interfaces, classes, and exceptions
Interface is a set of abstract methods. A class in Java implements an interface and
inherits the abstract methods of the interface. It is not a class. Writing an interface is
the same as writing a class. A class tells us about the attributes and behaviors of an
object. An interface contains behaviors that a class implements.

Class is a template/blueprint that describes the behavior that an object supports.

Exception is a problem that arises during the execution of a program.

Advance Coding in Java for HBase

[252]

Here is the list of some packages to be used in Java code:

• org.apache.hadoop.hbase: This package contains a base class for HBase
• org.apache.hadoop.hbase.backup: This package contains classes related

to backup tasks
• org.apache.hadoop.hbase.client: This package contains a

client-related class
• org.apache.hadoop.hbase.codec: This package contains the

Codec interface
• org.apache.hadoop.hbase.coprocessor: This package is used

to write coprocessors
• org.apache.hadoop.hbase.exceptions: This package contains the

predefined exception in HBase
• org.apache.hadoop.hbase.filter: This package provides a list of filters
• org.apache.hadoop.hbase.http: This package contains HTTP functionalities
• org.apache.hadoop.hbase.io: This package contains I/O-related methods
• org.apache.hadoop.hbase.ipc: This package contains methods related to

RPC connection
• org.apache.hadoop.hbase.mapred: This package contains MapReduce-

related methods
• org.apache.hadoop.hbase.mapreduce: This is the newer MapReduce

package, which provides HBase MapReduce I/O formats, a table indexing
MapReduce job, and utility methods

• org.apache.hadoop.hbase.master: This package is used while interacting
with the master

• org.apache.hadoop.hbase.monitoring: This package exports methods
for monitoring

• org.apache.hadoop.hbase.regionserver: This package is used when
interacting with RegionServers

• org.apache.hadoop.hbase.rest: This package provides REST API
• org.apache.hadoop.hbase.security: This package is used for tasks

related to security
• org.apache.hadoop.hbase.snapshot: This package is used for backup

and snapshot
• org.apache.hadoop.hbase.thrift: This package provides Thrift services

Chapter 9

[253]

• org.apache.hadoop.hbase.tool: This package provides miscellaneous tools
• org.apache.hadoop.hbase.types: This package provides the definition

and implementation of HBase's extensible data type API
• org.apache.hadoop.hbase.util: This package provides utilities
• org.apache.hadoop.hbase.zookeeper: This package is used for tasks

related to ZooKeepers

All the important packages, interfaces, and a list of the
updated APIs can be found at http://hbase.apache.org/
devapidocs/index.html.

Code related to administrative tasks
The following is the code for administrative tasks such as creating tables, deleting
tables, enabling tables, and so on:

import java.io.IOException;
import java.util.Collection;
import org.apache.hadoop.hbase.MasterNotRunningException;
import org.apache.hadoop.hbase.ZooKeeperConnectionException;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.ClusterStatus;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HServerInfo;
import org.apache.hadoop.hbase.HTableDescriptor;
public class hbaseAdminCodeExample {
 private Configuration conf = null;
 HBaseAdmin admin = null;
 public hbaseAdminCodeExample(){

 }
public static void main(String[] args) throws IOException {
 for(int i = 0; i < args.length; i++) {
 System.out.println("Argument Specified" + i + ":" + args[i]);
 }
 config.set("hbase.zookeeper.quorum", "infinity");
 config.set("hbase.zookeeper.property.clientPort", "2181");

http://hbase.apache.org/devapidocs/index.html
http://hbase.apache.org/devapidocs/index.html

Advance Coding in Java for HBase

[254]

 hbaseAdminCodeExample adminObj = new hbaseAdminCodeExample();
 adminObj.printClusterDetails(); /* this will print hbase cluster
 details.*/
 //rest of the methods also can be called as
 adminObj.<method name with arguments>
 }

 static {
 config = HBaseConfiguration.create();
 admin=new HBaseAdmin(config);
 }
 public void addColumnToTable(String tableObj, String columnObj)
 throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.addColumnToTable(tableObj, new
 HColumnDescriptor(columnObj));
 System.out.println("Added column : " + columnObj + "to table "
 + tableObj);
 }
 public void delColumnFromTable(String tableObj, String
 columnObj) throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.deleteColumn(tableObj, columnObj);
 System.out.println("Deleted column : " + columnObj + "from
 table " + tableObj);
 }
 public void createTableInHbase(String tableObj, String
 ColFamName) throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 HTableDescriptor tabledescriptor = new
 HTableDescriptor(Bytes.toBytes(tableObj));
 tabledescriptor.addFamily(new HColumnDescriptor(ColFamName));
 adminObj.createTableInHbase(tabledescriptor);
 }
 public void performMajorCompact(String mytable) throws
 IOException {
 config = HBaseConfiguration.create();
 HTable table = new HTable(config, mytable);
 HBaseAdmin adminObj = new HBaseAdmin(config);
 String tableObj = table.toString();
 try {

Chapter 9

[255]

 adminObj.majorCompact(tableObj);
 System.out.println("Compaction done!");
 } catch (Exception e) {
 System.out.println(e);
 }
 }
 public static void checkIfRunningFine() throws
 MasterNotRunningException, ZooKeeperConnectionException {
 config = HBaseConfiguration.create();
 try {
 HBaseAdmin.checkHBaseAvailable(config);
 } catch (Exception e) {
 System.err.println("Exception at " + e);
 System.exit(1);
 }
 }
 public void perfomrMinorcompact(String tabName) throws
 IOException, InterruptedException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.compact(tabName);
 }
 public void deletetableFromHBase(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.deleteTable(tableObj);
 }
 public void disableHBaseTable(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.disableTable(tableObj);
 }
 public void enableHBaseTable(String tableObj) throws IOException
 {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.enableTable(tableObj);
 }
 public void flushTable(String tabName) throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.disableTable(tabName);
 }

Advance Coding in Java for HBase

[256]

 public ClusterStatus getHBaseclusterstatus() throws IOException
 {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 return adminObj.getClusterStatus();
 }
 public void printClusterDetails() throws IOException {
 ClusterStatus clusterStatus = getclusterstatus();
 clusterStatus.getServerInfo();
 Collection < HServerInfo > serverinfo =
 clusterStatus.getServerInfo();
 for (HServerInfo s: serverinfo) {
 System.out.println("Server name " + s.getServerName());
 System.out.println("Host name " + s.getHostname());
 System.out.println("Host name : Port " +
 s.getHostnamePort());
 System.out.println("Info port" + s.getInfoPort());
 System.out.println("Server load " + s.getLoad().toString());
 System.out.println();
 }
 String version = clusterStatus.getHBaseVersion();
 System.out.println("Version " + version);
 int regioncounts = clusterStatus.getRegionsCount();
 System.out.println("Region Counts :" + regioncounts);
 int servers = clusterStatus.getServers();
 System.out.println("Servers :" + servers);
 double averageload = clusterStatus.getAverageLoad();
 System.out.println("Average load: " + averageload);
 int deadservers = clusterStatus.getDeadServers();
 System.out.println("Deadservers : " + deadservers);
 Collection < String > Servernames =
 clusterStatus.getDeadServerNames();
 for (String s: Servernames) {
 System.out.println("Dead Servernames " + s);
 }
 }
 public void isHBaseTableAvailable(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 boolean result = adminObj.isTableAvailable(tableObj);
 System.out.println("Table " + tableObj + " available ?" +
 result);
 }

Chapter 9

[257]

 public void isHBaseTableEnabled(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 boolean result = adminObj.isTableEnabled(tableObj);
 System.out.println("Table " + tableObj + " enabled ?" +
 result);
 }
 public void isHBaseTableDisabled(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 boolean result = adminObj.isTableDisabled(tableObj);
 System.out.println("Table " + tableObj + " disabled ?" +
 result);
 }
 public void checkIfTableExists(String tableObj) throws
 IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 boolean result = adminObj.tableExists(tableObj);
 System.out.println("Table " + tableObj + " exists ?" +
 result);
 }
 public void shutdownCluster() throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 System.out.println("Shutting down..");
 adminObj.shutdown();
 }
 public void listAllTablesInHBase() throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.listTables();
 }
 public void modifyTableColumn(String tableObj, String
 columnname, String descriptor) throws IOException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.modifyColumn(tableObj, columnname, new
 HColumnDescriptor(descriptor));
 }
 public void modifyHBaseTable(String tableObj, String
 hbaseNewTableName) throws IOException {
 config = HBaseConfiguration.create();

Advance Coding in Java for HBase

[258]

 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.modifyTable(Bytes.toBytes(tableObj), new
 HTableDescriptor(hbaseNewTableName));
 }
 public void splitHBaseTable(String tableObj) throws IOException,
 InterruptedException {
 config = HBaseConfiguration.create();
 HBaseAdmin adminObj = new HBaseAdmin(config);
 adminObj.split(tableObj);
 }
 public void checkIfMasterRunning() throws
 MasterNotRunningException, ZooKeeperConnectionException {
 config = HBaseConfiguration.create();
 HBaseAdmin administer = new HBaseAdmin(config);
 System.out.println("Master running ? " +
 administer.isMasterRunning());
 }
}

The preceding code can perform all administration-related operations using
the HBaseAdmin class. We need to pass the method name using < HBaseAdmin
Object>.<method Name with arguments>.

Data operation code
Data operation code is all about adding a record, deleting a record, and getting a
single record. It will also help in scanning the table and listing all records.

Let's see how we can build our own function to perform various tasks:

public void addOneRecordToTable(String tableObjName, String
 rowKey,
String colFamName, String columnName, String data) throws
 Exception
{
 try
 {
 HTable tableObj = new HTable(configurationObj, tableObjName);
 Put put = new Put(Bytes.toBytes(rowKey));
 put.add(Bytes.toBytes(colFamName), Bytes.toBytes(columnName),
 Bytes
 .toBytes(data));
 tableObj.put(put);
 }
 catch (IOException exception)

Chapter 9

[259]

 {
 exception.printStackTrace();
 }
}
public void delRecordFromTable(String tableObjName, String
 rowKey) throws IOException
{
 HTable tableObj = new HTable(configurationObj, tableObjName);
 List<Delete>list = new ArrayList<Delete>();
 Delete delObj = new Delete(rowKey.getBytes());
 list.add(delObj);
 tableObj.delete(list);
}
public void getSingleRecordFromTable (String tableObjName, String
 rowKey) throws IOException
{
 HTable tableObj = new HTable(configurationObj, tableObjName);
 Get get = new Get(rowKey.getBytes());
 Result resultSet = tableObj.get(get);
 for(KeyValue keyVal : resultSet.raw())
 {
 System.out.println(new String(keyValue.getValue()));
 }
}
public void readAllRecordFromTable (String tableObjName)
{
 try
 {
 HTable tableObj = new HTable(configurationObj, tableObjName);
 Scan s = new Scan();
 ResultScanner resultScanerObj = tableObj.getScanner(s);
 for(Result resultObj:resultScanerObj)
 {
 for(KeyValue keyValue : resultObj.raw())
 {
 System.out.println(new String(keyValue.getQualifier()) +
 " "+keyValue.getFamily() + ":"+keyValue.getRow()+
 " :"+keyValue.getValue()+":"+keyValue.getTimestamp());
 }
 }
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

Advance Coding in Java for HBase

[260]

And we can call these methods in the main function as follows:

public static void main(String[] agrs) {
 try {
 String tablename = "logData";
 String[] familys = { "detail", "hostname" };
 hbaseDataOperationEg.getOneRecord(tablename, "zkb");
 hbaseDataOperationEg.getAllRecord(tablename);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

The configuration parameter remains the same as we discussed earlier. We
need to create configuration settings, and the other required parameters must be
handled correctly.

MapReduce and HBase
HBase supports writing MapReduce jobs for processing data from the HBase
table using the org.apache.hadoop.hbase.mapreduce package, which has lots
of methods for the same. This also provides HBase MapReduce input and output
formats that can be utilized in MapReduce jobs, a table indexing MapReduce job,
and many other MapReduce utilities. It utilizes Hadoop MapReduce framework
to do so.

The following is a list of MapReduce classes provided by HBase:

• Import: This utility is used to import sequence file from HDFS, which is
exported by the export command.

• ImportTsv: This utility is used to import the Tab-separated Value (TSV) file
using the MapReduce task.

• CellCounter: This counts the number of cells in the HBase table using the
MapReduce job.

• CopyTable: This is used to copy table from one HBase cluster to another
HBase cluster. The destination can be the same cluster or another cluster.

• Driver: This is the Driver class for MapReduce jobs in HBase.
• Export: This exports or writes data from an HBase table to a sequential file

for backup on a HDFS location using the MapReduce job.
• GroupingTableMapper: This is used to extract grouping columns from the

input record.

Chapter 9

[261]

• HFileOutputFormat2: This is used to write HFiles.
• HLogInputFormat: This provides an input format for HLog files.
• HRegionPartitioner<key, value>: This partitions the output key

to a group of keys.
• IdentityTableMapper: This passes the specified key and record to the

Reduce phase.
• IdentityTableReducer: This is a convenience class that simply writes all

values passed to the configured HBase table.
• KeyValueSortReducer: This emits sorted KeyValues.
• LoadIncrementalHFiles: This loads the output of HFileOutputFormat

into an existing HBase table.
• MultiTableInputFormat: This converts HBase tabular data into a format

that can be consumed by MapReduce.
• MultiTableInputFormatBase: This is a base class for

MultiTableInputFormats.
• MultiTableOutputFormat: This is the Hadoop output format that writes

into one or more HBase tables.
• PutCombiner<K>: This groups Puts.
• PutSortReducer: This emits a sorted list of Puts.
• RowCounter: This runs a MapReduce job to count rows in a specified

HBase table.
• SimpleTotalOrderPartitioner<value>: This takes the start and end keys

and uses this feature to figure out reduce key belongs to which partition.
• TableInputFormat: This converts the HBase tabular data into a format that

can be consumed by MapReduce.
• TableInputFormatBase: This is the base class for TableInputFormats.
• TableMapper<keyout, valueout>: This extends the base Mapper class

to add the required input key and value classes.
• TableOutputFormat<KEY>: This converts MapReduce output and writes

it to an HBase table.
• TableRecordReader: This iterates over an HBase table data and key-value

pairs of data.
• TableReducer<keyin, valuein, keyout>: This extends the basic Reducer

class to add the required key and value I/O classes.

Advance Coding in Java for HBase

[262]

• TableSnapshotInputFormat: This is used to run a MapReduce over
a table snapshot.

• TableSplit: This splits a table using the MapReduce job.
• TextSortReducer: This emits a sorted key-value pair.
• TsvImporterMapper: This writes content of an HBase table to files on HDFS.
• TsvImporterTextMapper: This writes table content to map output files.
• WALPlayer: This is used to replay WAL files using the MapReduce job.

The updated and most recent MapReduce utilities can be found at
http://hbase.apache.org/apidocs/org/apache/hadoop/
hbase/mapreduce/package-summary.html.

We can run a MapReduce task using the following line of code:

hadoop jar ${HBASE_HOME}/hbase-0.90.0.jar
 <utility name from jar file > <list of parameters>

The utility names can be as follows:

• completebulkload: This is used for bulk loading data
• copytable: This is used to export a table from a cluster to peer cluster
• export: This exports a table on HDFS
• import: This imports exported data
• importtsv: This imports data that is in TSV format
• rowcounter: This counts the number of rows in an HBase table
• verifyrep: This is used to compare the data from tables in two

different clusters

More information about the Hadoop MapReduce framework
can be found at http://hadoop.apache.org/docs/
r1.2.1/mapred_tutorial.html.

Let's now look into a MapReduce code example for HBase. The following is the word
count example that counts words in the HBase table:

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-summary.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Chapter 9

[263]

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;

public class hbaseMapRedExampleClaseeWorkCount {
 public static class Map extends Mapper<LongWritable, Text, Text,
 IntWritable> {
 private final static IntWritable count = new IntWritable(1);
 private Text textToEmit = new Text();
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 StringTokenizer strTokenizerObj = new
 StringTokenizer(value.toString());
 while (strTokenizerObj.hasMoreTokens()) {
 textToEmit.set(strTokenizerObj.nextToken());
 context.write(textToEmit, count);
 }
 }
 }
 public static class Reduce extends TableReducer<Text,
 IntWritable, NullWritable> {
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 int total = 0;
 Iterator<IntWritable> iterator = values.iterator();
 while (iterator.hasNext()) {
 total += iterator.next().get();
 }
 Put put = new Put(Bytes.toBytes(key.toString()));
 put.add(Bytes.toBytes("colFam"), Bytes.toBytes("count"),
 Bytes.toBytes(String.valueOf(total)));

Advance Coding in Java for HBase

[264]

 context.write(NullWritable.get(), put);
 }
 }
 public static void createHBaseTable(String
 hbaseMapRedTestTableObj) throws IOException {
 HTableDescriptor tableDescriptorObj = new
 HTableDescriptor(hbaseMapRedTestTableObj);
 HColumnDescriptor column = new HColumnDescriptor("colFam");
 tableDescriptorObj.addFamily(column);
 Configuration configObj = HBaseConfiguration.create();
 configObj.set("hbase.zookeeper.quorum", "infinity");
 configObj.set("hbase.zookeeper.property.clientPort", "2222");
 HBaseAdmin hAdmin = new HBaseAdmin(configObj);
 if (hAdmin.tableExists(hbaseMapRedTestTableObj)) {
 System.out.println("Table exist !");
 hAdmin.disableTable(hbaseMapRedTestTableObj);
 hAdmin.deleteTable(hbaseMapRedTestTableObj);
 }
 System.out.println("Create Table" + hbaseMapRedTestTableObj);
 hAdmin.createTable(tableDescriptorObj);
 }
 public static void main(String[] args) throws Exception {
 String hbaseMapRedTestTableObj = "hbaseMapReduceTest";
 hbaseMapRedExampleClaseeWorkCount.createHBaseTable
 (hbaseMapRedTestTableObj);
 Configuration configObj = new Configuration();
 configObj.set("mapred.job.tracker", "infinity:9001");
 configObj.set("hbase.zookeeper.quorum", "infinity");
 configObj.set("hbase.zookeeper.property.clientPort", "2222");
 configObj.set(TableOutputFormat.OUTPUT_TABLE,
 hbaseMapRedTestTableObj);
 Job job = new Job(configObj, "HBase WordCount Map reduce");
 job.setJarByClass(hbaseMapRedExampleClaseeWorkCount.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TableOutputFormat.class);
 FileInputFormat.addInputPath(job, new
 Path("<hbasefilepath>"));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

Chapter 9

[265]

We can write MapReduce code for HBase data for different scenarios, which will
completely depend on the requirements. HBase stores data as a key-value pair,
which is best for MapReduce.

More on MapReduce in HBase and API uses can be found at the
following links:

• http://hbase.apache.org/book/mapreduce.example.
html

• http://sujee.net/tech/articles/hadoop/hbase-
map-reduce-freq-counter/

RESTful services and Thrift services
interface
These are the inbuilt interfaces provided by HBase so that clients can communicate
using RESTful and Thrift calls.

REST service interfaces
Now, let's discuss the RESTful service and Thrift that HBase provides in order to
contact HBase besides Java coding. Stargate is the server that provides RESTful
service interface through Java package, org.apache.hadoop.hbase.rest. It
internally runs an embedded Jetty servlet container to handle the request.

We can start it as follows:

hbase rest start -p <port to use>

The preceding command starts REStful services in the foreground. Alternatively,
you can start it and send it to the background:

bin/hbase-daemon.sh start rest -p <port to use>

REStful services can be stopped with the following command:

bin/hbase-daemon.sh stop rest

HBase can handle all REST requests through curl or any computer languages that
support web service such as PHP. The following is the curl request example:

curl -H "Accept: text/xml" http://localhost:8000/version

The preceding command will return the HBase version.

http://hbase.apache.org/book/mapreduce.example.html
http://hbase.apache.org/book/mapreduce.example.html
http://sujee.net/tech/articles/hadoop/hbase-map-reduce-freq-counter/
http://sujee.net/tech/articles/hadoop/hbase-map-reduce-freq-counter/

Advance Coding in Java for HBase

[266]

To delete a table, we can give a command as follows:

curl -v -X DELETE 'http://localhost:8080/test/schema' -H "Accept:
application/json"

The result can be fetched in XML or JSON and be parsed further.

For more information, refer to the following links:

• http://blog.cloudera.com/blog/2013/03/how-to-
use-the-apache-hbase-rest-interface-part-1/

• http://hbase.apache.org/apidocs/org/apache/
hadoop/hbase/rest/package-summary.html

Thrift
The Thrift framework is provided by a Thrift server, which provides a way for
scalable flexibility and interoperability across computer languages and services
development. It builds an engine with the help of code generation, which works
efficiently between HBase and C++, Java, Python, PHP, Ruby, Perl, and so on.

This service is provided by HBase using the gthrough package:

org.apache.hadoop.hbase.thrift

The Thrift service can be started like this:

bin/hbase-daemon.sh start thrift

And can be stopped like this:

bin/hbase-daemon.sh stop thrift

The following is the example for creating a table using Thrift in Python:

from thrift.transport import TSocket
from thrift.protocol import TBinaryProtocol
from thrift.transport import TTransport
from hbase import Hbase
Connects to HBase Thrift server
transport = TTransport.TBufferedTransport
(TSocket.TSocket(hostname, thriftport))
protocol = TBinaryProtocol.TBinaryProtocolAccelerated(transport)
Create and open the client connection
client = Hbase.Client(protocol)

http://blog.cloudera.com/blog/2013/03/how-to-use-the-apache-hbase-rest-interface-part-1/
http://blog.cloudera.com/blog/2013/03/how-to-use-the-apache-hbase-rest-interface-part-1/
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/rest/package-summary.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/rest/package-summary.html

Chapter 9

[267]

transport.open()
client.createTable
(tablename, [Hbase.ColumnDescriptor(name=cfname)])
transport.close()

The client can be built in Python or PHP or any language that supports Thrift.

Complete details of the Thrift service and updated APIs can be found at
the following links:

• http://nousefor.net/55/2011/12/php/hbase-and-
hive-thrift-php-client/

• https://hbase.apache.org/apidocs/org/apache/
hadoop/hbase/thrift/package-summary.html#package_
description

• http://hbase.apache.org/book/thrift.html
• http://blog.cloudera.com/blog/2013/12/how-

to-use-the-hbase-thrift-interface-part-2-
insertinggetting-rows/

• http://blog.cloudera.com/blog/2013/09/how-to-use-
the-hbase-thrift-interface-part-1/

Coding for HDFS operations
Let's now look at some code to perform operations on the HDFS file system and
interact with Hadoop, such as copying a file from the local to HDFS and vice versa,
deleting a file, and reading a file from HDFS:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.BlockLocation;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hdfs.DistributedFileSystem;
import org.apache.hadoop.hdfs.protocol.DatanodeInfo;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

http://nousefor.net/55/2011/12/php/hbase-and-hive-thrift-php-client/
http://nousefor.net/55/2011/12/php/hbase-and-hive-thrift-php-client/
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/thrift/package-summary.html#package_description
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/thrift/package-summary.html#package_description
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/thrift/package-summary.html#package_description
http://hbase.apache.org/book/thrift.html
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/

Advance Coding in Java for HBase

[268]

import java.io.InputStream;
import java.io.OutputStream;

//To copy a file from local drive to hdfs
public void copyLocalFileToHDFS (String source, String dest)
 throws IOException {
 Configuration conf = new Configuration();
 conf.addResource(new Path
 ("<hadoop conf dir path>/core-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/hdfs-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/mapred-site.xml"));
 FileSystem fileSystem = FileSystem.get(conf);
 Path srcPath = new Path(source);
 Path dstPath = new Path(dest);
 if (!(fileSystem.exists(dstPath))) {
 System.out.println("No such destination " + dstPath);
 return;
 }
 String filename = source.substring(source.lastIndexOf('/') + 1,
 source.length());
 try{
 fileSystem.copyFromLocalFile(srcPath, dstPath);
 System.out.println("File " + filename + "copied to " + dest);
 }catch(Exception e){
 System.err.println("Exception caught! :" + e);
 System.exit(1);
 }finally{
 fileSystem.close();
 }
}

//copy a file from HDFS to local drive
public void copyHDFSFileToLocal (String source, String dest)
 throws IOException {
 Configuration conf = new Configuration();
 conf.addResource(new Path
 ("<hadoop conf dir path>/core-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/hdfs-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/mapred-site.xml"));
 FileSystem fileSystem = FileSystem.get(conf);
 Path srcPath = new Path(source);

Chapter 9

[269]

 Path dstPath = new Path(dest);
 if (!(fileSystem.exists(dstPath))) {
 System.out.println("No such destination " + dstPath);
 return;
 }
 String filename = source.substring(source.lastIndexOf('/') + 1,
 source.length());
 try{
 fileSystem.copyToLocalFile(srcPath, dstPath)
 System.out.println("File " + filename + "copied to " + dest);
 }catch(Exception e){
 System.err.println("Exception caught! :" + e);
 System.exit(1);
 }finally{
 fileSystem.close();
 }
}

//delete a file from hdfs
public void deleteAfileOnHDFS(String file) throws IOException {
 Configuration conf = new Configuration();
 conf.addResource(new Path
 ("<hadoop conf dir path>/core-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/hdfs-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/mapred-site.xml"));
 FileSystem fileSystem = FileSystem.get(conf);
 Path path = new Path(file);
 if (!fileSystem.exists(path)) {
 System.out.println("File " + file + " does not exists");
 return;
 }
 fileSystem.delete(new Path(file), true);
 fileSystem.close();
}

//get block locations of a file on HDFS
public void getBlockLocationsOfHDFSFile(String source) throws
 IOException{
 Configuration conf = new Configuration();
 conf.addResource(new Path
 ("<hadoop conf dir path>/core-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/hdfs-site.xml"));

Advance Coding in Java for HBase

[270]

 conf.addResource(new Path
 ("<hadoop conf dir path>/mapred-site.xml"));
 FileSystem fileSystem = FileSystem.get(conf);
 Path srcPath = new Path(source);
 if (!(ifExists(srcPath))) {
 System.out.println("No such destination " + srcPath);
 return;
 }
 String filename = source.substring(source.lastIndexOf('/') + 1,
 source.length());
 FileStatus fileStatus = fileSystem.getFileStatus(srcPath);
 BlockLocation[] blkLocations = fileSystem.getFileBlockLocations
 (fileStatus, 0, fileStatus.getLen());
 int blkCount = blkLocations.length;
 System.out.println("File :" + filename + "stored at:");
 for (int i=0; i < blkCount; i++) {
 String[] hosts = blkLocations[i].getHosts();
 System.out.format("Host %d: %s %n", i, hosts);
 }
}

//create a directory on HDFS
public void createFileOnHDFS(String dir) throws IOException {
 Configuration conf = new Configuration();
 conf.addResource(new Path
 ("<hadoop conf dir path>/core-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/hdfs-site.xml"));
 conf.addResource(new Path
 ("<hadoop conf dir path>/mapred-site.xml"));
 FileSystem fileSystem = FileSystem.get(conf);
 Path path = new Path(dir);
 if (fileSystem.exists(path)) {
 System.out.println("Dir " + dir + " already exists!");
 return;
 }
 fileSystem.mkdirs(path);
 fileSystem.close();
}

Likewise, we can create a function like this in our own HDFS client and perform
similar operations. We can use all the APIs provided by Hadoop at https://
hadoop.apache.org/docs/current/api/overview-summary.html.

https://hadoop.apache.org/docs/current/api/overview-summary.html
https://hadoop.apache.org/docs/current/api/overview-summary.html

Chapter 9

[271]

Some advance topics in brief
In this section, we will discuss some advanced topics useful for developers that will
enable them to interact with HBase more closely.

Coprocessors
Coprocessors are similar to Linux kernel modules. They provide a way to run server-
level code against locally stored data. This provides a very powerful functionality.
It runs in the process on each RegionServer. All the regions contain references to the
coprocessor implementation classes associated. It can be loaded either from local JAR
files on the RegionServer class path or through the HDFS class loader. These are not
designed to be used by the users of HBase but by developers who add additional
functionalities to HBase. These can be used for server-side operations such as region
splits, major compactions, and client-side operations such as create, read, update,
and delete operations, and also can be used to implement a custom use case such as
user-defined functionalities.

Types of coprocessors
The following are the types of coprocessors:

• Coprocessor: This provides region life cycle management such as region
open, close, split, flush, compact operations, and so on.

• RegionObserver: This provides a hook for monitoring table operations from
the client side such as table get, put, scan, delete, and so on.

• Endpoint: This provides on-demand triggers for arbitrary functions to be
executed at a region. For example, column aggregation at RegionServer.

For more information, we can refer to the following links:
• https://hbase.apache.org/apidocs/org/apache/

hadoop/hbase/coprocessor/package-summary.html
• http://hbase-coprocessor-experiments.

blogspot.in
• http://www.slideshare.net/cloudera/3-h-base-

coprocessors-hbase-con-may-2012

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/coprocessor/package-summary.html
http://hbase-coprocessor-experiments.blogspot.in
http://hbase-coprocessor-experiments.blogspot.in
http://www.slideshare.net/cloudera/3-h-base-coprocessors-hbase-con-may-2012
http://www.slideshare.net/cloudera/3-h-base-coprocessors-hbase-con-may-2012

Advance Coding in Java for HBase

[272]

Bloom filters
The bloom filters are a special kind of filter that are used when there is a lot of
data to be avoided while scanning, and are also to skip internal data lookup to speed
up the scanning process. This enables us to discard the data that we do not need.
These are stored in the metadata of HFiles when it is written and then never needed
to be updated as HFiles are immutable. These filters implement folding to keep the
size down and combinatorial generation to speed up their creation. When an HFile
is opened during deployment of regions to a RegionServer, the bloom filter is loaded
into the memory.

The full internal architecture and implementation can be
found at https://issues.apache.org/jira/secure/
attachment/12444007/Bloom_Filters_in_HBase.pdf.

The Lily project
You can find the following definition at http://www.lilyproject.org/lily/
index.html:

"Lily is a data management platform combining planet-sized data storage, indexing
and search with on-line, real-time usage tracking, audience analytics and content
recommendations. It's a one-stop-platform for any organization confronted with
Big Data challenges that seeks rapid implementation, rock-solid performance at
scale, and efficiency at management."

"Lily unifies Apache HBase, Hadoop, and Solr into a comprehensively integrated,
interactive data platform with easy-to-use access APIs; a high-level data model and
schema language; flexible, real-time indexing; and the expressive search power of
Apache Solr. Best of all, Lily is open source, allowing anyone to explore and learn
what Lily can do."

https://issues.apache.org/jira/secure/attachment/12444007/Bloom_Filters_in_HBase.pdf
https://issues.apache.org/jira/secure/attachment/12444007/Bloom_Filters_in_HBase.pdf
http://www.lilyproject.org/lily/index.html
http://www.lilyproject.org/lily/index.html

Chapter 9

[273]

Features
Lily provides the following features:

• Easy to use through a high-level schema supporting rich and mixed,
structured and unstructured data sets

• It is developer-friendly, powerful, and expressive REST and Java API
• A flexible, configurable indexing system, supporting real-time indexing

into Solr

The documentation to configure, install, and get started with
it can be found at http://docs.ngdata.com/lily-
docs-current/414-lily.html.

Summary
In this chapter, we discussed various data operation coding using Java, different
REST and Thrift services and how to use them, MapReduce in HBase, and a sample
code. We learned a bit about coprocessors; bloom filters, interfaces, classes, and the
exceptions provided by HBase in its packages. In the next chapter, we will discuss
use cases using HBase in industry, and the architecture of these use cases.

http://docs.ngdata.com/lily-docs-current/414-lily.html
http://docs.ngdata.com/lily-docs-current/414-lily.html

HBase Use Cases
In this chapter, we will walk through some HBase user cases, zoom in the project
layout and design to understand how to utilize HBase for different business usages,
and provide some references to you for further development.

We will see the use case and architecture used at:

• Facebook
• Groupon
• Pinterest
• LongTail Video

This chapter will also show how these leading entities are using HBase for their
project and the architecture of the project.

HBase in industry today
With the increase in demand for Big Data day by day in order to solve the problems
comprising planet-size data, HBase is one of the players due to its characteristic of
persistent read performance. Using these systems, one can store and analyze data in
coordination with various other tools.

Also features such as HBase running on cloud and expanding and reducing on
demand will enable even small-scale companies to use its services. With the
increasing demand of data storage space, the need to process it and represent
unstructured data into a structured format can be achieved by HBase.

The new sub and open projects that are being created, which enables HBase to support
SQL queries (Phoenix), will surely boost and prepare conventional SQL developers
to perform queries on HBase. This provides us with a facility to query faster than any
other relational database system with the data of terabytes and petabytes' size.

HBase Use Cases

[276]

The future of HBase against relational
databases
It would be wrong to say that NoSQL, a column-based database, will replace the
RDBMS. HBase is still evolving and it cannot be used for all the use cases. There will
always be a need for different types of database to work in coordination with each
other satisfying different use cases to build a complete production environment.

However, the new features of high availability, almost consistent reads, ability to
store and retrieve petabytes of data, and support of various evolving open source
tools to fill up the existing gaps will take HBase and other NoSQL databases very far
for sure. We have just started looking at the power of these systems and are yet to
understand and implement real-life use cases with enormous amount of data.

So, for sure, Hadoop plus HBase and other subprojects are the future of data
warehousing and massive processing.

Some real-world project examples'
use cases
In this section, we will list out use cases of HBase being used in the industry today.
References and more details can be found at links provided in the Useful links and
references section at the end of the chapter.

HBase at Facebook
Facebook, as you all know, is a social utility that connects people with friends and
others who work, study, and live around them. Facebook uses HBase mainly to
power their messages infrastructure. The following are the services where Facebook
uses HBase:

• Messages between users
• Chats
• E-mails
• SMS

Choosing HBase
The following are the reasons why Facebook chooses HBase:

• Provides high write throughput
• Good random read performance compared to other DBs

Chapter 10

[277]

• Horizontal scalability
• Automatic failover
• Strong consistency
• Benefits of HDFS such as fault tolerant, scalable, checksums, and MapReduce

HBase acts like a caching layer on top of Hadoop when bundled these two together,
faster data process compare with other NoSQL + Hadoop.

Storing in HBase
Facebook uses HBase to store data. The following are the types of data that are stored
in HBase:

• Small messages
• Message metadata (thread/message indices)
• Search index

Facebook also use Haystack (a software that runs on a single machine and stores data
without replication; it only cares about local aggregated blob storage, concentrating
upon reducing disk seeks, and speeding up file retrieval) to store attachments and
large messages.

The architecture of a Facebook message
The following is a diagrammatical representation of how things work:

HBase Use Cases

[278]

In this process flow, a client asks the user directory service for the user details, then
after getting the detail of the user, the client sends the request to the application
server, which may be a Tomcat machine, running a custom application.

The application server using a custom service HBase index is searched for the
user-related cell from where a message can be written, appended, or retrieved,
and for the attachments the Haystack is searched.

Facts and figures
Let's have a look at some of the eye-opening facts and figures:

• Talking about Facebook message statistics, number of messages sent
and received per day is more than 6 billion

• Talking about traffic to HBase, have a look at the following points:
 ° Almost 100 billion read/writes per day
 ° At peak time, more or less 1.5 million operations per second
 ° About 55 percent reads and 45 percent writes
 ° More than 2 petabytes of data and with replication, it's more

than 6 petabytes
 ° Data is compressed using Lempel–Ziv–Oberhumer (LZO)

compression
 ° And the data is growing around 300 terabytes per month

• Schema changes during production
• Heavy use of bulk import

Let's now see some other use cases in the industry.

HBase at Pinterest
Pinterest is deployed on Amazon Elastic Compute Cloud (EC2). Pinterest uses a
follow model in which the user follows other users. It needs to update the feed data
for every user as soon as a follower makes changes in a pin or updates a pin. This is
the most classic social-media kind of application.

This happens for hundreds of millions of pins per month and about a billion writes
per day. So the following are the specification of implementation:

• They choose a wide schema where each user's following feed is a single row
in HBase

• This exploits the sorting order within columns as each user wants to see the
latest in his/her feed

Chapter 10

[279]

• They have increased the per region MemStore size to 512 MB MemStore
which leads to 40 MB HFile instead of the smaller 8 MB file for default
MemStore; this leads to less-frequent compactions

• Maintains mean time to recovery (MTTR) of less than 2 minutes by reducing
various timeout settings such as socket, connect, and stale node.

The layout architecture
Let's now see the basic layout architecture. The following layout represents the
follower and the followee relationship:

And according to this structure, it forms a kind of graph inside. As you can see in
the following diagram, it shows the path or writes in the system. Internally, there is a
single row for each user in HBase and all the followers' and followees' information is
stored in it.

This is the HBase architecture that Pinterest uses to store hundreds and thousands of
pins per month.

HBase Use Cases

[280]

HBase at Groupon
Groupon is a deal-of-the-day website that features discounted gift certificates
usable at local or national companies. Groupon was launched in November 2008.
At Groupon, there are two requirements:

• Notify users about the deals via an e-mail
• Provide good user experience on the website

When they started off, they used Hadoop MapReduce jobs for e-mail deal delivery
and used MySQL for their online application. Now, they have started relevance and
a personalization system, both on HBase. They use a very wide schema in HBase as
one column family for user history and profile and another for e-mail history.

The layout architecture
Now, let's see their read/write and architecture flow:

The data pipeline collects the data and keeps on writing to HBase, which is used for
offline purposes such as sending e-mails from where the data is replicated to the
HBase cluster, which is there for online relevance suggestions on the website.

Chapter 10

[281]

The following are some of the optimization they performed:

• Presplit tables
• Increased lease timeout
• Increased scanner timeout
• Increased region size to 10 GB
• Keep less number of regions per region servers
• For heavy write jobs, they set the following values:

 ° hbase.hregion.memstore.block.multiplier to 4
 ° hbase.hregion.memstore.flush.size to 134217728
 ° hbase.hstore.blockingstorefiles to 100
 ° hbase.zookeeper.useMulti to false (for stable replication)

They performed all these changes in order to optimize and make HBase suit their
requirement and this was done after evaluating the productivity and performance
of the cluster.

HBase at LongTail Video
LongTail Video company provides JW Player, which is an online video player used
by nearly 2 million websites. They are completely deployed on AWS and as such use
HBase and EMR from Amazon.

Their requirements are:

• Very fast queries across datasets
• There should be a support for date-range queries
• Ability to store a huge amount of aggregated data
• There should be flexibility in dimensions used for rollup tables

HBase fits very well on these requirements. They use full-fledged Python shop so use
HappyBase and have Thrift running on all the nodes of the HBase cluster for reading
and writing.

Some statistics about them are as follows:

• 156 million unique viewers
• 1.04 billion video stream
• 3 TB compressed data per month and 12-15 TB uncompressed data

per month

HBase Use Cases

[282]

The layout architecture
This is a diagrammatical representation of the architecture:

HBase at Aadhaar (UIDAI)
UIDAI is a government organization of India that provides unique identification
to Indian nationals. At UIDAI, all the open source software such as Hadoop, HBase,
and Hive are being used. HBase is used to store data about the residents.

The layout architecture
Let's see the architecture of the project that is available on the Internet:

Chapter 10

[283]

There are some use cases and the architecture flow of the use cases that are being
used in different companies in the industry today. This trend is increasing day by
day with more people coming and including this technology and implementing
it in their project requirement.

Hadoop and HBase and other Big Data components today are providing a complete
infrastructure for a production system with data migration tools, data mapping tools,
and some add-on open source projects.

Likewise, according to our requirements, we can first design the architecture of our
project based on the components and the type of functionalities required, and we
can choose from a wide variety of Hadoop and its subproject components.

Useful links and references
You can always use these links for reference.

The following are the use-cases-related links:

• http://hbasecon.com/archive.html

• https://www.facebook.com/UsingHbase

• http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase

• http://www.slideshare.net/cloudera/case-studies-session-3b

• http://www.slideshare.net/cloudera/long-tailvideo-
hbasecon2013-24035928

• http://www.slideshare.net/cloudera/operations-session-1

These are some other references:

• https://github.com/larsgeorge/hbase-schema-manager/tree/master

• http://wiki.apache.org/hadoop/HelpContents

• http://www.jnbridge.com/jn/blog/tag/hbase/

• http://ianvarley.com/coding/HBaseSchema_HBaseCon2012.pdf

• http://www.slideshare.net/cloudera/5-h-base-schemahbasecon2012

• http://hbase.apache.org/book/schema.casestudies.html

http://hbasecon.com/archive.html
https://www.facebook.com/UsingHbase
http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase
http://www.slideshare.net/cloudera/case-studies-session-3b
http://www.slideshare.net/cloudera/long-tailvideo-hbasecon2013-24035928
http://www.slideshare.net/cloudera/long-tailvideo-hbasecon2013-24035928
http://www.slideshare.net/cloudera/operations-session-1
https://github.com/larsgeorge/hbase-schema-manager/tree/master
http://wiki.apache.org/hadoop/HelpContents
http://www.jnbridge.com/jn/blog/tag/hbase/
http://ianvarley.com/coding/HBaseSchema_HBaseCon2012.pdf
http://www.slideshare.net/cloudera/5-h-base-schemahbasecon2012
http://hbase.apache.org/book/schema.casestudies.html

HBase Use Cases

[284]

The following links will be useful for schema designing:

• http://www.slideshare.net/amansk/hbase-schema-design-big-data-
techcon-boston

• http://0b4af6cdc2f0c5998459-c0245c5c937c5dedcca3f1764ecc9b2f.
r43.cf2.rackcdn.com/9353-login1210_khurana.pdf

• http://www.slideshare.net/amansk/hbase-schema-design-big-data-
techcon-boston

• http://hbase.apache.org/book/schema.casestudies.html

• http://www.slideshare.net/cloudera/5-h-base-schemahbasecon2012

• https://www.youtube.com/watch?v=_HLoH_PgrLk

• http://ianvarley.com/coding/HBaseSchema_HBaseCon2012.pdf

The following are the links to HBase books and references:

• http://hbase.apache.org/book.html

• https://www.youtube.com/results?search_query=hbase

• https://www.youtube.com/results?search_query=hadoop

Summary
In this chapter, we discussed the future aspect of HBase and the different use cases
being implemented in the industry using HBase, its process flow, and architecture.

Today, the need of HBase is growing rapidly and we can get the list of companies
whose projects are powered by HBase at http://wiki.apache.org/hadoop/Hbase/
PoweredBy.

After reading this book, you should be able to move forward and design the use
cases, performing administrative tasks and writing codes for HBase. Furthermore,
the reader can always visit HBase Wiki, the HBase Apache website, and HBase
source site for more updated and recent information.

HBase use has grown a lot but it still has a long way to go.

http://www.slideshare.net/amansk/hbase-schema-design-big-data-techcon-boston
http://www.slideshare.net/amansk/hbase-schema-design-big-data-techcon-boston
http://0b4af6cdc2f0c5998459-c0245c5c937c5dedcca3f1764ecc9b2f.r43.cf2.rackcdn.com/9353-login1210_khurana.pdf
http://0b4af6cdc2f0c5998459-c0245c5c937c5dedcca3f1764ecc9b2f.r43.cf2.rackcdn.com/9353-login1210_khurana.pdf
http://www.slideshare.net/amansk/hbase-schema-design-big-data-techcon-boston
http://www.slideshare.net/amansk/hbase-schema-design-big-data-techcon-boston
http://hbase.apache.org/book/schema.casestudies.html
http://www.slideshare.net/cloudera/5-h-base-schemahbasecon2012
https://www.youtube.com/watch?v=_HLoH_PgrLk
http://ianvarley.com/coding/HBaseSchema_HBaseCon2012.pdf
http://hbase.apache.org/book.html
https://www.youtube.com/results?search_query=hbase
https://www.youtube.com/results?search_query=hadoop
http://wiki.apache.org/hadoop/Hbase/PoweredBy
http://wiki.apache.org/hadoop/Hbase/PoweredBy

Index
Symbols
.irbrc file 217, 218
.rpm package, JDK

URL, for downloading 66

A
access control, HBase

about 191
mapping 192
permission types 192
server-side access control 197
URL 192

Access Control Lists (ACLs) 125
ACL matrix

permissions 194
scope 193

add_peer command 175
administration commands, Hadoop shell

balancer 147, 148
daemonlog 148, 149
datanode 150
dfsadmin 150
jobtracker 154
mradmin 153
namenode 154
secondarynamenode 155
tasktracker 155

alter_async command 170
alter command 169
alter_namespace command 176
alter_status command 169
Amazon Elastic Compute Cloud (EC2) 278
Apache

URL 52

Apache Hadoop
URL 61

Apache HBase
URL 61

Apache Phoenix
about 220
URL 220

applications, HBase 33, 34
aptitude command 72
archive command 156
assign command 173
atime attribute 107

B
backup

performing, Mozilla tool used 215
balancer command

about 147, 173
URL 148

balance_switch command 173
BinaryComparator 244
BinaryPrefixComparator 244
bin directory 76
BitComparator 244
BitComparator.BitwiseOp 242
bloom filters

about 272
URL 272

ByteArrayComparable 244

C
capacity planning

about 105, 106
performing 73, 74

[286]

catalog tables
.META. 28
-ROOT- 28
about 28

CDH4
URL 62

CDH5
URL 62

CDH cluster configuration
recommendations 103, 104

cell 127
cell-level access, with tags 197
CentOS

SSH, installing on 71
class 251
client 28
client APIs 248
client-side security configuration

about 187
for thrift requests 188

close_region command 173
Cloudera

installing 94
URL 52

Cloudera Hadoop
installing 93

Cloudera Hadoop tars, CDH4/CDH5
URL, for downloading 93

code, for administrative tasks 253, 258
column 127
ColumnCountGetFilter 245
column family 127
column-oriented databases

cons 19
logical view 17, 18
pros 18

column-oriented data stores
versus row-oriented data stores 17

ColumnPaginationFilter 245
ColumnPrefixFilter 245
ColumnRangeFilter 245
command line interface (CLI) 93
commands, for namespaces 125, 126
compact command 174
compaction

about 48
major compaction 48

minor compaction 48
URL 184

CompareFilter 245
CompareFilter.CompareOp 243
completebulkload utility 262
components, HBase

catalog tables 28
client 28
HMaster 25, 26
RegionServer 27
ZooKeeper 23, 24

components, HBase storage 122
components, namespace

permission 125
predefined namespaces 125
quota 125
RegionServer group 125
table 125

components, RegionServer
HFile 28
MemStore 28
Region 28
Store 28
Write-Ahead logs 28

component-wise HBase optimization
about 112
Hadoop 112, 113
HBase 115-117
Java 114
memory 114
OS 115

composite keys
designing 140
real-time use case of schema, in

HBase table 141
schema change operations 141-143

conf directory 76
configuration, Apache HBase 86
configuration, Hadoop

about 74-77
URL 80

configuration, HBase
in distributed mode 87
in standalone mode 86, 87

configuration, NTP 72, 73
configuration, SSH 70, 71
configuration, ZooKeeper 91, 92

[287]

constructors, Scan() method 233
coprocessors

about 271
URL 271

coprocessors, types
Coprocessor 271
Endpoint 271
RegionObserver 271

CopyTable tool 213
copyToLocal/copyFromLocal

versus get/put 166
core daemons, Hadoop

DataNode 14
JobTracker 14
NameNode 14
SecondaryNameNode 14
TaskTracker 14

core-site.xml configuration file 80
create_namespace command 176
cyclic replication 210
Cygwin

URL, for downloading 96

D
daemonlog command

about 148, 149
URL 149

data
storing, in HBase 123, 124

data-creation commands, HBase shell
create 171
put 171

data-manipulation commands, HBase shell
alter 169
alter_async 170
alter_status 169
delete 170
deleteall 171
disable 170
disable_all 170
drop 170
drop_all 170
enable 170
enable_all 170
truncate 171

data model Java operations
about 229

Modify 239
Read 229
Write 237

data model operations
about 128
Delete 130
Get 128
Put 129
Scan 129

DataNode 14, 103
datanode command

about 150
URL 150

data operation code 258-260
data-reading commands, HBase shell

get 172
get_counter 173
get_table 173
incr 173
scan 172

data representation, HBase 12
data size

calculating, in HBase 143
data types, HBase 123, 228, 229
deleteall command 171
delete APIs

URL 241
Delete class

methods 240
Delete column operation 130
delete command 170
Delete family operation 130
Delete() method

about 239
constructors 239
example 240, 241

Delete operation 130
delete request 51
DependentColumnFilter 245
describe command 168
describe_namespace command 177
development

environment, setting up for 224
dfsadmin command

about 150
clrQuota parameter 153
finalizeUpgrade parameter 152

[288]

help parameter 153
metasave parameter 152
refreshNodes parameter 152
report parameter 150
restoreFailedstorage parameter 153
safemode parameter 151
setQuota parameter 153
upgradeProgress parameter 152
URL 150, 153

dfs commands
-appendToFile 160
-cat 160
** -chgrp 161
** -chmod 161
** -chown 161
-copyFromLocal 161
-copyToLocal 162
-count 162
-cp 162
-du 162
-dus 162
-expunge 163
-get 163
-getmerge 163
-ls 163
-lsr 163
-mkdir 163
-moveFromLocal 163
-moveToLocal 163
** -mv 164
-put 164
** -rm 164
** -rmr 164
-setrep 165
-stat 165
-tail 165
-test 165
-text 166
-touchz 166

disable_all command 170
disable command 170
disable_peer command 175
distcp command 156
distributed mode

HBase, configuring in 87
distributed mode, HBase

fully distributed 86

pseudo-distributed 86
DNS/host file 73
DNS server

URL 70
Domain Name Server 56, 57
drop_all command 170
drop command 170
drop_namespace command 176

E
Eclipse

URL 224
URL, for setup 224

enable_all command 170
enable command 170
enable_peer command 175
Endpoint 271
environment

setting up, for development 224
etc directory 76
etc/hadoop, default files

about 78
core-default.xml 78
hdfs-default.xml 78
mapred-default.xml 78
yarn-default.xml 78

etc/hadoop, site-specific files
about 78
core-site.xml 78
hdfs-site.xml 78
mapred-site.xml 78
yarn-site.xml 78

exception 251
exist command 168
Export utility

using 212
external tables

versus internal tables 183

F
Facebook 276
Facebook message

architecture 277, 278
FamilyFilter 245
features, HBase

automatic failover 9

[289]

automatic sharding 10
column oriented 11
distributed 10
exporting metrics, supporting via Hadoop

metrics subsystem 10
Hadoop/HDFS integration 10
HBase shell support 11
Java API for client access 10
linear scalability (scale out) 11
load balancing 9
MapReduce 10
multidimensional 11
random big data access 10
real-time 10
snapshot support 11
sorted map database 11
sparse 11
thrift and RESTtful web service 10

fetchdt command
--cancel option 157
--print option 157
--renewer <name> option 157
--renew option 157
--webservice <url> option 157
about 157
URL 157

files, Hadoop
configuration files, for overriding default

values 118
configuration files, for specifying

runtime parameters 118
default files 118

files, HBase
about 119
default files 119
overridden files 119
runtime files 119

file system-related commands,
Hadoop shell commands

about 160
dfs 160

Filter 245
FilterList 245
FilterList.Operator 244
Filter.ReturnCode 243
filters

usage, in read methods 247, 248

filter types
BinaryComparator 244
BinaryPrefixComparator 244
BitComparator 244
ByteArrayComparable 244
ColumnCountGetFilter 245
ColumnPaginationFilter 245
ColumnPrefixFilter 245
ColumnRangeFilter 245
CompareFilter 245
DependentColumnFilter 245
FamilyFilter 245
Filter 245
FilterList 245
FirstKeyOnlyFilter 245
FirstKeyValueMatchingQualifiersFilter 245
FuzzyRowFilter 246
InclusiveStopFilter 246
KeyOnlyFilter 246
MultipleColumnPrefixFilter 246
NullComparator 246
PageFilter 246
ParseConstants 246
ParseFilter 246
PrefixFilter 246
QualifierFilter 246
RandomRowFilter 246
RegexStringComparator 246
RowFilter 246
SingleColumnValueExcludeFilter 246
SingleColumnValueFilter 246
SkipFilter 246
SubstringComparator 246
TimestampsFilter 247
ValueFilter 247
WhileMatchFilter 247

FirstKeyOnlyFilter 245
FirstKeyValueMatchingQualifiersFilter 245
flush command 174
forward DNS resolution, HBase 53
fsck command

-blocks parameter 156
-delete parameter 156
-files parameter 156
-list-corruptfileblocks parameter 156
-locations parameter 156
-move parameter 156

[290]

-openforwrite parameter 156
-racks parameter 156
about 156
path parameter 156

fs command 156
FSHLog tool 181
fully distributed Hadoop cluster,

with virtual machine browsing
URLs 98

FuzzyRowFilter 246

G
general commands, HBase shell

count 168
describe 168
exist 168
is_disabled 169
is_enabled 169
list 168
show_filters 169
status 167
version 168
whoami 168

getCacheBlocks() method 230, 234
Get class

examples 231
miscellaneous data methods 233
options, for using 230
supported methods 230

get command 172
get_counter command 173
getFamilies() method 234
getFamilyMap() method 234
getFilter() method 230, 234
getLockId() method 230
getMaxVersions() method 234
Get() method

constructors 229
Get operation 128
get/put

versus copyToLocal/copyFromLocal 166
getRowLock() method 230
getRow() method 230
getStartRow() method 234
getStopRow() method 234
get_table command 173
getTimeRange() method 230, 234

GitHub, XML-based schema
URL 143

Google BigTable 7
Google File System (GFS) 20
grant command 176
Groupon 280

H
Hadoop

about 13
configuring 74-77
HBase, comparing with 15
installing 74-77
installing, on Windows 96-99
starting up 84, 85
URL, for APIs 270

Hadoop Azure service
URL 216

Hadoop Common 13
Hadoop-default files 118
hadoop distcp command

URL 206
Hadoop Distributed File

System (HDFS) 7, 160
Hadoop documentation

URL 167
hadoop-env.sh file 83
Hadoop/HBase cluster

setup types 101, 102
Hadoop-HBase version compatibility

table 33
Hadoop/HBase, with Puppet

value-addition links 221
Hadoop MapReduce 13
Hadoop MapReduce framework

URL 262
Hadoop, on OS X

URL 98
Hadoop optimization

about 106
tips 106

Hadoop packages
installing 95, 96

Hadoop parameter
dfs.block.size 108
dfs.datanode.handler.count 108
dfs.namenode.handler.count 108

[291]

dfs.replication 108
mapred.jobtracker.handler.count 108
optimizing 108

Hadoop shell
URL, for implementation 146

Hadoop shell commands
about 146
administration commands 147-155
file system-related commands 160-165
parameters 146, 147
types 146, 147
user commands 156-160

Hadoop tools
cells, counting 181
FSHLog tool 181
HFile tool 180
offline compaction tool 181
rows, counting 181

Hadoop v1.0 22
Hadoop v2

URL, for downloading stable version 74
Hadoop v2.0 22
Hadoop YARN 13
Hannibal

about 32
URL 32

hard limit 60
hardware components, CDH

cluster configuration
CPU 103
disk 104
network 104
power 104
RAM 104

HareDB HBase Client
about 31
URL 31

hasFamilies() method 230, 234
HBase

about 7
applications 33
avoiding 30
backup techniques 205
capacity planning 52
communication between client and

server, with RPC 44, 45
comparing, with Hadoop 15

components 23
configuring 85
configuring, in distributed mode 87
configuring, in standalone mode 86, 87
connecting, with Hive 182
cons 35
considerations, for using 30
current situation in industry 275
data representation 12
data size, calculating in 143, 144
data, storing in 123, 124
data types 123
features 7-11
forward DNS resolution 53
future, against relational databases 276
Hadoop tool, using for 180
history 20
installing 93
internal storage architecture 19
JARs, using for 180
MapReduce jobs, writing 260
OS-level changes 58-60
OS, tuning up for 58-60
prerequisites 52
pros 34
read-and-write operation 45
reading cycle 51
references 38, 283, 284
restore techniques 205
reverse DNS resolution 53, 54
scalability 40
selecting, for Facebook 276, 277
services 126
SQL, enabling in 220
URL, for binary 86
URL, for features 23
URL, for list of updated APIs 253
URLs 8, 21
use-cases-related links 283
writing cycle 51

HBase administration tools
about 177
hbck command 177
health check script 179

HBase APIs
URL 241

[292]

HBase at Aadhaar (UIDAI)
about 282
layout architecture 282

HBase at Facebook
about 276
data storage 277
facts and figures 278

HBase at Groupon
about 280
layout architecture 280, 281

HBase at LongTail Video
about 281
layout architecture 282

HBase at Pinterest
about 278
layout architecture 279

HBase community
contributing to 220, 221

HBase components
about 38
HFile 38
region 39

HBase-default files 119
HBase distributions

references 52
hbase-env.sh 87, 89
HBase errors

troubleshooting 199, 200
hbaseexplorer

about 31
URL 31

HBase filters 241
HBase health

monitoring 201
HBase health check script

about 179
URL 179

HBase housekeeping
about 47
compaction 48
region assignment 50
region merge 50
RegionServer failovers 51
region split 49

HBase, in Hadoop ecosystem 11
HBase node management

about 184

commissioning 184
decommissioning 185

HBase, on top of Hadoop
layout information 8, 9

HBase, on Windows 215
HBase overridden files 119
HBase project

URL 220
HBase region management

about 183
compaction 183
merge command 184

HBase replication method
about 210
prerequisites, for setting up cluster

replication 210, 211
HBaseRPC class 44
HBase runtime files 119
HBase shell

HBase timestamp, obtaining from 219
HBase shell commands

about 167
data-creation commands 171
data-manipulation commands 169-171
data-reading commands 172, 173
general commands 167, 168
miscellaneous admin commands 173-175
namespace-related commands 176
security commands 176

HBase shell scripts
writing 180

hbase-site.xml 87
HBase snapshot

about 208
offline snapshots 208
online snapshots 208

HBase storage
components 122

HBase timestamp
obtaining, from HBase shell 219

HBase users
Adobe 29
Ancestry.com 29
Apache 29
eBay 29
Facebook 29
Infolinks 29

[293]

Mozilla 29
StumbleUpon 29
Trend Micro 29
Twitter 29
UIDAI 29
Yahoo! 29

HBase, versus relational databases
architectural differences 9
functional differences 15, 16

HBase web UI
about 201
Master 201
RegionServer 201

hbck command
about 177
read-only mode 177
read-write-repair mode 177

HDFS operations
coding for 267-270

hdfs-site.xml file 81
HFile tool 28, 38, 180
High Availability (HA) 25
Hive

HBase, connecting with 182
URL 182

Hive Query Language (HQL) 145, 182
hlog_roll command 175
HLogs 40
HMaster

about 25, 102
functionalities 26
master node goes down scenario 26

Hortonworks
URL 52

host configurations considerations
about 67
command based 67
DNS based 70
file based 68, 69
host file based 67

HRegionInfo
URL 224

hrider
about 31
URL 31

HTable API
about 214

URL 214

I
Impala

about 32
URL 32

ImportTsv
about 213
URL 213

import utility
about 262
using 212, 213

InclusiveStopFilter 246
incr command 173
installation, Cloudera 94
installation, Cloudera Hadoop 93
installation, Hadoop

about 74-77
on Windows 96-98

installation, Hadoop packages 95, 96
installation, HBase 93
installation, Java

on Ubuntu 63-67
installation, MapReduce packages 95, 96
installation, NTP 72
installation, SSH

about 70
on CentOS 71
on Red Hat 71
on Ubuntu 71

installation, ZooKeeper 91, 92
IntelliJ

URL 224
interface 251
internal storage architecture, HBase 19
internal tables

versus external tables 183
is_disabled command 169
is_enabled command 169

J
jar command 158
JARs

using, for HBase 180
Java

about 55

[294]

downloading, on Ubuntu 61, 62
installing, on Ubuntu 63-67
URL 61
URL, for downloading latest version 63
URL, for requisites 55

Java 7, and garbage collection
URL 114

Java client
building, for code 224-228

Java code
packages 252, 253

Java GC optimization
steps 107

Java Management Extensions (JMX) 10
JCreator

URL 224
JDK 8

URL, for downloading 63
Job command

options 158, 159
JobTracker 14, 103
jobtracker command

-dumpConfiguration option 154
about 154
URL 154

K
kadmin

URL 199
Kerberos

URL 199
Kerberos Key Distribution Centre (Kerberos

KDC) 186
key 224
KeyOnlyFilter 246

L
least recently used (LRU) 47
Lempel-Ziv-Oberhumer (LZO) 278
lib directory 76
Lily

about 272
features 273
URL 273

Lily project
about 272
URL 272

Linux OS optimization
techniques 107

Linux tools
about 202
free -m 202
jps 202
jstack 202
ps -ef|grep Java 202
tail/head 202
top 202

list command 168
list_namespace command 176
list_namespace_tables command 177
list_peers command 175
log-structured merge-tree (LSM-tree) 10
LongTail Video 281
LZF algorithm 144
LZO algorithm 144

M
major_compact command 174
MapR

URL 52
mapred-site.xml file 83
MapReduce

code example, for HBase 262-265
MapReduce classes, provided by HBase

CellCounter 260
CopyTable 260
Driver 260
Export 260
GroupingTableMapper 260
HFileOutputFormat2 261
HLogInputFormat 261
HRegionPartitioner<key, value> 261
IdentityTableMapper 261
IdentityTableReducer 261
Import 260
ImportTsv 260
KeyValueSortReducer 261
LoadIncrementalHFiles 261
MultiTableInputFormat 261
MultiTableInputFormatBase 261

[295]

MultiTableOutputFormat 261
PutCombiner<K> 261
PutSortReducer 261
RowCounter 261
TableInputFormat 261
TableInputFormatBase 261
TableMapper<keyout, valueout> 261
TableOutputFormat<KEY> 261
TableRecordReader 261
TableReducer<keyin, valuein, keyout> 261
TableSnapshotInputFormat 262
TableSplit 262
TextSortReducer 262
TsvImporterMapper 262
TsvImporterTextMapper 262
WALPlayer 262

MapReduce, in HBase
URL 265

MapReduce optimization
Map and Reduce limits, in configuration

files 110
Map and Reduce tasks 111
rack awareness, Hadoop 109
techniques 108

MapReduce packages
installing 95, 96

MapReduce utilities
URL 262

master-master replication 210
master-slave replication 210
mean time to recovery (MTTR) 279
MemStore 28, 46
methods, Delete class

deleteColumn(byte[] family, byte[]
qualifier) 240

deleteColumn(byte[]family, byte[]
qualifier, long timestamp) 240

deleteColumns(byte[] family, byte[]
qualifier) 240

deleteColumns(byte[]family, byte[]
qualifier, long timestamp) 240

deleteFamily(byte[] family) 240
deleteFamily(byte[] family,

long timestamp) 240
deleteFamilyVersion(byte[] family, long

timestamp) 240
setTimestamp(long timestamp) 240

miscellaneous admin commands, HBase
shell

add_peer 175
assign 173
balancer 173
balance_switch 173
close_region 173
compact 174
disable_peer 175
enable_peer 175
flush 174
hlog_roll 175
list_peers 175
major_compact 174
move 174
remove_peer 175
split 174
start_replication 175
stop_replication 175
unassign 174
zk_dump 174

modes, Hadoop
fully distributed 79
pseudo-distributed 79
standalone 79

modes, HBase
distributed 86
standalone 85

Modify operations
about 239
Delete() 239

move command 174
Mozilla tool

references 215
used, for performing backup 215

mradmin command
-help [cmd] option 154
-refreshNodes option 154
-refreshqueueacls parameter 153
-refreshQueues option 153
-refreshSuperUserGroupsConfiguration

option 153
-refreshUserToGroupsMappings

option 153
about 153
URL 154

MultipleColumnPrefixFilter 246

[296]

N
NameNode 14, 102
namenode command

-finalize parameter 154
-format parameter 154
-importCheckpoint parameter 155
-rollback parameter 154
-upgrade parameter 154
about 154
URL 155

namespace
about 125
commands 125, 126
components 125

namespace-related commands, HBase shell
alter_namespace 176
create_namespace 176
describe_namespace 177
drop_namespace 176
list_namespace 176
list_namespace_tables 177

NetBeans
URL 224

noatime attribute 107
node communication, SSH

Domain Name Server 56, 57
Network Time Protocol used 58

NTP
about 73
configuring 72, 73
installing 72, 73
using 58

NullComparator 246
number of version, deciding

about 132
lower bound of versions 132
upper bound of versions 132, 133

numFamilies() method 230, 234

O
odd number, ZooKeeper 25
offline backup / full-shutdown backup

about 206
backup 206, 207
restore 207

offline compaction tool 181

offline method
used, for backing up data 209
used, for taking snapshot 209

offline snapshots 208
online backup process

about 208
HBase snapshot 208

online snapshots 208
Online Transaction Processing (OLTP) 16
open source HBase tools

Hannibal 32
HareDB HBase Client 31
hbaseexplorer 31
hrider 31
Impala 32
Performance Monitoring &

Alerting (SPM) 32
Phoenix 32
Toad for Cloud Databases 31

OpenTSDB
URL 203

operator type, filters
BitComparator.BitwiseOp 242
CompareFilter.CompareOp 243
FilterList.Operator 244
Filter.ReturnCode 243

options, for repair region consistencies
-fixAssignments 178
-fixMeta 178

P
packages, Java code

org.apache.hadoop.hbase 252
org.apache.hadoop.hbase.backup 252
org.apache.hadoop.hbase.client 252
org.apache.hadoop.hbase.codec 252
org.apache.hadoop.hbase.coprocessor 252
org.apache.hadoop.hbase.exceptions 252
org.apache.hadoop.hbase.filter 252
org.apache.hadoop.hbase.http 252
org.apache.hadoop.hbase.io 252
org.apache.hadoop.hbase.ipc 252
org.apache.hadoop.hbase.mapred 252
org.apache.hadoop.hbase.mapreduce 252
org.apache.hadoop.hbase.master 252
org.apache.hadoop.hbase.monitoring 252
org.apache.hadoop.hbase.regionserver 252

[297]

org.apache.hadoop.hbase.rest 252
org.apache.hadoop.hbase.security 252
org.apache.hadoop.hbase.snapshot 252
org.apache.hadoop.hbase.thrift 252
org.apache.hadoop.hbase.tool 253
org.apache.hadoop.hbase.types 253
org.apache.hadoop.hbase.util 253
org.apache.hadoop.hbase.zookeeper 253

PageFilter 246
ParseConstants 246
ParseFilter 246
Performance Monitoring &

Alerting (SPM)
about 32
URL 32

permission 125
permission aspect, HBase 195, 196
Phoenix

about 32
URL 32

Pinterest 278
pipes command

options 159
predefined namespaces

about 125
default 125
system 125

PrefixFilter 246
put APIs

URL 239
Put class

methods 238
put command 171
Put() method

about 237
constructors 238

put operation
example 238

Q
QualifierFilter 246
quota 125

R
RandomRowFilter 246
read-and-write operation 45

reading cycle, HBase 51
Read operations

about 229
Get() 229
Scan() 233

real-world project examples' use cases
about 276
HBase at Aadhaar (UIDAI) 282
HBase at Facebook 276
HBase at Groupon 280
HBase at LongTail Video 281
HBase at Pinterest 278

recommendations, CDH cluster
configuration 103

Red Hat
SSH, installing on 71

RegexStringComparator 246
region 28, 39
region assignment, HBase housekeeping 50
region merge, HBase housekeeping 50
RegionObserver 271
RegionServer

about 27
architecture 27
components 28
tasks 27

RegionServer failovers, HBase
housekeeping 51

RegionServer group 125
regionservers file 87-90
RegionServers 103
region split, HBase housekeeping 49
relational databases, versus HBase

architectural differences 9
functional differences 15, 16

Remote Procedure Call (RPC) 43, 191
remove_peer command 175
repair options

-fixHdfsOrphans 178
-fixHdfsOverlaps 178
-maxMerge<n> 178
-maxOverlapsToSideline<n> 179
-repair 178
-sidelineBigOverlaps 179

replication
references 212

[298]

replication, types
cyclic 210
master-master 210
master-slave 210

REST service interfaces
about 265, 266
URL 266

reverse DNS resolution, HBase
about 53
Java 55

revoke command 176
rowcounter utility 262
RowFilter 246
row key

about 127
considerations, tips 140

row-oriented databases
logical view 17

row-oriented data stores
versus column-oriented data stores 17

RPM packages, CDH4 version of Hadoop
URLs, for downloading 93

RPM packages, CDH4 version of HBase
URLs, for downloading 93

RPM packages, CDH4 version of ZooKeeper
URLs, for downloading 94

S
sbin directory 76
scalability, HBase

scale in 41
scale out 42, 43

Scan class
examples 235, 236

scan command 172
Scan() method

about 233
constructors 233

scanner optimization
URL 237

Scan operation 129
scan optimization methods

URL 233
scans

customizing 234
scenario-based schema design

considerations 135-137

schema change operations 141-143
schema designing

about 133
considerations 134, 135
links 284

scripting, HBase
.irbrc file 217, 218
about 216, 217
debugging option shell, enabling 220
debug level, enabling in HBase shell 220
HBase timestamp, obtaining from

HBase shell 219
SQL, enabling in HBase 220

scripts
URL 220

SecondaryNameNode 14
secondarynamenode command

about 155
checkpoint [-force] parameter 155
geteditsize parameter 155
URL 155

secure access
about 186
Hadoop requirements 186

security
ZooKeeper, configuring for 198, 199

security commands, HBase shell
grant 176
revoke 176
user_permission 176

security implementations
about 185
access control 191
client-side security configuration 187
Kerberos KDC 186
secure access 186
server-side security configuration 188
simple security 188
tag security feature 190
ZooKeeper, configuring for

security 198, 199
security-related resources

URL 191
server-side security configuration 188
services, HBase

cell 127
column 127

[299]

column family 127
row key 127
timestamp 128
version 127

setCacheBlocks() method 230, 234
setFamilyMap() method 234
setFilter() method 230, 234
setMaxVersions() method 234
setStartRow() method 234
setStopRow() method 234
setTimeRange() method 234
setup types, Hadoop/HBase cluster

large 102
medium 102
small 102
standalone 101

Short Wide design pattern
about 137
benefits 139

show_filters command 169
simple security

about 188
client-side configuration 190
server-side configuration 189

SingleColumnValueExcludeFilter 246
SingleColumnValueFilter 246
SkipFilter 246
slaves file 84
Snappy algorithm 144
snapshot

URL, for blog 208
soft limit 60
Solid State Drives (SSDs) 104
split command 174
SQL

enabling, in HBase 220
SSH

about 55, 73
configuring 70, 71
installing 70
installing, on CentOS 71
installing, on Red Hat 71
installing, on Ubuntu 71

standalone mode
HBase, configuring in 86, 87

start_replication command 175
status command 167

stop_replication command 175
Store 28
submodules, Hadoop

Hadoop Common 13
Hadoop distributed file system 13
Hadoop MapReduce 13
Hadoop YARN 13

SubstringComparator 246
supported methods, Get class

getCacheBlocks() 230
getFilter() 230
getLockId() 230
getRow() 230
getRowLock() 230
getTimeRange() 230
hasFamilies() 230
numFamilies() 230
setCacheBlocks() 230
setFilter() 230

supported methods, Scan class
getCacheBlocks() 234
getFamilies() 234
getFamilyMap() 234
getFilter() 234
getMaxVersions() 234
getStartRow() 234
getStopRow() 234
getTimeRange() 234
hasFamilies() 234
numFamilies() 234
setCacheBlocks() 234
setFamilyMap() 234
setFilter() 234
setMaxVersions() 234
setStartRow() 234
setStopRow() 234
setTimeRange() 234

syntax options, CopyTable tool
all.cells 214
endtime 214
families 214
new.name 214
peer.adr 214
rs.class 214
rs.impl 214
startrow 214

[300]

starttime 214
stoprow 214
versions 214

T
table 125
Tab-separated Value (TSV) 213, 260
tag security feature 190
Tall-Thin design pattern

about 137-139
benefits 139

TaskTracker 14, 103
tasktracker command

about 155
URL 155

Thrift framework 266
Thrift services interface

about 266
URL 267

timestamp 128
TimeStamp() method 230
TimestampsFilter 247
Time To Live (TTL) 132
Toad for Cloud Databases

about 31
URL 31

truncate command 171

U
Ubuntu

Java, downloading on 61, 62
Java, installing on 63-67
SSH, installing on 71

UIDAI 282
unassign command 174
user commands, Hadoop shell

archive 156
distcp 156
fetchdt 157
fs 156
fsck 156, 157
jar 158
Job 158
pipes 159
version 160

user_permission command 176

V
value 224
ValueFilter 247
verifyrep utility 262
version 127
version command 160, 168
version HBase

scenario 130
versioning

about 130
need for 131

versions, Cloudera
CDH4 62
CDH5 62

W
WhileMatchFilter 247
whoami command 168
Windows

Hadoop, installing on 96-99
Write-Ahead Logs (WAL) 9, 28, 39, 46
Write operations

about 237
Put() 237

writing cycle, HBase 51

Y
yarn-env.sh file 84
yarn-site.xml file 82
year-by-year evolution, HBase

features 21

Z
zk_dump command 174
ZLIB algorithm 144
znode 25
ZooKeeper

about 23, 24
configuring 91, 92
configuring, for security 198, 199
installing 91, 92
odd number 25
optimizing 117

ZooKeeper command line 201

Thank you for buying
Learning HBase

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

HBase Administration Cookbook
ISBN: 978-1-84951-714-0 Paperback: 332 pages

Master HBase configuration and administration for
optimum database performance

1. Move large amounts of data into HBase and
learn how to manage it efficiently.

2. Set up HBase on the cloud, get it ready
for production, and run it smoothly with
high performance.

3. Maximize the ability of HBase with the Hadoop
ecosystem including HDFS, MapReduce,
ZooKeeper, and Hive.

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-78216-516-3 Paperback: 368 pages

Over 60 recipes showing you how to design,
configure, manage, monitor, and tune a
Hadoop cluster

1. Hands-on recipes to configure a Hadoop cluster
from bare metal hardware nodes.

2. Practical and in-depth explanation of cluster
management commands.

3. Easy-to-understand recipes for securing
and monitoring a Hadoop cluster, and
design considerations.

4. Recipes showing you how to tune the
performance of a Hadoop cluster.

Please check www.PacktPub.com for information on our titles

Hadoop Cluster Deployment
ISBN: 978-1-78328-171-8 Paperback: 126 pages

Construct a modern Hadoop data platform effortlessly
and gain insights into how to manage clusters
efficiently

1. Choose the hardware and Hadoop distribution
that best suits your needs.

2. Get more value out of your Hadoop cluster
with Hive, Impala, and Sqoop.

3. Learn useful tips for performance optimization
and security.

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

5. Encode and enrich datasets into R.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the HBase Ecosystem
	HBase layout on top of Hadoop
	Comparing architectural differences between RDBMs and HBase
	HBase features
	HBase in the Hadoop ecosystem
	Data representation in HBase
	Hadoop
	Core daemons of Hadoop
	Comparing HBase with Hadoop

	Comparing functional differences between RDBMs and HBase
	Logical view of row-oriented databases
	Logical view of column-oriented databases
	Pros and cons of column-oriented databases

	About the internal storage architecture
of HBase
	Getting started with HBase
	When it started
	HBase components and functionalities
	ZooKeeper
	Why an odd number of ZooKeepers?
	HMaster
	RegionServer
	Client
	Catalog tables

	Who is using HBase and why?
	When should we think of using HBase?
	When not to use HBase
	Understanding some open source
HBase tools
	The Hadoop-HBase version compatibility table

	Applications of HBase
	HBase pros and cons
	Summary

	Chapter 2: Let's Begin with HBase
	Understanding HBase components
in detail
	HFile
	Region
	Scalability – understanding the scale up and scale out processes
	Scale in
	Scale out

	Reading and writing cycle
	Write-Ahead Logs
	MemStore

	HBase housekeeping
	Compaction
	Minor compaction
	Major compaction

	Region split
	Region assignment
	Region merge
	RegionServer failovers

	The HBase delete request
	The reading and writing cycle

	List of available HBase distributions
	Prerequisites and capacity planning for HBase
	The forward DNS resolution
	The reverse DNS resolution
	Java

	SSH
	Domain Name Server
	Using Network Time Protocol to keep your node
on time
	OS-level changes and tuning up OS for HBase

	Summary

	Chapter 3: Let's Start Building It
	Downloading Java on Ubuntu
	Considering host configurations
	Host file based
	Command based
	File based
	DNS based

	Installing and configuring SSH
	Installing SSH on Ubuntu/Red Hat/CentOS
	Configuring SSH

	Installing and configuring NTP
	Performing capacity planning
	Installing and configuring Hadoop
	core-site.xml
	hdfs-site.xml
	yarn-site.xml
	mapred-site.xml
	hadoop-env.sh
	yarn-env.sh
	Slaves file

	Hadoop start up steps
	Configuring Apache HBase
	Configuring HBase in the standalone mode
	Configuring HBase in the distributed mode
	hbase-site.xml
	HBase-env.sh
	regionservers

	Installing and configuring ZooKeeper
	Installing Cloudera Hadoop and HBase
	Downloading the required RPM packages
	Installing Cloudera in an easier way

	Installing the Hadoop and MapReduce packages
	Installing Hadoop on Windows
	Summary

	Chapter 4: Optimizing the HBase/Hadoop Cluster
	Setup types for Hadoop and
HBase clusters
	Recommendations for CDH cluster configuration
	Capacity planning
	Hadoop optimization
	General optimization tips
	Optimizing Java GC
	Optimizing Linux OS
	Optimizing the Hadoop parameter
	Optimizing MapReduce
	Rack awareness in Hadoop
	Number of Map and Reduce limits in configuration files

	Optimizing HBase
	Hadoop
	Memory
	Java
	OS
	HBase

	Optimizing ZooKeeper
	Important files in Hadoop
	Important files in HBase
	Summary

	Chapter 5: The Storage, Structure Layout, and Data Model of HBase
	Data types in HBase
	Storing data in HBase – logical view versus actual physical view
	Namespace
	Commands available for namespaces

	Services of HBase
	Row key
	Column family
	Column
	Cell
	Version
	Timestamp

	Data model operations
	Get
	Put
	Scan
	Delete

	Versioning and why
	Deciding the number of the version
	Lower bound of versions
	Upper bound of versions

	Schema designing
	Types of table designs
	Benefits of Short Wide and Tall-Thin
design patterns
	Composite key designing
	Real-time use case of schema in an HBase table
	Schema change operations

	Calculating the data size stored in HBase
	Summary

	Chapter 6: HBase Cluster Maintenance and Troubleshooting
	Hadoop shell commands
	Types of Hadoop shell commands
	Administration commands
	User commands
	File system-related commands

	HBase shell commands
	HBase administration tools
	hbck – HBase check
	HBase health check script

	Writing HBase shell scripts
	Using the Hadoop tool or JARs for HBase
	Connecting HBase with Hive
	HBase region management
	Compaction
	Merge

	HBase node management
	Commissioning
	Decommissioning

	Implementing security
	Secure access
	Requirement

	Kerberos KDC
	Client-side security configuration
	Client-side security configuration for thrift requests

	Server-side security configuration
	Simple security
	Server-side configuration
	Client-side configuration

	The tag security feature
	Access control in HBase
	Server-side access control

	Cell-level access using tags
	Configuring ZooKeeper for security

	Troubleshooting the most frequent HBase errors and their explanations
	What might fail in cluster
	Monitoring HBase health
	HBase web UI
	ZooKeeper command line
	Linux tools

	Summary

	Chapter 7: Scripting in HBase
	HBase backup and restore techniques
	Offline backup / full-shutdown backup
	Backup
	Restore

	Online backup
	The HBase snapshot
	The HBase replication method
	Miscellaneous utilities
	CopyTable
	HTable API
	Backup using a Mozilla tool

	HBase on Windows
	Scripting in HBase
	The .irbrc file
	Getting the HBase timestamp from
HBase shell
	Enabling debugging shell
	Enabling the debug level in HBase shell
	Enabling SQL in HBase

	Contributing to HBase
	Summary

	Chapter 8: Coding HBase in Java
	Setting up the environment for development
	Building a Java client to code in HBase

	Data types
	Data model Java operations
	Read
	Get()
	Scan()

	Write
	Put()

	Modify
	Delete()

	HBase filters
	Types of filters

	Client APIs
	Summary

	Chapter 9: Advance Coding in Java for HBase
	Interfaces, classes, and exceptions
	Code related to administrative tasks
	Data operation code
	MapReduce and HBase
	RESTful services and Thrift services interface
	REST service interfaces
	Thrift

	Coding for HDFS operations
	Some advance topics in brief
	Coprocessors
	Types of coprocessors

	Bloom filters
	The Lily project
	Features

	Summary

	Chapter 10: HBase Use Cases
	HBase in industry today
	The future of HBase against relational databases
	Some real-world project examples'
use cases
	HBase at Facebook
	Choosing HBase
	Storing in HBase
	The architecture of a Facebook message
	Facts and figures

	HBase at Pinterest
	The layout architecture

	HBase at Groupon
	The layout architecture

	HBase at LongTail Video
	The layout architecture

	HBase at Aadhaar (UIDAI)
	The layout architecture

	Useful links and references
	Summary

	Index

