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Preface
Magento is now the most popular e-commerce platform in the world, and 
distinguishing your store from others has become more important than ever.

This book introduces Magento theming to web designers and developers with a  
basic understanding of HTML and CSS upwards, who want to discover the secrets  
of theming Magento for both client projects and their own projects.

What this book covers
Chapter 1, Introduction to Magento and Magento Themes, provides an introduction to 
the topic, including exploring what a Magento theme is, Magento theme terminology 
including Templates, Layouts, and Skins, and the Magento theme hierarchy.

Chapter 2, Magento Theming Basics, gets you started with your new Magento theme, 
from enabling a new theme in Magento to changing the logo, customizing the 
product watermark images, disabling Magento's caches, and using Magento's 
Template Path Hints tool, as well as creating a new Magento theme.

Chapter 3, Magento Templates, provides simple layout styling for your Magento theme, 
customizing your store's header and footer, and the search box, and covers how to 
add a static block to a template, as well as styling your checkout and cart page.

Chapter 4, Magento Layout, looks at adding a local.xml file to your theme, changing 
the default page template, adding a static block to a page using the Magento 
layout, changing the order of blocks in Magento's sidebar using layout, removing 
unnecessary blocks in Magento's sidebar, and adding a new products list to your 
store's home page.
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Chapter 5, Social Media and Magento, covers integrating a Twitter feed with your 
Magento store, integrating a Facebook page with your Magento store, including 
social share buttons on your product pages to help increase your store's reach, and 
integrating product videos from YouTube with product listings.

Chapter 6, Advanced Magento Theming, explores adding a custom print style sheet for 
your Magento store, using locales to translate labels/phrases in your store, using @
font-face in Magento, styling Magento's layered navigation, creating a custom 404 
"not found" error page, and using microformats for rich snippets to enhance search 
engine listings.

Chapter 7, Magento Theming for Mobile and Tablet Devices, walks the reader through 
how to use CSS media queries to create breakpoints for different device widths, 
making images responsive to your Magento theme, developing responsive 
navigation for your Magento theme, and adding mobile home page icons for 
Windows and Apple devices to your Magento theme.

Chapter 8, Magento E-mail Templates, covers hanging the default e-mail template logo 
to altering colors of the e-mail templates and altering variables in Magento e-mail 
templates, as well as adding static block content to your Magento e-mail templates.

What you need for this book
You will need access to a working installation of Magento Community Edition 1.8 or 
newer, and your preferred code-editing software.

Who this book is for
If you are a web designer or web developer who is familiar with XML, HTML, and 
CSS, who wants to learn the fundamental building blocks of creating a Magento theme, 
this book is for you. A basic understanding of PHP is helpful but not required.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"In Magento, skin files are located in the /skin/frontend/ directory."
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A block of code is set as follows:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}
a {
color:#1e7ec8;
text-decoration:underline;
}

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}
a {
color:#1e7ec8;
text-decoration:underline;
}

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "You might 
notice that there are many superfluous blocks in the sidebar, such as the BACK TO 
SCHOOL and COMMUNITY POLL blocks, which would not be required on a usual 
e-commerce website."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata


Preface

[ 5 ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Introduction to Magento and 
Magento Themes

Magento is a popular, enterprise-level open source e-commerce platform used by 
hundreds of thousands of e-commerce businesses around the world. With ever 
increasing numbers of online stores competing for customers and income, it can pay 
off to invest in customizing your Magento store to set it apart from hundreds and 
thousands of other stores, and developing a custom Magento theme is the way to 
achieve this.

In this chapter, you will learn the following topics:

•	 What a Magento theme is and what Magento themes can do
•	 An overview of the default Magento themes in Magento
•	 An introduction to the Magento theme terminology
•	 How the Magento theme hierarchy works

What is a Magento theme?
A Magento theme is simply a collection of files that tells Magento how to display 
your store to visitors. A Magento theme can consist of a collection of CSS, HTML, 
PHP, XML, and images, all of which contribute to the look and feel of your store.

Due to Magento's architecture and the design interface's hierarchy, Magento will fall 
back to base theme (discussed later in this chapter) that contain the files it requires 
if they are not present in the current theme. A Magento theme can consist of one or 
more of the previously mentioned files. It could be as simple as a logo file with the 
rest of your store's styling provided by a parent theme.
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Magento's default themes
In Magento Community Edition 1.8, Magento provides the following four themes:

•	 Default
•	 Blank
•	 iPhone
•	 Modern

The default theme
Magento's default theme is perhaps, unsurprisingly, the theme that is enabled by 
default when you first install Magento, encompassing a clear header area with a 
search field and drop-down navigation for categories to be listed, a content area with 
sidebar(s), and a footer, as shown in the following screenshot:
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The default theme's product page layout retains the header and footer styling of the 
home page layout, but the central content area is adapted to present the product 
information to customers, as shown in the following screenshot:

As you can see in the preceding screenshot, the product page provides a product 
image with the name, a brief description, and the price of the specific product 
towards the top of the page. Then, a more detailed description is provided in the 
next block.

You might notice that there are many superfluous blocks in the sidebar, 
such as the BACK TO SCHOOL and COMMUNITY POLL blocks, which 
would not be required on a usual e-commerce website. These blocks 
help showcase how powerful Magento is to new developers and can be 
removed fairly easily.
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The category page layout
One of the next key views for your Magento store is the category page layout, which 
presents all the products grouped within a particular product category, as shown in 
the following screenshot:
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The list mode layout
Magento presents products in two ways: in a grid (as shown in the preceding 
screenshot) and as a list, which you can select by clicking on the List option in the 
product grid, as shown in the following screenshot:
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In the list mode, products within the selected category are displayed one above the 
other, as shown in the following screenshot:

Checkout
Finally, Magento's famous one-page checkout provides a well-structured checkout 
process for your customers, as shown in the following screenshot, maintaining the 
default theme's overall character:
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Next, you will see the additional Magento themes that come with Magento 
Community Edition 1.8 to cater to different needs for both customers and developers.
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The blank theme
The blank theme, as its name suggests, provides a very minimal approach to a 
Magento theme to allow a custom Magento theme to be built upon it, maintaining 
a layout that is similar to Magento's default theme but stripping the visual styles, as 
shown in the following screenshot:
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The iPhone theme
The iPhone theme provides a more mobile-friendly theme for your Magento store, 
which can be switched on and off for specified devices. This view of the home page 
with the iPhone theme shows you how content is streamlined and slimmed down 
to help present the most relevant information to your customers on devices with 
limited screen space available, as shown in the following screenshot:
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The modern theme
Finally, the modern theme provides a full-fledged Magento theme that can be used 
as an alternative to the default theme, with a more contemporary look, as shown in 
the following screenshot:

These themes show you just the surface of the potential customizations you can 
make to your Magento store, and this book will guide you through some of the 
common changes made to Magento stores as well as some less common alterations 
you can make to improve your Magento theme.
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Magento terminology
As with many other open source technologies, Magento comes with its own 
terminology, which can be baffling to unfamiliar developers. This section identifies 
and defines some of the commonly used terms in the Magento theme development.

Scope in Magento
Magento has the following four levels of scope that help define the level in your 
Magento store(s) at which settings are applied:

•	 Global: This refers to settings that affect the entire Magento installation.
•	 Website: This acts as the parent entity for one or more stores in the Magento 

terminology. Websites can be configured to share the customer data or not 
share any data at all.

•	 Store (or store view group): These are the hierarchical children of Magento 
websites. Products and categories are managed at Magento's store level. A 
root category is configured for each Magento store, allowing multiple stores 
under the same website to have totally different catalog structures.

•	 Store view: A store needs one or more store views to appear in the frontend 
to customers so they are able to browse your store. The store view inherits 
the store's category and product information, and so the changes at the 
store view level are typically only cosmetic, changing the way the data is 
presented. The most common and likely implementation of multiple store 
views is to allow customers to navigate between two or more languages.

www.allitebooks.com
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Magento websites, stores, and store views
It is possible to run many different e-commerce stores from one Magento installation, 
and it's also possible to run separate stores on the same website (for example, a 
consumer store and a trade store that offers discounts to trade customers). The 
simplest of Magento websites, however, consists of a single website with a single 
store and single store view as follows:

Website

Store
yourstore.com

Store iewv

Using multiple stores in Magento
The most common use of multiple stores in Magento is to build separate  
stores with their own inventories. For example, you could have one store, 
veryverycoolt-shirts.com, to sell t-shirts, and another, veryverycoolcaps.
com, to sell baseball caps through the same installation of Magento. The following 
diagram illustrates the structure of how this would be created using Magento 
websites, stores, and store views:
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Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
French

Store iewv
English

Store iewv
English

Store iewv
French

You can chose whether the stores share the customer data or whether each store has 
its own customer data, requiring customers to register separately if they want to 
order from both the t-shirt store and cap store.

Using multiple store views in Magento
You can make use of multiple store views in Magento to customize how a store is 
presented; this is typically used to present the same store in multiple languages. In 
the following diagram, both stores have a French and English version, created at the 
Magento store view level:

Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
English

Store iewv
English
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Magento allows the following two types of themes:

•	 A parent theme that contains all the files that are required to be run  
by Magento

•	 A child theme contains one or more files. Where a file isn't overwritten; 
Magento will look for the file in the parent theme

A parent theme is useful when you want to create a highly customized Magento 
theme from the standard themes that Magento has installed. Child themes are of  
use when you only want to make fairly minor amendments to your theme.

Magento theme files
As you have already seen, Magento themes use a number of different types of files to 
change how your e-commerce website is displayed to your customers. The following 
four groups of files are associated with Magento themes:

•	 Skin files
•	 Layout files
•	 Template files
•	 Locale files

Skin files
Skins encompass the files that you would associate with a website's design: the CSS, 
images, and JavaScript your theme requires in order to display your store.

In Magento, skin files are located in the /skin/frontend/ directory. Magento's 
base skin files are stored in the /skin/frontend/base/default directory of your 
Magento installation, while theme files, which you would typically edit for custom 
themes that you create, would be included in the /skin/frontend/name-of-your-
package/name-of-your-theme/ directory.

In the examples used in this book, you will be building a theme in the default 
package, so your skin directory will look like this: /skin/frontend/default/name-
of-your-theme/.
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Layout files
Magento uses XML layout files in its themes to inform Magento about which blocks 
are displayed where in the page and in what order, for example, the MY CART and 
COMPARE PRODUCTS widgets that use Magento's default theme, as shown in the 
following screenshot:

The Magento layout can also be used to add and remove CSS and JavaScript files as 
well as other elements from the <head> element of your Magento theme and alter the 
order and location of the links.

Magento's base layout files are stored in the /app/design/frontend/base/
default/layout directory of your Magento installation, while your custom theme's 
layout files can be found in the /app/design/frontend/name-of-your-package/
name-of-your-theme/layout directory.

In the examples used in this book, you will be building a theme in the default 
package, so your application directory will look like this: /app/design/frontend/
default/name-of-your-theme/.

Template files
Magento's template files (which use the .phtml file extension to indicate a mixture of 
PHP and HTML) provide your Magento theme with a way to generate the HTML for 
your store's pages using the data and content stored within Magento.

Magento's base template files are stored in the /app/design/frontend/base/
default/template directory of your Magento installation, while your custom 
theme's layout files would be found in the /app/design/frontend/default/name-
of-your-theme/template directory.
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Locale files
Finally, Magento's locale files help you customize the text in the interface elements  
of your Magento store, such as the text used as links in the userbar for your store,  
as shown in the following screenshot:

A Magento locale file can also be used to provide a translation of your store's 
elements to French, or even just American English to British English. In the 
preceding example, a locale file might change the My Cart link to My Basket,  
for instance.

The content of pages and products of your store can be translated by creating new 
products and pages in your new store's language within the store view for that 
particular language.

Magento locale files are stored in the /app/design/frontend/base/default/
locale directory, with locale files specific to your theme being stored in the /
app/design/frontend/name-of-your-package/name-of-your-theme/locale 
directory. Translations are stored in a translate.csv file; for example, /app/
design/frontend/default/name-of-your-theme/locale/en_GB/translate.csv 
contains the translations for British English for that particular theme.

Packages
In Magento theming, a package typically encapsulates a default theme that contains 
all of the skin, template, layout, and locale files Magento needs to render the website. 
It might also contain another non-default theme that customizes the look and feel of 
the website on top of the base theme, as illustrated in the following diagram:
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Assigning a package at the website level means that all the stores under that store 
level inherit that package. This would simply apply the theme to all of the stores 
assigned to that particular website in Magento. So, by assigning a theme at the 
website level in the following diagram, the Cap store and the T-shirt store would 
inherit the same theme, unless it was specifically overwritten at the individual store 
view level:

Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
French

Store iewv
English

Store iewv
English

Store iewv
French

Magento theme hierarchy
Magento has a hierarchy in place for its themes, which tells the system where to 
look for files if multiple themes are active on different stores on your website. As an 
example, think about a simple Magento store setup like the one you saw earlier, as 
demonstrated in the following diagram:

Website

Store
yourstore.com

Store iewv
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Now, imagine that your store has a theme called newtheme installed at the store 
view level. The Magento theme here requests a file called styles.css in the most 
specific interface and package first, so if you have a custom theme enabled, Magento 
will look in /skin/frontend/default/newtheme first. If it's not found in these 
directories, Magento looks in the default interfaces next: /app/design/frontend/
default/default or /skin/frontend/default/default. Next, Magento will look 
in the base directories: /app/design/frontend/base/default or /skin/frontend/
base/default. If the specified file is not found after that, Magento will encounter a 
rendering error.

So, the deeper down the hierarchy tree of themes the file is, the more specific it is  
and the more precedence it takes over other more general files.

Summary
This chapter provided you with an introduction to both Magento and Magento's 
themes as well as giving you an overview of what already exists in terms of the 
themes that ship with Magento by default. You have seen what comprises a Magento 
theme, some of the existing themes available with Magento 1.8, common theme 
terminology used in Magento, and how the Magento theme hierarchy works.



Magento Theming Basics
Now that you've been introduced to the concepts behind Magento and Magento 
themes, the real work begins. This chapter covers the basics of getting up and 
running with a new Magento theme. This includes:

•	 Creating a new Magento theme
•	 Enabling the theme on your Magento store
•	 Changing your store's logo
•	 Changing the theme's favorites icon
•	 Customizing Magento's product watermark images
•	 Customizing Magento's product placeholder images
•	 Developer tools: Template Path Hints

Creating a new Magento theme
As you saw in Chapter 1, Introduction to Magento and Magento Themes, a Magento 
theme can encompass very few files or a large number of files.

Firstly, create the new directories in your Magento installation to contain your new 
theme's files:

•	 app/design/frontend/default/m18/template

•	 app/design/frontend/default/m18/layout

•	 app/design/frontend/default/m18/locale

•	 app/design/frontend/default/m18/etc

•	 skin/frontend/default/m18/css

•	 skin/frontend/default/m18/images

•	 skin/frontend/default/m18/js



Magento Theming Basics

[ 26 ]

Once you have created these directories, you can create a file called styles.css in 
the skin/frontend/default/m18/css directory. To be able to test that your new 
skin is enabled, add the following to your styles.css file:

body {
background: red;
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Your next step is to enable your newly created Magento theme!

Enabling a Magento theme
Now that you have the bare bones of your new Magento theme ready, you can 
enable your Magento theme. Log in to your Magento store's administration panel and 
navigate to the System | Configuration menu, as shown in the following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Magento's administration panel is located at example.com/admin if you 
have installed Magento at example.com.

Once there, select the Design tab that has appeared in the left-hand column of the 
screen, keeping the Current Configuration Scope drop-down menu's value set to 
Default Config:

www.allitebooks.com

http://www.allitebooks.org
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Next, expand the Themes section of the Design settings panel and enter the name of 
your Magento theme for the Default field here. In the following example, m18 is used 
as the name of the new Magento theme you are enabling:

Once you have done this, you need to click on the Save Config button in the  
top-right of the screen, after which you will see the The configuration has been 
saved success message, as shown in the following screenshot:
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That's it! Your new Magento theme has been enabled. To test this, visit the frontend 
customer-facing side of your Magento store and refresh the page. You should be  
able see that the styles.css file removes all of the styles from the previously 
enabled theme and presents you with a rather unattractive screen, as shown in the 
following screenshot:

You can remove the styles.css file for now to return to Magento default theme 
styling; we will come back to customizing your theme's CSS in the later chapters.
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Changing your Magento store's logo
The next task you will perform in order to customize your Magento store's look 
and feel is to change your Magento theme's logo. Firstly, you will need to upload 
your store's logo file to your store, in the /skin/frontend/default/m18/images 
directory of your Magento installation.

Now, log in to your Magento store's administration panel and navigate to System 
| Configuration, and then to the Design tab. Expand the Header panel as shown 
in the following screenshot, and enter the value of your logo file's name and your 
theme's image directory. In this case, the example uses images/logo.png because 
the theme's logo file is stored at /skin/frontend/default/m18/images/logo.png.

Click on the Save Config button in the top-right corner of the screen to save these 
changes. After refreshing your store, your new logo should appear in place of the 
default Magento logo:
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If you haven't created your own categories in your store yet, you may 
see Magento's sample category data appear in this menu or no categories 
at all. To add categories to your store, navigate to Catalog | Manage 
Categories in your Magento store's control panel.

Customizing your store's favorites icon 
(favicon)
Alongside your logo, you can use your store's favorites icon (favicon) to help 
distinguish yourself from other websites. The favicon is typically displayed in your 
browser's address bar and tabs, as seen in the following screenshot in the top-left of 
the screenshot:
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To change your store's favicon from the default Magento favicon, you will need to 
create a favicon.ico file.

You can create favicon.ico files using free online tools such as the 
one at http://tools.dynamicdrive.com/favicon/.

Once you have your favicon.ico file ready, upload it to your Magento installation's 
/skin/frontend/design/default/your-theme-name/ directory. In the example 
theme, this would be /skin/frontend/default/m18/. You will now be able to see 
your custom favicon appear for your store, as shown in the following screenshot:

It's also worth checking the guide on adding home icons and other 
mobile and handheld-device specific icons to your Magento theme, 
covered in Chapter 7, Magento Theming for Mobile and Tablet Devices.

Customizing Magento's product 
watermark image
Some stores like to watermark their images to promote brand consistency across 
their websites, or to protect their product photography from being used without 
permission on other websites.

http://tools.dynamicdrive.com/favicon/
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Magento allows you to specify a watermark image to overlay product photographs 
in your store. To change this, you can navigate to System | Configuration in your 
Magento store's administration panel. From there, navigate to the Design tab on the 
left-hand side, and then expand the Product Image Watermarks panel, as shown in 
the following screenshot:
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Firstly, upload a watermark image you wish to be displayed across product images 
using the Base Image Watermark field, and click on the Save Config button in 
the top-right corner of your screen. If you now view a product on your Magento 
store front, you will see the product image appear with the watermark image 
superimposed over it. It's wise to make the watermark as faint as you can and try 
to position it in a way that does not obscure the product photography, unlike the 
following example:

You may need to refresh Magento's image cache before you see the 
watermark appear over your images. Navigate to System | Cache 
Management, and click on the Flush Catalog Images Cache button 
towards the bottom of this screen to regenerate the product images with 
the watermark over them.
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Using product images in Magento
By default, the three product image types in Magento are used in different templates 
and areas of your Magento site:

•	 Thumbnail images: These are used in the image gallery (if you have more 
than one image displayed on a product page), the cart, and the default 
Related Products block displayed in Magento's sidebar (50 x 50 pixels on the 
default theme)

•	 Small images: These are used in product listings on category pages, in 
cross-sell and up-sell blocks, and search result pages (135 x 135 pixels on the 
default theme)

•	 Base images: These are used on Magento product pages and the product 
image zoom feature, if the image is large enough (262 x 262 pixels on the 
default theme)

The Product Image Watermarks panel allows you to specify separate watermark 
images to appear on your Base Image, Small Image, and Thumbnail images. 
You can change how and where the watermark image appears over the product 
photograph by making use of the Position field dropdowns. In particular:

•	 The Stretch option stretches the watermark image across the full product 
image height and width, which can look blurry if your watermark image is 
too small

•	 The Center option centers the image both vertically and horizontally over the 
product photograph

•	 The Tile option repeats the placeholder image over the image, assuming the 
placeholder image is small enough to be able to be repeated over the product 
photograph

•	 The remaining images tell Magento where to place the watermark image 
over the product photograph

The Default Size field allows you to specify the size of the watermark image as 
applied to the product image; this value is in pixels, in the form of width x height 
for example, 200 x 350 would resize the placeholder image to a width of 200 pixels 
and a height of 350 pixels.
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Finally, the Opacity field allows you to set the opacity of each of the product 
watermark images as a percentage. A value of 100 in these fields would cause the 
watermark to be fully visible, and obscure the product photograph fully or partially 
Lower values will show a semi-transparent watermark image over the product 
photographs, while 0 will not display the watermark image at all.

The watermark.png file is included in your book's code files.

Customizing Magento's product 
placeholder images
In addition to the product watermarks that can be laid over product images, 
Magento allows you to customize the default image placeholder image, which is 
used when a product has no product image available to be displayed.

To see the default Magento image placeholder, you can create a product and simply 
not assign it an image, which will result in something similar to the result in the 
following screenshot:
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You can add products to your website by navigating to Catalog | Manage Products 
in your Magento store's administration panel.

As most e-commerce store owners will testify, it's best to include 
product imagery on product pages, but there may be occasions where 
you might like to sell products through your store and may not have 
an image immediately available, so this is a good way to reinforce your 
store's brand!

To customize your store's product placeholder images, navigate to System 
| Configuration in your Magento store's administration panel and select the 
Catalog option from the left-hand menu. From there, expand the Product Image 
Placeholders panel, as shown in the following screenshot:

You can upload your custom product photograph placeholders here, using the Base 
Image, Small Image, and Thumbnail fields. These replace the placeholder image 
in the various sizes used throughout your Magento store, enabling you to define 
separate images for each occasion.

www.allitebooks.com

http://www.allitebooks.org
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Once you have uploaded your new product placeholder images, click on the Save 
Config button at the top-right side of the screen to save your changes, and go back 
and refresh the page of your product without an image assigned:

Using the Magento Template Path Hints
As you might expect from a powerful e-commerce system such as Magento, there  
are tools to help make your job as a Magento theme developer easier. One of the 
most useful tools for theme developers is Template Path Hints, which tells you 
where each block's template in your Magento store's page is stored in your Magento 
theme directories.

To enable this tool, navigate to System | Configuration in your Magento 
administration panel and change the Current Configuration Scope field's value to 
your store view's value. In the example in the following screenshot, you can see this 
being set to Default Store View:



Chapter 2

[ 39 ]

Now, select the Developer tab towards the bottom of the list grouped under 
ADVANCED:

Expand the Debug panel and you are now presented with a selection of options; set 
the value for the Template Path Hints field to Yes, as seen in the following screenshot 
(you may need to uncheck the Use Website checkbox before you can do this):
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For more advanced template hints on Magento theming, see the 
module available at http://www.fabrizio-branca.de/
magento-advanced-template-hints-20.html.

Finally, click on the Save Config button to save these changes, and refresh one of the 
pages on the frontend of your Magento store to see the tool appear.

You may need to refresh your Magento's store caches to see these appear. 
To clear your cache, navigate to System | Cache Management and clear 
the Blocks HTML output cache. You can also fully disable all the caches 
from this menu, which is beneficial for theme development!

It is possible to restrict these hints' display to specific IP addresses too, by expanding 
the Developer Client Restrictions panel above the Debug panel and entering your 
IP address in the Allowed IPs (comma separated) field:

http://www.fabrizio-branca.de/magento-advanced-template-hints-20.html
http://www.fabrizio-branca.de/magento-advanced-template-hints-20.html
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Only visitors using the IP address(es) specified in this field will see the debug tools 
you have enabled once you save this configuration.

Summary
This chapter introduced the beginnings of customizing your Magento store's look 
and feel, including how to create a new Magento theme, enabling your new Magento 
theme, as well as changing your store's logo and favicon, customizing Magento's 
product watermark images and Magento's product placeholder images, and 
exploring Magento's Template Path Hints tool to help you better understand where 
Magento is requesting template files from.

Future chapters dive deeper into specific areas of Magento theme development.





Magento Templates
So far, the changes to your Magento theme have been fairly simple and largely 
limited to configuration within Magento itself. This chapter looks more deeply at 
customizing templates within your Magento theme to start making more complex 
changes to your Magento store's look and feel. In this chapter, we will cover the 
following topics:

•	 Providing some simple layout styles for your Magento theme
•	 Customizing your store's header
•	 Customizing the search box
•	 Adding a static block to a template
•	 Customizing your store's footer
•	 Customizing your store's checkout and cart

Providing layout style for your  
Magento theme
The first thing you can provide for your Magento theme is some basic CSS to  
define the column's width and layout. Before you do this, you can use a simple CSS  
reset to remove unnecessary margins and padding from the elements:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}
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a {
color:#1e7ec8;
text-decoration:underline;
}
a:hover       {
text-decoration:none;
}
:focus {
outline:0;
}

An alternative to CSS resets is normalize.css, which 
you can download from http://necolas.github.io/
normalize.css/.

To do this, you can make use of what is provided in Magento's Default theme. Open 
the styles.css file in the /skin/frontend/default/default/css/ directory and 
you will see a block of CSS that begins:

/* Layout ============================================================
==================== */
.wrapper {
min-width:954px;
}
.page-print {
background:#fff;
padding:25px 30px;
text-align:left;
}
.page-empty {
background:#fff;
padding:20px;
text-align:left;
}
.page-popup {
background:#fff;
padding:25px 30px;
text-align:left;
}
.main-container {
background:#fbfaf6 url(../images/bkg_main1.gif) 50% 0 no-repeat;
}

http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/
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.main {
background:#fffffe url(../images/bkg_main2.gif) 0 0 no-repeat;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left; 
width:900px; 
}

Copy this into your own theme's styles.css file, in the /skin/frontend/default/
m18/css/ directory you previously created, and adapt it to remove any mention of 
the default theme's color and images:

.wrapper {
min-width:954px;
}
.page-print {
background:#fff;
padding:25px 30px;
text-align:left;
}
.page-empty {
background:#fff;
padding:20px;
text-align:left;
}
.page-popup {
background:#fff;
padding:25px 30px;
text-align:left;
}
.main-container {
background:#f6f6f6;
}
.main {
background:#fff;
color: #333;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left; 
width:900px; 
}
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Magento themes typically provide three different page layouts to be used:  
one-column, two-column, and three-column templates. The next block of CSS  
you can copy from the /skin/frontend/default/default/css/styles.css  
file is the CSS that defines the width and position for each of these layouts:

.col-left {
float:left;
padding:0 0 1px;
width:195px
}
.col-main {
float:left;
padding:0 0 1px;
width:685px
}
.col-right {
float:right;
padding:0 0 1px;
width:195px
}
.col1-layout .col-main {
float:none;
width:auto
}
.col3-layout .col-main {
margin-left:17px;
width:475px
}
.col3-layout .col-wrapper {
float:left;
width:687px
}
.col2-set .col-1 {
float:left;
width:48.5%
}
.col2-set .col-2 {
float:right;
width:48.5%
}
.col2-set .col-narrow {
width:32%
}
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.col2-set .col-wide {
width:65%
}
.col3-set .col-1 {
float:left;
width:32%
}
.col3-set .col-2 {
float:left;
margin-left:2%;
width:32%
}
.col3-set .col-3 {
float:right;
width:32%
}
.col4-set .col-2 {
float:left;
margin:0 2%;
width:23.5%
}
.col4-set .col-4 {
float:right;
width:23.5%
}
.col2-left-layout .col-main,.col3-layout .col-wrapper .col-main {
float:right;
}
.col4-set .col-1,.col4-set .col-3 {
float:left;
width:23.5%
}

The preceding CSS alters the width of the columns based on which particular layout 
is in use, for example, if a page is using a three-column layout, the column widths 
are adapted so that all three columns can be contained within one row of your page, 
rather than displaying them above and below each other.

Next, you will need to specify an additional layout for the header and footer areas of 
your theme:

.header-container, .footer-container {
background: #f6f6f6;
}

www.allitebooks.com

http://www.allitebooks.org
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.header, .footer {
margin: 0 auto;
width: 930px
}

Finally, to complete the layout, you will need to include CSS to clear the floating 
elements used in your layout, again taken from the bottom of the styles.css file  
in the /skin/frontend/default/default/css/ folder and copied into the bottom 
of your styles.css file in the /skin/frontend/default/m18/css/ folder.

You can find this in the code files for this chapter.

If you now refresh your Magento store's frontend, you will see the effect this CSS 
has had, overwriting the default theme's previous styling, but retaining the column 
layout of the store as you can see in the following screenshot:

As you can see, this provides a basic starting point for your custom Magento theme, 
but there's still much work to be done!
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Customizing your Magento store's 
header
As it stands, your current theme looks incomplete at the moment. You can begin  
to address this by:

•	 Adding CSS to customize the header elements of your theme
•	 Altering your theme's header.phtml file to customize the HTML used  

by Magento

Providing CSS for Magento's navigation 
dropdowns
Most of the styling for Magento's drop-down navigation can be done within CSS. 
Firstly, you can remove the bullet points and other styling associated with the  
<ul> elements by adding the following CSS:

.links li, #nav li, .breadcrumbs li {
display: inline;
list-style: none;
}
ul.links, .links li, .breadcrumbs ul, #nav ul {
margin: 0;
padding: 0;
}

Our next task is to restore your Magento theme's CSS for drop-down navigation . 
This can be done by reusing the CSS applied to #nav from the styles.css file in  
the /skin/frontend/default/default/css/ folder and copying this into your  
new theme's styles.css file in the /skin/frontend/default/default/css/ 
folder, updating the color references as you wish.

You can see this CSS in your code sample file in the chapter's 
skin\css folder provided with this book.
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This will provide basic styling for your Magento store's navigation structure as you 
can see in the following screenshot:

Altering the header.phtml template
As you saw, when you enabled Magento's Template Path Hints tool, the pages on 
your Magento store were composed from many different templates. The header 
and footer, which are generally used globally throughout your store, are added to 
the top and bottom of each page respectively, while different page structures (for 
example, one-column, two-column, and three-column layouts) are swapped in and 
out as defined by the Magento layout, either by a theme or at a page level through 
Magento's CMS tool.

To see which template is being used, you can enable Magento's 
Template Path Hints file. See Chapter 2, Magento Theming Basics, 
for a walkthrough of how to do this.

Now, view your Magento store's frontend and you can see the extent of your 
Magento theme's header file within the design:
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To change the markup in your Magento theme's header, copy the header.phtml file 
in the /app/design/frontend/base/default/template/page/html/ directory to 
the /app/design/frontend/default/m18/template/page/html/ directory. You can 
provide a typical layout for your store's header in line with the following diagram:

ACCOUNT LINKSLOGO

SEARCH

The first thing you need to do is alter how the logo is displayed to remove the text 
alongside it. Open the header.phtml file in your theme and find the following block 
of code:

<?php if ($this->getIsHomePage()):?>
<h1 class="logo"><strong><?php echo $this->getLogoAlt() ?></
strong><a href="<?php echo $this->getUrl('') ?>" title="<?php echo 
$this->getLogoAlt() ?>" class="logo"><img src="<?php echo $this-
>getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt() ?>" /></a></h1>
<?php else:?>
<a href="<?php echo $this->getUrl('') ?>" title="<?php echo $this-
>getLogoAlt() ?>" class="logo"><strong><?php echo $this->getLogoAlt() 
?></strong><img src="<?php echo $this->getLogoSrc() ?>" alt="<?php 
echo $this->getLogoAlt() ?>" /></a>
<?php endif?>
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This is currently adding text to the logo block on both, the homepage (wrapped in 
a <h1> element on the homepage using the $this->getIsHomePage() function to 
check whether the current page is the homepage) and other pages (wrapped in a 
<strong> element). The logo file is specified in the Magento configuration, which 
was covered in Chapter 2, Magento Theming Basics. Update this to reflect the following 
code, to output the logo's image simply:

<a href="<?php echo $this->getUrl('') ?>" title="<?php echo 
$this->getLogoAlt() ?>" class="logo"><img src="<?php echo $this-
>getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt() ?>" /></a>

Once saved, refresh your Magento site and you will see that the change has  
been applied:

Next, you will need to apply some CSS in your theme's styles.css file to improve 
the layout of the header's elements:

.header .logo, .header .quick-access {
float: left;
margin: 1%;
width: 48%;
}
.header .quick-access {
text-align: right;
}

If you refresh your store after saving these changes, you will see that the header now 
looks more like what you would expect:



Chapter 3

[ 53 ]

Customizing Magento's search box
You can also customize Magento's search feature through the Magento templates. 
The search feature is especially important for stores with a large number of products, 
so ensuring that it is in a prominent place and looks like a search feature is very 
important.

Firstly, to overwrite the template used for the search form in the header, copy the 
search.mini.phtml file at /app/design/frontend/base/default/template/
catalogsearch/ into the /app/design/frontend/default/m18/template/
catalogsearch directory, and find the following lines that constitute the  
Search button:

<button type="submit" title="<?php echo $this->__('Search') ?>" 
class="button">
<span><span>
<?php echo $this->__('Search') ?>
</span></span>
</button>

Remove the <span> elements highlighted in the preceding code, as these are  
no longer required in the new theme. Open your theme's styles.css file  
to provide some basic styling for the search text box and change its border color 
when it is focused on the following:

.input-text {
border: 1px #CCC solid;
border-radius: 3px;
padding: 3px;
}
  .input-text:active, .input-text:focus {
  border-color: #e57d04;
  }
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Removing the <span> elements helps to reduce the weight of the 
pages provided to customers a little, increasing the loading time of 
your store. However, if you aren't planning to heavily customize your 
Magento theme, you can leave these as they appear quite frequently 
throughout many Magento templates and can take some weeding out!

Next, you can add some styling to the buttons throughout your theme:

.button {
background: #e57d04;
border: none;
border-radius: 3px;
color: #fff;
font-weight: bold;
padding: 3px;
text-align: center;
}
.button:active, .button:focus {
background-color: #333;
}

Finally, you can add some styling to the search button specifically to include an 
image that will help your customers identify its purpose more easily:

.form-search .button {
background-image: url("../images/search.png");
background-repeat: no-repeat;
background-position: 3px center;
padding-left: 24px;
}

If you now refresh your Magento theme, you will see the change take effect:
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Adding a static block to a Magento 
template
Sometimes, you may need to add an editable block to your template to allow content 
to be easily updated through Magento's administration panel. Magento's static 
blocks allow you to do this, and they can be embedded in the Magento templates.

Creating a new static block
Firstly, you will need to create a static block in Magento. Log in to your store's 
administration panel and navigate to CMS | Static Blocks, as shown in the 
following screenshot:

Here, click on the Add New Block button at the top-right of your screen, as shown in 
the following screenshot:
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You can create your block here: the block Title field allows you to give your block 
a name, while the Identifier field is a machine-readable way to identify this specific 
block (remember this value, as you'll need it soon!).

Note that the value of the Identifier field cannot contain spaces or 
special characters, and it's typical to use an underscore character (_) 
here to separate words in the identifier's name.

The Status field allows you to enable or disable this specific block: ensure this  
is set to Enabled to be able to make use of the block in your template. Finally,  
the Content field allows you to specify content for this block; you can either  
make use of the Magento text editor tool here, or disable it and enter raw HTML.  
The following screenshot shows an example block:

Once you're ready, click on the Save Block button towards the top-right corner of 
your screen.

Inserting the static block into a template
Now that you have a static block ready, you can include it in a template within your 
Magento theme. The example static block created previously is for use in the footer 
of the website to give customers an idea what the store is about.
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Before you do this, you will need to copy the footer.phtml file from the /app/
design/frontend/base/default/template/page/html/ directory to the /app/
design/frontend/default/m18/page/html/ directory and locate the following 
lines:

<div class="footer-container">
<div class="footer">

Below these lines, insert the following snippet to insert the static block you created 
into the page at this point:

<div class="footer-container">
<div class="footer">
<div class="footer-about footer-col">
<?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
</div>

In the section that reads setBlockId('footer_about'), note that the footer_
about value is the identifier value of the block you created earlier. In the 
preceding code, the echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml() code tells Magento to insert the 
contents of the static block into Magento with the identifier footer_about.

If you refresh your Magento theme, you will see the new block's content appear in 
the footer area of your store:

www.allitebooks.com

http://www.allitebooks.org
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Customizing your Magento store's footer
Your theme's footer is currently quite unstyled and contains a lot of links you may 
not require. Open your theme's footer.phtml file in the /app/design/frontend/
default/m18/template/page/html/ directory and you will see something similar 
to the following code:

<div class="footer-container">
    <div class="footer">
      <div class="footer-about footer-col">
        <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
      </div>
        <?php echo $this->getChildHtml() ?>
        <p class="bugs"><?php echo $this->__('Help Us to Keep Magento 
Healthy') ?> - <a href="http://www.magentocommerce.com/bug-tracking" 
onclick="this.target='_blank'"><strong><?php echo $this->__('Report 
All Bugs') ?></strong></a> <?php echo $this->__('(ver. %s)', 
Mage::getVersion()) ?></p>
        <address><?php echo $this->getCopyright() ?></address>
    </div>
</div>

By removing the preceding highlighted code, you can begin to clean up your theme's 
footer and customize it for your own store. You can gain a little more control over 
the footer's layout by adding an additional <div> element around the content, as 
highlighted in the following code:

<div class="footer-container">
    <div class="footer">
      <div class="footer-about footer-col">
        <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
      </div>
<div class="footer-col footer-categories">
      <?php echo $this->getChildHtml() ?>
  </div>
        <address><?php echo $this->getCopyright() ?></address>
    </div>
</div>

You can now add some CSS to your theme's styles.css file to help provide a 
clearer layout for the content in the footer:

.footer-col {
float: left;
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margin: 1%;
width: 48%;
}
.footer address {
clear: both;
text-align: center;
}
.footer ul {
list-style: none;
}
  .footer ul li {
  display: block;
  }
.footer a {
color: #333;
text-decoration: none;
}
  .footer a:active, .footer a:hover {
  text-decoration: underline;
  }

You can also add some styling for specific content blocks in the footer you  
have created:

.footer-about p:first-of-type {
color: #e57d04;
font-size: 135%;
}
.footer-categories {
text-align: right;
}

If you now look at your theme's footer, you will see that it looks much more fitting 
for a Magento store:
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Listing all top-level categories in your 
Magento store
Many stores include a list of their top-level (primary) categories in their footer to 
help customers navigate to their products more easily. You can do this by adding  
a simple snippet of code to the footer template you have already customized.  
Open your theme's footer.phtml file and add the following highlighted code:

<div class="footer-container">
    <div class="footer">
      <div class="footer-about footer-col">
        <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
        <?php
            $_helper = Mage::helper('catalog/category');
            $_categories = $_helper->getStoreCategories();
            if (count($_categories) > 0): ?>
                <ul>
                    <?php foreach($_categories as $_category): ?>
                    <li><a href="<?php echo $_helper-
>getCategoryUrl($_category) ?>"><?php echo $_category->getName() ?>         
</a></li>
                  <?php endforeach; ?>
                </ul>
            <?php endif; ?>
        </div>
        <div class="footer-col footer-categories">
            <?php echo $this->getChildHtml() ?>
        </div>
        <address><?php echo $this->getCopyright() ?></address>
    </div>
</div>

For more information on the Mage Helper class, see the Magento 
documentation at http://docs.magentocommerce.com/
Mage_Core/Mage_Core_Helper_Abstract.html.

http://docs.magentocommerce.com/Mage_Core/Mage_Core_Helper_Abstract.html
http://docs.magentocommerce.com/Mage_Core/Mage_Core_Helper_Abstract.html
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Once you have saved this change, you should see your top-level categories appear in 
the footer:

Customizing your store's checkout  
and cart
You can pay some attention to the styling of your store's checkout and cart templates 
to better match the feel of your new Magento theme.

Styling the cart page
To view the cart page as it currently appears, add a product from your store to the 
cart and use the My Cart button in the header of your website:
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Open your theme's styles.css file in the /skin/frontend/default/m18/css/ 
directory and add the following CSS to the bottom of the file to style the cart table, 
which contains the products your customer is about to buy:

fieldset {
border: 0;
}
.a-right {
text-align: right;
}
.checkout-types, .form-list {
list-style: none;
margin: 10px 0;
}
.totals {
float: right;
}
.totals table {
width: 100%;
}
.checkout-types, .totals {
text-align: right;
}
.checkout-types li, .form-list li {
display: inline;
margin-right: 5px;
}
.form-list li.control {
display: block;
}
.data-table {
width: 100%;
}
.data-table a {
color: #000;
}
.data-table th, .data-table .even {
background: #f6f6f6;
}
.data-table th, .data-table td {
border-bottom: 1px #DDD solid;
padding: 5px;
}
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.discount, .shipping {
background: #f6f6f6;
border-radius: 5px;
margin-bottom: 10px;
padding: 5px;
}

Once this CSS has been added, your store's cart page will look more in line with your 
new Magento theme:
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Styling the checkout page
If you now click on the Proceed to checkout button on the cart screen, you will see 
Magento's checkout page, which currently looks similar to the following screenshot:

Add the following CSS to your theme's styles.css file to style the Your Checkout 
Progress block, which appears in the right-hand column of the checkout page to 
indicate to customers which stage of the checkout process they're at:

.block-progress {
border: 0;
margin: 0;
}
.block-progress dt {
background: #eee;
border: 1px solid #ccc;
color: #555;
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font-size: 10px;
line-height: 1.35;
margin: 0 0 6px;
padding: 2px 8px;
text-transform: uppercase;
}
.block-progress dd {
border-top: 0;
padding: 2px 10px;
margin: 0 0 6px;
}
.block-progress dt.complete a {
text-transform: none;
}
.block-progress p {
margin: 0;
}

Next, adding the CSS below provides styling for the buttons and form elements 
within the one-page checkout:

.opc .buttons-set {
margin-top: 0;
padding-top: 2em;
}
.opc .buttons-set p.required {
margin: 0;
padding: 0 0 10px;
}
.opc .buttons-set.disabled button.button {
display: none;
}
.opc .buttons-set .please-wait {
height: 28px;
line-height: 28px;
}
.opc .ul {
list-style: disc outside;
padding-left: 18px;
}
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Finally, adding the remaining CSS below provides the styling for the individual steps 
of the one-page checkout process, and different colors to indicate which particular 
step of the checkout your customer has completed:

.opc {
position: relative;
}
.opc .step-title {
background: #CCC;
border: 1px solid #CCC;
border-top-left-radius: 5px;
border-top-right-radius: 5px;
color: #555;
margin: 10px 0 0 0;
padding: 10px;
text-align: right;
}
.opc .step-title .number {
background: #fff;
border: 1px solid #fff;
border-radius: 3px;
color: #444;
float: left;
font: normal 11px/12px arial, helvetica, sans-serif;
margin: 0 5px 0 0;
padding: 0 3px;
}
.opc .step-title h2 {
color: #555;
float: left;
font: bold 12px/14px Arial, Helvetica, sans-serif;
margin: 0;
}
.opc .step-title a {
display: none;
float: right;
font-size: 11px;
line-height: 16px;
}
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.opc .allow .step-title {
background: #999;
border-color: #999;
border-top-color: #fff;
color: #fff;
cursor: pointer;
}
.opc .allow .step-title h2 {
color: #fff;
}
.opc .allow .step-title a {
color: #fff;
display: block;
font-size: 10px;
text-transform: uppercase;
}
.opc .active .step-title {
background: #e57d04;
border: none;
color: #fff;
cursor: default;
}
.opc .active .step-title h2 {
color: #fff;
}
.opc .active .step-title a {
display: none;
}
.opc .step {
border: 1px solid #ccc;
border-top: 0;
background: #f9f9f9;
padding: 15px 30px;
position: relative;
}
.opc .step .tool-tip {
right: 30px;
}
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If you now review your store's checkout, you will see that it is styled more neatly to 
help guide your customers through Magento's one-page checkout process:

Summary
This chapter explored how you can identify which Magento template is responsible 
for which block of content in your Magento theme. You also learned how you can 
use Magento template files to customize your theme, create a basic layout for your 
Magento theme, customize your store's header and the search feature, add a static 
block to a Magento template, customize your store's footer, and style your store's 
checkout and cart. Further chapters will dig deeper into ways to build your custom 
Magento theme using the Magento layout files and more advanced template 
manipulation.



Magento Layout
You have now looked at the changes you can make to your Magento theme using 
CSS and template changes. This chapter introduces Magento's layout language, 
which can be used to change the appearance and order of blocks within your 
Magento theme and covers the following:

•	 Adding a local.xml file to your theme
•	 Changing the default page template
•	 Changing a page's layout via CMS
•	 Adding a static block to a page using the Magento layout
•	 Changing the ordering of blocks in Magento's sidebar
•	 Removing unnecessary blocks from Magento's sidebar
•	 Adding a new products block to your store's home page

Adding local.xml to your Magento theme
As you have seen, Magento provides fallbacks to fill in the files not provided by 
your theme to help ensure your website functions as effectively as possible. You can 
overwrite the layout information in your Magento theme by applying a local.xml 
file to your Magento theme.

Create a file called local.xml in your theme's /app/design/frontend/default/
m18/layout/ directory, and include the following XML:

<?xml version="1.0"?>
<layout>
</layout>

This is the very least your Magento XML layout file requires: all of the subsequent 
changes to your theme's layout need to be written in the <layout> element.
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Using layout to change your default 
Magento page template
Each page in your Magento store uses a skeleton layout; these are typically one of the 
following:

•	 One-column layout
•	 Two-column layout with a right-hand sidebar
•	 Two-column layout with a left-hand sidebar
•	 Three-column layout

Some pages may have specific templates assigned to them (for example, your 
one-page checkout may use the one-column layout while pages created through 
Magento's CMS tool may use a two-column layout with left sidebar layout), but 
pages that are not specifically given a layout inherit the default page layout.

Types of blocks within Magento
There are two types of blocks within Magento:

•	 Structural blocks: These blocks provide regions that Magento can assign 
content blocks into. These structural blocks act as a skeleton for your store's 
content, and typically include the header, footer, content, and sidebar blocks.

•	 Content blocks: These blocks provide reusable blocks of content that are 
populated as required. Examples of content blocks in Magento include the 
category product listings (which would typically be included in the content 
structural block) and the category navigation block (typically assigned to the 
header structural block).

Changing a page's template using the XML 
layout
You can change this default page layout in your Magento theme by adding Magento 
XML layout instructions in your theme's local.xml file. Open your theme's local.
xml file you created in the previous section of this chapter, and add the following 
highlighted code to change the default page template to the one column layout:

<?xml version="1.0"?>
<layout>
  <default>
    <reference name="root">
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      <action method="setTemplate">
        <template>page/1column.phtml</template>
      </action>   
    </reference>
  </default>
</layout>

The <default> handle applies this change to all, unless they are specifically 
overwritten for a particular type of page within Magento (for example, the  
one-page checkout or category pages), while the <reference> name attribute  
tells Magento where this change is to be made: the <root> applies this to the  
top-most structural block.

Finally, the <action> element in the XML tells Magento to use the template called 
1column.phtml in the /page/ directory within your theme's templates directory.

This path is relative to the /app/design/frontend/default/m18/
template/ directory if the file exists in the m18 theme, or else it will 
fallback and find this file in another default theme.

If you save this change, you will see that the one column layout is applied to pages 
without a more specific layout set through Magento's content management tool. 
On the example site, you can see that the Orders & Returns page (at http://
www.example.com/sales/guest/form/ if you installed Magento at http://www.
example.com) has now adopted the one column layout you used in local.xml file:

http://www.example.com/sales/guest/form/
http://www.example.com/sales/guest/form/
http://www.example.com
http://www.example.com
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Note that the product listings haven't been styled yet! You'll come 
to that later on.

Changing a page's layout using 
Magento's CMS tool
Apart from using Magento layout files to define which pages use which page 
layouts, you can also use Magento's CMS to apply specific layouts to specific pages 
created through the content management tool.

Layout changes specified in Magento's CMS tool will overwrite 
layout changes made within your theme's XML files.

The following example will edit the layout of the About Us page in the store, which 
has a two column including the right sidebar layout assigned to it by default, as you 
can see in the following screenshot:
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Log in to your Magento administration panel and navigate to CMS | Pages:

From here, select a page to edit by clicking on its corresponding row in the list  
of pages:

When editing the page you want to change the layout for, navigate to the Design tab 
that appears in the left-hand side column:

In the Layout field that appears under the Page Layout block, as shown in the 
following screenshot, you can select an available page layout from the dropdown. 
Select the 1 column option and click on the Save Page button at the top-right corner 
of the screen to save this setting:
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If you now view the frontend of your Magento store and navigate to the About Us 
page you edited, you will see that the new layout has been applied:

Adding a static block to a page using the 
Magento layout
As you saw in the previous chapter on Magento templates, you can add static blocks 
that are created through Magento's CMS into your theme's templates and pages. 
Magento layout also allows you to add a static block that is created and managed by 
Magento's CMS tool to an area of your Magento layout.

You need to create a static block by navigating to CMS | Static Blocks in Magento's 
administration panel. This example will use a block identifier of sidebar_promise, 
which you will need to remember when it comes to applying the layout to display 
this block:
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Once you have created your static block, open your theme's local.xml file to  
assign the static block you created earlier to the left sidebar using the following 
highlighted XML:

<?xml version="1.0"?>
<layout>
  <default>
    <reference name="left">
      <block type="cms/block" name="left.delivery">
        <action method="setBlockId">
          <block_id>sidebar_promise</block_id>
        </action>
      </block>
    </reference>
  </default>
</layout>

Once you have saved this change, navigate to the frontend of your store and view 
the page you edited to see the new block appear in the sidebar:

The static block is displayed in the lower-left corner of the sidebar

You can now style this block as you wish by introducing the necessary HTML  
and CSS.
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Assigning a static block to a page in 
Magento's CMS
You can also assign a static block to a specific page using Magento's CMS. Once  
you have created your static block, navigate to CMS | Pages and select a page you 
want to assign the static block to. From there, select the Design tab for the page 
and ensure that the Layout field is set to 2 columns with right bar, as shown in the 
following screenshot:

Next, add the following XML to the page's Layout Update XML field to assign the 
sidebar_promise static block to the right-hand side column on this page:

<reference name="right">
<block type="cms/block" name="right.delivery">
<action method="setBlockId"><block_id>sidebar_promise</block_id></
action>
</block>
</reference>

Once entered, your Design tab for this page should look similar to the  
following screenshot:
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Click on the Save Page button at the top-right corner of the screen and view this 
page on the frontend of your Magento store. You will see the block is appended to 
the bottom of the right-hand sidebar:

If you don't see your change appear, ensure that you refresh Magento's caches by 
navigating to System | Cache Management.

Changing the ordering of blocks in 
Magento's sidebar
Apart from giving you the power to add and remove blocks from templates, the 
Magento layout gives you the power to reorder blocks within your pages too. There 
are a few ways you could rearrange the blocks in your theme's sidebar, for instance, 
by moving a specific block:

•	 Below another block
•	 To the very top of the list of blocks
•	 To the very bottom of the list of blocks
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Repositioning a block below a specific block
As an example, take the current right sidebar in your theme, which will look similar 
to what is shown in the following screenshot:

Firstly, you can add some simple styling to the sidebar blocks to help us distinguish 
them from each other. Open your theme's styles.css file in the /skin/frontend/
default/m18/css/ directory and add the following CSS:

.block {
background: #fff;
border-radius: 10px;
box-shadow: #CCC 0 10px 20px;
margin-bottom: 20px;
}
.block-title {
background: #e57d04;
color: #fff;
font-weight: bold;
}
.block-content,
.block-title {
padding: 10px;
}
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.block-banner .block-content {
padding: 0;
}

If you now refresh your store, the blocks in the sidebar will look more distinct from 
each other:

Next, you will need to open your theme's local.xml file in the /app/design/
frontend/default/m18/layout/ directory of your Magento installation. If you 
want to move the Compare Products block above the My Cart callout block, you will 
use the after attribute in Magento layout to specify the block it appears after. 
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In Magento, the typical way to do this is to first unset the Compare Products block 
and then reinsert the block below the My Cart block:

<reference name="right">
<action method="unsetChild">
<name>catalog.compare.sidebar</name>
</action> 
<block type="catalog/product_compare_sidebar" after="cart_sidebar" 
name="catalog.compare.sidebar.replacement" template="catalog/product/
compare/sidebar.phtml"/>
</reference>

The name values need to match the block name within Magento; one 
of the best ways to track down specific block names for your needs 
is to look through the layout files in the /app/design/frontend/
base/default/layout/ and /app/design/frontend/default/
default/layout/ directories.

The after value which blocks the repositioned block appears below while the 
template attribute defines which Magento template file should be used to render 
this block's content (in relation to the /app/design/frontend/your-package/your-
theme/template/ directory).

If you now refresh a page on your store with the right sidebar enabled, you will see 
the blocks' ordering has been changed:
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Once again, if you can't see the change on your store, ensure that you have refreshed 
or disabled Magento's caches by navigating to System | Cache Management in your 
Magento store's control panel.

Reordering a block above all other blocks
Alternatively, you can move blocks within regions of your Magento templates to the 
top of all other blocks. Open your theme's local.xml file and add the layout XML:

<reference name="right">
<action method="unsetChild">
<name>catalog.compare.sidebar</name>
</action> 
<block type="catalog/product_compare_sidebar" before="-" 
name="catalog.compare.sidebar.replacement" template="catalog/product/
compare/sidebar.phtml"/>
</reference>

Note the similarities with the preceding snippet; though in the previous example, 
you replace the after attribute with before and assign this attribute the value of -, 
which indicates it should be shown before all other blocks. If you refresh your page 
with the right sidebar visible, you will now see the blocks have reordered once again 
to show Compare Products at the top of the sidebar:
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Reordering a block below all other blocks
It is also possible to use this method to render blocks in your Magento template 
regions to position a specific block below all other blocks. Once again, open your 
local.xml file and use the following Magento layout XML to reorder the Compare 
Products block to the bottom of the blocks in the sidebar:

<reference name="right">
<remove name="catalog.compare.sidebar" />
<block type="catalog/product_compare_sidebar" after="-" name="catalog.
compare.sidebar.replacement" template="catalog/product/compare/
sidebar.phtml"/>
</reference>

Note that the preceding XML uses the after attribute with a value of - (hyphen) to 
tell Magento to place this block after all others in this region. Refresh your screen 
once again to see the change take effect:
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Removing unnecessary blocks from 
Magento's sidebar
As you can see from the previous screenshots of this chapter, there are quite a few 
blocks displayed in Magento's sidebars by default that you will not want to use. 
You can set these not to display in your theme customizing your theme's layout 
instructions.

Open your theme's local.xml file and apply the following XML:

<reference name="left">
<remove name="left.permanent.callout"/>
<remove name="right.newsletter"/>
<remove name="cart_sidebar"/>
<remove name="sale.reorder.sidebar"/>
</reference>

<reference name="right">
<remove name="right.permanent.callout"/>
<remove name="livechat.chat"/>
<remove name="right.poll"/>
<remove name="paypal.partner.right.logo"/>
<remove name="cart_sidebar"/>
<remove name="sale.reorder.sidebar"/>
<remove name="catalog.compare.sidebar"/>
</reference>

This removes commonly unused blocks in your Magento theme:

•	 The cart box in the sidebar
•	 The customer wishlist widget and "compare products" widget
•	 The placeholder advertisements ("callouts") in the left and right sidebars
•	 The list of previously viewed and compared products displayed in the  

right sidebar
•	 The newsletter subscription and customer poll widgets, and the PayPal logo 

included in Magento's sample widgets
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If you save your local.xml file and look again at your Magento store, you will see 
these blocks have now been removed from your store:

If you can't see your changes, ensure that you have refreshed or disabled 
Magento's caches by navigating to System | Cache Management.

Customizing the home page's layout
You have seen how to apply a page layout to specific pages, but to apply a specific 
template to your store's home page, you can add more specific layout instructions  
in your theme's local.xml file.

The layout handle for the home page is cms_index_index. So, to assign the home 
page the one column layout, you will add the following to your Magento theme's 
local.xml file:

<cms_index_index>
<reference name="root">
<action method="setTemplate">
<template>page/1column.phtml</template>
</action>
</reference>
</cms_index_index>

Note, though, that the layout can be overwritten through Magento's CMS tool, so  
this is unlikely to work in practice. You can navigate to CMS | Pages in your 
Magento installation's administration panel and set your page's layout using the 
Layout drop-down field in the Design tab:



Chapter 4

[ 85 ]

An incomplete list of layout handles available in Magento is available at 
http://www.magentocommerce.com/boards/viewthread/2471/.

Adding new product block to the  
home page
A common requirement of e-commerce stores is to display a number of newly added 
products on the home page; this can be useful for search engines (to encourage new 
products to be indexed more quickly) and customers who are visiting again to find 
newly added stock on your website.

Marking products as new in Magento
Before you start making changes to your theme, ensure that you have a few products 
marked as "new" within Magento. To do this, log in to your Magento administration 
panel and navigate to Catalog |Manage Products. From there, select a product that 
you wish to mark as new. On the General tab, enter date values for the Set Product 
as New from Date and Set Product as New to Date fields that include the current 
date so the products are currently marked as "new" within Magento:

http://www.magentocommerce.com/boards/viewthread/2471/
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Once you have done this, click on the Save button at the top-right corner of your 
screen. You may wish to add more than one product to the new products list  
using this method.

Using XML layout to add the New Products 
block to your store's home page
Once you have assigned some products in your store to the new products list, open 
your theme's local.xml file and add the following highlighted XML within the cms_
index_index handle:

<cms_index_index>
<reference name="content">
<block type="catalog/product_new" template="catalog/product/new.
phtml">
<action method="setProductsCount"><count>3</count></action>
<action method="addColumnCountLayoutDepend"><layout>empty</
layout><count>5</count></action>
<action method="addColumnCountLayoutDepend"><layout>one_column</
layout><count>5</count></action>
<action method="addColumnCountLayoutDepend"><layout>two_columns_left</
layout><count>4</count></action>
<action method="addColumnCountLayoutDepend"><layout>two_columns_
right</layout><count>4</count></action>
<action method="addColumnCountLayoutDepend"><layout>three_columns</
layout><count>3</count></action>
</block>
</reference>
</cms_index_index>

If you refresh the home page, you will see the products you marked as "new" in 
Magento's administration panel are now visible, but they are not styled:
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Finally, you can apply some styling to the product grid by adding the following CSS 
to your styles.css file in the /skin/frontend/default/m18/css/ directory:

.products-grid {
border-bottom: 1px solid #CCC;
list-style: none;
position: relative;
}
.products-grid.last {
border-bottom: 0;
}
.products-grid li.item {
border-right: 1px #CCC solid;
float: left;
width: 138px;
padding: 12px 10px 80px;
}
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.products-grid li.item.last {
border-right: none;
}
.products-grid .product-image {
display: block;
height: 135px; 
margin: 0 0 10px;
width: 135px;
}
.products-grid .product-name {
color: #e57d04;
font-size: 0.9em;
font-weight: bold;
margin: 0 0 5px;
}
.products-grid .product-name a {
color:#203548;
}
.products-grid .price-box {
margin:5px 0;
}
.products-grid .availability { 
line-height:21px;
}
.products-grid .actions {
position:absolute;
bottom:12px;
}

.add-to-links {
list-style: none;
font-size: 0.8em;
margin-top: 10px;
}
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This provides a neater product grid to display your products throughout your 
Magento store, including the New Products block that now appears on the  
home page:

Summary
In this chapter, you learned how using and applying Magento layout allows you 
to alter how Magento behaves and appears to your customers. In particular, you 
created a local.xml file to hold your theme's custom layout instructions, changed 
the default page template, and used Magento's CMS to change a page's layout. You 
also assigned a static block to a page using Magento layout and altered blocks from 
Magento's sidebar templates. Finally, you added a new products block to your store's 
home page template.

Further chapters will provide more ideas for the customization of your Magento 
theme, from customizing store e-mails to improving your store for mobile users.





Social Media and Magento
So, you've begun to develop your own custom Magento 1.8 theme now. Social 
networks such as Twitter and Facebook are ever popular and can be a great  
source of new customers if used correctly on your store. This chapter covers the 
following topics:

•	 Integrating a Twitter feed into your Magento store
•	 Integrating a Facebook Like Box into your Magento store
•	 Including social share buttons in your product pages
•	 Integrating product videos from YouTube into the product page

Integrating a Twitter feed into your 
Magento store
If you're active on Twitter, it can be worthwhile to let your customers know. While 
you can't (yet, anyway!) accept payment for your goods through Twitter, it can be 
a great way to develop a long term relationship with your store's customers and 
increase repeat orders.

One way you can tell customers you're active on Twitter is to place a Twitter feed that 
contains some of your recent tweets on your store's home page. While you need to 
be careful not to get in the way of your store's true content, such as your most recent 
products and offers, you could add the Twitter feed in the footer of your website.
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Creating your Twitter widget
To embed your tweets, you will need to create a Twitter widget. Log in to your 
Twitter account, navigate to https://twitter.com/settings/widgets, and follow 
the instructions given there to create a widget that contains your most recent tweets. 
This will create a block of code for you that looks similar to the following code:

<a class="twitter-timeline" href="https://twitter.com/RichardCarter" 
data-widget-id="123456789999999999">Tweets by @RichardCarter</a>
<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)
[0],p=/^http:/.test(d.location)?'http':'https';if(!d.
getElementById(id)){js=d.createElement(s);js.id=id;js.
src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.
insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>

Embedding your Twitter feed into a  
Magento template
Once you have the Twitter widget code to embed, you're ready to embed it into one 
of Magento's template files. This Twitter feed will be embedded in your store's footer 
area. So, so open your theme's /app/design/frontend/default/m18/template/
page/html/footer.phtml file and add the highlighted section of the following code:

<div class="footer-about footer-col">
<?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
<?php 
$_helper = Mage::helper('catalog/category');
$_categories = $_helper->getStoreCategories();
if (count($_categories) > 0): ?>
<ul>
<?phpforeach($_categories as $_category): ?>
<li>
<a href="<?php echo $_helper->getCategoryUrl($_category) ?>">
<?php echo $_category->getName() ?>
</a>
</li>
<?phpendforeach; ?>
</ul>
<?phpendif; ?>
<a class="twitter-timeline" href="https://twitter.com/RichardCarter" 
data-widget-id="123456789999999999">Tweets by @RichardCarter</a>

https://twitter.com/settings/widgets
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<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)
[0],p=/^http:/.test(d.location)?'http':'https';if(!d.
getElementById(id)){js=d.createElement(s);js.id=id;js.
src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.
insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>
</div>

The result of the preceding code is a Twitter feed similar to the following one 
embedded on your store:

As you can see, the Twitter widget is quite cumbersome. So, it's wise to be 
sparing when adding this to your website. Sometimes, a simple Twitter 
icon that links to your account is all you need!

You could also use a static block in Magento to contain your Twitter feed; refer to 
Chapter 4, Magento Layout, to see how you can add a static block to a Magento template.

Integrating a Facebook Like Box into 
your Magento store
Facebook is one of the world's most popular social networks; with careful 
integration, you can help drive your customers to your Facebook page and increase 
long term interaction. This will drive repeat sales and new potential customers to 
your store. One way to integrate your store's Facebook page into your Magento site 
is to embed your Facebook page's news feed into it.
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Getting the embedding code from Facebook
Getting the necessary code for embedding from Facebook is relatively easy; navigate 
to the Facebook Developers website at https://developers.facebook.com/docs/
plugins/like-box-for-pages. Here, you are presented with a form. Complete 
the form to generate your embedding code; enter your Facebook page's URL in the 
Facebook Page URL field (the following example uses Magento's Facebook page):

Click on the Get Code button on the screen to tell Facebook to generate the code  
you will need, and you will see a pop up with the code appear as shown in the 
following screenshot:

https://developers.facebook.com/docs/plugins/like-box-for-pages
https://developers.facebook.com/docs/plugins/like-box-for-pages
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Adding the embed code into your  
Magento templates
Now that you have the embedding code from Facebook, you can alter your 
templates to include the code snippets. The first block of code for the JavaScript 
SDK is required in the header.phtml file in your theme's directory at /app/design/
frontend/default/m18/template/page/html/. Then, add it at the top of the file:

<div id="fb-root"></div>
<script>(function(d, s, id) {
varjs, fjs = d.getElementsByTagName(s)[0];
  if (d.getElementById(id)) return;
  js = d.createElement(s); js.id = id;
  js.src = "//connect.facebook.net/en_GB/all.js#xfbml=1";
  fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));</script>
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Next, you can add the second code snippet provided by the Facebook Developers 
site where you want the Facebook Like Box to appear in your page. For flexibility, 
you can create a static block in Magento's CMS tool to contain this code and then use 
the Magento XML layout to assign the static block to a template's sidebar.

Navigate to CMS | Static Blocks in Magento's administration panel and add a new 
static block by clicking on the Add New Block button at the top-right corner of the 
screen. Enter a suitable name for the new static block in the Block Title field and give 
it a value facebook in the Identifier field. Disable Magento's rich text editor tool by 
clicking on the Show / Hide Editor button above the Content field.

Enter in the Content field the second snippet of code the Facebook Developers 
website provided, which will be similar to the following code:

<div class="fb-like-box" data-href="https://www.facebook.com/Magento" 
data-width="195" data-colorscheme="light" data-show-faces="true" data-
header="true" data-stream="false" data-show-border="true"></div>

Once complete, your new block should look like the following screenshot:

Click on the Save Block button to create a new block for your Facebook widget. Now 
that you have created the block, you can alter your Magento theme's layout files to 
include the block in the right-hand column of your store.

Next, open your theme's local.xml file located at /app/design/frontend/
default/m18/layout/ and add the following highlighted block of XML to it. This 
will add the static block that contains the Facebook widget:

<reference name="right">
<block type="cms/block" name="cms_facebook">
<action method="setBlockId"><block_id>facebook</block_id></action>
</block>
<!--other layout instructions -->
</reference>
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If you save this change and refresh your Magento store on a page that uses the  
right-hand column page layout, you will see your new Facebook widget appear  
in the right-hand column. This is shown in the following screenshot:

Including social share buttons in your 
product pages
Particularly if you are selling to consumers rather than other businesses, you can 
make use of social share buttons in your product pages to help customers share 
the products they love with their friends on social networks such as Facebook and 
Twitter. One of the most convenient ways to do this is to use a third-party service 
such as AddThis, which also allows you to track your most shared content. This is 
useful to learn which products are your most-shared products within your store!

Styling the product page a little further
Before you begin to integrate the share buttons, you can style your product page to 
provide a little more layout and distinction between the blocks of content. Open your 
theme's styles.css file and append the following CSS (located at /skin/frontend/
default/m18/css/) to provide a column for the product image and a column for the 
introductory content of the product:

.product-img-box, .product-shop {
float: left;
margin: 1%;
padding: 1%;
width: 46%;
}
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You can also add some additional CSS to style some of the elements that appear on 
the product view page in your Magento store:

.product-name {
margin-bottom: 10px;
}
.or {
color: #888;
display: block;
margin-top: 10px;
}
.add-to-box {
background: #f2f2f2;
border-radius: 10px;
margin-bottom: 10px;
padding: 10px;
}
.more-views ul {
list-style-type: none;
}

If you refresh a product page on your store, you will see the new layout take effect:
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Integrating AddThis
Now that you have styled the product page a little, you can integrate AddThis with 
your Magento store. You will need to get a code snippet from the AddThis website at 
http://www.addthis.com/get/sharing. Your snippet will look something similar 
to the following code:

<div class="addthis_toolboxaddthis_default_style ">
<a class="addthis_button_facebook_like" fb:like:layout="button_
count"></a>
<a class="addthis_button_tweet"></a>
<a class="addthis_button_pinterest_pinit" 
pi:pinit:layout="horizontal"></a>
<a class="addthis_counteraddthis_pill_style"></a>
</div>
<script type="text/javascript">varaddthis_config = {"data_track_
addressbar":true};</script>
<script type="text/javascript" src="//s7.addthis.com/js/300/addthis_
widget.js#pubid=youraddthisusername"></script>

Once the preceding code is included in a page, this produces a social share tool that 
will look similar to the following screenshot:

Copy the product view template from the view.phtml file from /app/design/
frontend/base/default/catalog/product/ to /app/design/frontend/default/
m18/catalog/product/ and open your theme's view.phtml file for editing. You 
probably don't want the share buttons to obstruct the page name, add-to-cart area, 
or the brief description field. So, positioning the social share tool underneath those 
items is usually a good idea. Locate the snippet in your view.phtml file that has the 
following code:

<?php if ($_product->getShortDescription()):?>
<div class="short-description">
<h2><?php echo $this->__('Quick Overview') ?></h2>
<div class="std"><?php echo $_helper->productAttribute($_product, 
nl2br($_product->getShortDescription()), 'short_description') ?></div>
</div>
<?phpendif;?>

http://www.addthis.com/get/sharing
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Below this block, you can insert your AddThis social share tool highlighted  
in the following code so that the code is similar to the following block of  
code (the youraddthisusername value on the last line becomes your AddThis 
account's username):

<?php if ($_product->getShortDescription()):?>
<div class="short-description">
<h2><?php echo $this->__('Quick Overview') ?></h2>
<div class="std"><?php echo $_helper->productAttribute($_product, 
nl2br($_product->getShortDescription()), 'short_description') ?></div>
</div>
<?phpendif;?>

<div class="addthis_toolboxaddthis_default_style ">
<a class="addthis_button_facebook_like" fb:like:layout="button_
count"></a>
<a class="addthis_button_tweet"></a>
<a class="addthis_button_pinterest_pinit" 
pi:pinit:layout="horizontal"></a>
<a class="addthis_counteraddthis_pill_style"></a>
</div>
<script type="text/javascript">varaddthis_config = {"data_track_
addressbar":true};</script>
<script type="text/javascript" src="//s7.addthis.com/js/300/addthis_
widget.js#pubid=youraddthisusername"></script>

If you want to reuse this block in multiple places throughout your store, consider 
adding this to a static block in Magento and using Magento's XML layout to add the 
block as required. This is described in Chapter 4, Magento Layout.

Once again, refresh the product page on your Magento store and you will see 
the AddThis toolbar appear as shown in the following screenshot. It allows 
your customers to begin sharing their favorite products on their preferred social 
networking sites.
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If you can't see your changes, don't forget to clear your caches by 
navigating to System | Cache Management.

If you want to provide some space between other elements and the AddThis toolbar, 
add the following CSS to your theme's styles.css file:

.addthis_toolbox {
margin: 10px 0;
}

The resulting product page will now look similar to the following screenshot.  
You have successfully integrated social sharing tools on your Magento store's 
product page:
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Integrating product videos from YouTube 
into the product page
An increasingly common occurrence on ecommerce stores is the use of video in 
addition to product photography. The use of videos in product pages can help 
customers overcome any fears they're not buying the right item and give them a 
better chance to see the quality of the product they're buying. You can, of course, 
simply add the HTML provided by YouTube's embedding tool to your product 
description. However, if you want to insert your video on a specific page within  
your product template, you can follow the steps described in this section.

Product attributes in Magento
Magento products are constructed from a number of attributes (different fields), 
such as product name, description, and price. Magento allows you to customize 
the attributes assigned to products, so you can add new fields to contain more 
information on your product. Using this method, you can add a new Video attribute 
that will contain the video embedding HTML from YouTube and then insert it into 
your store's product page template.

An attribute value is text or other content that relates to the attribute, for example, 
the attribute value for the Product Name attribute might be Blue Tshirt.

Magento allows you to create different types of attribute:

•	 Text Field: This is used for short lines of text.
•	 Text Area: This is used for longer blocks of text.
•	 Date: This is used to allow a date to be specified.
•	 Yes/No: This is used to allow a Boolean true or false value to be assigned  

to the attribute.
•	 Dropdown: This is used to allow just one selection from a list of options  

to be selected.
•	 Multiple Select: This is used for a combination box type to allow one or 

more selections to be made from a list of options provided.
•	 Price: This is used to allow a value other than the product's price, special 

price, tier price, and cost. These fields inherit your store's currency settings.
•	 Fixed Product Tax: This is required in some jurisdictions for certain types of 

products (for example, those that require an environmental tax to be added).
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Creating a new attribute for your video field
Navigate to Catalog | Attributes | Manage Attributes in your Magento store's 
control panel. From there, click on the Add New Attribute button located near the 
top-right corner of your screen:

In the Attribute Properties panel, enter a value in the Attribute Code field that will 
be used internally in Magento to refer this. Remember the value you enter here, as 
you will require it in the next step! We will use video as the Attribute Code value in 
this example (this is shown in the following screenshot). You can leave the remaining 
settings in this panel as they are to allow this newly created attribute to be used with 
all types of products within your store.
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In the Frontend Properties panel, ensure that Allow HTML Tags on Frontend is 
set to Yes (you'll need this enabled to allow you to paste the YouTube embedding 
HTML into your store and for it to work in the template). This is shown in the 
following screenshot:

Now select the Manage Labels / Options tab in the left-hand column of your  
screen and enter a value in the Admin and Default Store View fields in the  
Manage Titles panel:



Chapter 5

[ 105 ]

Then, click on the Save Attribute button located near the top-right corner of the 
screen. Finally, navigate to Catalog | Attributes | Manage Attribute Sets and select 
the attribute set you wish to add your new video attribute to (we will use the Default 
attribute set for this example). In the right-hand column of this screen, you will see the 
list of Unassigned Attributes with the newly created video attribute in this list:

Drag-and-drop this attribute into the Groups column under the General group as 
shown in the following screenshot:
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Click on the Save Attribute Set button at the top-right corner of the screen to add the 
new video attribute to the attribute set.

Adding a YouTube video to a product using 
the new attribute
Once you have added the new attribute to your Magento store, you can add a video 
to a product. Navigate to Catalog | Manage Products and select a product to edit 
(ensure that it uses one of the attribute sets you added the new video attribute to). 
The new Video field will be visible under the General tab:

Insert the embedding code from the YouTube video you wish to use on your product 
page into this field. The embed code will look like the following:

<iframe width="320" height="240" src="//www.youtube.com/embed/
dQw4w9WgXcQ?rel=0" frameborder="0" allowfullscreen></iframe>

Once you have done that, click on the Save button to save the changes to the product.

Inserting the video attribute into your product 
view template
Your final task is to allow the content of the video attribute to be displayed in your 
product page templates in Magento. Open your theme's view.phtml file from /
app/design/frontend/default/m18/catalog/product/ and locate the following 
snippet of code:

<div class="product-img-box">
<?php echo $this->getChildHtml('media') ?>
</div>
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Add the following highlighted code to the preceding code to check whether a video 
for the product exists and show it if it does exist:

<div class="product-img-box">
<?php
$_video-html = $_product->getResource()->getAttribute('video')-
>getFrontend()->getValue($_product);
if ($_video-html) echo $_video-html ;
?>
<?php echo $this->getChildHtml('media') ?>
</div>

If you now refresh the product page that you have added a video to, you will see 
that the video appears in the same column as the product image. This is shown in the 
following screenshot:
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Summary
In this chapter, we looked at expanding the customization of your Magento theme 
to include elements from social networking sites. You learned about integrating 
a Twitter feed and Facebook feed into your Magento store, including social share 
buttons in your product pages, and integrating product videos from YouTube. In the 
following chapters, we will look at improving your theme for mobile devices and 
customizing Magento's transactional e-mail templates.



Advanced Magento Theming
Now you have seen the basics of creating a custom Magento theme, and you will 
build on this using the following techniques in this chapter:

•	 Adding a custom print style sheet to your Magento store
•	 Using locales to translate labels/phrases in your store
•	 Using @font-face in Magento
•	 Styling Magento's layered navigation
•	 Creating a custom 404 "not found" error page
•	 Using microformats for rich snippets to enhance search engine listings

Adding a custom print style sheet to  
your Magento store
So far, you've styled your Magento store for electronic screens, but what about  
for those customers who want to print product pages? Even in this digital age,  
some customers like to print details of a product and review them offline.
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You can specify a separate CSS file in your Magento theme to be applied when your 
documents are printed. By default, Magento inherits the print.css file in the /
skin/frontend/default/default/css/ directory, which provides some basic 
styling for printed documents, such as removing navigation and the store's footer,  
as shown in the following screenshot:

As you can see, there is still some work to be done here, as the sidebar content  
(the Facebook box) isn't functional or useful when the page is printed!

You can view the print version of your Magento theme in 
most browsers by using the Print preview tool.

You can overwrite the print.css style sheet for your theme by creating a file called 
print.css in your theme's css directory (for example, /skin/frontend/default/
m18/css/), but this will overwrite some of the work that the base print style sheet 
already does to help style your store's pages better for printing. Instead of overwriting 
this file, you can add another CSS file to add custom style instructions for printing.
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To do this, open your theme's local.xml file (in the /app/design/frontend/
default/m18/layout/ directory) and add the highlighted XML instruction within 
the <default> handle:

<default>
<reference name="head">
  <action method="addCss">
      <name>css/print-custom.css</name>
    <params>media="print"</params>
  </action>   
</reference>
</default>

You can now create a new CSS file called print-custom.css in the /skin/
frontend/default/m18/css/ directory and begin to add the print CSS specific  
to your new Magento theme:

.sidebar {
display: none;
}

If you now refresh the print preview of the page, you will see that the sidebar has been 
hidden in the following screenshot, and the content printed is much more useful!
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Using locales to translate phrases in 
your store
Magento supports multilingual stores, and offers locale files to allow content in 
the interface to be translated. Page and product content is translated through 
Magento's administration panel (for example, you will have an English "terms and 
conditions" page and a separate "terms and conditions" page for the French version 
of your store). Interface labels—such as the text in buttons and the user bar—can be 
translated by adding a locale file to your Magento theme.

At the moment, our Magento theme displays the text as Add to Cart on the  
product screen:

By using Magento locale files, you can change the wording to something more 
appropriate for your store; in the following example, Add to Cart will be changed  
to Add to basket.
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Creating a Magento locale file
A Magento locale file is a Comma Separate Values (CSV) file, which contains 
alternate translations for specified labels in your store's interface. The default text  
for this phrase is in the left-hand column; the right-hand column contains the new 
translation for this text.

You can download the official locale files for Magento in many languages 
from http://www.magentocommerce.com/translations.

Create a file called translate.csv in the /app/design/frontend/default/m18/
locale/en_GB/ directory. The last directory's name equates to the locale language's 
ISO 639 code; en_GB indicates that this is a British English translation. Add the 
following line for a change in the button's label on the product page highlighted above:

"Add to Cart", "Add to basket"

You can add more translations for your store's theme in this locale file by adding one 
phrase per line:

"Add to Cart", "Add to basket"
"My Cart", "My basket"
"Cart", "Basket"

You now need to navigate to System | Configuration, and select Locale Options 
under the General tab to see the value of the Locale field; in the following 
screenshot, it is set to English (United Kingdom):

http://www.magentocommerce.com/translations
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If you have changed the value of Locale, click on the Save Config button at the  
top-right corner of the screen and refresh your store once you've saved these 
changes. You should now be able to see the new translations, as shown in the 
following screenshot:

The translate function
Only the text filtered through the __() function, which is an alias (alternate name) of 
the translate() function, is translated in this way. For example, the following code 
snippet will allow you to translate the text of the heading through locale files:

<h2><?php echo $this->__('Create an Account') ?></h2>

Alternatively, the following example, which does not use the __() function, will not 
use the alternate text provided in the locale file:

<h2>Create an Account</h2>

You can also enable inline translation for your Magento store by navigating to 
System | Configuration | Developer | Translate Inline.
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Using Google Web Fonts and @font-face
With the advent of the @font-face support across browsers, you can use custom 
fonts from services such as Google Web Fonts (https://www.google.com/fonts/) 
in your Magento theme.

Including Google Web Font in your store's 
theme
Once you have selected a font to use, copy the code that Google Fonts provides to 
embed the CSS, which will look something like the following:

<link href='//fonts.googleapis.com/css?family=PT+Sans' 
rel='stylesheet' type='text/css'>

Navigate to System | Configuration in your Magento store's administration panel 
and paste this in the Miscellaneous Scripts field, which is in the HTML Head panel 
under the Design tab, as shown in the following screenshot:

Click on the Save Config button at the top-right corner of the screen to save  
this change.

This step ensures that the font is available to be used in your theme; the next step is 
to use the font in your theme's style sheets.

Google's Web Font performance is okay for desktop visitors, but may slow down 
your store for mobile/tablet visitors on limited connections. As such, it will be better 
to host the EOT, WOFF of TTF font files used in your theme's @font-face rules 
locally on your store's server (or via a Content Distribution Network).

https://www.google.com/fonts/
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Referencing Google Web Font in your 
Magento theme's style sheet
Open your theme's styles.css file (in the /skin/frontend/default/m18/css/ 
directory) and you can use the font-family attribute to change the font. In this 
example, the font is changed through the website using the body element:

body {
font-family: "PT Sans", "Alike", "Times New Roman", serif;
}

Once you have saved this, you will see the new font from the Google Fonts service 
being used throughout your Magento theme:

Styling Magento's layered navigation
One of Magento's most used features is layered navigation, which allows customers 
to filter products at a category level based on your products' attributes (such as color, 
price, and size).



Chapter 6

[ 117 ]

Enabling layered navigation in Magento 
categories
Before you can style Magento's layered navigation, you will need to ensure that your 
categories are configured to allow layered navigation.

To do this, log in to your Magento administration panel and navigate to Catalog 
| Manage Categories. From there, select the category you wish to enable layered 
navigation for, open the Display Settings tab, and set the Is Anchor field to Yes,  
as shown in the following screenshot:

Click on the Save Category button at the top-right corner of the screen to assign this 
change to the category.
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Assigning attributes for layered navigation
Next, you need to ensure that the attributes used for the products in the category  
you altered previously are available for use in layered navigation. Navigate to 
Catalog | Attributes | Manage Attributes and select an attribute from the list  
(the example shown below uses price since this is used by products within our 
existing Tea bags category).

In the Frontend Properties panel, set the Use In Layered Navigation field to 
Filterable (with results) as shown in the following screenshot:

Setting this to Filterable (no results) will show attribute values in 
the layered navigation even if there are no results.

Creating a custom 404 "not found"  
error page
Even the best designed stores can lead customers to pages that don't exist any  
more, and customizing your Not Found page template can be a good way to  
retain customers who have lost their way.
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Altering the error page's content
The content of the Magento's error page is stored in the Magento's CMS tool,  
so you can start altering content here by navigating to CMS | Manage Pages  
and locating the 404 Not Found 1 page, as shown in the following screenshot:

In the Content tab, customize your content for the error page. The following example 
used the Recently Viewed Products widget to display a selection of products the 
customer may be interested in:
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Click on the Save Page button at the top-right corner of the screen and you'll see your 
new content appear when you try to visit a page that doesn't exist on your store:

To minimize the clutter on this page and help the customer find what they're looking 
for, you can set the error page's Page Layout under the Design tab in Magento's 
CMS tool to 1 column, as shown in the following screenshot:
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Once again, click on the Save Page button at the top-right corner of your screen to 
set the changed page layout. Finally, you can add a background image to your error 
page to further customize it and reassure customers a little. Open your theme's 
styles.css file from /skin/frontend/default/m18/css/ and add the following 
CSS to apply the 404_bg.png image in /skin/frontend/default/m18/images/ to 
the error page template:

body.cms-index-noroute .main {
background: #fff url("../images/404_bg.png") no-repeat top center;
padding-top: 200px;
}

Once you have saved the change to the CSS and new image, refresh the error page to 
see the change take effect, as shown in the following screenshot:

That's it! Your Magento store's custom 404 error page is now complete.
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Using snippets to enhance search engine 
listings
Rich snippets are an enhanced way of providing information about the type of 
content on your website to search engines.

For example, rich snippets can allow search engines such as Google to display product 
ratings on the search engine results page, such as the Google search engine listing for 
a product on www.lego.com highlighted at the bottom of the following screenshot 
(below the paid advertisements):

Rich snippets on the website allow Google to display the star rating for the product 
alongside the overall rating and number of reviews.

For more information on rich snippets, visit https://support.
google.com/webmasters/answer/99170.

www.lego.com
https://support.google.com/webmasters/answer/99170
https://support.google.com/webmasters/answer/99170
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To implement the ratings-rich snippet, copy the summary.phtml file in the app/
design/frontend/base/default/template/review/helper/ folder to app/
design/frontend/default/m18/template/review/helper/, and open it to 
include the following highlighted code:

<div itemprop="aggregateRating" itemscope itemtype="http://schema.org/
AggregateRating">
<?php if ($this->getReviewsCount()): ?>
<meta itemprop="ratingValue" content="<?php echo $this-
>getRatingSummary(); ?>"/> 
<meta itemprop="reviewCount" content="<?php echo $this-
>getReviewsCount(); ?>" />
<meta itemprop="worstRating" content="0"/>
<meta itemprop="bestRating" content="100"/>
<div class="ratings">
<?php if ($this->getRatingSummary()):?>
<div class="rating-box">
<div class="rating" style="width:<?php echo $this->getRatingSummary() 
?>%"></div>
</div>
<?php endif;?>
<p class="rating-links">
<a href="<?php echo $this->getReviewsUrl() ?>"><?php echo $this->__
('%d Review(s)', $this->getReviewsCount()) ?></a>
<span class="separator">|</span>
<a href="<?php echo $this->getReviewsUrl() ?>#review-form"><?php echo 
$this->__('Add Your Review') ?></a>
</p>
</div>
<?php elseif ($this->getDisplayIfEmpty()): ?>
<p class="no-rating"><a href="<?php echo $this->getReviewsUrl() 
?>#review-form"><?php echo $this->__('Be the first to review this 
product') ?></a></p>
<?php endif; ?>
</div>

Save this file to your Magento store's theme and your rich snippet is ready to go.

Remember, including the preceding code is only a request for 
search engines to display this information in their results list, 
and they might not necessarily use this.
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Summary
In this chapter, you looked at a range of more advanced techniques to customize 
your Magento theme with styling your Magento store further for print, using 
Magento locales to alter interface text, using @font-face from Google Web Fonts, 
styling Magento's layered navigation, creating a custom 404 "not found" error page, 
and using microformats for rich snippets to enhance search engine listings.

Further chapters look at improving your Magento store for mobile and tablet  
devices and customizing Magento's e-mail templates that are sent to customers.



Magento Theming for Mobile 
and Tablet Devices

So far, your new Magento theme has focused on building a custom design for  
your store for devices with larger screens, such as desktop computers and laptops. 
In this chapter, you will start customizing your Magento theme for devices with 
different screen sizes, such as smartphones and tablet computers. We will cover the 
following topics:

•	 Using CSS media queries to create breakpoints for different device widths
•	 Making images responsive for your Magento theme
•	 Developing responsive navigation for your Magento theme
•	 Adding mobile homepage icons for Windows and Apple devices to your 

Magento theme

Using CSS media queries to create 
breakpoints for different device widths
One of the ways in which you can get your Magento theme to adapt to your 
customer's device and provide them with an experience more tailored to their needs 
is to use CSS media queries to alter the style and layout of your Magento store for 
different screen sizes.
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Adding the meta viewport element to your 
Magento theme
Firstly, you will need to add the meta viewport element to the <head> element of 
your Magento theme. This will tell the device viewing your store to fit the store to 
the width of the available device's screen.

Open your theme's local.xml file under /app/design/frontend/default/m18/
layout/ and add the XML highlighted in the following code within the <default> 
handle of the <reference name="head"> element:

<default>
  <reference name="head">
    <block type="core/text" name="meta.viewport">
      <action method="setText">
      <meta><![CDATA[<meta name="viewport" content="width=device- 
      width, initial-scale=1.0" />]]></meta>
    </action>
    </block>
  </reference>
</default>

Once you have saved this file, you can begin to work on CSS within your media query.

Adding a CSS media query to your style sheet
Open your theme's styles.css file (located in the /skin/frontend/default/m18/
css/ directory), and add the following CSS towards the bottom of your file:

@media only screen and (min-width: 50em) {
/* Your CSS applied only to larger screens goes here */
}

Note that support for media queries in older browsers is limited; visit 
http://caniuse.com/css-mediaqueries for more details.

The CSS you add between the curly braces of the @media query here is applied  
only to devices that are using a screen media type and have a minimum width  
of 50em—roughly equivalent to most larger desktop computer monitors.

http://caniuse.com/css-mediaqueries
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For larger screens, the background of your theme is currently looking a little bare, as 
you can see in the following screenshot. There is currently a lot of space around the 
page itself.

You can provide a background image for the .main-container element of your 
store that appears only for larger-screened devices by including the following CSS in 
your theme's styles.css file:

@media only screen and (min-width: 50em) {
  .main-container {
  background: #f6f6f6 url("../images/body_bg.png") repeat center  
center;
  }
}
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If you now refresh your store, you'll see the new pattern take effect as shown in the 
following screenshot:

As always, if you can't see your changes, clear Magento's caches by navigating to 
System | Cache Management.

By using CSS media queries such as the preceding one, you can create a responsive 
Magento theme for your store—defining different layouts to better organize your 
store's content for those on different sized screens. To do this, first comment out the 
widths defined outside the media query you just created, which will collapse the 
layout for your theme in to a single column for devices with smaller screens:

.wrapper {
/* min-width:954px; */
}
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.main {
background:#fff;
color: #333;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left; 
/* width:900px; */
}
.col-left {
float:left;
padding:0 0 1px;
/* width:195px; */
}
.col-main {
float:left;
padding:0 0 1px;
/* width:685px; */
}
.col-right {
float:right;
padding:0 0 1px;
/* width:195px; */
}
.col1-layout .col-main {
float:none;
width:auto
}
.col3-layout .col-main {
margin-left:17px;
/* width:475px; */
}
.col3-layout .col-wrapper {
float:left;
/* width:687px; */
}



Magento Theming for Mobile and Tablet Devices

[ 130 ]

So, on smaller screen devices (with a width less than the 50em you defined in the 
media query earlier), you will see the simplified layout:

If you do not define some widths for the columns in your Magento theme within the 
media query you created earlier, this is how your store will appear on larger screens 
too. To rectify this, open your theme's styles.css file once again and add the 
following CSS within the media query:

.header, #nav, .footer {
margin: 0 auto;
max-width: 60em;
width: 100%;
}
.main-col, .col-right, .col-left {
margin: 0 1%;
padding: 1%;
}
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.main {
width:900px;
}
.col-left, .col-right {
width: 21%;
}
.col-main {
width: 71%;
}
.col1-layout .col-main {
float:none;
width:auto;
}
.col3-layout .col-main {
width: 46%;
}
.col3-layout .col-wrapper {
float:left;
width: 71%;
}

This provides browsers with enough styling to display your store's content as 
columns for customers who use larger screens like your original Magento theme 
did before you added the media query to your style sheet. If you now view your 
Magento theme on a larger screen, you'll see that the layout is back to its previous 
state as shown in the following screenshot:
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That's it! You have the basics of media queries working in your Magento theme now, 
and you can add and adapt CSS as your store's design requires!

Making images responsive for your 
Magento theme
Images are very important on your Magento store to ensure that your customers 
can see what they're buying. If you look at a product page on your Magento store at 
the moment, you'll see that the product image hugely overflows the column's width 
available to it, as you can see from the highlighted portion of the following screenshot:

The easiest way to ensure that your store's images will be resized to sensible 
dimensions is to set the max-width attribute of the img element to 100% to ensure  
no image becomes larger than its container.
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Open your theme's styles.css file in the /skin/frontend/default/m18/css/ 
directory and add the following CSS to it to help ensure images are resized to the 
width they have available in the page's layout, their height-to-width ratio is retained, 
and images are not stretched out of proportion:

img,
img[height],
img[style],
img[width],
img#image {
height: auto !important;
max-width: 100% !important;
width: auto !important;
}

Once you have saved this addition, refresh your product page again and you'll see 
that your product photograph is constrained to the width it has available, as follows:
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Developing responsive navigation
Another critical area for all customers is your navigation—they need to be able 
to find the products they are looking for easily, after all. Mobiles, tablets, and 
devices with smaller screens present new challenges in terms of how to present the 
navigation in a clear way so that users on touchscreen devices will find it easy to 
interact with.

Firstly, you will need to move the current navigational styling in to the media query 
for larger screens. So, copy the following CSS code in to the media query you created 
earlier in this chapter:

@media only screen and (min-width: 50em) {
  #nav li.over{z-index:998}
  #nav a,#nav a:hover{display:block;line-height:1.3em;text-
decoration:none}
  #nav span{cursor:pointer;display:block;white-space:nowrap}
  #nav li ul span{white-space:normal}
  #nav ul li.parent a{background: none}
  #nav ul li.parent li a{background-image:none}
  #nav a{color:#333;float:left;font-weight:700;padding:5px 12px 6px 
8px}
  #nav ul li,#nav ul li.active{background:#e57d04;float:none;margin:0;
padding-bottom:1px}
  #nav ul li.last{padding-bottom:0}
  #nav ul a,#nav ul a:hover{background:none;float:none;padding:0}
  #nav ul li a{background:#fff;font-weight:400!important}
  #nav ul,#nav div{border:1px solid #ccc;left:-10000px;position:absolu
te;top:27px;width:15em}
  #nav div ul{border:none;position:static;width:auto}
  #nav ul ul,#nav ul div{top:5px}
  #nav ul li a:hover{background:#e57d04}
  #nav ul li a,#nav ul li a:hover{color:#333!important}
  #nav ul span,#nav ul li.last li span{padding:3px 15px 4px}
  #nav li ul.shown-sub,#nav li div.shown-sub{left:0;z-index:999}
  #nav li .shown-sub ul.shown-sub,#nav li .shown-sub li div.shown-
sub{left:100px}
  #nav li.active a,#nav li.over a,#nav a:hover{color:#e57d04}
}

Next, you can define some styles inside a new media query to style how the 
navigation appears for devices with smaller screens:

@media only screen and (max-width: 49.99999em) {
  #nav a {
  color: #333;
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  display: inline-block;
  padding: 0.25em 0.5em;
  text-decoration: none;
  }
  #nav a:hover {
  color: #aaa;
  text-decoration: underline;
  }
  #nav ul {
  display: inline;
  }
  #nav li {
  display: inline;
  float: left;
  margin: 0 1%;
  }
  #nav ul.level0 {
  display: inline;
  }
  #nav ul.level0 li {
  float: none;
  width: 100%;
  }
  #nav ul.level0 a {
  color: #777;
  font-size: 0.9em;
  }
}

Including the CSS in a media query for screen widths less than 49.9999em means 
that this CSS won't clash with the other CSS for drop-down navigations for larger 
screens. This is shown in the following screenshot:
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On a device with a smaller screen, the navigation is displayed as you defined it  
in the smaller media query, making it easier for customers to find their desired 
product category.

Adding mobile icons for Windows and 
Apple devices
With the increasing popularity of smartphones, it's not enough to just provide a 
favorites icon any more; these don't work as effectively on mobile devices, but you 
can provide alternate icons for use on Apple, Android, and Windows devices.
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Adding an Apple home icon to your  
Magento store
You can specify the Apple icon that will be used when customers save your  
store to their device's home screen with the addition of elements to your store's 
<head> element.

Android devices will also make use of these icons as long as 
the rel value in the link elements that reference the icons are 
set to rel=apple-touch-icon or rel=apple-touch-
icon-precomposed.

Copy the head.phtml file under /app/design/frontend/base/default/
template/page/html/ to /app/design/frontend/default/m18/template/page/
html/. Open your theme's head.phtml file and insert the following code at the 
bottom of the file to cater for the variety of sizes Apple devices can use:

<link rel="apple-touch-icon" href="<?php echo $this-
>getSkinUrl('images/icon-iphone.png') ?>" />
<link rel="apple-touch-icon" sizes="72x72" href="<?php echo $this-
>getSkinUrl('images/icon-ipad.png') ?>" />
<link rel="apple-touch-icon" sizes="114x114" href="<?php echo $this-
>getSkinUrl('images/icon-iphone_retina.png') ?>" />
<link rel="apple-touch-icon" sizes="144x144" href="<?php echo $this-
>getSkinUrl('images/icon-ipad-retina.png') ?>" />

Once you have done this, you'll need to save the icon images in your theme's /
images/ directory. You will require the following sizes:

•	 57 x 57 pixels for iPhones
•	 72 x 72 pixels for iPads
•	 114 x 144 pixels for iPhones with retina displays
•	 144 x 144 pixels for iPads with retina displays
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If you now refresh your store and use the Add To Home Screen option in your 
browser, and you will see that the appropriate icon is used:

Adding a Windows icon to your Magento 
store
Microsoft also allows you to specify an icon used in Internet Explorer in Windows 
8 and above. Edit your theme's head.phtml file again, which is located in the /app/
design/frontend/default/m18/template/page/html/ directory. At the bottom of 
the file, add the following lines:

<meta name="msapplication-TileColor" content="#7F6A00"/>
<meta name="msapplication-TileImage" content="<?php echo $this-
>getSkinUrl('images/icon-windows.png') ?>"/>
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Save your icon image as 64 x 64 pixels in your theme's image directory. You can 
specify the TileColor value too to define the color of the block that will contain  
the icon on Window's tile system.

Summary
This chapter introduced some methods to improve your store for visitors on a 
range of devices. This allows you to use CSS media queries to create breakpoints for 
different device widths, make images responsive, develop responsive navigation 
for your Magento theme, and add mobile homepage icons for Windows and Apple 
devices to your Magento theme.

In the next chapter, you will learn how to customize Magento's transactional e-mails 
to help you further improve customers' experience of your store.





Magento E-mail Templates
So far, you've looked at styling your Magento store for customers, but what about 
the transaction e-mails Magento sends your customers when they place an order? 
This chapter covers the following topics:

•	 Changing the e-mail template logo
•	 Altering colors of the e-mail templates
•	 Altering variables in Magento e-mail templates
•	 Adding static block content to your Magento e-mail templates
•	 Integrating a MailChimp subscription form into your Magento store
•	 Integrating a Campaign Monitor subscription form into your Magento store

Working with Magento e-mail templates
Working with e-mail templates is quite different than working with websites, so you 
may find the following information of use in this chapter:

•	 Customizing e-mail markup is a tricky business: the HTML used in e-mail 
templates needs to follow strict guidelines. You may find Campaign 
Monitor's resources at https://www.campaignmonitor.com/resources/
will-it-work/.

•	 Various e-mail clients will display the e-mails in various ways, much like 
different browsers can display the same website differently.

•	 It is always recommended to retain as much as possible from Magento's 
default e-mail templates in order to make sure the mails are displayed correctly 
on as many clients as possible. This will also make the Magento upgrade 
progress much easier for you!

•	 Bear in mind that most (if not all) e-mail programs don't display images by 
default. Be careful that your e-mails' core messages are contained within text 
in your e-mail and not in images!

https://www.campaignmonitor.com/resources/will-it-work/
https://www.campaignmonitor.com/resources/will-it-work/
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Changing the e-mail template logo
First thing's first: you'll want the e-mails your Magento store sends to customers to 
use your store's logo, so you will need to configure this in Magento's control panel.

At the moment, the order confirmation e-mail will look similar to the following 
template, using Magento's own logo and a placeholder store name if you haven't 
configured your Magento store fully yet:
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Once you are logged into your Magento administration panel, navigate to System | 
Configuration. From here, select the Design tab in the left-hand column, as shown in 
the following screenshot:

Expand the Transactional Emails panel, and you will see that you are provided with 
two options:

1.	 One to change the image used for the logo in the e-mail templates.
2.	 One to change the alt text used for the logo.

Select the logo image you wish to use, and populate the Logo Image Alt field with a 
suitable value, as shown in the following screenshot:
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Once you have done this, click on the Save Config button. If you now cause Magento 
to send an order confirmation e-mail again, you will see your logo appear in the 
e-mail template:

To change the e-mail addresses used in these e-mails, you need 
to configure them by navigating to System | Configuration 
under the Store Email Addresses tab.

Sending test transactional e-mails
The easiest way to test your e-mail template is to use the Send Email function. 
Navigate to Sales | Orders, and select an existing order made through your 
Magento store, and click on the Send Email button at the top-right corner of the 
order details screen, as shown in the following screenshot:

A pop-up message will appear asking you to confirm this; click on OK. This will 
cause another order confirmation e-mail to be sent to the customer's e-mail address, 
allowing you to test changes to your store's e-mail templates.
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Changing the color scheme of your 
Magento transaction e-mail templates
Now that you've changed the logo used in Magento's transactional e-mail templates, 
you may also want to change your e-mail template's color scheme.

Loading a Magento e-mail template
Navigate to System | Transactional Emails, and click on the Add New Template 
button at the top-right corner of the screen, as shown in the following screenshot:

From there, select an e-mail template you wish to overwrite; the following example 
uses the New Order template, which acts as the order confirmation e-mail template:
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Click on the Load Template button, which will populate the panel below with 
the current contents of this e-mail template for you to alter. Firstly, populate the 
Template Name field as we're overwriting the New Order template. This will be New 
Order v2, as shown in the following screenshot:

Next, in the Template Content field, you can overwrite any color references you need 
in the style attributes within the e-mail template's HTML. Examine the first two lines 
of this field and you will see HTML that looks similar to the following code:

<body style="background:#F6F6F6; font-family:Verdana, Arial, 
Helvetica, sans-serif; font-size:12px; margin:0; padding:0;">
<div style="background:#F6F6F6; font-family:Verdana, Arial, Helvetica, 
sans-serif; font-size:12px; margin:0; padding:0;">

To change the background color to a pale orange rather than the current light gray, 
you can make the changes in the code highlighted below:

<body style="background:#FFF1E3; font-family:Verdana, Arial, 
Helvetica, sans-serif; font-size:12px; margin:0; padding:0;">
<div style="background:#FFF1E3; font-family:Verdana, Arial, Helvetica, 
sans-serif; font-size:12px; margin:0; padding:0;">

If you now click on the Save Template button at the top-right corner of the screen, 
your changes will be saved. Your next task is to assign your new e-mail template to 
the New Order transaction in Magento.
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Editing Magento e-mail templates through 
your theme
You can also edit your theme's e-mail templates by providing e-mail template files in 
your theme. The base e-mail template files in Magento are located at /app/locale/
en_US/template/email. As with all core Magento files, do not edit these directly; 
copy them to your theme's locale directory. In the example theme provided with 
this book, you can copy the e-mail templates into /app/design/frontend/default/
m18/locale/en_US/template/email/.

Assigning an e-mail template to a transaction 
in Magento
Navigate to System | Configuration and select the Sales Emails tab in the left-hand 
column. Expand the New Order panel and select your new e-mail template from the 
dropdown next to New Order Confirmation Template:
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Click on the Save Config button at the top-right corner of the screen and resend the 
new order e-mail to see the changes to the template's background color appear:

You can overwrite other e-mail templates Magento sends in a similar fashion to fully 
customize your store.

Altering variables in Magento e-mail 
templates
You've now seen how and where to alter some of the basic HTML behind Magento's 
e-mail templates, but sometimes a little more customization is required.

Navigate to System | Transactional Emails and select the New Order v2 template 
you created in the previous section of this chapter to begin editing it to use the 
customer's first name, rather than their full name, as it is currently displayed:
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In the Template Content field, locate the following line, which adds the customer 
greeting line:

<h1 style="font-size:22px; font-weight:normal; line-
height:22px; margin:0 0 11px 0;"">Hello, {{htmlescape var=$order.
getCustomerName()}}</h1>

Magento Insert Variable pop up
Magento provides some variables in the pop up that is shown if you click on the 
Insert Variable button above the Template Content field as you can see in the 
following screenshot:
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Using the customer's first name only in e-mail 
templates
The customer's first name is not listed here, so you will manually need to change the 
code highlighted above to:

<h1 style="font-size:22px; font-weight:normal; line-
height:22px; margin:0 0 11px 0;"">Hello, {{htmlescape var=$order.
getCustomerFirstname()}}</h1>

Once you have made this change, click on the Save Template button at the top-right 
corner of the screen. If you send the e-mail confirmation order again to test your 
change, you will see that only the customer's first name is displayed in the template, 
as shown in the following screenshot:

Don't forget that you have to assign the new template by navigating 
to the System | Configuration | Sales Emails section of the Magento 
administration panel, if you haven't already, to see this template sent 
in place of the default template.
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Adding a static block to a Magento 
transactional e-mail template
You can take customizing your Magento transactional e-mail templates even further 
by adding static blocks to the templates.

Creating the static block
Firstly, you will need to create a static block you wish to insert into your Magento 
e-mail template. Navigate to CMS | Static Blocks and click on the Add New Block 
button at the top-right corner of the screen.

Provide Block Title and Identifier (the example uses email_ as a prefix to help you 
know where the block is used), as shown in the following screenshot:

Use the Content field to add content you would like to appear within the e-mail 
template itself. Once you're finished, click on the Save Block button at the top-right 
corner of the screen.
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Adding the static block to the e-mail template
Once again, navigate to System | Transactional Emails and edit the New Order v2 
template you created earlier. Locate the following code in the Template Content field:

If you have any questions about your order please contact us at 
<a href="mailto:{{config path='trans_email/ident_support/email'}}" 
style="color:#1E7EC8;">{{config path='trans_email/ident_support/
email'}}</a> or call us at <span class="nobr">{{config path='general/
store_information/phone'}}</span> Monday - Friday, 8am - 5pm PST.
</p>
<p style="font-size:12px; line-height:16px; margin:0;">
Your order confirmation is below. Thank you again for your business.
</p>

Change this to include the following highlighted code, where the block_id value 
matches the Identifier value of the static block you created:

If you have any questions about your order please contact us at 
<a href="mailto:{{config path='trans_email/ident_support/email'}}" 
style="color:#1E7EC8;">{{config path='trans_email/ident_support/
email'}}</a> or call us at <span class="nobr">{{config path='general/
store_information/phone'}}</span> Monday - Friday, 8am - 5pm PST.
</p>
{{block type="cms/block" block_id="email_new-order" }}
<p style="font-size:12px; line-height:16px; margin:0;">
Your order confirmation is below. Thank you again for your business.
</p>

Click on the Save Template button at the top-right corner of the screen once more 
and generate a new e-mail for the new order template. You will see that the static 
block's content now appears within the template:
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Integrating the MailChimp subscription 
form into your Magento store
E-mails related to your e-commerce website don't stop at order e-mails to customers, 
although e-mail marketing can play an important role in encouraging repeat orders 
and generating new business for your store.

One popular e-mail marketing system is MailChimp, and you can create a static 
block on your store and use this throughout your store to entice customers to 
subscribe for offers and articles on your chosen sector.

Alternatively, you can synchronize your newsletter subscribers 
through Magento using the MailChimp plugin for Magento at 
http://connect.mailchimp.com/integrations/magento.

Firstly, you will need to get the HTML for MailChimp's subscription form: log in to 
your account on http://mailchimp.com and navigate to Lists. From here, select the 
Signup forms option from the dropdown next to your chosen client, as shown in the 
following screenshot:

http://connect.mailchimp.com/integrations/magento
mailchimp.com
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Next, click on the Select button beneath the Embedded forms option:

On the next screen, customize your form, and copy the content from the Copy/paste 
onto your site field. You'll need this for the next step.

Log in to your Magento site's administration panel, navigate to CMS | Static Blocks, 
and click on the Add New Block button at the top of the screen: enter a subtitle Block 
Title and enter newsletter_mailchimp in the Identifier field. Finally, ensure Status is 
set to Enabled and paste the subscription form code provided by MailChimp into the 
Content field, ensuring that you have used Show / Hide Editor button to disable the 
rich text editor before pasting the code in:
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Click on the Save Block button to create this block. Next, you need to assign the 
new block to a region on your store; open your theme's local.xml file from /app/
design/frontend/default/m18/layout/, and add the following highlighted code 
to the reference name="right" element within the <default> handle:

<default>
  <reference name="right">
    <block type="cms/block" name="cms_mailchimp">
      <action method="setBlockId">
        <block_id>newsletter_mailchimp</block_id>
      </action>
    </block>
  </reference>
</default>

Once you have saved this change, you will see the subscription box appear on the 
pages with the right-hand column layout assigned:
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Integrating the Campaign Monitor 
subscription form into your Magento store
Campaign Monitor is another popular e-mail newsletter system you may use to keep 
in touch with customers outside the realm of Magento's transactional e-mails.

Firstly, you will need the subscription form code from your Campaign Monitor list: 
log in to your Campaign Monitor account, and navigate to the Lists & Subscribers 
tab. Select a subscriber list from here:

In the right-hand column of this screen, click on the Grow your audience option:
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On the next screen, you will see an option for Copy/paste a form to your site:

Once you have customized the form to your liking, click on the Get the code button 
at the bottom of the screen:
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Copy the code presented, and log in to your Magento store's administration panel. 
From here, navigate to CMS | Static Blocks and click on the Add New Block button 
at the top-right corner of your screen:

Click on the Save Block button and open your theme's local.xml file (present  
at /app/design/frontend/default/m18/layout/) to assign this block to the  
right-hand column using the following highlighted code:

<default>
  <reference name="right">
    <block type="cms/block" name="cms_campaignmonitor">
      <action method="setBlockId">
        <block_id>newsletter_campaignmonitor</block_id>
      </action>
    </block>
  </reference>
</default>

Refreshing your store once you have saved this change will display the subscription 
form for your Campaign Monitor account, allowing you to style it further should 
you wish to:
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Summary
This chapter introduced you to customizing Magento's many transactional e-mail 
templates, and helped give your store a personalized feel by e-mail as well as 
through your website. This chapter covered changing the e-mail template logo, 
altering colors and variables in Magento e-mail templates, adding static block 
content to your Magento e-mail templates, and creating a MailChimp or Campaign 
Monitor subscription block for use in your store.

Your Magento store should be well on its way to being customized now, though 
there is always work to be done!
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