
www.allitebooks.com

http://www.allitebooks.org

Learning Less.js

Develop attractive CSS styles efficiently, using the Less
CSS preprocessor

Alex Libby

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Less.js

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1201014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-066-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Alex Libby

Reviewers
JD Isaacks

Max Mikhailov

Mathias Paumgarten

Johan Sörlin

Commissioning Editor
Jonathan Titmus

Acquisition Editor
Neha Nagwekar

Content Development Editor
Arvind Koul

Technical Editor
Pratik More

Copy Editors
Dipti Kapadia

Deepa Nambiar

Stuti Srivastava

Project Coordinator
Neha Bhatnagar

Proofreaders
Ting Baker

Maria Gould

Joanna McMahon

Indexers
Mariammal Chettiyar

Rekha Nair

Priya Sane

Production Coordinators
Komal Ramchandani

Alwin Roy

Shantanu N. Zagade

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alex Libby is from an IT support background. He has been involved in supporting
end users for the last 18 years in a variety of different environments, and he currently
works as a technical analyst, supporting a medium-sized SharePoint estate for
an international parts distributor based in the UK. Although he gets to play with
different technologies in his day job, his first true love has always been with the open
source movement, and in particular, experimenting with CSS/CSS3 and HTML5.
To date, Alex has written several books for Packt Publishing, including a video on
HTML5 and books on jQuery UI. This is his seventh book with Packt Publishing.

I'd like to thank family and friends for their help and
encouragement, Arvind for his help and guidance in writing the
book, and the reviewers for providing lots of constructive comments
with the reviewing—without them, I am sure I wouldn't have been
able to produce this book!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

JD Isaacks has been a software developer for the past 8 years. Before that,
he was an information systems analyst in the U.S. Army. He is a devoted husband
and father, and when he isn't spending time with his family, he loves to work
on all things open source. He has published several projects including a very
popular Sublime Text package titled GitGutter. You can view his work at
https://github.com/jisaacks.

I would like to thank my wife, Christina, for sacrificing many
evenings to allow me to work on this book and all my other projects.
I would also like to thank my son, Talan, just for being so awesome.

Mathias Paumgarten is a creative developer from Austria. He is currently living
and working in Santa Monica, California.

Starting with a background in Flash development, Mathias found his passion for
code-driven animation at a very young age. Over the years, while working for and
at several agencies, he broadened his skillsets, leaving the web platform and working
on installations, using low-level languages such as C and C++.

After graduating with a Bachelor's degree from the University of Applied Sciences,
Salzburg, Austria, he decided to leave Austria. While focusing on modern web
technologies such as HTML5 and JavaScript, he is currently working as a frontend
JavaScript developer.

He has worked for several renowned agencies such as B-Reel, Soap Creative, and
Firstborn, working on projects for Sony, Fox Entertainment, PepsiCo Inc., Google,
HP, and many more.

As well as receiving recognition such as FWA and other awards, Mathias has
also contributed to books such as HTML5 Games Most Wanted, friendsofED,
and Mastering openFrameworks: Creative Coding Demystified, Packt Publishing.

www.allitebooks.com

https://github.com/jisaacks
http://www.allitebooks.org

Johan Sörlin is a senior application developer with 15 years of experience in web
development. He cofounded Moxiecode Systems and has been the CTO of this
company for the past 11 years. Here, he mainly works on open source projects
such as TinyMCE, a rich text editor component used by thousands of systems.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introducing Less	 9

The role of HTML and CSS	 10
The limitations of using CSS	 11
The benefits of using CSS preprocessors	 12

Why not just write normal CSS?	 13
Introducing Less as a solution	 14
Why you should use Less	 16

Reducing redundancy with variables	 16
Understanding the syntax of variables	 16
Creating reusable blocks of code	 17

Generating values automatically	 18
Forgetting about vendor prefixes	 19
Creating media queries and animation the simple way	 20
Reusing code across multiple projects	 21
Compressing CSS automatically for faster websites	 22

Supporting CSS4 standards within Less	 23
Supporting future CSS standards within Less	 24

Summary	 25
Chapter 2: Building a Less Development Toolkit	 27

Choosing an IDE or editor	 28
Installing Sublime Text 2	 28
Adding Less syntax support	 29

Compiling Less files with a standalone compiler	 31
WinLess	 32
SimpLESS	 33
Koala	 34
Installing Crunch!	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Compiling from the command line	 36
Watching for changes to Less files	 39
Compiling Less files directly from text editors	 42
Installing the compilation support via a package	 43

Debugging Less in browsers	 45
Debugging the Less code using Firefox	 45
Debugging the Less code in Chrome	 46
Installing WampServer	 47

Other useful tools	 51
Summary	 52

Chapter 3: Getting Started with Less	 53
Creating the foundation page	 54
Downloading and installing Less	 54
Installing Less on the client side	 55

Using a CDN	 56
Installing Less on the server side	 56

Installing Less using Node	 57
Installing Less using Bower	 57

Using the Bower package	 60
The dangers of using Less on the client side	 60
Exploring the syntax used by Less	 62

Working with variables	 62
Changing variables programmatically	 63
Creating mixins	 64
Nesting styles in Less	 65
Calculating values using operations	 66
Extending existing styles in Less	 67

Compiling the code and viewing results	 68
Using a standalone compiler	 68

Using the command-line compiler	 71
Compiling Less files using the command line	 71

Watching for changes in Watch mode	 71
Summary	 74

Chapter 4: Working with Variables, Mixins, and Functions	 77
Discovering variables in Less	 78

Creating Polaroid images	 79
Loading variables and setting the scope	 81

Exploring mixins	 83
Creating a web form	 83
Adding basic mixins	 85

Table of Contents

[iii]

Hiding the original mixin	 86
Using the !important keyword	 87

Developing parametric mixins	 88
Passing multiple parameters	 91
Applying conditions to mixins	 93
Using special keywords	 93

Creating mixins as functions	 95
Using external libraries	 96
Introducing functions	 97

Creating column-based layouts	 97
Moving calculations to a mixin	 99
Working with the data-uri function	 100

Using the data-uri function – some words of caution	 103
Summary	 103

Chapter 5: Inheritance, Overriding, and Nesting in Less	 105
Nesting styles in Less	 106

Creating a business card	 106
Examining the process in detail	 107

Inheriting and overriding styles with extend	 109
Using extend to create information alerts	 110
Extending using the all keyword	 112

Namespacing in Less	 115
Lazy loading of variables in Less	 118
Importing style sheets into Less	 122
Avoiding code bloat	 123
Summary	 125

Chapter 6: Migrating Your Site to Less	 127
Preparing for the initial jump	 128
Creating the initial framework	 128

Mixing Less with plain CSS	 129
Spotting low-hanging fruit	 130
Identifying patterns in your CSS	 132
Using prebuilt mixin libraries	 133
Building a library of mixins	 134
Working through a practical example	 135

Introducing the CSS	 136
Identifying the changes to be made	 137
Making the changes	 139
Using the CSS3 mixins	 139
Creating variables for fonts	 140

Table of Contents

[iv]

Creating variables for colors	 141
Switching to using nesting	 142
Incorporating our own mixins	 143
Importing images into style sheets – a bonus	 144

Viewing the finished article	 145
Summary	 146

Chapter 7: Manipulating Fonts with Less	 147
Creating simple font mixins	 148

Extending the mixin	 149
Using @font-face with Less	 150

Downloading the font files	 150
Embedding the font into our demo	 151

Using a prebuilt library to handle fonts	 153
Using variables to calculate sizes	 155

Moving with the times	 156
Handling different weights	 157
Working with @media in Less	 159

Creating a basic media query	 160
Examining the Less file	 160

Creating special effects using Less	 162
Taking effects further	 163

Summary	 164
Chapter 8: Media Queries with Less	 165

Introducing media queries	 166
The limitations of CSS	 167
Setting client criteria	 168
Exploring media queries	 170

Defining media types	 170
Exploring media features	 170

Using logical operators	 172
Designing media queries	 173

Creating a simple example	 173
Using tools to resize the screen	 177

Building responsive pages	 180
Building the basic page	 181
Adding responsive queries	 183
Adding responsive images	 185
Incorporating retina support for images	 187

Using prebuilt libraries	 190
Summary	 191

Table of Contents

[v]

Chapter 9: Working with Less in a CMS	 193
Introducing the WP theme structure	 194
Preparing our environment	 195
Creating a basic child theme	 195
Adding support for Less in WordPress	 197

Showing Less style sheets to specific users	 198
Adding Less support using a plugin	 199
Working with Less themes in WordPress	 201

Converting themes to use Less	 202
Creating our own theme	 205
Taking construction further	 209
Using a prebuilt Less theme	 210

Automating WordPress development	 210
Using Grunt in WordPress development	 211

Summary	 215
Chapter 10: Using Bootstrap with Less	 217

Dissecting Bootstrap's Less file structure	 217
Downloading the library	 218

Configuring Bootstrap for your site	 219
Using Internet Explorer 8 or below	 220

Building a more realistic site	 221
Compiling the Bootstrap CSS and JavaScript	 224
Examining Bootstrap's mixins	 224
Dissecting Bootstrap's mixins	 226

Core variables and mixins	 227
Reset and dependencies	 227
Core CSS styles	 227
Components	 228
Utility classes	 228

Dissecting Bootstrap's theme mixins	 229
Utilities	 229
Components	 230
Skins	 230
Layout	 231

Customizing our download	 231
Changing the values in our download	 235

Developing a workflow for using Bootstrap	 237
Summary	 238

Table of Contents

[vi]

Chapter 11: Abstracting CSS Frameworks with Less	 239
Discovering what's wrong with using frameworks	 240
Diagnosing the problem	 240

Keeping HTML code clean	 241
Fixing the code	 242

Exploring our solution	 245
Simplifying complex styles	 246
Summary	 248

Chapter 12: Color Processing with Less	 249
Introducing color management in Less	 250
Examining color spaces and formats	 250

Working with arithmetic operators	 251
Working with color functions	 252

Defining color formats	 252
Converting colors from HEX to RGBA	 252

Channeling colors using Less	 254
Creating alert boxes	 255

Operating on colors	 257
Making text darker or lighter in color	 258

Color blending	 259
Comparing Less with Photoshop	 260

Introducing palettes	 261
Analyzing color palette examples	 262
Choosing our colors	 263
Using a photo as our source	 263
Creating a color palette using Less	 265
Ditching old habits	 268
Working with W3C and WCAG standards	 269
Overcoming blocks on access to a site	 269
Introducing WCAG	 270
Making a site useable	 271

Summary	 271
Chapter 13: Animation with Less	 273

Introducing animations	 274
Creating a good animation	 274
How a CSS animation works	 275
Introducing animation types	 276

Animating content	 276
Transitioning elements	 277
Transforming elements	 278
Supporting animations in browsers	 280

Table of Contents

[vii]

Simplifying the animation markup with Less	 280
Creating animated menus	 282
Libraries using Less	 285

Converting from other libraries	 286
Using vendor prefixes – a warning	 288

Using CSS or JavaScript	 289
Improving the animation's performance	 290

Forcing hardware acceleration for a CSS animation	 291
Summary	 292

Chapter 14: Extending and Contributing to Less	 293
Locating the Less repositories	 294
Finding and reporting issues in Less	 295
Reporting bugs in the library	 296
Contributing to the Less source	 297

Getting prepared	 297
Submitting feature requests	 298
Creating pull requests	 298

Using GUIs with Git	 299
Testing your submissions	 299

Contributing to the Less documentation	 300
Installing the documentation locally	 301

Working to coding guidelines	 302
Summary	 303

Appendix: Color Functions in Less	 305
Defining color formats	 305
Channeling colors using Less	 306
Operating on colors	 307
Color blending	 308

Index	 309

Preface
Imagine the scene if you will—it's 5 pm, late in the day, and your client wants the impossible…

You know the scene—you've created a kick-ass website, but the client isn't happy
with the color of the buttons you've used on the site. They say the color shades used
aren't quite there and need tweaking. A reasonable request, right? Except that there
are dozens of buttons throughout the site, with most of them using different colors…
Oh heck… no chance of an early finish then…

Or, is there? There is—what if we could change a handful of values and it
automatically changes each button for you? Sounds crazy, right?

Wrong, it is absolutely possible. Welcome to the world of CSS preprocessors and
Less! The power of Less means that we can set a couple of values that can be applied
to any number of elements (such as buttons). Rather than having to change all of
the buttons manually, we change the values and hit a button to recompile our code.
Voilà! The code is instantly updated, and the buttons show the new color.

Throughout this book, we'll meet the Less library, learn how to use it, and apply
its power to a number of real-world scenarios, such as updating buttons to build
a complete theme for CMS systems, such as WordPress. We'll take a look at the
subjects such as animating, color management, abstracting frameworks,
and creating media queries for responsive sites.

It's going to be a great journey, full of twists and turns—the question is, are you
ready? If so, let's make a start…

Preface

[2]

What this book covers
Chapter 1, Introducing Less, takes us through the roles that both HTML and CSS play,
and examines the inherent limitations of using CSS as a technology. We begin our
journey by taking a look at the role CSS preprocessors play and how using Less can
act as a solution for some of these limiting issues.

Chapter 2, Building a Less Development Toolkit, is where we get to know Less for the
first time, with a look at how we can incorporate it in our code, explore its syntax,
and create some basic styles. We'll take a look at the different ways of compiling Less
into valid CSS and why it is best to precompile code rather than use it dynamically
in the browser.

Chapter 3, Getting Started with Less, delves into the wide range of tools and
applications that are available and can be useful for working with Less; the chapter
will provide some hints and tips on how to build an effective toolkit for working
with Less, which you can integrate into your own development workflow.

Chapter 4, Working with Variables, Mixins, and Functions, continues from where we
left off in Chapter 2, Building a Less Development Toolkit, with a look at one of the key
concepts of Less, in the form of mixins. We'll take a look at this incredibly powerful
tool, which will help you to save a lot of time when developing Less; we will also
cover how we can create variables and functions to create our CSS styling when
working with Less.

Chapter 5, Inheritance, Overriding, and Nesting in Less, examines how, with a little
forethought and careful design, we can use the power of Less to create new styles
based on existing ones, but without the need to duplicate the existing code. We'll
also see how Less allows us to split style sheets into smaller, more manageable
files, where we can group common styles together, making it easier to manage
our development.

Chapter 6, Migrating Your Site to Less, contains the answer to the question asked by
many developers when starting with Less: how can I incorporate it into existing
sites? We'll take a look at some of the tips and tricks that we can use to gradually
transition a site to use Less while still maintaining the existing CSS until it has been
converted to its Less equivalent.

Chapter 7, Manipulating Fonts with Less, examines how, with some simple tricks, we
can easily maintain any font style used within our site with the help of Less; we'll see
how, with a little care and planning, we can make minimal changes that will quickly
update font styles throughout the whole site.

Preface

[3]

Chapter 8, Media Queries with Less, takes a look at how we can use Less to quickly and
effectively construct responsive sites using the power of media queries. We'll take
a brief look at how media queries work and then move on to take a look at how we
need to set expectations with clients and decide what should be supported, before
using Less to build our queries.

Chapter 9, Working with Less in a CMS, takes us through how Less can be used to
great effect when managing styles for any content management system available
today. In this chapter, we'll use WordPress as our example to see how Less can first
be incorporated directly in code or by using plugins. We'll then move on to the
conversion process, with a look at how to transition a WordPress site to use Less,
and how we can remove the need to manually compile styles with the use of a
Grunt plugin.

Chapter 10, Using Bootstrap with Less, continues our journey through frameworks with
a look at the popular Bootstrap system and how it uses Less to create its styles. We'll
take a look at its file structure and some of the mixins it uses before configuring it
for use on a demo web page as a part of developing a workflow for using Bootstrap
with Less.

Chapter 11, Abstracting CSS Frameworks with Less, illustrates one of the pitfalls of using
frameworks, where the supplied code can be nonsemantic and inefficient. In this
chapter, we'll learn why frameworks aren't always the answer to everything and that
they can make it hard to transition to a different solution if we want to change. We'll
take a look at how we can use Less to help simplify complex styles, keep our HTML
clean, and ultimately make frameworks work for us, and not the other way around.

Chapter 12, Color Processing with Less, covers one of the most important aspects of any
website—colors! CSS styling can make maintaining colors difficult. In this chapter,
we'll take a look at how we can bring the power of image processing to our CSS
development with the use of Less. We'll also learn how, with a little care, we can
begin to reduce our reliance on graphic packages such as Photoshop as part of our
development workflow.

Chapter 13, Animation with Less, takes us on a journey to show how Less can be used
to help simplify the pain experienced when animating elements and objects on a web
page. In this chapter, we'll see how animations work, briefly cover the different types
of animations available, and see how Less can simplify the markup, before taking a
look at using our skills to produce a simple animated menu that could be used on
any site.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Chapter 14, Extending and Contributing to Less, is the concluding chapter in our
journey through the world of Less with a look at how we can give back to the project
and help develop the library further. We'll see how to report bugs, where to find the
documentation for the library, and contribute any code fixes or improvements
to the library.

Appendix, Color Functions in Less, lists details of each function, within four groups
of defining color formats, channeling colors, performing color operations, and
blending colors.

What you need for this book
All you need to work through most of the examples in this book is a simple text or
code editor, a copy of the Less library, and a browser. I recommend that you install
Sublime Text—either Versions 2 or 3—as we will go through how to configure it for
use with Less, both for syntax and compilation purposes.

Some of the examples make use of additional software, such as WordPress or
Crunch!—the details are included within the appropriate chapter along with
links to download the application from the source.

Who this book is for
The book is for frontend developers who need to quickly learn how to use Less in
order to write CSS styles more efficiently with less code. To get the most out of this
book, you should have a good working knowledge of HTML, CSS, and JavaScript,
and ideally be comfortable with using jQuery.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In our example, we've added a reference to the Less object and then used the
modifyVars method to change the color of the @button-color variable,
which we've specified in object.less, to #61783F."

Preface

[5]

A block of code is set as follows:

header {
 margin-bottom: 25px;
 nav {
 height: 25px;
 a { color: white }
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

.shape1 {
 color: #5cb100;
 border: 1px solid #5cb100;
}

.shape2 {
 background: #fff;
 color: #5cb100;
}

.shape3 {
 border: 1px solid #5cb100;
}

Any command-line input or output is written as follows:

npm install -g grunt-cli

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on Continue to begin the installation."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book – what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books – maybe a mistake in the text or
the code – we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us to improve subsequent versions of
this book.

If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

feedback@packtpub.com
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/ support
http://www.packtpub.com/ support
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

copyright@packtpub.com
questions@packtpub.com

Introducing Less
Are you tired of writing the same old CSS styles for client websites only to find out
that you're repeating yourself? Wish you could cut down on what you write and still
produce the same results…?

Well, you can. Welcome to the world of CSS preprocessors, and in particular, Less!
CSS preprocessors such as Less are designed to help you reorganize your styles to
smaller, more manageable chunks of reusable code that you can store and reference
as and when your projects demand.

Less, designed as a superset or extension of CSS, is very much about making your
development work easier—it incorporates variables and functions that are more
likely to be seen in scripting languages such as JavaScript while still compiling in
valid CSS. While the initial thought of working with code might scare you, you'll
see that Less is really just CSS, but with some additions to help make development
easier. Less will help you cut down the development time, as you can reuse code
from one project in another—how much is all up to you!

In this chapter, we will cover the following topics:

•	 The roles of HTML and CSS, and the limitations of using CSS
•	 Why CSS preprocessors are needed
•	 Why you should use Less
•	 The advent of CSS4, and what this means for Less

Introducing Less

[10]

The role of HTML and CSS
If you spend time developing websites for clients, it is likely that you will have used
both HTML and CSS to create your masterpiece.

HTML, created in 1990, has been the de facto standard for placing content on a web
page. Over the years, it has evolved into what we now know as HTML5, which we
can use to produce some very detailed websites or online applications. To use a
cooking analogy, HTML is effectively the creation of the cake base; it is content that
makes sense to any Internet browser. HTML forms the base of any website available
on the Internet—it won't look very exciting, but it will have all the elements you
need, such as headings, paragraphs, and images, to produce well-formed pages.
Well-formed pages are made up of two elements: accessibility and validation.

Accessibility is the equivalent of building a new house, where we can add ramps
or make doorways wider than normal to make it accessible for everyone. Basic
accessibility isn't difficult or complex, but it must become a part of the development
process; when left to its own devices, it will make it harder to move around the
house, for those who need extra help to do so! In tandem with accessibility comes
validation, which is very much like the Physics of cooking; if we work within the
rules of validation, we can produce a masterpiece, while working outside of best
practices is likely to lead to disaster.

It would be hard to produce a website without some form of decoration though;
using HTML alone won't produce a very exciting effect! It's for this reason that we
employ CSS to add final touches to our website, where we can tweak the positioning,
add animation, or alter the colors of the elements on the page. Just as you can't build
a house without cement, you can't produce a website without using CSS at some
point in its creation.

Using CSS does not come without its limitations though—as it has evolved over the
years, the support for its functionality has changed. One can argue that it has come a
long way since its incarnation back in 1996, but at its very heart, it will always suffer
from some core deficiencies. Let's take a look at these in more detail.

Chapter 1

[11]

The limitations of using CSS
If you've spent time working with CSS, you will know the pain and heartache
suffered when working with CSS—and all in the pursuit of creating that perfect
site! Those who are still somewhat new to working with CSS will, at some point,
fall foul of some of the limitations of CSS, which include:

•	 CSS is heavily dependent on browser capability—it is impossible to display
the same content in every browser in the same way. We can get around this,
but not without the expense of having to add vendor-prefixed statements.
This can lead to pages with a lot of repeated code, making them slow and
difficult to maintain, where even the smallest change requires a lot of effort.

•	 Not every browser supports every feature within CSS—this is particularly
true of CSS3. This means we need to implement some form of graceful
fallback for the affected browsers if we are to maintain some form of
visitor experience.

•	 The advent of CSS made a functionality such as columns on a magazine
website much easier, although it is still not perfect. To achieve perfect
columns, we will require JavaScript or jQuery to tweak the code, which
makes the page less accessible (for example, making it harder for those using
screen readers). It also has an effect on the use of progressive enhancement,
where content should be enhanced using a functionality, such as CSS3 or
jQuery, and not reliant on it.

•	 It is impossible to target specific ranges of content, without altering the
markup to include placeholders; should these placeholders change, then the
associated CSS must also change.

•	 We can't include a rule from one CSS style in another, nor can we name a
rule—the latter of which could be used by client-side scripts, even if the
selector that is being referenced changes.

By now, you're probably thinking that it is all doom and gloom when using CSS;
fear not, we can fix this with the help of CSS preprocessors to help make our
development more effective.

Introducing Less

[12]

The benefits of using CSS preprocessors
If you've spent time working with CSS, one of the first questions you may ask
yourself is "Why do I need to use a preprocessor?" It's a valid question and you
certainly won't have been the first person to ask this either! Let me explain this in
more detail.

CSS is known as a declarative language—this means that the rules we use to declare
what happens to an element will be the rules that the browser uses to paint the
results on the screen. If, for example, we want a block of text, such as a printed
comment, to be in italics, then we will use something akin to the following code:

.comment {
 font-style: italic;
 font-size: 12px;
}

The browser will then render this on the screen in 12 px italicized text.

This example is very straightforward—it could be used anywhere. The trouble is,
we may need to specify the same styling attributes elsewhere. We could use the
.comment class, but what happens if we want to change the size? Or, perhaps
render the text in bold instead?

Changing the style rules to suit one element could break them for the original element,
which is not ideal. Instead, we will need to create multiple style rules that apply to
specific elements, but which duplicate this code—this could make for very verbose
CSS! Just imagine that we end up having to create a selector such as the following:

.article #comments ul > li > a.button {

...some style rules...
}

This isn't an easy selector to understand, let alone apply styling to, right? We can
eliminate this issue of duplication using Less—it is possible to set one style block
at the start of our Less style sheet and then reuse this style at every instance in our
code, in the same way as you might use the autotext function to add predefined
text to a document in Word, based on a key phrase. If we make a change, we only
need to do it once—Less will automatically update our code, avoiding the need to
do it manually. Imagine doing this for the dozens of buttons you might have on an
e-commerce site and the benefits will soon be apparent!

Chapter 1

[13]

This might come across as an alien concept in CSS—after all, I am sure we are used
to writing code manually and spending many hours perfecting it. You might well
have some misgivings about using a CSS preprocessor to take out some of the grunt
work, particularly as it is satisfying when you manage to achieve that stunning piece
of CSS artwork for a client. It's perfectly natural—let's take a moment to consider
some of the common misgivings about using CSS preprocessors.

Why not just write normal CSS?
Many people will often ask, "If we're producing CSS, why aren't we just writing it
instead?" It's a common reaction; after all, we use CSS every day to solve any layout
problem thrown at us while building beautiful responsive sites that work in any
browser. The last thing we want is to not look like we know what we're doing, right?

Let me be clear from the outset: the purpose of using Less is not to write better CSS.
If you don't understand how to use CSS now, then Less won't help you fill that gap.
What it will do is help you write CSS faster and more easily, while making your style
sheets more manageable at the same time. Let's explore some of the reasons why we
should switch to using a CSS preprocessor, such as Less, in more detail:

•	 CSS preprocessors, such as Less, don't break browser compatibility—each
CSS preprocessor produces valid CSS

•	 CSS preprocessors help to make our CSS DRY (Don't Repeat Yourself)—
we can create variables from reusable CSS properties, which helps us to
make our code more scalable and manageable, as we can break it down into
smaller files that automatically compile into one larger style sheet

•	 CSS preprocessors, as we'll see throughout the book, contain some useful
features that help remove some of the tedium that frequently appears when
writing CSS styles, by automating some of the low-value tasks that have to
be performed

•	 We can take advantage of the nesting capabilities of CSS preprocessors,
which leads to a more natural style of writing, where we can use a form
of shorthand to produce the desired effect

Now that we've explored some of the advantages of using a CSS preprocessor, let's
delve in and get acquainted with Less for the first time. We'll go on a whistle-stop
tour in order to give you a flavor of what to expect in Less. Don't worry if you don't
understand it just yet; we will cover everything in more detail throughout the book.

www.allitebooks.com

http://www.allitebooks.org

Introducing Less

[14]

Introducing Less as a solution
First created in 2009 by Alexis Sellier, Less is a dynamic style sheet language
originally written to use Ruby; this was soon deprecated in favor of the significant
increase in speed gained by rebasing the library in JavaScript. It is designed to be
used by both the client and the server—the latter with help from Node.js, which we
will cover in Chapter 3, Getting Started with Less.

Less was built as a superset of CSS, which means that it contains more advanced
tools than traditional CSS. This allows us to write less code while still compiling it to
valid CSS. The key to this lies in how we can use Less to produce better organized,
more readable code. To see this in practice, let's take a look at a quick example of
what we mean.

Imagine that you've written the following sample of CSS code—it's a perfectly valid
CSS, even though it won't actually produce any useable results:

header {
 margin-bottom: 25px;
}

header nav {
 height: 25px;
}

header nav a {
 color: #151b54;
}

You might have noticed though that we've had to repeat ourselves a little, which is
not ideal, but a necessary evil when writing such styles. The code is readable in our
example, but if we had developed this to any degree, the repetitive nature of the
selectors (such as header nav div.first div.thumb .img-wrapper img) could
make it harder to follow the code.

One of the core concepts of Less is to use the DRY principle when writing
code—we can take advantage of its nested metalanguage syntax to reduce
the code by nesting our statements. If we take the previous block of code and
reform it using Less, it will look as follows:

header {
 margin-bottom: 25px;
 nav {
 height: 25px;
 a { color: #151b54; }
 }
}

Chapter 1

[15]

Here we compile to the CSS we've just seen.

Notice how we managed to reduce the amount of code we had to write while
making the code easier to read, by grouping styles and adopting a more natural
flow. Nested metalanguages are hierarchy based, where we can group related
declarations together and reorder them in some form of hierarchy that abstracts
each level while including the higher level. Less will naturally group these related
declarations together, which is a great benefit if a CSS style sheet is edited by
multiple individuals.

If you would like to learn more about nested metalanguages,
you may want to browse to http://en.wikipedia.org/
wiki/Metalanguage#Nested_metalanguage. Note that
it's a somewhat dry reference (pun intended!).

To prove that this does indeed compile to valid CSS, you can see the results of
compiling the previous Less code in Crunch!. Crunch! is a CSS editor and compiler
for Less, which we will cover in more detail in Chapter 2, Building a Less Development
Toolkit. You can code in Crunch! as shown in the following screenshot:

http://en.wikipedia.org/wiki/Metalanguage#Nested_metalanguage
http://en.wikipedia.org/wiki/Metalanguage#Nested_metalanguage

Introducing Less

[16]

Don't worry if nesting code doesn't mean a great now—we will cover nesting in
more detail in Chapter 4, Working with Variables, Mixins, and Functions. This is just one
of the many functions in Less that will help revolutionize your CSS development.
Let's take this a step further by delving into some of the reasons why you should
use Less, in more detail.

Why you should use Less
We've already seen that Less is designed to help make CSS easier to manage and
maintain. Let's explore some of the key features in more detail, which will give you
a taste of what to expect with Less and demonstrate how Less can make writing
CSS easier.

Reducing redundancy with variables
How many times have you worked on a website where you needed to declare the
value of a color in CSS, such as #ececec? 10 times? 20 times? It's rare that you will
get the color in the first time; it is more likely that you will need to revise it, which
can create a real burden when working in CSS. No matter how many times it ends
up being, one thing is true: it is not easy to remember the hex value for each color.

Less can help by allowing us to define colors as variables, with more memorable
names. A variable is merely a mechanism for referencing a value; take a look at the
following three examples:

@red: #de1446;
@blue: #4a14de;
@green: #32de14;

The beauty of Less is that once we've defined these variables, Less will automatically
update any instance where they are used if we decide to change the hex values at a
later date.

Understanding the syntax of variables
In Less, the @ sign indicates that we are defining a variable; following this (@) symbol,
we normally have the name of the variable (with no spaces), and the colon indicates
the end of the variable name. This is followed by the value, with a semicolon used to
close the statement. In this case, the @red variable refers to the red color we want as
a hex value. Once we've defined these variables, we can use them anywhere in our
Less style sheet shown as follows:

.red-box {
 color: @red;
}

Chapter 1

[17]

When we compile it, the following valid CSS is produced:

.red-box {
 color: #de1446
}

In Less, compile just means to go from Less to CSS. We will
use this term frequently throughout the book.

Writing and remembering variable names is far easier than remembering unnatural
hex values, right? Moreover, when these values need to change, we only need to
update them in one location and Less takes care of updating everything else. No
more need to perform a "find and replace" when changing colors—this can be a
huge timesaver!

Creating reusable blocks of code
So we've created some variables…but reusable blocks of code?

One of the benefits of using Less is that we can group together multiple lines of code
and turn them into a reusable block that we can drop in our code. Let's take a look at
an example:

.serif() {
 font-family: Georgia, 'Times New Roman', serif;
}

This is a very simple example of a reusable block of code, or mixin. If you've spent
any time developing JavaScript or jQuery, then you may recognize a similar behavior
in the form of classes; mixins work in pretty much the same way.

Mixins, by themselves, won't do anything and to make them useful, we need to call
them from our code using a placeholder, as highlighted in the following code:

p {
 font-size: 10px;
 line-height: 1.25em;
 .serif;
}

Introducing Less

[18]

This compiles to valid CSS:

p {
 font-size: 10px;
 line-height: 1.25em;
 font-family: Georgia, 'Times New Roman', serif;
}

See how, with just one short keyword, we've asked Less to drop in something more
involved? One small point to note is the use of () against the mixin name—Less will
compile the reusable code (or mixin) to valid CSS, but it will not render the compiled
mixin on the screen. The great thing though is that we can simply call .serif;
wherever we need to render text using the defined font-family attribute.

Generating values automatically
In more recent browsers, you are likely to find websites using RGBA (Red Green
Blue Alpha) and HSLA (Hue Saturation Lightness Alpha) colors, rather than the
typical hex values that we saw in the previous section.

Not every browser supports these color formats—to get around this, we can declare
a hex value first, followed by its RGBA or HSL equivalents. As an example, we might
write something similar to the following code in order to turn the text set with the h1
attribute to dark brown:

h1 {
 color: #963529;
 color: rgba(150, 53, 41, 0.5);
}

If we're choosing colors in a graphics package such as Photoshop or GIMP, we might
occasionally struggle to get both the values and might need to resort to alternative
means. Thankfully, this is not an issue with Less as it allows us to use functions to
create new values automatically.

Why will we do this? The answer is simple: all we need to do is provide a color value
using one format, such as RGBA. We can then use Less' functions to convert it to a
different format—we can then avoid any confusion about ensuring we've provided
the right values, as these will be worked out automatically by Less.

Chapter 1

[19]

Let's take a look at a quick example of how this will work:

.brown-color {
 @rgbaColor: rgba(150, 53, 41, 0.5);

 color: fade(@rgbaColor, 100%);
 color: @rgbaColor;
}

Here, we've used a simple variable to define the base color before using the rgba
color function to convert it to its RGBA equivalent value, with the alpha value set
to 0.5. If we compile the Less code, it produces the following CSS:

.brown-color {
 color: #963529;
 color: rgba(150, 53, 41, 0.5);
}

The alpha channel in our example is set at 50 percent. This means that we can
see 50 percent of whatever is behind the color in the browsers that understand
RGBA. The use of functions will really come into their own when creating themes
for sites—we could potentially create a whole host of colors from just two to three
base colors!

We will explore more about the color functions later in this book, in Chapter 12,
Color Processing with Less.

Forgetting about vendor prefixes
The beauty about using CSS3 is that there's no need to always use images, when we
can often achieve the same result using pure styling alone. Trouble is, catering to all
these new features, such as background gradients, animations, box shadows, and the
like, means that we often have to use vendor prefixes or different syntaxes to ensure
that the site can be viewed by the widest possible audience.

Introducing Less

[20]

This can be a real pain but not so much with preprocessors. As you will see later
in Chapter 4, Working with Variables, Mixins, and Functions, we can create a mixin or
a small block of predefined code that can literally be mixed in our Less style sheet
and can be used to create valid CSS. Take, for example, the following block of code,
which is used to produce rounded corners:

.roundcorners {
 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 -ms-border-radius: 4px;
 -o-border-radius: 4px;
 border-radius: 4px;
}

With Less, there are hundreds of mixins that are available online (more of which
we will cover later in the book), which we can use in our code. Instead of having to
remember what each style needs in terms of prefixes and syntax, we can just use the
following code:

.roundedcorners {
 .border-radius;
}

The preceding code produces exactly the same CSS that was once compiled;
Less automatically adds all the vendor prefixes, which is a great time saver.

Creating media queries and animation the
simple way
The advent of mobile devices has created a need for responsive websites, which
will display content only if the rules meet a specific environmental condition or
breakpoint. A good example is determining the size of the screen in use when
browsing a responsive website.

This normally means having to write a number of queries for each breakpoint in
a design. As an example, we could write the following (simplified) CSS to change
the typography for a particular device:

@media only screen and (max-width: 529px) {
 h1 {
 font-size: 0.7em;
 }
}

Chapter 1

[21]

@media only screen and (max-width: 949px) {
 h1 {
 font-size: 0.9em;
 }
}

@media only screen and (max-width: 1128px) {
 h1 {
 font-size: 1.1em;
 }
}

Even though this is only setting the size for the h1 attribute, it seems like a lot to
remember. We can simplify the code using the power of Less:

@smallwidth: ~"only screen and (max-width: 529px)";
@mediumwidth: ~"only screen and (max-width: 949px)";
@largewidth: ~"only screen and (max-width: 1128px)";

h1 {
 @media @smallwidth { font-size: 0.7em; }
 @media @mediumwidth { font-size: 0.9em; }
 @media @largewidth { font-size: 1.1em; }
}

We start by declaring three variables, each containing the media query statements.
These are static values and will only change if we decide to add or modify any of the
supported breakpoints. It isn't essential to use them in this instance, but it will help
make the nesting solution easier to read!

We then call each media query using @media, followed by the variable that contains
the breakpoint we wish to test against. The key point here is that while it might
look like @media is repeated, we can't base our nesting style on @media as the code
will fail to compile. Instead, we need to base it on the h1 selector for the code to
compile correctly.

Reusing code across multiple projects
One of the limitations of CSS is that we often find ourselves applying the same
values across multiple elements, throughout each site that we build. On a small site,
this is less of an inconvenience, but for larger sites, there is a greater risk that we may
miss updating a value, which could produce unexpected results. We've seen how
you can reduce (or even eliminate, with good planning), the risk using variables—
what if we could reuse our code in future projects?

Introducing Less

[22]

This is not as crazy as it might seem—we may develop a specific drop-shadow style
for buttons that we like and want to reuse. The conventional way is to store this in a
text file, database, or the likes, and then dig it out each time we need to reuse it. It's
a cumbersome way to do it, even if it does work—the need to do this is eliminated if
we use a preprocessor.

We can simply store the code in a file, in the form of mixins or reusable blocks of
code. If we need to reuse any of them, we simply add the file to our project and use
the following command to import the contents:

@import "mixinfile.less";

The beauty of using Less though means that it will only import those mixins that are
needed for our project in the main CSS file.

Compressing CSS automatically for faster
websites
So far, we've talked about some of the compelling features of Less—a fraction of
what it offers—there is a lot more that we will cover throughout the book as well
as taking a look at some of the more practical uses of Less.

There is one key thing to writing CSS that we've not mentioned: the ability
to compress your style sheets as part of releasing your site into production.
Compressing our style sheets removes white space and allows us to concatenate
multiple files in one master CSS file.

Why should you do this? The answer is easy: it will make style sheets a fraction of
the size of the original, which saves on bandwidth. While this is probably less of an
issue for normal Internet connections, it is critical for those using mobile devices
with limited bandwidth.

How will you compress your CSS? Sure, we could compress it using an online tool,
but this means using an extra tool, which adds to your already busy development.
There is no need to do this when using Less—if you compile your code using one of
the GUI tools, such as WinLess, or even the command line, you can set it to compress
the code at the same time.

This is just a taste of what Less can offer. Before getting up and running the
development tools we will need for using Less, let's take a brief look at what
CSS4 will offer and how this might affect preprocessor tools such as Less.

Chapter 1

[23]

Supporting CSS4 standards within Less
With the advent of CSS2 and CSS3, it is natural to assume that CSS4 will arrive
at some point in the future. You are probably wondering how it might affect CSS
preprocessors—let's take a look at what CSS4 is likely to mean for Less.

Officially, there is no such thing as CSS4. Strange as it might seem, we won't see the
appearance of a new global standard; CSS4 instead will be grouped under smaller
headings, of which each will have its own level. There is still a long way to go,
but one of the groupings that is closest to being finalized is CSS4 Selectors.

You can see more details about the proposed changes for CSS Selectors
in the W3C's draft proposal at http://dev.w3.org/csswg/
selectors4/. There is an interesting discussion on the possibilities of
using Selectors at http://vandelaydesign.com/blog/design/
some-interesting-possibilities-with-css4/.

Although these have been around since the beginning of CSS, CSS4 brings a number
of new logical operators, such as :not and :matches, as well as some new local
pseudo classes in the form of :any-link or :local-link. The latter, in particular,
brings some useful features to styling links, as shown in the following code example:

nav:local-link(0){
 color: red;
}

nav:local-link(1){
 color: green;
}

nav:local-link(2){
 color: blue;
}

nav:local-link(3){
 color: yellow;
}

nav:local-link(4){
 color: gray;
}

www.allitebooks.com

http://dev.w3.org/csswg/selectors4/
http://dev.w3.org/csswg/selectors4/
http://vandelaydesign.com/blog/design/some-interesting-possibilities-with-css4/
http://vandelaydesign.com/blog/design/some-interesting-possibilities-with-css4/
http://www.allitebooks.org

Introducing Less

[24]

We can rewrite this using the following code in Less:

nav {
 &:local-link(0) { color: red; }
 &:local-link(1) { color: green; }
 &:local-link(2) { color: blue; }
 &:local-link(3) { color: yellow; }
 &:local-link(4) { color: gray; }
}

If we compile this code, we can see the results within a page that has a breadcrumb
trail—take, for example, the URL as http://internetlink.com/2014/08/21/
some-title/, and this in the form of a breadcrumb trail as follows:

•	 Home (http://internetlink.com/)
•	 2014 (http://internetlink.com/2014/)
•	 August 2014 (http://internetlink.com/2014/08/)
•	 21 August 2014 (http://internetlink.com/2014/08/21/)
•	 Article (http://internetlink.com/2014/08/21/some-title/)

The first link will be red, the second will be green, the third blue, then yellow,
and finally gray.

Supporting future CSS standards within Less
Support for future CSS standards (or CSS4, as it is frequently termed) is still very
much in its early stages within Less. Some progress has been made to allow the use
of selectors in Less, which can be used with the ampersand symbol, as we saw earlier
in the Supporting CSS4 standards within Less section in this chapter.

At the time of writing this book, the developers have refrained from adding too
many new features for CSS4, as most of the current proposed changes are still in
the draft state and are subject to change. The main feature added so far is that of
support for attributes, which appeared in Version 1.4 of Less—others will appear
once the specification has been finalized and support has appeared in more than one
browser. The key thing to note though is that any CSS4 standard with CSS3 syntax is
automatically supported in Less.

There will still be a need for Less once CSS4 standards become mainstream;
Less will evolve to include the new standards while still allowing us to be
more efficient when writing CSS.

Chapter 1

[25]

How much support does my browser offer for CSS4?
As an aside, you may like to test your browser of choice to see
how much support it offers for CSS4; browse to http://css4-
selectors.com/browser-selector-test/ and then click on
Start test! to see the results.

Summary
In this chapter, we started with a brief look at the role of HTML and CSS in
designing websites, and covered a few of the limitations that CSS has when
styling elements on web pages.

We then talked about how CSS preprocessors can help solve some of these issues;
we covered the critical question that people will often ask, which is, why we should
need to use them when we are perfectly au fait with writing valid CSS. We then
introduced Less as one of the preprocessors available and as a possible solution
to some of the issues we face with CSS.

We then rounded up the chapter with a look at some of the reasons why Less should
become part of your development toolkit, as well as some of the features available
for helping you to manage your CSS development. In the next chapter, we'll start to
take a more in-depth look at the syntax of Less and how we can compile it to create
valid CSS.

http://css4-selectors.com/browser-selector-test/
http://css4-selectors.com/browser-selector-test/

Building a Less
Development Toolkit

We've covered the principles behind Less, and saw how it can help reduce the effort
required to manage style sheets with the use of variables, functions, and mixins.
We're almost ready to start coding, but before we can do so, there's one small thing
missing—we need some tools!

You might wonder whether there is a need for more tools, given that CSS is just
plain text and that we don't need anything to edit plain text files, right? Well, plain
text editors will work, but as we'll see in this chapter, there are tools available that
include support for Less in order to help make editing files easier.

Throughout this chapter, we will look at a selection of tools that you may find useful
for working with Less; we will install a selection that will be used for the purposes
of the exercises throughout this book, although you can always pick and choose the
packages you prefer to use.

In this chapter, we will cover the following topics:

•	 Choosing and installing an editor to work with Less files
•	 Watching out for changes to Less files
•	 Debugging in browsers
•	 Tools for compiling the Less code
•	 Automating the development using tools such as Node and Grunt

The software that we install in this chapter will be for Windows, as
this is the author's preferred development platform; comments will
be added to indicate whether alternatives for Apple Mac or Linux
are available.

Building a Less Development Toolkit

[28]

Choosing an IDE or editor
We need to start somewhere, and what better place than an editor. After all,
we can't produce anything if we don't have something that we can use to write
it! Editing Less files is very easy—they are plain text files, which can be edited in
almost any editor.

The downside is that there are dozens of editors available, either free or at a cost.
However, there are some editors that have support for Less either included by
default or available as an add-on package, which includes the following:

•	 Sublime Text: This is a shareware application for Windows, Mac, or Linux
and is available at http://www.sublimetext.com; a license costs USD 70 at
the time of writing this

•	 Notepad++: This is an open source editor for PC and is available at
http://www.notepad-plus-plus.org

•	 Coda: This is available at http://www.panic.com/coda (Mac only);
the license cost is USD 99 at the time of writing this

•	 Codekit: This is a shareware application that is available at
http://www.incident57.com/codekit; license costs vary

There are more editors available; you can see a complete list of editors available at
http://lesscss.org/usage/#editors-and-plugins.

You might have noticed that I have not mentioned IDEs such as
Dreamweaver. While these will work perfectly well with Less files,
their method of working can affect the experience of learning how
to write Less code effectively.

In the meantime, let's take a look at installing my personal favorite, which is
Sublime Text 2.

Installing Sublime Text 2
Sublime Text is a shareware cross-platform text editor, which is available at
http://www.sublimetext.com. Its popularity stems from an uncluttered interface
that allows for easy editing, yet is equally powerful. Sublime Text comes with a
Python-based API, for which you can write plugins.

http://www.sublimetext.com
http://www.notepad-plus-plus.org
http://www.panic.com/coda
http://www.incident57.com/codekit
http://lesscss.org/usage/#editors-and-plugins
http://www.sublimetext.com

Chapter 2

[29]

To install Sublime Text, we can download it from http://www.sublimetext.
com/2. Different versions are available for Apple Mac, Linux, and Windows; please
download and install the version that is appropriate to your platform, accepting
all defaults.

The next version of Sublime Text, Version 3, is available at the time
of writing this at http://www.sublimetext.com/3; it is in beta
at present but is reasonably stable for use if you don't mind working
with beta software!

Adding Less syntax support
Next, we need to add syntax support for Less, which requires several steps—the first
of which is to install Package Control Manager, which is required in order to install
plugins for Sublime Text. Let's begin by browsing to the installation page of the
Package Control website at https://sublime.wbond.net/installation#st2.

We need to copy the code shown in the Sublime Text 2 tab, and then open Sublime
Text 2. Once it is open, click on View and Show Console before pasting the code into
the console. Press Enter to run the installation. Once you see the following appear in
the Console window, restart Sublime Text:

We now need to install syntax support for Less. For this, you will need
an Internet connection, so you might not find it possible to do this while
commuting, for example!

http://www.sublimetext.com/2
http://www.sublimetext.com/2
http://www.sublimetext.com/3
https://sublime.wbond.net/installation#st2

Building a Less Development Toolkit

[30]

Assuming you have access to the Internet, go ahead and press Ctrl + Shift + P
to bring up Package Manager, then type in Package Control: Install Package,
and press Enter, as shown in the following screenshot:

There will be a short delay while Package Manager retrieves the latest list of
packages that are available; you can monitor their progress in the status bar.

Once this is retrieved, the package list will be presented; in the package name box,
enter LESS, as shown in the following screenshot, and press Enter:

Chapter 2

[31]

Sublime Text will now install the package. There will be a delay while it is installed;
we can monitor its progress in the status bar at the bottom of the window. Once this
is completed, you will see Line 1, Column 1; Package LESS successfully installed
appear in the status bar. Syntax support is now installed—if we open up a test Less
file in Sublime Text (such as buttons.less, from Chapter 4, Working with Variables,
Mixins, and Functions, in the accompanying code download for this book), we can
see that the code is now in color and not in black and white as before:

At this point, we're ready to start editing Less files—we still have some more tools
we need to look at, though, before we have a complete toolkit! Once we've produced
a Less file, we need to compile it into a valid CSS, so let's take a look at some of the
tools that are available for this purpose.

Compiling Less files with a standalone
compiler
Once we've produced a valid Less file, we need to compile it into its CSS equivalent.
For this, we have two options: the first is to compile from the command line; we will
examine this in more detail later in this chapter, in the Compiling from the command
line section. The second is using a standalone compiler, for which we can use one of
the following compilers available for this purpose:

•	 WinLess (http://winless.org/)
•	 SimpLESS (http://www.wearekiss.com/simpless/)

http://winless.org/
http://www.wearekiss.com/simpless

Building a Less Development Toolkit

[32]

•	 Koala (http://koala-app.com/)
•	 Crunch! (http://www.crunchapp.net/)

Each of these compilers performs the same basic function of compiling Less files,
but in different ways. I would suggest that you try each one out and stick with
the one that you find preferable.

We must start somewhere, so first, let's take a look at WinLess.

WinLess
WinLess is a Windows-based open source GUI frontend for less.js, which can be
downloaded from http://winless.org/downloads/WinLess-1.8.2.msi. This
includes an option to automatically monitor changes to any files stored within specific
folders; as soon as they are changed, the corresponding CSS files are updated.

http://koala-app.com/
http://www.crunchapp.net/
http://winless.org/downloads/WinLess-1.8.2.msi

Chapter 2

[33]

SimpLESS
If something that is a little simpler is sufficient for your needs, then you can always
try SimpLESS, which is a cut-down version available for Windows, Apple Mac,
or Linux platforms.

You can download this from http://www.wearekiss.com/simpless; it is designed
to sit and work from the system tray, silently updating any changed Less files.

www.allitebooks.com

http://www.wearekiss.com/simpless
http://www.allitebooks.org

Building a Less Development Toolkit

[34]

Koala
Koala is a relative newcomer to the Less preprocessor scene. It is a cross-platform
GUI application that compiles most CSS preprocessors available, including Less.
It was built using Node-Webkit, so versions are available for Mac OS, Linux,
and Windows and can be downloaded from http://www.koala-app.com/.

You can find details of other compilers available for use with Less by browsing to
http://lesscss.org/usage/#guis-for-less. In the meantime, we're going to
move on and install Crunch!, as an example of one of the compilers available
for Less.

Installing Crunch!
Crunch! is a cross-platform compiler for Less, which works using Adobe AIR.
This compiler is different from the others, as it allows us to edit files within the
compiler directly.

Installing Crunch! is a two-part process; we begin with installing Adobe AIR:

1.	 Download the installer from http://get.adobe.com/air/, making sure
that you select the right version for your platform. Double-click on the AIR
installer and accept all defaults.

http://www.koala-app.com/
http://lesscss.org/usage/#guis-for-less
http://get.adobe.com/air/

Chapter 2

[35]

2.	 Next, go ahead and download Crunch! from http://www.crunchapp.net.
Double-click on the Crunch.1.6.4.air package, and then click on the Install
button at this prompt.

3.	 Click on Continue to begin the installation; we can leave the default settings
untouched, as they will suffice for our needs:

http://www.crunchapp.net

Building a Less Development Toolkit

[36]

4.	 After a few minutes, Crunch!'s GUI will appear, ready for use, as shown in
this screenshot:

Compiling from the command line
Some of you might prefer not to have to use a standalone application to compile Less
code task; after all, who needs to learn yet another application in order to perform a
task that can easily be automated and run in the background, right?

Absolutely; instead of using a standalone compiler, we can use the command line to
perform the same operation using the JavaScript-based platform, which is Node.js,
available at http://www.nodejs.org. Versions of this application are available for
the Windows, Linux, Mac, and even SunOS platforms. Otherwise, you can always
try compiling from the source if you are feeling adventurous! Let's take a look at
how we can use this in more detail.

http://www.nodejs.org

Chapter 2

[37]

To download and install Node.js, perform the following steps:

1.	 Browse http://www.nodejs.org, and click on Download from the main
page; this should automatically determine the right version for your
platform. At the time of writing this, the latest version for Windows is
node-v0.10.24-x86.msi.

2.	 Double-click on the installer to begin the process; you will see the following
welcome screen. Click on Next.

3.	 On the next screen, select the I accept the terms in the License Agreement
checkbox, and then click on Next.

http://www.nodejs.org

Building a Less Development Toolkit

[38]

4.	 At this point, we need to choose the location for where we will install Node.
For the purposes of this book, we will assume that it will be installed in the
default location of c:\wamp, so go ahead and click on Next.

5.	 On the next screen, you can select from a number of options in order
to configure Node. This isn't necessary for the purposes of running the
exercises in this book, so we will simply click on Next.

Chapter 2

[39]

We're now ready to complete the installation, so click on Install, and wait for it to
complete. Once this is completed, Node is installed and is ready for us to use. We
are now ready to install Less for the command line, which we will cover in the next
chapter, which is Chapter 3, Getting Started with Less.

If you are interested in learning more about Node.js, then you might
like to peruse the book Mastering Node.js, Sandro Pasquali, published by
Packt Publishing.

Watching for changes to Less files
As we will see in the next chapter, it is a simple process to compile Less from
the command line; we can open a command prompt, type in a simple command,
and then press Enter to let it run.

The trouble is that we have to do this every time. After a while, this will get
tedious, to say the least! It's something we can easily fix—we first need to install
Grunt's command-line interface before taking it a step further by setting Grunt to
automatically watch out for, and recompile, any changes to our Less source files.

There is an alternative watch mode available in Less, called Watch.
This still requires manual work to configure it; we will take a look
at it in more detail in Chapter 3, Getting Started with Less.

In the following example, we'll add support for Less by installing a package called
grunt-contrib-less. Let's start by creating a folder for our project at the root of the
C: drive, called lessjs. Within this folder, create a new file called package.json,
and add the following code:

{
 "name": "my_grunt_project",
 "version": "0.0.1",
 "devDependencies": {

 }
}

Next, fire up a command prompt and enter the following command:

npm install -g grunt --save-dev

Building a Less Development Toolkit

[40]

This will download and install a number of additional packages; the --save-dev
parameter will add any dependencies to the package.json file automatically.

If we take a look at the lessjs folder, we will see our package.json file; if we open
it in a text editor, it will look something like this code:

{
 "name": "my-project-name",
 "version": "0.1.0",
 "devDependencies": {
 "grunt": "~0.4.2",
 "grunt-contrib-less": "~0.8.3",
 "grunt-contrib-watch": "~0.5.3"
 }
}

If the download is complete with no errors recorded, then run this command:

npm install -g grunt-cli

Add the following code to a new file, and save it in the project folder as gruntfile.
js. We will go through the file in sections in order to understand what each
part does:

module.exports = function(grunt) {
 grunt.initConfig({
 less: {
 src: {
 expand: true,
 src: "*.less",
 ext: ".css"
 }
 }
 },

We start the file with a standard Grunt exports statement; here, we initialize
Grunt by setting src to look for Less files and compile them into CSS files. We've
set Grunt to not compress the CSS files when compiled using the expand attribute,
which is set to true. This makes them easy to read while we are still developing,
although in reality, we will look to compress the files in a production environment
in order to save on bandwidth:

 watch: {
 styles: {
 options: { spawn: false },
 files: ["*.css", "*.less"],

Chapter 2

[41]

 tasks: ["less"]
 }
 }
 });

As we are defining more than one task, we would ordinarily have to enter the tasks
at the command prompt individually. Instead, we can combine all of the subtasks
that we define. We can then run them as default when entering the command grunt
at the command line, which help saves time:

 grunt.loadNpmTasks('grunt-contrib-less');
 grunt.loadNpmTasks('grunt-contrib-watch');

 // the default task can be run just
 // by typing "grunt" on the command line
 grunt.registerTask('default', ['watch']);
};

Start a command prompt, switch to the project folder, and enter npm install at the
command prompt. This will download and install a number of additional packages.
When this is complete, enter grunt at the command prompt. Grunt will begin
watching for any changes, as shown in this example:

Any changes made will force an automatic recompilation of the Less file.

If you would like to dig into the source code for these
packages, then you will find many of them on GitHub at
https://github.com/gruntjs.

https://github.com/gruntjs

Building a Less Development Toolkit

[42]

As time moves on, and you become more accustomed to developing with Less,
you might like to try some of the other watcher packages that are available
from the Node Package Manager website at https://npmjs.org, such as the
following examples:

•	 less watch (available at https://npmjs.org/package/less-watch)
•	 less monitor (available at https://npmjs.org/package/less-monitor)
•	 less watcher (available at https://npmjs.org/package/lesswatcher)

Now that we have Less installed and compiled automatically using Grunt, we can
skip to the next chapter in order to create some files in our normal text editor, and
then compile them manually. This will work perfectly well, but we can automate the
compilation process even further. Let's see how we can do this by adding support
to a text editor such as Notepad++ so that we can compile the files directly from
within the editor.

Compiling Less files directly from text editors
There are hundreds of text editors available for use; some are free or open
source, while others will be available at a cost. A good example of a free editor
is Notepad++; the current version is 6.5.3 at the time of writing this and can be
downloaded from http://notepad-plus-plus.org/download/v6.5.3.html.

For now, we'll get it set up and ready for use. You will see it in action in Chapter 3,
Getting Started with Less, when we use it to compile code from the editor.

Download the installer for Notepad++, and then double-click on it to launch the
installation process. Click on Next to accept each default setting, which will suffice
for our needs. When the installation is complete, start Notepad++, and then click on
Run from the Run menu in order to launch the Run dialog, and add the following
line (including the quotes):

"C:\Program Files (x86)\nodejs\node_modules\.bin\lessc.cmd" -x
"$(FULL_CURRENT_PATH)" > "$(CURRENT_DIRECTORY)\$(NAME_PART).css"

Click on Save to add the run command to the list of existing preset commands; in
the Shortcut dialog, choose the CTRL + L shortcut and add Compile LESS files
for the command, and then click on OK.

https://npmjs.org
https://npmjs.org/package/less-watch
https://npmjs.org/package/less-monitor
https://npmjs.org/package/lesswatcher
http://notepad-plus-plus.org/download/v6.5.3.html

Chapter 2

[43]

When the Shortcut window is closed, click on Save to save the changes. For now,
click on Cancel to close the window. We're not ready to run our shortcut yet—this
will happen in the next chapter. Notepad++ is now set up so that we are ready to
compile any changes to Less files from within the application.

Installing the compilation support via a
package
So far, we've seen how you can set up an editor such as Notepad++, but we're not
limited to having to wire up every editor using this technique. For some editors, an
extension or package has already been created for this purpose, so the installation
will be simplified. One such example is Sublime Text—there is a package that exists,
which we can install in order to provide support for Less.

www.allitebooks.com

http://www.allitebooks.org

Building a Less Development Toolkit

[44]

Start by firing up Sublime Text, and then press Shift + Ctrl + P to bring up Package
Manager, which we installed earlier in this chapter, and then enter Package
Control: Install Package and press Enter.

Next, enter lesscss—we need to install the Less2CSS package, so when this appears
in the autocomplete, click on it and press Enter:

At this point, Sublime Text will install the package, which will take a few
moments—the confirmation will appear in the status bar when it is successfully
installed. We're now ready to compile Less files directly from within Sublime
Text—we'll be using this feature in the next chapter.

Chapter 2

[45]

Debugging Less in browsers
A key part of developing code of any description is the fixing of any errors or bugs;
working with Less code is no exception. We can, of course, do this manually or use
a linting tool such as CSS Lint (http://www.csslint.net), but either is likely to
require working directly with the compiled CSS code, which will make it harder to
trace a fault back to your existing Less code.

Fortunately, we have a couple of options that will help in this respect—we can
either debug directly in Firefox using the FireLESS plugin, or we can set up a source
map that will translate a compiled style back to the line number in the original Less
file. Let's take a look at installing FireLESS first and get ready for when we start
developing code in the next chapter.

Debugging the Less code using Firefox
To enable support for debugging Less in Firefox, we first need to ensure that
Firebug is installed; for this, you can download it from https://addons.mozilla.
org/en-US/firefox/addon/firebug using the normal installation process for
Firefox add-ins.

At the time of writing this, the latest version of Firebug is 1.12.5, which will work for
Firefox Versions 23 to 26. The installation process is painless and does not require a
restart of your browser.

http://www.csslint.net
https://addons.mozilla.org/en-US/firefox/addon/firebug
https://addons.mozilla.org/en-US/firefox/addon/firebug

Building a Less Development Toolkit

[46]

Next, we need to install FireLESS. First, browse to https://addons.mozilla.org/
en-us/firefox/addon/fireless/, and then click on Add to Firefox to initiate the
installation. You might get a prompt to allow Firefox to install Firebug—click on
Allow. After Firefox has downloaded the plugin, click on Install Now (shown in
the following screenshot) to begin the installation:

Click on Restart Now when prompted. FireLESS is now installed; we will see how
to use it in Chapter 3, Getting Started with Less.

Debugging the Less code in Chrome
We're not limited to just using Firefox to debug our source code. We can also use
Chrome; for this, we need to install the support for source maps in Less.

Source maps are a relatively new feature, which can work with JavaScript- or
CSS-based files; the concept is based around providing a mechanism to map back
the compiled JavaScript- or CSS-based code to the original source files. This becomes
particularly effective when the content has been minimized—without a source map,
it would be difficult to work out which piece of code was at fault!

This example relies on the use of a web server to work correctly. We will go ahead
and install WampServer for this purpose, so let's do this now.

https://addons.mozilla.org/en-us/firefox/addon/fireless/
https://addons.mozilla.org/en-us/firefox/addon/fireless/

Chapter 2

[47]

Installing WampServer
WampServer can be downloaded from http://www.wampserver.com—the various
versions for Windows are available from within the Download tab; make sure that
you select an appropriate one for your platform. If you work on an Apple Mac, then
you can try installing MAMP, which you can download from http://www.mamp.
info. Linux users should have a suitable option available as part of their distro.

Start by opening the installer file you downloaded earlier. In the welcome prompt,
click on Next. Select I accept the agreement, and then click on Next, as shown in the
following screenshot:

We need to assign a location somewhere to install the application files (and later,
host our test pages). By default, WampServer will get installed into c:\wamp—this
is ideal, as it avoids the use of spaces, which will otherwise translate into %20 in
our URLs.

http://www.wampserver.com
http://www.mamp.info
http://www.mamp.info

Building a Less Development Toolkit

[48]

For the purposes of this book, I will assume that you've used the default; if you've
used something different, then you will need to remember the new location for
later when we host our example files.

The setup will then prompt you whether you want to create quick launch or desktop
icons—at this point, you can choose whichever you prefer to use. Clicking on Next
will show you a Ready to Install screen, which gives you a summary of our install
actions. If all is well, click on Install to complete the process.

Chapter 2

[49]

We will then see the Preparing to Install window, before Setup then runs through
the installation. Just before the completion, you will see this message, where we
should click on No:

In addition, we also need to install Grunt and Node, as outlined earlier in the
Watching for changes to Less files section of this chapter.

Now that WampServer is installed, open a command prompt and change the
location to your project folder—for this example, I will use a folder called lessc,
which will be stored at c:\wamp\www\lessc.

In this example, we've used a demo folder—this will need
to be your folder from which the content is served when
working in production.

In the prompt, enter the following command:

lessc namespaces.less > namespaces.css –source-map=namespaces.css.map

Here, namespaces.less and namespaces.css are the names of your Less and CSS
files, respectively. When compiled, lessc produces a .map file, which the browser
will use to find the various definitions in Less files that equate to a specific CSS style
rule in your code.

Copy the namespaces.less, namespaces.css, main.html, and namespaces.css.
map files to your web server's WWW folder—in this instance, this will most likely be
c:\wamp.

Building a Less Development Toolkit

[50]

Open Google Chrome, and then browse to http://localhost/lessc/main.html.
If all is well, you will see something like the following screenshot, assuming that you
have pressed F12 to display the developer toolbar:

Here, you can see the various CSS styles that make up the .mediumbutton class;
Chrome shows you the compiled output styles, but in place of indicating where
each rule appears in the CSS, we can see where the original rule is shown within
the Less file.

We will be able to achieve the same results using Opera (as recent versions are
now WebKit-based). Safari has introduced support for source maps, but only from
Version 7 onwards. Internet Explorer (IE) is the only major browser that is yet to
include any support for source maps.

For now, don't worry about how source maps work, as we will revisit this in more
detail later in the book.

Chapter 2

[51]

Other useful tools
We've almost come to the end of this chapter, but before we move onto starting
to develop the Less code, we should take a look at a few tools that you might find
useful once you've spent some time developing CSS with Less:

•	 Adobe Kuler: You can find this tool at https://kuler.adobe.com/.
Although this is not immediately associated with Less, you might find this
useful when choosing a color scheme for your site. Kuler has some useful
tools that help you choose a suitable color palette from which we can take
and use the color values within our Less styles.

•	 Live.js: If you spend any amount of time editing styles, you will have to
manually refresh the pages after each change; this can get tedious if you are
making lots of changes! Fortunately, we can get around this with the use of
the Live.js script. This tool is developed by Martin Kool and is available at
http://www.livejs.com. It automatically forces a refresh to the page being
worked on so that we can see changes as soon as they are applied.

•	 CSS3 Please: You can find this tool at http://css3please.com/. This is a
nifty site that allows you to edit any listed CSS3 rule with your own values;
it automatically applies the same rule changes to each of the vendor prefixes
for that rule so that you have an updated rule that will work in each of the
major browsers. This is particularly helpful when you start creating your
own mixins, as we will see in the next chapter.

•	 SpritePad: You can find this tool at http://wearekiss.com/spritepad.
Billed as the "easiest way to create your sprites", SpritePad is an excellent
tool for creating image sprites online, which automatically generates the
appropriate CSS for each image. We can then use this to create mixins—this
is particularly useful if we're creating a site with a lot of small images that
feature regularly throughout the site.

•	 Prefixr: You can find this tool at http://www.prefixr.com/. Although this
site is not designed for use with Less, it is useful nonetheless. We can develop
a site for a particular browser (such as Firefox), and then use Prefixr to add
other vendor prefix equivalents for any CSS3 rule that still requires them.

•	 WinLess Online: You can find this tool at http://winless.org/online-
less-compiler. Earlier in this chapter, we touched on using WinLess as
a Less compiler; this also has an online version for those who do not use
Windows as their platform. Although some of the configuration options
are not present (such as minifying the compiled code), it is a useful
tool nonetheless.

https://kuler.adobe.com/
http://www.livejs.com
http://css3please.com/
http://wearekiss.com/spritepad
http://www.prefixr.com/
http://winless.org/online-less-compiler
http://winless.org/online-less-compiler

Building a Less Development Toolkit

[52]

•	 Less2CSS: You can find this tool at http://www.less2css.org. This site
performs the same function as WinLess Online but has a few more options,
such as adding the media queries required for working with source maps.
This developer also recommends that you use this site to verify your code
in the event that you come across any issue where you need assistance.

This is a selection of the tools I've used for developing with Less; there are likely
to be others that will be as useful as the ones listed here. Please feel free to use
these. If you have suggestions for others in a future edition of this book, then
they are welcome!

Summary
Working with Less can be very rewarding when you have the right tools installed
and available for use in your workflow. We started with a look at some of the
editors that are available; these include support for Less, such as Sublime Text
or Notepad++. We then moved on to installing Sublime Text 2 and added
support for Less.

Next up came a discussion on the options available for compiling Less code—the
first option covered how you can use a standalone compiler such as WinLess to
produce the final CSS code; we took a look at each of the main compilers available,
and followed it by installing Crunch!.

We then moved on to examining how you can use the command line to compile
the code—we looked at how using a standalone compiler meant adding another
layer into your development workflow, which isn't ideal. We ran through a basic
installation of Node.js, which we then first configured to compile Less files before
adding an automatic watch facility and finishing with a look at how you can link
this to editors such as Notepad++.

We then rounded off the chapter with a look at the options available for debugging
code in browsers. We examined how FireLESS and Firebug make this a cinch when
using Firefox, while it requires a little more work to configure Chrome (and Opera)
in order to use source maps to achieve the same effect. We also covered some of the
other tools you might find useful for developing with Less, such as LESS2CSS or
Adobe Kuler.

In the next chapter, we're going to really get stuck in and start to produce valid Less
code. We'll take a look at downloading and adding Less and start to examine its
syntax before writing some styles and seeing the results from compiling using the
command line or through a standalone compiler.

http://www.less2css.org

Getting Started with Less
In the first two chapters of this book, Chapter 1, Introducing Less, and Chapter 2, Building
a Less Development Toolkit, we learned what Less is, some of its benefits, and the reasons
why you should get to grips with a preprocessor that is rapidly gaining serious
traction in the development world.

In this chapter, we're going to start by downloading and installing Less and then
setting up our base project that we can reuse throughout this book, which is already
set to our preferences. While it might seem a little mundane, it is nevertheless an
essential part of working with Less! Once we have our base project ready, we will
then delve into a whistle-stop tour of some of the main code features of Less, before
looking at how you can compile your Less code into valid CSS and seeing the effects
of any changes made to the Less code.

In this chapter, we will delve a little deeper into Less by covering the
following topics:

•	 Incorporating Less into your website
•	 The dangers of using Less on the client side
•	 Exploring the syntax used by Less
•	 Creating some basic styles
•	 Compiling the code and viewing the results
•	 Altering the Less code and viewing the effects of changes

Ready? As they say in temperal mechanics, there's no time like the present to
get started...!

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Less

[54]

Creating the foundation page
Now that we have downloaded the library, the next stage is to set up our base
project that we can reuse throughout this book. This is going to be a simple HTML5
document, which will contain the basic skeleton we will need for our projects.

For my code editor, I will be using Sublime Text 2, for which we set up support
for Less back in Chapter 2, Building a Less Development Toolkit. This is available
for download from Sublime Text's website at http://www.sublimetext.com/2,
although you can use whichever editor you are most comfortable with.

Let's start by creating our base project file. In a new folder called lessjs, create a
new file and add the following code:

<!DOCType html>
<head>
 <meta charset="utf-8">
 <title>Untitled</title>
 <link rel="stylesheet/less" href="css/project.less">
</head>
<body>
</body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Save this as project.html. We'll make reference to this throughout the book and it
will be the basis for each of our projects when using Less.

Downloading and installing Less
Now that we have a test page created, it's time to download the Less library. The
latest version of the library is 1.7.3, which we will reference throughout this book.

To obtain a copy of the library, there are two main options available: downloading
the latest release as a standalone library or compiling code using Node. We'll start
with downloading the standalone library.

http://www.sublimetext.com/2
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 3

[55]

Installing Less on the client side
To use Less in our code, we can download it from the Less site by browsing to
http://lesscss.org/#download-options-browser-downloads and then
clicking on the Download Less.js v.1.7.3 button.

Save the contents of the file, displayed in the browser window as less.min.js,
in a subfolder called js, under the main lessjs project folder; you will end up
with something like this screenshot (this shows the files you will create later in
this chapter):

In a copy of the project.html file we created at the start of this chapter, add the
code as highlighted:

<!DOCType html>
<head>
 <meta charset="utf-8">
 <title>Untitled</title>
 <link rel="stylesheet/less" type="text/css" href="css/project.less">
 <script src="js/less.min.js"></script>
</head>
<body>

http://lesscss.org/#download-options-browser-downloads

Getting Started with Less

[56]

That's it—once this has been added, Less will compile the styles into valid CSS
dynamically and render the results in the browser. The key point to note is that for
Less to compile the styles correctly, the reference to the Less style sheet file must be
included in your code first, before the reference to the Less library.

Can I get the source code for Less?
If you want to delve into the Less library and examine the code in more
detail, then you might like to download a copy of the uncompressed
version of the library, which is available at https://github.com/
less/less.js/archive/master.zip.

Using a CDN
Although we could download a copy of the library, we don't need to when hosting it
in a production environment. Less is available on a content delivery network hosted
by CDNJS. You can instead link to this version in your code.

If you host an international site with a lot of network traffic, using a Content
Delivery Network (CDN) hosted file will help ensure that the library is downloaded
to a visitor's computer from a server that is geographically close to them. This
helps in making the response quicker, as the browser will use a cached version on
subsequent visits to the page, which saves on bandwidth. This is not recommended
for development however!

If you want to use a CDN link, then it can be found at http://cdnjs.
cloudflare.com/ajax/libs/less.js/1.7.3/less.min.js.

Installing Less on the server side
As an alternative to compiling code on the fly, we can always use the command line
to perform the same function—Less comes with a built-in command-line compiler
that requires the JavaScript-based Node platform to operate.

https://github.com/less/less.js/archive/master.zip
https://github.com/less/less.js/archive/master.zip
http://cdnjs.cloudflare.com/ajax/libs/less.js/1.7.3/less.min.js
http://cdnjs.cloudflare.com/ajax/libs/less.js/1.7.3/less.min.js

Chapter 3

[57]

Installing Less using Node
We took a look at how you can install Node in Chapter 2, Building a Less Development
Toolkit; I will assume that you have installed it using the defaults, as outlined in
that chapter. At this point, we now need to install the Less compiler, so bring up a
command prompt, change to the location of the project folder we created earlier,
and enter the following command:

npm install -g less

You will see it run through a download and install of Less at the command prompt:

Once the installation is complete, we can enter the following command to compile a
Less file, which uses this syntax:

lessc srcfile [dstfile]

Less will compile the output to stdout; if we want to use a different one, then we
can redirect the output:

lessc srcfile > dstfile

We're now ready to compile Less files at the command prompt—we will see this in
action, later in this chapter.

Installing Less using Bower
Using Node with the command line is not the only option we have—we can also
install Less using the cross-platform Bower package manager system, available at
http://www.bower.io.

http://www.bower.io

Getting Started with Less

[58]

Based on Node, Bower is designed to help with the installation of packages for the
web, such as jQuery, AngularJS, the Font Awesome icon library, and of course, Less.
Let's take a look at how to install it for Windows, as this has an added dependency
of Git for Windows, which must also be installed if we are to use this platform.

To get the full benefit from this demonstration, you will find it better to use a local
web server, such as WAMP. For the purposes of this book, I will assume this has
been installed with the default settings.

Start by visiting http://msysgit.github.io and downloading the latest installer,
which is Git-1.8.5.2-preview20131230.exe at the time of writing. Double-click
on the installer and click on Next to accept all defaults, until you get to this screen:

Change the selected option to Run Git from the Windows Command Prompt,
then continue by clicking on Next to accept the defaults for the remaining settings.
The Git installer will install and configure the client, and once completed, it will
display the installation notes for reading if desired.

http://msysgit.github.io

Chapter 3

[59]

In a command prompt, enter the following command:

npm install -g bower

This will download and install the various packages that make up Bower—it will
display a confirmation if the installation has been successful:

Once the Bower installation has been completed, change to the www folder
within your web space and enter the following command to install the
Less package for Bower:

bower install less

This will perform a similar process to download and install the Less package for
Bower, as shown in the following screenshot:

At this point, Bower is now installed and available for use.

Getting Started with Less

[60]

Using the Bower package
Now that Bower is installed, we can use it in our code—the major difference though
is that it doesn't contain a version of lessc, so we are limited to only using it to
compile dynamically in our code, and that developing code, which relies on using
Node, is not supported.

With this in mind, we can still use it in a development capacity, to at least prove that
our code works—for this, we only need to make one change to our code. If we open a
copy of project.html, we can change the highlighted line to use the Bower version
of Less, instead of the original version:

<link rel="stylesheet/less" href="include.less">
<script src="http://localhost/chapter3/bower_components/less/dist/
less-1.7.3.js"></script>
 <script type="text/javascript">
 </script>

We can, of course, take this much further—Bower operates very much in the same
manner as Node, allowing us to produce .json packages, just as we did for Node
in the previous chapter.

If you want to learn more about producing packages for Bower,
then Bob Yexley has a useful article at http://bob.yexley.net/
creating-and-maintaining-your-own-bower-package/.

Let's now turn our attention to getting accustomed to the Less syntax. Before we do
so, there is one important point we need to be aware of that concerns the dangers of
using Less on the client side.

The dangers of using Less on the
client side
So far, we've worked through how you can install Less in your code and use it to
compile code into valid CSS, as each page is displayed.

Surely we should be good to start using Less, right? After all, we have the library
in place, we know how to add it in, and know something of what to expect when
styles have been compiled...or perhaps not. There is one critical point we've
missed; let me explain.

http://bob.yexley.net/creating-and-maintaining-your-own-bower-package/
http://bob.yexley.net/creating-and-maintaining-your-own-bower-package/

Chapter 3

[61]

When Less first came out, it was originally written using Ruby; this meant code
had to be compiled first, before including the results in website pages, as valid CSS.
Although this was a perfectly valid procedure, it made development slower, as extra
steps were required in order to compile the Less code and include it in web pages.

The rebasing of the library in JavaScript led to a 30 to 40 percent increase in
speed—this led to the temptation to include the library directly in code, along
with the raw Less code. This worked well enough, while removing the need to
compile the code separately.

This, however, is no longer deemed good practice, at least for production sites,
for a number of reasons:

•	 JavaScript can be turned off—a reliance on JavaScript to control the styling
for a site means that it will break, resulting in a messy site!

•	 A reliance on a JavaScript-based library means that another HTTP request
has to be made to the server, which can result in increased loading times,
particularly for script-heavy sites.

•	 On a content-heavy site, with a lot of styles, this can lead to a noticeable
increase in rendering times, as the styles have to be compiled dynamically
before content is rendered on.

•	 Most mobile platforms cannot handle the compilation of Less (nor the
associated JavaScript file) dynamically and will just abort the execution,
which will result in a mess.

This doesn't mean compiling on client side is a complete no-no, it should just
be limited to working in development environments, or in instances where it
is beneficial to store the library locally, such as within an HTML5 application.

You will note that many of the examples throughout this book will use Less
client-side. This is to ensure that you, as the reader, are exposed to the whole
experience; as we are working in a development/demonstration capacity, this is
not an issue. When working on production sites, the Less code should always be
precompiled first, before adding it to the site.

Getting Started with Less

[62]

Exploring the syntax used by Less
Enough theory about installing! Let's move on and take a look at the syntax that
makes up Less. Over the next few chapters, we will explore each part of the library
in depth; before doing so, we will start with a whistle-stop tour through some of the
more important parts of the library, beginning with variables.

Working with variables
If we need to write CSS styles, it's likely that we will include one or more styles that
appear in multiple places. A great example is a number of shapes, where we might
need to use the same value for borders or foreground colors:

.shape1 {
 color: #5cb100;
 border: 1px solid #5cb100;
}

.shape2 {
 background: #fff;
 color: #5cb100;
}
.shape3 {
 border: 1px solid #5cb100;
}

We could, as web designers, simply use the same color values throughout our code,
and where appropriate, this is a perfectly valid option. However, what happens if
we've set up a specific set of colors, only to find they all need to be changed?

Each style can be changed individually, although this assumes we manage to change
every instance—on a style-heavy site, and with the best will in the world, there will
always be one that we miss!

We can solve this easily by using variables to store a constant value for each color,
and use it throughout the style sheet:

@my-color: #5cb100;

.shape1 { color: @my-color; border: 1px solid @my-color; }

.shape2 { background: #fff; color: @my-color; }

.shape3 { border: 1px solid @my-color; }

Chapter 3

[63]

This means that if we choose to change the original color for something else, then
all we need to do is change the color value assigned to the relevant variable, and
Less will automatically update each instance of the variable throughout the rest of
the code.

In our example, we set up a variable to store the color value of #5cb100—if we
wanted to change this, then we will only need to change the assigned variable at
the start. Less will then handle the updating of every instance where the variable
has been used, so we can be confident that the change has taken effect throughout
our code.

We will explore more of variables in Chapter 4, Working with Variables, Mixins,
and Functions.

Changing variables programmatically
Although we can set variables as static values, we might come across instances
where it will be beneficial to programmatically change a value assigned to a Less
variable, from within our code.

Hopefully, this is not something you will have to do too often, but it is useful to at
least know how it works. Let's take a quick look at how this works, using an example
form that has a couple of input fields and a simple Submit button.

In a new file, open a copy of the project.html file we created earlier, then alter the
code as shown:

<link rel="stylesheet/less" href="css/object.less">
<script src="js/less.min.js"></script>
<script type="text/javascript">
 less.modifyVars({
 '@ button-color': '#61783F'
 });
</script>

Next, add the following code in between the <body> tags:

 <form action="demo_form.aspx">
 First name: <input type="text" name="fname">

 Last name: <input type="text" name="lname">

 <input type="submit" value="Submit" id="submitbtn">
 </form>

Getting Started with Less

[64]

Finally, add the following Less styles to a new file, saving it as object.less:

@button-color: #4D926F;

input { margin-top: 10px; }

#submitbtn {
 background-color: @button-color;
 margin-top: 10px;
 padding: 3px;
 color: #fff;
}

In our example, we've added a reference to the Less object, then used the
modifyVars method to change the color of the @button-color variable, which
we specified in object.less, to #61783F. We will cover variables in more detail
in Chapter 4, Working with Variables, Mixins, and Functions.

Creating mixins
The next key element of Less is the creation of mixins, or predefined blocks of Less
code that we can reuse from one ruleset, as part of another ruleset. So, we take the
following block of CSS as an example:

.green-gradient {
 background: #5cb100;
 background: linear-gradient(to top, #5cb100, #305d00);
 background: -o-linear-gradient(top, #5cb100, #305d00);
 background: -webkit-linear-gradient(top, #5cb100, #305d00);
}

Here, we've added a gradient color of dark green to a preset style rule called
.green-gradient. So far so good; this will produce a perfectly usable gradient
that fades from green to very dark green.

We could repeat this block of code for each instance where an object needs a similar
style, but that would quickly lead to a lot of unnecessary code bloat. Instead, we can
include the block of code as a mixin, within another style:

.shape1 {
 .green-gradient;
 border: 1px solid #ccc;
 border-radius: 5px;
}

Chapter 3

[65]

This produces the following valid CSS—the mixin code is highlighted:

.shape1 {
 background: #5cb100;
 background: linear-gradient(to top, #5cb100, #305d00);
 background: -o-linear-gradient(top, #5cb100, #305d00);
 background: -webkit-linear-gradient(top, #5cb100, #305d00);
 border: 1px solid #ccc;
 border-radius: 5px;
}

Using this method means that we can cut down on the code we need to write and
still produce the same results. As you will see in Chapter 4, Working with Variables,
Mixins, and Functions, we will take this a step further—with some careful planning,
we can begin to build up a library of mixins that we can reuse in future projects.
The key to this is creating mixins that are sufficiently generic, which can then
be reused as needed. Others have already created such libraries and made them
available online—we will use some of the more well-known ones, such as
3L, More or Less and LESSHat, in our code examples.

The great thing about Less is that when we include these mixin libraries, Less will
only include those mixins from the libraries where they are being referenced in our
code. While it might initially seem like we're including a lot of extra code, the reality
is that only a fraction of the code is used—it all comes down to careful planning as to
how much we need to use!

Nesting styles in Less
Moving on, let's turn our focus to another key part of the Less library: the ability to
nest styles. No, I'm not talking about bird habits (if you excuse the pun!), but a way
to reduce repetition when creating your styles. Let me explain more.

Imagine you have a block of code similar to the following code, where a number
of CSS styles have been created for child elements against their parent element:

#header { color: black; }
#header .navigation { font-size: 12px; }
#header .logo { width: 300px; }

On the face of it, this would appear normal code, right? Absolutely, there's
nothing wrong with it. However, we can do better than this—as part of defining
the class styles for each child element, there is a necessary degree of repetition in
each style rule.

Getting Started with Less

[66]

Using Less, we can embed or nest our styles more effectively. Our code will appear
as this:

#header {
 color: black;
 .navigation {
 font-size: 12px;
 }
 .logo { width: 300px; }
}

Granted that it might not always reduce the number of lines required when writing
code in your editor. However, this is not necessarily the aim of the exercise—the key
here is to make the code more readable, as styles that relate to a specific element are
grouped together, so it is clearer what role they play. You will find, particularly on
larger sites, that this can sometimes mean a reduction in the number of lines we need
to write—it all comes down to careful planning! We will cover nesting in more detail
in Chapter 5, Inheritance, Overriding, and Nesting in Less.

Calculating values using operations
So far, our whistle-stop preview has taken us through creating variables, basic
mixins, and reordering our code through the use of nesting. We're now going
to step things up a little and have a look at the use of operators in our code.

Operators? Suprised? I am sure you are. Let's see what happens when we use them
in our code. Imagine we have a number of shapes on screen, which are perfectly
sized and positioned. We could use individual style rules for each element, but it
would require careful calculations to ensure we had everything in the right place,
particularly if any element needed repositioning.

Instead, we can use simple maths to work out the size and position of each element
automatically, based on one or more given values:

@basic-width: 100px;

.shape1 { width: @basic-width; }

.shape2 { width: @basic-width * 2; }

It will, of course, require that each calculation be worked out, but once this is done,
then all we need to do is change the initial value set, and it will automatically update
every other value.

Chapter 3

[67]

It's worth noting that a strict math option is available in Less,
which only calculates math that is encapsulated in parentheses,
such as this code:

.class {
 height: calc(100% - 10px);
}

You can read more about this option at http://lesscss.org/
usage/#command-line-usage-strict-math.

In our example, we've set an initial variable, @basic-width, of 100 px, then used it
to double the width of shape2. Once the code is compiled, it will produce the
following CSS:

.shape1 { width: 100px; }

.shape2 { width: 200px; }

If we were to change the value for .shape1 to 75px for example, then the width of
.shape2 will be recalculated as 2 x 75px, or 150px. We'll be exploring more on the
use of operators later in this book.

Extending existing styles in Less
This is a relatively new feature in Less and works almost as a direct opposite to
a normal mixin. It takes a little time to get used to it, so let's examine a simple
example—imagine you have a div tag that uses the following style rule:

div { background-color: #e0e0e0; }

The div tag produces a very light gray color as its background color. We can use this
to extend another element:

p:extend(div) { color: #101010; }

This compiles to the following code:

div, p { background-color: #e0e0e0; }
p { color: #101010; }

Instead of adding a whole bunch of properties of a mixin class to an existing class, it
adds the extending selector to the existing selector so that the output of the extended
class includes both sets of styles.

http://lesscss.org/usage/#command-line-usage-strict-math
http://lesscss.org/usage/#command-line-usage-strict-math

Getting Started with Less

[68]

The beauty of this is that it results in a similar effect to using mixins, but without the
associated bloat that you sometimes get when using mixins. It works by taking the
contents of the existing selector, in this instance background-color: #e0e0e0, and
assigning it to the new selector, p. This way, we can be more selective about reusing
styles from existing elements, without the need to introduce new mixins.

Note that extend will not check for duplicates. If you extend the
same selector twice, it will add the selector twice. For more details,
see http://lesscss.org/features/#extend-feature-
duplication-detection.

Compiling the code and viewing results
Now that we've seen something of the syntax of Less, let's change tack and focus
on how to compile our Less styles to produce valid CSS. There are several ways
to achieve this, of which we touched on some back in Chapter 2, Building a Less
Development Toolkit. For the moment, we're going to concentrate on using Crunch!
to compile our code; we will switch to using the command line later in this section.

Using a standalone compiler
We will start with the variable example shown earlier in this chapter. Let's begin by
starting up Crunch! and then clicking on the New LESS file button in the main code
window. By default, it will create a new placeholder file called new.less; paste in
the code from our example.

http://lesscss.org/features/#extend-feature-duplication-detection
http://lesscss.org/features/#extend-feature-duplication-detection

Chapter 3

[69]

Press Ctrl + S to save the file, then save it in the lessjs project folder we created
earlier, as variables.less:

Click on Crunch File to view the results of the compiled code—it will prompt you to
assign a filename, so give it the default, which is the same name of the Less file, or in
this instance, variables.css:

Getting Started with Less

[70]

That was easy, huh? Any time we make a change to our Less file, all we need to do is
save it, then click on Crunch File and the file is automatically updated. Let's test this
by changing the color value assigned to the @my-color variable.

In the variable.less file, alter the value shown against @my-color as follows:

@my-color: #3f004b;

Resave the file, then click on Crunch File—the variable.css tab will flash
momentarily to indicate that it has been updated. Click on it to view the changes:

As we can see, Crunch! has successfully updated the changes to our code—if there
had been an error, it would flag an error message at the foot of our code, such as this
one, to indicate a missing } at the end of our code:

Adding the missing } in this instance will fix the issue and allow Crunch! to
recompile our code without any issue. Let's switch tack now and focus on
performing the same operation, but this time using the command line instead.

Chapter 3

[71]

Using the command-line compiler
So far, we've used a standalone editor to compile (or Crunch!—pun intended!)
our code. It has successfully produced some valid CSS for us, which can be used
in a normal HTML page if desired. This works well, but might not be the preferred
choice for everyone!

Instead of having to use a standalone compiler, we can achieve the same result by
using the command line instead. Granted that this is a little bit more of a manual
process, but it does give us the opportunity to hook in the compilation process as a
command that we can run directly from most text editors.

Compiling Less files using the command line
The process to compile Less files via the command line is very easy. Start by bringing
up a command prompt and changing the location to your project folder, which is
the lessjs folder we created earlier. At the command prompt, type in the following
command and then press Enter:

lessc variables.less variables.css

That's all that is required for a basic compilation. Less will now compile the
variables.less file and save the results as variables.css in the same folder.
It means that you can leave this session open in the background and rerun the
command each time you want to make a change to the code.

Less has a number of other options available when using lessc
via the command line. To view them, type in lessc at a command
prompt to display the full list.

Watching for changes in Watch mode
In this exercise, we're going to take a look at a simple, but useful feature called
the Watch mode. This allows us to make changes to any Less file while still in
development, and for us to reload the page without having to force a complete
reload of the page from the server. It is worth noting that the Watch mode can be
used with the local filesystem, or with a web server—both will produce the same
effect. For the purposes of the book, we will assume the use of the latter; in this
case, we will use WampServer, which we covered back in Chapter 2, Building a Less
Development Toolkit. If you are a Mac user, then you can use something such as
MAMP; Linux users will have a selection of local web servers available within
their distro.

Getting Started with Less

[72]

We're going to test it by creating a simple form with the username and
password fields.

Assuming that we have installed WAMP, or have web space available, start by
opening up your text editor, then add the following code:

<!DOCType html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Adding watch support</title>
 <link rel="stylesheet/less" href="include.less">
 <script src="less.min.js"></script>
 <script type="text/javascript">
 less.env = "development";
 less.watch();
 </script>
 </head>
<body>
 <form action="demo_form.aspx">
 Name: <input type="text" class="input" />
 Password: <input type="password" class="input" />
 <input type="submit" id="submitfrm" value="This is a button"
 />
 </form>
</body>
</html>

Notice how less.env = "development" has been added.
This sets Less to work in the development mode—this is one of
several options we can set in this mode. For more details, it is worth
reading the documentation on Less' site at http://lesscss.org/
usage/#using-less-in-the-browser.

Save it as watchr.html in the www folder, which should be c:\wamp\www by default.
Next, in a separate file, add the following and save it as include.less:

@color-button: #556644;
#submitfrm {
 color: #fff;
 background: @color-button;
 border: 1px solid @color-button - #222;
 padding: 5px 12px;
}

http://lesscss.org/usage/#using-less-in-the-browser
http://lesscss.org/usage/#using-less-in-the-browser

Chapter 3

[73]

Fire up your browser, then navigate to it by entering the appropriate URL into your
browser; if all is well, you will see something like this:

Keep your browser window open. Now, let's make a change to our Less code;
in the Less file, change the @color-button value to #334466:

@color-button: #334466;
#submitfrm {
 color: #fff;
 background: @color-button;
 border: 1px solid @color-button - #222;
 padding: 5px 12px;
}

Save the change to the Less file. Within a few moments, we will see the color of our
button change from dark green to dark blue, as shown in the following screenshot:

Getting Started with Less

[74]

When working with Less, compiled styles are stored in the localStorage area of the
browser, and they remain there until the localStorage area is cleared. We can see
this by pressing F12, then clicking on DOM, and scrolling down to the localStorage
entry—assuming Firebug is installed:

To view any changes, we have to force a refresh from the server—using the watch
facility forces the browser into the development mode, which prevents the browser
from caching the generated CSS files.

It is worth noting that there are other methods you can use to watch for changes,
such as using Grunt or Gulp. Two great examples include observr, which is available
at https://github.com/kevinburke/observr, or lessc-bash, downloadable from
https://github.com/pixelass/lessc-bash. We covered using Grunt to watch
for changes in Chapter 2, Building a Less Development Toolkit.

Summary
We're now ready to start exploring the Less syntax in more detail. Before we do so,
let's recap what we learned throughout this chapter.

We began with how you can download and install Less; we first covered how you
can download this as a standalone library, before incorporating it into our pages.
We also took a brief look at how you can use a CDN link instead of downloading
the code; while this isn't recommended for development purposes, it nevertheless is
worthwhile for production sites, where the browser can cache the library if a visitor
has already accessed the library on a previous site.

https://github.com/kevinburke/observr
https://github.com/pixelass/lessc-bash

Chapter 3

[75]

Moving on, we then took a look at how you install Less server-side, using the Node
platform. We saw how easy it is to compile Less files, using a single command,
and that we can perform this as many times as we like, by rerunning the command
when needed. We discussed how to install Less by taking a look at the dangers of
using it client side and how this should really be limited to use in a development
environment only, due to the extra demands placed on the hosting server.

We then changed focus and took a whistle-stop tour on some of the key parts of
the Less syntax, as a precursor to exploring it in more detail in later chapters. We
covered the use of variables, mixins, nesting, operations, and extending in Less
before switching to compiling some basic code to see how the compilation process
works. We examined how you can use either a standalone compiler or the command
line to perform the same operation. We finished the chapter with a look at how to
use the watch() function within Less—this can be set to watch for any changes in the
Less file and force the browser to automatically refresh the page, without the need
for manual intervention.

We've now covered the basics of how to install Less and get it up and running in our
code. Let's move on and begin our journey through the functionality of Less, starting
with a look at mixins, functions, and variables.

Working with Variables,
Mixins, and Functions

So far in this book, we've built up the basics of what will become our development
toolkit for working with Less and taken a whistle-stop tour through some of the
syntax and concepts that are associated with Less as a CSS preprocessor. I am sure
some well-known actor once said in a film somewhere, "It's time...."

Yes, it's time to get stuck with using Less! However, hold on; this chapter says it's
about working with variables, functions, and the like; surely, this means we're
developing in programming code, right?

Wrong. Don't worry, my friends; granted, we will look at functions, but they are
nothing like the functions you might see when developing using languages such
as C# or Visual Basic. Indeed, the only similarity is the name—as we will see,
functions within the world of Less are more akin to using a scientific calculator
than complicated code.

This is just a small part of what we will cover. Throughout this chapter, we will look
at some of the building blocks of Less, including:

•	 Creating and scoping variables
•	 Developing simple and parametric mixins
•	 Using Less functions
•	 Using prebuilt libraries

Intrigued? Let's get started...

Working with Variables, Mixins, and Functions

[78]

Discovering variables in Less
As with all good things, we must start somewhere—it seems like an opportune
moment to ask ourselves a question: for those of you who are already familiar with
the basics of programming, when is a variable not a variable? It's a constant—but
hold on, this section is about variables, right...? If this seemed like double Dutch to
you, then don't worry, let me explain.

Variables in Less are very much like the variables in most programming or scripting
languages—they act as a placeholder for a value. Consider the following code:

#somediv { width: 200px; height: 200px; }

Instead of the previous code we could write this:

@width: 200px;
@height: 200px;

#somediv { width: @width; height: @height; }

This code will produce the same result.

You might ask yourself though, "Why write double the code for the same result?"
Surely, we can simply use the first method, right?

Yes and no—on its own, this example isn't actually that effective. However—and this
is where the big difference lies when using Less—it comes into its own when you are
using the same rule to style multiple items of the same type, with the same effect.

If we had the need to style a number of buttons throughout a site, for example, then
we would normally set the style either inline or using classes. This is likely to require
updating of styles at several different places in our style sheet, if we need to make a
change; this is time-consuming and prone to errors!

Instead, we set up variables at the start of our Less styling, which are used
throughout our code. This means that with a single stroke, we can automatically
update all the instances of a particular value; this can be a real timesaver, particularly
if a client is unsure what they want to see!

The key to setting up variables is planning; with a little care and forethought, we can
set up our variables at the head of the style sheet and then use them as appropriate
throughout our Less code. To see what I mean, let's put this into practice with a
simple example.

Chapter 4

[79]

Creating Polaroid images
In the first example of this chapter, we're going to use Less to create the
tried-and-trusted Polaroid effect, as developed by the Canadian developer
Nick La (http://www.webdesignerwall.com), and apply it to a number of
images, as shown in the following screenshot:

The beauty of this is that there is no need for any JavaScript or jQuery in our code;
it will use pure Less, which we will compile into valid CSS.

For the purpose of this book, it is assumed that we will be using Sublime Text that
has been configured to automatically compile Less files to valid CSS, as we saw in
Chapter 2, Building a Less Development Toolkit.

If you are using a different means to compile the Less code, then you will
need to adjust the steps accordingly.

In a copy of the code download that accompanies this book, extract a copy of
variables.html—we will use this as the basis for our Polaroid image effect.

With our framework in place, let's add some styling. In a separate file, let's start
adding in the Less styles, beginning with the variables that will define our colors:

@dark-brown: #cac09f;
@light-grayish-yellow: #fdf8e4;
@dark-grayish-yellow: #787568;
@image-width: 194px;

@caption-text: ' ';

http://www.webdesignerwall.com

Working with Variables, Mixins, and Functions

[80]

Now that we have created our variables, it's time to use them; let's begin by styling
each list item, to turn them into the container for each image:

li { width: @image-width; padding: 5px; margin: 15px 10px; border:
1px solid @dark-brown; background: @light-grayish-yellow; text-
align: center; float: left; list-style: none outside none; border-
radius: 4px; box-shadow: inset 0 1px rgba(255,255,255,.8), 0 1px 2px
rgba(0,0,0,.2); }

We can now turn our attention to styling the contents of each Polaroid; let's begin by
setting the main images to appear within each container, and not displaced to right:

figure { position: relative; margin: 0; }

Next comes the addition of each flower image, along with its overlay effect:

figure:before { position: absolute; content: @caption-text; top: 0;
left: 0; width: 100%; height: 100%; background: url(../img/overlay.
png) no-repeat; border: none; }

Finally, let's add the styling for each image caption:

figcaption { font: 100%/120% Handlee, Arial, Helvetica, sans-serif;
color: @dark-grayish-yellow; width: @image-width; }

Save the file as variables.less. Sublime Text will automatically compile this into a
valid CSS file, although for the purpose of this demo, we will compile the Less code
dynamically as it is not very complex.

The keen-eyed among you will notice that we are using a nonstandard
font for the caption—this is the Handlee font, available from Google Fonts.
To ensure that this works as expected, add this line immediately after the
<title> tag in variables.html:

<link href='http://fonts.googleapis.com/css?family=Handlee'
 rel='stylesheet' type='text/css'>

If you preview the results in a browser, you will see something similar to this:

Chapter 4

[81]

In our example, we've created a number of variables to handle the colors being
used; instead of displaying hex codes throughout our code, which aren't easy
to understand, we can use names, such as @dark-brown, which are easier
to understand:

@dark-brown: #cac09f;
@light-grayish-yellow: #fdf8e4;
@dark-grayish-yellow: #787568;
@image-width: 194px;

We can also use variables to define text, such as:

@caption-text: ' ';

It is important to note that while using variables to define colors is the most
common, it is by no means the only use for variables. We can also use variables
to define strings, as we have done here, or even include them in URLs:

// Variables
@images: "../img";

// Usage
body { color: #444; background: url("@{images}/white-sand.png");}

This will compile to:

body { color: #444; background: url("../img/white-sand.png"); }

It is worth reading through the variable examples on the main Less site
(http://less.github.io/features/#variables-feature).

In our example, we compiled our styles dynamically; so, Less will automatically
substitute every instance of each variable name for the appropriate value throughout
our code. At this point, we could easily substitute the Less file for the compiled CSS
file—it will produce the same effect. This is something we should do for a production
environment; we should also go one step further and minimize the code to ensure
that bandwidth usage is kept to a minimum.

Loading variables and setting the scope
When setting and using variables, there is one key element that we need to be aware
of: setting variable scope when loading variables in Less.

http://less.github.io/features/#variables-feature

Working with Variables, Mixins, and Functions

[82]

Variables in Less are lazy-loaded, which means they don't have to be declared before
being used. If we have declared an instance of a variable, then redeclare it with a
new value. Less will always use the last definition of the variable, searching
upwards from the point where it is called. Consider this:

@var: 0;
.style1 {
 @var: 1;
 .style {
 @var: 2;
 three: @var;
 @var: 3;
 }
 one: @var;
}

In this instance, you might expect to see .style1 contain a rule of one: 3. Instead,
it will compile to one: 1, as the @var: 3 is contained in the .class1 class rule,
which is not within the same scope. It becomes even more important that variables
are correctly assigned at the right point in our Less code, as we don't have to declare
them upfront before using them. As an example, consider the following two methods
of writing the same code, both of which will compile to equally valid CSS. Consider
the first method:

lazy-eval { width: @var; }

@var: @a;
@a: 9%;

The other method of writing the code is as follows:

.lazy-eval-scope { width: @var; @a: 9%; }

@var: @a;
@a: 100%;

Both will compile to:

.lazy-eval-scope { width: 9%; }

See what I mean? The first method is more concise—there is no need to use the
second method if it produces the same result! On this note, let's change tack and
focus on how we can remove repetition in our Less code by introducing the use
of mixins.

Chapter 4

[83]

Exploring mixins
When writing code, how many times have you written a similar code, but for
different projects? Ever wondered if you could, with a little change in the writing
style, convert to using prebuilt blocks of CSS that you can drop in a project at a
moment's notice?

Sure, you could start to create your own library of code—this would work perfectly
well. However, it suffers from at least one potential drawback: you will very likely
have to manually modify any stored code to fit the needs of a new project. While this
will work, you might find yourself expending more time updating code than if it had
been written from scratch!

What if I said you could still maintain a code library, but you don't have to keep
modifying each block of library code that you reuse? It is possible—with the use
of Less' mixin functionality.

Mixins are blocks of code that do as the name suggests—they can be mixed-in to
your project code and called when required. They can even be moved to a library
style sheet, which you can include in your projects—the beauty is that while you
may have a library style sheet that is huge, only those styles that are actively used
in the code are called and compiled in the resulting CSS style sheet.

The uses for mixins are as wide as your imagination—it can be as simple as defining
a block of static code to call in your CSS, all the way through to passing specific
values as parameters to mixins, otherwise known as parametric mixins. To see how
mixins can work, let's begin by creating a simple web form using normal CSS.

Creating a web form
If you've spent any time looking at websites—and in this modern day of technology,
it would be difficult not to—then you will have come across, or needed to use, the
ubiquitous contact form. They pop up everywhere—you could almost take the
cynical view that people use them as a means of avoiding human contact!

Nonetheless, they still serve a valid purpose. Over the next few sections, we're going
to develop a simple contact form and enhance it using Less mixins to illustrate how
they can be used to reduce the amount of code that we need to write.

For this example, you will need to avail yourself of a copy of the code
download that accompanies this book, as we will be using content
from it during the exercise.

Working with Variables, Mixins, and Functions

[84]

Start by opening a copy of project.html, which we created earlier, and then
updating the <head> section, as follows:

 <head>
 <meta charset="utf-8">
 <title>Demo: Mixins</title>
 <link rel="stylesheet" href="css/buttons.css">
 </head>

Next, add the following markup in between the <body> tags:

 <body>
 <form id="submitfrm" action="demo_form.asp">
 <label for="fname">First name:</label>
 <input type="text" name="fname">

 <label for="lname">Last name:</label>
 <input type="text" name="lname">

 <input class="button red" id="submitbtn" type="submit"
 value="Submit">
 </form>
 </body>

Save this as mixins.html—a copy of this file is also available in the code download.
From the code download, retrieve a copy of the buttons.css file that is in the css
subfolder, in the code folder for this chapter. Space constraints mean all 59 lines of
the file can't be reproduced in full here, but once they are saved in the same folder,
we can preview the results:

As we can see from the CSS styles, there is definitely a fair amount of
repetition—even for an example as simple as ours! Let's change this by
introducing mixins in our code.

Chapter 4

[85]

Adding basic mixins
We can start by adding in two simple mixins to our code—let's begin by editing a
copy of buttons.css and then adding the following code at the start of the file:

.shadow() { box-shadow: 0 1px 2px rgba(0,0,0,.2); text-shadow: 0
 1px 1px rgba(0,0,0,.3); }

.formfont { font-size: 14px; font-family: Arial, Helvetica, sans-
 serif; }

Next, we can remove the original code from the .button style block, as this is no
longer needed—it will be replaced by the names of our three simple mixins:

.button {
 .shadow;
 .formfont;
 display: inline-block;
 outline: none;
 cursor: pointer;
 text-align: center;
 text-decoration: none;
 padding: .5em 2em .55em;
 border-radius: .5em;
}

Save this as mixins1.less; we can then remove the buttons.css link that is already
in the code. Don't forget to add in a link for our Less file, within mixins1.html:

 <link rel="stylesheet" type="text/less"
 href="css/mixins1.less">

Save the HTML file as mixins1.html—if we preview the results in a browser,
we should not see any difference in the outcome, but we can rest assured with
the knowledge that our three styles can be reused at any time in our code.

In our example, we've made a simple change to hive off styles in the blocks that we
can reuse—in this instance, our three mixins could be called by any of the buttons
used on a site, but they need to be of a similar style to ours. In each mixin, we've
grouped together the styles that complement each other, such as font-family and
font-size. There are no hard and fast rules about what should and shouldn't be
grouped; it all comes down to what makes sense and helps reduce the amount of
code we need to use.

Working with Variables, Mixins, and Functions

[86]

We can further develop mixins by passing in parameters—this makes them more
useful, as we can use the same code to produce different results, depending on our
needs. However, when working with mixins, there are a couple of gotchas that we
need to be aware of—the first one is code repetition.

Hiding the original mixin
When working with mixins, Less will compile (and display) both the mixin and the
calling code so that we end up with duplicated code in the CSS style sheet. This isn't
desirable, as it will make the style sheet larger than it is necessary and harder to
debug in the event of any issue.

To get around this, we need to make a small modification to our existing
styles—in the mixin1.less file, alter both the Less mixins, as follows:

.shadow() {
 box-shadow: 0 1px 2px rgba(0,0,0,.2);
 text-shadow: 0 1px 1px rgba(0,0,0,.3);
}

.formfont() {
 font-size: 14px;
 font-family: Arial, Helvetica, sans-serif;
}

Save the file as you normally do—Sublime Text will recompile the Less file.
We can prove this by examining the code in Firebug—the following screenshot
shows the effect of not using () in our mixins:

Chapter 4

[87]

When the code has been compiled, you can clearly see that the styles have been
removed—they are still present but are incorporated into the CSS style rules and
not as separate mixins:

Using the !important keyword
When working with mixins, we can also specify the !important attribute, in
the same way as we might do with normal CSS. All we need to do is to add it
immediately after any style that must take precedence over subsequent definitions
of the same rule:

.mixin (@a: 0) { border: @a; boxer: @a; }

.unimportant { .mixin(1); }

.important { .mixin(2) !important; }

This will be compiled by Less as follows:

.unimportant { border: 1; boxer: 1; }

.important { border: 2 !important; boxer: 2 !important; }

As the second style rule has been assigned the !important attribute, this will take
precedence over the first rule. The !important override should be used with care
though—it has gained something of a bad reputation since its introduction in CSS1
as it has often been misused. When used with care, it can perform an important
function—although some might say that if you need to rely on it, then it is worth
checking your CSS to ensure that you can't achieve the same results without it!

Working with Variables, Mixins, and Functions

[88]

For a good explanation of the role of the !important tag in CSS as a
whole, you might want to refer to Ian Devlin's article on how to best use
this attribute, which you can find at http://www.iandevlin.com/
blog/2013/05/css/using-important-in-your-media-queries.

Let's move on and take a look at how you can make mixins more powerful by
passing attributes.

Developing parametric mixins
So far, we have examined how you can use mixins to create blocks of code that
can easily be reused throughout your style sheets. On principle, this works great.
However, what if you found yourself wanting to reuse the same block of code but
couldn't, as the values were different?

Well, this is possible with Less; we've already covered how we can create mixins
as reusable blocks of code. Let's take this a step further and introduce the use of
parameters—here, we can pass values between the main Less file and individual
mixins. When compiled, Less will use the appropriate values that are being passed
to produce the desired CSS. Let's see this in action by making some changes to our
simple form, which we created earlier in this chapter.

Crack open a new file and add the following mixins:

.background (@bkgrd) { background: @bkgrd; }

.border-radius(@radius) {
 -webkit-border-radius: @radius;
 -moz-border-radius: @radius;
 border-radius: @radius;
}

.box-shadow (@x: 0; @y: 0; @blur: 1px; @color: #000) {
 -webkit-box-shadow: @x @y @blur @color;
 -moz-box-shadow: @x @y @blur @color;
 box-shadow: @x @y @blur @color;
}

.formfont() {
 font-size: 14px;
 font-family: Arial, Helvetica, sans-serif;
}

http://www.iandevlin.com/blog/2013/05/css/using-important-in-your-media-queries
http://www.iandevlin.com/blog/2013/05/css/using-important-in-your-media-queries

Chapter 4

[89]

Save the file as mixinlibrary.less. Next, let's modify a copy of mixins1.less,
as there are some styles contained in it that are now redundant. In mixins1.less,
make the following changes to the .button mixin, as highlighted:

.button {
 .formfont;
 .border-radius(.5em);
 .box-shadow(1px; 2px; rgba(0,0,0,.2));
 display: inline-block;
 outline: none;
 cursor: pointer;
 text-align: center;
 text-decoration: none;
 padding: .5em 2em .55em;
}

At the top of mixins1.less, we need to link in our mixinlibrary.less file;
otherwise, the compilation will fail with errors—to fix this, add the following
line at the top of mixins1.less:

@import "mixinlibrary.less";

We need to make a few more changes; in mixins1.less, we have three style rules
for the .red class, namely .red, .red:hover, and .red:active. Within each,
we need to change the rule for .background-color to use the Less mixin we've
included in our mixin library. So, let's go ahead and make the following changes,
as highlighted:

.red {
 .background(#ed1c24);

.red:hover {
 .background(#f14b52);

.red:hover {
 .background(#f14b52);

Working with Variables, Mixins, and Functions

[90]

Save the file as parametric1.less—don't forget to update parametric1.html with
a new link for the Less style sheet! If we preview the results in a browser, we can see
that there has not been any change to our design (which we would expect):

However, on closer inspection using a DOM inspector, such as Firebug (under the
Console section), we can see that our mixins from mixinslibrary.less have been
imported successfully:

We covered a couple of useful techniques in this exercise—it's worth taking a
moment to go through this in some detail.

In previous exercises, we used mixins by defining them as static blocks of code that
we can drop in at a moment's notice. This is great, but while the code blocks are
static, they are limited to what's contained within each block; we will need to modify
them to use different values if required, which makes them less useful.

Instead, we've incorporated parameters, such as this example:

.background(#ed1c24);

These are passed from the calling statement to the mixin and used to produce
different results, depending on the values being passed. When compiled using
the mixin in mixinlibrary.less, this will produce the following CSS:

background: #ed1c24;

This makes them infinitely more useful—one mixin can now serve a variety of
different uses, depending on which values are passed to it.

Chapter 4

[91]

Now, did the keen-eyed among you notice that I said we introduced a couple of
useful techniques here? Well, the second one is the use of the @import statement.
It is worth getting to know this keyword well, as it is a key part of Less. It allows
you to break down long, complicated Less files into smaller, more manageable ones.

Hold on, I hear you ask: doesn't this mean more CSS files? No, that's the beauty of
Less; it doesn't matter how many Less files you create, you will always end up with
one compiled CSS file. Ideally, we would limit the number in practice, for practical
purposes (7-10 is a good guideline, to allow uses such as WordPress). If you find
yourself using more than 10, then I would suggest that you revisit your page design!
We will return to importing Less and CSS files later in this chapter, in the Using
external libraries section and also in Chapter 5, Inheritance, Overriding, and Nesting
in Less.

Let's move on and take this a step further; we introduced the use of multiple
parameters with the use of the .box-shadow mixin, but it would be worth taking
out time to explore these further, as we can make more useful changes to our page's
Less design.

Passing multiple parameters
So far, we've seen how you can pass a single parameter to a mixin, such as the radius
size when using the border-radius rule. This is a great start, but as always, we can do
more—how about passing in multiple parameters?

This opens up a world of possibilities, as we can widen the scope of what can be
passed to our mixins. For example, if we're creating gradients, then we will have to
hardcode color values in our mixins, which doesn't make them very flexible! Instead,
if we use parametric mixins, then this allows us to pass colors as parameters to the
mixin, thereby making the mixin far more flexible and useful.

Let's take a look at how this works in practice, by updating our existing code for
linear-gradient (and the associated vendor prefixes), to use a Less mixin.

In a copy of mixinlibrary.less, add the following mixin at the end of the file:

.button (@color1, @color2, @color3) {
 background: -moz-linear-gradient(top, @color1 0%, @color2 6%, @
color3 100%);
 background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%, @color1), color-stop(6%, @color2), color-stop(100%, @
color3));
 background: -webkit-linear-gradient(top, @color1 0%, @color2 6%, @
color3 100%);

Working with Variables, Mixins, and Functions

[92]

 background: -o-linear-gradient(top, @color1 0%, @color2 6%, @color3
100%);
 background: -ms-linear-gradient(top, @color1 0%, @color2 6%, @color3
100%);
 background: linear-gradient(to bottom, @color1 0%, @color2 6%, @
color3 100%);
 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='@
middle', endColorstr='@stop', GradientType=0);
 border: 1px solid #980c10;
}

We now have redundant code in our Less file; so, in a copy of parametric1.less,
remove the six background statements in each block, along with the filter and border
statements. In their place, add the following, as highlighted:

.red {
 .background(#ed1c24);
 .button(#ed1c24, #e93a3f, #aa1317);
}

.red:hover {
 .background(#f14b52);
 .button(#f14b52, #ee686c, #d8181d);
}

.red:active {
 .background(#c61017);
 .button(#c61017, #d8181e, #7c0e11);
}

Save the file as parametric2.less—don't forget to update the parametric.html
file with the new name of our Less file.

In this exercise, we continued with the theme of using parametric mixins,
but this time, we called the same mixin with different parameters in each instance.
In theory, it doesn't matter how many parameters are passed as long as Less can
match them with valid inputs in each mixin. However, if you end up with more
than 4-5 parameters being passed, then it would be a good point to reassess your
mixin and perhaps see if it should be rewritten!

If we preview the results in a browser, we should not expect to see any visible results
in our form, but we can see the change from within the HTML tab in Firebug:

Chapter 4

[93]

Applying conditions to mixins
When using static or parametric mixins, there is one thing that we should note—the
mixin will be applied, no matter what the circumstances are and provided that any
parameters passed to a mixin can be correctly matched and processed.

This isn't always a good thing; fortunately, we can fix this by attaching conditions
to mixins so that they only execute if they can fulfill the condition(s) attached. These
are known as guarded mixins—we will cover these in more detail in Chapter 8,
Media Queries with Less, where we will see how Less can be put to good use when
producing responsive websites.

Using special keywords
If you spend any time working with mixins, then there are two useful variables that
you will come across at some point in your Less development. They are @arguments
and @rest. Let's take a look at how they work, in the context of the .box-shadow
mixin we created in the last exercise.

In the last exercise, we created the .box-shadow mixin to handle our
box-shadow styling:

.box-shadow (@x: 0; @y: 0; @blur: 1px; @color: #000) {
 -webkit-box-shadow: @x @y @blur @color;
 -moz-box-shadow: @x @y @blur @color;
 box-shadow: @x @y @blur @color;
}

Working with Variables, Mixins, and Functions

[94]

We referenced this mixin using the following command, which works perfectly well:

.box-shadow(1px; 2px; rgba(0,0,0,.2));

However, if you don't want to deal with all of the individual parameters
(and particularly if there are a few involved), then you can replace
@x @y @blur @color; with the @arguments variable:

.box-shadow(@x: 0; @y: 0; @blur: 1px; @color: #000) {
 -webkit-box-shadow: @arguments;
 -moz-box-shadow: @arguments;
 box-shadow: @arguments;
}

This handles the individual parameters in exactly the same way and produces valid
CSS when compiled by Less.

If, however, you want to alter the number of parameters accepted by a mixin, then
you can use Less' ability to reference named variables. Less will automatically match
them with the variables in the mixin and produce the appropriate result when
compiling the code. For example:

.mixin(...) { // matches 0-N arguments

.mixin() { // matches exactly 0 arguments

.mixin(@x: 1) { // matches 0-1 arguments

.mixin(@x: 1; ...) { // matches 0-N arguments

.mixin(@x; ...) { // matches 1-N arguments

You can also use the @rest keyword—we first pass different values to any named
variable in the parameter list and then use @rest to tell Less to work with the
remaining variables as they are now:

.mixin(@x; @rest...) {
 // @rest is bound to arguments after @x
 // @arguments is bound to all arguments
}

These two simple tricks will be of great help when you start working with
mixins—there is one trick that we have not covered yet, which is a little more
advanced: using mixins as if they were functions. Let's fix this now and see
what this means for developing mixins.

Chapter 4

[95]

Creating mixins as functions
On our journey through creating and developing mixins, we've seen how you can
hive off styles into groups and vary the output if needed, if it is set to receive values
from the calling statements. We have not covered one area though, which is the
use of functions within mixins—let's remedy this and take a brief look at what
this means.

Any variable created inside a mixin is visible to the outside world and can be
referenced from the calling statement. This means that within a mixin, we can
call another mixin and reference any variable from within the second mixin:

.mixin() {
 @width: 50%;
 @height: 100px;
}

.caller {
 .mixin();
 width: @width;
 height: @height;
}

The previous code, when compiled, results in:

.caller {
 width: 50%;
 height: 100px;
}

Taking this further, we can use the variables defined within a mixin, as if it were a
return value—this applies to any variable that is being called within the mixin:

.average(@a, @b) {
 @average: ((@a + @b) / 2);
}

div {
 .average(6px, 30px); // "call" the mixin
 padding: @average; // use its "return" value
}

The preceding code will result in the following:

div { padding: 18px; }

Working with Variables, Mixins, and Functions

[96]

This is really useful, as it means that we don't have to have a bunch of declarations
for variables at the start of our code, but we can convert them into mixins that we can
store in a mixin library and reuse in future projects. We will cover this in more detail,
as a real-world example, in the Moving calculations to a mixin section of this chapter.

Using external libraries
Until now, we've developed a number of mixins and referenced them from either
our main Less file or from a library file that we've created to store a number of our
mixins. This is all good, but—hold on for a minute—one of Less' core concepts is
DRY or Don't Repeat Yourself. While we are creating these mixin library files,
we are (in a sense) repeating what other individuals may have already done,
by creating—and publishing—their own solution.

With this in mind, it is worth researching online to see if anyone has already made
their own mixin library available for use; there are a number of good libraries you
can try, which include:

•	 LESS Elements: This is available at http://www.lesselements.com
•	 LESS Hat 2: This can be downloaded from http://www.lesshat.com
•	 3L: This is hosted on GitHub at http://mateuszkocz.github.io/3l/‎
•	 ClearLess: This is available at https://github.com/clearleft/clearless

The Less library available as part of Bootstrap also contains some useful
mixins—we will look at this in more detail, in Chapter 10, Using Bootstrap with Less.

There are hundreds more available online—it is worth taking the time to look,
as a library may exist that fulfills your need.

To incorporate the library, it is as easy as adding this line to the head of your
Less file:

@import <name of library file>

Call the name of the mixin, including any parameters that are needed. We've already
used this earlier in this chapter, in the Developing parametric mixins section—the
principles used there apply here too, whether it be for calling in a prebuilt library
made by someone else or one of your own creations.

Enough talk of mixins—let's change the subject and focus on another area of Less,
which is the use of functions in our code.

http://www.lesselements.com
http://www.lesshat.com
http://mateuszkocz.github.io/3l/
https://github.com/clearleft/clearless

Chapter 4

[97]

Introducing functions
Another useful feature of Less is its ability to work out values that should be used
in CSS, as a result of calculating the answers to functions and not merely using
static values.

If you are already familiar with functions in programming, you might think that
using functions in Less will involve writing lots of complicated formulae. Before you
put your hands up in horror, fear not—it doesn't have to be that complicated! In this
section, we're going to take a look at how you can use some simple math functions
to automatically calculate values, using operators and the data-uri function as the
basis for some examples of the many functions available within Less.

You can see the complete list of functions, on the main website
at http://lesscss.org/functions/.

Creating column-based layouts
One of the many tasks that a developer has to perform is to build the outline
framework for a site—this could be one of the hundreds of designs, but it is
likely that it will involve the use of columns in some format.

In some cases, this can be fraught with problems, particularly when dealing with
differences between each browser. Thankfully, Less can help here—we can use some
of its maths operators to construct a suitable layout with ease. To give you an idea of
what can be done, here's a screenshot of the finished article from our next exercise:

http://lesscss.org/functions/

Working with Variables, Mixins, and Functions

[98]

In a copy of the code download that accompanies this book, extract a copy of
functions1.html—we will use this as the basis for styling our simple page layout.

If we preview the results now, the design will look terrible. Let's fix this by adding
in the all-important styling rules. In a new file, add the following Less styles:

@baseWidth: 800px;
@mainWidth: round(@baseWidth / 1.618);
@sidebarWidth: round(@baseWidth * 0.382);

div { padding: 5px; margin-top: 5px; margin-bottom: 5px; font-family:
'Kite One', sans-serif; }
#container { width: @baseWidth; border: 1px solid black; margin-left:
auto; margin-right: auto; margin-top: 5%; margin-bottom: 5%; border-
radius: 4px; box-shadow: 4px 4px 4px 0px rgba(0, 0, 0, 0.5); }
#title { color: #FFF; font-family: 'Kite One', sans-serif;
font-size: 32px; font-weight: 400; padding-left: 100px; padding-top:
30px; position: absolute; }
#header { height: 150px; font-size: 18px; background-image: url("../
img/leaves.jpg"); }
#leftmargin { width: @sidebarWidth; border-right: 1px solid #ccc;
float: left; box-sizing: border-box; -moz-box-sizing:border-box;
height: 575px; }
#leftmargin li { list-style: none; }
#leftmargin a { text-decoration: none; }
#leftmargin a:hover { text-decoration: underline; }
#content { width: @mainWidth; float: left; box-sizing: -box;
-moz-box-sizing:border-box; height: 575px; padding: 10px; }
#footer { border-top: 1px solid #ccc; clear: both; font-size: 12px; }

Save the file as functions.less. Sublime Text will automatically compile this into a
valid CSS file as functions.css. If we preview the results, we should see a simple,
yet perfectly acceptable page appear:

Chapter 4

[99]

In this example, we've used a number of styles to produce a simple two-column web
page. The key to this trick lies in the following code:

@baseWidth: 800px;
@mainWidth: round(@baseWidth / 1.618);
@sidebarWidth: round(@baseWidth * 0.382);

Here, we've set three variables; the first variable, @basewidth, sets the overall size of
the content container and is crucial for working out the widths that we will use for
each column. Next, we've set the @mainwidth value, which calculates the value from
@basewidth, divided by 1.618 (or approximately 61 percent)—this gives a value of
494px. Lastly, we use the same principle to work out the value for the column—the
formula for this becomes 800 x 0.382, which gives 305.6px or approximately 39
percent of the total width.

Using this calculation means that we can be sure that the columns will maintain the
correct width, irrespective of the size of our container.

Moving calculations to a mixin
In the last example, we used some simple maths to determine the sizes needed to
produce a two-column layout; this formed the basis of a simple, but useful page
layout that could be used to produce any number of websites with relative ease.

However, there is still a nagging thought that we could do better—what if we could
turn our statements into a mixin and use it as if it were a function? Sounds crazy?
Well, perhaps not—we covered the basics of how to do this earlier in the chapter,
in the Creating mixins as functions section. Let's put some of that theory into practice
and see it in action.

Start by opening a copy of functions.less, which we used to create our
Less styling for the page demo earlier. At the top, remove the top three variable
statements. Next, add the following mixin immediately below it—this is our
replacement for the statements we have just commented out:

.divSize (@x) {
 @baseWidth: @x;
 @mainWidth: round(@baseWidth / 1.618);
 @sidebarWidth: round(@baseWidth * 0.382);
}

Working with Variables, Mixins, and Functions

[100]

We need to adjust the three <div> elements, where we use the variables from within
this mixin; so, go ahead and make the following changes, as highlighted:

#container {
 .divSize(800px);
 width: @baseWidth;

#leftmargin {
 .divSize(800px);
 width: @sidebarWidth;

#content {
 .divSize(800px);
 width: @mainWidth;

Save the changes as functions.less. If you preview the results in a browser,
you should not see any change to the page visually. However, this gives us the
opportunity to hive off the mixin into a mixin library, if we've been creating
one—a great example is the mixinlibrary.less file, which we put together
earlier in the book. Even though this will, by now, contain a number of mixins
that we wouldn't need to use here, Less will only ever pull in those mixins that it
needs to use if it encounters a direct call for them as part of the compilation process.

Working with the data-uri function
At this point, we're going to completely change tack and look at the other functions
available within Less—the use of the data-uri option.

Data-uri is a function available in Less, which inlines a resource to your style sheet;
it avoids the need to link to external files by embedding the content directly in your
style sheet. Although it may not help with document sizes, it will help reduce the
number of HTTP requests from your server; this is one of the key factors that can
affect how fast a page loads on the Internet. We will cover more of some of the
pitfalls at the end of this section.

Let's get started with writing some code—there are a few steps involved in this
process, so to give you a flavor of what we are going to produce, here's a screenshot
of the finished article:

Chapter 4

[101]

Let's start by opening a copy of functions1.html and altering the <div> footer,
as follows:

 </div>
 <div id="footer">
 © samplesite.com 2014
 <div id="social"></div>
 </div>
</div>

Save this as functions2.html. We need to add some social media icons at this
point—there are thousands available on the Internet; the ones I've used in our
example are the icons from Vintage Social Media Stamps: Icon Pack by John Negoita,
which are available at http://designinstruct.com/free-resources/icons/
vintage-social-media-stamps-icon-pack/.

If you would like some inspiration, you may want to take a look at the various packs
listed at http://www.hongkiat.com/blog/free-social-media-icon-sets-best-
of/—there are some stunning examples on display!

In this example, we're using three icons: the RSS, Facebook, and Twitter icons,
although you may prefer to use different icons from the pack, depending on
your needs.

Next, to make positioning of the icons easier, we're going to convert them into an
image sprite. For the uninitiated, image sprites are a really useful means of reducing
the number of requests for resources from the server. This is particularly useful if
you have lots of small images, such as arrows or icons, on your site; once you've
downloaded the initial image, it will be cached for further use elsewhere on the site.

If you would like to learn more about using CSS image sprites, then visit
http://css-tricks.com/css-sprites/.

There are a number of ways to create image sprites; the easiest way is to use an
online service such as the one at http://spritepad.wearekiss.com/, which we
will use in our example.

Browse to the site and then drag-and-drop each image onto the grid. Position them
until you have an even gap around each image—aim to leave 3-5 pixels between
each image. When you are happy with the layout, click on Download to obtain the
converted sprite and associated CSS styles that are produced by the site.

http://designinstruct.com/free-resources/icons/vintage-social-media-stamps-icon-pack/
http://designinstruct.com/free-resources/icons/vintage-social-media-stamps-icon-pack/
http://www.hongkiat.com/blog/free-social-media-icon-sets-best-of/
http://www.hongkiat.com/blog/free-social-media-icon-sets-best-of/
http://css-tricks.com/css-sprites/
http://spritepad.wearekiss.com/

Working with Variables, Mixins, and Functions

[102]

From the compressed archive that we've just downloaded, extract the image to the
lessjs project folder; store it within the img subfolder. Switch to a new document
in your text editor and then add the following, assuming that you've used the same
icons as those outlined earlier:

#social {
 background-image: data-uri('../img/sprites.png');
 width: 175px;
 height: 60px;
 float: right;
}

Save the file as social.less—don't forget to add a link to social.less in the
<head> section of functions2.html:

<link rel="stylesheet" href="css/social.less">

Sublime Text will have compiled the code into valid CSS—while the benefits of
using this method won't be apparent immediately, you will see the effects once
you look at the social.css file that is produced (and which is available in the code
download for this book). To give you a flavor, this is an extract from our compiled
social.css file:

#social{background-image:url('
hEUgAAALgAAA...

If you save the files and preview the results in a browser, you will see the icons
appear in the footer of your page, similar to this screenshot:

In our example, we've taken three images and converted them into a single image
sprite. We've then referenced this from our Less style sheet, using the data-uri
function, and positioned this on our page using standard CSS attributes to determine
the height and width (necessary for the background-image rule to work correctly).

Chapter 4

[103]

Using the data-uri function – some words of caution
While it is in a developer's best interests to ensure that his/her page sizes are
kept to a minimum, there are some pitfalls that we need to be aware of when
using data-uris:

•	 Updating sites that use data-uri to render images throughout can make it
harder to maintain—it's better to use data-uri where icons or images are
frequently repeated.

•	 It's a good practice to set a long expiry time on the CSS style sheet so that it
remains cached as much as possible, particularly for often-repeated images.

•	 Some browsers will have strict limits on the size of data-uri that can be
used. For example, IE8 has a maximum of 32KB; this will limit the size of
the images that can be used.

•	 You will find that embedded code means larger file sizes—this isn't
necessarily an issue as long as the document is cached; you can help
reduce this by using the gzip compression if needed.

This shouldn't put you off from using data-uri—it just means that you need to be
careful about its use in your pages! Data-uri is a really useful way of reducing the
number of requests to the server, as long as the content to be used is chosen with
care. A good example is small credit card images—these are repeated frequently
throughout an e-commerce site, so they could easily be used inline within a CSS
style sheet.

Summary
Phew! We've covered a lot in this chapter! Let's recap what we learned.

We kicked off with a look at how to create variables in Less, and with care, we used
them to good effect in creating our take on the time-honored Polaroid effect on a
series of images. We saw how this can be a real timesaver, by reducing the number
of alterations required to code, while at the same time, noting that the scope of
variables can be varied, and how this can impact our code.

We then moved on to looking at mixins—both the static and parametric varieties.
Here, we saw, with a little forethought, that we could create reusable blocks of code
that can be dropped in with ease either within our main Less file or a code library
file. We used this technique to iteratively alter the code required to build a very
simple web form in order to prove that the improvements made will not affect the
overall outcome.

Working with Variables, Mixins, and Functions

[104]

Next up, came an introduction to using functions, where we saw that with the use of
some simple operators or math functions, we can produce some useful results with
little input. We saw how easy it is to create a simple two-column page layout using
a small mixin, and that this can be developed further to incorporate more columns,
if desired.

Last, but by no means least, we took a look at using another of Less' functions, in
the form of the data-uri operator. We saw how easy it is to convert the image into
something that can be rendered inline in our code, helping to reduce the number
of requests to render content from the server and increase the speed of accessing
our page.

We're going to move on and change tack to cover another key area of Less in the
next chapter, by looking at inheritance, overriding, and nesting within Less.

Inheritance, Overriding, and
Nesting in Less

So far in our journey with Less, we've seen how you can begin to reduce the code
you need to write; it's time to take it up a level and begin to look at some more
advanced concepts within Less.

Let me begin by asking you a question: what is the one thing that irritates you about
writing styles where the same selector has to be repeated many times, such as when
designing a menu system using an unordered list element? Hopefully, the answer is
duplicated styles. In this chapter, we will take a look at how you can group styles to
avoid the need to duplicate selectors in your code. We will also cover how you can
inherit styles that can have a dramatic effect on reducing duplication; I'll also provide
some hints and tips on using these techniques and others to help reduce code bloat.

Enough chat, let's take a look at what we will cover throughout this chapter:

•	 Nesting styles within Less
•	 Inheriting styles
•	 Namespacing in Less
•	 Scope of styles in Less
•	 Hints and tips on avoiding code bloat
•	 Importing style sheets into Less

Curious? What are you waiting for? Let's get started...

Inheritance, Overriding, and Nesting in Less

[106]

Nesting styles in Less
If you spend any time writing styles, I am sure you will frequently have written
some that are duplicates of existing ones elsewhere in the same style sheet; this is
particularly true if you are creating styles for elements of a site, such as a menu
system using or .

It can add a lot of extra code bloat from duplicated styles. Thankfully, there is a
way we can reduce this, by using Less' ability to nest styles. Let's take a look at
how this principle works, by creating the online equivalent of a business card.

For this exercise, we will need a few things. As a start, we'll need an image
on our card; in this instance, we'll use an avatar, as this business card will be
displayed on websites. There are thousands of icons available for this purpose;
I will assume you have picked a suitable one and saved it as avatar.png. I've used
the Office Client Male Light Icon, available at http://www.iconarchive.com/show/
vista-people-icons-by-icons-land/Office-Client-Male-Light-icon.html.

Next comes the telephone, e-mail, and figurehead icons; these are from
the Modern Pictograms font family found at http://www.fontsquirrel.com/
fonts/modern-pictograms. You will need to convert it into a format that
can be embedded into a webpage; this can be done using a free service at
http://www.convertfonts.com.

Finally, before we can start work on creating our card, we need some social media
icons. I've chosen to use the hand-drawn ones by Chris Spooner, which can be
downloaded from http://blog.spoongraphics.co.uk/freebies/hand-drawn-
sketchy-icons-of-your-favorite-social-sites; alter the code accordingly if
you decide to use other icons instead.

Creating a business card
Start by opening a copy of nesting.html from the code bundle that accompanies
this book. This contains the markup we need to create our basic vCard.

Next, we need to add some styling to make it look presentable. There are a few
styles involved, so grab a copy of the code download file that accompanies this
book and extract a copy of nesting.less from within the archive.

http://www.iconarchive.com/show/vista-people-icons-by-icons-land/Office-Client-Male-Light-icon.html
http://www.iconarchive.com/show/vista-people-icons-by-icons-land/Office-Client-Male-Light-icon.html
http://www.fontsquirrel.com/fonts/modern-pictograms
http://www.fontsquirrel.com/fonts/modern-pictograms
http://www.convertfonts.com
http://blog.spoongraphics.co.uk/freebies/hand-drawn-sketchy-icons-of-your-favorite-social-sites
http://blog.spoongraphics.co.uk/freebies/hand-drawn-sketchy-icons-of-your-favorite-social-sites

Chapter 5

[107]

Save the file as nesting.html. If you preview the results in a browser, you'll see
something similar to the following screenshot:

Examining the process in detail
If we take a look through nesting.less, you will notice a number of styles using
a similar format. These examples are all variations on a theme of nesting, where
instead of adding individual child selectors (and thus duplicating code), we can
group together similar child selectors and implement one parent selector.

Our first example uses the standard a selector, to which we've grouped together
the style rules for :focus, :hover, and :active:

a {
 &:focus { outline: thin dotted; }
 &:hover { outline: 0 none; }
 &:active { outline: 0 none; }
}

This produces the following code when compiled:

a:focus { outline: thin dotted; }
a:hover { outline: 0 none; }
a:active { outline: 0 none; }

In this example, we've used a only to illustrate how the process
works—in reality, this is an example of where you wouldn't
gain any benefit from such a short selector name; the benefit is
only seen when longer names are used.

Inheritance, Overriding, and Nesting in Less

[108]

Our second example is a little more advanced—here, we've included some standard
CSS styles and mixed in style rules for two additional child selectors that go several
levels deeper:

.social {
 background-color: #e6e6e6; padding: 10px; width: 100%;
 ul { text-align: right; }
 ul li { display: inline-block; height: 48px; width: 48px; }
 ul li a { display: inline-block; height: 100%; overflow: hidden;
text-decoration: none; text-indent: 100%; white-space: nowrap; width:
100%; }
}

The key to nesting is careful examination of any classes or selectors, where there is
duplication; let's take a look at the CSS styles that will be displayed in a browser,
for the .social code block we've just covered:

.social { background-color: #e6e6e6; padding: 10px; width: 100%; }

.social ul { text-align: right; }

.social ul li { display: inline-block; height: 48px; width: 48px;
 }
.social ul li a { display: inline-block; height: 100%; overflow:
hidden; text-decoration: none; text-indent: 100%; white-space: nowrap;
width: 100%; }

To work out whether a style can be converted to use nesting, we can take a look at
similar selectors; nesting will only work where the selectors use common IDs. In
this example, .social is the common selector, hence it's used in our Less example.

A key point to note—at first glance, it would appear that .social ul could have
been used instead. This would work, but only for two additional child selectors
(.social ul li and .social ul li a). The parent .social class cannot be
included if we go in at this level, as we can only work top-down and not
bottom-up when considering which styles to nest.

There is a general rule of thumb that the selector or class used as our
grouping ID, should not be more than two levels deep; any more is
considered bad practice and should really be revisited!

Let's change focus and take a look at another functionality of Less, which is
inheriting and overriding styles, using the extend option.

Chapter 5

[109]

Inheriting and overriding styles with
extend
Up until now, we've used mixins to help reduce the need to write extra code,
as we can call these blocks of code from our Less statements easily, to produce
the desired effect.

Unfortunately this is still not without its own drawback. Let's say we create two
rules, that both call the same mixin, and produce identical results (save for the rule
name), then Less will interpret these as two separate blocks of code, even though
they both perform the same styling on two different objects. What if we could merge
these two rules together so that there is only one block of code, but which can be
called by either rule?

Well, we can, with the use of the extend function in Less. This is a really powerful
function, introduced for this purpose. Let's take a look at the concept to see how
it works.

Imagine you have a mixin, such as this simple one:

.stuff { color: red; }

.foo { .stuff; }

.bar { .stuff; }

If we compile it using something like Crunch!, then it will display this:

.stuff { color: red; }

.foo { color: red; }

.bar { color: red; }

This works perfectly well, but shows the aforementioned duplicated styles. To remove
this duplication, we can use the extend keyword and rework the code as follows:

.foo { color: red; }

.bar { &:extend(.foo); }

You can immediately see the difference in the output. Instead of splitting each
rule onto two lines as it did before, we've been able to merge the rule into one
block, but it can be called by either class:

.foo, .bar { color: red; }

Inheritance, Overriding, and Nesting in Less

[110]

It is worth reading the documentation on the main Less site on the
subject of extend—there are some interesting features that you
will need to be aware of, when using the function in your code.
You can view the documentation at http://lesscss.org/
features/#extend-feature.

The rule of thumb for choosing whether to use extend or a mixin is to choose the
technique that requires the least final output (or that works best for you).

Using extend to create information alerts
To see how extend works in practice, let's take a look at a little exercise to create
some imaginary dialog boxes that contain messages to alert the user about the
outcome of an operation.

Before we can get to work on our example, we first need to download some icons
that are suitable for use in dialog boxes. I've chosen to use the free icons created
by Andy Gongea; it will be assumed that you are using these icons, for the purpose
of the exercise. Visit http://www.graphicrating.com/2012/06/14/koloria-
free-icons-set/ to download the icons. You will need to extract the info.png,
error.png, warning.png, help.png, and valid.png images and drop them into
an img folder at the root of your project folder.

Let's start writing the code! Open a copy of project.html, which we created in
Chapter 3, Getting Started with Less, and then modify the <head> section as shown
in the following code:

 <title>Demo: Extending</title>
 <link rel="stylesheet/less" href="css/extend.less">
 <script src="js/less.min.js"></script>

Next, remove the existing markup in the <body> tag and replace it with this:

 <div class="info">Info message</div>
 <div class="success">Successful operation message</div>
 <div class="warning">Warning message</div>
 <div class="error">Error message</div>
 <div class="validation">
 First name is a required field
 Last name is a required field
 Email address has been typed incorrectly
 Preferred language has not been selected
 </div>

http://lesscss.org/features/#extend-feature
http://lesscss.org/features/#extend-feature
http://www.graphicrating.com/2012/06/14/koloria-free-icons-set/
http://www.graphicrating.com/2012/06/14/koloria-free-icons-set/

Chapter 5

[111]

Save this as extend.html. On its own, it won't win any awards for style if we were to
preview it now, so let's fix that by adding some! In a new file, add the following styles:

body{ font-family: Arial, Helvetica, sans-serif; font-size: 13px; }
.demo { font-style: italic; }

.box { border: 1px solid #000; margin: 10px 0px; padding:15px 10px
15px 50px; background-repeat: no-repeat;
 background-position: 10px center; width: 300px; padding-top: 15px; }

.info:extend(.box) { color: #00529B; background-color: #BDE5F8;
background-image: url('../img/info.png'); }
.success:extend(.box) { color: #4F8A10; background-color: #DFF2BF;
background-image:url('../img/valid.png'); }
.warning:extend(.box) { color: #9F6000; background-color: #FEEFB3;
background-image: url('../img/warning.png'); }
.error:extend(.box) { color: #D8000C; background-color: #FFBABA;
background-image: url('../img/error.png'); }
.validation:extend(.box) { width: 280px; padding-left: 70px; color:
#D63301; background-color: #FFCCBA; background-image: url('../img/
error.png'); }

Save the file as extend.less in the css subfolder; if you have configured Sublime Text
to compile Less files on save, then it will also produce the compiled CSS equivalent file.
We can use this to compare the results shown in the file, with those displayed in the
browser, when using a DOM Inspector such as Firebug. If we preview the file in
a browser, we should see something like the following screenshot:

Although this is a relatively simple example, it is worth taking a moment to study
the code to see how the extend function operates.

Inheritance, Overriding, and Nesting in Less

[112]

If you use a mixin, you often find that you have to include a base class (.stuff in
our earlier example) as your mixin, which contains the styles that you need to inherit
within your calling classes (in this instance, .foo and .bar).

This will work perfectly well, but will duplicate the code as we have already seen;
instead, we used the extend function to apply the existing .box class to each of the
classes we used for the dialogs, namely .info, .success, .warning, .error,
and .validation.

As extend is a Less pseudo-class, all trace of the extend function will be removed,
leaving the resulting compiled styles. The real benefit of using this function can be
seen when using Firebug; instead of seeing a lot of duplicated styles, we will see styles
neatly merged together where they perform the same function, with the remaining
styles left to operate on the remaining elements where appropriate.

Extending using the all keyword
Once you have begun using the extend keyword in your Less code, you might
find that you want to extend styles that are nested.

Unfortunately, extend can only match a selector based on what is given in the extend
request; it is not always able to match child selectors below a parent, unless a child
selector is specified. Let's take a look at an example to see what this means.

Imagine you have this simple bit of nested Less:

.module {
 padding: 10px;
 h3 { color: red; }
}

Using extend will produce this:

.news { &:extend(.module); }

The h3 style will not be extended and will instead be compiled as a separate style:

.module, .news { padding: }

.module h3 { color: red; }

To get around this, we can use the all keyword as shown in the following line of code:

.news { &:extend(.module all); }

The all keyword will extend everything to produce the desired effect:

.module, .news { padding: 10px; }

.module h3, .news h3 { color: red; }

Chapter 5

[113]

The key to it is to think of it as performing a nondestructive search and replace
operation on the original selector, to produce a new one. Let's take a look at it
in practice, by modifying the previous extend demo to use the all keyword.

Start by opening a copy of extend.html, which we created from the previous
exercise, then encompass each of the dialog text messages in the <h3> tags,
as highlighted:

 <div class="info"><h3>Info message</h3></div>
 <div class="success"><h3>Successful operation message</h3></div>
 <div class="warning"><h3>Warning message</h3></div>
 <div class="error"><h3>Error message</h3></div>
 <div class="validation">
 <h3>
 First name is a required field
 Last name is a required field
 Email address has been typed incorrectly
 Preferred language has not been selected
 </h3>
 An example using extend:(...all):
 <div class="rebase"><h3>Info message</h3></div>

Save this as extendall.html. In a copy of extend.less, we need to move the
rule for font-size from body to <h3>, so we can then include it as a nested rule
later in our code. Amend the style rule for body, and then immediately below this,
add a new rule for <h3>, as shown in the following code:

body { font-family: Arial, Helvetica, sans-serif; }
h3 { font-size: 12px; }

In the validation code block, add the three lines (as highlighted); this will style the
<h3> tags we added earlier to our HTML code:

.validation:extend(.box) { width: 280px; padding-left: 70px;
 color: #D63301; background-color: #FFCCBA; background-image:
url('../img/error.png');
 h3 { font-size: 14px; }
}

We can now take advantage of the all keyword; immediately below the
.validation style block, add the following code:

.rebase:extend(.validation all) {}

.rebase {
 color: #fff;
 background-color: #9a0074;
 background-image: url('../img/help.png');
}

Inheritance, Overriding, and Nesting in Less

[114]

Save the file as extendall.less. If we preview the results in a browser,
we will see the added dialog box appear below the last dialog box, as shown
in the following screenshot:

Now that we have seen this in action, let's take a moment to examine how it works.

Using the all attribute with extend is very easy, as we have seen, but it does mean
that the styles that need to be replicated should be as close to the desired result as
possible, to make the use of extend worthwhile.

This doesn't mean to say that you can't add additional, or indeed override, existing
styles as we have done here, but we've kept them to a minimum. Here, we've used
extend all to replicate the .validation class and rename it as .rebase; this
includes the additional styling for the <h3> tag, which would otherwise not have
been included if the all tag had not been used. We've then simply overridden three
of the styles to change the image used, background-color and text color, to make
it a little more unique.

We've only scratched the surface with what you can do using extend—before we
change focus and move to looking at namespacing, let's take a moment to look at
some of the other highlights of using the extend keyword:

•	 Extend can be used with pseudo-class selectors such as :hover or :active;
multiple extends can be used, along with spaces. However, if only one extend
is used, then this must be the last part of the statement.

Chapter 5

[115]

•	 You can use &:extend within a ruleset; this is a shortcut to adding extend
to every single selector within the ruleset.

•	 Extend can be used with nested selectors; as long as the calling extend can
be matched against a valid Less rule, it will be extended to use the new class
or selector ID.

•	 By default, extend will look for an exact match, for example, *.class and
.class, which are equivalent, won't be considered as exact matches by Less,
when using extend.

•	 If you want to match using type identifiers such as [title="identifier"],
then it doesn't matter whether quotes are used or not; these are
effectively ignored.

The extend keyword is a very useful tool within the Less article, but can cause
issues if not used correctly. It is well worth reading the main documentation on
the Less site at http://lesscss.org/features/#extend-feature, to get your
head around some of the quirks of using the function.

Namespacing in Less
There is one thing I am sure you will find asking yourself as time goes by and your
CSS style sheets get larger: can I group similar styles to make things easier to find?

Sure, you can always cut and paste similar styles together, but this is a manual
process, right? What happens if two weeks down the line, you need to add a new
style, which is similar to the one buried 1500-odd lines down? Surely there has to
be a better way to do this—there is. Welcome to namespacing in Less!

Namespacing in Less takes your need to group similar styles and flips it on its head;
it groups all of the constituent building blocks of your styles together, then allows
you to pick and choose which styles to use when adding styling for a new element
on your site. We can, of course, create multiple namespaces if we need to—our only
real guide for this is that each namespace should contain styles that share common
elements; a great example is buttons, as you will see from our upcoming exercise.

Let's begin creating these buttons by opening a copy of project.html and then
modifying the <head> tag as shown in the following code:

<title>Demo: Namespaces</title>
<link rel="stylesheet/less" href="css/namespace.less">
<script src="js/less.min.js"></script>

http://lesscss.org/features/#extend-feature

Inheritance, Overriding, and Nesting in Less

[116]

Next, remove the existing markup in the <body> tag and replace it with the
following code:

<input type="button" name="buy" value="Buy" class="redbutton">
<input type="button" name="clear" value="Pay by PayPal"
 class="purplebutton">
<input type="button" name="checkout" value="Pay by credit card"
 class="bluebutton">

Save this as namespace.html in the root of our project folder. We need to apply
some styling, so go ahead and add the following Less styles to a new file; we'll break
it down into sections and go through it bit by bit, as there are a few important concepts
to consider:

.background (@color1, @color2) {
 background: -webkit-gradient(linear, left top, left bottom, color-
stop(0.05, @color1), color-stop(1, @color2));
 background: -moz-linear-gradient(center top, @color1 5%, @color2
100%);
 background-color: @color1;
 border: 1px solid @color1;
}

We saw examples similar to this back in Chapter 4, Working with Variables, Mixins,
and Functions; hopefully, you will recognize this as a parametric mixin. In this
instance, we're using it to build up a gradient for each of our buttons; we're feeding
it two values that represent the colors used in the gradient fading process, as shown
in the following code:

#button() {
 .base { border-radius: 6px; color: #fff; font-family: Arial;
font-size: 15px; font-weight: bold; font-style: normal; height: 32px;
text-align: center; text-shadow: 1px 1px 0px #000; margin-left: 5px;
 &:active { position: relative; top: 1px; }
 }

Note that namespaces such as #button() used here can be made from
classes or selector IDs; for more details on the recognized behavior, see
https://github.com/less/less.js/issues/1205.

Next comes the most important part of our Less styling: the opening statement
for a namespaced style. It shows the name under which we will group our styles.
We've used (), as we don't want Less to output the mixin as well as the compiled
CSS, when compiling our code:

https://github.com/less/less.js/issues/1205

Chapter 5

[117]

 .red {
 .background(#cc1c28, #a01620);
 box-shadow: inset 0px 1px 0px 0px #b61924;
 &:hover { .background(#a01620, #cc1c28) }
 }

 .purple {
 .background(#800080, #9a009a);
 box-shadow: inset 0px 1px 0px 0px #670067;
 &:hover { .background(#9a009a, #800080) }
 }

 .blue {
 .background(#004771, #00578a);
 box-shadow: inset 0px 1px 0px 0px #0067a4;
 &:hover { .background(#00578a, #004771) }
 }
}

These three blocks of code will call the .background(...) mixin to set the appropriate
gradient, depending on which state is currently set for a specific button:

.redbutton { #button > .base; #button > .red; }

.purplebutton { #button > .base; #button > .purple; }

.bluebutton { #button > .base; #button > .blue; }

This is where the real magic happens. Here, we've set the styles to be used for three
buttons, namely red, purple, and blue. Within each button style, we've chosen to
call elements from the #button namespace; if several similar namespaces had been
created, we could easily pick and choose our styles from each, as we are not limited
to just using one namespace. The key thing to note is that when calling a namespace
style, you must use the format given in our example.

Okay, enough of the theory. If we preview the results in a browser, we should expect
to see something akin to this:

A nice, easy example, huh? Hopefully, it will help show you how you can pick
and choose your styles from groupings of styles, particularly when a project uses
a lot of similar elements and styles that could benefit from being namespaced.

Inheritance, Overriding, and Nesting in Less

[118]

Lazy loading of variables in Less
So far, we've covered a number of techniques to create and control how styles
are applied. There is one key theme that runs throughout all of this though and
of which you need to be aware: scope.

Yes, there's that ugly word, scope! No matter how much we try to avoid it, we must
always allow for it when using Less; if not, it can come back to bite us at the most
unexpected moments. Let me explain what I mean: as we will see in the upcoming
exercise, we can always reuse our mixins or variables throughout our Less code.

The downside is that Less must have a means of knowing which instance is the
most latest; therefore, it always takes the last instance of any variable or mixin that
is included in our code. If you're not careful, it can lead to some odd effects. Let's
take a look at what this means in practice, with a quick exercise.

Start by opening a copy of project.html that we created back in Chapter 3, Getting
Started with Less, and then, alter the <head> tag as shown in the following code:

 <meta charset="utf-8">
 <title>Demo: Scoping</title>
 <link
 href='http://fonts.googleapis.com/css?family=Over+the+Rainbow'
 rel='stylesheet' type='text/css'>
 <link rel="stylesheet/less" href="css/scope1.less">

Next, remove the existing markup and replace it with the following code:

 <div id ="container">
 <div id="box1">This is box 1</div>
 <div id="box2">This is box 2</div>
 <div id="box3">This is box 3</div>
 </div>

Save this as scope.html. Finally, even though this is only a simple example,
we still need to add some styling; go ahead and add the following to a new file,
saving it as scope1.less:

@boxcolor: green;

html { font-family: 'Over the Rainbow', cursive; font-weight: bold;
font-size: 20px; }

Chapter 5

[119]

div { width: 200px; height: 100px; padding: 3px; border-radius: 3px;
float: left; position: absolute; }

#box1 { margin-left: 0; }
#box2 { margin-left: 225px; }
#box3 { margin-left: 450px; }

#container {
 @boxcolor: red;
 #box1 { background-color: @boxcolor; }
 #box2 { background-color: @boxcolor; }

 @boxcolor: orange;
 #box3 { background-color: @boxcolor; }
}

Before we preview the results in a browser, ask yourself this one question:
what colors would you expect to see in each box?

No, I've not gone insane; stay with me on this one! If you were expecting to see
red in boxes 1 and 2 and orange in box 3, then I'm sorry to disappoint you:

Hold on—all three of them are in orange! This is true; this has to do with the concept
of scoping within Less.

If you've spent any time programming, then you will likely be aware of how a
variable's value will be used in a statement if it has just been set before the statement.
Less uses variables in a similar fashion, but with one important difference: it uses the
last known instance of that variable assignment, to determine which value to display.

Variables in Less are merged into code—this is the equivalent of lazy
loading, as the last defined instance of a variable is the one that is used,
overwriting any previous instance of that variable.

Inheritance, Overriding, and Nesting in Less

[120]

If we look through the code, we can clearly see the last instance of @boxcolor being
set a color value, just before box3. As the color set was orange, this is the value that
will be used throughout our code. We can clearly see this from a screenshot excerpt
of the compiled styles within Crunch!, where #ffa500 is orange:

It is worth noting the scope that is set when using variables, as we have done here.
It is all too easy to be tripped up through the use of an (incorrectly) assigned
variable, which produces unexpected results!

The only safe way to ensure that the right values are used is to assign separate
variables. We can see the results of this if we modify the Less styles from our
previous example:

@boxcolor1: lightgreen;

html { font-family: 'Over the Rainbow', cursive; font-weight: bold;
font-size: 20px; }
div { width: 200px; height: 100px; padding: 3px; border-radius: 3px;
float: left; position: absolute; }

#box1 { margin-left: 0; }
#box2 { margin-left: 225px; }
#box3 { margin-left: 450px; }

#container {
 @boxcolor2: red;
 #box1 { background-color: @boxcolor1; }
 #box2 { background-color: @boxcolor2; }

 @boxcolor3: orange;
 #box3 { background-color: @boxcolor3; }
}

Chapter 5

[121]

Resave the Less file as scope2.less; don't forget to change the markup in
scope.html! If we preview the results in the browser, we can clearly see the
difference it has made, where separate variables have been used:

Throughout this demo, we've used box1, box2, and box3 as selector
IDs—it is worth nothing that these are not semantic names; for this
reason, they should not be used in a production environment. As we
are working in a demo environment only to illustrate a concept, then
use of these names is less of an issue.

Now that we've seen the results of using separate variables, we can also see the
difference by looking at the compiled CSS in this screenshot extract from Crunch!:

Notice the difference? Hopefully, you will see how it is crucial to take care while
using variables, as the scope of their use can produce some odd effects if not used
carefully! Let's move on, as we need to take a look at some functionality we've
already used, but haven't explored in any great depth, namely importing style
sheets into Less.

Going overboard with variables
It is all too easy to add lots of variables to cater to values such as colors
used in your site. This is not always a sensible thing to do; you should
consider setting up a core number of variables, then using functions to
work out the values that should be used.

Inheritance, Overriding, and Nesting in Less

[122]

Importing style sheets into Less
Phew! We're almost there. We've certainly covered a lot in this chapter! Before we
finish the chapter with some tips on avoiding code bloat, we should take a moment
to consider one useful function that we've used, but not explored in any detail—this
is the use of importing to manage our Less style sheets.

Importing in Less is a simple but useful trick to learn, particularly when managing
large style sheets. We can begin to build up a library of code and then import it
straight into any future project.

It makes it much easier to manage smaller files, as we can build a master file that
imports each of the subfiles into one master; Less will only compile these styles that
are directly referenced from our main code. So for example, if your code library file
is more than 2,500 lines long, but a mixin of only 10 lines is all that is used, then
Less will only include those 10 lines in the final compiled results.

Using the import option is really easy; all you need to do is add in the following
statement somewhere within your Less code:

@import (XXXXXXX) "foo.less";

Here XXXXXXX is one of any of the following options:

Option: Allows us to:
reference This uses a Less file but do not output it, unless referenced from

within the code.
inline This includes the source file in the output but does not process

it and is useful if you need to import files that are not Less
compatible, but still need to be included in the compiled CSS file.

less This treats the file as a Less file, no matter what the file extension.
This is ideal if you have a need for all Less files to have the .css
extension, but where they should be treated as Less files, not
plain CSS.

css This treats the file as a CSS file, no matter what the file extension is.
once This only includes the file once (this is the default behavior); any

subsequent import requests for this file will be ignored.
multiple This includes the same Less file multiple times. This is the opposite

of the default behavior of Less.

You can learn more about the various options from the main Less site,
at http://lesscss.org/features/#import-options.

http://lesscss.org/features/#import-options

Chapter 5

[123]

Okay, let's wrap up this chapter by taking a look at some important hints and tips
on avoiding code bloat. Some of what you will see comes from the functionality
that we've explored throughout this chapter, but it's useful to take a moment to
summarize some of the key points we've covered in the book to date.

Avoiding code bloat
When designing websites, one of the key aims that should be dear to every designer
is to ensure that they avoid code bloat wherever they can so that their finished article
works well and is engaging to their audience.

To help with this, there are a number of tips we can use to help reduce code
bloat. We've already used some throughout the book so far, but now seems like
an opportune moment to revisit and consolidate them into a useful list you can
use for future projects:

•	 Aim to create a cleaner structure with the use of nesting—this means you
can avoid having to reenter duplicate selectors (such as using within
a list or menu) and can keep the code organized as related items are
grouped together.

•	 Create variables for faster maintenance—these work very much like
variables in other programming languages, such as C#. We can set one
instance of a variable at the start, then reference this throughout our code;
Less will automatically update each instance for you. Take care how many
you create though, as each requires valuable resources; it is better practice
to create a core bunch and use operators to dynamically work out new
values. This has the benefit of allowing these new values to continue to
work, even if original variables are subsequently changed.

•	 Use mixins to create whole classes that we can reference throughout our
code. On larger sites, this can have a dramatic effect in reducing the amount
of code that needs to be written. If you are already using mixins, then check
through your code to see if they can't be made parametric; this increases
their flexibility and will allow you to remove redundant mixins, as they
can be served by tweaking other mixins.

•	 Take an iterative approach to develop your CSS, particularly when using
mixins. If you use mixins that are similar to mixins being brought in by
external Less libraries, then try to design out the differences, so you can
remove your own...

Inheritance, Overriding, and Nesting in Less

[124]

•	 Use namespaces to pick and choose mixins. This will help you group
together common styling rules that apply to similar elements, such as
buttons; you can then pick and choose which elements to use. Try to keep
the number of selector elements used in each namespace to a minimum too;
there is no hard and fast rule, but a good rule of thumb is something like
the following code:

 .redbutton {
 #base > .button
 #base > .redcolor
 }

If your code uses more than one selector elements in each namespace it is likely that
your code isn't as efficient as it should be...!

•	 If you are using namespacing, then take care of your CSS specificity, otherwise
clashing results can be a symptom of nesting too deeply, or overuse of the
!important attribute. If you find this happening, then you might need to break
your namespacing into smaller groups, which uses fewer levels of nesting.

•	 Consider using class inheritance instead of selector inheritance. If you
are creating a mixin, which you later reference in your selector classes,
you might find that you can simply use class inheritance in your HTML
instead. So, as an example, instead of using this in your Less file:
.gradientBlack { ... }

h3 { .gradientBlack; ... }
.darkBox { .gradientBlack; ... }
td.dark { .gradientBlack; ... }

We can eliminate the repeated use of .gradientBlack, by defining it
once in our style sheet, then referencing it directly in the code:
<h3 class="gradientBlack"></h3>
<div class="darkBox gradientBlack></div>
<td class="dark gradientBlack"></td>

•	 Use extend instead of mixins to reduce code bloat; extend is clever enough
to merge together styles that use the same rules, as we saw earlier in the
chapter, instead of simply reproducing code blocks for each similar style.

•	 If you have to stay with using mixins, then use parentheses to hide the
mixin code so that only the calling code is compiled and not the additional
mixin as well.

Chapter 5

[125]

•	 If you have a number of mixins that require vendor prefixing, you can use
this mixin to handle them by simply passing the property that needs to be
prefixed, along with the appropriate value, as shown in the following code:

.vendorize(@property, @value) {
 -webkit-@{property}: @value;
 -moz-@{property}: @value;
 -ms-@{property}: @value;
 -o-@{property}: @value;
 @{property}: @value;
}

Note that this isn't necessary for all properties that still require vendor prefixes;
if a CSS3 property only needs one or two vendor prefixes, you might find it easier
to create a simple mixin to handle this separately.

It is worth noting that some vendor prefixes use a completely
different format to the example we've used—the mixin here won't
work for all property values, such as gradients and will therefore
need a separate mixin.

Hopefully, there are some useful tips in there that you can use in your projects.
The key to all of this is using the right combination of functions, such as extends
instead of mixins (or a mix of both), that helps keep your code to a minimum and
free of bloat.

Summary
Throughout this chapter, we've covered a few concepts that will help further reduce
the amount of code you need to write—let's take a moment to recap, before moving
onto some more practical areas of using Less in the next chapter.

We began with a look at how you can group or nest styles within Less; we saw how
this can help arrange styles visually, to make it easier to manage, but also remove
the need to duplicate styles, when referencing child selectors such as those used in
building menu systems.

We then moved on and looked at the extend function to inherit or override existing
styles, and covered how it works in a similar fashion to mixins, while at the same
time, merging together identical styles, to remove the need to have separate code
blocks for identical styles. We also took a look at the use of the all keyword to help
with inheriting of all of the styles, particularly those otherwise not accessible using
extend on its own.

Inheritance, Overriding, and Nesting in Less

[126]

We then covered how you group styles and reference one or more elements using
namespacing; this allows us to visually group together common elements, while at
the same time, picking and choosing which styles to use. Once chosen, we then saw
how Less will compile these into valid CSS.

Last but by no means least, we took a quick look at setting the right scope in Less, to
ensure our variables have the right values. We saw from the example how easy it is
to get the scope wrong and the importance of using the right scope in our code. We
then finished with a look at importing Less files into CSS and some hints and tips on
removing code bloat, based on some of the key areas of Less we have seen so far in
the book.

In the next chapter, we'll move on from the theory and take a look at some of the
practical aspects of moving a CSS-based site over to using Less.

Migrating Your Site to Less
So, by now, you've hopefully spent some time using Less and are thinking that this
could be really useful for your projects going forward, right?

The trouble is you'll also probably be thinking of existing projects that could easily
benefit by using Less, but you're not sure how to go about converting them to use
Less. No problem; in this chapter, I will take you through some of the tips and tricks
of how to make this transition to use Less, without risking everything.

We'll start by taking a look at the kind of questions we need to ask ourselves and
then move on to creating the basic framework that we'll use when beginning the
conversion, going through a detailed example of converting a mini website to
use Less.

The key to conversion is to remember that Less is, after all, just a superset of
CSS—most of the work is about identifying those parts that can be changed
easily and those that might require more work. In this chapter, we'll cover the
following topics:

•	 Low-hanging fruit—obvious candidates for Less conversion
•	 Identifying patterns in your CSS
•	 Building a library of mixins
•	 Using prebuilt libraries as part of the conversion process
•	 Mixing Less with plain CSS
•	 Working through a practical example

Are you ready to start converting your CSS? Good, let's get started...

Migrating Your Site to Less

[128]

Preparing for the initial jump
So, you've read all about using Less and are keen to start using it in some of your
older projects. You've started working with it on your newer sites and love how it
makes writing CSS so much more manageable...but, you're probably thinking: how
can I incorporate it into an older site?

Well, you're in the right place—making the change in older sites doesn't need to be
difficult, as long as you keep these tips in mind:

•	 Make sure you have installed Firebug with Less support, as outlined in
Chapter 2, Building a Less Development Toolkit. Trust me on this; it will make
debugging your efforts so much easier!

•	 Run your existing CSS through a site, such as W3C CSS Validator
(http://jigsaw.w3.org/css-validator/validator). If you haven't
already done so, this will help spot any errors and ensure that your code
validates properly, before beginning to convert it to Less.

•	 Try to get into the mentality that converting Less should be done in blocks
at a time and should be an iterative process—this reduces the risk of missing
opportunities or making mistakes in your code; this is particularly important
when converting large files, such as a WordPress style sheet!

•	 Don't forget that Less is a superset of CSS—provided we work through the
conversion process in a logical manner. Less will still compile plain CSS
code that has yet to be converted to its Less equivalent. This means that we
can mix code during the conversion process until all of the styles have been
suitably converted.

•	 Get into the habit of using sites such as http://less2css.org or
http://lesstester.com. These are great for experimenting with
the Less code in order to see how it will compile into valid CSS.

Let's put some of these tips into practice and take a look at the initial steps that
should form the basis for any initial conversion process.

Creating the initial framework
Once you've made the decision to convert in order to use Less, there are a few steps
that we can take, which help with the initial conversion process, before we start
writing Less code.

http://jigsaw.w3.org/css-validator/validator
http://less2css.org
http://lesstester.com

Chapter 6

[129]

Let's take a look at how we can make this process easier. For the purpose of this
example, I'll assume that you have just one style sheet, called styles.css, and that
you're working in a development environment on a simple HTML-based site in
order to get accustomed to the conversion process.

1.	 Start by renaming the sitestyles.css file with a .less extension to
sitestyles.less.

2.	 In a new file in your text editor, add the following:
@import "sitestyles.less";

3.	 Save this as styles.less. In your HTML code, change the existing link
to sitestyles.css in order to point to sitestyles.less, using the
following link:
 <link rel="stylesheet/less" href="css/styles.less">
 <script src="js/less.min.js"></script>

Use Crunch! or Sublime Text (depending on what you have set up in Chapter 3,
Getting Started with Less) to compile the new styles.less file in order to confirm
whether it is producing a valid styles.css file.

We've referenced the Less file directly in our code—this is
for development purposes only and not recommended for
production use.

At this point, you might think that having a single statement in the styles.less
file might sound like an overkill; there is a reason for this: the key to working with
Less is to build up the initial framework of the Less file so that we can prove that it
compiles to valid CSS first. Once this has been proven, it is simply a matter of adding
more @import statements for each partial file you want to include. Less will combine
all of these into one file when we next recompile styles.less, as we will see in the
next section.

Mixing Less with plain CSS
If we mix Less with CSS to create a framework for importing individual partials, we
will get an additional benefit: we are not obliged to convert all of the Less files in one
go! Instead, we can simply break the existing CSS files into smaller partials and then
import them into the master CSS file (here, styles.less)—this makes it easier to
manage the conversion process.

Migrating Your Site to Less

[130]

Partials are separate files that contain Less code—they are a means
to help make managing Less code easier, as multiple files can be
imported in one style sheet as part of the compilation process.

We then simply add an @import statement for each Less file we need to import,
such as the examples shown:

@import "sitestyles.less";
@import "fonts.css";
@import "css3.less";
@import "menu.less";

Remember that no matter how big the Less file is or how many partials are being
imported, Less will only ever import a style in the final compiled CSS file if it is
being referenced in the code. While we are still developing the Less file, we can
easily compile this dynamically in the browser; once the final version is ready,
this can be precompiled, and the resulting CSS file can be imported in our
production environment.

Spotting low-hanging fruit
Now that we have our basic framework in place, it's time to go fruit picking—no,
I'm not referring to fruit picking in the literal sense, but finding CSS statements
that can be easily converted with little effort.

Each project will vary in size and scope, but there will be some easy conversions that
we can make, which will apply to any project:

1.	 An easy change that can be made is to incorporate variables for colors—once
converted, we can use operators to calculate new values, such as lightening a
specific color by 25 percent. As a start, we can create some variables, such as
the following:
@color-light-orange: #ffa500;
@color-gray-cyan: #6a7172;
@color-gray-dark: #313131;
@color-grayish-orange: #d7cec3;

We can then use variables in our styles, instead of the hex codes; they will
appear as follows:

body {background: @color-gray-cyan; color: @color-gray-dark; }
a { color: @color-light-orange; }
h1, h2, h3, h4, h5, h6 { color: @color-gray-dark; }

Chapter 6

[131]

Ideally, the names used here should reflect the context that they
are used for, such as body-textcolor or heading-textcolor;
we've used names here to illustrate how they can replace existing
colors, and at least make the color names readable!

2.	 During the conversion process, you may want to consider moving converted
code into a separate Less partial and importing it using the process we
covered earlier. Although this will allow you to maintain a distinction
between Less and CSS styles, it does mean that we may miss opportunities
if the converted Less code is not displayed on the screen while we work on
converting the existing CSS styles.

3.	 If we're using CSS3 styles that contain vendor prefixes, we can convert our
code to import mixins from external prebuilt libraries, such as LESS Hat or
LESS Elements. This will reduce the code we need to write—after all, why
reinvent the wheel if someone has already built a suitable mixin that we
can use?

4.	 A more evolved change that we can make is related to the use of
nesting—this will make our code easier to read, as it is clearer
how child styles will affect their parent elements. A perfect example
of this is a menu system built into the header DIV of a page:
header .nav { margin-top: 100px; }
header .nav li { margin-left: 10px; }
header .nav li a { height: 30px; line-height: 10px; }

We can then convert it manually or using a site, such as http://css2less.cc;
while this site isn't perfect, it will give you a head start in the conversion process:

http://css2less.cc

Migrating Your Site to Less

[132]

Online CSS to Less convertors are not perfect—for example, they
may struggle to produce good quality code if your CSS file contains
a lot of random selectors; Less will also regroup CSS statements
during compilation, which may break your code. These sites should
be treated as a start point for development; the assumption time is
spent in finessing the code manually after the initial conversion.

There will no doubt be other easy changes we can make—it will all depend on
the size and scope of the site being converted to use Less. Again, the key point to
remember here is that conversion should be an iterative process and that you will
do yourself no favors if you try to convert your site in one go!

Let's change our focus slightly and move on to the next stage in the process—once
you've dealt with the easy conversions, it's time to ask yourself a series of questions,
all of which fall under the banner of identifying patterns in your CSS.

Identifying patterns in your CSS
Identifying patterns in your CSS is all about asking yourself one question: how can
I reduce code?

There are a number of ways of doing this; the exact process will depend on the
nature of the site being converted. There are some general questions that you
can ask yourself though, to help with the conversion process:

•	 Does your site use any CSS3 styles? If it does, consider using a prebuilt
Less library, which we can import in our Less style sheet.

•	 Does your CSS code contain any statements, such as links to image
elements? If it does, you might want to consider using string variables
and interpolation to better manage the links, particularly if they need
to be updated in the future.

•	 How many variables does your site use? If any of these variables will be
used to define colors, then consider using some of Less' in-built functions
or operators to dynamically generate colors, such as making a color lighter
by 20 percent or adding a value to an existing color to create a new one.

•	 How often do you see the same (or very similar) block of code shown
throughout your code? With a little care, can it be altered to be the same as
others? If so, this would be a prime candidate for conversion into a mixin.
The more instances of code we can alter while still maintaining the same
effect, the more value we will get from using a mixin.

Chapter 6

[133]

While there are likely to be more questions that you might ask, since each site is
different, not every question will apply. One of the key questions will be related to
creating mixins and whether we can separate them in our own library for future use.

Using prebuilt mixin libraries
If we've created a number of mixins, we could turn these into a library. However,
this may not always be necessary; instead, we can always look for ways to reuse
mixins from libraries that are available for download from the Internet.

Why should we use them? There are two good reasons for doing so:

•	 We can avoid the need to reinvent the wheel
•	 We don't need to worry about the support for, or the updating of, the

library—this will be handled by the author, frequently with the help
of the open source community at large

There are lots of libraries that are available—they can all be imported using the
same @import statement we've already seen in use. We will cover how to use such
a library in more detail in the practical example at the end of the chapter, but in the
meantime, here are some examples of libraries that are available for use:

•	 3L (http://mateuszkocz.github.io/3l/)
•	 Animate.css (https://github.com/daneden/animate.cs)
•	 ClearLess (https://github.com/clearleft/clearless)
•	 CSS Effects (http://adodson.com/css-effects/)
•	 Cssowl (http://cssowl.owl-stars.com/)
•	 LESS Elements (http://lesselements.com/)
•	 LESS Hat (http://lesshat.com/)
•	 Oban (http://oban.io/)
•	 Preboot (http://getpreboot.com/)

There will be plenty more available online; you can search over the Internet to
see what is available, as you may find others that are more suited to your needs.
We will be using the LESS Hat library in a practical demo later in this chapter.

http://mateuszkocz.github.io/3l/
https://github.com/daneden/animate.cs
https://github.com/clearleft/clearless
http://adodson.com/css-effects/
http://cssowl.owl-stars.com/
http://lesselements.com/
http://lesshat.com/
http://oban.io/
http://getpreboot.com/

Migrating Your Site to Less

[134]

Building a library of mixins
As part of identifying patterns in our CSS, where we can identify code that can
be turned into mixins, we might find that using a prebuilt library, such as LESS
Elements or LESS Hat, doesn't always meet our requirements.

This is not necessarily an issue; it may be that the author of the library hasn't created
the mixin the way we want it, as he was trying to satisfy another requirement. If
existing mixins aren't available, we can always consider creating our own library
of mixins as partials that can be included in future projects. We could even consider
hosting mixins on GitHub (http://www.github.com), as has been done by others:

There are several popular code-sharing platforms available, which
you can try—two good examples are Google Code (https://code.
google.com/) and Bitbucket (https://bitbucket.org/).

http://www.github.com
https://code.google.com/
https://code.google.com/
https://bitbucket.org/

Chapter 6

[135]

The trick in creating mixins for libraries here is to stay several steps ahead of
yourself and work out how you can convert similar blocks of code so that they
can be replaced with one or more mixins.

If you find that the code can be converted into mixins, it is worth giving a thought
to how these mixins should be written. A key precept of Less is the DRY principle
(Don't Repeat Yourself)—you may find yourself writing a number of mixins that
can be reused. The usefulness of these mixins will increase if careful consideration
is given to any tweaks that can be made, so that other blocks of CSS code can be
replaced by Less calls to the mixins you create.

Once your library has been created, you can host it on GitHub—there are several
good reasons for doing so:

•	 There is a ready-made community at large, who can help with issues or
support the library

•	 It is a good way to say thank you to others, as you may have used their work
•	 Anyone who uses your mixin library can help suggest improvements to

your mixins

Creating your own library and making it available online will give you an enormous
sense of satisfaction, from having been able to contribute back to the open source
movement—after all, we've only reached where we are today, thanks to the efforts
of those who have spent hours creating libraries such as Less!

Now, let's turn our focus to using one of these prebuilt libraries that we've
just covered—we're going to take a look at using LESS Hat as part of our
practical example.

Working through a practical example
So far, we've looked at a range of tips and tricks that you can use to convert a site in
order to use Less—while there are some useful tips, I think you will agree that it is
far better to see the conversion process in action! With this in mind, let's take a look
at a simple example, in the form of the CSS styling we created in Chapter 4, Working
with Variables, Mixins, and Functions, for the one-page website.

Migrating Your Site to Less

[136]

Before we start making changes, let's take a look at the compiled CSS that was
created for the page, along with a screenshot of the page:

Introducing the CSS
Now that we've seen a screenshot of the page that we're going to retrofit to use
Less, let's take a look at the CSS code we need to convert. The compiled CSS that was
generated using Crunch! is as follows—a copy of this is in the code download that
accompanies this book, as conversion.css. We'll also include a slightly modified
version of the styles from social.css, within conversion.css. This will still
produce the same results, but the reason for modifying it here will become
apparent in the next section:

#social { width: 175px; height: 60px; background-image: url('../img/
sprites.png'); float: right;}

At first glance, this should look like an ordinary style sheet, which hopefully uses
some fairly common style attributes that could be used in any website project:

Chapter 6

[137]

You're probably thinking that with such a simple example, there's little we can do
here, right?

Identifying the changes to be made
Wrong! Making the conversion to use Less should not always be about the size of
your style sheet but about getting into the mindset that using Less will make it easier
to manage your code, no matter what its size. Converting to use Less should be an
iterative process that stops only when all of the original CSS has been converted and
when Less is being used in your site.

Migrating Your Site to Less

[138]

To prove this, let's take a look at the code and highlight some of the areas that can
be converted. The style sheet is a simple example, but it is enough to illustrate the
processes that you can use to convert a CSS file to its Less equivalent.

•	 Did you notice the three style rules that use #leftmargin? Here is the perfect
opportunity to use nesting—we can avoid having to duplicate the rule name,
and we can group the styles in a more logical manner.

•	 We used the box-sizing attribute used for #content but didn't include all
the vendor prefixes for it. It's a good excuse to look at one of the many mixin
libraries available online and see if one of them contains a suitable mixin that
we can use. This avoids the need to reinvent the wheel—we can simply link
to the mixin and pass values to it, if appropriate. Importing a prebuilt mixin
will also handle any vendor prefixes that are required for operation.

•	 Instead of using hex values for colors, which aren't easy to translate into
something meaningful, we can create variables and assign values to them.
The names can be set to describe the color value being set. If they need to be
updated, then it only requires one update, as Less will handle changing all
the other instances automatically.

•	 In div and #title, we've included a font-family attribute—while this will
work perfectly well in normal CSS, we can use the same variable process and
create meaningful names for each font-family attribute. This makes them
much easier to update, should they need to be changed in the future.

•	 In #leftmargin and #content, you may or may not have noticed an
opportunity here—we're repeating the same code (albeit, with slightly
different values) to create our column. Instead, we could use a mixin to
control these styles. However, there is a catch: notice that #content has
additional padding: 10px in the style rule? In this instance, it's not an
issue—we can add this in #leftmargin with no noticeable adverse effect.
Remember, it's all about making the initial change and then taking a look to
see what we can alter, which will then allow us to add more to the mixin and
make it more useful.

•	 A more advanced change that we can make is to switch to using data-uri
for importing the social networking image in our CSS in order to save on
server requests and bandwidth usage. We used it in the original example in
Chapter 4, Working with Variables, Mixins, and Functions—it will work perfectly
well for small images (such as ours) but is less useful for larger ones, or those
that are not reused in the site.

Chapter 6

[139]

There is no hard and fast rule regarding what can be defined as a "small"
image—the image I've used in this example weighs in at 9 KB. This will
depend a little on any data-uri limit within a browser; for example, IE8
is limited to 32 KB. It is all about choosing carefully—small images such
as credit card logos would be perfect, but a large picture clearly isn't!

These are just a few of the concepts that we can use to convert this style sheet to use
Less. The key to the conversion process is not about size, but about re-engineering
the code to make it easier to maintain and removing duplication if others have
already created code that you can import in your own projects. Once you've started
converting code, you will see other opportunities for conversion—it is very much a
case of practice makes perfect!

Making the changes
Now that we've seen the changes we can make, let's begin to implement some of
these changes, beginning with the creation of our Less framework files. Start by
renaming the conversion.css file to conversion.less. Next, add the following
line to a new file in your text editor:

@import "conversion.less";

Save the file as styles.less—this sets up our framework, ready for us to
convert our code. If you've used Sublime Text or Crunch!, then you will find that a
styles.css file has been created—this contains a compiled copy of the code from
conversion.less. Setting up the framework in this manner means that we can
add more @import statements in the future; the contents of these imported files
will automatically be included in the final article, when the styles.less file
is recompiled.

Using the CSS3 mixins
Next, let's take a look at the CSS3 styles we've used—we can convert to use a prebuilt
mixin library. For the purpose of this exercise, we're going to use the LESS Hat
library, available at http://lesshat.madebysource.com/. Click on the Download
LESS Hat button—at the time of writing this book, the latest Version is 2.0.15.

http://lesshat.madebysource.com/

Migrating Your Site to Less

[140]

We need to extract the lesshat.less file, which is in the build subfolder—copy this
to the css subfolder in your project folder. Switch back to the conversion.less file
in your text editor and then add this line at the start:

@import "lesshat.less";

This will now import any of the mixins that we need to use from the LESS Hat library.

We can't include the @import statement for LESS Hat in the styles.
less file—this will cause a compilation error in conversion.less, as
it can't find the source mixins it needs to use when compiling the code.

Now that we've added the LESS Hat library, we can start adapting our code to use
the mixins from this library; there are several places where we alter the code to use
mixins, as highlighted:

#leftmargin { .box-sizing(padding-box); border-right: 1px solid
#CCCCCC; float: left; height: 575px; width: 306px; }
#content { .box-sizing(padding-box); float: left; height: 575px;
padding: 10px; width: 494px; }
#container { border: 1px solid #000000; .border-radius(4px);
.box-shadow(4px 4px 0 rgba(0, 0, 0, 0.5)); margin: 5% auto; width:
800px; }

In this example, there are only three places where we can use LESS Hat. Even though
this is only a limited number, we should not forget that it is not so much about the
number of instances where we can use external mixin libraries, but more about not
reinventing the wheel and that the use of an external library means less work for us
to do, provided a suitable library is available for use.

Creating variables for fonts
Let's change our focus and take a look at another concept that we can use when
converting to use Less: the use of variables to help maintain values, such as fonts.

In our code, we have a few instances where we're using fonts. These can be a pain to
update in normal CSS, so let's create some variables that we can use to automatically
update our Less code. Creating variables means that only one value needs to be
updated at the start of our code. Less will handle the update of any other instance
of these variables automatically.

Chapter 6

[141]

In a copy of conversion.less, add the following line immediately below the
@import statement:

@import "lesshat.less";
@KiteOne: ~"'Kite One', arial, sans-serif";

The observant among you will see that we've added a variable—the only difference
from the ones we looked at earlier in the book is that this is an encapsulated variable.
We're using the tilde symbol to tell Less to reproduce this exactly as shown when
compiling our code. This means that instead of using a long sentence, we can now
simply use @KiteOne as a value:

div { font-family: @KiteOne; margin-bottom: 5px; margin-top: 5px;
padding: 5px; }

In this instance, we only need to change one rule. In a larger style sheet, the benefits
of this will become more apparent, as it removes the need to alter each instance
manually when updating styles.

We will cover more on how to use Less to manipulate fonts in
Chapter 7, Manipulating Fonts with Less.

Creating variables for colors
We've also used several colors in our code—one should be recognizable as white
(#fff), but the other is less recognizable as light gray. Let's fix this using the same
process to create two new variables for these colors and one variable for black:

@KiteOne: "'Kite One', arial, sans-serif";
@lightgray: #ccc;
@white: #fff;
@black: #000;

We can now alter our Less code to use these variables, as shown—this will make the
code more readable:

#container { border: 1px solid @black; .border-radius(4px); }
#title { color: @white; font-family: @KiteOne; font-size: 32px;
font-weight: 400; padding-left: 100px; padding-top: 30px; position:
absolute; }
#leftmargin { .box-sizing(padding-box); border-right: 1px solid
@lightgray; float: left; height: 575px; width: 306px; }
#footer { border-top: 1px solid @lightgray; clear: both; font-size:
12px; height: 65px; }

Migrating Your Site to Less

[142]

This will make the code easier to read, but it also means that if we ever need to
change the values, we only need to do it once at the start—Less will take care of
updating all other instances automatically.

Switching to using nesting
Our next change is a little more dramatic; it concerns the four instances of the
#leftmargin style rules in our code. Instead of having to write each rule manually,
we can group them together by using Less' nesting functionality; this makes them
easier to read, as they follow a more logical structure.

In a copy of conversion.less, remove the four #leftmargin lines and replace them
with this:

#leftmargin {
 .box-sizing(padding-box);
 border-right: 1px solid @lightgray;
 float: left; height: 575px; width: 306px;
 li { list-style: none outside none; }
 a {
 text-decoration: none;
 &:hover { text-decoration: underline; }
 }
}

This will make our code easier to read and will avoid the need to have to repeat the
element name when writing the rules. Notice also how we've used the ampersand
symbol for :hover—the ampersand symbol tells Less that :hover should be treated
as a pseudo selector, which will be compiled as #leftmargin a:hover by Less.

The use of ampersands (as shown in our example) isn't limited to pseudo
selectors; it can be used to represent a parent selector or class used in the
code—see http://lesscss.org/features/#parent-selectors-
feature for more details.

http://lesscss.org/features/#parent-selectors-feature
http://lesscss.org/features/#parent-selectors-feature

Chapter 6

[143]

Incorporating our own mixins
Our final change is related to column sizes—if you read the code carefully, you will
notice that in at least two places, we have almost identical code: #leftmargin and
#content. We can move four style attributes into a separate parametric mixin, as
shown—add this immediately below the variables we created earlier in this chapter:

.columnsize(@height, @width) { float: left; height: @height;
width: @width; padding: 10px; }

Once done, we can alter our style rules accordingly:

#leftmargin { .box-sizing(padding-box); border-right: 1px solid @
lightgray; .columnsize(575px, 306px); ...}

#content { .box-sizing(padding-box); .columnsize(575px, 494px); }

It's a simple example of how, with a little care, we can create our own mixin to
remove some of the duplication in the code. While it may not reduce the number of
lines in our code, it will help make the code more readable and easier to alter if we
need to change the values passed through the mixin.

At this point, we've worked through our original code to convert it to use Less. If
all is well, we should end up with something that will compile in valid CSS; if you
take a look at the code download that accompanies this book, you can see a copy of
conversion.less and compare it with your own version.

We can test the success of the conversion process by altering a copy of the HTML
code we produced in Chapter 4, Working with Variables, Mixins, and Functions.
Open a copy of functions2.html and then look for the lines highlighted below:

 <title>Demo: Functions</title>
 <link href='http://fonts.googleapis.com/css?family=Kite+One'
 rel='stylesheet' type='text/css'>
 <link rel="stylesheet/less" href="css/functions.less">
 <link rel="stylesheet" type="text/less" href="css/social.less">
 <script src="js/less.min.js"></script>
</head>

Change these as shown; then, save the file as conversion.html:

 <link href='http://fonts.googleapis.com/css?family=Kite+One'
 rel='stylesheet' type='text/css'>
 <link rel="stylesheet/less" href="css/styles.less">
 <script src="js/less.min.js"></script>

Migrating Your Site to Less

[144]

If you preview the results in a browser, don't expect to see any real changes to
the overall page, with the exception of the small amount of extra padding that
was added, which has pushed the left-hand navigation down by a small measure.
Hopefully, this goes to show that with some care and thought, we can produce the
same results while better managing our code!

Importing images into style sheets – a bonus
Before we complete our changes, I thought I would throw in a little bonus; if we look
back at the list of changes that we could make, we noted one small change that could
be made, which is related to the social media image that is used in the footer of
our page.

The CSS for this is controlled by the following line in our Less file:

#social { width: 175px; height: 60px; background-image: url('../img/
sprites.png'); float: right; }

This will pull in the image as a separate file, which means an additional request to
the server. On a small site, this won't be an issue, but on a larger site, this could make
the site bandwidth hungry, which will be an issue.

Instead, we can use one of Less' functions, data-uri, which we covered in Chapter 4,
Working with Variables, Mixins, and Functions, when we created the original version of
our page. This is ideal for small images, particularly those that are repeated throughout
the site; this will convert them to a base64 statement that can be included in our CSS,
thereby removing the need to shell out to the server to request the image.

In conversion.less, look for this line:

#social { width: 175px; height: 60px; background-image: url('../img/
sprites.png'); float: right; }

If we wanted to use data-uri, we would change the background-image property
as shown:

#social { width: 175px; height: 60px; background-image: data-uri('../
img/sprites.png'); float: right; }

The net effect of this means that while we may have a few hundred lines in our
CSS, we've cut down the need to request for the image from the server. This process
should be used with care though—it should only be used for small images, which
may be repeated throughout the site. It's a useful little trick for saving requests to
the server, provided it is used with care!

Chapter 6

[145]

Viewing the finished article
Now that we've made the changes to our converted CSS file, let's take a look at the
end result. To compare, open a copy of conversion.less from the code download
that accompanies the book and see how you got on with making the changes:

Hopefully, you can see some of the changes we've made—Note that we've not
necessarily saved on the number of lines we've written, but we've made it easier to
update the code in the future, if changes need to be made. Granted that in a small
Less file such as this one, we may not see the full benefits of using Less; in a larger
file, the benefits will become apparent when converting from CSS to use Less.

Migrating Your Site to Less

[146]

Summary
One of the hardest concepts to understand in Less is how we can convert an
existing site to use Less. While there are some easy (or perhaps more complex,
depending on your take) questions that we can answer, converting a site can
require a certain degree of skill, to ensure that we take full advantage of Less
during the conversion process.

Throughout this chapter, we saw some of the questions and tricks that we can use
to start the conversion process. We began by taking a look at how to prepare for
the initial jump into the conversion process, which was followed by the initial steps
anyone should take before considering how to convert their CSS code. We saw how
easy it is to split code into separate partials, which can be imported into one master
file that Less will compile to valid CSS.

Our initial steps into converting Less code began with a look at spotting the
low-hanging fruits, or quick and easy changes that we can make. We saw how,
with the use of sites such as http://css2less.cc, we can easily start converting
code; it was noted that these sites are not perfect but can serve as a good basis for
converting code. Next came a look at how to identify patterns in our CSS code—we
examined some of the questions that should be asked as part of the process. It was
noted that every site will be different; hence, different questions will need to be
asked. Nonetheless, there are some basic questions that will apply to any site.

We then saw how to use prebuilt mixin libraries as part of the conversion process
and covered some examples that can be used in our projects—this is a good way to
incorporate mixins created by others, which will help reduce the effort required for
creating our style sheet. We then covered how it might be necessary to create our
own mixin library, if an existing one available online does not meets our needs.

We finished the chapter with a detailed look at a practical example of how to convert
an existing website to use Less—we used the single web page that was created in
Chapter 4, Working with Variables, Mixins, and Functions, as a way to prove that it
doesn't matter how large the site is, most sites will benefit from the conversion to
use Less. We examined how easy it was to apply some simple conversions, using the
basic principle of examining the code carefully, in a block at a time, and using the
techniques outlined earlier in the chapter. One of the conversions we included was
a simple change to the fonts used—we'll explore this further in the next chapter.

http://css2less.cc

Manipulating Fonts with Less
We explored how to use the various elements of Less, created a basic page to use
Less, and covered how to migrate a site to use Less….so, what's next?

Ah yes, working with text or to be more specific, fonts!

It goes without saying that content is king on any website—part of achieving
the right impact is the careful selection of fonts that should be used on your site.
We wouldn't use a script-based font if we were designing a news site, as the text
should be clean and easy to read. However, a script font would be perfect to
represent the flowing lines associated with dresses sold at a dressmaker's outfit.

It's all about selecting the right style; Less is perfect to help us manage the styles,
colors, and sizes of any font we decide to use in our pages. Throughout this chapter,
you'll see how you can use some simple principles to make managing fonts a cinch
with Less. We will cover the following topics:

•	 Creating font mixins
•	 Using variables to determine sizes dynamically
•	 Using prebuilt libraries
•	 Catering for the @media and @font-face support in Less

Are you ready to have some fun with fonts? Let's get started!

Manipulating Fonts with Less

[148]

Creating simple font mixins
The key to working with fonts is to start simple and then build it up—there is no
better place to start than to create a simple mixin in order to manage attributes
such as font names. Let's create a simple example where we can see this in action;
here's what our mixin will produce:

Okay, let's start creating our mixin; we'll begin by preparing the markup for our demo:

1.	 Open a copy of the project.html file we created in Chapter 3, Getting Started
with Less, and then modify it as shown:
 <title>Demo: Creating simple font mixins</title>
 <link href='http://fonts.googleapis.com/css?family=Kite+One'
 rel='stylesheet' type='text/css'>
 <link rel="stylesheet/less" href="css/basicfonts.less">
 <script src="js/less.min.js"></script>

2.	 Next, add the following markup to the <body> section:
 <h1>H1 - The cat sat on the mat</h1>
 <h2>H2 - The cat sat on the mat</h2>
 <h3>H3 - The cat sat on the mat</h3>
 <h4>H4 - The cat sat on the mat</h4>
 <h5>H5 - The cat sat on the mat</h5>
 <h6>H6 - The cat sat on the mat</h6>

Chapter 7

[149]

3.	 Save the file as basicfonts.html. In a separate file, add the following
Less styles:
.fontfamily() { font-family: 'Kite One', Arial, sans-serif; }

h1 { .fontfamily; color: #808080; }
h2 { .fontfamily; color: #ff0000; }
h3 { .fontfamily; color: #008000; }
h4 { .fontfamily; color: #ffa500; }
h5 { .fontfamily; color: #800080; }
h6 { .fontfamily; color: #000000; }

4.	 Save this as basicfonts.less. If you preview the results in a browser,
you will see the six statements appear in decreasing font sizes.

So, let's take a moment to consider what's happened here: we created a simple mixin
that replaced .fontfamily with 'Kite One', Arial, sans-serif; as the font
family for the statements on the page. Once the Less file has been compiled, each H
style will use Kite One as the base font (in various sizes), falling back to use Arial or
sans-serif, if Kite One is not available.

Extending the mixin
In the preceding instance, we could stop here—after all, the mixin we've produced
works perfectly well. However, it's not the best we can do; if we create similar
mixins throughout our code, it will soon become a real handful to ensure that
all are updated, should the font names need to change.

Instead, we can make a simple change and use a variable name. To see what this
means, open basicfonts.less and then add these two lines at the start:

@font-family-sans-serif: "Helvetica Neue", Helvetica, Arial, sans-
serif;
.fontfamily() { font-family: @font-family-sans-serif }
h1 { .fontfamily; color: #808080; }

You might ask, why make this kind of a change? The answer is easy: this reduces
the number of instances where the code has to be updated if a change is made.
If you change the fonts being referenced as part of the @font-family-sans-serif
variable, then Less will automatically take care of updating the code—meaning,
one less job to do! Here, we only needed to change one instance; had there been
many instances in our code, then Less would have updated them automatically
at the point of compiling our code.

Manipulating Fonts with Less

[150]

Let's move on and turn our attention to changing the size of the fonts that we
use—after all, things would be boring if everything was of the same size, right?

Using @font-face with Less
A downside of using fonts in web pages is that they must exist on your end user's PC
or laptop. Naturally, with the mix of PC, laptop, and mobile devices now available in
the market, it would be almost impossible to guarantee that the font will exist!

I say impossible; there are fonts that we can use on a PC or laptop, such as Arial,
Times New Roman, or Verdana; they are not bad fonts, but they are overused and
not particularly special. We could, of course, use an external service, such as Google
Fonts—as we did in the Creating simple font mixins section earlier in this chapter.

However, we can do better than this by using @font-face to embed any font in
our pages. I say any, but the license for the font must allow embedding in a page.
Thankfully, if we use a site such as Font Squirrel (as we will do in the next exercise),
we can easily check and eliminate any fonts that fall outside this criteria, when
choosing a font.

Enough of the talking; let's turn our attention to using @font-face so that we can see
how it works. We're going to use it in a very simple demo; while it might not show
much, it perfectly illustrates how you can use @font-face with Less.

Downloading the font files
Before we get stuck in with writing code, we need to download an appropriate
font—after all, using something such as Arial or Times New Roman won't do the
demo justice! Perform the following steps:

1.	 For this demo, we'll use a font from the Font Squirrel site (http://www.
fontsquirrel.com). Let's start by browsing to the Font Squirrel site and
downloading the PT Sans font, which we will use in our demo. We can
download it from http://www.fontsquirrel.com/fonts/PT-Sans. Here,
we can also check the details of the license and see the samples of the font
displayed on the screen.

2.	 Click on the Webfont Kit tab and then on the Download @Font-Face Kit
button to download the font; save the compressed archive in the project
folder as PT-Sans-fontfacekit.zip.

3.	 For now, open up the ptsans_regular_macroman folder, extract the four
Webfont files from within, and place them in a subfolder called fonts within
our project folder.

http://www.fontsquirrel.com
http://www.fontsquirrel.com
http://www.fontsquirrel.com/fonts/PT-Sans

Chapter 7

[151]

We will be revisiting this font in the Handling different weights section, later in
this chapter.

Embedding the font into our demo
Okay, now that we have the font files in place, let's make a start with the code:

1.	 Crank up the editor of your choice—I assume that, for the purpose of this
exercise, it is Sublime Text.

2.	 Open up a copy of projects.html, which we created at the start of the book,
and then modify it as shown:
 <meta charset="utf-8">
 <title>Demo: Using @font-face</title>
 <link rel="stylesheet/less" href="css/fontface.less">
 <script src="js/less.min.js"></script>

3.	 Add the following markup to the <body> section:
 <h1>H1 - The cat sat on the mat</h1>
 <h2>H2 - The cat sat on the mat</h2>
 <h3>H3 - The cat sat on the mat</h3>
 <h4>H4 - The cat sat on the mat</h4>
 <h5>H5 - The cat sat on the mat</h5>
 <h6>H6 - The cat sat on the mat</h6>

4.	 Save it as fontface.html. As we can clearly see, it's a very simple
demo—enough to show off how to use @font-face—it was never meant
to be complicated! It isn't complete without the all-important styling; so,
go ahead and add the following to a new file, saving it as fontface.less:
.font-face(@family, @filename: @family) {
 font-family: "@{family}";

 @font-face {
 font-family: "@{family}";
 @file: "../fonts/@{filename}";
 src: url("@{file}.eot");
 src: url("@{file}.eot?#iefix") format("eot"),
 url("@{file}.woff") format("woff"),
 url("@{file}.ttf") format("truetype"),
 url("@{file}.svg#webfont") format("svg");
 }
}

@name: PTS55F-webfont;

Manipulating Fonts with Less

[152]

@family: "PT Sans";

h1 { .font-face(@family, @name); color: #808080; }
h2 { .font-face(@family, @name); color: #ff0000; }
h3 { .font-face(@family, @name); color: #008000; }
h4 { .font-face(@family, @name); color: #ffa500; }
h5 { .font-face(@family, @name); color: #800080; }
h6 { .font-face(@family, @name); color: #000000; }

5.	 If you preview the results in a browser, you can expect to see something akin
to this screenshot:

This is a simple way to show you how to use @font-face with Less; here, we've
displayed a simple sentence using the PT Sans font, styled with different colors for
each font size. In each call to the .font-face mixin, we pass the name of the font
and the color to be used; the mixin selects the most appropriate format of the font
based on the browser being used:

Font format Browser(s) supporting the format
TTF This works in most browsers, except IE and iPhone
EOT This is a proprietary font format for use in IE only—it is currently not a

W3C-recommended standard
WOFF This is a compressed, emerging standard—currently supported by

most browsers except Opera Mini
SVG For use in iPhone/iPad only

If you only have access to one format, then WOFF is the best one to choose;
otherwise, try to include fonts in all the four formats where possible.

Chapter 7

[153]

Using a prebuilt library to handle fonts
In the previous example, we used @font-face to embed a custom font into our
pages; this removes any constraint on the fonts that we can use, as we can download
and use suitably licensed fonts. This is great, but we can do better—one of the
precepts of Less is the DRY principle, which we introduced earlier in the book;
this is a perfect opportunity to practice what we preach!

Instead of having to create new mixins to handle @font-face, we can use a prebuilt
library to handle the @font-face mixin for us. This means we can remove a good
chunk of our code, as we will use the mixin from the prebuilt library—let's take a
look at this in action:

1.	 Open up a copy of fontface.html and alter the link to the Less file,
as follows:
 <title>Demo: Using @font-face</title>
 <link rel="stylesheet/less" href="css/fontface-ml.less">
 <script src="js/less.min.js"></script>
</head>

2.	 Save this as fontface-ml.html. In a new file, add the following code:
@import "lesshat.less";
@my-font-name: 'pt_sansregular';
@fontfile: '../fonts/PTS55F-webfont';

@font-face {
 .font-face(@my-font-name, @fontfile);
}

.myfont() {
 font-family: @my-font-name, arial;
}

h1 { .myfont; color: #808080; }
h2 { .myfont; color: #ff0000; }
h3 { .myfont; color: #008000; }
h4 { .myfont; color: #ffa500; }
h5 { .myfont; color: #800080; }
h6 { .myfont; color: #000000; }

3.	 This will be our Less style sheet—go ahead and save it as fontface-ml.less.

If you preview the results in a browser, you should see little or no difference in
the output, when compared to the results from the previous exercise. So, what's
different? I hear you ask: Why use a prebuilt library?

Manipulating Fonts with Less

[154]

The answer is easy: you're forgetting the one key principle—when using Less,
it doesn't matter how big the library is as Less only incorporates those styles that
are directly referenced in the code during compilation.

If you take a look through the library, you will see the @font-face mixin at or
around line 1362:

.font-face(@fontname, @fontfile, @fontweight: normal, @fontstyle:
normal) {
 font-family: "@{fontname}";
 src: url("@{fontfile}.eot");
 src: url("@{fontfile}.eot?#iefix") format("embedded-opentype"),
 url("@{fontfile}.woff") format("woff"),
 url("@{fontfile}.ttf") format("truetype"),
 url("@{fontfile}.svg#@{fontname}") format("svg");
 font-weight: @fontweight;
 font-style: @fontstyle;
}

In this instance, this is all that is being used—we can prove this using a DOM
Inspector, such as Firebug, to view the compiled CSS styles, as shown in
this screenshot:

In a small example such as ours, the benefits may not be immediately
apparent—once this scales up to a much larger site, this will significantly
reduce the amount of code that you have to write. The key to using a prebuilt
library in such an instance comes down to choosing the right library—the more
we can use from one prebuilt library, the better!

Chapter 7

[155]

Okay, we now have the right fonts in place; we need to ensure that they can be sized
as appropriate on our pages. Thankfully, Less contains some useful functionality that
helps make sizing fonts a cinch—let's take a look at how we can use the library to
help set font sizes in our pages.

Using variables to calculate sizes
Now that we have chosen the fonts we want to use, we need to ensure that we can
set the right size for the occasion; thankfully, Less has a number of techniques that
we can use to create our CSS styles.

The simplest technique is to assign a font size to a set variable and then reference this
variable throughout your code:

@font-size-base: 14px;

Once the initial variable is set, we can then create a range of font sizes automatically,
by multiplying the base value with a graduated set of numbers:

@font-size-large: @font-size-base * 1.25;
@font-size-small: @font-size-base * 0.85;
@font-size-mini: @font-size-base * 0.75;

When compiled using a precompiler, Less will convert these into valid CSS font sizes
as shown in this screenshot:

Manipulating Fonts with Less

[156]

This is a very simple way of defining font sizes; if we need to change the font sizes,
all we need to do is change the value of @font-size-base and Less will take care of
updating the others automatically.

Moving with the times
Working with pixels is a consistent, reliable way of defining font sizes—if you
specify a value of 14px for an element, that element will be sized at 14px. However,
for those using IE, sizes do not cascade well when the zoom function is used.

Instead, we can use the rem unit—this maintains its value relative to the root (HTML)
element, instead of its parent. You might notice that I've skipped over the use of em
as an option. The em value is set relative to the parent, which means elements will not
resize well if your visitor decides to use the zooming function in IE!

For a good discussion on the pros and cons of using rem, em, and px as
font size formats, take a look at an article by Jonathan Snook—although
it is a few years old, it still contains some useful details—at http://
snook.ca/archives/html_and_css/font-size-with-rem.

Support for rem is good within modern browsers, so we just need to provide fallback
support for any version of IE older than Version 8.

With this in mind, we can create a mixin such as the following to handle sizing
values using the rem values, but with a pixel fallback for those who still need to
use IE8 or below:

.font-size(@sizeValue){
 @remValue: @sizeValue/10;
 @pxValue: @sizeValue;
 font-size: unit(@pxValue,px);
 font-size: unit(@remValue,rem);
}

p { .font-size(13); }

When compiled, this produces the following CSS:

html { font-size: 62.5%; }
p { font-size: 13px; font-size: 1.3rem; }

http://snook.ca/archives/html_and_css/font-size-with-rem
http://snook.ca/archives/html_and_css/font-size-with-rem

Chapter 7

[157]

Most modern browsers will support the use of the rem element without issues or will
fall back to use the pixel equivalent, if appropriate. Perfect! We now have our fonts
sized properly; we're good to go, right? Or, are we…?

Handling different weights
Well, perhaps not; what if we're using multiple variations of a particular font? This
isn't a problem when using Less—we can reference our font in the normal way and
use the Less namespacing facility to pick and choose which font styles to use for each
HTML element. Let's take a look at what this means in practice.

Let's start by downloading a copy of the code that accompanies this book; from the
code download, extract the weights.html file that contains our basic text and HTML
markup. Save a copy of the file within the project folder.

Next, go ahead and add the following to a new document, saving it as weights.less:

@Alegreya-Sans: "Alegreya Sans",sans-serif;

#SansFont() {
 &.light { font-family: @Alegreya-Sans; font-weight: 300; }
 &.bold { font-family: @Alegreya-Sans; font-weight: 500; }
 &.extrabold { font-family: @Alegreya-Sans; font-weight: 800; }
}

.para1 { #SansFont > .light; }

.para2 { #SansFont > .bold; }
h1 { #SansFont > .extrabold; }

section {
 background-color: #ffc; border-radius: 5px;padding: 5px;
 border: 1px solid black; width: 400px;
 box-shadow: 3px 3px 5px 0px rgba(50, 50, 50, 0.75);
 h1 { background-color: #c00; margin-top: 0px; color: #fff; border-
top-left-radius: 4px; border-top-right-radius: 4px; padding: 3px; }
}

Manipulating Fonts with Less

[158]

If you preview the results in a browser, you will see something akin to this screenshot:

Using the Less namespace functionality is a great way to work with fonts. In
this example, we've touched again on a technique that we covered in Chapter 5,
Inheritance, Overriding, and Nesting in Less, where we can pick and choose the
styles we want Less to compile into valid CSS.

In this instance, we're pulling in one of Google's Web Fonts to create three styles as
a nested block before calling each of them from within .para1, .para2, and h1. It's
a great technique to help group common styles together—the real benefit of using it
is to help better organize your Less styles; Less will convert the calling styles (that is,
.para1, .para2, and h1) into valid CSS.

Don't forget to include the () in your namespace block, to prevent Less
from compiling it as a valid CSS block.

Now that we've covered the basics of using Less to help manage our fonts, let's move
on and take a look at some more examples of using fonts with Less, beginning with
creating the @media queries for a responsive design.

Chapter 7

[159]

Working with @media in Less
In the age of using mobile devices and responsive design, a key element in building
sites is to allow their use on mobile devices, such as iPads or smartphones.

The key to responsive design is the @media rule—we can use this to define the style
at particular breakpoints or sizes of screen estate for different devices. To illustrate
how this works when using Less, we'll use a simplified example created by Eric
Rasch as a basis for an example web page:

Eric's original example is available at
http://codepen.io/ericrasch/HzoEx.

For this demonstration, we'll break the convention and use the copies of the
media.html and media.less files that are available in the code download that
accompanies this book. I recommend that you run the demo in a browser that
has a DOM inspector installed, so you can see the different styles in use as we
resize the browser.

The media.html file contains some simple text generated using the Lorem Ipsum
generator at http://www.lipsum.com; this is to represent a standard web page.

For reasons of space, we'll work through the important elements of the
media.less file—the rest of the Less markup in this file is purely to make
the page look attractive.

http://codepen.io/ericrasch/HzoEx
http://www.lipsum.com

Manipulating Fonts with Less

[160]

Creating a basic media query
Before we take a look at the Less file in detail, let's just remind ourselves of how a
basic @media query looks:

@media all and (max-width: 699px) and (min-width: 520px) {
 body { background: #ccc; }
}

This translates to setting the background color to #ccc (light gray), when the screen
size is between 520 px and 699 px.

Examining the Less file
This is a simple enough media query, right? Let's apply this to what we have in our
Less file.

In media.less, we can see several sections—the first section declares a number of
variables; these include each of the breakpoints we will use, and the font sizes that
we will apply to the text in our page:

@mobile: ~"only screen and (max-width: 529px)";
@tablet: ~"only screen and (min-width: 530px) and (max-width: 949px)";
@desktop: ~"only screen and (min-width: 950px) and (max-width:
1128px)";
@desktop-xl: ~"only screen and (min-width: 1129px)";

@font-size-base: 14px;
@font-size-large: @font-size-base * 1.25;
@font-size-small: @font-size-base * 0.85;
@font-size-mini: @font-size-base * 0.75;

Did you notice the @tablet variable and how similar it is to our example query?
Granted, ours will not be for as large a device as this tablet, but the format stays
the same, irrespective of the sizes defined.

Next comes the mixin that will apply styles to each @media rule. The body:after
statement changes the label at the top-left of our screen to display which breakpoint
is being used at a particular screen size. The section rule determines the width and
font size to be used for the <section> block:

.mediaMixin(@background, @content, @width, @fontsize) {
 body:after { background: @background; content: @content; }
 section { width: @width; font-size: @fontsize; }
}

Chapter 7

[161]

We finish with the most important part—this ties together all of the mixins and
variables we've defined to arrive at the @media CSS rules we will have in our
compiled style sheet:

@media @mobile { .mediaMixin(orange; "mobile"; 85%; @font-size-mini
); }
@media @tablet { .mediaMixin(purple; "tablet"; 37%; @font-size-small
); }
@media @desktop { .mediaMixin(green; "desktop"; 40%; @font-size-base
); }
@media @desktop-xl { .mediaMixin(blue; "desktop xl"; 45%; @font-size-
large);

If we run the example from the code download and resize the screen to its maximum
(that is, greater than 1129px for this example), we can see that the breakpoint in use
is desktop xl:

How does our example work? It's easy; we've used a combination of variables and
a mixin to reproduce the code required for each @media query. Although we can
change each breakpoint to match those devices we want to cater for, the ranges
used here should cover most devices.

Manipulating Fonts with Less

[162]

In each statement, we call the .mediaMixin mixin and pass to it the desired
background, content (to describe which breakpoint we are using), width of the
<section> containing the content, and font size. Less compiles each instance into a
valid CSS rule, which is then interpreted by the browser as appropriate. We will take
a more in-depth look at using @media in Chapter 8, Media Queries with Less.

If you have Firefox installed, try pressing Ctrl + Shift + M to activate the
Responsive Design Mode when viewing this demo—it shows off the
demo to a great effect!

We've almost come to the end of our journey through using fonts with Less; before
we move on, let's take a moment to have a little bit of relief and see some of the
effects you can create when using Less.

Creating special effects using Less
The beauty of Less is that if you've created valid Less code, it will compile to valid
CSS—this means we can use it to great effect to produce some interesting effects
when working with fonts.

If you spend a little time searching on the Internet for CSS3-type effects, you will
no doubt come across some good examples—to show you what I mean, let's take
a moment to try reworking two effects using Less: letterpress and emboss. For this
demo, we'll use a copy of the weights.html page we created earlier in this chapter,
and alter the title to give it some more emphasis.

Let's start by opening up a copy of weights.html, which we used in the previous
demo, and saving it again as sfx.html.

Next, open up a copy of weights.less and add the mixins as highlighted:

@Alegreya-Sans: "Alegreya Sans",sans-serif;

.letterpress() { text-shadow: 0px 1px 0px rgba(0, 0, 0, 0.5); }

.emboss() { box-shadow: 0px 1px 3px rgba(0, 0, 0, 0.5); }

The mixins won't be used unless we call them from our Less statements; so, go ahead
and modify the h1 block as shown:

h1 {
 .emboss;
 .letterpress;
 background-color: #c00;

Chapter 7

[163]

Save the file as sfx.less. If you preview the results in a browser, you should see
that the title has more emphasis, as shown in this screenshot:

The great thing about Less is that we can easily apply a similar effect to any text—all
it takes is a little care and planning.

In this example, we've used text-shadow and box-shadow, to which we've passed
the right combination of values to produce the letterpress and emboss effects used
in the title. It is worth running the demo for this example to see the effect in full
color—reproducing it in print doesn't quite do it justice!

It should not be used as an excuse to laden your sites with lots of different text
effects—this will more likely put your visitors off. With a little care, text effects
such as the two we've used here can add real emphasis to our page, without the
use of images.

Taking effects further
Wait—surely, we don't need to do anything more, except plan which effects we're
going to use, right? Wrong, here's where the planning comes in: if we're careful
about choosing any external mixin libraries we use, we can save ourselves even
more work.

For example, we used text-shadow here to produce the letterpress example;
this is available in at least one external mixin library, namely LESS Elements
(which we introduced in Chapter 6, Migrating Your Site to Less), and is available
at http://www.lesselements.com.

Assuming that you are already using LESS Elements in your project, all we need
to do is include our calling statement—the mixin will already be part of the LESS
Elements library. Yes, while it means that we don't necessarily reduce the overall
code in our project, it does mean we have less to write, which must be a good thing!

http://www.lesselements.com

Manipulating Fonts with Less

[164]

Summary
Phew, what a tour! We covered a lot of content on using fonts when working with
Less; let's take a moment to recap what we have learned in this chapter.

We began our journey by learning how to create a simple mixin that helps with
setting the font family and color to use; we then saw how we could extend the mixin
to store our font choices as variables. Next, we explored how to use @font-face
when working with Less, and that this removes any constraint on the fonts we
can use within our pages.

We also saw how we can use a prebuilt library in our code, which helps save time
on writing mixins, as they can be referenced from libraries such as LESS Hat. We
then moved on to take a look at the various means available to manage font sizes,
including using rem and why using ems is not always as good as it might appear.

We then moved on to take a look at using Less to create the @media queries as part
of responsive design, before rounding up the chapter with a brief look at some of
the special effects you can create with fonts when using Less.

In the next chapter, we're going to explore in more detail, a vital technique when
building sites for multiple devices—namely, how we can use the @media rule when
working with Less.

Media Queries with Less
Now that we've seen how to use Less to manage the appearance of our content,
what about making sure it fits on the page? Ah yes—isn't this where media queries
come in to play…?

Before the advent of smartphones, most websites would be built at a fixed
width—small enough to fit on laptops or PCs so that most end users would
have a consistent experience.

However, now that more and more people are using mobile devices, the need to
design content that can be seamlessly viewed on each device has increased. Gone
are the days where you had to have the skills of a surgeon to view content, and work
a mobile device—people are increasingly more comfortable viewing content on
mobile devices.

How do we get around this? Easy—welcome to the world of media queries!
An essential component of responsive web design, we can use media queries
to build a site that can be seamlessly viewed over multiple platforms.

I guess you're thinking—how can Less help here? No problem. In this chapter,
we'll see how Less can make creating media queries a cinch; we will cover the
following topics:

•	 How media queries work
•	 What's wrong with CSS?
•	 Setting client criteria
•	 Building media queries using Less

Ready to have some fun creating media queries? Let's get started!

Media Queries with Less

[166]

Introducing media queries
If you've ever spent time creating content for sites, particularly for display on a
mobile platform, then you might have come across media queries.

For those of you who are new to the concept, media queries are a means of tailoring
the content that is displayed on screen when the viewport is resized to a smaller size.
Historically, websites were always built at a static size—with more and more people
viewing content on smartphones and tablets, this means viewing them became
harder, as scrolling around a page can be a tiresome process!

Thankfully, this became less of an issue with the advent of media queries—they
help us with what should or should not be displayed when viewing content on a
particular device. Throughout this chapter, we'll take a brief look at what they are,
how they work, and focus more on how you can use Less to create them.

Almost all modern browsers offer native support for media queries—the only
exception being IE Version 8 or below, where it is not supported natively:

Media queries always begin with @media and consist of two parts:

Chapter 8

[167]

The first part, only screen, determines the media type where a rule should
apply—in this case, it will only show the rule if we're viewing content on screen;
content viewed when printed can easily be different.

The second part, or media feature, (min-width: 530px) and (max-width:
949px), means the rule will only apply between a screen size set at a minimum of
530px and a maximum of 949px. This will rule out any smartphones and will apply
to larger tablets, laptops, or PCs.

There are literally dozens of combinations of media queries to
suit a variety of needs—for some good examples, visit http://
cssmediaqueries.com/overview.html, where you can see an
extensive list, along with an indication of whether it is supported in the
browser you normally use.

Media queries are perfect to dynamically adjust your site to work in multiple
browsers—indeed, they are an essential part of a responsive web design. While
browsers support media queries, there are some limitations we need to consider;
let's take a look at these now.

The limitations of CSS
If we spend any time working with media queries, there are some limitations we
need to consider; these apply equally if we were writing using Less or plain CSS:

•	 Not every browser supports media features uniformly; to see the
differences, visit http://cssmediaqueries.com/overview.html
using different browsers.

•	 Current thinking is that a range of breakpoints has to be provided; this can
result in a lot of duplication and a constant battle to keep up with numerous
different screen sizes!

•	 The @media keyword is not supported in IE8 or below; you will need to
use JavaScript or jQuery to achieve the same result, or a library such as
Modernizr to provide a graceful fallback option.

•	 Writing media queries will tie your design to a specific display size; this
increases the risk of duplication as you might want the same element to
appear in multiple breakpoints, but have to write individual rules to cover
each breakpoint.

http://cssmediaqueries.com/overview.html
http://cssmediaqueries.com/overview.html
http://cssmediaqueries.com/overview.html

Media Queries with Less

[168]

Breakpoints are points where your design will break if it is resized larger
or smaller than a particular set of given dimensions.

The traditional thinking is that we have to provide different style rules for different
breakpoints within our style sheets. While this is valid, ironically it is something we
should not follow! The reason for this is the potential proliferation of breakpoint
rules that you might need to add, just to manage a site.

With care and planning and a design-based breakpoints mindset, we can often get
away with a fewer number of rules. As you will see in the example towards the end
of the chapter, there is only one breakpoint given, but it works in a range of sizes
without the need for more breakpoints. The key to the process is to start small, then
increase the size of your display. As soon as it breaks your design (this is where your
first breakpoint is) add a query to fix it, and then, keep doing it until you get to your
maximum size.

Okay, so we've seen what media queries are; let's change tack and look at what you
need to consider when working with clients, before getting down to writing the
queries in code.

Setting client criteria
The hardest part of working with media queries isn't in the design of the code,
but in agreeing with clients as to what devices should be supported!

Some clients might want to have the same experience throughout their site,
irrespective of the device or platform being used to view the content. This might
have worked when the Internet was still being viewed on normal-sized screens.
This is no longer the case; more and more people are viewing content on mobile or
other such devices. The use of mobile devices is such that numbers are increasing
rapidly, to the extent that they will soon overtake those who still use a desktop PC
to view content.

The phrase, "Expectation is the root of all heartache" (from an anonymous source, but
often misquoted as being Shakespeare), is particularly apt—it is key in deciding what
should and should not be included in each breakpoint; if not, you are more likely to
land yourself in trouble with your client!

Chapter 8

[169]

When creating media queries as part of constructing a client's site, there are some key
points to keep in mind, which will form the basis for conversations with your client:

•	 At the start, make it clear to your client what responsive design is all
about—making content fit a particular screen size. Impress on them that it
is perfectly acceptable practice for the site not to show all of the content on
mobile devices.

•	 If the desire is to have the same experience on all devices, then this will
naturally add a significant amount of code and require extra resources—is it
absolutely necessary? It is far better to work with the client to create content
that will work on multiple devices from the same site, but not every element
will be displayed on each device.

•	 Be clear with the customer what should and should not be included at each
breakpoint—they might want content such as terms and conditions to be
displayed, but this might put mobile users off from viewing the site,
if they are long.

•	 If clients have difficulty in grasping the whole concept of responsive design,
then get them to look at their site in a mobile device—they should see that
it looks poor. Mobile devices work better with content and less so with
interaction or searching—media queries can hide these elements on screen.

•	 A more radical approach will be to limit what can be done on a mobile
device—this works perfectly for airline sites, where they might only want
customers to book tickets or check their reservations. This requires more work
upfront to hide more elements by default, but is worth the effort required to
produce a site that is clean, fast, and works well on mobile devices.

•	 From a technical perspective, it is critical to determine which elements
can be scaled, moved, omitted, or even collapsed on screen, at a particular
breakpoint. Consideration should also be given to other elements when used
in a mobile environment, such as the forms of interaction used, resizing of
fonts, and cropping of images.

There is one critical question that needs to be agreed with the client—should the site
work for a number of devices, or should it just work when the screen is resized and
elements break at certain points? There is an emerging thought that says we can't
hope to support every device and that we should just try resizing a screen and then
fix any element that breaks at a certain point during the resizing process. We can, of
course, use the emulation features available within Chrome or Opera—even after
doing this, we still cannot hope to cater for every device!

Okay, let's move on and turn our attention to creating media queries; before we
write the code, we will have a quick recap on the options available when creating
the queries.

Media Queries with Less

[170]

Exploring media queries
When creating media queries, we've seen how they split into two parts—the first
part consists of a media type, which defines the environment where the media query
should apply (that is, on screen or in print). It should be noted that none of these are
specific to Less—they are all valid CSS media types that we can use when creating
our media queries using Less.

Defining media types
Although it is likely that we might only need to use print or screen when creating
our Less code, there are other options available; here's a full list of elements that
might or might not be supported by all browsers:

Feature Intended for
all Most devices; this is default, unless otherwise specified
braille Use in braille tactile devices
embossed Paged braille printers
handheld Handheld devices, where screen size is small and bandwidth is limited
print Producing content that is viewed on screen in the print preview mode
projection Projected presentations when using devices such as projectors
screen Color computer screens
speech Use with speech synthesizers
tty Media using a fixed-pitch character grid, such as terminals or teletypes

tv Use with television devices, with low resolution, color, limited scrolling,
and sound

Exploring media features
Once the media type has been set, we also need to set the media feature that should
be tested; the media query will return true if it can match both the type of device the
media is being displayed on and the feature being tested.

Media features are split into three categories—visual and tactile media, bitmap
media, and TV. Let's take a look at the full list of options available for visual and
tactile media:

Chapter 8

[171]

Feature Value Min/max
prefixes Description

width Length Yes This gives the width of the display area
height Length Yes This gives the height of the display area
device-width Length Yes This gives the width of the device area
device-height Length Yes This gives the height of the device area

color Integer Yes This is the number of bits per color
component (if not color, the value is 0)

color-index Integer Yes This is the number of entries in the output
device's color lookup table

monochrome Integer Yes
This is the number of bits per pixel in
the monochrome frame buffer (if not
monochrome, the value is 0)

grid 0 or 1 No

If this is set to 1, the device is grid based,
such as a teletype terminal or phone
display with only one fixed font (all other
devices are 0)

The second category is bitmap media types; here's the full list:

Feature Value Min/max
prefixes Description

orientation portrait or
landscape

No This gives the orientation of
a device

aspect-ratio Ratio (w/h) Yes

This gives the ratio of width to
height, expressed as two integers
and separated by a slash (for
example, 16/9)

device-aspect-
ratio

Ratio (w/h) Yes This is the ratio of device-width
to device-height

resolution Resolution Yes

This gives the density of pixels
of the output device, expressed
as an integer followed by dpi
(dots per inch) or dpcm (dots per
centimeter)

Media Queries with Less

[172]

The third and final category only has one media type—this is scan, which is used for
TV devices:

Feature Value Min/max
prefixes Description

scan Progressive
or interlace No Scanning process used by TV devices

In most cases, it will be sufficient to specify a single media type and feature when
creating media queries—there will be instances where we might need to check
against multiple features or types in a single query.

Thankfully, Less can easily handle this by using logical operators—let's take a
moment to recap the options available when creating media queries.

Using logical operators
As we begin to build more complex queries, there will be instances where we need to
perform a check against multiple criteria within a media query. Less can handle this
with ease. Before we take a look at putting into practice what we've learned, let's just
take a moment to review the operators available:

Operator Is used to
and Combine multiple media features together, or media features with other

media types. For example:
@media tv and (min-width: 700px) and (orientation:
landscape) { ... }

comma Apply a set of styles if any of a comma-delimited list of queries returns true:
@media (min-width: 700px), handheld and (orientation:
landscape) { ... }

not Return true if the media query would otherwise return false, for
example, @media not all and (monochrome) { ... } would return
@media not (all and (monochrome)) { ... }

only Prevent application of styles by browsers that do not support media queries
(assuming that fallback support has not been implemented)

Okay, we've covered the theory around media queries; let's turn our attention to
building some queries!

Chapter 8

[173]

Designing media queries
So far, we've seen what media queries are, the options available, and our clients who
have helped us to determine what devices we need to support. It's at this stage in the
process that we need to determine how we're going to translate these requirements
into real code.

To help with this, let's work through a simple example. In this instance, we need
to create a simple block of text, with a list of editors shown to the left of the text.
Granted, it is somewhat contrived, but it does show perfectly how we can vary
the content when displayed on different devices.

Creating a simple example
The best way to see how media queries work is in the form of a simple demo. In this
instance, we have a simple set of requirements, in terms of what should be displayed
at each size:

•	 We need to cater for four different sizes of content
•	 The small version must be shown to the authors as plain text e-mail links,

with no decoration
•	 For medium-sized screens, we will add an icon before the link
•	 On large screens, we will add an e-mail address after the e-mail links
•	 On extra-large screens, we will combine the medium and large breakpoints

together, so both icons and e-mail addresses are displayed

In all instances, we will have a simple container in which there will be some dummy
text and a list of editors. The media queries we create will control the appearance of
the editor list, depending on the window size of the browser being used to display
the content.

Let's begin by downloading and extracting a copy of simple.html from the code
download that accompanies the book. This contains the markup that we will use to
create our page.

Next, add the following code to a new document. We'll go through it section by
section, starting with the variables created for our media queries:

@small: ~"(max-width: 699px) and (min-width: 520px)";
@medium: ~"(max-width: 1000px) and (min-width: 700px)";
@large: ~"(min-width: 1001px)";
@xlarge: ~"(min-width: 1151px)";

Media Queries with Less

[174]

Next comes some basic styles to define margins, font sizes, and styles:

* { margin: 0; padding: 0; }
body { font: 14px Georgia, serif; }
h3 { margin: 0 0 8px 0; }
p { margin: 0 25px }

We need to set sizes for each area within our demo, so go ahead and add the
following styles:

#fluid-wrap { width: 70%; margin: 60px auto; padding: 20px;
background: #eee; overflow: hidden; }
#main-content { width: 65%; float: right; }

#sidebar {
 width: 35%; float: left;
 ul { list-style: none; }
 ul li a { color: #900; text-decoration: none; padding: 3px 0;
display: block; }
}

Now that the basic styles are set, we can add our media queries—beginning with the
query catering for small screens, where we simply display an e-mail logo:

@media @small {
 #sidebar ul li a { padding-left: 21px; background: url(../img/email.
png) left center no-repeat; }
}

The medium query comes next; here, we add the word Email before the e-mail
address instead:

@media @medium {
 #sidebar ul li a:before { content: "Email: "; font-style: italic;
color: #666; }
}

In the large media query, we switch to showing the name first, followed by the
e-mail (the latter extracted from the data-email attribute):

@media @large {
 #sidebar ul li a:after { content: " (" attr(data-email) ")"; font-
size: 11px; font-style: italic; color: #666; }
}

Chapter 8

[175]

We finish with the extra-large query, where we use the e-mail address format shown
in the large media query, but add an e-mail logo to it:

@media @xlarge {
 #sidebar ul li a { padding-left: 21px; background: url(../img/email.
png) left center no-repeat; }
}

Save the file as simple.less. Now that our files are prepared, let's preview the
results in a browser. For this, I recommend that you use Responsive Design View
within Firefox (activated by pressing Ctrl + Shift + M). Once activated, resize the
view to 416 x 735; here we can see that only the name is displayed as an e-mail link:

Increasing the size to 544 x 735 adds an e-mail logo, while still keeping the same
name/e-mail format as before:

Media Queries with Less

[176]

If we increase it further to 716 x 735, the e-mail logo changes to the word Email,
as seen in the following screenshot:

Let's increase the size even further to 735 x 1029; the format changes again,
to a name/e-mail link, followed by an e-mail address in parentheses:

In our final change, increase the size to 735 x 1182. Here, we can see the previous
style being used, but with the addition of an e-mail logo:

These screenshots illustrate perfectly how you can resize your screen and still
maintain a suitable layout for each device you decide to support; let's take a
moment to consider how the code works.

Chapter 8

[177]

The normal accepted practice for developers is to work on the basis of "mobile first",
or create the smallest view so it is perfect, then increase the size of the screen and
adjust the content until the maximum size is reached. This works perfectly well
for new sites, but the principle might have to be reversed if a mobile view is being
retrofitted to an existing site.

In our instance, we've produced the content for a full-size screen first. From a
Less perspective, there is nothing here that isn't new—we've used nesting for
the #sidebar div, but otherwise the rest of this part of the code is standard CSS.

The magic happens in two parts—immediately at the top of the file, we've set a
number of Less variables, which encapsulate the media definition strings we use in
the queries. Here, we've created four definitions, ranging from @small (for devices
between 520px to 699px), right through to @xlarge for widths of 1151px or more.

We then take each of the variables and use them within each query as appropriate,
for example, the @small query is set as shown in the following code:

@media @small {
 #sidebar ul li a { padding-left: 21px; background: url(../img/email.
png) left center no-repeat; }
}

In the preceding code, we have standard CSS style rules to display an e-mail logo
before the name/e-mail link. Each of the other queries follows exactly the same
principle; they will each compile as valid CSS rules when running through Less.

Now that we've seen how to construct media queries using Less, it's worth taking a
moment to explore how best to view our demos. While it can be argued that simply
resizing the browser window might suffice, we can go further and take advantage of
a number of tools to help with the process.

Using tools to resize the screen
In the previous section, we took a look at a simple example of creating media
queries to show or hide elements when a list of editors is resized. We used Firefox's
Responsive Design View option to resize the screen for us; this is one option we
can use to cleanly resize a screen for mobile viewing; it's a critical tool to work with
media queries.

You can use special tools for this purpose, but most modern browsers already have
a perfectly adequate tool built in for this purpose. Let's take a look at a few in turn.

Media Queries with Less

[178]

For Firefox users, press Ctrl + Shift + M to activate Responsive Design View,
as shown in the following screenshot:

However, if your preference is Google Chrome, then the same functionality is
available—it is part of the developer tools set, which can be activated by pressing
Ctrl + Shift + I:

Chapter 8

[179]

If you are an Opera user, then there is the dedicated Opera Mobile Emulator, which
is available at http://www.opera.com/developer/mobile-emulator, with versions
available for the Windows, Mac, and Linux platforms:

If you need to use IE to display your site in a responsive format, then unfortunately
your options are somewhat limited—at least to IE10. IE has a Resize option
(as shown in the following screenshot), but it resizes the whole window,
rather than show a view within a normal-sized window:

It's not the perfect option, but then the best practice is to develop in browsers that are
more standards-compliant (such as Google Chrome or Firefox). We can then effect
any tweaks for IE later.

It is worth noting that if IE11 is used, then it can be set to work in a
similar way to Google Chrome. We can set the emulation mode to display
a small window, within a large/full-size browser window.

http://www.opera.com/developer/mobile-emulator

Media Queries with Less

[180]

If you prefer not to use built-in browser tools, then there are other tools available that
can be used instead. Two tools that are of particular note are ish from Brad Frost,
available at http://bradfrostweb.com/demo/ish/, and ViewPort Resizer by Malte
Wassermann, available at http://lab.maltewassermann.com/viewport-resizer/.

Let's now change focus and turn our attention to building something more in-depth,
where we can use Less in a more real-world example.

Building responsive pages
Adding media queries to any site is possible; the key to it is deciding what
breakpoints you want to support and the elements that should be displayed at each
breakpoint. This can be as little as just the one breakpoint, or many. It all depends on
what happens to the elements when they are resized and whether you need to alter
the code to improve their appearance at a particular breakpoint.

Now that we've seen basic media queries in action, we're going to create something
more complex, in the form of a basic welcome page that would not be out of place on
a portfolio site. We'll start with the basic full-size page, which will look something
like this screenshot:

http://bradfrostweb.com/demo/ish/
http://lab.maltewassermann.com/viewport-resizer/

Chapter 8

[181]

This is a very simple page, created as if it were part of a portfolio site. It's a perfect
opportunity to explore how we can use some simple media queries to resize the page
for a mobile platform.

Building the basic page
Let's start by extracting a copy of the responsive.html file that is in the code
download that accompanies this book. This contains a simple demo page, set to
appear as if it could form the front page of a portfolio site. Save this file into your
project folder.

We also need a copy of the reset.less file that is in the same code download; go
ahead and extract this to the project folder as well. This provides some basic style
resets to mimic what might happen when creating pages for display on your site.

For the purposes of this demo, I will assume that you are using Sublime
Text, which is preconfigured to compile Less files into valid CSS when
saving content.

Next, open your text editor of choice and add the following code; we'll go through
it in detail, section by section. We start with setting some basic styles, to define each
area within the page:

#wrapper { width: 96%; max-width: 45rem; margin: auto; padding: 2%; }
#main { width: 60%; margin-right: 5%; float: left; }
aside { width: 35%; float: right; }
a { text-decoration: none; text-transform: uppercase; }
a, img { border: medium none; color: #000000; font-weight: bold;
 outline: medium none;}

Next, we need to define some styles for our header. This is one of the elements that
will be replaced when we resize the page to a smaller screen:

header {
 font-family: 'Droid Sans', sans-serif;	
 h1 { height: 70px; float: left; display: block; font-weight: 700;
font-size: 2.0rem;}
 nav {
 float: right; margin-top: 40px; height: 22px; border-radius: 4px;
 li { display: inline; margin-left: 15px; }
 ul { font-weight: 400; font-size: 1.1rem; }
 a {
 padding: 5px 5px 5px 5px;
 &:hover { background-color: #27a7bd; color: #ffffff; border-
radius: 4px; }
 }
 }
}

Media Queries with Less

[182]

The remaining two basic styles cover the Skip to Main Content link that appears
when the screen is resized, and the main image on screen respectively:

#skipTo {
display: none;
 li { background: #197a8a; }
 a { color: #ffffff; font-size: 0.8rem; }
}

#banner {
 float: left; margin-bottom: 15px; width: 100%;
 img { width: 100%; }
}

Save the file as responsive.less. If we preview the results in a browser, we will see
something akin to the screenshot shown at the beginning of this example.

However, if we resize the browser window using a tool such as Responsive Design
View in Firefox, it will begin to break the design—the toolbar loses tabs, the header
has a large gap, and the right side of the image has been chopped off, as shown in the
following screenshot:

Chapter 8

[183]

We can fix this by adding in a media query to manage what happens when the
screen is resized. Let's take a look at how this works in action.

Adding responsive queries
We've set the basic styles for our portfolio page and can clearly see that elements are
beginning to break when the page is resized. Let's fix this by adding in the media
query that redefines what happens when the screen is resized.

Start by adding the following at the head of the responsive.less file:

@mobile: ~"screen and (max-width: 30rem)";

Next, we need to add the replacement styles that will kick in when using a mobile
platform. Immediately below the Less styles in responsive.less, go ahead and add
the following code, beginning with the styles that control the display of a Skip to
Main Content button that appears at the top of the page when it has been resized:

@media @mobile {
 #skipTo {
 display: block;
 a {
 display: block; padding: 10px; text-align: center; height: 20px;
 &:hover { background-color: #27a7bd; border-radius: 0px; height:
20px; }
 }
 }

Next comes the styles required to resize the main content area, side bar, and header:

 #main, aside { float: left; clear: left; margin: 0 0 10px; width:
100%; }
 #banner { margin-top: 150px; }
 header h1 { margin-top: 20px; }

Finally, we need to alter the styles used to redefine the navigation options that now
appear as a stacked list of buttons, when the page is resized:

 header nav{
 float: left; clear: left;margin: 0 0 10px; width: 100%;
 li { margin: 0; background: #efefef; display: block; margin-bottom:
3px; height: 40px; }
 a {
 display: block; padding: 10px; text-align: center;
 &:hover { background-color: #27a7bd; border-radius: 0px; padding:
10px; height: 20px; }
 }
 }
}

Media Queries with Less

[184]

Resave the file as responsive.less. If you've used Sublime Text as your editor,
it will convert it to a compiled CSS file. Let's now preview the results in a browser:

At full size, there will be no change (which is anticipated), but when the page
is resized, we can already see an improvement on the page. The title has been
repositioned so there is less of a gap below it, the toolbar has been reset to display as
buttons, the image has been resized to better fit on the page, and the content has been
repositioned into a vertical format. We can also see the addition of a button to allow
us to jump down to the main content on the page.

Chapter 8

[185]

Excellent, our page now looks and works as we expect in a mobile capacity! If
we increase or decrease the size of the browser window, we can see the content
reflowing to fit the available space, based on the media query we created in
responsive.less.

So, what's the magic that's making this work? From the code we've worked with, you
might be forgiven if you thought it was all of the code in this section. It's a perfectly
valid statement. After all, all of the styles are needed to ensure content is correctly
placed when used in a mobile environment.

In reality though, there are only two statements that we've used that are key
to the whole process: @mobile: ~"screen and (max-width: 30rem)";
and @media @mobile {…}.

(Okay, I cheated slightly, but only by one character!)

The first statement is a Less variable that we've set as our media type and the feature
we will be testing. The second one calls in that variable as the test. Everything in
between is standard CSS styling and is being used to rework the layout of the page
when used to display content on a mobile device.

In this example, we've used a large image, which has been set with width: 100%.
While it will resize perfectly when the page size is reduced or increased, it still means
that we're potentially loading a large image on a small device—not a good idea! We
can improve on this by asking the browser to load different versions of the image,
depending on which media query is being applied. Let's take a look and see how
Less can help remove some of the burden in managing this process.

Adding responsive images
Hands up if you own a mobile device, such as a tablet or smartphone? If you do,
then you will likely have seen how long pages take to load, when they haven't been
sized for mobile use.

In the example we've just worked on, we set a 100 percent value for the width of
#banner img—in most cases this will work perfectly fine; it does mean that we are
loading a large photo, which is not ideal on a mobile device! Instead, we can make a
simple change to our media rules to load a smaller image when the screen is reduced
in size.

Media Queries with Less

[186]

For this demo, I've resized a copy of the abstract image to a smaller 461px
x 346px version and saved it as abstract_small.jpg. This size is small
enough to see the change take effect when the screen is suitably resized to
smaller dimensions.

Let's start by downloading and extracting copies of responsive.html and
responsive.less from the code download for this book, then saving them
as responsive_img.html and responsive_img.less, respectively.

Open up responsive_img.html, then alter the line as shown:

<link href="css/reset.less" type="text/less" rel="stylesheet">
<link rel="stylesheet/less" href="css/responsive_img.less">

Next, add the highlighted line to the media query, as indicated:

 #banner {
 margin-top: 150px;
 img { content:url("../img/abstract_small.jpg"); }
 }

Save both files. If we then preview the results in a browser, you should not see any
visible change (which we would expect). However, we will see a change in the URL
for the image if we open up the developer tools within the browser and reduce the
size of the screen:

The beauty of this is that we can save a few kilobytes, which makes it quicker to
view the site on mobile devices, as there is less to download into the browser. We
can, however, go to the complete extreme by replacing images with high definition
resolution versions, but only if the device supports it! Intrigued? Let's take a look
at how this works, using the retina.js Less mixin, available at http://imulus.
github.io/retinajs/.

http://imulus.github.io/retinajs/
http://imulus.github.io/retinajs/

Chapter 8

[187]

Incorporating retina support for images
In the previous example, we saw how easy it is to adjust our Less code so that
a smaller image can be loaded when screen estate has been resized to mimic
a mobile device.

However, many of you will own devices (such as iPads or iPhones) that have retina
support, or which can support the display of high-resolution images that otherwise
would not display very well on regular PCs. We can take advantage of this when
working with Less. In fact, a Less mixin has already been created, which we can get
from https://raw.githubusercontent.com/imulus/retinajs/master/src/
retina.less. Save this as retina.less within our project folder.

Next, we need to save a copy of the abstract.jpg file that we've been using, as
abstract@2x.jpg—this will become our hi-res version. Take a copy of the original
abstract.jpg file and compress it using a JPG compressor such as the online
service from http://www.jpeg-optimizer.com. Save the compressed version as
abstract.jpg.

Now that our images are prepared, open up responsive.html and modify the lines
as shown:

<link href="css/reset.less" type="text/less" rel="stylesheet">
<link href="css/responsive_hd.less"
 rel="stylesheet/less">
<script src="js/less.min.js"></script>

Save this as responsive_hd.html. Next, open responsive.less and add this line at
the head of the file:

@import "retina.less";

Then, add the following line at the end of the file:

#banner img { .at2x('/images/abstract.png', 200px, 100px); }

In a production environment, it is more likely that this would be within a
media query—adding it at the end is sufficient to illustrate how it works,
for the purposes of this demo.

https://raw.githubusercontent.com/imulus/retinajs/master/src/retina.less
https://raw.githubusercontent.com/imulus/retinajs/master/src/retina.less
http://www.jpeg-optimizer.com

Media Queries with Less

[188]

Save this as responsive_hd.less. We can then preview the results in a browser.
For best results, I recommend the following:

•	 Preview the results using a local web server or online webspace—a
good local web server to try is WAMP (http://www.wampserver.de
for Windows) or MAMP (http://www.mamp.info for MAC).

•	 If possible, try to view the results within Google Chrome if you can't view
them online via a retina-enabled device. Google Chrome has the ability to
emulate different devices; if we enable this feature and set it to show as an
iPhone 5, for example:

We can clearly see that the change has been made:

While there should be no material change to the layout of the web page, using this
trick means that a higher resolution image can be used when a device supports
it, or be replaced with a standard resolution image if the device does not have
retina support.

http://www.wampserver.de
http://www.mamp.info

Chapter 8

[189]

To test whether a device supports the device-pixel-ratio test we used here, browse
to http://www.quirksmode.org/css/mediaqueries/devicepixelratio.html.
For example, we can confirm that webkit-device-pixel-ratio is supported,
when testing with an iPad:

Let's move on and continue with this theme of using external libraries by taking a
look at what external libraries are available for use with Less, when working with
media queries.

http://www.quirksmode.org/css/mediaqueries/devicepixelratio.html

Media Queries with Less

[190]

Using prebuilt libraries
So far we've covered the basics of creating media queries using Less—it's at this
point that you're probably thinking, "Surely there's a prebuilt library we could
use to help us here, right…?"

Well, in this instance, unfortunately there isn't a prebuilt library we can use; it's
down to us to build each query manually! This is no bad thing, as media queries
can be seen as something of a workaround, which can lead to bloated code if we're
not careful. It will be difficult, if not near impossible, to cater for all breakpoints.
Each project will require support for a specific set of break points, which will not
necessarily be the same for every site.

In addition, media queries are natively supported in all modern browsers; the only
exception is IE, where Version 8 or below is not supported. To get around this,
there are three options:

•	 We can use the fallback library media-query-to-type created by Mike Morici,
and which we can download from https://github.com/himedlooff/
media-query-to-type. This converts media queries into media types,
which are supported as far back as IE6.

•	 Alternatively, we can use Modernizr (from http://www.modernizr.com) to
detect when media queries are used.

•	 Another library that can be used is Respond.js, created by Scott Jehl
and available from https://github.com/scottjehl/Respond. This is
effectively a drop-in library that can convert most media queries into
formats that IE8 or below can understand.

Although this chapter is about using Less to create media queries, it is nevertheless
important to consider which browsers should be supported and how far you will be
willing to go to get media queries to work in older browsers such as IE6 to 8.

To help maintain clarity, we can use conditional hacks to only load the
media-query-to-type or Respond.js libraries when we detect that IE9 or
below has been used:

#<!--[if lt IE 9]>….<![endif]-->

While in some respects we might feel obligated to provide the same environment in all
cases (including for old IE), this is not necessarily a worthwhile exercise; supporting a
smaller number well is better than average support for a lot of browsers!

https://github.com/himedlooff/media-query-to-type
https://github.com/himedlooff/media-query-to-type
http://www.modernizr.com
https://github.com/scottjehl/Respond

Chapter 8

[191]

Summary
Media queries have rapidly become a de facto part of responsive web design.
Throughout this chapter, we saw how to use Less to make the process easier to
manage within your code.

We started our journey through media queries with a brief introduction, followed
by a review of some of the limitations that we must work around and considerations
that need to be considered when working with clients.

Next came a brief exploration of the media types and features that we can use when
working with Less; we took a look at the logical operators we can also use to create
queries that test for multiple types or features. We then covered how to create a
simple media query, with a quick look at how best to show responsive views in
browsers, before continuing with a more practical example of a single page from a
demo portfolio site. We saw how first we can create our basic page, before adding
the requisite code to turn it into a responsive one.

We then moved on to take a brief look at how to improve the image on the page, by
first making it more responsive, then switching to displaying high-resolution images
when retina support is available and enabled. We then closed out the chapter with a
look at what prebuilt libraries are available that can help when working with Less.

In the next chapter, we're going to move onto some more practical uses of Less, with
a look at using Less within a CMS, such as WordPress.

Working with Less in a CMS
Working in a CMS…Ah, choices, choices…!

Question: what do the following have in common—Facebook, Beyoncé, Sony,
Dallas Mavericks NBA basketball team, and Time?

Worked it out? Well, it's the subject of our next chapter in our journey of learning
Less. They all have blogs or sites created using WordPress! Created back in 2003,
WordPress has become one of the world's most well-known content management
system platforms, used in dozens of scenarios, from simple blogs to full-blown
e-commerce systems.

Throughout the next few pages, we're going to learn how to incorporate our favorite
CSS preprocessor into WordPress and some of the tricks we can use to help simplify
the creation of style sheets. The best bit—most are tricks we've already covered
throughout the book so far; we're just going to adapt where we use them.

In this chapter, we will cover the following topics:

•	 An overview of the WP theme structure
•	 Incorporating Less into pages
•	 Some examples of converting code to use Less
•	 Prebuilt themes for WP, using Less
•	 Plugins available to use Less with WordPress
•	 Using Grunt to help Less development in WP

Curious? Let's get started...!

Working with Less in a CMS

[194]

This chapter will assume a certain level of familiarity with the WordPress
theme design; if you're new to WordPress, you might like to peruse one of
the several books by Packt Publishing on WordPress theme design.

Introducing the WP theme structure
If you've spent any time working with CMS systems, then you will likely have
come across the concept of using themes to customize your site and add or remove
features as you see fit.

WordPress is no different; it uses a system of themes to customize its appearance;
throughout this chapter, we're going to follow this principle and see how we can use
Less to help simplify the process. Before we start writing code, it's worth taking a
moment to examine the anatomy of a WordPress theme.

First, we need to download the WordPress source files, which are available at
http://wordpress.org/latest.zip; at the time of writing this, the latest version
is 3.9.1. When we open the WordPress archive, navigate to wp-content | themes |
twentyfourteen. We'll see something akin to this:

All of these files are required to operate the Twenty Fourteen theme that comes with
this version of WordPress; we will be using this theme as a basis for our exercises
throughout this chapter.

http://wordpress.org/latest.zip

Chapter 9

[195]

We are most interested in the style.css file—this is the main style sheet for any
theme. This file contains the theme information that is displayed within the theme
selection area of WordPress, where we can see details such as the name of the theme,
author, support URL, and so on. We will also make use of the functions.php file to
add support for Less, but this will be a one-off process that happens before we really
get to work on customizing our theme.

Preparing our environment
Now that we've downloaded WordPress, we need to ensure we have a working
environment available in order to work with Less.

Each person's environment might differ, but to get the most benefit out of the
exercises that follow, you will need to ensure that you at least have the following:

•	 A working copy of WordPress that can be customized—ideally, this will be
locally hosted using a web server such as WAMP (for Windows, available
at http://www.wampserver.com), or MAMP (for Mac, available at
http://www.mamp.info). Alternatively, you might have some online
webspace available for use—this will work as well, although you might
find the automation exercises at the end of this chapter hard to do.

•	 For the purposes of the book, I will assume WampServer is installed; change
accordingly, if your server is different.

•	 A copy of Node.js installed along with Grunt; we covered how to install both
earlier in Chapter 2, Building a Less Development Toolkit.

•	 A text editor of your choice—there are hundreds available; my personal
preference is Sublime Text 2, which I will assume you have installed.

If you do not have WordPress already installed, then you can find full instructions at
http://codex.wordpress.org/Installing_WordPress on how to install it.

Okay, assuming we have the requisite pieces of software installed, let's move on and
take a look at preparing our theme for working with Less.

Creating a basic child theme
Hold on, preparing our theme?

Yes, you read correctly—preparing our theme. While WordPress does come with
three themes available for use out of the box, it is not good practice to modify the
source files directly.

http://www.wampserver.com
http://www.mamp.info
http://codex.wordpress.org/Installing_WordPress

Working with Less in a CMS

[196]

Modifying the source files means that your theme will break if an update is released
for it (and yes, WordPress does release updates to its themes). We can get around
this by creating a child theme, which sits in the same theme folder, but is set to
inherit the base files of its parent theme.

What this means is that we can retain the original system files for the parent theme,
but use new styles created in the child theme to override existing styles. We will
make good use of this principle later in this chapter, when we start to write new
Less code.

For now, let's quickly run through creating our new child theme:

1.	 Navigate to wp-content | themes; here, you will see a folder called
twentyfourteen:

2.	 Create a copy of this folder, but rename it twentyfourteen-child. It is
good practice to append child at the end of such a theme, to identify it
in the theme folder list.

3.	 Within the twentyfourteen-child folder, crack open a copy of style.css,
then remove everything below the closing */, and replace as shown:

This theme, like WordPress, is licensed under the GPL.
Use it to make something cool, have fun, and share what you've
learned with others.
*/

@import url("../twentyfourteen/style.css");

/* =Theme customization starts here
-- */

That's all we need to do. If we browse to the Central Administration area of our
WordPress installation, we will see the child theme present in the Appearance |
Themes area. All that remains to do is to activate it in the usual manner.

Chapter 9

[197]

Note that going forward, it is assumed all changes will be made in the
child theme, unless directed otherwise.

Adding support for Less in WordPress
With WordPress installed and working, it's time to turn our attention to adding
support for Less.

In older versions of WordPress, it was customary to add this directly to the header.
php file. While it worked fine, it meant we couldn't maintain a clear separation
between HTML content and presentational markup. Thankfully, in more recent
versions, the WordPress team moved to adding the style sheet by using a function
stored in the functions.php file. Let's take a look at how to achieve this now:

1.	 Open a text editor of your choice, then browse to the twentyfourteen theme
folder, and look for functions.php. Add the following code at the bottom of
the file:
/*
 * Adds support for the Less preprocessor to your theme.
 *
 * @since Twenty Fourteen 1.0
 * @param string $current_user Determines the currently logged in
 user
 */
if (! function_exists('less_enqueue_scripts')) {
 function less_enqueue_scripts() {

 $current_user = wp_get_current_user();

 if ($current_user->ID == '1') {
 wp_enqueue_script('lesscss',
 get_stylesheet_directory_uri() . '/js/less.min.js');
 }
 }
 add_action('wp_enqueue_scripts', 'less_enqueue_scripts');
}

Working with Less in a CMS

[198]

2.	 Save the changes. If we refresh the screen and then preview the results in
a browser, we won't see any visual changes. However, if we preview the
compiled source code in a DOM Inspector such as Firebug, we can clearly
see the addition of Less:

At this point, we have a version of WordPress working perfectly well with Less
support—we can go ahead and create a Less file, called style.less, and drop
this in as a replacement for style.css, right…?

Showing Less style sheets to specific users
Not so fast. We told WordPress how to call in Less, but not how to retrieve the
right set of Less styles yet! To do this, we need to add another function into the
functions.php file; this one will not only incorporate a replacement Less-based
style sheet, but also show it only to the administrator and display a compiled
version for normal use. Bear with me on this; all will become clear shortly:

1.	 Open a copy of the functions.php file that we worked on in the previous
exercise. This time, add the following at the bottom of the file:
if (! function_exists('less_filter_stylesheet_uri')) {
 function less_filter_stylesheet_uri($stylesheet_uri,
$stylesheet_dir_uri) {
 $current_user = wp_get_current_user();

Chapter 9

[199]

 if ($current_user->ID == '1') {
 $style_src = $stylesheet_dir_uri . '/style.less';
 } else {
 $style_src = $stylesheet_dir_uri . '/style.min.css';
 return $style_src;
 }
 add_filter('stylesheet_uri', 'less_filter_stylesheet_uri',
10, 2);
}

2.	 Save a copy of the file, then refresh the browser window that currently
displays WordPress. If we open up our DOM Inspector as we did before,
we can now see the replacement style sheet in use:

If we log out of WordPress and log in as another user, the compiled CSS version of
the style sheet will be displayed instead.

Adding Less support using a plugin
Adding in code manually works perfectly well, but after a while it gets tedious.
Surely we can make things easier using a plugin, right?

Absolutely, we can add support for Less using a plugin; there are several ways to
achieve this, but my favorite has to be the plugin created by Justin Kopepasah and
available for download from WordPress Plugin Directory at https://wordpress.
org/plugins/less-theme-support/. Let's take a peek at how to use it; it's really
easy to install:

1.	 Start by navigating to https://wordpress.org/plugins/less-theme-
support/ and then clicking on Download Version 1.0.2. When prompted to
do so, save it into the plugins folder within our installation of WordPress.

2.	 Browse to the Plugins area in WordPress' admin, then click on Upload and
select less-theme-support.1.0.2.zip.

3.	 Click on Install Now, then when prompted, click on Activate Plugin.

https://wordpress.org/plugins/less-theme-support/
https://wordpress.org/plugins/less-theme-support/
https://wordpress.org/plugins/less-theme-support/
https://wordpress.org/plugins/less-theme-support/

Working with Less in a CMS

[200]

At this point, the plugin is now active and we need to tell our WordPress theme how
to use it:

1.	 If you have not already done so from a previous exercise, rename the style.
css file at the root of our theme to style.less.

2.	 Fire up your favorite text editor and open a copy of the functions.php file
that is located at the root of our theme folder.

3.	 Look for the twentyfourteen_setup()function (on or around line 58) and
add the following at the end of the function, as shown:

 add_filter('use_default_gallery_style', '__return_false');

 // Add support for Less preprocessor
 add_theme_support('less', array('enable' => true));
}
endif; // twentyfourteen_setup

Save the file. If we revert to our WordPress site and refresh the screen, we should
see no visual change. The real change will show if we look at the code within
DOM Inspector:

It is worth noting that Less Theme Support comes with a number of configuration
options, which we can use to change how it works. This is perfect if we're switching
from using it in a development site, to a production one. The values that can be set
are Boolean and the default is false:

•	 Enable: This enables Less and enqueues less.min.js on the frontend
•	 Develop: This enables a development environment for Less and enqueues

less-develop.js

Chapter 9

[201]

•	 Watch: This enables the watch mode for Less and enqueues less-watch.js
•	 Minify: This enables usage of a minified style sheet (style.min.css) on the

frontend for all other visitors (best generated using lessc -x style.less >
style.min.css)

If used with care, they can be very flexible; for instance, you might want to configure
your theme to use Less dynamically when working in development, but not in
production:

add_theme_support('less', array(
 'enable' => true,
 'develop' => true,
 'watch' => true
));

If we switch to production use, then we are likely to use the minify option instead:

add_theme_support('less', array(
 'minify' => true
));

As we've seen, it's an easy plugin to configure. If you're working with Less on a
number of sites, it's often better to use a plugin to install Less so that we don't have
to delve into source files and edit them. The key part of this exercise is the use of the
add_theme_support keyword for WordPress, which allows a theme or plugin to
register support for a certain feature within our theme.

If you are interested in learning more about add_theme_support,
it is worth browsing the WordPress Codex page at http://codex.
wordpress.org/Function_Reference/add_theme_support.

This allows us to tell the theme to use Less. We can always do this manually (as we
have seen), but it is preferable where possible to use plugins, unless circumstances
dictate an alternative method is needed.

Working with Less themes in WordPress
Now that we have support for Less in place, let's move on and take a look at the
options available to use Less styles in our themes, either within our own creations,
or as part of prebuilt themes available for sale or download via the Internet.

http://codex.wordpress.org/Function_Reference/add_theme_support
http://codex.wordpress.org/Function_Reference/add_theme_support

Working with Less in a CMS

[202]

Converting themes to use Less
We now have the basis for a Less style sheet, to which we can start to add our
converted styles. Hold on, I hear you ask, "If we're converting a theme such as
TwentyFourteen, where on earth do we start?"

It's a very good question. Within excess of 4200 lines in the current style sheet for this
theme, it's easy to feel bewildered! However, all will begin to come clear if we follow
two simple principles:

•	 Less allows us to break down our style sheet into multiple files, which are
compiled into one by Less. Make use of this; it will be a big help, as smaller
files make for easier conversion!

•	 Don't try to convert all of it in one go; do it bit by bit. Less is a superset of
CSS, which means that it is effectively all CSS; Less will happily compile
unchanged CSS styles, even in a .less file.

With these principles in mind, let's make a start on converting our theme:

1.	 Start by opening a copy of the style.css file from the TwentyFourteen
parent theme and look for section 4, which starts on or around line 831
to 926.

2.	 Copy this section to the style.less file in our child theme; paste it in below
this line:
/* =Theme customization starts here
-- */

3.	 We'll start by converting the normal green color for the search box to use a
variable, then use it to work out the light green color used when hovering
over it. Add the following immediately below the @import statement in
style.less, as shown:
@import url("../twentyfourteen/style.css");

/* Define colors */
@search-box-color: #24890d;
@search-box-hover-color: @search-box-color + #333;

4.	 The next change we'll make will be to the .site-title style. We'll convert it
to Less' nesting format, so remove these two styles:
.site-title { float: left; font-size: 18px; font-weight: 700;
 line-height: 48px; margin: 0; }

.site-title a, .site-title a:hover { color: #fff; }

Chapter 9

[203]

Replace the previous two styles with the following:

.site-title {
 float: left;
 font-size: 18px;
 font-weight: 700;
 line-height: 48px;
 margin: 0;
 a {
 color: #fff;
 &:hover { color: #fff; }
 }
}

5.	 We also have an opportunity to incorporate a mixin. This time, it will
be in the form of a replacement for the box-sizing style used in the
.search-box-wrapper class. Look for this class in the style.less
file and modify as shown:
.search-box-wrapper {
 .box-sizing(border-box);
 position: absolute;
 top: 48px;
 right: 0;
 width: 100%;
 z-index: 2;
}

6.	 In a separate file, add the following code and save it as mixins.less in the
less folder:
.box-sizing(@sizing: border-box) {
 -ms-box-sizing: @sizing;
 -moz-box-sizing: @sizing;
 -webkit-box-sizing: @sizing;
 box-sizing: @sizing;
}

7.	 We need to import this into our Less file, so go ahead and add the following
line, as indicated:
@import url("../twentyfourteen/style.css");
@import "less/mixins.less";

8.	 The final step is to rename the style.css file in our child theme to style.
less; although this is not yet fully converted, Less will still compile this as
valid CSS.

Working with Less in a CMS

[204]

At this point, we can now save our work, then refresh the browser window, which
displays our WordPress site. If all is well, you will not see any visual difference.
The only difference you will see is when looking at the compiled code through
a DOM Inspector, such as Firebug:

The keen-eyed among you might have spotted something—why are we duplicating
code, I hear you ask? There's a good reason for duplicating the code, at least
temporarily—while this is something we wouldn't normally want do to do, the irony
here is that we can use the unintended duplication to good effect, to help confirm if
our new styles are correct.

We took a copy of section 4 from the original parent theme's CSS file and copied it
into our child theme. By default, styles in a child theme are appended to the parent's
style sheet. In this instance, our theme has appended the duplicated style, as we
would expect. Here comes the rub: we need to then rework the duplicated style to
its Less equivalent (as was done here). We can then check against the original theme,
indicated by the style.css at line 917, to see if our Less version is correct.

If it is correct, we can then either remove it from the original theme, or we can
remove the @import statement; this breaks the dependency on the parent theme
and turns the child theme into a theme in its own right.

Now that we've covered the basics of converting a theme, let's take a moment to
consider some useful tips that will help us with creating your own theme.

Chapter 9

[205]

Creating our own theme
So far, we've spent time converting existing CSS styles in our WordPress theme to
use Less. While this works well, it will take time to complete, as WordPress core
themes, such as TwentyTwelve or TwentyFourteen, run into several thousand lines!

A more sensible route is to create your own theme. Rather than writing one from
scratch, it is preferable to create it as a child theme, so it overrides existing styles
within the parent theme.

Although, we've used an example here, the principles detailed can be
used in any instance where you need to create a new theme.

"Why use a child theme", I hear you ask? There are several good reasons to do so:

•	 Any changes you make to a parent theme will likely break if the WordPress
team issues an update.

•	 It saves you having to redefine a whole bunch of styles; you can concentrate
instead on making the critical changes. When ready, you can incorporate the
parent theme's styles into your own and convert your child theme into one
that can be used in its own right.

Let's now take a look at creating a theme using Less. To get the full benefit from this
exercise, we'll need to ensure that a few things are in place:

•	 Your WordPress installation has a copy of TwentyTwelve installed and
activated. TwentyTwelve has a simpler CSS style sheet than the current
TwentyFourteen incarnation; it will make the process easier to grasp and
hopefully encourage you to move onto working with the newer theme!

•	 A copy of the TwentyTwelve theme has been saved and reconfigured as a
child theme; if you're unsure on how, then refer to the Creating a basic child
theme section of this chapter.

•	 A copy of Crunch! has been installed and configured for use on your system.
•	 A copy of Firefox is installed. This theme was developed using Firefox to

keep things simple for the purposes of this exercise.

We'll begin with creating the basic style sheet that is key to the whole
compilation process:

1.	 Start by renaming the existing style.css file within your child theme folder.
We'll replace it with a compiled version at the end of the exercise.

2.	 From the accompanying download, extract and save a copy of the less
folder within the learningless folder, to the root of your child theme folder.

Working with Less in a CMS

[206]

3.	 Open your text editor and then add the following to it, saving it as style.
less in the root of your child theme folder:
/*
Theme Name: Learning Less
Description: Child theme for the Twenty Twelve theme
Author: Alex Libby
Author URI: http://www.not42.net
Template: twentytwelve
Version: 0.1
*/

// Import parent theme styles
@import url("../../twentytwelve/style.css");
@import "variables.less";
@import "mixins.less";
@import "misc.less";
@import "navigation.less";
@import "header.less";
@import "posts.less";
@import "pages.less";
@import "sidebar.less";
@import "widgets.less";
@import "footer.less";

4.	 Next, we need to compile style.less in order to produce our WordPress
style sheet. For now, we'll use Crunch! to compile the file, so go ahead and
open style.less within your installation of Crunch!.

5.	 Click on Crunch File, then when prompted, enter style.css as the filename
to save the compiled results. It will look similar to the following screenshot:

Chapter 9

[207]

6.	 Copy the compiled style.css file into the root of your child theme folder.
7.	 Fire up your copy of Firefox and browse to your WordPress installation.

If all is well, you should see something akin to this screenshot:

Okay, it won't win any style awards! Nevertheless, it helps to illustrate some key
points; let's take a breather and look at these in more detail.

There are completed version of the style.less and style.css files
within the learningless folder; navigate to the less folder, then rename
style-finished.css to style and copy to the root of your child folder.
If you are struggling with the less code, then style-finished.less
contains a completed copy of the code for this theme.

The crux of this whole process is the style.less file. Notice how we created a
number of @import statements within? This is an essential part of developing
themes for WordPress when working with Less; Less allows us to split what
could be a lengthy style sheet into smaller, more manageable files.

At this point, you're probably asking, "How do I know how many files to split my
code into?" It's a good question and the short answer is: there is no single right
answer! Let me explain.

Working with Less in a CMS

[208]

It all depends on how large your style sheet is. A good pointer is to consider what
elements you have within your style sheet and group them accordingly. You can
then use one or more Less file; Less will happily compile them into one single style
sheet at the end. In our example, we have a number of suitable groups such as posts,
sidebar, navigation and the like; we've set our main style sheet to import a single
Less file for each of these groups.

Throughout all of the Less files, we've made full use of Less' nesting capability;
this is one key skill to master when working with WordPress themes built using
Less. Nesting is very much your friend when developing WordPress themes; we can
group together all of the relevant styles, which makes it easier to read and manage.

Moving on; anyone notice the presence of two key files, namely mixins.less and
variables.less? These are perfect examples of Less files to be created as part of
developing themes for WordPress.

We can store all of our variables within one file and reference them as required.
A perfect example is to first create variables for each of our colors:

// Colors
@white: #fff;
@vivid-orange: #f95812;
@desaturated-cyan: #335c64;
@gray: #666;
…

We can then reference the colors within secondary variables. If there's any need to
change, then this is the only file that needs to be updated:

// Posts
@entry-title-color: @white;
@entry-title-link: @vivid-orange;
@entry-title-link-hover: @desaturated-cyan;
@border-color: @gray;

If we open a copy of posts.less, we can see the variables in use as shown in the
following code:

.entry-header {
 .entry-title {
 .links(@entry-title-link, @entry-title-link-hover);
 }
}

.entry-header, .entry-meta {
 .links(@entry-title-link, @entry-title-link-hover);

Chapter 9

[209]

}

.entry-header .entry-title {
 .links(@entry-title-color, @entry-title-link-hover);
}

In the same way, we can store all of our mixins in one file, namely mixins.less;
should any of these change, there is only one file that needs updating, not many!

Taking construction further
At this stage, you're probably thinking, "Great, I've got a theme I can use…" Right?
Well, yes, and not quite. (Bet you weren't expecting that…)

Hands up, if you read through each Less file from our new theme? Good. Now,
hands up if you really read through the files carefully…ah! not so many of you…

This was done with good reason—the code works perfectly well; as a start point, it
will serve the purpose. However, there are some instances where it can be improved;
after all, it was never intended to be a Picasso! I thought I should leave you with this
little challenge: can you find where it can be improved? One clue…there are not enough
variables, me thinks…up for the challenge?

Okay, here's a more involved challenge: remember how I said we'll use Crunch! to
compile our code? Well, we can do better than this. We've used Grunt elsewhere in
this book, so here's another use: we can use it to automate our compilation.

The key to this is compiling only the style.less file. While you can try compiling
the others, they will no doubt throw errors, as most will not see the variables' file that
is a dependency.

The next part is to configure gruntfile.js, which will tell Grunt to only compile
this file. We can then run Grunt watch in the background to allow it to compile
automatically. We will cover this whole process in more detail, later in this chapter.

If you get stuck, have a look on Google, as there are several examples
available; http://jonathanmh.com/make-grunt-watch-for-
lesscss-changes/ contains a useful example by one is the useful blog
post by Jonathan Hethey. It contains a number of additional steps, but
should be enough to give you an idea of how to use Grunt and watch
when compiling Less theme files.

Enough of developing; it's time to change tack and have a breather. Let's delve into
using prebuilt Less themes with WordPress.

http://jonathanmh.com/make-grunt-watch-for-lesscss-changes/
http://jonathanmh.com/make-grunt-watch-for-lesscss-changes/

Working with Less in a CMS

[210]

Using a prebuilt Less theme
If you're not quite up to building a theme from scratch, then you can always use a
prebuilt one. There are dozens available online, either for free or at a low cost. It's
worth having a look on Google for some examples and then trying them out and
deciding whether they match your requirements. Here are some examples to get
you started:

•	 Less: This is a minimalistic theme from Jared Erickson, available at http://
jarederickson.com/less-a-free-super-minimal-wordpress-theme/

•	 Starter: This theme by Roots contains support for Less and is available at
http://roots.io/starter-theme/

•	 Whiteboard: This is a theme that uses Less 4 Framework, which can be
downloaded from http://whiteboardframework.com/whiteboard-
documentation/

•	 Spare: This is a paid-for theme, available from Theme Forest, at
http://themeforest.net/item/spare-ultimate-multipurpose-less-
theme/7520253

There are lots of themes available for use and it is worth spending some time on
Google to see what is available and trying them out. Hopefully, you will find
something that comes close to, or matches your requirements. With luck, you
might be able to tweak it a little with skills you've hopefully picked up from
reading this book!

Automating WordPress development
If you spend any time developing themes, you will no doubt know that it is a manual
process, which takes time. Themes often require careful tweaking and retesting;
it can get particularly tedious when recompiling Less files!

Fortunately, there are a number of solutions available to relieve some of the tedium
experienced when developing WordPress themes; the most popular option is to use
a package we first met back in Chapter 2, Building a Less Development Toolkit. It's time
to revisit using Grunt!

For the more experienced, it is worth looking online for lessphp,
which is a port of Less to PHP. There is code available that allows
direct compilation within WordPress, in much the same way as we
will cover in this exercise.

http://jarederickson.com/less-a-free-super-minimal-wordpress-theme/
http://jarederickson.com/less-a-free-super-minimal-wordpress-theme/
http://whiteboardframework.com/whiteboard-documentation/
http://whiteboardframework.com/whiteboard-documentation/
http://themeforest.net/item/spare-ultimate-multipurpose-less-theme/7520253
http://themeforest.net/item/spare-ultimate-multipurpose-less-theme/7520253

Chapter 9

[211]

Using Grunt in WordPress development
Remember back in Chapter 2, Building a Less Development Toolkit, when we met Grunt
for the first time?

Well, we're going to meet it again, as it is a perfect tool to help with compiling Less
files as part of WordPress development. It makes perfect sense to use it here, as we
are compiling style sheets after all! Let's take a look at how we can set up Grunt for
use with compiling WordPress style sheets automatically.

For the purposes of this exercise, I will assume you are using Grunt
as installed in the Watching for changes to Less files section of Chapter 2,
Building a Less Development Toolkit. If you've not yet installed it, now's a
good time to revert to that chapter and do it.

We'll work with the standard TwentyFourteen theme that comes with WordPress
3.8.x and upwards; the process will work perfectly well with other themes too.

1.	 Start by opening your favorite text editor, then add the following, and save it
as package.json within the root folder of the TwentyFourteen theme:
{
 "name": "WordPress_Meets_Grunt",
 "version": "0.0.0",
 "author": "Alex Libby",
 "dependencies": {
 "grunt-cli": "latest",
 "grunt-contrib-concat": "latest",
 "grunt-contrib-uglify": "latest",
 "grunt-contrib-less": "latest",
 "grunt-contrib-watch": "latest"
 }
}

2.	 Next, we need to create a Grunt watch file, which will perform a number of
actions, when Grunt's watch facility determines a change has been made.
Add the following skeleton to a new file, saving it as gruntfile.js, within
the root of your theme folder:
module.exports = function(grunt) {
 grunt.registerTask('watch', ['watch']);
 grunt.initConfig({ });

 grunt.loadNpmTasks('grunt-contrib-concat');

Working with Less in a CMS

[212]

 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-less');
 grunt.loadNpmTasks('grunt-contrib-watch');
 };

3.	 The basic Grunt file contains references to the Node plugins we're going
to use—we now need to add the configuration options for each plugin.
Let's begin by adding them for grunt-contrib-concat to concatenate
any JavaScript files into one, as shown:
 grunt.initConfig({
 concat: {
 js: {
 options: {
 separator: ';'
 },
 src: [
 'javascript/*.js'
],
 dest: 'public/js/main.min.js'
 },
 },

4.	 Next comes the options for UglifyJS. Go ahead and add the following code
immediately below the concat block from the previous step:
 uglify: {
 options: {
 mangle: false
 },
 js: {
 files: {
 'public/js/main.min.js':
 ['public/js/main.min.js']
 }
 }
 },

5.	 Our next plugin we need to add in is the one of most interest—Less. Add this
code immediately below the closing } of the previous section:
 less: {
 style: {
 files: {
 "style.css": "style.less"
 }
 }
 },

Chapter 9

[213]

6.	 Last, but by no means least, is watch. This part watches out for any changes
to the code and invokes the relevant command:
 watch: {
 js: {
 files: ['javascript/*.js'],
 tasks: ['concat:js', 'uglify:js'],
 options: {
 livereload: true,
 }
 },
 css: {
 files: ['style.less'],
 tasks: ['less:style'],
 options: {
 livereload: true,
 }
 }
 }

7.	 Save the file, and then in a command prompt, change to the location of
your theme.

8.	 We now need to configure Grunt. Although we already have the basic
application installed from Chapter 2, Building a Less Development Toolkit,
we still need to tell it what to do when changes to Less files are made.
In the command prompt, run this command:
npm install

9.	 The last step is to activate the watch facility. Once Grunt has completed
its changes from the previous step, go ahead and run this command at
the prompt:
grunt watch

10.	 Remember the child theme we created earlier in this chapter? Go back to
your child theme folder, then open up style.less, and make a single
change to a character within the style sheet.

Working with Less in a CMS

[214]

11.	 Save your work as you normally do. If all is well, Grunt watch will have
picked up on the change and recompiled the style sheet file:

We can confirm this by checking back in our theme folder, where the style.less
and style.css files have the same date and time stamps:

Phew! That was a fair bit of code; let's take a moment to recap what we've achieved
in this exercise.

If you've spent any time using Grunt as a task manager, then using the package.
json and gruntfile files will be familiar to you; if not, where have you been?
Grunt is fast becoming a de facto standard for automating thankless tasks such
as compiling Less files; it is well worth getting to know Grunt!

In our exercise, we've configured Grunt to use a number of Node packages such as
Less, watch, UglifyJS, and concat. In a nutshell, the Grunt and JSON package files
tell Grunt how to compress and concatenate JavaScript or Less files (as set in the
configuration); watch is set to run the tasks as soon as any changes are made to
our source files.

Chapter 9

[215]

Provided Grunt watch has kicked in and correctly recompiled our file, we're then
free to continue making more changes. We can either use the Less file to dynamically
compile our style sheet, as we saw earlier in the Adding support for Less in WordPress
section, or we can simply use the compiled file as a normal style sheet in our theme.

There is a completed version of the gruntfile.js file on GitHub, at
https://gist.github.com/alibby251/579e3c0308e3cd732b39.

Summary
Phew! We've covered a lot in this chapter! Let's take a moment to consider what
we learned.

We kicked off our foray into using Less with WordPress with a quick recap of the
structure of each WordPress theme, where we examined the basic files you will see
within the TwentyFourteen core theme and covered the basics of what you need for
each exercise in this chapter.

We then started our development work with a look at creating a child theme and the
reasons for doing so; we then learned how to add Less support to your function file
within the theme.

We took a quick sidestep to see how we can tailor the import for specific users; this
will be useful if you are developing as an admin locally, while leaving others to use
the compiled CSS style sheet file.

We then moved on and took a look at how to import Less using a plugin. We saw
how in most cases, this would be preferred, but that in a plugin-heavy site, it might
be wiser to simply import it using the functions.php file.

We followed this with a detailed look at some tips on converting existing style sheets
to use their Less equivalents. We covered the need to keep the process iterative due
to the sheer size of some style sheets. We then took a brief look at creating your own
theme using Less; we saw how you can use any prebuilt theme within Less if you are
not feeling quite ready for developing your own!

We then finally rounded off our journey through Less and WordPress by taking a
detailed look at how to automate the whole compilation process using Node.js and
Grunt. While this initially might seem daunting, it will reward your efforts in spades
with the time it saves in compiling Less files!

It's at this point we say goodbye to using WordPress. In our next chapter, we'll
introduce another well-known product that uses Less: Twitter Bootstrap. Now
who hasn't heard of Twitter, I wonder?

https://gist.github.com/alibby251/579e3c0308e3cd732b39

Using Bootstrap with Less
To Bootstrap or not to Bootstrap, that is the question…

Leaving aside the clear misquote from Shakespeare's Hamlet, many developers
might ask themselves whether they want to use a framework for their next project.

Frameworks have one clear advantage in that they can help get your site up and
running very quickly—Bootstrap is no different. Developed by Twitter as an internal
tool for unifying their own projects, Bootstrap has rapidly become the number one
project on GitHub, with a user base that includes NASA and MSNBC.

Why talk about this in a book concerning Less, though? Easy; as you will find out,
Bootstrap was built on Less; it is a perfect tool to help get accustomed to working
with Less. In this chapter, we will cover the following topics:

•	 Bootstrap's Less file structure
•	 Bootstrap's mixins
•	 Configuring Bootstrap for your site
•	 Developing a workflow for using Bootstrap

Curious? Let's get started...!

Dissecting Bootstrap's Less file structure
So, you've decided to take the plunge and use Bootstrap; it, like many other
frameworks available on the Internet, is a good way to help get a website up and
running quickly. However, this chapter is about how Less is used in Bootstrap,
right? Absolutely; Less plays a key part in producing the CSS used to style each of
the elements that make up the Bootstrap library. To see how, let's take a look at the
library in more detail. To begin with, we will download it from the main website.

Using Bootstrap with Less

[218]

Downloading the library
We first need to download a copy of the library—for this, visit
http://getbootstrap.com/ and click on Download Bootstrap.
The Bootstrap library is currently at Version 3.2.0 at the time of writing this
and can be obtained in one of several ways, including via CDN or using Bower.

The version that is of interest to us is the source code one, so go ahead and click
on Source Code and save a copy of the archive to a safe place. Once downloaded,
extract a copy of the contents to your hard drive—on opening the archive, we'll see
the following contents:

The folder that is of interest to us is naturally the less one—if we open this, we can
see an array of Less mixin files within the folder.

There are a number of Less files that contain mixins that we can use when building a
Bootstrap-enabled site; they can be split into four categories, namely:

•	 Utilities
•	 Layouts
•	 Skins
•	 Components

http://getbootstrap.com/

Chapter 10

[219]

We'll cover each of these categories in the Dissecting Bootstrap's mixins section later in
this chapter. In the meantime, let's move on and familiarize ourselves with installing
Bootstrap on your site.

Configuring Bootstrap for your site
Although we've downloaded the source code version of Bootstrap, it's not one you
would use by default.

Huh? I hear you ask. You'd be quite right to do so—after all, what's the point of
downloading something you aren't going to use, right…? Well, we will make use
of this later in the chapter; for now, it is enough to know that this contains all of the
mixins that make up Bootstrap styles and that these can easily be customized at a
later date.

For now, we will use the compiled version. In the Building a more realistic site section
later in the chapter, we'll see the effects of what happens when we access the
Bootstrap mixin file directly.

Let's change track and take a look at what's required to add Bootstrap to your site:

1.	 Start by creating a new folder on your hard drive and call it projects.
2.	 Copy the contents of the bootstrap folder we downloaded in the previous

section into this folder.
3.	 Crack open the text editor of your choice and add the following code:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Bootstrap Demo</title>
 </head>
 <body>
 <h1>Hello, world!</h1>
 </body>
</html>

4.	 Next, add the following lines just before the </head> tag—these are used by
Bootstrap to make the site responsive:
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport"
 content="width=device-width, initial-scale=1">

Using Bootstrap with Less

[220]

5.	 We need to add in Bootstrap's base styles, so go ahead and add the following
line immediately before the closing </head> tag:
<link href="css/bootstrap.min.css" rel="stylesheet">

6.	 Save the file as bootstrap.html in the projects folder—if we preview the
results, we will see this:

Granted, it's not going to set the world alight, but it does illustrate how easy it is to
install Bootstrap! We will delve into a real-world example later in the chapter in the
Building a more realistic site section. The key thing to remember is that Bootstrap is an
effective collection of CSS style rules—provided we use the appropriate rules at the
right points in our code, we can use them to produce anything. Bootstrap is ideal in
order to help mock up a basic site; it then gives us the basis for developing it into
something more complex at a later date.

Using Internet Explorer 8 or below
Before we look at producing something more detailed, there is something we
need to be aware of when using Bootstrap—this concerns our old friend, which
is Internet Explorer.

The previous demo will work perfectly in modern browsers—it is worth noting,
though, that if you still need to use IE8, then you will need to add the following
code in your <head> section:

<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and
 media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
<!--[if lt IE 9]>
 <script src =
 "https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js">
</script>

Chapter 10

[221]

 <script src =
 "https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js">
</script>
<![endif]-->

Internet Explorer 8 (or lower) does not support HTML5 by default, so we need
to use two JavaScript libraries to provide fallback support for both HTML5 and
media queries.

Okay; still with me, I hope? Good; let's move on. This is a perfect opportunity to
delve into building a more realistic example that uses Bootstrap.

Building a more realistic site
Although we can use Bootstrap to produce any variety of different sites, Bootstrap
really comes into its own when used to mock up a site. It doesn't even matter if the
colors aren't perfect from the start; it's enough to at least get a feel for what a page or
site would look like in terms of layout. This isn't to say that color schemes should be
discounted; they can come next, once we have a good idea of how the site will be
laid out.

To illustrate how useful Bootstrap can be in order to create a mock-up, we're going
to take a look at creating a sample page that would be perfect as a blog post or online
article on a website. For the purposes of this example, we will need a copy of the
code download that accompanies this book—it contains a copy of the HTML
markup required; for reasons of space, we can't reproduce it in full within the
text! Okay—now that we have a copy of the code download, let's make a start:

1.	 From the code download, extract a copy of the blogpage.html file,
which contains our HTML markup for the sample page. Save the file
in the projects folder that we created in the previous exercise.

2.	 Crack open the text editor of your choice, and then add the following lines
into the <head> tag of the file:
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 <title>Bootstrap Theme Demo</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
 <link href="css/bootstrap-theme.min.css"
 rel="stylesheet">

Using Bootstrap with Less

[222]

3.	 Next, we need to download one small JavaScript file—this is the Holder
plugin by Ivan Malopinsky. This plugin isn't essential for running Bootstrap
but provides a nice effect for the image placeholder. Holder can be
downloaded from http://github.com/imsky/holder/zipball/v2.3.2,
and holder.js extracted from the archive into the js folder within our
projects folder.

There is a minified copy of this plugin in the code download,
which is stored as docs.min.js.

4.	 Save blogpage.html—if we preview the results in a browser, we can see our
mocked-up page in all its glory.

http://github.com/imsky/holder/zipball/v2.3.2

Chapter 10

[223]

So, what happened here? Although it appears that we have a fair amount of code,
in reality, we only have one block of code that is of any importance:

 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">
 ...
 <link href="css/bootstrap.min.css" rel="stylesheet">

Why is this so important, I hear you ask? Well, this is simple—Bootstrap is about
providing a complete functionality set of styles that can help you get up and
running quickly. Bootstrap isn't meant to be a permanent replacement, but it is a
good starting point to develop your own styles. Indeed, as we will see in Chapter
11, Abstracting CSS Frameworks with Less, relying solely on Bootstrap is not always a
good thing!

In this instance, we've set three meta tags—these handle the character set to be used,
the version of IE that should be supported when displaying the page, and the display
of the site on mobile devices.

If you would like to learn more about the IE compatibility and viewport
tags, then it is worth reading the article by Microsoft at https://www.
modern.ie/en-us/performance/how-to-use-x-ua-compatible,
which describes best practice when setting this tag. Mozilla has a useful
article on applying the viewport tag in code, which you can view by
visiting https://developer.mozilla.org/en/docs/Mozilla/
Mobile/Viewport_meta_tag.

The first two can well appear on most sites—the line that is of real interest, though,
is the link to the Bootstrap CSS file. This is a precompiled file that contains the
Bootstrap styling, which has been generated from the Less mixins that form the
library. We've referenced this in our code and used it to apply the styles defined
in our HTML markup.

It is worth noting, though, that if you want to use some of the jQuery
plugins that come with Bootstrap, then you will also need to add a link to
jQuery itself as well as the Bootstrap plugin:

<script src="js/jquery-2.1.1.min.js"></script>

<script src="js/bootstrap.min.js"></script>

If you still need to support IE8 or lower, then change the reference
for jQuery to jquery-1.11.1.min.js; Version 2 of jQuery is not
supported in these earlier versions of IE.

https://www.modern.ie/en-us/performance/how-to-use-x-ua-compatible
https://www.modern.ie/en-us/performance/how-to-use-x-ua-compatible
https://developer.mozilla.org/en/docs/Mozilla/Mobile/Viewport_meta_tag
https://developer.mozilla.org/en/docs/Mozilla/Mobile/Viewport_meta_tag

Using Bootstrap with Less

[224]

Compiling the Bootstrap CSS and
JavaScript
Now that we've seen how Bootstrap can be used to great effect in getting our site off
the ground, we can well decide that we want to move away from simply using the
precompiled CSS file and compile the code ourselves.

The main reason for doing this is to update or alter the code to fit our
requirements—we should not forget that Bootstrap is intended to be customized
in this manner! Fortunately, Bootstrap uses Grunt, which we discussed and
installed earlier in the book (in Chapter 2, Building a Less Development Toolkit).
Bootstrap comes preconfigured with its own package.json file, making
compilation a cinch. All we have to do is:

1.	 Fire up a command prompt window, and then navigate to the root of the
/bootstrap folder and enter the following command:
npm install

This will automatically install all of the dependencies required to
compile Bootstrap.

2.	 In the same command window, enter the following:
grunt

This will run the JSHint and QUnit tests, and then compile the CSS and
JavaScript files into the /dist folder within the Bootstrap folder.

That was easy enough, right? Good; let's move on and meet some of the mixins that
come with Bootstrap.

Examining Bootstrap's mixins
At the beginning of this chapter, we took a brief look at the file structure of
the Bootstrap library download; now is a perfect opportunity to revisit this
in more detail.

If we open a copy of the downloaded archive and navigate to the root level of the
less subfolder, we can see these mixins are spread over 29 mixin files, which can
be split into these categories: Utilities, Components, Skins, and Layout.

Chapter 10

[225]

Most of these mixins are concerned with providing Bootstrap its core styles—the
ones that are of particular interest are:

•	 bootstrap.less: This is the master Less file that, when compiled and
minified, will form bootstrap.min.css

•	 theme.less: This contains some core theme styles

Note that if you download the version of Bootstrap directly from GitHub, then you
will notice this additional folder:

Using Bootstrap with Less

[226]

This folder contains the mixins required to control the styling for the theme; if we
peek inside the folder, we will see the additional mixins that are used to create what
will become bootstrap-theme.min.css in the production download file.

If we explore this folder further, we will see that most of the files stored there have
the same names as the core mixins, but they have styles that form the basis for the
themes within Bootstrap. It is worth noting that these mixins do not form part of the
Less download archive that is available at http://www.getbootstrap.com; to use
them, we need to download them directly from GitHub and compile them using
Grunt/Node.js.

All of the mixins available for use in Bootstrap are stored within the \less
subfolder—you can also view the original source file versions in GitHub at
https://github.com/twbs/bootstrap/tree/master/less. The
variables are stored within variables.less—this is in the aforementioned
\less folder and is available on GitHub at https://github.com/twbs/
bootstrap/blob/master/less/variables.less.

Now that we've seen the make-up of the library, let's take a moment to reflect on
some of the mixins that are available in the library.

Dissecting Bootstrap's mixins
If we were to take a look at the mixins available for use in Bootstrap, we can see they
are broken down into a number of groups. These groups are:

•	 Core variables and mixins
•	 Resets and dependencies
•	 Core CSS
•	 Component files
•	 Component files that use JavaScript
•	 Utility classes

Let's take a brief look at each one in more detail, starting with the core variables
and mixins.

http://www.getbootstrap.com
https://github.com/twbs/bootstrap/tree/master/less
https://github.com/twbs/bootstrap/blob/master/less/variables.less
https://github.com/twbs/bootstrap/blob/master/less/variables.less

Chapter 10

[227]

Core variables and mixins
Core variables and mixins is probably one of the smallest groups of all of the mixins
but is the most crucial—it contains variables.less, which lists all of the predefined
variables available for use within Bootstrap. The second file contained within this
group is mixins.less. While it is simpler in design, it plays an equally important
role: it contains the @import statements that are used to build the bootstrap-theme.
css file.

Reset and dependencies
Next in the groupings come the reset and dependency mixins—to quote a phrase,
these "do as it says on the tin"! Normalize.less uses the normalize.css project
created by Nicolas Gallagher, which is also available from GitHub, and can be
downloaded from https://github.com/necolas/normalize.css.

If we're setting our site to be printable, then print.less is essential; it contains
the media queries required to realign a Bootstrap in order to allow it to be printed.
Glyphicons.less is a useful part of the library—it controls the styles required to
display any of the glyph icons that come as part of the Bootstrap library.

Core CSS styles
In this next grouping, we have a number of mixin files that perform different roles:

Name of Mixin file Used to
scaffolding.less Control elements on a basic site, either directly or indirectly

(by referencing styles from other mixin files)
type.less Set the default font sizes for H1 to H6 font sizes, along with

some additional styles such as the warning or information text
code.less Determine styles when using markup such as <code>

and <pre>
grid.less Set up the basic styles used to control Bootstrap's responsive

grid functionality
tables.less Control styles for any tables we insert into our site
forms.less Apply styles to any forms that we host within our website
buttons.less Set up the base styles that are applied to any buttons on

our site

https://github.com/necolas/normalize.css

Using Bootstrap with Less

[228]

Components
So far, most of our styles that we have looked at cover the structure of the site; let's
look at the component files that make up the visual elements we can add to any site:

Name of Mixin file Used to define styles for
component-animations.less Animating any components with a site
dropdowns.less Drop-down menus
button-groups.less Grouped buttons
input-groups.less Input fields
navs.less, navbar.less Navigation bars and buttons
forms.less Form and non-form elements
breadcrumbs.less Breadcrumb trails
pagination.less, pager.less Pagination in a site
labels.less Various label styles, such as warning or danger
badges.less Badges within buttons or navigation
jumbotron.less Jumbotrons
thumbnails.less Thumbnail images and captions
alerts.less Alert messages and dialogs
progress-bars.less Progress bars
media.less Media objects, such as videos and images
list-group.less Items in a grouped or linked list
panels.less Panels and panel elements, such as titles
responsive-embed.less Embedding items such as iFrames responsively
wells.less Wells
close.less Close icons

Utility classes
The final grouping within the core Bootstrap files contains the utility classes—these
are stored within utilities.less and responsive-utilities.less. These files
contain some styles that are not immediately associated with any of the other mixin
files but still play a part within a Bootstrap site nevertheless. Examples include the
.clearfix() mixin and mixins for toggling content.

Chapter 10

[229]

Let's change gear now and focus our attention on the mixin files that make up
Bootstrap's theme styles.

Dissecting Bootstrap's theme mixins
In addition to the core styles and mixins, Bootstrap provides a number of additional
mixins that are incorporated into the Bootstrap theme's JavaScript and CSS files.

You can view these in the mixins subfolder under the less folder within the GitHub
repository—it is worth noting that these do not appear in the Source Code option
when downloading files from http://www.getbootstrap.com. Let's take a look at
what lies within this folder—the mixins fall into a number of groups.

Utilities
Name of Mixin file Used to
hide-text.less Hide images when using CSS image replacement
opacity.less Set opacity levels
image.less Make images responsive.
labels.less Define colors for labels
reset-filter.less Reset filters for IE when gradient backgrounds

are removed
resize.less Resize any element if the overflow isn't visible
responsive-visibility.
less

Provide responsive states for responsive-
utilities.less

size.less Use a shortcut mixin to set the height and width
for objects

tab-focus.less Add the Webkit-style focus to tabs
text-emphasis.less Add emphasis to the text
text-overflow.less Handle the text overflow—requires display: inline

or display: block to be set for proper styling

http://www.getbootstrap.com

Using Bootstrap with Less

[230]

Components
Although we've defined most of the styles required for Bootstrap components by
now, there are still some styles that are specific to the theme file; these are handled
within this group of mixins:

Name of Mixin file Used to
alerts.less Set the background, border, and forecolor values in alerts,

along with the <hr> element and links within alerts.
buttons.less Create default styles, along with the :hover, :focus,

:active, and disabled styles for buttons.
panels.less Define colors to be used on panel elements.
pagination.less Handle styles set for page pagination.
list-group.less Define styles used when selecting or hovering over list

elements.
nav-divider.less Set dividers within dropdowns or navigation lists.
forms.less Generate form validation styles for use in forms.
progress-bar.less Set the background color for use with progress bars.
table-row.less Set additional styles used for controlling the appearance of

table rows.

Skins
We've already defined a number of the theme styles at this point; some are added
when applying the Bootstrap theme file:

Name of Mixin file Description
background-variant.less This mixin sets and then darkens the background color

when hovering over it.
border-radius.less This mixin is not strictly required with the advent of

native browser support for border-radius, but it is
useful in order to set the radius value in pairs.

gradients.less This mixin sets up the styles for a number of gradient
formats, such as striped and radial.

Chapter 10

[231]

Layout
A key part of any theme is to position elements correctly on a page; this group of
mixins handles this for the Bootstrap theme:

Name of Mixin file Used to
clearfix.less Implement the micro clearfix hack, as created by

Nicholas Gallagher at http://nicolasgallagher.
com/micro-clearfix-hack/

center-block.less Center-align a block-level element in the theme
nav-vertical-align.less Vertically center elements in a navigation bar
grid-framework.less Generate the correct number of grid classes from any

given value of @grid-columns. by Bootstrap
grid.less Generate semantic grid columns

Now that we understand the make-up of the library, we might well want to
consider using different elements from it rather than just incorporating the library
as it stands in our code, which would be wasteful on resources. However, what
if we wanted to actually change some of the default styles and not have to download
everything? Thankfully this is possible—let's take a look at how you can customize
your Bootstrap downloads.

Customizing our download
So far, we've used the standard download from Bootstrap—while this has served us
well, it can be a little awkward to start introducing our own styles.

Thankfully, the Bootstrap team has provided us with a means to allow us to build a
custom download; while it might require a little work to determine what values are
to be entered, it will at least allow us to tailor values to our liking! Let's take a look at
how this works.

Before doing so, we need to make one small change to our code—load up
your copy of blogpage.html and comment out this line:

<link href="css/bootstrap-theme.css" rel="stylesheet">

Don't worry for now. Why? All will become clear very shortly!

http://nicolasgallagher.com/micro-clearfix-hack/
http://nicolasgallagher.com/micro-clearfix-hack/

Using Bootstrap with Less

[232]

Start by browsing http://getbootstrap.com/customize/#less-variables-
section—here, we can see a whole array of options that we can choose to include
or discard from our download. If you've spent any time using jQuery UI, then the
process should be pretty familiar to you—it is a matter of selecting or deselecting
the appropriate checkboxes in order to include the components we need in
our download.

This is a three-step process—let's begin by choosing the base CSS, components,
and utilities that we want to use in our download.

Next, we need to change the values within each component that we are going to
include in our download. A great example here is the Buttons section—we created a
button as part of our comments form, so let's go ahead and change the colors on the
image as part of our custom download.

http://getbootstrap.com/customize/#less-variables-section
http://getbootstrap.com/customize/#less-variables-section

Chapter 10

[233]

Let's revert to the blogpage.html demo that we delved into earlier—if we view the
source code for the button using a DOM Inspector such as Firebug, we can see the
classes in use.

Using Bootstrap with Less

[234]

We can clearly see two classes in use—the base .btn and .btn-primary. Using a
DOM Inspector such as Firebug, we can see the compiled styles for .btn:

.btn {
 -moz-user-select: none;
 background-image: none;
 border: 1px solid transparent;
 border-radius: 4px;
 cursor: pointer;
 display: inline-block;
 font-size: 14px;
 font-weight: normal;
 line-height: 1.42857;
 margin-bottom: 0;
 padding: 6px 12px;
 text-align: center;
 vertical-align: middle;
 white-space: nowrap;
}

On its own, this won't show you a great deal—it will really begin to make sense once
we take a look at the .btn-primary class:

.btn-primary {
 background-color: #428bca;
 border-color: #357ebd;
 color: #fff;
}

At this point, if we browse http://getbootstrap.com/customize/#less-
variables, we can see all of the Less variables that can be customized in our
download. We can see that the #428bca value is being set by the @btn-primary value.

What is Less easy to spot, though, is how #357ebd is being set—this value is set
using the @btn-primary-border variable, which is darkened by 5 percent.

To see the effects of lightening or darkening colors, visit the Hex Color
tool site at http://www.hexcolortool.com, enter your hex value
(without the hash), and click on Lighten or Darken to see a range of
colors and their values.

http://getbootstrap.com/customize/#less-variables
http://getbootstrap.com/customize/#less-variables
http://www.hexcolortool.com

Chapter 10

[235]

We can also see how the button's colors are being set—it is worth browsing the
buttons.less mixin file on GitHub at https://github.com/twbs/bootstrap/
blob/master/less/buttons.less, where we can see the mixin in action on line 60:

.btn-primary {
 .button-variant(@btn-primary-color; @btn-primary-bg;
 @btn-primary-border);
}

Now that we've seen how the variables link back to the mixins, let's make a change
to our download by setting a nice shade of red for our button.

Changing the values in our download
Altering the code download from Bootstrap is a cinch—we simply need to choose
our primary colors, alter the ones already shown, and hit Download at the bottom
of the page to get our customized library. Let's do this now—you'll see how easy it is:

1.	 Start by browsing http://getbootstrap.com/customize/#less-
variables and altering the value for @brand-primary to #be0000,
as shown:

https://github.com/twbs/bootstrap/blob/master/less/buttons.less
https://github.com/twbs/bootstrap/blob/master/less/buttons.less
http://getbootstrap.com/customize/#less-variables
http://getbootstrap.com/customize/#less-variables

Using Bootstrap with Less

[236]

2.	 Next, scroll down to the bottom of the page, and click on Compile and
Download—save the folder to a safe location, when prompted.
We now have the library, but need to update our code. Remember how I
asked you to comment out the line referencing the bootstrap-theme.css
file? Well, here's why: the customized downloads only apply to the core
styles, and not the theme that has been applied. If we had not commented
out this line, then our change would have been redundant—the theme would
have overridden it!

3.	 At this point, go ahead and rename the CSS folder in our project
folder—open the archive file we've just downloaded and copy the
css folder into the project folder.

If we browse a copy of the blogpage.html file and refresh the screen, we can see the
updated colors in use on the Submit button.

If we open up a DOM Inspector such as Firebug, we can see that the code has changed:

.btn {
 ...
 border: 1px solid transparent;
 ...
}

A look at the .btn-primary styles, show us the new values as a result of the change
in our CSS:

.btn-primary {
 background-color: #be0000;
 border-color: #a50000;
 color: #fff;
}

Chapter 10

[237]

.btn-primary {
 background-image: linear-gradient(to bottom, #be0000 0px,
 #810000 100%);
 background-repeat: repeat-x;
 border-color: #700;
}

There are plenty more styles we can change—the world is our oyster! To help
with changing colors, it's easier to change the existing hex color codes rather than
swapping out the functions for explicit colors. If we leave the calculation statements
alone, then we can be sure that they render the right shades of updated colors
correctly, such as :hover.

A modified version of the CSS folder, which incorporates this color
change, is included in the code download that accompanies this book.
You will need to extract a copy of the REDcss folder and rename it in
order to replace the default css folder that comes with Bootstrap.

Let's change track now and move on—one of the key parts of using Bootstrap is
developing your own workflow process; while there is no right or wrong answer,
we'll look at an example that you can develop for your own projects.

Developing a workflow for using
Bootstrap
Now that we've seen something of how Bootstrap can be configured for use when
creating a basic site, the final key stage in our journey using Bootstrap is to begin to
develop a workflow that helps us be as efficient as possible.

Ultimately, designing our workflow will be a very personal affair—the same method
won't suit everyone! The key to this is to find something that works for you; to give
you a flavor of how to go about it, it is worth reading an article by Erik Flowers,
which is available at http://www.helloerik.com/bootstrap-3-less-workflow-
tutorial.

In summary, his workflow centers on the following steps:

1.	 Download a copy of the Bootstrap library from
http://www.getbootstrap.com.

2.	 Decide which method you want to use to compile your Less files—will it be
in a preprocessor app such as Crunch!, via the command line, or as an add-
on package to an editor such as Sublime Text?

http://www.helloerik.com/bootstrap-3-less-workflow-tutorial
http://www.helloerik.com/bootstrap-3-less-workflow-tutorial
http://www.getbootstrap.com

Using Bootstrap with Less

[238]

3.	 Create a source folder to hold your Less files—the name is not critical as long
as you know what and where it is being stored.

4.	 Create a folder within the source folder, called vendor, and store copies of
the Bootstrap Less files within it—this is to help keep yourself from making
changes to core files that would be overwritten when upgrading Bootstrap.

5.	 Inside your source folder, create a file called styles.less that imports
bootstrap/bootstrap.less.

6.	 Store any other Less files that are required within the top level source folder,
and then import them to styles.less using the same format.

7.	 Add your Less style rules into these individual files and not the
styles.less file.

8.	 Compile styles.less to wherever you want to refer to your styles.css;
minify or compress the files as desired, either separately, or as part of using
a package such as Grunt.

While there are a few steps involved, this should give you a feel for an example
workflow—it is worth noting that some of this can, potentially, be automated; the
key to this is to ensure that it fits with any existing process that you have in place as
part of your development workflow.

Summary
For a project that was originally created for internal use within Twitter, Bootstrap
has rapidly become one of the world's most popular projects on GitHub. Let's take
a moment to recap what we've covered throughout this chapter.

We kicked off our journey with a look at downloading the library, followed by
configuring it for use within our projects. We then created a basic example to
illustrate how easy it is to add it to your projects; we then developed this into
a more realistic example in order to better show how Bootstrap would look.

We moved on and examined how easy it is to compile Bootstrap's mixins in order
to produce valid CSS code; we then covered the make-up of the less folder within
the code download in order to see what mixins are available and how they make
up Bootstrap. We then finished looking at Bootstrap by delving into how we can
customize the download in order to tailor it more towards our needs.

Let's move on now—in the next chapter, we'll take a look at abstracting CSS
frameworks using Less and why using Bootstrap isn't actually as good as it
might first seem!

Abstracting CSS Frameworks
with Less

Back in late 2011, the popular social networking site, Twitter, released
Bootstrap—the framework caused such an impression, it quickly became
the most followed project on GitHub!

Anybody who has spent time developing must have at least heard of Bootstrap, even
if they haven't yet had a chance to use it. In the previous chapter, we took a brief look
at how it uses Less to compile rules into valid CSS and how you can experiment with
using one of the many mixins available to create your own styles.

The trouble is that Bootstrap as a framework is not without its own faults—it
encourages us to overload HTML with dozens of classes! This goes against the
trend that has developed over the last decade, where content should be separate
from presentation. In this chapter, we'll see why this is bad practice and how
we can fix the problem by being clever about how we use Bootstrap's mixins.

In this chapter, we will cover the following topics:

•	 Discovering what's wrong with using frameworks
•	 Keeping your HTML clean
•	 Simplifying complex styles

Keen to learn more? Let's get started…!

Abstracting CSS Frameworks with Less

[240]

Discovering what's wrong with using
frameworks
Think back to the previous chapter, where we introduced Bootstrap and covered
how Less is used to create the styles that are compiled into clean, semantic HTML…
Bootstrap looks good, is easy to use, and provides a nice, consistent theme to our
site, right?

Wrong—it suffers from one particularly nasty problem: Bootstrap embeds CSS
classes directly within HTML. We could argue that there is nothing wrong with
that, except for the fact that the style names used are not always semantic!

This whole concept of providing semantic code has been at the forefront of
developers' minds for years. Some frameworks such as Scaffold (for PHP) or
Compass (for Ruby) recognized the problem back as far as 2009, yet Bootstrap still
forces us to use nonsemantic CSS styling in our HTML code. To see what this all
means, let's delve in deeper, take a look at an example, and understand how we
can correct this using Less.

Diagnosing the problem
To see the problem in the flesh, so to speak, we need to view the source code for a
Bootstrap-enabled site; ironically, the main Bootstrap website has several examples,
which clearly show the issue!

Begin by navigating to http://getbootstrap.com/examples/blog/, which is the
demo site for Bootstrap's Blog Theme. Right-click anywhere on the page to select the
source code as seen in the browser. If you scroll down to on or around line 42, you
will see the following:

http://getbootstrap.com/examples/blog/

Chapter 11

[241]

In the screenshot, lines 50 and 52 have been highlighted, which are perfect examples
of nonsemantic code; the three styles that have been added all belong to Bootstrap.
"Why should we not use them when they are clearly a part of Bootstrap?", I hear
you ask.

For a useful introduction to the benefits of separating markup, then
look no further than the book, Designing with Web Standards, by Jeffery
Zeldman (and Ethan Marcotte, from Version 3 onwards).

The answer is simple—the HTML markup should describe the meaning of the
content and nothing else. The problems we have with this code extract are two-fold:

•	 It makes it difficult to update any code style—if a style needs to be changed,
then this must be done in every single page of the website, where it appears.
This can be tedious at best for a small site, but a nightmare if the site is huge!

•	 Hardcoding Bootstrap's style names into your HTML code means that you
are now dependent on Bootstrap. If Twitter changes Bootstrap's classes
(which has happened), then you've just landed yourself a whole heap of
unnecessary work.

It's always a good idea to keep an eye on versions being used in
your code and not simply use the latest version. Following the latter
practice leaves you open to trouble!

Fortunately, the answer to our dilemma lies in Bootstrap itself and its array of
mixins. Instead of using the Bootstrap class names within our code, we can abstract
in a layer by creating more semantic names and applying the Bootstrap classes to
these names instead. To see how this would work, let's work through a few simple
examples, using Bootstrap's Jumbotron theme demo as a basis for our changes.

Keeping HTML code clean
If we view the source for Bootstrap's Jumbotron example, we can clearly see some
nonsemantic examples, similar to those used in the Blog demo; we'll use them as a
basis to work through the solution that we can use to fix the issue.

There are three examples of interest to us; the first is on line 67:

<div class="row">

The next example follows suit immediately on line 68:

<div class="col-md-4">

Abstracting CSS Frameworks with Less

[242]

The third and final examples we will look at, appear several times, on lines 71, 76,
and 81:

<p>View details
 »</p>

It goes without saying that there are more examples present; you can see where each
of our three selected examples are being used:

All three examples use names that are too specific to what they do and not to the
content they apply to. We can easily change the style names used to something
more semantic, using a technique that can be reused elsewhere in your code
without difficulty.

Let's take a look at how the technique works; it's based around directly referencing
the Less mixins included as part of the Bootstrap library.

Fixing the code
Before we get into editing any code, we first need to download a copy of the code
that accompanies this book. Here, we will find an (unadulterated) copy of the
Jumbotron theme, which we can use for the purpose of this exercise:

Chapter 11

[243]

For the purposes of this exercise, I will assume you have extracted a copy of the code
that accompanies this chapter and stored it in a folder called jumbotron, ready for
editing. We also need a copy of the Bootstrap library, which we can get from the
main site at http://getbootstrap.com/getting-started/#download and then
by clicking on Download source against the Source code option.

Assuming we have everything in place, let's make a start:

1.	 Open the zip archive file we downloaded from the Bootstrap site, then
extract the less folder, and copy it to our jumbotron folder.

2.	 In a separate file, add the following code, saving it as semantic.less in the
css subfolder within the jumbotron folder:
@import "../less/variables.less";
@import "../less/mixins.less";
@import "../less/buttons.less";
@import "../less/grid.less";

.wrapper {

http://getbootstrap.com/getting-started/#download

Abstracting CSS Frameworks with Less

[244]

 .container;
}

.left-content {
 .make-md-column(4);
}

.middle-content {
 .make-md-column(4);
}

.right-content {
 .make-md-column(4);
}

.heading-row {
 .make-row();
 .clearfix;
}

3.	 Now, we need to alter our HTML, so open jumbotron.html and add the
highlighted line:
 <!-- Custom styles for this template -->
 <link href="css/jumbotron.css" rel="stylesheet">
 <link href="css/semantic.css" rel="stylesheet">
 </head>

4.	 Next, we're going to rename each of the three columns; move down and look
for the first <div class="col-md-4"> tag, which is on or around line 60.
This can be removed and replaced as shown in the following code; you will
need to repeat it for two more instances further down the code:
 <div class="container">
 <!-- Example row of columns -->
 <div class="row">
 <div class="left-content">
 <h2>Heading</h2>
 <p>Donec id elit non mi porta gravida at eget metus.
Fusce dapibus, tellus ac cursus commodo, tortor mauris condimentum
nibh, ut fermentum massa justo sit amet risus. Etiam porta sem
malesuada magna mollis euismod. Donec sed odio dui. </p>
 <p><a class="btn btn-default" href="#"
 role="button">View details »</p>
 </div>

Chapter 11

[245]

5.	 Our third change concerns the heading row container; row isn't sufficiently
semantic, so we're going to change it:
<!--<div class="container">-->
 <div class="wrapper">
 <!-- Example row of columns -->
 <div class="heading-row">
 <div class="left-content">
 <h2>Heading</h2>
 <p>Donec id elit non mi porta gravida at eget metus.
Fusce dapibus, tellus ac cursus commodo, tortor mauris condimentum
nibh, ut fermentum massa justo sit amet risus. Etiam porta sem
malesuada magna mollis euismod. Donec sed odio dui. </p>
 <p><a class="view-details" href="#"
 role="button">View details »</p>
 </div>

6.	 Our last change concerns the <div> tag that is used to wrap the three
columns. The container isn't particularly semantic, so we're going to
change this to use the wrapper as its replacement. Go ahead and remove
the container DIV line and then replace it as shown:

 <div class="wrapper">
 <!-- Example row of columns -->
 <div class="heading-row">
 <div class="left-content">
 <h2>Heading</h2>

If we preview the results in a browser, we should not expect to see any change
visually, but be safe in knowing that we have started to use more semantic class
names within our code.

There is one very valid point here—it would be a perfectly valid question to ask why
we use wrapper, in place of container here? We could equally use either, nothing
wrong with that. My preference though is to use the wrapper here, purely because it
encompasses all of the code (give or take!).

Exploring our solution
So, now that we have semantic code in our example, what does this mean and how
does it work? It's based on two key elements: one of substitution and the other of
knowing the available Bootstrap mixins that we can use.

Abstracting CSS Frameworks with Less

[246]

In this instance, we've taken advantage of the group of Less mixins that form the basis
for creating columns and rows within Bootstrap. We first import four Less files, which
contain the mixins that we need to use, then create four new styles (in the form of
left-content, middle-content, right-content, and heading-row), and assign
the make-md-column, make-row, or clearfix mixins as appropriate. To ensure that
our HTML reflects the changes, we then replace the original styles with the new,
more semantic style names.

Simplifying complex styles
We can go further in our code to abstract and simplify the presentational classes
being used; as an example, we'll edit the code to replace the CSS style names used
on the two button types present in the code:

1.	 Let's start by opening up the jumbotron.html file again. Here, we need to
remove the line starting with <p><a class="btn btn-default"… and
replace it as indicated:
<!--<div class="container">-->
 <div class="wrapper">
 <!-- Example row of columns -->
 <div class="row">
 <div class="left-content">
 <h2>Heading</h2>
 <p>Donec id elit non mi porta gravida at eget metus.
Fusce dapibus, tellus ac cursus commodo, tortor mauris condimentum
nibh, ut fermentum massa justo sit amet risus. Etiam porta sem
malesuada magna mollis euismod. Donec sed odio dui. </p>
 <p><a class="view-details" href="#"
 role="button">View details »</p>
 </div>

2.	 We also need to change the current classes assigned to the Learn more
button, so go ahead and modify it as shown:
Use it as a starting point to create something more unique.</p>
 <p>Learn more
 »</p>
 </div>

Chapter 11

[247]

3.	 Now that our new style names have been assigned, let's rework the Less
styling rules listed in semantic.less to reflect the changes in our HTML,
by assigning the relevant mixins to our style classes:

.learn-more {
 .btn;
 .btn-primary;
 .btn-lg;
}

.view-details {
 .btn;
 .btn-default;
}

Save the files. If all is well, our code will look something like this screenshot extract:

If we preview the results of our work in a browser, we should not expect to see any
difference visually, but know that our code is now more semantic. This doesn't mean
to say that these changes are the only ones we can do; there is definitely scope to do
more, at least in this example! This is something I will leave for you as my readers to
work out, but I will give you a hint: check out the navigation…

In the meantime, let's take a moment to explore what we've achieved here—we've
used the same solution as outlined in the Exploring our solution section we saw earlier
in the chapter.

Abstracting CSS Frameworks with Less

[248]

In this instance, we've taken advantage of the group of Less mixins that make up
button support within Bootstrap. All we've done is created a new style rule in our
Less code, called .learn-more, then assigned to it the three Less mixins that were
previously used: .btn, .btn-primary, and .btn-lg, respectively.

It's important to note that this process will not work for grouped buttons
due to what Bootstrap expects to see in terms of CSS classes; have a
look at http://stackoverflow.com/questions/24113419/
and http://stackoverflow.com/a/24240819, for some useful
discussions on why this doesn't work for grouped buttons and how to
work around it.

The key is to get them in the right order so that we maintain the same appearance
as before. As long as we do this, there should be no change to the appearance of the
page. We've then repeated the same process with the .view-details button, but
this time, assigned the .btn and .btn-default styles to it.

There is a complete version of jumbotron.html along with the changes.
You can find it in the code download as jumbotron_updated.html.

Summary
In this modern day of web development, designers are often using frameworks to
help get a website off the ground quickly. Bootstrap is often considered to be one
of the most popular frameworks in use today.

We kicked off this chapter by examining a key flaw of frameworks such as Bootstrap,
where presentational CSS must be included in HTML directly.

We took a look at the problem with using Bootstrap's CSS styles inline in more
detail and discussed how to use a method to get around the issues. We then went on
further to apply the same technique to help simplify our HTML so that we can still
use Bootstrap's styling framework, while removing any dependency on it, which can
affect how we develop the site in the future.

In the next chapter, we're going to change tack and take a look at a topic where we
can really use the power of Less, in the form of processing colors within your website
or online application.

http://stackoverflow.com/questions/24113419/
http://stackoverflow.com/a/24240819

Color Processing with Less
Imagine the scene if you will—you're a designer, creating the latest sale adverts for
a department store. You've spent hours creating your masterpiece, submitted it for
approval… only to find that the Sales Director hates your choice of color. He doesn't
think it works properly ("there's not enough contrast…"), so it's a case of back to
the drawing board. Only you know that he is… shall we say... very picky about his
choice of colors, which you know does not always work that well…

Sound familiar? What if we could pick our main color and have code (yes, code)
automatically pick a color for you that not only works technically but also suits
your chosen principal color? Sound impossible? Not with Less—welcome to the
world of color processing! In this chapter, we will cover the following topics:

•	 Introducing color management in Less
•	 Color spaces and formats
•	 Color functions
•	 Generating color palettes
•	 Examples of blending modes and parallels with Photoshop
•	 Working with W3C and WCAG standards for color management

Intrigued? Let's start…

Color Processing with Less

[250]

Introducing color management in Less
Printer profiles …colorimeters… sRGB… huh? You're probably a developer, thinking, "I know
nothing about color management; what the heck does it all mean?"

Well, to put it into context: imagine you've taken a picture of a red flag on a boat
(yes, I know, stay with me on this), which appears to take on an orange tone when
viewed on screen, but starts to come out purple when printed. Now, I bet you're
really confused… let me explain it all.

This is all about color management. In simple words, it's the art of making sure your
printer, camera, and computer all display accurate shades of the same color. This
sounds perfectly reasonable, right? After all, all devices should display the same
color, no matter the device…

Wrong. The key to color management is that every device reproduces color
differently. In a sense, they all speak different languages and are not as sophisticated
as our own eyes; here's where we need that colorimeter to balance everything…!

Making sense now? However, where's the link with Less? Well, it's exactly the same
principle in Less—we need to make sure that colors are correctly balanced; it's no
good putting blues against purples, as they are too similar. Thankfully, Less has a
range of functions that can help us with this. We can choose a primary color, such
as purple, then use functions such as darken() or lighten() to choose suitable
colors that complement our primary one. Less will then compile this function into
valid CSS; for example, if we choose #6600FF (a shade of purple), we can get Less
to lighten it by 10 percent to produce #801AFF. This value will then be rendered on
screen when Less has compiled your code.

We will delve into the various functions that Less supports, but for a moment,
let's turn our attention to a little theory to help us better understand more about
the importance of color formats and spaces.

Examining color spaces and formats
When we think of colors, most of us will probably think of red, green, or blue,
but do we ever think of color spaces? If the answer is no, then think again;
you've just mentioned one of several color spaces we can use.

Chapter 12

[251]

Color spaces are a means of uniquely specifying color. The most well-known one is
red, green, and blue (RGB). However, others are available, such as Hue, Saturation,
Lightness (HSL), its cousin, which includes alpha support (HSLa) or HSV (Hue,
Saturation, and Value). Less includes support for these and others; we will look
at these in more detail shortly, but first, let's take a look at using basic mathematical
operators to create new colors.

Working with arithmetic operators
How often have you spent hours fine-tuning a palette for a client, only to find
they want to change the whole lot? It will be impossible to simply change one
color, you will need to change them all…

We can use Less to help us with this. It contains support for a number of functions
that we can use to automate the creation and manipulation of colors. We can pick
the red, blue, or green shades from colors, or use HSL to get the hue, lightness, or
saturation levels from a color. However, we can also do something that you might
not expect to see, but which makes perfect sense: use simple math operators, such
as + or – to create our colors.

Try this little experiment. If you have installed Crunch!, then add this to a new file
within, and save it:

@basecolor: #333;
.container {
 color: @basecolor *2;
 background-color: @basecolor - #111;
}

When compiled, we get two colors, generated from one base color:

.container { color: #666666; background-color: #222222; }

This compiled line of code gives us….a very dark gray, and…another dark gray.
Not quite the colors I had in mind, but hey, it shows the principle very well; we can
easily create multiple colors from one single base color. The key to it is to ensure
that we get the right balance of numbers, in terms of base colors against those
we calculate using operators. Let's see whether we can improve on this, and
start exploring the world of functions to create some more appealing colors.

Color Processing with Less

[252]

Working with color functions
The functions available within Less can be used to provide some interesting
colors. It is worth taking the time to familiarize yourself with the options available,
particularly as it is possible to produce the same color using different methods!

The functions can be split into four groups—they cover color definition, channels,
operations, and blending. Let's take a look at each group of functions in turn,
starting with defining color formats.

Defining color formats
Before we can alter colors, we naturally need to define them. We could simply
provide a HEX code, but this isn't always sufficient; Less allows us to do more.
Less provides a number of methods to obtain colors using different formats,
and these are the three that you will likely use the most:

Function Creates an opaque color from Example value
rgb Decimal red, green, and blue (RGB) values rgb(90, 129, 32)

hsl Hue, saturation, and lightness (HSL) values hsl(90, 100%, 50%)

hsv Hue, saturation, and value (HSV) values hsv(90, 100%, 50%)

For more information, refer to the full list of functions in Appendix, Color
Functions in Less. I've created a CodePen that shows these effects in action.
This is available at http://codepen.io/alibby251/pen/horqx.

These methods mean that we're not limited to simply using HEX codes all of the
time—after all, could you tell that #8a5c16 is dark orange? I suspect not! A better
method of defining colors is to use RGB (or RGBA, if we want to define opacity as
well); we can then extract the individual base colors, as shown in our next demo.

Converting colors from HEX to RGBA
This is a very simple exercise, in which we'll take a color, extract the constituent
base colors, and display them on screen. We can then use these later to produce
new colors. We'll begin, with setting up the markup for our demo:

1.	 Start by downloading a copy of the code that accompanies this book. From it,
extract a copy of hextorgb.html and save this to our project folder. This will
act as the basis for our demo.

http://codepen.io/alibby251/pen/horqx

Chapter 12

[253]

2.	 We now need to add our styling, so in a new file add the following, starting
with defining some base styles for our page:
body { margin-left: 10px; padding: 0; }
h3 { margin-top: 10px; margin-bottom: -5px; font-family: "Open
Sans","Helvetica Neue",Helvetica,Arial,sans-serif; width: 100px;
position: absolute; float: left; }

3.	 Next come the Less styles. We first need to extract the red, blue, and green
styles from our base color:
@r: red(#8a5c16);
@g: green(#8a5c16);
@b: blue(#8a5c16);

4.	 Once we have the base colors, we set them to mixins that will define the
background colors of our boxes:
.original() { background-color: rgba(@r,@g,@b, 1); }
.red() { background-color: rgba(@r,0,0, 1); }
.green() { background-color: rgba(0,@g,0, 1); }
.blue() { background-color: rgba(0,0,@b, 1); }

If you need to support IE8, then RGBA() will not
work. Instead, use something like this:

background:rgb(R,G,B);

filter:alpha(opacity=XX);

Here, R, G, and B are equivalent to red, green, and
blue values; XX is the figure denoting the level of
opacity to use.

5.	 The boxes won't display very nicely on their own, so let's add some
font styling:
.font-style() {
 font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-
serif; width: 160px; font-size: 12px; text-align: center; padding:
15px; font-size: 14px; line-height: 1.42857; margin-top: 5px;
color: #ffffff; }

6.	 Last but by no means least, we need to tweak the positioning of each box,
and set the background colors:
.box { margin-left: 120px; .font-style; }
.original-box { .original; }
.red-box { .red; }
.green-box { .green; }
.blue-box { .blue; }

Color Processing with Less

[254]

7.	 Save the Less code as hextorgb.less. If we preview the results of our work,
we should see the four boxes displayed on screen; the first is our selected
color, followed by each of its constituent primary colors:

At this point, you might be asking what happened here. It's a good question.
Although it looks like a lot of Less code, in reality, it all boils down to the use of three
functions, namely red(), green(), and blue(). We first extract the primary colors,
then use the rgba() function in various mixins to create background-colors and
assign each to the three boxes displayed on screen.

Let's move on now, and change focus to look at another of the color function groups
in Less, which is working with color channels.

Channeling colors using Less
Now that we have established a suitable color space to work with, we might come
across a need to extract and potentially alter part of an existing color. Thankfully,
Less includes a range of functions that can help in this respect; let's take a look at the
three functions you will likely use the most; a full list is available in Appendix, Color
Functions in Less, at the end of the book:

Function Extracts Example value
hue The hue channel of a color object in the HSL

color space.
Returns an integer value between 0 to 360.

hue(hsl(90, 100%,
50%))

saturation The saturation channel of a color object in the
HSL color space.
Returns a percentage value between 0 to
100 percent.

saturation(hsl(90,
100%, 50%))

Chapter 12

[255]

Function Extracts Example value
lightness The lightness channel of a color object in the

HSL color space.
Returns a percentage value between
0 to 100 percent.

lightness(hsl(90,
100%, 50%))

For more information, it is worth reading the documentation on the main
Less site at http://lesscss.org/functions/#color-channel.

While it is key to understand how these functions work, we can only truly appreciate
their power, if used in action. Let's set that right by building a demo that puts at least
one of these to work, in the form of some simple alert boxes.

Creating alert boxes
Sebastian Ekström, a Swedish developer, has produced a perfect example of
how to use the lightness and darkness functions within Less. I've reproduced it
here with some minor changes to use HSL colors in place of standard HEX
codes. You can see the original version of this demo at http://codepen.io/
sebastianekstrom/pen/uHAtL.

Let's make a start. We first need to download some icons; for the purposes of this
demo, I will assume you've used these:

•	 The confirmation dialog (http://www.iconarchive.com/show/oxygen-
icons-by-oxygen-icons.org/Status-dialog-information-icon.html)

•	 The error dialog (http://www.iconarchive.com/show/nuoveXT-2-icons-
by-saki/Status-dialog-error-icon.html)

•	 The warning dialog (http://www.iconarchive.com/show/oxygen-icons-
by-oxygen-icons.org/Status-dialog-warning-icon.html)

If you want to use alternative icons, then adjust the code accordingly.

1.	 From a copy of the code download, extract a copy of alerts.html. This will
act as the basis for our demo.

2.	 Next, let's create our Less styling. In a new file, add the following color styles,
beginning with the principal text color:
@text-color: hsl(0,0%,53.3%);
@button_confirm: #008000;
@button_warning: #ffc53a;
@button_error: #ff0000;
body { background: hsl(0,0%,13.3%); }

http://lesscss.org/functions/#color-channel
http://codepen.io/sebastianekstrom/pen/uHAtL
http://codepen.io/sebastianekstrom/pen/uHAtL
http://www.iconarchive.com/show/oxygen-icons-by-oxygen-icons.org/Status-dialog-information-icon.html
http://www.iconarchive.com/show/oxygen-icons-by-oxygen-icons.org/Status-dialog-information-icon.html
http://www.iconarchive.com/show/nuoveXT-2-icons-by-saki/Status-dialog-error-icon.html
http://www.iconarchive.com/show/nuoveXT-2-icons-by-saki/Status-dialog-error-icon.html
http://www.iconarchive.com/show/oxygen-icons-by-oxygen-icons.org/Status-dialog-warning-icon.html
http://www.iconarchive.com/show/oxygen-icons-by-oxygen-icons.org/Status-dialog-warning-icon.html

Color Processing with Less

[256]

3.	 Next, add the following two mixins; these determine the background color
to use:
.text-color(@text-color) when (lightness(@text-color) > 40%) {
 color: #000000;
}
.text-color(@text-color) when (lightness(@text-color) < 40%) {
 color: #ffffff;
}

Notice the use of the when statements? Only one text color
will be used; this will be determined if the lightness value of @
text-color is above or below 40%. If it is above, then plain
black is used; if below, then white is used instead.

4.	 Our next two mixins control the font formatting and basic button design:
.h3-text() { background-repeat: no-repeat; font-size: 1.5rem;
padding-left: 40px; }
.button(@button_type) { text-decoration: none; padding: 1em 3em;
width: 20%; margin: 1% auto; display: block; text-align: center;
font-family: sans-serif; border-radius: 5px; line-height: 40px;
border: 1px solid #000000; background: @button_type; }

5.	 We can now tie our styles together. We first call the mixin that creates the
confirmation dialog, followed by the mixins for the warning and error
dialogs, respectively:

#confirm { .button(@button_confirm); .text-color(@button_confirm);
 h3 { background-image: url(confirmation.png); .h3-text; }
}
#warning { .button(@button_warning); .text-color(@button_warning);
 h3 { background-image: url(warning.png); .h3-text; }
}
#error { .button(@button_error); .text-color(@button_error);
 h3 { background-image: url(error.png); .h3-text; }
}

Save the file as alerts.less in the css subfolder. If all is well, we will see the three
dialogs, against an all-over dark background:

Chapter 12

[257]

Okay, so we can now set our color space and extract a base color of our choice.
However, what are we going to do with the colors? It's unlikely that simply
extracting a color is going to be sufficient; we will very likely need to do something
more with it. Not a problem with Less. We can operate on our chosen color,
to produce any color we so desire!

Operating on colors
At this point, you're probably asking yourself, "Why would we need to use operators
on colors?" Surely that's what you do with numbers, right…?

Not necessarily. Using simple arithmetic operators, as we saw earlier in the Working
with arithmetic operators section, will work perfectly well, but what happens if we
need to change colors and end up picking colors that look terrible using the fixed
calculations we provide? Clearly we need a better method…!

Fortunately for us, there exist a number of functions within Less that we can use,
and assuming that we have a suitable color to work from, we can use any of these
functions to produce a different shade, or change hue, saturation, or lightness levels
for example. Let's take a moment to consider the three you are likely to use most:

Function Purpose of function Example value
lighten This is used to increase the lightness

of a color in the HSL color space by an
absolute amount.

lighten(#a52a2a, 20%);

darken This decreases the lightness of a color in the
HSL color space by an absolute amount.

darken(#a52a2a, 20%);

fade This sets the absolute transparency of
a color. This can be applied to colors
irrespective of whether they already have
an opacity value or not.

fade(#a52a2a, 20%);

Color Processing with Less

[258]

For more information, refer to the full list of functions given in Appendix,
Color Functions in Less, at the end of this book. I've also created a CodePen
that shows these effects in action and is available at http://codepen.
io/alibby251/pen/KGltj.

This makes perfect sense on any site, but more so on larger sites that use colors
throughout and where updating them would be a nightmare. Instead, we can choose
our master color, assign it to a variable, and use functions to generate the remaining
colors. Let's take a look at how this would work in practice, with a quick and easy
example that changes text colors based on the H attribute we use.

Making text darker or lighter in color
The first of our two real-world demos is very simple. Let's say we have a number
of text styles on our site, which use different shades of the same color.

We could easily set the colors within our CSS, but this would miss out on a major
key part of Less; why set them explicitly, when we can get Less to do this for us?
To see what this means, let's knock up a quick demo that creates some different
styles for the standard H1 to H6 markup as shown here:

http://codepen.io/alibby251/pen/KGltj
http://codepen.io/alibby251/pen/KGltj

Chapter 12

[259]

Let's start:

1.	 For this demo, we need to download a copy of the code that accompanies this
book. From it, extract a copy of altercolor.html and save to our project
folder. This will act as the basis for our demo.

2.	 In a separate file, go ahead and add the following styles, beginning with our
base font mixin, to style the text:
.font-family() { font-family: Helvetica, arial, times new roman;
font-weight: bold; }

3.	 Next comes the variable that sets our base color:
@base_color: #893939;

4.	 We all need to add the all-important mixin calls that create the font styles:

h1 { color: @base_color; .font-family; }
h2 { color: saturate(@base_color, 30%); .font-family; }
h3 { color: fadeout(red, 70%); .font-family; }
h4 { color: mix(blue, @base_color, 50%); .font-family; }
h5 { color: lighten(@base_color, 20%); .font-family; }
h6 { color: darken(@base_color, 20%); .font-family; }

Save the file as altercolor.less in the css subfolder. If we preview our work,
we should expect to see six statements, styled as shown at the start of this exercise.

Beautifully simple, huh? With a little work and one single color, we've set all of the
styles automatically, using Less. Our demo is creating the styles dynamically, but we
can easily precompile the Less statements into valid CSS code, and use this instead.
All we need to do is just use the right H attribute when designing our pages!

Let's move on now and take a look at some more of the functions of Less that we can
use—the blending group. These functions work in a similar fashion to those options
available within graphics packages such as Photoshop or GIMP. Let's explore these
in more detail.

Color blending
So far, we've seen how we can define a color space, extract one of its constituent
elements out of it (such as hue or level of green) and that we can transform the color
through fading or spinning the original. There's one more way we can change a color
using Less—blending.

Color Processing with Less

[260]

The principle works in the same way, in that we require two colors, but the effects
are quite different. Let's have a quick look at the three functions you will likely use
the most:

Function Purpose of function Example value
multiply This function multiplies two colors. multiply(#9ec1ef, #091d37);

screen This does the opposite of multiply.
The result is a brighter color.

screen (#9ec1ef, #091d37);

overlay Conditionally make light channels
lighter and dark channels darker.

overlay (#9ec1ef, #091d37);

For more information, refer to the full list of functions given in Appendix,
Color Functions in Less, at the end of the book. I've also created a CodePen
that shows these effects in action, available at http://codepen.io/
alibby251/pen/IKqEk.

Now that we've seen the various color blending modes available in Less, let's
move on and take a look at how these compare with performing similar actions
in Photoshop.

Comparing Less with Photoshop
Working with blend modes in CSS is likely to raise a very important point—how
does Less stack up against applications such as Photoshop?

Well, the good news is that for those already familiar with blend modes in
Photoshop, the same values exist within Less, although the range is not as extensive
as Photoshop. We can use values such as lighten, darken, hardlight, and so on, to
produce similar effects to creating images in Photoshop.

Two good examples of how we can use blending modes can be found at
http://css-tricks.com/basics-css-blend-modes/; have a look
also at http://www.dummies.com/how-to/content/photoshop-
ccs-blending-modes.html to get a feel for how these modes fit in
with the other blend modes available in the latest version of Photoshop
(CC at the time of writing this).

The downside is that support for blend modes is still very new; for example, support
for background-blend-mode (at the time of writing this) is limited to the latest
versions of modern browsers, with the exception of IE.

http://codepen.io/alibby251/pen/IKqEk
http://codepen.io/alibby251/pen/IKqEk
http://css-tricks.com/basics-css-blend-modes/
http://www.dummies.com/how-to/content/photoshop-ccs-blending-modes.html
http://www.dummies.com/how-to/content/photoshop-ccs-blending-modes.html

Chapter 12

[261]

This limitation aside, it is definitely worth spending time getting familiar with
how we can replicate the same effects from Photoshop within Less/CSS. As
we've already seen, there are a host of blend values we can use. As a tester of
what is possible using CSS, have a look at the excellent gradients produced by
Bennett Feely, which use background-blend-mode. You can see the gradients
at http://bennettfeely.com/gradients/.

To really get a feel of how we can use blend modes in Less, it is strongly
recommended that you understand at least these three: screen, multiply,
and overlay. The others will follow in due course. Let's take a moment to
cover these three modes in more detail:

•	 Screen: This ignores blacks and makes images appear lighter with light
tones appearing washed out.

•	 Multiply: This is the direct opposite, with darker tones reinforced,
while light will pass through anything that is clear or bright.

•	 Overlay: This is a balance between screen and multiply; it ignores
midtones, making the blended result lighter and darker at the same
time, to increase contrast.

Let's change tack at this point and move on. We can easily use blend modes to help
produce new colors, or interesting effects (particularly with images!); this won't be
truly effective unless we've worked out what our site's palette will look like.

It's at this point we can really put Less to good use, in calculating suitable values for
our palette. Before we do so, let's begin with a primer on creating successful palettes
to help set the scene.

Introducing palettes
We all work with colors as part of designing a site. Colors are key to making or
breaking our design. The creation of a cohesive and interesting website relies on the
right choice of colors that form our palette. Historically, we frequently used either a
white or color background; as our tastes have evolved, so has the need to choose the
right colors to form our palette.

The key to any successful palette, and that is even before we get into the depths
of producing it, is to really understand how color works. The theory of color is a
complex subject, where we can get to grips with understanding how different shades
and hues interact with each other and the effect this has on the visitor to the site.

http://bennettfeely.com/gradients/

Color Processing with Less

[262]

To help us through the minefield of choosing the right colors to create our palette,
there are a number of tips we can use:

•	 Try to choose a palette type that creates suitable colors, based on a color of
your choice. There are several palette types available, but three of particular
note are Analogous, Complementary, and Triadic.

•	 Instead, choose colors based on current trends. This might, for example,
be muted pastel colors, which have become popular in producing soothing,
flat designs.

•	 An alternative is to use bright colors, which are usually heavily saturated, to
make elements really stand out. The range of colors is often limited, with lots
of white or gray space, to help equalize the stark colors used in this palette.

•	 We can even go for a monochromatic design, which is often based around
shades of black or gray, with specific elements highlighted in reds or blues.
Monochrome palettes help convey an emotional or psychological message,
whereas we can use an accent color to highlight important elements in
the design.

A great tool to use when choosing colors is Adobe's Kuler, which
is available at https://kuler.adobe.com/create/color-
wheel/. It shows some other palettes that you can use, such as Triad or
Compound; it is worth trying these once you've become familiar with
creating palettes.

Let's take a moment now to look at some of these palette types in more detail.

Analyzing color palette examples
It is surprising how consumers can frequently be guided by the colors used on
a website; for example, a study found that between 60-80 percent of customers'
purchasing decisions are influenced solely by color! Let's take a moment to consider
a couple of examples to show the importance of choosing the right colors.

Trüf, a Los Angeles-based web design company, uses a monochromatic design,
with red to highlight critical elements of their site—you can see their design at
http://www.trufcreative.com.

A similar use of colors, but for a different site, Etch uses various shades in its bold
background, with pink elements to make the design really stand out. Their site is at
http://www.etchapps.com.

https://kuler.adobe.com/create/color-wheel/
https://kuler.adobe.com/create/color-wheel/
http://www.trufcreative.com
http://www.etchapps.com

Chapter 12

[263]

To get a feel for the importance of choosing colors well, take a look at the infographic
on Column Five Media's site, at http://www.columnfivemedia.com/work-items/
infographic-true-colors-what-your-brand-colors-say-about-your-
business; there are some very revealing facts!

It is worth noting though that accessibility must be considered where practical; this
will often be determined by the appeal of the product or service on offer to visually
impaired visitors; Geri Coady has produced a useful guide in the form of an e-book,
which is available for sale at http://www.fivesimplesteps.com/products/
colour-accessibility.

Let's move on now and turn our attention to what we've been waiting for—choosing
some colors.

Choosing our colors
So far, we've learned about the importance of choosing our colors carefully and
the impact this will have on our site's visitors; getting it wrong will be disastrous!
In comparison, once we know which colors we want to use, creating our palette is
really easy.

The first stage is to choose our primary color. Column Five Media's infographic
suggests that only 5 percent of the world's top 100 brands use more than two colors;
the key here is to use as many colors as is suitable for your project. A good rule of
thumb is to choose at least 2-3 colors to work with, alongside a neutral light or dark
color for the background. We can then use Less to produce any shade needed from
your choice of principal colors.

Using a photo as our source
How often have you wondered where you will get that inspiration for a design?
I'll bet the answer is frequently, and I'm willing to bet that photos will feature
somewhere in this list of sources!

Photos are perfect as a source of inspiration. We can pick a principal color from
it, then manually choose colors that would work. It can be a little hit and miss
though; not every color scheme will work, but the key to using this method
is experimenting until you find colors that would provide a good harmony in
your design.

We can take a more pragmatic route though. Adobe released Kuler, a brilliant app
(and website), to help choose suitable colors according to the type of palette we use.

http://www.columnfivemedia.com/work-items/infographic-true-colors-what-your-brand-colors-say-about-your-business
http://www.columnfivemedia.com/work-items/infographic-true-colors-what-your-brand-colors-say-about-your-business
http://www.columnfivemedia.com/work-items/infographic-true-colors-what-your-brand-colors-say-about-your-business
http://www.fivesimplesteps.com/products/colour-accessibility
http://www.fivesimplesteps.com/products/colour-accessibility

Color Processing with Less

[264]

We can either choose a color, then get Kuler to choose appropriate colors for us,
or we can upload a photo of our choice and select suitable colors from it. In the
following screenshot, we can see the results of selecting a color from a photo,
such as the one used in my first book, jQuery Tools UI Library, published by
Packt Publishing.

In comparison, if we take the purple from far left (#a67097) and use it in Kuler's
color wheel, we get a completely different result, using the Analogous palette:

Chapter 12

[265]

It really comes down to what your project needs in terms of color; to help with
this and understand the impact on your visitors, it is worth reading an article by
Rachel Shillcock, on Tuts+, at http://webdesign.tutsplus.com/articles/
understanding-the-qualities-and-characteristics-of-color--
webdesign-13292.

For a good source of inspiration, take a look at the palettes created
on Kuler by others; they are at https://kuler.adobe.com/
explore/newest/.

Choosing a color using a tool, such as Kuler, can be an interesting experience.
It opens up a world of possibilities, although one person's idea of harmony
might not align with others! Choices, choices…

To help take some of the guesswork out of creating palettes, we can easily use the
power of Less to create a suitable palette, based on our choice of color. Let's take a
look at how this will work in practice.

Creating a color palette using Less
Now that we've chosen our color scheme, we can get stuck into creating our palette.
There are literally hundreds of tools available, but we want Less to do all the heavy
lifting for us.

Now, I have a confession to make: while we can absolutely get Less to do the hard
work for us, we still have to work out the formulae that generates our colors.
Or do we?

Fortunately, one kind soul, Jimmy King (a developer at Meltmedia) has already
produced a very simple, yet brilliant tool for this purpose. If we head over to
http://jimmyking.me/colors.less, not only can we set a color picker to our
choice of color, but also get a preview of suitable colors that fit different types of
palettes. What's more, we can even get the Less code to generate the colors to boot!

http://webdesign.tutsplus.com/articles/understanding-the-qualities-and-characteristics-of-color--webdesign-13292
http://webdesign.tutsplus.com/articles/understanding-the-qualities-and-characteristics-of-color--webdesign-13292
http://webdesign.tutsplus.com/articles/understanding-the-qualities-and-characteristics-of-color--webdesign-13292
https://kuler.adobe.com/explore/newest/
https://kuler.adobe.com/explore/newest/
http://jimmyking.me/colors.less

Color Processing with Less

[266]

Let's put this into action with a quick demo that uses our #a67097 color from the
previous exercise to create a Triadic-based color palette:

1.	 Download and extract a copy of colorpalette.html from the code that
accompanies this book; we'll use this as a basis for our markup.

2.	 In a separate file, add the following Less statements, beginning with creating
variables that define our colors:
@baseColor: rgba(166,112,151,1);
@distance: 120;
@triad1: @baseColor;
@triad2: spin(@baseColor, (180 - (@distance * 0.5)));
@triad3: spin(@baseColor, (180 + (@distance * 0.5)));

We've used the spin function in this step; spin is used to
rotate the hue angle of an color in a HSV color wheel. You can
learn more about this operation at http://lesscss.org/
functions/#color-operations-spin.

3.	 Next, add the following mixins. Note that we can combine these with the
color style rules shown further down in the code; I've separated these out
for clarity:
.triad1() { background-color: @triad1; }
.triad2() { background-color: @triad2; }
.triad3() { background-color: @triad3; }

4.	 We also need some basic font styling; this is not essential, but it helps make it
look better! Go ahead and add the following mixin:
.font-style() { font-family: "Open Sans","Helvetica Neue",
Helvetica, Arial, sans-serif; width: 160px; font-size: 12px;
text-align: center; padding: 15px; font-size: 14px; line-height:
1.42857; margin-top: 5px; color: #ffffff; }

We're almost done. Here come the most important mixins; these create the
boxes and style them with the appropriate background colors:

.box { margin-left: 250px; .font-style; }

.firstcolor { .triad1; }

.secondcolor { .triad2; }

.thirdcolor { .triad3; }

http://lesscss.org/functions/#color-operations-spin
http://lesscss.org/functions/#color-operations-spin

Chapter 12

[267]

5.	 We need to make the demo look a little more presentable, so go ahead and
add the following styles:
body { margin-left: 10px; padding: 0; }
h3 { margin-top: 10px; margin-bottom: -5px; font-family: "Open
Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; width:
300px; position: absolute; float: left; }

6.	 Save the file as colorpalette.less. If we preview the results in a browser,
we will see something akin to this screenshot:

At this point, you're probably thinking, "What's happened here?". Well, if we revert
to Jimmy's tool, the keen-eyed among you should spot that I've used the formulae to
produce a Triadic color palette. All we've done is packaged up the formulae into a
small demo, where we're setting the background color for three boxes, based on the
results of each formula.

Jimmy has produced formulae for a number of different palette types, so rather than
reinvent the wheel, we can simply choose our principal color, then take a copy of the
code automatically produced by the site once we've decided which palette to use!
The key point though is that there is absolutely no room for debate as to whether the
colors work; they are mathematically chosen to produce a harmonious palette.

When producing palettes, try to decide on and keep to a suitable naming
convention. There are no hard and fast rules on format, but consistency
and reuse is very much the order of the day!

Color Processing with Less

[268]

So, we've seen how easy it is to produce color palettes and that Jimmy's tool makes
it a cinch to get the all-important calculations needed to create each color. This gives
me an idea… what if we were to ditch Photoshop and design in the browser instead?

Ditching old habits
What?? No—that would be absolutely impossible, I hear you say! We can't do that…

Or can we…? Well, surprising as it might sound, it is perfectly possible; what's more,
Less can help make this a painless process. Let me explain.

Historically, designers and developers have relied on using Photoshop to create
mockups of sites. "Nothing wrong in this", I hear you say. However, it doubles the
work; clients can't use the design to see how it looks and works, and changes cannot
be made on the fly. Also, Photoshop is expensive. We need a high-end PC or Mac
just to get the full benefit from using it; can developers working on small sites,
where costs are a concern, really justify the cost?

In contrast, designing straight into the browser makes the process more dynamic; we
can make changes quickly and easily, particularly if Less has been used! We can even
produce several style sheets that can completely alter the appearance of a site with
just a few clicks; creating designs in Photoshop means recreating the base view from
the ground up for each subsequent design. With the best will in the world, there is
always a risk that each design will have some slight differences, despite following
the same process in each case!

However, we should not forget that the real key to design is actually not to
concentrate on the color, but the content first. If we get that right, then the
colors will fall easily into place.

To help get the feel of the mindset of designing in the browser,
Creative Bloq has published an interview with web developer,
Sean Fioritto, which is available at http://www.creativebloq.
com/css3/why-web-developers-should-sketch-css-not-
photoshop-51411711. This makes for an interesting read!

If, however, we really cannot afford to stop using Photoshop, then we can at least
make our development workflow smarter. CSS Hat has made a plugin that can
convert any design into the equivalent Less code and export them as Less files.
It's available at http://www.csshat.com, and versions are available for both
Windows and Mac with licenses priced at 35 USD for both versions.

http://www.creativebloq.com/css3/why-web-developers-should-sketch-css-not-photoshop-51411711
http://www.creativebloq.com/css3/why-web-developers-should-sketch-css-not-photoshop-51411711
http://www.creativebloq.com/css3/why-web-developers-should-sketch-css-not-photoshop-51411711
http://www.csshat.com

Chapter 12

[269]

To see it in action, Kezz Bacey has written a two-part tutorial that shows
how easy it is to use the plugin to produce Less code; part 1 of the tutorial
is available at http://webdesign.tutsplus.com/tutorials/how-
to-improve-your-photoshop-workflow-with-csshat-and-
pnghat--cms-20786 and part 2 at http://webdesign.tutsplus.
com/tutorials/how-to-code-a-photoshop-layout-with-
csshat-lesshat-and-pnghat--cms-20997.

We're almost at the end of our mini journey of working with colors in Less. Before
we finish and move to look at animation in the next chapter, we need to take a look
at some legal requirements that every designer should consider within their designs.
This is, of course, the WCAG standards; let's take a look at these in more detail.

Working with W3C and WCAG standards
Throughout this chapter, we've been on a journey of discovery, seeing how various
different functions within Less can help simplify the work required to create new
colors. There is one important part of creating colors that we have yet to cover and
which designers must be aware of: the need to ensure compliance with the WCAG
guidelines for accessibility.

Overcoming blocks on access to a site
In this modern age, one would hope that all sites would be accessible to everyone;
the truth is that this is not always the case. Access can be blocked for a number of
reasons, and in terms of color, they are:

•	 Visitors who cannot differentiate between particular colors and therefore
can't access information that relies on the use of those colors to convey
meaning (for example, red/green color blindness)

•	 Visitors who need to use devices that can't display information that
uses color

•	 Visitors with color deficiencies, who struggle to see sites that have
foreground and background colors that are very close in hue

So, how can we get around these issues and ensure we produce a site that is accessible?

http://webdesign.tutsplus.com/tutorials/how-to-improve-your-photoshop-workflow-with-csshat-and-pnghat--cms-20786
http://webdesign.tutsplus.com/tutorials/how-to-improve-your-photoshop-workflow-with-csshat-and-pnghat--cms-20786
http://webdesign.tutsplus.com/tutorials/how-to-improve-your-photoshop-workflow-with-csshat-and-pnghat--cms-20786
http://webdesign.tutsplus.com/tutorials/how-to-code-a-photoshop-layout-with-csshat-lesshat-and-pnghat--cms-20997
http://webdesign.tutsplus.com/tutorials/how-to-code-a-photoshop-layout-with-csshat-lesshat-and-pnghat--cms-20997
http://webdesign.tutsplus.com/tutorials/how-to-code-a-photoshop-layout-with-csshat-lesshat-and-pnghat--cms-20997

Color Processing with Less

[270]

Introducing WCAG
WCAG has compiled an extensive list of guidelines to help guide designers through
ensuring compliance, which can be viewed at http://www.w3.org/TR/WCAG/. These
need to be followed, although designers can opt to choose compliance at either A,
Double-A, or Triple-A grade levels.

The WCAG recommendations make for dry reading, and there are, nevertheless,
two key factors to consider, which in summary are:

•	 Colors should not be used as the only means of conveying any information;
a green button marked OK is preferable to a simple green circle

•	 Text (and images of text) should have a contrast ratio of at least 4.5:1, except
when large-scale text is used, or the text forms part of a decorative image
or brand logo

To ensure that information is not likely to fall foul of WCAG compliance, we can
use several guidelines:

•	 Avoid using colored text or strong background colors
•	 Black text on white background is recommended (avoid using underlined

text as your customers might think the text is a hyperlink when it is not)
•	 Use standard fonts (for example, Arial, Times New Roman)
•	 Uppercase text should not be used for entire page headings or blocks of text

In addition, we can use a number of tools to help us decide whether we have the
right contrast levels. Two such examples are available at http://www.dasplankton.
de/ContrastA/ and http://webaim.org/resources/contrastchecker/.

There are plenty of resources available online for further reading,
including case examples and guidelines issued for specific companies or
government organizations. Some examples include:

•	 http://www.w3.org/WAI/WCAG20/quickref/

•	 http://www.w3.org/TR/2008/REC-WCAG20-20081211/

•	 http://www.w3.org/TR/compositing-1/

http://www.w3.org/TR/WCAG/
http://www.dasplankton.de/ContrastA/
http://www.dasplankton.de/ContrastA/
http://webaim.org/resources/contrastchecker/
http://www.w3.org/WAI/WCAG20/quickref/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.w3.org/TR/compositing-1/

Chapter 12

[271]

It is worth noting that the Less library has been modified to help compliance.
Although it is not completely compliant yet, one example of change to help towards
compliance is the pull request issued at https://github.com/less/less.js/
pull/1704; this deals with changes made to color functions within Less, such as
multiply or overlay.

Making a site useable
Okay, this might seem like a strange question, given we've just talked about how to
make sites compliant, right?

Well, yes and no. While researching for this book, I came across a brilliant discussion
on Stack Overflow, which talks about ensuring compliance to the WCAG guidelines
and why adhering to them can actually be detrimental to your site.

In a nutshell, the responder to the original question discusses the good work being
done by the team behind the guidelines even though they are not perfect. He talks
about the need to apply the guidelines with care and that only those that best suit a
website should be used. He mentions that many people with disabilities will often
find ways around information that is otherwise hidden from view, and that in some
respects, they are the perfect individuals to help test the usability of a site!

You can read the full discussion at http://stackoverflow.com/
questions/21415785/wcag-vs-real-users-opinions.

Summary
Color management in Less can be seen as something of a paradox; while the tools are
relatively simple to use, they can be used to produce complex designs that are only
limited by the bounds of your imagination. Throughout this chapter, we've covered
a number of tools that you can use to extract, mix, and blend colors. Let's take a
moment to review what we have learned throughout this chapter.

We began with a little theory to set the scene and introduce color management; we
also learned a little about color spaces and formats. Our delve into using Less began
with a look at using simple arithmetic operators such as multiplication or division;
this was swiftly followed by an introduction to the various color functions available
in Less and how these functions compared to working with Photoshop.

https://github.com/less/less.js/pull/1704
https://github.com/less/less.js/pull/1704
http://stackoverflow.com/questions/21415785/wcag-vs-real-users-opinions
http://stackoverflow.com/questions/21415785/wcag-vs-real-users-opinions

Color Processing with Less

[272]

Next up was an introduction to palettes and an analysis of some examples, to
illustrate the importance of choosing colors carefully. This included using photos
as a potential color source, which we then used to create a color palette using Less.

Next up came something that some might see as controversial, which was a look
at ditching old habits and moving to using something like Less to develop straight
into the browser. While some may argue this is not sensible, we covered some of the
reasons why this practice might turn out to be beneficial; for those who couldn't face
the move, we looked at a simple way of getting the Less styles created automatically
from Photoshop. To close out the chapter, we took a look at how developers must
adhere to the WCAG guidelines on the use of color, why they were devised, and
how we need to be careful in applying them to our sites.

Phew! We certainly covered a lot! Let's move onto our next chapter, which will
take a look at how we can use Less to simplify development of animation within
our projects.

Animation with Less
How many times have you seen animated sites using Flash? OK, a fair few.
I'll also bet that you wanted to skip the animation as soon as you could, right?

Yep, I thought so; not many hands going down now…

We cannot forget the bad old days of sites that used Flash, where we frequently
wanted to skip badly designed animations, which often didn't provide any useful
content but instead made sites slow. Sounds familiar?

Thankfully, things have moved on; over the next few pages, we'll see how you can
use CSS3 animations instead to achieve the same effects that otherwise would have
required Flash. The use of CSS3 animations eliminates the need for a heavy Flash
plugin (for modern browsers), and provided they are done properly, can make a site
faster, more enjoyable to browse, and engaging to the end user. We'll delve into the
use of Less to simplify the process of coding some real-world examples in order to
make our development workflow much easier.

In this chapter, we will cover the following topics:

•	 How a CSS animation works
•	 Transitions and transformations
•	 Animated menus
•	 Simplifying the animation markup with Less

Intrigued? Let's make a start…

Animation with Less

[274]

Introducing animations
Back in the early days of the Internet, it was common to see animated GIFs that were
often liberally plastered over a website—the excuse often being that they "look cool,"
even if they didn't really serve any purpose!

Nowadays, animation is being used more and more on the Internet—this is often in
the form of SVG images, background videos, sounds, and so on. This increasingly
used technologies such as Flash, but with the advent of HTML5, designers have
found ways to recreate many effects natively in the browser without the use of Flash.

Today, browser vendors are adding more and more functionalities to each version of
their product; this means that CSS3 animation is gaining ground to the likes of Flash,
such that Adobe has stopped developing Flash for the mobile platform, preferring to
concentrate on HTML5.

Over the next few pages, we'll be taking a tour of CSS3 animations, looking at
various elements such as transitions and transforms, and how we can use Less to
help simplify the process of developing animations. You might be surprised to learn
that there aren't a lot of new techniques to master when using Less to produce an
animation—in fact, all of the techniques we've covered so far can be used to help
make development easier.

Let's start though with a quick look at what makes a good animation—after all,
there is no point in creating them if they aren't successful!

Creating a good animation
How often have you looked at a site only to find that it looks like the inside of
someone's brain in the middle of a migraine? Too many sites fall victim to the
temptation to animate everything—animation is a secret ingredient that can make
the most impact when care has been taken over its use.

So, what makes a good animation? This will depend on the context of the site,
but there are some good tips that every designer should follow:

•	 Don't overdo the attention grabbers—visitors want to feel in control of their
browsing experience, so plastering a subscription dialog just when they reach
the information they need is a big no-no! Use it to highlight something they
might have missed, not to distract them.

•	 Animation works well when it is used to highlight context and navigation
features; a good example is an animated sidebar that provides useful local
information. The contents of the sidebar will change frequently, so the use
of animation will help to point out new information to users.

Chapter 13

[275]

•	 On some sites, telling a story is one way to use animation. While this might
be an overkill for some sites, the popular full-page scroll effect works
well, as it suggests that there is more to be read, which helps to keep
the user interested.

•	 If an animation is used, then make it physical and believable. You can use
any effect on the elements, such as bouncing or shaking, but if they aren't
believable, then users will find them a distraction and a big turn-off!

Let's move on now and turn the focus of our attention to something more in-depth:
how do animations work? This is the key to creating successful animations. As we
are about to see, the different types of animation appear similar, but they have some
key differences; this can affect how we use them to develop effects on our site.

How a CSS animation works
We've talked about animations in general, but the term covers no fewer than four
different types that we can use within Less. They are animations, transitions,
2D transforms, and 3D transforms.

There are two out of these four properties where particular attention should be paid
to how they work: animations and transitions. This doesn't mean that transforms
are any less important—that's not the case. They merely work in a different way to
transitions and are easier to understand and use.

Animations and transitions can appear to provide the same result but work in
different ways. The two crucial differences are:

•	 Transitions work on a two-state basis—they change an element from the
starting position to the finishing position if we switch CSS states or if a
pseudo-class has been triggered, such as :hover or :focus

•	 Animations can use multiple @keyframes or positions set between the
starting and finishing state

The remaining two animation properties, 2D and 3D transforms, don't work in the
same way—they can manipulate the size and appearance of an element, but usually
in situ (although they can be used while the element is moving).

Now that we've seen how animations work, it's an opportune moment to get to
know each type of animation property in more detail.

Animation with Less

[276]

Introducing animation types
When we talk about creating animations, this could be taken to mean that we're
moving content; while this is perfectly true, we're not limited to simply moving
elements. We could equally transition elements from one state to another or bend
and manipulate their appearance on the screen. Let's take a look at each animation
type in more detail, beginning with animations.

Animating content
Animating content is used to move objects and can be used as an alternative to
using Flash. They define what happens to a set of element's properties—we can
control how these properties behave when defining our animation, including
their frequency.

The key difference between animations and transitions is that animations can be
fired without any user interaction, as soon as a page loads. Transitions can only be
fired when an element becomes active, such as a button element or a div element.

A simple animation will follow this format:

animation: <name of animation> <duration of the animation>

Let's test this by creating a simple animation that changes the color of a box. For this,
we will need a copy of the code download that accompanies this book; from this,
extract a copy of animatebox.html and animatebox.css.

If we run the demo, we can expect to see the box go through several shades of purple
before reverting to the original color, as shown in the following screenshot:

The key to this is @keyframes animbox in our CSS; this contains the changes that
should be made in each keyframe within our animation. We've had to include it
twice in order to allow support for Chrome, Safari, and Opera:

/* Chrome, Safari, Opera */
@-webkit-keyframes animbox {
 0% { background: #85486d; }
 25% { background: #9F6287; }
 50% { background: #B87BA0; }

Chapter 13

[277]

 100% { background: #D295BA; }
}

/* Standard syntax */
@keyframes animbox {
 0% { background: #85486d; }
 25% { background: #9F6287; }
 50% { background: #B87BA0; }
 100% { background: #D295BA; }
}

The animation is a little jittery—this will be due to the large gaps within each
keyframe; we could use smaller gaps for a smoother experience.

You can learn more about the different attributes for CSS3 animations
at http://www.w3schools.com/css/css3_animations.asp.

Let's continue and take a look at how transitions work.

Transitioning elements
Transitions are effectively animations that change the state of an element from its
original state to a new state; the key difference in animations is that transitions can
only take place when they are explicitly triggered—for example, if a mouse hovers
over a DIV or button.

A simple transition will follow this format:

transition: <the css property you want to add the effect to> <the
effect duration>

Let's test this by creating a simple transition that increases the size of a box. For this, we
will need a copy of the code download that accompanies this book; from this, extract a
copy of transitionbox.html and transitionbox.css. If we run the demo, we can
expect to see the box increase in size before reverting to the original size:

http://www.w3schools.com/css/css3_animations.asp

Animation with Less

[278]

The key to this is the transition code for the #transitionbox DIV in our CSS—this
contains the changes that should be made in each keyframe within our animation.
We've had to include it twice to allow support for WebKit browsers:

 -webkit-transition: width 2s; transition: width 2s;

We can always adjust the time taken for the animation to perform, should 2 seconds
not be sufficient.

You can learn more about the different attributes for CSS3 animations at
http://www.w3schools.com/css/css3_transitions.asp.

Let's move on now and take a look at the remaining two options, which are 2D and
3D transforms.

Transforming elements
At first glance, you'd be forgiven for thinking that transforms are identical
to transitions; after all, you can easily use translate() to move an object,
whereas you can use an animation otherwise.

However, there are two key differences: transitions can be applied as part of
animating an element, whereas transforms are completely independent. Transitions
allow you to apply changes to just about any CSS property, whereas transforms will
be used to move, scale, turn, spin, or stretch any element on the page:

http://www.w3schools.com/css/css3_transitions.asp

Chapter 13

[279]

A simple transform will follow this format:

transform: <the transform action you want to use>(<the value to apply
to the transform>)

Let's test this by creating two simple transforms: the first transform performs a 2D
rotation on a box, and the second performs a 3D rotation along the x axis of the
second box.

For this, we will need a copy of the code download that accompanies this book;
from it, extract a copy of transformbox.html and transformbox.css. If we run the
demo, we can expect to see both the boxes rotate when hovering over either of these;
the box on the left-hand side is rotated by 30 degrees, and the box on the right-hand
side is rotated on its x axis by 130 degrees, as shown in the screenshot at the start of
this section.

The key to this is the transform code in our CSS—for the first box, we're rotating it
by 30 degrees; the second is being rotated on its x axis by 130 degrees. Note how the
support for 2D transforms is much better than that for 3D transforms; we still need to
use the webkit prefix for most desktop browsers:

#transform2dbox:hover {
 transform: rotate(30deg);
}

#transform3dbox:hover {
 -webkit-transform: rotateX(130deg); /* Chrome, Safari, Opera */
 transform: rotateX(130deg);
}

Once support for browsers has improved on the 3D transform, we can then remove
the first line in the second demo.

You can learn more about the different attributes for CSS3 transforms at
http://www.w3schools.com/css/css3_2dtransforms.asp and
http://www.w3schools.com/css/css3_3dtransforms.asp.

We've talked a little about support for CSS3 animations as part of exploring these
mini demos; now is an opportune moment to cover support in more detail.

http://www.w3schools.com/css/css3_2dtransforms.asp
http://www.w3schools.com/css/css3_3dtransforms.asp

Animation with Less

[280]

Supporting animations in browsers
One small point that we need to cover before moving on is browser support. Here
you should have no trouble while working with animations; all the key elements
of CSS3 animations have been supported by the major browsers for some time:

IE Firefox Chrome Safari Opera
10+ 5+ 5+ 4+ 12+

Do check out the site Can I Use (http://www.caniuse.com), as some of the newer
elements of animation might still require vendor prefixes at the time of writing.

Mobile support is equally well-supported; the only exception to this is Opera Mini,
which lacks support for animations. Chrome for Android was a little buggy at the
start, but this issue has since been resolved, so support will not be an issue. It is
important to remember though that mobile devices don't have fast processors,
so complex animations will run slowly and should be kept to a minimum on
this platform.

Right, enough of the theory! Let's move on to what you all have been waiting for:
writing some code.

Simplifying the animation markup
with Less
Okay, we're finally at the point where I am sure you're itching to get to: writing
some code! Don't worry, we're almost there. I just want to cover a small but key
point, about how we can use Less to make coding animations simpler. To illustrate
this, we're going to rework the critical parts of the animation demo we created earlier
in this chapter.

If we take a look back at the key parts of the animation demo, we have this:

/* Chrome, Safari, Opera */
@-webkit-keyframes animbox {
 0% { background: #85486d; }
 25% { background: #9F6287; }
 50% { background: #B87BA0; }
 100% { background: #D295BA; }
}

/* Standard syntax */
@keyframes animbox {

http://www.caniuse.com

Chapter 13

[281]

 0% { background: #85486d; }
 25% { background: #9F6287; }
 50% { background: #B87BA0; }
 100% { background: #D295BA; }
}

Seems pretty reasonable, right? Well, as always, we can do better! Let's see how:

1.	 The first change that we can make is save animatebox.css as animatebox.
less—we'll introduce some mixins, so saving it as a Less file will allow us to
compile it into valid CSS later in this exercise.

2.	 We need to modify the HTML markup to include a reference to our new Less
file and the Less library; so, go ahead and add the following in between the
<head> markup:
 <link rel="stylesheet/less" href="css/animatebox-
 updated.less">
 <script src="js/less.min.js"></script>

3.	 Next, let's turn the @keyframes code into a generic animation mixin—remove
the existing two blocks at the end of the code (lines 15-29) and then replace it
with the following code:
.keyframes (@name, @color0, @color25, @color50, @color100) {
 @-webkit-keyframes @name {
 0% {background: @color0}
 25% {background: @color25;}
 50% {background: @color50;}
 100% {background: @color100;}
 }

 @keyframes @name {
 0% {background: @color0}
 25% {background: @color25;}
 50% {background: @color50;}
 100% {background: @color100;}
 }
}

4.	 Next, we add a new mixin that references the @keyframes code we've
just created:

.keyframes(animbox, #85486d, #9F6287, #B87BA0, #B87BA0);

If we rerun the demo, we should see no change in the effect. So what's different and
why have we done what we've done here? Well, there are several benefits of what
we've done.

Animation with Less

[282]

We moved the @keyframes code into its own mixin—while the code might not seem
shorter here, the benefits will really show when we create larger, more complex
animations that have to be repeated to allow vendor prefixing.

The .keyframes mixin can now go into our own mixin library; this means that we
can import the library into future projects:

@import "animations.less";

Reference the mixin in our code:

.some-animation {
 .keyframes(…);
 …
}

Using Less to simplify our code isn't necessarily about making it shorter; it's also
about making it reusable and easier to add to future projects!

There's an updated demo available in the code—extract and run
animatebox-updated.html to view the results.

Let's move on and work on a practical use of Less. How many times have you
designed a menu for a site, only to think that it is becoming very code repetitive
and needs animating? Okay, probably a little bit of a contrived question, but it
could be possible…

Creating animated menus
Menus are the doyen of many a site; we all need some form of navigation, but styling
the navigation menus is very much left to the imagination of the site's designer.

We can even go further and add some useful effects to menus; we can at least
animate the drop-down motion so that they glide in a little more gracefully. To
do this, we're going to revisit an exercise from an earlier instance in the book—
remember, back in Chapter 4, Working with Variables, Mixins, and Functions, where
we created a simple web page using some Less functions? Well, we're going to add
a menu to that page and when we're done, it will look something similar to this:

Chapter 13

[283]

Okay, let's make a start:

1.	 For this exercise, we need a copy of the code download that accompanies
this book; from it, extract a copy of menus.html. This contains a copy of the
code from Chapter 4, Working with Variables, Mixins, and Functions, with the
additional markup for our menus and some cosmetic changes to import
Less files.

2.	 Next, crack open a text editor of your choice and add the following code to a
new file—we'll break it down and go through it section by section, beginning
with the main container for our menu:
#navigation {
 width: 788px; height: 35px; font-family: 'Kite One', sans-serif;
font-weight: normal; font-size: 14px;
 ul { position: relative; z-index: 1000; list-style: none;
margin: 0; padding: 0; }
}

3.	 Next come the top-level menu entries:
#navigation > ul > li {
 position: relative; float: left; margin-right: 10px;
 &:hover ul ul { height: 0; }
 &:hover ul { height: 220px; }
 & > a:hover ul { height: 220px; }
}

Animation with Less

[284]

4.	 These entries need to be turned into links; so, go ahead and add in this
style rule:
#navigation > ul > li > a {
 background-color: #2c2c2c; color: #aaaaaa; display: block;
padding: 8px 14px; text-decoration: none; transition: background-
color 0.3s ease 0s;
 &:hover {
 background-color: #666666; color: #eeeeee;
 ul ul { height: 0; }
 }
}

5.	 Some of our submenus have second-level submenus, so we need to cater to
these submenus in our styling:
#navigation ul ul {
 width: 340px; position: absolute; z-index: 100; height: 0;
overflow: hidden; transition: height 0.3s ease-in;
 li {
 background-color: #eaeaea; width: 170px;
 transition: background-color 0.3s ease;
 &:hover {
 background-color: #999;
 & > a { color: #ffffff; }
 & > ul { height: 220px; }
 }
 }
}

6.	 This style caters to our first-level submenus:
#navigation ul ul li a {
 display: block; text-decoration: none; margin: 0 12px;
padding: 5px 0; color: #4c4c4c;
 &:hover {
 color: #ffffff;
 & > ul { height: 220px; }
 }
}

7.	 Last, but by no means least—this provides the container for our
second-level submenus:
#navigation ul ul ul {
 left: 170px; width: 170px;
 li a { border: 0 !important; }
}

Chapter 13

[285]

8.	 We need an arrow to tell the users of our submenus, so let's add an
arrow now:
.arrow { background: url(arrow.png) right center no-repeat;
}

9.	 Save the file as menus.less. Our menus.html file already has a link to it,
along with a link to base.less; the latter contains the original code from
Chapter 4, Working with Variables, Mixins, and Functions, but in a suitably
renamed file.

At this point, if we preview the results, we can see the new menu, as shown in the
screenshot at the start of this exercise.

So, what have we done here? In this instance, we've kept it very simple; most of the
styles in menus.less are there to provide the basic styles to render our menu.

We've added three transition statements in though to add a subtle touch to our menu
so that they each glide in more smoothly and then suddenly appear. Remember,
animating elements can provide that extra sense of dynamism to a site; in this
instance, if the transform styles were not understood, then the menus will still
work but will not render so gracefully on the screen.

Libraries using Less
Over the last few pages, we've created some great demos of varying
complexity—they show off something of what can be done with animations
and how we can use Less.

The trouble is, there's one small but crucial problem here. How many of you have
noticed that we've created each demo from scratch, with all the mixins included?
I thought so, one of the precepts of Less is DRY or Don't Repeat Yourself.

If we take a look back at Chapter 4, Working with Variables, Mixins, and Functions,
one of the subjects we covered was the use of external libraries within our code.
Doing this means that we can avoid the need to write lots of mixins—while
our examples here might have been a little too simple to warrant the use of an
external library, we will definitely need to use at least one external library in a
more complex site.

Animation with Less

[286]

Thankfully, we can continue the same precept of DRY when working with
animations; there are a number of Less-based libraries available that handle
animation properties (and this includes both transitions and transforms):

•	 LESS Prefixer (http://lessprefixer.com/)
•	 More-or-less (http://more-or-less.org/)
•	 Animate.less (https://github.com/machito/animate.less)
•	 LESS Hat (https://github.com/madebysource/lesshat)
•	 Bootstrap's LESS (https://github.com/twbs/bootstrap/)
•	 LESS Elements (http://www.lesselements.com/)

We can even go one step further—if there isn't a library available in Less that is to
your liking, then we can always use a plain CSS library.

The trick here is to resave it as a Less file and incorporate it in the usual manner.
Over time, we can then convert it piecemeal as our skills improve. The beauty of
this is that Less will still compile the original version as normal—don't forget, Less
is after all a superset of CSS. With this in mind, let's take a look at a few examples of
pure CSS animation libraries:

•	 Magic CSS (https://github.com/miniMAC/magic)
•	 Animate.css (https://github.com/daneden/animate.css)
•	 Effeckt.css (https://github.com/h5bp/Effeckt.css)

Now that we've seen the details of some of the libraries we could use, let's take a
moment to try converting one of them to Less. I hear you ask, "Why should I do it?"
Simple, while there are some good Less libraries available, you might as well find
a CSS animation library that is more to your liking but that doesn't have a Less
version available. If you do, then we need to convert it to use Less!

Converting from other libraries
The beauty about Less is that it is a superset of CSS—this means that the conversion
of an existing CSS library to its Less equivalent is easier than it might first seem.
The trick behind it is all in the planning—to prove this, let's work through a simple
example using the Magic CSS animation library.

Let's begin by downloading a copy of the library—we can do this by browsing to
https://raw.githubusercontent.com/miniMAC/magic/master/magic.css and
then saving a copy locally. Open a copy of magic.css in the text editor of your
choice and then resave it as magic.less—that's it!

http://lessprefixer.com/
http://more-or-less.org/
https://github.com/machito/animate.less
https://github.com/madebysource/lesshat
https://github.com/twbs/bootstrap/
http://www.lesselements.com/
https://github.com/miniMAC/magic
https://github.com/daneden/animate.css
https://github.com/h5bp/Effeckt.css
https://raw.githubusercontent.com/miniMAC/magic/master/magic.css

Chapter 13

[287]

Sorry to disappoint you if you were expecting more; technically though, this is
the minimum requirement to convert a library to its Less equivalent. We can then
compile this using Crunch!, or if you have configured Sublime Text as detailed in
Chapter 2, Building a Less Development Toolkit, then the compilation will have taken
place to the point of saving your work.

Now, we could stay with this, but…there's a fair amount of repetition in our code,
which isn't ideal; we can definitely do better. Let's fix the repetition now:

1.	 Create a new file and save it as keyframes.less in the same folder as the
original magic.less file.

2.	 Look for @-moz-keyframes magic { on or around line 468—select from this
line down to the end, which will be on or around line 4595.

3.	 Cut and paste this in the keyframes.less file you've just created and then
save the file.

4.	 Revert to magic.less. You need to import the new file you've just created;
so, go ahead and add this line at the top:
@import "keyframes.less";

5.	 You can also improve the animation classes by adding the following lines
immediately below the @import statement:
.vendor(@property, @value) {
 -webkit-@{property}: @value;
 -moz-@{property}: @value;
 -ms-@{property}: @value;
 -o-@{property}: @value;
 @{property}: @value;
}

6.	 Now comes the tedious part: you need to convert each of your animation
classes to use the new mixin. Let's take the first, which is .magictime:
.magictime {
 -webkit-animation-duration: 1s;
 -moz-animation-duration: 1s;
 -ms-animation-duration: 1s;
 -o-animation-duration: 1s;
 animation-duration: 1s;
 -webkit-animation-fill-mode: both;
 -moz-animation-fill-mode: both;
 -ms-animation-fill-mode: both;
 -o-animation-fill-mode: both;
 animation-fill-mode: both;
}

Animation with Less

[288]

7.	 We can easily convert the animation classes—the trick behind this is to use
Search and Replace within a tool such as Sublime Text. We can update both
the animation-duration and animation-fill-mode lines to use the Less
mixin and then remove the remaining lines.

8.	 Once the search and replace work has been completed, the remaining lines
can be removed completely. We will end up with this as the first example:
.magictime {
 .vendor(animation-duration, 1s);
 .vendor(animation-fill-mode, both);
}

9.	 We can then use the same process until we've converted all the animation
classes within magic.less.

At this point, we will have a half-converted CSS file—this will work perfectly well.
However, we can use the same principles to convert the keyframes.less file at the
same time—this is something that I will leave for you to work out! Hint: there's an
example in the code download, if you really get stuck…

Using vendor prefixes – a warning
Having said this, there is one important point we must visit: we've spent all this time
converting the files, yet we're potentially following a bad practice! Huh—how does
this work, I hear you ask?

Well, some of you will argue that this process is an antipattern—a practice that
should not be followed, as it can make the CSS more verbose than it really needs
to be.

For more information on anti-patterns, you can refer to Mark Daggett's
useful article that is worth a read and is available at http://
markdaggett.com/blog/2011/12/04/css-anti-patterns/.

We can add to this, as vendor prefixes will come and go; moving them into one file
may help reduce the amount of code we need to write, but it will assume that vendor
prefixes remain the same for all the properties. This won't be the case—the trouble
is, we can't remove any one of them until such time that none of the animation
properties need it, and that is not likely to be for some time!

http://markdaggett.com/blog/2011/12/04/css-anti-patterns/
http://markdaggett.com/blog/2011/12/04/css-anti-patterns/

Chapter 13

[289]

I've used the process here purely to illustrate how it can be done—it doesn't
mean that it should be done. A better process is to use an Autoprefixer, such as
Alejandro Beltrán's Autoprefixer, which is available at https://github.com/ai/
autoprefixer. There is a plugin available for Autoprefixer to allow it to work in
Sublime Text—this can be downloaded from https://github.com/sindresorhus/
sublime-autoprefixer.

Okay, let's take a break from coding for a moment and move on. We've spent some
time using Less to create our animations and converting some from CSS. There is one
nagging question though, which I am sure you will be asking too: is using CSS really
any better than using JavaScript, or is there more to it than what it first seems?

Using CSS or JavaScript
If you've spent time using JavaScript (and more likely, jQuery), then you will know
that we can use it to produce some complex animations. Achieving the same results
in CSS might be a little bit of an eye-opener for some, but they may ask: which is
better? If you thought CSS, then you'd be right…and wrong! Let me explain.

Conventional wisdom has always said that CSS is better—after all, JavaScript and
jQuery use custom animation handlers that will repeat code between 30 and 60 times
a second. This puts more pressure on a browser than a browser just running
pure CSS.

However, lots of people have argued in favor of either; there are clear arguments for
or against using either technology in a site. For example, in a post for the CSS-Tricks
site, Jack Doyle (the creator of the professional animation library GSAP), puts forth
a detailed case on why using CSS3 animations isn't always the right way forward;
CSS3 still has a long way to go to match the likes of Flash.

The developer, David Walsh, has written an equally useful article that also explains
why there might be cases where we should use CSS or JavaScript and that limitations
in the former might require use of the latter. However, to really turn the tables,
head over to http://css3.bradshawenterprises.com/blog/jquery-vs-css3-
transitions/; you can see a great demo that proves JavaScript libraries, such as
jQuery, actually perform worse than CSS when they are used to animate lots
of elements!

https://github.com/ai/autoprefixer
https://github.com/ai/autoprefixer
https://github.com/sindresorhus/sublime-autoprefixer
https://github.com/sindresorhus/sublime-autoprefixer
http://css3.bradshawenterprises.com/blog/jquery-vs-css3-transitions/
http://css3.bradshawenterprises.com/blog/jquery-vs-css3-transitions/

Animation with Less

[290]

David's article is available at http://davidwalsh.name/css-js-
animation; it is definitely worth a read!

There is no right or wrong answer; the only way to be sure is to test your
animations using tools such as Chrome's Developer toolbar to gauge the impact on
the browser. A good rule of thumb though is to use vanilla CSS for animations and
2D transformations. If, however, your animation involves complicated timeline-
based effects or you are moving a lot of elements, then JavaScript will be a better
choice (animations frequently need to use more code than JavaScript to create the
same effects).

Only testing will tell whether you've made the right choice; start with seeing how
much you can achieve in CSS, and fallback to using JavaScript if CSS can't handle
your requirements or places too much demand on the browser to manage the
effect efficiently.

You can read the posting in full at http://css-tricks.com/
myth-busting-css-animations-vs-javascript/.

Okay, let's move on; we've seen now why it is important to choose whether we need
to use jQuery instead of using Less/CSS. Assuming that you are still using Less/CSS
to provide some form of animation, there are some tips we can use to help improve
the performance of these animations; so, let's take a look at those now.

Improving the animation's performance
Working with CSS animations can be very rewarding, but we must be careful of the
performance—if not done with care, animations can lead to unnecessary demands on
the browser or can drain the battery power if you are working on a mobile device!

Unfortunately, a number of factors exist, which can affect performance and over
which we may not have any control:

•	 Browser performance: All browsers behave differently with CSS3
and JavaScript.

•	 GPU performance: Some browsers now offload animation and transition
operations to the GPU, in which case, the speed/performance is limited
by the GPU. If you're on an integrated Intel GPU, it's not likely to be very
smooth compared with a discrete NVIDIA or AMD graphics card.

•	 CPU performance: The main CPU will be used if the browser doesn't
offload to the GPU (and therefore, become the bottleneck).

http://davidwalsh.name/css-js-animation
http://davidwalsh.name/css-js-animation
http://css-tricks.com/myth-busting-css-animations-vs-javascript/
http://css-tricks.com/myth-busting-css-animations-vs-javascript/

Chapter 13

[291]

•	 The number of other tabs/windows opened in a browser: Browsers
often share processes across tabs, so other animations or CPU-consuming
operations occurring in other tabs or browsers could create performance
degradation.

•	 The use of gradients or box-shadow properties in our CSS code: This can
cause big performance hits, so avoid using these when animating elements.

Currently, the best way to improve performance is to limit the number of things that
are being animated or transitioned at the same time.

Forcing hardware acceleration for a CSS
animation
All is not lost though—we can force browsers to trigger hardware acceleration in
the desktop or mobile browser by the addition of a simple property, transform:
translateZ(0);, in our code. This will hand over the rendering to the GPU,
not the CPU.

As an example, if we have a class called .animate, it would look similar to this:

.accelarate {
 -webkit-transform: translateZ(0);
 -moz-transform: translateZ(0);
 -ms-transform: translateZ(0);
 -o-transform: translateZ(0);
 transform: translateZ(0);

 //Add other properties below this line...
 ...
}

Notice how we need to add the vendor prefixes for each browser? The
translateZ(0) property is still experimental, so all the vendor prefixes are
required to ensure full support. Browser support is good, but care needs to
be taken, as overusing it can cause performance issues and battery draining.

A good test to see whether performance is being impacted is to use Chrome's
Timeline and Profiles option in the Developer tools option. Do check out the article
by Addy Osmani at http://addyosmani.com/blog/performance-optimisation-
with-timeline-profiles/, where he talks about how to use development tools
to gauge performance. It is 2-3 years old, and there have been some changes in how
development tools work, but the principles are still valid.

http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/
http://addyosmani.com/blog/performance-optimisation-with-timeline-profiles/

Animation with Less

[292]

Summary
Animating elements on a web page or a site is like crossing a fine line—one wrong
foot can turn a site that looks stunning into a real dog's dinner of a mess that will
turn off everyone who visits it! Throughout this chapter, we covered the basics of
animation and saw how we can use Less to simplify the process. Before we move
on to the next chapter, let's take a moment to recap what we learned.

We kicked off with a simple introduction to what makes a good animation
before moving on to examine how a CSS animation works. We then explored
the different types of animations before covering off the all-important browser
support for the technology.

Next, we took a look at how we can simplify the creation of animation styles by
reworking a simple animation demo to use Less. We then moved on to create a
more real-world example in the form of a simple menu demo, which uses transitions
to animate the drop-down elements. With the demo completed, we moved on to
examine how we can use Less libraries to help with our animation styling, and saw
that the principles from Chapter 4, Working with Variables, Mixins, and Functions, could
easily be applied when developing animation styles. We covered a few examples of
CSS animation libraries before taking a look at how we could convert one of them to
its Less equivalent.

Before continuing, we discussed the importance of monitoring vendor prefixes
and how some see the use of vendor mixins as an antipractice that should be
discouraged. We then discussed how performance can be impacted by some factors
that are outside our control, before taking a look at how we can enable hardware
acceleration to improve performance.

Phew! What a tour! However, it's not over yet: in the final chapter of this book, we'll
take a look at how you can contribute to and help extend the Less library. After all,
it wouldn't be where it is today without our help…!

Extending and
Contributing to Less

Throughout this book, we've covered an array of topics, from getting started with
Less to using it in CMS systems or creating colors.

It's at this point we can say that the world is your oyster. Hopefully, this book
has whetted your appetite sufficiently to go out and produce the next killer web
application. However, I suspect some of you will say, "What if I want to alter
Less itself?"

It's a valid question. After all, the ethos of many open source applications (of which
Less is no exception) is to try to give back something to the project if it has been
of help to you in your own. Thankfully, there are a number of ways in which you
can contribute, from reporting issues and bugs to submitting patches and feature
requests for future versions of Less.

Throughout this chapter, we'll go on a whirlwind tour of some of the information
you need to know, in order to be able to contribute to the project. In this chapter,
we will cover the following topics:

•	 Where to find Less repositories
•	 How to report bugs
•	 How to contribute code
•	 Testing
•	 Documentation

Want to know more? Let's get started...!

Extending and Contributing to Less

[294]

Locating the Less repositories
By now, we've spent a fair amount of time learning about Less and how it works.
There will come a point when we might find that we have an issue with our code
and need help.

With most open source applications or projects, access to the original source code
will be available in some form; Less is no different. The source files for both the
library and documentation are stored on GitHub in two different repositories;
they are accessible from the top-right corner of the main Less website:

We can either access the GitHub repositories through these links, or directly
via a URL:

•	 For the main documentation repository, go to
https://github.com/less/less-docs.

•	 To log any issues with the Less documentation, go to https://github.com/
less/less-docs/issues; you can also see any existing issues listed.

•	 You can find the main repository of interest at https://github.com/less/
less.js. This is the Less.js repository for the source code for Less and
to which any changes or updates will be merged into core as part of
each release.

•	 If you have any issues you need to log, visit https://github.com/less/
less.js/issues; there's a thriving community who will be able to offer
advice and assistance in fixing the issues.

Now that we've seen where we can go for more assistance, let's turn the focus of our
attention to what is arguably the most important step: logging our requests for help.

https://github.com/less/less-docs
https://github.com/less/less-docs/issues
https://github.com/less/less-docs/issues
https://github.com/less/less.js
https://github.com/less/less.js
https://github.com/less/less.js/issues
https://github.com/less/less.js/issues

Chapter 14

[295]

Finding and reporting issues in Less
Once you've started using Less, there will no doubt be occasions where you need
some assistance. The Less team advises the best place to log such requests for help
is on the popular Stack Overflow site, which is http://www.stackoverflow.com.
If, however, you have an issue that relates to the documentation on the site,
then this should be logged on the Less documentation area in GitHub at
https://github.com/less/less-docs.

Any requests for assistance shouldn't be logged in the GitHub areas for Less; these
should be kept for the purpose of logging and fixing bugs within the code. The Less
Core team has released a set of guidelines to help with raising issues to ensure they
stand the best chance of successful resolution:

•	 Search for existing issues: The team gets a lot of duplicate issues, so it is
worth checking first to see if anyone has already reported the same issue
and whether a fix has been posted for it.

•	 Create an isolated and reproducible test case: This helps to ensure that the
issue is within the Less library; have a look at http://css-tricks.com/
reduced-test-cases/ for some tips on how to create such a test case.

•	 Test with the latest version: It is surprising, but a lot of issues are resolved
by updating to the latest version of Less.

•	 Include a live example: You can use http://www.less2css.org to help
create and share your isolated test cases.

•	 Share information: Share as much information as possible about the nature
of your issue. There are some useful snippets of information that will help:

°° Mention the operating system and version
°° Describe how you use Less
°° If you use it in the browser, include the browser and version and the

version of Less.js you're using
°° Include whether you are using the command line (lessc) or an

external tool
°° Try to include steps to reproduce the bug

If you have a solution or suggestion on how to fix the bug you're reporting, include
it, or make a pull request—don't assume the maintainers know how to fix it just
because you do!

http://www.stackoverflow.com
https://github.com/less/less-docs
http://css-tricks.com/reduced-test-cases/
http://css-tricks.com/reduced-test-cases/
http://www.less2css.org

Extending and Contributing to Less

[296]

If, however, you find that the problem is more than just an issue with how to do
something and that there is clearly a fault in the library itself, then you might find a
bug report needs to be filed. Let's take a look at how to achieve this within GitHub.

Reporting bugs in the library
No, this isn't an excuse to go swatting every insect you find (pardon the pun), but an
opportunity to ask for help if you come across an issue or bug that you find in Less.

The Less team welcome any reports of bugs, which once fixed can help improve the
code; the following guidelines are worth noting:

•	 Use the GitHub issue search facility: Check whether the issue has already
been reported by others; it is not worth duplicating the effort, but you might
like to add your voice to the existing issue log to help prioritize the issue.

•	 Check whether the issue has been fixed: Try to reproduce it using the latest
master or development branch downloads, which are usually available in
the repository.

•	 Isolate the problem: Create a reduced test case and a live example; Chris
Coyier has a useful article at http://css-tricks.com/reduced-test-
cases/ on how to produce such a test case.

The key to a good report is providing enough information for others to work on,
without going overboard. It's not easy to get the right balance. This will come with
more experience over time. However, you can help others by providing key details,
such as:

•	 What is your environment? Is the problem limited to one browser, or does it
surface in different browsers?

•	 What are the steps to reproduce the issue, and are they consistent?
•	 What do you expect to see as the outcome?

All of these details (and more) will help people to fix any bugs you find; to help with
presenting the right information, there is a useful format you can follow:

http://css-tricks.com/reduced-test-cases/
http://css-tricks.com/reduced-test-cases/

Chapter 14

[297]

Short and descriptive example bug report title
Please provide a summary of the issue and the browser/OS environment
in which it occurs. If suitable, include the steps required to reproduce
the bug.

•	 This is the first step.
•	 This is the second step.
•	 Further steps and so on.

The <url> is a link pointing to a reduced test case, showing the issue.
Any other information you want to share that is relevant to the issue
being reported. This might include the lines of code that you have
identified as causing the bug and potential solutions (and your opinions
on their merits).

If, however, you want to help fix some bugs, then there is a process you need
to follow. Let's change tack and have a look at how you can help contribute to
the library.

Contributing to the Less source
Once you've become more accustomed to working with Less, you might feel a
desire to contribute something back to the project. After all, the project owners
spent countless hours developing the library, so any help is always welcome.

There are two ways you can help with contributing to the project: submitting feature
requests and creating pull requests. Before we look at them, there is a small bit of
work that is worth completing first, that is, install Node.js and Grunt.

Getting prepared
If you spend any time in developing code submissions for Less, then it is essential to
install two tools; these are key to the whole development process for Less:

•	 Node.js: This can be downloaded from http://www.nodejs.org for your
platform. At the time of writing this, the latest Version is 0.10.28.

•	 Grunt: This is available from http://www.gruntjs.com; at the time of
writing this, it is at Version 0.4.5.

http://www.nodejs.org
http://www.gruntjs.com

Extending and Contributing to Less

[298]

Next, we need to install Grunt. In a command prompt, enter the following and
press Enter:

npm install -g grunt-cli

Now that we have our base environment set up, let's look at each method of
contributing in turn, beginning with feature requests.

Submitting feature requests
Feature requests are always welcome. It is recommended that you take a moment to
find out whether your idea is something that fits in with the vision of the project.

It's down to you to provide a sufficiently strong case for a new feature, based on
as much detail as you can provide. Bear in mind that as projects are open source,
you might find it preferable to simply fork the existing project before adding your
new feature.

It is worth checking to see whether someone hasn't already suggested it. The team
is always receptive to new ideas, but won't add functionality unless there is a
good reason to do so. It might be preferable to implement your new feature in a
third-party build system such as assemble-less, rather than implementing it within
the core library itself.

Creating pull requests
If you've submitted a feature request that has gained traction and is likely to be
committed to source, the team always encourages submission of a pull request
where possible.

The team asks that if you create a pull request, it should stay within scope and avoid
containing unrelated commits. I always try to follow the principle of one change per
commit, which makes it easier to remove if there is a need to do so at a later date. If
your pull request is set to implement significant changes, such as porting to a new
language, then it is worth asking the developers first; it otherwise means that you
could spend a lot of time developing new functionality that the developers might
not want to merge into the main library.

If your pull request solves an existing issue but using a different (or better) solution,
then it should be raised as a new issue, not as a replacement for an existing pull
request. Any pull request that is submitted should be accompanied with a set of
tests. We will cover this in more detail later in this chapter.

Chapter 14

[299]

No matter what the reason is for developing a pull request though, you should
follow some simple standards that have been set to ensure consistency within the
submitted code:

•	 Always use spaces, never tabs
•	 End lines with semicolons
•	 Loosely aim towards jsHint standards

Any patch that is submitted will be licensed by the Less team under the
Apache License.

To help guide you through a consistent process to submit via Git, it is
worth taking a look at the process outlined by Nicolas Gallagher, which
is available at https://github.com/necolas/issue-guidelines/
blob/master/CONTRIBUTING.md.

Using GUIs with Git
It's worth noting that using Git requires a certain level of skill. It is often easier using a
GUI-based client, instead of working with the command line; there is a list of some of
the popular clients available at http://git-scm.com/downloads/guis. My personal
favorite is GitHub for Windows, available at http://windows.github.com.

If you're interested in learning more about Git, then it's worth taking
a look at Git: Version Control for Everyone, Ravishankar Somasundaram,
published by Packt Publishing, or go to the website at
http://git-scm.com/book.

Testing your submissions
A key part of submitting any changes to a functionality is to ensure that your code
has been through a linting process, to analyze it for any potential errors. There are a
number of ways to do this, but the preferred one is to use Grunt; packages have been
produced to help with this process.

A good example of this is the Less Lint Grunt plugin, by Jacob Gable, which
is available at https://github.com/jgable/grunt-lesslint. For a more
in-depth option, you can check out the article by Tom Loudon of Axisto Media,
at https://coderwall.com/p/g1kqzg, which details a process to add pre-Git
commit linting with Grunt.

https://github.com/necolas/issue-guidelines/blob/master/CONTRIBUTING.md
https://github.com/necolas/issue-guidelines/blob/master/CONTRIBUTING.md
http://git-scm.com/downloads/guis
http://windows.github.com
http://git-scm.com/book
https://github.com/jgable/grunt-lesslint
https://coderwall.com/p/g1kqzg

Extending and Contributing to Less

[300]

Once your code has been linted, then it needs to be tested. To do this, we need to
do the following (assuming you have installed Node and Grunt as detailed in the
Getting prepared section earlier in this chapter):

1.	 Clone the Less repository. This can either be done via the command line,
or using a GUI such as GitHub for Windows.

2.	 Open a command prompt and then change the folder to the location where
you've stored your local copy of the Less repository.

3.	 At the command prompt, enter npm install to install Less'
npm dependencies.

4.	 When completed, enter the following command at the prompt:

grunt browsertest-server

You can now visit http://localhost:8088/tmp/browser/ to view the test runner
pages. You should also be able to enter lessc <name of file>.less at the prompt;
this will be compiled by Less and rendered on screen; this will allow you to compare
it with your local copy of compiled CSS to see if it produces the same results.

Contributing to the Less documentation
So far, we've seen how you can make a contribution to the Less library, either as
reporting issues or bugs, or by contributing suggestions and code for new features.
What happens if your issue lies with the documentation?

The Less team maintains the source documentation within GitHub; it's here that you
can find the source for all documentation published at http://www.lesscss.org,
along with options to raise issues if you find any, or submit pull requests to help
maintain the documentation. All of the documentation content can be found in the
./content directory:

http://www.lesscss.org

Chapter 14

[301]

To get a feel for how Less works, it's worth taking a look at the Less
schematic diagram, which is available at http://www.gliffy.com/
go/publish/4784259.

Installing the documentation locally
To get started with updating the documentation, we need to build a local copy
on our own PC. This requires installing Assemble (http://assemble.io/),
by performing the following steps:

1.	 Browse to the GitHub area for the Less documentation, which is
at https://github.com/less/less-docs, and then click on
Download ZIP to get the latest version of the Less documentation.

2.	 Create a folder on your PC. We will assume it has been called lessdocs
for the purpose of this exercise; extract the contents of the archive file into
this folder.

3.	 Bring up a command prompt, and change the current location to the
lessdocs folder.

http://www.gliffy.com/go/publish/4784259
http://www.gliffy.com/go/publish/4784259
http://assemble.io/
https://github.com/less/less-docs

Extending and Contributing to Less

[302]

4.	 At the prompt, enter npm install to install Assemble and then wait for
it to complete its process:

5.	 Once completed, enter this command to build the documentation:

node data/utils/pkg && grunt

When this has finished, you will be able to view the documentation offline and use it
to submit pull requests into GitHub for consideration by the Less team.

Working to coding guidelines
Now that we have a copy of the documentation installed locally, we're ready to
start contributing! However, before we do so, there are some guidelines that are
worth noting and it will help make the documentation consistent, readable, and
maintainable. Let's take a brief look at these standards in more detail, beginning
with markdown standards:

•	 Use # for titles, not underlines. Underlines are not semantic, aren't as flexible,
and aren't always highlighted properly in code highlighters.

•	 Always add a space between # and the heading.
•	 Wrap the inline code with a single backtick, or blocks of code with three

backticks (code fences).

Chapter 14

[303]

•	 With code blocks, always use the correct language after the first code fence.
Although GitHub does not highlight Less, our documentation is more
likely to show up in GitHub's and Google's search results when the correct
language is used. For example, use ```less for Less and ```css for CSS.

A similar set of guidelines exist for maintaining standards in Less code; they are
reproduced in full by browsing to the CONTRIBUTING.md page, which is listed in the
main index at https://github.com/less/less-docs; the main points of note relate
to proper spacing, use of multiple line formatting, and correct use of quotes.

It is worth taking a look at the guidelines for reporting issues, bugs, and
feature requests, which are based on a generic set created by Nicolas
Gallagher, for any GitHub project; you can view the original set at
https://github.com/necolas/issue-guidelines/blob/
master/CONTRIBUTING.md.

If you follow these guidelines, it will help maintain a consistent, manageable set of
documentation relating to Less.

Summary
We covered a lot of content throughout our journey in learning Less, finishing
with a look at how you can give back to the project in the form of reporting issues
and bugs, or submitting code to help fix or improve the existing functionality
within the library.

We kicked off this chapter with a look at how to access the two source repositories
for Less. We also covered where you can log issues and bugs within the GitHub
issue logs for the source code and documentation.

We moved onto looking at the guidelines that should be followed when submitting
feature or pull requests and took a quick look at how any code that is submitted
should be tested against the Less tests and linted to ensure quality of code is
maintained and any errors have been fixed.

We then examined how you can contribute to the documentation by reporting issues
or suggestions for improvements. We covered the need to download and install a
local copy of the documentation, before looking at the standards that need to be
followed to ensure that the quality of document is maintained for the Less project.

It's at this point that we've come to the end of the book. I sincerely hope you've
enjoyed our journey through learning how to use Less as much as I have and
that it is of some help to you in your future projects.

https://github.com/less/less-docs
https://github.com/necolas/issue-guidelines/blob/master/CONTRIBUTING.md
https://github.com/necolas/issue-guidelines/blob/master/CONTRIBUTING.md

Color Functions in Less
The Less library includes a number of color functions that we can use to manipulate
colors within our site—this appendix lists the details of each function, within the four
groups of defining color formats, channeling colors, performing color operations,
and blending colors.

Defining color formats
The following is a list of the color functions that handle the color formats within Less:

Function Purpose of the function Example value
rgb Creates an opaque color object from the

decimal red, green, and blue (RGB) values
rgb(90, 129, 32)

rgba Creates a transparent color object from
the decimal red, green, blue, and alpha
(RGBA) values

rgba(90, 129, 32, 0.5)

argb Creates a hex representation of a color in the
#AARRGGBB format (not #RRGGBBAA!)

argb(rgba(90, 23, 148,
0.5));

hsl Creates an opaque color object from the hue,
saturation, and lightness (HSL) values

hsl(90, 100%, 50%)

hsla Creates a transparent color object from
the hue, saturation, lightness, and alpha
(HSLA) values

hsl(90, 100%, 50%,
0.5)

hsv Creates an opaque color object from the hue,
saturation, and value (HSV) values

hsv(90, 100%, 50%)

Color Functions in Less

[306]

For more information, read the documentation on the main Less site at
http://lesscss.org/functions/#color-definition. I've also
created a CodePen that shows these effects in action—this is available at
http://codepen.io/alibby251/pen/horqx.

Channeling colors using Less
The following is a list of the functions that allow us to channel colors when
using Less:

Function Purpose of the function Example value
hue Extracts the hue channel of a color

object in the HSL color space
hue(hsl(90, 100%,
50%))

saturation Extracts the saturation channel of a
color object in the HSL color space

saturation(hsl(90,
100%, 50%))

lightness Extracts the lightness channel of a
color object in the HSL color space

lightness(hsl(90,
100%, 50%))

hsvhue Extracts the hue channel of a color
object in the HSV color space

hsvhue(hsv(90, 100%,
50%))

hsvsaturation Extracts the saturation channel of a
color object in the HSV color space

hsvsaturation(hsv(90,
100%, 50%))

hsvvalue Extracts the value channel of a color
object in the HSV color space

hsvvalue(hsv(90, 100%,
50%))

red Extracts the red channel of a
color object

red(rgb(10, 20, 30))

green Extracts the green channel of a
color object

green(rgb(10, 20, 30))

blue Extracts the blue channel of a
color object

blue(rgb(10, 20, 30))

alpha Extracts the alpha channel of a
color object

alpha(rgba(10, 20, 30,
0.5))

luma Calculates the luma (perceptual
brightness) of a color object

luma(rgb(100, 200,
30))

luminance Calculates the value of the luma
without gamma correction

luminance(rgb(100,
200, 30))

http://lesscss.org/functions/#color-definition
http://codepen.io/alibby251/pen/horqx

Appendix

[307]

For more information, read the documentation on the main Less site at
http://lesscss.org/functions/#color-channel.

Operating on colors
The following is a list of the operation functions that can be applied to the Less code:

Function Purpose of the function Example value
saturate Increases the saturation of a color in the

HSL color space by an absolute amount.
saturate(hsl(0, 59.4%,
40.6%), 20%);

desaturate Decreases the saturation of a color in the
HSL color space by an absolute amount.

desaturate(hsl(0,
59.4%, 40.6%), 20%);

lighten Increases the lightness of a color in the
HSL color space by an absolute amount.

lighten(hsl(0, 59.4%,
40.6%), 20%);

darken Decreases the lightness of a color in the
HSL color space by an absolute amount.

darken(hsl(0, 59.4%,
40.6%), 20%);

fadein Decreases the transparency (or increases
the opacity) of a color, making it
more opaque.

fadein(hsl(0, 59.4%,
40.6%), 20%);

fadeout Increases the transparency (or decreases
the opacity) of a color, making it
less opaque.

fadeout(hsl(0, 59.4%,
40.6%), 20%);

fade Sets the absolute transparency of a color.
It can be applied to colors irrespective
of whether they already have an opacity
value or not.

fade(hsl(0, 59.4%,
40.6%), 20%);

For more information, read the documentation on the main Less site at
http://lesscss.org/functions/#color-operations. I've also
created a CodePen that shows these effects in action—this is available at
http://codepen.io/alibby251/pen/KGltj.

http://lesscss.org/functions/#color-channel
http://lesscss.org/functions/#color-operations
http://codepen.io/alibby251/pen/KGltj

Color Functions in Less

[308]

Color blending
Our final group of functions handle the blending of colors within Less:

Function Purpose of the function Example value
multiply Multiplies two colors. multiply(#9ec1ef, #091d37);

screen Does the opposite of
multiply. The result is a
brighter color.

screen (#9ec1ef, #091d37);

overlay Combines the effects of both
multiply and screen.
Conditionally makes light
channels lighter and dark
channels darker.

overlay (#9ec1ef, #091d37);

softlight Similar to overlay but
avoids pure black resulting
in pure black, and pure white
resulting in pure white.

softlight (#9ec1ef, #091d37);

hardlight The same as overlay but
with the color roles reversed.

hardlight (#9ec1ef, #091d37);

difference Subtracts the second color
from the first color on a
channel-by-channel basis.

difference (#9ec1ef, #091d37);

exclusion A similar effect to
difference but with lower
contrast.

exclusion (#9ec1ef, #091d37);

average Computes the average of two
colors on a per-channel (RGB)
basis.

average (#9ec1ef, #091d37);

negation Does the opposite of
difference.

negation (#9ec1ef, #091d37);

For more information, read the documentation on the main Less site at
http://lesscss.org/functions/#color-blending. I've also
created a CodePen that shows these effects in action—this is available at
http://codepen.io/alibby251/pen/IKqEk.

http://lesscss.org/functions/#color-blending
http://codepen.io/alibby251/pen/IKqEk

Index
Symbols
3L

URL 96, 133
@basewidth variable 99
@font-face

font, embedding into demo 151, 152
font files, downloading 150
using 150

!important keyword
URL 88
using 87

.keyframes mixin 282
@mainwidth variable 99
@media keyword, Less

Less file, examining 160, 161
media query, creating 160
working with 159

A
accessibility 10
Adobe AIR

URL 34
Adobe Kuler

about 51
URL 51

alert boxes
creating 255-257

all keyword
used, for extending styles 112-115

alpha function 306
Animate.css

URL 286

animated menus
creating 282-285

Animate.less
URL 286

animation markup
simplifying, with Less 280-282

animations
about 274
and transitions, differences 275
creating 20, 21
supporting, in browsers 280

animation types
about 276
animations, supporting in browsers 280
content, animating 276, 277
elements, transforming 278, 279
elements, transitioning 277, 278

anti-patterns
URL 288

argb function 305
arithmetic operators

working with 251
Assemble

URL 301
attributes, CSS3 animations

URL 277, 278
attributes, CSS3 transforms

URL 279
Autoprefixer

URL 289
autotext function 12
average function 308

[310]

B
basic page

building 181-183
Bitbucket

URL 134
bitmap media types

aspect-ratio 171
device-aspect-ratio 171
orientation 171
resolution 171

blending modes
URL 260

blocks
overcoming, on site access 269

blue function 306
Bootstrap

configuring, for site 219, 220
Internet Explorer 8, using 220, 221
used, for building realistic site 221-223

Bootstrap CSS
compiling, with JavaScript 224

Bootstrap library
downloading 218, 219
URL 243
URL, for downloading 218, 237

Bootstrap's Blog Theme
URL 240

Bootstrap's Less file structure
dissecting 217

Bootstrap's mixins
about 224-226
components 228
core CSS styles 227
core variables and mixins 227
dissecting 226
reset and dependencies 227
URL 226
utility classes 228

Bootstrap's theme mixins
components 230
dissecting 229
layout 231
skins 230
utilities 229

Bootstrap usage
workflow, developing for 237, 238

Bower
URL 57
used, for installing Less 57-59

Bower package
using 60

Brad Frost
URL 180

browser performance 290
browsers

animations, supporting in 280
bugs

reporting, in library 296, 297
business card

creating 106
buttons.less mixin file

URL 235

C
calculations

moving, to mixin 99, 100
CDN

URL 56
used, for installing Less on client side 56

changes
identifying 137-139
making 139

child theme
creating 195, 196
features 205

Chrome
Less, debugging in 46

ClearLess
URL 96, 133

client criteria
setting 168, 169

Coda
about 28
URL 28

code
compiling 68
fixing 242-245
reusing, across multiple projects 21, 22
solution, exploring 245
standalone compiler, using 68-70

code bloat
avoiding 123-125

[311]

Codekit
about 28
URL 28

CodePen
URL 252, 258, 308

coding guidelines
working to 302, 303

color blending
about 259, 308
average 308
difference 308
exclusion 308
hardlight 308
Less, comparing with Photoshop 260, 261
multiply 308
negation 308
overlay 308
screen 308
softlight 308

color formats
argb 305
colors, converting from HEX

to RGBA 252-254
defining 252, 305
hsl 252, 305
hsla 305
hsv 252, 305
rgb 252, 305
rgba 305

color functions
color formats, defining 252
colors channeling, Less used 254, 255
colors, operating on 257
working with 252

color management
defining, in Less 250

color palette
creating, Less used 265-268
examples, analyzing 262

colors
alert boxes, creating 255-257
channeling, Less used 254, 255, 306
converting, from HEX to RGBA 252-254
darken 307
desaturate 307
fade 307
fadein 307

fadeout 307
lighten 307
operating on 257, 307
saturate 307
selecting 263
text, making darker 258, 259
text, making lighter 258, 259
variables, creating for 141

colors, channeling
alpha 306
blue 306
green 306
hsvhue 306
hsvsaturation 306
hsvvalue 306
hue 306
lightness 306
luma 306
luminance 306
red 306
saturation 306

color spaces
arithmetic operators, working with 251
examining 250, 251

column-based layouts
creating 97-99

command line
changes, watching to Less files 39-41
compilation support, installing

via package 43, 44
compiling from 36-38
Less files, compiling from text editors 42
used, for compiling Less files 71

command-line compiler
Less files compilation,

command line used 71
using 71

compilation support
installing, via package 43, 44

compilers, Less
URL 34

complex styles
simplifying 246-248

components, Bootstrap's mixins
about 228
alerts.less mixin file 228
badges.less mixin file 228

[312]

breadcrumbs.less mixin file 228
button-groups.less mixin file 228
close.less mixin file 228
component-animations.less mixin file 228
dropdowns.less mixin file 228
forms.less mixin file 228
input-groups.less mixin file 228
jumbotron.less mixin file 228
labels.less mixin file 228
list-group.less mixin file 228
media.less mixin file 228
navbar.less mixin file 228
navs.less mixin file 228
pager.less mixin file 228
pagination.less mixin file 228
panels.less mixin file 228
progress-bars.less mixin file 228
responsive-embed.less mixin file 228
thumbnails.less mixin file 228
wells.less mixin file 228

components, Bootstrap's theme mixins
about 230
alerts.less mixin file 230
buttons.less mixin file 230
forms.less mixin file 230
list-group.less mixin file 230
nav-divider.less mixin file 230
pagination.less mixin file 230
panels.less mixin file 230
progress-bar.less mixin file 230
table-row.less mixin file 230

conditions
applying, to mixins 93

confirmation dialog
URL 255

content
animating 276, 277

Content Delivery Network. See CDN
core CSS styles, Bootstrap's mixins

buttons.less mixin file 227
code.less mixin file 227
forms.less mixin file 227
grid.less mixin file 227
scaffolding.less mixin file 227
tables.less mixin file 227
type.less mixin file 227

CPU performance 290

Creative Bloq
URL 268

Crunch!
installing 34-36
URL 31, 35

CSS
about 10, 136
compressing 22
limitations 11, 167, 168
patterns, identifying in 132
using 289, 290
writing 13

CSS3 mixins
using 139, 140

CSS3 Please
about 51
URL 51

CSS4
URL 25

CSS4 standards
supporting 23, 24

CSS animation
hardware acceleration, forcing for 291
working 275

CSS Effects
URL 133

CSS Hat
URL 268

css option 122
Cssowl

URL 133
CSS preprocessors

benefits 12
normal CSS, writing 13

CSS Selectors
URL 23

CSS standards
supporting 24

D
darken function 257, 307
data-uri function

using 103
working with 100-102

desaturate function 307

[313]

development process, Less
about 297, 298
Grunt 297
Node.js 297

device-pixel-ratio
URL 189

difference function 308
different weights

handling 157, 158
div tag 67
documentation repository

URL 294
download

customizing 231-235
values, modifying 235-237

E
editor

Coda 28
Codekit 28
Less syntax support, adding 29-31
Notepad++ 28
selecting 28
Sublime Text 28
Sublime Text 2, installing 28, 29
URL 28

Effeckt.css
URL 286

elements
transforming 278, 279
transitioning 277, 278

em value 156
environment

preparing 195
EOT, font format 152
Eric

URL 159
error dialog

URL 255
Etch

URL 262
example, media queries

creating 173-177
examples, contrast levels

URL 270
exclusion function 308

expand attribute 40
extend

all keyword, using 112
URL 110
used, for creating information

alerts 110, 111
used, for inheriting styles 109
used, for overriding styles 109

extend keyword
highlights 114, 115

external libraries
using 96

F
factors, animation performance

browser performance 290
CPU performance 290
GPU performance 290
number of other tabs/windows opened,

in browser 291
use of gradients or box-shadow properties,

in CSS code 291
fade function 257, 307
fadein function 307
fadeout function 307
feature requests

submitting 298
features, media types

all 170
braille 170
embossed 170
handheld 170
print 170
projection 170
screen 170
speech 170
tty 170
tv 170

finished article
viewing 145

Firebug
URL 45

Firefox
used, for debugging Less 45, 46

FireLESS
URL 46

[314]

font
embedding, into demo 151, 152

font files
downloading 150

fonts
handling, prebuilt library used 153-155
variables, creating for 140

Font Squirrel site
URL 150

formats
examining 250, 251

foundation page
creating 54

frameworks
using 240

functions
about 97
calculations, moving to mixin 99, 100
column-based layouts, creating 97-99
data-uri function, working with 100-102
mixins, creating as 95, 96
URL 255

G
Git

GUIs, using with 299
GitHub

URL 41, 134, 295
GitHub, for Windows

URL 299
GitHub repositories

links 294
good animation

creating 274, 275
Google Code

URL 134
GPU performance 290
gradients

URL 261
green function 306
Grunt

about 297
URL 297
using, in WordPress development 211-214

GUIs
used, with Git 299

H
hardlight function 308
hardware acceleration

forcing, for CSS animation 291
Hex Color tool

URL 234
HEX to RGBA

colors, converting from 252-254
Holder

URL, for downloading 222
hsla function 305
hsl function 305
hsv function 305
hsvhue function 306
HSV (Hue, Saturation, and Value) 251
hsvsaturation function 306
hsvvalue function 306
HTML 10
HTML code 241, 242
hue function 254, 306
Hue, Saturation, Lightness (HSL) 251

I
IDE

selecting 28
IE compatibility

reference link 223
images

importing, into style sheets 144
retina support, incorporating for 187-189

image sprites
URL 101

information alerts
creating, with styles 110-112

initial framework
creating 128, 129
Less, mixing with plain CSS 129, 130

initial jump
preparing for 128

inline option 122
Internet Explorer 8

using 220, 221
Internet Explorer (IE) 50
issues

finding, in Less 295, 296
reporting, in Less 295, 296

[315]

issues, Less documentation
URL 294

issues, log
URL 294

J
JavaScript

Bootstrap CSS, compiling with 224
using 289, 290

Jumbotron example 241, 242

K
Koala

about 34
URL 31, 34

Kuler
URL 262, 265

L
layout, Bootstrap's theme mixins

about 231
center-block.less mixin file 231
clearfix.less mixin file 231
grid-framework.less mixin file 231
grid.less mixin file 231
nav-vertical-align.less mixin file 231

Less
about 14-16, 27
animation markup,

simplifying with 280-282
color management, defining in 250
comparing, with Photoshop 260, 261
compiling, from text editors 42
debugging, Firefox used 45, 46
debugging, in browsers 45
debugging, in Chrome 46
downloading 54
installing 54
installing, Bower used 57-59
installing, Node used 57
issues, finding 295, 296
issues, reporting 295, 296
mixing, with plain CSS 129, 130

namespacing 115-117
styles, extending in 67, 68
style sheets, importing into 122
styles, nesting 65, 106
URL 115, 122, 210, 306, 307
used, for channeling colors 254, 255, 306
used, for creating color palette 265-268
used, for creating special effects 162, 163
using 16
variables, discovering in 78
variables, lazy loading 118-121
WampServer, installing 47-50

Less2CSS
about 52
URL 52

Less-based libraries
about 285
Animate.less 286
LESS easing 286
LESS Elements 286
LESS Hat 286
LESS Prefixer 286
More-or-less 286
other libraries, converting from 286-288
vendor prefixes, using 288, 289

lessc-bash
URL 74

Less, client side
installing 55
installing, CDN used 56
using, disadvantages 60, 61

Less code. See Less
Less Core, guidelines

about 295
existing issues, searching 295
information, sharing 295
isolated test case, creating 295
latest version, testing with 295
live example, including 295
reproducible test case, creating 295

Less documentation
contributing to 300, 301
installing locally 301, 302
URL 300, 301

LESS Elements
URL 96, 133, 163

[316]

Less files
changes, watching to 39-41
compiling, command line used 71
compiling, with standalone compiler 31
examining 160-162

LESS Hat
URL 133, 286

LESS Hat 2
URL 96

Less Lint Grunt plugin
URL 299

less monitor
URL 42

less option 122
LESS Prefixer

URL 286
Less repositories

locating 294
Less schematic diagram

URL 301
Less, server side

installing 56
installing, Bower used 57-59
installing, Node used 57

Less site
URL 81

Less source
contributing to 297
feature requests, submitting 298
process, developing 297, 298
pull requests, creating 298, 299
submissions, testing 299, 300

Less style sheets
displaying, to specific users 198

Less support
adding, in WordPress 197, 198
adding, with plugin 199-201

Less syntax support
adding 29-31

Less themes, WordPress
child theme, using 205
converting, for Less usage 202-204
creating 205-209
prebuilt Less theme, using 210
working with 201

less watch
URL 42

less watcher
URL 42

library
bugs, reporting 296, 297
building, of mixins 134, 135
Less used 285

lighten function 257, 307
lightness function 255, 306
Live.js

about 51
URL 51

logical operators
and 172
comma 172
not 172
only 172
using 172

Lorem Ipsum generator
about 159
URL 159

low-hanging fruits
spotting 130-132

luma function 306
luminance function 306

M
Magic CSS

URL 286
main repository, of interest

URL 294
MAMP

URL 47, 188, 195
media features

exploring 170-172
logical operators, using 172

media.html file 159
media queries

about 166, 167
creating 20, 21, 160
designing 173
exploring 170
media types, defining 170

[317]

simple example, creating 173-177
URL 167

media-query-to-type
URL 190

media types
defining 170

mixins
!important keyword, using 87
about 22
adding 85
calculations, moving to 99, 100
creating 64
creating, as functions 95, 96
exploring 83
incorporating 143, 144
original mixin, hiding 86, 87

mockups creation
emitting 268, 269

Modernizr
about 167
URL 190

Modern Pictograms font family
URL 106

modifyVars method 64
More-or-less

URL 286
multiple option 122
multiple parameters

passing 91, 92
multiply function 260, 308
multiply mode 261

N
namespacing, Less 115-117
negation function 308
nested metalanguage

about 14
URL 15

nesting usage
switching to 142

Node
used, for installing Less 57

Node.js
about 297
installing 37-39
URL 36, 297

Node Package Manager
URL 42

normalize.css project
URL 227

Notepad++
about 28
URL 28

O
Oban

URL 133
observr

URL 74
once option 122
Opera Mobile Emulator

URL 179
original mixin

hiding 86, 87
other libraries

converting from 286-288
overlay function 260, 308
overlay mode 261

P
package

compilation support, installing via 43, 44
Package Control website

URL 29
palettes

about 261
blocks, overcoming on site access 269
color palette creating, Less used 265-268
color palette examples, analyzing 262
colors, selecting 263
creating 262
mockups creation, emitting 268, 269
photo, using as source 263-265
site, using 271

[318]

W3C standard, working with 269
WCAG 270
WCAG standard, working with 269

parametric mixins
conditions, applying 93
developing 88-90
multiple parameters, passing 91, 92
special keywords, using 93, 94

patterns
identifying, in CSS 132

performance, animation
hardware acceleration,

forcing for CSS animation 291
improving 290, 291

photo
used, as source 263-265

Photoshop
Less, comparing with 260, 261

plain CSS
Less, mixing with 129, 130

plugin, Autoprefixer
URL 289

Polaroid effect
URL 79

Polaroid images
creating 79-81

Preboot
URL 133

prebuilt Less theme
using 210

prebuilt library
used, for handling fonts 153-155
using 190

prebuilt mixin libraries
using 133

Prefixr
about 51
URL 51

problem, diagnosing
about 240, 241
HTML code 241, 242
Jumbotron example 241, 242

pull requests
creating 298, 299
GUIs, using with Git 299

R
red function 306
redundancy

reducing, with variables 16
reference option 122
reports, bugs

guidelines 296
Respond.js

URL 190
responsive images

adding 185, 186
responsive pages

building 180, 181
responsive queries

adding 183-185
results

viewing 68
retina.js

URL 186
retina support

incorporating, for images 187-189
reusable blocks of code

creating 17
rgba function 305
rgb function 305

S
saturate function 307
saturation function 254, 306
scan 172
scope

setting 81, 82
screen

resizing, tools used 177-180
screen function 260, 308
screen mode 261
Selectors

URL 23
simple font mixins

creating 148, 149
extending 149

SimpLESS
about 33
URL 31, 33

[319]

site
using 271

sizes
calculating, variables used 155-157

skins, Bootstrap's theme mixins
about 230
background-variant.less mixin file 230
border-radius.less mixin file 230
gradients.less mixin file 230

softlight function 308
solution

exploring 245
Spare

URL 210
special effects

creating, Less used 162, 163
special keywords

using 93, 94
spin function

URL 266
SpritePad

about 51
URL 51

Stack Overflow
URL 271, 295

standalone compiler
Crunch!, installing 34-36
Koala 34
Less files, compiling with 31
SimpLESS 33
using 68-70
WinLess 32

Starter
URL 210

strict math option
URL 67

styles
extending, in Less 67, 68
inheriting, with extend 109
nesting, in Less 65
overriding, with extend 109

style sheets
images, importing into 144
importing, into Less 122

styles, nesting in Less
about 106
business card, creating 106
process, examining 107, 108

Sublime Text
about 28
URL 28, 54

Sublime Text 2
installing 28, 29
URL 29

submissions
testing 299, 300

SVG, font format 152
syntax, Less

about 62
mixins, creating 64
styles, extending 67, 68
styles, nesting 65
values calculation, operations used 66
variables, changing 63
variables, working 62

syntax, variables 16

T
text darker

making, in color 258, 259
text lighter

making, in color 258, 259
times

moving with 156
tools

basic page, building 181-183
responsive images, adding 185, 186
responsive pages, building 180, 181
responsive queries, adding 183-185
retina support, incorporating

for images 187-189
used, for resizing screen 177-180

tools, Less
about 51
Adobe Kuler 51
CSS3 Please 51
Less2CSS 52
Live.js 51

[320]

Prefixr 51
SpritePad 51
WinLess Online 51

transitions
and animations, differences 275

Trüf
URL 262

TTF, font format 152

U
utilities, Bootstrap's theme mixins

about 229
hide-text.less mixin file 229
image.less mixin file 229
labels.less mixin file 229
opacity.less mixin file 229
reset-filter.less mixin file 229
resize.less mixin file 229
responsive-visibility.less mixin file 229
size.less mixin file 229
tab-focus.less mixin file 229
text-emphasis.less mixin file 229
text-overflow.less mixin file 229

utility classes, Bootstrap's mixins 228

V
validation 10
values

calculating, operations used 66
generating 18

variables
changing 63, 64
creating, for colors 141
creating, for fonts 140
discovering, in Less 78
lazy loading, in Less 118-121
redundancy, reducing with 16
reusable blocks of code, creating 17
syntax 16
used, for calculating sizes 155-157
working with 62

variables.less
URL 226

variables, Less
loading 81, 82
Polaroid images, creating 79-81
scope, setting 81, 82

vendor prefixes
about 19
using 288, 289

ViewPort Resizer
URL 180

viewport tag
reference link 223

visual and tactile media
color 171
color-index 171
device-height 171
device-width 171
grid 171
height 171
monochrome 171
width 171

W
W3C CSS Validator

URL 128
W3C standard

working with 269
WAMP

URL 188, 195
WampServer

installing 47-50
URL 47

warning dialog
URL 255

Watch mode 39, 71-74
WCAG

about 270
key factors 270
URL 270

WCAG standard
working with 269

web form
creating 83, 84

[321]

Whiteboard
URL 210

WinLess
about 32
URL 31

WinLess Online
about 51
URL 51

WOFF, font format 152
WordPress

Less support, adding 197, 198
Less themes, working with 201
URL 195

WordPress Codex
URL 201

WordPress development
automating 210
Grunt, using 211-215

WordPress Plugin Directory
URL 199

workflow
developing, for Bootstrap usage 237, 238

WP theme structure 194, 195

Thank you for buying
Learning Less.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Less Web Development
Essentials
ISBN: 978-1-78398-146-5 Paperback: 202 pages

Use CSS preprocessing to streamline the development
and maintenance of your web applications

1.	 Produce clear, concise, and well-constructed
code that compiles into standard
compliant CSS.

2.	 Explore the core attributes of Less and learn
how to integrate them into your site.

3.	 Optimize Twitter's Bootstrap to efficiently
develop web apps and sites.

Bootstrap Site Blueprints
ISBN: 978-1-78216-452-4 Paperback: 304 pages

Design mobile-first responsive websites with
Bootstrap 3

1.	 Learn the inner workings of Bootstrap 3 and
create web applications with ease.

2.	 Quickly customize your designs working
directly with Bootstrap's LESS files.

3.	 Leverage Bootstrap's excellent
JavaScript plugins.

Please check www.PacktPub.com for information on our titles

Extending Bootstrap
ISBN: 978-1-78216-841-6 Paperback: 88 pages

Understand Bootstrap and unlock its secrets to build a
truly customized project!

1.	 Learn to use themes to improve your
user experience.

2.	 Improve your workflow with Less and Grunt.js.

3.	 Get to know the most useful third-party
Bootstrap plugins.

RESS Essentials
ISBN: 978-1-84969-694-4 Paperback: 134 pages

A practical introduction to programming responsive
websites using an innovative methodology in web
design and development

1.	 Easy-to-follow tutorials on implementing RESS
application patterns.

2.	 Information flow diagrams which will help
you understand various RESS architectures
with ease.

3.	 Perform browser feature detection and store
this information on server side.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Less
	The role of HTML and CSS
	The limitations of using CSS
	The benefits of using CSS preprocessors
	Why not just write normal CSS?

	Introducing Less as a solution
	Why you should use Less
	Reducing redundancy with variables
	Understanding the syntax of variables
	Creating reusable blocks of code

	Generating values automatically
	Forgetting about vendor prefixes
	Creating media queries and animation the simple way
	Reusing code across multiple projects
	Compressing CSS automatically for faster websites

	Supporting CSS4 standards within Less
	Supporting future CSS standards within Less

	Summary

	Chapter 2: Building a Less Development Toolkit
	Choosing an IDE or editor
	Installing Sublime Text 2
	Adding Less syntax support

	Compiling Less files with a standalone compiler
	WinLess
	SimpLESS
	Koala
	Installing Crunch!

	Compiling from the command line
	Watching for changes to Less files
	Compiling Less files directly from text editors
	Installing the compilation support via a package

	Debugging Less in browsers
	Debugging the Less code using Firefox
	Debugging the Less code in Chrome
	Installing WampServer

	Other useful tools
	Summary

	Chapter 3: Getting Started with Less
	Creating the foundation page
	Downloading and installing Less
	Installing Less on the client side
	Using a CDN

	Installing Less on the server side
	Installing Less using Node
	Installing Less using Bower
	Using the Bower package

	The dangers of using Less on the
client side
	Exploring the syntax used by Less
	Working with variables
	Changing variables programmatically
	Creating mixins
	Nesting styles in Less
	Calculating values using operations
	Extending existing styles in Less

	Compiling the code and viewing results
	Using a standalone compiler

	Using the command-line compiler
	Compiling Less files using the command line

	Watching for changes in Watch mode
	Summary

	Chapter 4: Working with Variables, Mixins, and Functions
	Discovering variables in Less
	Creating Polaroid images
	Loading variables and setting the scope

	Exploring mixins
	Creating a web form
	Adding basic mixins
	Hiding the original mixin
	Using the !important keyword

	Developing parametric mixins
	Passing multiple parameters
	Applying conditions to mixins
	Using special keywords

	Creating mixins as functions
	Using external libraries
	Introducing functions
	Creating column-based layouts
	Moving calculations to a mixin
	Working with the data-uri function
	Using the data-uri function – some words of caution

	Summary

	Chapter 5: Inheritance, Overriding, and Nesting in Less
	Nesting styles in Less
	Creating a business card
	Examining the process in detail

	Inheriting and overriding styles with extend
	Using extend to create information alerts
	Extending using the all keyword

	Namespacing in Less
	Lazy loading of variables in Less
	Importing style sheets into Less
	Avoiding code bloat
	Summary

	Chapter 6: Migrating Your Site to Less
	Preparing for the initial jump
	Creating the initial framework
	Mixing Less with plain CSS

	Spotting low-hanging fruit
	Identifying patterns in your CSS
	Using prebuilt mixin libraries
	Building a library of mixins
	Working through a practical example
	Introducing the CSS
	Identifying the changes to be made
	Making the changes
	Using the CSS3 mixins
	Creating variables for fonts
	Creating variables for colors
	Switching to using nesting
	Incorporating our own mixins
	Importing images into style sheets – a bonus

	Viewing the finished article
	Summary

	Chapter 7: Manipulating Fonts with Less
	Creating simple font mixins
	Extending the mixin

	Using @font-face with Less
	Downloading the font files
	Embedding the font into our demo

	Using a prebuilt library to handle fonts
	Using variables to calculate sizes
	Moving with the times

	Handling different weights
	Working with @media in Less
	Creating a basic media query
	Examining the Less file

	Creating special effects using Less
	Taking effects further

	Summary

	Chapter 8: Media Queries with Less
	Introducing media queries
	The limitations of CSS
	Setting client criteria
	Exploring media queries
	Defining media types

	Exploring media features
	Using logical operators

	Designing media queries
	Creating a simple example

	Using tools to resize the screen
	Building responsive pages
	Building the basic page
	Adding responsive queries
	Adding responsive images
	Incorporating retina support for images

	Using prebuilt libraries
	Summary

	Chapter 9: Working with Less in a CMS
	Introducing the WP theme structure
	Preparing our environment
	Creating a basic child theme
	Adding support for Less in WordPress
	Showing Less style sheets to specific users

	Adding Less support using a plugin
	Working with Less themes in WordPress
	Converting themes to use Less
	Creating our own theme
	Taking construction further
	Using a prebuilt Less theme

	Automating WordPress development
	Using Grunt in WordPress development

	Summary

	Chapter 10: Using Bootstrap with Less
	Dissecting Bootstrap's Less file structure
	Downloading the library

	Configuring Bootstrap for your site
	Using Internet Explorer 8 or below

	Building a more realistic site
	Compiling the Bootstrap CSS and JavaScript
	Examining Bootstrap's mixins
	Dissecting Bootstrap's mixins
	Core variables and mixins
	Reset and dependencies
	Core CSS styles
	Components
	Utility classes

	Dissecting Bootstrap's theme mixins
	Utilities
	Components
	Skins
	Layout

	Customizing our download
	Changing the values in our download

	Developing a workflow for using Bootstrap
	Summary

	Chapter 11: Abstracting CSS Frameworks with Less
	Discovering what's wrong with using frameworks
	Diagnosing the problem
	Keeping HTML code clean

	Fixing the code
	Exploring our solution

	Simplifying complex styles
	Summary

	Chapter 12: Color Processing with Less
	Introducing color management in Less
	Examining color spaces and formats
	Working with arithmetic operators

	Working with color functions
	Defining color formats
	Converting colors from HEX to RGBA

	Channeling colors using Less
	Creating alert boxes

	Operating on colors
	Making text darker or lighter in color

	Color blending
	Comparing Less with Photoshop

	Introducing palettes
	Analyzing color palette examples
	Choosing our colors
	Using a photo as our source
	Creating a color palette using Less
	Ditching old habits
	Working with W3C and WCAG standards
	Overcoming blocks on access to a site
	Introducing WCAG
	Making a site useable

	Summary

	Chapter 13: Animation with Less
	Introducing animations
	Creating a good animation
	How a CSS animation works
	Introducing animation types
	Animating content
	Transitioning elements
	Transforming elements
	Supporting animations in browsers

	Simplifying the animation markup
with Less
	Creating animated menus
	Libraries using Less
	Converting from other libraries
	Using vendor prefixes – a warning

	Using CSS or JavaScript
	Improving the animation's performance
	Forcing hardware acceleration for a CSS animation

	Summary

	Chapter 14: Extending and Contributing to Less
	Locating the Less repositories
	Finding and reporting issues in Less
	Reporting bugs in the library
	Contributing to the Less source
	Getting prepared
	Submitting feature requests
	Creating pull requests
	Using GUIs with Git

	Testing your submissions

	Contributing to the Less documentation
	Installing the documentation locally

	Working to coding guidelines
	Summary

	Appendix: Color Functions in Less
	Defining color formats
	Channeling colors using Less
	Operating on colors
	Color blending

	Index

