
www.allitebooks.com

http://www.allitebooks.org

Learning Microsoft Azure

A comprehensive guide to cloud application
development using Microsoft Azure

Geoff Webber-Cross

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Microsoft Azure

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1091014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-337-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Geoff Webber-Cross

Reviewers
Debarchan Sarkar

Jignesh Gangajaliya

Zhidong Wu

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Sonali Vernekar

Content Development Editor
Anila Vincent

Technical Editor
Mrunal M. Chavan

Copy Editors
Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Neha Bhatnagar

Proofreaders
Mario Cecere

Maria Gould

Lawrence A. Herman

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinators
Aparna Bhagat

Manu Joseph

Shantanu N. Zagade

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Geoff Webber-Cross has over 10 years' experience in the software industry,
working in manufacturing, electronics, and other engineering disciplines. He has
experience of building enterprise and smaller .NET systems on Azure and other
platforms. He also has commercial and personal experience of developing Windows
8 and Windows Phone applications. He has authored Learning Windows Azure Mobile
Services for Windows 8 and Windows Phone 8, Packt Publishing.

I'd like to thank my wife and two boys for keeping me motivated
throughout the book-writing process.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Debarchan Sarkar is a Support Escalation Engineer in the Microsoft HDInsight
team and a technical author of books on SQL Server BI and Big Data. His total
tenure at Microsoft is 7 years, and he was with the SQL Server BI team before diving
deep into Big Data and the Hadoop world. He is an SME in SQL Server Integration
Services (SSIS) and is passionate about the present-day Microsoft self-service BI tools
and data analysis, especially social-media brand sentiment analysis. He hails from
the "City of Joy" Kolkata, India, and is presently located in Bangalore, India, for
his job in Microsoft Global Technical Support Center. He owns and maintains his
Big Data Learnings group on Facebook and is a speaker at several of Microsoft's
internal and external community events. His Twitter handle is @debarchans.

He is the author of Microsoft SQL Server 2012 with Hadoop, Packt Publishing and
Pro Microsoft HDInsight: Hadoop on Windows, Apress Media LLC.

I want to thank my father, Mr. Asok Sarkar, for his continued
encouragement and all the hard work he has done throughout
his life to see us happy. I feel better today because I'm able to
acknowledge that I'm proud to have you as my father, from the
core of my heart.

www.allitebooks.com

http://www.allitebooks.org

Jignesh Gangajaliya is a principal technical architect with over 11 years of core
technology and global business leadership experience in defining solutions and
technology architectures.

His expertise is in design, development, and deployment of large-scale software
systems and solutions across various industry verticals. His core strengths are
wide and deep hands-on technological expertise, strategic thinking, comprehensive
analytical skills, creativity in solving complex problems, and the ability to quickly
understand complex business problems and come up with pragmatic solutions.

He is passionate about creating a strategic vision, and building and transforming
organizations to accelerate growth and value creation by leveraging new
technologies, trends, and emerging opportunities.

He specializes in enterprise architecture, solution architecture, Microsoft server
products and technologies, cloud computing, SaaS, Microsoft Azure, and Amazon
Web Services.

Zhidong Wu received his M.S. degree in Computer Science from Brown University.
He has worked at Microsoft Corporation and Baidu in the past. He is an enthusiast
in Big Data and has experience in Apache Hadoop, Microsoft Azure HDInsight, and
Microsoft Cosmos. He can be contacted at zhidong_wu@brown.edu. You can find out
more about him at http://www.linkedin.com/in/wuzhidong1122.

www.allitebooks.com

http://www.linkedin.com/in/wuzhidong1122
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Microsoft Azure	 9

An overview of cloud computing	 9
Microsoft Azure overview	 10
Selecting a Microsoft Azure solution	 11

Infrastructure capabilities	 12
Platform capabilities	 13
Cost	 13
Decision flow diagrams	 14

Administration of Microsoft Azure systems	 16
Choosing a subscription	 17
Creating a Microsoft Azure account	 18
Adding a subscription	 20
Exploring the portal	 22

The top toolbar	 22
The side toolbar	 25
The bottom toolbar	 25

Examining Microsoft Azure Services	 27
Compute services	 27

Websites	 27
Virtual machines	 28
Mobile services	 28
Cloud services	 29

Data services	 29
SQL Server Database	 30
Storages	 30
HDInsight	 31
Cache	 31
Recovery services	 32

App services	 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Media services	 32
Service Bus	 32
Visual Studio Online	 33
BizTalk Services	 33
Scheduler	 33
Active Directory (AD)	 34

Network services	 34
Virtual Network	 34
Traffic Manager	 35

Summary	 35
Questions	 35
Answers	 36

Chapter 2: Designing a System for Microsoft Azure	 37
Designing scalable and resilient systems	 38
Systems architecture	 40
A case study of a small business system	 41

System requirements	 41
Identifying subsystems	 42
Customer website design	 42
Administration system design	 44
System integration	 45
Identifying critical systems	 46
Selecting services	 46
Conclusion of the small business case study	 47

A case study of an enterprise system – Azure Bakery	 47
System requirements	 48
Sales requirements	 48
Production requirements	 49
Supply requirements	 49
Identifying subsystems	 49
Sales subsystems	 49
Production subsystems	 50
Supply subsystems	 50
System design	 50
System design – the sales customer phone app	 51
System design – sales order processor	 52
Sales system integration	 52
Identifying critical services	 53
Selecting Microsoft Azure Services	 54

Selecting common services	 54
Selecting sales services	 54

Table of Contents

[iii]

Selecting production services	 56
Selecting supply services	 57

Conclusion of an enterprise system case study – Azure Bakery	 57
Designing platform environments	 59

Common environment roles	 59
Example environment sets	 60
Using website deployment slots	 62
Using cloud service staging environments	 63

Summary	 64
Questions	 64
Answers	 65

Chapter 3: Starting to Develop with Microsoft Azure	 67
Preparing our development environment	 67

Setting up software	 67
Mobile development	 68
The Microsoft Azure SDK	 69

Checking for Visual Studio updates	 69
Creating a website	 70
Configuring a website in the portal	 72
Creating a Visual Studio Online project	 77

Creating a Visual Studio Online account	 78
Creating a Visual Studio Online project	 79

Setting up continuous deployment	 80
Adding a solution to source control	 80
Configuring continuous deployment	 84
Examining the build definition	 87

Setting up alerts	 89
Summary	 91
Questions	 92
Answers	 92

Chapter 4: Creating and Managing a Windows Azure
SQL Server Database	 93

Creating a database using the Azure management portal	 94
Building a database using Entity Framework (EF) Code
First Migrations	 96

Creating the data model	 97
Configuring a database context	 101
Linking an authenticated user to the model	 102
Configuring the connection string	 103
Enabling migrations and updating the database	 104

Table of Contents

[iv]

Publishing with migrations	 109
Managing SQL Azure Servers and databases	 112

Managing a database through the portal	 113
Features of the management portal	 115

Managing a database using SSMS	 116
Managing a database through Visual Studio	 119

Using the table designer	 122
Using Azure PowerShell	 123
Choosing a management tool	 124

Backing up and restoring databases	 125
Automated exports	 125

Summary	 128
Questions	 128
Answers	 129

Chapter 5: Building Azure MVC Websites	 131
Implementing OAuth authentication	 131

Creating a Twitter application	 132
Modifying the external login	 133
Testing the Twitter login	 136

Completing the customer sales website	 138
Modifying the user account panel	 138
Temporary PayConfirm action	 140
Final activities	 141

Adding a custom domain name to a website	 142
Implementing an SSL certificate	 144

Creating CER files	 146
Using OpenSSL to create a PFX certificate	 148
Uploading the certificate	 149
Redirecting all HTTP traffic to HTTPS	 150

Adding Azure AD single sign-on to a website	 151
Configuring AD	 151
Configuring an MVC website for AD single sign-on	 152
Publishing the website with AD single sign-on	 154

Implementing Azure AD group authorization	 156
Creating an AD group	 157
Modifying the application service principal	 158
Implementing AzureAdAuthorizeAttribute	 159

Completing the admin sales website	 163
Summary	 165
Questions	 166
Answers	 167

Table of Contents

[v]

Chapter 6: Azure Website Diagnostics and Debugging	 169
Enabling diagnostics	 170

Working with logfiles	 171
Viewing logfiles in Visual Studio	 171
Streaming logs	 172

Filtering stream logs	 174
Downloading logs	 174
Accessing files using FTP	 175

Application logging	 175
Implementing tracing in the application	 177
Application logging to table storage	 181

Querying table data	 183
Application logging to blob storage	 184
Diagnosing a real bug	 185

Setting up the website	 186
Producing an error	 187

Site diagnostics	 188
Extra filesystem settings	 188
Site diagnostics using blob storage	 189

Kudu	 190
Remote debugging	 192

When to use remote debugging	 195
Summary	 195
Questions	 196
Answers	 197

Chapter 7: Azure Service Bus Topic Integration	 199
Introducing Azure Service Bus and topics	 200
Dead-letter queues	 201
Creating a Service Bus topic	 202
Connecting a website to the Service Bus topic	 206

Preparing the website	 207
Creating messaging logic	 208
Sending a message from the controller	 211

The messaging simulator	 212
Setting up the project	 213
Creating a data service	 214
Creating a messaging service	 216
Completing the simulator	 220
Running the simulator	 220

Exploring the topic workspace	 222
The MONITOR tab	 223

Table of Contents

[vi]

The CONFIGURE tab	 224
The SUBSCRIPTIONS tab	 225

Summary	 226
Questions	 227
Answers	 228

Chapter 8: Building Worker Roles	 229
Introducing cloud services	 229
Exploring worker roles	 230

Creating a worker role	 230
Examining the worker role	 233
Examining the cloud service	 234

Running locally	 235
The compute emulator UI	 236
The storage emulator UI	 237

Publishing a worker role	 238
Building the production order processor	 241

Adding an entity model	 242
Preparing the Service Bus topic	 243
Adding an order processor task	 244

Creating TopicProcessorBase	 244
Implementing TopicProcessorBase	 247
Using OrderTopicProcessor in the worker role	 248

Creating a scheduled work activity	 250
Creating a scheduled job and queue	 251
Configuring a connection string	 253
Adding batch processor tasks	 255

Creating a storage queue processor base	 255
Implementing StorageQueueProcessorBase	 257

Completing the worker role	 258
Testing the production order processor	 260

Testing a single instance	 261
Testing multiple instances	 262

Deleting idle cloud services	 263
Summary	 263
Questions	 264
Answers	 264

Chapter 9: Cloud Service Diagnostics, Debugging,
and Configuration	 267

Configuring diagnostics	 267
Adding local diagnostics	 269
Configuring Azure storage diagnostics	 271

Table of Contents

[vii]

Remote debugging	 272
Stopping the debugger	 275
Examining how remote debugging works	 276

Debugging with IntelliTrace	 276
Remote desktop connection	 279

Downloading a Remote Desktop Protocol (RDP) file	 279
Establishing an RDP connection	 280
Firewall issues	 282

Detecting configuration changes in code	 283
Start-up tasks	 284

Creating a batch script	 284
Adding the task	 286
Environmental variables	 287

Summary	 288
Questions	 288
Answers	 289

Chapter 10: Web API and Client Integration	 291
Introducing a Web API	 292
Introducing SignalR	 293
Building a Web API service	 293

Creating a Web API project	 294
Creating API controllers	 298

Creating a SignalR hub	 302
Publishing a Web API	 305
Modifying the Web API AD manifest	 307
Adding a client application to AD	 308
Building a client application	 310

Preparing the WPF project	 311
Creating an authentication base class	 313
Creating a data service	 315
Creating a SignalR service	 316
Completing the application	 318
Testing the application	 319

Summary	 320
Questions	 320
Answers	 321

Chapter 11: Integrating a Mobile Application Using
Mobile Services	 323

Introducing Azure mobile services	 326
Creating the customer Azure mobile service	 327

Table of Contents

[viii]

Creating a mobile services project	 328
Exploring the mobile service sample project	 329

The sample table controller	 330
The sample data entity	 331
A sample scheduled job	 331
Mobile service DbContext	 331
WebApiConfig	 332
Cleaning up the project	 332
Integrating with the sales database	 333
Configuring development app settings	 333
Integrating authentication with the sales website	 334
Adding a channel registration API controller	 336
Adding an order controller	 338
Publishing the mobile service	 339

Creating a Windows Phone application	 342
Adding data services	 343

The DataServiceBase class	 343
The DataService class	 346

Setting up push notifications	 347
Modifying the manifest	 347
Adding a channel helper	 348

Notifications debug	 348
Completing the app	 349

Updating the order processor	 349
Updating the admin website	 351
Creating the supply mobile service	 352

Configuring a mobile service for Azure AD auth	 353
Creating the barcode controller	 355
Creating the order controller	 356

Creating the supply Windows Store application	 358
Configuring the Store app for AD authentication	 359
Creating a DataServiceBase class	 361

Summary	 361
Questions	 361
Answers	 362

Chapter 12: Preparing an Azure System for Production	 365
Project configurations for multiple environments	 365

Adding build configurations to a solution	 367
Website configuration transforms	 369
Application configuration transforms	 370
Cloud configuration	 372

Table of Contents

[ix]

Building website deployment packages	 374
Manually publishing websites to the filesystem	 374
Building web packages on a build server	 375

Building cloud service deployment packages	 381
Building cloud service deployment packages manually	 381
Building cloud service deployment packages on a build server	 382

Deploying web packages to Azure	 385
Deploying cloud packages to Azure	 387
Creating database scripts from Entity Framework Code
First Migrations	 389
The go-live checklist	 389
Monitoring live services	 390

The Microsoft Azure portal	 390
The Service Management REST API	 390
Management services alerts	 390
Azure PowerShell	 392

Azure daily service checks	 392
Azure periodic service activities	 392
Azure tool list	 393
Summary	 394
Questions	 395
Answers	 395

Index	 397

Preface
Learning Microsoft Azure is a practical, hands-on book for learning how to build systems
for Microsoft Azure. This book is themed around an enterprise case study based on a
fictional industrial bakery called Azure Bakery, which spans three business units: sales,
production, and supply. The entire system is built on the Microsoft Azure technology
that utilizes a broad range of services.

The sales business unit is responsible for selling products to customers through the
MVC 5 customer website, where customers can place orders and view their status
as the order moves through the system. Products are managed through another
administrator website that implements Azure Active Directory authentication. A
Windows Phone app with .NET mobile service and Twitter authentication integrated
with the customer website allows customers to view the order status on their phone
and receive push notifications via the notifications hub when the order status changes
and new products are created. The sales system has its own dedicated SQL Azure
Database and communicates with the other systems via a Service Bus topic. A worker
role is implemented to keep the sales system updated as orders are processed through
the enterprise system.

The production business unit is responsible for manufacturing the products for the
customer orders and has a worker role at the core of it, which consumes customer
orders from the Service Bus topic, enters the orders into the production SQL Azure
Database, creates batch schedules to bake products, and allocates stock in the system.
Production staff uses an on-premises WPF client application with Azure Active
Directory authentication to view batch schedules and manage stock via a Web
API 2 service with SignalR hub and Azure Service Bus backplane, allowing client
applications to update in real time.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

The supply business unit is responsible for picking up and packing orders from the
production business unit and delivering them to customers. A worker role consumes
orders from the Service Bus topic and stores customer details in a table storage, and
automatically creates barcode labels stored in a blob storage. Supply staff interacts
with the system via an Enterprise Windows Store app, which is authenticated with
Azure Active Directory and has a .NET mobile service backend.

As we're building the system, we learn about the topic we're exploring and
apply it to our system with detailed walk-throughs and relevant code samples.
There are complete working code samples for the entire system that are broken
down chapter-wise.

What this book covers
Chapter 1, Getting Started with Microsoft Azure, gives an introduction to cloud
computing and Microsoft Azure followed by how to choose a subscription and
signing up for a subscription. We finish this chapter by taking a look around the
portal, and then start looking at the different services Microsoft Azure has to offer.

Chapter 2, Designing a System for Microsoft Azure, covers designing scalable, resilient
systems for Microsoft Azure by looking at methodologies for breaking systems into
subsystems and selecting appropriate Azure services to build them. This process
will be applied to design a small system for an independent station that requires a
website and a basic administration system; it is then extended to a full enterprise
system, where will we introduce the Azure Bakery case study.

Chapter 3, Starting to Develop with Microsoft Azure, gives you the first taste of developing
for Microsoft Azure, where you will prepare their development environment with
the required tools and sign up for a Visual Studio Online account. We'll create the
foundations of the sales customer website and publish it to the cloud, and then set up
continuous deployment using the Visual Studio Online Team Foundation build server.

Chapter 4, Creating and Managing a Windows Azure SQL Server Database, creates a
database for the sales business unit and builds it using Entity Framework Code
First Migrations. This chapter will examine different tools for working with the
database from a developer and administrator point of view, and look at options
for database backup.

Chapter 5, Building Azure MVC Websites, builds the sales customer website and
administrator website, with Twitter authentication for the customer site and Azure
Active Directory authentication for the administrator site. We will learn how to
apply custom domain names and SSL certificates to Azure websites and learn
how to perform Azure AD group authorization in an MVC website.

Preface

[3]

Chapter 6, Azure Website Diagnostics and Debugging, follows on from the previous
chapter, exploring techniques and tools to help diagnose problems and debug
Azure websites. We'll look at enabling diagnostics in websites, working with
logfiles, and examining application logging and site diagnostics. Finally, we'll
look at the Kudu service and remote debugging Azure websites.

Chapter 7, Azure Service Bus Topic Integration, starts with an overview of the Service
Bus topics and creates a topic for handling order messaging between the three business
tiers. We'll integrate the sales customer website into the topic with a subscription,
allowing the newly-created orders to be sent across the system, where they will be
collected by the production system for manufacturing, and the supply system for
producing address labels and planning deliveries. We'll also create a messaging
simulator to allow the topic to be loaded up with high volumes of orders to help
test the scalability and capacity of the system. Finally, we'll look at the features in
the portal to help us monitor and manage our Service Bus topic.

Chapter 8, Building Worker Roles, gives an introduction to cloud services and creating
a worker role. Then, we'll create and run a basic cloud service locally on the compute
emulator, and publish and run it in the cloud. The production order processor is
created next, which is responsible for receiving orders from the Service Bus topic,
saving them to the production database, creating product batch schedules, and
allocating stock. Finally, we'll test the cloud service in a scaled deployment using
the simulator created in Chapter 7, Azure Service Bus Topic Integration.

Chapter 9, Cloud Service Diagnostics, Debugging, and Configuration, continues on from
the previous chapter and covers diagnostics, remote debugging, and IntelliTrace.
We'll learn how to deal with configuration changes made in the portal at runtime
and implement start-up tasks for performing customizations to prepare the server
environment for the service.

Chapter 10, Web API and Client Integration, provides an introduction to the Web API
and SignalR with an Azure Service Bus backplane followed by building a Web
API service and a SignalR hub, to allow the production management application
to interact with the production database and Service Bus topic. The system will be
authenticated with Azure AD authentication, allowing production staff to log in to
the WPF client application using their Azure AD credentials.

Preface

[4]

Chapter 11, Integrating a Mobile Application Using Mobile Services, brings the whole
system together with the addition of a mobile service and a Windows Phone 8
application for the sales system, which allows users to log in with the same credentials
as the customer website, view orders, and receive order updates and product news via
the notifications hub. The sales mobile service provides APIs for the admin website
and order processor to interact with the notifications hub. Finally, the chapter looks
at building an Azure AD authenticated mobile service for the supply Windows Store
application to view orders and retrieve address labels from a blob storage created
by the supply order processor.

Chapter 12, Preparing an Azure System for Production, is the final chapter, and looks at
configuring systems for various environments including production, and creating
publishing packages using the Visual Studio Online Team Foundation build server
and producing database scripts in order to manage the system deployments in a
controlled way by systems administrators or developers. We'll learn how to monitor
the different services implemented throughout the book once they are live, and also
cover guidelines for publishing web-connected mobile applications.

What you need for this book
You need a good spec machine with Windows 8.1 installed as a starting point.
A premium version of Visual Studio 2013 is ideal but not necessary as multiple
versions of Visual Studio Express (which are free) can be used instead. You will
sign up for a Microsoft Azure subscription at the start of the book if you have not
already got one; there are various paid options, but a free 3-month trial is available.
To work on Windows Store applications, a Store account is needed, which is covered
in Chapter 11, Integrating a Mobile Application Using Mobile Services.

Who this book is for
This book is aimed at .NET developers interested in building systems for
Microsoft Azure. Good knowledge of Microsoft .NET is essential; knowledge of
building websites, Windows applications, and Windows Phone or Windows 8
applications is helpful but not essential.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[5]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the website project, open the Views/Home/Index.cshtml file and make some
changes to the markup."

A block of code is set as follows:

public class AuthHelper
{
 public static async Task<Customer> GetCustomer(ServiceUser
 serviceUser, CustomerMobileServiceContext ctx)
 {
 // Find Twitter Id, of form Twitter:123456789
 var idParts = serviceUser.Id.Split(':');
 var key = idParts[1];
 var provider = idParts[0];

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public class AuthHelper
{
 public static async Task<Customer> GetCustomer(ServiceUser
 serviceUser, CustomerMobileServiceContext ctx)
 {
 // Find Twitter Id, of form Twitter:123456789
 var idParts = serviceUser.Id.Split(':');
 var key = idParts[1];
 var provider = idParts[0];

Any command-line input or output is written as follows:

Install-Package WindowsAzure.MobileServices

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Enter
Project name and Description and select the Team Foundation Version Control
option (this is the default option), and then click on Create project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started with
Microsoft Azure

This chapter introduces Microsoft Azure, the process of implementing it, and the
features and services it can offer us. We will cover the following topics:

•	 A brief overview of cloud computing and Microsoft Azure
•	 Selecting a Microsoft Azure solution
•	 Administration of a Microsoft Azure system
•	 Choosing a subscription
•	 A walk-through of creating a Microsoft Azure account
•	 Exploring the Microsoft Azure Management portal
•	 Examining all the Microsoft Azure service options

An overview of cloud computing
Cloud computing is a term for computing resources and services such as server
and network infrastructure, web servers, and databases, hosted by cloud service
vendors, rented by tenants, and delivered via the Internet.

Cloud computing companies such as Microsoft and Google offer a variety of
computing services built on top of their own infrastructure, which are managed
in dedicated globally distributed data centers that offer high availability, resilience,
and scalability.

Getting Started with Microsoft Azure

[10]

There are three types of cloud service models, Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS is the lowest
service tier that offers server, storage, and networking infrastructure, which users
can build their own systems on. PaaS allows users to create and deploy applications
without having to worry about the infrastructure that's hosting it using services
and tools designed to streamline the development and deployment processes. SaaS
offers on-demand software products, which remove the infrastructure and software
installation and setup overhead; web mail providers are an example of SaaS, where
users can send and receive mails using a website rather than having to install a mail
client on their machine.

Cloud services are often a cost-effective alternative to traditional on-premises
infrastructure, which requires an initial investment in hardware and licenses and
requires continual maintenance and expansion as required as well as utility costs
such as premises' rent, electricity, and ISP.

There are four main cloud deployment models: public cloud, private cloud, hybrid
cloud, and community cloud. Public cloud services are hosted by a vendor and made
available to the public for use. Private cloud services emulate public cloud services
in terms of features but are only available within a company's domain. Community
cloud is a private cloud shared between a number of users. Hybrid cloud is a mixture
of the other three.

Microsoft Azure overview
Microsoft Azure is the collective name for Microsoft's cloud computing services
that provide IaaS and PaaS service models. In terms of deployment models,
Azure services would be classed as public; however, it's possible to install Azure
Pack (http://www.microsoft.com/en-us/server-cloud/products/windows-
azure-pack/) in a private data center that offers a private cloud model.

Microsoft Azure IaaS comprises of a number of globally distributed data centers
that host virtualized servers controlled by the Azure Fabric Controller. When we
host systems on Azure, we become tenants and pay for our share of processing
and network resources that we use through the subscription we choose. In this
layer, we can make use of services such as virtual machines, disk storage, and
network services.

Microsoft Azure PaaS services are the main entry point for most developers,
where we are offered a set of tools and services that allow us to develop and deploy
scalable and robust systems such as websites, worker roles, and mobile services.

http://www.microsoft.com/en-us/server-cloud/products/windows-azure-pack/
http://www.microsoft.com/en-us/server-cloud/products/windows-azure-pack/

Chapter 1

[11]

Microsoft Azure (formerly known as Windows Azure) was first announced in
2008 and was available as Community Technical Preview (CTP); then, it became
commercially available from 2010. Since then, the number of services and features
has continually grown to where we are now.

At the time of this writing, Windows Azure has been renamed Microsoft Azure
as part of a rebranding exercise to move the services away from being tightly
associated with Windows server operating systems, databases, and platforms, as
Azure can support operating systems such as Linux that run on virtual machines,
Oracle databases, Node.js, and PHP websites, to name a few. You may see the term
Windows Azure still being used in documentation and resources for quite a long
time. It's the same product, just with a different name, so it's likely to be still valid.

Selecting a Microsoft Azure solution
Before we start looking at everything Microsoft Azure can offer us, we need to take
a step back and think about the reasons for choosing it in the first place. The first
question is actually whether you should be using a cloud platform rather than your
own infrastructure (if you have any); the second question, once you've decided to
use a cloud platform, is whether to use Microsoft Azure or an alternative.

The main factors in choosing to deploy systems on a cloud platform are as follows:

•	 Infrastructure capabilities: If your business doesn't currently own
infrastructure for hosting your solution, or it doesn't have sufficient capacity,
or the business simply doesn't want to invest in its own infrastructure, then a
cloud-based solution might be the best

•	 Cost: If a cloud-based solution is more cost-effective than a self-hosted
solution irrespective of whether your business owns its own infrastructure
or not, it may be a good option

The main reasons for choosing to deploy systems on Microsoft Azure in particular
are as follows:

•	 Platform capabilities: If you've decided to build a cloud-based system
using .NET, then Microsoft Azure is the obvious choice. If you are building
a system on a different platform and Microsoft Azure can support it, it might
be a good option.

•	 Cost: If Microsoft Azure can offer the right capabilities and is more
cost-effective than other suitable competing platforms, then it's the
best choice.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Microsoft Azure

[12]

Choosing to host systems on the cloud is not a straightforward decision. You may find
that you have to go through the decision-making process on a project-by-project basis
rather than having a policy where you always do the same thing for all systems.

Infrastructure capabilities
There is an overhead in managing infrastructure of any scale. The following are the
activities that must be performed frequently:

•	 Patch management
•	 Operating system migrations
•	 Platform migrations
•	 Provision for expansion
•	 Maintaining utilities (power, Internet, cooling, and so on)

The different scenarios for managing the infrastructure of a business are as follows:

•	 If your business runs internal systems on just a single server, this may
not be a full-time job for someone, but it still needs to be done and may
be time-consuming periodically

•	 If your business is on the other end of the spectrum and has two data
centers that host hundreds of servers, you will need a team of people
to manage them, which will obviously be very costly

•	 If your business doesn't want to invest in its own infrastructure, irrespective
of whether it needs enough servers to justify building a data centre, or just
a single server with a website and database, it might be your best option to
host your systems on a cloud platform

•	 If your business' current infrastructure doesn't have the capacity for your
system or it can't meet the required Service Level Agreement (SLA)

•	 If your business has a heavy investment in its own infrastructure and can
support future expansion on a variety of platforms, you may be less likely
to want to use a cloud platform, but even then, there may be a service your
infrastructure can't provide, or a platform it simply can't support, so it may
be cheaper and faster to implement it in the cloud

Chapter 1

[13]

Platform capabilities
If your business builds systems using Microsoft technologies, then Azure would
be the logical choice, because although it now supports a number of platforms,
Windows Servers, SQL Server Databases, and .NET platform tooling have been
established long ago and have a fantastic toolset.

If, for example, your company does own its own infrastructure, but it's designed
for running Java websites on Linux operating systems, and you have a requirement
to build and host some .NET systems, you may want to choose to build your system
on Microsoft Azure instead of provisioning more servers.

If Microsoft technologies are not your normal choice and you want to build a
system on a cloud platform, you may choose Azure if it is more cost-effective
than a competitor cloud service provider for a comparable design and SLA.

Cost
Cost can be one of the main drivers behind most decisions in a business; it has come
up in both decision-making steps for choosing to use a cloud solution, then Microsoft
Azure, so it's clearly important. I'd love to get straight down to talking about
coding and deciding which bits of Microsoft Azure to use for what; we still have a
responsibility to make the best decisions for our business and that includes designing
a cost-effective system.

If you're working on a personal project, you may want to pick up a technology
for reasons such as it being new or looking interesting; everyone does this and we
might not mind if it costs us a few pounds (dollars or whatever), but in a business,
we need to make the right choice ourselves or convince other people of the right
choice, especially in the case of larger organizations, and that means choosing a
solution that is cost effective.

We can use the pricing calculator to help us work out how much a system will cost
once we have designed it; it is available at http://www.windowsazure.com/en-us/
pricing/calculator/.

http://www.windowsazure.com/en-us/pricing/calculator/
http://www.windowsazure.com/en-us/pricing/calculator/

Getting Started with Microsoft Azure

[14]

Decision flow diagrams
I've tried to distil all this into two flow diagrams to help you with the
decision-making process. You can use the following flow diagram to decide
whether to implement a cloud-based system:

Does business own
infrastructure?

Does infrastructure
have capacity for

new project?

Start

Use your own Infrastructure Use Cloud Infrastructure

Is business
prepared to invest
in infrastructure?

Can new
infrastructure be
ready in time?

Can new
infrastructure be
ready in time?

Yes

No

Yes Yes

No

Yes

No

Yes

No

No

Chapter 1

[15]

Once we've decided that building a cloud-based system is the right thing to do,
we can use the following flow diagram to help us decide whether Microsoft Azure
is the best platform:

Start

No

Yes

No

No

Yes

Yes

Are you developing
a Net solution?

Will Microsoft Azure
support your

platform?

Is it more cost
effective than an

alternative?

Use alternativeUse Microsoft Azure

Getting Started with Microsoft Azure

[16]

Administration of Microsoft Azure
systems
We've talked a lot about whether to use a cloud platform or not, and if your
business decides to, whether it will be Microsoft Azure or whether to use your
business' infrastructure; so now, we'll look at the administration overhead in
looking after a cloud-based system and incorporating it into your business'
maintenance and support procedures.

If you have a small organization or you are working on personal projects, you may
choose to manage your environments yourself (you may not have a choice) and
you may deploy applications to the cloud straight from your development machine.
This is fine, but it's worth thinking about managing this process to make things easy
for you and save yourself from accidently causing loss of service.

If you work in a larger organization with some governance in place, which dictates
how systems should transition from a development environment to a live system
and then how they are managed and maintained after that, you may need to put
some new procedures in place or modify the existing procedures for handling
cloud-based systems.

Using a cloud platform, we don't completely get away from systems management
and maintenance overhead. The following are examples of administrative tasks we
still need to consider:

•	 Training: The people responsible for managing cloud systems will need
to know how to manage and maintain them. This includes things such
as understanding the different environments, using the portal, and how
to perform deployments.

•	 Error logs: Error logs need to be monitored so that problems can be
detected and fixed. Error logs will need pruning to avoid paying for
unnecessary storage.

•	 Alerts: Alerts must be set up and configured for the appropriate set
of support staff.

•	 Database maintenance: Databases need to be reindexed and statistics
must be recalculated from time to time so that performance doesn't
degrade over time.

•	 Data backup: Microsoft Azure does not automatically back up data,
so this needs to be set up.

Chapter 1

[17]

•	 OS updates: It's actually possible to disable automatic updates on Azure
OSes (this is not the default option), so if your IT policy is to have staged
updates, you may wish to disable automatic updates and include Microsoft
Azure systems in your update process.

•	 Billing: Somebody needs to remember to pay the bill for the services
the businesses are using. This is especially important if you pay your
subscription by invoice and not credit card.

•	 Password management: Usernames and passwords for Microsoft Azure
portals and databases must be securely recorded and made available to
the administrative staff.

•	 Release management: Typically, in medium-to-large organizations,
it's not normal for developers to deploy systems for staging or for
live environments themselves, so this must be coordinated between
developers and system administrators.

•	 Renew SSL certificates and domain names: If we use custom domain
names on our websites or implement SSL security, we will need to renew
these periodically.

It's important to think about these things when deciding to implement a
cloud-based system, because although there is certainly a huge reduction
in administration overhead, particularly on the infrastructure side of things,
they aren't completely administration-free.

Choosing a subscription
The subscription you choose will depend on the type of project you are doing
and its scale. If you are doing some experimentation or prototyping a system,
which may never go into production, you may just want to use a free trial,
which is time- and usage-limited, or go for a Pay-as-you-go option, where you
pay for what you use rather than committing to a fixed payment. If you're a
university student, your university may apply for a 5-month Educator Grant
at http://www.microsoftazurepass.com/azureu.

To get started, you may need to do some design work to get some idea of the services
you may require, what service tier you want, and how many instances of each service
you may use, then go to the pricing calculator and start working out how much your
monthly expenditure might be. There is a complete chapter dedicated to designing a
system, and this whole book will help you choose which services you require, but we
need a subscription to get started, so we'll talk about it now.

http://www.microsoftazurepass.com/azureu

Getting Started with Microsoft Azure

[18]

Once we have an idea about what our monthly expenditure might be, we can take
a look at the purchase options page at http://www.windowsazure.com/en-us/
pricing/purchase-options/.

The following table taken from the purchase options page shows us the discounts
based on the base Pay-as-you-go rate and monthly commitment to spend in USD
(there is a picker on the left-hand side of the page to change the currency):

Monthly

Committed Spend

6-Month

Monthly Pay

12-Month

Monthly Pay

6-Month

Pre-Pay

12-Month

Pre-Pay
$500 TO £14,999 20% 22.5% 22.5% 25%
$15,000 TO £39,999 23% 25.5% 25.5% 28%
$40,000 AND ABOVE 27% 29.5% 29.5% 30%

As with most commodities, the more you commit to spend, the better discount you
get, and you save even more committing to pay for the whole term in one go.

You can pay by invoice as well as by credit card; the page at http://www.
windowsazure.com/en-us/pricing/invoicing/ has details about requesting
invoiced payments.

Creating a Microsoft Azure account
Before we go into all the different things Microsoft Azure has to offer us, we'll create
an account so that we can use the portal to help us explore the services.

There is a new portal (https://portal.azure.com/), which was
introduced earlier in 2014 during the Build conference. Unfortunately,
at the time of writing this book, it was not complete enough for the
majority of the services we're covering, so this book uses the old portal
(https://manage.windowsazure.com/), which will continue to
be available for some time to come.

If you already have a Microsoft Azure account, continue to the next section; otherwise,
click on the Portal tab (https://manage.windowsazure.com/). It will take you to
log in using your Microsoft account if you are not already logged in. Once you have
logged in, you will see a big page saying you have no subscription:

http://www.windowsazure.com/en-us/pricing/purchase-options/
http://www.windowsazure.com/en-us/pricing/purchase-options/
http://www.windowsazure.com/en-us/pricing/invoicing/
http://www.windowsazure.com/en-us/pricing/invoicing/
https://portal.azure.com/
https://manage.windowsazure.com/
https://manage.windowsazure.com/

Chapter 1

[19]

Click on the SIGN UP FOR WINDOWS AZURE link (https://account.
windowsazure.com/SignUp), and you should end up at the Sign up page (there are
a number of routes to get to this page through the website, but this seemed to be the
least clicks for me!). Your personal details should appear from your account info,
and you'll need to verify it's you with an SMS or call verification:

https://account.windowsazure.com/SignUp
https://account.windowsazure.com/SignUp

Getting Started with Microsoft Azure

[20]

Once your account is verified, you can enter your credit card details. Don't panic
if you want a free trial or pay as you go; you don't get automatically signed up for
any premium subscriptions; however, $1 will be charged to you for credit card
verification. Accept the agreement and click on the Purchase button; your card
details will be validated, and you will be taken to the subscriptions page, where
you'll be pleased to find that you already have a free trial! This is shown in the
following screenshot:

Adding a subscription
You can add subscriptions to meet your own requirements by clicking on the add
subscription button:

Chapter 1

[21]

I chose the Pay-As-You-Go option for writing this book as I will not be leaving the
system I'm building in production. Once you have selected your option, you get a
purchase confirmation on your screen, as shown in the following screenshot:

Once the payment information is confirmed, we're taken back to the subscriptions
page, where we can see our new subscription being listed:

If you have chosen to use a trial subscription, there is a spending limit feature so that
you don't incur any costs; once you reach the offer limits, services will be disabled
and data will be available as read-only.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Microsoft Azure

[22]

Exploring the portal
Now that we have a subscription, we can go and start exploring the portal at
https://manage.windowsazure.com/. When you go into the portal for the first
time, you'll be presented with a nice tour wizard, which is a really good way of
learning about the portal's features; step through the wizard, and then we'll look
at these features and more without the wizard.

The top toolbar
The top toolbar allows us to access some of the top-level options for the portal;
there are six buttons:

The various options available in the top toolbar are as follows:

•	 Home button (1): Wherever you are in the portal, clicking on the home
button will take you back to the main ALL ITEMS dashboard.

•	 Top menu (2): This drop-down menu contains links, which take you out
of the portal to Microsoft Azure's web resources; you'll notice that the
same menu appears on all Microsoft Azure websites:

The menu available inside the top menu is as follows:

°° HOME: This links to the main Microsoft Azure site.
°° PRICING: This links to the price calculator for all Microsoft

Azure services.
°° DOCUMENTATION: This links to the Microsoft Azure

documentation home page; from here, you can find a large
amount of reference material, code samples, and tutorials.

°° DOWNLOADS: This links to the downloads page, where you
can find links to SDKs for all platforms and command-line tools.

https://manage.windowsazure.com/

Chapter 1

[23]

°° COMMUNITY: This links to the community page from where we
can find links to recent Microsoft Azure team blogs, links to other
Azure blogs, and useful information to help us be up-to-date with
what's going on with Microsoft Azure services. This is helpful
because the platform is continually growing and changing, so it's
good to be able to see what's going on.

°° SUPPORT: This links to the support page, which lists various
support options for technical and billing issues, and contains
links to MSDN forums.

•	 Credit status flyout (3): If you have a subscription with a credit allowance,
this displays the remaining credit for the month and number of days until
the end of the month:

•	 Subscriptions menu (4): This menu allows you to adjust which subscriptions
and their associated services are displayed in the portal; if you have a lot of
subscriptions, you can even search for them! At the bottom of the page, there
are also some useful links for managing your account:

Getting Started with Microsoft Azure

[24]

•	 Language menu (5): The language menu allows you to change the portal's
display language to a number of supported languages:

•	 Main menu (6): Clicking on your username at the top-right corner of the
screen opens the main menu, which allows you to sign out, change password,
view your bill, contact support, and access some other legal bits:

Chapter 1

[25]

The side toolbar
The toolbar at the left-hand side allows you to view all items and navigate to service
workspaces such as WEB SITES, VIRTUAL MACHINES, and MOBILE SERVICES:

The bottom toolbar
The bottom toolbar allows you to create new services, control the current service
selected in a workspace, and view notifications:

The various options available in the bottom toolbar are as follows:

•	 Create new (1): Clicking on the + NEW button on the bottom toolbar opens
the Create New menu from where you can create new services:

Getting Started with Microsoft Azure

[26]

•	 Commands (2): The command bar provides contextual commands for
controlling the currently selected service; in the preceding example
screenshot, the controls are used for running a website, allowing you
to browse, stop, restart, and delete it, and also allowing you to install
WebMatrix, which is a lightweight web development tool.

•	 Notifications (3): The notifications bar will appear at the bottom of the
portal to alert you of any issues you may need to address; they have
three levels:

°° Error
°° Warning
°° Information

Clicking on an alert symbol opens the alert banner showing
more information:

•	 Completed operations (4): A number of activities in the portal can take
a while to complete and run asynchronously; once they complete, the
completed operations' count indicator gets incremented, and clicking
on this button shows you the completed operations' banners:

Individual operations can be dismissed by clicking on OK, or all of them can
be dismissed by clicking on DISMISS COMPLETED at the top of the page.

Chapter 1

[27]

•	 Help (5): Clicking on the help button displays a contextual help menu that
provides help information about the current service:

Examining Microsoft Azure Services
We'll start taking a look at all the Microsoft Azure services available to us; while
we do this, it's helpful to refer to the portal, and use the +NEW button to see the
different options for each category. Don't be afraid to create a service to take a
closer look; you can always delete it afterwards.

Compute services
Compute services are a collection of services used for building different types of
scalable, resilient applications on Microsoft Azure. We'll take a look at these now
and see what they can offer us.

Websites
Microsoft Azure websites are a secure, scalable platform for publishing websites on
a number of platforms (ASP.NET, PHP, Node.js, Python, and Classic ASP) with SQL
Server and MySQL databases; there is also a large gallery of website templates for
building websites on app frameworks such as Django, blog sites such as WordPress,
and forums such as phpBB; to see the full list, click on the New Service button, and
then navigate to COMPUTE | WEB SITE | FROM GALLERY.

Getting Started with Microsoft Azure

[28]

Websites support SSL certificates for secure HTTPS sessions and custom domain names
with A and CNAME records (for supporting a single domain name for a number of
load-balanced web servers). Website instances can be manually or automatically (on
schedule or on CPU metrics) scaled up and down to meet business demands. Websites
can run in three modes, FREE, SHARED, or STANDARD, where FREE and SHARED
run on a multitenant environment (a shared web server), but the SHARED mode has
a higher resource quota than FREE. STANDARD runs on a dedicated virtual machine
(small, medium, large size options similar to virtual machines).

Virtual machines
Virtual machines offer you a scalable server infrastructure to build your systems
from scratch. They are available as Windows Server or Linux operating systems,
and there are a number of images available with server software such as SharePoint,
SQL Server, and Oracle preinstalled. To take a look at the complete list, click on the
New Service button, and then navigate to COMPUTE | VIRTUAL MACHINE |
FROM GALLERY.

There are currently eight image sizes ranging from extra small (shared core, 768
MB RAM) to A7 (eight cores, 56 GB RAM) and default (one core, 1.75 GB RAM);
obviously, the bigger the image, the higher the cost. You can see the prices in
the pricing calculator at http://www.windowsazure.com/en-us/pricing/
calculator/?scenario=virtual-machines. Virtual machines are charged
at compute hours and have a monthly value in the calculator; Windows Server
and Linux images cost the same, but the price increases with additional server
software due to the extra licensing cost.

Mobile services
Mobile services are designed for mobile app developers so that they have a simple
platform to quickly create secure (OAuth2 and key-based authentication over SSL)
database and custom APIs and easily make push notification requests on all major
mobile platforms (Windows Store, Windows Phone, iOS, and Android). Backend
services can be created on Node.js or .NET; Node.js, which is the original platform,
can be scripted in the portal directly or locally, and can be pushed using Git version
control, whereas .NET backends, which are a relatively new addition, are created
locally and published in a similar way to other web applications.

http://www.windowsazure.com/en-us/pricing/calculator/?scenario=virtual-machines
http://www.windowsazure.com/en-us/pricing/calculator/?scenario=virtual-machines

Chapter 1

[29]

There's a complete set of SDKs for integrating mobile applications and other
backend services for a growing number of platforms including Windows Store,
Windows Phone, iOS, Android, Xamarin, HTML, and Sencha.

I recently wrote an entire book on this subject, which is available from Packt
Publishing at http://www.packtpub.com/learning-windows-azure-mobile-
services-for-windows-8-and-windows-phone-8/book.

Cloud services
Cloud services allow you to create scalable applications that have a high availability
(99.95 percent monthly SLA). There are two main types of cloud services: web
role and worker role. Web roles are web applications hosted on IIS in their own
environment. They are different from normal websites as they have extra capabilities
listed in the following bullet list (although websites can now be staged too), to start
with web roles can start life as a website, then easily be added to a web role at a
later stage if they require these additional capabilities. Worker roles are a bit like
Windows Services, where they are applications with no user interface, which can
perform long-running tasks from things such as processing data of a table to hosting
a proprietary TCP server. Cloud service roles have the following characteristics:

•	 They run on their own virtual machine
•	 They can be scaled as required
•	 They can be deployed to multideployment environments (staging and live)
•	 They allow remote desktop onto their virtual machines
•	 They execute start-up tasks

Data services
Data services are a collection of data-storage-related services including fully
relational SQL Server Database, table storage, various Binary Large Objects
(blobs) and disk-storage options, and storage queues. We'll take a look at
each one in more detail now.

http://www.packtpub.com/learning-windows-azure-mobile-services-for-windows-8-and-windows-phone-8/book
http://www.packtpub.com/learning-windows-azure-mobile-services-for-windows-8-and-windows-phone-8/book

Getting Started with Microsoft Azure

[30]

SQL Server Database
Microsoft Azure SQL Database is a fully managed, highly scalable relational
database with a high availability (99.95 percent SLA). Microsoft Azure SQL Server
is very similar to a SQL Server in terms of Transact-SQL (TSQL) and Tabular Data
Stream (TDS) but has a number of features it does not support, such as:

•	 Backup and restore (this will be supported when the new service tiers
are made available)

•	 Replication
•	 Extended stored procedures
•	 SQL Server agent/jobs

A full list of differences can be found here, although it doesn't currently mention
SQL Server 2012 or 2014: http://msdn.microsoft.com/en-us/library/
ff394115.aspx.

Databases are available in three tiers of service:

•	 Web: This is a scalable managed database up to 10 MB
•	 Business editions: These are scalable managed databases up to 150 GB
•	 Premium edition: This is the same as premium editions but with reserved

resource capacity for applications that may have a high peak loading, many
concurrent requests, or require guaranteed low request latency

Databases benefit from having two data center replicas (for any tier of service) and
the option to scale out as required (splitting large databases across multiple servers
to improve performance).

Storages
Microsoft Azure storage offers resilient, scalable storage for unstructured text and
binary data such as logfiles, images, and videos. There are four types of storages:

•	 Block blobs: This is the simplest way of storing large volumes of
nonstructured data. Blobs can be accessed through managed SDKs
and from anywhere via REST APIs. Block blobs are made up of a
maximum of 50,000 blocks, having a size of up to 4 MB each, with
a maximum total size of 200 GB.

http://msdn.microsoft.com/en-us/library/ff394115.aspx
http://msdn.microsoft.com/en-us/library/ff394115.aspx

Chapter 1

[31]

•	 Page blobs and disks: Page blobs are optimized for frequent updates and
random access and are actually used as the storage media for Microsoft
Azure VHD disks. Page blobs are collections of 512 byte pages; pages worth
1 to 4 MB can be written in one go and a maximum of 1 TB is available for a
single blob.

•	 Tables: Tables are a NoSQL (a nonrelational database) way of storing data,
rather than storing data in a relational way, like in a traditional SQL Server
Database, where we have tables, which have relationships with other tables
via primary and foreign keys; Microsoft Azure tables allow you to create a
container table, and then define classes that belong to it. These classes have
a partition key, row key, and timestamp property, which allow them to be
queried. Microsoft Azure tables allow us to store large amounts of data in
a highly scalable way while still allowing efficient querying.

•	 Queues: Queues are a messaging system that allows processes to exchange
data between tiers of a system via a message queue. They are helpful for
building scalable worker processes. Queues can be accessed via native SDKs
and REST services.

HDInsight
HDInsight is a relatively new addition to the Microsoft Azure service family; it is
a service based on Apache Hadoop (http://hadoop.apache.org/), which helps
us integrate multiple data sources of different types and structures into Microsoft
Business Intelligence (BI) tools such as Power Pivot and Power View.

Cache
Microsoft Azure Cache is a high-performance, in-memory distributed cache that
allows scaled-out applications to share data without having to use a database. This
can be useful for adding session state and page caching to ASP.NET applications
(although session state is not generally a good practice for modern web applications,
it may be useful for legacy applications or if you really can't live without it!) and
also doing your own custom caching in worker roles for maintaining the state across
instances. Cache is available in three tiers:

•	 Basic: This is a shared cache with a size ranging from 128 MB to 1 GB
•	 Standard: This is a dedicated cache with a size ranging from 1 GB to 10 GB
•	 Premium: This is a dedicated cache with a size ranging from 5 GB to 150 GB

www.allitebooks.com

http://hadoop.apache.org/
http://www.allitebooks.org

Getting Started with Microsoft Azure

[32]

Recovery services
The recovery services allow you to create Hyper-V recovery manager vaults, which
allow you to back up your Hyper-V system to the Microsoft Azure cloud and backup
vaults, which can be used for backing up files and folders from servers.

App services
App services are a collection of services that help cloud and on-premises applications
and services to interact with each other. They can be implemented on systems ranging
from media-streaming services to multi-tier enterprise business systems. We'll look at
each of these now.

Media services
Media services provide a scalable media processing workflow for digital media
systems such as video-streaming services, from ingest through encoding, format
conversion, and content protection, to on-demand and live streaming.

Service Bus
Service Bus is a collection of services used for enabling communication between
different processes in distributed, multi-tier systems. The various Service Buses
are as follows:

•	 Queue: Service Bus queues as with .NET queues are first in, first out (FIFO)
collections of messages that allow applications to communicate with each
other asynchronously by publishing and consuming messages. This can be
very helpful for building scalable systems across multiple tiers especially
when part of the system may not always be online. It can also help with
load leveling, where a consuming application can process batches of data
in a controlled way rather than being driven by the producing application.
Messages are processed by a single consumer and can be read in the
ReceiveAndDelete mode, where the message will immediately be marked
as consumed and returned to the provider and the PeekLock mode, where
a consumer can get a temporary lock while it processes the request; then,
if it cannot process the message, it can abandon it, or if it fails completely,
the message will time out, allowing another process to consume it.

Chapter 1

[33]

•	 Topic: In contrast to queues, where we have a one-to-one relationship
between a provider and a consumer, topics have a one-to-many relationship,
where we create a topic with a number of subscriptions. Then, a provider
can send messages to the topic, and subscribing clients can receive messages
from subscriptions they are interested in.

•	 Relay: Relays are different from topics and queues in that they don't offer
disconnected services; instead, they can securely expose on-premises service
endpoints, allowing them to be accessed directly by applications in the cloud.

•	 Notification Hub: The Notification Hub service is a really nice way of
handling push notifications to mobile apps from backend services in an
efficient, scalable manner. Mobile apps on all major platforms can register to
receive push notifications (in the case of Windows Store and Windows Phone
applications, these are Toast, Tile, Badge, and Raw notifications), and from the
backend service, just one request per platform is required to make the request
rather than making requests per subscribed channel. The Notifications Hub
also has a tagging feature, where users can subscribe to certain tagged topics
and also template notifications, which can be used for localization support.
The Notifications Hub handles all communications with the native Push
Notification Services (PNS).

Visual Studio Online
Visual Studio Online services allow Visual Studio Online accounts to be integrated
into Microsoft Azure, enabling us to view, build, and load the testing status in the
dashboard and enable continuous deployment so that websites can be deployed
to a test environment on build when code is checked in.

BizTalk Services
BizTalk Services allow on-premises applications to interact with each other via the
cloud, providing messaging endpoints and transforming messages between services
for interoperability.

Scheduler
The scheduler allows scheduled jobs to be created to perform operations such as
making HTTP requests and performing actions on storage queues. Jobs can be
scheduled to run once on demand, at a specific time, or at various intervals.

Getting Started with Microsoft Azure

[34]

Active Directory (AD)
The following are the features of Azure AD:

•	 Azure AD allows you to manage user credentials and application access
in your Microsoft Azure system. It is an Azure-specific, REST-based
implementation of Active Directory, which is used with on-premises systems.

•	 Access Control Service (ACS) provide an easy way of authorizing
and authenticating users with support for the following authentication
mechanisms:

°° Windows Identity Foundation (WIF)
°° Built-in support for Microsoft Account, Google, Yahoo, Facebook,

and Twitter
°° Active Directory Federated Services (ADFS)
°° OAuth 2.0
°° JSON Web Token (JWT), SAML 1.1, SAML 2.0, and Simple Web

Token (SWT)

ACS also offers Home Realm Discovery, allowing users to choose an identity
provider, an OData-based management service, and a browser-based
management portal.

•	 Multifactor authentication is an extra layer of security for applications.
If you have a Windows Store account, you must have noticed that a PIN
is sent to a configured mobile phone or e-mail address, which you must
enter before signing in with your Microsoft account. This can be added
to on-premises applications using ADFS, and to systems integrated with
Windows Azure AD.

Network services
Network services are a collection of services related to networking between services,
and allow us to create virtual networks and load balance traffic across services in
different Azure locations.

Virtual Network
Virtual Network allows you to create a private IPv4 network space in Azure,
securely extend your on-premises networks into Azure, and configure a custom
DNS server for services on Virtual Network.

Chapter 1

[35]

Traffic Manager
Traffic Manager allows user traffic to be distributed to the most appropriate
cloud service or website within the same data center or across global data centers
depending on the load-balancing method chosen. Traffic management requires one
of the following three load-balancing methods:

•	 Performance: This allows users to be redirected to the closest
geographic endpoints

•	 Round-Robin: This evenly distributes traffic between services
•	 Failover: If a service fails or goes offline, requests will be rerouted

to another service

Summary
We've covered a lot of preliminary subject matter regarding the decision process
that will help us choose to build a system using Microsoft Azure, and also explored
all the services available to us.

Next, we're going to look at how to go about architecting a system for Microsoft
Azure and introduce a case study on which the examples in this book are based.
We'll use the knowledge we've gained about the different Microsoft Azure services
available to us to help design the system in the case study and choose the right
service for each part of the system.

Throughout this book, we'll examine services in detail as we build the system in
the case study.

Questions
1.	 What are the three types of cloud service models?
2.	 What does PaaS stand for?
3.	 What is Azure Pack?
4.	 In which two ways can we pay for Azure subscriptions?
5.	 What are the three notification types that can appear on the portal toolbar?
6.	 Name the three website modes.
7.	 Which two operating systems are available on virtual machines?

Getting Started with Microsoft Azure

[36]

8.	 Name four platforms supported by Azure Mobile Services.
9.	 What are the two types of cloud services?
10.	 How many deployment environments does a cloud service have?
11.	 What is a Notifications Hub?
12.	 What are the three Traffic Manager load balancing methods?

Answers
1.	 IaaS, PaaS, and SaaS.
2.	 Platform as a Service.
3.	 It allows Azure to be installed in a private data center offering

a private cloud deployment model.
4.	 Credit card or invoice.
5.	 Error, Warning, and Info.
6.	 Free, Shared, and Standard.
7.	 Windows Server or Linux.
8.	 Any of these: Windows Store, Windows Phone, iOS, Android, HTML,

Xamarin, and Sencha.
9.	 Web role and worker role.
10.	 Two—staging and production.
11.	 It is a Service Bus service, which provides a scalable way of handling

push notifications from backend services.
12.	 Failover, Round Robin, and Performance.

Designing a System for
Microsoft Azure

There are challenges in designing any software system, whether it is a small
system with a single website and database backend or a large distributed multi-
tier system with multiple applications and storage solutions that span multiple
business domains and geographic locations. We face some of the same issues and
challenges while designing a system for Microsoft Azure as we would face on an
on-premises system, such as how to divide our system into different applications,
services, and databases, and we may have some new or different challenges such as
making the system scalable (larger organizations often support scalability to some
degree with multiple web servers and load balancing, but Microsoft Azure offers
advanced scaling options such as scheduled and metric-based scaling) and tackling
authentication on a cloud system.

All real-life systems are rarely implemented using the same technology and are likely
to incorporate new and legacy subsystems across a number of different platforms,
subsystems, and business domains. They are likely to be owned by different business
units and may even operate under different IT departments. This is why I wanted
a case study with a number of subsystems that belong to different business units.
Although we're doing everything in .NET using the latest technologies (because it
would take too long to use legacy technologies and different software platforms)
we'll design the system to have a flexible, service-oriented architecture allowing it
to span multiple business domains and accommodate future developments with
minimal disruption to the existing system.

Designing a System for Microsoft Azure

[38]

Most of the time, we all use our own experience and judgment to help us design
systems, and particularly, on small systems, we don't go through a procedural
process. However, I didn't want to just introduce a case study pre-architected
without at least explaining the process to come up with a design. This book is
not about how to architect a system; that's a topic in its own right; however,
it's an important part of systems especially when it comes to working out how
to choose the right Microsoft Azure Services.

In this chapter, we'll examine the processes involved to take a system of any size, break
it down into subsystems, and select the right Microsoft Azure Services to build it. We'll
also cover the environments we may need to support a system during its life cycle.

Designing scalable and resilient systems
One of the main features of the Microsoft Azure technology is scalability.
By carefully designing our system, we can build it to manually or automatically
scale (elastic scaling) to meet our business requirements as the business grows,
or to cope with peaks in system load. Databases and storages can also be designed
to be distributed across databases and storage partitions, allowing large volumes of
data to scale while maintaining performance.

Scale out means increasing computing capacity by increasing the
number of compute instances in a system (for websites and cloud
services, this would mean increasing the number of virtual machines).
Scale up means increasing the computational resources of a compute
instance (for websites and cloud services, this would mean more
CPU/memory/disk allocation for a virtual machine instance).

By breaking down large systems into smaller, decoupled subsystems, which interact
with each other in an asynchronous fault-tolerant manner, we can make the system,
as a whole, more resilient. The following are examples of services we can use to
achieve this:

•	 Websites: When we build websites, if we're careful in making them stateless,
we can create a website that can be scaled out across multiple shared or
dedicated web servers as the demand changes. This increases the number of
requests that can be processed and increases the processing capacity. If it's
absolutely necessary to use a session state or caching, we can implement an
Azure Cache to host the session state in a scalable, resilient manner, without
depending on a single web server instance (this is known as persistence, and
you may hear the term sticky session).

Chapter 2

[39]

•	 Cloud services: Worker roles can be used to perform long running
processing tasks on dedicated VMs, which can be scaled up and down to
meet processing requirements. Worker roles can be designed to scale by
being careful about how they receive work, so there is no contention
between instances, and work is not duplicated; we can use storage
queues, Service Bus queues, and Service Bus topics for this.

•	 Mobile services: Mobile services provide a number of great features for
integrating mobile applications on all major mobile platforms. Table and
custom APIs, a flexible authentication model, and the Notification Hub allow
us to easily build new standalone backend services or backend services,
which integrate into a larger enterprise system. Mobile services scale in the
same way as websites, so the same design principles apply. The Notification
Hub allows push notifications to be scaled out effectively using the Azure
Service Bus, which would be otherwise difficult to achieve if we write our
own push notifications services.

•	 Decoupling applications: Storage queues, Service Bus queues, and Service
Bus topics help us pass data between scaled-out system tiers in a robust,
reliable way. Using these services, we can decouple services and allow
systems that may not be online at the same time, or may not be able to
keep up with each other to message each other and process messages in
their own time. Message-locking mechanisms within these systems allow
multiple applications to safely work in parallel without the need to design
complicated custom voting and locking systems on shared data sources.

•	 SQL databases: Scaling up databases to maintain performance over large
volumes of data in Microsoft Azure SQL databases can be achieved by
implementing a federated database, where data is split horizontally
(in rows rather than columns) across multiple databases (this is also known
as sharding). Implementing a federated database requires careful design to
include a federation-distributed key, which allows data to be split across
federation members (individual databases with the federation), with new
records being distributed evenly and not just added to one member.

•	 Table storage: As with Azure SQL databases, table storage requires
a partition key, which must be carefully designed to allow data to be
scaled and load balanced across partitions (depending on the chosen
redundancy tier).

•	 Azure Active Directory: Using Azure Active Directory, we can provide a
consistent, scalable authentication and authorization mechanism for our
systems. Large multi-tier systems that span websites, mobile services, and
on-premises client applications can all be integrated into an Azure AD
tenant, allowing users to use any of these systems with the same credentials
and still have granular authorization via roles and groups.

Designing a System for Microsoft Azure

[40]

Systems architecture
IT systems can vary dramatically in their scale, the number of business domains
they span, the number of platforms they include, and the number of geographical
locations they serve. Some parts of the system may need to communicate with each
other; some parts are entirely self-sufficient and need no interaction with other
systems. When working on a larger system, we are likely to be integrating existing
legacy systems into a new system or integrating new systems into a legacy system.

The complexity and size of many systems can reflect the level of automation
versus a manual process within a business. Commonly, larger organizations will
have the capital to invest in automated systems, which relieve the requirement
for a number of manual processes, but will introduce some more specialized
administrative overhead.

A large system may look very complicated as a whole, but we can break down any
system into smaller subsystems, making it easier to design and helping to create a
scalable architecture.

The following illustration shows the steps we'll take in this chapter to architect a
system to run on Microsoft Azure:

Identity Subsystems

Design Subsystems

Integrate Subsystems

Identify Critical Systems

Select Microsoft Azure Services

Gather System Requirements

Chapter 2

[41]

The steps involved in architecting a system to run on Microsoft Azure are as follows:

1.	 Gather System Requirements: Before we do anything, we need to know
what the system is supposed to do, who the users are, and what the
budget is.

2.	 Identify Subsystems: All systems can be broken down into smaller
subsystems, making them easier to design and build, and particularly for
Azure systems, making them more scalable.

3.	 Design Subsystems: Once we have identified the subsystems, we need
to design them at a high level, thinking about application types, storage
requirements, and security.

4.	 Integrate Subsystems: Subsystems need to interact with each other, whether
it's through a shared database or messaging across a Service Bus topic.
We need to work out the best way to effectively bring the systems together
to get them working as an entire system.

5.	 Identify Critical Systems: Before we start selecting services, we need to
know which of them are business-critical, so we can choose an appropriate
service tier and scale it to meet the required SLA.

6.	 Select Microsoft Azure Services: This step is where we choose services and
service tiers to build the system we've designed.

We'll look at a couple of examples of contrasting systems and see how they can be
broken down. The first example is a small business system and the second one is a
large business multi-tier system, which form the basis of the book's examples.

A case study of a small business system
A small business, for example, an independent stationary shop that consists of a few
employees with a shop (bricks and mortar) and an online shop (website) requires
a small system, which can allow customers to order stationary online, track orders,
manage stock for both shops, and produce monthly reports.

System requirements
If we break down the business requirements, we can understand more about the
type of system:

•	 Customer website
•	 Administration system
•	 Manually order stock from suppliers

www.allitebooks.com

http://www.allitebooks.org

Designing a System for Microsoft Azure

[42]

•	 Manually arrange delivery
•	 Low order volume (less than 100 units per day)
•	 No need for legacy system integration requirement
•	 No interest in owning IT infrastructure
•	 Very limited budget for IT

Although it is listed last, the budget requirement will probably be the main factor
in designing a system. If service providers have an initial budget of $5,000 to get a
system built, and they only want to spend a maximum of $100 a month on running
the system, then we're not looking at a multi-tier system with 10 web nodes running
on the highest spec server image; we're going to want a small system, which can
adequately cope with the volume of orders and cost as little as possible.

Identifying subsystems
From the business requirements, we can see that we need the following
IT subsystems:

•	 Customer website: This is needed for allowing customers to order stationary
•	 Administration system: This is needed for managing orders and stock

We can look at each subsystem individually, see how they relate to each other,
and start making some choices about which technologies to use.

Customer website design
The website needs to allow customers to provide the following facilities:

•	 Register and log in
•	 View products
•	 Make orders
•	 View order progress
•	 View order history

Chapter 2

[43]

We know we need a website so that it narrows things down a bit; I'm not going to
try and be fancy and call it something like a customer portal, and it's obviously not
a sensible idea to think about desktop applications, where customers would have to
download an application and install it on their PC.

We need a website with pages to view the stock, make orders, and view the order
history and a relational database to store stock, customer details, and order data.
An illustration of the desired system is shown in the next diagram:

Website

Storage
� Products
� Customer Details
� Customer Orders

Register

View Products

History

View Orders

In terms of security, customers should be able to authenticate themselves using
existing credentials from a well-known identity provider such as Facebook or
Twitter, making it more likely for them to make orders from the website and
lowering the user admin overhead in the system.

Designing a System for Microsoft Azure

[44]

Administration system design
The stock and order management system will allow staff to do the following:

•	 Manage customer orders
•	 Check stock levels
•	 Manage product catalogs
•	 Enter stock into the system when it arrives from suppliers
•	 Create address labels for orders
•	 Run financial reports

We have some more choices of the type of platform we use here; we need
something that offers us a UI and can easily integrate with the Azure backend
services. We could choose the following platforms:

•	 Website: This will provide us with a consistent technology for the customer
website, so this would reduce development time and increase code, styling,
and markup reusability. It provides us with a simple deployment path
that deploys to a single web server rather than distributing executable
applications, which will make deploying updates more straightforward.

•	 Windows desktop application: We can use something such as WPF to create
a modern UI/UX with good support for Azure integration to interact with
the backend services. This will be a different technology to the customer
website, so this will require a different developer skill set, which will increase
development time and also reduce the amount of reusability on the UI side of
the application. Deployment and maintenance will also be more complex as
the staff will need to install executable applications on their PCs.

•	 Mobile application: A mobile application may be a good option especially
if we build something such as a universal application, where we can target
Windows Phone devices, Windows tablets, and PCs, and have an excellent
support for Azure integration (we could even use Xamarin, which would
give us this in addition to Android and iOS support!). As with the desktop
application, we will need another technology skill set, which again will
increase development time and reduce code reuse. Mobile applications also
either need to be deployed to a store, which is not really appropriate for line
of business (LOB) systems, or need to implement an enterprise solution,
which is probably not viable for small businesses.

Chapter 2

[45]

From this analysis, the main thing that is apparent is having an application that is
consistent with the website, to reduce development and maintenance overheads,
so we will choose to create a website, as shown in the following diagram:

Website

Storage
� Products
� Customer Details
� Customer Orders

ReportsManage Stock

LabelsManage Orders

For security, we want users to be centrally managed with the option of having
granular control of access to certain areas and functionality within the website.

System integration
From the designs for the two systems, we can see there is a lot of overlap in terms
of data storage, and both systems are cloud-hosted websites in the same business
domain. This means that it is a sensible choice to share the same storage.

Designing a System for Microsoft Azure

[46]

There is no real overlap between the two websites, so there is no strong driver for
sharing a website, and for security reasons, it is better to have them separated, as
illustrated in the following diagram:

Customer Website

� Register
� View Products
� Create Orders
� View History

Admin Website

� Manage Stock
� Manage Orders
� Reports
� Labels

Storage
� Products
� Customer Details
� Customer Orders

Identifying critical systems
The customer website and storage are probably the most critical subsystems because
they support the online customer revenue stream. The admin website is important as
it allows the staff to process customer orders; however, if this system fails, customers
can still order products while it is fixed.

Selecting services
Now that we have designed the subsystems, worked out how they are integrated,
and decided which ones are the most critical, we can start selecting the services
we require:

•	 Applications: Both websites are fairly simple and have no special
requirements for them to need a web role, so we will use two normal
websites. Because we're on a tight budget and we're expecting low traffic
through the system, we will go for the lowest service tiers. For the customer's
website, we'll choose a pair of shared websites, which will support a custom
domain name and high availability with the two instances costing $19.35 per
month. For the admin website, we will go for a free website. We can always
change the service tiers in future if necessary.

Chapter 2

[47]

•	 Storage: We have a requirement for a relational data model, so the natural
choice is to use an SQL Server over other storage options such as tables,
blobs, or disk storage. The database will be shared between both websites.
Once we have a more detailed application design, we can try and estimate
storage requirements in more detail, but for now, we'll opt for a 1 GB
database costing $9.99 per month. For this size of business, it's highly
unlikely we'll need a federated database; however, we should still be
mindful of this when designing our schema, just in case the database needs
scaling out in the future.

•	 Messaging: Because the whole system is small with a low throughput
and a shared database, and we don't have any dedicated batch processing
applications, there is no need for a messaging system such as storage queues
or Service Bus queues.

•	 Security: The customer website will implement OAuth2 security, and the
admin website will implement Azure Active Directory authentication.

Conclusion of the small business case study
We've been through a methodical approach for designing this system to be built
on Microsoft Azure and have come out with the exact services we require and how
much it will cost us monthly. The next step would be to go into the application's
design phase. We will not take this particular case study any further in this book
as all its subsystems are covered in the following enterprise case study.

A case study of an enterprise
system – Azure Bakery
I've tried to come up with a good case study, which will allow us to implement a
large number of Microsoft Azure features and services in a realistic way. I wanted to
use something that will have long-running processes over distributed systems so that
we could incorporate features from websites through Service Bus queues, worker
processes, and mobile applications. I came up with an idea of an industrial bakery,
which should be a concept that is easy to understand and doesn't need specialist
domain knowledge as with many of the systems we work on in our daily jobs!

Designing a System for Microsoft Azure

[48]

System requirements
The Azure Bakery makes products such as cakes and pies and deals with large
customers such as supermarkets and smaller bakeries that require additional stock
(this justifies the supply business unit). To make the bakery more realistic, it's split
into three distinct business domains:

•	 Sales: This domain is responsible for selling products to customers
•	 Production: This domain is responsible for manufacturing products
•	 Supply: This domain is responsible for delivering products to customers

An illustration of the three domains is as follows:

Sales Production Supply

Orders Manufacturing Delivery

All systems will be self-sufficient and won't rely on data from any other system
to function.

Sales requirements
The Sales business unit is responsible for the following functions:

•	 Selling products to customers via a website
•	 Managing customer orders
•	 Maintaining product inventory
•	 Supplying Production with product orders automatically
•	 Keeping customers up-to-date with their orders via a number of channels

including a mobile phone application

Customer orders will automatically be sent to production, products will be manually
maintained, and customers will be automatically notified of the order's progress.

Chapter 2

[49]

Production requirements
The Production business unit is responsible for the following functions:

•	 Processing product orders
•	 Planning batch production
•	 Maintaining stock levels
•	 Producing products
•	 Notifying Sales and Supply on product status

The system will be automated as far as possible, providing production staff with
batch schedules and reports. The system will have the capability to integrate with
on-premises systems.

Supply requirements
The Supply business unit is responsible for the following:

•	 Creating and printing tracking barcodes
•	 Delivering orders to customers
•	 Notifying Sales of the delivery status

Delivery jobs will be sent to a tablet application, which will have the facility to print
barcodes and address labels, view customer addresses, and update order status.
Jobs must be archived for audit purposes.

Identifying subsystems
Due to the scale of the case study and the requirement to make each business
domain autonomous so that it doesn't depend on data from other business
domains, we'll examine each system individually.

Sales subsystems
From the business requirements, we can see that we need the following
sales subsystems:

•	 Sales customer website: This is required for allowing customers to register,
view products, create orders, and view order status

•	 Sales administration system: This is required for the staff to manage orders
and product catalog

Designing a System for Microsoft Azure

[50]

•	 Sales order process system: This will automatically update the order data
and notify customers of the order progress

•	 Sales customer phone app: This is required for allowing customers to view
orders and receive notifications on order progress

Production subsystems
The production system can be broken down into the following subsystems:

•	 Production order processor: This will automatically process orders
coming from sales, allocate ingredients, create batch schedules, and order
ingredients. This system will be fully automated.

•	 Production management system: This is required for the production staff
to view batch schedules and update batch progress. This system will also
have the capability of interfacing with on-premises systems for displaying
plant data.

Supply subsystems
The supply system can be broken down into the following subsystems:

•	 Supply processing system: This will automatically process the delivery
requests coming from production, work out how to geographically group
orders, allocate them to vehicles and drivers, and create address labels and
barcodes for printing. This system will be fully automated.

•	 Supply tablet application: A tablet application is required for the supply
staff, allowing them to work easily while performing activities around
the warehouse. It will allow them to print address labels and barcodes for
deliveries and allocate deliveries to vehicles and drivers.

System design
Now that we've broken down the enterprise system into its subsystems, we've
simplified the design process so that we don't have to try and think about how the
whole thing works at once. Actually, the two sales websites look nearly identical
to the websites of the small business system, with the slight difference that order
messages must be sent to the messaging middleware for the production system.

As the websites are very similar and to save time, we'll just look at the system
designs for the sales order processing system and the sales customer phone app,
and miss out on the production and supply during the design phase, although
with a real system, we would apply the process for the entire system.

Chapter 2

[51]

System design – the sales customer
phone app
The phone app needs to allow customers to do the following:

•	 Register and log in (the same account as the customer website)
•	 View products
•	 Make orders
•	 View order progress
•	 Receive notifications of new products
•	 Receive notifications of order progress

The app will interact with data via a secure web service and will receive push
notifications for the product updates and order progress, as shown in the
following diagram:

Website
Register

View Products

History

View Orders

Storage
� Products
� Customer Details
� Customer Orders

Push
Notifications

Web Service

www.allitebooks.com

http://www.allitebooks.org

Designing a System for Microsoft Azure

[52]

For consistency with the websites, customers should be able to authenticate
themselves using existing credentials from a well-known identity provider such as
Facebook or Twitter, making it more likely for them to make orders from the website
and lowering the user admin overhead in the system.

System design – sales order processor
The order processor system will automatically perform the following tasks:

•	 Receive order status messages from middleware
•	 Update order status in the sales system
•	 Send push notifications to customers for order status change

The working of the order-processing system is shown in the following diagram:

Messaging
Middleware
[Order Status]

Push
Notification
Request

Storage
� Customer Details
� Customer Orders

Order Processor
� Read Order Status messages
� Update orders
� Send Push Notification requests for app

The process will run without requiring any user intervention, but will provide
diagnostic and error log information.

Sales system integration
As with the small business case study, there is a lot of overlap in terms of storage,
and because we are building a small system with a low order throughput, we can
bring our costs down without impacting the performance, by sharing the same
storage mechanism.

Chapter 2

[53]

There is no real overlap between the two websites, so there is no strong driver for
sharing a website; for security reasons, it is better to have them separated.

Identifying critical services
There are a number of critical services, which have a direct impact on a company's
revenue and need special consideration when selecting service tiers and scalability;
these critical services are as follows:

•	 Sales customer website: This is the most critical system; if customers cannot
make an order, the business loses revenue, and customers may take their
business elsewhere.

•	 Production order processor: This is the point at which orders come into the
production system, so it is very important; if it fails or cannot meet the load
demands, orders will not automatically come through to the production
management app.

•	 Production management Web API: This API allows the production
management application to access production data. Production staff need
this to see product batch schedules and ingredient stock levels, so they know
what to bake, and when and what ingredients need replacing.

•	 Production database: The criticality of the database matches with the
processing system and management app API as it links the two together.

•	 Supply process: As with the production order processor, this is the source of
work for the supply business domain, so this is very important.

•	 Supply mobile API: This API allows the supply tablet app to access data for
order delivery, so this is important for completing the order process.

•	 Supply deliveries table: As with the production database, the criticality of
the table matches with the processing system and management app API as it
links the two together.

The other systems are still important but a failure or performance degradation will
not have a disastrous impact on the whole system. They are as follows:

•	 Sales admin website
•	 Sales database
•	 Sales mobile API
•	 Sales order processor

These systems can be deployed on more economical service tiers without impacting
the performance or availability of the whole system.

Designing a System for Microsoft Azure

[54]

Selecting Microsoft Azure Services
Now that we've identified all the services with the system and their criticality,
we can start selecting the Microsoft Azure Services and service tiers.

Selecting common services
Because all the domain systems need to integrate together to form the full enterprise
system, we need to choose services for the middleware messaging layer, which allow
the systems to communicate with each other in a disconnected loosely-coupled way.
We also need to look at authentication mechanisms so that we can centralize the user
account and access control.

Messaging services
We have a requirement for processes that span the whole system to be able to
consume order status messages, so we will use a Service Bus topic, which allows
multiple consumers to subscribe to filtered messages. If we want a queue, we
will need to decide whether to use a Service Bus queue or storage queue, so this
simplifies the decision-making process at this point, but we'll talk about this more
later in the book.

Authentication
For the noncustomer systems, we will use Azure Active Directory, which will allow
user authentication and application access to be centrally controlled across all three
sites and also make it easier for staff to access systems on different business domains
if needed.

Selecting sales services
In this section, we are going to select individual services for the sales business domain:

•	 The customer website: As with the small business case study, the website
is fairly simple and has no special requirements for it to have a web role, so
we will use a normal website. We're expecting a fairly high volume of orders
through this system. It's an extremely important system as customer sales
are the primary revenue stream for the company, so we will start with two
medium-sized instances (two cores, 3.5 GB RAM) on a STANDARD tier.
We get the following benefits:

°° Redundancy and load balancing with two instances
°° Good performance for generating high volume, data-driven,

server-side web content with medium-sized instances

Chapter 2

[55]

°° Staging slot support with a STANDARD tier to allow the site to be
warmed up before swopping to production after deployment

°° Custom domain and SSL certificate support in a STANDARD tier
°° The system will be evaluated under load testing to see how well

it performs, then the base instance count can be adjusted and auto
scaling will be applied on go-live

•	 The admin website: Again, the website has no special requirements for it
to have a web role, so we will use a normal website. This site will have a
fairly low volume of traffic and will be used by a small number of users, so
we will start with two small instances (one core, 1.75 GB RAM) on a BASIC
tier to save cost. However, this site still gives us higher availability over one
instance. The system will be evaluated under moderate load testing to see
how well it performs, and will then be adjusted if required. We will not use
auto scaling here as we will have a very consistent usage profile.

•	 The order processor: The order processor needs to automatically update the
order status in the sales database and make push notification requests for the
customer phone application when the order status messages are received on
its Service Bus topic subscription. A worker role is the natural choice for this
type of system as it provides a scalable solution for long-running, unattended
processes. This service is not business-critical as it is only updating order
statuses and notifying customers and not impacting directly on order
throughput through the system, so we will start with two small
instances (1.6 GHz CPU, 1.75 GB RAM) that give us the following benefits:

°° Redundancy and load balancing with two instances
°° Reasonable performance for processing order updates with small-

sized instances

As with the website, the system will be evaluated under moderate load
testing to see how well it performs, and then the base instance count can be
adjusted and auto scaling can be applied on go-live.

•	 The mobile API: The mobile API allows the customer phone app to securely
interact with system data. We'll use a .NET mobile service, which makes the
OAuth2 implementation straightforward and will allow us to reuse the data
access layer components from the website. We'll use the free service tier for
this as it's not critical and it's not the main customer interface to the system.
If we find that we're exceeding the 500K API calls limit, we can change the
service tier.

Designing a System for Microsoft Azure

[56]

•	 Storage: We have a requirement for a relational data model, so the natural
choice is to use an SQL Server over other storage options such as tables,
blobs, or disk storage. The database will be shared between both websites.
Once we have a more detailed application design, we can try and estimate
storage requirements in more detail, but for now, we'll opt for a single (no
partitioning) 30 GB database. There will be an additional storage overhead
for diagnostic data for which we will use the lowest tier of table storage.

•	 Security: The customer website and phone application will implement
OAuth2 security, and the admin website will implement Azure Active
Directory authentication.

Selecting production services
Now, we are going to select individual services for the production business domain:

•	 The order processor: The order processor needs to automatically add the
order into the batch schedule and allocate ingredients in the production
database when order status messages are received on its Service Bus topic
subscription. As with the sales order processor, a worker role is the natural
choice for this type of system. This service is business-critical as it controls
the batch schedule, which governs when the products are baked, so we will
start with two medium instances (2 x 1.6 GHz CPU, 3.5 GB RAM) giving us
the following benefits:

°° Redundancy and load-balancing with two instances
°° Good performance for processing orders with medium-sized instances

The system will be evaluated under high-volume load testing to see how well
it performs; then, the base instance count can be adjusted and auto scaling
can be applied on go-live.

•	 The Web API: The Web API allows the production management app (this
will be an on-premises desktop application, which can interact with plant
on-site) to securely interact with system data. We'll create an MVC Web API
website deployed to a Microsoft Azure website. This site will have a fairly
low volume of traffic and will be used by a small number of users, so we
will start with two small instances (one core, 1.75 GB RAM) on a BASIC tier.
The system will be evaluated under moderate load testing to see how well it
performs, and then adjusted if required. We will not use auto scaling here as
we will have a very consistent usage profile.

Chapter 2

[57]

•	 Storage: Again, we have a requirement for a relational data model, so the
natural choice is to use an SQL Server. The database will be shared between
the order processor and the Web API. Once we have a more detailed
application design, we can try and estimate storage requirements in more
detail, but for now, we'll opt for a 30 GB database. There will be an additional
storage overhead for diagnostic data, for which we will use the lowest tier of
table storage.

Selecting supply services
Finally, we are going to select individual services for the sales business domain:

•	 Order processor: The order processor needs to automatically allocate orders
to vehicles and drivers to create delivery jobs when the ready for dispatch
order status messages are received on its Service Bus topic subscription. As
with the sales order processor, a worker role is the natural choice for this
type of system. This service is business-critical as it controls the dispatch
jobs for delivering orders to customers so we will start with two medium
instances (2 x 1.6 GHz CPU, 3.5 GB RAM), giving us the following benefits:

°° Redundancy and load balancing with two instances
°° Good performance for processing orders with medium-sized instances

The system will be evaluated under high-volume load testing to see how well
it performs, then the base instance count can be adjusted, and auto scaling
can be applied on go-live.

•	 The mobile API: The mobile API allows the supply tablet app to securely
interact with system data. We'll use a .NET mobile service, which can now
provide Azure Active Directory authentication support.

•	 Storage: We don't have a requirement for a relational data model here,
so we will use table storage for our data. We will use 200 GB locally
redundant storage as we are operating in a single location.

Conclusion of an enterprise system case
study – Azure Bakery
We've been through a methodical approach in designing our system to be built on
Microsoft Azure, and come out with the exact service we require and how much it
will cost us monthly. The next step would be to go into the application design phase;
however, we will stop at this point with the small case study and move on to the
main enterprise case study.

Designing a System for Microsoft Azure

[58]

The following diagram shows us how all the selected services fit together:

Order Status Topic

Mobile
API

Supply
Processor

Table

Barcode
BLOBS

Subscription
Subscription
Filter=Ready

Order Status Topic

Notifications Hub

MPNS

ProductionSales Supply

WNS

Data API

Order
Processor

Database

Subscription
Filter=New

Production
Management
Application

Plant Systems
Mobile App

Photo
BLOBS

Database

Mobile
API

Status
Processor

Mobile
App

Customer
website

Admin
Website

Chapter 2

[59]

As we draw diagrams of the business and think about how its systems fit together
using Microsoft Azure, it's easy to see how it can be extended and scaled up. In our
case study, we're not going to worry about where the product designs come from,
but it's quite easy to imagine that we have a product development department with
their own systems; they have an experimental kitchen, where they come up with
new product designs and work out recipes for production; then, when they are
ready, they can send the product description to the sales system and the recipes to
the production systems.

Designing platform environments
While we're preparing our development environment, it's a good time to talk about
planning our platform environments (in an on-premises or IaaS system, we may say
server environments). These environments are used to host our system during the
different phases of their life cycle between development and production (or live).

The scales of a business and budget are the major factors in this decision process; if
we have a large business and a large system, it might take a number of testers to test
the changes made to a system and do full regression tests when needed. If the budget
for a system is tight, it may not be possible to have a perfect set of environments, so
compromises may have to be made. We also need to remember that we're not just
talking about a single website; we need to include databases, table storage, worker
roles, Service Bus queues and topics, and so on. We'll look at different types of
environments and examples of environment sets for different types of businesses,
and then have a look at a couple of Microsoft Azure features that are relevant to this.

Common environment roles
We're going to take a look at four common environments you may find in IT systems
in any business and their role in the application's life cycle:

•	 Production environment: The production environment is where the system
is published once it has passed all testing phases and is ready to be used by
the end user, which could be the general public or staff within an organization.
This environment will be allocated the most compute resources and scalability
of all the environments; however, some businesses (where financially allowable)
like to have a test or QA environment matching production exactly so that the
system performs the same as in production to help gather realistic load testing
and performance statistics.

Designing a System for Microsoft Azure

[60]

•	 QA environment: Typically, before a system goes into production, the
end user will want to test it to make sure that it meets their requirements
(commonly against a specification) and doesn't have any bugs, which will
affect the running of the business. QA environments can also be used for
training as they often closely match the production environment.

•	 Test environment: After a system is developed, it is always tested by a
dedicated test team or by the developers themselves, if a business does
not have a test team. In a small business, as a minimum, there should be a
test environment before production to not only allow independent testing
but also to prove that the system can be taken from a developer machine,
where a system was created, and published on another environment
without problems, a bit like a dress rehearsal!

•	 Development/Integration: The development environment is where
developers can do pretty much what they need to develop the system,
prototype new things, and work out how to put a system together
without going anywhere near a production system. If the environment
is on-premises, these are not ideal environments for testing as there are
often developer tools such as Visual Studio and developer SDKs to help
debug applications and elevated privileges, which can be an unrealistic
representation of the production system. In Azure, this is not the case
as we are often deploying a PaaS solution to develop against and not
installing tools or altering permissions on the infrastructure. When
we're talking about the development environment, we're talking about
a development sandboxed server environment and not about the local
machine that the developer writes code on. If we implement continuous
integration, this is an ideal environment to deploy to.

Example environment sets
To put these environments into a context, we'll have a look at how these different
environmental requirements can be sensibly implemented in businesses of different
sizes and requirements:

•	 Small business: In a small business or for personal projects where there isn't
the budget or time to build, manage, and use more than a few environments,
it's probably sensible to have a multipurpose development/test/integration
and a production environment, as shown in the following diagram:

Chapter 2

[61]

Development / Test / Integration

Production

Systems can be developed locally and then published to the test environment
for all phases of testing. If an end user needs to perform a QA test, it's
important that the developers don't publish changes during testing cycles
to avoid disrupting a test. If a continuous deployment strategy is deployed,
where a system is published as code is checked in and built, it is extremely
important to make sure this is disabled during testing if active development
is underway.

•	 Medium business: In a medium business, which has a testing team or more
stringent requirements for QA testing, it's good to separate the test and
development environments so that QA and system tests can be performed
in complete isolation from the development environment, as shown in the
following diagram:

Test

Development / Integration

Production

This means that the development team doesn't disrupt the test environment
and their normal work activities aren't impacted during test cycles. Another
advantage of having the extra environment is that the development team can
work on a different version of code to the one being tested, which is helpful
for productive release management.

Designing a System for Microsoft Azure

[62]

•	 Large business: Large businesses that have a testing team and require a
permanent QA environment for end user testing and training may require
another dedicated QA environment, which is only used by end users and not
system testers, as shown in the following diagram:

QA

Test

Development / Integration

Production

Using website deployment slots
Website deployment slots are a new feature (currently in preview), which allow
a staging slot to be added to a website, allowing changes to be tested in a mirror
of the production environment, and then swapped with a live environment when
ready. There is also a nice feature, where the site is warmed up before it's put into
production, so there is not an initial performance hit caused by a cold website start.

We need to be careful about how we use website deployment slots as there are a few
things that may catch us out:

•	 Some configurations including general settings, connection strings,
handler mappings, and monitoring and diagnostic settings are copied
across on swap, so we will end up using the same database and diagnostics
storage in staging, as with production, if we don't manually change them
before swapping

•	 Deployment slots currently run on the same VM as production, so anything
you do on a staging slot, whether it's UI testing or load testing, will have an
impact on the performance of the production system

Chapter 2

[63]

For medium and large businesses, I would recommend that you use a deployment
slot in the production environment, purely to get the benefit of doing a final
touch test (checking site runs, looking at read-only data, or working on data for
a special test account) and doing a warm swap into live. I would not use it for a
QA environment due to limitations of website configuration and VM resources,
as mentioned in the preceding bullet list.

For a small business or personal projects, it might be a good option to use a
deployment slot as a test environment; however, you may prefer two separate
websites on a FREE service tier to save the cost of having one on a STANDARD tier.

Using cloud service staging environments
Web roles and worker roles have staging slots by default, which in contrast to
website deployment slots, have separate configurations that aren't swopped and run
on separate instances. When a swap occurs, the virtual IP address of the production
and staging VM is swopped, so staging becomes production and production
becomes staging.

A staging slot can be used as a QA or test environment to streamline the deployment
process; however, you will still need to update the staging environment to the
production version after a swap.

If the staging slot is only used in the production environment, it can be deleted once
it is successfully swopped with the live environment, to save on compute cost.

For large businesses that require a full set of application environments, I recommend
that you use the staging slot as part of the production environment to expedite the
deployment process and also have a regression plan available (swapping back again
to the previous live deployment), in case any problems are found after go-live.

For medium and small businesses, I recommend that you consider using the staging
slot as a QA or test environment.

Designing a System for Microsoft Azure

[64]

Summary
We've been through quite a lot of theory around how to design a system for
Microsoft Azure and also introduced the Azure Bakery case study, which we will
build on throughout the book. From this point on, we'll be diving deeper into
building a number of systems for the case study.

In this book, we'll concentrate on code examples to cover as many different Microsoft
Azure services as possible without duplicating things too much; for example, we'll
be building two websites for the sales system, we'll look at the customer website
in detail, but only look at the Azure AD integration for the admin website. There
will be three worker roles across the system, and again, we'll only look at the sales
one in detail, and then look at relevant features of the others. In the code samples,
everything will be included, so we can run orders end to end.

In the next chapter, we'll start laying the foundations for building the Azure Bakery
system, starting with preparing the development environment and looking at
creating a basic website.

Questions
1.	 Why must websites be stateless in order to be scalable?
2.	 Which Azure services can be used to implement decoupled messaging

between system tiers?
3.	 What does the term sharding mean in storage?
4.	 If we were building a small business system on a limited budget, which

needs a customer website and administration system, why should we
choose to build a website for the administration system?

5.	 What is the cheapest web tier for hosting a site with a custom domain?
6.	 Why is it important to identify the most critical parts of a system?
7.	 If we need to store large volumes of structured but nonrelational data,

what will be a suitable storage option?
8.	 What purpose does a QA environment serve for a system?
9.	 Why do we need to be careful when using deployment slots on websites?
10.	 If we use a cloud service staging slot as a QA environment, what should we

remember to do after we swap it with live?

Chapter 2

[65]

11.	 Think about a small system you have worked on in the past and try to
design it to run on Azure. Break down the system into logical subsystems
and choose suitable Azure services for each system. Factor in scalability
and cost in your design.

12.	 Do the same as question 11, but this time, for a larger system you've worked
on. If it spans multiple business domains and needs to include legacy
platforms and applications, it's even better!

Answers
1.	 Websites that use technology such as session state and server-side caching

cannot be scaled out easily since the stored data is not synchronized across
multiple server instances.

2.	 Service Bus queues and topics and storage queues.
3.	 This is horizontal scaling of a database or storage, where data is split across

multiple databases or storage providers with the same structure. Data is
stored with a partition key, which is used to help you split the data across
storage containers.

4.	 We already have a customer website, so it makes sense to create another
website using the same technology as we will need the same development
skills and deployment path.

5.	 Shared.
6.	 It helps us choose the appropriate service tiers and scalability options for the

most critical systems and save cost on less critical or noncritical systems.
7.	 Table storage as it is a low cost, no SQL alternative to an SQL Server but it

still provides structured storage.
8.	 QA environments are commonly used for user acceptance testing on a

system, which closely replicate the production environment. Because of the
similarities to the production environment, they are often used for training
purposes too.

9.	 When a slot is swopped from staging to live, the settings are all copied across
so if the staging slot has different settings to live, they must be manually
updated, and also, they run on the same machine, which may impact
performance.

10.	 Update the staging slot again so that it matches production.
11.	 NA.
12.	 NA.

Starting to Develop with
Microsoft Azure

So far, we've got everything ready in the Microsoft Azure portal with an account
setup, and designed the architecture of our system. Next, we're going to start
preparing ourselves to build the case study services by covering the following topics:

•	 Preparing our development environment
•	 Signing up for Visual Studio Online for source version control
•	 Creating the initial sales customer website
•	 Publishing the website to Azure
•	 Setting up continuous deployment

Preparing our development environment
There's a fair chance you've got all the tools you need, and if you're already doing
some Microsoft Azure development, you can probably skip most of this. If you want
to look at phone development in, it's worth reading the Mobile development section.

Setting up software
Throughout this book, I will be using Visual Studio Professional 2013 as it allows
me to work on various project types in one solution. Don't worry if you don't have a
premium version such as Professional or Ultimate as you can use multiple versions
of Visual Studio Express instead, which are as follows:

•	 Visual Studio Express 2013 for Web: You'll mostly need this, and when
I talk about Visual Studio without being specific, this is the one to use if
you're sticking to Express versions

Starting to Develop with Microsoft Azure

[68]

•	 Visual Studio Express 2013 for Windows Desktop: If you want to build
the WPF apps for the production management system and the Service Bus
messaging simulator, you'll need this

•	 Visual Studio Express 2013 for Windows: If you want to build a store app
during Chapter 11, Integrating a Mobile Application Using Mobile Services, you'll
need this

Of course, you can use Professional and Ultimate versions of Visual Studio, and it'll
be easier for you as you can develop different project types in the same solution.

We'll use SQL Server Management Studio (SSMS) for connecting to Azure
Databases, so it's worth installing that now too. I'm using SSMS, which comes
bundled with SQL Server Express 2012, but 2014 will be fine too. Here's the
download link, which allows you to pick the parts of an SQL Server to download:
http://www.microsoft.com/en-gb/download/details.aspx?id=29062. I chose
to download the Express with tools version (ENU\x64\SQLEXPRWT_x64_ENU.exe),
which contains the database engine and tools including SSMS, so we can
run websites locally against a local database and use SSMS to connect to
local and Azure Databases.

Mobile development
For Windows Store app development, there is no special hardware requirement;
however, to develop apps for Windows Phone 8, you need a machine that has
specific requirements in order to run the Hyper-V phone emulators. The Windows
Phone 8 SDK will perform a prerequisite check before installation; however, you
can read the exact requirements at http://msdn.microsoft.com/en-us/library/
windowsphone/develop/ff626524(v=vs.105).aspx.

For phone development, it is always helpful to have a handset to test on, and I would
advise testing any app on a real device before publishing, to make sure everything
works. The same goes for Windows 8, although Surface Pros and other tablets that
run full Windows 8 have exactly the same OS as PCs and laptops; it's helpful to test
the touch gestures as well, since keyboard and Surfaces (formerly, Surface RTs) run
on a different OS designed for ARM devices so that it is useful to have access to a
tablet or machine with a touch screen.

To publish your apps, you need a Store account and you'll also need an account
to implement push notifications in Windows Store apps. Unlike Microsoft Azure,
you actually need to pay for these, and there is no free option. Previously, you
needed separate accounts for Store and Phone apps; however, these have now been
merged and only cost $19 for an individual. You can sign up at https://appdev.
microsoft.com/StorePortals/en-us/Account/Signup/Start.

http://www.microsoft.com/en-gb/download/details.aspx?id=29062
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff626524(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff626524(v=vs.105).aspx
https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/Start
https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/Start

Chapter 3

[69]

The Microsoft Azure SDK
The Microsoft Azure SDK for Visual Studio provides us with excellent tooling for
Azure development from Visual Studio. It also includes the following:

•	 Integration into the Server Explorer, allowing us to interact with services
and view data

•	 Automatic provisioning of Azure Services during publishing and
project creation

•	 Compute and storage emulators for cloud services
•	 Special project types for cloud services
•	 Remote debugging

We need to install the Azure SDK, which can be downloaded from http://www.
windowsazure.com/en-us/downloads/; currently, there are versions for Visual
Studio 2012 and 2013; as I've mentioned, I'm going to use 2013; go ahead and use
2012 if you like, but I can't guarantee everything will look the same as in screenshots
and examples.

Checking for Visual Studio updates
It's worth checking for updates periodically because the toolset is constantly
changing to match updates and new features in Azure. We can see notifications in the
notifications hub (http://blogs.msdn.com/b/visualstudio/archive/2013/09/16/
notifications-in-visual-studio-2013.aspx) and also by going to TOOLS |
Extensions and Updates..., as shown in the following screenshot:

http://www.windowsazure.com/en-us/downloads/
http://www.windowsazure.com/en-us/downloads/
http://blogs.msdn.com/b/visualstudio/archive/2013/09/16/notifications-in-visual-studio-2013.aspx
http://blogs.msdn.com/b/visualstudio/archive/2013/09/16/notifications-in-visual-studio-2013.aspx

Starting to Develop with Microsoft Azure

[70]

Then, update all the extensions and updates you need. There are two important ones
for us here, Visual Studio 2013 Update 1 and Windows Azure SDK 2.3:

Creating a website
We're going to create a basic MVC 5 website, which will become our sales customer
website for the case study.

Before you create the project, set up your local development folder with a main
subfolder, which is a good practice for Team Foundation Server (TFS) allowing
solutions to be branched easily.

Launch Visual Studio and go to create a new project (go to Start | New Project or
press Ctrl + Shift + N) and select Web from the categories and enter a project name:

Chapter 3

[71]

Click on OK and we will see the Web template options dialog; in the previous
versions of Visual Studio, templates will be in the Project dialog:

Starting to Develop with Microsoft Azure

[72]

Select MVC from the template options and leave everything as default. You'll notice
that there is a Create remote resources option under the Windows Azure section in
the bottom-right corner of the screen, which can automatically provision a website
(and database, if required) ready for publishing. We're going to do it manually to
help explain how everything fits together.

Click on OK and wait for the solution to load. Next, test whether the website works
locally by clicking on the Debug button on the Debug toolbar, or navigate to
DEBUG | Start Debugging from the main menu. Your web page should appear in
the browser, and you should also notice that the IIS Express web server has launched
and is available in the system's tray:

Configuring a website in the portal
Next, we need to create a website in Azure to publish our site on. We'll do this using
the following procedure:

1.	 From the Create New menu, go to COMPUTE | WEB SITE | QUICK
CREATE and pick a name for the website:

Chapter 3

[73]

2.	 Click on CREATE WEBSITE and you should see your new website listed in
the portal:

3.	 Click on the newly listed website to go to the website's workspace:

Starting to Develop with Microsoft Azure

[74]

4.	 We're going to enable staged deployments, so we can deploy to a staged
environment for testing, and then swap later for production (in Chapter 2,
Designing a System for Microsoft Azure, we covered a section on environments
and we're going to use a staging slot for testing). First, we need to put the
website in a STANDARD service mode; so click on the SCALE tab and click
on STANDARD under the WEB HOSTING PLAN MODE section:

5.	 Watch the INSTANCE SIZE field as it may default to a large value incurring
the highest cost; I dropped mine down to the smallest instance.

6.	 Click on SAVE on the bottom toolbar, and then click on DASHBOARD so
that we can enable staging:

7.	 Click on the Add a new deployment slot link, enter a name for the
deployment slot (staging is a sensible choice), and then click on the tick
button. We'll see that the new staging site appears under the main site by
clicking on the arrow:

Chapter 3

[75]

8.	 To publish the website, go to BUILD | Publish CustomerWebsite (you
should select the name of your project):

9.	 Select Windows Azure Web Sites as the publish target (this is probably the
quickest way to publish for the first time; the Import option allows you to
import a publish profile you've downloaded from the website dashboard,
and Custom allows you to manually enter the publish details):

Starting to Develop with Microsoft Azure

[76]

10.	 Sign in with the Microsoft account you are using in the Azure portal, and
then select the site you want to publish to from the drop-down list:

11.	 Next, we will review the publish profile details. We can change the build and
database connection options in the next settings wizard, but we can publish
straight from here by clicking on Publish:

Chapter 3

[77]

12.	 Once we do this, we will see the publish profile included in the solution,
which will speed up the process on the subsequent publish:

13.	 We can watch the deployment process in the output window in Visual
Studio; then, the default browser should launch, displaying our website
in the Azure!

Creating a Visual Studio Online project
Visual Studio Online is a fairly new product, which offers us online application
development tools and Application Lifecycle Management (ALM) tools such
as team projects, code repositories, bug tracking, task management, and others,
depending on your user plan; if you've used Team Foundation Server (TFS),
you'll find that Visual Studio Online is pretty much the same.

There are a number of user plans available, which depend on the size of the
development team and the specific requirements you may have. You can check
out the different options in detail at http://www.visualstudio.com/products/
visual-studio-online-overview-vs.

Azure also has good support for Git version control too, allowing Node.js backend
mobile services and websites to be pushed to the cloud. It's also possible to set up
continuous deployment from a web repository such as GitHub or Bitbucket to an
Azure website. The Kudu service built in all Azure websites compiles the website
when it's pushed from source control before publishing.

We're going to use Visual Studio Online for source control and also to create
a build agent, which will allow us to continually build and deploy our website to
the website-staging slot on code check-in and build. Later in this book, we'll also
create a website and cloud service deployment packages using the Visual Studio
Online Team Foundation Build server, which is something we couldn't easily do
with Git and a web repository.

http://www.visualstudio.com/products/visual-studio-online-overview-vs
http://www.visualstudio.com/products/visual-studio-online-overview-vs

Starting to Develop with Microsoft Azure

[78]

There's a bit of a gotcha with Visual Studio Online website continuous
deployment as it only supports solutions with a single website, or it picks
the first website in a solution if there is more than one website.

Creating a Visual Studio Online account
Before we create a project, we need to create a Visual Studio Online account. From
the Microsoft Azure portal, you can either link to an existing account or create a
new one against one of your subscriptions. I'm going to create a new one on my
Pay-As-You-Go subscription:

1.	 From the New Service button, select APP SERVICES | VISUAL STUDIO
ONLINE | QUICK CREATE, enter a URL, choose a subscription, and click
on CREATE ACCOUNT:

2.	 Once the account is created, it should appear as an option in the VISUAL
STUDIO ONLINE portal:

Chapter 3

[79]

3.	 Clicking on BROWSE will take us to the Visual Studio Online portal, where
we will have to enter a few more details before logging into our account.
If we go back to the Microsoft Azure portal and click on our listed linked
account, we can see a nice DASHBOARD page that displays a BUILD and
LOAD TESTING usage graph and other metrics; then, on the SCALE tab,
we have the option to add extra licenses and change the BUILD and LOAD
TESTING tariffs, which will be charged to your subscription when they go
over the free allowance.

Creating a Visual Studio Online project
Go to the Visual Studio Online portal, where we can create our first project:

Starting to Develop with Microsoft Azure

[80]

Enter Project name and Description and select the Team Foundation Version
Control option (this is the default option), and then click on Create project.
Now, we can check out our solution.

Setting up continuous deployment
We're now going to check our website into TFS and set up continuous deployment
so that our website is built and published to the staging slot whenever we check in
code changes.

Adding a solution to source control
To add a solution to source control, perform the following steps:

1.	 First of all, we need to add our solution to TFS in our Visual Studio Online
account. From the FILE menu, go to Source Control | Add Solution to
Source Control...:

Chapter 3

[81]

2.	 Select Team Foundation Version Control (default) from the next dialog and
click on OK. In the Connect to Team Foundation Server dialog, click on the
Servers... button; then, on the Add/Remove Team Foundation Server dialog,
click on Add.... After that, enter the URL of our Visual Studio Online account
from the Azure portal:

3.	 Sign in when prompted, and then click on Close on the Add/Remove Team
Foundation Server dialog.

Starting to Develop with Microsoft Azure

[82]

4.	 Select the team project in the Connect to Team Foundation Server dialog
and click on Connect:

5.	 Next, click on Make New Folder and add a main folder; this is a good
practice for TFS projects to help with branching:

Chapter 3

[83]

6.	 Once we've done this, we'll see a lot of little + symbols next to each file in
the solution; this means the files are added to source control but not checked
in. Next, we need to check in the code to see if it's safely stored on the TFS
server, so right-click on the solution and select Check In...:

7.	 Enter a comment (it's always important to enter a comment as it shows up
in the version control history, helping you if you need to revert the code or
create a branch at a certain point) and click on Check In:

8.	 Now, all the files in our solution should have blue padlocks next to them,
showing that they are all checked in and there are no pending modifications.

Starting to Develop with Microsoft Azure

[84]

Configuring continuous deployment
Continuous deployment is performed by a TFS build agent, which can build code
triggered by a number of different events. We're going to use the wizard in the
Azure portal to set up our build agent for us, and then we'll have a look at what
is done:

1.	 First, go to the dashboard of the website's staging slot and click on the Set up
deployment from source control link:

2.	 Next, select Visual Studio Online (default) from the SET UP
DEPLOYMENT dialog and click on the next arrow.

3.	 Now, enter the name of the Visual Studio Online account and click on
Authorize Now:

Chapter 3

[85]

4.	 Accept the connection request, choose the repository, and accept it; then,
the project will be linked and will appear under the DEPLOYMENTS tab:

We can now test continual deployment's working by changing something in the
website, checking it in, and then browsing the Azure website to see the changes:

1.	 In the website project, open the Views/Home/Index.cshtml file and make
some changes to the markup; I changed the ViewBag.Title property, which
will change the title. Then, I changed the first div element and deleted the
rest of the markup like this:
@{
 ViewBag.Title = "Azure Bakery";
}

<div class="jumbotron">
 <h1>Azure Bakery</h1>
 <p class="lead">Welcome to Azure Bakery!</p>
</div>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Starting to Develop with Microsoft Azure

[86]

2.	 Now, if we save this and check it in (using the same process as when
we first checked in the code), a build should trigger, and then our website
will be published. While we wait for this to happen, we'll go and take a
closer look at what's going on, so in the Team Explorer window, click the
drop-down menu and select Builds (you can also get to this via the menu
on the home tab):

3.	 We should then see a build listed under the My Builds heading; if we
double-click on it, a window will open, showing us the current status of the
build (if you miss the build and it's completed already, you can right-click
on the build definition and select Queue New Build to rebuild manually;
I did this while I was trying to type everything, so this is why you can see
two builds):

Chapter 3

[87]

4.	 Once it's complete, you will see it update with a Build succeeded status and
a green tick:

5.	 If we have any problems during the build, we can view the build log from
here (as shown in the previous screenshot), which will show us any errors
and warnings to help us diagnose the problem.

6.	 Finally, if we refresh our staging website, we should see that the code
changes have been deployed!

Examining the build definition
To complete this section, we'll take a look at the build definition that the Azure
wizard has created for us:

1.	 In the Team Explorer window, right-click on the build definition and select
Edit Build Definition:

Starting to Develop with Microsoft Azure

[88]

2.	 In the General tab, we have options to control how the build is queued:
°° Enabled: This allows requests to be queued and built in

priority order.
°° Paused: Requests are queued but not built (unless an administrator

forces them).
°° Disabled: Requests are neither queued nor built. This can be used to

stop continuous deployment.

3.	 In the Trigger tab, we can adjust what events trigger a build:

The various triggers available are as follows:

°° Manual: This stops builds from being automatically triggered
(they can still be manually triggered). This can be used to stop
continuous deployment.

°° Continuous Integration: This is the default setting created by
the wizard and will trigger a build on every single check-in, which
might not be the best setting if you check in code regularly as you
will find build requests backing up.

°° Rolling builds: This might be a better option for continuous
deployment as you could set it to build not more than every
30 minutes, for example, so you don't get a backlog of
requests queuing.

Chapter 3

[89]

°° Gated Check-in: In this configuration, changes that the developer
makes are placed in shelve sets (like a staged check in) and are only
checked in once the build server has successfully built the changes.
This can stop developers from breaking code in source control.

°° Schedule: It can be quite common to have a scheduled build to check
the integrity of the code at regular intervals if continuous integration
is not used.

4.	 The Source Settings tab shows us how Source Control Folder maps to
Build Agent Folder. Don't change this unless you need to.

5.	 The Build Defaults tab allows us to change the location of where the
build output is deployed. Don't change this unless you need to.

6.	 The Process tab is where the build process template is defined and
configured. Don't change this unless you need to.

7.	 The Retention Policy tab allows you to change how builds are retained
by the server.

Setting up alerts
It can be useful to set up alerts in Visual Studio Online especially if you are working
in a team. The following alert types are available:

•	 Work Item Alerts: These are triggered when any work item related to
you changes

•	 Checkin Alerts: These occur when various checks on criteria are met
•	 Build Alerts: These are triggered under various build events
•	 Code review Alerts: These occur when a code review you are working

on or a code review in the project changes

Setting up alerts allows us to view and edit our alert settings:

1.	 In the Visual Studio Online portal, go to the dashboard for your project and
click on the settings button in the top-right corner of the screen:

Starting to Develop with Microsoft Azure

[90]

2.	 In the admin window that opens, click on the Alerts tab and notice that there
are some quick links down on the left-hand side under the CREATE NEW
ALERT WHEN title, which we will use to quickly create some alerts:

3.	 We want to know when a build fails, so click on the A build fails link, have
a quick look at the alert rules, change the Send to field if required (if you do
change it, you will be sent an e-mail to verify the change), and accept it:

Chapter 3

[91]

4.	 Do the same for the My build completes link.
5.	 We'll now see our new alerts listed (and one demo alert automatically

created for us); click on the Save all modified alerts button:

6.	 Now, manually trigger a build from Visual Studio by right-clicking on the
build definition and selecting Queue New Build.

7.	 Once the build has completed, we should receive an e-mail alert. If it
happened to fail, which it certainly shouldn't at this stage, we would
get an e-mail alert that tells us it had failed.

Summary
We've covered quite a lot in this chapter, preparing peripheral things such as setting
up version control, continuous deployment, and alerts. This might seem like a lot to
do initially, but we will benefit from doing these things now before we get deeper
into the development process. Even if you don't want to implement continuous
deployment, it's still a good practice to set up a build process to validate the integrity
of your code during development, especially if you are working in a team.

Next, we're going to start looking at the data layer of our customer website for the
Azure Bakery case study.

Starting to Develop with Microsoft Azure

[92]

Questions
1.	 Which version of Visual Studio Express allows us to develop web

applications for Azure and what SDK do we need to install?
2.	 Why is it important to check for Visual Studio updates?
3.	 When we create a website project, what does the Create remote resources

setting do?
4.	 From where can we create a website deployment slot?
5.	 What benefits do we get from using Visual Studio Online with

Azure projects?
6.	 Why is it a good practice to put a Main folder under the TFS project root?
7.	 What do the blue padlocks next to files in Visual Studio indicate?
8.	 What does the Rolling builds trigger do in a build definition?
9.	 Try creating a new website project in Visual Studio and publish it to

the cloud. This time, don't configure the website in the portal; instead,
let Visual Studio provision it for you when you create the project.

10.	 Create a daily build for the new project to test the integrity of the code.
Set up alerts, so if the build fails, you get an e-mail.

Answers
1.	 Visual Studio 2013 Express for Web and Microsoft Azure SDK.
2.	 Because the Azure SDKs and Visual Studio tooling are constantly changing

to provide support for new and improved Azure features.
3.	 If it's (Create remote resources) enabled, it will automatically provision a

website for us in Azure without having to manually create one.
4.	 From the quick glance section in the website's dashboard.
5.	 Source control, website continuous deployment, and deployment package

builds, not to mention the extra ALM project tools.
6.	 To make it easier to branch the project.
7.	 It shows that they are checked into Visual Studio Online with no

pending changes.
8.	 Allows a number of check-ins to accumulate before building.
9.	 NA.
10.	 NA.

Creating and Managing a
Windows Azure SQL Server

Database
We're going to start building the database for our sales business domain, which will
serve the customer website, administrator website, phone application, and order
processor worker role. We'll cover the following topics:

•	 Creating a database in the portal
•	 Building the database using Entity Framework Code First Migrations
•	 Different tools for managing Azure SQL Servers and databases
•	 Backing up and restoring a database

Once we've covered these topics, we'll have complete local and Azure SQL databases
and understand how to manage these databases using a number of different tools.

Microsoft Azure services are continually expanding, improving, and
changing, and Azure SQL Databases are no different. The Web and
Business editions are due to be retired in April 2015, where they will be
replaced with Basic, Standard, and Premium tiers, which will be available
as a preview before then. These new tiers offer six levels of services for
different performance requirements and offer self-service restore and
active geo-replication.

Creating and Managing a Windows Azure SQL Server Database

[94]

Creating a database using the Azure
management portal
We're going to start by creating a database called AzureBakerySales for the sales
websites in the Azure management portal:

1.	 From the NEW service menu, go to DATA SERVICES | SQL DATABASE
| QUICK CREATE, and we will see this wizard that can be used to quickly
create a basic database:

2.	 By default, this creates a WEB EDITION database with the lowest MAX
SIZE allocation (1 GB) and the default collation (SQL_Latin1_General_CP1_
CI_AS). It's possible to change the EDITION and MAX SIZE settings in the
SCALE tab of the portal.

3.	 Instead of QUICK CREATE, we'll use the CUSTOM CREATE option, which
gives us more control over the database options:

1.	 From the NEW service menu, go to DATA SERVICES | SQL
DATABASE | CUSTOM CREATE.

2.	 Enter the details for the database in the NEW SQL DATABASE
dialog. I've chosen to use BUSINESS as EDITION with 20 GB
of MAX SIZE (this can be changed) the default COLLATION
(http://msdn.microsoft.com/en-us/library/ms143726.aspx),
and New SQL database server from the SERVER options (if you,
like me, have no database server configured yet, you must select
this option):

http://msdn.microsoft.com/en-us/library/ms143726.aspx

Chapter 4

[95]

3.	 Click on the next arrow, and then fill in the LOGIN NAME and
LOGIN PASSWORD fields (make a note of these as they are the SA
credentials for the database, and you will need them later). Select
a REGION nearest to your end user's geographic location and
leave ALLOW WINDOWS AZURE SERVICES TO ACCESS THE
SERVER checked; otherwise, the firewall will need to manually
configure the service host IP addresses of services that require access
to the database:

Creating and Managing a Windows Azure SQL Server Database

[96]

4.	 Click on the tick to create a database and we'll see that the newly
created database appears in the database workspace in the portal:

Building a database using Entity
Framework (EF) Code First Migrations
Entity Framework (EF) is Microsoft's object-relational mapper (ORM) for .NET,
which allows developers to easily work with relational data inside their applications
using domain objects. Instead of manually writing data access layers to read/write
and parse data, as you would by using native ADO.NET, using an ORM saves time
and effort. When we use EF in our projects, we have a number of different options to
create our database and entities:

•	 Database-First: With this technique, we can create our database (or use an
existing database) in a tool such as SQL Management Studio using SQL
scripts or the designer. In Visual Studio, we can create an ADO.NET Entity
Data Model (EDM) to create entities and map them to existing tables.

•	 Model-First: This is similar to Database-First, where we use an EDM to
design our entities, but then, we let EF to create our database from it.

•	 Code First: Using the Code First approach, we get more control over our
code, and we can create an entity model, which represents our business
domain easily rather than worrying too much about how our entities will
translate into tables, columns, and rows. Using Code First, we can use
migrations to automatically manage schema changes during development
and seed default and test data into our database.

•	 Code First (Reverse engineered): This is where we can use a tool such as EF
Power Tools to take an existing database and reverse engineer a set of Plain
Old CLR Object (POCO) entities and mappings as if we had built them
ourselves using Code First.

Chapter 4

[97]

We're going to build our data model using the Code First approach in this
book as we don't have an existing database. We'll let EF do all the mapping for
us throughout the book, but it's worth reading up on the EF fluent API at
http://msdn.microsoft.com/en-gb/data/jj591617.aspx, which gives
you more power over entity mapping.

If you are using continuous deployment as discussed in Chapter 3, Starting
to Develop with Microsoft Azure, don't check in any changes until you get to
the Publishing with Migrations section because we need to modify the
publish settings in order to build the database.

Creating the data model
The following entity relationship diagram shows us the different entities in the sales
domain and how they relate to each other:

Id
HouseNumber

Street
City

PostCode

int
int

string
string
string

Address

Id
FirstName
LastName
Address
Orders

int
string
string

Address
IEnumerable

Customer

PushHandle string

Id
Reference

Status
Customer

Items

int
string

OrderStatus
Customer
ICollection

Order

CreatedDate Date

Id
Name

ProductType
Price

IsAvailable

int
string

ProductType
decimal

bool

Product

Id
Quantity
Product
Order

int
int

Product
Order

OrderItem

http://msdn.microsoft.com/en-gb/data/jj591617.aspx

Creating and Managing a Windows Azure SQL Server Database

[98]

We'll create our model in a new assembly, which will allow us to easily share it
between the sales customer website, administrator website, mobile application,
and order processor. In Visual Studio, right-click on the solution, go to Add |
New Project, select Class Library from the template types, and give it a name:

I have changed the Assembly name and Default namespace fields in the properties
of the project (to do this, right-click on the project and select Properties):

Chapter 4

[99]

Next, we can start adding our entity classes. Add a class for each entity in the
model using the following code. This is the Address model, which has no
relational dependencies.

namespace AzureBakery.Sales.Model
{
 public class Address
 {
 public int Id { get; set; }

 public int HouseNumber { get; set; }

 public string Street { get; set; }

 public string City { get; set; }

 public string PostCode { get; set; }
 }
}

When we have entities that have a relational dependency on another entity, we
create what is known as a Navigation property, which must be marked as virtual,
and which allows us to navigate through an entity to the related entities. This is the
Customer model:

using System.Collections.Generic;

namespace AzureBakery.Sales.Model
{
 public class Customer
 {
 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public virtual Address Address { get; set; }

 public virtual IEnumerable<Order> Orders { get; set; }

 public string PushHandle { get; set; }
 }
}

Creating and Managing a Windows Azure SQL Server Database

[100]

We won't look at the code for each model here as they pretty much have the same
features, so refer to them in the code samples.

In order to use the new model project in our website, we need to right-click on the
References folder and select Add Reference…:

Click on the Solution tab and then select the new Model project from the list:

Chapter 4

[101]

Configuring a database context
Now, we have a model and we need to add it to an EF DbContext so that
we can start interacting with the database. In our sales customer website,
we have a class called ApplicationDbContext, which is tucked away inside
the Models/IdentityModels file:

public class ApplicationDbContext :
 IdentityDbContext<ApplicationUser>
{
 public ApplicationDbContext()
 : base("DefaultConnection")
 {
 }
}

This is a special implementation of DbContext, which implements
IdentityDbContext, which looks like this:

public class IdentityDbContext<TUser> : DbContext where TUser :
 Microsoft.AspNet.Identity.EntityFramework.IdentityUser
{
 public IdentityDbContext();
 public IdentityDbContext(string nameOrConnectionString);

 public virtual IDbSet<IdentityRole> Roles { get; set; }
 public virtual IDbSet<TUser> Users { get; set; }

 protected override void OnModelCreating(DbModelBuilder
 modelBuilder);
 protected override DbEntityValidationResult
 ValidateEntity(DbEntityEntry entityEntry,
 IDictionary<object, object> items);
}

We can see that we have the IDbSet<T> properties, which allow us to access
ASP.NET authentication's Role and User data.

Creating and Managing a Windows Azure SQL Server Database

[102]

We can add new DbSet<T> properties to the ApplicationDbContext class so that EF
can add our models to the schema and allow us to interact with the data:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
 public ApplicationDbContext()
 : base("DefaultConnection")
 {
 }

 public DbSet<Customer> Customers { get; set; }

 public DbSet<Order> Orders { get; set; }

 public DbSet<Product> Products { get; set; }

 public DbSet<OrderItem> OrderItems { get; set; }
}

Linking an authenticated user to the model
Our data model has a Customer entity, which needs to be related to the
authenticated user who has logged in to the application. To do this, we simply
add a navigation property to the ApplicationUser entity, and this allows us
to relate the authenticated user to a Customer entity:

public class ApplicationUser : IdentityUser
{
 public virtual Customer Customer { get; set; }
}

In a controller, we can now do something like this to find the customer:

private readonly ApplicationDbContext _ctx =
 new ApplicationDbContext();

public ActionResult Index()
{
 // Get customer details
 var uid = User.Identity.GetUserId();

Chapter 4

[103]

 var customer = this._ctx.Users
 .Include(u => u.Customer)
 .Single(u => u.Id == uid).Customer;
}

Configuring the connection string
Our default MVC project will have a connection string like this in the Web.config
file, which tells EF how to connect to our database:

Data Source=(LocalDb)\v11.0;AttachDbFilename=|DataDirectory|\
aspnet-ABPoC-20140417010730.mdf;Initial Catalog=aspnet-AzureBakery-
20140417010730;Integrated Security=True

This is using the LocalDb database server, which is the lightweight developer
version of an SQL Server, and is loading the database from the mdf file in the
website's directory structure. LocalDb is not a full server and runs under a single
process under the context of the executing user, which means it's not suitable for
use by multiple users and applications. We are going to be sharing our database
across two websites, a worker role and mobile API, so we will use a local SQL
Express instance for local development purposes and an Azure SQL Database
for our published applications.

Our local connection string looks like this:

Data Source=localhost;Initial Catalog=AzureBakerySales;Integrated
Security=True"
 providerName="System.Data.SqlClient

We can replace the default connection string in the Web.config file like this:

<connectionStrings>
 <add name="DefaultConnection" connectionString="Data
Source=localhost;Initial Catalog= AzureBakerySales;Integrated
Security=True" providerName="System.Data.SqlClient" />

</connectionStrings>

Creating and Managing a Windows Azure SQL Server Database

[104]

Enabling migrations and updating the
database
First, we need to open the Package Manager Console so that we can use
EF PowerShell cmdlets (http://msdn.microsoft.com/en-us/library/
ms714395(v=vs.85).aspx) to set up migrations. To do this, go to VIEW |
Other Windows | Package Manager Console, and the console should load
into the bottom panel:

In the console, check that the website is selected in the Default project picker and
enter the following command to enable migrations:

enable-migrations

http://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx

Chapter 4

[105]

This creates a Migrations folder, which contains a Configuration.cs file that
allows us to control how migrations are configured. We should see the console
output like this:

PM> enable-migrations

Checking if the context targets an existing database...

Code First Migrations enabled for project CustomerWebsite.

Now, type the following command to add an initial migration:

add-migration Inititial

We should see an output like this in the console:

PM> add-migration Initial

Scaffolding migration 'Initial'.

The designer code for this migration file includes a snapshot of your current Code
First model. This snapshot is used to calculate the changes to your model when you
scaffold the next migration.

We'll now see our Migrations folder populated with our Configuration.cs and
initial migration files, shown as follows:

The initial migration file (with a timestamp prefix to help keep them in order) is the
benchmark for the schema versioning. If we look at the file created, we have the up
and down methods, which create our tables with primary keys, foreign keys, and
indexes, when the migration is applied, and remove them when it's rolled back:

public partial class initialcreate : DbMigration
{
public override void Up()
{
 CreateTable(
 "dbo.Customers",
 c => new
 {

Creating and Managing a Windows Azure SQL Server Database

[106]

 Id = c.Int(nullable: false, identity: true),
 FirstName = c.String(),
 LastName = c.String(),
 PushHandle = c.String(),
 Address_Id = c.Int(),
 })
 .PrimaryKey(t => t.Id)
 .ForeignKey("dbo.Addresses", t => t.Address_Id)
 .Index(t => t.Address_Id);

 // Other create methods removed for brevity
}

public override void Down()
{
 DropForeignKey("dbo.Orders", "Customer_Id", "dbo.Customers");
 DropForeignKey("dbo.Customers", "Address_Id", "dbo.
 Addresses");
 DropIndex("dbo.Orders", new[] { "Customer_Id" });
 DropIndex("dbo.Customers", new[] { "Address_Id" });
 DropTable("dbo.Customers");

 // Other drop methods removed for brevity
}
}

When we make subsequent changes to our model/schema, we can use the
add-migration command again to scaffold another migration, shown as follows:

add-migration pushhandle

After running the preceding command, we will see that the model changes like this:

public partial class pushhandle : DbMigration
{
public override void Up()
{
 AddColumn("dbo.Customers", "PushHandle", c => c.String());
}

public override void Down()
{
 DropColumn("dbo.Customers", "PushHandle");
}
}

Chapter 4

[107]

Once we have done this, we can customize our Configuration.cs file to initially
seed the database with default or test data:

internal sealed class Configuration : DbMigrationsConfiguration<
 CustomerWebsite.Models.ApplicationDbContext>
{
 public Configuration()
 {
 AutomaticMigrationsEnabled = true;
 ContextKey = "ABPoC.Models.ApplicationDbContext";
 }

 protected override void
 Seed(CustomerWebsite.Models.ApplicationDbContext context)
 {
 // This method will be called after migrating to the
 latest version.
 context.Products.AddOrUpdate(
 p => p.Name,
 new Product("Cheese Pasty", ProductType.Pastries,
 0.75m),
 new Product("Cornish Pasty", ProductType.Pastries,
 0.83m),
 new Product("Steak Pasty", ProductType.Pastries,
 0.88m),
 new Product("Chicken & Mushroom Pasty",
 ProductType.Pastries, 0.76m),
 new Product("Donut", ProductType.Cakes, 0.23m),
 new Product("Jam Donut", ProductType.Cakes, 0.25m),
 new Product("Cup Cake", ProductType.Cakes, 0.63m),
 new Product("Fruit Cake", ProductType.Cakes, 0.84m),
 new Product("Fairy Cake", ProductType.Cakes, 0.56m),
 new Product("Chocolate Crispie", ProductType.Cakes,
 0.24m)
);
 // Etc
}
}

public class ApplicationDbContext :
 IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext()
 : base("DefaultConnection")
 {
 base.Configuration.ProxyCreationEnabled = false;
 }

Creating and Managing a Windows Azure SQL Server Database

[108]

I've added some extra bits to the constructor to change the DbContext behavior:

•	 ProxyCreationEnabled is disabled to stop EF from creating proxies for
POCO entities

We can now build the database using our initial migration and seed method by
typing the following command:

update-database

We should see the console output, shown as follows:

PM> update-database

Specify the '-Verbose' flag to view the SQL statements being applied to
the target database.

Applying explicit migrations: [201404282005117_Initial].

Applying explicit migration: 201404282005117_Initial.

Running Seed method.

If we now connect to our local database using SSMS, we should see that our database
has been built and our product table has been seeded:

Chapter 4

[109]

Publishing with migrations
In the previous step, we used the update-database cmdlet to update our database
using migrations. When we publish the website, we're using a slightly different
mechanism where the publish process changes the Web.config file to use the
MigrateDatabaseToLatestVersion initializer, which will create the database when
the DbContext is first touched, which will not currently happen in our application,
so we'll put in some temporary code to list the sales products on the Home/Index
page. To do this, we need to perform the following steps:

1.	 Change the HomeController.cs index action to read a list of products from
the data context and pass it to View, like this:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using AzureBakery.Sales.CustomerWebsite.Models;

namespace AzureBakery.Sales.CustomerWebsite.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 var ctx = new ApplicationDbContext();
 var products = ctx.Products.ToList();

 return View(products);
 }

2.	 Modify the Home/Index.cshtml file to have a model of type
IEnumerable<Product> (passed from the controller) and add some Razor
scaffolding to create a table of products, as shown in the following code:
@using AzureBakery.Sales.Model;

@model IEnumerable<Product>

@{
 ViewBag.Title = "Azure Bakery";
}

<div class="jumbotron">
 <h1>Azure Bakery</h1>

Creating and Managing a Windows Azure SQL Server Database

[110]

 <p class="lead">Welcome to Azure Bakery!</p>
</div>

<table class="table">
 <tr>
 <th>Name</th>
 <th>Price</th>
 </tr>

 @foreach (var item in Model)
 {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 </tr>
 }

</table>

3.	 Before we check in our code and trigger a build, we need to change the
publish settings, so go to BUILD | Publish CustomerWebsite:

Chapter 4

[111]

4.	 Next, in the Settings tab, check Execute Code First Migrations (runs on
application start):

5.	 Leave the Use this connection string at runtime (update destination web.
config) option checked and check whether the string is correct. To get the
connection string for our Azure Database, go to the dashboard and click
on the Show connection strings link and copy the ADO.NET string,
shown as follows:

Server=tcp:sugr1ymjcl.database.windows.net,1433;Database=Azure
BakerySales;User ID=geoff@sugr1ymjcl;Password={your_password_
here};Trusted_Connection=False;Encrypt=True;Connection Timeout=30;

Creating and Managing a Windows Azure SQL Server Database

[112]

You need to remember to swap the {your_password_here} bit for
your password! If we unchecked this, it would try and use our local
database, which isn't there; however, you could put a transform in the
web.Release.config file to change the connection string there instead,
shown as follows:

 <connectionStrings>

 <add name="DefaultConnection" connectionSt
ring="Server=tcp:sugr1ymjcl.database.windows.net,1433;D
atabase=AzureBakerySales;User ID=geoff@sugr1ymjcl;Passw
ord=XXXXX;Trusted_Connection=False;Encrypt=True;Connect
ion Timeout=30;"

 xdt:Transform="SetAttributes"
xdt:Locator="Match(name)"/>

</connectionStrings>

If you want to publish straight away, go ahead and click on Publish; however, if you
want to let the build agent do it, click on Close, then click on Yes to save the changes
to the pubxml file, and then select check-in the code.

Remember, we can check the build progress by going to Team Explorer | Builds.

Managing SQL Azure Servers and
databases
Although we've just built our database using EF Code First Migrations, we still need
to be able to view and sometimes modify our data and also perform activities such as
adding users or creating federations.

To do this, we have a number of tools available:

•	 The SQL management portal
•	 SQL Server Management Studio (SSMS)
•	 Visual Studio SQL Server Object Explorer
•	 The PowerShell console

Chapter 4

[113]

Managing a database through the portal
We're going to take a look at managing a database through the management portal:

1.	 In the database workspace, select the database we just created and click on
MANAGE on the bottom toolbar:

2.	 We should see an alert appear, asking if we want to add our machine's public
IP address to the firewall list:

3.	 Click on YES and YES again when it asks if you want to manage
the database:

4.	 If nothing happens, check that the popup is not blocked.

Creating and Managing a Windows Azure SQL Server Database

[114]

5.	 We should now see a login screen for the database, so enter the SA details we
noted earlier and click on Log on:

6.	 Once we're logged in, we will see the Administration page in the
management portal.

Chapter 4

[115]

Features of the management portal
The management portal has a number of common features for its different views:

The various features of the management portal are as follows:

•	 (1): This is the Azure SQL Server Database shortcut, which navigates to the
server's summary page.

•	 (2): This is the current database name; clicking on it navigates you to the
database summary view. The top crumb trail (1 and 2) is hierarchal and
additional nodes are added when we go down further into tables, views,
and so on.

Creating and Managing a Windows Azure SQL Server Database

[116]

•	 (3): This is the user menu that allows us to see the current user log off and
launch the (no longer working!) help page.

•	 (4): This shows work items such as queries and table designs.
•	 (5): This navigates to the SQL Server Overview view.
•	 (6): This navigates to the database Administration view.
•	 (7): This navigates to the database Design view.
•	 (8): This is where view-context-sensitive menus appear.
•	 (9): This allows us to close the current work item.

Managing a database using SSMS
If you've worked with an SQL Server before, it's highly likely that you would have
used SSMS to build databases and work with data. We can still use SSMS to work
with Microsoft Azure SQL Servers, although there are a number of differences and
limitations, which we shall now see.

First, we need to add our machine's IP address to the allowed IP addresses list in the
server workspace's CONFIGURE tab, and click on SAVE:

Chapter 4

[117]

Next, open SSMS, enter the SQL Azure Server name, select SQL Server
Authentication, then enter your credentials, and click on Connect:

When SSMS opens, the first thing we notice in the Object Explorer window is that
the Azure server has a different symbol, so we can easily differentiate between that
and normal SQL Servers; if we expand all the folders, we can see that we have a lot
less features in the Azure SQL Server:

Creating and Managing a Windows Azure SQL Server Database

[118]

Basically, we only have Databases and Security options in Azure SQL Server; the
missing features are mostly replaced with services in the Azure SQL Server platform.

Another big difference between Azure SQL Server and SQL Server in SSMS is we
don't get GUIs for different operations; instead, we get template SQL scripts. If we
right-click on a table, we can see the different scripting options:

If we right-click on Tables and select New Table..., we get the following script
template instead of the GUI that we are used to seeing in SQL Server Databases:

-- ===
-- Create table template SQL Azure Database
-- ===

IF OBJECT_ID('<schema_name, sysname, dbo>.<table_name, sysname,
 sample_table>', 'U') IS NOT NULL
 DROP TABLE <schema_name, sysname, dbo>.<table_name, sysname,
 sample_table>
GO

CREATE TABLE <schema_name, sysname, dbo>.<table_name, sysname,
 sample_table>
(
 <columns_in_primary_key, , c1> <column1_datatype, , int>
 <column1_nullability,, NOT NULL>,

Chapter 4

[119]

 <column2_name, sysname, c2> <column2_datatype, , char(10)>
 <column2_nullability,, NULL>,
 <column3_name, sysname, c3> <column3_datatype, , datetime>
 <column3_nullability,, NULL>,
 CONSTRAINT <contraint_name, sysname, PK_sample_table> PRIMARY
 KEY (<columns_in_primary_key, , c1>)
)
GO

Federations are an extra thing we see in our Azure Database; the Federations folder
allows us to manage federations, and if we right-click and select New Federation, we
get a template script:

Federations allow us to scale out our databases by horizontally partitioning our
database across multiple federation members.

Managing a database through Visual Studio
We can work with Azure SQL Server Databases from the SQL Server Object
Explorer window in Visual Studio:

1.	 To open this, go to VIEW | SQL Server Object Explorer:

Creating and Managing a Windows Azure SQL Server Database

[120]

2.	 In the SQL Server Object Explorer window, click on the add button to add
our Azure SQL Server:

3.	 Fill in the connection details (this is the same as with SSMS) and we should
see our server appear in the window:

We notice we have differences between what we can see here compared to
SSMS; we neither have any server security options (we do have database security
options though) nor the Federations option. This makes sense, as we are in a
software development environment, where we shouldn't be worrying about
database administration.

Chapter 4

[121]

For working with tables, we actually have a lot more flexibility over SSMS; we can
use scripts and a GUI to perform actions. If we right-click on a table, we see all the
different options:

The various options available when you right-click on a table are as follows:

•	 Data Comparison…: This allows us to compare data with another database,
so we could compare an Azure SQL Server Database table with an on-
premises database or another Azure Database

•	 Script As: This allows us to create or drop tables using SQL script templates
•	 View Code: This shows us the SQL code for creating the table
•	 View Designer: This shows us the table in a designer
•	 View Permissions: This shows us the explicit permissions available on

the table
•	 View Data: This is a nice feature, which displays a tabular view of the data

The preceding functionality is the same for SQL Server Databases and is more
powerful than SSMS for working with databases.

Creating and Managing a Windows Azure SQL Server Database

[122]

Using the table designer
When we choose the View Designer option for a table, we get a nice GUI for editing
a table:

We can design the table using the Design grid or use T-SQL. We can also use the
panel on the right-hand side to work with advanced table features such as Indexes
and Triggers.

When we've finished designing a table, we click on the Update button in the top-left
corner of the screen. We will be shown the changes and have the Generate Script
(to manually perform an update or save for reference) and Update Database
options directly:

Chapter 4

[123]

Using Azure PowerShell
To get started using PowerShell in order to manage the database, we need to perform
the following steps:

1.	 Install the Azure PowerShell module using the Web Platform Installer from
http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409.

2.	 Next, run the Azure PowerShell console (it'll be named Windows Azure
PowerShell).

3.	 On the first run, you'll see a warning like this; enter A to trust the publisher
and always run:
Do you want to run software from this untrusted publisher?
File C:\Program Files (x86)\Microsoft SDKs\Windows Azure\
PowerShell\Azure\ShortcutStartup.ps1 is published by
CN=Microsoft Corporation, OU=MOPR, O=Microsoft Corporation,
L=Redmond, S=Washington, C=US and is not trusted on your
system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?]
Help (default is "D"):

http://go.microsoft.com/fwlink/p/?linkid=320376&clcid=0x409

Creating and Managing a Windows Azure SQL Server Database

[124]

4.	 Next, we need to set our Azure subscription to establish a connection.
We can use the one we already downloaded or use the get-
AzurePublishSettingsFile cmdlet to download it for us.

5.	 Once we have a .publishsettings file, we can import it with the Import-
AzurePublishSettingsFile command and the file path argument like this:
PS C:\> Import-AzurePublishSettingsFile C:\Users\Geoff\Downloads\
Pay-As-You-Go-4-30-2014-credentials.publishsettings

6.	 This will set a default subscription; you can view other subscriptions using
the Get-AzureSubscription command and then change it using the
Select-AzureSubscription cmdlet (arguments are case-sensitive), like this:
PS C:\> select-azuresubscription -current Pay-As-You-Go

7.	 We can now test it with a cmdlet such as get-SqlAzureDatabaseServer,
which lists all our servers like this:
PS C:\> get-azuresqldatabaseserver

ServerName Location
AdministratorLogin

---------- --------

sugr1ymjcl North Europe
Geoff

8.	 To get a full list of commands, type the following command:

help sql.

Choosing a management tool
The Azure SQL Server management portal is a good option because it lets you do
everything that is possible with Azure SQL Servers and databases; however, the GUI
isn't particularly intuitive and is quite outdated compared to the rest of the portal.

If you want to do SQL Server specific management, then SSMS is a good option;
conversely, if you want to do database development work, Visual Studio SQL
Server Object Explorer is a good option.

If you're a DBA or PowerShell script-nut, you might choose to use PowerShell to do
everything, but this is probably not the most accessible option for everybody!

Chapter 4

[125]

Backing up and restoring databases
Although Microsoft Azure SQL Databases are replicated to different servers and
data centers for disaster recovery, currently, they are not backed up to allow users to
restore databases after accidental data loss. There are a number of ways of achieving
backup and restore; we'll look at using automated exports to create backups on
schedule and then restore them to a new database.

Automated exports
Automated exports allow us to back up databases to bacpac files stored in Azure
blob storage (a blob storage is used to store unstructured binary and text data, you
can learn more about blobs at http://msdn.microsoft.com/en-us/library/
azure/ee691964.aspx) on a schedule. We can control how often backups are made
and how long they are kept.

First, we need to create a storage account for the exports to be stored in. From the
NEW service button, go to DATA SERVICES | STORAGE | QUICK CREATE,
enter a URL, and choose the LOCATION/AFFINITY GROUP, SUBSCRIPTION,
and REPLICATION options:

http://msdn.microsoft.com/en-us/library/azure/ee691964.aspx
http://msdn.microsoft.com/en-us/library/azure/ee691964.aspx

Creating and Managing a Windows Azure SQL Server Database

[126]

Now, we can go to the CONFIGURE tab for our database in the portal and configure
an automated export to the new storage account:

We need to be careful with this feature as there is a cost involved in generating the
temporary database copy, network usage transferring data and blob storage to hold
the copy. The larger the database, the bigger the cost involved, so we need to be
careful so as to not automate backups too frequently.

Backup files will appear under CONTAINERS in our STORAGE account:

If we select the container, we can see the individual timestamped .bacpac files with
their full URLs:

Chapter 4

[127]

We can download these locally, edit the metadata and delete the backups from here.

If we go back to the database's CONFIGURE tab, we can do a database restore by
clicking on the NEW DATABASE button in the CREATE FROM EXPORT section:

Next, select the BACPAC file to import, give it a name (unfortunately, you can't
restore to the same database with this technique), and choose SUBSCRIPTION,
EDITION, SIZE, and SERVER:

On the next tab, enter the server's login credentials to complete the import.

Creating and Managing a Windows Azure SQL Server Database

[128]

Summary
We've now got the foundations for our sales business domain, so we can start building
our applications. The production business domain will also have a database built using
EF Code First Migrations, and this will not be covered in the book, but all the code will
be available in the samples.

Next, we're going to build the sales customer website. This will allow customers to
make and manage orders, which will implement an OAuth authentication provider
and the administrator website. This will allow administrators to manage customers
and orders and will implement Azure Active Directory authentication.

Questions
1.	 What impact would unchecking the ALLOW WINDOWS AZURE

SERVICES TO ACCESS THE SERVER checkbox have, when creating
a database from the portal?

2.	 Describe the Database-First approach to creating an Entity Framework
data model

3.	 In an EF entity, what is a navigation property, and which property modifier
must be used?

4.	 What is special about IdentityDbContext?
5.	 How do we relate a user entity (such as Customer) to an authenticated user?
6.	 How do we enable migrations in an EF project?
7.	 When we change our EF model and want to capture the change in

migrations, what do we do?
8.	 What EF cmdlet do we use to build the database from our entity model?
9.	 What are the differences in features between using SSMS with Azure SQL

Server and SQL Server?
10.	 If we wanted to design an Azure SQL Database table with a GUI editor,

which tool would be the best choice?
11.	 Which SQL Azure PowerShell cmdlet would you use to delete a database?
12.	 Which SQL Azure PowerShell cmdlet would you use to set a firewall rule on

an Azure SQL Database Server?

Chapter 4

[129]

Answers
1.	 We'd have to manually configure the database server firewall to allow our

services to access the database.
2.	 With this technique, we can create our database (or use an existing database)

in a tool such as SQL Management Studio using SQL scripts or the designer,
then in Visual Studio, we can create an ADO.NET EDM to create entities and
map them to existing tables.

3.	 The Navigation properties allow us to access related entities through a given
entity. We use the virtual modifier on navigation properties.

4.	 It extends a normal DbContext with access to the ASP.NET authentication
users and roles tables.

5.	 Add a navigation property to our user entity in the ApplicationUser entity.
6.	 Enter the enable-migrations cmdlet in the NuGet package manager console.
7.	 Use the add-migration command with a label to indicate the model

change, which will create a new migration with the differences from the
previous migration.

8.	 update-database.
9.	 Azure SQL Server only has Database and Security options, which are a

limited subset of SQL Server's options. There is no GUI for Azure SQL Server
operations, which can be implemented with template scripts instead. Azure
SQL Server has the option to create federations for scaling out a database.

10.	 Visual Studio table designer (available from the SQL Server Object Explorer
window), which provides us with a powerful GUI for editing tables and
creating table scripts.

11.	 Remove-AzureSqlDatabase.
12.	 Set-AzureSqlDatabaseServerFirewallRule.

Building Azure MVC
Websites

In this chapter, we're going to build up the customer and administrator websites
for the sales business domain, which will share the data model we created in the
previous chapter. We'll cover the following topics:

•	 Implementing Twitter authentication in the customer website
•	 Completing the customer sales website
•	 Adding a custom domain name to a website
•	 Implementing an SSL certificate
•	 Adding Azure AD single sign-on to a website
•	 Implementing Azure AD group authorization
•	 Completing the admin sales website

We're going to look at subjects specific to Azure and touch on relevant parts of
website development. We will not go into great detail about how to write MVC
applications; however, the code samples have fully working websites to take away.

Implementing OAuth authentication
The customer sales website is required to implement OAuth authentication where
users can use their existing accounts with well-known authentication providers such
as Microsoft, Twitter, Facebook, and Google. There is a good overview of OAuth at
http://en.wikipedia.org/wiki/OAuth. All the providers are very similar to use;
you need to create an app in the respective developer portal, which will give you an
ID and a secret key.

http://en.wikipedia.org/wiki/OAuth

Building Azure MVC Websites

[132]

The following are links of the developer portals for some popular authentication
providers:

•	 http://msdn.microsoft.com/en-us/live

•	 https://dev.twitter.com/

•	 https://developers.facebook.com/

•	 https://console.developers.google.com

Creating a Twitter application
Now, we will look at implementing Twitter authentication with the
following procedure:

1.	 Go to https://dev.twitter.com/ and click on Sign in at the top-right
corner of the screen.

2.	 Once signed in, select My applications from the dropdown in the
top-right corner:

3.	 Click on the Create New App button.
4.	 Fill in the Name, Description, Website, and Callback URL fields (you can

use the URL of your website although it can be changed):

http://msdn.microsoft.com/en-us/live
https://dev.twitter.com/
https://developers.facebook.com/
https://console.developers.google.com
https://dev.twitter.com/

Chapter 5

[133]

5.	 Agree to the Developer Rules of the Road option and click on Create your
Twitter application.

6.	 Go to the API Keys tab and notice the API Key and API Secret (leave the
web page open and we can copy these into our code) values.

Modifying the external login
We need to modify the external login code to use our Twitter application and collect
the extra customer address details needed for our data model. We'll do this in the
following procedure:

1.	 In our web project, open App_Start/Startup.Auth.cs, uncomment the
app.UseTwitterAuthentication block, and fill in the keys like this:
app.UseTwitterAuthentication(
 consumerKey: "XXXXxxxx",
 consumerSecret: "ZZZZZZZZZZZZZzzzzzzzzzzzzzzzzzz
 zz");

Building Azure MVC Websites

[134]

2.	 Next, we need to modify the ExternalLoginConfirmationViewModel
(inside the Models/AccountViewModels.cs file) to retrieve our extra fields
for the customer entity like this:
public class ExternalLoginConfirmationViewModel
{
 [Required]
 [Display(Name = "User name")]
 public string UserName { get; set; }

 [Required]
 [Display(Name = "First Name")]
 public string FirstName { get; set; }

 [Required]
 [Display(Name = "Last Name")]
 public string LastName { get; set; }

 [Required]
 [Display(Name = "HouseNumber")]
 public int HouseNumber { get; set; }

 [Required]
 [Display(Name = "Street")]
 public string Street { get; set; }

 [Required]
 [Display(Name = "City")]
 public string City { get; set; }

 [Required]
 [Display(Name = "PostCode")]
 public string PostCode { get; set; }
}

3.	 Now, we will modify the ExtrenalLoginConfirmation.cshtml view to
include new fields. Add the following scaffolding code after the UserName
scaffolding code:
<!-- Customer -->
@Html.LabelFor(m => m.FirstName, new { @class = "col-md-2
 control-label" })
<div class="col-md-10">
 @Html.TextBoxFor(m => m.FirstName, new { @class =
 "form-control" })
 @Html.ValidationMessageFor(m => m.FirstName)

Chapter 5

[135]

</div>
@Html.LabelFor(m => m.LastName, new { @class = "col-md-2
 control-label" })
<div class="col-md-10">
 @Html.TextBoxFor(m => m.LastName, new { @class =
 "form-control" })
 @Html.ValidationMessageFor(m => m.LastName)
</div>

<!-- Address -->
@Html.LabelFor(m => m.HouseNumber, new { @class = "col-md-2
 control-label" })
<div class="col-md-10">
 @Html.TextBoxFor(m => m.HouseNumber, new { @class =
 "form-control" })
 @Html.ValidationMessageFor(m => m.HouseNumber)
</div>
@Html.LabelFor(m => m.Street, new { @class = "col-md-2
 control-label" })
<div class="col-md-10">
 @Html.TextBoxFor(m => m.Street, new { @class =
 "form-control" })
 @Html.ValidationMessageFor(m => m.Street)
</div>
@Html.LabelFor(m => m.City, new { @class = "col-md-2
 control-label" })
 <div class="col-md-10">
@Html.TextBoxFor(m => m.City, new { @class =
 "form-control" })
@Html.ValidationMessageFor(m => m.City)
</div>
@Html.LabelFor(m => m.PostCode, new { @class = "col-md-2
 control-label" })
<div class="col-md-10">
 @Html.TextBoxFor(m => m.PostCode, new { @class =
 "form-control" })
 @Html.ValidationMessageFor(m => m.PostCode)
</div>

4.	 Next, we need to modify the ExternalLoginConfirmation action in
AccountController. The following line of code creates a user:
var user = new ApplicationUser() { UserName =
 model.UserName };

Building Azure MVC Websites

[136]

Replace this with the following code, which creates our new user with
the Person and Address entities associated (you'll need to add a using
statement for the Model project):
var user = new ApplicationUser()
{
 UserName = model.UserName,
 Customer = new Customer()
 {
 FirstName = model.FirstName,
 LastName = model.LastName,
 Address = new Address()
 {
 HouseNumber = model.HouseNumber ,
 Street = model.Street,
 City = model.City,
 PostCode = model.PostCode
 }
 }
};

Testing the Twitter login
We're ready to test the Twitter authentication login now, so run the website locally
and follow this login procedure:

1.	 Click on the Log in link in the top-right corner.
2.	 On the login page, click on the Twitter button:

Chapter 5

[137]

3.	 We'll now be redirected to the Twitter authorization page, where you can log
in with your Twitter account and authorize the app to use your credentials:

4.	 We should now be redirected back to our website and see our Register page.
Fill in some details and click on Register:

5.	 We should now see the home page with a welcome message at the top.

Building Azure MVC Websites

[138]

If we go and look at our database now (use SSMS or Visual Studio SQL Server
Object Explorer), we can see that we have related entries in dbo.AspNetUsers,
dbo.AspNetUserLogins, dbo.Customers, and dbo.Addresses. I've used a SQL
query to display all the data at once, as shown in the following screenshot:

Completing the customer sales website
We've got all the tricky bits done, so we need to sit down and finish writing our
website. We're not learning MVC in this book and unfortunately, there isn't space
to go through everything in detail, so we'll look at a few bits, and you can get the
finished website in the code samples. I've simplified the website, so we can quickly
get a working user interface, where we can view products and create orders; I've
not implemented any dependency injection (DI), inversion-of-control (IoC),
repository, or unit of work (UoW) patterns, so as to not distract from the subject in
hand too much, but I would strongly advise you to use these techniques in your
own applications.

Modifying the user account panel
In this website, we're only using Twitter authentication, so we can remove the
Register link and add links to Orders and Basket, which show the current order.
To modify the user account panel, complete the following steps:

1.	 Add a new class called BasketHelper with a method to return the
customer's basket count:
using System.Linq;
using System.Data.Entity;

Chapter 5

[139]

using AzureBakery.Sales.CustomerWebsite.Models;
using AzureBakery.Sales.Model;

namespace AzureBakery.Sales.CustomerWebsite.Helpers
{
 public class BasketHelper
 {
 public static int GetCount(string uid)
 {
 var ctx = new ApplicationDbContext();

 // Find customer
 var customer = ctx.Users
 .Include(u => u.Customer)
 .Single(u => u.Id == uid).Customer;

 // Count order items
 var items = ctx.OrderItems
 .Include(oi => oi.Order.Customer)
 .Where(oi => oi.Order.Customer.Id ==
 customer.Id && oi.Order.Status ==
 OrderStatus.Open);

 int count = items.Count() > 0 ? items.Sum(oi =>
 oi.Quantity) : 0;

 return count;
 }
 }
}

2.	 Now, modify the _LoginPartial.cshtml view to implement these changes:

@using Microsoft.AspNet.Identity;
@using AzureBakery.Sales.CustomerWebsite.Helpers;
@if (Request.IsAuthenticated)
{
 using (Html.BeginForm("LogOff", "Account",
 FormMethod.Post, new { id = "logoutForm", @class =
 "navbar-right" }))
 {
 @Html.AntiForgeryToken()

 <ul class="nav navbar-nav navbar-right">

Building Azure MVC Websites

[140]

 @Html.ActionLink("Hello " +
 User.Identity.GetUserName() + "!", "Manage",
 "Account", routeValues: null,
 htmlAttributes: new { title = "Manage" })

 @*Orders Action Link*@

 @Html.ActionLink("Orders", "Index", "Order")

 @*Basket Action Link*@

 @Html.ActionLink("Basket (" +
 BasketHelper.GetCount(User.Identity.GetUserId()) +
 ")",
 "Basket", "Order")

 <a
 href="javascript:document.getElementById('logoutForm').
 submit()">Log off

 }
}
else
{
 <ul class="nav navbar-nav navbar-right">
 @Html.ActionLink("Log in", "Login", "Account",
 routeValues: null, htmlAttributes: new { id =
 "loginLink" })

}

Temporary PayConfirm action
The order controller has a number of actions for the ordering process and the final
one is the PayConfirm action:

public ActionResult PayConfirm()
{
 var order = this.GetOpenOrder();

 // At this point we would need to take a card payment or setup
 an invoice

Chapter 5

[141]

 // But this isn't real so we'll order the item!

 // Update status
 order.Status = OrderStatus.New;
 this._ctx.SaveChanges();

 // Todo: Send to messaging middleware

 return View();
}

The comments say that this is the point where we would handle the payment;
however, as this is a mock website, we will not do this. When we start looking
at implementing Service Bus messaging, we'll revisit this action to send an order
message, which will be picked up by the production systems to continue the
order process.

Final activities
As mentioned before, there's no space in the book to cover all the steps needed to
finish the sales customer website; therefore, I've listed the remaining activities here.
You can see the full website in the code samples:

•	 Change application's name
•	 Remove temporary code for listing products from the Home Index.cshtml

view
•	 Remove the local account option from the Login.cshtml view
•	 Add ProductController.cs and OrderController.cs controllers
•	 Add the ProductsViewModel.cs view models
•	 Add the OrdersViewModel.cs and OrderViewModel.cs view models
•	 Add the BasketViewModel.cs and OrderItemViewModel.cs view models
•	 Add links on the home page for each product type
•	 Create the product Index.cshtml view
•	 Create the order Index.cshtml, Basket.cshtml, Pay.cshtml, and

PayConfirm.cshtml views
•	 Remove local login from the Manage.cshtml view

Building Azure MVC Websites

[142]

Adding a custom domain name to a
website
It's highly likely that you will want a custom domain name of your own to use for
customer websites rather than using the default mywebsite.azurewebsites.net
subdomain. If you want to do this, buy a custom domain and make sure you give
yourself plenty of time before you need it live (a few days) for the domain host DNS
records to update.

We're going to add a custom domain to our sales customer website with the
following procedure:

1.	 First, we'll swop the staging website to the production website by clicking on
the SWOP button on the bottom toolbar.

2.	 In the CONFIGURE tab of the production website, click on manage domains:

3.	 We need to use the information from the Manage custom domains dialog to
configure our domain host:

We need the IP address to configure the DNS A records and the subdomain
name for the CNAME records.

Chapter 5

[143]

4.	 In your domain host control panel (this is not in the Azure portal), edit the
DNS A records to point to this IP address, and add two CNAME records to point
to our Azure subdomain:

To be extra clear, here are the changes in a table:

DNS ENTRY TYPE DESTINATION TARGET Note
* A 137.135.133.221 This is the updated

destination target of
the Azure IP address

@ A 137.135.133.221 This is the updated
destination target of
the Azure IP address

@ MX mx0.123-reg.co.uk No change
@ MX mx1.123-reg.co.uk No change
awverify CNAME awverify.

azurebakerycustomer.
azurewebsites.net

We added a CNAME
record, and awverify
points to our Azure
subdomain

www.
awverify

CNAME www. awverify.
azurebakerycustomer.
azurewebsites.net

We added a CNAME
record, and www.
awverify points
to our www Azure
subdomain

Building Azure MVC Websites

[144]

5.	 Once you've done this, you will need to leave it for the DNS records to
become active; my provider suggests 24 to 48 hours.

6.	 You can test it any time by typing your custom domain name into the
Manage custom domains dialog. If the DNS records are not ready, you
will get a warning like this:

7.	 Once the DNS records are ready, you should see a green tick like this:

8.	 Now, if you type your custom domain name into the browser, you should
see your Azure website!

Implementing an SSL certificate
HTTP web traffic sent between the server and browser is sent unencrypted in
the clear text, which is a security risk since a third party can potentially hijack the
traffic and read the data, which may contain sensitive information such as names,
addresses, and bank details.

Chapter 5

[145]

When we implement a Secure Socket Layer (SSL) certificate and use an HTTP
Secure (HTTPS) endpoint, the traffic is encrypted, making it difficult to steal by
a third party (although not impossible—look up the man-in-the-middle attack
and brute force attack; the former is associated with hackers and the latter with
government agencies that have super computers!).

Using HTTPS has a performance impact as every connection made has an initial
handshake between the browser and server to set up the encryption (using an SSL
certificate) before data is sent, so it's important to decide where to use it.

Azure websites have SSL endpoints by default, provided by the .azurewebsites.
net wildcard SSL certificate, which covers all the subdomains, so if you are not
implementing a custom domain, you can simply type https:// at the start of your
Azure domain. The sales administrator website does not have a custom domain and
uses this.

Purchase an SSL certificate (I bought mine from the same place as the custom domain
name). Follow their procedure to make a Certificate Signing Request (CSR); you can
either use their tool (I did this) or use IIS. The tool I used generated the .pem, .key,
and .password files; then, I received an approval e-mail from GlobalSign, which
I accepted, and later received an e-mail that contained an intermediary certificate
and an SSL certificate, which you need to copy and paste into a text editor such
as Notepad and save as .crt files. Note that you need to include the -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- text. Once you have all these
files, copy them to the same directory and you should have something like this:

Building Azure MVC Websites

[146]

Creating CER files
Next, we need to export the .crt files to the .cer files. You need to do this for
both .crt files:

1.	 In Windows Explorer, double-click on the file and click on the Details tab,
and then click on the Copy to File... button:

2.	 Click on Next, select Base-64 encode X.509 (.CER), and click on Next again:

Chapter 5

[147]

3.	 In the next dialog, enter the name (the same name as that of the .crt file
makes sense—I chose azurebakery.com), and click on Next and then on
Finish to complete.

4.	 We should now have a set of files including the new .cer files, as shown in
the following screenshot:

Building Azure MVC Websites

[148]

Using OpenSSL to create a PFX certificate
We need to use OpenSSL.exe to create a .pfx certificate from our .cer files to load
data into the website's workspace in the portal:

1.	 Download and install the prerequisites of the OpenSSL VC++ 2008
Redistributables from the following links:

°° 32 bit: http://www.microsoft.com/en-us/download/
confirmation.aspx?id=29

°° 64 bit: http://www.microsoft.com/en-us/download/
confirmation.aspx?id=15336

2.	 Download and install the OpenSSL installer from http://slproweb.com/
products/Win32OpenSSL.html. The 32-bit and 64-bit links will look like
this but the versions may change:

°° 32-bit full:
http://slproweb.com/download/Win32OpenSSL-1_0_1i.exe

°° 64-bit full:
http://slproweb.com/download/Win64OpenSSL-1_0_1i.exe

3.	 Open a command prompt as administrator and navigate to the c:\OpenSSL\
Win64\bin directory (or 32-bit equivalent) and type the following command
to set the OPENSSL_CONF environmental variable (otherwise, we'll get errors):
set OPENSSL_CONF=c:\OpenSSL-Win64\bin\openssl.cfg

4.	 Now, enter the following command to generate our .pfx file:
openssl pkcs12 -export -out c:\ssl\azurebakery.com.pfx
-inkey c:\ssl\private-key.key -in c:\ssl\AzureBakery.com.cer
-certfile c:\ssl\gs_intermediate_ca.cer

5.	 Enter the pass phrase when prompted, then password (and the confirmation
for the .pfx file):

http://www.microsoft.com/en-us/download/confirmation.aspx?id=29
http://www.microsoft.com/en-us/download/confirmation.aspx?id=29
http://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
http://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
http://slproweb.com/products/Win32OpenSSL.html
http://slproweb.com/products/Win32OpenSSL.html
http://slproweb.com/download/Win32OpenSSL-1_0_1i.exe
http://slproweb.com/download/Win64OpenSSL-1_0_1i.exe

Chapter 5

[149]

Uploading the certificate
We should now have our .pfx file ready to assign to the website:

1.	 Go to the CONFIGURE tab of the website workspace in the portal and click
on upload a certificate:

2.	 Select the .pfx file we just created, enter the PASSWORD, and click on the
tick button:

3.	 Now, associate the custom domain with the uploaded certificate under the
ssl bindings section:

Building Azure MVC Websites

[150]

4.	 Click on SAVE on the toolbar to apply the changes.
5.	 You may see a warning about the pricing impact for SSL bindings; however,

since April 2014, you should get one free SSL certificate allowance.
6.	 Now, when we open our website with https://azurebakery.com, we can

see the page load without any warnings, and our data is encrypted between
the browser and web server.

Redirecting all HTTP traffic to HTTPS
Now that we have an SSL certificate implemented, we want to make sure that the
HTTP endpoints are not available for some controllers, actions, or the entire website.

To force a controller or action to use HTTPS, we can use the RequireHttps attribute
like this:

[RequireHttps]
public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
}

To redirect HTTP traffic to HTTPS endpoints for the whole website (I've done this
in the customer website), we can put a rewrite rule transform in our web.Release.
config file, which will run on publish:

<system.webServer xdt:Transform="Replace">
 <modules>
 <remove name="FormsAuthenticationModule" />
 </modules>
 <!-- Add redirect rule to redirect all HTTP requests to HTTPS
 -->
 <rewrite>
 <rules>
 <clear />
 <rule name="HTTP to HTTPS redirect" stopProcessing="true">
 <match url="(.*)" />
 <conditions>
 <add input="{HTTPS}" pattern="off" ignoreCase="true"
 />
 </conditions>
 <action type="Redirect" redirectType="Found"
 url="https://{HTTP_HOST}/{R:1}" />

Chapter 5

[151]

 </rule>
 </rules>
</rewrite>
</system.webServer>

This replaces the whole system.webServer block, so be careful to include everything
from the base Web.config file.

Adding Azure AD single sign-on to a
website
Our sales administrator website requires Azure AD authentication so that users for
the whole company can be centrally managed. In this section, we're going to create
an Azure AD for the company, then add a user and configure a new administrator
website to implement Azure AD single sign-on

Configuring AD
First, we need to create an AD and an initial user account to sign in with. To do this,
perform the following steps:

1.	 From the NEW services menu, go to ACTIVE DIRECTORY | DIRECTORY
| CUSTOM CREATE:

2.	 Fill out the NAME of the directory, its DOMAIN NAME, and the
COUNTRY OR REGION.

Building Azure MVC Websites

[152]

3.	 Now, from the AD USERS workspace, click on ADD USER from the bottom
toolbar to add a user:

4.	 Fill in the USER NAME field. I've left TYPE OF USER as New user in
your organization, although you can add an existing Microsoft account
or Windows Azure AD.

5.	 Next, fill in the user details, select Global Administrator for the ROLE field,
and click on the next arrow.

6.	 Click on create on the next tab to get the temporary password for the user.
Make a note of it and also enter an e-mail ID to send it to, and then click on
the tick button to finish.

Configuring an MVC website for AD single
sign-on
Next, we'll create a new MVC website and use the wizard to help us set up AD
single sign-on. In Visual Studio 2012, this was quite tricky to do with a fair amount
of manual configuration in the portal and the website's Web.config, but it's quite
straightforward in Visual Studio 2013:

1.	 In Visual Studio, add a new ASP.NET web application. From the template
dialog, select the MVC template, check Create remote resources under the
Windows Azure section, and then click on Change Authentication:

Chapter 5

[153]

2.	 Select Organizational Accounts and enter the AD domain name for the AD
we just created, and click on OK:

3.	 Sign in using the new AD user, and then click on OK in the previous dialog
(be careful to change the user to your Azure portal account when prompted
to sign into Azure).

4.	 Enter Site name, and choose Subscription, Region, and Database Server
(select No database because we're using the existing one).

5.	 Click on OK; this will now provision the website, set up an AD application,
and create our MVC project for us.

6.	 We can test this locally by simply running the website from Visual Studio.
You will get a security warning due to the implementation of a temporary
SSL certificate on your local web server.

Building Azure MVC Websites

[154]

7.	 Accept the warning (Continue to this website (not recommended)), and you
will then see the AD Sign in page:

8.	 Log in with your new user, and the website should load.

Publishing the website with AD single sign-on
When Visual Studio provisioned our website for us, it created an application entry in
the AD APPLICATIONS tab for our local debug configuration:

Chapter 5

[155]

Rather than changing the APPLICATION CONFIGURATION settings for our
production website, when we publish the application, there is an option, Enable
Organizational Authentication, which will add a new application entry in AD and
rewrite the federation section of the Web.config file for us on publish:

<system.identityModel.services>
 <federationConfiguration>
 <cookieHandler requireSsl="true" />
 <wsFederation passiveRedirectEnabled="true"
 issuer="https://login.windows.net/azurebakery.onmicrosoft.com/
 wsfed"
 realm="https://azurebakery.onmicrosoft.com/AdminWebsite"
 requireHttps="true" />
 </federationConfiguration>
 </system.identityModel.services>

In the Publish Web dialog, check Enable Organizational Authentication and
enter the AD Domain name. You will need to include a connection string for
your database as the website will update the database with entries in the new
IssuingAuthorityKeys and Tenants tables:

Building Azure MVC Websites

[156]

Once the application is published, we will see a new entry in the AD
APPLICATIONS workspace:

This is great as we don't need to reconfigure the applications between running locally
in the Debug configuration and publishing to Azure in the Release configuration.

Implementing Azure AD group
authorization
We talked about implementing AD single sign-on authentication to our sales
administrator website, but because we're going to use the Azure Bakery AD across
all the business domains, we need to add groups so that we have better control over
users in the different business units. Azure AD doesn't currently allow addition
of new roles or custom roles; there are a number of built-in administrator roles;
however, we have full control over groups, so we can use them for authorization.

Unfortunately, authorization isn't as simple as just using the Authorize attribute
with a role, as you would with ASP.NET roles; we need to query the Azure AD
Graph API to check whether a user is a member of the group. We'll add a sales group
to the Azure Bakery AD, and then implement a custom AuthorizeAttribute to
query the Azure AD Graph API using the Azure AD Graph client.

We're going to use the Azure AD PowerShell module to modify the AD application
service principal later in the procedure, so install this first.

You can download the module from here:

•	 The 32-bit version: http://go.microsoft.com/fwlink/p/?linkid=236298
•	 The 64-bit version: http://go.microsoft.com/fwlink/p/?linkid=236297

I needed to install Microsoft Online Services Sign-In Assistant for IT Professionals
BETA (not RTW) from http://www.microsoft.com/en-us/download/
confirmation.aspx?id=39267.

http://go.microsoft.com/fwlink/p/?linkid=236298
http://go.microsoft.com/fwlink/p/?linkid=236297
 http://www.microsoft.com/en-us/download/confirmation.aspx?id=39267
 http://www.microsoft.com/en-us/download/confirmation.aspx?id=39267

Chapter 5

[157]

Creating an AD group
We'll create an AD group for the sales business domain and add our new user to
it now:

1.	 First, go to the AD GROUP workspace in the portal for our AD and click on
ADD GROUP in the toolbar:

2.	 Enter NAME and DESCRIPTION of the group and click on the tick button
to create it.

3.	 Next, click on the newly created group and then click on ADD MEMBERS
on the toolbar:

4.	 In the Add members dialog, click on the AD user we created to add it to the
SELECTED list, and click on the tick button to confirm:

5.	 Now, go to the GROUP CONFIGURE tab and make a note of OBJECT ID,
as we'll need this later.

Building Azure MVC Websites

[158]

6.	 Now, we need to create a key for our application that will allow us to access
the Graph API, so create a new key in the APPLICATION workspace's
CONFIGURE tab:

7.	 Make a note of this and the CLIENT ID.
8.	 We need to create keys for the local and Azure AD applications.

Modifying the application service principal
We need to modify our application's service principal so that it has the permission to
access the Graph API; in theory, this should be done by adjusting the permissions in
the other applications section of the APPLICATION CONFIGURATION tab, but at
the time of writing this, it doesn't work. Please try it yourself, and if it doesn't work
for you (you will get an unauthorized exception in the AD Graph API client), use the
following procedure to manually add the service principal to an administrator role:

1.	 Launch the Azure AD PowerShell console (from the desktop shortcut, if you
choose to use it).

2.	 First, we need to obtain our AD credentials, so type the following command
and enter your AD user credentials when prompted:
$msolcred = get-credential

This stores the credentials in a variable called $msolcred.

3.	 Next, we need to connect to the console by typing the following command:
connect-msolservice -credential $msolcred

For a quick test, we can use the get-msoluser command to list the AD users.
We should see something like this:

PS C:\WINDOWS\system32> get-msoluser

UserPrincipalName DisplayName isLicensed

----------------- ----------- ----------

Chapter 5

[159]

gwebbercross_outlook.co... Geoff Webber-Cross False

geoff@azurebakery.onmic... Geoff False

4.	 Now, we need to get the service principal for our application using the
following command:
$msolServicePrincipal = Get-MsolServicePrincipal -AppPrincipalId
YourClientId

You can get CLIENT ID from the CONFIGURE tab of the AD
APPLICATION workspace for the application associated with the website:

5.	 We can see the properties of the service principal object by outputting it
like this:
write-output $msolServicePrincipal

6.	 Next, we need to add the service principal to an administrator role like this:
Add-MsolRoleMember -RoleName "Company Administrator"
 -RoleMemberObjectId $msolServicePrincipal.ObjectId
 –RoleMemberType ServicePrincipal

Implementing AzureAdAuthorizeAttribute
We're going to create a class called AzureAdAuthorizeAttribute, which can be
added to a controller with either a group name or the group ObjectId specified. The
ObjectId implementation is more efficient as it doesn't require an additional query
to look up the ID from the name.

We need to install the Microsoft.Azure.ActiveDirectory.GraphClient and
Microsoft.IdentityModel.Clients.ActiveDirectory NuGet packages by
entering the following commands:

Install-Package Microsoft.Azure.ActiveDirectory.GraphClient

Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory

Building Azure MVC Websites

[160]

The following is the complete code for the attribute; the comments in the code
explain what's going on:

using Microsoft.Azure.ActiveDirectory.GraphClient;
using Microsoft.IdentityModel.Clients.ActiveDirectory;
using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Security.Claims;
using System.Web;
using System.Web.Mvc;

namespace AdminWebsite.Auth
{
 [AttributeUsageAttribute(AttributeTargets.Class |
 AttributeTargets.Method, Inherited = true, AllowMultiple =
 true)]
 public class AzureAdAuthorizeAttribute : AuthorizeAttribute
 {
 private readonly string _clientId = null;
 private readonly string _appKey = null;
 private readonly string _graphResourceID =
 "https://graph.windows.net";

 public string AdGroup { get; set; }
 public string AdGroupObjectId { get; set; }

 public AzureAdAuthorizeAttribute()
 {
 this._clientId =
 ConfigurationManager.AppSettings["ida:ClientID"];
 this._appKey =
 ConfigurationManager.AppSettings["ida:Password"];
 }

 protected override bool AuthorizeCore(HttpContextBase
 httpContext)
 {
 // First check if user is authenticated
 if (!ClaimsPrincipal.Current.Identity.IsAuthenticated)
 return false;
 else if (this.AdGroup == null && this.AdGroupObjectId
 == null) // If there are no groups return here
 return base.AuthorizeCore(httpContext);

Chapter 5

[161]

 // Now check if user is in group by querying Azure AD
 Graph API using client
 bool inGroup = false;

 try
 {
 // Get information from user claim
 string signedInUserId =
 ClaimsPrincipal.Current.FindFirst(ClaimTypes.
 NameIdentifier).Value;
 string tenantId =
 ClaimsPrincipal.Current.FindFirst("http://schemas.
 microsoft.com/id
 entity/claims/tenantid").Value;
 string userObjectId =
 ClaimsPrincipal.Current.FindFirst("http://schemas.
 microsoft.com/id
 entity/claims/objectidentifier").Value;

 // Get AuthenticationResult for access token
 var clientCred = new ClientCredential(_clientId, _
 appKey);
 var authContext = new
 AuthenticationContext(string.Format
 ("https://login.windows.net/{0}", tenantId));
 var authResult =
 authContext.AcquireToken(_graphResourceID,
 clientCred);

 // Create graph connection with our access token
 and API version
 var currentCallContext = new
 CallContext(authResult.AccessToken,
 Guid.NewGuid(), "2013-11-08");
 var graphConnection = new
 GraphConnection(currentCallContext);

 // If we don't have a group id, we can query the
 graph API to find it
 if (this.AdGroupObjectId == null)
 {
 // Get all groups
 var groups = graphConnection.List<Group>(null,
 null);

 if (groups != null && groups.Results != null)
 {

Building Azure MVC Websites

[162]

 // Find group object
 var group =
 groups.Results.SingleOrDefault(r =>
 (r as Group).DisplayName == this.AdGroup);

 // check if user is in group
 if (group != null)
 this.AdGroupObjectId = group.ObjectId;
 }
 }

 if (this.AdGroupObjectId != null)
 inGroup =
 graphConnection.IsMemberOf(this.
 AdGroupObjectId, userObjectId);
 }
 catch(Exception ex)
 {
 string message = string.Format("Unable to
 authorize AD user: {0} against group: {1}",
 ClaimsPrincipal.Current.Identity.Name, this.
 AdGroup);

 throw new Exception(message, ex);
 }

 return inGroup;
 }
 }
}

Once we've created this class, we need to add the ida:ClientID and ida:Password
settings to the Web.config file like this:

 <appSettings>
 <add key="ida:ClientID" value="d30553b1-21f3-4ee5-bda5-
 63cf9b2d9861" />
 <add key="ida:Password" value="60VVjSMWB5IHNtfIBym9eIv7XXXXXXXXXXX
 XXXXXXXXXXXXXXX=" />
 </appSettings>

Chapter 5

[163]

Once we've done this, we can simply add the attribute to our controllers to
implement the Azure AD group authorization like this:

namespace AdminWebsite.Controllers
{
 [AzureAdAuthorize(AdGroup = "Sales", AdGroupObjectId = "f8a96bf1-
 c152-41a8-9878-200db968ca95")]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

This code will automatically switch the Web.config settings for the Azure web
application; we can simply add the following transform to web.Release.config,
which will be run during publishing:

<appSettings>
 <add key="ida:ClientID" value="123456-58a2-4549-95fc-
 AABBCCDDee"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />
 <add key="ida:Password"
 value="dXqblNwq1y//
 qOsgI3mD69KfxIFNfXXXXXXXXXXXXXXXXXXXXXXXXXXXXX="
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />
 </appSettings>
 <system.web>

Completing the admin sales website
The administrator website isn't getting as much attention as the customer website
as we don't need it to drive the case study. I'm going to use the Visual Studio scaffold
view and controllers for each entity in our data model to save time, using the following
procedure for each entity:

1.	 Add a reference to our Model project as we did for the customer website.
2.	 Right-click on the Controllers folder and go to Add | Controller.

Building Azure MVC Websites

[164]

3.	 Select MVC 5 Controller with views, using Entity Framework from the
options and click on Add:

4.	 Enter Controller name and select the related entity from the Model class list:

Chapter 5

[165]

5.	 For the first one, I'm going to click on New data context.... I'm not going
to modify the TenantDbContext class as it's unrelated to our sales data
model (I changed the name from the default to AdminWebsite.Models.
SalesContext).

6.	 Next, click on Add, and Visual Studio will build a controller for you with a
full set of views for performing basic CRUD operations.

7.	 Do the same for the other entities and use the data context class we just
created.

8.	 In the Web.config file, I deleted the new SalesContext database connection
string that was created:
<add name="SalesContext" connectionString="Data
 Source=(localdb)\v11.0;
 Initial Catalog=SalesContext-20140514071433;
 Integrated Security=True;
 MultipleActiveResultSets=True;
 AttachDbFilename=|DataDirectory|SalesContext-20140514071433.mdf"
 providerName="System.Data.SqlClient" />

9.	 Then, change the SalesContext constructor to use the DefaultContext
connection string like this:

public SalesContext()
 : base("name=DefaultConnection")
 {
 }

I'm not putting links on the home page; we can manually type the controller
name into the browser to see the different views.

Summary
We've now done most of the work on our sales websites in order to get them
working functionally, with data access and security implemented locally and
on Azure. To make the websites manageable in a live system, we need to start
instrumenting them so that we can easily diagnose and fix any problems.

In the next chapter, we'll look at the options available to us for tracing and logging
in to Azure websites using Azure storage in order to store the diagnostic data. We'll
also look at remote debugging to help us step through the live code that runs on
Azure web servers.

Building Azure MVC Websites

[166]

Questions
1.	 In an MVC project, where do we configure the details of OAuth providers?
2.	 If we wanted to make these OAuth settings configurable so that we can have

different settings for different application environments without changing
the code, what can we do?

3.	 When is it important to use an SSL certificate in a website and why?
4.	 Why would we not implement an SSL encryption everywhere?
5.	 What type of SSL certificates are all Azure websites protected by?
6.	 What can we do to make sure our HTTPS endpoint is used instead of the

HTTPS endpoint in a website?
7.	 When we configure a website to use Azure AD authentication, which option

do we pick from the following:
°° No Authentication
°° Individual User Accounts
°° Organizational Accounts
°° Windows Authentication

8.	 During publishing, which option can we set to create a new Azure AD
application for the website so that we don't have to manually configure one?

9.	 Which API do we use to query Azure AD?
10.	 Which Azure AD PowerShell cmdlet is used to obtain Azure AD credentials?

Chapter 5

[167]

Answers
1.	 In the App_Start/Startup.Auth.cs class.
2.	 Put the setting in Web.config and use ConfigurationManager to retrieve

the settings at runtime.
3.	 If we are working with sensitive information such as names, addresses, and

bank account details, we should use an SSL encryption to protect the user
and ourselves from malicious third parties interested in stealing our data.

4.	 There is a performance overhead using SSL, so if our content is not sensitive,
then we get no benefit from encrypting it, and we degrade the performance.

5.	 A wildcard certificate.
6.	 Add a redirect to the Web.config file. Doing this in a transform allows us to

apply this to release configs, so we can debug against the HTTP endpoint too.
7.	 Organizational Accounts.
8.	 Enable Organizational Authentication.
9.	 Azure Active Directory Graph API.
10.	 get-credential.

Azure Website Diagnostics
and Debugging

Diagnostics is an extremely important feature of any server application, and we have
some great tools available in Microsoft Azure to effectively implement various types
of diagnostics for our websites.

We need diagnostics on websites to help us track down and fix bugs and performance
issues during all phases of the website's life cycle.

If we instrument our applications properly with tracing and error handling, we can
determine where and why errors occur, and work out which parts of an application
are taking too long to complete, causing performance issues, using tracing.

Using server logging, we can log all HTTP traffic, detailed error messages for HTTP
response codes greater than or equal to 400 (which can help us diagnose why an error
response is being returned), and failed request logging, which will help us detect
server performance issues (possibly from under-resourcing) causing requests to fail.

In this chapter, we're going to look at the following topics:

•	 Enabling diagnostics in Azure websites
•	 Working with logfiles
•	 Application logging
•	 Site diagnostics
•	 Kudu
•	 Remote debugging

Using code, we'll implement the standard diagnostics instrumentation on various
listeners for the sales customer website.

Azure Website Diagnostics and Debugging

[170]

Enabling diagnostics
We can configure basic website diagnostic settings through the Server Explorer
window in Visual Studio by right-clicking on the website and selecting View Settings:

We can configure Web Server Logging, Detailed Error Messages, Failed Request
Tracing, Application Logging (File System only, not storage), and Remote
Debugging. This example shows Web Server Logging enabled; to apply changes,
click on Save:

Chapter 6

[171]

The same settings with some more advanced options (which we will cover in
more detail in this section) are available in the CONFIGURATION tab in the
website's workspace.

When you swop a staging website for a production website, the
configuration (including logging) settings are swopped too, so
make sure the staging configuration is correct before swopping.

Working with logfiles
Filesystem logging is the lowest common denominator for all the logging types in
an Azure website, whether it's application logging or server diagnostics. We'll look
at how we can access and work with the logfiles before we look at the individual
options first.

Viewing logfiles in Visual Studio
We can view logfiles in the Visual Studio Server Explorer by going to Web Sites |
[website] | Log Files:

Azure Website Diagnostics and Debugging

[172]

The following table shows the relationship between configuration settings and file
path; the naming convention of the logging files provides us with extra information
about the server instance ID, which is important for separating different instances
in a scaled system, and the process ID, which is the IIS application pool ID that will
separate different app pools:

Setting Path or file-naming convention

WEB SERVER LOGGING Log Files/http/RawLogs/[Instance Id]-
[TimeStamp].log

DETAILED ERROR MESSAGES Log Files/DetailedErrors/ErrorPage[Id].
html

FAILED REQUEST TRACING Log Files/W3SVC0000/[Id].xml

APPLICATION LOGGING (FILE
SYSTEM)

Log Files/application/[Instance Id]-
[PID]-[EventTickCount].txt

Double-clicking on a file will download it and open it for viewing inside
Visual Studio.

Streaming logs
Application logs and web server file logs can be streamed into Visual Studio
real-time, so we can monitor diagnostic information as it is being logged.

Then, if we go to the Logs tab, we have options such as Stream Logs or Download
Logs in a ZIP file to examine the logs offline:

Chapter 6

[173]

If we click on Stream Logs, we will see the Output window switch to Show output
from in our website. To choose which logs to view, we need to click on the setting
button in the Output window:

We can select the logs we're interested in, to prevent multiple logs from being
written to writing to the output simultaneously, making the output confusing:

Now, if we open our website and start navigating around it, we'll see the logs appear
like this:

Azure Website Diagnostics and Debugging

[174]

Filtering stream logs
There's a filter option, which is tucked away in the Output window, which we can
use to filter the log, making it easier to monitor particular items.

Click on the double chevrons on the right-hand side of the toolbar to reveal the
filter options:

Enter a Filter string in the box and press Enter (you can use regular expressions if
you like, by clicking on the asterisk button):

We'll immediately see the filter apply to our output; however, the filter view doesn't
seem to filter live streaming logs, which is a shame.

Downloading logs
To download logs, we can click on Download Logs from the Logs tab in the
website's Settings window or from the Download Streaming Logs button in the
Output window:

Both these options will download logs in a ZIP file to your profile's downloads folder.

Chapter 6

[175]

Accessing files using FTP
Logfiles can be accessed using FTP without having to use Visual Studio. To do this,
set up deployment credentials in the website's DASHBOARD workspace, note the
DEPLOYMENT / FTP USER setting, and navigate to either FTP DIAGNOSTIC
LOGS or FTPS DIAGNOSTIC LOGS (the latter is secure):

You can use an FTP client such as FileZilla (https://filezilla-project.org/) to
manage logfiles using FTP.

Application logging
Within our websites, we can use the System.Diagnostics.Trace object to help
write trace information to the Azure website trace listeners, which write data to the
file, table storage, and blob storage. If implemented properly, tracing is useful to help
diagnose problems with errors and performance. In normal operations, we can log
errors at the Error trace level to minimize storage and performance impact; however,
if we experience difficulties, we can raise the LOGGING LEVEL value to show us
more detailed information.

https://filezilla-project.org/

Azure Website Diagnostics and Debugging

[176]

Visual Studio's Server Explorer only allows us to configure file logging, but we have
full control of the trace listener options in the portal:

Here, we can enable logging to the file, table storage, and blob storage, and control
the LOGGING LEVEL value for each option. There are five LOGGING LEVEL
options, which correspond to the following trace levels:

•	 Off: This indicates that nothing is logged
•	 Error: This indicates 1 or lower logged
•	 Warning: This indicates 2 or lower logged
•	 Information: This indicates 3 or lower logged
•	 Verbose: This indicates 4 or lower logged (everything is logged)

The following System.Diagnostics.Trace methods are particularly useful for
tracing in our applications:

Method Level Description
TraceError(string) Error This traces an error with a

message text
TraceError(string,
object[])

Error This traces an error with a
format string and an array
of objects to format

TraceInformation(string) Information This traces information with
a message text

Chapter 6

[177]

Method Level Description
TraceInformation
(string, object[])

Information This traces information with a
format string and an array of
objects to format

TraceWarning(string) Warning This traces a warning with a
message text

TraceWarning (string,
object[])

Warning This traces a warning with a
format string and an array of
objects to format

WriteLine(string) Verbose This traces a verbose message

Changing the LOGGING LEVEL value does not affect the Web.config file, so it
doesn't recycle the website's application pool (which would cause the website to
become slow to respond while it warms up).

The full list of Trace object methods can be found at http://msdn.microsoft.com/
en-us/library/system.diagnostics.trace(v=vs.110).aspx.

Implementing tracing in the application
I said we weren't going to go into great detail about IoC, DI, repository, and UoW
patterns, but I've implemented a cut-down repository and a UoW pattern to access
our data to help us illustrate tracing through multiple application layers.

The sales customer website has tracing implemented in the controllers, UoWs, and
repository. This is an example of a controller action, which logs the start and end of
the action and logs an exception, if thrown:

public class ProductController : Controller
{
private readonly ProductUoW _uow = new ProductUoW();

// Other actions removed for brevity

 [Authorize]
 public ActionResult AddToOrder(int id)
 {
 Trace.TraceInformation("ProductController AddToOrder -
 Start");

 OrderItem item = null;

http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=vs.110).aspx

Azure Website Diagnostics and Debugging

[178]

 try
 {
 // Get customer details
 var uid = User.Identity.GetUserId();

 // Add to order
 item = this._uow.AddToOrder(id, uid);

 // Save
 this._uow.SaveChanges();
 }
 catch (Exception ex)
 {
 Trace.TraceError("ProductController AddToOrder Error:
 {0}", ex);

 throw;
 }

 Trace.TraceInformation("ProductController AddToOrder -
 End");

 return RedirectToAction("Index", new { productType =
 item.Product.ProductType });
 }

We're catching and rethrowing the exceptions in the controller, so they can be logged
but handled globally (the default configuration in FilterConfig) and not swallowed
by the controller.

The ProductUoW.AddToOrder method has a similar tracing implementation, with
a start and end information log and a catch block, which logs the exception but
rethrows it to the calling method up the stack:

public OrderItem AddToOrder(int id, string uid)
{
 Trace.TraceInformation("ProductUoW AddToOrder Start");

 OrderItem item = null;

 try
 {
 var customer = this._users.GetAll()
 .Include(u => u.Customer)
 .Single(u => u.Id == uid).Customer;

 // Try and find order
 Order order = this._orders.GetAll()

Chapter 6

[179]

 .Include(o => o.Items.Select(i => i.Product))
 .SingleOrDefault(o => o.Customer.Id == customer.Id &&
 o.Status == OrderStatus.Open);

 if (order == null)
 {
 order = new Order();
 order.Customer = customer;
 this._orders.Add(order);
 }

 // Look for OrderItem
 item = order.Items.SingleOrDefault(i => i.Product.Id ==
 id);
 if (item == null)
 {
 item = new OrderItem();
 item.Product = this._ctx.Products.Single(p => p.Id ==
 id);
 order.Items.Add(item);
 }
 else
 {
 item.Quantity++;
 }
 }
 catch (Exception ex)
 {
 Trace.TraceError("ProductUoW AddToOrder Exception: {0}",
 ex);
 throw;
 }

 Trace.TraceInformation("ProductUoW AddToOrder End");

 return item;
}

Although the repository is generic for any entity type T, it has the same tracing
implementation and uses the trace formatter overload methods to get the entity
type into the message:

public IQueryable<T> GetAll()
{
 Trace.TraceInformation("{0} Repository GetAll Start",
 typeof(T));

Azure Website Diagnostics and Debugging

[180]

 IQueryable<T> entities = null;

 try
 {
 entities = this._dbSet;
 }
 catch(Exception ex)
 {
 Trace.TraceError("{0} Repository GetAll Exception: {1}",
 typeof(T), ex);

 throw;
 }

 Trace.TraceInformation("{0} Repository GetAll End",
 typeof(T));

 return entities;
}

Once the changes to our website are published, if we enable APPLICATION
LOGGING (FILE SYSTEM) and set LOGGING LEVEL to at least INFORMATION
and then click on SAVE to save the changes, we will start gathering the tracing data
for our website (notice that the portal warns us that this will only be enabled for 12
hours as it's not a permanent method for tracing an application):

Now, if we go and exercise the action on the website, when we take a look at
the log that is generated, we can see the full timestamped trace for the Product
AddToOrder action:

2014-05-20T20:35:49 PID[1224] Information ProductController
 AddToOrder - Start
2014-05-20T20:35:49 PID[1224] Information ProductUoW AddToOrder
 Start

Chapter 6

[181]

2014-05-20T20:35:49 PID[1224] Information
 AzureBakery.Sales.CustomerWebsite.Models.ApplicationUser
 Repository GetAll Start
2014-05-20T20:35:49 PID[1224] Information
 AzureBakery.Sales.CustomerWebsite.Models.ApplicationUser
 Repository GetAll End
2014-05-20T20:35:53 PID[1224] Information
 AzureBakery.Sales.Model.Order Repository GetAll Start
2014-05-20T20:35:53 PID[1224] Information
 AzureBakery.Sales.Model.Order Repository GetAll End
2014-05-20T20:35:53 PID[1224] Information ProductUoW AddToOrder
 End
2014-05-20T20:35:53 PID[1224] Information ProductUoW Save Start
2014-05-20T20:35:54 PID[1224] Information ProductUoW Save End
2014-05-20T20:35:54 PID[1224] Information ProductController
 AddToOrder- End

Application logging to table storage
As we saw in the previous section, application file logging is not a permanent
logging solution, so we will need to set up an alternative. Table storage is useful as
we can interact directly with a table without having to download a log and examine
it offline. Once we start using storage, however, we incur additional charges for
holding the data; this is why it's sensible to normally only log errors and then enable
higher tracing levels when we are fault finding, which we could even temporarily
direct to file storage.

We cannot enable table storage through Visual Studio, so in the console, go to the
website's workspace CONFIGURATION tab and follow this procedure to set it up:

1.	 Enable APPLICATION LOGGING (TABLE STORAGE). Notice I've set
LOGGING LEVEL to Information, so we can see something in the table;
you may want to do the same for testing; you can change it later:

Azure Website Diagnostics and Debugging

[182]

2.	 Click on manage table storage and choose a STORAGE ACCOUNT
(if you've been following along, we created a storage account for SQL
database backups, but create one if you haven't got one). Select Create
new table (default) from the WINDOWS AZURE TABLE picker and
change TABLE NAME if you like, and then click on the tick to accept:

3.	 Click on SAVE on the toolbar to finish.
4.	 Once this is configured, browse around the website again, then look at the

Tables folder in the Visual Studio Server Explorer window, and we will
see our new log table:

Chapter 6

[183]

5.	 If we double-click on it, we will see a paged view of the data:

6.	 There are a number of extra fields (PartitionKey, RowKey, and Timestamp)
which are integral to table storage, but the rest of the information is pretty
much the same as with file storage, except we don't need to take information
such as the server's InstanceId or Pid from the file name, so it's easier to read
and query.

Querying table data
We can use WCF Data Service filters (this gives us a clue to the mechanics of how
Visual Studio accesses the data) to help us filter table data; there is a query builder,
but it's not very helpful as it only lets us query table key fields.

We can write a filter similar to the one shown in the following code to filter all entries
for a particular InstanceId and Message:

InstanceId eq 'e48f8f' and Message eq 'ProductUoW Save End'

We'll see the results as shown in the following screenshot:

There is a good reference to create filter strings at http://msdn.microsoft.com/
en-us/library/ff683669.aspx.

http://msdn.microsoft.com/en-us/library/ff683669.aspx
http://msdn.microsoft.com/en-us/library/ff683669.aspx

Azure Website Diagnostics and Debugging

[184]

Application logging to blob storage
APPLICATION LOGGING (BLOB STORAGE) stores all logfiles, which can be
downloaded and examined offline from a blob container.

To enable blob storage, use the following procedure:

1.	 In the website's workspace CONFIGURE tab, enable APPLICATION
LOGGING (BLOB STORAGE) under site diagnostics and click on
manage blob storage:

I've enabled SET RETENTION with the default RETENTION PERIOD of 14
days, so logs are only kept for 2 weeks.

2.	 Next, choose a STORAGE ACCOUNT, select Create a new blob container
(default), and change the BLOB CONTAINER NAME if you like:

Chapter 6

[185]

3.	 Click on the tick button and then on SAVE on the toolbar.
4.	 Go and browse around the website to generate some traffic, then go back

to Visual Studio and navigate to the Storage | Blobs folder in the Server
Explorer window, and then double-click on the blob container we just
created to see the logfiles:

5.	 To view a log, we can click on the Open Blob button, which will download
it and launch it in your default CSV editor (probably, Excel), or click on the
Save As button to save the file:

Diagnosing a real bug
We're going to artificially introduce a bug into our website and deploy it to Azure
in the Release mode, so the error page doesn't give the bug away (which it would in
the Debug mode). Then, track it down using diagnostics in table storage.

Azure Website Diagnostics and Debugging

[186]

Setting up the website
To get started, get the chapter's code from the samples, and then follow this
procedure:

1.	 Replace the OrderUoW.GetCustomerOrders part with this code:
public IQueryable<Order> GetCustomerOrders(string uid)
{
 Trace.TraceInformation("OrderUoW GetCustomerOrders
 Start");

 IQueryable<Order> orders = null;

 try
 {
 var customer = this._ctx.Users
 .Include(u => u.Customer)
 .Single(u => u.UserName == uid).Customer;

 // Try and find orders
 orders = this._ctx.Orders
 .Include(o => o.Customer)
 .Where(o => o.Customer.Id == customer.Id)
 .OrderByDescending(o => o.CreatedDate);
 }
 catch (Exception ex)
 {
 Trace.TraceError("OrderUoW GetCustomerOrders
 Exception: {0}", ex);

 throw;
 }

 Trace.TraceInformation("OrderUoW GetCustomerOrders
 End");

 return orders;
}

2.	 Publish the website in the Release mode.
3.	 Enable APPLICATION LOGGING (TABLE STORAGE) in the

CONFIGURE tab in the portal.
4.	 Check that LOGGING LEVEL is set to Information or higher.

Chapter 6

[187]

Producing an error
Now that the website is ready, log in, navigate around the site, and select Orders from
the navigation bar. An exception should be thrown by the bug we've introduced, and
we should see the custom error page (Error.cshtml) telling us that An error occurred
while processing your request.

We'll now go and look for the error in the following procedure:

1.	 Open the wawsapplog table for the published website in the Server Explorer
window in Visual Studio.

2.	 If there are only a few items in the log, the error will be easy to find; however,
if there are more than a few pages, we can construct a query to quickly find
any recent errors.

3.	 Enter the following query in the filter box and click on Execute to run it:
Level eq 'Error' and Timestamp gt datetime'2014-08-18T12:30:00'

4.	 Even though we've artificially introduced the bug, we're not going to assume
anything about the error at this point, so we've used a general query to filter
the log's Level to Error and the Timestamp value around the time we saw
the error occur.

5.	 The results should return two error records, one for the UoW method and
one for the controller, where the exception was rethrown. Now that we know
more about the error, we can requery the data without the Level filter to find
more about the sequence of events up to the error, which could potentially
help us recreate the bug if we weren't sure what it is.

6.	 If we double-click on the error for the OrderUoW error row, we can see the
error:
OrderUoW GetCustomerOrders Exception:
 System.InvalidOperationException: Sequence
 contains no elements
 at System.Linq.Enumerable.Single[TSource](IEnumerable`1
 source)
 at …[Middle removed for brevity]
 AzureBakery.Sales.CustomerWebsite.DataAccess.OrderUoW.
GetCustomerOrders(String uid)

7.	 This shows us our formatted error message including the class and method
names at the start to help us quickly identify the source of the error and the
stack trace, which shows us that the exception was caused by trying to call
the Single method on an empty enumerable. The full stack trace shows the
full name of the method, which called it at the end of the trace.

Azure Website Diagnostics and Debugging

[188]

Site diagnostics
Websites give us a number of site-diagnostic capabilities, which provide us insight
into what our website is doing above the application layer (performing REMOTE
DEBUGGING falls more into the application layer, but the configuration controls
whether a debugger can be attached to a web server, which is a site layer). I think
of this category of diagnostics in the same way as IIS logging on an on-premises
web server.

Site diagnostics offers us the following diagnostic facilities:

•	 WEB SERVER LOGGING: This logs all HTTP transactions for a website,
which can be helpful for monitoring transactional throughput of a site and
gathering metrics. Logs can be stored to the FILE SYSTEM and are limited to
a configurable QUOTA that ranges between 25 MB and 100 MB, or to a blob
storage, which allows greater flexibility for storage size but will incur costs.

•	 DETAILED ERROR MESSAGES: This logs extra detailed error information
for HTTP status codes that are 400 or higher and are returned by the web
server. Detailed error logs are HTML files linked from a normal web server
log with a URI and are located in the Logfiles/DetailedErrors folder.
Detailed Error Messages can be enabled via the website's workspace
CONFIGURATION tab in the portal, or through the settings in the Visual
Studio Server Explorer window, which are the same as the other site's
diagnostics settings. We can easily generate a 404 error by typing an invalid
site's URL into a browser, for example https://azurebakery.com/nopage.

•	 FAILED REQUEST TRACING: This logs failed HTTP requests to the
filesystem, allowing you to diagnose performance issues on websites.

Extra filesystem settings
If we take a look at the CONFIGURATION tab of our website's workspace in the
portal, we can see there are some extra settings for WEB SERVER LOGGING under
the site diagnostics section:

Chapter 6

[189]

We can adjust the storage QUOTA from 25 MB to 100 MB, which will come out
of our website's storage allowance, so there's no additional cost. By default, the
logs will be stored indefinitely unless we enable SET RETENTION and choose a
RETENTION PERIOD.

Site diagnostics using blob storage
As well as saving web server logs to a file, we can also save them to Azure blob
storage, which can be configured through the portal.

To enable blob storage, use the following procedure:

1.	 In the website's workspace CONFIGURE tab, click on STORAGE under
site diagnostics and click on manage storage:

2.	 Next, choose a STORAGE ACCOUNT, select Create a new blob container
(default), and change the BLOB CONTAINER NAME if you like. It's a
good idea to use a separate container for each site and application / server
diagnostics to make managing logs more straightforward:

Azure Website Diagnostics and Debugging

[190]

3.	 As with the FILE SYSTEM storage, we can enable SET RETENTION to
automatically remove logs older than a certain age.

4.	 Click on the tick button and then click on SAVE on the toolbar.
5.	 Go and browse around the website to generate some traffic, then go back to

Visual Studio and expand the Storage | Blobs folder in Server Explorer, and
then, double-click on the blob container we just created to see the logfiles:

6.	 To view a log, we can click on the Open Blob button, which will launch in
your default text editor (probably Notepad) or click on the Save As button
to save to the file:

Kudu
Kudu is an open source (https://github.com/projectkudu/kudu) engine, which
powers Azure website Git deployments and continuous deployments on all Azure
websites. There is a Kudu service in every website, which can be accessed via the
following URL https://mysite.scm.azurewebsites.net. If you have a custom
domain name implemented, you will need to use the azurewebsites.net endpoint
unless you do extra DNS configuration for this endpoint.

https://github.com/projectkudu/kudu
https://mysite.scm.azurewebsites.net

Chapter 6

[191]

The Kudu service website looks like this:

There are some useful tools in here for working with logs; the Diagnostic Console
(under Debug Console) has a CMD and PowerShell console in the browser along
with a directory explorer, which allows you to work with logfiles:

You can get more information on the Kudu service at https://github.com/
projectkudu/kudu/wiki/Accessing-the-kudu-service.

https://github.com/projectkudu/kudu/wiki/Accessing-the-kudu-service
https://github.com/projectkudu/kudu/wiki/Accessing-the-kudu-service

Azure Website Diagnostics and Debugging

[192]

Remote debugging
Azure websites have great remote debugging support integrated into Visual Studio;
we can enable remote debugging in the portal, and then attach the debugger through
Server Explorer. Unfortunately, this is not supported in Visual Studio Express, so I
will use Visual Studio 2013 Ultimate to demonstrate it (Premium and Professional
are fine too). To start remote debugging, use the following procedure:

1.	 Make sure the website is deployed in the Debug configuration because the
Release configuration is optimized and cannot be debugged. If the website
is not deployed in the Debug configuration, you will see an error message
like this:

2.	 To publish the website in the Debug configuration, change the Configuration
setting under the Settings tab in the Publish Web dialog before publishing:

Chapter 6

[193]

3.	 In the Azure portal, go to the CONFIGURATION tab in our website
workspace, scroll down to the site diagnostics section, enable REMOTE
DEBUGGING, and set REMOTE DEBUGGING VISUAL STUDIO
VERSION to 2013:

4.	 Notice that the warning about debugging is only enabled for 48 hours, so if
you leave it for a few days and try to connect the debugger and it fails, this is
why! Click on SAVE on the toolbar.

5.	 As a test, put a breakpoint in the HomeController Index action like this:

Azure Website Diagnostics and Debugging

[194]

6.	 In the Visual Studio Server Explorer window, right-click on the website you
want to debug and select Attach Debugger:

7.	 The website will open in a new browser window and the remote debugger
will attach and break at our breakpoint. We can see the Call Stack window
too (we don't get IntelliTrace though):

Chapter 6

[195]

When to use remote debugging
Remote debugging is a really cool bit of functionality, but you need to think carefully
about when and if you can actually use it.

If you are working on a development system, remote debugging might be quite
helpful; although most of the time, you should be able to satisfactorily debug the
application locally.

If you have a serious problem with a production website, remote debugging
might not be a viable option to help you determine what the problem is due
to the following reasons:

•	 Your website will be deployed in the Release configuration build, so you
cannot remotely debug it.

•	 Deploying the website in the default Debug configuration may expose the
inner working details in the default error pages, which can reveal potential
exploits within the application; in addition to this, there may be some
performance degradation from running non-optimized code.

•	 If your organization doesn't allow developers to administer production
systems, you may not be allowed anywhere near the website unless it's
an emergency!

For production systems, sufficient diagnostic instrumentation should be implemented
to enable administrators and developers to determine a point of failure and possibly
catch an exception. This would hopefully help a developer reproduce and fix the
problem, or highlight areas of the application that require further diagnostics
implementing to help further diagnose the problem.

Summary
We've learned some really useful diagnostic techniques in this chapter to help us find
problems in our Azure websites. I was planning on finishing this chapter by covering
how to use Entlib SLAB (which is a more advanced logging block from the Microsoft
patterns and practices team) with Azure table storage, but ran out of space, so you
can read about it on my blog here:

http://webbercross.azurewebsites.net/entlib-slab-with-mvc5-website-
and-azure-trace-listener/

In the next chapter, we're going to start configuring our Service Bus topic and
integrate the sales customer website so that order messages will be sent to the
other business domain systems when orders are created by the customers.

http://webbercross.azurewebsites.net/entlib-slab-with-mvc5-website-and-azure-trace-listener/
http://webbercross.azurewebsites.net/entlib-slab-with-mvc5-website-and-azure-trace-listener/

Azure Website Diagnostics and Debugging

[196]

Questions
1.	 In terms of logging configuration, why is it important to be careful

when swopping a staging table to live?
2.	 What type of logging is available to application logging and

server diagnostics?
3.	 What information does the APPLICATION LOGGING (FILE SYSTEM)

file-naming convention give us?
4.	 How do we filter streaming logs in Visual Studio?
5.	 Which .NET object helps us write trace information in our website?
6.	 What is a sensible normal logging level for an application and why?
7.	 What method can we use to trace a formatted message at the

Information level?
8.	 In the controller example, why are we catching and rethrowing

the exception?
9.	 How long is application logging to a file enabled for?
10.	 What types of application logging storage are not configurable through

Visual Studio?
11.	 What type of filter query do we use with table storage?
12.	 What information do site diagnostics DETAILED ERROR MESSAGES

give us?
13.	 What is the URL for a website's Kudu service?
14.	 Does Visual Studio Express support remote debugging?
15.	 Why must we publish a website in the Debug configuration to allow

remote debugging?
16.	 How long is a remote debugging session enabled for?
17.	 The BasketHelper.GetCount method doesn't have any diagnostics

implemented; add some tracing and some error trapping to catch and
log any errors.

18.	 Introduce a bug into the BasketHelper.GetCount method, publish the site
in the Release mode, and examine the logs to check whether the diagnostics
are working.

Chapter 6

[197]

Answers
1.	 Configuration settings are swopped with the website, so logging settings will

be swopped.
2.	 File logging.
3.	 Log Files/application/[Instance Id]-[PID]-[EventTickCount].txt - Instance

Id, Process ID.
4.	 Open the filter options using the double-chevron button on the right-hand

side of the streaming log output toolbar and enter a filter string.
5.	 System.Diagnostics.Trace.
6.	 Error: This will allow us to catch or log any errors but minimize storage with

additional information.
7.	 TraceInformation (string, object[]).
8.	 This is because the controller doesn't swallow the exception and allows the

error to be handled globally by the default FilterConfig.
9.	 12 hours.
10.	 Table and blob storage.
11.	 WCF Data Service filters.
12.	 Extra information about error response codes 400 or greater.
13.	 https://mysite.scm.azurewebsites.net.
14.	 No.
15.	 This is because the Release configuration is optimized and cannot be

remote debugged.
16.	 48 hours.
17.	 NA.
18.	 NA.

https://mysite.scm.azurewebsites.net

Azure Service Bus
Topic Integration

In this chapter, we're going to start implementing an Azure Service Bus topic that
allows the subsystems across the three business units to send order status messages
to each other and receive them via topic subscriptions.

After a quick introduction to Microsoft Azure Service Bus and topics, we'll create
our Service Bus infrastructure, integrate the sales customer website, and create
a WPF messaging simulator application, which will introduce some of the Azure
Service Bus SDK features and provide us with a useful tool to help us build and
test the full enterprise system.

We'll cover the following areas in this chapter:

•	 An overview of Microsoft Azure Service Bus topics
•	 Creating a Service Bus topic
•	 Connecting a website to a topic
•	 Creating a message simulator
•	 Exploring the portal's topic workspace

This will give us the foundations for building the rest of the system throughout the
remainder of the book.

Azure Service Bus Topic Integration

[200]

Introducing Azure Service Bus and topics
Service Bus technology, in general (not specific to Microsoft or Azure), allows
multiple subsystem tiers in enterprise systems to communicate with each other
in a loosely coupled and resilient manner.

Service Bus queues have a one-to-one relationship between providers and
consumers, where a provider posts a message to a queue and it can be removed and
processed once by a single consumer. This means we can easily scale up a consumer
application without the fear of duplicating work; however, if we have a different
application that may be interested in the same message, which is the case in our
Azure Bakery system, we will need multiple processing applications to receive the
same messages. This is the reason we selected an Azure Service Bus topic.

Service Bus topics handle messages to queues in a similar way, except that we can
have multiple subscriptions for a topic that has a one-to-one relationship, where the
applications interact in a similar way with a subscription as they do in a queue, in
that only a single consumer may remove and process a message from a subscription.
This gives us deterministic one-to-many messaging across our system.

In our Azure Bakery system, we have a single Service Bus topic, which spans the
whole system, allowing applications to send messages and receive them via their
own subscriptions:

Production Order

Processor

Sales Production Supply

Customer Website

Production

Management

Application

Mobile App

Sales Order

Processor

Supply

Order Processor

Order Status Topic

Service Bus

Subscription
Subscription

Filter=New
Subscription

Status

=

New

Status

=

Ready

Status

=

Dispatched

Chapter 7

[201]

The following is the sequence of an order message life cycle through the topic:

1.	 A customer creates an order in the sales customer website, where an order
message is sent to the topic with the New status.

2.	 The Production Order Processor (worker role) consumes the New status
messages from its filtered Subscription, allocating stock and creating
batch schedules.

3.	 The Supply Order Processor (worker role) consumes all messages and
uses the New status messages before production to prepare packaging
and address labels.

4.	 Once the Production business unit has finished manufacturing all items of
an order, it will mark the order with ReadyToDispatch in the Production
Management Application, which will send a message to the topic.

5.	 The Sales Order Processor (worker role) consumes all messages and updates
the order status in its database, allowing customers to view the status of
their orders via the Customer Website and Mobile App; it also sends push
notifications to the mobile application when orders are dispatched.

6.	 The Supply Order Processor uses the ReadyToDispatch status messages to
pick up completed orders from production and schedule deliveries.

7.	 Once the product has been dispatched, an order status message with a
Dispatched status is sent via the supply mobile application, and the order
life cycle is complete.

Queues and topics can help level the workload of a system by effectively buffering
work items, allowing worker processes to process them in their own time and scale
up, as required.

Disconnected systems in which applications may not always be online to communicate
with each other can really benefit from implementing Service Bus messaging, as
they can send messages to a topic or queue without continually having to retry the
disconnected target system when it is offline; once the target system comes online, it
can read and process the messages.

Dead-letter queues
Under various failure conditions, messages can be automatically sent to a topic's
dead-letter queue (the same applies to Service Bus queues). We can configure topics
and subscriptions to dead-letter messages if their Time to live (TTL) expires, if they
don't have a matching subscription filter, or if they cannot be delivered.

Azure Service Bus Topic Integration

[202]

We need to pay attention to the dead-letter queue as it consumes our storage
allocation for the topic, but it can also allow us to administer undelivered
messages and diagnose potential performance issues or application problems.

Each subscription has its own dead-letter queue that can be accessed using the
TopicClient object with /$DeadLetterQueue appended to various failure conditions;
messages can be automatically sent to a the subscription name, like this:

// Create subscription client
var subscriptionClient = SubscriptionClient.Create("TopicName",
 "SubscriptionName");

// Create dead letter client using subscription client TopicPath
var deadLetterClient =
 SubscriptionClient.Create(subscriptionClient.TopicPath,
 "SubscriptionName" + "/$DeadLetterQueue");

Creating a Service Bus topic
Once we have a Service Bus namespace in place, Azure Service Bus topics and
subscriptions can be created through the portal at design time and in code at
runtime (also using the Azure PowerShell console, but we're not covering that).
This makes it possible to create everything up front, providing the subsystems
with the design details, or have the individual subsystems provision their own
messaging infrastructure.

Creating Service Bus components in-code has security implications, as in order to
create queues and topics, an application needs to use the namespace Access Control
Service (ACS) or Shared Access Signature (SAS) credentials. System administrators
may not want production applications to have this kind of capability, so they don't
lose control over the Service Bus infrastructure architecture. If these credentials
are compromised, the whole namespace can be at risk of an attack. To create
subscriptions in-code, we need the Manage permission on a SAS policy in the topic,
which is less risky but still gives us full control over the topic.

We're going for a middle-ground approach, where we'll create a topic in the portal
so that each subsystem doesn't need namespace authorization and doesn't have
to test for the existence of the topic and create it if it doesn't exist at startup. The
subsystems will create their own subscriptions at runtime using their own tailored
SAS credentials.

Chapter 7

[203]

We'll get started by creating a topic in the portal with the following procedure
(because we don't already have a Service Bus namespace, this will be created too):

1.	 Click on the NEW service button in the SERVICE BUS workspace; select
TOPIC and then CUSTOM CREATE:

2.	 Fill in the TOPIC NAME, select a REGION, choose a SUBSCRIPTION,
and enter a name in NAMESPACE NAME (the NAMESPACE field can be
used for multiple TOPIC, QUEUE, RELAY, and NOTIFICATION HUB, so
choose a general name, not specific to the topic) and click on the next arrow:

Azure Service Bus Topic Integration

[204]

3.	 Next, we will configure the topic to have the lowest MAX SIZE value (this is
the maximum total message size the topic can hold) of 1 GB. Once a message
is consumed, it is removed from the topic; we're expecting all our systems
to be online all the time and we'll be using small messages, so this should
be fine. If we had a disconnected system where consumers come online
periodically with long offline intervals and large messages, we will need a
larger topic size as messages would build up.

4.	 Set DEFAULT MESSAGE TIME TO LIVE; I left this as 14 days (default).
If you have a disconnected system, you need to be careful with this setting,
as messages can be removed from the topic before a consumer has the chance
to collect it if the TTL is set too low.

5.	 I'm setting Enable duplicate detection so that any duplicate messages
(determined by comparing the BrokeredMessage.MessageId property) will
be automatically removed from the topic). We need to be careful with this
setting too as historical messages form a part of our MAX SIZE quota.

6.	 I'm setting Enable Partitioning, which will allow multiple message brokers
to process our messages, so we're not limited by the performance of a single
broker. This setting can't be changed afterwards, so if you want to implement
it, set it now!

Chapter 7

[205]

There is no extra cost incurred from using partitioning, so it's definitely
worth using it. You can read more about message partitioning at
http://msdn.microsoft.com/en-us/library/dn520246.aspx.

7.	 In the topic workspace CONFIGURE tab, I've enabled FILTER MESSAGE
BEFORE PUBLISHING so that a NoMatchingSubscriptionException
is thrown to the client when messages sent to the topic have no matching
subscription. If this is not set, these messages will fall into a black hole
or eventually appear in the dead-letter queue once they're expired,
if configured to do so:

8.	 Once the topic is created, navigate to the CONFIGURE tab in the TOPIC
workspace and scroll down to the shared access policies section. We're going
to create a policy for the sales customer website, so we don't have to use
the namespace connection credentials, which would allow the application
to have full control over the whole namespace; this is a good practice
for security.

http://msdn.microsoft.com/en-us/library/dn520246.aspx

Azure Service Bus Topic Integration

[206]

9.	 Add a NAME for the new policy and adjust the permissions; I chose Send
as we only want to send messages to the topic. Listen allows messages to be
read from the topic, and Manage allows full control over the topic. Click on
SAVE in the toolbar:

10.	 At the bottom of the page, we should now see keys generated under
shared access key generator; we can regenerate the keys from here
if they were ever compromised:

11.	 Create another policy called SalesSimulator with Manage permissions.

Connecting a website to the Service
Bus topic
We last saw the sales customer website order controller in Chapter 5, Building Azure
MVC Websites, with the order status being updated to New in the sales database.
Now that we have the service bus topic set up, we can modify this to send an order
message for the production business domain to process and start manufacturing and
the supply business domain to process and prepare packaging.

Chapter 7

[207]

Preparing the website
The following procedure walks us through the installation of the WindowsAzure.
ServiceBus NuGet package and configuration of the connection string, allowing
the website to interact with the Service Bus:

1.	 In the portal, navigate to the TOPICS tab in the Service Bus workspace, select
the new topic, and click on CONNECTION INFORMATION on the toolbar:

2.	 Here, we can see the SAS connection string for the SAS policies we just
created. Leave this page open so that we can copy the strings later:

3.	 In order to interact with the Service Bus from the website, we need to install
the WindowsAzure.ServiceBus NuGet package, so go to our website
solution in Visual Studio and enter the following command in the Package
Manager Console to install the package:
Install-package windowsazure.servicebus

Azure Service Bus Topic Integration

[208]

4.	 The package will create a connection string in the appSettings section
of the Web.config file, which allows the application to connect to our
newly created Service Bus namespace using ACS. Find the Microsoft.
ServiceBus.ConnectionString app setting in the Web.config file,
using the following code:
<!-- Service Bus specific app settings for messaging connections
<add key="Microsoft.ServiceBus.ConnectionString"
 value="Endpoint=sb://[your
 namespace].servicebus.windows.net;SharedSecretIssuer=owner;
 SharedSecretValue=[your secret]" />

5.	 Copy the SAS CONNECTION STRING value from the portal and paste it
into the value attribute like this:

<add key="Microsoft.ServiceBus.ConnectionString" value="
 Endpoint=sb://azurebakery.servicebus.windows.net/;
 SharedAccessKeyName=SalesCustomerWebsite;
 SharedAccessKey=Z842VTFPrHI/XXXXXXXXXXXXXXXXxxxxxxxxxxxxxx=" />

Creating messaging logic
Now that we've got the WindowsAzure.ServiceBus NuGet package installed, we
can work on sending order messages. First, we'll create a messaging service class
in order to separate our messaging logic from our controller, which will build
order messages and send them with optional retries; this is done by completing the
following steps:

1.	 Add a class called MessagingService, which will separate the messaging
logic from the controller (if you are using dependency injection, this can be
abstracted and injected into the controller by the controller factory), and add
a method to send the order to the Service Bus topic.

2.	 Add a TopicClient variable, which is instantiated in the constructor, and a
string variable for the topic name:
using System;
using System.Diagnostics;
using System.Threading.Tasks;
using Microsoft.ServiceBus.Messaging;
using AzureBakery.Sales.Model;

namespace AzureBakery.Sales.CustomerWebsite.Services
{
 public class MessagingService
 {
 private readonly TopicClient _topicClient = null;

Chapter 7

[209]

 private readonly string _topicName = "Order";

 public MessagingService()
 {
 // Create TopicClient (this uses the
 Microsoft.ServiceBus.ConnectionString app setting
 this._topicClient =
 TopicClient.Create(_topicName);
 }
 }
}

The TopicClient object allows us to interact with a topic at runtime; you
can read more about it at http://msdn.microsoft.com/en-us/library/
microsoft.servicebus.messaging.topicclient.aspx.

3.	 Next, we'll add a public SendOrderAsync method, which will be used by the
OrderController to send an order across the system without concerning
itself with messaging mechanics. The TopicClient object supports async
operations, which are more efficient with thread resources, so I've used
these and made my methods async Task<T> typed, so they can be called
asynchronously using the await operator. The SendOrderAsync method
takes an order parameter and creates a BrokeredMessage object (this is the
message object that is sent across the Azure Service Bus) with the Status
property set to New, allowing it to be filtered by subscriptions that look for
newly created orders and a unique ID:
public async Task<bool> SendOrderAsync(Order order, int retires =
0)
{
 Trace.TraceInformation("MessagingService SendOrder -
 Start");

 // Create message with Order body
 BrokeredMessage message = new BrokeredMessage(order);

 // Set status to New
 message.Properties["Status"] = "New";

 // Unique Id
 message.MessageId = Guid.NewGuid().ToString();

 var sent = await this.SendMessageAsync(message,
 retires);

 Trace.TraceInformation("MessagingService SendOrder -
 Start");

 return sent;
}

http://msdn.microsoft.com/en-us/library/microsoft.servicebus.messaging.topicclient.aspx
http://msdn.microsoft.com/en-us/library/microsoft.servicebus.messaging.topicclient.aspx

Azure Service Bus Topic Integration

[210]

4.	 Next, we'll implement the SendMessageAsync method, which will send
a BrokeredMessage object with the option for retries. It's a good idea
to implement a retry mechanism in case a send fails. There's a helpful
IsTransient property on the MessagingException object, which indicates
whether the message has failed due to transient comms conditions and
should be retried:

private async Task<bool> SendMessageAsync(BrokeredMessage message,
int retires = 0)
{
 Trace.TraceInformation("MessagingService SendMessage -
 Start");

 int retry = 0;
 bool sent = false;

 while (true)
 {
 try
 {
 // Send message
 await this._topicClient.SendAsync(message);
 sent = true;
 break;
 }
 catch (MessagingException ex)
 {
 // If an exception is transient we will retry
 if (ex.IsTransient)
 {
 retry++;

 Trace.TraceInformation("MessagingService
 SendMessage - Retry: {0}", retry);
 }
 else
 {
 Trace.TraceError("MessagingService
 SendOrder Error: {0}", ex);

 throw;
 }
 }

 if (retry > retires)

Chapter 7

[211]

 break;

 // Back-off for retry
 await Task.Delay(2000);
 }

 Trace.TraceInformation("MessagingService SendMessage -
 End");

 return sent;
}

Sending a message from the controller
Now we can modify the behavior of the controller to send an order message and
update the order once it is complete. If the send fails (after three retries), the order
will be marked as MessageFailed (a new state), which will allow the order to be
picked up by the sales business domain order processor worker role to try and
resend it later, which means we don't have to ask the customer to try later.

As the SendOrder method is asynchronous, the PayConfirm method is now marked
async Task<ActionResult>:

public async Task<ActionResult> PayConfirm()
{
 Trace.TraceInformation("OrderController PayConfirm - Start");

 ViewResult vw = null;

 try
 {
 var order = this.GetOpenOrder();

 // At this point we would need to take a card payment or
 setup an invoice
 // But this isn't real so we'll order the item!

 var msgService = new MessagingService();

 if (await msgService.SendOrderAsync(order, 3))
 {
 // Update status to New
 order.Status = OrderStatus.New;
 }
 else

Azure Service Bus Topic Integration

[212]

 {
 // Update status to MessageFailed, which will indicate
 to the Sales order processor that it need resending
 order.Status = OrderStatus.MessageFailed;
 }

 this._uow.SaveChanges();

 vw = View();
 }
 catch (Exception ex)
 {
 Trace.TraceError("OrderController PayConfirm Error: {0}",
 ex);

 throw;
 }

 Trace.TraceInformation("OrderController PayConfirm - End");

 return vw;
}

One final tweak I did was to mark the OrderItem class with the
[DataContract(IsReference = true)] attribute, so that it can be serialized. This
needs the System.Runtime.Serialization assembly referencing in the project.

If we run this now, the SendAsync method will throw a
NoMatchingSubscriptionException because we don't have any subscriptions
to consume the message, which is good, as this means we have a deterministic
messaging implementation. If you want to test it now, go to the CONFIGURATION
tab of the topic workspace in the portal and disable FILTER MESSAGE BEFORE
PUBLISHING, which will stop the exception being thrown; however, we will be
creating a simulator in the next section, which has a subscription that enables itself
and the website to send messages.

The messaging simulator
The customer website is now integrated into the Service Bus, so new order messages
are sent to the topic for the production and distribution business domains to process.
To test the worker roles and load-test the system, we don't want to manually create
orders through the website, as this would be extremely laborious and time-consuming,
so we'll create a simulator application, which can generate orders of varying products
at configurable rates on demand.

Chapter 7

[213]

We'll create a new WPF application, which will allow us to start and stop messaging;
control the order message cycle delay; and decide the quantity range of individual
items to be added to the order, and the number of concurrent simulator threads,
which will allow us to heavily load the system during testing.

If you don't have access to Visual Studio Professional, Premium, or Ultimate, you can
create a new solution using Visual Studio Express for Desktop and add the existing
Model project instead.

Setting up the project
First, we'll create a new WPF project, install some NuGet packages, and configure the
Service Bus and database connection strings in the following procedure:

1.	 If you're not using Visual Studio Express, add a new WPF application
called OrderSim.

2.	 If you're using Visual Studio Express for Desktop, create a new solution
with a WPF project called OrderSim, and add the existing Model project by
right-clicking on the solution and navigating to Add | Existing Project….

3.	 Add a Model project reference to the OrderSim project.
4.	 Next, we'll install a number of NuGet packages: MVVM Light, which

provides us with a quick-to-implement MVVM architecture, Entity
Framework, which we've used in our websites already so far, and Windows
Azure Service Bus, which we also used in the customer website. Enter
the following commands into the Package Manager Console to install
these packages:
Install-package mvvmlight

Install-package entityframework

Install-package windowsazure.servicebus

5.	 As with the website, the package will create a connection string in the app
settings section of the app.config file, which allows the application to
connect to our newly created Service Bus namespace using SAS. Find the
Microsoft.ServiceBus.ConnectionString app setting in the app.config
file like this:
<!-- Service Bus specific app settings for messaging
 connections
<add key="Microsoft.ServiceBus.ConnectionString"
 value="Endpoint=sb://[your
 namespace].servicebus.windows.net;SharedSecretIssuer=owner;
 SharedSecretValue=[your secret]" />

Azure Service Bus Topic Integration

[214]

6.	 Copy the OrderSim SAS connection string from the portal and paste it into
the value attribute like this:
<add key="Microsoft.ServiceBus.ConnectionString" value="
 Endpoint=sb://azurebakery.servicebus.windows.net/;
 SharedAccessKeyName=SalesSimulator;
 SharedAccessKey=Z842VTFPrHI/XXXXXXXXXXXXXXXXxxxxxxxxxxxxxx=" />

7.	 Copy the connection string from the website and paste it into the app.
config file under the appSettings block like this:

</appSettings>
<connectionStrings>
 <add name="DefaultConnection" connectionString="Data
 Source=localhost;Initial Catalog=
 AzureBakerySales;Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

We're just going to use the local database as we're only interested in reading
the product list. If the Azure database had more products, we could use
that instead.

Creating a data service
MVVM Light comes with a built-in SimpleIoc, which means we can easily create
services (application domain logic, not web services) and register them along with
the view models in the IoC container, which will automatically inject them into the
view models when we request them.

This approach makes it really easy to separate the view model from the business; in
a large application, it's best to separate the service layer into its own assembly, so it
can easily be tested independently, and the application view models can be tested
against mock services; however, we'll keep things in the same project for simplicity
and for the benefit of having clean and easy-to-understand code. We'll create a data
service to access product data:

1.	 First, create an ApplicationDbContext EF DbContext implementation class
(I put mine under a solution folder called DataAccess):
namespace AzureBakery.Sales.DataAccess
{
 public class ApplicationDbContext : DbContext
 {
 public ApplicationDbContext()
 : base("DefaultConnection")
 {

Chapter 7

[215]

 base.Configuration.ProxyCreationEnabled =
 false;

 Database.SetInitializer<ApplicationDbContext>(null);
 }

 public DbSet<Product> Products { get; set; }
 }
}

Notice that the database initializer is set to null to stop EF
from trying to create the database from the model because
the website controls the database migrations.

2.	 Create an interface called IDataService under a Services/Interfaces
folder with a single GetProducts method:
using AzureBakery.Sales.Model;
using System.Collections.Generic;

namespace AzureBakery.Sales.OrderSim.Services.Interfaces
{
 public interface IDataService
 {
 IEnumerable<Product> GetProducts();
 }
}

3.	 Now create a class called DataService under the Services folder, which
implements the IDataService interface and returns products from the
database on the GetProducts method:
using AzureBakery.Sales.DataAccess;
using AzureBakery.Sales.OrderSim.Services.Interfaces;
using System.Collections.Generic;

namespace AzureBakery.Sales.OrderSim.Services
{
 public class DataService : IDataService
 {
 private readonly ApplicationDbContext _ctx = new
 ApplicationDbContext();

 public IEnumerable<Model.Product> GetProducts()
 {

Azure Service Bus Topic Integration

[216]

 return this._ctx.Products;
 }
 }
}

4.	 Finally, register the service in the IoC container within the constructor of
the ViewModelLocator class (notice that the MainViewModel class is
already registered):

public ViewModelLocator()
{
 ServiceLocator.SetLocatorProvider(() =>
 SimpleIoc.Default);

 SimpleIoc.Default.Register<IDataService,
 DataService>();

 SimpleIoc.Default.Register<MainViewModel>();
}

Creating a messaging service
We'll now create a MessagingService that is similar to the one we implemented
in the sales customer website, which will allow us to send messages, create a
subscription, and purge messages from the subscription:

1.	 Create an interface called IMessagingService under a Services/
Interfaces solution folder with the following methods:
using AzureBakery.Sales.Model;
using System.Threading.Tasks;

namespace AzureBakery.Sales.OrderSim.Services.Interfaces
{
 public interface IMessagingService
 {
 Task CreateSubscriptionAsync();

 Task<int> PurgeSubscriptionAsync();

 Task SendOrderAsync(Order order, int retires = 0);
 }
}

Chapter 7

[217]

2.	 Next, create a class called MessagingService, which implements
IMessagingService under the Services solution folder, and add the
topic and subscription name constants and a TopicClient variable
during instantiation:
using AzureBakery.Sales.Model;
using AzureBakery.Sales.OrderSim.Services.Interfaces;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System;
using System.Linq;
using System.Threading.Tasks;

namespace AzureBakery.Sales.OrderSim.Services
{
 public class MessagingService : IMessagingService
 {
 private readonly TopicClient _topicClient = null;
 private const string _topicName = "Order";
 private const string _subscriptionName =
 "SalesSimSubscription";

 public MessagingService()
 {
 this._topicClient =
 TopicClient.Create(_topicName);
 }
 }
}

3.	 Now, implement the CreateSubscription method with a check to see if it
exists, before creating it:
public async Task CreateSubscriptionAsync()
{
 var namespaceManager = NamespaceManager.Create();

 // Look for topic
 if (! await
 namespaceManager.TopicExistsAsync(_topicName))
 return;

 var topic = await
 namespaceManager.GetTopicAsync(_topicName);

Azure Service Bus Topic Integration

[218]

 if (!await
 namespaceManager.SubscriptionExistsAsync(_topicName,
 _subscriptionName))
 {
 var newOrderFilter = new SqlFilter("Status =
 'New'");
 await
 namespaceManager.CreateSubscriptionAsync(_topicName,
 _subscriptionName, newOrderFilter);
 }
}

4.	 Implement the PurgeSubscription method, which loops around receiving
batches of messages using the ReceiveBatchAsync method until there
are no more messages (the methods will time out when the topic is empty
and will not return any messages). By default, SubscriptionClient has
PeekLock RecieveMode, which allows the consumer to commit the message
if it successfully processes it, removing it from the subscription; otherwise,
if it cannot process it, the message is not removed. This method keeps trying
indefinitely to send in the event of transient exceptions:
public async Task<int> PurgeSubscriptionAsync()
{
 var agentSubscriptionClient =
 SubscriptionClient.Create(_topicName,
 _subscriptionName, ReceiveMode.ReceiveAndDelete);
 int count = 0;

 while (true)
 {
 bool backOff = false;

 try
 {
 // Get a batch of 100 messages
 var messages = await
 agentSubscriptionClient.ReceiveBatchAsync(100,
 TimeSpan.FromSeconds(5));

 // If there are no messages, we're done
 if (messages.Count() == 0)
 break;

 count += messages.Count();
 }
 catch (MessagingException e)
 {

Chapter 7

[219]

 if (!e.IsTransient)
 throw;
 else
 backOff = true;
 }

 // Wait for transient fault to clear
 if (backOff)
 await Task.Delay(2000);
 }

 agentSubscriptionClient.Close();

 return count;
}

5.	 Now, create a SendMessageAsync method, which sends BrokeredMessage
with a retry on the transient fault mechanism:
private async Task SendMessageAsync(BrokeredMessage message, int
retries = 0)
{
 int retry = 0;

 while (true)
 {
 try
 {
 await this._topicClient.SendAsync(message);
 break;
 }
 catch (MessagingException e)
 {
 if (!e.IsTransient)
 throw;
 else
 retry++;
 }

 if (retry > retries)
 break;

 // Back-off for retry
 await Task.Delay(2000);
 }
}

Azure Service Bus Topic Integration

[220]

6.	 Next, implement the SendOrderAsync method, which creates an order
message with a Status property set to New and sends it using the
SendMessage method:
public async Task SendOrderAsync(Order order, int retries =
 0)
{
 var message = new BrokeredMessage(order);
 message.Properties["Status"] = "New";
 message.MessageId = Guid.NewGuid().ToString();

 await this.SendMessageAsync(message, retries);
}

7.	 Finally, register the service with the IoC container in the ViewModelLocator
constructor:

public ViewModelLocator()
{
 ServiceLocator.SetLocatorProvider(() => SimpleIoc.Default);

 SimpleIoc.Default.Register<IDataService, DataService>();
 SimpleIoc.Default.Register<IMessagingService,
 MessagingService>();

 SimpleIoc.Default.Register<MainViewModel>();
}

Completing the simulator
There's not enough space in this book to go through the entire main view and view
model, so go and get them from the code samples.

As we've separated all the data and messaging logic from the view models, there's
actually no reference to Microsoft.ServiceBus or our DbContext, so we're not
missing anything directly related to this subject!

Running the simulator
When we first run the simulator, we have a 1000 ms delay between orders, 1 thread,
and between 0 and 10 products per order, as shown in the following screenshot:

Chapter 7

[221]

This will give us a slow throughput of orders into the system. If we increase the
number of Threads and set the Delay to 0, meaning each thread will send orders
as fast as the topic will take them, we can put large volumes of messages into the
system in a short period of time, which is great for load testing and testing scaling
capabilities. This was achieved in a few seconds:

Azure Service Bus Topic Integration

[222]

Now, if we take a look at the DASHBOARD section of the topic workspace, we can
see the metrics for the messages we sent:

Exploring the topic workspace
If we navigate to our Service Bus namespace workspace in the portal and click on the
TOPICS tab, we can see a quick overview of our topics, including their status, stored
message size (CURRENT SIZE), and capacity (MAX SIZE):

Now, if we click on the topic and navigate to its workspace, we have a DASHBOARD
section, which gives us a quick overview of the topic status with a graph that shows
the messaging metrics, and a usage overview, which shows us how much of our
storage allowance we're using along with some quick glance information.

Chapter 7

[223]

The MONITOR tab
The MONITOR tab shows us the same metrics graph as the DASHBOARD section
with more details of the tabular statistics underneath:

If we click on the ADD METRICS button, we can add and remove metrics from
the display:

Azure Service Bus Topic Integration

[224]

The CONFIGURE tab
The CONFIGURE tab allows us to configure the following settings that we originally
set up when we created the topic:

•	 DEFAULT MESSAGE TIME TO LIVE: This is the amount of time elapsed
between a message being sent and it expiring and being deleted or sent to the
dead-letter queue.

•	 DUPLICATE DETECTION HISTORY: This is the amount of time for which
the topic stores messages for duplicate detection. If a duplicate message is
detected during this period, it will be deleted or moved to the dead-letter
queue. If it is outside this period, it will appear on the topic for consumption.

•	 FILTER MESSAGE BEFORE PUBLISHING: This prevents messages that
have no matching subscription filter from being sent to the topic with a
NoMatchingSubscriptionException being thrown at the client.

•	 TOPIC STATE: This allows us to enable or disable the topic.
•	 shared access policies: This allows us to add up to 12 shared access policies,

allowing us granular control over access to the topic.

These settings are shown in the following screenshot:

Chapter 7

[225]

The SUBSCRIPTIONS tab
The SUBSCRIPTIONS tab shows us an overview of our registered subscriptions
and allows us to manually CREATE, EDIT, and DELETE them from the toolbar:

Clicking on EDIT allows us to modify the following settings for the topic:

•	 DEFAULT MESSAGE TIME TO LIVE: This is the amount of time elapsed
between a message being sent and it expiring and being deleted or sent to
the dead-letter queue (the default is 14 days—there seems to be a bug in
the portal).

•	 MOVE EXPIRED MESSAGES TO THE DEAD-LETTER SUBQUEUE:
This setting allows messages that have exceeded their TTL to be moved to
the dead-letter queue.

•	 MOVE MESSAGES THAT CAUSE FILTER EVALUATION EXCEPTIONS
TO THE DEAD-LETTER SUBQUEUE: When we have the FILTER
MESSAGE BEFORE PUBLISHING setting enabled in the topic, this setting
allows messages with no matching subscription filter to be sent to the
dead-letter queue.

•	 LOCK DURATION: This is the duration of time PeekLock is allowed before
a lock is lost, causing a MessageLockLostException to be thrown in the
client, and allowing another consumer to consume the message.

•	 MAXIMUM DELIVERY COUNT: This is the maximum number of times
a message is received by a consumer but not completed (failed to process)
before it is sent to the dead-letter queue.

•	 TOPIC SUBSCRIPTION STATE: This allows us to enable and disable
the subscription.

Azure Service Bus Topic Integration

[226]

The settings to edit a subscription are shown in the following screenshot:

Summary
We've successfully implemented our Azure Service Bus Topic, which is the messaging
layer of our entire enterprise system, integrated the Sales Customer website, and built
a messaging simulator application, which will help us develop and test the rest of
the system.

In the next chapter, we're going to be creating worker roles for the business units that
will have their own subscriptions to consume and process Order Status messages.

Chapter 7

[227]

Questions
1.	 What is the path of a subscription dead-letter queue?
2.	 What are the security implications of creating queues and topics in code?
3.	 What does the Enable Partitioning setting do when we create a topic?
4.	 What does the FILTER MESSAGE BEFORE PUBLISHING setting in the

portal do?
5.	 Where can we find topic SAS connection strings?
6.	 In which config block does the Service Bus connection string appear when we

install the WindowsAzure.ServiceBus package?
7.	 Which object do we use to send messages to a topic?
8.	 What does the IsTransient property on MessagingException tell us?
9.	 Which exception is thrown if a client tries to send a message with no

matching subscription and FILTER MESSAGE BEFORE PUBLISHING
is enabled?

10.	 What is the default ReceiveMode for a SubscriptionClient?
11.	 What is the message type we send to the Service Bus?
12.	 How many shared access policies can one topic have?
13.	 Create a simple WPF application, which creates a Service Bus queue itself,

and then posts simple messages to the queue on a timer.
14.	 Create a second WPF application, which consumes messages from the queue

and displays them on the UI.

Azure Service Bus Topic Integration

[228]

Answers
1.	 Subscription name along with /$DeadLetterQueue.
2.	 The code needs to use the Service Bus namespace security credentials,

which puts the whole namespace at risk if the credentials are compromised.
3.	 Allows the Service Bus broker to scale up.
4.	 Prevents messages without a matching subscription filter being sent.
5.	 Under the topic CONNECTION INFORMATION in the TOPICS tab of the

Service Bus workspace.
6.	 appSettings.
7.	 TopicClient.
8.	 If true, it tells us that an exception was caused by a transient fault and should

be retried.
9.	 NoMatchingSubscriptionException.
10.	 PeekLock.
11.	 Brokered message.
12.	 12.
13.	 NA.
14.	 NA.

Building Worker Roles
In this chapter, we're going to start looking at Microsoft Azure Cloud services and
building our production order processor worker role. By the end, we'll have a scalable
worker role that consumes order messages from the Service Bus topic subscription
we created previously. Orders will be stored in the production database, and periodic
tasks will create batch schedules to manufacture the products and allocate the stock.

We'll cover the following topics:

•	 Introduction to cloud services
•	 Creating a worker role
•	 Running a worker role locally
•	 Publishing a worker role
•	 Building the production order processor
•	 Creating a scheduled work activity
•	 Testing the production order processor
•	 Deleting idle cloud services

Along with looking at worker roles, we'll be revisiting Service Bus topics and
building databases. We'll also be introducing scheduled tasks and storage queues,
which we've not looked at yet.

Introducing cloud services
Cloud services are PaaS Azure services that allow us to create highly available
applications (99.95 percent monthly SLA) and deploy them to dedicated virtual
machines of various image sizes, which can be scaled out to meet the demands
of the system.

Building Worker Roles

[230]

There are two types of cloud services, worker roles and web roles. Worker roles are
similar to Windows Services; they are unattended applications with no user interface
which that long-running tasks. Web roles are websites deployed in IIS and run on
dedicated cloud service VMs; they are very similar to normal Azure websites, with
the additional configuration and diagnostic capabilities of a cloud service.

Cloud services come with production and staging deployment slots that run on
dedicated VM instances so that staged deployments don't impact the performance
of the production deployment (unlike staging slots in websites). Cloud services
can be debugged remotely (with IntelliTrace), run start-up tasks, and allow remote
desktop sessions to allow advanced configuration and debugging.

Cloud service projects hold one or more roles, which run on their own virtual
machines, and allow them to be logically grouped, making them easier to deploy
together rather than having a separate cloud service per role. It is not cost effective
to split every single task you want to perform into dedicated roles (particularly
if they're not highly resource-intensive), so we'll look at a neat pattern to do this
using async tasks within a single role later on.

Exploring worker roles
To begin with, we're going to create a boiler-plate worker role in Visual Studio, run
it locally, then publish it, and run it on Azure. It's possible to create a cloud service
in the portal, then publish a project to it or upload a package.

It's also possible to automatically provision a cloud service during the first publish
from Visual Studio, which is the approach we'll take.

Creating a worker role
We'll create the role using the following procedure:

1.	 I've created a blank solution called AzureBakery.Production, which is the
start of our production business unit solution for the worker role, production
data model, WPF management application, and Web API service.

2.	 To create a worker role, right-click on the solution root in Visual Studio and
go to Add | New Project, then select Windows Azure Cloud Service under
the Cloud templates, choose Name, and click on OK:

Chapter 8

[231]

3.	 Select Worker Role (notice that there is a template for a Worker Role with
Service Bus Queue option, which is a good starting point if you are creating
a worker role that is consuming messages from a queue) and click on the
right-arrow to add it to the list (you can add and remove multiple web and
worker roles to the cloud service from here):

Building Worker Roles

[232]

4.	 Click on the Edit button to change the name (I've called mine
OrderProcessorRole, but if you have multiple roles in a service,
you may want to give different names to the cloud service to save
confusion), and click on OK:

5.	 We can now see that our solution has a cloud service named Order Processor,
which contains a single worker role named OrderProcessorRole:

Chapter 8

[233]

Examining the worker role
If we take a quick look at the worker role we just created, there's not much in there; it's
a class library that looks pretty similar to a Windows service. We have an App.config
file, which just contains the trace listener configuration that allows the application
diagnostics to be logged. The WorkerRole class itself (I've tidied up the using keyword
to save space) is derived from RoleEntryPoint, which provides methods for the role's
starting, stopping, and running:

using Microsoft.WindowsAzure.ServiceRuntime;
using System.Diagnostics;
using System.Net;
using System.Threading;

namespace OrderProcessorRole
{
 public class WorkerRole : RoleEntryPoint
 {
 public override void Run()
 {
 // This is a sample worker implementation. Replace with
 your logic.
 Trace.TraceInformation("OrderProcessorRole entry point
 called");

 while (true)
 {
 Thread.Sleep(10000);
 Trace.TraceInformation("Working");
 }
 }

 public override bool OnStart()
 {
 // Set the maximum number of concurrent connections
 ServicePointManager.DefaultConnectionLimit = 12;

 // For information on handling configuration changes
 // see the MSDN topic at
 http://go.microsoft.com/fwlink/?LinkId=166357.

 return base.OnStart();
 }
 }
}

Building Worker Roles

[234]

The following are the worker role's life cycle methods:

•	 OnStart: When a worker role starts, the OnStart method is called, which is
used to perform initialization tasks, for example, creating resources such as
messaging clients and database contexts

•	 Run: If OnStart returns true, the Run method will then be called, which
begins the worker role's work activity

•	 OnStop: When a worker role is signaled to stop, the OnStop method is called,
which can be used for clearing up resources and finalizing the role

The OnStart method sets the ServicePointManager.DefaultConnectionLimit
property (without setting this, the default value is 2), which is the number of
concurrent connections the worker role instance is allowed for things such as
database connections, messaging clients, and HTTP requests. If this is not set
correctly, we will get undesirable behavior from connections being dropped
if the connection limit is exceeded.

The Run method simply sits in a loop with a 10s delay and traces a Working info
message. Once the method returns, the role will recycle, so it needs to be blocked or
stay in a loop while the role is running. The example Run method is synchronous, so
it can be held in a simple loop and delayed using Thread.Sleep, which blocks the
thread; in our production order processor worker role (we'll be looking at it shortly),
we're going to implement some tasks to service the topic and two storage queues,
which are async and will need a different approach to stop the Run method from
terminating early and recycling the role.

Examining the cloud service
The cloud service is a special project type (.ccproj—the cloud configuration project),
which consists of a number of configuration files that describe the features and
behavior of all the roles within the service. The files have the following functions:

•	 Diagnostics.wadcfg: This is the diagnostics configuration for each role;
it appears under a RoleNameContent folder in the directory structure

•	 ServiceConfiguration.cloud: This contains the configuration settings
for the role in the cloud service configuration (published to Azure);
these configurations settings can be changed in the portal

•	 ServiceConfiguration.local: This contains the configuration settings for
the role in the local service configuration (running in the compute emulator)

•	 ServiceDefinition.csdef: This defines the roles within the cloud service
and the role modules included

Chapter 8

[235]

All the settings can be configured from within the role UI, which can be opened by
double-clicking a role under the cloud service's role folder.

Running locally
We know that we can easily run Azure websites locally while we're developing them
because they're normal websites and will run in IIS and IIS Express without any
difficulty. Cloud services aren't normal executables, which can run on Windows,
but they can be run locally on the Windows Azure compute emulator and storage
emulator. We have a full and express emulator available to us in the SDK; we'll start
with the default express version and look at the full version when we need it later.

To get started, put some break points in the application in the OnStart and Run
methods, one at the start and one inside the while loop. Run the debugger in
Visual Studio and we'll see a progress dialog that notifies us of the compute
emulator, storage emulator, and worker role initialization progress:

Once this is completed, the worker role should break on the OnStart method, and
we notice that we have a new Windows icon in the system tray; if we right-click on
it, we have a number of options for the Azure emulators:

Building Worker Roles

[236]

We have options to see the UIs for the emulators and options to shut down
the emulators.

When we continue to run the debugger, we will break on the Run method,
which will continue to loop until we stop the debugger.

The compute emulator UI
If we select Show Compute-Emulator UI, we'll see the cloud service, worker role,
and instances in the tree diagram on the left-hand side, and if we drill down to our
single instance 0, we can see the diagnostics output running live:

Chapter 8

[237]

We can change the tracing level by going to the Tools | Logging level menu:

We can also get to the logfile directory quickly by clicking on the Open log store...
menu item, which will open Windows Explorer in the temporary log directory, where
we can drill into \directory\DiagnosticStore\Monitor\Tables to find our log
table data.

The storage emulator UI
Now, open the storage emulator UI by selecting the Show Storage-Emulator UI
option from the context-sensitive menu; when I do this, I see a dialog box that tells
me that the UI is deprecated, and gives an option to use the New Command Line
interface or Old Interface (UI); if you see this option, select New Command Line.

We'll now see a standard command console appear at the storage emulator path:

Building Worker Roles

[238]

We have some basic commands listed from the help option to initialize, start, and
stop the emulator. Also, commands for getting the status and clearing the emulator's
data store are available.

We can quickly play with some of the commands; the following command shows
the status:

WAStorageEmulator.exe status

This command displays the running status and the storage endpoints:

C:\Program Files (x86)\Microsoft SDKs\Windows Azure\Storage
Emulator>WAStorageEmulator.exe status

Windows Azure Storage Emulator 3.2.0.0 command line tool

IsRunning: True

BlobEndpoint: http://127.0.0.1:10000/

QueueEndpoint: http://127.0.0.1:10001/

TableEndpoint: http://127.0.0.1:10002/

In a command console, to save typing the whole exe name, type
the first few characters, and then press Tab to cycle through the
matching files. In this case, if you type was and hit Tab once,
it'll find WasStorageEmulator.exe straightaway.

The following command clears all the emulator storage, which is useful if it's been
running for a while:

WAStorageEmulator.exe clear all

Publishing a worker role
To test the worker role that just runs the boiler-plate code on Azure, we'll publish it
using the following procedure:

1.	 Right-click on the cloud service in the Solution Explorer window and select
Publish... from the context-sensitive menu:

Chapter 8

[239]

2.	 Choose Subscription and click on Next; if you've not got any worker
roles configured in the portal, you'll get a dialog that prompts you to
create one with a storage account.

3.	 Choose Name and select Region or Affinity Group. The Enable
Geo-Replication option is for the storage account. Click on Create
to complete.

4.	 Choose a Cloud Service option to publish to Azure, select the
Environment option (I chose Staging, so we can test the service
before swopping to production), and leave Build configuration
as Release and Service configuration as Cloud:

Building Worker Roles

[240]

5.	 Check Enable Remote Desktop for all roles (this will allows us to access the
virtual machine via remote desktop and take a look around later). Enter your
login credentials (the Account expiration date setting is useful for system
administrators to allow developers to have temporary access to a cloud
service to do some fault finding without giving them long-term access).
Click on OK to complete:

6.	 We'll leave the Enable Web Deploy… option unchecked as we're
implementing a worker role; however, if you are building a web role,
this option allows you to publish the web role instead of publishing
the whole cloud service.

7.	 In the Advanced Settings tab, check Enable IntelliTrace and Enable
Remote Debugger for all roles and click on Publish:

Chapter 8

[241]

8.	 The publishing process may take a while as a new VM instance is provisioned
for the cloud service to run on.

Building the production order processor
We're going to start working on the production business domain order processor
worker role, which first subscribes to the OrderStatus.New status order messages
on the topic, then adds the orders to its own database, creates batch schedules,
and allocates stock for the products requested in the orders. The worker role will
be structured with separate tasks and business logic to perform the individual
messaging and business domain activities.

Building Worker Roles

[242]

Adding an entity model
We've already built a data model in a fair amount of detail, so we'll go through the
process pretty quickly for the production order processor. The entity model for the
production system looks like this:

QuantityPerBatch

Order OrderItem Batch

Product

Recipe RecipeItem Ingredient

Id

Reference

Status

Customer

Items

CreatedDate

string

OrderStatus

Customer

ICollection

Date

int Id int

int

Id int

CreatedDate

Status

int

Quantity

Product

Order

Batch

Product

Order

Batch

Quantity

Product Product

BatchStatus

DateTime

Id int

Name string

ProductType ProductType

int

Id int

Name string

Product

Items

Method

CreatedDate DateTime

string

ICollection

Product

Id int Id int

Recipe Recipe

Ingredient

Quantity double

Ingredient

Name

Price

StockQuantity

MinStock

string

decimal

double

double

Get the AzureBakery.Production.Model project, which contains all the entities
from code, and add it to the solution, and then perform the following procedure
to implement it in the worker role, which will manage the database migrations:

1.	 Add a Model project reference to the OrderProcessorRole project.
2.	 Install the Entity Framework NuGet package into the OrderProcessorRole

project using the following command in the Package Manager Console:
install-package entityframework

3.	 Add an ApplicationDbContext class to a DataAccess solution folder
(use the code samples).

Chapter 8

[243]

4.	 Add a connection string to the App.Config file:
<connectionStrings>
 <add name="DefaultConnection" connectionString="Data
 Source=localhost;Initial Catalog= AzureBakeryProduction;
 Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

5.	 Enter the following command in the Package Manager Console to
enable migrations:
enable-migrations

6.	 Enter the following command in the Package Manager Console to add
an initial migration:
add-migration initial

7.	 Add the seeding code to the Configuration.Seed method to seed the
database (use the code samples).

8.	 Enter the following command in the Package Manager Console to update
(create) the database:
update-database

Preparing the Service Bus topic
We're going to create a new SAS policy for the order processor, which will allow
it to create its own subscription and read messages from it. We'll then install the
WindowsAzure.ServiceBus package and configure its connection string using the
following steps:

1.	 Create a new SAS policy called ProductionOrderProcessor with the Manage
and Listen permissions in the topic's CONFIGURE tab, the same as we did in
the previous chapter when we created the simulator application.

2.	 Install the WindowsAzure.ServiceBus NuGet package with the
following command:
install-package WindowsAzure.ServiceBus

3.	 Locate the Microsoft.ServiceBus.ConnectionString appSetting in the
app.config file and change the value to use our new SAS connection string.
It should look something like this when you're done:
<appSettings>
 <!-- Service Bus specific app settings for messaging
 connections -->

Building Worker Roles

[244]

 <add key="Microsoft.ServiceBus.ConnectionString"
 value="Endpoint=sb://azurebakery.servicebus.windows.net/;
 SharedAccessKeyName=ProductionOrderProcessor;
 SharedAccessKey=XXXXXXXXXXXXXXXxxxxxxxxxxxxxxxx=" />
 </appSettings>

You can get the connection string from the CONNECTION
INFORMATION setting on the TOPICS tab in the toolbar.

Adding an order processor task
To start with, we'll create a reusable base class to consume messages from a
subscription and hand them off to some business logic to process the message;
once we've got this, we'll implement it to consume our order status topic.

Creating TopicProcessorBase
The following class encapsulates a mechanism to poll a topic subscription and then
process messages in the abstract ProcessMessage method, which will be implemented
in a derived class. I've left out the CreateSubscription code as this was covered in
the previous chapter. The mechanics of the ProcessSubscriptionAsync method is
pretty much the same as the PurgeSubscriptionAsync method in the AzureBakery.
Sales.OrderSim.Services.MessagingService; there is a retry mechanism on
transient fault:

using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System;
using System.Net;
using System.Threading.Tasks;

namespace OrderProcessorRole.Messaging
{
 public abstract class TopicProcessorBase : IDisposable
 {
 private SubscriptionClient _subscriptionClient = null;
 private string _topicName = null;
 private string _subscriptionName = null;
 private string _sqlFilter = null;

 public bool IsRunning { get; private set; }

Chapter 8

[245]

 public TopicProcessorBase(string topicName, string
 subscriptionName, string sqlFilter)
 {
 this._topicName = topicName;
 this._subscriptionName = subscriptionName;
 this._sqlFilter = sqlFilter;

 // Set the maximum number of concurrent connections
 ServicePointManager.DefaultConnectionLimit = 12;

 // Create subscription
 this.CreateSubscription();

 // Create subscription client
 this._subscriptionClient =
 SubscriptionClient.Create(_topicName, _
 subscriptionName);
 }

 private void CreateSubscription()
 {
 // Code omitted for brevity
 }

 public async Task ProcessSubscriptionAsync()
 {
 this.IsRunning = true;

 while (this.IsRunning)
 {
 bool delay = false;

 try
 {
 // Get a message. The serverWaitTime parameter
 will give us a delay in our processing loop
 // when there are no messages
 var message = await
 this._subscriptionClient.ReceiveAsync(TimeSpan.
 FromSeconds(5));

 // Parse message
 if (message != null)

Building Worker Roles

[246]

 {
 await this.ProcessMessage(message);
 }

 }
 catch (MessagingException e)
 {
 if (!e.IsTransient)
 throw;
 else
 delay = true;
 }

 // Wait for transient fault to clear
 if(delay)
 await Task.Delay(2000);
 }
 }

 public void Stop()
 {
 this.IsRunning = false;
 }

 protected abstract Task ProcessMessage(BrokeredMessage
 message);

 public void Dispose()
 {
 if (this._subscriptionClient != null)
 this._subscriptionClient.Close();
 }
 }
}

The ProcessTopicAsync method is asynchronous (as the naming convention
suggests), which means it is more efficient with thread resources, which is good in a
multithreaded application (or a client application with a threading context such as a
WPF application, where the UI thread is not blocked when performing activities such
as making web requests or data access, which may take some time). It's fairly easy
to implement .NET 4.5 async tasks to get performance benefits rather than having to
create async code with async callbacks, which can be difficult to write and follow.

Chapter 8

[247]

Implementing TopicProcessorBase
Now that we have a base class for creating and processing topic subscriptions,
we can implement it in a derived class to override the ProcessMessage method:

using Microsoft.ServiceBus.Messaging;
using OrderProcessorRole.Business;
using System;
using System.Diagnostics;
using System.Threading.Tasks;

namespace OrderProcessorRole.Messaging
{
 public class OrderTopicProcessor : TopicProcessorBase
 {
 public OrderTopicProcessor()
 : base("Order", "ProductionSubscription", "Status =
 'New'")
 {

 }

 protected override async Task
 ProcessMessage(BrokeredMessage message)
 {
 Trace.TraceInformation("OrderProcessorRole.Messaging.
 OrderTopicProcessor.ProcessMessage - Begin");

 try
 {
 var order =
 message.GetBody<AzureBakery.Sales.Model.Order>();
 await new OrderProcessor().Process(order);

 await message.CompleteAsync();
 }
 catch (Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.Messaging.
 OrderTopicProcessor.
 ProcessMessage - Error: {0}", ex);
 }
 }
 }
}

Building Worker Roles

[248]

We can see that this implementation is very simple and simply parses an order object
from the message body and then hands it off to the OrderProcessor business logic,
so we have a clear separation of concerns.

In this case, I've actually borrowed the sales model from the sales
domain so that it can be easily parsed; if we wanted complete
separation or we didn't have access to the model, we could use the
JSON serialization, which is less fussy about namespaces, rather than
the standard DataContractSerializer, or strip the namespaces
from the originating model and have a replica on the consuming side.

As we get a PeekLock ReceiveMode by default, the message must be completed
with Complete or CompleteAsync once it has been successfully processed so that
it is removed from the subscription.

I'm not showing the business logic here to save space, so go and grab it from the
code. As with the other projects, it's a good idea in the long run to use a dependency
injection for binding components together to help in testing and maintenance, so it
would be nice to abstract the processors and business logic further and have them
bind and inject into the worker role using an IoC container; however, we'll not cover
this as it's not in the scope of this book.

Using OrderTopicProcessor in the worker role
Now that we have the mechanics in place to subscribe to and process the order status
messages on the topic, we can implement it in our worker role. In the OnStart method,
we have some tracing, so we can see what's going on in the diagnostics and then
instantiate our OrderTopicProcessor, which creates the subscription if required:

public override bool OnStart()
{
 Trace.TraceInformation("OrderProcessorRole.WorkerRole.OnStart
 - Begin");

 try
 {
 // Create processors
 this._orderTopicProcessor = new OrderTopicProcessor);

 Trace.TraceInformation("OrderProcessorRole.WorkerRole.OnStart
 - End");

 return true;

Chapter 8

[249]

 }
 catch (Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.WorkerRole.OnStart -
 Error: {0}", ex);
 }

 return false;
}

As I mentioned before, we need to stop the Run method from exiting by blocking it;
otherwise, the role will recycle. We can run the task using Task.Run, which queues
the processor task to run on the thread pool and returns a proxy for the task, which
we can then wait to complete blocking the calling thread using the Task.WaitAll
method. This is a nice pattern as we can quickly add in extra tasks to run on the
thread pool in the Task.WaitAll parameters, which we will do shortly:

public override void Run()
{
 Trace.TraceInformation("OrderProcessorRole.WorkerRole.Run -
 Begin");

 try
 {
 Task.WaitAll(
 Task.Run(() =>
 this._orderTopicProcessor.ProcessSubscriptionAsync()),
 }
 catch(Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.WorkerRole.Run -
 Error: {0}", ex);
 }
}

The ProcessSubscriptionAsync method will stay in a loop until Stop is called;
however, if we didn't use Task.WaitAll, the Run method will terminate as it's
asynchronous.

The OnStop method is very simple; we call the Stop method, which causes the
processing loop to terminate, and the Run method exits once the waited tasks complete:

public override void OnStop()
{
 this._orderTopicProcessor.Stop();

 base.OnStop();
}

Building Worker Roles

[250]

As we've separated our messaging and business logic from the worker role, we can
see that we don't have much code in the WorkerRole class itself, which makes it nice
and clean and easy to see what's going on.

Creating a scheduled work activity
We've got most of the production worker role completed with orders safely being
inserted into the production database, but there's a bit missing, and we have a slight
problem with it.

The production order processor must create product batch schedules and allocate
stock for the production management application. We don't want to perform this
operation every time an order message comes in, as it will put too much load on the
system. Also, when we have multiple roles running as we scale out, we don't want to
get database contention from multiple instances trying to work on the same records
in the database. Pessimistic and optimistic concurrency will not even help us here as
we need to create single new batches when existing batches are full as well as adding
to existing incomplete batches.

To solve this problem, we need a way of only one role performing these activities
at any one time and a way of requesting the scheduled activities. Azure gives us a
number of options, which can help achieve this:

•	 We're already using a topic, which allows multiple worker roles to
receive order messages and prevents them from processing the same
message, so we can use something similar to queue scheduled work
activities. The Azure Scheduler allows us to send messages to a storage
queue, so our worker role instances can consume this, and only one
instance will process a single message.

•	 We can use a storage blob leasing to effectively create a lock, where one role
obtains a lock on a blob (we could have a single lock or multiple locks across
product types to make the approach less contentious), allowing it to perform
a scheduled activity triggered by a timing mechanism within the role while
the other role(s) attempts to get the same lock and fails to tell them that
another role is working on the scheduled activity and they should back off.

•	 In-role cache allows us to share cached memory across role instances, so we
can write a locking mechanism similar to the blob leasing approach without
having to create blobs and communicate with storage.

To keep things simple and to give us an opportunity to explore the Azure Scheduler
and storage queues, we'll use the first option.

Chapter 8

[251]

Creating a scheduled job and queue
The following procedure details how to set up two scheduled jobs and storage
queues to create batches and allocate stock (separating the scheduled tasks helps
to distribute the work load):

1.	 Click on the + NEW service button in the portal, and go to APP SERVICES |
SCHEDULER | CUSTOM CREATE:

2.	 Choose a SUBSCRIPTION and REGION; if you haven't got a JOB
COLLECTION or don't want to add it to an existing collection, select
Create New (default), choose a NEW JOB COLLECTION NAME
(if you're creating a new one), and click on the next arrow:

Building Worker Roles

[252]

3.	 Next, choose NAME for the job, select Storage Queue from the ACTION
TYPE options, choose a STORAGE ACCOUNT, select Create New from the
QUEUE NAME options, choose a NEW QUEUE NAME (lowercase), and
click on the next arrow (I've left the BODY (TEXT/PLAIN) section blank as
we're only interested in using the message to trigger an action in the roles):

4.	 Next, select Recurring Job from the RECURRENCE options, enter a
recurrence period in the RECUR EVERY options (I've chosen 10 minutes; in
the code, I'm going to be careful to poll at least twice this rate and disregard
messages that are 10 minutes old or more as these could indicate a scheduling
or processing failure, which may result in duplicated work by the roles). You
can set an ENDING ON time, and optionally set it to never end once the job
is created. Click on the tick button to complete:

Chapter 8

[253]

5.	 Repeat the procedure for the stock allocation job using the same container.

Configuring a connection string
We're going to add a storage connection string to the cloud service settings, which
can be accessed by the worker role and changed at runtime in the portal. This can be
done by performing the following steps:

1.	 In the Settings tab of the worker role properties, click on Add Setting (for
All Configurations):

Building Worker Roles

[254]

2.	 Next, enter Name for the connection string, select Connection String as
Type, and click on the ellipsis button to create a connection string:

3.	 Sign in to your account when prompted.
4.	 Choose the Subscription and Account name options for the queue that we

just configured from the scheduler, and click on OK:

Chapter 8

[255]

Adding batch processor tasks
As with the order processor, we'll create tasks to encapsulate our batch-processing
logic, which will be neatly slotted into the task pattern we've started. Before we do
anything, we need to install the WindowsAzure.Storage NuGet package, which will
allow us to interact with the storage queue by entering the following command into
the NuGet Package Manager Console:

Install-package WindowsAzure.Storage

Creating a storage queue processor base
We'll create a common base class to process these queues, which allow us to run tasks
on a single role instance in a scaled-out worker. The StorageQueueProcessorBase
class follows a pattern similar to the TopicProcessorBase class, where we create
a client on construction, then have a ProcessQueueAsync task, which continually
polls the queue for messages and then hands off messages that have not expired
(remember we talked about failure modes when we created the scheduled task?)
to the abstract Process method for the derived classes to implement:

using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Queue;
using OrderProcessorRole.Business;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OrderProcessorRole.Messaging
{
 public abstract class StorageQueueProcessorBase
 {
 private CloudQueue _batchQueue = null;

 private string _queueName = null;
 private string _cnString = null;
 private int _delay = 60000;

 public bool IsRunning { get; private set; }

 public StorageQueueProcessorBase(string queueName, string
 cnString)

Building Worker Roles

[256]

 {
 this._queueName = queueName;
 this._cnString = cnString;

 this.CreateQueueClient();
 }

 private void CreateQueueClient()
 {
 // Retrieve storage account from connection string
 var storageAccount =
 CloudStorageAccount.Parse(this._cnString);

 // Create a queue client to get refs from
 var queueClient =
 storageAccount.CreateCloudQueueClient();

 this._batchQueue =
 queueClient.GetQueueReference(this._queueName);
 }

 public async Task ProcessQueueAsync()
 {
 this.IsRunning = true;

 while (this.IsRunning)
 {
 bool delay = true;

 try
 {
 var msg = await
 this._batchQueue.GetMessageAsync();
 if (msg != null)
 {
 // Check the message is not expired which
 may occur after a failure and cause
 concurrent processing
 if (DateTimeOffset.Now - msg.InsertionTime
 < TimeSpan.FromMinutes(10))
 {
 await this.Process();
 }

Chapter 8

[257]

 else
 {
 // We have a message but it's expired
 so get next
 delay = false;
 }

 // Delete message now we're finished with
 it
 await
 this._batchQueue.DeleteMessageAsync(msg);
 }
 }
 catch (Exception ex)
 {

 }

 // Wait for a minute
 if(delay)
 await Task.Delay(this._delay);
 }
 }

 public void Stop()
 {
 this.IsRunning = false;
 }

 protected abstract Task Process();
 }
}

Implementing StorageQueueProcessorBase
Now that we have a base class that provides common messaging logic for both
queues, it couldn't be simpler to implement them:

using Microsoft.WindowsAzure;
using OrderProcessorRole.Business;
using System.Threading.Tasks;

namespace OrderProcessorRole.Messaging

Building Worker Roles

[258]

{
 public class BatchQueueProcessor : StorageQueueProcessorBase
 {
 public BatchQueueProcessor()
 : base("batchqueue",
 CloudConfigurationManager.GetSetting("AzureBakery.
 Production.Storage"))
 {

 }

 protected override async Task Process()
 {
 Trace.TraceInformation("OrderProcessorRole.Messaging.
 BatchQueueProcessor.Process - Begin");

 try
 {
 // Process stock
 await new BatchProcessor().Process();
 }
 catch(Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.Messaging.
 BatchQueueProcessor.Process - Error: {0}", ex);
 }
 }
 }
}

As with the order processor, we separated out the processing business logic, which you
can get from the code.

Make sure the scheduled tasks have run at least once;
otherwise, the storage queues will not be created.

Completing the worker role
We now have all the tasks we need, so we can add them to the role:

using Microsoft.WindowsAzure.ServiceRuntime;
using OrderProcessorRole.Messaging;
using System;

Chapter 8

[259]

using System.Diagnostics;
using System.Threading.Tasks;

namespace OrderProcessorRole
{
 public class WorkerRole : RoleEntryPoint
 {
 private OrderTopicProcessor _orderTopicProcessor = null;
 private BatchQueueProcessor _batchQueueProcessor = null;
 private StockQueueProcessor _stockQueueProcessor = null;

 public override void Run()
 {
 Trace.TraceInformation("OrderProcessorRole.WorkerRole.Run
 - Begin");

 try
 {
 // WaitAll tasks will block Run until they have
 all completed, otherwise the role will recycle
 itself
 Task.WaitAll(
 Task.Run(() =>
 this._orderTopicProcessor.
 ProcessSubscriptionAsync()),
 Task.Run(() =>
 this._batchQueueProcessor.ProcessQueueAsync()),
 Task.Run(() =>
 this._stockQueueProcessor.ProcessQueueAsync()));
 }
 catch(Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.WorkerRole.Run -
 Error: {0}",
 ex);
 }
 }

 public override bool OnStart()
 {
 Trace.TraceInformation("OrderProcessorRole.WorkerRole.
 OnStart - Begin");

Building Worker Roles

[260]

 try
 {
 // Create processors
 this._orderTopicProcessor = new
 OrderTopicProcessor();
 this._batchQueueProcessor = new
 BatchQueueProcessor();
 this._stockQueueProcessor = new
 StockQueueProcessor();

 Trace.TraceInformation("OrderProcessorRole.WorkerRole.
 OnStart - End");

 return true;
 }
 catch (Exception ex)
 {
 Trace.TraceError("OrderProcessorRole.WorkerRole.
 OnStart - Error:
 {0}", ex);
 }

 return false;
 }

 public override void OnStop()
 {
 this._orderTopicProcessor.Stop();
 this._batchQueueProcessor.Stop();
 this._stockQueueProcessor.Stop();

 base.OnStop();
 }
 }
}

We can see that the pattern we've used makes it very simple to extend the tasks,
which the worker role performs.

Testing the production order processor
Now that we've completed our worker role, we need to test whether it is behaving
as expected, as a single instance to start with, and then multiple instances once we're
happy with its behavior.

Chapter 8

[261]

If the worker role cannot run in a scaled out configuration with multiple
instances, it won't be able to cope with a large volume of work and will
not run in a resilient configuration.

Testing a single instance
We can start testing locally, and once we're happy, publish and test on Azure.
Running as a single instance, we need to check the following:

•	 The worker role starts and runs
•	 It doesn't recycle on its own
•	 There are no exceptions being logged
•	 Orders and order items are being inserted by the order processor tasks
•	 Batches are created and assigned to order items
•	 Order items have stock allocated
•	 Batches are not fragmented (there must never be more than one incomplete

batch per product)

The following T-SQL script can be used to help you do the fragmentation checks on
our data (this is really domain-specific, but shows the kind of checks you need to do
on your data); it shows the total and incomplete items per batch per product:

SELECT
 b.[Product_Id],
 COUNT(b.[Id]) [Total Count],
 SUM(CASE WHEN p.QuantityPerBatch = b.Quantity THEN 1 ELSE 0 END)
[Complete Count],
 SUM(CASE WHEN p.QuantityPerBatch = b.Quantity THEN 0 ELSE 1 END)
[Incomplete Count]
FROM [AzureBakeryProduction].[dbo].[Batches] b INNER JOIN
[AzureBakeryProduction].[dbo].[Products] p ON
 b.Product_Id = p.Id

GROUP BY [Product_Id]

Use the order simulator we created in Chapter 7, Azure Service
Bus Topic Integration, to send messages to the topic.

Building Worker Roles

[262]

Testing multiple instances
First, we need to configure our worker role to run with multiple instances; to do this,
right-click on the role in the solution and select Properties from the menu, and then
click on the Configuration tab:

We also need to change the project to use the full Azure compute emulator rather
than the default express version, which will allow multiple instances to run. In the
Web* tab of the cloud service project properties, select Use Full Emulator:

To run the full Azure compute emulator, you must be running
Visual Studio with elevated privileges (Run as administrator).
If you are already running the express emulator, make sure you
fully close it first.

Chapter 8

[263]

We need to test the same things as with a single instance, with the following additions:

•	 Check that the storage queue processors, which are redesigned to perform
an action periodically on a single instance, only call their business logic once
across all instances per schedule slot. This can be checked in diagnostics or
by putting a breakpoint on the business logic Process method.

•	 Check that both roles are processing orders by examining the tracing in
the logs.

Deleting idle cloud services
When we're developing systems, we may have a number of cloud services that we've
finished working on and may be sitting idle for a period of time, so it's a good idea to
delete them, as we're not paying for them to just sit there doing nothing.

We can delete a cloud service from the toolbar of a cloud service's workspace;
however, we need to be careful to delete instances and not the full service, as we
would lose our entire cloud service including the DNS name, which would require
a completely new publishing profile and may cause configuration issues with other
systems, relying on the allocated DNS name if someone else takes it, and we cannot
use it again:

Summary
In this chapter, we've gone from examining and running a boiler-plate cloud service to
building our production order processor worker role, which runs multiple concurrent
tasks to process orders, create batches and assign order items to them, and allocate
stock for new items.

There are two other worker roles for the sales and dispatch business domains in the
system, which we're not going to look at in this book as they're less complex and cover
fewer features than the production worker role, but you can get them from the code
files of this chapter.

In the next chapter, we're going to take a deeper dive into cloud service debugging
and diagnostics to help us develop and maintain our worker and web roles.

Building Worker Roles

[264]

Questions
1.	 What are the two types of cloud services?
2.	 What is the difference between a website and a web role?
3.	 What is the base class of a worker role?
4.	 Name the three worker role life cycle methods.
5.	 What happens if the Run method is not blocked?
6.	 How can we find the status of the storage emulator?
7.	 What method must we call on a BrokeredMessage object to delete it from

a subscription when we use PeekLock ReceiveMode?
8.	 When we use async tasks in a worker role, why do we need to implement

Task.Wait or Task.WaitAll in the Run method?
9.	 Which NuGet package do we need to interact with a storage queue and

what command do we use to install it?
10.	 How do we remove a storage queue message when we're finished with it?
11.	 What extra steps do we need to take to run multiple role instances locally?
12.	 When is it a good idea to delete a cloud service and why must we only

delete the instances?

Answers
1.	 Web role and worker role.
2.	 Web roles run on dedicated virtual machines, which can be debugged

remotely using IntelliTrace and allow advanced configuration and
debugging with remote desktop and start-up tasks available on the
virtual machines.

3.	 RoleEntryPoint.
4.	 OnStart, Run, and OnStop.
5.	 The role will recycle.
6.	 Use the WAStorageEmulator.exe status command.
7.	 Complete or CompleteAsync.
8.	 As the tasks are asynchronous, they are queued onto the thread pool and

not called immediately, so the calling method continues and is not blocked.
We need to use Task.Wait or Task.WaitAll to block the thread while the
tasks(s) complete; otherwise, the role will recycle.

Chapter 8

[265]

9.	 WindowsAzure.Storage and Install-package WindowsAzure.Storage.
10.	 Call the CloudQueue.Delete method.
11.	 Set the role instances in the role config and switch to using the full emulator

in the project config.
12.	 If we're not currently using a role instance during development, it's a good

idea to delete it during development as we will be incurring charges for it.
If we delete the whole service, we lose our DNS name, which could mean
that we might not get it back if someone else takes it.

Cloud Service Diagnostics,
Debugging, and

Configuration
In the previous chapter, we introduced cloud services and created a worker role for
our production order processor. We're going to continue with cloud services in this
chapter, taking a closer look at diagnostics, debugging, and configuration.

We'll be covering the following topics:

•	 Configuring diagnostics
•	 Remote debugging
•	 Debugging with IntelliTrace
•	 Remote desktop
•	 Configuration change
•	 Start-up tasks

We've already covered a lot about the fundamentals of application logging and
diagnostics in Chapter 6, Azure Website Diagnostics and Debugging, which applies to
cloud services too, so we'll go straight into taking a look at cloud service diagnostic
configuration options here.

Configuring diagnostics
Cloud services can log application diagnostics using the Trace object in the code in
worker and web roles and server diagnostics from the virtual machine instances that
are hosting the roles.

Cloud Service Diagnostics, Debugging, and Configuration

[268]

We can configure a role's diagnostics in the role properties by double-clicking on the
role in Visual Studio and looking at the Configuration tab:

We have options to enable and disable diagnostics with the Enable Diagnostics
setting; then we have basic diagnostic levels of Errors only, which only logs
errors, All information logs everything, and Custom plan gives us more fine-
grained control over what we log with options for Application logs, Event logs,
Performance counters, Infrastructure logs, and Log directories:

Chapter 9

[269]

Adding local diagnostics
Cloud services have the facility to attach local storage, which can be used as
a temporary data store, which is only available locally to the instance. Local
diagnostics can be useful for development and debugging as we can access them
easily through the Visual Studio Server Explorer window, and we will not incur
costs for storing data in cloud storage.

To enable logging to local storage, we need to first add some storage by selecting
Local Storage and clicking on Add Local Storage:

We also have the option to clear the storage when the role is recycled, which is fairly
self-explanatory and will delete all the stored data on recycle.

Cloud Service Diagnostics, Debugging, and Configuration

[270]

To configure the role to use local storage, choose a Service Configuration to apply it
to (I've used Local, so I'm not storing debug diagnostics on the cloud) and click on
the ellipsis button under Specify the storage account credentials for the Diagnostics
results and choose Windows Azure storage emulator:

Now, when we debug the worker role, we see a WADLogsTable appear in the Storage
| (Development) | Tables folder, which we can open to see our diagnostic data:

Chapter 9

[271]

Configuring Azure storage diagnostics
To configure the role to use cloud storage, choose a Service Configuration to apply it
to (I've used Cloud, so I'm storing production diagnostics on the cloud) and click on
the ellipsis button under Specify the storage account credentials for the Diagnostics
results and choose Your subscription and select the storage account you wish to use:

Cloud Service Diagnostics, Debugging, and Configuration

[272]

Once the role is published and running, we'll see the WADLogsTable appear in the
Server Explorer window, which we can open to see diagnostics data:

Remote debugging
Worker roles support remote debugging, which is a really useful feature to help you
debug a system deployed to the cloud. To get started with this, we need to publish our
role in the Debug configuration so that we can successfully attach the debugger to it:

Chapter 9

[273]

In the Advanced Settings tab, check Enable Remote Debugger for all roles. I've also
checked Enable IntelliTrace, so we can look at this too:

We can debug an entire role or an individual instance from the Visual Studio
Server Explorer window. If we choose to debug an entire role, the debugger will
break on the first instance to run into the break point; debugging multiple instances
is similar to debugging multithreaded applications, which can sometimes be a little
confusing, so if you're not debugging a concurrency issue, it's probably easier to
debug a single instance.

Cloud Service Diagnostics, Debugging, and Configuration

[274]

To start debugging in Visual Studio from the Server Explorer window, choose a role
or an instance, right-click on it, and select Attach Debugger...:

Next, we will see the standard Attach to Process dialog appear, showing the running
processes on our instance. The debugger should automatically attach to the correct
process, but I found that I had to manually select it, so for a worker role, we need
WaWorkerHost.exe (WaIISHost.exe for web roles):

Chapter 9

[275]

If we debug multiple instances, we will see an indication of the number of processes
being debugged in brackets after the process name.

Click on Attach, and we'll see the attached process appear in the Server Explorer
tree, and the debugger will break on the break points in code:

We need to be careful in using remote debugging as it can cause a
role to become unstable, so in a production environment, it should
be used with caution.

Stopping the debugger
To stop the debugger, right-click on the process under the instance and select
Stop Debugging:

Cloud Service Diagnostics, Debugging, and Configuration

[276]

Examining how remote debugging works
When we enable diagnostics, IntelliTrace, remote desktop, or remote debugging
during publishing, our virtual machines are provisioned with the appropriate plugins
installed, which can be seen by browsing to the plugins folder on the machine:

These plugins provide an extra server-side functionality to the roles. Remote
debugging uses the connector to listen to commands from Visual Studio such
as start and get processes and the Forwarder command to send debug data
between the remote debugging monitor (msvsmon.exe) on the VM and Visual
Studio of the client machine. If you start remote debugging and have a remote
desktop connection to the machine (we will cover this in a bit) and open the task
manager, you can see all these processes running. You can actually start remote
debugging and see the running processes in the Attach to Process dialog too.

Debugging with IntelliTrace
IntelliTrace is a great tool to make the debugging process more efficient; it creates
a stream of detailed application events from many framework components, which
can be replayed after they've occurred, allowing us to go back in time and debug
the application. IntelliTrace is only available in Ultimate versions of Visual Studio;
if you don't have Visual Studio Ultimate, you can get a 3-month trial to try this
feature if you like.

To get started, we need to enable IntelliTrace in the Advanced Settings tab
during the publish step. We can adjust the IntelliTrace Settings by clicking
on the Settings… link next to the Enable IntelliTrace checkbox:

Chapter 9

[277]

As with all diagnostic data, we need to be careful while using
IntelliTrace as we can quickly build up large amounts of data in
storage, which we will be charged for. We can control the maximum
amount of data stored by navigating to the IntelliTrace Settings |
Advanced tab, and the default value is 250 MB.

To view the IntelliTrace logs, we can right-click on an instance and select
View IntelliTrace logs from the context-sensitive menu:

Cloud Service Diagnostics, Debugging, and Configuration

[278]

Once we've done this, the IntelliTrace file will start to download and appear in the
Windows Azure Activity Log pane, and will then open automatically once complete:

From here, we can start debugging with the IntelliTrace file. There is a good guide
to getting started with this at http://msdn.microsoft.com/en-us/library/
dd264963.aspx.

IntelliTrace is a good way of debugging intermittent problems as
we don't need to have a debugger attached, although we need to
be careful if we're collecting call information as well as events,
as this can degrade the performance of a role.

http://msdn.microsoft.com/en-us/library/dd264963.aspx
http://msdn.microsoft.com/en-us/library/dd264963.aspx

Chapter 9

[279]

Remote desktop connection
As cloud services run on dedicated virtual machines (per deployment environment),
it's possible to remote desktop to them to perform advanced diagnostics and
configuration, although generally, it's not the best practice to do manual modifications
to the environment as these will not be applied to roles when they are initially created
during a scale out or re-imaged on a guest-OS upgrade, which happens every few
months (there's a great article about OS upgrades here: http://blogs.msdn.com/b/
kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.
aspx). To implement environment customizations, it's recommended that you use
start-up tasks, which we will be covering shortly.

In the previous chapter, we configured remote desktop during the publish step
with a username and password. We can connect using a .rdp file downloaded
from the portal, which is useful for system administrators or via the Visual Studio
Server Explorer window, which can be more convenient for developers.

Downloading a Remote Desktop Protocol
(RDP) file
When we click on an instance in the portal, we should see the CONNECT button
enabled (if it is not, check that remote desktop is enabled in the publish settings).
Choose an environment and an instance to connect to and click on the CONNECT
button to download the .rdp file:

http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx

Cloud Service Diagnostics, Debugging, and Configuration

[280]

Before we make a connection, if we open the .rdp file in Notepad, we can see
some interesting details about the cloud service endpoints and how we connect
to an instance:

full address:s:80c247175c3b4ea9ad4e002bb0a5cb8a.cloudapp.net
username:s:geoff
LoadBalanceInfo:s:Cookie:
 mstshash=OrderProcessorRole#OrderProcessorRole_IN_0

The cloud services are on an internal network and cannot be connected to directly.
The full address setting is the DNS name of the load-balanced endpoint, and the
LoadBalanceInfo setting tells the load balancer which role and instance within the
service we want to connect to.

Establishing an RDP connection
We'll establish a Remote Desktop Protocol (RDP) connection via the Visual Studio
Server Explorer window using the following procedure (the procedure is pretty
much the same using a .rdp file):

1.	 Choose a role instance, right-click on it, and select Connect using
Remote Desktop…:

Chapter 9

[281]

2.	 The Remote Desktop Connection dialog will appear like this:

3.	 Click on Connect and accept the untrusted publisher warning.

Cloud Service Diagnostics, Debugging, and Configuration

[282]

4.	 Click on Connect, and a login prompt will appear. If you get an option
to use a domain account, click on Use another account and enter the
credentials for the local account we configured during the publish:

5.	 Click on OK and accept the next warning, and we should connect to the
instance and see the desktop for the virtual server.

Firewall issues
If you have trouble connecting it, it is probably because a firewall is blocking
the default RDP port 3389 particularly in an enterprise environment. If you
don't have access to your personal or site firewall, you will need to contact your
network administrator to get the port opened, and you may need the IP address
of the virtual machine for the firewall policy, which can be found on the cloud
service DASHBOARD tab in the quick glance section:

Chapter 9

[283]

Detecting configuration changes in code
When we use configuration settings in our roles, such as the AzureBakery.
Production.Storage setting we created in the previous chapter, we can change
these at runtime in the role's CONFIGURATION tab in the portal:

To detect config changes in code, we can attach event handlers to the
RoleEnvironment.Changing event, which is fired before a config change is
applied to the role and the RoleEnvironment.Changed event, which is fired
after the change has been applied:

public override bool OnStart()
{
 Trace.TraceInformation("OrderProcessorRole.WorkerRole.OnStart
 - Begin");

 RoleEnvironment.Changing += RoleEnvironment_Changing;
 RoleEnvironment.Changed += RoleEnvironment_Changed;
}

Using the Changing event, we can set the e.Cancel flag to true, which will cause
the role to recycle, and the new changes are applied on the next start:

private void RoleEnvironment_Changing(object sender,
 RoleEnvironmentChangingEventArgs e)
{
 // Implements the changes after restarting the role instance
 if ((e.Changes.Any(change => change is
 RoleEnvironmentConfigurationSettingChange)))
 {
 e.Cancel = true;
 }
}

Cloud Service Diagnostics, Debugging, and Configuration

[284]

Using the Changed event, we can write code to handle configuration changes
(first, test for the RoleEnvironmentConfigurationSettingChange type). In the
following example from our production order processor, we're stopping and
reinstantiating our queue processors:

private void RoleEnvironment_Changed(object sender,
 RoleEnvironmentChangedEventArgs e)
{
 // Implements the changes after the config has changed
 if ((e.Changes.Any(change => change is
 RoleEnvironmentConfigurationSettingChange)))
 {
 this._batchQueueProcessor.Stop();
 this._stockQueueProcessor.Stop();

 this._batchQueueProcessor = new BatchQueueProcessor();
 this._stockQueueProcessor = new StockQueueProcessor();
 }
}

Using configuration settings and implementing these events is a great way of making
roles dynamically configurable so that we don't need to change settings in a config
file and republish the whole role, or manually restart the role to apply changes made
through the portal.

Start-up tasks
Start-up tasks are command-line scripts that can be added to a role in the
ServiceDefinition.csdef file, allowing the role to perform activities before the role
has started. These activities might be things such as installing a third-party package
or making environmental or configuration changes. Start-up tasks are the best way
of customizing a server rather than making manual changes using a remote desktop.
We're going to have a very brief look at this area, so it's worth doing some additional
reading around this area yourself.

Creating a batch script
To get started, we need to create a .cmd batch script to perform a task (you can also
write PowerShell .ps1 scripts) called DemoTasks.cmd and put it in a solution folder
called Tasks:

Chapter 9

[285]

Before we write the script, we'll set the Build Action property of the file to Content
so that the file along with the Tasks folder is copied to the output (bin) folder, and
Copy to Output Directory to Copy if newer so that the file is copied if it changes:

My script simply writes some details about the start-up date and time to a logfile,
which is a good starting point for any script:

REM Demo Start-up Tasks to log the start-up date and time

REM Output variable
SET OutputFile="%TEMP%\StartupLog.txt"

Cloud Service Diagnostics, Debugging, and Configuration

[286]

ECHO DemoTask.cmd: >> %OutputFile% 2>&1
ECHO Current date and time: >> %OutputFile% 2>&1
DATE /T >> %OutputFile% 2>&1
TIME /T >> %OutputFile% 2>&1

REM Error block
IF ERRORLEVEL EQU 0 (
 REM No errors occurred. Exit cleanly with /B 0
 EXIT /B 0
) ELSE (
 REM Log error
 ECHO Error - ERRORLEVEL = %ERRORLEVEL%. >> %OutputFile% 2>&1
 EXIT %ERRORLEVEL%
)

The best practice is to log the stderr and stdout streams to a logfile for debugging
purposes; this following command echos the DemoTask.cmd text and pipes the
stderr and stdout streams using the 2>&1 operation to the file in the OutputFile
variable (be careful not to use spaces when defining variables as you would in C#
as they become part of the variable name):

ECHO Startup1.cmd: >> %OutputFile% 2>&1

We've used the %TEMP% variable, which is an environmental variable for the
temporary folder on the machine. You can find a list of environmental variables at
http://technet.microsoft.com/en-us/library/cc749104(v=ws.10).aspx.

Adding the task
Once we've created a script, the next step is to add the task to the csdef file like this:

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="OrderProcessor"
 xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/
 ServiceDefinition"
 schemaVersion="2014-01.2.3">
 <WorkerRole name="OrderProcessorRole" vmsize="Small">
 <Startup>
 <Task commandLine="Tasks\DemoTask.cmd"
 executionContext="limited" taskType="simple" />
</Startup>

http://technet.microsoft.com/en-us/library/cc749104(v=ws.10).aspx

Chapter 9

[287]

There are three attributes we can set: commandLine, executionContext, and
taskType. The commandLine attribute is pretty straightforward; it's the command
we want to execute; we can use a .cmd batch file or even write a batch command
in-line; executionContext is used to control the privileges the script executes
under; the options are as follows:

•	 limited: This is used for normal privileges
•	 elevated: This is used for administrator privileges

The taskType attribute controls the type of task and the options, which are as follows:

•	 simple: Simple tasks run synchronously, allowing you to control the
sequence of the tasks in the Startup element. If a simple task ends
with a non-zero error code, the role will not start.

•	 foreground: Foreground tasks run asynchronously, so tasks can be
executed concurrently. The role will wait for all tasks to complete with
a non-zero error code before starting.

•	 background: Background tasks also run asynchronously but the role
will start without the tasks completing.

Environmental variables
We use the %TEMP% environmental variable in our script, which is a built-in variable,
but it's also possible to add custom environmental variables to the Task folder in the
csdef file, like this:

<Task commandLine="Tasks\DemoTask.cmd" executionContext="limited"
 taskType="simple">
 <Environment>
 <Variable name="Simple" value="Hello startup task!" />
 <Variable name="ComputeEmulatorRunning">
 <RoleInstanceValue
 xpath="/RoleEnvironment/Deployment/@emulated" />
 </Variable>
 </Environment>
</Task>

Cloud Service Diagnostics, Debugging, and Configuration

[288]

Here, we've created a simple variable called Simple, which we can use in the
script with the %Simple% variable. We've also created a more useful variable called
ComputeEmulatorRunning, which uses an xPath value to determine whether the role
is running in the emulator. We can add the following script to use these variables:

REM Test Simple environment variable works
ECHO Simple Environment Variable: %Simple% >> %OutputFile% 2>&1

REM Check if we're in the emulator
IF "%ComputeEmulatorRunning%" == "true" (
 ECHO Running in emulator >> %OutputFile% 2>&1
) ELSE (
 ECHO Running in Azure cloud >> %OutputFile% 2>&1
)

There are some examples of other xPath variables at http://msdn.microsoft.com/
en-us/library/hh404006.aspx.

Summary
We've now completed the cloud services topic we started in the previous chapter, and
we've taken a closer look at using diagnostics, remote debugging, and IntelliTrace, to
help us debug our applications that run in the cloud. We've also looked at detecting
configuration change so that our cloud services can dynamically respond to changes
without the need to redeploy or manually recycle. Finally, we looked at start-up tasks,
which allow us to customize the cloud service environment before a role starts.

In the next chapter, we're going to look at building an ASP.NET Web API web
service and a production management application, which we will integrate into
our system using Azure Active Directory.

Questions
1.	 Which connection string is used for local storage?
2.	 What is the name of the storage table where diagnostic data is stored?
3.	 What publish settings must we apply to enable remote debugging?
4.	 What process do we attach to when remote debugging a worker role?
5.	 What happens if we debug a role rather than an instance?
6.	 Is it possible to use IntelliTrace on cloud services in Visual Studio Express?
7.	 Which is the default RDP port?

http://msdn.microsoft.com/en-us/library/hh404006.aspx
http://msdn.microsoft.com/en-us/library/hh404006.aspx

Chapter 9

[289]

8.	 What is the difference between the RoleEnvironment.Changed and
RoleEnvironment.Changing events?

9.	 Where are start-up tasks defined?
10.	 What properties must we apply to a task script so that it is copied when

we publish?
11.	 What is the %TEMP% variable an example of and what does it do?
12.	 What is the difference between limited and elevated executionContext?

Answers
1.	 UseDevelopmentStorage should be set to true.
2.	 WADLogsTable.
3.	 The Debug configuration and Enable Remote Debugger for all roles

in the Advanced Settings tab.
4.	 WaWorkerHost.exe.
5.	 We start debugging all role instances simultaneously.
6.	 No, unfortunately it's only available in Visual Studio Ultimate.
7.	 3389.
8.	 The RoleEnvironment.Changed event allows us to detect when config has

changed in code and deal with it accordingly at runtime. RoleEnvironment.
Changing allows us to recycle the role if the config is changing using the
e.Cancel flag so that new settings are applied on start.

9.	 They are defined on a per-role basis in the cloud service's
ServiceDefinition.csdef file.

10.	 Build action is set to Content and Copy to Output Directory is set to
Copy if newer.

11.	 It's a standard environmental variable, which gives us the path of the
temp directory.

12.	 Limited runs the script with normal privileges while elevated runs the
script with administrator privileges.

Web API and
Client Integration

In this chapter, we'll create an on-premise production management client Windows
application allowing manufacturing staff to view and update order and batch data
and a web service to access data in the production SQL database and send order
updates to the Service Bus topic.

The site's main feature is an ASP.NET Web API 2 HTTP service that allows the clients
to read order and batch data. The site will also host a SignalR (http://signalr.net/)
hub that allows the client to update order and batch statuses and have the changes
broadcast to all the on-premise clients to keep them synchronized in real time. Both
the Web API and SignalR hubs will use the Azure Active Directory authentication.

We'll cover the following topics in this chapter:

•	 Introducing a Web API
•	 Introducing SignalR
•	 Building a Web API service
•	 Creating a SignalR hub
•	 Publishing a Web API
•	 Modifying the Web API AD manifest
•	 Adding a client application to AD
•	 Building a client application

http://signalr.net/

Web API and Client Integration

[292]

Introducing a Web API
Using web services with client applications is common practice in many systems, as
it allows clients to interact with data sources and other resources indirectly, allowing
greater control over security and also allowing us to present data to applications in
an application-domain friendly format.

The Web API (currently Version 2) is an ASP.NET framework for building RESTful
HTTP web services (http://en.wikipedia.org/wiki/Representational_state_
transfer) for a wide range of client applications, including websites, desktop
applications, and mobile applications (although Azure also offers dedicated mobile
services that we'll look at in the next chapter). A Web API is simple to implement
compared to other web service technologies such as WCF, which is designed for
SOAP and requires complicated configuration. A Web API is similar to MVC, where
we have controllers with HTTP methods routed to actions, but where MVC is used
to build websites that interact with a web browser and a Web API provides services
for applications to interact with data in JSON and XML formats.

An example of where we benefit from using a web service such as ASP.NET Web
API is when we have a client application that needs to get data from a SQL Server
Database. If the client application accesses the database directly, it needs to use
SQL Server or Windows authentication. If we choose SQL Server authentication,
we need to hardcode a connection string with the credentials, which is not ideal, as
it means we cannot change it without recompiling the application and reissuing it
to our users; also, the application can be decompiled by a malicious user to retrieve
the connection details. Alternatively, we can put the connection string in a config
file, which allows us to change the connection string, but this directly exposes it to
anyone with access to the filesystem. Using Windows authentication is much better,
as we can use the user's credentials to connect to the database; however, there is an
administrative overhead as users must be added directly to the SQL Server security
or to an AD group that has access to the database, and the user and group privileges
need configuring in the database.

Using a web service allows us to use any authentication method we choose, as
the user has no direct access to the server filesystem; this is particularly important
for Azure databases as they don't currently support Windows authentication. We
authenticate users and control authorization to resources in the client application,
which then accesses the database via a web service.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 10

[293]

Introducing SignalR
SignalR is a library for .NET developers to help build real-time web-connected
applications. SignalR makes use of WebSockets (http://en.wikipedia.org/wiki/
WebSocket) where available, which provide duplex (two-way) communications over
TCP sockets, allowing clients to send data to a server; but more importantly, it allows
the server to push data back to the client, which means that clients don't need to
continually poll the server for updates.

SignalR can have issues with scalability when deployed on load-balanced web servers
because clients will have a connection to a single website instance and will not receive
messages from other instances, which means that we end up with multiple hubs rather
than just one.

There are a number of solutions to deal with scalability with SignalR using a
backplane; where each hub forwards messages to the backplane rather than directly
to the client, the backplane then updates all hub instances, which then forwards the
message to the client. There are three backplane options:

•	 Microsoft Azure Service Bus: The Service Bus is used to allow hub instances
to message each other via redundant topics

•	 Redis: This is an in-memory solution with a publish/subscribe pattern,
where hub instances can update each other directly

•	 SQL Server: Hub instances are updated via SQL database tables with the
option to use a service broker

We'll implement the Microsoft Azure Service Bus backplane in our solution.

Building a Web API service
We'll create a new web project for the production system that hosts the Web API
HTTP service and the SignalR hub. Since we already have Azure AD authentication
in place across the other internal systems, we'll configure this website to use Azure
AD authentication, too.

If you've not already done so, read the Adding Azure AD single sign-on to a website
section in Chapter 5, Building Azure MVC Websites, which covers creating an Azure
AD, which is a prerequisite to creating a website with Azure AD integration.

http://en.wikipedia.org/wiki/WebSocket
http://en.wikipedia.org/wiki/WebSocket

Web API and Client Integration

[294]

Creating a Web API project
In the following procedure, we'll create a web project in Visual Studio with a Web API
template and configure it to use Azure AD authentication:

1.	 Add a new web project to your solution, I've called mine ManagementWebApi,
select the Web API template and make sure Host in the cloud is checked:

2.	 Click on Change Authentication, then select Organizational Accounts, fill in
the Azure AD Domain field, and click on OK:

Chapter 10

[295]

3.	 Sign in using the new AD user, then click on OK in the previous dialog
(be careful to change the user to your Azure portal account when prompted
to sign in to Azure).

4.	 Enter a value against Site name, and choose Region and Database Server
(select No database because we're using the existing one):

Web API and Client Integration

[296]

5.	 Click on OK; this will provision the website, set up an AD application, and
create our Web API project for us. If we take a look at the APPLICATIONS
tab in our AD workspace in the portal, we can see that our application has
been added to the list:

6.	 If we take a look at the App_Start/Startup.Auth.cs class, we can see
how AD authentication is implemented using the IAppBuilder interface.
The UseWindowsAzureActiveDirectoryBearerAuthentication method
with the ida:Audience (our Web API application) and ida:Tenent
(our AD) app settings from the Web.config file is as follows:
public void ConfigureAuth(IAppBuilder app)
{
 app.UseWindowsAzureActiveDirectoryBearerAuthentication(
 new
 WindowsAzureActiveDirectoryBearerAuthenticationOptions
 {
 Audience =
 ConfigurationManager.AppSettings["ida:Audience"],
 Tenant =
 ConfigurationManager.AppSettings["ida:Tenant"]
 });
}

7.	 As with the sales admin website, we can test this locally by simply running
the project (which has a built-in website) from Visual Studio. You will get a
security warning due to the implementation of a temporary SSL certificate
on your local web server (in IE), as shown in the following screenshot:

Chapter 10

[297]

8.	 Accept the warning and we will see the home page of the Web API. Unlike
the MVC website, the Web API home page does not need authorization by
default; this allows us to create a public API reference, which doesn't need
to use authorization (we can change this by adding the Authorization
attribute to HomeController).

9.	 If we navigate to the api/values URL, which is the path of the Values
API controller that is created for us in the project, we will see an error
response (401 Unauthorized) telling us we're not authorized to use the
service (I used Chrome here as it shows the response better than IE, and
you can hit F12 to see the developer console for more information about
the request and response):

This shows us that the authorization is working; we'll be able to use the
API once we have an authorized request from our client application.

Web API and Client Integration

[298]

Creating API controllers
Next, we'll add a couple of controllers for order and batch data using scaffolding to
quickly create DbContext and a set of REST actions to create, read, update, delete,
and list data. You've probably got the idea by now, but as I keep mentioning, it's
always good to use a dependency injection and a repository/UoW pattern to build
our data service tiers. However, this is a quick way of getting us to where we need
to be. To create OrderController, use the following procedure:

1.	 Before we add the controllers, we need to add a project reference to the
ProductionModel project so that the scaffold can see the entities we want
to use. So, right-click on the References folder, select Add Reference,
check ProductionModel by navigating to the Solution | Projects tab,
and click on OK.

2.	 Right-click on the Controllers folder and go to Add | Controller to open
the Add Scaffold dialog:

3.	 We see a number of options to create the MVC and Web API controllers with
different scaffold options; select Web API 2 Controller with actions, using
Entity Framework, click on Add, and the Add Controller dialog will appear:

Chapter 10

[299]

4.	 Select the order model from the Model class picker, then click on the
+ button next to Data context class to create a new DbContext (if you're
onto BatchController, select the existing DbContext from the picker):

5.	 At this point, you can change the name of the data context (I'm going
to leave it to the default); click on Add and we'll see the details in the
Add Controller dialog:

Web API and Client Integration

[300]

6.	 Finally, I'm going to check Use async controller actions, which will mark
the async actions, allowing us to use the async methods in DbContext
(we've used async Tasks a few times so far in the project already to help
us build applications that are more efficient with threads, and in the case
of client applications, which we're looking at again in this chapter, help us
write code to access resources that will cause the UI to become unresponsive
if we call them synchronously from the UI thread). Click on Add to scaffold
the controller.

7.	 Go and take a look at what's been created in OrdersController,
ManagementWebApiDataContext, and the additional EF sections in
Web.config, and then start making changes to integrate with our
existing database.

8.	 We need to change the database connection string to point to our existing
SQL express database so that it can share data with the order processor.
So, in the Web.config file, locate the database connection string, using the
following code:
<connectionStrings>
 <add name="ManagementWebApiContext"
 connectionString="Data Source=(localdb)\v11.0; Initial
 Catalog=ManagementWebApiContext-20140708044804;
 Integrated Security=True;
 MultipleActiveResultSets=True;
 AttachDbFilename=|DataDirectory|ManagementWebApiConte
 xt-20140708044804.mdf"
 providerName="System.Data.SqlClient" />
</connectionStrings>

9.	 Copy the connection string from OrderProcessorRole and replace
the string in Web.config as shown, leaving the name the same so that
ManagementWebApiDataContext can find it (you can change the base
constructor if you want):
<connectionStrings>
 <add name="ManagementWebApiContext"
 connectionString="Data Source=localhost;Initial
 Catalog= AzureBakeryProduction;Integrated
 Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Chapter 10

[301]

10.	 Add the following line of code to the ManageMentWebApiDataContext
constructor to disable the EF proxy creation:
public ManagementWebApiContext() :
 base("name=ManagementWebApiContext")
{
 base.Configuration.ProxyCreationEnabled = false;
}

11.	 Now, we'll modify the OrdersController GetOrders method to return
only the open status orders:
public IQueryable<Order> GetOrders()
{
 return db.Orders
 .Where(o => o.Status == OrderStatus.Open)
}

12.	 You might not have noticed, but the controller is not decorated with the
Authorize attribute, which means it is unsecured; this is bad because
anybody can access it, but is good for now as we can give it a quick test!

13.	 Debug the Web API project, and then navigate to /api/orders
(or whatever your IIS express port is), as shown in the following code:
https://localhost:44303/api/orders

14.	 I used Chrome because it shows the results nicely in the browser. If you're
doing the same, you'll notice the data coming back as XML because the
browser has the application/XML option in the accept header by default.

15.	 Once you're happy with the way the controller is working, put the
Authorize attribute on the controller class, as shown:
[Authorize]
public class OrdersController : ApiController

16.	 For BatchController, use the same procedure, but use DbContext we
created before instead.
To further test the controller, we can use the browser for most HTTP GET
actions, use a tool such as Fiddler (http://www.telerik.com/fiddler),
or use cURL (http://curl.haxx.se/) to construct other actions such as
POST or PUT, which require data to be inserted into the request body.

http://www.telerik.com/fiddler
http://curl.haxx.se/

Web API and Client Integration

[302]

Creating a SignalR hub
We'll implement a SignalR hub to allow clients to update order and batch statuses as
they are changed by a user, and we'll receive updates from other clients in the system
as they are updated by other users. Create the hub in the following procedure:

1.	 Enter the following command into the NuGet Package Manager Console to
install the Microsoft.AspNet.SignalR package:
Install-Package Microsoft.AspNet.SignalR

2.	 Enter the following command into the NuGet Package Manager Console to
install the Microsoft.AspNet.SignalR.ServiceBus package:
Install-Package Microsoft.AspNet.SignalR.ServiceBus

3.	 Finally, enter the following command to install the windowsazure.
servicebus package (do this at last because the Microsoft.AspNet.SignalR
command installs its own version, which might not be compatible with
partitioned brokered messages):
install-package windowsazure.servicebus

4.	 Modify the Microsoft.ServiceBus.ConnectionString app setting,
which was added by the Microsoft.AspNet.SignalR.ServiceBus package,
and add an ACS key for the Service Bus namespace (get it from the portal).
Unfortunately, the library requires full control over the namespace as it
needs to create its own topics. The connection string should look like this:
<add key="Microsoft.ServiceBus.ConnectionString"
 value="Endpoint=sb://azurebakery.servicebus.windows.net/;
 SharedSecretIssuer=owner;SharedSecretValue=
 vxaQFgh8zGFtsqnAemCcv/NTCtLNM2qhYslQq7TIQsI=" />

5.	 Modify the Startup class in the App_Start/Startup.Auth.cs file, as shown:
using Microsoft.AspNet.SignalR;
using Microsoft.Owin;
using Microsoft.Owin.Security.ActiveDirectory;
using Owin;
using System.Configuration;

Chapter 10

[303]

[assembly: OwinStartup(typeof(ManagementWebApi.Startup))]
namespace ManagementWebApi
{
 public partial class Startup
 {
 // For more information on configuring authentication,
 please visit http://go.microsoft.com/fwlink/?LinkId=301864
 public void ConfigureAuth(IAppBuilder app)
 {
 app.UseWindowsAzureActiveDirectoryBearerAuthentication(
 new WindowsAzureActiveDirectoryBearerAuthenticationOptions
 {
 Audience = ConfigurationManager.
 AppSettings["ida:Audience"],
 Tenant = ConfigurationManager.
 AppSettings["ida:Tenant"]
 });

 // SignalR startup
 var connectionString = ConfigurationManager.
 AppSettings["Microsoft.ServiceBus.ConnectionString"];
 GlobalHost.DependencyResolver.
 UseServiceBus(connectionString, "ManagementApi");

 app.MapSignalR();
 }
 }
}

6.	 It's important to note the OwinStartup attribute, which is used to mark the
class that's needed for automatic startup. The last three lines, which retrieve
the Service Bus connection string from config, tells SignalR to use Service
Bus to message and configures the signal routing to api/signalr.

Web API and Client Integration

[304]

7.	 Next, add a hub class to the project; I put mine under a solution folder called
SignalR. Right-click on the solution folder and go to Add | New Item, and
then select SignalR Hub Class (v2) from the SignalR tab, give it a name, and
click on OK:

8.	 Add the UpdateOrder and UpdateBatch methods that a client calls and
updates to all connected clients. I've abstracted the database and messaging
logic into service classes to make the code easier to read, so get this from the
samples. The class is decorated with the Authorize attribute, which uses the
same AD authentication mechanism as the Web API:
[Authorize]
public class ManagementHub : Hub
{
 private readonly DataService _dataService = new
 DataService();
 private readonly MessagingService _messagingService =
 new MessagingService();

 public void UpdateOrder(Order order)
 {
 // Update database
 this._dataService.UpdateOrder(order);

 // Send order message to Topic
 this._messagingService.UpdateOrder(order);

Chapter 10

[305]

 // Notify all clients
 Clients.All.updateOrder(order);
 }

 public void UpdateBatch(Batch batch)
 {
 // Update database
 this._dataService.UpdateBatch(batch);

 // Notify all clients
 Clients.All.updateBatch(batch);
 }
}

Publishing a Web API
We can publish a Web API straight to the website that was provisioned when we
created it using the normal website publish procedure; however, we need to pay
particular attention to the publish settings:

Web API and Client Integration

[306]

Check Enable Organizational Authentication, enter the AD tenant Domain name,
make sure to set the database connection string of the Azure database, and check
Use this connection string at runtime (update destination web.config).

When we publish, we need to enter our AD tenant login credentials:

When the publish process is complete, we'll see our website has been created, but we
also see a new application appear in the AD tenant workspace APPLICATIONS tab:

The ida:Audience setting in the Web.config file will also be updated to have the ID
of our new Azure Web API application.

Chapter 10

[307]

Modifying the Web API AD manifest
Before we create an AD application for our client, we need to modify the manifest
of the local and Azure ManagementWebApi (my Azure application is called webapp-
azurebakeryproduction.azurewebsites.net) applications so that other
applications can be given permission to access them using the AD authorization.
We'll do this in the following procedure:

1.	 Go to MANAGE MANIFEST | Download Manifest on the toolbar for the
AD application in the portal:

2.	 Open the downloaded json manifest file; the start should look something
like this:
{
 "appId": "0a2141c3-566f-4d52-98c6-9cb249224868",
 "appMetadata": null,
 "appPermissions": [],
 "availableToOtherTenants": false,
 "displayName": "ManagementWebApi",
 "errorUrl": null,
 "homepage": "https://localhost:44303/",
 "identifierUris": [
 "https://azurebakery.onmicrosoft.com/ManagementWebApi"
],

3.	 Replace the empty "appPermissions": [] section with the following code,
and save the file:
"appPermissions": [
 {
 "claimValue": "user_impersonation",
 "description": "Allow the application full access to
 the service on behalf of the signed-in user",
 "directAccessGrantTypes": [],
 "displayName": "Have full access to the service",
 "impersonationAccessGrantTypes": [
 {
 "impersonated": "User",
 "impersonator": "Application"

Web API and Client Integration

[308]

 }
],
 "isDisabled": false,
 "origin": "Application",
 "permissionId":
 "B4B3BA55-0770-47D0-A447-C55BB6A371DF",
 "resourceScopeType": "Personal",
 "userConsentDescription": "Allow the application full
 access to the service on your behalf",
 "userConsentDisplayName": "Have full access to the
 service"
 }
],

4.	 Upload the saved manifest by navigating to the MANAGE MANIFEST |
Upload Manifest menu item.

5.	 Repeat the steps for the second manifest.

Adding a client application to AD
Before we can connect to the Web API from our client application, we need to add it
to our Azure AD with permissions to access the Web API application. We'll do this in
the following procedure:

1.	 Navigate to the AD workspace in the Azure portal.
2.	 Click on ADD on the APPLICATIONS toolbar of our Azure Bakery tenant:

3.	 Then, select Add an application my organization is developing:

Chapter 10

[309]

4.	 Enter the application NAME, select NATIVE CLIENT APPLICATION
(the other option is for web applications), and click on the next arrow:

5.	 Next, enter a value for REDIRECT URI (this just needs to be a valid URI for
the redirect after the OAuth2 request and is not used in this implementation),
and click on the tick button to complete:

Web API and Client Integration

[310]

6.	 Now, we need to add permission to ManagementWebApi, so scroll to
the permissions to other applications section at the bottom of the
CONFIGURATION tab and add a new permission for ManagementWebApi,
which should now appear in the list after our manifest modification. Now,
choose Have full access to the service as the delegated permission, which is
the display name we used:

7.	 Change the delegated permissions for the default Windows Azure
Active Directory permission to include Access your organization's
directory (preview):

8.	 Add permissions for the Azure Management API.
9.	 Click on SAVE on the toolbar to complete.

Building a client application
For the client application, we'll create a WPF client application to display batches and
orders and allow us to change their state. We'll use MVVM Light again, like we did
for the message simulator we created in the sales solution, to help us implement a
neat MVVM pattern. We'll create a number of data services to get data from the API
using Azure AD authentication.

Chapter 10

[311]

Preparing the WPF project
We'll create a WPF application and install NuGet packages for MVVM Light, JSON.
NET, and Azure AD authentication in the following procedure (for the Express
version of Visual Studio, you'll need Visual Studio Express for desktops):

1.	 Add a WPF project to the solution called ManagementApplication.
2.	 In the NuGet Package Manager Console, enter the following command to

install MVVM Light:
install-package mvvmlight

3.	 Now, enter the following command to install the Microsoft.
IdentityModel.Clients.ActiveDirectory package:
install-package Microsoft.IdentityModel.Clients.ActiveDirectory

4.	 Now, enter the following command to install JSON.NET:
install-package newtonsoft.json

5.	 Enter the following command to install the SignalR client package
(note that this is different from the server package):
Install-package Microsoft.AspNet.SignalR.Client

6.	 Add a project reference to ProductionModel by right-clicking on the
References folder and selecting Add Reference, check ProductionModel
by navigating to the Solution | Projects tab, and click on OK.

7.	 Add a project reference to System.Configuraton and System.Net.Http by
right-clicking on the References folder and selecting Add Reference, check
System.Config and System.Net.Http navigating to the Assemblies |
Framework tab, and click on OK.

8.	 In the project's Settings.settings file, add a string setting called Token to
store the user's auth token.

9.	 Add the following appSettings block to App.config; I've put comments
to help you understand (and remember) what they stand for and added
commented-out settings for the Azure API:
<appSettings>
 <!-- AD Tenant -->
 <add key="ida:Tenant" value="azurebakery.onmicrosoft.com" />

 <!-- The target api AD application APP ID (get it from
 config tab in portal) -->
 <!-- Local -->

Web API and Client Integration

[312]

 <add key="ida:Audience"
 value="https://azurebakery.onmicrosoft.com/ManagementWebApi"
/>
 <!-- Azure -->
 <!-- <add key="ida:Audience"
 value="https://azurebakery.onmicrosoft.com/
 WebApp-azurebakeryproduction.azurewebsites.net" /> -->

 <!-- The client id of THIS application (get it from
 config tab in portal) -->
 <add key="ida:ClientID" value=
 "1a1867d4-9972-45bb-a9b8-486f03ad77e9" />

 <!-- Callback URI for OAuth workflow -->
 <add key="ida:CallbackUri"
 value="https://azurebakery.com" />

 <!-- The URI of the Web API -->
 <!-- Local -->
 <add key="serviceUri" value="https://localhost:44303/" />
 <!-- Azure -->
 <!-- <add key="serviceUri" value="https://azurebakeryproduction.
azurewebsites.net/" />
 -->
</appSettings>

10.	 Add the MVVM Light ViewModelLocator to Application.Resources in
App.xaml:
 <Application.Resources>
 <vm:ViewModelLocator x:Key="Locator"
 d:IsDataSource="True" xmlns:vm=
 "clr-namespace:AzureBakery.Production.
 ManagementApplication.
 ViewModel" />
 </Application.Resources>

11.	 Add a binding to MainWindow.xaml DataContext with path to the Main
property, which is the MainViewModel we will use:
<Window x:Class="AzureBakery.Production.ManagementApplication.
 MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 DataContext="{Binding Source={StaticResource
 Locator}, Path=Main}"
 Title="Production Management Application"
 Height="350" Width="525">

Chapter 10

[313]

Creating an authentication base class
Since the Web API and SignalR hubs use Azure AD authentication, we'll create
services to interact with both and create a common base class to ensure that all requests
are authenticated. This class uses the AuthenticationContext.AquireToken method
to launch a built-in login dialog that handles the OAuth2 workflow and returns an
authentication token on successful login:

using Microsoft.IdentityModel.Clients.ActiveDirectory;
using System;
using System.Configuration;
using System.Diagnostics;
using System.Net;

namespace AzureBakery.Production.ManagementApplication.Services
{
 public abstract class AzureAdAuthBase
 {
 protected AuthenticationResult Token = null;

 protected readonly string ServiceUri = null;

 protected AzureAdAuthBase()
 {
 this.ServiceUri =
 ConfigurationManager.AppSettings["serviceUri"];
#if DEBUG
 // This will accept temp SSL certificates
 ServicePointManager.ServerCertificateValidationCallback +=
 (se, cert, chain, sslerror) => true;
#endif
 }

 protected bool Login()
 {
 // Our AD Tenant domain name
 var tenantId =
 ConfigurationManager.AppSettings["ida:Tenant"];

 // Web API resource ID (The resource we want to use)
 var resourceId =
 ConfigurationManager.AppSettings["ida:Audience"];

 // Client App CLIENT ID (The ID of the AD app for this
 client application)

Web API and Client Integration

[314]

 var clientId =
 ConfigurationManager.AppSettings["ida:ClientID"];

 // Callback URI
 var callback = new
 Uri(ConfigurationManager.AppSettings["ida:CallbackU
 ri"]);

 var authContext = new
 AuthenticationContext(string.Format("https://login.
 windows.net/{0}", tenantId));

 if(this.Token == null)
 {
 // See if we have a cached token
 var token = Properties.Settings.Default.Token;
 if (!string.IsNullOrWhiteSpace(token))
 this.Token = AuthenticationResult.
 Deserialize(token);
 }

 if (this.Token == null)
 {
 try
 {
 // Acquire fresh token - this will get user to
 login
 this.Token =
 authContext.AcquireToken(resourceId,
 clientId, callback);
 }
 catch(Exception ex)
 {
 Debug.WriteLine(ex.ToString());

 return false;
 }
 }
 else if(this.Token.ExpiresOn < DateTime.UtcNow)
 {
 // Refresh existing token this will not require
 login
 this.Token =
 authContext.AcquireTokenByRefreshToken(this.Token.
 RefreshToken, clientId);
 }

Chapter 10

[315]

 if (this.Token != null && this.Token.ExpiresOn >
 DateTime.UtcNow)
 {
 // Store token
 Properties.Settings.Default.Token =
 this.Token.Serialize(); // This should be
 encrypted
 Properties.Settings.Default.Save();

 return true;
 }

 // Clear token
 this.Token = null;

 Properties.Settings.Default.Token = null;
 Properties.Settings.Default.Save();

 return false;
 }
 }
}

The token is stored in user settings and refreshed if necessary, so the users don't
have to log in to the application every time they use it. The Login method can be
called by derived service classes every time a service is called to check whether
the user is logged in and whether there is a valid token to use.

Creating a data service
We'll create a DataService class that derives from the AzureAdAuthBase class
we just created and gets data from the Web API service using AD authentication.
First, we'll create a generic helper method that calls an API GET action using the
HttpClient class with the authentication token added to the Authorization
header, and deserializes the returned JSON object into a .NET-typed object T:

private async Task<T> GetData<T>(string action)
{
 if (!base.Login())
 return default(T);

 // Call Web API
 var authHeader = this.Token.CreateAuthorizationHeader();
 var client = new HttpClient();

Web API and Client Integration

[316]

 var uri = string.Format("{0}{1}", this.ServiceUri,
 string.Format("api/{0}", action));
 var request = new HttpRequestMessage(HttpMethod.Get, uri);
 request.Headers.TryAddWithoutValidation("Authorization",
 authHeader);

 // Get response
 var response = await client.SendAsync(request);
 var responseString = await response.Content.ReadAsStringAsync();

 // Deserialize JSON
 var data = await Task.Factory.StartNew(() =>
 JsonConvert.DeserializeObject<T>(responseString));

 return data;
}

Once we have this, we can quickly create methods for
getting order and batch data like this:

public async Task<IEnumerable<Order>> GetOrders()
{
 return await this.GetData<IEnumerable<Order>>("orders");
}

public async Task<IEnumerable<Batch>> GetBatches()
{
 return await this.GetData<IEnumerable<Batch>>("batches");
}

This service implements an IDataService interface and is registered in the
ViewModelLocator class, ready to be injected into our view models like this:

SimpleIoc.Default.Register<IDataService, DataService>();

Creating a SignalR service
We'll create another service derived from the AzureAdAuthBase class, which is
called ManagementService, and which sends updated orders to the SignalR hub
and receives updates from the hub originating from other clients to keep the UI
updated in real time.

Chapter 10

[317]

First, we'll create a Register method, which creates a hub proxy using our
authorization token from the base class, registers for updates from the hub,
and starts the connection:

private IHubProxy _proxy = null;

public event EventHandler<Order> OrderUpdated;
public event EventHandler<Batch> BatchUpdated;

public ManagementService()
{

}

public async Task Register()
{
 // Login using AD OAuth
 if (!this.Login())
 return;

 // Get header from auth token
 var authHeader = this.Token.CreateAuthorizationHeader();

 // Create hub proxy and add auth token
 var cnString = string.Format("{0}signalr", base.ServiceUri);
 var hubConnection = new HubConnection(cnString, useDefaultUrl:
 false);
 this._proxy = hubConnection.CreateHubProxy("managementHub");
 hubConnection.Headers.Add("Authorization", authHeader);

 // Register for order updates
 this._proxy.On<Order>("updateOrder", order =>
 {
 this.OnOrderUpdated(order);
 });

 // Register for batch updates
 this._proxy.On<Batch>("updateBatch", batch =>
 {
 this.OnBatchUpdated(batch);
 });

 // Start hub connection
 await hubConnection.Start();
}

Web API and Client Integration

[318]

The OnOrderUpdated and OnBatchUpdated methods call events to notify
about updates.

Now, add two methods that call the hub methods we created in the website
using the IHubProxy.Invoke<T> method:

public async Task<bool> UpdateOrder(Order order)
{
 // Invoke updateOrder method on hub
 await this._proxy.Invoke<Order>("updateOrder",
 order).ContinueWith(task =>
 {
 return !task.IsFaulted;
 });

 return false;
}

public async Task<bool> UpdateBatch(Batch batch)
{
 // Invoke updateBatch method on hub
 await this._proxy.Invoke<Batch>("updateBatch",
 batch).ContinueWith(task =>
 {
 return !task.IsFaulted;
 });

 return false;
}

This service implements an IManagementService interface and is registered in the
ViewModelLocator class, ready to be injected into our view models like this:

SimpleIoc.Default.Register<IManagementService,
 ManagementService>();

Completing the application
As with other applications we created in the book, there's not enough space to go
through a lot of code in detail. I missed out creating the views and view models,
so refer to the code samples of this chapter to complete the application.

Chapter 10

[319]

Testing the application
To test the application locally, we need to start the Web API project and the
WPF client application at the same time. So, under the Startup Project section
in the Solution Properties dialog, check Multiple startup projects, select the
two applications, and click on OK:

Once running, we can easily debug both applications simultaneously.

To test the application with the service running in the cloud, we need to deploy
the service to the cloud, and then change the settings in the client app.config
file (remember we put the local and Azure settings in the config with the Azure
settings commented-out, so swap them around). In the final chapter, we'll look at
transforming the app.config file, which is a bit trickier than Web.config to do
automatically. To debug the client against the Azure service, make sure that only
the client application is running (select Single startup project from the Solution
Properties dialog). To debug the Azure Web API, follow the procedure to debug
websites in Chapter 6, Azure Website Diagnostics and Debugging.

Web API and Client Integration

[320]

Summary
We covered a lot of topics in this chapter. Further, we explored providing a unified
authentication system across the whole solution using Azure AD. We learned how
to use a Web API to enable the production management Windows client application
to access data from our production database and a SignalR hub to handle order and
batch changes, keeping all clients updated and messaging the Service Bus topic.

The next chapter is the last chapter, where we will build applications before
we start looking at preparing our systems before getting into production.
We'll integrate a Windows Phone application into the sales system with push
notifications and the Azure notifications hub. We'll also build a Windows Store
application for the distribution business unit.

Questions
1.	 Why is a web service particularly important when using SQL Azure Database?
2.	 What is the problem with implementing SignalR in load-balanced websites?
3.	 What solution can we use to solve this problem (as known from the

preceding answer)?
4.	 How can we enforce authorization in a controller?
5.	 What techniques can we use to test a Web API service without writing

any code?
6.	 What is the hub SignalR URL?
7.	 How do we enforce authorization in a SignalR hub?
8.	 What does the Enable Organizational Authentication setting achieve

during publishing?
9.	 Why must the appPermissions section of Web API AD application's

manifest be modified?
10.	 In the client application's config, what are the ida:Audience ida:ClientID

settings?
11.	 If a user's authentication token has expired, what can be done to authenticate

the users without them logging in again?
12.	 How does a client call a SignalR hub method, and how can we tell if it

was successful?

Chapter 10

[321]

Answers
1.	 SQL Azure only supports SQL authentication, which means that the client

application needs access to the login details, which can pose a security risk.
2.	 SignalR clients maintain connections to a single hub, which means that they

will not send data to or receive data from other hub instances.
3.	 Implement a backplane system such as Azure Service Bus to keep hubs

updated in real time.
4.	 Use the Authorize attribute at the controller or individual action level.
5.	 If we temporarily remove the Authorize attribute, we can use the

browser to make HTTP GET requests or a tool such as Fiddler or
cURL to make other requests.

6.	 The hub SignalR URL is api/signalr.
7.	 We use the same Authorize attribute.
8.	 An AD application will be provisioned for the new site and the site's Web.

config file will be updated with the new ida:Audience ID.
9.	 Client applications need to be given permission to access them.
10.	 The ida:Audience ID is the ID of the target application, that is, the Web API,

and ida:ClientID is the ID of the client application.
11.	 Use the RefreshToken token with the AuthenticationContext.

AcquireTokenByRefreshToken method; the token can be refreshed
without having to log in again.

12.	 Use the IHubProxy.Invoke<T> method to call the hub method, and then
use the .ContinueWith continuation, which provides a task object with
an IsFaulted flag.

Integrating a
Mobile Application

Using Mobile Services
In this chapter, we're going to build a Windows Phone application and an Azure
mobile service for the sales business unit that will allow customers to view orders
they've placed and receive notifications when the order status changes and when
new products are added to the system. In the supply business unit, we'll create a
Windows Store application and Azure mobile service for the warehouse staff to use
on a tablet device in order to view which orders are waiting for dispatch while they
are working without having to return to a central terminal. We'll be implementing
the notification hub (from the Service Bus family of services) into the sales system
so that when the order status changes and new products are created, customers
will receive toast and tile push notifications to alert them.

Integrating a Mobile Application Using Mobile Services

[324]

Once we've finished, the sales system will have an architecture like this:

Customer Website Admin Website Mobile Service

Order Topic

Database
Order Processor

Notification Hub

Order Updates

Product News

PNS Phone App

New Orders

Order Status

Orders

Push Notifications

Register “News”,

“Handle”

Chapter 11

[325]

I also add another Order Processor Cloud service to the supply system, which
will add order addresses to the supply table storage and barcode address labels
to blob storage ready for the Mobile Services to use. We've covered a lot on cloud
services, so I'll leave this out of the book, but of course, you can see all the code in
the accompanying samples. Once we've finished, the supply system will have an
architecture like this:

Order Topic

Order Table

Barcode BLOBs

Order Processor

Mobile Service

Order Updates

Dispatched

Integrating a Mobile Application Using Mobile Services

[326]

Introducing Azure mobile services
Azure mobile services is a great platform for mobile developers to quickly create
backend services for their applications to store data and create custom APIs to interact
with their own data or external resources via HTTP. Along with data and custom APIs,
there is great support for push notifications, and there are push notification service
APIs for all the major platforms. Mobile services also have fine-grained authorization
control that allows different authorization levels to be applied to individual service
methods and more recently, support for custom authorization providers.

Mobile services have benefits over other service types such as Web API, WCF, and
services on other platforms because of the flexible authorization model, notifications'
integration, and also excellent SDKs for taking care of authorization with built-in
OAuth workflow and table and API-specific data access methods.

Azure mobile services can be used by pretty much any mobile platform such as
Android and iOS and not just Windows Phone and Windows Store apps because
there are full native SDKs for each platform, and there is also support for Xamarin,
which can be used for cross-platform development using C#.

Mobile services offer four authorization levels (.NET/Node.js):

•	 Anonymous/Everyone: This is unauthenticated, so anybody on the Internet
with the service URL can access it.

•	 Application/Anybody with the application key: All services have an
application key, which allows secure access to services. Requests require
an X-ZUMO-APPLICATION header bearing this key.

•	 User/Only authenticated users: User access is allowed to users authenticated
via a permitted authenticated provider including Twitter, Facebook, Google,
Microsoft, and Azure AD. Requests require an X-ZUMO-AUTH header bearing
an OAuth2 authentication token.

•	 Admin/Only scripts and admins: This is the top authorization level, which
overrides all other levels with the master key; requests require an X-ZUMO-
MASTER header bearing this key. Master keys should not be distributed with
client applications as they allow unlimited service access and would make
the service vulnerable to misuse.

Chapter 11

[327]

We will implement the User level authentication with the Twitter identity provider for
the sales customer phone application, as this is already used by the customer website,
so the customer can use the same credentials to log in. We'll implement the User level
authentication using Azure AD for the supply Windows Store app because it's an
internal system and we've used AD for all other internal systems. We'll use the
Admin authorization level for the admin website and order processor because
these are backend services and we don't want anything else to use these services.

Node.js is the original backend platform that allows developers to write scripts
to modify table behavior, and create custom APIs and scheduled tasks in the
portal itself with a fantastic script editor. Scripts can be pulled locally using Git
(http://git-scm.com/) to create backups and allow local development in the
developer's preferred IDE. Node.js scripts can make use of NPM packages, which
are the Node.js equivalent of NuGet packages used by .NET developers, and allow
third-party libraries to be utilized.

The Web API backend was introduced early in 2014 and offers much the same
functionality; however, there is no editor in the portal (this is possible for Node.js
because scripts are interpreted at runtime; however, this is not the case for Web API
.NET as code needs to be compiled first). The Web API backend is an obvious choice
for .NET developers as it will be the most familiar. Also, in our case study, it allows
us to reuse our data model and gives us a more unified development experience.

Creating the customer Azure mobile
service
We need to create a mobile service that matches customers to the existing customers in
the sales system, allowing them to see their orders and receive notifications when an
order status changes and receive news about things such as new product launches.

To retrieve the data, we can use a Windows Azure mobile services custom controller,
which is pretty much the same as the Web API controllers we've already used, or
remap the data from our own data schema to be consumed by data services, which
implement an ITableData interface, which enforces a number of default table
requirements using a tool such as AutoMapper (https://github.com/AutoMapper/
AutoMapper). In our application, we don't have a large amount of interaction with
the database; we're only retrieving orders, and so I've taken the approach of using
a custom controller rather than mapping the schema to ITableData, which, in this
case, is an unnecessary overhead. If we were creating a new database specifically
for the mobile service, we would benefit from using the EntityData models, which
implement ITableData and offer us full Create, Read, Update, and Delete (CRUD)
database operations.

http://git-scm.com/
https://github.com/AutoMapper/AutoMapper
https://github.com/AutoMapper/AutoMapper

Integrating a Mobile Application Using Mobile Services

[328]

Push notifications in Web API backend services can only use the notifications hub
and cannot directly interact with a Push Notification Service (PNS) as you can with
a Node.js backend. We'll use a unique push handle created in the app as a tag, which
the app subscribes to, so when we want to send an order update, we tag it with the
user's unique handle and only they will get it. When we send product news, we will
mark it with a news tag, which everyone subscribes to. In your own applications, it's
a good idea to allow the user to control what they subscribe to by using a settings
page to enable and disable tags for the types of notifications they wish to receive.

The mobile service will allow the phone app to register a handle for the user and
retrieve order data using Twitter OAuth authentication. It will also act as a central
point to send notifications for the order processor worker role when an order update
appears on the Service Bus, and for the admin website, when a new product is created;
the internal processes will use the Admin authentication with a master key.

Creating a mobile services project
If you're using a Premium version of Visual Studio, it's a lot easier to do this as
you can add a mobile service into the existing sales solution; however, if you're
an Express user, you'll need to switch to Visual Studio Express for Windows and
add the existing Model project used by the other solutions.

To get started, right-click on the solution root in the Solution Explorer window
and go to Add | New Project:

Chapter 11

[329]

Add Name for the project and click on OK. The next dialog has all the options
disabled, and we notice that we have a Windows Azure Mobile Service template
selected and core references for Web API, which is what the .NET backend mobile
services are built on. Then, click on OK to create the service and take a look at the
sample code.

Exploring the mobile service sample
project
The mobile service project has a similar structure to our MVC projects and more so
the Web API project because it's built on the same technology. We have an App_Start
folder with a WebApiConfig class, which takes care of initializing and configuring the
application, and a Controllers folder with a TodoItemController sample class,
which is a special type of API controller that is strongly bound to the EntityData type
models, which have a number of default fields enforced by the ITableData interface:

public interface ITableData
{
 [JsonProperty(PropertyName = "__createdAt")]
 DateTimeOffset? CreatedAt { get; set; }
 [JsonProperty(PropertyName = "__deleted")]
 bool Deleted { get; set; }
 string Id { get; set; }
 [JsonProperty(PropertyName = "__updatedAt")]
 DateTimeOffset? UpdatedAt { get; set; }
 [JsonProperty(PropertyName = "__version")]
 [SuppressMessage("Microsoft.Performance",
 byte[] Version { get; set; }
}

Integrating a Mobile Application Using Mobile Services

[330]

The project structure should look like this:

The project uses Entity Framework Code First Migrations to build its database
in the same way as we used for the sales and production databases.

The sample table controller
The TodoItemController is a TodoItem typed TableController, which
is scaffolded by Visual Studio using an entity from the projects DbContext
(similar to when we scaffolded MVC controllers in the admin website and
Web API). The controller gives us a CRUD method matched to the HTTP
actions specified by the method name's prefix convention and commented
above each method.

Table controllers can be created by right-clicking on the Controllers folder
and navigating to Add | Controller, and then selecting Windows Azure
Mobile Services Table Controller from the Add Scaffold dialog.

Chapter 11

[331]

The sample data entity
The DataObjects folder contains a TodoItem class, which has a number of properties
defined, but it will also pick up all the properties enforced by ITableData with the
EntityData base class so that it can be used with TableControllers.

There is no wizard to create the EntityData classes; just add a class normally and
implement the EntityData base class manually.

A sample scheduled job
Scheduled jobs implement the IScheduledJob interface with the ScheduledJob
base class. The interface enforces a single task called ExecuteAsync, which performs
a task with no return value:

public interface IScheduledJob
{
 Task ExecuteAsync(ScheduledJobDescriptor
 scheduledJobDescriptor, CancellationToken cancellationToken);
}

The task has access to the mobile services resources via the Services property in the
ScheduledJob base class.

Scheduled jobs can be called via a simple HTTP POST request (bearing the correct
authentication header—in this sample, there is no authentication). They are scheduled
from the SCHEDULER tab in the mobile service workspace in the portal.

There is no wizard for creating ScheduledJob classes; just add a class normally and
implement the ScheduledJob base class manually.

Mobile service DbContext
The Models folder contains the DbContext for the project, which is responsible for
providing access to the DataSet properties and mapping entities using attribute
annotation on the entities with the AttributeToColumnAnnotationConvention.

Integrating a Mobile Application Using Mobile Services

[332]

WebApiConfig
This WebApiConfig.Register method is called by Global.asax when the application
starts and is responsible for configuring the Web API service specifically for mobile
services and initializes the database using an initializer for the DbContext, which
implements DropCreateDatabaseIfModelChanges (this is one to watch as it drops
the database every time the model changes: http://msdn.microsoft.com/en-us/
library/gg696323(v=vs.113).aspx) and has a Seed method, which inserts some
TodoItems into the TodoItems table.

Cleaning up the project
As we've seen, the project has a load of demo code and EF configuration to create
and seed a new database, so we'll clean all this out before we get started since we've
already got a database and a full set of entities.

Delete the following demo files:

•	 Controllers/TodoItemController.cs

•	 The DataObjects folder (we already have a Model project with all
our data entities)

•	 ScheduledJobs/SampleJob.cs

Now, do the following code modifications:

•	 Delete the using CustomerMobileService.DataObjects; lines from
CustomerMobileServicesContext.cs and App_Start/WebApiConfig.cs

•	 Delete the following block of code from CustomerMobileServicesContext.
cs because we no longer have a TodoItem entity and we're using an existing
database created by EF Code First Migrations in the customer sales website
(the mechanics of this are the same for mobile services projects if we wanted
to create a new database):
public DbSet<TodoItem> TodoItems { get; set; }

protected override void OnModelCreating(DbModelBuilder
 modelBuilder)
{
 string schema =
 ServiceSettingsDictionary.GetSchemaName();
 if (!string.IsNullOrEmpty(schema))
 {
 modelBuilder.HasDefaultSchema(schema);
 }

http://msdn.microsoft.com/en-us/library/gg696323(v=vs.113).aspx
http://msdn.microsoft.com/en-us/library/gg696323(v=vs.113).aspx

Chapter 11

[333]

 modelBuilder.Conventions.Add(
 new
 AttributeToColumnAnnotationConvention<
 TableColumnAttribute,
 string>(
 "ServiceTableColumn", (property, attributes) =>
 attributes.Single().ColumnType.ToString()));
}

•	 Delete the following line from App_Start/WebApiConfig.cs again because
we're using an existing database:
Database.SetInitializer(new
 CustomerMobileServiceInitializer());

•	 Delete the CustomerMobileServiceInitializer class

Now, build the project and check that there are no errors.

Integrating with the sales database
We need to modify the project to integrate with our existing sales database created
by the customer website; we'll do this now, so first add a project reference to the
SalesModel project by right-clicking on the References folder, selecting Add
reference, then checking the SalesModel project in the Solution/Projects tab,
and clicking on OK.

Add the following DbSet declarations to CustomerMobileServiceContext:

public DbSet<Customer> Customers { get; set; }

public DbSet<Product> Products { get; set; }

public DbSet< Order> Orders { get; set; }

Configuring development app settings
The mobile service website has a number of application settings for authentication,
which can be used to debug the application locally and are overridden by
portal settings when the service is published. Change the MS_MasterKey and
MS_Application keys (I've used new GUIDs for both) and fill in the MS_
TwitterConsumerKey details, which we obtained way back when we built the
customer website (I've missed out the ones we don't need):

<add key="MS_MobileServiceName" value="CustomerMobileService" />
 <add key="MS_MasterKey" value="1560E6FF-0C32-4374-95DF-
 4CCEBD20B1FC" />

Integrating a Mobile Application Using Mobile Services

[334]

 <add key="MS_ApplicationKey" value="4E2D5547-FEC4-4870-8060-
 CB1736D4529A" />
 <add key="MS_TwitterConsumerKey"
 value="BdYXYPBuRkFSwjZxxxxxyyyyy" />
 <add key="MS_TwitterConsumerSecret"
 value="KIyLklCxFbGIq1nnyVAU0wxFQBUTw5xxxxxxxxxxyyyyyyyyyy" />

When we test the admin website and order processor locally, they will use the
MS_MasterKey details for authenticating their requests against the mobile service.

Integrating authentication with the sales
website
We have a slight problem as we need to associate a Twitter-authenticated user
with the Microsoft.WindowsAzure.Mobile.Service.Security authentication,
with our existing user in the sales website, which is authenticated using ASP.NET
authentication. The MVC project has a special IdentityDbContext database context
that has base properties to interact with the ASP.NET authentication tables; mobile
services don't support this context as it allows a number of different authentication
options, so we need to do a bit of work to match the user credentials.

Basically, what we need to do is get the OAuth identity and match it to the
customer's OAuth identity stored in the AspNetUserLogins table, which relates
to the AspNetUser table, which holds our Customer_Id related to our customer
entity. We'll manually add the ASP.NET table entities (which is where the MVC
project stores user credential details) to our DbContext to allow us to do this.

Add the following code to the DbContext (mine's called
CustomerMobileServiceContext), which will map the AspNetUser and
AspNetUserLogin tables into our EF model (this mimics part of what
the IdentityDbContext does for us in the sales customer website in the
ApplicationDbContext:

public class AspNetUser
{
 public string Id { get; set; }
 public string UserName { get; set; }
 public string PasswordHash { get; set; }
 public string SecurityStamp { get; set; }
 public string Discriminator { get; set; }
 public int Customer_Id { get; set; }
}

Chapter 11

[335]

public class AspNetUserLogin
{
 [ForeignKey("AspNetUser")]
 public string UserId { get; set; }
 [Column(Order = 1), Key]
 public string LoginProvider { get; set; }
 [Column(Order = 2), Key]
 public string ProviderKey { get; set; }
 public virtual AspNetUser AspNetUser { get; set; }
}

public DbSet<AspNetUserLogin> AspNetUserLogins { get; set; }

Notice the navigation property to relate AspNetUser to the AspNetUserLogins table.
If you were using the EF-fluent API, you could map the entities with that instead of
data annotations, but we've let EF do all the work for us so far and only need some
minor tweaks to get it to understand the composite key in AspNetUserLogins and
the foreign key relationship, so I've just used data annotation's attributes.

Next, add a helper class called AuthHelper to a Helpers solution folder, which takes
care of getting us a user from the ASP.NET auth tables, and can be used in various
controllers that we'll create to save duplication of code. We pass in the DbContext
so that we can work on the Customer entity it returns, without having conflicts with
the entity being used in multiple contexts:

public class AuthHelper
{
 public static async Task<Customer> GetCustomer(ServiceUser
 serviceUser, CustomerMobileServiceContext ctx)
 {
 // Find Twitter Id, of form Twitter:123456789
 var idParts = serviceUser.Id.Split(':');
 var key = idParts[1];
 var provider = idParts[0];

 // We now need to manually get the Customer_Id from the
 AspNetUser table
 var userLogins =
 await
 ctx.AspNetUserLogins.SingleOrDefaultAsync(
 l => l.LoginProvider == provider &&
 l.ProviderKey == key);

 if (userLogins != null)

Integrating a Mobile Application Using Mobile Services

[336]

 {
 var id = userLogins.AspNetUser.Customer_Id;

 // Add handle to customer
 var customer = await ctx.Customers.FindAsync(id);

 return customer;
 }

 return null;
 }
}

Adding a channel registration API controller
We're going to add a Windows Azure mobile services custom controller, which
will allow the push channel handle of the user's phone to be added to their customer
details using their Twitter authentication details previously registered via the website
so that customers can be notified when their order status changes. We'll do this in the
following procedure:

1.	 Right-click on the Controllers folder and go to Add | Controller; then
select Windows Azure Mobile Services Custom Controller from the
Add Scaffold dialog:

Chapter 11

[337]

Add the AuthorizeLevel attribute and set it to AuthorizationLevel.User,
which requires the calling HTTP request to have a valid authentication token
in the X-ZUMO_AUTH header, which in our case will be a Twitter OAuth token,
but it can be a token from any other supported OAuth provider including
Azure Active Directory:

[AuthorizeLevel(AuthorizationLevel.User)]
public class ChannelRegistrationController : ApiController

2.	 Once we have this, we can write a POST method (I chose POST because we
are sending data with an action related to the channel registration; we could
have added it to a CustomerController and used a PUT method, which
implies an update, but we don't have any other customer actions):
public async Task Post([FromBody]dynamic data)
{
 Services.Log.Info("ChannelRegistrationController -
 Started");

 var handle = (string)data.handle;

 var ctx = new CustomerMobileServiceContext();

 var customer = await AuthHelper.GetCustomer(User as
 ServiceUser, ctx);

 if (customer != null)
 {
 // Add handle to customer
 if (customer.PushHandle != handle)
 {
 customer.PushHandle = handle;
 await ctx.SaveChangesAsync();
 }
 Services.Log.Info("ChannelRegistrationController -
 Completed");
 }
 else
 {
 var message = string.Format("User does not exist");
 Services.Log.Error(message);
 throw new Exception(message);
 }
}

Integrating a Mobile Application Using Mobile Services

[338]

3.	 The data parameter is marked with the FromBody attribute because the
data in a POST method is (typically) sent in the request body rather than
via URL parameters, so this tells the controller where to get the data. I've
used a dynamic type, so the caller can pass in a non-typed object, which can
be simpler for situations like this where we only have one property (we'll
see how it's called in the app later). We use the AuthHelper.GetCustomer
method to get our customer details, and then update it with the push handle.

Adding an order controller
As I mentioned earlier, we're not going to use table controllers due to the overhead
in mapping existing entities to ITableData, so we'll use an API controller instead.
The OrderController is very similar to the ChannelRegistrationController;
it retrieves the customer details using the AuthHelper.GetCustomer method,
and then returns all their orders for that customer:

[AuthorizeLevel(AuthorizationLevel.User)]
public class OrderController : ApiController
{
 public ApiServices Services { get; set; }

 // GET api/Order
 public async Task<IEnumerable<Order>> Get()
 {
 Services.Log.Info("OrderController - Started");

 var ctx = new CustomerMobileServiceContext();

 var customer = await AuthHelper.GetCustomer(User as
 ServiceUser, ctx);

 if (customer != null)
 {
 var orders = await ctx.Orders.Where(o => o.Customer.Id
 == customer.Id).ToListAsync();

 Services.Log.Info("OrderController - Completed");

 return orders;
 }

Chapter 11

[339]

 else
 {
 var message = string.Format("User does not exist");
 Services.Log.Error(message);
 throw new Exception(message);
 }
 }
}

Publishing the mobile service
We need to publish our service before we start working on our application so that
we can get the application and master keys along with the details of the notifications
hub, which will be provisioned for us during the publish process, so we can use the
details in the application. We'll do this in the following procedure:

1.	 Start the publish process in the same way as for any website, that is,
by right-clicking on the project and selecting Publish.

2.	 Click on Windows Azure Mobile Services from the Select a publish
target options, log in, and then click on the New button on the Select
Existing Mobile Service dialog:

3.	 Choose Name, select Region, choose the existing database we've joined
our data model to, and enter the login credentials for the database.

Integrating a Mobile Application Using Mobile Services

[340]

4.	 Click on Create, which will provision the Azure service portal for us and
allow us to publish our service (we could stop here as the notifications
hub has been created at this point, but we will continue for completion).

5.	 The Connection tab shows us the connection details for the service we
just created.

6.	 Click on Next and we'll see the Settings tab, which, when compared
with a normal website publish, has little to change.

7.	 Click on Publish to start the publish process.
8.	 We can now collect the connection details from the portal, so go to the

SERVICE BUS workspace and we'll see our new namespace:

9.	 Click on the new namespace name to go into its workspace, then go to the
NOTIFICATIONS HUB tab, where we will see the new hub, and click on
CONNECTION INFORMATION:

Chapter 11

[341]

10.	 There's a ZumoManagementSasKey created for our service (Zumo is the
mobile service's code name), so copy that.

11.	 Now, paste the details into the Microsoft.ServiceBus.Connection setting
in the Web.config file and fill in the MS_NotificationHubName attribute like
this (this will allow us to access the hub from the service):
<!-- When using this setting, be sure to add matching
 Notification Hubs connection
string in the connectionStrings section with the name
 "MS_NotificationHubConnectionString". -->
<add key="MS_NotificationHubName"
 value="azurebakerycustomerhub" />
<add key="Microsoft.ServiceBus.ConnectionString"
 value="Endpoint=sb://azurebakerycustomerhub-
 ns.servicebus.windows.net/;SharedAccessKeyName=ZumoManagement
 SasKey;
 SharedAccessKey=KX9kWXakI8JXIHlsRVtmsn2xxxxxxxxxyyyyyyyyyy="
/>

12.	 We'll need these details in the application, too.
13.	 Under the PUSH tab, check Enable unauthenticated push notifications

under the windows phone notifications settings (mpns) section and click
on SAVE (this allows unauthenticated notifications that are throttled to 500
messages a day; you can read more about this at http://msdn.microsoft.
com/en-US/library/windows/apps/ff941099(v=vs.105).aspx):

http://msdn.microsoft.com/en-US/library/windows/apps/ff941099(v=vs.105).aspx
http://msdn.microsoft.com/en-US/library/windows/apps/ff941099(v=vs.105).aspx

Integrating a Mobile Application Using Mobile Services

[342]

Creating a Windows Phone application
We'll now start building our Windows Phone application, which will be very basic in
terms of UI but will demonstrate how to set up a push notifications channel, register
with the notifications hub, and make authenticated requests to the mobile service.
We'll create and set up the application in the following procedure:

1.	 Right-click on the solution and go to Add | New project:

2.	 Select Blank App (Windows Phone Silverlight) from the Store Apps tab
and click on OK. In the next dialog, I've chosen Windows Phone 8.0 as the
target OS version because we're not implementing any 8.1-specific features.
Click on OK again to create the project.

3.	 Install the Windows Azure Mobile Service NuGet package by entering
the following command into the NuGet Package Manager Console:
Install-Package WindowsAzure.MobileServices

Chapter 11

[343]

4.	 Install the WindowsAzure.Messaging.Managed NuGet package, which
allows us to interact with the notifications hub by entering the following
command into the NuGet Package Manager Console:
Install-Package WindowsAzure.Messaging.Managed

5.	 Install MVVM Light (which we've used on all our XAML apps so far) by
entering the following command into the NuGet Package Manager Console:
install-package mvvmlight

Adding data services
In the same style as our other XAML applications, we'll use a service pattern
to separate the data access from the view models. To start with, we'll create a
DataServiceBase class, which has an authentication mechanism built into it to
guarantee that all requests to the service are correctly authenticated; then, we'll
implement it in a DataService class to call the ChannelRegistrationController
and OrderContoller. The user ID and auth token are stored in an isolated storage so
that they don't have to log in every time they use the app, unless their token expires.

The DataServiceBase class
The DataServiceBase class basically removes the entire authentication overhead from
data services that implement it. There is a static instance of MobileServiceClient so
that multiple implementations get the same instance that contains the authentication
credentials:

public abstract class DataServiceBase
{
 private const string USER_ID = "USER_ID";
 private const string USER_TOKEN = "USER_TOKEN";

 #if DEBUG
 protected readonly static MobileServiceClient _mobileService =
 new MobileServiceClient(
 "http://localhost:61021",
 "4E2D5547-FEC4-4870-8060-CB1736D4529A"
);
 #else
 protected readonly static MobileServiceClient _mobileService =
 new MobileServiceClient(

Integrating a Mobile Application Using Mobile Services

[344]

 "http://azurebakerycustomer.azure-mobile.net/",
 "PopNgBgUnnYsutDBIsHXXXXXXXXXXxxxx"
);
 #endif

 protected static MobileServiceAuthenticationProvider _provider =
MobileServiceAuthenticationProvider.Twitter;

I have put in a compiler switch, so when we debug locally, we are using the
details of our local service, and when we're in the Release mode in Azure, we're
using the details of our Azure mobile service (this is why we published earlier).
The constructor takes two parameters, the first is the mobile service URL and the
second is the application or master key. Only use the application key in the client
applications. The published application key can be found in the mobile services
workspace in the portal, by selecting the service from the service list and clicking
on MANAGE KEYS on the toolbar.

The Login method checks storage to see whether we have any credentials
stored (StorageHelper is a basic helper class you can get from the samples);
if there are, we manually create a MobileServiceUser object and apply it to
the MobileServiceClient; if there aren't, we call LoginAsync, which launches
an OAuth login page (browser) for the selected auth provider, allowing the user
to log in and authenticate the client, and then stores the credentials:

public static async Task<bool> Login()
{
 var userId = StorageHelper.GetSetting<string>(USER_ID, null);
 var userToken = StorageHelper.GetSetting<string>(USER_TOKEN,
 null);

 bool success = true;

 if (userId != null && userToken != null)
 {
 var user = new MobileServiceUser(userId);
 user.MobileServiceAuthenticationToken = userToken;
 _mobileService.CurrentUser = user;
 }
 else
 {
 try
 {
 var user = await _mobileService.LoginAsync(_provider);

Chapter 11

[345]

 StorageHelper.StoreSetting(USER_ID, user.UserId,
 true);
 StorageHelper.StoreSetting(USER_TOKEN,
 user.MobileServiceAuthenticationToken, true);
 }
 catch (InvalidOperationException)
 {
 success = false;
 }
 }

 return success;
}

The Logout method basically clears the stored credentials and CurrentUser in
the client:

public static void Logout()
{
 _mobileService.Logout();

 StorageHelper.StoreSetting(USER_ID, null, true);
 StorageHelper.StoreSetting(USER_TOKEN, null, true);
}

The main feature is the ExecutedAuthenticated method, which allows a function
to be passed in so that it can be executed more than once if authentication expires
or fails. The number of retries can be set with the optional retries parameter:

protected async Task<T> ExecuteAuthenticated<T>(Func<Task<T>> t, int
retries = 1)
{
 int retry = 0;
 T retVal = default(T);

 while (retry < retries)
 {
 if (_mobileService.CurrentUser == null)
 {
 // If login fails return default
 if (!await Login())
 return retVal;
 }

 // Try and execute task
 try

Integrating a Mobile Application Using Mobile Services

[346]

 {
 retVal = await t();
 break;
 }
 catch (InvalidOperationException ioex)
 {
 if (ioex.Message == "Error: Unauthorized")
 _mobileService.CurrentUser = null;

 retry++;
 }
 }
 return retVal;
}

The DataService class
The DataService class uses the DataServiceBase class to manage authenticated
service calls, and implements IDataService so that it can be registered into the
MVVM Light IoC container and automatically injected into the view models:

public class DataService : DataServiceBase, IDataService

The RegisterChannel method passes a function into ExecuteAuthenticated,
which calls the MobileServiceClient.InvokeApiAsync<U, T> method with
the API name and a dynamic data object that contains the push handle:

public async Task RegisterChannel(string handle)
{
 await base.ExecuteAuthenticated(async () =>
 {
 dynamic data = new ExpandoObject();
 data.handle = handle;
 await _mobileService.InvokeApiAsync<object,
 dynamic>("ChannelRegistration", data);
 });
}

The GetOrders method passes a function into ExecuteAuthenticated, which calls
the MobileServiceClient.InvokeApiAsync<U> method with the API name, the
HTTP method (default is POST and we need GET), and null for the parameters
option (this is the best matching overload):

public async Task<IEnumerable<Order>> GetOrders()
{
 return await
 base.ExecuteAuthenticated<IEnumerable<Order>>(async () =>

Chapter 11

[347]

 {
 var orders = await
 _mobileService.InvokeApiAsync<IEnumerable<Order>>("order",
 HttpMethod.Get, null);

 return orders;
 });
}

In the samples, I've linked the Model library files because the library
can't be directly added since it's a .NET library and the phone app is
Silverlight. If you wanted, you could create a Portable Class Library
(PCL) instead, which can support multiple platforms.

Setting up push notifications
We need to do a number of things to get push notifications working in our Windows
Phone app; first, modify the manifest to allow push notification's capability and add
code to create a push channel and register it with the notifications hub.

Modifying the manifest
Open the WMAppManifest.xml file under the Properties folder and check the
ID_CAP_PUSH_NOTIFICATION capability under the Capabilities tab, and
then save the project so that the application is allowed to use notification channels:

Integrating a Mobile Application Using Mobile Services

[348]

Adding a channel helper
We need to add code to create a push notifications channel using the
HttpNotificationChannel object, which has a ChannelUriUpdated event, which
is fired when the channel changes (either when it's created or if it changed while
the application is running). I've left most of the code out for this, so grab it from the
samples. When the channel changes, this method is called to register the channel
with the notifications hub:

private readonly string HUB_NAME = "azurebakerycustomerhub";
 private readonly string CONNECTION_STRING =
 "Endpoint=sb://azurebakerycustomerhub-
 ns.servicebus.windows.net/;SharedAccessKeyName=ZumoManagem
 entSasKey;
 SharedAccessKey=xx
 xx=";

public void Register()
{
 // Stuff onto UI thread because login interacts with UI
 DispatcherHelper.RunAsync(async () =>
 {
 // Register with service
 var service = new DataService();
 await service.RegisterChannel(this.GetChannelTag());

 // Register with hub
 var hub = new NotificationHub(this.HUB_NAME,
 this.CONNECTION_STRING);
 var result = await
 hub.RegisterNativeAsync(this._pushChannel.ChannelUri.
 AbsoluteUri,
 new string[] { this.GetChannelTag(), "news" });
 });
}

Notifications debug
One really helpful feature in the portal is a debug console in the notifications hub's
workspace under the DEBUG tab. It allows you to choose the PNS platform, send a
random broadcast or tagged messages, and quickly create a notification payload to
test whether your registered channels are working. This feature is now available in
the Visual Studio Server Explorer window also with the Azure SDK installed.

Chapter 11

[349]

The debug console should be used with caution in
production environments, as notifications may be
sent to real users depending on the tagging.

Completing the app
The data services are injected into the view models by first registering them in the
ViewModelLocator, and then adding an interface parameter to the view model
constructor for it to be bound. We covered this in the other XAML applications,
and the full code is available in the samples.

One thing to be careful of is to make sure the MobileServiceClient.
LoginAsync method is not called before the UI has fully loaded, as it will
fail because it needs to be inserted into the root UI element. To ensure this,
the view model in the code samples hook into the page loaded event (via a
trigger) to initialize, retrieve data, and set up the push channel (which will
make an authenticated request when it gets a valid channel).

Updating the order processor
We can update the order processor worker role to call the Notification/
PostOrderUpdate action when an order status changes. We'll do this in the
following short procedure:

1.	 Install the mobile service NuGet package with the following command
in the NuGet Package Manager Console:
Install-Package WindowsAzure.MobileServices

2.	 Add a mobileServiceUrl string setting to the role's settings with the
URL of our local service for local and the publish service for the cloud.

3.	 Add a mobileServiceKey string setting to the role's settings with the master
key of our local service for local and the published service for the cloud.

4.	 Add a MobileServiceClient variable, which is instantiated in the
constructor with cloud configurations settings like this:
private readonly MobileServiceClient _mobileService;

public OrderProcessor()

Integrating a Mobile Application Using Mobile Services

[350]

{
 var mobileServiceUrl =
 CloudConfigurationManager.GetSetting("mobileServiceUrl");
 var mobileServiceKey =
 CloudConfigurationManager.GetSetting("mobileServiceKey");

 this._mobileService = new
 MobileServiceClient(mobileServiceUrl, mobileServiceKey);
}

5.	 Add a method called NotifyHub to call the Notification/PostOrderUpdate
action with the updated order ID:
private async Task NotifyHub(int orderId)
{
 dynamic data = new ExpandoObject();
 data.orderId = orderId;

 await this._mobileService.InvokeApiAsync<object,
 dynamic>("Notification/PostOrderUpdate", data);
}

6.	 Finally, add a line of code to call the NotifyHub method if the order status
has changed:
public async Task Process(Order order)
{
 // Update status
 var currentOrder = this._ctx.Orders.FirstOrDefault(o =>
 o.Id == order.Id);

 if (currentOrder != null && currentOrder.Status !=
 order.Status)
 {
 currentOrder.Status = order.Status;

 await this._ctx.SaveChangesAsync();

 await this.NotifyHub(order.Id);
 }
}

Chapter 11

[351]

Updating the admin website
As with the order processor, we can do a small modification to the admin website
to call the Notification/PostProductNews action when a new product is created,
which will send push notifications to all customers. The procedure for this is pretty
much the same, but here, I created a separate helper class to separate the logic from
the controller:

private readonly MobileServiceClient _mobileService;

public Notifications()
{
 var mobileServiceUrl = ConfigurationManager.AppSettings["mobileSe
 rviceUrl"];
 var mobileServiceKey = ConfigurationManager.AppSettings["mobileSe
 rviceKey"];

 this._mobileService = new MobileServiceClient(mobileServiceUrl,
 mobileServiceKey);
}

public async Task NotifyPostProductNews(int productId)
{
 dynamic data = new ExpandoObject();
 data.productId = productId;

 await this._mobileService.InvokeApiAsync<object,
dynamic>("Notification/PostProductNews", data);
}

This method can be called by the ProductController.Create action:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Create([Bind(Include = "Id,Name,Produc
tType,Price,IsAvailable")] Product product)
{
 if (ModelState.IsValid)
 {
 db.Products.Add(product);
 db.SaveChanges();

Integrating a Mobile Application Using Mobile Services

[352]

 // Notify users via push notifications
 await new
 Notifications().NotifyPostProductNews(product.Id);
 return RedirectToAction("Index");
 }
 return View(product);
}

Creating the supply mobile service
We've not touched the supply business domain yet, so we're going to create a mobile
service and a Windows Store application that allows warehouse staff to view orders,
which are ready to dispatch, print labels, and mark orders as Dispatched on their
tablet devices.

I've created a full set of supporting samples for the supply business
domain, most of which aren't documented as we've not got space in
the book, and we've mostly covered its material already; however,
there are some interesting bits in the supply order processor, which
writes orders to an order table in table storage and automatically
generates barcode labels in the JPEG format and writes them to
blob storage, so have a look at that!

We'll create the service and install the required NuGet packages in the following
procedure:

1.	 Right-click on the solution and go to Add | New project and select the
Windows Azure Mobile Service template from the Cloud template section.

2.	 Install the WindowsAzure.ServiceBus NuGet package so that we can send
the Dispatched order status updates to the Service Bus topic by entering the
following command in the NuGet Package manager Console:
Install-package WindowsAzure.ServiceBus

3.	 Install the WindowsAzure.Storage NuGet package so that we can read order
entities from the orders' table storage and read the barcode address labeled
JPEG images from blob storage:
Install-package WindowsAzure.Storage

Chapter 11

[353]

Configuring a mobile service for Azure AD auth
As the supply system is an internal system, we're going to integrate it with the Azure
Bakery AD. We'll do this in the following procedure:

1.	 In the APPLICATIONS tab of the AD namespace workspace, we'll see
our existing AD application, which gives us clues about what type of
applications we need to create; click on ADD on the toolbar and select
Add an application my organization is developing.

2.	 Give it a name and leave the default type of WEB APPLICATION
AND/OR WEB API.

3.	 Next, fill in the SIGN-ON URL and APP ID URI fields; these are the same
URLs created when the service is published and can be collected from the
windows azure active directory section in the IDENTITY tab; they should
look like https://azurebakerysupply.azure-mobile.net/signin-aad,
as shown in the following screenshot:

Integrating a Mobile Application Using Mobile Services

[354]

4.	 Now, in the same way we did for our Web API, we need to modify the
manifest to allow other applications (our mobile app) to access it. So, follow
the procedure in Chapter 10, Web API and Client Integration, to do this.

5.	 On the application's CONFIGURE tag, copy the CLIENT ID value:

6.	 Paste it into the CLIENT ID setting in the Mobile Service IDENTITY tab
and also add the AD tenant to ALLOWED TENANTS and click on SAVE:

Local debugging of Azure mobile services with a Windows Store
app and Azure AD authentication is a bit tricky due to the security
restrictions of the Store application. The workaround I came up
with is fully implemented in the code samples and explained
here: http://webbercross.azurewebsites.net/local-
debugging-an-azure-mobile-service-with-ad-auth/.

http://webbercross.azurewebsites.net/local-debugging-an-azure-mobile-service-with-ad-auth/
http://webbercross.azurewebsites.net/local-debugging-an-azure-mobile-service-with-ad-auth/

Chapter 11

[355]

Creating the barcode controller
The following ApiController retrieves a JPEG barcode address labels created by
the order processor from blob storage:

[AuthorizeLevel(AuthorizationLevel.User)]
public class BarcodeController : ApiController
{
 private readonly CloudStorageAccount _storageAccount;

 public ApiServices Services { get; set; }

 public BarcodeController()
 {
 // Retrieve the storage account from the connection
 string.
 this._storageAccount =
 CloudStorageAccount.Parse(ConfigurationManager.
 ConnectionStrings
 ["StorageConnectionString"].ConnectionString);
 }

 // GET api/Barcode
 public async Task<byte[]> Get(string reference)
 {
 Services.Log.Info("BarcodeController - Patch Start");

 try
 {
 var blobClient =
 this._storageAccount.CreateCloudBlobClient();
 var container =
 blobClient.GetContainerReference("barcodes");
 var blobRef =
 container.GetBlockBlobReference(reference);

 await blobRef.FetchAttributesAsync();
 var buffer = new byte[blobRef.Properties.Length];
 await blobRef.DownloadToByteArrayAsync(buffer, 0);

 Services.Log.Info("BarcodeController - Patch
 Completed");

 return buffer;
 }

Integrating a Mobile Application Using Mobile Services

[356]

 catch (Exception ex)
 {
 Services.Log.Error("BarcodeController - Get Error",
 ex);
 throw;
 }
 }
}

Creating the order controller
The OrderController class has a Get method for returning OrderEntity entities
from the Orders table in the table storage, which are created and updated by the
order processor:

public IEnumerable<OrderEntity> Get()
{
 Services.Log.Info("OrderController - Get Start");

 try
 {
 var tableClient =
 _storageAccount.CreateCloudTableClient();

 var table = tableClient.GetTableReference("orders");

 var query = new TableQuery<OrderEntity>()
 .Where(TableQuery.GenerateFilterCondition("Status",
 QueryComparisons.Equal,
 //OrderStatus.ReadyForDispatch.ToString()));
 OrderStatus.Open.ToString()));

 var data = table.ExecuteQuery(query);

 Services.Log.Info("OrderController - Get Completed");

 return data;
 }
 catch (System.Exception ex)
 {
 Services.Log.Error("OrderController - Get Error", ex);

 throw;
 }
}

Chapter 11

[357]

The Put method updates the OrderEntity entities using a TableOperation.
Replace operation, and then sends an order update to the Service Bus using a
MessagingService similar to the one implemented in the admin website:

public async Task Put([FromBody] OrderEntity entity)
{
 Services.Log.Info("OrderController - Put Start");

 try
 {
 // Get orders table
 var tableClient =
 _storageAccount.CreateCloudTableClient();
 var table = tableClient.GetTableReference("orders");

 // Update entity
 var updateOp = TableOperation.Replace(entity);
 var updateResult = await table.ExecuteAsync(updateOp);

 // Send to service bus
 var messaging = new MessagingService();
 await messaging.CreateSubscriptionAsync();
 await messaging.DispatchOrder(entity);

 Services.Log.Info("OrderController - Put Completed");
 }
 catch (System.Exception ex)
 {
 Services.Log.Error("OrderController - Put Error", ex);

 throw;
 }
}

Integrating a Mobile Application Using Mobile Services

[358]

Creating the supply Windows Store
application
We're going to add a Windows Store app to interact with the mobile service.
I've selected the Split App (Windows) option, which has a group item page
and a details page to get us started. We'll do this in the following procedure:

1.	 Right-click on the solution and go to Add | New project and choose
a Windows app template from the Store Apps templates:

2.	 Install the WindowsAzure.MobileServices NuGet package by entering the
following command in the NuGet Package Manager Console:
Install-package WindowsAzure.MobileServices

3.	 Install the MVVM Light NuGet package with the following command:
Install-package MvvmLight

4.	 Install the Microsoft.IdentityModel.Clients.ActiveDirectory NuGet
package that is needed for Azure AD authentication:
Install-package Microsoft.IdentityModel.Clients.ActiveDirectory

5.	 Install the WindowsAzure.Storage NuGet package so that we can interact
with TableEntity entities from the service:
Install-package WindowsAzure.Storage

Chapter 11

[359]

6.	 Enable Enterprise Authentication and Private Networks (Client &
Server) in the Package.appxmanifest file so that the application can
use AD authentication:

Configuring the Store app for AD
authentication
We need to register the application in the Store to get a Package SID value and then
add an AD application similar to the WPF client application we created. We'll do this
in the following procedure:

1.	 Right-click on the app project and go to Store | Associate App with the Store.
2.	 Click on Next on the next screen, and then sign in to your Store account;

if you haven't got one, create one here first: https://appdev.microsoft.
com/StorePortals/en-us/Account/Signup/Start.

https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/Start
https://appdev.microsoft.com/StorePortals/en-us/Account/Signup/Start

Integrating a Mobile Application Using Mobile Services

[360]

3.	 Enter the app name and click on Reserve to reserve it, and then click on Next.
4.	 Click on Associate on the next screen to complete the association.
5.	 Log in to the Microsoft account developer center and select the new

application (https://account.live.com/developers/applications)
and copy the Package SID value:

6.	 Now we'll add an AD application for the app, so click on ADD on the
toolbar and select Add an application my organization is developing.

7.	 Enter NAME, and this time, select NATIVE CLIENT APPLICATION.
8.	 Now, paste the Package SID value into the REDIRECT URI setting, and

click on the tick to complete.
9.	 Finally, in the AD app's CONFIGURE tab, add a permission to the mobile

service (this permission comes from the manifest modification we made in
the mobile service's AD application):

https://account.live.com/developers/applications

Chapter 11

[361]

Creating a DataServiceBase class
The DataServiceBase class is very similar to the Windows Phone DataServiceBase
class we created with Twitter authentication, but there's an extra step to get an access
token before the LoginAsync method is called:

var ac = new AuthenticationContext(authority);
var ar = await ac.AcquireTokenAsync(resourceURI, clientID);
var payload = new JObject();
payload["access_token"] = ar.AccessToken;

user = await client.LoginAsync(_provider, payload);

Have a look at the code samples in the code bundle of this chapter to see how this is
implemented in the services to interact with the supply system mobile service.

Summary
We've had a really intense look at mobile services in this chapter; it's quite a big subject
in its own right, so it's worth doing some more reading yourself, and definitely check
out the Node.js backend to compare what it offers to the .NET backend we've looked
at in this chapter.

As I've mentioned, there is a lot of code for the supply business domain that has been
omitted from the book due to repetition of the topics we've covered and space in this
book, but you should definitely have a look, particularly at the order processor worker
role, as this has the other half of the table and blob storage for OrderEntity and
barcode JPEG data.

We have completed the application code now, and we'll be finishing this book in the
next chapter by looking at how to prepare our systems to go live.

Questions
1.	 What benefits do Azure mobile services offer over other type of offer services?
2.	 What is special about the administrative authorization level?
3.	 Why might a TableController cause us problems with an existing database

schema and what options do we have to help us?
4.	 What base class should scheduled jobs implement and how are they called?
5.	 How can we relate an OAuth provider authenticated user from a mobile

service to a user created by an MVC website?

Integrating a Mobile Application Using Mobile Services

[362]

6.	 What does the Enable unauthenticated push notifications under the
windows phone notifications settings (mpns) setting in the mobile
service's PUSH tab do?

7.	 Which object contains the user credentials after a successful login from a
MobileServiceClient instance?

8.	 In the DataServiceBase class, why is the MobileServiceClient variable
marked static?

9.	 In a Windows Phone app, which capability needs enabling and where is
it configured?

10.	 When we call the NotificationHub.RegisterNativeAsync method,
what does the tagExpression parameter do?

11.	 Which NuGet package do we need to access tables and blob storages?
12.	 What step must we perform before attempting a login using AD

authentication with a MobileServiceClient?

Answers
1.	 Flexible authentication model, push notifications and notifications hub

integration, and client SDKs for all major mobile platforms.
2.	 This is the highest level of authorization, which overrides all other levels

and requires the mobile service master key, which should not be used in
client applications.

3.	 TableControllers are typed against the ITableData interface, which
requires a number of default fields, which an existing table may not have.
We can either map the existing entities to a new entity using something
like AutoMapper, or use an API controller.

4.	 ScheduledJob; this can be called with an HTTP POST request and configured
to run on a schedule in the portal.

5.	 Add models for the AspNetUser and AspNetUserLogin users to the
DbContext with matching DbSet properties, and use these to relate the login
provider ID and key from the user credentials to the values in the tables.

6.	 This allows requests without an authentication certificate to make push
notifications limited to 500 per day.

7.	 The MobileServiceUser object found in the MobileServiceClient
.CurrentUser property.

8.	 This is because there is only one instance, meaning that the user credentials
are available for all requests made in the application.

Chapter 11

[363]

9.	 ID_CAP_PUSH_NOTIFICATION in the WMAppManifest.xml file.
10.	 It allows us to supply a list of tags related to subjects the user wants to

subscribe to; these should be user-configurable within the app.
11.	 WindowsAzure.Storage.
12.	 Call AuthenticationContext.AcquireTokenAsync to get an access token.

Preparing an Azure System
for Production

In this last chapter, we're going to look at deploying our system to various
environments for different stages of its life cycle. We'll explore the options for
system configuration and create deployment packages manually on the Visual
Studio Online Team Foundation build server. We'll finish this chapter by looking
at monitoring and maintaining our Azure systems once they are live.

Project configurations for multiple
environments
Until now, we've been publishing websites and cloud services straight from Visual
Studio and using Entity Framework Code First Migrations to build our databases.
Deploying systems to non-development environments from builds on a developer
machine is not a good practice as we don't have a controlled way of producing a
reproducible, versioned deployment. If we deploy a local build, there is no guarantee
that there are no differences between the source control and the local copy of code;
even if we build from a fresh branch, so that we think the code is clean and it builds on
our development environment, there is no guarantee that it will run on a server as we
may have developer SDKs installed, assemblies in the Global Assembly Cache (GAC)
registry modifications, and so on.

Using a build server is a good way of making sure we have a clean build directly
from a source control that is not influenced by the development environment and
can repeatedly produce deployment packages, which can be versioned and stored.
This allows deployments through our environments to be controlled and also easily
rolled back to a known version if something goes wrong.

Preparing an Azure System for Production

[366]

When we're dealing with websites, most of our configuration is in the Web.config
file (we may sometimes see configs for individual libraries, too) that contains things
such as database and storage connection strings, authentication provider keys, and
Service Bus connection strings. As we've already seen in an earlier chapter, we can
use config transforms to change certain config settings when we publish to a website.
When we build a web deployment package on the build server, the packaging process
also creates a MyWebsite.SetParameters.xml file, which allows us to change secret
settings at deployment time, and we can also override config settings in the portal,
although it's best to use the correct settings in the first place so that the website
doesn't immediately fail on deployment.

With cloud services, we have the choice of configuring settings in the app.config
file or in the .cscfg cloud configuration, which allows us to change configuration
at runtime through the portal; generally, the best practice is to put all the settings in
the cloud config. However, when it comes to things such as EF (which, by default,
reads connection strings from a config file and can't read the cloud configuration
without some modification), libraries shared between different types of applications
(which have no concept of cloud configurations), we need to use app.config for
configuration. This could potentially make things difficult as we need to manually
modify the app.config settings in a package before deployment (the package is
a ZIP file, so we can unzip it manually or write a script to automate the process).

Many of these settings contain sensitive information, and we should be careful
as to who has access to them, particularly for production environments. In some
companies (usually smaller ones, which don't have the requirement for systems
administrators), a DevOps or NoOps approach to deployments is taken, where
developers are responsible for deploying systems, so they may have access to
secret information such as passwords and authentication keys, but still wouldn't
want to store them in the source control as this would expose the information to
anyone with access to the source code and put the system at risk.

In Chapter 2, Designing a System for Microsoft Azure, we learned about different system
environments for different stages of the application life cycle, and examined typical
environment types and choices for different sizes of organizations and systems.
We have also seen how we can use transforms in Web.config files to modify
connection strings and app settings when we publish a website so that we don't
have to manually modify them. While I've been writing my samples, I've generally
been using the Release config transforms to change the settings when I publish, but
when we start deploying the system through multiple environments, this strategy no
longer meets our requirements as we may have databases, storage accounts, Active
Directory namespaces, and Service Bus namespaces for each environment, and we
will need to configure the settings for each of them. We'll look at creating Prod, QA,
and test configurations, which will be applied when we package our websites and
cloud services.

Chapter 12

[367]

Adding build configurations to a solution
In order to implement configs for each application environment, we need matching
build configurations, which we need to create for the solution and for each project.
We'll create a new test configuration for the system test environment using the
following procedure:

1.	 Right-click on the solution and select Properties and then select
Configuration Properties in the Properties dialog.

2.	 Click on the Configuration Manager button to open the Configuration
Manager dialog, and then select <New…> from the Active solution
configuration picker (you can see that I've already added Prod and QA):

Preparing an Azure System for Production

[368]

3.	 Enter the new configuration Name, and in the Copy settings from picker,
select Release, so we're copying the settings from the Release config and not
getting Debug symbols in our build. Check Create new project configurations
so that all the projects get the new config too; otherwise, we'll have to manually
create them for each one. Sometimes, it's better to uncheck this if we don't want
all our projects to get modified with the new config):

4.	 In the Properties dialog, switch the Configuration to Active(Test), and then
select the projects we want to build. I've unchecked the OrderSim simulator
project as that will not be published, and also the CustomerPhoneApp project,
as it will cause our build to fail later on due to platform limitations:

Chapter 12

[369]

5.	 Repeat this procedure for all environments.
6.	 Click on OK to save these changes; we'll notice that all our projects and

solutions have been modified with these changes.
7.	 We can do this for each solution we've created.

Website configuration transforms
We've seen that we have a Web.config file, which contains all our settings; then, we
have web.debug.config and web.release.config, which contain the transforms we
wish to apply when we publish in either the Release or Debug mode.

Transforms are only applied during publishing and not during
normal build without manually modifying the .csproj file.

Now that we have our new build configurations in place, we need to add transforms
for them, which we do by simply right-clicking on the Web.config file and selecting
Add Config Transform:

Our new config transform files appear where we can apply configs for each setting
that needs transforming per environment:

Preparing an Azure System for Production

[370]

Application configuration transforms
During publishing, we also need config transforms for our cloud services for any
settings that require transformation in the app.config files. Unfortunately, there
is no built-in support for adding these config transforms or executing them during
publishing, so we'll look at manually modifying our cloud service project to do this.

SlowCheetah (http://visualstudiogallery.msdn.microsoft.
com/69023d00-a4f9-4a34-a6cd-7e854ba318b5) is a great tool
to transform app.config automatically, but we'll do it manually here,
so that we understand how it works.

First of all, we need to manually add the transform files to the project, so we'll do this
in the following procedure:

1.	 Add a new application config file for each environment (app.Test.config,
app.QA.config,and app.Prod.config) in the worker role projects (not the
cloud service project), and we will see that they are not arranged under the
main app.config, like they are for the Web.config files:

2.	 Although it's not necessary to fix this, we can easily do it by modifying
the .csproj file, so right-click on the project and select Unload Project,
then right-click on the project (now marked unavailable) and select Edit
ProjectName.csproj, and the .csproj XML will load into Visual Studio.

http://visualstudiogallery.msdn.microsoft.com/69023d00-a4f9-4a34-a6cd-7e854ba318b5
http://visualstudiogallery.msdn.microsoft.com/69023d00-a4f9-4a34-a6cd-7e854ba318b5

Chapter 12

[371]

3.	 Scroll down and look for where the configs are added:
<ItemGroup>
 <None Include="app.config" />
 <None Include="app.Prod.config" />
 <None Include="app.QA.config" />
 <None Include="app.Test.config" />
 <None Include="packages.config" />
 <None Include="Performance\Microsoft.ServiceBus.
MessagingPerformanceCounters.man" />
</ItemGroup>

4.	 Modify each transform file to have a DependentUpon element inside each
None element like this:
<ItemGroup>
 <None Include="app.config" />
 <None Include="app.Prod.config">
 <DependentUpon>app.config</DependentUpon>
 </None>
 <None Include="app.QA.config">
 <DependentUpon>app.config</DependentUpon>
 </None>
 <None Include="app.Test.config">
 <DependentUpon>app.config</DependentUpon>
 </None>
 <None Include="packages.config" />
 <None Include="Performance\Microsoft.ServiceBus.
MessagingPerformanceCounters.man" />
</ItemGroup>

5.	 Save the changes, right-click on the project, and select Reload Project,
and we'll see the files neatly arranged like the Web.config files.

6.	 Copy the contents of one of the Web.config transform files and paste it
into each app.config transform, and fill in all the transforms required.

7.	 Next, we need to edit the .csproj XML again, adding an extra target to
transform the app.config. Locate this line:
<Import
 Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />

Preparing an Azure System for Production

[372]

8.	 Now, paste the following block of XML after it:
<Import
 Project="$(VSToolsPath)\WebApplications\Microsoft.
WebApplication.
 targets" Condition="'$(VSToolsPath)' != ''" />
 <Import
 Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\
 v10.0\
 WebApplications\Microsoft.WebApplication.targets"
Condition="false" />
 <UsingTask TaskName="TransformXml"
 AssemblyFile="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\
 v10.0\
 Web\Microsoft.Web.Publishing.Tasks.dll" />
 <Target Name="AfterCompile"
 Condition="exists('app.$(Configuration).config')">
 <TransformXml Source="app.config"
 Destination="$(IntermediateOutputPath)$(TargetFileName).
 config"
 Transform="app.$(Configuration).config" />
 <ItemGroup>
 <AppConfigWithTargetPath Remove="app.config" />
 <AppConfigWithTargetPath
 Include="$(IntermediateOutputPath)$(TargetFileName).
 config">
 <TargetPath>$(TargetFileName).config</TargetPath>
 </AppConfigWithTargetPath>
 </ItemGroup>
 </Target>

9.	 Unlike the Web.config file, the preceding code will transform the app.config
file on build. This is controlled by the Target Name="AfterCompile" line,
which is required so that the transform happens before the packaging step;
otherwise, the config is copied before it is transformed.

Cloud configuration
We've sorted out the app.config files for our cloud services, so now, we need
to look at the .cscfg cloud configurations. We'll add configurations for each
environment in the following procedure:

1.	 Right-click on a role under the Roles folder in the cloud service project
and select Properties.

Chapter 12

[373]

2.	 Select <Manage…> from the Service Configuration dropdown:

3.	 Now, select Cloud (all our environments are in the cloud, so this is a good
starting point) and click on Create copy:

4.	 Select the new copy, click on Rename, and rename it Test, QA, or Prod
(create one of each).

5.	 Next, select each setting in turn and fill out the settings for each environment
(if you don't know what they are yet, you can change them at any time).
Also, notice that we now have .cscfg files for each environment:

Preparing an Azure System for Production

[374]

6.	 When we create a build, we'll be building all our environment packages in
one go to save creating a build for each environment (you may prefer to have
a build per environment depending on your circumstances). To do this, we
need to modify the .ccproj file to tie the TargetProfile object to our build
configuration. Unload the cloud service .ccproj and look for the following
section in the XML:
<!-- Items for the project -->
 <ItemGroup>
 <ServiceDefinition Include="ServiceDefinition.csdef" />
 <ServiceConfiguration Include="ServiceConfiguration.Local.
 cscfg"
 />
 <ServiceConfiguration Include="ServiceConfiguration.Cloud.
 cscfg"
 />
 </ItemGroup>

7.	 Now, insert the following property group above it:
 <!-- Tie TargetProfile to Configuration so we get the correct
 cscfg
 at build -->
 <PropertyGroup>
 <TargetProfile Condition=" '$(TargetProfile)' == ''
 ">$(Configuration)</TargetProfile>
 </PropertyGroup>

Building website deployment packages
Websites can be packaged into ZIP files and deployed to remote servers using
MSDeploy; these packages can be used by system administrators or developers to
deploy websites to the appropriate environment for testing or a live roll-out.

Manually publishing websites to the filesystem
We can manually build packages in Visual Studio, which, as I've said, is probably not
a good idea for deployment packages (even if you're a lone developer with a limited
budget, you can use the Visual Studio Online TFS build server, which gives you 60
minutes per month build time for free); however, it can actually be really useful to
check that all the website content such as HTML pages, stylesheets, and scripts have
been included, and that Web.config transforms have worked.

Chapter 12

[375]

We'll look at manually creating a package in the following procedure:

1.	 Right-click on a web project and select Publish.
2.	 Click on the Custom button, and then enter a name in the New Custom

Profile dialog (I've called mine TestPackage), and click on OK.
3.	 Now select File System from the Publish method picker and enter a

directory to publish to in the Target location textbox, and click on Next.
4.	 Change the Configuration setting; I've selected Delete all files prior to

publish so that the files are all deleted from the target folder before publish,
and left all the other settings as they are (the Precompile during publishing
option compiles the site to the target platform to make it start up faster,
rather than it being JIT-compiled by the server, and Exclude files from
App_Data is mainly for legacy ASP.NET applications).

5.	 Click on Publish to publish the site to the filesystem.
6.	 We'll now see our website published to the target directory so that we

can verify that all the files are there and make sure our transforms have
been applied.

7.	 We could also create a website in IIS with a virtual directory pointing
to the publish directory to check whether the website runs.

Building web packages on a build server
We'll create a build definition to build all our websites in the sales solution (customer
website, admin website, and mobile service) for each environment. Getting builds to
work and produce what you want can be quite tricky; if you run MSBuild (which is
what TFS uses to build solutions and projects) yourself, it's possible to build projects
on their own quite easily rather than the whole solution; however, on the build
server, when it gets a clean copy of the code, it doesn't have all the NuGet packages
needed to build the project (if you've correctly left them out of the source control).
The new build templates restore the packages before building a solution but not a
project, so it's not easy to build a project without extra configuration (you can read
more about NuGet and Team Foundation Build at http://docs.nuget.org/docs/
reference/package-restore-with-team-build). Another issue is that working
out the MSBuild parameter switches your need (here is a list of MSBuild properties:
http://msdn.microsoft.com/en-us/library/bb629394.aspx and also a list of
TF build environmental properties: http://msdn.microsoft.com/en-us/library/
hh850448.aspx, which can be useful).

http://docs.nuget.org/docs/reference/package-restore-with-team-build
http://docs.nuget.org/docs/reference/package-restore-with-team-build
http://msdn.microsoft.com/en-us/library/bb629394.aspx
http://msdn.microsoft.com/en-us/library/hh850448.aspx
http://msdn.microsoft.com/en-us/library/hh850448.aspx

Preparing an Azure System for Production

[376]

We'll create a build definition to create our packages in the following procedure:

1.	 In the Team Explorer – Home window, click on the Builds button:

2.	 Click on the New Build Definition link to create a new build definition for
our websites:

3.	 Change the Build definition name value in the General tab; it will default
to the solution name.

4.	 You can change the Trigger setting if you like; I'm leaving mine as the
default Manual setting.

Chapter 12

[377]

5.	 The Source settings should be fine and should map the Source Control
folder to the Build Agent folder automatically.

6.	 I've left the Build Defaults tab with the default setting of Copy build output
to the server; this will copy the output to the Drops folder in the source
control and allow us to download a drops ZIP for the build from the Visual
Studio Online portal. You can change it to drop to a file share or a different
source control location.

7.	 The Process tab is where we need to do most of the configuration.
8.	 First, select the TfvcTemplate.12.xaml template from the Build process

template picker (these come from the BuildProcessTemplates folder
created automatically at the root of our TFS project).

9.	 Pick the solution to build in the Projects picker under the Build section
(it's possible to build multiple solutions and projects from here).

10.	 Click on the ellipsis button next to the Configurations textbox under
the Build section, and add configurations for each environment in the
Configurations dialog. You will need to manually type the names as
they will not appear in the picker:

11.	 Change the Output location setting to Per Project so that all our builds
are dropped into individual folders per project.

Preparing an Azure System for Production

[378]

12.	 Now, under the Advanced section, enter the following parameters
in the MSBuild arguments box; this will deploy the packages to the
build destination with the project and environment structure intact:
/p:DeployOnBuild=true;DeployMethod=Package

13.	 I've left the Retention Policy setting with the default settings; feel free to
change it to your own requirements.

14.	 Save the build definition, and we'll see it listed in the Builds tab. Build
definitions are stored on the build server and not in the solution.

15.	 Right-click on the definition and select Queue New Build, and then review
the details in the Queue Build dialog (at this point, we can actually modify
the parameters so that we can potentially change the MSBuild arguments
here, which will be useful if we weren't building all environments as we
could insert /p:Configuration=OurEnv to select an environment). Click
on Queue New Build... to build it:

16.	 The new build will appear at the top of the My Builds list, showing its
current status:

Chapter 12

[379]

17.	 If we double-click on the build, the Build Request page will open, where we
can see an overview of the build and also see the build details by clicking on
the View build details link at the top.

18.	 Once the build has completed, we will see the results displayed automatically.
If the build fails or there are warnings, we will see them in the Summary
section, and we can see more details by clicking on the View Log link at the
top of the page. When the build succeeds, we should see lots of green ticks and
see the status of each configuration, and the build status will be updated in the
My Builds list:

Preparing an Azure System for Production

[380]

19.	 Click on the Open Drop Folder link, and we will be taken to our Visual
Studio Online portal in the default browser.

20.	 From here, we will see exactly the same overview and options to view
build logs, but we can also download the drops package by clicking
on the Download drop as zip button:

21.	 Download the drops package and take a look at the folder structure.
We should see a folder for each environment, then under that folders for
each website, which contain the same files we see when we do a manual
publish, but also a website folder with a _Package suffix, which contains
the ZIP package and the supporting deployment scripts and config:

Chapter 12

[381]

The publish process has extracted settings, which it thinks we may want to change,
and put them in a SetParameters.xml file so that they can be changed easily during
deployment. This gives us even more flexibility about how we choose to package
our websites as not only can we have multiple environment configurations with
transforms, but also we can use the SetParameters.xml files to further modify
config settings just before publish. You can read more about this at http://
www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-
enterprise/configuring-parameters-for-web-package-deployment.

Building cloud service deployment
packages
When we publish a cloud service to Azure through Visual Studio, we're creating
a cloud service package (.cspkg) with an accompanying cloud service config
(.cscfg—the same as in our solution) that is automatically deployed to Azure
for us. We can create packages manually in Visual Studio or on a build server
in a similar way to websites. This allows us to publish cloud services outside
of Visual Studio from the portal or by using PowerShell.

Building cloud service deployment packages
manually
As with manually publishing websites, it's not the best idea to publish cloud services
built on a developer machine for the same reasons, but it can be a useful way of
testing if our packages work as expected with the correct cloud configuration and
application configuration transforms. We'll manually create a cloud package from
Visual Studio in the following procedure:

1.	 Right-click on the cloud service project (not the role project) and select Package.

http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment

Preparing an Azure System for Production

[382]

2.	 Select values for Service configuration (which cloud service config to use)
and Build configuration (which .NET build config to use):

3.	 If you want to enable remote desktop, this can be done here. You can check
the Enable Remote Desktop for all roles option or click on Settings to
configure the user credentials for this.

4.	 Remote debugger can also be enabled from here, although remember,
if we're not deploying a Debug version of code, this will not work, and we
normally will not want to deploy debug code to production environments.

5.	 Click on Package, and Visual Studio will package our cloud service and open
the Windows Explorer screen in the project's /bin/Config/app.package
directory, where we will see our .cspkg and .cscfg files.

Cloud service packages are actually just zip files, so if we change the file extension to
.zip, we can unzip it and see what's inside. There should be a .cssx file, which we
can also change to .zip, which will unzip the file and show a directory structure.

Building cloud service deployment packages
on a build server
We can build cloud service packages on a build server in pretty much the same way
as websites, but with different MSBuild arguments, and an extra step is required to
actually harvest the app.package folder with a post-build PowerShell script because it
isn't automatically copied during the drops stage. To configure the Process tab, follow
the same procedure to create a website build, but with the following differences:

1.	 Change the Output location setting under the Builds section to AsConfigured,
which will allow us to control the copying of files to the drops destination.

Chapter 12

[383]

2.	 Use this MSBuild argument if you have your target profile tied to
build configuration:
/t:Publish

3.	 Alternatively, you can use these arguments to manually select the profile
without a tied target:
/t:Publish /p:TargetProfile=Cloud

4.	 Copy the GatherItemsForDrop.ps1 script from the TFS build extensions
CodePlex site at http://tfsbuildextensions.codeplex.com/
SourceControl/latest#Scripts/GatherItemsForDrop.ps1.

5.	 Save it to a new folder called Scripts under the BuildProcessTemplates
directory at the root of the Visual Studio Online project (each project has one).

6.	 Locate the following section in the script:
This script copies the basic file types for managed code
projects.
You can change this list to meet your needs.
$FileTypes = $("*.exe","*.dll","*.exe.config","*.pdb")

Specify the sub-folders to include
$SourceSubFolders = $("*bin*","*obj*")

7.	 Replace it with the following, which includes the .cspkg and .cscfg files
and the app.publish directory:
This script copies the basic file types for managed code
projects.
You can change this list to meet your needs.
$FileTypes = $("*.cspkg","*.cscfg*")
#$FileTypes =
 $("*.exe","*.dll","*.exe.config","*.pdb","*.cspkg","*.cscfg*")

Specify the sub-folders to include
$SourceSubFolders = $("*bin*","*obj*","*app.publish*")

8.	 If you're building multiple environments simultaneously, like we have done
in these examples, we need to modify the copy step so that the packages
for the different environments are copied to individual folders and don't
overwrite each other.

http://tfsbuildextensions.codeplex.com/SourceControl/latest#Scripts/GatherItemsForDrop.ps1
http://tfsbuildextensions.codeplex.com/SourceControl/latest#Scripts/GatherItemsForDrop.ps1

Preparing an Azure System for Production

[384]

9.	 Locate the following section of the script right at the end:
Copy the binaries
Write-Verbose "Ready to copy files."
if(-not $Disable)
{
 foreach ($file in $files)
 {
 Copy $file $Env:TF_BUILD_BINARIESDIRECTORY
 }
 Write-Verbose "Files copied."
}

10.	 Replace it with the following code:
Copy the binaries
Write-Verbose "Ready to copy files."
if(-not $Disable)
{
 foreach ($file in $files)
 {
 $targetFile = $Env:TF_BUILD_BINARIESDIRECTORY +
 $file.FullName.SubString($Env:TF_BUILD_SOURCESDIRECTORY.
 Length);
 New-Item -ItemType File -Path $targetFile -Force;
 Copy-Item $file.FullName -destination $targetFile
 }
 Write-Verbose "Files copied."
}

11.	 Check in the script.
12.	 Back in the build definition, enter the path for the script in Post-build script

path under the Build | Advanced section. It should be something like this:
$/AzureBakery.Sales/BuildProcessTemplates/Scripts/
GatherItemsForDrop.ps1

Chapter 12

[385]

13.	 The build definition should now look like this:

14.	 Now, when we build this package, we will get our .cspkg and .cscfg
packages in the drops ZIP file.

Deploying web packages to Azure
Now that we've got a package built on the build server, we'll deploy it to Azure
using the following procedure:

1.	 Create a website in the portal for one of the environments; I've called mine
http://azurebakery-test.azurewebsites.net/.

2.	 Download the publish profile from the website's dashboard, and open it in
Visual Studio (you can press Ctrl + E, D to quickly format it).

3.	 Unzip the drop package (make sure you unblock it first from the file
properties) and copy the MyWebsite_Package folder to a temporary
folder to make it easier to deploy.

Preparing an Azure System for Production

[386]

4.	 Locate the following parameter in the MyWebsite.SetParameters.xml file:
<setParameter name="IIS Web Application Name" value="Default Web
 Site/CustomerWebsite_deploy" />

5.	 Change the value to the name of the website created in the portal, like this:
<setParameter name="IIS Web Application Name"
 value="azurebakery-test" />

6.	 Open a Visual Studio command prompt and change the directory to the
MyWebsite_Package location (use cd\ to change the directory to disk root,
then cd and the path to change the directory to the desired path), and enter
the following command with the website details taken from the publish
profile to test (/T) the deploy (there are complete template help examples in
the Readme file in the package, too):
CustomerWebsite.deploy.cmd /T /M:https://azurebakery-test.scm.
 azurewebsites.net:443/msdeploy.axd /U:$azurebakery-test
 /P:Sy4RBrTsrzwj2rpxia4Dc7Lg9R6u7Jt2bZ4RmC6zwXmXXXXXXXXxxxxxxx
 xx /A:Basic

The /T parameter tests the deployment without actually deploying it
(MSDeploy –whatIf), so we can check whether it's going to work. The /M
parameter is the MSDeploy publish URL taken from the publish profile; you
need to add https:// to the start and add /msdeploy.axd at the end, which
is the MSDeploy listener. /U is the username taken directly from the publish
profile as is /P for password. We need to add /A:Basic for basic authorization.

7.	 When we run the test command, it outputs the script that the deploy.cmd
script creates for us, which includes the details we entered in the command
prompt, the package information, and the parameter file:
"C:\Program Files\IIS\Microsoft Web Deploy V3\msdeploy.exe"
 -source:package='C:\Temp\Package\CustomerWebsite_Package\
 CustomerWebsite.zip'
 -dest:auto,computerName="https://azurebakery-test.scm.
 azurewebsites.net:443/msdeploy.axd",userName="$azurebakery-
 test",
 password="Sy4RBrTsrzwj2rpxia4Dc7Lg9R6u7Jt2bZ4RmC6zwXmSkodQ36Rh8B
 eZx3mQ",
 authtype="Basic",includeAcls="False" -verb:sync
 -disableLink:AppPoolExtension -disableLink:ContentExtension -dis
 ableLink:CertificateExtension
 -setParamFile:"C:\Temp\Package\CustomerWebsite_Package\
 CustomerWebsite.SetParameters.xml" -whatif

Chapter 12

[387]

8.	 Once we've got this working, change /T to /Y in order to deploy, and we'll
see details about the files being copied.

9.	 Now, if we browse to the new site, the content should load correctly.

If you have trouble getting this to work, it may be because
the destination machine's details are incorrect, so it can help
to publish the website from Visual Studio and look at the
output window to see the destination machine's details.

Deploying cloud packages to Azure
Cloud packages can either be uploaded to a cloud service in the portal or published
using PowerShell; what you choose comes down to personal preference, although
using PowerShell allows us to automate deployments. There is a great reference for
deploying cloud packages using PowerShell at http://azure.microsoft.com/en-
us/documentation/articles/cloud-services-dotnet-continuous-delivery.

Uploading packages into a service through the portal is really straightforward;
we'll see how in the following procedure:

1.	 Nearly every tab in the cloud services toolbar has an UPLOAD button that is
used to upload packages to instances with no current package, or an UPDATE
button for instances with a current package loaded, so click on any one button
on the toolbar for the instance you want to update:

http://azure.microsoft.com/en-us/documentation/articles/cloud-services-dotnet-continuous-delivery
http://azure.microsoft.com/en-us/documentation/articles/cloud-services-dotnet-continuous-delivery

Preparing an Azure System for Production

[388]

2.	 Enter a DEPLOYMENT LABEL value, which helps you to identify the
deployment, and browse to the .cspkg package and the .cscfg configuration,
which we built on the build server. The Deploy even if one or more roles
contain a single instance option is basically steering you towards having at
least two instances, so we don't have any downtime if one instance becomes
unavailable due to maintenance or a failure; if your system can't be scaled
(ideally, it should be designed to be stateless and scalable), you can check this
option to stop the upload from failing. You can manually modify the .cscfg
file to increase the number of instances before uploading:

3.	 Click on the tick to start the upload, and we'll see the packages appear in the
portal and then start.

Chapter 12

[389]

Creating database scripts from Entity
Framework Code First Migrations
We can easily create a T-SQL script from a database built with Code First Migrations
by entering the following command in the Package Manager console:

Update-Database -Script -SourceMigration:$InitialDatabase

This command creates a T-SQL script for all migrations and opens it in Visual
Studio. Unfortunately, scripts aren't created for the database seeding as this isn't
part of Entity Framework migrations, so this has to be scripted separately.

Once we have these scripts, system administrators or database administrators
can easily use them to build databases for our application environments without
Code First Migrations. Once deployed, we can create more scripts to move to the
next migration.

Of course, we can always manually create database schema scripts from
SQL Server Management Studio. We can also use third-party tools such as
Red Gate's SQL Compare product (http://www.red-gate.com/products/
sql-development/sql-compare/) to create scripts.

The go-live checklist
This is a list of quick checks to perform when we're putting a system live to make
sure we've not missed anything:

•	 The website and cloud service Web.config and app.config have correct
connection strings, API keys, and so on, for publish

•	 Cloud service configs have correct connection strings, API keys, and so on,
for publish

•	 The website and cloud services have config settings overridden in the portal
if required

•	 Logging level has been set to Verbose initially (particularly for new systems
and major changes) to quickly diagnose any problems, and changed to Error
once the system is stable to save on the storage space

•	 The website and cloud services have the starting instance count configured
correctly, and auto-scale has been set up

•	 Databases have the correct max size configured
•	 A database backup strategy has been implemented
•	 Databases have been updated with the latest migration scripts

http://www.red-gate.com/products/ sql-development/sql-compare/
http://www.red-gate.com/products/ sql-development/sql-compare/

Preparing an Azure System for Production

[390]

Monitoring live services
Once we have systems live on Azure, we need to monitor their health so that if
a system is failing, we are aware of it and can start fixing it as quickly as possible.
There are a number of tools within Azure that we can use to help us monitor our
service, and we'll take a look at these in this section.

The Microsoft Azure portal
The main dashboard in the portal is a great way of getting an overview of all the
services (you may need to page through them) as we get a simple visual indicator
for each service that shows us its state. The new preview portal also has a nice world
map that shows the status of all the data centers. If there is a problem with a service,
we can quickly navigate to it and get more information from its own dashboard, and
then start diagnosing the issue.

Checking the portal is a good activity to perform daily in order to ensure the general
health of the services, and for system administrators this can be added to their
existing daily checks.

The Service Management REST API
If we have existing system-monitoring tools in place to monitor the health of our
services, we can use the Service Management REST API to automatically monitor
the health of our services. There is a good reference to the API at http://msdn.
microsoft.com/library/azure/ee460799.aspx. All requests must be authenticated,
and there is a good guide to doing this at http://msdn.microsoft.com/en-US/
library/azure/ee460782.aspx.

Management services alerts
In the Management Service workspace in the portal, we can create e-mail alerts for
various metrics when they pass a configurable threshold. Alerts are available for
the following service types:

•	 Cloud services
•	 Mobile services
•	 SQL databases
•	 Storages
•	 Virtual machines
•	 Websites

http://msdn.microsoft.com/library/azure/ee460799.aspx
http://msdn.microsoft.com/library/azure/ee460799.aspx
http://msdn.microsoft.com/en-US/library/azure/ee460782.aspx
http://msdn.microsoft.com/en-US/library/azure/ee460782.aspx

Chapter 12

[391]

It's possible to create 10 alerts per subscription, so if we have a lot of services
(which the Azure Bakery system does), we need to select the most critical services
to monitor. For the Azure Bakery system, the most critical services are as follows:

•	 For the sales customer website, the following services are critical:
°° CPU Time should be less than 900 ms so that we can see when an

instance is working too hard and may have performance issues or
need scaling up/out.

°° The Http Server Error value should be less than 1 per hour.
This will catch any 5xx HTTP errors and will alert us to any
internal server issues.

•	 For the sales customer database, the following service is critical:
°° Storage must be less than 19,000 MB. This will alert us when we are

getting close to our capacity of 20 GB, and will allow us to remove
data or increase the max size limit of the database.

•	 For the production order processor worker role, the following service
is critical:

°° CPU should be less than 90 percent so that we can see when an
instance is working too hard and may have performance issues or
need scaling up/out

•	 For the production database, the following service is critical:
°° Storage must be less than 19,000 MB. This will alert us when we are

getting close to our capacity of 20 GB, and will allow us to remove
data or increase the max size limit of the database.

•	 For the production Web API, the following services are critical:
°° CPU Time must be less than 900 ms so that we can see when an

instance is working too hard and may have performance issues
or need scaling up/out.

°° Http Server Error must be less than 1 per hour. This will catch any
5xx HTTP errors and will alert us of any internal server issues.

•	 For the supply order processor worker role, the following service is critical:
°° CPU should be less than 90 percent so that we can see when an

instance is working too hard and may have performance issues
or need scaling up/out

Preparing an Azure System for Production

[392]

•	 For the supply table storage, the following service is critical:
°° Success should be more than 95 percent. This will alert us

if successful requests fall below 95 percent so that we can
diagnose any problems.

•	 For the supply mobile service, the following service is critical:
°° Uptime (endpoint/region) should be more than 95 percent.

This requires the mobile service to be in the STANDARD
service tier with endpoint monitoring enabled, and will
allow us to address any availability issues.

Azure PowerShell
We've used Azure PowerShell a number of times throughout this book, and it's
an incredibly powerful tool that can be used to perform system administration and
maintenance tasks. There is a full cmdlet reference at http://msdn.microsoft.com/
en-us/library/azure/jj554330.aspx.

Azure daily service checks
This is a list of daily checks we should make for the Azure Bakery system once it
is live:

•	 Check the portal dashboard for any service issues.
•	 Check error logs.
•	 Check the Service Bus queue and topic dead-letter queues (you will need to

write a tool to do this).
•	 Check the Management Services Operational Logs for any live Azure issues

that may affect services. You can also visit http://azure.microsoft.com/
en-us/status/.

Azure periodic service activities
These are activities that should be performed periodically to ensure the health of
the system:

•	 Check the individual monitoring dashboards for any high or unusual
metric patterns so that any performance issues can be addressed.

•	 Check whether the database has sufficient capacity so that storage can
be adjusted if required.

http://msdn.microsoft.com/en-us/library/azure/jj554330.aspx
http://msdn.microsoft.com/en-us/library/azure/jj554330.aspx
http://azure.microsoft.com/en-us/status/
http://azure.microsoft.com/en-us/status/

Chapter 12

[393]

•	 Rebuild database table indexes (this could be done on a scheduled task
as there is no SQL agent in SQL Azure). SQL Azure Databases, by default,
are set to automatically recompute statistics, so this is not required.

•	 Archive and prune data that may no longer be needed to save on
storage costs.

•	 Check whether the mobile service push notifications are receiving all
broadcast notifications, and user-specific notifications are received by
a test user.

•	 Touch-test application UIs to make sure there are no visual issues and
everything is working as expected; problems may occur if there is an
issue with some backend web services or storage.

•	 Evaluate service scaling to see if any services need scaling up (more CPU/
memory/disk) or out (more instances) to meet continual loading or scaling
out for variable loads; conversely, if services are under-loaded, they can
probably be scaled down (less CPU/memory/disk) or in (fewer instances)
to save cost.

•	 Check whether any services are not being used so that they can be
switched off or even deleted to save cost.

Azure tool list
We've already used a large number of tools in this book, and there are a lot
we haven't looked at, so here is a list of useful tools for development and
maintenance activities:

•	 The Azure portal: This is the main port-of-call for most Azure-related
activities (https://manage.windowsazure.com and https://portal.
azure.com).

•	 Visual Studio: Visual Studio, with the Azure SDK, is the most powerful
Azure development tool on the market, and we've already seen what it
can do for us in this book (http://www.visualstudio.com/).

•	 SQL Server Management Studio: We've had a quick look at this, but
not used it to its full capabilities with Azure. It's a really useful tool for
administrative and maintenance tasks on SQL Azure Databases (https://
www.microsoft.com/en-us/server-cloud/products/sql-server/).

•	 Azure PowerShell: This is an additional PowerShell module, an extremely
powerful tool for administering Azure systems, and it is also useful for
developers when the portal or Visual Studio doesn't have the capability
to perform a certain activity (http://azure.microsoft.com/en-us/
documentation/articles/install-configure-powershell/).

https://manage.windowsazure.com
https://portal.azure.com
https://portal.azure.com
http://www.visualstudio.com/
https://www.microsoft.com/en-us/server-cloud/products/sql-server/
https://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell/
http://azure.microsoft.com/en-us/documentation/articles/install-configure-powershell/

Preparing an Azure System for Production

[394]

•	 Azure AD PowerShell: This is another additional PowerShell module for
managing Azure AD. Again, we've only used a small number of its features
(http://technet.microsoft.com/en-us/library/jj151815.aspx).

•	 Red Gate's Windows and SQL Azure tools for .NET professionals: These
are a great set of tools for managing and maintaining Azure systems. This
includes Cerebrata tools that Red Gate acquired (http://www.red-gate.
com/products/azure-development/).

•	 Red Gate's Developer Bundle: There are some really useful tools in here
for working with SQL databases, and these are particularly useful for doing
database comparisons and creating scripts (http://www.red-gate.com/
products/sql-development/sql-developer-bundle/).

•	 New Relic: This is a monitoring tool, which can be added to the Azure
portal as an add-on, and requires agents to be stored into services via
NuGet to provide monitoring data to the monitoring dashboard
(http://newrelic.com/azure).

•	 Zudio: This is a cloud storage management tool with a browser, a desktop,
and a mobile app client (zudio.co).

Summary
This is the end of this book; I hope you've enjoyed reading it as much as I've enjoyed
writing it! Make sure you download the code samples as they have everything we've
covered in this book and all the extra stuff I couldn't fit in.

This is by no means the end of learning about Microsoft Azure. The entire software
industry moves at a rapid pace, and as developers and IT professionals, we have to
work hard to keep up-to-date with what's going on. Azure is evolving and growing all
the time; we've barely scratched the surface of what it can do now, and have more to
learn as time goes on. In the 5 months it has taken to write this book, mobile services'
.NET backend has become generally available, a whole new SQL Azure service model
has been introduced, and a new preview portal was released, to name a few things,
so we need to run fast to keep up!

http://technet.microsoft.com/en-us/library/jj151815.aspx
http://www.red-gate.com/products/azure-development/
http://www.red-gate.com/products/azure-development/
http://www.red-gate.com/products/sql-development/sql-developer-bundle/
http://www.red-gate.com/products/sql-development/sql-developer-bundle/
http://newrelic.com/azure
http://zudio.co

Chapter 12

[395]

Questions
1.	 Why is it important to use a build server to build deployment packages?
2.	 How can settings be set at publish time for web packages?
3.	 Why is it not a good idea to put certain connection strings and API keys

in configs and transforms source control?
4.	 What issues do we have with config transforms in cloud services?
5.	 Why could it be helpful to deploy a website to the filesystem or publish a

cloud service package locally?
6.	 What problem may we face while trying to build projects rather than

solutions on the Visual Studio Online Team Foundation build server?
7.	 What extra step do we need to perform when building cloud service

packages on the build server?
8.	 When we run a deploy.cmd script, what is the difference between the

/T and /Y arguments?
9.	 What approach should we take to set logging levels when deploying a

new system?

Answers
1.	 It ensures that packages are built from clean code straight from sources

control without contamination from the development environment.
2.	 When web packages are built on the build server, a ZIP package is created

with a set of accompanying scripts, including SetParameters.xml, which
contains settings that can be configured before deployment.

3.	 It is a security risk because anyone with access to source control can obtain
details of production systems, which can be misused.

4.	 Cloud services don't support transforms by default, so we have to manually
add config transform files and edit the project to achieve this; alternatively,
we can use the Slow Cheetah tool.

5.	 It can help us check whether all the required files are included and that
config transforms have worked.

6.	 The build server restores NuGet packages before building solutions but not
projects, which means if we haven't checked in our NuGet package binaries
(which we shouldn't), the build will fail.

Preparing an Azure System for Production

[396]

7.	 We need to set the Output location setting to AsConfigured so that we
get control over the copy to drops process, and add a custom post-build
script to copy the app.publish folder and its contents to the drops target.

8.	 /T tests the deployment with the MSDeploy -whatIf parameter, which
shows what will happen and if it is likely to succeed. /Y runs MSDeploy
for real.

9.	 Initially set them to Verbose, allowing problems to be quickly diagnosed,
then change to Error, so that we log important error information but save
on storage costs.

Index
A
Access Control Service (ACS)

about 34, 202
authentication mechanisms 34

Active Directory (AD)
about 34
client application, adding 308-310
configuring 151, 152
features 34

Active Directory Federated
Services (ADFS) 34

AD authentication
Store app, configuring for 359, 360

add-migration command 106
AD manifest, Web API

modifying 307, 308
administration system, small business

system case study
designing 44
mobile application 44
website 44
Windows desktop application 44

administrative tasks, Microsoft Azure
systems

alerts 16
billing 17
data backup 16
database maintenance 16
domain names, renewing 17
error logs 16
OS updates 17
password management 17
release management 17
SSL certificates, renewing 17
training 16

admin sales website
completing 163-165

admin website
updating 351

alerts
Build Alerts 89
Checkin Alerts 89
Code review Alerts 89
setting, in Visual Studio Online 89-91
Work Item Alerts 89

Apache Hadoop
URL 31

application configuration
transforms 370-372

Application Lifecycle
Management (ALM) 77

application logging
about 175
blob storage, alternative to 184
bug, diagnosing 185
LOGGING LEVEL options 176
table storage, alternative to 181
tracing, implementing 177

application service principal
modifying 158, 159

app services
about 32
AD 34
BizTalk Services 33
media services 32
scheduler 33
Service Bus 32, 33
Visual Studio Online 33

authenticated user
linking, to model 102

[398]

authentication base class
creating 313-315

authorization levels, mobile services
Admin/Only scripts and admins 326
Anonymous/Everyone 326
Application/Anybody with the

application key 326
User/Only authenticated users 326

AutoMapper
URL 327

automated exports 125-127
Azure

cloud packages, deploying to 387, 388
web packages, deploying to 385-387

Azure Active Directory
using 39

Azure AD auth
mobile service, configuring for 353, 354

AzureAdAuthorizeAttribute
implementing 159-163

Azure AD group authorization
AD group, creating 157
application service principal,

modifying 158, 159
AzureAdAuthorizeAttribute,

implementing 159-163
implementing 156
references 156

Azure AD PowerShell
URL 394

Azure AD single sign-on
AD, configuring 151, 152
adding, to website 151
MVC website, configuring for 152-154
used, for publishing website 154, 155

Azure daily service checks 392
Azure Fabric Controller 10
Azure management portal

used, for creating database 94-96
Azure mobile services

about 326
authorization levels 326

Azure Pack
URL, for installing 10

Azure periodic service activities 392, 393
Azure portal

URL 393

Azure PowerShell
about 392
cmdlet reference 392
URL 393
using 123, 124

Azure SQL Server
unsupported features 30

Azure storage diagnostics
configuring 271

Azure tool list
about 393
Azure AD PowerShell 394
Azure portal 393
Azure PowerShell 393
New Relic 394
SQL Server Management Studio 393
Visual Studio 393
Zudio 394

Azure websites
running locally 235, 236

B
backplane options, SignalR 293
Badge notification 33
batch processor tasks

adding 255
batch script

creating 284-286
Binary Large Objects (blobs) 29
BizTalk Services 33
blob storage

enabling 184, 185
used, for site diagnostic 189, 190

block blobs, storage 30
bottom toolbar, Microsoft

Azure portal 25-27
bug

diagnosing 186, 187
Build Alerts 89
build definition, continuous deployment

examining 87-89
build server

cloud service deployment packages,
building on 382-385

web packages, building on 375-381

[399]

business infrastructure
managing 12

Business Intelligence (BI) 31

C
cache 31
cache, tiers

Basic 31
Premium 31
Standard 31

CER files
creating 146, 147

Certificate Signing Request (CSR) 145
Checkin Alerts 89
client application

adding, to AD 308-310
authentication base class, creating 313-315
building 310
data service, creating 315, 316
finishing 318
SignalR service, creating 316-318
testing 319
WPF project, preparing 311, 312

cloud computing 9
cloud configuration 372-374
cloud deployment models

community cloud 10
hybrid cloud 10
private cloud 10
public cloud 10

cloud packages
deploying, to Azure 387, 388
reference link 387

cloud platform solution, factors
cost 11
infrastructure capabilities 11

cloud service deployment packages
building 381
building, manually 381, 382
building, on build server 382-385

cloud service models
IaaS 9
PaaS 9
SaaS 10

cloud services
about 29, 229, 230

characteristics 29
diagnostics 267, 268
examining 234
idle cloud services, deleting 263
scaling up 39
web roles 230
worker roles 230

cloud service staging environments
using 63

code
configuration changes, detecting 283, 284

Code review Alerts 89
commandLine attribute 287
common environment

development/integration 60
production environment 59
QA environment 60
test environment 60

common services, Enterprise system Azure
Bakery case study

authentication 54
messaging 54
selecting 54

Community Technical Preview (CTP) 11
compute emulator UI 236, 237
compute services

about 27
cloud services 29
mobile services 28, 29
virtual machines 28
websites 27, 28

configuration changes
in code, detecting 283, 284

configuration, continuous deployment 84-87
CONFIGURE tab

about 224
settings 224

connection string
about 103
configuring 253, 254

continuous deployment
build definition, examining 87-89
configuring 84-87
setting up 80
solution, adding to source control 80-83

controllers, Web API
creating 298-301

[400]

cost, Microsoft Azure solution 13
Create, Read, Update, and Delete

(CRUD) 327
critical services, Enterprise system

Azure Bakery case study
production database 53
production management Web API 53
production order processor 53
sales customer website 53
supply deliveries table 53
supply mobile API 53
supply process 53

custom domain name
adding, to website 142-144

customer Azure mobile service
creating 327
mobile services project, creating 328

customer sales website
completing 138
final activities 141
PayConfirm action 140
user account panel, modifying 138, 139

customer website, small business system
case study

designing 42, 43

D
database

automated exports 125
backing up 125
building, with EF Code First

Migrations 96, 97
creating, with Azure management

portal 94-96
managing, through Visual Studio 119-121
managing, with SSMS 116-119
restoring 125

database scripts
creating, from Entity Framework Code First

Migrations 389
data model

creating 97-101
managing, SSMS used 116

managing, through management
portal 113, 114

managing, through Visual Studio 119
DataServiceBase class

about 343, 344
creating 361

DataService class 346
data services

about 29
cache 31
creating 315, 316
HDInsight 31
recovery services 32
SQL Server Database 30
storage 30, 31

data services, Windows Phone application
adding 343
DataServiceBase class 343-345
DataService class 346, 347

dead-letter queues 201
debugger

stopping 275
decision flow diagrams, Microsoft

Azure solution 14, 15
decoupling applications

scaling out 39
scaling up 39

dependency injection (DI) 138
development environment

Microsoft Azure SDK 69
mobile development 68
preparing 67
software, setting up 67, 68

diagnostics
about 169
Azure storage diagnostics, configuring 271
configuring 267, 268
enabling 170, 171
files, accessing with FTP 175
local diagnostics, adding 269, 270
logfiles, viewing in Visual Studio 171
logfiles, working with 171
logs, downloading 174
logs, streaming 172

Diagnostics.wadcfg function 234

[401]

E
EF Code First Migrations

authenticated user, linking to model 102
connection string 103
database context, configuring 101, 102
database, updating 104-108
data model, creating 97-100
enabling 104-108
migrations, enabling 107
used, for building database 96, 97
used, for publishing 109-112
Web.Config, modifying 103

Enterprise system Azure Bakery case study
about 47
conclusion 57-59
critical services, identifying 53
Microsoft Azure Services, selecting 54
production requirements 49
sales requirements 48
sales system integration 52
subsystems, identifying 49
supply requirements 49
system design 50
system requirements 48

Entity Data Model (EDM) 96
Entity Framework (EF) 96
Entity Framework Code First Migrations

database scripts, creating from 389
entity model, production order processor

adding 242, 243
environmental variables 287, 288
error

producing 187
searching 187

example environments sets
large business 62
medium business 61
small business 60, 61

executionContext attribute 287
external login

modifying 133-135

F
files

accessing, with FTP 175
FileZilla

URL 175
FTP

used, for accessing files 175

G
Git

URL 327
Global Assembly Cache (GAC) 365
go-live checklist 389

H
HDInsight 31
HTTP Secure (HTTPS) endpoint 145
HTTP traffic

redirecting, to HTTPS 150, 151
hub, SignalR

creating 302-304

I
IaaS 9
idle cloud services

deleting 263
Infrastructure as a Service. See IaaS
infrastructure capabilities, Microsoft

Azure solution 12
IntelliTrace

debugging with 276, 277
URL 278

inversion-of-control (IoC) 138

J
JSON Web Token (JWT) 34

K
Kudu

about 77, 190, 191
references 190, 191

[402]

L
life cycle methods, worker roles

OnStart method 234
OnStop method 234
Run method 234

line of business (LOB) systems 44
live services

monitoring 390
load balancing methods

failover 35
performance 35
round-robin 35

local debugging, Azure mobile services
reference link 354

local diagnostics
adding 269, 270

logfiles
viewing, in Visual Studio 171, 172
working with 171

LOGGING LEVEL options
Error 176
Information 176
Off 176
Verbose 176
Warning 176

logs
downloading 174
streaming 172, 173
stream logs, filtering 174

M
management portal

database, managing through 113, 114
features 115, 116

management services alerts 390-392
management tool

selecting 124
media services 32
message partitioning

reference link 205
messaging simulator

about 212
completing 220
data service, creating 214, 215
messaging service, creating 216-220

project, setting up 213, 214
running 220-222

Microsoft Azure
overview 10, 11
URL, for purchase options 18
URL, for requesting invoiced payments 18

Microsoft Azure account
creating 18-20

Microsoft Azure portal 390
Microsoft Azure SDK

about 69
URL, for installing 69

Microsoft Azure Service Bus 293
Microsoft Azure Services

about 27, 93
app services 32
compute services 27
data services 29
network services 34

Microsoft Azure Services, Enterprise
system Azure Bakery case study

common services, selecting 54
production services, selecting 56
sales services, selecting 54, 55
selecting 54
supply services, selecting 57

Microsoft Azure solution
decision flow diagrams 14, 15
selecting 11

Microsoft Azure solution, factors
cost 11-13
infrastructure capabilities 12
platform capabilities 11, 13

Microsoft Azure systems
administration 16, 17

mobile development
about 68
requisites 68
URL, for requisites 68

mobile service
about 28, 29
authentication, integrating with

sales website 334, 335
channel registration API controller,

adding 336-338
cleaning up 332, 333
configuring, for Azure AD auth 353, 354

[403]

creating 328
development app settings, configuring 333
exploring 329, 330
integrating, with sales database 333
Mobile service DbContext 331
order controller, adding 338
publishing 339-341
sample data entity 331
sample scheduled job 331
sample table controller 330
scaling out 39
WebApiConfig 332

Mobile service DbContext 331
MONITOR tab 223
MVC website

configuring, for AD single sign-on 152-154
MVVM Light 214

N
network services

about 34
Virtual Network 34

New Relic
URL 394

Notification Hub 33
notifications debug, Windows

Phone application 348
NuGet

URL 375

O
OAuth

URL 131
OAuth authentication

external login, modifying 133-135
implementing 131
providers, URLs 132
Twitter application, creating 132, 133
Twitter login, testing 136-138

object-relational mapper (ORM) 96
OnStart method 234
OnStop method 234
OpenSSL

references 148
used, for creating PFX certificate 148

options, for creating database
Code First approach 96
Code First (Reverse engineered) 96
Database-First technique 96
Model-First technique 96

OrderController class 356
order processor

updating 349, 350
OrderTopicProcessor

using, in worker role 248-250
OS upgrades

URL 279

P
PaaS 9
page blobs, storage 31
PayConfirm action 140
PeekLock mode 32
persistence 38
PFX certificate

creating, with OpenSSL 148
Plain Old CLR Object (POCO) 96
Platform as a Service. See PaaS
platform capabilities, Microsoft

Azure solution 13
platform environments

cloud service staging environments,
using 63

common environments 59, 60
designing 59
example environments sets 60, 61
website deployment slots, using 62, 63

Portable Class Library (PCL) 347
portal, Microsoft Azure

bottom toolbar 25, 26
exploring 22
side toolbar 25
top toolbar 22-24
URL 18
website, configuring 72-77

prerequisites, OpenSSL VC++ 2008
reference, for 32 bit 148
reference, for 64 bit 148

pricing calculator
URL 13

[404]

production order processor
building 241
entity model, adding 242, 243
multiple instances, testing 262, 263
OrderTopicProcessor, using in worker

role 248-250
Service Bus topic, preparing 243
single instance, testing 261
task, adding 244
testing 260
TopicProcessorBase, creating 244-246
TopicProcessorBase, implementing 247, 248

production services, Enterprise system
Azure Bakery case study

order processor 56
storage 57
Web API 56

production subsystems, Enterprise system
Azure Bakery case study

production management system 50
production order processor 50

project configurations, multiple
environments

about 365, 366
application configuration

transforms 370-372
build configurations, adding

to solution 367, 368
Cloud configuration 372-374
website configuration transforms 369

Push Notification Service (PNS) 33, 328
push notifications, Windows Phone

application
channel helper, adding 348
manifest, modifying 347
setting up 347

Q
queues, storage 31

R
Raw notification 33
RDP connection

establishing 280-282
ReceiveAndDelete mode 32
recovery services 32

Red Gate's Developer Bundle
about 394
URL 394

Red Gate's Windows
about 394
URL 394

Redis 293
remote debugging

about 272-275
debugger, stopping 275
drawbacks 195
initializing 192-194
using 195
working 276

remote desktop connection
about 279
establishing 280-282
firewall issues 282
Remote Desktop Protocol (RDP) file,

downloading 279, 280
Remote Desktop Protocol connection . See

RDP connection
Remote Desktop Protocol (RDP) file

downloading 279, 280
resilient system

designing 38, 39

S
SaaS 9
sales services, Enterprise system Azure

Bakery case study
admin website 55
customer website 54
mobile API 55
order processor 55
security 56
storage 56

sales subsystems, Enterprise system
Azure Bakery case study

sales administration system 49
sales customer phone app 50
sales customer website 49
sales order process system 50

scalable system
designing 38, 39

scale out 38

[405]

scale up 38
scheduled job

creating 251, 252
scheduled queue

creating 251, 252
scheduled work activity

connection string, configuring 253, 254
creating 250
queue, creating 251, 252
scheduled job, creating 251, 252

scheduler 33
Secure Socket Layer certificate.

See SSL certificate
server logging

using 169
Service Bus

about 32, 200
Notification Hub 33
queue 32
relay 33
topic 33

Service Bus queues 200
Service Bus topic

about 200
creating 202-206
order message life cycle 201
website, connecting to 206

Service Bus topic, production order
processor

preparing 243
ServiceConfiguration.cloud function 234
ServiceConfiguration.local function 234
ServiceDefinition.csdef function 234
Service Management REST API

about 390
references 390

service, SignalR
creating 317, 318

services, small business system case study
applications 46
messaging 47
security 47
storage 47

Shared Access Signature (SAS) 202
side toolbar, Microsoft Azure portal 25
SignalR

about 293

backplane options 293
hub, creating 302, 304
service, creating 316
URL 291

Simple Web Token (SWT) 34
site diagnostics

blob storage, using 189, 190
filesystem settings 188, 189

site diagnostics, facilities
DETAILED ERROR MESSAGES 188
FAILED REQUEST TRACING 188
WEB SERVER LOGGING 188

SlowCheetah
about 370
URL 370

small business system case study
about 41
business requirements 41, 42
conclusion 47
critical systems, identifying 46
services, selecting 46
subsystems, identifying 42
system integration 45

Software as a Service. See SaaS
software, development environment

setting up 67, 68
Visual Studio Express 2013, for

Windows 68
Visual Studio Express 2013, for Web 67
Visual Studio Express 2013, for Windows

Desktop 68
SQL Azure Servers

Azure PowerShell, using 123
management tool, selecting 124
managing 112
managing, tools 112

SQL Azure tools 394
SQL Compare product

reference link 389
SQL Server

about 293
URL, for downloading 68

SQL Server Database 30
SQL Server Database, tiers

Business editions 30
Premium edition 30
Web 30

[406]

SQL Server Management Studio. See SSMS
SSL certificate

about 144, 145
CER files, creating 146, 147
HTTP traffic, redirecting to HTTPS 150, 151
implementing 144, 145
OpenSSL, used for creating PFX

certificate 148
uploading 149, 150

SSMS
URL 393
used, for managing database 116-119

start-up tasks
about 284
adding 286
batch script, creating 284-286
environment variables 287

sticky session 38
storage

about 30
block blobs 30
page blobs and disks 31
queues 31
tables 31

storage emulator UI 237, 238
storage queue processor base

creating 255
StorageQueueProcessorBase

implementing 257, 258
stream logs

filtering 174
subscription

adding 20, 21
selecting 17, 18

SUBSCRIPTIONS tab
about 225
settings 225

subsystems, Enterprise system Azure
Bakery case study

identifying 49
production 50
sales 49, 50
supply 50

subsystems, small business system
case study

administration system 42

administration system, designing 44, 45
customer website 42
customer website, designing 42, 43

supply mobile service
barcode controller, creating 355
creating 352
order controller, creating 356

supply services, Enterprise system
Azure Bakery case study

mobile API 57
order processor 57
storage 57

supply subsystems, Enterprise system
Azure Bakery case study

supply processing system 50
supply tablet application 50

supply Windows Store application
configuring, for AD authentication 359, 360
creating 358
DataServiceBase class, creating 361

system, architecting
about 40, 41
critical systems, identifying 41
Microsoft Azure Services, selecting 41
requirements, gathering 41
subsystems, designing 41
subsystems, identifying 41
subsystems, integrating 41

system design, Enterprise system Azure
Bakery case study

sales customer phone app 51, 52
sales order processor 52

System.Diagnostics.Trace methods
TraceError(string) 176
TraceError(string, object[]) 176
TraceInformation(string) 176
TraceInformation (string, object[]) 177
TraceWarning(string) 177
TraceWarning (string, object[]) 177
WriteLine(string) 177

T
table data

querying 183
table designer

using 122

[407]

table storage
about 31
advantages 181
scaling 39
setting up 181-183
table data, querying 183

Tabular Data Stream (TDS) 30
taskType attribute

background 287
foreground 287
simple 287

Team Foundation Build
URL 375

Team Foundation Server (TFS) 70, 77
TF build environmental properties

reference link 375
TFS build extensions

reference link 383
Tile notification 33
Time to live (TTL) 201
Toast notification 33
TopicClient object

reference link 209
TopicProcessorBase

creating 244-246
implementing 247, 248

topic workspace
CONFIGURE tab 224
exploring 222
MONITOR tab 223
SUBSCRIPTIONS tab 225

top toolbar, Microsoft Azure portal
about 22-24
credit status flyout 23
home button 22
language menu 24
main menu 24
subscriptions menu 23
top menu 22

Trace object methods
URL 177

tracing
implementing, in application 177-180

Traffic Manager 35
Transact-SQL (TSQL) 30
Twitter application

creating 132

URL 132
Twitter login

testing 136-138

U
unit of work (UoW) pattern 138
user account panel

modifying 138, 139

V
virtual machines 28
Virtual Network 34
Visual Studio

database, managing through 119-121
logfiles, viewing in 171, 172
table designer, using 122
updates, checking 69, 70
URL 393

Visual Studio Express 2013
for Web 67
for Windows 68
for Windows Desktop 68

Visual Studio Online
about 33, 77
account, creating 78
alerts, setting up 89-91
project, creating 77-79
URL 77

W
Web API

about 292
AD manifest, modifying 307, 308
publishing 305, 306

WebApiConfig 332
Web API service

building 293
controllers, creating 298-301
project, creating 294-297

Web.Config
modifying 103

web packages
building, on build server 375-381
deploying, to Azure 385-387
reference link 381

[408]

web roles 230
website

about 27, 28
Azure AD single sign-on, adding to 151
configuring, in Microsoft Azure

portal 72-77
creating 70, 72
custom domain name, adding to 142-144
publishing manually, to filesystem 374, 375
publishing, with AD single sign-on 154, 155
scaling out 38
setting up 186

website configuration transforms 369
website, connecting to Service Bus topic

about 206
message, sending from controller 211, 212
messaging logic, creating 208, 209
website, creating 207

website deployment packages
building 374

website deployment slots
using 62, 63

WebSockets
URL 293

Windows Identity Foundation (WIF) 34
Windows Phone application

completing 349
creating 342, 343
data services, creating 343
notifications debug 348
push notifications, setting up 347

worker roles
about 230
creating 230-232
examining 233
finishing 258-260
life cycle methods 234
OrderTopicProcessor, using 248-250
publishing 238-241

Work Item Alerts 89
WPF project

preparing 311, 312

X
xPath variable

URL 288

Z
Zudio

URL 394

Thank you for buying
Learning Microsoft Azure

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Windows Azure Mobile
Services for Windows 8 and
Windows Phone 8
ISBN: 978-1-78217-192-8 Paperback: 124 pages

A short, fast and focused guide to enhance your
Windows 8 applications by leveraging the power of
Windows Azure Mobile Services

1.	 Dive deep into Azure Mobile Services with a
practical XAML-based case study game.

2.	 Enhance your applications with push
notifications and notifications hub.

3.	 Follow step-by-step instructions for
result-oriented examples.

Microsoft Windows Azure
Development Cookbook
ISBN: 978-1-84968-222-0 Paperback: 392 pages

Over 80 advanced recipes for developing scalable
services with the Windows Azure platform

1.	 Packed with practical, hands-on cookbook
recipes for building advanced, scalable
cloud-based services on the Windows
Azure platform explained in detail to
maximize your learning.

2.	 Extensive code samples showing how to use
advanced features of Windows Azure blobs,
tables, and queues.

3.	 Understand remote management of Azure
services using the Windows Azure Service
Management REST API.

Please check www.PacktPub.com for information on our titles

Microsoft SQL Azure: Enterprise
Application Development
ISBN: 978-1-84968-080-6 Paperback: 420 pages

Build enterprise-ready applications and projects
with SQL Azure

1.	 Develop large-scale enterprise applications
using Microsoft SQL Azure.

2.	 Understand how to use the various third-party
programs such as DB Artisan, RedGate, and
ToadSoft developed for SQL Azure.

3.	 Master the exhaustive data migration and data
synchronization aspects of SQL Azure.

4.	 Includes SQL Azure projects in incubation
and more recent developments including all
2010 updates.

Windows Azure Programming
Patterns for Start-ups
ISBN: 978-1-84968-560-3 Paperback: 292 pages

A step-by-step guide to create easy solutions to build
your business using Windows Azure services

1.	 Explore the different features of Windows
Azure and its unique concepts.

2.	 Get to know the Windows Azure platform
by code snippets and samples by a single
start-up scenario throughout the book.

3.	 A clean example scenario demonstrates the
different Windows Azure features.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Microsoft Azure
	An overview of cloud computing
	Microsoft Azure overview
	Selecting a Microsoft Azure solution
	Infrastructure capabilities
	Platform capabilities
	Cost
	Decision flow diagrams

	Administration of Microsoft Azure systems
	Choosing a subscription
	Creating a Microsoft Azure account
	Adding a subscription
	Exploring the portal
	The top toolbar
	The side toolbar
	The bottom toolbar

	Examining Microsoft Azure services
	Compute services
	Websites
	Virtual machines
	Mobile services
	Cloud services

	Data services
	SQL Server Database
	Storages
	HDInsight
	Cache
	Recovery services

	App services
	Media services
	Service Bus
	Visual Studio Online
	BizTalk Services
	Scheduler
	Active Directory (AD)

	Network services
	Virtual Network
	Traffic Manager

	Summary
	Questions
	Answers

	Chapter 2: Designing a System for Microsoft Azure
	Designing scalable and resilient systems
	Systems architecture
	A case study of a small business system
	System requirements
	Identifying subsystems
	Customer website design
	Administration system design
	System integration
	Identifying critical systems
	Selecting services
	Conclusion of the small business case study

	A case study of an enterprise
system – Azure Bakery
	System requirements
	Sales requirements
	Production requirements
	Supply requirements
	Identifying subsystems
	Sales subsystems
	Production subsystems
	Supply subsystems
	System design
	System design – the sales customer
phone app
	System design – sales order processor
	Sales system integration
	Identifying critical services
	Selecting Microsoft Azure Services
	Selecting common services
	Selecting sales services
	Selecting production services
	Selecting supply services

	Conclusion of an enterprise system case study – Azure Bakery

	Designing platform environments
	Common environment roles
	Example environment sets
	Using website deployment slots
	Using cloud service staging environments

	Summary
	Questions
	Answers

	Chapter 3: Starting to Develop with Microsoft Azure
	Preparing our development environment
	Setting up software
	Mobile development
	The Microsoft Azure SDK

	Checking for Visual Studio updates
	Creating a website
	Configuring a website in the portal
	Creating a Visual Studio Online project
	Creating a Visual Studio Online account
	Creating a Visual Studio Online project

	Setting up continuous deployment
	Adding a solution to source control
	Configuring continuous deployment
	Examining the build definition

	Setting up alerts
	Summary
	Questions
	Answers

	Chapter 4: Creating and Managing a Windows Azure SQL Server Database
	Creating a database using the Azure management portal
	Building a database using Entity Framework (EF) Code First Migrations
	Creating the data model
	Configuring a database context
	Linking an authenticated user to the model
	Configuring the connection string
	Enabling migrations and updating the database
	Publishing with migrations

	Managing SQL Azure Servers and databases
	Managing a database through the portal
	Features of the management portal

	Managing a database using SSMS
	Managing a database through Visual Studio
	Using the table designer

	Using Azure PowerShell
	Choosing a management tool

	Backing up and restoring databases
	Automated exports

	Summary
	Questions
	Answers

	Chapter 5: Building Azure MVC Websites
	Implementing OAuth authentication
	Creating a Twitter application
	Modifying the external login
	Testing the Twitter login

	Completing the customer sales website
	Modifying the user account panel
	Temporary PayConfirm action
	Final activities

	Adding a custom domain name to a website
	Implementing an SSL certificate
	Creating CER files
	Using OpenSSL to create a PFX certificate
	Uploading the certificate
	Redirecting all HTTP traffic to HTTPS

	Adding Azure AD single sign-on to a website
	Configuring AD
	Configuring an MVC website for AD single sign-on
	Publishing the website with AD single sign-on

	Implementing Azure AD group authorization
	Creating an AD group
	Modifying the application service principal
	Implementing AzureAdAuthorizeAttribute

	Completing the admin sales website
	Summary
	Questions
	Answers

	Chapter 6: Azure Website Diagnostics and Debugging
	Enabling diagnostics
	Working with logfiles
	Viewing logfiles in Visual Studio
	Streaming logs
	Filtering stream logs

	Downloading logs
	Accessing files using FTP

	Application logging
	Implementing tracing in the application
	Application logging to table storage
	Querying table data

	Application logging to blob storage
	Diagnosing a real bug
	Setting up the website
	Producing an error

	Site diagnostics
	Extra filesystem settings
	Site diagnostics using blob storage

	Kudu
	Remote debugging
	When to use remote debugging

	Summary
	Questions
	Answers

	Chapter 7: Azure Service Bus
Topic Integration
	Introducing Azure Service Bus and topics
	Dead-letter queues
	Creating a Service Bus topic
	Connecting a website to the Service
Bus topic
	Preparing the website
	Creating messaging logic
	Sending a message from the controller

	The messaging simulator
	Setting up the project
	Creating a data service
	Creating a messaging service
	Completing the simulator
	Running the simulator

	Exploring the topic workspace
	The MONITOR tab
	The CONFIGURE tab
	The SUBSCRIPTIONS tab

	Summary
	Questions
	Answers

	Chapter 8: Building Worker Roles
	Introducing cloud services
	Exploring worker roles
	Creating a worker role
	Examining the worker role
	Examining the cloud service

	Running locally
	The compute emulator UI
	The storage emulator UI

	Publishing a worker role
	Building the production order processor
	Adding an entity model
	Preparing the Service Bus topic
	Adding an order processor task
	Creating TopicProcessorBase
	Implementing TopicProcessorBase
	Using OrderTopicProcessor in the worker role

	Creating a scheduled work activity
	Creating a scheduled job and queue
	Configuring a connection string
	Adding batch processor tasks
	Creating a storage queue processor base
	Implementing StorageQueueProcessorBase

	Completing the worker role
	Testing the production order processor
	Testing a single instance
	Testing multiple instances

	Deleting idle cloud services
	Summary
	Questions
	Answers

	Chapter 9: Cloud Service Diagnostics, Debugging, and Configuration
	Configuring diagnostics
	Adding local diagnostics
	Configuring Azure storage diagnostics

	Remote debugging
	Stopping the debugger
	Examining how remote debugging works

	Debugging with IntelliTrace
	Remote desktop connection
	Downloading a Remote Desktop Protocol (RDP) file
	Establishing an RDP connection
	Firewall issues

	Detecting configuration changes in code
	Start-up tasks
	Creating a batch script
	Adding the task
	Environmental variables

	Summary
	Questions
	Answers

	Chapter 10: Web API and
Client Integration
	Introducing a Web API
	Introducing SignalR
	Building a Web API service
	Creating a Web API project
	Creating API controllers

	Creating a SignalR hub
	Publishing a Web API
	Modifying the Web API AD manifest
	Adding a client application to AD
	Building a client application
	Preparing the WPF project
	Creating an authentication base class
	Creating a data service
	Creating a SignalR service
	Completing the application
	Testing the application

	Summary
	Questions
	Answers

	Chapter 11: Integrating a
Mobile Application
Using Mobile Services
	Introducing Azure mobile services
	Creating the customer Azure mobile service
	Creating a mobile services project

	Exploring the mobile service sample project
	The sample table controller
	The sample data entity
	A sample scheduled job

	Mobile service DbContext
	WebApiConfig
	Cleaning up the project
	Integrating with the sales database
	Configuring development app settings
	Integrating authentication with the sales website
	Adding a channel registration API controller
	Adding an order controller
	Publishing the mobile service

	Creating a Windows Phone application
	Adding data services
	The DataServiceBase class
	The DataService class

	Setting up push notifications
	Modifying the manifest
	Adding a channel helper

	Notifications debug
	Completing the app

	Updating the order processor
	Updating the admin website
	Creating the supply mobile service
	Configuring a mobile service for Azure AD auth
	Creating the barcode controller
	Creating the order controller

	Creating the supply Windows Store application
	Configuring the Store app for AD authentication
	Creating a DataServiceBase class

	Summary
	Questions
	Answers

	Chapter 12: Preparing an Azure System for Production
	Project configurations for multiple environments
	Adding build configurations to a solution
	Website configuration transforms
	Application configuration transforms
	Cloud configuration

	Building website deployment packages
	Manually publishing websites to the filesystem
	Building Web packages on a build server

	Building cloud service deployment packages
	Building cloud service deployment packages manually
	Building cloud service deployment packages on a build server

	Deploying Web packages to Azure
	Deploying cloud packages to Azure
	Creating database scripts from Entity Framework Code First Migrations
	The go-live checklist
	Monitoring live services
	The Microsoft Azure portal
	The Service Management REST API
	Management services alerts
	Azure PowerShell

	Azure daily service checks
	Azure periodic service activities
	Azure tool list
	Summary
	Questions
	Answers

	Index

