
www.allitebooks.com

http://www.allitebooks.org

Learning Karaf Cellar

Build and implement a complete clustering solution
for the Apache Karaf OSGi container

Jean-Baptiste Onofré

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Karaf Cellar

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1150714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-460-2

www.packtpub.com

Cover image by Abhinav Pandey (abhinavphotography30@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jean-Baptiste Onofré

Reviewers
Ladislav Gažo

Sachin Handiekar

Achim Nierbeck

Commissioning Editor
Usha Iyer

Acquisition Editor
Meeta Rajani

Content Development Editor
Susmita Panda Sabat

Technical Editors
Mrunal Chavan

Ankita Jha

Pankaj Kadam

Copy Editors
Alisha Aranha

Roshni Banerjee

Dipti Kapadia

Aditya Nair

Karuna Narayanan

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jean-Baptiste Onofré is a member of the Apache Software Foundation, and he
has been involved in Apache projects for the past 10 years. He is the PMC chair of
Apache Karaf and its subprojects, including Cellar, Cave, and EIK.

He is also a PMC member of Apache ACE, Apache ServiceMix, and Apache Syncope,
and he is a committer for Apache ActiveMQ, Apache Archiva, Apache Aries, Apache
Camel, and Apache jClouds.

He is currently working for Talend (http://www.talend.com) as a software architect
and is a member of the Talend Apache team.

He writes articles on Java technologies for Linux Magazine France and has worked as
a reviewer for Apache ServiceMix How-To, Henryk Konsek, and Learning Apache Karaf,
Johan Edstrom, Jamie Goodyear, and Heath Kesler. Both of these books are published by
Packt Publishing. He is currently reviewing Apache Karaf Cookbook, Johan Edstrom,
Jamie Goodyear, Heath Kesler, and Achim Nierbeck, Packt Publishing.

He has also given speeches about Apache projects (Karaf, Camel, and so on)
at different conferences, especially at ApacheCon NA, ApacheCon Europe,
and CamelOne.

I would like to thank the whole Karaf team, especially Guillaume
Nodet, Achim Nierbeck, Jamie Goodyear, Ioannis Canellos, and all
others. We are a great team, and you all do a great job.

I would also like to thank my wife, Lucile, who accepted that I spent
some nights on this book.

www.allitebooks.com

http://www.talend.com
http://www.allitebooks.org

About the Reviewers

Ladislav Gažo is a computer enthusiast who has been digging into the software
world for a long time. He has professional experience of more than 12 years in
development and software engineering. While starting experiments with computer
graphics and network administration, he realized that the true path is towards
the combination of software engineering and business. He has been developing,
analyzing, and architecting Java-based, desktop-based, and finally modern
web-based solutions for several years. The application of the Agile approach and
advanced technology is both a hobby and a day-to-day job.

Rich experience with various technologies led him to co-found the company Seges
Ltd., which is a software development company in Slovakia. He actively participates
in start-up events and helps to build development communities such as Google
Developer Group and Java User Group in Slovakia. With his colleagues, he has
designed and released an interactive content management solution called Synapso,
which utilizes contemporary technologies with user experience in mind.

I would not be able to materialize my knowledge as part of the
review process of this book without the support of all my colleagues,
friends, and family. Creating a good long-term environment helped
me to gain the experience that I can pass on further.

www.allitebooks.com

http://www.allitebooks.org

Sachin Handiekar is a Senior Software Developer with over five years of
experience in Java EE development. He is a graduate in Computer Science from the
University of Greenwich, London, and he currently works for a global consulting
company that develops enterprise applications using various open source
technologies such as Apache Camel, ServiceMix, ActiveMQ, and ZooKeeper.

He has a lot of interest in open source projects and has contributed code to Apache
Camel as well as developed plugins for Spring Social, which can be found on GitHub
at https://github.com/sachin-handiekar.

He also actively writes about enterprise application development on his blog
(http://sachinhandiekar.com).

Achim Nierbeck has more than 14 years of experience in designing and
implementing Java enterprise applications. He is a committer and PMC at Apache
Karaf and is the project lead of the OPS4J Pax Web projects. Since 2010, he has
enjoyed working on OSGi enterprise applications. He is one of the authors of
Apache Karaf Cookbook by Packt Publishing (yet to be published).

While not working on projects or open source development, he enjoys spending time
with his family and friends. He can be reached at notizblog.nierbeck.de.

www.allitebooks.com

https://github.com/sachin-handiekar
http://sachinhandiekar.com
notizblog.nierbeck.de
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Apache Karaf – Provisioning and Clusters 7

What is OSGi? 8
The OSGi framework 8
The OSGi bundle 9
Dependency between bundles 9

The OSGi container 11
Provisioning in Apache Karaf 13
OBR 15
Apache Karaf Features 15

Multiple Apache Karaf containers 17
Provisioning clusters 19

Summary 20
Chapter 2: Apache Karaf Cellar 21

Cluster topologies 21
Apache Karaf Cellar architecture 24
Apache Karaf Cellar installation and first commands 26
Cluster resources 27

Bundles 27
Karaf features 30
Configuration 33
Optional resources 36
The Karaf WebConsole plugin 37

Summary 38
Chapter 3: Hazelcast 39

What is Hazelcast? 39
Distributed cluster resource states 40

Distributed queues and topics 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The Cellar distributed map 42
Replicas/Backup 42

Persistence 43
Networks 44

Multiple clusters 44
TCP/IP 45
Interfaces 45
SSL 46
Encryption 47
IPv6 support 48
Restricting outbound ports 49

Summary 50
Chapter 4: Cluster Groups 51

Managing cluster groups 51
Targeting provisioning 53

Features 54
Bundles 55
Configurations 57
Optional resources 57
Overlapping 58
The summary of commands 59

Summary 60
Chapter 5: Producers, Consumers, Handlers, Listeners,
and Synchronizers 61

The event producer 62
The event consumer 63
Event handlers 64
Listeners and synchronizers 67
Summary 68

Chapter 6: The Filtering of Cluster Events 69
The configuration of the filters 69
Resources 70
Blacklist and whitelist 71
Inbound and outbound 71
Regex and event identification 71

Bundle 72
Configuration 73
Features 74

The default filter configuration 75
Summary 76

Table of Contents

[iii]

Chapter 7: DOSGi 77
What is Cellar DOSGi? 77
The API bundle 79
The service bundle 81
The client bundle 84
Summary 86

Chapter 8: Cellar and Camel 87
The communication between remote routes 87
Caching with a distributed map 91
Summary 93

Chapter 9: Roadmap 95
HTTP load balancing and session clustering 95

Load balancing 96
Session clustering 99

Clustering a log service 100
Summary 101

Index 103

Preface
Apache Karaf has been emerging as the main container for the Open Software
Gateway initiative (OSGi) applications. This is mainly because more and more
people can see the benefits of OSGi in terms of the reuse of components, versioning,
and reduced complexity with real modular applications.

People are also looking for a ready-to-use container that provides all the features
expected in a mission-critical and enterprise-ready environment: management,
monitoring, and provisioning. It's what Karaf provides, simplifying the development,
execution, and production of OSGi applications. However, Karaf is more than a
container focused on OSGi; even though it's powered by OSGi, it also supports
non-OSGi applications such as Spring or web applications.

In modern architecture, most of the time, we don't have a single instance of the
container to be running. In order to provide scalability and high availability, a classic
architecture contains multiple container instances that form a farm or cluster of Karaf
containers. This architecture brings up new questions: how do you deploy your
application components on different instances? How can you target this deployment
only on a subset of nodes for staging purposes, for instance? How can you deal with
the configuration on different nodes?

Apache Karaf Cellar has been created to address these questions and many
more questions.

This book will begin by giving you the means to understand OSGi and Apache
Karaf as well as the concepts of a provisioning cluster. By doing so, it will provide
the baseline needed before you shift to the advanced usage of Cellar, such as cluster
groups or the filtering of cluster events.

This book details the Cellar architecture and the different commands provided by
Cellar, from the installation up to the management of clusters.

Preface

[2]

More than a simple provisioning or synchronization cluster, this book will show you
the Cellar runtime features such as Distributed OSGi (DOSGi) and interaction with
Apache Camel to create a multinode integration platform.

Using this book, readers will get a detailed understanding, through how-to steps, to
set up a cluster of Karaf nodes.

What this book covers
Chapter 1, Apache Karaf – Provisioning and Clusters, reviews what an OSGi is, the
purposes, architectures, and components. We will introduce details about the
Apache Karaf container, its architecture, and features. We will also introduce the
question of how to manage multiple Apache Karaf instances.

Chapter 2, Apache Karaf Cellar, introduces Apache Karaf Cellar and the different cluster
topologies that it can address. After the presentation of the Cellar architecture, we will
perform our first cluster installation and manage different resources on the cluster
using different techniques to monitor the current cluster state.

Chapter 3, Hazelcast, digs into the Cellar engine. After the introduction of Hazelcast,
we will see different configurations that are useful for Cellar, especially around the
network setup.

Chapter 4, Cluster Groups, shows you how to set up cluster groups in Cellar, allowing
you to create a subset of nodes and target provisioning.

Chapter 5, Producers, Consumers, Handlers, Listeners, and Synchronizers, introduces you
to the Cellar components used for the production, consumption, and transportation
of cluster events between different nodes in a cluster.

Chapter 6, The Filtering of Cluster Events, shows you how to filter cluster events,
allowing a fine-grained configuration of the resource synchronization in a cluster.

Chapter 7, DOSGi, shows that Cellar is not just a provisioning and synchronization
clustering solution by introducing the first runtime clustering feature provided by
Cellar: DOSGi. We will see how to use Cellar to implement remote communication
between bundles located on different nodes using an example.

Chapter 8, Cellar and Camel, shows the second runtime clustering feature provided by
Cellar by leveraging the camel-hazelcast component. Thanks to Cellar and Hazelcast,
we will see how to implement remote communication between the Camel routes
located on different nodes through an example.

Chapter 9, Roadmap, presents the new ideas and features that will come in the future
versions of Cellar. This chapter gives an overview of the Cellar roadmap.

Preface

[3]

What you need for this book
In this book, the software required is as follows:

• Operating systems: Any system that supports Java:
 ° Windows XP or superior
 ° Unix (Linux, AIX, Solaris, and so on)

• Java JDK 1.7
• Apache Karaf Cellar 2.3.4

Who this book is for
This book is for developers and system administrators who want to implement a
clustering solution for Apache Karaf. They will master and dominate Cellar from
installation to advanced usage. Thanks to the first chapter, even if you are not
familiar with Karaf, you will receive a comprehensive look at Apache Karaf before
you jump into the details of clustering.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You have to copy the JDBC driver JAR file into the lib/ext folder."

A block of code is set as follows:

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.SimpleFileLock
karaf.lock.dir=/path/to/lockfile
karaf.lock.delay=10

Any command-line input or output is written as follows:

karaf@node1> config:edit my

karaf@node1> config:propset key other

karaf@node1> config:update

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support

Apache Karaf – Provisioning
and Clusters

Open Software Gateway initiative (OSGi) has been "hidden" for a long time
and reserved to middleware such as IDE or application servers. However, OSGi
can be applied in a lot of different contexts and applications. An OSGi application
needs an environment to run. Apache Karaf is a lightweight, powerful, and
enterprise-ready OSGi container where you can deploy your applications. On
a production system, especially a mission-critical platform, it makes sense to be
able to manage a set of Apache Karaf containers and to spread the deployment
(or provisioning) of applications to these different instances.

In this chapter, we will cover the following topics:

• What is OSGi and what are its key features?
• The role of the OSGi framework
• The OSGi base artifact—the OSGi bundle and the concept of dependencies

between bundles
• The Apache Karaf OSGi container and the provisioning of applications in

the container
• How to manage the provisioning on multiple Karaf instances?

www.allitebooks.com

http://www.allitebooks.org

Apache Karaf – Provisioning and Clusters

[8]

What is OSGi?
Developers are always looking for very dynamic, flexible, and agile software
components. The purposes to do so are as follows:

• Reuse: This feature states that instead of duplicating the code, a component
should be shared by other components, and multiple versions of the same
component should be able to cohabit.

• Visibility: This feature specifies that a component should not use the
implementation from another component directly. The implementation
should be hidden, and the client module should use the interface provided
by another component.

• Agility: This feature specifies that the deployment of a new version of a
component should not require you to restart the platform. Moreover, a
configuration change should not require a restart. For instance, it's not
acceptable to restart a production platform just to change a log level. A minor
change such as a log level should be dynamic, and the platform should be
agile enough to reload the components that should be reloaded.

• Discovery: This feature states that a component should be able to discover
other components. It's a kind of Plug and Play system: as soon as a
component needs another component, it just looks for it and uses it.

OSGi has been created to address the preceding points.

The core concept is to force developers to use a very modular architecture in order to
reduce complexity. As this paradigm is applicable for most modern systems, OSGi is
now used for small embedded devices as well as for very large systems.

Different applications and systems use OSGi, for example, desktop applications,
application servers, frameworks, embedded devices, and so on.

The OSGi framework
OSGi is designed to run in Java. In order to provide these features and deploy OSGi
applications, a core layer has to be deployed in the Java Virtual Machine (JVM): the
OSGi framework.

This framework manages the life cycle and the relationship between the different
OSGi components and artifacts.

Chapter 1

[9]

The OSGi bundle
In OSGi, the components are packaged as OSGi bundles. An OSGi bundle is a simple
Java JAR (Java ARchive) file that contains additional metadata used by the OSGi
framework. These metadata are stored in the manifest file of the JAR file.

The following is the metadata:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Version: 2.1.6
Bundle-Name: My Logger
Bundle-SymbolicName: my_logger
Export-Package: org.my.osgi.logger;version=2.1
Import-Package: org.apache.log4j;version="[1.2,2)"
Private-Package: org.my.osgi.logger.internal

We can see that OSGi is very descriptive and verbose. We explicitly describe all the
OSGi metadata (headers), including the package that we export or import with a
specified version or version range.

As the OSGi headers are defined in the META-INF/MANIFEST file contained in the
JAR file, it means that an OSGi bundle is a regular JAR file that you can use outside
of OSGi.

The life cycle layer of the OSGi framework is an API to install, start, stop, update,
and uninstall OSGi bundles.

Dependency between bundles
An OSGi bundle can use other bundles from the OSGi framework in two ways.

The first way is static code sharing. When we say that this bundle exports packages,
it means a bundle can expose some code for other bundles. On the other hand,
when we say that this bundle imports packages, it means a bundle can use code
from other bundles.

For instance, we have the bundle A (packaged as the bundleA.jar file) with the
following META-INF/MANIFEST file:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Version: 1.0.0
Bundle-Name: Bundle A
Bundle-SymbolicName: bundle_a
Export-Package: com.bundle.a;version=1.0

Apache Karaf – Provisioning and Clusters

[10]

We can see that the bundle A exposes (exports) the com.bundle.a package
with Version 1.0. On the other hand, we have the bundle B (packaged as the
bundleB.jar file) with the following META-INF/MANIIFEST file:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Version: 2.0.0
Bundle-Name: Bundle B
Bundle-SymbolicName: bundle_b
Import-Package: com.bundle.a;version="[1.0,2)"

We can see that the bundle B imports (so, it will use) the com.bundle.a package in
any version between 1.0 and 2 (excluded). So, this means that the OSGi framework
will wire the bundles, as the bundle A provides the package used by the bundle B
(so, the constraint is resolved).

This mechanism is similar to regular Java applications, but instead of embedding the
required JAR files in your application, you can just declare the expected code. The
OSGi framework is responsible for the link between the different bundles; it's done
by the modules layer of the OSGi framework. This approach is interesting when you
want to use code which is not natively designed for OSGi. It's a step forward for the
reuse of components. However, it provides a limited answer to the purposes seen
earlier in the chapter, especially visibility and discovery.

The second way in which an OSGi bundle can use other bundles from the OSGi
framework is more interesting. It uses Service-Oriented Architecture (SOA)
for low-level components. Here, more than exposing the code, an OSGi bundle
exposes a OSGi service. On the other hand, another bundle can use an OSGi service.
The services layer of the OSGi framework provides a service registry and all the
plumbing mechanisms to wire the services.

The OSGi services provide a very dynamic system, offering a Publish-Find-Bind
model for the bundles.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[11]

The OSGi container
The OSGi container provides a set of additional features on top of the OSGi
framework, as shown in the following diagram:

JVM

OSGi framework(Apache Felix / Eclipse Equinox)

Aries Blueprint/Spring

Instances
Remote &

Management ConfigAdminConfigAdmin Security/JAAS

Instances
Remote &

Management ConfigAdminConfigAdmin Security/JAAS

WebContainer

Enterprise (JPA, JNDI, JTA)
W
e
b
C
o
n
s
o
l
e

Apache Karaf provides the following features:

• It provides the abstraction of the OSGi framework. If you write an OSGi
application, you have to package your application tightly coupled with the
OSGi framework (such as the Apache Felix framework or Eclipse Equinox).
Most of the time, you have to prepare the scripts, configuration files, and so
on in order to provide a complete, ready-to-use application. Apache Karaf
allows you to focus only on your application. Karaf, by default, provides
the packaging (including scripts and so on), and it also abstracts the OSGi
framework. Thanks to Karaf, it's very easy to switch from Apache Felix
(the default framework in Karaf) to Eclipse Equinox.

• Provides support for the OSGi Blueprint and Spring frameworks. Apache
Karaf allows you to directly use Blueprint or Spring as the dependency
framework in your bundles. In the new version of Karaf (starting from
Karaf 3.0.1), it also supports new dependency frameworks (such as DS,
CDI, and so on).

Apache Karaf – Provisioning and Clusters

[12]

• Apache Karaf provides a complete, Unix-like shell console where you have
a lot of commands available to manage and monitor your running container.
This shell console works on any system supporting Java and provides a
complete Unix-like environment, including completion, contextual help,
key bindings, and more. You can access the shell console using SSH. Apache
Karaf also provides a complete management layer (using JMX) that is
remotely accessible, which means you can perform the same actions as you
do using the shell commands with several MBeans.

• In addition to the default root Apache Karaf container, for convenience,
Apache Karaf allows you to manage multiple container instances. Apache
Karaf provides dedicated commands and MBeans to create the instances,
control the instances, and so on.

• Logging is a key layer for any kind of software container. Apache Karaf
provides a powerful and very dynamic logging system powered by Pax
Logging. In your OSGi application, you are not coupled to a specific
logging framework; you can use the framework of your choice (slf4j,
log4j, logback, commons-logging, and so on). Apache Karaf uses a central
configuration file irrespective of the logging frameworks in use. All changes
in this configuration file are made on the fly; no need to restart anything.
Again, Apache Karaf provides commands and MBeans dedicated to log
management (changing the log level, direct display of the log in the shell
console, and so on).

• Hot deployment is also an interesting feature provided by Apache Karaf. By
default, the container monitors a deploy folder periodically. When a new file is
dropped in the deploy folder, Apache Karaf checks the file type and delegates
the deployment logic for this file to a deployer. Apache Karaf provides
different deployers by default (spring, blueprint, features, war, and so on).

• If Java Authentication and Authorization Service (JAAS) is the Java
implementation of Pluggable Authentication Modules (PAM), it's not
very OSGi compliant by default. Apache Karaf leverages JAAS, exposing
realm and login modules as OSGi services. Again, Apache Karaf provides
dedicated JAAS shell commands and MBeans. The security framework is very
flexible, allowing you to define the chain of login modules that you want for
authentication. By default, Apache Karaf uses a PropertiesLoginModule
using the etc/users.properties file for storage. The security framework
also provides support for password encryption (you just have to enable
encryption in the etc/org.apache.karaf.jaas.cfg configuration file). The
new Apache Karaf version (3.0.0) also provides a complete Role Based Access
Control (RBAC) system, allowing you to configure the users who can run
commands, call MBeans, and so on.

Chapter 1

[13]

• Apache Karaf is an enterprise-ready container and provides features
dedicated to enterprise. The following enterprise features are not installed
by default (to minimize the size and footprint of the container by default),
but a simple command allows you to extend the container with enterprise
functionalities:

 ° WebContainer allows you to deploy a Web Application Bundle
(WAB) or WAR file. Apache Karaf is a complete HTTP server with
JSP/servlet support, thanks to Pax Web.

 ° Java Naming and Directory Interface (JNDI) adds naming context
support in Apache Karaf. You can bind an OSGi service to a JNDI
name and look up these services using the name, thanks to Aries and
Xbean naming.

 ° Java Transaction API (JTA) allows you to add a transaction engine
(exposed as an OSGi service) in Apache Karaf, thanks to Aries JTA.

 ° Java Persistence API (JPA) allows you to add a persistence adapter
(exposed as an OSGi service) in Apache Karaf, thanks to Aries JPA.
Ready-to-use persistence engines can also be installed very easily
(especially Apache OpenJPA and Hibernate).

 ° Java Database Connectivity (JDBC) or Java Message Service
(JMS) are convenient features, allowing you to easily create JDBC
DataSources or JMS ConnectionFactories and use them directly in
the shell console.

• If you can completely administrate Apache Karaf using the shell commands
and the JMX MBeans, you can also install Web Console. This Web Console
uses the Felix Web Console and allows you to manage Karaf with a
simple browser.

Thanks to these features, Apache Karaf is a complete, rich, and enterprise-ready
container. We can consider Apache Karaf as an OSGi application server.

Provisioning in Apache Karaf
In addition, Apache Karaf provides three core functionalities that can be used
both internally in Apache Karaf or can be used by external applications deployed
in the container:

• OSGi bundle management
• Configuration management
• Provisioning using Karaf Features

Apache Karaf – Provisioning and Clusters

[14]

As we learned earlier, the default artifact in OSGi is the bundle. Again, it's a regular
JAR file with additional OSGi metadata in the MANIFEST file. The bundles are directly
managed by the OSGi framework, but for convenience, Apache Karaf wraps the
usage of bundles in specific commands and MBeans.

A bundle has a specific life cycle. Especially when you install a bundle, the OSGi
framework tries to resolve all the dependencies required by your bundle to promote
it in a resolved state. The following is the life cycle of a bundle:

STARTING

ACTIVE

STOPPING

RESOLVED

UNINSTALLED

INSTALLED

U
ni

ns
ta

ll re
so

lv
e

re
fre

sh
up

da
te

U
ni

ns
ta

ll
update
refresh

stop

Policy
start

install

The OSGi framework checks whether other bundles provide the packages imported
by your bundle. The equivalent action for the OSGi services is performed when you
start your bundle. It means that a bundle may require a lot of other bundles to start
and so on for the transitive bundles.

Moreover, a bundle may require configuration to work. Apache Karaf proposes a
very convenient way to manage the configurations. The etc folder is periodically
monitored to discover new configuration files and load the corresponding
configurations. On the other hand, you have dedicated shell commands and
MBeans to manage configurations (and configuration files). If a bundle requires a
configuration to work, you first have to create a configuration file in the etc folder
(with the expected filename) or use the config:* shell command or ConfigMBean to
create the configuration.

Considering that an OSGi application is a set of bundles, the installation of an OSGi
application can be long and painful by hand.

Chapter 1

[15]

The deployment of an OSGi application is called provisioning as it gathers
the following:

• The installation of a set of bundles, including transitive bundles
• The installation of a set of configurations required by these bundles

OBR
OSGi Bundle Repository (OBR) can be the first option to be considered in order
to solve this problem. Apache Karaf can connect to the OBR server. The OBR server
stores all the metadata for all the bundles, which includes the capabilities, packages,
and services provided by a bundle and the requirements, packages, and services
needed by a bundle. When you install a bundle via OBR, the OBR server checks
the requirement of the installed bundle and finds the bundles that provide the
capabilities matching the requirements. The OBR server can automatically install
the bundles required for the first one.

Apache Karaf Features
As a lightweight and standalone OSGi container, Apache Karaf proposes another
way to provision applications. Apache Karaf Features is the default provisioning
solution in Apache Karaf.

Karaf Features describes an application, declaring the following aspects:

• The bundles in the application
• Other Karaf features required by the application
• Configurations required by the application

A Karaf Feature repository is a simple XML file describing a set of Karaf features.
A Karaf Feature repository looks like the following:

<features name="my-features">

 <feature name="core-feature" version="1.0">
 <bundle>mvn:bundleA_groupId/bundleA_artifactId/bundleA_version
 </bundle>
 <bundle>file:/path/to/bundleB</bundle>
 <bundle>http://path/to/bundleC</bundle>
 </feature>

 <feature name="extend-feature" version="1.0">
 <feature version="[1,2)">core-feature</feature>

Apache Karaf – Provisioning and Clusters

[16]

 <bundle>mvn:bundleD_groupId/bundleD_artifactId/bundleD_version
 </bundle>
 <config name="my.configuration.pid">
 key1=value1
 key2=value2
 </config>
 </feature>

 <feature name="other-feature" version="1.1">
 <feature version="[1,2)">core-feature</feature>
 <bundle>mvn:bundleE_groupId/bundleE_artifactId/bundleE_version
 </bundle>
 <configfile finalname="/etc/my.configuration.cfg">
 http://path/to/file/my.cfg
 </configfile>
 </feature>

</features>

Note that Apache Karaf supports different types of URLs, as follows:

• A file URL allows you to install a bundle or a configuration file located in the
local filesystem.

• An HTTP URL allows you to download and install a bundle or a
configuration file located on an HTTP server.

• An Mvn URL allows you to directly use Maven repositories. The URL uses
the Maven information (groupId/artifactId/version/classifier/type)
and converts this URL to an HTTP URL relative to different repositories
(described in etc/org.ops4j.pax.url.mvn.cfg).

This gives us a very flexible way to get the artifacts required for the application. The
artifacts can be local or remote, on a pure HTTP server or on a Maven repository
manager (such as Apache Archiva, Nexus, or even Maven Central).

Karaf Features completely describes applications and eventually dependencies
between applications and the required configuration. In our example, we can note
the following:

• The core-feature feature installs bundle A, bundle B, and bundle C using
different protocols: local filesystem for bundle A, downloading from an HTTP
server for bundle B, and using Maven for bundle C (from a Maven repository).

Chapter 1

[17]

• The extend-feature feature requires core-feature. This means that if
core-feature is not already installed, Apache Karaf will install it first.
Once core-feature is installed, bundle D will be installed (and started)
from a Maven repository. This feature also creates a configuration with
the my.configuration.pid ID and populates this configuration with the
key-value pairs directly defined in the element.

• The other-feature feature also requires core-feature (as for extend-feature,
core-feature will be installed if it's not already the case). Bundle E will
be installed and started using Maven (from a Maven repository). The
other-feature feature will also create a configuration, but this time using
a base configuration file installed in the etc folder of Apache Karaf. The
configuration file is downloaded using one URL supported by Apache Karaf
(in this example, an HTTP URL is used).

Thanks to Karaf Features, provisioning is pretty easy and straightforward.

The first action consists of registering the Karaf Features repository in the container
using the features:addurl shell command (or the corresponding operation on
FeaturesMBean). Once done, you can see the list of Karaf features available using the
features:list command.

To install an OSGi application, just install the corresponding Karaf feature with
features:install.

Multiple Apache Karaf containers
Natively, Apache Karaf provides a high availability mechanism based on a locking
system. It's a master-slaves configuration, following an active/passive pattern.
Apache Karaf supports two kinds of locks, which are as follows:

• Lock on the filesystem
• Lock on a database (JDBC)

When the first Apache Karaf instance starts, if the lock is available, the instance
acquires the lock and becomes the master.

If another instance starts, as the lock is not available (held by the master), the
instance is in standby (slave) mode and periodically checks the lock.

When you use a lock on a filesystem, all instances have to share the same filesystem.
The lock is a simple file. If the Apache Karaf instances are located on different
machines, it means that the filesystem storing the lock has to be available for all
machines (using NFS, CIFS, SAN, and so on).

www.allitebooks.com

http://www.allitebooks.org

Apache Karaf – Provisioning and Clusters

[18]

In order to enable the filesystem locking system, you have to update the
etc/system.properties configuration file as follows:

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.SimpleFileLock
karaf.lock.dir=/path/to/lockfile
karaf.lock.delay=10

When a shared filesystem is not an option (for security or infrastructure reasons, for
instance), you can use a database to store the lock. With database locking, Apache
Karaf uses a lock on a table (the KARAF_LOCK table by default). Any database that
supports JDBC can be used.

The configuration is also defined in the etc/system.properties configuration file
as follows:

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.DefaultJDBCLock
karaf.lock.level=50
karaf.lock.delay=10
karaf.lock.jdbc.url=jdbc:derby://dbserver:1527/sample
karaf.lock.jdbc.driver=org.apache.derby.jdbc.ClientDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

You have to copy the JDBC driver JAR file into the lib/ext folder. Apache Karaf
provides the JDBC lock implementation dedicated to some specific databases
(DefaultJDBCLock is the generic one, OracleJDBCLock for Oracle databases,
DerbyJDBCLock for Derby databases, MySQLJDBCLock for MySQL databases,
PostgreSQLJDBCLock for PostgreSQL databases, and SQLServerJDBCLock for
Microsoft SQLServer databases).

The Apache Karaf locking mechanism provides a good solution for high availability.
However, only one Apache Karaf instance is active (the master); all other instances
are inactive (standby/master).

In order to provide both high availability and performance scalability, having
multiple active Apache Karaf instances is a great advantage.

Chapter 1

[19]

Provisioning clusters
Imagine you have a farm of Apache Karaf containers, each on a different machine.
If you want to provision an OSGi application on the container instances, you have
to connect on each container and install the features.

This means that you have to perform the following tasks:

• Log on on each container in order to perform the same action again
and again

• Eventually, adapt the configuration depending on each local instance
(port number, file path, and so on)

• Add new instances, which will require the same action again

Basically, this means a lot of human actions with a potential risk of error. This is
where a provisioning cluster helps.

The purpose of a provisioning cluster is to keep multiple container instances
synchronized. For Apache Karaf, it means that a change in the status of a resource
will be broadcasted to all the containers' members of the same cluster.

A resource can be a bundle, feature, configuration, or any kind of resource local to
a node. This means that local actions will send an event to update the other members
of the cluster.

On the other hand, it's also possible to create a cluster event that is sent to all the
members to update them.

Basically, this means that a provisioning cluster performs the following tasks:

• Creates event: This event can be created due to a local change or by hand
• Broadcasts event: This event is sent to the members of the cluster

If provisioning is the first purpose of a provisioning cluster, it doesn't mean that
it can't provide additional features useful in a cluster topology. For instance,
centralized logs, load balancers, session replication, and so on are interesting features
that can be provided on top of a provisioning cluster. In the next chapters, we will
see Karaf Cellar as a provisioning cluster solution.

Apache Karaf – Provisioning and Clusters

[20]

Summary
In this chapter, we reviewed the goals of OSGi and some core components (bundles,
manifests, and so on). We also quickly introduced the Apache Karaf OSGi container,
describing the different provided features. Finally, we dealt with the different ways
to use multiple Apache Karaf instances altogether: an active/passive way (failover)
or active/active way (provisioning cluster).

The next chapter will introduce the Apache Karaf Cellar provisioning cluster.

Apache Karaf Cellar
Apache Karaf Cellar is a provisioning cluster solution for Apache Karaf.

It's an Apache Karaf subproject released under the Apache 2 license. To know more,
please visit http://karaf.apache.org/index/subprojects/cellar.html.

Apache Karaf Cellar allows you to manage a farm of Apache Karaf instances spread
over different machines and networks.

As a provisioning cluster solution, Apache Karaf Cellar synchronizes the states of the
different instances. By synchronization, we mean that an action on a resource from a
node will result in a notification to change for the other nodes.

The following topics will be covered in this chapter:

• Cluster topologies
• Apache Karaf Cellar architecture
• Apache Karaf Cellar installation
• Cluster resources

Cluster topologies
When we talk about provisioning clusters, it means that we have to store and share
the status of resources between different instances.

We name the node as an instance member of the provisioning cluster.

We can see two approaches to share the status of the resources.

http://karaf.apache.org/index/subprojects/cellar.html

Apache Karaf Cellar

[22]

The first approach is to use a central component to store the status. This central
component is named cluster manager. It's responsible for storing the data shared
between the nodes and the communication between the nodes. Have a look at the
following diagram:

Node

Node

Node

Node

Cluster Manager

All nodes are connected to a central component storing the status of the resources.
For instance, this component could be Apache ZooKeeper.

The advantage of this approach is that the provisioning cluster has no impact on the
nodes; a node just communicates with the central component.

The cluster manager is not just a simple shared storage, as it has to deal with the
communication and transport of information between the nodes.

A drawback of this approach is that the cluster manager is a single point of failure.

In order to guarantee a reliable cluster and high availability, the cluster manager
itself should be clustered: we have to provide and install a farm of cluster managers.

This means that you have two layers of clustering, as follows:

• The actual cluster between the nodes
• The Cluster Manager cluster just to guarantee high availability

Chapter 2

[23]

In Apache Karaf Cellar, a different approach has been chosen. The following
diagram will give you a brief idea of this approach:

Node

Node

Node

Node

Cluster Cluster

ClusterCluster

Each node embeds its own cluster component, which communicates with the
other nodes.

The purposes of the cluster component are as follows:

• It is a local representation of the resource's status of the cluster. The
resource's status is replicated and distributed on every cluster component.

• It manages the discovery and visibility of the nodes and transports
information from one node to the others. It's a cluster event model.

This means that changing the status of a resource will trigger two actions, and
they are:

• The distributed status is updated. This means that the cluster component
on each node is updated.

• The cluster component from the node sends an event to the other nodes,
informing them that a resource has changed and they need to update their
local status.

Apache Karaf Cellar

[24]

Thanks to this approach, Apache Karaf Cellar provides the following:

• It is a very reliable solution. We just need one node active to have a valid
cluster. The cluster is fault-tolerant by itself.

• A distributed status on the cluster with a cluster event synchronization
mechanism.

Apache Karaf Cellar architecture
Apache Karaf Cellar provides an API to implement the cluster component. The
default cluster component implementation is powered by Hazelcast.

Hazelcast is a clustering and scalable data distribution solution. It provides features
that exactly match the needs for the cluster component, especially the following:

• A distributed storage implementation. This is where Apache Karaf Cellar
will store the resources' status.

• A distributed topic for publish/subscribe messaging. Apache Karaf Cellar
will use this distributed topic to implement cluster events.

These are the two functionalities we are looking for in our cluster component.

However, Hazelcast also provides additional features. Thanks to Hazelcast, Apache
Karaf Cellar supports different ways to discover the nodes of the cluster: static IP
address definition, multicast, and whiteboard registration. The following diagram
shows the modules provided by Karaf:

Karaf Container

Commands / Mbeans / WebConsole

Resources

Synchronizers

Cluster Event Producer

Cluster Event Consumer and

Handlers

Cellar Core

Hazelcast

Resources

Listeners

Chapter 2

[25]

The first thing to do is install Cellar in the different Karaf containers that have been
targeted to be members of the cluster (the nodes).

As Apache Karaf Cellar is packaged as a Karaf Feature, we have to install the Cellar
feature. This means that Cellar is a set of bundles and configuration files.

Installing the Apache Karaf Cellar feature provides the following modules:

• Hazelcast: Apache Karaf Cellar directly leverages Hazelcast, and just wraps
some features (such as node discovery).

• Cellar core: By default, Cellar works with Hazelcast. However, it's possible
to change the implementation (for instance, it is possible to replace Hazelcast
with Apache ZooKeeper, Apache ActiveMQ, or a custom implementation). The
Cellar Core module provides the API used by the other modules. Cellar Core
delegates API usage to the actual implementation. Most importantly, the API
provides operations to manipulate the resource's status storage on the cluster.

• Cluster event producer: This module is part of the messaging layer. The
producer is responsible for creating a cluster event and broadcasting this
event to the other nodes. The producer actually creates a message (the cluster
event) and sends it to a Hazelcast distributed topic.

• Cluster event consumer and handlers: On the other hand, the cluster event
is received by the cluster event consumer. The cluster event consumer is
actually a subscriber on the Hazelcast distributed topic. Thanks to the cluster
event producer and consumer, we have a very dynamic system: when a new
node joins the cluster, its cluster event consumer subscribes to the topic. We
have a plug-and-play solution. However, the cluster event consumer doesn't
handle the cluster event itself. It delegates the event processing to a cluster
event handler. We have one cluster event handler per kind of resource.
Thanks to this approach, it's possible to easily add new resources managed in
the cluster. The cluster event producer and consumer are generic; the cluster
event handlers are dedicated to the resource management.

• Resources synchronizers: This module is responsible for the synchronization
of a resource local to a node, with the status of this resource on the cluster.
The synchronizer is called when installing Apache Karaf Cellar and when the
node joins the cluster.

• Resources listeners: This module listens for local resource changes, creates
cluster events, and sends them to the other nodes in the cluster.

• Commands, MBeans, WebConsole plugin: These modules interact with the
cluster, check the status of the nodes, check the status of the resources, and
so on. Apache Karaf Cellar provides a set of shell commands and operations
on MBean. An optional feature also provides a WebConsole plugin, which
extends the Apache Karaf WebConsole with cluster views.

Apache Karaf Cellar

[26]

Apache Karaf Cellar installation and first
commands
Apache Karaf Cellar is provided as a Karaf feature.

Throughout this book, we will use the following installation:

• Node 1 is a server running with the 192.168.1.1 network address. It hosts
an Apache Karaf 2.3.3 instance running in the /opt/apache-karaf folder.

• Node 2 is another server running with the 192.168.1.2 network address.
It hosts an Apache Karaf 2.3.3 instance running in the /opt/apache-karaf
folder.

• Both servers have Internet access.

We connect to the Apache Karaf instance on node 1 (using SSH or client) to install
the Apache Karaf Cellar feature, as follows:

karaf@node1> features:addurl mvn:org.apache.karaf.cellar/apache-
 karaf-cellar/2.3.1/xml/features

karaf@node1> features:install cellar

It's done! Apache Karaf Cellar is installed and operating on node1.

We can now install Apache Karaf Cellar on node 2. We connect on node 2
(using SSH or client) and install the Apache Karaf Cellar feature, as follows:

karaf@node2> features:addurl mvn:org.apache.karaf.cellar/apache-
 karaf-cellar/2.3.1/xml/features

karaf@node2> features:install cellar

We now have new shell commands dedicated to the cluster. For instance, it's possible
to see the nodes in the cluster using the cluster:node-list command, as follows:

karaf@node1> cluster:node-list

 ID Host Name Port

 [192.168.1.2:5702] [192.168.1.2] [5702]

* [192.168.1.1:5701] [192.168.1.1] [5701]

We can now see our two servers. The * indicates the local node (where we are
connected and will execute commands from).

Chapter 2

[27]

It's also possible to test the network between different nodes using the
cluster:node-ping command as follows:

karaf@node1> cluster:node-ping 192.168.1.2:5702

PING 192.168.1.2:5702

from 1: req=192.168.1.2:5702 time=57 ms

from 2: req=192.168.1.2:5702 time=17 ms

from 3: req=192.168.1.2:5702 time=20 ms

from 4: req=192.168.1.2:5702 time=23 ms

from 5: req=192.168.1.2:5702 time=22 ms

from 6: req=192.168.1.2:5702 time=17 ms

from 7: req=192.168.1.2:5702 time=20 ms

Cluster resources
By default, Apache Karaf Cellar supports the clustering and distribution of
different resources.

Cellar is able to manage the resources covered in the following sections.

Bundles
Apache Karaf Cellar is able to sync the status of OSGi bundles on the cluster.

Thanks to the bundle listener, all actions that you may perform on a bundle are
spread onto the cluster. You can also use dedicated cluster commands to manipulate
the bundles on the cluster.

For instance, it's possible to see the bundles available on the cluster with their current
status using the cluster:bundle-list command as follows:

karaf@node1> cluster:bundle-list default

Bundles in cluster group default

 ID State Name

[0] [Active] Apache Karaf :: Cellar :: Utils (2.3.1)

[1] [Active] Apache Karaf :: JAAS :: Config (2.3.3)

[2] [Active] Apache Karaf :: Diagnostic :: Command (2.3.3)

[3] [Active] Apache Karaf :: Deployer :: Spring (2.3.3)

[4] [Active] Apache Aries Proxy Service (1.0.1)

[5] [Active] Apache Karaf :: Management :: MBeans :: Dev (2.3.3)

www.allitebooks.com

http://www.allitebooks.org

Apache Karaf Cellar

[28]

[6] [Active] Apache Karaf :: Management :: MBeans :: System
(2.3.3)

[7] [Active] Apache Aries Blueprint Core (1.1.0)

[8] [Active] Apache Karaf :: Shell :: Development Commands (2.3.3)

[9] [Active] Apache Karaf :: Features :: Command (2.3.3)

[10] [Active] Apache Karaf :: Diagnostic :: Common (2.3.3)

[11] [Active] Apache Karaf :: Admin :: Management (2.3.3)

The default argument is the Cellar cluster group. Cellar uses a default cluster group
named default. We will see more details about cluster groups in another chapter of
this book.

We can install a bundle on the cluster using the cluster:bundle-install
command.

For instance, we install the commons-lang bundle on the cluster (from node 1)
as follows:

karaf@node1> cluster:bundle-install default mvn:commons-lang/
commons-lang/2.6

This command creates and sends a cluster event to all nodes (including the local one)
to install the commons-lang bundle. Now, if we check the commons-lang bundle
status on the cluster using the following code, we can see that it's installed:

karaf@node1> cluster:bundle-list -l default|grep -i commons-lang

[60] [Installed] mvn:commons-lang/commons-lang/2.6

The -l option displays the location of the bundles instead
of their name.

We can check on node 1 and node 2 that the commons-lang bundle is installed locally
to each node, as follows:

karaf@node1> la -l|grep -i commons-lang

[63] [Installed] [] [80] mvn:commons-lang/
commons-lang/2.6

karaf@node2> la -l|grep -i commons-lang

[63] [Installed] [] [80] mvn:commons-lang/
commons-lang/2.6

Chapter 2

[29]

Our two nodes are in sync. The commons-lang bundle has been installed on both.

Now, we are going to start the commons-lang bundle. But, this time, instead of using
the cluster:bundle-start command, we use the local osgi:start command on
node 1. As we just installed the bundle, the bundle is not yet started. That's why we
have to start the bundle now. Run the following command:

karaf@node1> osgi:start 63

Now, running the following command, we can see the commons-lang bundle started
on node 1:

karaf@node1> la -l|grep -i commons-lang

[63] [Active] [] [80] mvn:commons-lang/commons-lang/2.6

Thanks to the Cellar bundle listener, this local change has been caught by Cellar and
broadcasted to the other nodes. So, this means that the commons-lang bundle should
now be started on node 2 as well. Run the following command:

karaf@node2> la -l|grep -i commons-lang

[63] [Active] [] [80] mvn:commons-lang/
commons-lang/2.6

Here we are again, and our two nodes are still in sync.

To summarize, Apache Karaf Cellar supports all actions that you may perform on
a bundle (install, start, stop, uninstall, refresh, and so on).

By default, all local actions are spread to the cluster thanks to the Cellar
bundle listeners.

You can also use dedicated cluster:bundle-* commands.

Apache Karaf Cellar

[30]

In addition to the cluster:bundle-* commands, you can also use the Cellar
BundleMBean over JMX. This MBean allows you to manipulate the bundles on
the cluster with any kind of JMX client (such as JConsole), as shown in the
following screenshot:

Karaf features
Apache Karaf Cellar is also able to sync Karaf features.

The Cellar features listener spreads all local actions to a feature on the cluster, just as
for a bundle.

You also have the cluster:feature-* shell commands to manipulate the Karaf
features on the cluster.

Chapter 2

[31]

For instance, it's possible to see the Karaf Features repository URLs on the cluster
with the help of the following commands:

karaf@node1> cluster:feature-url-list default

mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.1/xml/features

mvn:org.jclouds.karaf/jclouds-karaf/1.4.0/xml/features

mvn:org.apache.karaf.assemblies.features/enterprise/2.3.3/xml/
features

mvn:org.apache.karaf.assemblies.features/standard/2.3.3/xml/
features

The status of the features can be checked using the following commands:

karaf@node1> cluster:feature-list default|more

Features in cluster group default

 Status Version Name

[uninstalled] [3.0.7.RELEASE] spring

[uninstalled] [2.3.1] cellar-eventadmin

[uninstalled] [2.3.3] scr

[uninstalled] [1.4.0] jclouds-cloudfiles-uk

[uninstalled] [1.4.0] jclouds-services

[uninstalled] [1.4.0] jclouds-aws-s3

[uninstalled] [1.4.0] jclouds-cloudserver-us

Note that we can see the local status and cluster status of the eventadmin feature
as follows:

karaf@node1> features:list|grep -i eventadmin

[uninstalled] [2.3.3] eventadmin
 karaf-2.3.3 OSGi Event Admin service specification for event-
based communication

karaf@node1> cluster:feature-list default|grep -i eventadmin

[uninstalled] [2.3.3] eventadmin

Now we want to install the eventadmin feature on the cluster using the
cluster:feature-install command. We shall do so with the following command:

karaf@node1> cluster:feature-install default eventadmin

We can check the status of the eventadmin feature on the cluster as follows:

karaf@node1> cluster:feature-list default|grep -i eventadmin

[installed] [2.3.3] eventadmin

Apache Karaf Cellar

[32]

We can now see that the eventadmin feature is installed. Let's check whether this is
the case locally on node 1 and node 2 with the following commands:

karaf@node1> features:list|grep -i eventadmin

[installed] [2.3.3] eventadmin karaf-2.3.3
OSGi Event Admin service specification for event-based communication

karaf@node2> features:list|grep -i eventadmin

[installed] [2.3.3] eventadmin karaf-2.3.3
OSGi Event Admin service specification for event-based communication

Our two nodes are in sync and the eventadmin feature is installed on both.

Now we want to uninstall the eventadmin feature, but instead of using the dedicated
cluster:feature-uninstall command, we use the local features:uninstall
command on node 1, as follows:

karaf@node1> features:uninstall eventadmin

Thanks to the Cellar features listener, this local change is spread across the cluster.
We can check the status of the eventadmin feature on the cluster, as follows:

karaf@node1> cluster:feature-list default|grep -i eventadmin

[uninstalled] [2.3.3] eventadmin

And locally on node 2 as follows:

karaf@node2> features:list|grep -i eventadmin

[uninstalled] [2.3.3] eventadmin
karaf-2.3.3 OSGi Event Admin service specification for event-based
communication

As we can see, node 1 and 2 are still in sync. Apache Karaf Cellar provides a Cellar
FeatureMBean, allowing you to perform cluster operations with any kind of JMX
client (such as JConsole), just as for a bundle, as shown in the following screenshot:

Chapter 2

[33]

Configuration
In addition to bundles and features, Apache Karaf Cellar also supports the
synchronization and distribution of configurations.

You can see the list of configurations on the cluster using the cluster:config-list
command as follows:

karaf@node1> cluster:config-list default

--

Pid: org.apache.karaf.features.repos

Properties:

 service.pid = org.apache.karaf.features.repos

 openejb = org.apache.openejb:openejb-feature:xml:features:(0,]

Apache Karaf Cellar

[34]

 jclouds = org.jclouds.karaf:jclouds-karaf:xml:features:(0,]

 camel = org.apache.camel.karaf:apache-camel:xml:features:(0,]

 cxf-dosgi = org.apache.cxf.dosgi:cxf-dosgi:xml:features:(0,]

 wicket = org.ops4j.pax.wicket:features:xml:features:(0,]

We create the my configuration containing the key property by using the following
command line:

karaf@node1> cluster:config-propset default my key value

And see the configuration on the cluster using the following command:

karaf@node1> cluster:config-list default

…

Pid: my

Properties:

 key = value

 service.pid = my

We can check if this configuration has been created by Cellar locally to node 1 and 2
by using the following command:

karaf@node1> config:list "(service.pid=my)"

--

Pid: my

BundleLocation: null

Properties:

 service.pid = my

 key = value

karaf@node2> config:list "(service.pid=my)"

--

Pid: my

BundleLocation: null

Properties:

 service.pid = my

 key = value

Chapter 2

[35]

Again, both the nodes are in sync. The my configuration has been replicated on
nodes 1 and 2.

Now we want to change the value to other for the key property. But instead of using
the cluster:config-propset command, we are directly using the local Karaf native
config:* commands on node 1 as follows:

karaf@node1> config:edit my

karaf@node1> config:propset key other

karaf@node1> config:update

Thanks to the Cellar Configuration listener, the status of the my configuration has
been updated on the cluster:

karaf@node1> cluster:config-list default

…

Pid: my

Properties:

 key = other

 service.pid = my

We can check that "my"configuration has been updated on node2 as well:

karaf@node2> config:list "(service.pid=my)"

--

Pid: my

BundleLocation: null

Properties:

 service.pid = my

 key = other

Again, both the nodes are in sync.

Apache Karaf Cellar

[36]

Apache Karaf Cellar provides a Cellar ConfigMBean, allowing you to manipulate
the cluster with any kind of JMX clients (such as JConsole), just as for bundles and
features, as shown in the following screenshot:

Optional resources
In addition to the default bundles, features, and configurations' resources support,
Apache Karaf Cellar provides some optional resources support.

To enable the support of these resources, you have to install the following dedicated
Cellar features:

• The cellar-eventadmin feature that adds cluster support to the eventadmin
feature. This means that all local OSGi events on a node are broadcasted to
the other nodes.

Chapter 2

[37]

• The cellar-obr feature that adds cluster support to the OBR service. This
means that the OBR repositories' URLs are distributed to all nodes in the
cluster. You can also use dedicated shell commands (and MBean operations)
to install bundles using the OBR service.

The Karaf WebConsole plugin
Optionally, you can install the cellar-webconsole feature. This feature installs and
registers a plugin to the Karaf WebConsole, displaying the available Cellar cluster
groups. When installing the WebConsole feature, Karaf provides a URL (by default,
the URL is http://localhost:8181/system/console) where you can manage
the container using a simple browser. The webconsole feature is secured using a
login and password (karaf/karaf by default). The cellar-webconsole feature
adds new pages in this webconsole. The following command will install the
cellar-webconsole feature:

karaf@node1> features:install cellar-webconsole

The following screenshot is how the Karaf WebConsole will look:

Summary
In this chapter, we have introduced the Apache Karaf Cellar topology
and architecture.

We also installed Apache Karaf Cellar and used some basic commands to sync two
nodes in a cluster. The next chapter will describe the configuration files used by
Apache Karaf Cellar and the usage of Hazelcast.

www.allitebooks.com

http://www.allitebooks.org

Hazelcast
Hazelcast is the heart of Cellar and is used in the core module. The Cellar core
module specifies the cluster behavior but does not specify the implementation.
The default Cellar implementation is powered by Hazelcast. Cellar directly leverages
the Hazelcast features to provide the functionalities expected in the cluster, such as
discovering the cluster nodes, communication between the nodes, and distributing
the states of the resources in the cluster.

In this chapter, we will deal with the following topics:

• An introduction to Hazelcast and its features
• An understanding of how Cellar uses Hazelcast
• Creating a custom extension to Hazelcast

What is Hazelcast?
Hazelcast is a cluster and distribution solution. In Cellar, each node embeds a
Hazelcast instance. The Hazelcast instances can identify each other using different
mechanisms. Once connected, these Hazelcast instances share a state and distribute
objects in the cluster, which are listed as follows:

• A distributed form of set and map, allowing Cellar to store the status of the
resources in the cluster.

• A distributed topic and queue used by Cellar to transport the cluster events
from a node to the other nodes. It's similar to the topic and queue destinations
that we find in messaging systems such as JMS—a node can act as a
producer/consumer on a queue and/or as a publisher/subscriber on a topic.

• Multiple network configurations and discovery mechanisms, allowing Cellar
nodes to automatically discover and see the other nodes.

Hazelcast

[40]

Cellar wraps the Hazelcast instance in an OSGi way; this means that the Hazelcast
instance is exposed as an OSGi service and can be used by any client bundle. For
communication between the nodes, Cellar uses the Hazelcast TCP/IP layer with
Java NIO.

Cellar automatically installs a Hazelcast configuration file in etc/hazelcast.xml.
The Hazelcast configuration and tuning is stored in this file. This chapter covers the
contents of this configuration file.

Distributed cluster resource states
Cellar uses Hazelcast to maintain and store the states of the different resources in
the cluster (bundles, features, configuration, OBR, eventadmin, DOSGi, and so on).
To do so, Cellar uses Hazelcast's distributed data structures. Thanks to this, the
cluster data is distributed across all the nodes in the cluster. Each Cellar node stores a
portion of the data (and eventually the replicas/backups).

For instance, in Cellar, you have the following three features installed:

• Feature A
• Feature B
• Feature C

The statuses of the features are stored in a distributed map that looks similar to the
following statuses:

• Feature A: Installed
• Feature B: Uninstalled
• Feature C: Installed

The partition of the features' distributed map (in the cluster) can be as follows:

• Feature A's status on node1
• Feature B's status on node2
• Feature C's status on node1

If a node goes down or leaves the cluster, Hazelcast redistributes the data
(including the replica) on the remaining nodes. Similarly, when a new node
joins the cluster, Hazelcast redispatches the data on the different nodes.

Thus, there is no cluster manager or a single point of failure: each node in the cluster
acts the same as the next.

Chapter 3

[41]

Distributed queues and topics
Cellar uses distributed queues and topics for communication between nodes.

When a resource changes on a node (for instance, you install a new feature on this
node), Cellar creates a cluster event and sends it into a queue or a topic (depending
on whether the cluster event is targeted towards one node or is global).

On the other hand, the other nodes can consume this cluster event and react
accordingly (they will install the feature locally).

A Hazelcast distributed queue is an implementation of java.util.concurrent.
BlockingQueue. As a regular queue, the elements in the queue are ordered in the
FIFO mode. Again, as this queue is distributed across the Cellar nodes, the elements
in the queue are objects that implement java.io.Serializable. By default, there is
no limit to the number of elements in the queue and the time to live (TTL) of these
elements. Now, if you have a bad connection between the cluster nodes (network
issues or different WAN/datacenters), you may have a very high number of
elements in the queue (you enqueue faster than you dequeue). In that case, a good
practice is to define a limit for the queues in etc/hazelcast.xml.

The maximum capacity per Cellar instance and the TTL for a queue can be
configured in the etc/hazelcast.xml file. For instance, we can limit the size of the
queue using the max-size-per-jvm element to define a custom storage for the queue
using the map-store element, as shown in the following code:

<hazelcast>
 ...
 <queue name="*">
 <!-- Maximum size of the queue. When a JVM's local queue
 size reaches the maximum, all put/offer operations will
 get blocked until the queue size of the JVM goes down
 below the maximum. Any integer between 0 and
 Integer.MAX_VALUE. 0 means Integer.MAX_VALUE.
 Default is 0. -->
 <max-size-per-jvm>10000</max-size-per-jvm>
 <!-- Name of the map configuration that will be used for
 the backing distributed map for this queue. -->
 <backing-map-ref>queue-map</backing-map-ref>
 </queue>
 <map name="queue-map">
 <backup-count>1</backup-count>
 <map-store enabled="true">
 <class-name>org.example.MyStore</class-name>
 <write-delay-seconds>0</write-delay-seconds>
 </map-store>
 ...
 </map>
</hazelcast>

Hazelcast

[42]

By default, Cellar stores the resource status in an in-memory distributed queue
(without the map-store configuration). You can provide a store implementation
to persist the queue in a backend such as a database for instance.

The Cellar distributed map
Cellar uses a distributed map to store the statuses of the resources in the cluster.
For this, the following are the instances:

• The list and current statuses of the features in the cluster are stored in
a distributed map that looks as follows:

 ° Feature A: Installed
 ° Feature B: Uninstalled

• The list and current statuses of the bundles in the cluster are stored in
a distributed map that looks as follows:

 ° Bundle A: Installed
 ° Bundle B: Started
 ° Bundle C: Uninstalled

• The list of configurations and properties on the cluster are stored in
a distributed map that looks as follows:

 ° PID A: Properties
 ° PID B: Properties

These map entries are partitioned on the cluster nodes. This means that each node
has a piece of the map.

Replicas/Backup
By default, distributed maps have one replica to insure failover; when an entry
is added or updated in the map, Hazelcast synchronously creates a replica on
another node.

Hazelcast manages the replicas with a backup operation; it provides the following
two kinds of operations:

• Sync backup operations
• Async backup operations

Chapter 3

[43]

Cellar only uses a sync backup operation to ensure that the replica is complete before
it moves forward. You can increase the number of replicas using the backup-count
element in the etc/hazelcast.xml file.

By default, the replicas are used only when a node goes down; Hazelcast can reload
the data located on the failed node using the replica present on another node.

However, in a real runtime environment, a node has to call the node that stores the
data, even if it holds a replica of this data locally.

To increase the read performance, you can allow the nodes to read their local replicas
instead of actually calling the nodes that store the data. To do this, you just have to
enable read-backup-data in the etc/hazelcast.xml file:

<hazelcast>
 ...
 <map name="*">
 <!-- Number of sync-backups. If 1 is set as the backup-
 count for example, then all entries of the map will be
 copied to another JVM for fail-safety.
 Valid numbers are 0 (no backup), 1, 2, 3. -->
 <backup-count>1</backup-count>
 <!-- Can we read the local backup entries? Default value
 is false for strong consistency. Being able to read
 backup data will give you greater performance. -->
 <read-backup-data>false</read-backup-data>
 ...
 </map>
</hazelcast>

Persistence
As we have seen in the previous section, Cellar uses an in-memory distributed map
by default. It's not a big deal as each node reconstructs the data at startup. However,
for performance reasons and for the security of the data, you can implement a
persistent data store for the maps used by Cellar, describing the persistent data store
in the etc/hazelcast.xml file with the following code:

<hazelcast>
 ...
 <map name="*">
 ...
 <map-store enabled="true">

Hazelcast

[44]

 <!-- Name of the class implementing MapLoader and/or
 MapStore. The class should implement at least of
 these interfaces and contain no-argument
 constructor. Note that the inner classes are not
 supported. -->
 <class-name>com.hazelcast.examples.DummyStore
 </class-name>
 <!-- Number of seconds to delay to call the
 MapStore.store(key, value). If the value is zero
 then it is write-through so
 MapStore.store(key, value) will be called as soon as
 the entry is updated. Otherwise it is write-behind
 so updates will be stored after write-delay-seconds
 value by calling Hazelcast.storeAll(map).
 Default value is 0. -->
 <write-delay-seconds>0</write-delay-seconds>
 </map-store>
 </map>
</hazelcast>

Networks
In the previous sections, we saw the Hazelcast resources used by Cellar to format
and transport cluster events. The transport relays to the network (the wire).
Hazelcast provides the configuration of the network that we can leverage in Cellar.
In this section, we will see how to configure Cellar node discovery, how to secure the
communication between the nodes, and how to support IPv6.

Multiple clusters
On the same network, you may want to define multiple Cellar clusters, especially
when you use node discovery. A Cellar cluster is identified by a name and password
in the etc/hazelcast.xml configuration file. You can separate your clusters in a
simple way (for instance, per environment) using the following code:

<hazelcast>
 <group>
 <name>dev</name>
 <password>dev-pass</password>
 </group>
 ...
</hazelcast>

Chapter 3

[45]

TCP/IP
If multicasting (which is the default) is not the preferred way of discovering the
nodes, then you can configure a full TCP/IP cluster (also known as a static definition
of the Cellar nodes).

In the following etc/hazelcast.xml file, we will disable multicast and prefer the
tcp-ip discovery.

For this, we need to provide the list of hostnames or IP addresses of the machines
hosting the different nodes:

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>224.2.2.3</multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">
 <hostname>machine1</hostname>
 <hostname>machine2</hostname>
 <hostname>machine3:5799</hostname>
 <interface>192.168.1.0-7</interface>
 <interface>192.168.1.21</interface>
 </tcp-ip>
 </join>
 ...
 </network>
 ...
</hazelcast>

Interfaces
By default, Cellar uses any network interface of the machine (0.0.0.0). However,
on a server machine, it's classic to have multiple network interfaces. In that case, you
can specify the interfaces that you want to use for Cellar; this can be done with the
following code:

<hazelcast>
 ...
 <network>

 <interfaces enabled="true">

Hazelcast

[46]

 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>192.168.1.3</interface>
 </interfaces>
 </network>
 ...
</hazelcast>

The configuration allows the usage of the * and – characters.

The * character indicates all the IP addresses on the netmask; in our example,
10.3.16.* means 10.3.16.1, 10.3.16.2, 10.3.16.3, and so on.

The – character indicates an IP address range; in our example, 10.3.10.4-18 means
10.3.10.4, 10.3.10.5, 10.3.10.6, and so on up to 10.3.10.18.

SSL
Cellar allows you to use SSL socket communication between all the Cellar members.

With SSL, the communication channels between the nodes are secure.

In etc/hazelcast.xml, you just have to enable ssl and provide the keystore that
contains the SSL certificate, as shown in the following code:

<hazelcast>
 ...
 <network>
 ...
 <ssl enabled="true">
 <factory-class-name>
 com.hazelcast.nio.ssl.BasicSSLContextFactory
 </factory-class-name>
 <properties>
 <property name="keyStore">keyStore</property>
 <property name="keyStorePassword">
 keyStorePassword</property>
 </properties>
 </ssl>
 </network>
 ...
</hazelcast>

You have to provide an SSLFactory class. Hazelcast provides a
BasicSSLContextFactory class that you can use directly, or you can
specify your own SSLFactory.

Chapter 3

[47]

Encryption
In addition to SSL (encryption on the transport layer), you can enable encryption
of the content of the cluster events. You can use asymmetric encryption (with a
public/private key-pair) or symmetric encryption (with a single key). You can
configure this at a network element level in the etc/hazelcast.xml file.

The following example shows how to use symmetric encryption with a key
generated for you by Hazelcast:

<hazelcast>
 ...
 <network>
 ...
 <!-- Make sure to set enabled=true
 Make sure this configuration is exactly the same on
 all members -->
 <symmetric-encryption enabled="true">
 <!--
 encryption algorithm such as
 DES/ECB/PKCS5Padding,
 PBEWithMD5AndDES,
 Blowfish,
 DESede
 -->
 <algorithm>PBEWithMD5AndDES</algorithm>
 <!-- salt value to use when generating the secret key
 -->
 <salt>thesalt</salt>
 <!-- pass phrase to use when generating the secret key
 -->
 <password>thepass</password>
 <!-- iteration count to use when generating the secret
 key -->
 <iteration-count>19</iteration-count>
 </symmetric-encryption>
 </network>
 ...
</hazelcast>

For asymmetric encryption, it's up to you to create the private/public key-pair using
a keytool or openSSL.

www.allitebooks.com

http://www.allitebooks.org

Hazelcast

[48]

The keys have to be stored in a keystore used in the etc/hazelcast.xml file:

<hazelcast>
 ...
 <network>
 ...
 <!--
 Make sure to set enabled=true
 -->
 <asymmetric-encryption enabled="true">
 <!-- encryption algorithm -->
 <algorithm>RSA/NONE/PKCS1PADDING</algorithm>
 <!-- private key password -->
 <keyPassword>thekeypass</keyPassword>
 <!-- private key alias -->
 <keyAlias>member1</keyAlias>
 <!-- key store type -->
 <storeType>JKS</storeType>
 <!-- key store password -->
 <storePassword>thestorepass</storePassword>
 <!-- path to the key store -->
 <storePath>keystore</storePath>
 </asymmetric-encryption>
 </network>
 ...
</hazelcast>

IPv6 support
You can directly use an IPv6 address format in the etc/hazelcast.xml file in
the exact same location where you use the IPv4 format. This can be done with the
following code:

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <join>
 <multicast enabled="false">
 <multicast-group>FF02:0:0:0:0:0:0:1
 </multicast-group>
 <multicast-port>54327</multicast-port>
 </multicast>
 <tcp-ip enabled="true">

Chapter 3

[49]

 <member>[fe80::223:6cff:fe93:7c7e]:5701</member>
 <interface>192.168.1.0-7</interface>
 <interface>192.168.1.*</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:493a
 </interface>
 </tcp-ip>
 </join>
 <interfaces enabled="true">
 <interface>10.3.16.*</interface>
 <interface>10.3.10.4-18</interface>
 <interface>fe80:0:0:0:45c5:47ee:fe15:*</interface>
 <interface>fe80::223:6cff:fe93:0-5555</interface>
 </interfaces>
 ...
 </network>

You can force the format of the IP addresses using the JVM's system property
(when your machine supports both):

• java.net.preferIPv4Stack=<true|false>

• java.net.preferIPv6Addresses=<true|false>

Restricting outbound ports
By default, the communication between nodes uses a random port number that
is created when the connection is established. Sometimes, it may be an issue
depending on the network security policy (firewalls, PAT, NAT, and so on). Instead
of random ports, you can define a ports' range or a list of ports to be used for the
communication between the nodes:

<hazelcast>
 ...
 <network>
 <port auto-increment="true">5701</port>
 <outbound-ports>
 <ports>33000-35000</ports> <!-- ports between 33000
 and 35000 -->
 <ports>37000,37001,37002,37003</ports> <!-- comma
 separated ports -->
 <ports>38000,38500-38600</ports>
 </outbound-ports>
 ...
 </network>
 ...
</hazelcast>

Hazelcast

[50]

The ports can be specified as a range (33000-35000 means that the ports in this
range will be taken), as a list of ports separated by a comma and then delimited
(38000, and so on), or as a mix of both.

Summary
In this chapter, we learned how Cellar and Hazelcast work together. We saw the
usage of queue/topic for the communication between the nodes and the usage of
map/set for the storage of the resources on the cluster. We saw how to tune the
Cellar components in order to add persistence, limit the size of the elements, and
perform other tasks.

We also learned how to extend the default Cellar Hazelcast configuration to match
some additional requirements such as security.

The next chapter will introduce you to the cluster groups that allow you to group
the nodes as per their names.

Cluster Groups
Until now, we have used Cellar as a global cluster. This means that all the nodes will
have the same functions and roles in the cluster. However, when using a pool or
farm of Karaf instances in a real live system, we may want to dedicate a subset of the
instances for the given functions/roles. This is the role of the Cellar cluster groups.

For instance, we have a farm of 20 nodes in our Cellar cluster.

We may want to deploy the following:

• A camel route can be described and packaged as a Karaf Features XML
file. We want to deploy this route only on 10 nodes of the cluster (not on
all the nodes).

• A CXF web service (described and deployed as another Karaf Features
XML file) on the other 10 nodes.

In Cellar, we can create different cluster groups and define a node as a member
of one or more cluster groups.

Managing cluster groups
By default, all nodes are members of the default cluster group. This default cluster
group is used as a template for the creation of new cluster groups.

You can create a cluster group using the cluster:group-create <group-name>
command:

karaf@root> cluster:group-create book

Cluster Groups

[52]

Here, we created a new cluster group called book. We can see this new cluster group
in the cluster groups' list with the cluster:group-list command:

karaf@root> cluster:group-list

 Group Members

* [default] [vostro.local:5701*]

 [book] []

For now, our book cluster group doesn't have any members.

A node can join a cluster group using the cluster:group-join command:

karaf@root> cluster:group-join book

 Group Members

* [default] [vostro.local:5701*]

* [book] [vostro.local:5701*]

The cluster:group-join command takes the following two arguments:

• The cluster group's name (in our example, the cluster group's name is book),
as displayed by the cluster:group-list command.

• The node ID. In our example, we don't provide the node ID, meaning that
the local node (the node that we are currently connected to) is used. It's also
possible to provide a given node ID (for instance, a remote node) to join the
cluster group using the following command:
karaf@root> cluster:group-join book nodeB:5701

Thanks to this, you can control all the nodes and cluster groups from any node.

When a group is empty, you can delete it using the cluster:group-delete
<group_name> command, as follows:

karaf@root> cluster:group-create test

karaf@root> cluster:group-list

 Group Members

 [default] []

 [test] []

* [book] [vostro.local:5701*]

karaf@root> cluster:group-delete test

karaf@root> cluster:group-list

 Group Members

 [default] []

* [book] [vostro.local:5701*]

Chapter 4

[53]

Note that the default cluster group cannot be deleted as it's used as a template to
create new cluster groups. This means that the default configuration of the newly
created cluster group will be a copy of the default cluster group configuration.

The cluster:group-join command adds a node to a given cluster group without
changing the current cluster group's membership.

Thanks to this, a node can be a member of multiple cluster groups.

A node can quit a cluster group using the cluster:group-quit command:

karaf@root> cluster:group-list

 Group Members

 [default] []

* [test] [vostro.local:5701*]

* [book] [vostro.local:5701*]

karaf@root> cluster:group-quit test

 Group Members

 [default] []

 [test] []

* [book] [vostro.local:5701*]

The cluster:group-set command moves a node from one cluster group to another.
It's a combination of the cluster:group-join and cluster:group-quit commands:

karaf@root> cluster:group-list

 Group Members

 [default] []

 [test] []

* [book] [vostro.local:5701*]

karaf@root> cluster:group-set test

 Group Members

 [default] []

* [test] [vostro.local:5701*]

 [book] []

Targeting provisioning
Once you have created your cluster groups and assigned nodes to the different cluster
groups, you can target the deployment of the resources on a given cluster group. For
this, Cellar provides the cluster-aware commands of the regular Karaf commands.

Cluster Groups

[54]

For instance, Karaf provides a features:install <feature_name> command
to install a Karaf feature in the container. Additionally, Cellar provides
cluster:feature-install <group_name> <feature_name>, which is similar to
the features:install command. The features:install command will install
the feature locally to the Karaf container, whereas the cluster:feature-install
command will install the feature on the cluster in the given cluster group.

At the end of this chapter, you will find a table that introduces Cellar's cluster:*
commands which correspond to the regular Karaf commands.

Features
In order to deploy a feature to a given cluster group, we can use the
cluster:feature-install command:

karaf@root> cluster:feature-install book eventadmin

The cluster:feature-install command accepts the following arguments:

• The cluster group's name (here, book)
• The feature's name (here, eventadmin)
• The feature's version (optional)

For instance, we installed the eventadmin feature on the book cluster group.
As Cellar extends the regular Karaf commands, we will find the exact same functions
prefixed to the cluster.

You can control the Karaf feature repositories (URLs) per cluster group. For instance,
you can list the Karaf feature repositories that are registered and available on a
cluster group with the following command:

karaf@root> cluster:feature-url-list book

mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.1/xml/features

mvn:org.jclouds.karaf/jclouds-karaf/1.4.0/xml/features

mvn:org.apache.karaf.assemblies.features/standard/2.3.1/xml/features

mvn:org.apache.karaf.assemblies.features/enterprise/2.3.1/xml/features

You can add a feature's URL on a cluster group using cluster:feature-url-add.

For instance, you can add the Camel feature repository on the book cluster group
with the following commands:

karaf@root> cluster:feature-url-add book mvn:org.apache.camel.karaf/
apache-camel/2.12.1/xml/features

karaf@root> cluster:feature-url-list book

Chapter 4

[55]

mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.1/xml/features

mvn:org.jclouds.karaf/jclouds-karaf/1.4.0/xml/features

mvn:org.apache.karaf.assemblies.features/standard/2.3.1/xml/features

mvn:org.apache.karaf.assemblies.features/enterprise/2.3.1/xml/features

mvn:org.apache.camel.karaf/apache-camel/2.12.1/xml/features

This means that all the node members of the book cluster group will register the
features repository locally. Using the regular Karaf commands (local), we can see the
features repository, as follows:

karaf@root> features:listurl

 Loaded URI

 true mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.1/xml/
features

 true mvn:org.jclouds.karaf/jclouds-karaf/1.4.0/xml/features

 true mvn:org.apache.karaf.assemblies.features/standard/2.3.1/xml/
features

 true mvn:org.apache.karaf.assemblies.features/enterprise/2.3.1/xml/
features

 true mvn:org.apache.camel.karaf/apache-camel/2.12.1/xml/features

Now, we can see that the Camel features are available on both the book cluster group
(which we can list with the cluster:feature-list command) and locally on a
node member of the book cluster group (which we can list with features:listurl).
This can be done by issuing the following command:

karaf@root> cluster:feature-list book

…

[uninstalled] [2.12.1] camel-cxf

[uninstalled] [3.0.7.RELEASE] spring-orm

[uninstalled] [2.12.1] camel-apns

[uninstalled] [2.12.1] camel-guice

Bundles
Cellar also provides cluster-aware bundle commands. You can see the bundles
that are available on a cluster group using the cluster:bundle-list command
(equivalent to the osgi:list Karaf command), as follows:

karaf@root> cluster:bundle-list book

…

[59] [Active] Apache Karaf :: Features :: Management (2.3.1)

[60] [Active] Apache Karaf :: Features :: Core (2.3.1)

Cluster Groups

[56]

[61] [Active] Apache Karaf :: Cellar :: Bundle (2.3.1)

[62] [Active] Apache Karaf :: Shell :: PackageAdmin Commands (2.3.1)

[63] [Active] Apache Karaf :: Deployer :: Karaf Archive (.kar)
(2.3.1)

We can deploy a bundle on a cluster group using the cluster:bundle-install
command (equivalent to the osgi:install Karaf command):

karaf@root> cluster:bundle-install book mvn:org.apache.servicemix.
bundles/org.apache.servicemix.bundles.commons-lang/2.4_6

karaf@root> cluster:bundle-list book|grep -i commons-lang

[64] [Installed] Apache ServiceMix :: Bundles :: commons-lang
(2.4.0.6)

The applications of the cluster-aware bundle commands are listed as follows:

• To see the bundle that is installed locally on a node member of the book
cluster group, you can use the following command:
karaf@root> osgi:list|grep -i commons-lang

[64] [Installed] [] [80] Apache ServiceMix ::
Bundles :: commons-lang (2.4.0.6)

• To start a bundle on the cluster, you can use the cluster:bundle-start
command. If you want to start the bundle with the ID 64 on the cluster (found
using the cluster:bundle-list command), issue the following commands:
karaf@root> cluster:bundle-start book 64

karaf@root> cluster:bundle-list book|grep -i commons-lang

[64] [Active] Apache ServiceMix :: Bundles :: commons-lang
(2.4.0.6)

• To stop a bundle on a given cluster group, you can use the cluster:bundle-
stop command. You can use the osgi:list command to see the local status
of the bundles:
karaf@root> cluster:bundle-stop book 64

karaf@root> osgi:list|grep -i commons-lang

[64] [Installed] [] [80] Apache ServiceMix ::
Bundles :: commons-lang (2.4.0.6)

• To uninstall a bundle from a cluster group, you can use the
cluster:bundle-uninstall command:
karaf@root> cluster:bundle-uninstall book 64

Chapter 4

[57]

Configurations
Cellar allows clustering of configurations. You can use the cluster:config-*
commands to manage the configurations on the cluster.

You can list the configurations available on a given cluster group using the
cluster:config-list command:

karaf@root> cluster:config-list book

…

--

Pid: org.apache.karaf.features.obr

Properties:

 startLevel = 80

 startByDefault = true

 service.pid = org.apache.karaf.features.obr

 resolveOptionalImports = false

You can edit or change a property (using the cluster:config-propset command),
add a property (using the cluster:config-propappend command), delete a
property (using the cluster:config-propdel command), or list the properties of
a configuration on a given cluster group, as follows:

karaf@root> cluster:config-propappend book my.config key value

karaf@root> cluster:config-proplist book my.config

Property list for configuration PID my.config in cluster group book

Key Value

key value

service.pid my.config

karaf@root> cluster:config-propdel book my.config key

karaf@root> cluster:config-proplist book my.config

Property list for configuration PID my.config in cluster group book

Key Value

service.pid my.config

Optional resources
Features, bundles, and configurations are natively supported by Cellar. However,
by installing optional features, Cellar can provide clustering support for other
resources too.

www.allitebooks.com

http://www.allitebooks.org

Cluster Groups

[58]

The OSGi Bundle Repository (OBR) is an OSGi specification with the
following goals:

• To simplify the deployment of bundles
• To encourage independent and atomic bundle development

OBR uses a bundle repository where it can add some additional metadata as follows:

• The capabilities provided by a bundle
• The requirements of a bundle

Thanks to this metadata, when you install a bundle from an OBR server, OBR
automatically installs the other bundles providing the capabilities to match the
requirements of the first bundle that you have installed.

The cellar-obr feature provides support for cluster-aware OBR. This means that
Cellar synchronizes the OBR servers used between the different nodes and broadcasts
the OBR commands (install, start, uninstall, and so on) between the nodes in the cluster.

We can find the cluster:obr-* commands dedicated to the clustered OBR.

The cellar-eventadmin feature doesn't provide new commands. However, all
OSGi local events are broadcasted on the cluster to the other node members of the
same cluster group as the local node.

Overlapping
A node can be a member of several cluster groups. This means that we may have an
overlap (on a single node) between multiple cluster groups, which can be seen in the
following diagram:

Chapter 4

[59]

If we install a feature on the cluster group CG1 (with the cluster:feature-install
cg1 feature command), the feature will be installed locally on NodeA and NodeC.
As NodeC is a member of the cluster group CG3, the feature will be installed on
NodeD (a member of the cluster group CG3) by transitivity. Again, as NodeD is
a member of the cluster group CG2 and as NodeB is also a member of this cluster
group, the feature will be installed on NodeB too. This means that the feature will
be installed on all the cluster groups, and thereby on all the nodes.

Generally speaking, a best practice is to avoid the possession of a node member
of several cluster groups, or you may encounter its side effect—the feature will be
installed on all the nodes (irrespective of what their cluster group is), whereas the
user may expect the feature to be installed only on the cluster group CG1.

The summary of commands
The following table summarizes the local commands (natively provided by Karaf)
and the corresponding commands dedicated for the cluster (provided by Cellar):

Local commands Cluster commands
features:listurl cluster:feature-url-list

features:addurl cluster:feature-url-add

features:removeurl cluster:feature-url-remove

features:list cluster:feature-list

features:install cluster:feature-install

features:uninstall cluster:feature-uninstall

osgi:list cluster:bundle-list

osgi:install cluster:bundle-install

osgi:uninstall cluster:bundle-uninstall

osgi:start cluster:bundle-start

osgi:stop cluster:bundle-stop

config:list cluster:config-list

config:delete cluster:config-delete

config:propset cluster:config-propset

config:propappend cluster:config-propappend

config:propdel cluster:config-propdel

config:proplist cluster:config-proplist

obr:addurl cluster:obr-add-url

obr:deploy cluster:obr-deploy

obr:list cluster:obr-list

obr:listurl cluster:obr-list-url

obr:removeurl cluster:obr-remove-url

Cluster Groups

[60]

All actions performed by the cluster:* commands can be performed via JMX using
MBeans, provided by Cellar. On the other hand, it's also possible to manage a cluster
group using a WebConsole plugin provided by Cellar.

Summary
In this chapter, we saw how to group nodes and target the provisioning on a specific
cluster group. Thanks to this, it's easy to set up a multilayered cluster and to group
the nodes per function.

In the next chapter, we will see the different Cellar components that are used to
create and transport the cluster events between the members of the same cluster
groups; we will also see how a group is actually implemented.

Producers, Consumers,
Handlers, Listeners,

and Synchronizers
In the previous chapters, we saw that Cellar exchanges cluster events between
different nodes. This means that a node creates a cluster event and sends it to the
other nodes. On the other hand, the other nodes receive the cluster events and
update the local state with the statements contained in the cluster events.

Beneath the hood, a node acts as a cluster event producer. Cellar uses a Hazelcast
queue to store and dispatch the cluster event to the other nodes. A producer sends
a message that represents a cluster event to the queue.

The other nodes act as cluster event consumers. This means that they consume the
cluster event from the queue. As the queue contains different cluster event types
(a bundle event, a configuration event, a feature event, and an OBR event), the
consumer delegates the handling of the event to a handler dedicated for each kind
of cluster event. This process is shown in the following diagram:

Queue

Node

ConsumerConsumer

Handler

Node

Producer

Producers, Consumers, Handlers, Listeners, and Synchronizers

[62]

The event producer
Each Cellar node embeds a cluster event producer. The producer is used when the
node has to send an event to the other nodes.

The producer is responsible for the following functions:

• To create the cluster event message.
• To send the cluster event message in a target distributed queue. The queue

is unique and can be identified by the cluster group and the type of resource.
For instance, a possible queue name is book.bundles, where book is the
cluster group's name and bundles is the type of the resource. Thanks to this,
Cellar is able to send a cluster event per resource and is able to target this
cluster event only to a given cluster group.

It's possible to manage the producer of a node from any node.

For instance, we can see the current status of the producer using the following
cluster:producer-status command:

karaf@root> cluster:producer-status

 Node Status

 [node2:5702] [ON]

* [node1:5701] [ON]

Here, we can see the status of the producer of all the nodes in the global cluster.
We can specify a node with the following command:

karaf@root> cluster:producer-status node2:5702

 Node Status

 [node2:5702] [ON]

It's possible to stop the producer of a node using the cluster:producer-stop
command (without argument, this command stops the producer of the local node),
as follows:

karaf@root> cluster:producer-stop node2:5702

 Node Status

 [node2:5702] [OFF]

When a producer is stopped, the node doesn't send any cluster events to the other
nodes. This means that local changes and the cluster:* commands don't change the
other nodes in the cluster.

Chapter 5

[63]

The cluster:producer-stop command can stop a producer located on a remote
node (distant from the node on which we actually execute the command).

You can start the stopped producer using the cluster:producer-start command,
as follows:

karaf@root> cluster:producer-start node2:5702

 Node Status

 [node2:5702] [ON]

A producer can send any kind of cluster events. Each clustered resource has its own
kind of cluster event. The following are the types of cluster events:

• ClusterBundleEvent: This is sent when the state of a bundle changes
(install, start, stop, or uninstall)

• ClusterFeatureEvent: This is sent when the state of a Karaf feature changes
(add repository, remove repository, install, or uninstall)

• ClusterConfigEvent: This is sent when the state of a configuration changes
(delete, add, set property, delete property, or append property)

• ClusterObrEvent: This is sent when the state of an OBR bundle changes
(add repository, deploy OBR bundle, or start OBR bundle)

The cluster:producer-start and cluster:producer-stop commands update the
etc/org.apache.karaf.cellar.node.cfg configuration file.

This configuration file contains the producer property that defines the state of the
producer (used at startup for instance): if the producer's state is true, the node
producer is started, else the producer is stopped.

The event consumer
As explained before, a producer sends a cluster event message in a queue.

On the other hand, each node embeds a consumer. A consumer binds a set
of handlers.

The consumer is responsible to get the cluster event messages from the different
queues, and depending on the type of the cluster event, the consumer delegates
the cluster event to a handler. This means that you have a handler for every type
of resource.

Producers, Consumers, Handlers, Listeners, and Synchronizers

[64]

For a consumer, we can perform the following tasks:

• Check the current status of the consumer (on each node) using the
cluster:consumer-status command, as follows:
karaf@root> cluster:consumer-status

 Node Status

 [node2:5702] [ON]

* [node1:5701] [ON]

The cluster:consumer-status command accepts a node ID as the
argument, as follows:

karaf@root> cluster:consumer-status node2:5702

 Node Status

 [node2:5702] [ON]

• Stop the consumer of any node using the cluster:consumer-stop
command, as follows:
karaf@root> cluster:consumer-stop node2:5702

 Node Status

 [node2:5702] [OFF]

When a consumer is stopped on a node, the node can't receive any cluster
events coming from another node. This means that the node won't update
its local state with the information contained in the cluster event's message.

• Start the consumer of any node using the cluster:consumer-start
command, as follows:
karaf@root> cluster:consumer-start node2:5702

 Node Status

 [node2:5702] [ON]

Similar to the status of the producer, the status of the consumer is stored in
the consumer property of the etc/org.apache.karaf.cellar.node.cfg
configuration file.

Event handlers
When the consumer receives a cluster event's message, it delegates the message to
a handler depending on the type of the cluster event.

Chapter 5

[65]

You have one handler per type of resource that Cellar manages. The following is a
list of the event handlers:

• ConfigurationEventHandler: This is responsible for handling cluster
events related to configurations (for instance, events that come from the
cluster:config-* or config:* commands)

• BundleEventHandler: This is responsible for handling cluster events related
to bundles (for instance, events that come from the cluster:bundle-* or
osgi:* commands)

• FeaturesEventHandler: This is responsible for handling cluster
events related to features (for instance, events that come from the
cluster:feature-* or features:* commands)

• ObrBundleEventHandler and ObrUrlEventHandler (optional): These
are responsible for handling cluster events related to the OBR service
(for instance, events that come from the cluster:obr-* or obr:* commands)

• ClusterEventHandler (optional): This is responsible for handling cluster
events related to the eventadmin service

You can see the list of the handlers and their current statuses using the
cluster:handler-status command, as follows:

karaf@root> cluster:handler-status

 Node Status Event Handler

 [node2:5702] [ON] org.apache.karaf.cellar.config.
ConfigurationEventHandler

 [node2:5702] [ON] org.apache.karaf.cellar.bundle.
BundleEventHandler

 [node2:5702] [ON] org.apache.karaf.cellar.features.
FeaturesEventHandler

* [node1:5701] [ON] org.apache.karaf.cellar.config.
ConfigurationEventHandler

* [node1:5701] [ON] org.apache.karaf.cellar.bundle.
BundleEventHandler

* [node1:5701] [ON] org.apache.karaf.cellar.features.
FeaturesEventHandler

You can stop a specific handler on any node using the cluster:handler-stop
command. The cluster:handler-stop command takes the following two arguments:

• The event handler's class name
• The node ID to stop the event handler (optional)

Producers, Consumers, Handlers, Listeners, and Synchronizers

[66]

The result of using the cluster:handler-stop command is as follows:

karaf@root> cluster:handler-stop org.apache.karaf.cellar.bundle.
BundleEventHandler node2:5702

 Node Status Event Handler

 [node2:5702] [OFF] org.apache.karaf.cellar.bundle.
BundleEventHandler

When a handler is stopped on a node, it means that the cluster events that are
managed by the handler are not processed. For instance, if BundleEventHandler is
stopped, the node will receive cluster events, but the cluster events that are related
to the bundle will not be processed. This means that the node won't change the
bundle's status.

You can start a handler on any node using the cluster:handler-start command
as follows:

karaf@root> cluster:handler-start org.apache.karaf.cellar.bundle.
BundleEventHandler node2:5702

 Node Status Event Handler

 [node2:5702] [ON] org.apache.karaf.cellar.bundle.
BundleEventHandler

Similar to the statuses of a producer and a consumer, the status of each handler is
stored in the etc/org.apache.karaf.cellar.node.cfg configuration file, as follows:

#

Cluster event handlers

#

bundle event handler

handler.org.apache.karaf.cellar.bundle.BundleEventHandler = true

config event handler

handler.org.apache.karaf.cellar.config.ConfigurationEventHandler = true

feature event handler

handler.org.apache.karaf.cellar.features.FeaturesEventHandler = true

DOSGi event handler

handler.org.apache.karaf.cellar.dosgi.RemoteServiceCallHandler = true

OSGi event handler

handler.org.apache.karaf.cellar.event.ClusterEventHandler = true

OBR event handler

handler.org.apache.karaf.cellar.obr.ObrBundleEventHandler = true

handler.org.apache.karaf.cellar.obr.ObrUrlEventHandler = true

Chapter 5

[67]

Listeners and synchronizers
If we use the cluster:* commands to manage the resources in the cluster (features,
bundles, configurations, OBR, and local events), Cellar also listens to the changes in
the local resources and broadcasts these changes in the cluster.

For instance, if you install a bundle locally (using the osgi:install command),
Cellar will catch this change and broadcast it in the cluster event, meaning that all
other nodes in the same cluster group as the local node will install the same bundle.

Cellar provides the following listeners:

• A listener for the features repository and features (install and uninstall)
• A listener for bundles (install, uninstall, start, stop, and so on)
• A listener for configurations (propset, propdel, delete, and so on)

On the other hand, when a node starts or joins a cluster group, Cellar invokes a
set of synchronizers. The purpose of a synchronizer is to align the local state of the
node with the state of the resources in the cluster. A synchronizer is responsible for
applying local changes to have the node in the same state as in the cluster. You have
one synchronizer per resource type.

Cellar provides the following synchronizers:

• A synchronizer for the features repository and features. For instance, if a
feature has the status installed on the cluster, the synchronizer (at startup)
checks the state of the feature on the local node, and if the feature is not
installed, the synchronizer installs it.

• A synchronizer for bundles. For instance, if a bundle is installed on the
cluster, the synchronizer (at startup) checks the state of the bundle on the
local node, and if the bundle is not installed, the synchronizer installs it.

• A synchronizer for configurations.

Thanks to these synchronizers, Cellar updates a node when it starts or joins
a cluster group.

Producers, Consumers, Handlers, Listeners, and Synchronizers

[68]

Summary
Cellar provides complete control over the different components involved in the
communication between the nodes. Thanks to this, a user can define the behavior
of each node by starting or stopping the event consumers, producers, and handlers.

Additional to node behavior, we can also filter the cluster events exchanged in the
cluster, as we will see in the next chapter.

The Filtering of
Cluster Events

In the previous chapter, we saw how cluster events are created and transported
using producers, consumers, and handlers. We saw that we have one internal queue
managed per resource (bundle, feature, and configuration) and per cluster group.
This allows us to group the nodes and target the provisioning of a resource on a
specific group. So, it's the first kind of filtering at the node level.

In this chapter, we will cover the following topics:

• How to filter the cluster events in a given cluster group
• How to define the resources (bundles, features, configurations, and OBRs)

to be filtered
• How to define the direction of the filter (coming in or going out from

the nodes)

The configuration of the filters
The filtering of cluster events is defined in the etc/org.apache.karaf.cellar.
groups.cfg configuration file. In this configuration file, you can find the filters with
the following format:

cluster_group.[bundle|config|features].[whitelist|blacklist].
[inbound|outbound]=regex

The Filtering of Cluster Events

[70]

For instance, the following configuration blocks (blacklist) the incoming cluster
events (inbound) that contain features named my-feature or other-* in the
default cluster group:

default.features.blacklist.inbound=my-feature,other-*

Cellar provides a default filtering configuration for the default cluster group.
This configuration is used as a template when you create a new cluster group. You
can update the filters' configuration live by directly modifying the configuration on
the node or using the config:* and cluster:config-* commands.

For instance, to add a new filter to a cluster group, you can run the
following commands:

karaf@root> config:edit org.apache.karaf.cellar.groups

karaf@root> config:propset mygroup.bundle.blacklist.outbound none

karaf@root> config:update

You can also use ConfigMBean to update the configuration remotely (using JConsole
for instance).

The name of the cluster group is cluster_group, which you provided in the
cluster:group-create command.

Resources
In the previous chapter, we saw that we have an internal queue per resource and per
cluster group.

A resource is a type of a cluster event. Cellar defines the following cluster events:

• bundle: This is a cluster event that corresponds to a bundle action
(install, uninstall, start, stop, and so on)

• config: This is a cluster event that corresponds to a configuration action
(create, delete, propset, propappend, propdel, and so on)

• features: This is a cluster event that corresponds to a feature action
(addurl, delurl, install, uninstall, and so on)

Chapter 6

[71]

Remember that each type of cluster event is managed by a specific handler.

In the filter definition, specify the resource just after cluster_group. This will allow
you to filter the events of a specific type (bundle, config, and features).

Blacklist and whitelist
In the filter definition, you can specify the blacklist or whitelist keyword
after the resource. A blacklisted filter will block the corresponding cluster events.
This means that the cluster events won't be delivered on the cluster. On the other
hand, a whitelisted filter will allow the corresponding cluster events. The filter is
built by evaluating the whitelist first and by overriding the blacklist later. With the
combination of blacklist and whitelist filters, you can define fine-grained filtering.

Inbound and outbound
Another property used to configure filters is the direction of the cluster event.
The two directions can be distinguished as follows:

• inbound: The inbound cluster events are the events that come into a node.
These cluster events come from another node and enter other nodes.

• outbound: The outbound cluster events are the events that go out of a node.
These cluster events are produced and sent from a node to other nodes.

Thanks to inbound and outbound filters, you can filter the same cluster event
depending on its direction: incoming or outgoing.

Regex and event identification
Finally, we have to specify the cluster event. The purpose is to allow (whitelist)
or block (blacklist) specific cluster events. For instance, we want to block
the following:

• The cluster event that contains a change in the feature named my-feature
• The cluster event that contains a change in the bundle named my-bundle

The Filtering of Cluster Events

[72]

So, we have to identify and declare the cluster event. To identify a cluster event, we
can use the following:

• The event identifier can be used; for instance, org.apache.karaf.cellar.
groups identifies the configuration's cluster event (PID).

• A regular expression (regex) or glob based on the event identifier can be
used. Declaring events using the full qualified name can be tedious. The
usage of a regex is much faster. For instance, org.apache.karaf.cellar.*
identified all the configuration cluster events containing PIDs.

• * selects all cluster events.
• The none keyword is a reserved keyword to not select any cluster event.

The identification depends on the resource of the cluster event filter.

Bundle
For a bundle cluster event, the identifier is the bundle's location. You can get the
bundle's location using the osgi:list -l command, which will give you the
following output:

...

[61] [Active] [Created] [40]
mvn:org.apache.karaf.cellar/org.apache.karaf.cellar.features/2.3.2

[62] [Active] [Created] [40]
mvn:org.apache.karaf.cellar/org.apache.karaf.cellar.management/2.3.2

[70] [Active] [] [30]
mvn:org.apache.felix/org.apache.felix.eventadmin/1.3.2

For instance, if you want to block (filter) all the bundle cluster events, both inbound
and outbound, for the eventadmin bundle in the my cluster group, you can
specify the following filter in the etc/org.apache.karaf.cellar.groups.cfg
configuration file:

my.bundle.blacklist.inbound=mvn:org.apache.felix/org.apache.felix.
eventadmin/1.3.2

my.bundle.blacklist.outbound=mvn:org.apache.felix/org.apache.felix.
eventadmin/1.3.2

This is where regex is very useful. We can simplify the filter as follows:

my.bundle.blacklist.inbound=*org.apache.felix.eventadmin*

my.bundle.blacklist.outbound=*org.apache.felix.eventadmin*

Chapter 6

[73]

Configuration
For the configuration cluster event, the identifier is the configuration PID. You can
get the configuration PID using the config:list command.

By default, Cellar blacklists its own configuration and avoids syncing the
configurations that are only valid locally to a node. The following is how this
configuration will look in the etc/org.apache.karaf.cellar.groups.cfg
configuration file:

default.config.whitelist.inbound = *
default.config.whitelist.outbound = *
default.config.blacklist.inbound = org.apache.felix.fileinstall*,
\
 org.apache.karaf.cellar*, \
 org.apache.karaf.management, \
 org.apache.karaf.shell, \
 org.ops4j.pax.logging, \
 org.ops4j.pax.web
default.config.blacklist.outbound = org.apache.felix.fileinstall*,
\
 org.apache.karaf.cellar*, \
 org.apache.karaf.management, \
 org.apache.karaf.shell, \
 org.ops4j.pax.logging, \
 org.ops4j.pax.web

The following is an explanation of the configurations in the preceding code snippet:

• The org.apache.felix.fileinstall* configurations are excluded (inbound
and outbound) as the polled directories are local to the node (so, it doesn't
make sense to spread this configuration to the default cluster group)

• The org.apache.karaf.cellar* configurations are excluded as they are
provided by Cellar itself

• The org.apache.karaf.management configuration is excluded as it contains
the port number of the Karaf JMX MBean server (so it is local to a node)

• The org.apache.karaf.shell configuration is excluded as it contains the
port number of the Karaf SSHd server (so it is local to a node)

• The org.ops4j.pax.logging configuration is excluded to be able to change
the log level of a node without changing the log levels on the other nodes

• The org.ops4j.pax.web configuration is excluded as it contains the port
number of the Karaf HTTP service (so it is local to a node)

The Filtering of Cluster Events

[74]

Features
For the features cluster event, the identifier is the name of the feature. You can get
the feature names using the features:list command, which will give you the
following output:

…

[uninstalled] [2.3.2] cellar-webconsole

 karaf-cellar-2.3.2 Cellar plugin for Karaf WebConsole

[uninstalled] [1.0.1] transaction

 karaf-enterprise-2.3.1 OSGi Transaction Manager

[uninstalled] [1.0.1] jpa

 karaf-enterprise-2.3.1 OSGi Persistence Container

[uninstalled] [1.0.0] jndi

 karaf-enterprise-2.3.1 OSGi Service Registry JNDI access

[uninstalled] [1.0.0] application-without-isolation

 karaf-enterprise-2.3.1 Provide EBA archive support

By default, Cellar blacklists some features as follows:

default.features.whitelist.inbound = *

default.features.whitelist.outbound = *

default.features.blacklist.inbound =
config,management,hazelcast,cellar*

default.features.blacklist.outbound =
config,management,hazelcast,cellar*

The Hazelcast and Cellar features are installed by Cellar itself; so, there is no
need to handle the cluster events for these features. That's why the default filter
configuration allows all the cluster feature events except the config, management,
hazelcast, and all the Cellar (cellar*) features.

On the other hand, the config and management features are provided by default
by Karaf. As these are very low-level features, these are not required to handle the
events for these features.

Chapter 6

[75]

The default filter configuration
Cellar uses the following default filter configuration:

default.config.whitelist.inbound = *
default.config.whitelist.outbound = *
default.config.blacklist.inbound = org.apache.felix.fileinstall*,
\
 org.apache.karaf.cellar*, \
 org.apache.karaf.management, \
 org.apache.karaf.shell, \
 org.ops4j.pax.logging, \
 org.ops4j.pax.web
default.config.blacklist.outbound = org.apache.felix.fileinstall*,
\
 org.apache.karaf.cellar*, \
 org.apache.karaf.management, \
 org.apache.karaf.shell, \
 org.ops4j.pax.logging, \
 org.ops4j.pax.web

default.features.whitelist.inbound = *
default.features.whitelist.outbound = *
default.features.blacklist.inbound =
config,management,hazelcast,cellar*
default.features.blacklist.outbound =
config,management,hazelcast,cellar*

default.bundle.whitelist.inbound = *
default.bundle.whitelist.outbound = *
default.bundle.blacklist.inbound = none
default.bundle.blacklist.outbound = none

The following is the explanation of the preceding configuration:

• All the cluster configuration events are allowed (whitelist) in the default
cluster group (inbound and outbound) for the node, except (blacklist) the
configurations with the org.apache.felix.fileinstall*, org.apache.
karaf.cellar*, org.apache.karaf.management, org.apache.karaf.
shell, org.ops4j.pax.logging, and org.ops4j.pax.web PIDs.

• All the cluster feature events are allowed (whitelist) in the default
cluster group, inbound and outbound to the node, except (blacklist) the
features named config, management, hazelcast, and cellar*.

• All the cluster bundle events are allowed (whitelist) in the default
cluster group, which are inbound and outbound to the node. No bundles
are blocked (blacklist is none).

The Filtering of Cluster Events

[76]

Summary
In this chapter, we learned how to configure the filtering of cluster events. It provides
fine-grained management of the cluster events: per cluster group, per direction
(inbound or outbound), per resource (feature, bundle, and config), supporting
regex to identify the cluster events, and type of filtering (whitelist or blacklist).

It also allows the cluster administrator to define which resources should be
synchronized on the cluster.

In the next chapter, we will see another application for resource synchronization:
remote communication between bundles using Distributed OSGi (DOSGi).

DOSGi
In the previous chapters, we saw Cellar as a provisioning clustering solution; the
actions performed on resources from one node create cluster events that are sent
to the other nodes; these nodes then react accordingly. Cellar also provides some
features in addition to the provisioning cluster. Cellar Distributed OSGi (DOSGi)
is one of these additional features.

In this chapter, we will cover the following topics:

• What DOSGi is and a use case
• The Cellar DOSGi implementation
• A complete example using Cellar DOSGi

What is Cellar DOSGi?
Cellar DOSGi is an implementation of the Remote Service Admin specifications from
the OSGi specifications. Basically, it's a remote communication between services
from bundles hosted in different containers.

With the OSGi service, a bundle exposes a service (actually, an interface) to the
service registry provided by the OSGi framework. Another bundle can look up for
services in the service registry, get a reference to this service, and use it. Thanks to
this, we have a real Service-Oriented Architecture (SOA) approach on low-level
components (bundles).

Cellar DOSGi brings a distributed service registry and remote usage of a service
using Hazelcast NIO.

DOSGi

[78]

Hazelcast NIO is a data serialization and transport implementation of NIO. For
details, you can take a look at the Java NIO Javadocs (http://docs.oracle.com/
javase/7/docs/api/java/nio/package-summary.html) and Hazelcast NIO
documentation (http://hazelcast.org/docs/2.6/javadoc/com/hazelcast/nio/
DataSerializable.html).

The following diagram shows how two nodes communicate with each other via a
distributed service registry:

Node

Client
Bundle

Node

Distributed Service
Registry

Service
Bundle

On a node, a bundle (named the Service Bundle) can expose a service in the
distributed service registry. To do this, it just registers the service with the service.
exported.interfaces service property. We will see how to create a service and
define this service property using an example later in this chapter. Cellar listens for
all service registrations, and if a service has the service.exported.interfaces
property, it automatically exposes it to the distributed service registry.

On the other hand, a bundle (named the Client Bundle) just does a regular service
lookup. Cellar intercepts this lookup under the following circumstances:

• If the service exists in the local service registry, Cellar uses it
• If the service doesn't exist in the local service registry, Cellar forwards the

lookup to the distributed service registry

The client bundle gets a reference to the service. In the case of a local service, this
reference is directly to the object in the JVM. In the case of a remote service, this
reference is a proxy to the actual service located in a remote JVM.

We have to note that DOSGi doesn't use cluster groups (cluster groups are used
in resources synchronization for now). This means that node members of different
cluster groups can communicate with each other using DOSGi.

To illustrate and understand (from a user's standpoint) how Cellar DOSGi works, we
will create a Greeter application.

http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://hazelcast.org/docs/2.6/javadoc/com/hazelcast/nio/DataSerializable.html
http://hazelcast.org/docs/2.6/javadoc/com/hazelcast/nio/DataSerializable.html

Chapter 7

[79]

In this application, we will have a bundle that exposes a service by saying hello and
a client bundle that uses this service.

The source code of the example is available in Cellar sources at the following link:

https://github.com/apache/karaf-cellar/tree/cellar-2.3.x/samples/
dosgi-greeter

The API bundle
In OSGi, a service is described with an interface. This means that both service and
client bundles of the same service have to share the same interface.

In order to decouple interface and implementation and be able to update a client
bundle without impacting a service bundle, a good practice is to create an API
bundle that contains just the interface.

We create this API bundle by just exposing the API package in the OSGi export
package header as follows:

<osgi.export>
 org.apache.karaf.cellar.samples.dosgi.greeter.
api*;version="${project.version}"
</osgi.export>

The API bundle contains the interface that describes the Greeter service as follows:

package org.apache.karaf.cellar.samples.dosgi.greeter.api;

/**
 * Interface describing the Greeter service.
 */
public interface Greeter {

 /**
 * Returns a greet message.
 * @return
 */
 public GreetResponse greet(Greet greet);

}

The service provides an operation: greet corresponding to the greet() method of
the Greeter interface. This greet() method takes an object as an argument (Greet)
and returns an object (GreetResponse).

https://github.com/apache/karaf-cellar/tree/cellar-2.3.x/samples/dosgi-greeter
https://github.com/apache/karaf-cellar/tree/cellar-2.3.x/samples/dosgi-greeter

DOSGi

[80]

These objects are also part of the API bundle, as they will be used by both service
and client bundles. The Greet object just wraps a message (a string). Note that this
object is serializable. This is required as it will be used remotely. The message can be
wrapped with the following code:

package org.apache.karaf.cellar.samples.dosgi.greeter.api;

import java.io.Serializable;

/**
 * Object used in the Greeter interface/service.
 */
public class Greet implements Serializable {
 String message;

 public Greet(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

}

The GreetResponse class represents the response returned by the greet() method.
It's also a Serializable object, as it will be transported between the nodes (remotely).
This is done with the following code:

package org.apache.karaf.cellar.samples.dosgi.greeter.api;

import java.io.Serializable;

/**
 * Response returned by the Greeter service.
 */
public class GreetResponse implements Serializable {

 private Greet greet;
 private String response;

Chapter 7

[81]

 public GreetResponse(Greet greet, String response) {
 this.greet = greet;
 this.response = response;
 }

 public Greet getGreet() {
 return greet;
 }

 public void setGreet(Greet greet) {
 this.greet = greet;
 }

 public String getResponse() {
 return response;
 }

 public void setResponse(String response) {
 this.response = response;
 }

}

The API bundle doesn't provide the implementation of the Greet service. It's just
the API.

The implementation and the registration of the service are done in the service bundle.

The service bundle
The service bundle exposes a service to the service registry.

A service will be exposed to the distributed service registry just by adding the
service.exported.interfaces property to the service.

First, the service bundle implements the Greet interface; it's the implementation of
the Greet service, which is as follows:

package org.apache.karaf.cellar.samples.dosgi.greeter.service;

import org.apache.karaf.cellar.samples.dosgi.greeter.api.Greet;
import
 org.apache.karaf.cellar.samples.dosgi.greeter.api.GreetResponse;
import org.apache.karaf.cellar.samples.dosgi.greeter.api.Greeter;

DOSGi

[82]

/**
 * Implementation of the Greeter service.
 */
public class GreeterImpl implements Greeter {

 private int counter=0;
 private String id;

 public GreeterImpl(String id) {
 this.id = id;
 }

 @Override
 public GreetResponse greet(Greet greet) {
 String message = greet.getMessage();
 String response = message+"."
 +String.format("Hello from node %s count %s.",id,counter++);
 GreetResponse greetResponse = new
 GreetResponse(greet,response);
 return greetResponse;
 }

}

The implementation performs the following tasks:

• It gets the message in the Greet request (provided as an argument)
• It constructs a response by concatenation of the message, the node ID,

and a counter
• It wraps the request and response into a GreetResponse object
• It returns the GreetResponse object

To register (bind) this service, we use the OSGi Blueprint.

In the OSGI-INF/blueprint folder of the bundle, we add our blueprint descriptor
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <!-- Greeter Implementation -->
 <bean id="greeterImpl"
 class="org.apache.karaf.cellar.samples.dosgi.greeter.service.
GreeterImpl">
 <!-- We want the greeter to display the origin of the greet,
 so we use the nodeId -->

Chapter 7

[83]

 <argument ref="nodeId"/>
 </bean>

 <!-- The current Node -->
 <bean id="node" factory-ref="clusterManager"
 factory-method="getNode"/>
 <!-- The id of the current node -->
 <bean id="nodeId" factory-ref="node" factory-method="getId"/>

 <!-- OSGi Services & References -->
 <service ref="greeterImpl"
 interface="org.apache.karaf.cellar.samples.dosgi.greeter.api.
Greeter">
 <service-properties>
 <entry key="service.exported.interfaces" value="*"/>
 </service-properties>
 </service>

 <reference id="clusterManager"
 interface="org.apache.karaf.cellar.core.ClusterManager"/>

</blueprint>

We can see the service.exported.interfaces property defined for the
greeterImpl service. As we saw earlier, this property is a flag to specify that this
service is available in the cluster. It contains the interface (the service) that we want
to expose to the cluster. In case a bean that provides a service implements multiple
interfaces, we can specify the interface to a user for the cluster interface. The wildcard
(*) means that any interface implemented by the bean will be available in the cluster.

We can now deploy the service bundle on node1.

Cellar DOSGi is not installed by default in the Cellar feature. To enable DOSGi
support, you have to install the cellar-dosgi feature with the following command:

karaf@root> features:install cellar-dosgi

karaf@root> la|grep -i dosgi

[63] [Active] [Created] [40] Apache Karaf :: Cellar ::
DOSGi (2.3.1)

The first bundle to deploy is the API bundle; this can be done by running the
following command:

karaf@root> osgi:install -s
mvn:org.apache.karaf.cellar.samples.dosgi.greeter/org.apache.karaf.
cellar.samples.dosgi.greeter.api/2.3.1

DOSGi

[84]

Now, we can deploy and start the service bundle with the following command:

karaf@root> osgi:install -s
mvn:org.apache.karaf.cellar.samples.dosgi.greeter/org.apache.karaf.
cellar.samples.dosgi.greeter.service/2.3.1

We can see our Greeter service in the local service registry by running the
following command:

karaf@root> ls 65

Apache Karaf :: Cellar :: Samples :: DOSGi Greeter ::
Service (65) provides:

objectClass =
org.apache.karaf.cellar.samples.dosgi.greeter.api.Greeter

osgi.service.blueprint.compname = greeterImpl

service.exported.interfaces = *

service.id = 286

We can now see the service.exported.interface property that Cellar DOSGi is
looking for.

Cellar DOSGi also provides the following cluster:service-list command to
display the services registered on the cluster (in the distributed service registry):

karaf@root> cluster:service-list

Service Class Provider
Node

org.apache.karaf.cellar.samples.dosgi.greeter.api.Greeter node1:5701

We can see our Greeter service available in the cluster and provided by node1 of
the cluster.

The client bundle
The client bundle provides a dosgi-greeter:greet shell command. The shell
command is part of the client bundle, and you can find the command code on the
GitHub source repository. The command calls the following GreeterClient:

package org.apache.karaf.cellar.samples.dosgi.greeter.client;

import org.apache.karaf.cellar.samples.dosgi.greeter.api.Greet;

Chapter 7

[85]

import
 org.apache.karaf.cellar.samples.dosgi.greeter.api.GreetResponse;
import org.apache.karaf.cellar.samples.dosgi.greeter.api.Greeter;

/**
 * Client that uses a remote Greeter service.
 */
public class GreeterClient {

 private Greeter greeter;
 private String greetMessage;
 private int count;

 public GreeterClient(Greeter greeter, String greetMessage, int
count) {
 this.greeter = greeter;
 this.greetMessage = greetMessage;
 this.count = count;
 }

 public void start() {
 Greet greet = new Greet(greetMessage);
 for (int i = 0; i < count; i++) {
 GreetResponse greetResponse = greeter.greet(greet);
 if(greetResponse != null) {
 System.out.println(greetResponse.getResponse());
 } else System.out.println("Time out!");
 }
 }

}

The client is pretty basic, as the service is injected in the greeter attribute using a
blueprint as follows:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference id="greeter"
 interface="org.apache.karaf.cellar.samples.dosgi.greeter.api.
Greeter"/>

</blueprint>

DOSGi

[86]

This blueprint descriptor is very simple. It just gets a reference to the Greeter
service. This reference can be a reference to the local actual service or to a proxy
of a remote service.

We can now deploy the API and client bundles on node2 with the following
commands:

karaf@root> osgi:install -s
mvn:org.apache.karaf.cellar.samples.dosgi.greeter/org.apache.karaf.
cellar.samples.dosgi.greeter.api/2.3.1

karaf@root> osgi:install -s
mvn:org.apache.karaf.cellar.samples.dosgi.greeter/org.apache.karaf.
cellar.samples.dosgi.greeter.client/2.3.1

Node1 and node2 should be in two different groups; otherwise,
the installation of the different bundles (API, service, and
client) will be spread from one node to another. This is not
what we want; we want the service bundle to be installed only
on node1 and the client bundle to be installed only on node2.

We can now call the dosgi-greeter:greet command as follows:

karaf@root> dosgi-greeter:greet hello 5

hello.Hello from node node2 count 0.

hello.Hello from node node2 count 1.

hello.Hello from node node2 count 2.

hello.Hello from node node2 count 3.

hello.Hello from node node2 count 4.

Summary
DOSGi is a very simple way to implement remote service communication between
nodes. It brings a new dimension to OSGi, and allows you to create large and
scalable applications that you can deploy on a farm of a container.

Used in correlation with cluster groups (to target the deployment of the bundles
on certain nodes), DOSGi is the first step forward in runtime clustering. It means
that Cellar is more than a provisioning clustering solution; it also brings interesting
features for runtime clustering.

In the next chapter, we will see another usage of Cellar for runtime clustering when
used in combination with Apache Camel.

Cellar and Camel
In the previous chapter, we saw that Cellar can act as more than a provisioning
cluster solution, providing DOSGi to allow communication between remote bundles.

As Cellar leverages Hazelcast, it could be used by the Camel Hazelcast component.
Thanks to this component, it's possible to implement communication between
remote Camel routes.

The Camel Hazelcast component can use the Hazelcast instance provided by Cellar. It
can use the different distributed resources provided by Hazelcast such as distributed
maps, queues, and lists. This offers a large panel of solutions depending on use cases.

The communication between remote
routes
In Camel, when you are local to one Karaf instance, you have different ways to use a
route from another route as follows:

• The direct endpoint is synchronous, which is local to one CamelContext
(only routes in the same CamelContext component can communicate
using direct).

• The direct-vm endpoint is exactly the same as direct but global to the JVM.
It means that routes from different CamelContext can communicate using
direct-vm.

• The staged event-driven architecture (SEDA) endpoint is asynchronous,
which is local to one CamelContext (only routes in the same CamelContext
component can communicate using SEDA). A seda endpoint (producer)
creates a queue (BlockingQueue) and pushes messages in this queue.
Another seda endpoint (consumer) consumes from this queue. A producer
and consumer use different threads.

Cellar and Camel

[88]

• The vm endpoint is exactly the same as seda but global to the JVM. It means
that routes from different CamelContext can communicate using vm.

These components are convenient to implement communication between Camel
routes. However, this communication is local to the same JVM.

When we implement a farm or cluster of Karaf instances, it makes sense to deploy
Camel routes that are able to communicate with routes from other instances. Thanks
to this, we can specialize an instance and delegate parts of the route execution to
other instances.

Moreover, as Cellar is a dynamic cluster (it's easy to add a new node in the cluster),
it makes sense to leverage multiple nodes to execute routes. Like this, we can
implement a dynamic and scalable cluster of Camel routes.

One way to implement such a solution is to use a Java Message Service (JMS). Using
a broker, such as Apache ActiveMQ (or any JMS broker), it's possible for a route to
produce a message in a queue in the broker and other routes can consume from the
queue. This approach is interesting because we can leverage the features provided
by brokers (message persistence, HA, and so on), but this requires the use of an
additional middleware resource, the broker. This means that we have to use Cellar
to provision the cluster and maintain the broker.

Thanks to Cellar and the Camel Hazelcast component with SEDA, we can
implement something similar without the JMS broker. There is no requirement to
add an additional middleware (the JMS broker), which will require installation,
administration, maintenance, and tuning.

However, some features provided by the JMS broker, especially ActiveMQ, are very
interesting, such as master/slave, network of brokers, and persistent store.

In the following diagram, we can see that the Camel route A uses the Hazelcast
instance provided by Cellar on NodeA (thanks to the camel-hazelcast component).
This Camel route A produces a message in a Hazelcast queue. On the other hand,
the Camel route B consumes the message in the Hazelcast queue, again thanks to the
camel-hazelcast component:

NodeB

Cellar/Hazelcast

NodeA

Camel route B

Cellar/Hazelcast

Camel route B

Chapter 8

[89]

On the first node (NodeA), we install Cellar, Camel (camel-blueprint), and the
camel-hazelcast component as follows:

karaf@nodeA> features:addurl
mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.0/xml/features

karaf@nodeA> features:install cellar

karaf@nodeA> features:addurl
mvn:org.apache.camel.karaf/apache-camel/2.12.0/xml/features

karaf@nodeA> features:install camel-blueprint

karaf@nodeA> features:install camel-hazelcast

The node is now ready to deploy Camel routes.

We create a first route using the Camel Blueprint DSL. For that, we create the
route.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.
org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">

 <route id="routeA">
 <from uri="timer:simple?period=5000"/>
 <setBody>
 <simple>Hello World</simple>
 </setBody>
 <to uri="hazelcast:seda:myqueue"/>
 </route>

 </camelContext>

</blueprint>

This route is pretty simple. Every 5 seconds, it creates a exchange, sets the body of
the message to Hello World, and sends to a Hazelcast SEDA queue named myqueue.

The messages will be stored in a Hazelcast queue waiting for consumers to get
messages from this queue. It looks like JMS, but the queue is distributed among all
Cellar nodes.

Cellar and Camel

[90]

To deploy this route, we just drop the route.xml file into the deploy folder of NodeA.

So, now we have a node that produces messages in a Cellar/Hazelcast queue.

On NodeB, we will also install Cellar, Camel (camel-blueprint), the camel-stream
component (to display messages directly on System.out), and the camel-hazelcast
component as follows:

karaf@nodeB> features:addurl
mvn:org.apache.karaf.cellar/apache-karaf-cellar/2.3.0/xml/features

karaf@nodeB> features:install cellar

karaf@nodeB> features:addurl
mvn:org.apache.camel.karaf/apache-camel/2.12.0/xml/features

karaf@nodeB> features:install camel-blueprint

karaf@nodeB> features:install camel-hazelcast

karaf@nodeB> features:install camel-stream

On NodeB, we create a Camel route that will consume the messages from the
Cellar/Hazelcast queue.

We define this route using the Camel Blueprint DSL in a route.xml file that we drop
into the deploy folder (of NodeB) as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.
org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">

 <route id="routeB">
 <from uri="hazelcast:seda:myqueue"/>
 <to uri="stream:out"/>
 </route>

 </camelContext>

</blueprint>

Chapter 8

[91]

As soon as this route is initiated, we can see the following message in the NodeB
System.out (directly on the shell console as we use stream:out in the route):

Hello World

Hello World

Hello World

Hello World

This means that routeB, deployed on NodeB, consumes the messages from the
myqueue distributed queue. As this queue is a Cellar/Hazelcast distributed queue,
the actual data is not local to one node but spread on all nodes of the cluster.

It's also possible to deploy routeB on multiple nodes (for instance, using a specific
cluster group with the cluster:feature-install command). In that case, we
will have multiple consumers on the same queue, providing a very efficient
scalable solution.

Together with the Cellar node discovery mechanism (especially using multicast/
unicast), we can very easily add new nodes in the cluster that directly become a
consumer or producer (depending on the route that we deploy).

Thanks to the Hazelcast SEDA endpoints provided by the camel-hazelcast
component and Cellar, you can easily provide a remote communication solution for
your Camel routes.

If we compare Hazelcast SEDA with JMS endpoints, it's very similar. JMS is probably
more robust as it leverages all the features provided by the broker (persistence store,
conduit subscription, exclusive consumers, and so on). However, for simple remote
route communication, without adding additional middleware such as the JMS
broker, Hazelcast SEDA is a good solution.

Caching with a distributed map
Another use case for Cellar and camel-hazelcast together is the implementation of
a distributed cache solution.

The camel-hazelcast component allows you to use a distributed map and execute
different operations on this map.

As it's distributed, it means that the data is spread between different nodes: all nodes
can see the same data (entries/values) from the distributed map. This means that
you can share data between nodes.

Cellar and Camel

[92]

In a Camel route, you can perform the following operations on the distributed map:

• put: To add new data in the map
• delete: To remove data from the map
• get: To retrieve all data from the map
• query: To retrieve particular data from the map

The operation type is defined in the CamelHazelcastOperationType header.

For instance, we can implement a route that updates the cache with the
following code:

<route>
 <from uri="direct-vm:add-in-cache"/>
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast:map:mycache"/>
</route>

This route will receive a message on the direct-vm endpoint that contains the
CamelHazelcastObjectId header with an ID as the value and data to store as
the message body.

The hazelcast:map endpoint will update the mycache map with a entry ID/body.
On the other hand, a route can get the data from the cache (one dataset if the ID is
provided or all data if no ID is provided) as follows:

<route>
 <from uri="direct-vm:retrieve-from-cache"/>
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast:map:mycache"/>
</route>

Instead of requesting the cache when we need it (with a get or query operation), it's
also possible to trigger a route as soon as the cache content changes. Like this, we can
react to a data change (it's a kind of change data capture). To do this, we can create a
route that listens on a given distributed map as follows:

<route>
 <from uri="hazelcast:map:mycache"/>
 ...
</route>

Chapter 8

[93]

This route will react as soon as the cache content changes. The hazelcast:map
endpoint sets some headers to get details about the change, especially the
following changes:

• CamelHazelcastListenerAction: This contains the action performed on the
cache, that is, add, remove, update, or evict

• CamelHazelcastListenerTime: This is when the change has been performed
• CamelHazelcastObjectId: This is the ID of the object that has changed
• CamelHazelcastCacheName: This is the name of the distributed map that

has changed

Thanks to the hazelcast:map endpoints, you can easily implement a distributed
cache mechanism.

Summary
In this chapter, we saw that by leveraging Hazelcast, Cellar offers more than a simple
provisioning framework. Combined with Camel, it's a good solution to spread
your execution logic over multiple nodes and to implement a fully-scalable and
distributed system. It brings more flexibility to Camel in terms of provisioning and
executing the routes in a clustered environment.

The camel-hazelcast component provides other data structures than the ones
introduced in this chapter. You can find details on the component documentation
at http://camel.apache.org/hazelcast-component.html.

In the next chapter, we will see new directions and features for preparation in Cellar,
providing even more clustering solutions.

http://camel.apache.org/hazelcast-component.html

Roadmap
In the previous chapters, we saw that Cellar is more than just a simple provisioning
cluster that provides advanced features (such as DOSGi) or leverages other projects
(such as Camel).

Cellar's aim is to provide more runtime features. These new features can be grouped
into the following three categories:

• HTTP: Cellar will be used by the Karaf HTTP layer to deal with the
clustering of the deployed web applications

• Monitoring: Cellar will be used by the Karaf log and JMX service to provide
a global monitoring solution for the cluster

• Other projects: Cellar can be used to run projects in Karaf, such as ActiveMQ,
Camel, and CXF, to provide clustering features on top of these projects

This chapter introduces the new forthcoming features in HTTP and monitoring
categories.

HTTP load balancing and session
clustering
Karaf directly leverages Pax Web to provide a complete WebContainer service.

With the installation of the war feature using the following command, Karaf gets full
support from the web bundle thanks to the Jetty web container and Pax Web:

karaf@root> features:install war

Roadmap

[96]

It's now possible to deploy a web application containing servlet for instance.

Karaf WebConsole is a web application. You can install the webconsole feature with
the following command:

karaf@root> features:install webconsole

With webconsole, you have the Karaf WebConsole available on
http://localhost:8181/system/console.

Cellar deals with the HTTP layer to provide load balancing and session clustering.

Load balancing
Due to the Cellar cluster provisioning, a web bundle will be deployed on
different nodes.

For instance, a web bundle binds and exposes an HTTP servlet on /service,
which is related to the HTTP service local to each node.

This means we have:

• For node A, the servlet available at http://A:8181/service, where A is the
hostname or IP address of node A

• For node B, the servlet available at http://B:8181/service, where B is the
hostname or IP address of node B

Using a browser, a client can connect to node A using http://A:8181/service or
node B using http://B:8181/service. Now, imagine that we deploy only to B using
http://B:8181/service (for instance, using a dedicated cluster group). It will be
great for clients to use http://A:8181/service, even if the service is not actually
deployed on A. Cellar will act as a proxy from A to B (where the service is available).

Now, imagine we have three nodes: A, B, and C. The service is deployed on
node A (using http://A:8181/service) and node B (using http://B:8181/
service). Node C doesn't have the service deployed, but it can act as a load
balancer to the service on nodes A and B. This means that a client would be able
to use http://C:8181/service and Cellar will load balance and proxy the HTTP
requests to http://A:8181/service and http://B:8181/service (for instance,
using round robin, random, or weight-based algorithms defined in the Cellar
configuration). This concept is explained in the following diagram:

Chapter 9

[97]

NodeA

Web Bundle

http://A:8181/service

NodeB

Web Bundle

http://B:8181/service

Load Balancer

Client

The load balancer can be:

• A hardware load balancer (Cisco, Juniper, F5, and so on)
• A software load balancer (for instance, using the mod_proxy_balancer

module with Apache HTTPd)

The solution of using such an external load balancer is a classic one, but we may face
the following two issues with these load balancers:

• This requires an additional middleware: the load balancer.
• The configuration of the load balancer is static. If we add new nodes, we

have to manually update the load balancer configuration.

As Cellar is a very dynamic clustering solution, it's very easy to add new nodes.
Thanks to the discovery service, Cellar knows when and where a servlet is registered.

Cellar will store the list of nodes providing a servlet URL. It's stored in a
Hazelcast-distributed map.

The map will look as follows:

• /service1: nodeA, nodeB, nodeC

• /service2: nodeB, nodeC

The Cellar HTTP service will act as a proxy from the local node to other nodes.

Roadmap

[98]

The Cellar HTTP service looks like the DOSGi service. On a local node, Cellar creates
a proxy servlet for each servlet that is registered (/service1 and /service2). If a
client sends an HTTP request to the node, the proxy servlet will proxy/forward the
request to the nodes, where the actual servlet has been deployed. This is shown in
the following diagram:

NodeA

Cellar Proxy
Servlet

http://A:8181/service

NodeBClient

Web Bundle

http://B:8181/service

Pax Web registers an OSGi service when a servlet is deployed. Cellar will provide a
service listener on the servlet's service. This listener will store the servlets in a cluster
map like the following:

• URI = node, node

This means we will have /service = nodeB for instance.

On all nodes, Cellar will create a proxy servlet for all URIs contained in the cluster
map if the actual URI is not already present. For instance, Cellar will create a proxy
servlet for /service on node A but not on node B (as the actual /service is located).

If a client calls on http://A:8181/service, this will use the Cellar proxy servlet
that will proxy an HTTP request and respond to node B as described in the
cluster map.

The cluster map will be able to contain multiple nodes for one URI. For instance,
/service may be deployed and available on nodes B, C, and D. In that case, Cellar
will use a round robin, or random algorithm to choose the target node to proxy to.
The algorithm will be defined by a configuration.

This load balancing feature will be available as an optional feature
cellar-http-loadbalancer with its own configuration file.

Chapter 9

[99]

Session clustering
A web application can use a client session to identify the requests coming from the
same clients. Used in a cluster environment, in order to work, we have to use session
affinity. Once the client has sent a request to a node, this client has to send the next
request to the same node. The issue is that if the node fails, the client session is lost
and so is all the work in progress.

Instead of session affinity, Cellar will provide support for session clustering. This
means that the HTTP sessions of each node are replicated to all the other nodes.
Thanks to that, we can load balance each request from any client to any node, as
all nodes store all HTTP sessions.

To provide this feature, Cellar directly leverages a feature provided by Hazelcast
(http://www.hazelcast.com/use-cases/web-session-clustering/).

Hazelcast provides a servlet filter that intercepts the HTTP requests to update the
session distributed map.

Normally, the developer has to update the web application web.xml to explicitly add
the Hazelcast filter with the following code:

 <filter>
 <filter-name>hazelcast-filter</filter-name>
 <filter-class>com.hazelcast.web.WebFilter</filter-class>
 <!–
 Name of the distributed map storing
 your web session objects
 –>
 <init-param>
 <param-name>map-name</param-name>
 <param-value>my-sessions</param-value>
 </init-param>
 <init-param>
 <param-name>sticky-session</param-name>
 <param-value>true</param-value>
 </init-param>
 <!–
 Are you debugging? Default is false.
 –>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

http://www.hazelcast.com/use-cases/web-session-clustering/

Roadmap

[100]

<filter-mapping>
 <filter-name>hazelcast-filter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<listener>
 <listener-class>com.hazelcast.web.SessionListener</listener-class>
</listener>

As Pax Web registers each servlet as an OSGi service, Cellar will provide a servlet
service listener to dynamically add a servlet filter on top of the actual filter.

The cluster session will be available as an optional feature cellar-http-session
that the user will have to install.

Clustering a log service
Karaf provides a very rich logging service by leveraging Pax logging.

It's possible to change the log level or display the log messages directly in the Karaf
shell console using specific commands: log:set, log:get, and log:display.

Cellar will provide the cellar-log optional feature. The installation of this feature
will add a new log appender. This appender will store the log messages in a cluster
map node/message.

Thanks to this cluster map, from any node we will be able to see log messages on
other nodes by issuing the following command:

karaf@root> cluster:log-display

nodeA …

nodeA …

nodeB …

nodeA …

For a specific node, run the following command:

karaf@root> cluster:log-display nodeA

nodeA …

nodeA …

Chapter 9

[101]

The purpose is to provide a cluster form of the log:* commands.

For instance, it is possible to change the log levels of all nodes in the cluster with the
following command:

karaf@root> cluster:log-set DEBUG

For a specific node, run the following command:

karaf@root> cluster:log-set DEBUG nodeA

The future versions of Cellar will be more than version updates. They will provide
new cluster features, first on the HTTP service, and other convenient features.

Even the version updates will be very important, especially with the support of new
Hazelcast versions.

Summary
This chapter showed the future of Cellar. One of the key directions for Cellar is
to provide more runtime features. If provisioning and synchronization were the
primary purposes, Cellar now provides more advanced features. If in this chapter
we saw the upcoming HTTP and log cluster features, the roadmap is still open. The
relationship between Cellar and other projects (such as CXF, ActiveMQ, or Camel,
as we saw with Pax Web) will certainly provide interesting runtime features.

Cellar will be the most complete open source cluster solution for Karaf platforms,
providing both cluster provisioning as it does now, as well as runtime clustering.

Index
A
Apache Karaf

features 11-16
provisioning 13, 14

Apache Karaf Cellar
about 21
architecture 24
commands 26
features 24
installing 26
URL, for information 21

Apache Karaf locking mechanism 18
Apache ZooKeeper 22
API bundle 79-81
architecture, Apache Karaf Cellar 24
async backup operations 43

B
backup

about 42, 43
persistence 43

blacklisted filter 71
blacklist keyword 71
bundle cluster event 70, 72
BundleEventHandler 65
bundles, Cluster resources 27-29
bundles, targeting provisioning 55, 56

C
caching

with distributed map 91-93
Camel 87

camel-hazelcast component 91
Cellar

runtime features 95
Cellar core 25
Cellar distributed map 42
Cellar Distributed OSGi (Cellar DOSGi) 77
cellar-eventadmin feature 36, 58
cellar-obr feature 37, 58
Cellar sources

URL, for source code 79
cellar-webconsole feature 37
client bundle 78, 84-86
ClusterBundleEvent 63
cluster:bundle-install command 28
cluster:bundle-list command 27
cluster component

purpose 23
ClusterConfigEvent 63
cluster:config-list command 33
cluster:config-propset command 35
cluster:consumer-start command 64
cluster:consumer-status command 64
cluster:consumer-stop command 64
cluster event consumer

about 61-63
functionalities 64

Cluster event consumer and handlers
module 25

ClusterEventHandler 65
cluster event model 23
cluster event producer

about 61, 62
functions 62

Cluster event producer module 25

[104]

cluster events
bundle 70, 72
config 70, 73
features 70-74
filtering 69, 70
inbound 71
outbound 71
specifying 71

cluster events, for producer
ClusterBundleEvent 63
ClusterConfigEvent 63
ClusterFeatureEvent 63
ClusterObrEvent 63

ClusterFeatureEvent 63
cluster:feature-install command 54
cluster:feature-install <group_name>

<feature_name> command 54
cluster:group-create command 70
cluster:group-create <group-name>

command 51
cluster:group-delete <group_name>

command 52
cluster:group-join command

about 52, 53
arguments 52

cluster:group-list command 52
cluster:group-quit command 53
cluster groups

managing 51-53
cluster:group-set command 53
cluster:handler-start command 66
cluster:handler-status command 65
cluster:handler-stop command 65
clustering

layers 22
Cluster Manager cluster 22
cluster manager component 22
cluster:node-list command 26
ClusterObrEvent 63
cluster:producer-start command 63
cluster:producer-status command 62
cluster:producer-stop command 62, 63
Cluster resources

about 27
bundles 27-29
configuration 33-35
Karaf features 30-32

Karaf WebConsole plugin 37
optional resources 36, 37

Cluster topologies 21, 22
commands module 25
commands, Apache Karaf Cellar 26
commands, targeting provisioning 59, 60
commons-lang bundle 28, 29
communication

between remote routes 87-91
config:list command 73
configuration, Cluster resources 33-35
ConfigurationEventHandler 65
configuration, filters 69, 70
configurations, targeting provisioning 57

D
default filter configuration 75
distributed cluster resource states

about 40
Cellar distributed map 42
distributed queues 41
distributed topics 41

distributed map
caching with 91-93

distributed queues 41
distributed topics 41
dosgi-greeter:greet shell command 84

E
event handlers

BundleEventHandler 65
ClusterEventHandler 65
ConfigurationEventHandler 65
FeaturesEventHandler 65
ObrBundleEventHandler 65
ObrUrlEventHandler 65
overview 64-66

event identifier 72

F
features, Apache Karaf Cellar 24
features cluster event 70, 74
FeaturesEventHandler 65
features:install <feature_name>

command 54

[105]

features:list command 74
features, targeting provisioning 54, 55
filters

configuring 69, 70
functionalities, cluster event consumer 64
functions, cluster event producer 62

G
greet() method 79
GreetResponse class 80

H
Hazelcast

about 24, 25, 39, 40
URL, for session clustering 99

hazelcast:map endpoint, headers
about 93
CamelHazelcastCacheName 93
CamelHazelcastListenerAction 93
CamelHazelcastListenerTime 93
CamelHazelcastObjectId 93

Hazelcast NIO
about 78
URL 78

HTTP
load balancing 95-98
session clustering 95, 99, 100

I
inbound cluster events 71
installation, Apache Karaf Cellar 26
IPv6 support 48

J
Java Authentication and Authorization

Service (JAAS) 12
Java Database Connectivity (JDBC) 13
Java JAR (Java ARchive) file 9
Java Message Service (JMS) 13, 88
Java Naming and Directory Interface

(JNDI) 13
Java NIO Javadocs

URL 78

Java Persistence API (JPA) 13
Java Transaction API (JTA) 13
Java Virtual Machine (JVM) 8

K
Karaf features, Cluster resources 30-32
Karaf WebConsole plugin, Cluster

resources 37

L
layers, clustering 22
listeners 67
load balancing, HTTP 96-98
log service

clustering 100, 101

M
MBeans 25
modules, Karaf

Cellar core 25
Cluster event consumer and handlers 25
Cluster event producer 25
Commands 25
Hazelcast 25
MBeans 25
Resources listeners 25
Resources synchronizers 25
WebConsole plugin 25

multiple Apache Karaf containers
about 17, 18
provisioning cluster 19

N
networks

about 44
encryption, enabling of content 47
interfaces 45, 46
IPv6 support 48, 49
multiple clusters 44
outbound ports, restricting 49
SSL 46
TCP/IP 45

[106]

nodes
communicating, via distributed

service registry 78
NodeA 88, 89
NodeB 90, 91

none keyword 72

O
OBR 15, 58
ObrBundleEventHandler 65
ObrUrlEventHandler 65
Open Software Gateway initiative.

See OSGi
optional resources, Cluster resources 36, 37
optional resources, targeting

provisioning 57, 58
org.apache.felix.fileinstall:

configurations 73
org.apache.karaf.cellar: configurations 73
org.apache.karaf.management

configuration 73
org.apache.karaf.shell configuration 73
org.ops4j.pax.logging configuration 73
org.ops4j.pax.web configuration 73
OSGi

about 8
agility 8
discovery 8
features 8
framework 8
purposes 8
reuse 8
visibility 8

OSGi bundle
about 9
dependency 9, 10

OSGi Bundle Repository. See OBR
OSGi container

about 11
Apache Karaf features 15
OBR 15
provisioning, in Apache Karaf 13

outbound cluster events 71
outbound ports

restricting 49
overlap, targeting provisioning 58, 59

P
Pluggable Authentication Modules

(PAM) 12
provisioning cluster, Apache Karaf

tasks 19

R
regular expression (regex) 72
remote routes

communication 87-91
replicas

about 42, 43
persistence 43

resources 70
Resources listeners module 25
Resources synchronizers module 25
Role Based Access Control

(RBAC) system 12
runtime features, Cellar

HTTP 95
monitoring 95
other projects 95

S
service bundle 78, 81-84
Service-Oriented Architecture (SOA) 10, 77
session clustering, HTTP 99, 100
SSL socket communication 46
staged event-driven architecture (SEDA) 87
sync backup operations 43
synchronizers 67

T
targeting provisioning

about 53
bundles 55, 56
commands, summary 59, 60
configurations 57
features 54, 55
optional resources 57, 58
overlapping 58, 59

TCP/IP 45
time to live (TTL) 41

[107]

W
Web Application Bundle (WAB) 13
WebConsole plugin 25
whitelisted filter 71
whitelist keyword 71

Thank you for buying
Learning Karaf Cellar

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Apache Karaf
ISBN: 978-1-78217-204-8 Paperback: 128 pages

Develop and deploy applications using the
OSGi-based runtime container, Apache Karaf

1. Understand Apache Karaf's commands and
control capabilities.

2. Gain familiarity with its provisioning features.

3. Explore various application deployments
targets experientially.

Instant OSGi Starter
ISBN: 978-1-84951-992-2 Paperback: 58 pages

The essential guide to modular development
with OSGi

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn what can be done with OSGi and what it
can bring to your development structure.

3. Build your first application and deploy it to an
OSGi runtime that simplifies your experience.

4. Discover an uncomplicated, conversational
approach to learning OSGi for building and
deploying modular applications.

Please check www.PacktPub.com for information on our titles

OSGi and Apache Felix 3.0
Beginner's Guide
ISBN: 978-1-84951-138-4 Paperback: 336 pages

Build your very own OSGi applications using the
flexible and powerful Felix Framework

1. Build a completely operational real-life
application composed of multiple bundles
and a web frontend using Felix.

2. Get yourself acquainted with the OSGi concepts,
in an easy-to-follow progressive manner.

3. Learn everything needed about the Felix
Framework and get familiar with Gogo, its
command-line shell to start developing your
OSGi applications.

Instant Apache ServiceMix How-to
ISBN: 978-1-84951-966-3 Paperback: 66 pages

Learn to create simple ServiceMix-based integration
solutions using short, practical, hands-on recipes

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Leverage OSGI to speed up the ESB deployment.

3. Define message flow with Camel DSL.

4. Expose your system via web services.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Karaf – Provisioning and Cluster
	What is OSGi?
	The OSGi framework
	The OSGi bundle
	Dependency between bundles

	The OSGi container
	Provisioning in Apache Karaf
	OBR
	Apache Karaf Features

	Multiple Apache Karaf containers
	Provisioning clusters

	Summary

	Chapter 2: Apache Karaf Cellar
	Cluster topologies
	Apache Karaf Cellar architecture
	Apache Karaf Cellar installation and first commands
	Cluster resources
	Bundles
	Karaf features
	Configuration
	Optional resources
	The Karaf WebConsole plugin

	Summary

	Chapter 3: Hazelcast
	What is Hazelcast?
	Distributed cluster resource states
	Distributed queues and topics
	The Cellar distributed map

	Replicas/Backup
	Persistence

	Networks
	Multiple clusters
	TCP/IP
	Interfaces
	SSL
	Encryption
	IPv6 support
	Restricting outbound ports

	Summary

	Chapter 4: Cluster Groups
	Managing cluster groups
	Targeting provisioning
	Features
	Bundles
	Configurations
	Optional resources
	Overlapping
	The summary of commands

	Summary

	Chapter 5: Producers, Consumers, Handlers, Listeners,
and Synchronizers
	The event producer
	The event consumer
	Event handlers
	Listeners and synchronizers
	Summary

	Chapter 6: The Filtering of
Cluster Events
	The configuration of the filters
	Resources
	Blacklist and whitelist
	Inbound and outbound
	Regex and event identification
	Bundle
	Configuration
	Features

	The default filter configuration
	Summary

	Chapter 7: DOSGi
	What is Cellar DOSGi?
	The API bundle
	The service bundle
	The client bundle
	Summary

	Chapter 8: Cellar and Camel
	The communication between remote routes
	Caching with a distributed map
	Summary

	Chapter 9: Roadmap
	HTTP load balancing and session clustering
	Load balancing
	Session clustering

	Clustering a log service
	Summary

	Index

