
www.allitebooks.com

http://www.allitebooks.org

Learning Magento Theme
Development

Create visually stunning and responsive themes to
customize the appearance of your Magento store

Richard Carter

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Magento Theme Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1130814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-061-2

www.packtpub.com

Cover image by Benoit B (benoit.benedetti@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Richard Carter

Reviewers
Ray Bogman

Vali Lungu

Ankit Sharma

Mukund Thanki

Acquisition Editor
Sam Wood

Content Development Editor
Madhuja Chaudhari

Technical Editors
Kunal Anil Gaikwad

Ankita Thakur

Nachiket Vartak

Copy Editors
Roshni Banerjee

Adithi Shetty

Stuti Srivastava

Project Coordinators
Neha Bhatnagar

Akash Poojary

Proofreaders
Simran Bhogal

Ameesha Green

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Ronak Dhruv

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Richard Carter is a web designer and frontend web developer based in Newcastle
upon Tyne in the north east of England.

His experience includes many open source e-commerce and content management
systems, including Magento, MediaWiki, WordPress, and Drupal. He has worked
with clients such as the University of Edinburgh, University College Dublin,
Directgov, NHS Choices, and BusinessLink.gov.uk.

He is the Creative Director at Peacock Carter Ltd (www.peacockcarter.co.uk),
a web design and development agency based in the north east of England. He
graduated from the University of Durham in Software Engineering, and currently
lives in Newcastle upon Tyne. He blogs at http://www.earlgreyandbattenburg.
co.uk and tweets as @RichardCarter and @PeacockCarter.

This is the author's seventh book. He has previously written MediaWiki Skins Design,
Magento 1.3 Theme Design, Magento 1.4 Theme Design, Joomla! 1.5 Templates Cookbook,
and The Beginner's Guide to Drupal Commerce by Packt Publishing. He was also a
technical reviewer for MediaWiki 1.1 Beginners Guide and Inkscape 0.48 Illustrator's
Cookbook by Packt Publishing and The Definitive Guide To Drupal 7 by Apress.

In particular, my thanks are due to Matthew, who has kept
Peacock Carter on track while I was focusing on this book! Also,
thanks to my family and friends, and Anna, whose constant support
is much appreciated.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ray Bogman is an IT professional and Magento evangelist from the Netherlands.
He started working with computers in 1983, as a hobby. In the past, he worked for
KPN, a large Dutch Telecom company, as a senior security officer.

He was the CTO of Wild Hibiscus, Netherlands, until 2010. He is the founder of
Yireo and was the business creator there until 2011. He is also the founder of Jira ICT
and has been the CEO since 2005. He is also the CTO of SupportDesk B.V., which he
co-founded in 2011.

At SupportDesk B.V., he is a Magento, Joomla!, OroCRM, Web/Server/Mobile
performance specialist and security evangelist. His focus during the day is business
development and training webmasters and consultants about the power of Magento,
from the basics up to an advanced level. He has trained over 1000 Magento and over
750 Joomla experts worldwide since 2005. He has been a regular speaker at Magento
events such as Magento Developers Paradise and Meet since 2009.

Besides work, his hobbies are snowboarding, running, going to the movies and
music concerts, and loving his wife Mette and daughter Belize.

He was the reviewer of Mastering Magento in 2012 the e-book, Mastering Magento the
video in 2013, Mastering Magento Theme Design in 2014, and Magento Administration
Guide in 2014.

www.allitebooks.com

http://www.allitebooks.org

Vali Lungu is a frontend developer with more than 12 years of experience in the
area of software development. He started as an agent in a cyber-crime fighting unit
and went through most aspects of web development, which includes frontend and
backend programming in anything from JavaScript to Python, and establishing and
developing frontend software architectures for complex Magento projects.

Currently, he is leading the frontend development team in one of the top Magento
companies in Germany. While working there, he got certified as a Magento Front
end Developer and added e-commerce application development to his technical
skills.

I would like to thank my friend and colleague Vedran Subotić, one
of the best Magento experts you can find, for his helping hand in the
process of reviewing this book and for the way he's always ready
to collaborate and put his awesome backend skills to work towards
achieving awesome Magento projects and making the most of the
framework.

Ankit Sharma loves to code. It's not only his profession, but one of his many
diverse hobbies along with playing cricket, soccer, tennis (sometimes in real life),
watching his favorite TV shows and movies, and of course participating in online
blogs. Incidentally, he is also one of the friendliest and funniest people you will come
across, and this makes him a joy to work with.

His skills and knowledge, combined with his personality, led him to conduct
workshop seminars for his college peers to help them better understand the latest
technologies. He also pioneered the online college course access at his college to
make programming tools available to other students remotely.

While in college, he majored in Computer Engineering from Saurashtra University,
India and pursued an MTech in Computer Engineering from Dharmsinh Desai
University, India. He is the cofounder and VP of Engineering at CrowdClock now.

www.allitebooks.com

http://www.allitebooks.org

Mukund Thanki was born and raised at Porbandar. He lives in Vadodara,
Gujarat, India now. He holds a Bachelor's degree in Electronics and
Communications; however, by following his passion of programming, he dived
into PHP and ultimately found himself at the shore of the most famous and
robust platforms such as Magento and WordPress. He founded Pushkar Creations
(http://pushkarcreations.com/), where he enjoys working on e-commerce
and CMS websites and finding appropriate solutions for clients. He also loves
to implement unique concepts on the Web. For example, he created an online
pedigree system (http://pedigreepickle.com/), which is a social networking site
for pet owners, run by his brother. While not playing with code, he enjoys nature
at his farmhouse with his friends and brothers. He always makes time to watch
great movies and he listens to music all the time. If you are dealing with Magento
or WordPress and find yourself in the middle of the sea, you can be in touch
by following him on twitter @mukkundthanki or like his page on Facebook
https://www.facebook.com/pushkarcreations/ or contact him directly at
mukkundthanki@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to Magento and Magento Themes	 7

What is a Magento theme?	 7
Magento's default themes	 8
The default theme	 8

The category page layout	 10
The list mode layout	 11
Checkout	 12

The blank theme	 14
The iPhone theme	 15
The modern theme	 16

Magento terminology	 17
Scope in Magento	 17

Magento websites, stores, and store views	 18
Using multiple stores in Magento	 18
Using multiple store views in Magento	 19

Magento theme files	 20
Skin files	 20
Layout files	 21
Template files	 21
Locale files	 22
Packages	 22

Magento theme hierarchy	 23
Summary	 24

Chapter 2: Magento Theming Basics	 25
Creating a new Magento theme	 25
Enabling a Magento theme	 26
Changing your Magento store's logo	 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Customizing your store's favorites icon (favicon)	 31
Customizing Magento's product watermark image	 32

Using product images in Magento	 35
Customizing Magento's product placeholder images	 36
Using the Magento Template Path Hints	 38
Summary	 41

Chapter 3: Magento Templates	 43
Providing layout style for your Magento theme	 43
Customizing your Magento store's header	 49

Providing CSS for Magento's navigation dropdowns	 49
Altering the header.phtml template	 50

Customizing Magento's search box	 53
Adding a static block to a Magento template	 55

Creating a new static block	 55
Inserting the static block into a template	 56

Customizing your Magento store's footer	 58
Listing all top-level categories in your Magento store	 60

Customizing your store's checkout and cart	 61
Styling the cart page	 61
Styling the checkout page	 64

Summary	 68
Chapter 4: Magento Layout	 69

Adding local.xml to your Magento theme	 69
Using layout to change your default Magento page template	 70

Types of blocks within Magento	 70
Changing a page's template using the XML layout	 70

Changing a page's layout using Magento's CMS tool	 72
Adding a static block to a page using the Magento layout	 74

Assigning a static block to a page in Magento's CMS	 76
Changing the ordering of blocks in Magento's sidebar	 77

Repositioning a block below a specific block	 78
Reordering a block above all other blocks	 81
Reordering a block below all other blocks	 82

Removing unnecessary blocks from Magento's sidebar	 83
Customizing the home page's layout	 84
Adding new product block to the home page	 85

Marking products as new in Magento	 85
Using XML layout to add the New Products block to
your store's home page	 86

Summary	 89

Table of Contents

[iii]

Chapter 5: Social Media and Magento	 91
Integrating a Twitter feed into your Magento store	 91

Creating your Twitter widget	 92
Embedding your Twitter feed into a Magento template	 92

Integrating a Facebook Like Box into your Magento store	 93
Adding the embed code into your Magento templates	 95

Including social share buttons in your product pages	 97
Styling the product page a little further	 97
Integrating AddThis	 99

Integrating product videos from YouTube into the product page	 102
Product attributes in Magento	 102
Creating a new attribute for your video field	 103
Adding a YouTube video to a product using the new attribute	 106
Inserting the video attribute into your product view template	 106

Summary	 108
Chapter 6: Advanced Magento Theming	 109

Adding a custom print style sheet to your Magento store	 109
Using locales to translate phrases in your store	 112

Creating a Magento locale file	 113
The translate function	 114

Using Google Web Fonts and @font-face	 115
Including Google Web Font in your store's theme	 115
Referencing Google Web Font in your Magento theme's style sheet	 116

Styling Magento's layered navigation	 116
Assigning attributes for layered navigation	 118

Creating a custom 404 "not found" error page	 118
Altering the error page's content	 119

Using snippets to enhance search engine listings	 122
Summary	 124

Chapter 7: Magento Theming for Mobile and Tablet Devices	 125
Using CSS media queries to create breakpoints
for different device widths	 125

Adding the meta viewport element to your Magento theme	 126
Adding a CSS media query to your style sheet	 126

Making images responsive for your Magento theme	 132
Developing responsive navigation	 134
Adding mobile icons for Windows and Apple devices	 136

Adding an Apple home icon to your Magento store	 137
Adding a Windows icon to your Magento store	 138

Summary	 139

Table of Contents

[iv]

Chapter 8: Magento E-mail Templates	 141
Working with Magento e-mail templates	 141
Changing the e-mail template logo	 142

Sending test transactional e-mails	 144
Changing the color scheme of your Magento
transaction e-mail templates	 145

Loading a Magento e-mail template	 145
Editing Magento e-mail templates through your theme	 147
Assigning an e-mail template to a transaction in Magento	 147

Altering variables in Magento e-mail templates	 148
Magento Insert Variable pop up	 149
Using the customer's first name only in e-mail templates	 150

Adding a static block to a Magento transactional e-mail template	 151
Creating the static block	 151
Adding the static block to the e-mail template	 152

Integrating the MailChimp subscription form into
your Magento store	 153
Integrating the Campaign Monitor subscription form
into your Magento store	 156
Summary	 159

Index	 161

Preface
Magento is now the most popular e-commerce platform in the world, and
distinguishing your store from others has become more important than ever.

This book introduces Magento theming to web designers and developers with a
basic understanding of HTML and CSS upwards, who want to discover the secrets
of theming Magento for both client projects and their own projects.

What this book covers
Chapter 1, Introduction to Magento and Magento Themes, provides an introduction to
the topic, including exploring what a Magento theme is, Magento theme terminology
including Templates, Layouts, and Skins, and the Magento theme hierarchy.

Chapter 2, Magento Theming Basics, gets you started with your new Magento theme,
from enabling a new theme in Magento to changing the logo, customizing the
product watermark images, disabling Magento's caches, and using Magento's
Template Path Hints tool, as well as creating a new Magento theme.

Chapter 3, Magento Templates, provides simple layout styling for your Magento theme,
customizing your store's header and footer, and the search box, and covers how to
add a static block to a template, as well as styling your checkout and cart page.

Chapter 4, Magento Layout, looks at adding a local.xml file to your theme, changing
the default page template, adding a static block to a page using the Magento
layout, changing the order of blocks in Magento's sidebar using layout, removing
unnecessary blocks in Magento's sidebar, and adding a new products list to your
store's home page.

Preface

[2]

Chapter 5, Social Media and Magento, covers integrating a Twitter feed with your
Magento store, integrating a Facebook page with your Magento store, including
social share buttons on your product pages to help increase your store's reach, and
integrating product videos from YouTube with product listings.

Chapter 6, Advanced Magento Theming, explores adding a custom print style sheet for
your Magento store, using locales to translate labels/phrases in your store, using @
font-face in Magento, styling Magento's layered navigation, creating a custom 404
"not found" error page, and using microformats for rich snippets to enhance search
engine listings.

Chapter 7, Magento Theming for Mobile and Tablet Devices, walks the reader through
how to use CSS media queries to create breakpoints for different device widths,
making images responsive to your Magento theme, developing responsive
navigation for your Magento theme, and adding mobile home page icons for
Windows and Apple devices to your Magento theme.

Chapter 8, Magento E-mail Templates, covers hanging the default e-mail template logo
to altering colors of the e-mail templates and altering variables in Magento e-mail
templates, as well as adding static block content to your Magento e-mail templates.

What you need for this book
You will need access to a working installation of Magento Community Edition 1.8 or
newer, and your preferred code-editing software.

Who this book is for
If you are a web designer or web developer who is familiar with XML, HTML, and
CSS, who wants to learn the fundamental building blocks of creating a Magento theme,
this book is for you. A basic understanding of PHP is helpful but not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In Magento, skin files are located in the /skin/frontend/ directory."

Preface

[3]

A block of code is set as follows:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}
a {
color:#1e7ec8;
text-decoration:underline;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}
a {
color:#1e7ec8;
text-decoration:underline;
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You might
notice that there are many superfluous blocks in the sidebar, such as the BACK TO
SCHOOL and COMMUNITY POLL blocks, which would not be required on a usual
e-commerce website."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Magento and
Magento Themes

Magento is a popular, enterprise-level open source e-commerce platform used by
hundreds of thousands of e-commerce businesses around the world. With ever
increasing numbers of online stores competing for customers and income, it can pay
off to invest in customizing your Magento store to set it apart from hundreds and
thousands of other stores, and developing a custom Magento theme is the way to
achieve this.

In this chapter, you will learn the following topics:

•	 What a Magento theme is and what Magento themes can do
•	 An overview of the default Magento themes in Magento
•	 An introduction to the Magento theme terminology
•	 How the Magento theme hierarchy works

What is a Magento theme?
A Magento theme is simply a collection of files that tells Magento how to display
your store to visitors. A Magento theme can consist of a collection of CSS, HTML,
PHP, XML, and images, all of which contribute to the look and feel of your store.

Due to Magento's architecture and the design interface's hierarchy, Magento will fall
back to base theme (discussed later in this chapter) that contain the files it requires
if they are not present in the current theme. A Magento theme can consist of one or
more of the previously mentioned files. It could be as simple as a logo file with the
rest of your store's styling provided by a parent theme.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Magento and Magento Themes

[8]

Magento's default themes
In Magento Community Edition 1.8, Magento provides the following four themes:

•	 Default
•	 Blank
•	 iPhone
•	 Modern

The default theme
Magento's default theme is perhaps, unsurprisingly, the theme that is enabled by
default when you first install Magento, encompassing a clear header area with a
search field and drop-down navigation for categories to be listed, a content area with
sidebar(s), and a footer, as shown in the following screenshot:

Chapter 1

[9]

The default theme's product page layout retains the header and footer styling of the
home page layout, but the central content area is adapted to present the product
information to customers, as shown in the following screenshot:

As you can see in the preceding screenshot, the product page provides a product
image with the name, a brief description, and the price of the specific product
towards the top of the page. Then, a more detailed description is provided in the
next block.

You might notice that there are many superfluous blocks in the sidebar,
such as the BACK TO SCHOOL and COMMUNITY POLL blocks, which
would not be required on a usual e-commerce website. These blocks
help showcase how powerful Magento is to new developers and can be
removed fairly easily.

Introduction to Magento and Magento Themes

[10]

The category page layout
One of the next key views for your Magento store is the category page layout, which
presents all the products grouped within a particular product category, as shown in
the following screenshot:

Chapter 1

[11]

The list mode layout
Magento presents products in two ways: in a grid (as shown in the preceding
screenshot) and as a list, which you can select by clicking on the List option in the
product grid, as shown in the following screenshot:

Introduction to Magento and Magento Themes

[12]

In the list mode, products within the selected category are displayed one above the
other, as shown in the following screenshot:

Checkout
Finally, Magento's famous one-page checkout provides a well-structured checkout
process for your customers, as shown in the following screenshot, maintaining the
default theme's overall character:

Chapter 1

[13]

Next, you will see the additional Magento themes that come with Magento
Community Edition 1.8 to cater to different needs for both customers and developers.

Introduction to Magento and Magento Themes

[14]

The blank theme
The blank theme, as its name suggests, provides a very minimal approach to a
Magento theme to allow a custom Magento theme to be built upon it, maintaining
a layout that is similar to Magento's default theme but stripping the visual styles, as
shown in the following screenshot:

Chapter 1

[15]

The iPhone theme
The iPhone theme provides a more mobile-friendly theme for your Magento store,
which can be switched on and off for specified devices. This view of the home page
with the iPhone theme shows you how content is streamlined and slimmed down
to help present the most relevant information to your customers on devices with
limited screen space available, as shown in the following screenshot:

Introduction to Magento and Magento Themes

[16]

The modern theme
Finally, the modern theme provides a full-fledged Magento theme that can be used
as an alternative to the default theme, with a more contemporary look, as shown in
the following screenshot:

These themes show you just the surface of the potential customizations you can
make to your Magento store, and this book will guide you through some of the
common changes made to Magento stores as well as some less common alterations
you can make to improve your Magento theme.

Chapter 1

[17]

Magento terminology
As with many other open source technologies, Magento comes with its own
terminology, which can be baffling to unfamiliar developers. This section identifies
and defines some of the commonly used terms in the Magento theme development.

Scope in Magento
Magento has the following four levels of scope that help define the level in your
Magento store(s) at which settings are applied:

•	 Global: This refers to settings that affect the entire Magento installation.
•	 Website: This acts as the parent entity for one or more stores in the Magento

terminology. Websites can be configured to share the customer data or not
share any data at all.

•	 Store (or store view group): These are the hierarchical children of Magento
websites. Products and categories are managed at Magento's store level. A
root category is configured for each Magento store, allowing multiple stores
under the same website to have totally different catalog structures.

•	 Store view: A store needs one or more store views to appear in the frontend
to customers so they are able to browse your store. The store view inherits
the store's category and product information, and so the changes at the
store view level are typically only cosmetic, changing the way the data is
presented. The most common and likely implementation of multiple store
views is to allow customers to navigate between two or more languages.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Magento and Magento Themes

[18]

Magento websites, stores, and store views
It is possible to run many different e-commerce stores from one Magento installation,
and it's also possible to run separate stores on the same website (for example, a
consumer store and a trade store that offers discounts to trade customers). The
simplest of Magento websites, however, consists of a single website with a single
store and single store view as follows:

Website

Store
yourstore.com

Store iewv

Using multiple stores in Magento
The most common use of multiple stores in Magento is to build separate
stores with their own inventories. For example, you could have one store,
veryverycoolt-shirts.com, to sell t-shirts, and another, veryverycoolcaps.
com, to sell baseball caps through the same installation of Magento. The following
diagram illustrates the structure of how this would be created using Magento
websites, stores, and store views:

Chapter 1

[19]

Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
French

Store iewv
English

Store iewv
English

Store iewv
French

You can chose whether the stores share the customer data or whether each store has
its own customer data, requiring customers to register separately if they want to
order from both the t-shirt store and cap store.

Using multiple store views in Magento
You can make use of multiple store views in Magento to customize how a store is
presented; this is typically used to present the same store in multiple languages. In
the following diagram, both stores have a French and English version, created at the
Magento store view level:

Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
English

Store iewv
English

Introduction to Magento and Magento Themes

[20]

Magento allows the following two types of themes:

•	 A parent theme that contains all the files that are required to be run
by Magento

•	 A child theme contains one or more files. Where a file isn't overwritten;
Magento will look for the file in the parent theme

A parent theme is useful when you want to create a highly customized Magento
theme from the standard themes that Magento has installed. Child themes are of
use when you only want to make fairly minor amendments to your theme.

Magento theme files
As you have already seen, Magento themes use a number of different types of files to
change how your e-commerce website is displayed to your customers. The following
four groups of files are associated with Magento themes:

•	 Skin files
•	 Layout files
•	 Template files
•	 Locale files

Skin files
Skins encompass the files that you would associate with a website's design: the CSS,
images, and JavaScript your theme requires in order to display your store.

In Magento, skin files are located in the /skin/frontend/ directory. Magento's
base skin files are stored in the /skin/frontend/base/default directory of your
Magento installation, while theme files, which you would typically edit for custom
themes that you create, would be included in the /skin/frontend/name-of-your-
package/name-of-your-theme/ directory.

In the examples used in this book, you will be building a theme in the default
package, so your skin directory will look like this: /skin/frontend/default/name-
of-your-theme/.

Chapter 1

[21]

Layout files
Magento uses XML layout files in its themes to inform Magento about which blocks
are displayed where in the page and in what order, for example, the MY CART and
COMPARE PRODUCTS widgets that use Magento's default theme, as shown in the
following screenshot:

The Magento layout can also be used to add and remove CSS and JavaScript files as
well as other elements from the <head> element of your Magento theme and alter the
order and location of the links.

Magento's base layout files are stored in the /app/design/frontend/base/
default/layout directory of your Magento installation, while your custom theme's
layout files can be found in the /app/design/frontend/name-of-your-package/
name-of-your-theme/layout directory.

In the examples used in this book, you will be building a theme in the default
package, so your application directory will look like this: /app/design/frontend/
default/name-of-your-theme/.

Template files
Magento's template files (which use the .phtml file extension to indicate a mixture of
PHP and HTML) provide your Magento theme with a way to generate the HTML for
your store's pages using the data and content stored within Magento.

Magento's base template files are stored in the /app/design/frontend/base/
default/template directory of your Magento installation, while your custom
theme's layout files would be found in the /app/design/frontend/default/name-
of-your-theme/template directory.

Introduction to Magento and Magento Themes

[22]

Locale files
Finally, Magento's locale files help you customize the text in the interface elements
of your Magento store, such as the text used as links in the userbar for your store,
as shown in the following screenshot:

A Magento locale file can also be used to provide a translation of your store's
elements to French, or even just American English to British English. In the
preceding example, a locale file might change the My Cart link to My Basket,
for instance.

The content of pages and products of your store can be translated by creating new
products and pages in your new store's language within the store view for that
particular language.

Magento locale files are stored in the /app/design/frontend/base/default/
locale directory, with locale files specific to your theme being stored in the /
app/design/frontend/name-of-your-package/name-of-your-theme/locale
directory. Translations are stored in a translate.csv file; for example, /app/
design/frontend/default/name-of-your-theme/locale/en_GB/translate.csv
contains the translations for British English for that particular theme.

Packages
In Magento theming, a package typically encapsulates a default theme that contains
all of the skin, template, layout, and locale files Magento needs to render the website.
It might also contain another non-default theme that customizes the look and feel of
the website on top of the base theme, as illustrated in the following diagram:

Chapter 1

[23]

Assigning a package at the website level means that all the stores under that store
level inherit that package. This would simply apply the theme to all of the stores
assigned to that particular website in Magento. So, by assigning a theme at the
website level in the following diagram, the Cap store and the T-shirt store would
inherit the same theme, unless it was specifically overwritten at the individual store
view level:

Website

T shirt tore- s
coolt shirts.comveryvery -

Cap tores
coolcaps.comveryvery

Store iewv
French

Store iewv
English

Store iewv
English

Store iewv
French

Magento theme hierarchy
Magento has a hierarchy in place for its themes, which tells the system where to
look for files if multiple themes are active on different stores on your website. As an
example, think about a simple Magento store setup like the one you saw earlier, as
demonstrated in the following diagram:

Website

Store
yourstore.com

Store iewv

Introduction to Magento and Magento Themes

[24]

Now, imagine that your store has a theme called newtheme installed at the store
view level. The Magento theme here requests a file called styles.css in the most
specific interface and package first, so if you have a custom theme enabled, Magento
will look in /skin/frontend/default/newtheme first. If it's not found in these
directories, Magento looks in the default interfaces next: /app/design/frontend/
default/default or /skin/frontend/default/default. Next, Magento will look
in the base directories: /app/design/frontend/base/default or /skin/frontend/
base/default. If the specified file is not found after that, Magento will encounter a
rendering error.

So, the deeper down the hierarchy tree of themes the file is, the more specific it is
and the more precedence it takes over other more general files.

Summary
This chapter provided you with an introduction to both Magento and Magento's
themes as well as giving you an overview of what already exists in terms of the
themes that ship with Magento by default. You have seen what comprises a Magento
theme, some of the existing themes available with Magento 1.8, common theme
terminology used in Magento, and how the Magento theme hierarchy works.

Magento Theming Basics
Now that you've been introduced to the concepts behind Magento and Magento
themes, the real work begins. This chapter covers the basics of getting up and
running with a new Magento theme. This includes:

•	 Creating a new Magento theme
•	 Enabling the theme on your Magento store
•	 Changing your store's logo
•	 Changing the theme's favorites icon
•	 Customizing Magento's product watermark images
•	 Customizing Magento's product placeholder images
•	 Developer tools: Template Path Hints

Creating a new Magento theme
As you saw in Chapter 1, Introduction to Magento and Magento Themes, a Magento
theme can encompass very few files or a large number of files.

Firstly, create the new directories in your Magento installation to contain your new
theme's files:

•	 app/design/frontend/default/m18/template

•	 app/design/frontend/default/m18/layout

•	 app/design/frontend/default/m18/locale

•	 app/design/frontend/default/m18/etc

•	 skin/frontend/default/m18/css

•	 skin/frontend/default/m18/images

•	 skin/frontend/default/m18/js

Magento Theming Basics

[26]

Once you have created these directories, you can create a file called styles.css in
the skin/frontend/default/m18/css directory. To be able to test that your new
skin is enabled, add the following to your styles.css file:

body {
background: red;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Your next step is to enable your newly created Magento theme!

Enabling a Magento theme
Now that you have the bare bones of your new Magento theme ready, you can
enable your Magento theme. Log in to your Magento store's administration panel and
navigate to the System | Configuration menu, as shown in the following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[27]

Magento's administration panel is located at example.com/admin if you
have installed Magento at example.com.

Once there, select the Design tab that has appeared in the left-hand column of the
screen, keeping the Current Configuration Scope drop-down menu's value set to
Default Config:

www.allitebooks.com

http://www.allitebooks.org

Magento Theming Basics

[28]

Next, expand the Themes section of the Design settings panel and enter the name of
your Magento theme for the Default field here. In the following example, m18 is used
as the name of the new Magento theme you are enabling:

Once you have done this, you need to click on the Save Config button in the
top-right of the screen, after which you will see the The configuration has been
saved success message, as shown in the following screenshot:

Chapter 2

[29]

That's it! Your new Magento theme has been enabled. To test this, visit the frontend
customer-facing side of your Magento store and refresh the page. You should be
able see that the styles.css file removes all of the styles from the previously
enabled theme and presents you with a rather unattractive screen, as shown in the
following screenshot:

You can remove the styles.css file for now to return to Magento default theme
styling; we will come back to customizing your theme's CSS in the later chapters.

Magento Theming Basics

[30]

Changing your Magento store's logo
The next task you will perform in order to customize your Magento store's look
and feel is to change your Magento theme's logo. Firstly, you will need to upload
your store's logo file to your store, in the /skin/frontend/default/m18/images
directory of your Magento installation.

Now, log in to your Magento store's administration panel and navigate to System
| Configuration, and then to the Design tab. Expand the Header panel as shown
in the following screenshot, and enter the value of your logo file's name and your
theme's image directory. In this case, the example uses images/logo.png because
the theme's logo file is stored at /skin/frontend/default/m18/images/logo.png.

Click on the Save Config button in the top-right corner of the screen to save these
changes. After refreshing your store, your new logo should appear in place of the
default Magento logo:

Chapter 2

[31]

If you haven't created your own categories in your store yet, you may
see Magento's sample category data appear in this menu or no categories
at all. To add categories to your store, navigate to Catalog | Manage
Categories in your Magento store's control panel.

Customizing your store's favorites icon
(favicon)
Alongside your logo, you can use your store's favorites icon (favicon) to help
distinguish yourself from other websites. The favicon is typically displayed in your
browser's address bar and tabs, as seen in the following screenshot in the top-left of
the screenshot:

Magento Theming Basics

[32]

To change your store's favicon from the default Magento favicon, you will need to
create a favicon.ico file.

You can create favicon.ico files using free online tools such as the
one at http://tools.dynamicdrive.com/favicon/.

Once you have your favicon.ico file ready, upload it to your Magento installation's
/skin/frontend/design/default/your-theme-name/ directory. In the example
theme, this would be /skin/frontend/default/m18/. You will now be able to see
your custom favicon appear for your store, as shown in the following screenshot:

It's also worth checking the guide on adding home icons and other
mobile and handheld-device specific icons to your Magento theme,
covered in Chapter 7, Magento Theming for Mobile and Tablet Devices.

Customizing Magento's product
watermark image
Some stores like to watermark their images to promote brand consistency across
their websites, or to protect their product photography from being used without
permission on other websites.

http://tools.dynamicdrive.com/favicon/

Chapter 2

[33]

Magento allows you to specify a watermark image to overlay product photographs
in your store. To change this, you can navigate to System | Configuration in your
Magento store's administration panel. From there, navigate to the Design tab on the
left-hand side, and then expand the Product Image Watermarks panel, as shown in
the following screenshot:

Magento Theming Basics

[34]

Firstly, upload a watermark image you wish to be displayed across product images
using the Base Image Watermark field, and click on the Save Config button in
the top-right corner of your screen. If you now view a product on your Magento
store front, you will see the product image appear with the watermark image
superimposed over it. It's wise to make the watermark as faint as you can and try
to position it in a way that does not obscure the product photography, unlike the
following example:

You may need to refresh Magento's image cache before you see the
watermark appear over your images. Navigate to System | Cache
Management, and click on the Flush Catalog Images Cache button
towards the bottom of this screen to regenerate the product images with
the watermark over them.

Chapter 2

[35]

Using product images in Magento
By default, the three product image types in Magento are used in different templates
and areas of your Magento site:

•	 Thumbnail images: These are used in the image gallery (if you have more
than one image displayed on a product page), the cart, and the default
Related Products block displayed in Magento's sidebar (50 x 50 pixels on the
default theme)

•	 Small images: These are used in product listings on category pages, in
cross-sell and up-sell blocks, and search result pages (135 x 135 pixels on the
default theme)

•	 Base images: These are used on Magento product pages and the product
image zoom feature, if the image is large enough (262 x 262 pixels on the
default theme)

The Product Image Watermarks panel allows you to specify separate watermark
images to appear on your Base Image, Small Image, and Thumbnail images.
You can change how and where the watermark image appears over the product
photograph by making use of the Position field dropdowns. In particular:

•	 The Stretch option stretches the watermark image across the full product
image height and width, which can look blurry if your watermark image is
too small

•	 The Center option centers the image both vertically and horizontally over the
product photograph

•	 The Tile option repeats the placeholder image over the image, assuming the
placeholder image is small enough to be able to be repeated over the product
photograph

•	 The remaining images tell Magento where to place the watermark image
over the product photograph

The Default Size field allows you to specify the size of the watermark image as
applied to the product image; this value is in pixels, in the form of width x height
for example, 200 x 350 would resize the placeholder image to a width of 200 pixels
and a height of 350 pixels.

Magento Theming Basics

[36]

Finally, the Opacity field allows you to set the opacity of each of the product
watermark images as a percentage. A value of 100 in these fields would cause the
watermark to be fully visible, and obscure the product photograph fully or partially
Lower values will show a semi-transparent watermark image over the product
photographs, while 0 will not display the watermark image at all.

The watermark.png file is included in your book's code files.

Customizing Magento's product
placeholder images
In addition to the product watermarks that can be laid over product images,
Magento allows you to customize the default image placeholder image, which is
used when a product has no product image available to be displayed.

To see the default Magento image placeholder, you can create a product and simply
not assign it an image, which will result in something similar to the result in the
following screenshot:

Chapter 2

[37]

You can add products to your website by navigating to Catalog | Manage Products
in your Magento store's administration panel.

As most e-commerce store owners will testify, it's best to include
product imagery on product pages, but there may be occasions where
you might like to sell products through your store and may not have
an image immediately available, so this is a good way to reinforce your
store's brand!

To customize your store's product placeholder images, navigate to System
| Configuration in your Magento store's administration panel and select the
Catalog option from the left-hand menu. From there, expand the Product Image
Placeholders panel, as shown in the following screenshot:

You can upload your custom product photograph placeholders here, using the Base
Image, Small Image, and Thumbnail fields. These replace the placeholder image
in the various sizes used throughout your Magento store, enabling you to define
separate images for each occasion.

www.allitebooks.com

http://www.allitebooks.org

Magento Theming Basics

[38]

Once you have uploaded your new product placeholder images, click on the Save
Config button at the top-right side of the screen to save your changes, and go back
and refresh the page of your product without an image assigned:

Using the Magento Template Path Hints
As you might expect from a powerful e-commerce system such as Magento, there
are tools to help make your job as a Magento theme developer easier. One of the
most useful tools for theme developers is Template Path Hints, which tells you
where each block's template in your Magento store's page is stored in your Magento
theme directories.

To enable this tool, navigate to System | Configuration in your Magento
administration panel and change the Current Configuration Scope field's value to
your store view's value. In the example in the following screenshot, you can see this
being set to Default Store View:

Chapter 2

[39]

Now, select the Developer tab towards the bottom of the list grouped under
ADVANCED:

Expand the Debug panel and you are now presented with a selection of options; set
the value for the Template Path Hints field to Yes, as seen in the following screenshot
(you may need to uncheck the Use Website checkbox before you can do this):

Magento Theming Basics

[40]

For more advanced template hints on Magento theming, see the
module available at http://www.fabrizio-branca.de/
magento-advanced-template-hints-20.html.

Finally, click on the Save Config button to save these changes, and refresh one of the
pages on the frontend of your Magento store to see the tool appear.

You may need to refresh your Magento's store caches to see these appear.
To clear your cache, navigate to System | Cache Management and clear
the Blocks HTML output cache. You can also fully disable all the caches
from this menu, which is beneficial for theme development!

It is possible to restrict these hints' display to specific IP addresses too, by expanding
the Developer Client Restrictions panel above the Debug panel and entering your
IP address in the Allowed IPs (comma separated) field:

http://www.fabrizio-branca.de/magento-advanced-template-hints-20.html
http://www.fabrizio-branca.de/magento-advanced-template-hints-20.html

Chapter 2

[41]

Only visitors using the IP address(es) specified in this field will see the debug tools
you have enabled once you save this configuration.

Summary
This chapter introduced the beginnings of customizing your Magento store's look
and feel, including how to create a new Magento theme, enabling your new Magento
theme, as well as changing your store's logo and favicon, customizing Magento's
product watermark images and Magento's product placeholder images, and
exploring Magento's Template Path Hints tool to help you better understand where
Magento is requesting template files from.

Future chapters dive deeper into specific areas of Magento theme development.

Magento Templates
So far, the changes to your Magento theme have been fairly simple and largely
limited to configuration within Magento itself. This chapter looks more deeply at
customizing templates within your Magento theme to start making more complex
changes to your Magento store's look and feel. In this chapter, we will cover the
following topics:

•	 Providing some simple layout styles for your Magento theme
•	 Customizing your store's header
•	 Customizing the search box
•	 Adding a static block to a template
•	 Customizing your store's footer
•	 Customizing your store's checkout and cart

Providing layout style for your
Magento theme
The first thing you can provide for your Magento theme is some basic CSS to
define the column's width and layout. Before you do this, you can use a simple CSS
reset to remove unnecessary margins and padding from the elements:

* {
margin:0;
padding:0;
}
img {
border:0;
vertical-align:top;
}

Magento Templates

[44]

a {
color:#1e7ec8;
text-decoration:underline;
}
a:hover {
text-decoration:none;
}
:focus {
outline:0;
}

An alternative to CSS resets is normalize.css, which
you can download from http://necolas.github.io/
normalize.css/.

To do this, you can make use of what is provided in Magento's Default theme. Open
the styles.css file in the /skin/frontend/default/default/css/ directory and
you will see a block of CSS that begins:

/* Layout ==
==================== */
.wrapper {
min-width:954px;
}
.page-print {
background:#fff;
padding:25px 30px;
text-align:left;
}
.page-empty {
background:#fff;
padding:20px;
text-align:left;
}
.page-popup {
background:#fff;
padding:25px 30px;
text-align:left;
}
.main-container {
background:#fbfaf6 url(../images/bkg_main1.gif) 50% 0 no-repeat;
}

http://necolas.github.io/normalize.css/
http://necolas.github.io/normalize.css/

Chapter 3

[45]

.main {
background:#fffffe url(../images/bkg_main2.gif) 0 0 no-repeat;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left;
width:900px;
}

Copy this into your own theme's styles.css file, in the /skin/frontend/default/
m18/css/ directory you previously created, and adapt it to remove any mention of
the default theme's color and images:

.wrapper {
min-width:954px;
}
.page-print {
background:#fff;
padding:25px 30px;
text-align:left;
}
.page-empty {
background:#fff;
padding:20px;
text-align:left;
}
.page-popup {
background:#fff;
padding:25px 30px;
text-align:left;
}
.main-container {
background:#f6f6f6;
}
.main {
background:#fff;
color: #333;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left;
width:900px;
}

Magento Templates

[46]

Magento themes typically provide three different page layouts to be used:
one-column, two-column, and three-column templates. The next block of CSS
you can copy from the /skin/frontend/default/default/css/styles.css
file is the CSS that defines the width and position for each of these layouts:

.col-left {
float:left;
padding:0 0 1px;
width:195px
}
.col-main {
float:left;
padding:0 0 1px;
width:685px
}
.col-right {
float:right;
padding:0 0 1px;
width:195px
}
.col1-layout .col-main {
float:none;
width:auto
}
.col3-layout .col-main {
margin-left:17px;
width:475px
}
.col3-layout .col-wrapper {
float:left;
width:687px
}
.col2-set .col-1 {
float:left;
width:48.5%
}
.col2-set .col-2 {
float:right;
width:48.5%
}
.col2-set .col-narrow {
width:32%
}

Chapter 3

[47]

.col2-set .col-wide {
width:65%
}
.col3-set .col-1 {
float:left;
width:32%
}
.col3-set .col-2 {
float:left;
margin-left:2%;
width:32%
}
.col3-set .col-3 {
float:right;
width:32%
}
.col4-set .col-2 {
float:left;
margin:0 2%;
width:23.5%
}
.col4-set .col-4 {
float:right;
width:23.5%
}
.col2-left-layout .col-main,.col3-layout .col-wrapper .col-main {
float:right;
}
.col4-set .col-1,.col4-set .col-3 {
float:left;
width:23.5%
}

The preceding CSS alters the width of the columns based on which particular layout
is in use, for example, if a page is using a three-column layout, the column widths
are adapted so that all three columns can be contained within one row of your page,
rather than displaying them above and below each other.

Next, you will need to specify an additional layout for the header and footer areas of
your theme:

.header-container, .footer-container {
background: #f6f6f6;
}

www.allitebooks.com

http://www.allitebooks.org

Magento Templates

[48]

.header, .footer {
margin: 0 auto;
width: 930px
}

Finally, to complete the layout, you will need to include CSS to clear the floating
elements used in your layout, again taken from the bottom of the styles.css file
in the /skin/frontend/default/default/css/ folder and copied into the bottom
of your styles.css file in the /skin/frontend/default/m18/css/ folder.

You can find this in the code files for this chapter.

If you now refresh your Magento store's frontend, you will see the effect this CSS
has had, overwriting the default theme's previous styling, but retaining the column
layout of the store as you can see in the following screenshot:

As you can see, this provides a basic starting point for your custom Magento theme,
but there's still much work to be done!

Chapter 3

[49]

Customizing your Magento store's
header
As it stands, your current theme looks incomplete at the moment. You can begin
to address this by:

•	 Adding CSS to customize the header elements of your theme
•	 Altering your theme's header.phtml file to customize the HTML used

by Magento

Providing CSS for Magento's navigation
dropdowns
Most of the styling for Magento's drop-down navigation can be done within CSS.
Firstly, you can remove the bullet points and other styling associated with the
 elements by adding the following CSS:

.links li, #nav li, .breadcrumbs li {
display: inline;
list-style: none;
}
ul.links, .links li, .breadcrumbs ul, #nav ul {
margin: 0;
padding: 0;
}

Our next task is to restore your Magento theme's CSS for drop-down navigation .
This can be done by reusing the CSS applied to #nav from the styles.css file in
the /skin/frontend/default/default/css/ folder and copying this into your
new theme's styles.css file in the /skin/frontend/default/default/css/
folder, updating the color references as you wish.

You can see this CSS in your code sample file in the chapter's
skin\css folder provided with this book.

Magento Templates

[50]

This will provide basic styling for your Magento store's navigation structure as you
can see in the following screenshot:

Altering the header.phtml template
As you saw, when you enabled Magento's Template Path Hints tool, the pages on
your Magento store were composed from many different templates. The header
and footer, which are generally used globally throughout your store, are added to
the top and bottom of each page respectively, while different page structures (for
example, one-column, two-column, and three-column layouts) are swapped in and
out as defined by the Magento layout, either by a theme or at a page level through
Magento's CMS tool.

To see which template is being used, you can enable Magento's
Template Path Hints file. See Chapter 2, Magento Theming Basics,
for a walkthrough of how to do this.

Now, view your Magento store's frontend and you can see the extent of your
Magento theme's header file within the design:

Chapter 3

[51]

To change the markup in your Magento theme's header, copy the header.phtml file
in the /app/design/frontend/base/default/template/page/html/ directory to
the /app/design/frontend/default/m18/template/page/html/ directory. You can
provide a typical layout for your store's header in line with the following diagram:

ACCOUNT LINKSLOGO

SEARCH

The first thing you need to do is alter how the logo is displayed to remove the text
alongside it. Open the header.phtml file in your theme and find the following block
of code:

<?php if ($this->getIsHomePage()):?>
<h1 class="logo"><?php echo $this->getLogoAlt() ?></
strong><a href="<?php echo $this->getUrl('') ?>" title="<?php echo
$this->getLogoAlt() ?>" class="logo"><img src="<?php echo $this-
>getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt() ?>" /></h1>
<?php else:?>
<a href="<?php echo $this->getUrl('') ?>" title="<?php echo $this-
>getLogoAlt() ?>" class="logo"><?php echo $this->getLogoAlt()
?><img src="<?php echo $this->getLogoSrc() ?>" alt="<?php
echo $this->getLogoAlt() ?>" />
<?php endif?>

Magento Templates

[52]

This is currently adding text to the logo block on both, the homepage (wrapped in
a <h1> element on the homepage using the $this->getIsHomePage() function to
check whether the current page is the homepage) and other pages (wrapped in a
 element). The logo file is specified in the Magento configuration, which
was covered in Chapter 2, Magento Theming Basics. Update this to reflect the following
code, to output the logo's image simply:

<a href="<?php echo $this->getUrl('') ?>" title="<?php echo
$this->getLogoAlt() ?>" class="logo"><img src="<?php echo $this-
>getLogoSrc() ?>" alt="<?php echo $this->getLogoAlt() ?>" />

Once saved, refresh your Magento site and you will see that the change has
been applied:

Next, you will need to apply some CSS in your theme's styles.css file to improve
the layout of the header's elements:

.header .logo, .header .quick-access {
float: left;
margin: 1%;
width: 48%;
}
.header .quick-access {
text-align: right;
}

If you refresh your store after saving these changes, you will see that the header now
looks more like what you would expect:

Chapter 3

[53]

Customizing Magento's search box
You can also customize Magento's search feature through the Magento templates.
The search feature is especially important for stores with a large number of products,
so ensuring that it is in a prominent place and looks like a search feature is very
important.

Firstly, to overwrite the template used for the search form in the header, copy the
search.mini.phtml file at /app/design/frontend/base/default/template/
catalogsearch/ into the /app/design/frontend/default/m18/template/
catalogsearch directory, and find the following lines that constitute the
Search button:

<button type="submit" title="<?php echo $this->__('Search') ?>"
class="button">

<?php echo $this->__('Search') ?>

</button>

Remove the elements highlighted in the preceding code, as these are
no longer required in the new theme. Open your theme's styles.css file
to provide some basic styling for the search text box and change its border color
when it is focused on the following:

.input-text {
border: 1px #CCC solid;
border-radius: 3px;
padding: 3px;
}
 .input-text:active, .input-text:focus {
 border-color: #e57d04;
 }

Magento Templates

[54]

Removing the elements helps to reduce the weight of the
pages provided to customers a little, increasing the loading time of
your store. However, if you aren't planning to heavily customize your
Magento theme, you can leave these as they appear quite frequently
throughout many Magento templates and can take some weeding out!

Next, you can add some styling to the buttons throughout your theme:

.button {
background: #e57d04;
border: none;
border-radius: 3px;
color: #fff;
font-weight: bold;
padding: 3px;
text-align: center;
}
.button:active, .button:focus {
background-color: #333;
}

Finally, you can add some styling to the search button specifically to include an
image that will help your customers identify its purpose more easily:

.form-search .button {
background-image: url("../images/search.png");
background-repeat: no-repeat;
background-position: 3px center;
padding-left: 24px;
}

If you now refresh your Magento theme, you will see the change take effect:

Chapter 3

[55]

Adding a static block to a Magento
template
Sometimes, you may need to add an editable block to your template to allow content
to be easily updated through Magento's administration panel. Magento's static
blocks allow you to do this, and they can be embedded in the Magento templates.

Creating a new static block
Firstly, you will need to create a static block in Magento. Log in to your store's
administration panel and navigate to CMS | Static Blocks, as shown in the
following screenshot:

Here, click on the Add New Block button at the top-right of your screen, as shown in
the following screenshot:

Magento Templates

[56]

You can create your block here: the block Title field allows you to give your block
a name, while the Identifier field is a machine-readable way to identify this specific
block (remember this value, as you'll need it soon!).

Note that the value of the Identifier field cannot contain spaces or
special characters, and it's typical to use an underscore character (_)
here to separate words in the identifier's name.

The Status field allows you to enable or disable this specific block: ensure this
is set to Enabled to be able to make use of the block in your template. Finally,
the Content field allows you to specify content for this block; you can either
make use of the Magento text editor tool here, or disable it and enter raw HTML.
The following screenshot shows an example block:

Once you're ready, click on the Save Block button towards the top-right corner of
your screen.

Inserting the static block into a template
Now that you have a static block ready, you can include it in a template within your
Magento theme. The example static block created previously is for use in the footer
of the website to give customers an idea what the store is about.

Chapter 3

[57]

Before you do this, you will need to copy the footer.phtml file from the /app/
design/frontend/base/default/template/page/html/ directory to the /app/
design/frontend/default/m18/page/html/ directory and locate the following
lines:

<div class="footer-container">
<div class="footer">

Below these lines, insert the following snippet to insert the static block you created
into the page at this point:

<div class="footer-container">
<div class="footer">
<div class="footer-about footer-col">
<?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
</div>

In the section that reads setBlockId('footer_about'), note that the footer_
about value is the identifier value of the block you created earlier. In the
preceding code, the echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml() code tells Magento to insert the
contents of the static block into Magento with the identifier footer_about.

If you refresh your Magento theme, you will see the new block's content appear in
the footer area of your store:

www.allitebooks.com

http://www.allitebooks.org

Magento Templates

[58]

Customizing your Magento store's footer
Your theme's footer is currently quite unstyled and contains a lot of links you may
not require. Open your theme's footer.phtml file in the /app/design/frontend/
default/m18/template/page/html/ directory and you will see something similar
to the following code:

<div class="footer-container">
 <div class="footer">
 <div class="footer-about footer-col">
 <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
 </div>
 <?php echo $this->getChildHtml() ?>
 <p class="bugs"><?php echo $this->__('Help Us to Keep Magento
Healthy') ?> - <a href="http://www.magentocommerce.com/bug-tracking"
onclick="this.target='_blank'"><?php echo $this->__('Report
All Bugs') ?> <?php echo $this->__('(ver. %s)',
Mage::getVersion()) ?></p>
 <address><?php echo $this->getCopyright() ?></address>
 </div>
</div>

By removing the preceding highlighted code, you can begin to clean up your theme's
footer and customize it for your own store. You can gain a little more control over
the footer's layout by adding an additional <div> element around the content, as
highlighted in the following code:

<div class="footer-container">
 <div class="footer">
 <div class="footer-about footer-col">
 <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
 </div>
<div class="footer-col footer-categories">
 <?php echo $this->getChildHtml() ?>
 </div>
 <address><?php echo $this->getCopyright() ?></address>
 </div>
</div>

You can now add some CSS to your theme's styles.css file to help provide a
clearer layout for the content in the footer:

.footer-col {
float: left;

Chapter 3

[59]

margin: 1%;
width: 48%;
}
.footer address {
clear: both;
text-align: center;
}
.footer ul {
list-style: none;
}
 .footer ul li {
 display: block;
 }
.footer a {
color: #333;
text-decoration: none;
}
 .footer a:active, .footer a:hover {
 text-decoration: underline;
 }

You can also add some styling for specific content blocks in the footer you
have created:

.footer-about p:first-of-type {
color: #e57d04;
font-size: 135%;
}
.footer-categories {
text-align: right;
}

If you now look at your theme's footer, you will see that it looks much more fitting
for a Magento store:

Magento Templates

[60]

Listing all top-level categories in your
Magento store
Many stores include a list of their top-level (primary) categories in their footer to
help customers navigate to their products more easily. You can do this by adding
a simple snippet of code to the footer template you have already customized.
Open your theme's footer.phtml file and add the following highlighted code:

<div class="footer-container">
 <div class="footer">
 <div class="footer-about footer-col">
 <?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
 <?php
 $_helper = Mage::helper('catalog/category');
 $_categories = $_helper->getStoreCategories();
 if (count($_categories) > 0): ?>

 <?php foreach($_categories as $_category): ?>
 <a href="<?php echo $_helper-
>getCategoryUrl($_category) ?>"><?php echo $_category->getName() ?>

 <?php endforeach; ?>

 <?php endif; ?>
 </div>
 <div class="footer-col footer-categories">
 <?php echo $this->getChildHtml() ?>
 </div>
 <address><?php echo $this->getCopyright() ?></address>
 </div>
</div>

For more information on the Mage Helper class, see the Magento
documentation at http://docs.magentocommerce.com/
Mage_Core/Mage_Core_Helper_Abstract.html.

http://docs.magentocommerce.com/Mage_Core/Mage_Core_Helper_Abstract.html
http://docs.magentocommerce.com/Mage_Core/Mage_Core_Helper_Abstract.html

Chapter 3

[61]

Once you have saved this change, you should see your top-level categories appear in
the footer:

Customizing your store's checkout
and cart
You can pay some attention to the styling of your store's checkout and cart templates
to better match the feel of your new Magento theme.

Styling the cart page
To view the cart page as it currently appears, add a product from your store to the
cart and use the My Cart button in the header of your website:

Magento Templates

[62]

Open your theme's styles.css file in the /skin/frontend/default/m18/css/
directory and add the following CSS to the bottom of the file to style the cart table,
which contains the products your customer is about to buy:

fieldset {
border: 0;
}
.a-right {
text-align: right;
}
.checkout-types, .form-list {
list-style: none;
margin: 10px 0;
}
.totals {
float: right;
}
.totals table {
width: 100%;
}
.checkout-types, .totals {
text-align: right;
}
.checkout-types li, .form-list li {
display: inline;
margin-right: 5px;
}
.form-list li.control {
display: block;
}
.data-table {
width: 100%;
}
.data-table a {
color: #000;
}
.data-table th, .data-table .even {
background: #f6f6f6;
}
.data-table th, .data-table td {
border-bottom: 1px #DDD solid;
padding: 5px;
}

Chapter 3

[63]

.discount, .shipping {
background: #f6f6f6;
border-radius: 5px;
margin-bottom: 10px;
padding: 5px;
}

Once this CSS has been added, your store's cart page will look more in line with your
new Magento theme:

Magento Templates

[64]

Styling the checkout page
If you now click on the Proceed to checkout button on the cart screen, you will see
Magento's checkout page, which currently looks similar to the following screenshot:

Add the following CSS to your theme's styles.css file to style the Your Checkout
Progress block, which appears in the right-hand column of the checkout page to
indicate to customers which stage of the checkout process they're at:

.block-progress {
border: 0;
margin: 0;
}
.block-progress dt {
background: #eee;
border: 1px solid #ccc;
color: #555;

Chapter 3

[65]

font-size: 10px;
line-height: 1.35;
margin: 0 0 6px;
padding: 2px 8px;
text-transform: uppercase;
}
.block-progress dd {
border-top: 0;
padding: 2px 10px;
margin: 0 0 6px;
}
.block-progress dt.complete a {
text-transform: none;
}
.block-progress p {
margin: 0;
}

Next, adding the CSS below provides styling for the buttons and form elements
within the one-page checkout:

.opc .buttons-set {
margin-top: 0;
padding-top: 2em;
}
.opc .buttons-set p.required {
margin: 0;
padding: 0 0 10px;
}
.opc .buttons-set.disabled button.button {
display: none;
}
.opc .buttons-set .please-wait {
height: 28px;
line-height: 28px;
}
.opc .ul {
list-style: disc outside;
padding-left: 18px;
}

Magento Templates

[66]

Finally, adding the remaining CSS below provides the styling for the individual steps
of the one-page checkout process, and different colors to indicate which particular
step of the checkout your customer has completed:

.opc {
position: relative;
}
.opc .step-title {
background: #CCC;
border: 1px solid #CCC;
border-top-left-radius: 5px;
border-top-right-radius: 5px;
color: #555;
margin: 10px 0 0 0;
padding: 10px;
text-align: right;
}
.opc .step-title .number {
background: #fff;
border: 1px solid #fff;
border-radius: 3px;
color: #444;
float: left;
font: normal 11px/12px arial, helvetica, sans-serif;
margin: 0 5px 0 0;
padding: 0 3px;
}
.opc .step-title h2 {
color: #555;
float: left;
font: bold 12px/14px Arial, Helvetica, sans-serif;
margin: 0;
}
.opc .step-title a {
display: none;
float: right;
font-size: 11px;
line-height: 16px;
}

Chapter 3

[67]

.opc .allow .step-title {
background: #999;
border-color: #999;
border-top-color: #fff;
color: #fff;
cursor: pointer;
}
.opc .allow .step-title h2 {
color: #fff;
}
.opc .allow .step-title a {
color: #fff;
display: block;
font-size: 10px;
text-transform: uppercase;
}
.opc .active .step-title {
background: #e57d04;
border: none;
color: #fff;
cursor: default;
}
.opc .active .step-title h2 {
color: #fff;
}
.opc .active .step-title a {
display: none;
}
.opc .step {
border: 1px solid #ccc;
border-top: 0;
background: #f9f9f9;
padding: 15px 30px;
position: relative;
}
.opc .step .tool-tip {
right: 30px;
}

Magento Templates

[68]

If you now review your store's checkout, you will see that it is styled more neatly to
help guide your customers through Magento's one-page checkout process:

Summary
This chapter explored how you can identify which Magento template is responsible
for which block of content in your Magento theme. You also learned how you can
use Magento template files to customize your theme, create a basic layout for your
Magento theme, customize your store's header and the search feature, add a static
block to a Magento template, customize your store's footer, and style your store's
checkout and cart. Further chapters will dig deeper into ways to build your custom
Magento theme using the Magento layout files and more advanced template
manipulation.

Magento Layout
You have now looked at the changes you can make to your Magento theme using
CSS and template changes. This chapter introduces Magento's layout language,
which can be used to change the appearance and order of blocks within your
Magento theme and covers the following:

•	 Adding a local.xml file to your theme
•	 Changing the default page template
•	 Changing a page's layout via CMS
•	 Adding a static block to a page using the Magento layout
•	 Changing the ordering of blocks in Magento's sidebar
•	 Removing unnecessary blocks from Magento's sidebar
•	 Adding a new products block to your store's home page

Adding local.xml to your Magento theme
As you have seen, Magento provides fallbacks to fill in the files not provided by
your theme to help ensure your website functions as effectively as possible. You can
overwrite the layout information in your Magento theme by applying a local.xml
file to your Magento theme.

Create a file called local.xml in your theme's /app/design/frontend/default/
m18/layout/ directory, and include the following XML:

<?xml version="1.0"?>
<layout>
</layout>

This is the very least your Magento XML layout file requires: all of the subsequent
changes to your theme's layout need to be written in the <layout> element.

Magento Layout

[70]

Using layout to change your default
Magento page template
Each page in your Magento store uses a skeleton layout; these are typically one of the
following:

•	 One-column layout
•	 Two-column layout with a right-hand sidebar
•	 Two-column layout with a left-hand sidebar
•	 Three-column layout

Some pages may have specific templates assigned to them (for example, your
one-page checkout may use the one-column layout while pages created through
Magento's CMS tool may use a two-column layout with left sidebar layout), but
pages that are not specifically given a layout inherit the default page layout.

Types of blocks within Magento
There are two types of blocks within Magento:

•	 Structural blocks: These blocks provide regions that Magento can assign
content blocks into. These structural blocks act as a skeleton for your store's
content, and typically include the header, footer, content, and sidebar blocks.

•	 Content blocks: These blocks provide reusable blocks of content that are
populated as required. Examples of content blocks in Magento include the
category product listings (which would typically be included in the content
structural block) and the category navigation block (typically assigned to the
header structural block).

Changing a page's template using the XML
layout
You can change this default page layout in your Magento theme by adding Magento
XML layout instructions in your theme's local.xml file. Open your theme's local.
xml file you created in the previous section of this chapter, and add the following
highlighted code to change the default page template to the one column layout:

<?xml version="1.0"?>
<layout>
 <default>
 <reference name="root">

Chapter 4

[71]

 <action method="setTemplate">
 <template>page/1column.phtml</template>
 </action>
 </reference>
 </default>
</layout>

The <default> handle applies this change to all, unless they are specifically
overwritten for a particular type of page within Magento (for example, the
one-page checkout or category pages), while the <reference> name attribute
tells Magento where this change is to be made: the <root> applies this to the
top-most structural block.

Finally, the <action> element in the XML tells Magento to use the template called
1column.phtml in the /page/ directory within your theme's templates directory.

This path is relative to the /app/design/frontend/default/m18/
template/ directory if the file exists in the m18 theme, or else it will
fallback and find this file in another default theme.

If you save this change, you will see that the one column layout is applied to pages
without a more specific layout set through Magento's content management tool.
On the example site, you can see that the Orders & Returns page (at http://
www.example.com/sales/guest/form/ if you installed Magento at http://www.
example.com) has now adopted the one column layout you used in local.xml file:

http://www.example.com/sales/guest/form/
http://www.example.com/sales/guest/form/
http://www.example.com
http://www.example.com

Magento Layout

[72]

Note that the product listings haven't been styled yet! You'll come
to that later on.

Changing a page's layout using
Magento's CMS tool
Apart from using Magento layout files to define which pages use which page
layouts, you can also use Magento's CMS to apply specific layouts to specific pages
created through the content management tool.

Layout changes specified in Magento's CMS tool will overwrite
layout changes made within your theme's XML files.

The following example will edit the layout of the About Us page in the store, which
has a two column including the right sidebar layout assigned to it by default, as you
can see in the following screenshot:

Chapter 4

[73]

Log in to your Magento administration panel and navigate to CMS | Pages:

From here, select a page to edit by clicking on its corresponding row in the list
of pages:

When editing the page you want to change the layout for, navigate to the Design tab
that appears in the left-hand side column:

In the Layout field that appears under the Page Layout block, as shown in the
following screenshot, you can select an available page layout from the dropdown.
Select the 1 column option and click on the Save Page button at the top-right corner
of the screen to save this setting:

Magento Layout

[74]

If you now view the frontend of your Magento store and navigate to the About Us
page you edited, you will see that the new layout has been applied:

Adding a static block to a page using the
Magento layout
As you saw in the previous chapter on Magento templates, you can add static blocks
that are created through Magento's CMS into your theme's templates and pages.
Magento layout also allows you to add a static block that is created and managed by
Magento's CMS tool to an area of your Magento layout.

You need to create a static block by navigating to CMS | Static Blocks in Magento's
administration panel. This example will use a block identifier of sidebar_promise,
which you will need to remember when it comes to applying the layout to display
this block:

Chapter 4

[75]

Once you have created your static block, open your theme's local.xml file to
assign the static block you created earlier to the left sidebar using the following
highlighted XML:

<?xml version="1.0"?>
<layout>
 <default>
 <reference name="left">
 <block type="cms/block" name="left.delivery">
 <action method="setBlockId">
 <block_id>sidebar_promise</block_id>
 </action>
 </block>
 </reference>
 </default>
</layout>

Once you have saved this change, navigate to the frontend of your store and view
the page you edited to see the new block appear in the sidebar:

The static block is displayed in the lower-left corner of the sidebar

You can now style this block as you wish by introducing the necessary HTML
and CSS.

Magento Layout

[76]

Assigning a static block to a page in
Magento's CMS
You can also assign a static block to a specific page using Magento's CMS. Once
you have created your static block, navigate to CMS | Pages and select a page you
want to assign the static block to. From there, select the Design tab for the page
and ensure that the Layout field is set to 2 columns with right bar, as shown in the
following screenshot:

Next, add the following XML to the page's Layout Update XML field to assign the
sidebar_promise static block to the right-hand side column on this page:

<reference name="right">
<block type="cms/block" name="right.delivery">
<action method="setBlockId"><block_id>sidebar_promise</block_id></
action>
</block>
</reference>

Once entered, your Design tab for this page should look similar to the
following screenshot:

Chapter 4

[77]

Click on the Save Page button at the top-right corner of the screen and view this
page on the frontend of your Magento store. You will see the block is appended to
the bottom of the right-hand sidebar:

If you don't see your change appear, ensure that you refresh Magento's caches by
navigating to System | Cache Management.

Changing the ordering of blocks in
Magento's sidebar
Apart from giving you the power to add and remove blocks from templates, the
Magento layout gives you the power to reorder blocks within your pages too. There
are a few ways you could rearrange the blocks in your theme's sidebar, for instance,
by moving a specific block:

•	 Below another block
•	 To the very top of the list of blocks
•	 To the very bottom of the list of blocks

Magento Layout

[78]

Repositioning a block below a specific block
As an example, take the current right sidebar in your theme, which will look similar
to what is shown in the following screenshot:

Firstly, you can add some simple styling to the sidebar blocks to help us distinguish
them from each other. Open your theme's styles.css file in the /skin/frontend/
default/m18/css/ directory and add the following CSS:

.block {
background: #fff;
border-radius: 10px;
box-shadow: #CCC 0 10px 20px;
margin-bottom: 20px;
}
.block-title {
background: #e57d04;
color: #fff;
font-weight: bold;
}
.block-content,
.block-title {
padding: 10px;
}

Chapter 4

[79]

.block-banner .block-content {
padding: 0;
}

If you now refresh your store, the blocks in the sidebar will look more distinct from
each other:

Next, you will need to open your theme's local.xml file in the /app/design/
frontend/default/m18/layout/ directory of your Magento installation. If you
want to move the Compare Products block above the My Cart callout block, you will
use the after attribute in Magento layout to specify the block it appears after.

Magento Layout

[80]

In Magento, the typical way to do this is to first unset the Compare Products block
and then reinsert the block below the My Cart block:

<reference name="right">
<action method="unsetChild">
<name>catalog.compare.sidebar</name>
</action>
<block type="catalog/product_compare_sidebar" after="cart_sidebar"
name="catalog.compare.sidebar.replacement" template="catalog/product/
compare/sidebar.phtml"/>
</reference>

The name values need to match the block name within Magento; one
of the best ways to track down specific block names for your needs
is to look through the layout files in the /app/design/frontend/
base/default/layout/ and /app/design/frontend/default/
default/layout/ directories.

The after value which blocks the repositioned block appears below while the
template attribute defines which Magento template file should be used to render
this block's content (in relation to the /app/design/frontend/your-package/your-
theme/template/ directory).

If you now refresh a page on your store with the right sidebar enabled, you will see
the blocks' ordering has been changed:

Chapter 4

[81]

Once again, if you can't see the change on your store, ensure that you have refreshed
or disabled Magento's caches by navigating to System | Cache Management in your
Magento store's control panel.

Reordering a block above all other blocks
Alternatively, you can move blocks within regions of your Magento templates to the
top of all other blocks. Open your theme's local.xml file and add the layout XML:

<reference name="right">
<action method="unsetChild">
<name>catalog.compare.sidebar</name>
</action>
<block type="catalog/product_compare_sidebar" before="-"
name="catalog.compare.sidebar.replacement" template="catalog/product/
compare/sidebar.phtml"/>
</reference>

Note the similarities with the preceding snippet; though in the previous example,
you replace the after attribute with before and assign this attribute the value of -,
which indicates it should be shown before all other blocks. If you refresh your page
with the right sidebar visible, you will now see the blocks have reordered once again
to show Compare Products at the top of the sidebar:

Magento Layout

[82]

Reordering a block below all other blocks
It is also possible to use this method to render blocks in your Magento template
regions to position a specific block below all other blocks. Once again, open your
local.xml file and use the following Magento layout XML to reorder the Compare
Products block to the bottom of the blocks in the sidebar:

<reference name="right">
<remove name="catalog.compare.sidebar" />
<block type="catalog/product_compare_sidebar" after="-" name="catalog.
compare.sidebar.replacement" template="catalog/product/compare/
sidebar.phtml"/>
</reference>

Note that the preceding XML uses the after attribute with a value of - (hyphen) to
tell Magento to place this block after all others in this region. Refresh your screen
once again to see the change take effect:

Chapter 4

[83]

Removing unnecessary blocks from
Magento's sidebar
As you can see from the previous screenshots of this chapter, there are quite a few
blocks displayed in Magento's sidebars by default that you will not want to use.
You can set these not to display in your theme customizing your theme's layout
instructions.

Open your theme's local.xml file and apply the following XML:

<reference name="left">
<remove name="left.permanent.callout"/>
<remove name="right.newsletter"/>
<remove name="cart_sidebar"/>
<remove name="sale.reorder.sidebar"/>
</reference>

<reference name="right">
<remove name="right.permanent.callout"/>
<remove name="livechat.chat"/>
<remove name="right.poll"/>
<remove name="paypal.partner.right.logo"/>
<remove name="cart_sidebar"/>
<remove name="sale.reorder.sidebar"/>
<remove name="catalog.compare.sidebar"/>
</reference>

This removes commonly unused blocks in your Magento theme:

•	 The cart box in the sidebar
•	 The customer wishlist widget and "compare products" widget
•	 The placeholder advertisements ("callouts") in the left and right sidebars
•	 The list of previously viewed and compared products displayed in the

right sidebar
•	 The newsletter subscription and customer poll widgets, and the PayPal logo

included in Magento's sample widgets

Magento Layout

[84]

If you save your local.xml file and look again at your Magento store, you will see
these blocks have now been removed from your store:

If you can't see your changes, ensure that you have refreshed or disabled
Magento's caches by navigating to System | Cache Management.

Customizing the home page's layout
You have seen how to apply a page layout to specific pages, but to apply a specific
template to your store's home page, you can add more specific layout instructions
in your theme's local.xml file.

The layout handle for the home page is cms_index_index. So, to assign the home
page the one column layout, you will add the following to your Magento theme's
local.xml file:

<cms_index_index>
<reference name="root">
<action method="setTemplate">
<template>page/1column.phtml</template>
</action>
</reference>
</cms_index_index>

Note, though, that the layout can be overwritten through Magento's CMS tool, so
this is unlikely to work in practice. You can navigate to CMS | Pages in your
Magento installation's administration panel and set your page's layout using the
Layout drop-down field in the Design tab:

Chapter 4

[85]

An incomplete list of layout handles available in Magento is available at
http://www.magentocommerce.com/boards/viewthread/2471/.

Adding new product block to the
home page
A common requirement of e-commerce stores is to display a number of newly added
products on the home page; this can be useful for search engines (to encourage new
products to be indexed more quickly) and customers who are visiting again to find
newly added stock on your website.

Marking products as new in Magento
Before you start making changes to your theme, ensure that you have a few products
marked as "new" within Magento. To do this, log in to your Magento administration
panel and navigate to Catalog |Manage Products. From there, select a product that
you wish to mark as new. On the General tab, enter date values for the Set Product
as New from Date and Set Product as New to Date fields that include the current
date so the products are currently marked as "new" within Magento:

http://www.magentocommerce.com/boards/viewthread/2471/

Magento Layout

[86]

Once you have done this, click on the Save button at the top-right corner of your
screen. You may wish to add more than one product to the new products list
using this method.

Using XML layout to add the New Products
block to your store's home page
Once you have assigned some products in your store to the new products list, open
your theme's local.xml file and add the following highlighted XML within the cms_
index_index handle:

<cms_index_index>
<reference name="content">
<block type="catalog/product_new" template="catalog/product/new.
phtml">
<action method="setProductsCount"><count>3</count></action>
<action method="addColumnCountLayoutDepend"><layout>empty</
layout><count>5</count></action>
<action method="addColumnCountLayoutDepend"><layout>one_column</
layout><count>5</count></action>
<action method="addColumnCountLayoutDepend"><layout>two_columns_left</
layout><count>4</count></action>
<action method="addColumnCountLayoutDepend"><layout>two_columns_
right</layout><count>4</count></action>
<action method="addColumnCountLayoutDepend"><layout>three_columns</
layout><count>3</count></action>
</block>
</reference>
</cms_index_index>

If you refresh the home page, you will see the products you marked as "new" in
Magento's administration panel are now visible, but they are not styled:

Chapter 4

[87]

Finally, you can apply some styling to the product grid by adding the following CSS
to your styles.css file in the /skin/frontend/default/m18/css/ directory:

.products-grid {
border-bottom: 1px solid #CCC;
list-style: none;
position: relative;
}
.products-grid.last {
border-bottom: 0;
}
.products-grid li.item {
border-right: 1px #CCC solid;
float: left;
width: 138px;
padding: 12px 10px 80px;
}

Magento Layout

[88]

.products-grid li.item.last {
border-right: none;
}
.products-grid .product-image {
display: block;
height: 135px;
margin: 0 0 10px;
width: 135px;
}
.products-grid .product-name {
color: #e57d04;
font-size: 0.9em;
font-weight: bold;
margin: 0 0 5px;
}
.products-grid .product-name a {
color:#203548;
}
.products-grid .price-box {
margin:5px 0;
}
.products-grid .availability {
line-height:21px;
}
.products-grid .actions {
position:absolute;
bottom:12px;
}

.add-to-links {
list-style: none;
font-size: 0.8em;
margin-top: 10px;
}

Chapter 4

[89]

This provides a neater product grid to display your products throughout your
Magento store, including the New Products block that now appears on the
home page:

Summary
In this chapter, you learned how using and applying Magento layout allows you
to alter how Magento behaves and appears to your customers. In particular, you
created a local.xml file to hold your theme's custom layout instructions, changed
the default page template, and used Magento's CMS to change a page's layout. You
also assigned a static block to a page using Magento layout and altered blocks from
Magento's sidebar templates. Finally, you added a new products block to your store's
home page template.

Further chapters will provide more ideas for the customization of your Magento
theme, from customizing store e-mails to improving your store for mobile users.

Social Media and Magento
So, you've begun to develop your own custom Magento 1.8 theme now. Social
networks such as Twitter and Facebook are ever popular and can be a great
source of new customers if used correctly on your store. This chapter covers the
following topics:

•	 Integrating a Twitter feed into your Magento store
•	 Integrating a Facebook Like Box into your Magento store
•	 Including social share buttons in your product pages
•	 Integrating product videos from YouTube into the product page

Integrating a Twitter feed into your
Magento store
If you're active on Twitter, it can be worthwhile to let your customers know. While
you can't (yet, anyway!) accept payment for your goods through Twitter, it can be
a great way to develop a long term relationship with your store's customers and
increase repeat orders.

One way you can tell customers you're active on Twitter is to place a Twitter feed that
contains some of your recent tweets on your store's home page. While you need to
be careful not to get in the way of your store's true content, such as your most recent
products and offers, you could add the Twitter feed in the footer of your website.

Social Media and Magento

[92]

Creating your Twitter widget
To embed your tweets, you will need to create a Twitter widget. Log in to your
Twitter account, navigate to https://twitter.com/settings/widgets, and follow
the instructions given there to create a widget that contains your most recent tweets.
This will create a block of code for you that looks similar to the following code:

<a class="twitter-timeline" href="https://twitter.com/RichardCarter"
data-widget-id="123456789999999999">Tweets by @RichardCarter
<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)
[0],p=/^http:/.test(d.location)?'http':'https';if(!d.
getElementById(id)){js=d.createElement(s);js.id=id;js.
src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.
insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>

Embedding your Twitter feed into a
Magento template
Once you have the Twitter widget code to embed, you're ready to embed it into one
of Magento's template files. This Twitter feed will be embedded in your store's footer
area. So, so open your theme's /app/design/frontend/default/m18/template/
page/html/footer.phtml file and add the highlighted section of the following code:

<div class="footer-about footer-col">
<?php echo $this->getLayout()->createBlock('cms/block')-
>setBlockId('footer_about')->toHtml(); ?>
<?php
$_helper = Mage::helper('catalog/category');
$_categories = $_helper->getStoreCategories();
if (count($_categories) > 0): ?>

<?phpforeach($_categories as $_category): ?>

<a href="<?php echo $_helper->getCategoryUrl($_category) ?>">
<?php echo $_category->getName() ?>

<?phpendforeach; ?>

<?phpendif; ?>
<a class="twitter-timeline" href="https://twitter.com/RichardCarter"
data-widget-id="123456789999999999">Tweets by @RichardCarter

https://twitter.com/settings/widgets

Chapter 5

[93]

<script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)
[0],p=/^http:/.test(d.location)?'http':'https';if(!d.
getElementById(id)){js=d.createElement(s);js.id=id;js.
src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.
insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script>
</div>

The result of the preceding code is a Twitter feed similar to the following one
embedded on your store:

As you can see, the Twitter widget is quite cumbersome. So, it's wise to be
sparing when adding this to your website. Sometimes, a simple Twitter
icon that links to your account is all you need!

You could also use a static block in Magento to contain your Twitter feed; refer to
Chapter 4, Magento Layout, to see how you can add a static block to a Magento template.

Integrating a Facebook Like Box into
your Magento store
Facebook is one of the world's most popular social networks; with careful
integration, you can help drive your customers to your Facebook page and increase
long term interaction. This will drive repeat sales and new potential customers to
your store. One way to integrate your store's Facebook page into your Magento site
is to embed your Facebook page's news feed into it.

Social Media and Magento

[94]

Getting the embedding code from Facebook
Getting the necessary code for embedding from Facebook is relatively easy; navigate
to the Facebook Developers website at https://developers.facebook.com/docs/
plugins/like-box-for-pages. Here, you are presented with a form. Complete
the form to generate your embedding code; enter your Facebook page's URL in the
Facebook Page URL field (the following example uses Magento's Facebook page):

Click on the Get Code button on the screen to tell Facebook to generate the code
you will need, and you will see a pop up with the code appear as shown in the
following screenshot:

https://developers.facebook.com/docs/plugins/like-box-for-pages
https://developers.facebook.com/docs/plugins/like-box-for-pages

Chapter 5

[95]

Adding the embed code into your
Magento templates
Now that you have the embedding code from Facebook, you can alter your
templates to include the code snippets. The first block of code for the JavaScript
SDK is required in the header.phtml file in your theme's directory at /app/design/
frontend/default/m18/template/page/html/. Then, add it at the top of the file:

<div id="fb-root"></div>
<script>(function(d, s, id) {
varjs, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_GB/all.js#xfbml=1";
 fjs.parentNode.insertBefore(js, fjs);
}(document, 'script', 'facebook-jssdk'));</script>

Social Media and Magento

[96]

Next, you can add the second code snippet provided by the Facebook Developers
site where you want the Facebook Like Box to appear in your page. For flexibility,
you can create a static block in Magento's CMS tool to contain this code and then use
the Magento XML layout to assign the static block to a template's sidebar.

Navigate to CMS | Static Blocks in Magento's administration panel and add a new
static block by clicking on the Add New Block button at the top-right corner of the
screen. Enter a suitable name for the new static block in the Block Title field and give
it a value facebook in the Identifier field. Disable Magento's rich text editor tool by
clicking on the Show / Hide Editor button above the Content field.

Enter in the Content field the second snippet of code the Facebook Developers
website provided, which will be similar to the following code:

<div class="fb-like-box" data-href="https://www.facebook.com/Magento"
data-width="195" data-colorscheme="light" data-show-faces="true" data-
header="true" data-stream="false" data-show-border="true"></div>

Once complete, your new block should look like the following screenshot:

Click on the Save Block button to create a new block for your Facebook widget. Now
that you have created the block, you can alter your Magento theme's layout files to
include the block in the right-hand column of your store.

Next, open your theme's local.xml file located at /app/design/frontend/
default/m18/layout/ and add the following highlighted block of XML to it. This
will add the static block that contains the Facebook widget:

<reference name="right">
<block type="cms/block" name="cms_facebook">
<action method="setBlockId"><block_id>facebook</block_id></action>
</block>
<!--other layout instructions -->
</reference>

Chapter 5

[97]

If you save this change and refresh your Magento store on a page that uses the
right-hand column page layout, you will see your new Facebook widget appear
in the right-hand column. This is shown in the following screenshot:

Including social share buttons in your
product pages
Particularly if you are selling to consumers rather than other businesses, you can
make use of social share buttons in your product pages to help customers share
the products they love with their friends on social networks such as Facebook and
Twitter. One of the most convenient ways to do this is to use a third-party service
such as AddThis, which also allows you to track your most shared content. This is
useful to learn which products are your most-shared products within your store!

Styling the product page a little further
Before you begin to integrate the share buttons, you can style your product page to
provide a little more layout and distinction between the blocks of content. Open your
theme's styles.css file and append the following CSS (located at /skin/frontend/
default/m18/css/) to provide a column for the product image and a column for the
introductory content of the product:

.product-img-box, .product-shop {
float: left;
margin: 1%;
padding: 1%;
width: 46%;
}

Social Media and Magento

[98]

You can also add some additional CSS to style some of the elements that appear on
the product view page in your Magento store:

.product-name {
margin-bottom: 10px;
}
.or {
color: #888;
display: block;
margin-top: 10px;
}
.add-to-box {
background: #f2f2f2;
border-radius: 10px;
margin-bottom: 10px;
padding: 10px;
}
.more-views ul {
list-style-type: none;
}

If you refresh a product page on your store, you will see the new layout take effect:

Chapter 5

[99]

Integrating AddThis
Now that you have styled the product page a little, you can integrate AddThis with
your Magento store. You will need to get a code snippet from the AddThis website at
http://www.addthis.com/get/sharing. Your snippet will look something similar
to the following code:

<div class="addthis_toolboxaddthis_default_style ">
<a class="addthis_button_facebook_like" fb:like:layout="button_
count">

<a class="addthis_button_pinterest_pinit"
pi:pinit:layout="horizontal">

</div>
<script type="text/javascript">varaddthis_config = {"data_track_
addressbar":true};</script>
<script type="text/javascript" src="//s7.addthis.com/js/300/addthis_
widget.js#pubid=youraddthisusername"></script>

Once the preceding code is included in a page, this produces a social share tool that
will look similar to the following screenshot:

Copy the product view template from the view.phtml file from /app/design/
frontend/base/default/catalog/product/ to /app/design/frontend/default/
m18/catalog/product/ and open your theme's view.phtml file for editing. You
probably don't want the share buttons to obstruct the page name, add-to-cart area,
or the brief description field. So, positioning the social share tool underneath those
items is usually a good idea. Locate the snippet in your view.phtml file that has the
following code:

<?php if ($_product->getShortDescription()):?>
<div class="short-description">
<h2><?php echo $this->__('Quick Overview') ?></h2>
<div class="std"><?php echo $_helper->productAttribute($_product,
nl2br($_product->getShortDescription()), 'short_description') ?></div>
</div>
<?phpendif;?>

http://www.addthis.com/get/sharing

Social Media and Magento

[100]

Below this block, you can insert your AddThis social share tool highlighted
in the following code so that the code is similar to the following block of
code (the youraddthisusername value on the last line becomes your AddThis
account's username):

<?php if ($_product->getShortDescription()):?>
<div class="short-description">
<h2><?php echo $this->__('Quick Overview') ?></h2>
<div class="std"><?php echo $_helper->productAttribute($_product,
nl2br($_product->getShortDescription()), 'short_description') ?></div>
</div>
<?phpendif;?>

<div class="addthis_toolboxaddthis_default_style ">
<a class="addthis_button_facebook_like" fb:like:layout="button_
count">

<a class="addthis_button_pinterest_pinit"
pi:pinit:layout="horizontal">

</div>
<script type="text/javascript">varaddthis_config = {"data_track_
addressbar":true};</script>
<script type="text/javascript" src="//s7.addthis.com/js/300/addthis_
widget.js#pubid=youraddthisusername"></script>

If you want to reuse this block in multiple places throughout your store, consider
adding this to a static block in Magento and using Magento's XML layout to add the
block as required. This is described in Chapter 4, Magento Layout.

Once again, refresh the product page on your Magento store and you will see
the AddThis toolbar appear as shown in the following screenshot. It allows
your customers to begin sharing their favorite products on their preferred social
networking sites.

Chapter 5

[101]

If you can't see your changes, don't forget to clear your caches by
navigating to System | Cache Management.

If you want to provide some space between other elements and the AddThis toolbar,
add the following CSS to your theme's styles.css file:

.addthis_toolbox {
margin: 10px 0;
}

The resulting product page will now look similar to the following screenshot.
You have successfully integrated social sharing tools on your Magento store's
product page:

Social Media and Magento

[102]

Integrating product videos from YouTube
into the product page
An increasingly common occurrence on ecommerce stores is the use of video in
addition to product photography. The use of videos in product pages can help
customers overcome any fears they're not buying the right item and give them a
better chance to see the quality of the product they're buying. You can, of course,
simply add the HTML provided by YouTube's embedding tool to your product
description. However, if you want to insert your video on a specific page within
your product template, you can follow the steps described in this section.

Product attributes in Magento
Magento products are constructed from a number of attributes (different fields),
such as product name, description, and price. Magento allows you to customize
the attributes assigned to products, so you can add new fields to contain more
information on your product. Using this method, you can add a new Video attribute
that will contain the video embedding HTML from YouTube and then insert it into
your store's product page template.

An attribute value is text or other content that relates to the attribute, for example,
the attribute value for the Product Name attribute might be Blue Tshirt.

Magento allows you to create different types of attribute:

•	 Text Field: This is used for short lines of text.
•	 Text Area: This is used for longer blocks of text.
•	 Date: This is used to allow a date to be specified.
•	 Yes/No: This is used to allow a Boolean true or false value to be assigned

to the attribute.
•	 Dropdown: This is used to allow just one selection from a list of options

to be selected.
•	 Multiple Select: This is used for a combination box type to allow one or

more selections to be made from a list of options provided.
•	 Price: This is used to allow a value other than the product's price, special

price, tier price, and cost. These fields inherit your store's currency settings.
•	 Fixed Product Tax: This is required in some jurisdictions for certain types of

products (for example, those that require an environmental tax to be added).

Chapter 5

[103]

Creating a new attribute for your video field
Navigate to Catalog | Attributes | Manage Attributes in your Magento store's
control panel. From there, click on the Add New Attribute button located near the
top-right corner of your screen:

In the Attribute Properties panel, enter a value in the Attribute Code field that will
be used internally in Magento to refer this. Remember the value you enter here, as
you will require it in the next step! We will use video as the Attribute Code value in
this example (this is shown in the following screenshot). You can leave the remaining
settings in this panel as they are to allow this newly created attribute to be used with
all types of products within your store.

Social Media and Magento

[104]

In the Frontend Properties panel, ensure that Allow HTML Tags on Frontend is
set to Yes (you'll need this enabled to allow you to paste the YouTube embedding
HTML into your store and for it to work in the template). This is shown in the
following screenshot:

Now select the Manage Labels / Options tab in the left-hand column of your
screen and enter a value in the Admin and Default Store View fields in the
Manage Titles panel:

Chapter 5

[105]

Then, click on the Save Attribute button located near the top-right corner of the
screen. Finally, navigate to Catalog | Attributes | Manage Attribute Sets and select
the attribute set you wish to add your new video attribute to (we will use the Default
attribute set for this example). In the right-hand column of this screen, you will see the
list of Unassigned Attributes with the newly created video attribute in this list:

Drag-and-drop this attribute into the Groups column under the General group as
shown in the following screenshot:

Social Media and Magento

[106]

Click on the Save Attribute Set button at the top-right corner of the screen to add the
new video attribute to the attribute set.

Adding a YouTube video to a product using
the new attribute
Once you have added the new attribute to your Magento store, you can add a video
to a product. Navigate to Catalog | Manage Products and select a product to edit
(ensure that it uses one of the attribute sets you added the new video attribute to).
The new Video field will be visible under the General tab:

Insert the embedding code from the YouTube video you wish to use on your product
page into this field. The embed code will look like the following:

<iframe width="320" height="240" src="//www.youtube.com/embed/
dQw4w9WgXcQ?rel=0" frameborder="0" allowfullscreen></iframe>

Once you have done that, click on the Save button to save the changes to the product.

Inserting the video attribute into your product
view template
Your final task is to allow the content of the video attribute to be displayed in your
product page templates in Magento. Open your theme's view.phtml file from /
app/design/frontend/default/m18/catalog/product/ and locate the following
snippet of code:

<div class="product-img-box">
<?php echo $this->getChildHtml('media') ?>
</div>

Chapter 5

[107]

Add the following highlighted code to the preceding code to check whether a video
for the product exists and show it if it does exist:

<div class="product-img-box">
<?php
$_video-html = $_product->getResource()->getAttribute('video')-
>getFrontend()->getValue($_product);
if ($_video-html) echo $_video-html ;
?>
<?php echo $this->getChildHtml('media') ?>
</div>

If you now refresh the product page that you have added a video to, you will see
that the video appears in the same column as the product image. This is shown in the
following screenshot:

Social Media and Magento

[108]

Summary
In this chapter, we looked at expanding the customization of your Magento theme
to include elements from social networking sites. You learned about integrating
a Twitter feed and Facebook feed into your Magento store, including social share
buttons in your product pages, and integrating product videos from YouTube. In the
following chapters, we will look at improving your theme for mobile devices and
customizing Magento's transactional e-mail templates.

Advanced Magento Theming
Now you have seen the basics of creating a custom Magento theme, and you will
build on this using the following techniques in this chapter:

•	 Adding a custom print style sheet to your Magento store
•	 Using locales to translate labels/phrases in your store
•	 Using @font-face in Magento
•	 Styling Magento's layered navigation
•	 Creating a custom 404 "not found" error page
•	 Using microformats for rich snippets to enhance search engine listings

Adding a custom print style sheet to
your Magento store
So far, you've styled your Magento store for electronic screens, but what about
for those customers who want to print product pages? Even in this digital age,
some customers like to print details of a product and review them offline.

Advanced Magento Theming

[110]

You can specify a separate CSS file in your Magento theme to be applied when your
documents are printed. By default, Magento inherits the print.css file in the /
skin/frontend/default/default/css/ directory, which provides some basic
styling for printed documents, such as removing navigation and the store's footer,
as shown in the following screenshot:

As you can see, there is still some work to be done here, as the sidebar content
(the Facebook box) isn't functional or useful when the page is printed!

You can view the print version of your Magento theme in
most browsers by using the Print preview tool.

You can overwrite the print.css style sheet for your theme by creating a file called
print.css in your theme's css directory (for example, /skin/frontend/default/
m18/css/), but this will overwrite some of the work that the base print style sheet
already does to help style your store's pages better for printing. Instead of overwriting
this file, you can add another CSS file to add custom style instructions for printing.

Chapter 6

[111]

To do this, open your theme's local.xml file (in the /app/design/frontend/
default/m18/layout/ directory) and add the highlighted XML instruction within
the <default> handle:

<default>
<reference name="head">
 <action method="addCss">
 <name>css/print-custom.css</name>
 <params>media="print"</params>
 </action>
</reference>
</default>

You can now create a new CSS file called print-custom.css in the /skin/
frontend/default/m18/css/ directory and begin to add the print CSS specific
to your new Magento theme:

.sidebar {
display: none;
}

If you now refresh the print preview of the page, you will see that the sidebar has been
hidden in the following screenshot, and the content printed is much more useful!

Advanced Magento Theming

[112]

Using locales to translate phrases in
your store
Magento supports multilingual stores, and offers locale files to allow content in
the interface to be translated. Page and product content is translated through
Magento's administration panel (for example, you will have an English "terms and
conditions" page and a separate "terms and conditions" page for the French version
of your store). Interface labels—such as the text in buttons and the user bar—can be
translated by adding a locale file to your Magento theme.

At the moment, our Magento theme displays the text as Add to Cart on the
product screen:

By using Magento locale files, you can change the wording to something more
appropriate for your store; in the following example, Add to Cart will be changed
to Add to basket.

Chapter 6

[113]

Creating a Magento locale file
A Magento locale file is a Comma Separate Values (CSV) file, which contains
alternate translations for specified labels in your store's interface. The default text
for this phrase is in the left-hand column; the right-hand column contains the new
translation for this text.

You can download the official locale files for Magento in many languages
from http://www.magentocommerce.com/translations.

Create a file called translate.csv in the /app/design/frontend/default/m18/
locale/en_GB/ directory. The last directory's name equates to the locale language's
ISO 639 code; en_GB indicates that this is a British English translation. Add the
following line for a change in the button's label on the product page highlighted above:

"Add to Cart", "Add to basket"

You can add more translations for your store's theme in this locale file by adding one
phrase per line:

"Add to Cart", "Add to basket"
"My Cart", "My basket"
"Cart", "Basket"

You now need to navigate to System | Configuration, and select Locale Options
under the General tab to see the value of the Locale field; in the following
screenshot, it is set to English (United Kingdom):

http://www.magentocommerce.com/translations

Advanced Magento Theming

[114]

If you have changed the value of Locale, click on the Save Config button at the
top-right corner of the screen and refresh your store once you've saved these
changes. You should now be able to see the new translations, as shown in the
following screenshot:

The translate function
Only the text filtered through the __() function, which is an alias (alternate name) of
the translate() function, is translated in this way. For example, the following code
snippet will allow you to translate the text of the heading through locale files:

<h2><?php echo $this->__('Create an Account') ?></h2>

Alternatively, the following example, which does not use the __() function, will not
use the alternate text provided in the locale file:

<h2>Create an Account</h2>

You can also enable inline translation for your Magento store by navigating to
System | Configuration | Developer | Translate Inline.

Chapter 6

[115]

Using Google Web Fonts and @font-face
With the advent of the @font-face support across browsers, you can use custom
fonts from services such as Google Web Fonts (https://www.google.com/fonts/)
in your Magento theme.

Including Google Web Font in your store's
theme
Once you have selected a font to use, copy the code that Google Fonts provides to
embed the CSS, which will look something like the following:

<link href='//fonts.googleapis.com/css?family=PT+Sans'
rel='stylesheet' type='text/css'>

Navigate to System | Configuration in your Magento store's administration panel
and paste this in the Miscellaneous Scripts field, which is in the HTML Head panel
under the Design tab, as shown in the following screenshot:

Click on the Save Config button at the top-right corner of the screen to save
this change.

This step ensures that the font is available to be used in your theme; the next step is
to use the font in your theme's style sheets.

Google's Web Font performance is okay for desktop visitors, but may slow down
your store for mobile/tablet visitors on limited connections. As such, it will be better
to host the EOT, WOFF of TTF font files used in your theme's @font-face rules
locally on your store's server (or via a Content Distribution Network).

https://www.google.com/fonts/

Advanced Magento Theming

[116]

Referencing Google Web Font in your
Magento theme's style sheet
Open your theme's styles.css file (in the /skin/frontend/default/m18/css/
directory) and you can use the font-family attribute to change the font. In this
example, the font is changed through the website using the body element:

body {
font-family: "PT Sans", "Alike", "Times New Roman", serif;
}

Once you have saved this, you will see the new font from the Google Fonts service
being used throughout your Magento theme:

Styling Magento's layered navigation
One of Magento's most used features is layered navigation, which allows customers
to filter products at a category level based on your products' attributes (such as color,
price, and size).

Chapter 6

[117]

Enabling layered navigation in Magento
categories
Before you can style Magento's layered navigation, you will need to ensure that your
categories are configured to allow layered navigation.

To do this, log in to your Magento administration panel and navigate to Catalog
| Manage Categories. From there, select the category you wish to enable layered
navigation for, open the Display Settings tab, and set the Is Anchor field to Yes,
as shown in the following screenshot:

Click on the Save Category button at the top-right corner of the screen to assign this
change to the category.

Advanced Magento Theming

[118]

Assigning attributes for layered navigation
Next, you need to ensure that the attributes used for the products in the category
you altered previously are available for use in layered navigation. Navigate to
Catalog | Attributes | Manage Attributes and select an attribute from the list
(the example shown below uses price since this is used by products within our
existing Tea bags category).

In the Frontend Properties panel, set the Use In Layered Navigation field to
Filterable (with results) as shown in the following screenshot:

Setting this to Filterable (no results) will show attribute values in
the layered navigation even if there are no results.

Creating a custom 404 "not found"
error page
Even the best designed stores can lead customers to pages that don't exist any
more, and customizing your Not Found page template can be a good way to
retain customers who have lost their way.

Chapter 6

[119]

Altering the error page's content
The content of the Magento's error page is stored in the Magento's CMS tool,
so you can start altering content here by navigating to CMS | Manage Pages
and locating the 404 Not Found 1 page, as shown in the following screenshot:

In the Content tab, customize your content for the error page. The following example
used the Recently Viewed Products widget to display a selection of products the
customer may be interested in:

Advanced Magento Theming

[120]

Click on the Save Page button at the top-right corner of the screen and you'll see your
new content appear when you try to visit a page that doesn't exist on your store:

To minimize the clutter on this page and help the customer find what they're looking
for, you can set the error page's Page Layout under the Design tab in Magento's
CMS tool to 1 column, as shown in the following screenshot:

Chapter 6

[121]

Once again, click on the Save Page button at the top-right corner of your screen to
set the changed page layout. Finally, you can add a background image to your error
page to further customize it and reassure customers a little. Open your theme's
styles.css file from /skin/frontend/default/m18/css/ and add the following
CSS to apply the 404_bg.png image in /skin/frontend/default/m18/images/ to
the error page template:

body.cms-index-noroute .main {
background: #fff url("../images/404_bg.png") no-repeat top center;
padding-top: 200px;
}

Once you have saved the change to the CSS and new image, refresh the error page to
see the change take effect, as shown in the following screenshot:

That's it! Your Magento store's custom 404 error page is now complete.

Advanced Magento Theming

[122]

Using snippets to enhance search engine
listings
Rich snippets are an enhanced way of providing information about the type of
content on your website to search engines.

For example, rich snippets can allow search engines such as Google to display product
ratings on the search engine results page, such as the Google search engine listing for
a product on www.lego.com highlighted at the bottom of the following screenshot
(below the paid advertisements):

Rich snippets on the website allow Google to display the star rating for the product
alongside the overall rating and number of reviews.

For more information on rich snippets, visit https://support.
google.com/webmasters/answer/99170.

www.lego.com
https://support.google.com/webmasters/answer/99170
https://support.google.com/webmasters/answer/99170

Chapter 6

[123]

To implement the ratings-rich snippet, copy the summary.phtml file in the app/
design/frontend/base/default/template/review/helper/ folder to app/
design/frontend/default/m18/template/review/helper/, and open it to
include the following highlighted code:

<div itemprop="aggregateRating" itemscope itemtype="http://schema.org/
AggregateRating">
<?php if ($this->getReviewsCount()): ?>
<meta itemprop="ratingValue" content="<?php echo $this-
>getRatingSummary(); ?>"/>
<meta itemprop="reviewCount" content="<?php echo $this-
>getReviewsCount(); ?>" />
<meta itemprop="worstRating" content="0"/>
<meta itemprop="bestRating" content="100"/>
<div class="ratings">
<?php if ($this->getRatingSummary()):?>
<div class="rating-box">
<div class="rating" style="width:<?php echo $this->getRatingSummary()
?>%"></div>
</div>
<?php endif;?>
<p class="rating-links">
<a href="<?php echo $this->getReviewsUrl() ?>"><?php echo $this->__
('%d Review(s)', $this->getReviewsCount()) ?>
|
<a href="<?php echo $this->getReviewsUrl() ?>#review-form"><?php echo
$this->__('Add Your Review') ?>
</p>
</div>
<?php elseif ($this->getDisplayIfEmpty()): ?>
<p class="no-rating"><a href="<?php echo $this->getReviewsUrl()
?>#review-form"><?php echo $this->__('Be the first to review this
product') ?></p>
<?php endif; ?>
</div>

Save this file to your Magento store's theme and your rich snippet is ready to go.

Remember, including the preceding code is only a request for
search engines to display this information in their results list,
and they might not necessarily use this.

Advanced Magento Theming

[124]

Summary
In this chapter, you looked at a range of more advanced techniques to customize
your Magento theme with styling your Magento store further for print, using
Magento locales to alter interface text, using @font-face from Google Web Fonts,
styling Magento's layered navigation, creating a custom 404 "not found" error page,
and using microformats for rich snippets to enhance search engine listings.

Further chapters look at improving your Magento store for mobile and tablet
devices and customizing Magento's e-mail templates that are sent to customers.

Magento Theming for Mobile
and Tablet Devices

So far, your new Magento theme has focused on building a custom design for
your store for devices with larger screens, such as desktop computers and laptops.
In this chapter, you will start customizing your Magento theme for devices with
different screen sizes, such as smartphones and tablet computers. We will cover the
following topics:

•	 Using CSS media queries to create breakpoints for different device widths
•	 Making images responsive for your Magento theme
•	 Developing responsive navigation for your Magento theme
•	 Adding mobile homepage icons for Windows and Apple devices to your

Magento theme

Using CSS media queries to create
breakpoints for different device widths
One of the ways in which you can get your Magento theme to adapt to your
customer's device and provide them with an experience more tailored to their needs
is to use CSS media queries to alter the style and layout of your Magento store for
different screen sizes.

Magento Theming for Mobile and Tablet Devices

[126]

Adding the meta viewport element to your
Magento theme
Firstly, you will need to add the meta viewport element to the <head> element of
your Magento theme. This will tell the device viewing your store to fit the store to
the width of the available device's screen.

Open your theme's local.xml file under /app/design/frontend/default/m18/
layout/ and add the XML highlighted in the following code within the <default>
handle of the <reference name="head"> element:

<default>
 <reference name="head">
 <block type="core/text" name="meta.viewport">
 <action method="setText">
 <meta><![CDATA[<meta name="viewport" content="width=device-
 width, initial-scale=1.0" />]]></meta>
 </action>
 </block>
 </reference>
</default>

Once you have saved this file, you can begin to work on CSS within your media query.

Adding a CSS media query to your style sheet
Open your theme's styles.css file (located in the /skin/frontend/default/m18/
css/ directory), and add the following CSS towards the bottom of your file:

@media only screen and (min-width: 50em) {
/* Your CSS applied only to larger screens goes here */
}

Note that support for media queries in older browsers is limited; visit
http://caniuse.com/css-mediaqueries for more details.

The CSS you add between the curly braces of the @media query here is applied
only to devices that are using a screen media type and have a minimum width
of 50em—roughly equivalent to most larger desktop computer monitors.

http://caniuse.com/css-mediaqueries

Chapter 7

[127]

For larger screens, the background of your theme is currently looking a little bare, as
you can see in the following screenshot. There is currently a lot of space around the
page itself.

You can provide a background image for the .main-container element of your
store that appears only for larger-screened devices by including the following CSS in
your theme's styles.css file:

@media only screen and (min-width: 50em) {
 .main-container {
 background: #f6f6f6 url("../images/body_bg.png") repeat center
center;
 }
}

Magento Theming for Mobile and Tablet Devices

[128]

If you now refresh your store, you'll see the new pattern take effect as shown in the
following screenshot:

As always, if you can't see your changes, clear Magento's caches by navigating to
System | Cache Management.

By using CSS media queries such as the preceding one, you can create a responsive
Magento theme for your store—defining different layouts to better organize your
store's content for those on different sized screens. To do this, first comment out the
widths defined outside the media query you just created, which will collapse the
layout for your theme in to a single column for devices with smaller screens:

.wrapper {
/* min-width:954px; */
}

Chapter 7

[129]

.main {
background:#fff;
color: #333;
margin:0 auto;
min-height:400px;
padding:25px 25px 80px;
text-align:left;
/* width:900px; */
}
.col-left {
float:left;
padding:0 0 1px;
/* width:195px; */
}
.col-main {
float:left;
padding:0 0 1px;
/* width:685px; */
}
.col-right {
float:right;
padding:0 0 1px;
/* width:195px; */
}
.col1-layout .col-main {
float:none;
width:auto
}
.col3-layout .col-main {
margin-left:17px;
/* width:475px; */
}
.col3-layout .col-wrapper {
float:left;
/* width:687px; */
}

Magento Theming for Mobile and Tablet Devices

[130]

So, on smaller screen devices (with a width less than the 50em you defined in the
media query earlier), you will see the simplified layout:

If you do not define some widths for the columns in your Magento theme within the
media query you created earlier, this is how your store will appear on larger screens
too. To rectify this, open your theme's styles.css file once again and add the
following CSS within the media query:

.header, #nav, .footer {
margin: 0 auto;
max-width: 60em;
width: 100%;
}
.main-col, .col-right, .col-left {
margin: 0 1%;
padding: 1%;
}

Chapter 7

[131]

.main {
width:900px;
}
.col-left, .col-right {
width: 21%;
}
.col-main {
width: 71%;
}
.col1-layout .col-main {
float:none;
width:auto;
}
.col3-layout .col-main {
width: 46%;
}
.col3-layout .col-wrapper {
float:left;
width: 71%;
}

This provides browsers with enough styling to display your store's content as
columns for customers who use larger screens like your original Magento theme
did before you added the media query to your style sheet. If you now view your
Magento theme on a larger screen, you'll see that the layout is back to its previous
state as shown in the following screenshot:

Magento Theming for Mobile and Tablet Devices

[132]

That's it! You have the basics of media queries working in your Magento theme now,
and you can add and adapt CSS as your store's design requires!

Making images responsive for your
Magento theme
Images are very important on your Magento store to ensure that your customers
can see what they're buying. If you look at a product page on your Magento store at
the moment, you'll see that the product image hugely overflows the column's width
available to it, as you can see from the highlighted portion of the following screenshot:

The easiest way to ensure that your store's images will be resized to sensible
dimensions is to set the max-width attribute of the img element to 100% to ensure
no image becomes larger than its container.

Chapter 7

[133]

Open your theme's styles.css file in the /skin/frontend/default/m18/css/
directory and add the following CSS to it to help ensure images are resized to the
width they have available in the page's layout, their height-to-width ratio is retained,
and images are not stretched out of proportion:

img,
img[height],
img[style],
img[width],
img#image {
height: auto !important;
max-width: 100% !important;
width: auto !important;
}

Once you have saved this addition, refresh your product page again and you'll see
that your product photograph is constrained to the width it has available, as follows:

Magento Theming for Mobile and Tablet Devices

[134]

Developing responsive navigation
Another critical area for all customers is your navigation—they need to be able
to find the products they are looking for easily, after all. Mobiles, tablets, and
devices with smaller screens present new challenges in terms of how to present the
navigation in a clear way so that users on touchscreen devices will find it easy to
interact with.

Firstly, you will need to move the current navigational styling in to the media query
for larger screens. So, copy the following CSS code in to the media query you created
earlier in this chapter:

@media only screen and (min-width: 50em) {
 #nav li.over{z-index:998}
 #nav a,#nav a:hover{display:block;line-height:1.3em;text-
decoration:none}
 #nav span{cursor:pointer;display:block;white-space:nowrap}
 #nav li ul span{white-space:normal}
 #nav ul li.parent a{background: none}
 #nav ul li.parent li a{background-image:none}
 #nav a{color:#333;float:left;font-weight:700;padding:5px 12px 6px
8px}
 #nav ul li,#nav ul li.active{background:#e57d04;float:none;margin:0;
padding-bottom:1px}
 #nav ul li.last{padding-bottom:0}
 #nav ul a,#nav ul a:hover{background:none;float:none;padding:0}
 #nav ul li a{background:#fff;font-weight:400!important}
 #nav ul,#nav div{border:1px solid #ccc;left:-10000px;position:absolu
te;top:27px;width:15em}
 #nav div ul{border:none;position:static;width:auto}
 #nav ul ul,#nav ul div{top:5px}
 #nav ul li a:hover{background:#e57d04}
 #nav ul li a,#nav ul li a:hover{color:#333!important}
 #nav ul span,#nav ul li.last li span{padding:3px 15px 4px}
 #nav li ul.shown-sub,#nav li div.shown-sub{left:0;z-index:999}
 #nav li .shown-sub ul.shown-sub,#nav li .shown-sub li div.shown-
sub{left:100px}
 #nav li.active a,#nav li.over a,#nav a:hover{color:#e57d04}
}

Next, you can define some styles inside a new media query to style how the
navigation appears for devices with smaller screens:

@media only screen and (max-width: 49.99999em) {
 #nav a {
 color: #333;

Chapter 7

[135]

 display: inline-block;
 padding: 0.25em 0.5em;
 text-decoration: none;
 }
 #nav a:hover {
 color: #aaa;
 text-decoration: underline;
 }
 #nav ul {
 display: inline;
 }
 #nav li {
 display: inline;
 float: left;
 margin: 0 1%;
 }
 #nav ul.level0 {
 display: inline;
 }
 #nav ul.level0 li {
 float: none;
 width: 100%;
 }
 #nav ul.level0 a {
 color: #777;
 font-size: 0.9em;
 }
}

Including the CSS in a media query for screen widths less than 49.9999em means
that this CSS won't clash with the other CSS for drop-down navigations for larger
screens. This is shown in the following screenshot:

Magento Theming for Mobile and Tablet Devices

[136]

On a device with a smaller screen, the navigation is displayed as you defined it
in the smaller media query, making it easier for customers to find their desired
product category.

Adding mobile icons for Windows and
Apple devices
With the increasing popularity of smartphones, it's not enough to just provide a
favorites icon any more; these don't work as effectively on mobile devices, but you
can provide alternate icons for use on Apple, Android, and Windows devices.

Chapter 7

[137]

Adding an Apple home icon to your
Magento store
You can specify the Apple icon that will be used when customers save your
store to their device's home screen with the addition of elements to your store's
<head> element.

Android devices will also make use of these icons as long as
the rel value in the link elements that reference the icons are
set to rel=apple-touch-icon or rel=apple-touch-
icon-precomposed.

Copy the head.phtml file under /app/design/frontend/base/default/
template/page/html/ to /app/design/frontend/default/m18/template/page/
html/. Open your theme's head.phtml file and insert the following code at the
bottom of the file to cater for the variety of sizes Apple devices can use:

<link rel="apple-touch-icon" href="<?php echo $this-
>getSkinUrl('images/icon-iphone.png') ?>" />
<link rel="apple-touch-icon" sizes="72x72" href="<?php echo $this-
>getSkinUrl('images/icon-ipad.png') ?>" />
<link rel="apple-touch-icon" sizes="114x114" href="<?php echo $this-
>getSkinUrl('images/icon-iphone_retina.png') ?>" />
<link rel="apple-touch-icon" sizes="144x144" href="<?php echo $this-
>getSkinUrl('images/icon-ipad-retina.png') ?>" />

Once you have done this, you'll need to save the icon images in your theme's /
images/ directory. You will require the following sizes:

•	 57 x 57 pixels for iPhones
•	 72 x 72 pixels for iPads
•	 114 x 144 pixels for iPhones with retina displays
•	 144 x 144 pixels for iPads with retina displays

Magento Theming for Mobile and Tablet Devices

[138]

If you now refresh your store and use the Add To Home Screen option in your
browser, and you will see that the appropriate icon is used:

Adding a Windows icon to your Magento
store
Microsoft also allows you to specify an icon used in Internet Explorer in Windows
8 and above. Edit your theme's head.phtml file again, which is located in the /app/
design/frontend/default/m18/template/page/html/ directory. At the bottom of
the file, add the following lines:

<meta name="msapplication-TileColor" content="#7F6A00"/>
<meta name="msapplication-TileImage" content="<?php echo $this-
>getSkinUrl('images/icon-windows.png') ?>"/>

Chapter 7

[139]

Save your icon image as 64 x 64 pixels in your theme's image directory. You can
specify the TileColor value too to define the color of the block that will contain
the icon on Window's tile system.

Summary
This chapter introduced some methods to improve your store for visitors on a
range of devices. This allows you to use CSS media queries to create breakpoints for
different device widths, make images responsive, develop responsive navigation
for your Magento theme, and add mobile homepage icons for Windows and Apple
devices to your Magento theme.

In the next chapter, you will learn how to customize Magento's transactional e-mails
to help you further improve customers' experience of your store.

Magento E-mail Templates
So far, you've looked at styling your Magento store for customers, but what about
the transaction e-mails Magento sends your customers when they place an order?
This chapter covers the following topics:

•	 Changing the e-mail template logo
•	 Altering colors of the e-mail templates
•	 Altering variables in Magento e-mail templates
•	 Adding static block content to your Magento e-mail templates
•	 Integrating a MailChimp subscription form into your Magento store
•	 Integrating a Campaign Monitor subscription form into your Magento store

Working with Magento e-mail templates
Working with e-mail templates is quite different than working with websites, so you
may find the following information of use in this chapter:

•	 Customizing e-mail markup is a tricky business: the HTML used in e-mail
templates needs to follow strict guidelines. You may find Campaign
Monitor's resources at https://www.campaignmonitor.com/resources/
will-it-work/.

•	 Various e-mail clients will display the e-mails in various ways, much like
different browsers can display the same website differently.

•	 It is always recommended to retain as much as possible from Magento's
default e-mail templates in order to make sure the mails are displayed correctly
on as many clients as possible. This will also make the Magento upgrade
progress much easier for you!

•	 Bear in mind that most (if not all) e-mail programs don't display images by
default. Be careful that your e-mails' core messages are contained within text
in your e-mail and not in images!

https://www.campaignmonitor.com/resources/will-it-work/
https://www.campaignmonitor.com/resources/will-it-work/

Magento E-mail Templates

[142]

Changing the e-mail template logo
First thing's first: you'll want the e-mails your Magento store sends to customers to
use your store's logo, so you will need to configure this in Magento's control panel.

At the moment, the order confirmation e-mail will look similar to the following
template, using Magento's own logo and a placeholder store name if you haven't
configured your Magento store fully yet:

Chapter 8

[143]

Once you are logged into your Magento administration panel, navigate to System |
Configuration. From here, select the Design tab in the left-hand column, as shown in
the following screenshot:

Expand the Transactional Emails panel, and you will see that you are provided with
two options:

1.	 One to change the image used for the logo in the e-mail templates.
2.	 One to change the alt text used for the logo.

Select the logo image you wish to use, and populate the Logo Image Alt field with a
suitable value, as shown in the following screenshot:

Magento E-mail Templates

[144]

Once you have done this, click on the Save Config button. If you now cause Magento
to send an order confirmation e-mail again, you will see your logo appear in the
e-mail template:

To change the e-mail addresses used in these e-mails, you need
to configure them by navigating to System | Configuration
under the Store Email Addresses tab.

Sending test transactional e-mails
The easiest way to test your e-mail template is to use the Send Email function.
Navigate to Sales | Orders, and select an existing order made through your
Magento store, and click on the Send Email button at the top-right corner of the
order details screen, as shown in the following screenshot:

A pop-up message will appear asking you to confirm this; click on OK. This will
cause another order confirmation e-mail to be sent to the customer's e-mail address,
allowing you to test changes to your store's e-mail templates.

Chapter 8

[145]

Changing the color scheme of your
Magento transaction e-mail templates
Now that you've changed the logo used in Magento's transactional e-mail templates,
you may also want to change your e-mail template's color scheme.

Loading a Magento e-mail template
Navigate to System | Transactional Emails, and click on the Add New Template
button at the top-right corner of the screen, as shown in the following screenshot:

From there, select an e-mail template you wish to overwrite; the following example
uses the New Order template, which acts as the order confirmation e-mail template:

Magento E-mail Templates

[146]

Click on the Load Template button, which will populate the panel below with
the current contents of this e-mail template for you to alter. Firstly, populate the
Template Name field as we're overwriting the New Order template. This will be New
Order v2, as shown in the following screenshot:

Next, in the Template Content field, you can overwrite any color references you need
in the style attributes within the e-mail template's HTML. Examine the first two lines
of this field and you will see HTML that looks similar to the following code:

<body style="background:#F6F6F6; font-family:Verdana, Arial,
Helvetica, sans-serif; font-size:12px; margin:0; padding:0;">
<div style="background:#F6F6F6; font-family:Verdana, Arial, Helvetica,
sans-serif; font-size:12px; margin:0; padding:0;">

To change the background color to a pale orange rather than the current light gray,
you can make the changes in the code highlighted below:

<body style="background:#FFF1E3; font-family:Verdana, Arial,
Helvetica, sans-serif; font-size:12px; margin:0; padding:0;">
<div style="background:#FFF1E3; font-family:Verdana, Arial, Helvetica,
sans-serif; font-size:12px; margin:0; padding:0;">

If you now click on the Save Template button at the top-right corner of the screen,
your changes will be saved. Your next task is to assign your new e-mail template to
the New Order transaction in Magento.

Chapter 8

[147]

Editing Magento e-mail templates through
your theme
You can also edit your theme's e-mail templates by providing e-mail template files in
your theme. The base e-mail template files in Magento are located at /app/locale/
en_US/template/email. As with all core Magento files, do not edit these directly;
copy them to your theme's locale directory. In the example theme provided with
this book, you can copy the e-mail templates into /app/design/frontend/default/
m18/locale/en_US/template/email/.

Assigning an e-mail template to a transaction
in Magento
Navigate to System | Configuration and select the Sales Emails tab in the left-hand
column. Expand the New Order panel and select your new e-mail template from the
dropdown next to New Order Confirmation Template:

Magento E-mail Templates

[148]

Click on the Save Config button at the top-right corner of the screen and resend the
new order e-mail to see the changes to the template's background color appear:

You can overwrite other e-mail templates Magento sends in a similar fashion to fully
customize your store.

Altering variables in Magento e-mail
templates
You've now seen how and where to alter some of the basic HTML behind Magento's
e-mail templates, but sometimes a little more customization is required.

Navigate to System | Transactional Emails and select the New Order v2 template
you created in the previous section of this chapter to begin editing it to use the
customer's first name, rather than their full name, as it is currently displayed:

Chapter 8

[149]

In the Template Content field, locate the following line, which adds the customer
greeting line:

<h1 style="font-size:22px; font-weight:normal; line-
height:22px; margin:0 0 11px 0;"">Hello, {{htmlescape var=$order.
getCustomerName()}}</h1>

Magento Insert Variable pop up
Magento provides some variables in the pop up that is shown if you click on the
Insert Variable button above the Template Content field as you can see in the
following screenshot:

Magento E-mail Templates

[150]

Using the customer's first name only in e-mail
templates
The customer's first name is not listed here, so you will manually need to change the
code highlighted above to:

<h1 style="font-size:22px; font-weight:normal; line-
height:22px; margin:0 0 11px 0;"">Hello, {{htmlescape var=$order.
getCustomerFirstname()}}</h1>

Once you have made this change, click on the Save Template button at the top-right
corner of the screen. If you send the e-mail confirmation order again to test your
change, you will see that only the customer's first name is displayed in the template,
as shown in the following screenshot:

Don't forget that you have to assign the new template by navigating
to the System | Configuration | Sales Emails section of the Magento
administration panel, if you haven't already, to see this template sent
in place of the default template.

Chapter 8

[151]

Adding a static block to a Magento
transactional e-mail template
You can take customizing your Magento transactional e-mail templates even further
by adding static blocks to the templates.

Creating the static block
Firstly, you will need to create a static block you wish to insert into your Magento
e-mail template. Navigate to CMS | Static Blocks and click on the Add New Block
button at the top-right corner of the screen.

Provide Block Title and Identifier (the example uses email_ as a prefix to help you
know where the block is used), as shown in the following screenshot:

Use the Content field to add content you would like to appear within the e-mail
template itself. Once you're finished, click on the Save Block button at the top-right
corner of the screen.

Magento E-mail Templates

[152]

Adding the static block to the e-mail template
Once again, navigate to System | Transactional Emails and edit the New Order v2
template you created earlier. Locate the following code in the Template Content field:

If you have any questions about your order please contact us at
<a href="mailto:{{config path='trans_email/ident_support/email'}}"
style="color:#1E7EC8;">{{config path='trans_email/ident_support/
email'}} or call us at {{config path='general/
store_information/phone'}} Monday - Friday, 8am - 5pm PST.
</p>
<p style="font-size:12px; line-height:16px; margin:0;">
Your order confirmation is below. Thank you again for your business.
</p>

Change this to include the following highlighted code, where the block_id value
matches the Identifier value of the static block you created:

If you have any questions about your order please contact us at
<a href="mailto:{{config path='trans_email/ident_support/email'}}"
style="color:#1E7EC8;">{{config path='trans_email/ident_support/
email'}} or call us at {{config path='general/
store_information/phone'}} Monday - Friday, 8am - 5pm PST.
</p>
{{block type="cms/block" block_id="email_new-order" }}
<p style="font-size:12px; line-height:16px; margin:0;">
Your order confirmation is below. Thank you again for your business.
</p>

Click on the Save Template button at the top-right corner of the screen once more
and generate a new e-mail for the new order template. You will see that the static
block's content now appears within the template:

Chapter 8

[153]

Integrating the MailChimp subscription
form into your Magento store
E-mails related to your e-commerce website don't stop at order e-mails to customers,
although e-mail marketing can play an important role in encouraging repeat orders
and generating new business for your store.

One popular e-mail marketing system is MailChimp, and you can create a static
block on your store and use this throughout your store to entice customers to
subscribe for offers and articles on your chosen sector.

Alternatively, you can synchronize your newsletter subscribers
through Magento using the MailChimp plugin for Magento at
http://connect.mailchimp.com/integrations/magento.

Firstly, you will need to get the HTML for MailChimp's subscription form: log in to
your account on http://mailchimp.com and navigate to Lists. From here, select the
Signup forms option from the dropdown next to your chosen client, as shown in the
following screenshot:

http://connect.mailchimp.com/integrations/magento
mailchimp.com

Magento E-mail Templates

[154]

Next, click on the Select button beneath the Embedded forms option:

On the next screen, customize your form, and copy the content from the Copy/paste
onto your site field. You'll need this for the next step.

Log in to your Magento site's administration panel, navigate to CMS | Static Blocks,
and click on the Add New Block button at the top of the screen: enter a subtitle Block
Title and enter newsletter_mailchimp in the Identifier field. Finally, ensure Status is
set to Enabled and paste the subscription form code provided by MailChimp into the
Content field, ensuring that you have used Show / Hide Editor button to disable the
rich text editor before pasting the code in:

Chapter 8

[155]

Click on the Save Block button to create this block. Next, you need to assign the
new block to a region on your store; open your theme's local.xml file from /app/
design/frontend/default/m18/layout/, and add the following highlighted code
to the reference name="right" element within the <default> handle:

<default>
 <reference name="right">
 <block type="cms/block" name="cms_mailchimp">
 <action method="setBlockId">
 <block_id>newsletter_mailchimp</block_id>
 </action>
 </block>
 </reference>
</default>

Once you have saved this change, you will see the subscription box appear on the
pages with the right-hand column layout assigned:

Magento E-mail Templates

[156]

Integrating the Campaign Monitor
subscription form into your Magento store
Campaign Monitor is another popular e-mail newsletter system you may use to keep
in touch with customers outside the realm of Magento's transactional e-mails.

Firstly, you will need the subscription form code from your Campaign Monitor list:
log in to your Campaign Monitor account, and navigate to the Lists & Subscribers
tab. Select a subscriber list from here:

In the right-hand column of this screen, click on the Grow your audience option:

Chapter 8

[157]

On the next screen, you will see an option for Copy/paste a form to your site:

Once you have customized the form to your liking, click on the Get the code button
at the bottom of the screen:

Magento E-mail Templates

[158]

Copy the code presented, and log in to your Magento store's administration panel.
From here, navigate to CMS | Static Blocks and click on the Add New Block button
at the top-right corner of your screen:

Click on the Save Block button and open your theme's local.xml file (present
at /app/design/frontend/default/m18/layout/) to assign this block to the
right-hand column using the following highlighted code:

<default>
 <reference name="right">
 <block type="cms/block" name="cms_campaignmonitor">
 <action method="setBlockId">
 <block_id>newsletter_campaignmonitor</block_id>
 </action>
 </block>
 </reference>
</default>

Refreshing your store once you have saved this change will display the subscription
form for your Campaign Monitor account, allowing you to style it further should
you wish to:

Chapter 8

[159]

Summary
This chapter introduced you to customizing Magento's many transactional e-mail
templates, and helped give your store a personalized feel by e-mail as well as
through your website. This chapter covered changing the e-mail template logo,
altering colors and variables in Magento e-mail templates, adding static block
content to your Magento e-mail templates, and creating a MailChimp or Campaign
Monitor subscription block for use in your store.

Your Magento store should be well on its way to being customized now, though
there is always work to be done!

Index
Symbols
@font-face

using 115

A
AddThis

integrating 99-101
URL 99

advanced Magento theming
custom error page, creating 118
custom print style sheet, adding 109, 110
Google Web Fonts, using 115
layered navigation, styling 116
locales, using 112
snippets, using 122

Apple home icon, for mobile devices
adding, to Magento store 137, 138

B
base images 35
blank theme, Magento 14
blocks

content blocks 70
deleting, from sidebar 83
structural blocks 70
types 70

blocks, rearranging
block, reordering above all blocks 81
block, reordering below all blocks 82
block, repositioning below

specific block 78-81
 in sidebar 77

C
Campaign Monitor

about 156
URL for resources 141
subscription form, integrating

into Magento store 156-158
Cap Store 23
cart page

styling 61-63
checkout page

styling 64-68
child theme 20
CMS tool

used, for changing page layout 72, 73
color scheme, Magento e-mail templates

changing 145
Comma Separate Values (CSV) file 113
content blocks 70
CSS media queries

adding, to style sheet 126-132
used, for customizing Magento

theme for devices 125
custom 404 "not found" error page

content, altering 118-121
creating 118

custom print style sheet
adding, to Magento store 110

D
default Magento page template

changing, layout used 70

[162]

default theme, Magento
about 8
category page layout 10
list mode layout 11, 12
one-page checkout layout 12
product page layout 9

E
e-mail template logo

changing 142, 143

F
Facebook Like Box

embed code, embedding into
Magento templates 95-97

embed code, obtaining from Facebook 94
integrating, into Magento store 93

favicon
customizing 31, 32

G
Google Web Fonts

adding to store theme 115
referencing, in store theme style sheet 116
URL 115

H
header.phtml template

altering 50-52
hierarchy, Magento theme 23, 24
home page layout

customizing 84
New Products block, adding 86-89
products, adding 85

I
iPhone theme, Magento 15

L
layered navigation

attributes, assigning 118
enabling, in Magento categories 117
styling 116

layout files 21
locale files

about 22
reference link 113
used, for translating phrases 112

local.xml
adding, to Magento theme 69

M
Magento

about 7
block, types 70
multiple stores, using 18
multiple store views, using 19
product attributes 102
product images 35
product placeholder images,

customizing 36, 37
product watermark image,

customizing 32-34
scope 17
search box, customizing 53, 54
Template Path Hints, using 38-40
terminology 17

Magento e-mail templates
assigning, to transaction 147, 148
color scheme, changing 145
editing, through theme 147
loading 145, 146
logo, changing 142, 143
static block, adding 151
test transactional e-mails, sending 144
variables, altering 148
working with 141

Magento layout
blocks, rearranging in sidebar 77
blocks, removing from sidebar 83
default Magento page template,

changing 70
home page layout, customizing 84
local.xml, adding to theme 69
page layout, changing with Magento's

CMS tool 72, 73
products, adding to home page 85
static block, adding to page 74

[163]

Magento locale file
about 113, 114
creating 113

Magento store
Apple home icon, adding 137, 138
Campaign Monitor subscription form,

integrating into 156-158
cart page, customizing 61
checkout page, customizing 61
custom print style sheet, adding 109, 110
Facebook Like Box, integrating 93
favorites icon (favicon), customizing 31, 32
footer, customizing 58, 59
Google Web Font, adding 115
Google Web Font, referencing in

style sheet 116
header, customizing 49
logo, changing 30
MailChimp subscription form,

integrating into 153-155
mobile icons, adding for Windows

and Apple devices 136
phrases, translating with locales 112
top-level categories, listing 60, 61
Twitter feed, integrating 91
Windows icon, adding 138

Magento store view level 19
Magento template

static block, adding 55
Twitter feed, embedding 92

Magento theme
about 7
blank theme 14
creating 25, 26
default theme 8
enabling 26-29
hierarchy 23, 24
iPhone theme 15
layout, providing 43-48
local.xml, adding 69
modern theme 16

Magento theme files
about 20
layout files 21
locale files 22
packages 22, 23

skin files 20
template files 21

Magento theme, for devices
CSS media query, adding to

style sheet 126-132
customizing 125
customizing, CSS media queries used 125
images, resizing 132, 133
meta viewport element, adding 126
responsive navigation, developing 134, 135

Magento websites
about 18
structure 18

MailChimp
about 153
URL 153
subscription form, integrating

into Magento store 153-155
meta viewport element

adding, to Magento theme 126
mobile icons

adding, to Magento store 136
Apple home icon, adding to

Magento store 137, 138
Windows icon, adding to

Magento store 138
modern theme, Magento 16
multiple stores

using, in Magento 18
multiple store views

using, in Magento 19

N
New Products block

adding, to store home page 86-89
normalize.css

URL 44

P
package

about 22
assigning 23

page layout
changing, CMS tool used 72, 73

page template
changing, XML layout used 70, 71

[164]

parent theme 20
product attributes 102
product images

base images 35
small images 35
thumbnail images 35

Product Image Watermarks panel
Center option 35
Stretch option 35
Tile option 35

product pages
AddThis, integrating 99-101
social share buttons, adding 97
styling 97
YouTube video, adding with

video attribute 106
product placeholder images

customizing 36, 37
products

adding, to home page 85
marking, as new in Magento 85, 86

product videos
attribute, creating for

video field 103-106
integrating, into product pages 102

product view template
video attribute, inserting 106

product watermark image
customizing 32-34

R
responsive navigation

developing 134, 135

S
scope levels, Magento

global 17
store 17
store view 17
website 17

search box
customizing 53, 54

search engine listings
enhancing, snippets used 122, 123

skeleton layout
one-column layout 70
three-column layout 70
two-column layout with

left-hand sidebar 70
two-column layout with

right-hand sidebar 70
skin files 20
small images 35
snippets

URL 122
used, for enhancing search

engine listings 122, 123
social share buttons

adding, to product pages 97
static block

adding, to page using Magento
layout 74, 75

assigning, to page using CMS tool 76, 77
creating 55, 56
inserting, into template 56, 57

static block, Magento e-mail templates
adding 151, 152
creating 151

store footer
customizing 58, 59

store header
CSS, providing for navigation

dropdowns 49
customizing 49
header.phtml template, altering 50-52

store logo
changing 30

structural blocks 70

T
template files 21
Template Path Hints

about 38, 50
enabling 38
URL 40
using 39, 40

thumbnail images 35
translate() function 114

[165]

Tshirt Store 23
Twitter feed

embedding, into Magento template 92, 93
integrating, into Magento store 91

Twitter widget
creating 92

V
variables, Magento e-mail templates

altering 148
customer's first name, using 150
Insert Variable pop up 149

video attribute
inserting, into product view template 106

W
Windows icon, for mobile devices

adding, to Magento store 138

X
XML layout

used, for changing page template 70, 71

Y
YouTube

product videos, integrating from 102
video, adding to product 106

Thank you for buying
Learning Magento Theme

Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Magento Site Performance
Optimization
ISBN: 978-1-78328-705-5 Paperback: 92 pages

Leverage the power of Magento to speed up your
website

1.	 Improve the performance of Magento by more
than 70%.

2.	 Master Magento caching techniques.

3.	 Using a step-by-step approach, learn how to
optimize Magento site performance.

Magento Search Engine
Optimization
ISBN: 978-1-78328-857-1 Paperback: 132 pages

Maximize sales by optimizing your Magento store
and improving exposure in popular search engines
like Google

1.	 Optimize your store for search engines in other
countries and languages.

2.	 Enhance your product and category pages.

3.	 Resolve common SEO issues within Magento.

Please check www.PacktPub.com for information on our titles

Mastering Magento Theme Design
ISBN: 978-1-78328-823-6 Paperback: 310 pages

Create responsive themes using Bootstrap, the most
widely used frontend framework

1.	 Create an advanced responsive Magento theme
based on the Bootstrap 3 framework.

2.	 Configure your custom theme with the
Magento Admin Panel.

3.	 Create your theme from scratch using practical
live coding examples.

Magento Responsive Theme
Design
ISBN: 978-1-78398-036-9 Paperback: 110 pages

Leverage the power of Magento to successfully
develop and deploy a responsive Magento theme

1.	 Build a mobile-, tablet-, and desktop-friendly
e-commerce site.

2.	 Refine your Magento store's product and
category pages for mobile.

3.	 Easy-to-follow, step-by-step guide on how to
get up and running with Magento.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Magento and Magento Themes
	What is a Magento theme?
	Magento's default themes
	The default theme
	The category page layout
	The list mode layout
	Checkout

	The blank theme
	The iPhone theme
	The modern theme

	Magento terminology
	Scope in Magento

	Magento websites, stores, and store views
	Using multiple stores in Magento
	Using multiple store views in Magento

	Magento theme files
	Skin files
	Layout files
	Template files
	Locale files
	Packages

	The Magento theme hierarchy
	Summary

	Chapter 2: Magento Theming Basics
	Creating a new Magento theme
	Enabling a Magento theme
	Changing your Magento store's logo
	Customizing your store's favorites icon (favicon)
	Customizing Magento's product watermark image
	Using product images in Magento

	Customizing Magento's product placeholder images
	Using the Magento template path hints
	Summary

	Chapter 3: Magento Templates
	Providing layout style for your
Magento theme
	Customizing your Magento store's header
	Providing CSS for Magento's navigation dropdowns
	Altering the header.phtml template

	Customizing Magento's search box
	Adding a static block to a Magento template
	Creating a new static block
	Inserting the static block into a template

	Customizing your Magento store's footer
	Listing all top-level categories in your Magento store

	Customizing your store's checkout
and cart
	Styling the cart page
	Styling the checkout page

	Summary

	Chapter 4: Magento Layout
	Adding local.xml to your Magento theme
	Using layout to change your default Magento page template
	Types of blocks within Magento
	Changing a page's template using the XML layout

	Changing a page's layout using Magento's CMS tool
	Adding a static block to a page using the Magento layout
	Assigning a static block to a page in Magento's CMS

	Changing the ordering of blocks in Magento's sidebar
	Repositioning a block below a specific block
	Reordering a block above all other blocks
	Reordering a block below all other blocks

	Removing unnecessary blocks from Magento's sidebar
	Customizing the home page's layout
	Adding new product block to the
home page
	Marking products as new in Magento
	Using XML layout to add the New Products block to your store's home page

	Summary

	Chapter 5: Social Media and Magento
	Integrating a Twitter feed into your Magento store
	Creating your Twitter widget
	Embedding your Twitter feed into a
Magento template

	Integrating a Facebook Like Box into your Magento store
	Adding the embed code into your
Magento templates

	Including social share buttons in your product pages
	Styling the product page a little further
	Integrating AddThis

	Integrating product videos from YouTube into the product page
	Product attributes in Magento
	Creating a new attribute for your video field
	Adding a YouTube video to a product using the new attribute
	Inserting the video attribute into your product view template

	Summary

	Chapter 6: Advanced Magento Theming
	Adding a custom print style sheet to
your Magento store
	Using locales to translate phrases in your store
	Creating a Magento locale file
	The translate function

	Using Google Web Fonts and @font-face
	Including Google Web Font in your store's theme
	Referencing Google Web Font in your Magento theme's style sheet

	Styling Magento's layered navigation
	Assigning attributes for layered navigation

	Creating a custom 404 "not found"
error page
	Altering the error page's content

	Using snippets to enhance search engine listings
	Summary

	Chapter 7: Magento Theming for Mobile and Tablet Devices
	Using CSS media queries to create breakpoints for different device widths
	Adding the meta viewport element to your Magento theme
	Adding a CSS media query to your style sheet

	Making images responsive for your Magento theme
	Developing responsive navigation
	Adding mobile icons for Windows and Apple devices
	Adding an Apple home icon to your
Magento store
	Adding a Windows icon to your Magento store

	Summary

	Chapter 8: Magento E-mail Templates
	Working with Magento e-mail templates
	Changing the e-mail template logo
	Sending test transactional e-mails

	Changing the color scheme of your Magento transaction e-mail templates
	Loading a Magento e-mail template
	Editing Magento e-mail templates through your theme
	Assigning an e-mail template to a transaction in Magento

	Altering variables in Magento e-mail templates
	Magento Insert Variable pop up
	Using the customer's first name only in e-mail templates

	Adding a static block to a Magento transactional e-mail template
	Creating the static block
	Adding the static block to the e-mail template

	Integrating the MailChimp subscription form into your Magento store
	Integrating the Campaign Monitor subscription form into your Magento store
	Summary

	Index

