Learning OpenShift

Leverage the power of cloud computing using OpenShift Online to
design, build, and deploy scalable applications

PACKT *

vww.allitebooks.con

http://www.allitebooks.org

Learning OpenShift

Leverage the power of cloud computing using OpenShift
Online to design, build, and deploy scalable applications

Grant Shipley

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Learning OpenShift

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014
Production reference: 1221014

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-096-3

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Grant Shipley

Reviewers
Somsubhra Bairi

Isaac Christoffersen
Michal Fojtik

lan Dexter D. Marquez

Acquisition Editor
Rebecca Youé

Content Development Editor
Susmita Sabat

Technical Editors
Anand Singh

Ankita Thakur

Copy Editors
Roshni Banerjee

Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green
Paul Hindle

Indexers
Hemangini Bari

Monica Ajmera Mehta
Rekha Nair

Graphics
Disha Haria

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Grant Shipley is a senior manager at Red Hat who is focused on cloud
technologies. Prior to this, Grant was a software development manager and was
responsible for the www. redhat . com website and the supporting infrastructure.
He has over 15 years of software development experience, focusing on Java and
PHP. In his free time, he contributes to several open source projects as well as
developing mobile applications. He has been using Linux on a daily basis since
1994 and is active in the FOSS community.

First of all, I would like to thank my wonderful wife, Leah, who is
the love of my life. She has continued to encourage me when I have
felt like giving up and is the best mother and wife that a man could
ask for. I would also like to thank our children, who have sacrificed
time playing video games with me to ensure that I was able to
complete this project on time. I also wish to thank my parents,
William and Luster, who purchased a computer (TI-99/4A) for me
when I was 8 years old, which sparked my interest in developing
software. Lastly, I would like to thank the entire OpenShift team,
including Ashesh Badani and Matt Hicks. Without their leadership
and focus, this project would not be where it is today.

[vww allitebooks.cond

www.redhat.com
http://www.allitebooks.org

About the Reviewers

Somsubhra Bairi is a software/web developer, an active contributor for KDE
(an open source software community), and is currently an undergraduate student
at DA-IICT, India. He is an advocate of anything that is free and open source.

Somsubhra wrote his first program at the age of 15 in C. In his university, he learned
C++ and started hacking on KDE software. He started full-stack web application
development for various projects in his university and other developer challenges
that he competed in. In his free time, he likes to tinker with software and new
programming languages.

Isaac Christoffersen is a technology generalist, community steward, and open
source advocate. He has more than 15 years of experience in IT and has a proven track
record for delivering cloud-centric solutions for innovative, pragmatic technology.

He has clients across a broad range of business domains, including retail, government,
logistics, nonprofit, and finance.

Isaac is passionate about the acceleration of application delivery through disciplines
such as DevOps, Agile engineering, and IT infrastructure automation. He currently
works with clients to harness cloud services that roll out business applications to
public, private, and hybrid PaaS and IaaS environments.

In addition to being a chief architect with Vizuri, Isaac has been actively involved
with many professional organizations and technology-focused user groups including
Open Source for America, the DC chapter of Association of Computing Machinery
(DC ACM), and the DC JBoss Users Group.

[vww allitebooks.cond

http://www.allitebooks.org

Michal Fojtik is 27 years old and is working as a senior software engineer at
Red Hat, located at Brno, Czech Republic. He has more than 8 years of experience
with different cloud services, and he is an active contributor to projects such as
OpenStack, Apache Deltacloud, and OpenShift. He also contributes to the Fedora
Linux distribution and various other open source projects.

His native programming language is Ruby; however, he also performs programming
in Go, JavaScript, Python, and many other programming languages. Recently, he has
been involved in projects such as Docker or GearD. He is also a frequent speaker at
local meetups and various conferences.

Ian Dexter D. Marquez is a Linux systems administrator at a large multinational
financial institution in the Philippines. As a Red Hat certified engineer, he has more
than 10 years of experience in managing Linux for financial services, information
security, and government. In his spare time, he teaches himself programming and
application deployment on PaaS platforms such as OpenShift.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Creating Your First OpenShift Application 7
Creating your OpenShift Online account 7
Installing and configuring the Red Hat Cloud command-line tools 9
Installing the RHC command-line tools for Microsoft Windows 10
Installing the RHC command-line tools for OS X 13
Installing the RHC command-line tools for Linux 14
Configuring the RHC command-line tools 15
Creating your first OpenShift Online application 16
What just happened? 19
Placement of your gear 19
Creating your application account 19
Configuring your application 20
Cloning the remote Git repository 20
Adding the source code to your application 21
Using the web console 23
Summary 28
Chapter 2: Creating and Managing Applications 29
Learning the essential RHC commands 29
Displaying information about an application 30
Deleting applications 32
Understanding cartridges 33
Web cartridges 33
Add-on cartridges 34
Using cartridges 35
Adding cartridges 36
Using databases with your application 38
Adding the phpMyAdmin add-on cartridge 38

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Developing the application 42
Understanding the code 44
The cron cartridge 46
Adding the cron cartridge 46
Adding a cron job 47
Summary 48
Chapter 3: Application Maintenance 49
Stopping and starting applications 49
Viewing application logfiles 50
Creating your own lodfiles 51
Viewing a single lodfile 53
Backing up and restoring applications 53
Creating a snapshot 54
Restoring a snapshot 55
Secure shell and your application 56
Understanding and viewing the /etc/passwd file 58
Understanding and viewing cgroup information 59
Setting the timeout parameter and viewing lodfiles 60
Understanding environment variables 61
Setting your own environment variables 64
Summary 66
Chapter 4: Using an Integrated Development Environment 67
To use an IDE or not to use an IDE is the question 67
Installing and configuring Eclipse 68
Downloading and installing Eclipse 68
Downloading and installing the OpenShift plugin 72
Importing an existing OpenShift application 74
Creating and managing a new OpenShift application 77
Deploying changes 80
Viewing your application's logdfiles 85
Embedding add-on cartridges 86
Viewing your application's environment variables 88
Viewing the details of an application 89
Deleting an application 920
Integrating OpenShift with other IDEs 91
Summary 91
Chapter 5: Creating and Deploying Java EE Applications 93
The evolution of Java EE 93
Introducing the sample application 95

Lii]

Table of Contents

Creating a JBoss EAP application 96
Adding database support to the application 98
Importing the MLB stadiums into the database 99
Adding database support to our Java application 102

Creating the database access class 103
Creating the beans.xml file 104

Creating the domain model 105

Creating the REST services 106
Verifying the REST web services 110

Creating the user interface 111
Creating the map using Leaflet and OpenStreetMap 112

Verifying that the map was deployed and is responsive 117
Getting the stadiums from our REST services 119
Adding the stadiums to the map 119
Automatically updating the map 120
Testing the application 120

Taking the easy way out 121

Summary 121

Chapter 6: Creating and Deploying Spring Framework Java
Applications 123

An overview of the Spring Framework 123

Creating a Spring application 125
Taking the easy way out 126
Creating a Tomcat gear on OpenShift 127
Adding the MongoDB NoSQL database to our application 128
Adding Spring support to the application 130
Adding a configuration to the application 131
Adding the domain model to the application 134
Adding the REST endpoint to the application 136

Deploying the application 137

Adding the web frontend 138
Having fun with the web Ul 143

Summary 145

Chapter 7: Adding a Continuous Integration Environment to
Applications 147

What is continuous integration? 147

Adding support for a Jenkins server 149
Verifying that the Jenkins server is up and running 151

Embedding Jenkins into an existing application 152

Using the Jenkins web console 154

[iii]

Table of Contents

Building code with Jenkins 158
Troubleshooting the build 160
Manually triggering a build 161
Summary 163
Chapter 8: Using OpenShift for Team Development 165
Setting up multiple domains 166
Adding a new domain with the command line 166
Adding a new domain with the web console 167
Adding members to a domain 169
Managing members with the command line 170
Modifying a member's role in a domain 171
Deleting a member from a domain 172
Managing members with the web console 172
Modifying a member's role and deleting a member 176
Promoting code between environments 176
Promoting the code 178
Adding access using SSH keys 180
Summary 182
Chapter 9: Using the OpenShift Web Console 183
Creating applications 183
Using instant applications 187
Modifying the source code 191
Managing applications 193
Adding cartridges 194
Restarting an application 196
Adding a custom domain name and SSL certificate 197
Creating a URL for application cloning 200
Deleting an application 201
Summary 202
Chapter 10: Debugging Applications 203
Using port forwarding 203
Connecting to MongoDB 205
Using Eclipse for Java debugging 208
Using IntelliJ for Java debugging 214
Using logfiles for debugging 219
Summary 224
Chapter 11: Using the Marker and Action Hook System 225
An overview of the marker system 225
The hot_deploy marker 225
JBoss-specific markers 226

[iv]

Table of Contents

Creating and using markers 227
Using the hot_deploy marker 228
Using the force_clean_build marker 229

An overview of the action hook system 229

Creating and using action hooks 231
Creating the deploy action hook 232
Testing the deploy action hook 236

Summary 239

Chapter 12: Scaling Applications 241

Why scaling matters 241

Vertical and horizontal scaling 242

Using automatic scaling 243
Creating a scaled application with the command line 244
Creating a scaled application with the web console 246

Using manual scaling 249

Setting scaling limits 252

Viewing the load-balancer information 255

Customizing the scaling algorithm 256

Summary 258

Chapter 13: Using the Do-It-Yourself Cartridge 259

Understanding the DIY cartridge 259

Creating an application with the DIY cartridge 260

Stopping the default web server 263

Creating a Tomcat 8 server 265

Summary 270

Appendix A: The RHC Command-line Reference 271

Top-level commands 271
Getting started 271
Working with applications 272
Management commands 273

Appendix B: Getting Involved with the Open Source Project 275

Contributing to the project 276

Index 279

[v]

Preface

Cloud computing and OpenShift particularly, is rapidly changing the way software
engineers approach software development. OpenShift allows you to focus on what
you love —writing software. This is accomplished by creating an environment
where most of the system administration tasks are handled for you by the platform.
This allows you to focus on your code instead of mundane tasks such as patching
application servers with the latest security errata updates.

This might be your first exposure to OpenShift and Platform as a Service. To
understand how OpenShift fits into the overall cloud computing landscape,
it's important to understand the three most common types of cloud computing;:

* Infrastructure as a Service (laaS)
* Software as a Service (SaaS)

* Platform as a Service (PaaS)

IaaS provides IT organizations with the ability to quickly spin up machines in an
on-demand fashion. This greatly increases the speed with which they are able to
deliver servers to their customers. However, once the server has been created, they
still need to perform all of the typical system administration tasks just as if the
hardware were physical machines racked in their data center. This includes things
such as installing the operating system, installing application servers and databases,
performance tuning and monitoring of the services, and applying security errata.
The dominant player in the IaaS market is Amazon and their EC2 offering.

With IaaS, the only thing provided is the hardware. You are typically responsible for
bringing everything else that is required to deploy applications on the environment
to the table.

Preface

At the complete other end of the spectrum is SaaS. In a SaaS environment, everything
is provided for you, but you have little or no control over the software. A couple

of common examples of SaaS type applications are Facebook or Salesforce.com for

a companies' sales organization. Typically, in a SaaS model, the things you have to
bring to the table are the users and their data.

OpenShift sits right in the middle of these two extremes. This type of environment is
called a PaaS. With PaaS, everything is provided for you except the application code,
the users, and their data.

In this book, we will learn how to the use the popular OpenShift Platform as
a Service.

What this book covers

Chapter 1, Creating Your First OpenShift Application, explores how easy it is to get
started with the OpenShift platform. We will create an OpenShift account, install the
client tools, and then create and edit a PHP application.

Chapter 2, Creating and Managing Applications, introduces the basic techniques to
manage applications that have been created in the OpenShift platform. You will learn
the basics of cartridge management and use the mysql, cron, and metrics cartridges.

Chapter 3, Application Maintenance, covers administration tasks for your applications.
You will learn how to stop and start applications, how to view logfiles, how to create
custom logfiles, and how to SSH to the server your application is running on.

Chapter 4, Using an Integrated Development Environment, introduces the ability to use
plugins provided for the Eclipse IDE to interact with the OpenShift platform.

Chapter 5, Creating and Deploying Java EE Applications, shows you how to develop and
deploy Java EE-based applications to the OpenShift platform using the JBoss EAP
application server. We will create a geospatial mapping application using Leaflet]S
and OpenStreetMap while also using MongoDB for our spatial queries.

Chapter 6, Creating and Deploying Spring Framework Java Applications, explores how

to develop and deploy Spring-based applications using the Apache Tomcat servlet
container. This chapter will focus on porting the Java EE code from the chapter to the
Spring Framework, complete with MongoDB and REST services.

Chapter 7, Adding a Continuous Integration Environment to Applications, details how to
use the Jenkins environment for applications deployed to the OpenShift platform.

[2]

Preface

Chapter 8, Using OpenShift for Team Development, introduces how to add and manage
a team of developers who are all working on the same project that is deployed
on OpenShift.

Chapter 9, Using the OpenShift Web Console, explores how to perform tasks, such as the
application creation and deletion, using the web console. This chapter also explains
how to use instant applications on the platform.

Chapter 10, Debugging Applications, shows you how to enable the remote debugging
of Java applications as well as how to use port forwarding.

Chapter 11, Using the Marker and Action Hook System, explains how to plug in to the
application deployment life cycle of applications. You will also learn how to enable
things such as the hot deployment of applications and which version of the Java SDK
to use.

Chapter 12, Scaling Applications, introduces the types of scaling that are available in
the OpenShift platform and when it makes sense to use each one.

Chapter 13, Using the Do-It-Yourself Cartridge, explores how to extend the OpenShift
environment to run binaries compatible with Red Hat Enterprise Linux in the
platform. As an example, we cover how to install and run a newer version of the
Tomcat servlet container than what is provided out of the box by the platform.

Appendix A, The RHC Command-line Reference, is a quick guide that shows you the
available commands that we can use from the command line to interact with the
OpenShift platform.

Appendix B, Getting Involved with the Open Source Project, explains the different ways
in which we can get contribute to the upstream open source project that powers the
OpenShift platform.

What you need for this book

In order to be successful with the examples in this book, some familiarity with software
development is required. You will also need to run Linux, Microsoft Windows, or OS X
and have the Ruby programming language installed.

Who this book is for

If you are a developer who wants to get up to speed with OpenShift, this book is
ideal for you. A basic understand of how to use the command line is recommended
in order to follow along the examples in the book.

[31]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
app command will allow us to create and manage applications on the platform, while
the cartridge command will allow us to add and manage embeddable cartridges."

A block of code is set as follows:

@Bean
public MappingJackson2JsonView jsonView()

MappingJdackson2dsonView jsonView = new
MappingJackson2JdsonView () ;

jsonView.setPrefixJson (true) ;
return jsonView;

}
Any command-line input or output is written as follows:

$ rhc app create springmlb tomcat?7

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "At the top
of the web page, you will see a Download button, which will allow you to download
the installation program for the language."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/09630S_ColoredImages.pdf

[51]

[vww allitebooks.cond

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/0963OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0963OS_ColoredImages.pdf
http://www.allitebooks.org

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Creating Your First
OpenShift Application

OpenShift Online was released to the general public in June 2012, and has rapidly
grown in popularity with developers because of the speed with which they can
quickly spin up a new development stack and do what they love: develop software.
In this chapter, we will learn how to sign up for the OpenShift Online service and
then create our first application, which will be available on the public cloud. To
become familiar with the platform, we will initially create a basic PHP application
and then later create a WordPress-based blog that is deployed on the cloud. Don't
worry if you are not a PHP developer as OpenShift supports other languages, such
as Java, Python, Ruby, Perl, and Node.js. So sit back, grab your cup of coffee, and
prepare to get your first application deployed to the cloud.

Creating your OpenShift Online account

To get started with using the OpenShift Online platform, the first thing a developer
needs is an account that will provide access to create and deploy applications.
Fortunately, the OpenShift Online service is free to use for both development and
production applications. However, in order to create an account, you will need a
few basic pieces of information that OpenShift Online requires in order to begin
using the service:

¢ A valid e-mail address

* A password

Creating Your First OpenShift Application

Wait, what? You are probably asking yourself at this point whether these really are
the only two pieces of information that the OpenShift Online service requires in
order to create an account that will enable you to start deploying applications. The
answer to this question is: yes. You will not be asked for your first name, last name,
dog's name, or any other information about yourself or the types of applications that
you want to deploy to the public cloud.

In order to begin the signup process, open up your favorite browser and type in the
following URL:

http://www.openshift.com

Once the page has loaded, you will see a SIGN UP button in the top-right corner
of the page. After clicking on this button, you will be presented with a web form to
create your OpenShift Online account:

OPENSHIFT

Create an account Already have an account? Sign in

Email address
You'll love Openshift because it has:

* Built-in support for Java, Node.js, Ruby, Python,
PHP, Perl and extensible functionality to add other
languages.

Powerful command line client tools and a web
Password confirmation management console to launch and manage your
applications

Pre-created quickstarts to instantaneously boot
your favorite application framework

Are you a spam bot? A vibrant community forum watched around the

_ clock by an army of developers, evangelists, and
Openshift devotees.

6%32 A wide range of developer resources, including
technology specific get started pages, how-to blog
= posts and videos.

Learn more about QpenShift

Enter in your e-mail address, select a password, provide the CAPTCHA answer,
and then click on the SIGN UP button at the bottom of the screen.

[8]

http://www.openshift.com

Chapter 1

When selecting a password, it is suggested that you choose to create one that is
considered a strong password. Using strong passwords lowers the risk of your
account getting compromised by a brute-force attack.

A Completely Automated Public Turing Test to tell Computers and
. Humans Apart (CAPTCHA) is a system that OpenShift Online uses to
% determine whether the entity that is signing up for an account is a physical
L= human or a programmatic bot. The OpenShift Online implementation
uses the popular reCAPTCHA system provided by Google and helps to
digitize books, newspapers, and old-time radio shows.

After you have clicked on the SIGN UP button, the OpenShift Online platform will
send a verification e-mail to the address that you provided. You cannot access the
OpenShift Online system until you have verified your account by clicking on the
link in the e-mail.

\ If you don't see the verification e-mail right away, check your Spam
~ folders and/ or filters. If you still don't find it, try searching your e-mail
Q with the subject Confirm your OpenShift account and get
in the cloud now.

Once you have clicked on the link provided in the verification e-mail, you will be
redirected to a page that lists the legal terms associated with your account. If you
agree to the legal terms, click on the I Accept button at the bottom of the screen.

Congratulations! You now have an OpenShift Online account with all the
permissions required to create and deploy applications.

Installing and configuring the Red Hat
Cloud command-line tools

In order to create, manage, and deploy applications from the command line, it is
required that you install the Red Hat Cloud command-line tools and the Git revision
control system. The RHC command-line tools are written in the popular programming
language, Ruby. In this section, we will cover how to install the tools on the three most
popular operating systems today: Windows, Mac OS X, and Linux. Once you have
installed the command-line tools and Git for your operating system, you can skip to
the next section in this chapter.

[o]

Creating Your First OpenShift Application

Installing the RHC command-line tools for

Microsoft Windows

Unfortunately, Windows does not include the Ruby language runtime by default,
so the first thing you need to do is install the latest version of the runtime.

For this book, I will be using version 1.9.3 of the Ruby language and
=" version 8.1 of Microsoft Windows.

In order to install the Ruby language runtime on your operating system, open up
your favorite browser and go to the following URL:
http://rubyinstaller.org

At the top of the web page, you will see a Download button, which will allow you to
download the installation program for the language:

The easy way to install Ruby on Windows

This is a self-contained Windows-based installer that includes the Ruby
language, an execufion environment, important documentation and mare

The next page will list the various versions of the programming language that you
can install. Select to download the latest version of Ruby and save the installation
program to your local computer.

After the installation program has downloaded, start the program by double-clicking
on the executable in the folder where you saved the file. Once the installation
program has started, accept the license agreement and click on the Next button.

During the installation, you can accept all of the defaults, but it
is mandatory that you select the Add Ruby executables to your
"~ PATH checkbox in order to run Ruby from the command line.

[10]

http://rubyinstaller.org

Chapter 1

The first screen of the installation wizard will allow you to specify the installation
directory where you want the runtime installed. On this screen, it is critical that you
select the checkbox to add the Ruby executable to your PATH variable, as shown in
the following screenshot:

Adding an executable to your PATH variable will allow you to run the
command while at a terminal prompt, regardless of the location of
% the executable or directory that you are currently in. You can think of
"~ adding this command as a global variable that is available anywhere
on the filesystem.

&l Setup - Ruby 1.9.3-p484 - o IEN|
Installation Destmation and Ophonal Tasks w

Setup will install Ruby 1.9. 3+p484 into the following folder, Chdk Install to
| continue or dick Browse to use a different one

Please avold any folder name that contains spaces (e.9. Program Fles)

o3

3 Browse...
[] instal TdfTk support
| Add Ruby exeqitables to your PATH
Azsaciate b and rbw fles wath s Ruby inctallaton
TIP: Mause cver the above aptions for more detaded informatan.
Required free dick space: ~34.8 MB
< Back Instal Cancel

Ruby installation wizard

After the installation is complete, you can verify whether the installation was
successful by opening a command prompt on your machine and typing the
following command to display the version information:

C:\> ruby -v

Once you have executed the previous command, you will see the version number
displayed as shown in the following example:

ruby 1.9.3p484 (2013-11-22) [i386-mingw32]
You may have a slightly different Ruby version than the one listed in the

% preceding example. This is fine as long as the version number is greater
'~ than19.

[11]

Creating Your First OpenShift Application

The next step is to install the Git revision control system on your operating system to
ensure that you are able to clone your application repository to your local machine.
You can download the latest version of Git for Windows from http://msysgit.
github.io/. Once you have entered the URL into your web browser, click on the
Download link to list all of the versions available for your operating system. Click on
the link for the latest version, and save the installation file on your computer.

Just as you did when installing Ruby, ensure that the Git executable is added to
your PATH variable by selecting the Run Git from the Windows Command Prompt
checkbox from the installation wizard:

© Git Setup - o HEN
Adjusting your PATH environment
How would you Bee to use Git from the command lne? |
Use Git Bash only

This i the most conservative dhoice IF you are concerned about the stabiity
of your system. Your PATH will not be modifiad.

& Run Git from the Windows Command Prompt

This option is considered safe and no confiicts with other tools are known.
Orly Git wall be sddad to vour PATH. Uss this aption if you wank to use Gt
from a Cygwin Prompt (make sure to not have Cygwan's Git installed).

Fun Git and meluded Unix took from the Windows Command Prompl

Both Git and its accompanying Unix tocls will be added to your PATH,

Warmng: Thes willl svernde Windows teols ke fimd.exe and
sorlexe Select this option onby if you understand the imphcaltions.

< Badk Maxt > Cancel

Git installation wizard

Now that you have both Ruby and Git installed, you can use the ruby gem command
to install the RHC tools.

% Ruby gem is a package manager for the programming language,
%= which allows users to easily install Ruby programs and libraries.

[12]

http://msysgit.github.io/
http://msysgit.github.io/

Chapter 1

Open up a new command prompt and issue the following command to install the
Ruby gem that contains the RHC command-line tools:

C:\> gem install rhc

Depending on the speed of your Internet connection, the installation may take a
few minutes while it downloads and installs all of the dependencies for the tools.
During the installation process, you will see an update with the current progress
of the command.

Installing the RHC command-line tools for
OS X

Modern versions of the OS X operating system include Ruby by default, so all you
need to install is the Git revision control system. You can install Git by either installing
the full Xcode Suite or using Git for the OS X installation program. For this book,

we will be using Git for the OS X installation program. Open up your web browser
and go to the following URL:

https://code.google.com/p/git-osx-installer/

Click on the Download the installers here link in order to view a list of all of the
available installation disk images for your operating system. Download and mount
the disk image, and follow the onscreen instructions to install the program.

If you get an error message stating that the package can't be opened

because it is from an unidentified developer, you will need to modify
M your security and privacy settings. To do this, open up system

preferences, click on Security and Privacy, and under the General

tab, select to allow the installation of apps that have been downloaded

from anywhere. Remember to change this back after the installation

is complete.

Now that you have both Ruby and Git installed, you can use the gem command
to download and install the RHC command-line tools. Open up a new terminal
window and type the following command:

$ sudo gem install rhc

Depending on the speed of your Internet connection, the installation may take a
few minutes while it downloads and installs all of the dependencies for the tools.
During the installation process, you will see an update with the current progress
of the command.

[13]

https://code.google.com/p/git-osx-installer/

Creating Your First OpenShift Application

Installing the RHC command-line tools
for Linux

There are many different distributions of the Linux operating system, and covering
the installation procedure for each variant is beyond the scope of this book. Given
that Ubuntu is considered to be one of the most popular desktop distributions
available, we will be using version 13.10 of this distribution for the instructions

in this section. If you are using Fedora or any other distribution, you will need to
modify the commands as appropriate for your distribution.

The first thing you need to do is install the Ruby runtime, since Ubuntu 13.10 does
not include this by default for a new installation of the operating system. In order to
install Ruby, open up a terminal prompt and use the apt -get command by typing
the following command:

$ sudo apt-get install ruby

The Advanced Packaging Tool (APT) is the default package management
. tool for Debian-based Linux distributions. The apt command will resolve
% all dependencies and then perform the installation or removal of software
L= packages on the operating system. If you are using an RPM-based
distribution such as Fedora or Red Hat, the equivalent command is yum
(Yellowdog Updater, Modified).

After the installation is complete, type ruby -v on the command line to verify that
the installation was successful. If all went well, you should see the version number
printed on your terminal screen.

Now that you have Ruby installed, you also need to install the Git revision control
system. In order to install the Git package, use the apt-get command like you did
to install Ruby:

$ sudo apt-get install git

Lastly, you can install the RHC command-line tools using the gem command that
was installed as part of the Ruby package:

$ gem install rhc

Depending on the speed of your Internet connection, the installation may take a
few minutes while it downloads and installs all of the dependencies for the tools.
During the installation process, you will see an update with the current progress
of the command.

[14]

Chapter 1

Configuring the RHC command-line tools

If you have followed the information presented so far in this chapter, you should
have an OpenShift Online account created as well as the RHC command-line

tools installed on your operating system. We will now configure the RHC tools to
communicate with the OpenShift Online platform. This setup procedure will allow
us to create our OpenShift namespace domain as well as create and upload the
necessary SSH keys to authenticate us to the service.

Open up a new terminal prompt and begin the setup procedure by typing the
following command in the prompt:

$ rhc setup

Upon executing the preceding command, the first thing you will be asked for is
the username that you created earlier in this chapter. Enter in the username and
password that you used to authenticate the OpenShift Online platform and press
the Enter key.

After you enter in your credentials to authenticate the service, the setup program
will ask if you want to generate an authentication token. Generating a token will
allow you to run RHC tools without having to authenticate with a password each
time you issue a command. It is recommended that you generate a token to speed
up the time it takes to perform management commands for your application. If you
want to generate a token, type in yes and hit the Enter key.

The next step of the configuration process is to generate and upload an SSH key-pair
for your account. The SSH key is used by the platform for authentication when cloning
the source code repository for your applications that you create. The SSH key is also
used if you want to secure shell into your remote application. In order to upload your
SSH key, type in yes and press the Enter key.

We will discuss SSH in more detail in Chapter 3,
o— Application Maintenance, of this book.

Next, you will be prompted to create a namespace for your account on the OpenShift
platform. A namespace is a unique identifier for your account, which will be used as
the basis for all URLs for the applications that you create. Keep this in mind when
selecting your namespace as it will be included in the URL for any application that
you create on the platform.

s ..
=~ A common practice is to use your username as
your namespace.

[15]

[vww allitebooks.cond

http://www.allitebooks.org

Creating Your First OpenShift Application

Once you create a namespace for your account, it means that the RHC command-line
tools have been configured and you are now ready to begin creating applications.

All of the information related to your OpenShift Online account is stored
in a configuration file named express. conf located in the . openshift
T directory that resides within your user's home directory.

Creating your first OpenShift Online
application

The time we have been waiting for is finally here! We get to create our first
application that is deployed on the OpenShift Online cloud. I hope that when you see
how simple and fast it is to create and deploy applications, you will be amazed at the
possibilities this new technology (PaaS) can provide for your software projects. Let's
dip our toes in the water by creating a simple PHP application and then modify the
source code to practice the development workflow.

Let's start by creating a directory where we will organize all of our OpenShift
projects. I prefer to use a directory named code that is located in my home directory,
but feel free to use the standard directory convention that you have been using
throughout your software development history. Create the code directory if you
don't already have one, and change to that directory from your command prompt.
For example, if you are using Linux or OS X, the command will be the following:

$ mkdir -p ~/code
$ cd ~/code

Once you are inside of the directory where you want to organize your source

files, you can create a new OpenShift Online application by leveraging the RHC
command-line tools that you installed previously in this chapter. The RHC command
is actually an umbrella command that will allow you to perform many different
operations on the OpenShift platform. To create an application, use the app create
subcommand. The syntax to create a new application is as follows:

$ rhc app create application name application type

For instance, create a new PHP application and name it myphpapp, and specify that
you want to use the PHP-5.4 language. In order to create this application, enter in the
following command on your terminal, ensuring that you are in the directory where
you want to organize your source files:

$ rhc app create myphpapp php-5.4

[16]

Chapter 1

After you enter in the previous command, you will see the following output that
indicates the progress of the application creation:

Application Options
Domain: packt
Cartridges: php-5.4

Gear Size: default

Scaling: no
Creating application 'myphpapp' ... done
Waiting for your DNS name to be available ... done

Cloning into 'myphpapp'...

The authenticity of host 'myphpapp-packt.rhcloud.com (184.73.118.31)'
can't be established.

RSA key fingerprint is cf:ee:77:cb:0e:fc:02:d7:72:7e:ae:80:c0:90:88:a7.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'myphpapp-packt.rhcloud.com,184.73.118.31'
(RSA) to the list of known hosts.

Checking connectivity... done
Your application 'myphpapp' is now available.

URL: http://myphpapp-packt.rhcloud.com/
SSH to: 52bf4758e0b8cd189d0000d9@myphpapp-packt.rhcloud.com

Git remote: ssh://52bf4758e0b8cd189d0000d9@myphpapp-packt.rhcloud.
com/~/git/myphpapp.git/
Cloned to: /home/gshipley/myphpapp

Run 'rhc show-app myphpapp' for more details about your app.

> Once you enter in the rhc app create command, you may be

prompted to accept the authenticity of the application hosts. Type yes
Y .
and hit the Enter key.

[17]

Creating Your First OpenShift Application

Congratulations! You have just created your first application that is running in
the cloud. Don't believe me? Take a quick look at your application to verify that

it was deployed correctly. Open up a web browser and enter in the URL for your
application that was provided by the rhc app create command. The application
URL always looks like applicationName-namespace.rhcloud.com

For example, I used the unique namespace of packt for my account, and I named
my application myphpapp. Given these two bits of information, the URL for my
application would be http://myphpapp-packt .rhcloud.com

If everything went smoothly, you should see the following screen in your
web browser:

o ~C H- Q - Q

L4 | & myphpapp-packt.rheloud,c

Welcome to your PHP application on OpenShift

Depleying code changes Managing your application
OpenShilt uses the Git version control system for your source code, Web Console

You can use the OpenShilt web conscle to enable additional capabilities
via cariridges, add collaboralor access authorizat designale

cuslom aliases, and manage domain men

Command Line Tools
Installing the OpenShift RHC client toots allows you complete control of
your cloud environment. Read mare on how te manage your application

fram the command Bné in our User Guide

Working in your local Git reposilory

If ou cres

your SSH key, rh

code reposiory
Development Resources

If you ereated the application from the web console, you'll need to

manually clone the repository to your local system. Copy the

application’s source code Gilt LURL and then run:

mere informatien on the options for deplaying applications.

I know you are anxious to dig in and start modifying the source code, but stick
with me just a little bit longer. To truly appreciate the benefits of using a PaaS,
such as OpenShift Online, we need to understand all of the glue that just happened
at the backend.

[18]

Chapter 1

What just happened?

Once you understand what just happened behind the scenes, you might start to think
of the rhc app create command as some type of magic. Let's take a closer look at
everything that happened to enable your application.

Placement of your gear

When issuing the previous command, the first thing the OpenShift Online platform
did, after authentication of course, is determine which server to place your
application gear on. The algorithm used to determine the best location for your gear
takes many factors into account, including (but not limited to) the current load on
each server, the application runtime, and the amount of memory the application is
configured to consume.

OpenShift uses the term "gear" to define a set of resources allocated
* to provide your application with the environment that it needs to run
effectively. A gear contains resources such as memory, CPU, and disk
’ space. You can think of a gear as an application container on the operating
system that segments your resources from other users on the system.

Creating your application account

After the platform has determined the optimal server for your gear to reside on, the
system creates a Linux user ID for your account. This is an actual Linux user on the
system that your gear will run under. Having this account created will allow you to
SSH to the gear in a later chapter.

After the account is created, OpenShift then applies the Security Enhanced Linux
(SELinux) contexts and Control Groups (cgroups) for your gear. In a nutshell,
cgroups allows the kernel to allocate resources such as memory, CPU time, and
network bandwidth to processes on the system. SELinux allows the system to

set contexts to determine access control for files and processes. Both of these
technologies are implemented by OpenShift Online to secure your application
gear as well as provide multitenancy of the platform.

[19]

Creating Your First OpenShift Application

Don't worry if you don't understand these technologies in depth, as this is where
one of the true benefits of deploying applications to OpenShift Online comes into
play. You get all of the benefits of using these kernel features to provide a secure
environment for your application without having to know the ins and outs of
configuring and maintaining complex security policies.

Given that this is a book for using the OpenShift Online platform for development,
we will end the discussion of these technologies here. However, if you have

an interest in security and system administration, reading up on these two

Linux technologies will prove to be a fun exercise. A great resource to learn

more information about these technologies is Wikipedia. You can find in-depth
information on SELinux and cgroups at the following URLSs:

* http://en.wikipedia.org/wiki/Selinux
® http://en.wikipedia.org/wiki/Cgroups

Configuring your application

Once the gear has been placed on a server, and the access controls for your gear have
been enabled, OpenShift Online then begins the process of configuring all of the
necessary components to run your application code. In this example, we decided to
create and deploy a PHP application, so OpenShift Online enabled the Apache and
mod_php module for our gear.

After the web server process was configured, the platform then created a private Git
repository for us on our application gear and added a PHP application template to
the repository. The application source code was then deployed to the web server,
and DNS for our application was propagated worldwide. This means our application
will immediately be available on the public Internet once the rhc app create
command is complete.

Cloning the remote Git repository

The last step of the application creation process is when the RHC command-line tool
clones your Git repository from your OpenShift Online gear to your local machine.
This part of the process will create a directory with the same name as your application
in the filesystem location from which you issued the rhc app create command.

A common error that users encounter when creating an application
\ is the failure of the system to clone the Git repository. This normally
~ means that your local machine could not authenticate to the OpenShift
Q platform using the SSH key for your account. If you see this error
message, ensure that you upload the generated SSH key while running
the rhc setup command.

[20]

http://en.wikipedia.org/wiki/Selinux
http://en.wikipedia.org/wiki/Cgroups

Chapter 1

Adding the source code to your application

The application creation process created a new directory on your filesystem that is
named after your application. This directory is created in the location that you issued
the rhc app create command in. If you have followed the conventions laid out

in this chapter, you should be able to change to your application directory with the
following command:

$ cd ~/code/myphpapp

Once inside of the myphpapp directory, if you issue the 1s -al command, you
should see the following items:

Terminal

~/code/myphpapp $ ls -al
total 56
drwxr-xr-x 4 gshipley gshipley 4096 Jun 11 21:23 .
drwxr-xr-x 17 gshipley gshipley 4096 Jun 11 21:23 ..
drwxr-xr-x 8 gshipley gshipley 4096 Jun 11 21:23 .git
-rw-r--r-- 1 gshipley gshipley 39627 Jun 11 21:23 index.php
drwxr-xr-x 5 gshipley gshipley 4096 Jun 11 21:23 .openshift

~/code/myphpapp $ |

. The 1s command is a command for the Linux and OS X operating
% systems that will display all of the files and directories at the current
s location. If you are using the Microsoft Windows operating system,

the equivalent command is dir.

We will discuss all of these items in more detail in a later chapter, but for right
now, the only directory you want to concentrate on is the root directory. This is the
location where all of your source code files will need to be placed if you want them
available to the web server.

After listing the files inside of the root directory, you will notice that only one
entry exists:

® index.php

This is the main HTML page that you saw when you verified that your application was
created and deployed correctly, earlier in this chapter. This file is standard HTML and
provides instructions on how to get started with the OpenShift Online platform.

[21]

Creating Your First OpenShift Application

To understand the application deployment workflow, create a new PHP source file
and name it hello.php. Open up your favorite text editor and add the following
code to the hello.php file:

<?php
echo "Hello, Cloud!";

The next step after saving the new file is to add it to your Git repository on your
local machine. Since you created a new source file that your revision control system
doesn't know about, you need to first add the file:

$ git add hello.php

Once the file has been added, you need to commit the changes that you made and
provide a comment message that describes the change:

$ git commit -am "Added hello.php"
1 file changed, 3 insertions(+)

create mode 100644 php/hello.php

If you are not familiar with Git, you may have expected that once you have committed
your source code change to your local repository that the OpenShift Online repository
would have also been updated. It is important to understand that when you commit
changes to your local Git repository, they have not been pushed to the remote
repository that resides on your OpenShift Online gear. In order to take all of the
changes that you committed to your local repository to your upstream OpenShift
Online repository, you need to push these changes using the git push command:

$ git push

Counting objects: 6, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (4/4), 401 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)

remote: Stopping PHP cartridge

remote: Waiting for stop to finish

remote: Building git ref 'master', commit 9dfe837
remote: Building PHP cartridge

remote: Preparing build for deployment

remote: Deployment id is 9fb0c7ee

remote: Activating deployment

remote: Starting PHP cartridge

[22]

Chapter 1

remote: Result: success
remote: Activation status: success
remote: Deployment completed with status: success

To ssh://52bf4758e0b8cd189d0000d9@myphpapp-packt.rhcloud.com/~/git/
myphpapp.git/
e368126..9dfe837 master -> master

Once you have pushed the changes to the remote repository, OpenShift Online
will be notified about the new file(s) and will then redeploy your application. View
your new source file by opening the page in a web browser at the following URL,
ensuring that you use the correct namespace for your account:

http://myphpapp-YourNamespace.rhcloud.com/hello.php

You may have noticed that OpenShift Online stops Apache during the
. deployment process. If you are familiar with PHP, you know that this
% step is not necessary. To ensure that your application does not experience
e downtime during a new deployment, learn how to take advantage of the
hot deploy feature by referring to Chapter 11, Using the Marker and Action
Hook System.

You now know the basic building blocks and workflow to create and deploy
applications to OpenShift. You need to follow these basic steps:

1. Create an application using rhc app create.

2. Add new source files with git add.
3. Commit changes using git commit.
4

Push and deploy changes using git push.

If you are not familiar with the Git revision control

system, a good reference on the system is located at

http://gitref.org/index.html.

Using the web console

Up to this point, we have focused exclusively on interacting with the OpenShift
Online service purely from the command line. During this section, we are going to
use the feature-rich web console that is provided for users to create and manage all
applications from inside of their favorite web browser. We will now use the web
console to deploy a WordPress application to the platform.

[23]

http://gitref.org/index.html

Creating Your First OpenShift Application

To get started, open up your web browser and go to http://www.openshift.com.
Once the page is loaded, click on the MY APPS button at the top-right corner of the
page and authenticate to the OpenShift Online platform using the username and
password you created earlier in this chapter.

After you have authenticated, you will be placed on the application dashboard
where you should see the myphpapp application that we created previously in
this chapter. Click on the Add Application... button that is located under your
application list.

OPENSHIFT ONLINE

Applications

Applications 10f3
Available in domain packt You may want o
myphpapp
PHP 5.3 i3I FATsE
M & scalable application
Add Application... From the command line

@ rho chient lots your

On the next screen, look for the Instant App section and choose WordPress 3.x.

Instant App see all

Jenkins Server

Drupal 7

ordPress 3.x

BLOG C OT SCALABLE

[24]

http://www.openshift.com

Chapter 1

After you select to create a WordPress instant application, you will be presented with
a screen where you will need to specify the name of the application you are creating,.
For the name, enter in myblog and click on the Create Application button at the
bottom of the screen.

OPENSHIFT ONLINE

Applications
2 Conflgure the application
Based On WordPress 3.x Quickstart ¥
Public URL hitpr myblog packt.rhclowd.com
Source Code gieiigithub.comfopenshift'wordpress-ex |
Gears Small
Cartridges PHP 5.3 and MySQL 5.1
Scali [lir i
Sclb‘:l
D 2 T
[25]

vww allitebooks.conl

http://www.allitebooks.org

Creating Your First OpenShift Application

After the application creation process is complete, you will be presented with a
confirmation page that includes important information about the WordPress
deployment, which includes information on the database connection authentication.

You now have a fully functioning WordPress installation that you created in about
two minutes. Don't believe me? Open up your web browser and enter in the URL
for the application that you just created. Once you load the site for the first time,
you will be prompted to enter some basic information about the blog site as well
as to create the username and password that will be the administrator of the site.
Pretty neat stuff!

In Chapter 9, Using the OpenShift Web Console, we will learn how to

create our own instant application, such as the one we just deployed,
2 which will enable you to quickly spin up preconfigured applications

in a matter of minutes.

The web console comes in handy when you want to create an application very
quickly without having to use the command line. However, you will often find that
once you create an application using the web console, you need to modify the source
code of the application that you deployed. Let's go back to the command line to
show you that we can clone the source code repository of the myblog application that
we just created. Open up a new terminal window and change to your code directory
that we created previously in this chapter:

$ cd ~/code

Once you are in this directory, we can use the rhc app show command to list the
information about the WordPress deployment:

$ rhc app show myblog

myblog @ http://myblog-packt.rhcloud.com/ (uuid:
52b£f71£c5973ca055£0003b7)

Domain: packt

Created: 5:51 PM

Gears: 1 (defaults to small)

Git URL: ssh://52b£f71£c5973ca055£0003b7@myblog-packt.rhcloud.

com/~/git/myblog.git/
Initial Git URL: git://github.com/openshift/wordpress-example.git
SSH: 52b£f71£c5973¢ca055£0003b7@myblog-packt.rhcloud.com
Deployment: auto (on git push)

php-5.3 (PHP 5.3)

[26]

Chapter 1

Gears: Located with mysql-5.1

mysqgl-5.1 (MySQL 5.1)
Gears: Located with php-5.3

Connection URL: mysql://$OPENSHIFT MYSQL DB HOST:$OPENSHIFT MYSQL DB
PORT/

Database Name: myblog
Password: mG3SasTv-mRL

Username: adminNyyHHVA

If you examine the output, you will notice that part of the information provided
is the Git URL for your application. In the preceding example, the Git URL for the
application is as follows:

ssh://52b£f71£c5973ca055£0003b7@myblog-packt.rhcloud.com/~/git/myblog.git/

JM You can use a combination of rhc app show and grep to list only
Q the URL of your Git repository with the following command:

$ rhc app show myblog|grep 'Git URL:'

Now that we know the URL of our remote Git repository, we can clone the
repository by using the git clone command:

$ git clone ssh://52bf71£c5973ca055£0003b7@myblog-packt.rhcloud.com/~/
git/myblog.git/

\ The Git URL shown previously is an example that is based on the
~ application that I created. The Git URL for your WordPress application
Q will be different. Make sure that you use the correct URL when cloning
the repository.

However, the suggested way to clone a Git repository from the OpenShift Online
platform is to use the rhc git-clone command, as shown in the following command:
$ rhc git-clone myblog

This will create a directory under your ~/code directory, named myblog. If you are
curious, switch to that directory and take a look around the source code for your
newly created blog.

[27]

Creating Your First OpenShift Application

The same application workflow that we learned about previously in this chapter
holds true for applications that you create with the web console. For instance, if you
wanted to manually install plugins and themes for your blog, you would deploy
them using the following;:

* Adding new templates or themes with git add
* Committing changes using git commit

* Pushing and deploying changes using git push

Summary

In this chapter, we built the foundation for interacting with OpenShift Online, and we
will continue to expand on this throughout the remainder of this book. Laying this
groundwork is essential to ensure that your local system is configured properly in
order to communicate with the platform.

We created a user account, installed the client tools, and created two applications.
We also learned the basic application creation and deployment workflow that will
be the cornerstone for every application that we create in the future.

In the next chapter, we will learn about the essential commands for the RHC client
tools. We will also explore the embedded cartridge system that will enable us

to add additional functionalities to our applications, such as databases, metrics,
and task scheduling.

[28]

Creating and Managing
Applications

We got our feet wet in Chapter 1, Creating Your First OpenShift Application, by creating
and deploying a simple sample application to the OpenShift Online platform. In this
chapter, we are going to dive all the way in and learn the essential commands for
the RHC client tools that will allow us to effectively create and manage applications.
We will also explore the embedded cartridge system that will enable us to add
additional functionality, such as databases and task scheduling, to our applications.
Having these skills and building blocks will allow us to move beyond a simple

static application into the world of creating interactive applications that can save
application state.

Learning the essential RHC commands

As you learned in the previous chapter, the RHC tool is an umbrella command that
will allow us to perform many different operations on the OpenShift platform. It is
critical that you understand the most commonly used parameters in order to be
effective with the OpenShift Online platform. Developers interact with the RHC
toolset using the convention of the following command:

$ rhc command action arguments

The essential commands that we will cover in this chapter are app and cartridge. The
app command will allow us to create and manage applications on the platform, while
the cartridge command will allow us to add and manage embeddable cartridges.
Given that the conventions are listed, we can further build out the entered text we issue
by adding the command that we want to perform an action on. For instance, if we want
to perform an action on an application, the command will be as follows:

$ rhc app action

Creating and Managing Applications

Now that we have specified the command (app) that we want to perform an action
on, we can then specify the action that we want by using the correct argument
associated with the command. The available actions for the app command are listed

in the following table:
Action Description
. This allows the developer to modify configuration items for an
configure ..
application such as auto-deployment, namespace, and deployment type.
This allows the developer to create a new application on the OpenShift
create .
Online Platform.
This allows the developer to delete an application from the OpenShift
delete Online server. The Git repository on the local filesystem will not
be modified.
deploy This deploys a Git reference or binary file.

force-stop

This forces the stopping of all application processes.

reload This reloads the application configuration.
restart This restarts the application.
This shows information about the application such as domain, date
show . . : -
created, the Git URL, and cartridges in use by the application.
start This starts the application.
stop This stops the application.
. This allows the developer to clean the application logs, tmp directories,
tidy . . .
and the Git repository on the OpenShift server.
M You can view a list of all actions available for the rhc app command
Q by entering in the following command:

$ rhc app

Displaying information about an application

Let's test out the new commands you have just learned by displaying the information
for the application we created in the previous chapter. Open up your terminal prompt
and enter in the following command:

$ rhc app show

[30]

Chapter 2

After entering in this command, you probably saw an error message. Why is this? In
order for the RHC tool to know which application you want to display information
about, you must also provide the name of the application. Given that we named our
application myphpapp in the previous chapter, let's modify the command to include
the application name:

$ rhc app show myphpapp

The RHC tool is context aware, which means that if you are in the
directory that contains the Git source code repository, you will not
need to specify the application name. It will default to the application
of the directory you are currently working from.

If you have forgotten the name of your application, or just want to
view a list containing all of your applications, you can enter in the
follow command:

$ rhc apps

Once the command has been executed, you should see an output that is similar to
the following:

myphpapp @ http://myphpapp-packt.rhcloud.com/ (uuid:
52bf4758e0b8cd189d40000d49)

Domain: packt

Created: Jan 10, 2014 8:49 PM

Gears: 1 (defaults to small)

Git URL: ssh://52b£f4758e0b8cd189d0000d9@myphpapp-packt.rhcloud.
com/~/git/myphpapp.git/

SSH: 52bf4758e0b8cd189d0000d9@myphpapp-packt.rhcloud.com

Deployment: auto (on git push)

php-5.3 (PHP 5.3)

Gears: 1 small

The essential information that a developer would want to know about their application
is displayed in the output provided. Given this output, a developer will have the
necessary information required to SSH to the application gear, clone the Git source
repository, and know the cartridges that the application gear is consuming.

[31]

Creating and Managing Applications

Deleting applications

OpenShift Online is a great platform for quickly spinning up a new development
stack in order to try out a new piece of technology or to prototype ideas rapidly.
While this is a great use of the platform, you have to keep in mind that while on the
free tier, you are limited to having three gears at any point in the time. In order to
manage your system usage appropriately, the RHC toolset provides users a way
to delete applications once they are no longer in use. This will free up a gear on
the server that has been allocated to your account, which in turn will allow you

to have room to create a new application. In the previous chapter, we created two
applications that we will no longer use. Let's free up the resources for our account
by deleting both of them. In order to delete an application, issue the following
command in your terminal prompt:

$ rhc app delete myphpapp

. Deleting an application cannot be reversed. While the source code
% repository on your local machine will not be altered, it is important
A to understand that once you delete an application, it is completely

removed from the OpenShift servers.

After you enter in the previous command, the system will prompt you to ensure
that you want to delete the application. Type yes to confirm that you want to delete
it and press the Enter key. After the application has been deleted, you will see an
output message that confirms the delete operation was successful.

The rhc app delete command can also be passed a flag that will notify the
system that you want to bypass the confirmation message prompt. Let's delete
the blog application we created in the previous chapter while bypassing the
confirmation prompt:

$ rhc app delete myblog --confirm

> If you no longer need the source code for the application you deleted,
make sure you remove the directories from your local filesystem.

[32]

Chapter 2

Understanding cartridges

When I hear the word cartridge, I often think back to when I was kid and all the
enjoyment I had while playing the original 8-bit Nintendo Entertainment System
(NES). One of the great things about the NES was the ability to play a plethora of
games simply by inserting a new game cartridge into the system. Plugging one of
the game cartridges into the console changed the state of the system by allowing the
consumer to utilize added functionality on top of the core console. The cartridge was
the delivery mechanism for the game software that made the system usable. Without
a game cartridge, NES would have been a pretty boring game console.

Just as with video game consoles that most people have played, OpenShift supports
a cartridge system that will allow developers to change the state of the platform to
meet their specific needs and requirements. Using one of these cartridges is what
makes the platform usable.

There are two types of cartridges that are available for the OpenShift Online platform:

* Web cartridges
* Add-on cartridges

Web cartridges

You can think of a web cartridge as the language runtime (server) that you will

be using for your application development. A common example for Java-based
applications would be the Tomcat web cartridge. Each application that you create
on the platform must include one web cartridge. At the time of writing, the available
web cartridges for use by developers are shown in the following table:

Cartridge name | Developers

jbossas-7 JBoss Application Server 7

jbosseap-6 JBoss Enterprise Application Platform 6
jenkins-1 Jenkins servers that provides continuous integration functionality
nodejs-0.10 Version .10 of the popular node.js runtime
zend-6.1 The popular Zend Server for PHP applications
php-5.3 PHP 5.3

php-5.4 PHP 5.4

ruby-1.8 Ruby 1.8

ruby-1.9 Ruby 1.9

perl-5.10 Perl 5.10

[33]

Creating and Managing Applications

Cartridge name | Developers

python-2.6 Python 2.6
python-2.7 Python 2.7
python-3.3 Python 3.3
jbossews-1.0 Tomcat 6
jbossews-2.0 Tomcat 7

This is an empty gear that will allow you to install and run a

diy-0.1 custom runtime

Keep in mind that the version number of a specific application runtime
that is offered is a fast moving target. Don't be surprised if newer versions
g of a runtime show up once they are generally available to the public.

Add-on cartridges

To further expand the functionality of the web cartridge, a developer can also embed
an add-on cartridge to their application gear. These add-on cartridges provide
features that complement the core web cartridge that you have chosen for your
application. For example, most modern web applications rely on a database to

store and retrieve information that is required for the application to run. Common
examples of add-on cartridges will include databases, database management tools,
and job schedulers.

A developer may embed multiple add-on cartridges into a single
% application. For instance, you can use both the MySQL and MongoDB
T~ databases with the same application.

At the time of writing, the available add-on cartridges for use by developers are
shown as follows:

Cartridge name Description

10gen-mms-agent-0.1 | This is a tenth generation Mongo Monitoring Service Agent
cron-1.4 This is the popular task schedule for Unix-based systems
jenkins-client-1 This Jenkins client is used with continuous integration
mongodb-2.4 This is Version 2.4 of the popular MongoDB NoSQL database
mysql-5.1 This is Version 5.1 of the MySQL database

mysql-5.5 This is Version 5.5 of the MySQL database

[34]

Chapter 2

Cartridge name Description

phpmyadmin-4 This is a popular web-based frontend for the MySQL database

postgresql-8.4 This is Version 8.4 of the popular PostgreSQL relational database

postgresql-9.2 This is Version 9.2 of the popular PostgreSQL relational database

rockmongo-1.1 This is a web frontend to manage an embedded MongoDB database
Al To view a complete list of all cartridges currently available on the

~Q platform, you can issue the following command:

$ rhc cartridge list

Using cartridges
Now that you understand that a cartridge allows the developers to change the

features available on the platform, let's dig in and learn some of the basic cartridge
commands. To interact with cartridges, use the following syntax:

$ rhc cartridge action

The available actions for the cartridge command are listed in the following table:

Action Description
add This allows the developer to add a cartridge to an existing application.
list This lists all of the available supported cartridges on the platform.
reload | This allows the developer to reload the configuration for the cartridge.
remove | This allows the developer to remove a cartridge from an existing application.
scale This allows the developer to specify the configuration for how many gears the
application can consume while scaling.
This shows information about a cartridge. For instance, if you issue the
show command to show information about a database cartridge, such as mysq]l,
the username and password for the database will be displayed.
start This allows the developer to start the cartridge.
atatus This displays the current status of the cartridge state, for instance, if the
cartridge is in a running or stopped state.
stop This stops the cartridge.
This allows the developer to view and modify the storage configuration for
storage .
the cartridge.

[35]

vww allitebooks.conl

http://www.allitebooks.org

Creating and Managing Applications

M You can view a list of all actions available for the rhc cartridge
Q command by entering in the following command:

$ rhc cartridge

Adding cartridges
One of the most popular development stacks in existence today is called the LAMP

stack. During the remainder of this chapter, we will build out a full LAMP stack
using the OpenShift Online platform.

. The LAMP acronym refers to the first letters of each technology that
% is used for one of the most popular programming stacks in existence.
" The technologies that commonly make up the LAMP stack are Linux,
Apache, MySQL, and PHP, Perl, or Python.

The first thing we need to do in order to build this stack is to create a new application
using the PHP runtime. Open up your terminal window and enter in the following
command, ensuring that you are in the directory where you want the source code
repository to reside:

$ rhc app create lampstack php-5.4

Given the information you learned previously in this chapter, we can map this
command to the standard convention of the RHC command action arguments
as follows:

Component | Type Description
Umbrella ..

rhc This is the umbrella command for all RHC tools
command

app Command This notifies the RHC toolset that is going to perform

actions for applications

This specifies that we want the create action to spin up a

create Action ..
new application gear

This is the argument that specifies we are going to name

lampstack | A N
P rgument our application lampstack

This is the argument that specifies we are going use the

php-5.4 Argument PHP-5.4 web cartridge

[36]

Chapter 2

The previous command created a new application with all of the components
required for a LAMP stack, except for the MySQL database. In order to add this
functionality to our application stack, we can embed the MySQL add-on cartridge
with the following command:

$ rhc cartridge add mysql-5.5 -a lampstack

Once the previous command has completed successfully, you will see an output that
is similar to the following;:

MySQL 5.5 database added. Please make note of these credentials:

Root User: adminbrePNb2
Root Password: FMsgJpTHEwYd

Database Name: lampstack

Connection URL: mysql://$OPENSHIFT MYSQL DB HOST:$OPENSHIFT MYSQL DB
PORT/

You can manage your new MySQL database by also embedding phpmyadmin.

The phpmyadmin username and password will be the same as the MySQL
credentials above.

Congratulations! You have just spun up an entire LAMP stack in a record amount
of time.

The RHC toolset is a very powerful command line utility. One of
the features it provides is the ability to chain cartridges together.
For instance, to create a complete LAMP stack with a single
command, we can use the following syntax:

$ rhc app create lampstack php-5.4 mysql-5.5

[37]

Creating and Managing Applications

Using databases with your application

In the previous section, we created a new application called 1ampstack and deployed
it to the public cloud. In this section, we are going make use of the MySQL database
cartridge that we added by creating a web application that will display information
that our application code retrieves from this embedded cartridge. We are also going to
embed a popular MySQL database management tool called phpMyAdmin.

Although we will be using the phpMyAdmin tool during this section,

it is important to remember that you can use any database management
s tool, including the MySQL command line utility, to connect to and

manage your database.

Adding the phpMyAdmin add-on cartridge

As you learned previously in this chapter, OpenShift Online provides a wide
assortment of cartridges that you can use to provide more functionality to your web
applications. A common application that most PHP developers use to manage their
database is called phpMyAdmin. In this section, we are going to embed this popular
application to our lampstack application. In order to add this cartridge to our
application, open up your terminal prompt and enter in the following command:

$ rhc cartridge add phpmyadmin-4 -a lampstack

After the command has executed, make a note of the username and password that is
provided. The output provided should look similar to the following;:

Adding phpmyadmin-4 to application 'lampstack' ... done

phpmyadmin-4 (phpMyAdmin 4.0)
Gears: Located with php-5.4, mysql-5.5
Connection URL: https://lampstack-packt.rhcloud.com/phpmyadmin/

Please make note of these MySQL credentials again:
Root User: adminRapRWMM
Root Password: JerElgadNgFP

URL: https://lampstack-packt.rhcloud.com/phpmyadmin/

[38]

Chapter 2

Open up your web browser and point the location to the URL that is provided in
the output.

> Ensure that you are using the correct URL and not the one provided
Q previously as an example.

Once the web page has loaded, you will be presented with an authentication dialog
box where you will need to enter in the credentials provided when you added the
cartridge to your application. For example, in the previous output, the username is
adminRapRWMM and the password is JerE1gadNgFP.

Authentication Required

A username and password are being requested by https:/flampstack-
[l packt.rhcloud.com. The site says: "phpMyAdmin 127.7.84.2"

User Name: | adminRapRWMM |

Password: eeeeeseseeee|

| Cancel Jl oK ‘

After you have authenticated to the phpMyAdmin application, you will see the main
dashboard for the application, which lists all of the available databases for your
MySQL instance. You will notice that OpenShift created a default database for you
with the same name as the application you created, 1ampstack. This default database
can be seen on the left hand side of the screen as shown in the following screenshot:

php
=90 6
(Recent tables) ... j
+- | information schema
——~ | lampstack |
+H 4 mysql

[39]

Creating and Managing Applications

Click on the database named lampstack so that we can create a new table that will
hold the information we want to display from our web application. Create a table
named users with two columns and click on the Go button.

B [l Server: 127.7.84.2:3306 » B Database: lampstack
php :
sEleed e 4 structure [sQL . Search |J Query [& Export [5} Import ° Operations ¥ More
(Recent tables) . j No tables found in database
+— | information_schema " Create table
:_7__J lampstack
+ 1 mysql

Name: |users Number of columns: |2

Go

After creating the table, phpMyAdmin will present you with a screen where you
will need to define the columns that the table will contain. We want to create a basic
users table that will only hold the username and e-mail address of a user. In order
to accomplish this, create a username column of type varchar with a length of 5o,
create an email column of type varchar with a length of 150, and then click on the
Save button, as shown in the following screenshot:

Efl server: 127.7.84.2:3306 » B Database: lampstack » 8 Table: users

5] Browse £ Structure [] SQL 4 Search ¥ Insert [& Export 5} Import J° Operations & Triggers

Table name: |users Add |1 column(s) Go
Structure
Name Type o Length/Values & Default o/ Collation Attributes Null Index
- : i - = (]
usermname VARCHAR =l 50 Mone .0~ = =
- - - = O
email VARCHAR =l 1s0 None | | |
Table comments: g i ()} Coll
MylSAM | |

PARTITION definition: @

Save

[40]

Chapter 2

Now that we have a users table created, we can insert a few basic rows. Click on
the SQL tab at the top of the screen in order to open up an interactive SQL
command window where we can perform database statements, as shown in the
following screenshot:

Efl Server: 127.7.84.2:3306 » B Database: lampstack » B Table: users

[Z] Browse | 94 Structure % Search = #t Insert [Export 5} Import 4 Operations I Triggers

Table - Action Rows & Type Collation Size Overhead
[users = Browse 74 Structure % Search i Insert % Empty @ Drop 8 MylSAM utf8_general_ci 1 KiB
1table Sum ® MyISAM utf8_general_ci 1 KiB LR

T [check all With selected: j

Enter in the following SQL statements to create a few rows in the users table and
then click on the Go button:

INSERT INTO users VALUES ('author', 'authoregrantshipley.com');
INSERT INTO users VALUES ('OpenShift Help', 'openshifteredhat.com');
Run SQL query/queries on database lampstack: @
INSERT INTOQ users values (‘author’ authorg@grantshipley.com’); Columns
INSERT INTO users values ('Openshift Help', -openshift@redhat.com®);|
username
email
SELECT * SELECT INSERT UPDATE DELETE Clear
==
[Delimiter | ; 1 [Show this query here again [_| Retain query box Eo
p_— L

Downloading the example code

You can download the example code files for all Packt books you
~ have purchased from your account at http: //www.packtpub.

@ com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

[41]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Creating and Managing Applications

Once you click on the Go button, you can verify that the records were saved to the
database by clicking on the Browse button at the top of the screen, as shown in the
following screenshot:

+ Showing rows 0 - 1 (2 total, Query took 0.0004 sec)

SELECT "
FROM "users’
LIMIT O, 30

[J Profiling [Inline 1[Edit] [Explain SQL 11 Create PHP Code] [Refresh]

Show : Startrow: 0 Number of rows: | 30 Headers every | 100 rows

b Options
username email

lauthor author@grantshipley.com

jopenshift Help | openshift@redhat.com

Now we have some information in the database, we can create a simple application
that will display the results to the user.

. This section only touches the surface of the phpMyAdmin tool. For a
% more comprehensive tutorial on learning this application, you can read
o Mastering phpMyAdmin 3.4 for Effective MySQL Management, Marc Delisle,
Packt Publishing.

Developing the application

At this point, we should have a LAMP stack fully deployed as well as a database
that contains a few records. We will now develop a simple PHP application that
authenticates to the database and displays the information contained in the users

table that we created in the previous section.

Change to the root directory of your lampstack application by using the
following command:

$ cd ~/code/lampstack

Once you are in this directory, create a new file called hellodb.php using the text
editor of your choice, with the following source code:

<?php
$dbhost = getenv ("OPENSHIFT MYSQL DB HOST") ;
$dbuser = getenv ("OPENSHIFT MYSQL DB USERNAME") ;

[42]

Chapter 2

$dbpassword = getenv ("OPENSHIFT MYSQL DB PASSWORD") ;
$dbname = getenv ("OPENSHIFT APP NAME") ;

mysgl connect ($dbhost, $dbuser, $dbpassword) or die(mysgl error());
mysgl select db($dbname) or die(mysqgl error());
$result = mysgl query("SELECT * FROM users") or die(mysgl error()) ;

echo "<table border cellpadding=3>";
echo "<tr><tdsUsername</td>";
echo "<td>Email Address</tds</tr>";

while ($ScurrentRow = mysgl fetch array($result))

{

echo "<tr>";

echo "<td>".$currentRow|['username']."</td>";
echo "<td>".$currentRow['email']."</td>";
echo "</tr>";

}

echo "</table>";

Save your changes and then perform the following commands to deploy your new
source file to your OpenShift gear:

$ git add

$ git commit -am "Adding a file to print information from the users
database table"

$ git push

If this is the first time you are using Git on your machine, you may see the following
error message:

*** Please tell me who you are.
Run

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

to set your account's default identity.

Omit --global to set the identity only in this repository.

fatal: unable to auto-detect email address (got 'gshipley@author-
workstation. (none) ')

[43]

Creating and Managing Applications

With a newer version of the Git revision control system, you need to identify
yourself before you can commit changes to your repository. In order to do this,
enter in the following command supplying your correct e-mail address:

$ git config --global user.email "author@grantshipley.com"

Once your application has deployed, open your web browser and point it to
the http://lampstack-youNameSpace.rhcloud.com/hellodb.php URL of
your application.

Once the page loads, you should see the following output:

« | lampstack-packt.rhcloud.com/hellodb.php
|Username |Email Address
| author | author@grantshipley.com

|OpenSh'1ft Help | openshift@redhat.com

Understanding the code

Now that we have created the new source file and deployed the changes, let's take a
closer look at the code so that you understand all of the pieces.

The first block of code that we need to examine and understand is where we define
our connection information for the database, as shown in the following code:

$dbhost = getenv ("OPENSHIFT MYSQL DB HOST") ;

$dbuser = getenv ("OPENSHIFT MYSQL DB USERNAME") ;
$dbpassword = getenv ("OPENSHIFT MYSQL_DB_PASSWORD") ;
$dbname = getenv ("OPENSHIFT APP NAME") ;

This probably looks a bit strange to you in that we are not actually specifying the
connection information that has been provided to us. What we are doing instead is
referencing environment variables that the OpenShift Online platform created for us
to reference the resources available to our application. This is an important concept
to understand, because it is suggested that you never hardcode any IP addresses

or authorization credentials in your application. The reason for this is that if your
application scales, the IP information for your particular host may change. Using
environment variables also provides the mechanism that makes your application
portable to a new host.

We will discuss the available environment variables in more depth in
&= the next chapter.

[44]

http://lampstack-youNameSpace.rhcloud.com/hellodb.php

Chapter 2

mysgl connect ($dbhost, $dbuser, $dbpassword) or die(mysgl error()) ;
mysqgl select db($dbname) or die(mysgl error());

In the previous two statements, we connect to our database, providing the information
from the environment variables as well as printing out an error message if the
application code could not establish a connection. We then specify the database name
that we will be working with for our queries.

[% The database name we get from the OPENSHIFT APP NAME]
v

environment variable is the name of our application, lampstack.

The next thing we want to do is to execute a query on the database server that will
return all of the users:

$result = mysgl query("SELECT * FROM users") or die(mysgl error()) ;

The previous command line is where we actually perform the SQL query that will
return all rows and columns from the users tables. We store the returned values in
a variable named result. The code is as follows:

echo "<table border cellpadding=3>";
echo "<tr><tds>Username</td>";
echo "<td>Email Address</td></tr>";

The next three lines of code is some simple markup to lay out the information we are
going to present to the user in HTML. We create a table and then specify the header
information for the columns using the following code:

while ($ScurrentRow = mysgl fetch array($result))
{
echo "<tr>";
echo "<td>".$currentRow|['username']."</td>";
echo "<td>".$currentRow['email']."</td>";
echo "</tr>";

}

Once we have our database connection and the simple markup defined, we are
going to iterate over each of the rows returned from the database. For each row that
has been returned, we create a new table row and output the username and e-mail
address for each entry in our database, as shown in the following code:

echo "</table>";

The last thing we do is close our table tag and end the PHP script.

[45]

[vww allitebooks.cond

http://www.allitebooks.org

Creating and Managing Applications

The cron cartridge

Developers routinely come across a scenario when they need to perform a job at certain
time intervals. One popular example that I come across is the need to send an e-mail
communication out to users at a scheduled frequency. Some language frameworks
include this scheduling ability as part of the core distribution while other languages
require that you download additional packages to achieve this functionality.

OpenShift Online provides an add-on cartridge that will allow you to schedule jobs
at the operating system level using the popular cron utility that is standard on most
Linux distributions. To demonstrate the cron add-on cartridge, we are going to create
a simple job that will add the current date and time to a file that we can view in the
web browser.

Adding the cron cartridge

To get started with the cron add-on cartridge, the first thing we need to do is embed it
into our lampstack application. This can be achieved using the following command:

$ rhc cartridge add cron-1.4 -a lampstack

Once you have executed that command, you should get the following output:

Adding cron-1.4 to application 'lampstack' ... done

cron-1.4 (Cron 1.4)

Gears: Located with php-5.4, mysqgl-5.5, phpmyadmin-4

To schedule your scripts to run on a periodic basis, add the scripts to
your application's .openshift/cron/{minutely,hourly,daily,weekly,monthly}/

directories (and commit and redeploy your application).

Example: A script .openshift/cron/hourly/crony added to your application
will be executed once every hour.
Similarly, a script .openshift/cron/weekly/chronograph added

to your application will be executed once every week.

[46]

Chapter 2

Once you have embedded the cron add-on cartridge into your application, you

can create a job by placing an executable script in the appropriate directory for

the schedule that you want to create. The cartridge looks for these files under the
.openshift/cron directory in your applications root folder. If we take a closer look
at the directory structure of the .openshift/cron directory, we will see the options
shown in the following screenshot:

&« =

Name
b [daily
¥ [hourly
b [minutely
¥ [monthly
b [weekly
=| README.cron

[IE code » lampstack .openshift > cron

If you don't see the . openshift directory in your file browser, it is
because the directory is a hidden one. In order to see this directory, you
e will need to enable the visibility of hidden directories on your operating
Q system. If using the command line on Linux or OS X, you can list all of
the files —including hidden ones — with the following command:

$ 1ls -a

As we can see in the previous screenshot, we have directories available for
scheduling jobs based upon minutes, hours, days, weeks, and months. This system
provides all of the available options that you would need to schedule your job at the
appropriate time interval.

Adding a cron job

Change to the lampstack/.openshift/cron/minutely directory by using the
following command:

$ cd ~/code/lampstack/.openshift/cron/minutely

Once you are inside of this directory, create a new file called crondate.sh and add
the following content:

date >> $OPENSHIFT_REPO_DIR/cronteSt .txt

[47]

Creating and Managing Applications

The previous command will create a new file, if required, and append the current
output of the Linux date command. Once you have created and saved this file, add it
to your repository and deploy the change:

$ git add .

$ git commit -am "Adding cron job to echo the date"

$ git push

After you have deployed the change, open up your web browser and view the
output by pointing your browser to the following URL:

http://lampstack-yourNameSpace.rhcloud.com/crontest.txt

Keep refreshing the page to see new entries added every minute as the scheduled job
is executed by the platform as shown in the following screenshot:

-« | lampstack-packt.rhcloud.com/crontest fxt v Ol

Thu Jan 16 20:05:17 EST 2014
Thu Jan 16 20:06:12 EST 2014
Thu Jan 16 20:07:08 EST 2014
Thu Jan 16 208:08:12 EST 2014

M Note that the date is the server date/time and not the value from your
Q local machine. Keep this is mind when developing applications that

relies on timestamps.

Summary

In this chapter, you got a lot of information that is critical to being effective while
using the OpenShift Online platform. You learned the essential RHC commands to
create and interact with applications and cartridges. You also learned the difference
between web and add-on cartridges as well as how to add cartridges to an existing
application. We discussed the OpenShift provided environment variables and why
it is good practice to use these variables instead of hardcoding the authorization
credentials and host information for your application. You also learned how to use
the cron cartridge in order to add scheduled job to an application.

In the next chapter, we will go more in depth and discuss the common application
maintenance operations, such as viewing logfiles and connecting to the remote
gear via SSH. We will also explore environment variables on the OpenShift
Online platform.

[48]

http://lampstack-yourNameSpace.rhcloud.com/crontest.txt

Application Maintenance

In both the previous chapters, we learned how to create applications as well as how
to add additional cartridges to enhance the functionality of the platform. In this
chapter, we are going to learn more tricks to maintain and manage the applications
that we deploy to the OpenShift platform.

The first part of this chapter will focus on stopping and starting applications as well
as cartridges and then progress to viewing logfiles of running gears. After that, we
will learn how to back up and restore applications and then how to remotely connect
to our application gears using SSH.

Stopping and starting applications

In the last chapter, we created an application named lampstack that included the
phpMyAdmin management console as well as a MySQL database. There may be
times when you want to stop a particular cartridge so that it is not consuming
system resources while not in use.

1. Open your web browser and go to the URL of the phpMyAdmin cartridge
that we embedded in the previous chapter.

Ensure the application is responding to requests as expected.
Once you have verified the application is up and running, issue the
following command at your terminal prompt:

$ rhc cartridge stop phpmyadmin -a lampstack

4. Now, refresh the page for phpMyAdmin and you should see an error message
stating that the service is temporarily unavailable. If you change the URL to
point to the hellodb.php file we created in Chapter 2, Creating and Managing
Applications, you will notice that the core application as well as the MySQL
database is still running,.

Application Maintenance

5. Now, let's stop the MySQL database to see how the hellodb.php script
behaves when it cannot connect to the database using the following command:

$ rhc cartridge stop mysql-5.5 -a lampstack

6. Reload the hellodb.php page and you should see an error stating that the
connection to MySQL could not be established.

7. While we are stopping services, let's go ahead and stop the core application
server as well with the following command:

$ rhc app stop lampstack

8. Once the command is executed, you will see a confirmation message that the
lampstack application has been stopped. To verify this, open up your web
browser and navigate to the URL of your application. If the stop command
was successful, you should see an error message indicating that the server is
temporarily unavailable.

9. Go ahead and start the application back up using the following command:

$ rhc app start lampstack

Once the start command has executed, verify that the application is deployed and it
is responding to requests by refreshing the application URL in your web browser.

o When you start an application, all of the cartridges associated with
~ the application are also started, including the ones that were stopped
Q when the application was stopped. You can verify this by viewing
the hellodb. php script.

Viewing application logfiles

Viewing the logfiles for an application is a critical task when trying to troubleshoot
errors or to monitor the health of your application. Having access to these logs is an
important part of the development life cycle and OpenShift makes viewing these files
a straightforward task. The RHC toolset provides a command that will display all of
the logfiles available for your application from the Shell prompt. To try this out, use
the following syntax:

$ rhc tail lampstack

The previous example will open up a Linux tail command on the remote gear and
display all information as it is logged into the appropriate logfiles.

1
~ To exit the rhc tail command, you must press Ctrl + ¢ on
your keyboard.

[50]

Chapter 3

While you have the rhe tail command running, open your web browser and
refresh the hellodb. php script. Once your browser makes the GET request to the web
server, you will see the following line in the logs to indicate the action:

72.208.43.224 - - [16/Jan/2014:22:38:55 -0500] "GET /hellodb.php
HTTP/1.1" 200 203 "-" "Mozilla/5.0 (X11l; Ubuntu; Linux x86 64; rv:24.0)
Gecko/20100101 Firefox/24.0"

If you leave the tail command open, you will also see the Cron job that
. runs every minute, which we created in the previous chapter.

If you are familiar with the Linux tail command, the - £ option is passed by default
when viewing the logfiles. Since this is running the Linux command under the
covers, you can also pass any option to the command just as you would if you were
executing it on a local server. For example, to view the last 50 lines of the logfile, you
can specify the -o argument:

$ rhce tail lampstack -o '-n 50°'

Creating your own lodfiles

Most software projects today will log activity to help troubleshoot problems in

the application as and when they arise. As we have learned previously in this
chapter, you can view the standard logfiles with a simple rhc tail command.

This command will display all information in the standard log directories for your
application. It is good practice to create your own logfiles instead of writing to the
standard HTTP access logs. Let's modify the hellodb.php source file that we created
in the previous chapter to add logging capabilities.

M Most frameworks will include a standard convention for writing
Q logfiles. It is good practice to follow the convention of the framework
you are using.

Open up the source file and modify the contents to reflect the following source code:

$dbhost = getenv ("OPENSHIFT MYSQL DB HOST") ;
Sdbuser = getenv ("OPENSHIFT MYSQL DB USERNAME ")
Sdbpassword = getenv ("OPENSHIFT MYSQL_DB_PASSWORD") ;
Sdbname = getenv ("OPENSHIFT APP NAME ") ;

$logdir = getenv ("OPENSHIFT_LOG_DIR") ;

Slogfile = fopen($logdir."lampstacklog", 'a');

[51]

Application Maintenance

The first modification is the last two lines in the previous code, where we created a
new variable named log that contains the path to our application's log directory. We
then open a file named lampstacklog and set the parameter to append to the file:

mysqgl connect ($dbhost, $dbuser, $dbpassword) or die(mysgl error()) ;
fwrite($logfile, date("m/d/Y h:i:s a", time())." Connected to
database.\n") ;

The second modification will write a log entry to the file that contains the date and
time as well as a message stating that we have successfully connected to the database:

mysqgl select db($dbname) or die(mysgl error());

Sresult = mysgl query("SELECT * FROM users") or die(mysgl error());
fwrite($logfile, date("m/d/Y h:i:s a", time())." Ran query SELECT *
FROM users\n") ;

The third modification is made in another log statement that states we have
successfully run the SQL query:

echo "<table border cellpadding=3>";
echo "<tr><tds>Username</td>";
echo "<td>Email Address</td></tr>";

while ($ScurrentRow = mysqgl fetch array(S$result))

{

echo "<tr>";

echo "<td>".$currentRow|['username']."</td>";
echo "<td>".$currentRow['email']."</td>";
echo "</tr>";

echo "</table>";

fwrite($logfile, date("m/d/Y h:i:s a", time())." Returned results to
browser\n") ;

fclose(Slogfile) ;

The final modification contains a log statement, which indicates that the results have
been returned to the browser. Then, we close the file.

Save the changes to the file and then deploy the changes using the standard workflow:

$ git commit -am "Adding logging to our application™"

$ git push

[52]

Chapter 3

Once your application has been deployed, run the following command:

$ rhc tail lampstack

Open up your web browser, load the hellodp.php file again, and view the contents
of the tail command on your terminal prompt. You will see the following entries in
the log:

==> app-root/logs/lampstacklog <==

01/17/2014 04:19:20 am Connected to database.
01/17/2014 04:19:20 am Ran query SELECT * FROM users
01/17/2014 04:19:20 am Returned results to browser

Viewing a single logfile

I often find that when I am troubleshooting an issue, I want to focus on one logfile.
By default, the rhe tail command will display all entries for every file that our
application is using. If we want to narrow down the scope of the files that we view,
we can use the - £ option of the command while specifying the logfile that we want
to view. For example, to view only the lampstacklog logfile that we created for our
application, enter the following command:

$ rhc tail -f app-root/logs/lampstacklog

You can also pass in wildcards as an option if you are interested in viewing all
logfiles in a given directory:

$ rhe tail -f app-root/logs/*

For a complete list of options you can pass to the command,
you can run the following command:

$ rhc tail --help

Y=

Backing up and restoring applications

OpenShift Online does not keep or restore backups of a user's applications that
developers have deployed to the platform. Due to security and privacy concerns,
this task is left up to the user of the system to perform and maintain. Fortunately, the
RHC toolset provides an easy-to-use utility to perform this function. In this section,
we are going to take a snapshot of our application and then modify the source code
that will break the database connection. We will then restore the snapshot to bring
back the application to a working state.

[53]

Application Maintenance

Creating a snapshot

Create a new directory named backups under your code directory and change to the
newly created directory using the following command:

$ cd ~/code
$ mkdir backups
$ cd backups

Once you are in this directory, you can create a snapshot of the lampstack application
with the following command:

$ rhc snapshot save lampstack

This will create a new file on your local system that contains the complete snapshot
of your application. This includes every piece of information that you need to get
your application up and running, including your database. Having this snapshot
makes it possible and extremely easy to recreate your application on OpenShift or
to move it to a larger gear instance with more memory.

You will notice that, by default, the snapshot utility created a new file named
lampstack. tar.gz when you make the snapshot. The next time you create a
snapshot, this file will be overwritten with the contents of the new archive. With a
little command-line jujitsu, we can modify the snapshot command to create a file
with the current date and time for our backup. This is useful if you want to keep
a history of snapshots for your application or if you want to set up a cron job that
automatically creates a backup of your application.

It is important to know when taking a snapshot of your application

that the platform stops your gear while performing the back up. If you
/— create a snapshot, your application will experience downtime while the

snapshot is saving.
To create a new snapshot with a timestamp, execute the following command:

$ rhc snapshot save lampstack -f ./$(date '+%Y-%m-%d_ %H-%M-%S'
) .lampstack.tar.gz

[54]

Chapter 3

Once the command is executed, you will see the following output on the screen to
notify you that a new snapshot is being saved:

Pulling down a snapshot to ./2014-07-14 22-04-48.lampstack.tar.gz...

Creating and sending tar.gz

RESULT:

Success

While the OpenShift Online platform is creating your snapshot, your

application will be unavailable, as it stops all of the processes in order
"~ to geta clean backup.

Restoring a snapshot

Let's create a mock scenario where a critical source file was deleted from our
application and it is necessary that we restore it. I am sorry to admit that this
situation has happened to me in the past and I didn't have a backup of the missing
file. Let's create this mock example by deleting the hellodb.php source file from the
previous chapter. Open up your command line or file browser and delete the file.
Once you have deleted the file, push the changes to the OpenShift servers using the
standard workflow:

$ git commit -am "removing source file"
$ git push
Verify that the file has been deleted on the server by opening the file in your web

browser. If the file was deleted correctly, you should see a 404 error page, as shown
in the following screenshot:

=
»

4 ® | @ lampstack-packt.rhcloud.com/helodb.php v O | (¥ DuckbuckGo Q|

Not Found

The requested URL /hellodb.php was not found on this server.

Apache/2.2.22 (Red Hat Enterprise Web Server) Server at lampstack-packt.rhcloud.com Port 80

To restore the source file as well as the entire application to the last-known good
backup state, change to the directory where you stored the last backup and issue
the following command:

$ rhc snapshot restore -f lampstack.tar.gz -a lampstack

[55]

[vww allitebooks.cond

http://www.allitebooks.org

Application Maintenance

After entering the previous command, you will see the following output on the
screen, which states the steps that are currently being taken to restore the application:

Restoring from snapshot lampstack.tar.gz to application 'lampstack'

done

Once the process has finished, refresh the hellodb.php page to ensure that the file
has been restored and is able to display information from the database.

The restore option also restores the database and all of its content to the
+ information that was saved when taking the snapshot. This means that
& any data in the database that was saved between snapshots will be rolled
back. Given this information, a good use case to restore a snapshot is if
you accidentally drop a database table from the application.

It is important to understand that once you restore a snapshot, your current Git
repository is out of date with the repository on the OpenShift server. This makes
sense because the snapshot is a complete backup of the entire application gear,
including the Git repository. Since we deleted the hellodb. php file and then
committed the change to our local repository, it is ahead of the newly restored
Git repository. You can correct this scenario in one of the following two ways:

* Remove your lampstack directory and recreate it using the
following command:

$ rhc git-clone lampstack

* Reset your local Git repository to match with the OpenShift server
using the following commands:

$ cd ~/code/lampstack

$ git reset origin --hard

Secure shell and your application

When a developer creates an application on the OpenShift Online platform, a

Linux user account is also created on the server that the application is deployed on.
Having this user account on the system allows a developer to secure shell or SSH to
the application gear. However, because OpenShift uses SELinux and Linux control
groups, the user account is limited in what actions can be executed. For instance,
you can't install new system packages on the server, but you do have access to view
logfiles, securely copy files, and perform maintenance tasks for your application.

[56]

Chapter 3

Let's start learning some of the things we can do while connected to the remote
server via SSH by connecting to the 1lampstack application gear. This can be done
using the RHC tool with the following command:

$ rhc ssh lampstack

Once you enter the previous command, you will be connected to the container
that your application code is deployed to. You should see the following output
confirming the SSH command was successful:

Terminal - 4+ ®
gshipley@author-workstation rhc ssh lampstack
Connecting to 52d5d7c05973ca5f33000015@lampstack-packt. rhcloud.com ...

kokkokkk <k koK <k koK Rokkkk kokkkk <k koK Kk Ak *

You are accessing a service that is for use only by authorized users.
If you do not have authorization, discontinue use at once.

Any use of the services is subject to the applicable terms of the
agreement which can be found at:

https://www.openshift.com/legal

kokokk Rk < 3 %k
Welcome to OpenShift shell
This shell will assist you in managing OpenShift applications.

111 IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!

Shell access is quite powerful and it is possible for you to
accidentally damage your application. Proceed with care!

If worse comes to worst, destroy your application with "rhc app delete"
and recreate it

111 IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!

Type "help" for more info.

This gear has been temporarily unidled. To keep it active, access
your app @ http://lampstack-packt.rhcloud.com/

[lampstack-packt.rhcloud.com 52d5d7c05973ca5f33000015]\>]

Now that you are connected to the remote server, I know the first instinct is to look
around and see what permissions you have. Go ahead and take a few minutes to try
some things out.

Back already? If you are like me, the first thing you probably tried was getting root
level permissions with the following command:

$ sudo su

[57]

Application Maintenance

Once you entered the preceding command, you were notified that you don't have
permission to the sudo command, as shown in the following command:

bash: /usr/bin/sudo: Permission denied

You probably also found out that your home directory is not in a standard location
such as /home, but is located at /var/1lib/openshift. Then, you tried to list all of
the other applications that may be sharing the same server as your application code:

$ cd /var/lib/openshift
$ 1ls

At this point, you were greeted with another permission denied error message
as follows:

ls: cannot open directory .: Permission denied

Understanding and viewing the /etc/passwd
file
If you are really devious, you probably tried viewing the /etc/passwd file to see

all of the user accounts that exist on the system. If you didn't try that, you can do
so now with the following command:

$ cat /etc/passwd

The /etc/passwd file is a text file that contains information about all users that can
log in to the system. The file contains seven fields that are delimited by the : character.
The fields in order are as follows:

¢ The username for the account.

* The hashed password for the account. In most modern use cases,
this field is simply an x because the actual hashed password is stored
in the /etc/shadow file.

* The user ID for the account.
* The group ID for the account.

* The descriptive identifier for the account to state the user's real name.
All OpenShift accounts will have the real name of OpenShift Guest.

* The location of the user's home directory.

* The executable code that will be run every time the specified user logs in
to the system. This is typically the Shell environment that the user will be
working with such as Bash or Zsh. All OpenShift accounts will be running
the co-trap-user command.

[58]

Chapter 3

You may be wondering why users have access to view the /etc/passwd file, while
great lengths have been taken to ensure that applications are secure and not visible
to other users on the system. One of the main reasons for visibility of this file is the
expectation by some applications to have access to read information from this file
(such as home directory) in order to function correctly.

Understanding and viewing cgroup
information

OpenShift Online uses Linux control groups to manage availability of system
resources for your application. In order to view the resources that your application
is currently consuming as well as the resources the application has access to, we can
use the oo-cgroup-read command. To list all of the information that we can view,
issue the following command on the OpenShift Online server:

$ oo-cgroup-read all

Terminal - + ¥

[Lampstack-packt. rhcloud.com 52d5d7c05973ca5f33000015]\> oo-cgroup-read all
cgroup.procs

.cfs _period us

.cfs _quota us

.rt_period us

.rt_runtime us

.shares

.failent
.limit in bytes
.max_usage_in bytes

.memsw. failent
.memsw.limit in bytes
.memsw.max_usage in bytes
.memsw.usage_in bytes
.move_charge at immigrate
.oom control
.soft_limit in bytes
.stat
.swappiness
.usage in bytes
.use_hierarchy

net cls.classid

notify on release

tasks

[lampstack-packt. rhcloud.com 52d5d7c05973ca5f33000015]1\> |

[59]

Application Maintenance

We can then view detailed information for any item by specifying the item name in
conjunction with the oo-cgroup-read command. For instance, if we want to view
the current limit of memory that your application is allowed to consume, we can
issue the following command:

$ oo-cgroup-read memory.limit in bytes

Go ahead and play around with some of the other items by viewing them with the
oo-group-read command.

Setting the timeout parameter and viewing
lodfiles

While working on the remote server with SSH, you probably noticed that the system
will automatically log you out after a period of time when no commands are entered.
This was implemented to automatically disconnect users who may have forgotten
they were connected to the remote server. While this is a good thing, it can also be
annoying when you want to leave the session connected for longer periods of time.
Fortunately, the parameter that specifies the amount of time before disconnecting

a user is configurable by the user. To view the current value, you can issue the
following command:

$ echo $TMOUT

The previous command will output the value of the TMOUT environment variable.
This variable is used to determine how long a user can be inactive before
automatically disconnecting the session. To modify this environment variable,
issue the following command to change the value to 3600, which is 1 hour:

$ export TMOUT=3600

Alternatively, you can disable the timeout altogether with the following command:

$ unset TMOUT

Previously in this chapter, we learned how to view logfiles for the lampstack
application by using the rhc tail command. You can also view logfiles while
connected to the remote server via SSH. For example, to view the custom logfile
that we created earlier in the chapter, issue the following command:

$ cat ~/app-root/logs/lampstacklog

[60]

Chapter 3

Understanding environment variables

OpenShift Online brings a lot of convenience and flexibility to our applications by
managing the hardware tier and even some of the software tier for us so that we
can focus on the application development. However, having this convenience also
changes the way you would typically address certain types of development tasks,
such as where to store and retrieve authentication information for databases.

We saw how quickly you can spin up a Wordpress-based application with the
database connection already configured for the application. Having this auto-wiring
is crucial to reuse and redeploy a new instance of your application. A lot of this
perceived magic is actually just system environment variables hard at work. The
platform stores such things and IP addresses and database credentials as environment
variables so that your application code can reference these variables without having to
know the actual value. This is an extremely powerful concept because it makes your
application code portable to another server without having to change a single line of
code. It also allows the OpenShift platform to scale up the number of servers hosting
your application without the developer having to modify the IP addresses associated
with the application.

To better understand this concept, let's list all of the environment variables that contain
information about the MySQL database that we added to our 1ampstack application.
In order to do this, SSH to the lampstack application and then perform the env
command. The steps are as follows:

$ rhc ssh lampstack

Once connected to the remote server, run the following command:

$ env |grep OPENSHIFT MYSQL

The following output will be displayed on the screen:

OPENSHIFT MYSQL DIR=/var/lib/openshift/52d5d7c05973ca5£33000015/mysql/
OPENSHIFT MYSQL DB PORT=3306

OPENSHIFT MYSQL DB HOST=127.7.84.2

OPENSHIFT MYSQL DB PASSWORD=JerElgadNgFP

OPENSHIFT MYSQL IDENT=redhat:mysql:5.1:0.2.6

OPENSHIFT MYSQL DB USERNAME=adminRapRWMM

OPENSHIFT MYSQL DB SOCKET=/var/lib/openshift/52d5d7c05973ca5£33000015/
mysql//socket/mysqgl.sock

OPENSHIFT MYSQL DB URL=mysql://adminRapRWMM:JerElgadNgFP@127.7.84.2:3306/

OPENSHIFT MYSQL DB LOG DIR=/var/lib/openshift/52d5d7c05973ca5£33000015/
app-root/logs/

[61]

Application Maintenance

As you can see, all of the information that you would need to know in order to
connect to the database is stored inside the environment variables. Most modern
programming languages provide an API in order to read values that are stored
as system environment variables. For example, in PHP, you would reference the
OPENSHIFT MYSQL DB_URL environment variable with the following code:

$mysqlURL = getenv ('OPENSHIFT MYSQL DB URL') ;

The result of the previous syntax would be a variable named mysqlURL that contains
mysql://adminRapRWMM: JerElgadNgFP@127.7.84.2:3306/ as the value.

Another popular environment variable that is used inside of application code
is the ability to find out the full URL for the running application. This can be
found by referencing the OPENSHIFT_APP_DNS environment variable with the
following command:

$ env |grep OPENSHIFT APP DNS

If you just want to get the name of application that you are working with, you can
run the following command:

$ env |grep OPENSHIFT APP NAME
For a complete list of all available environment variables, run the following command:
$env |grep OPENSHIFT

The output that you see from the previous command will look similar to the
following screenshot:

[62]

Chapter 3

Terminal -+ x

[lampstack-packt.rhcloud. com 52d5d7c85973ca5f33000015]1\> env | grep OPENSHIFT
OPENSHIFT_SECRET_TOKEN=zHpTeHvAGZnwkSafswlkMcuoXRHAhdnn-aBoX0wlremzHeDOeZtxFFEKE - IHBxCmnTUNI LuJbXJZM44HGME wlgzhlt4AymIWysUC
oke7ZkxzvbVr_IgEdg95WgyqbgF

OPENSHIFT_PHP_IDENT=redhat:php:5.3:8.6.18

OPENSHIFT GEAR MEMORY MB=512
OPENSHIFT_MYSQL_DIR=/var/lib/openshift/52d5d7c05973ca5f33000015/mysql/
OPENSHIFT_DEPLOYMENT TYPE=git

OPENSHIFT PHP LOG DIR=/var/lib/openshift/52d5d7c85973ca5f33000015/php//logs/
OPENSHIFT_DEPLOYMENTS DIR=/var/lib/openshift/52d5d7c85973ca5f33000015/app-deployments/
OPENSHIFT METRICS DIR=/var/Llib/openshift/52d5d7c05973ca5133000015/metrics/
OPENSHIFT_TMP_DIR=/tmp/

OPENSHIFT_MYS(L DE_PORT=3306

OPENSHIFT REPO DIR=/var/lib/openshift/52d5d7c85973ca5f32000015/app- root/ runtime/ repos/
OPENSHIFT_HOMEDIR=/var/lib/openshift/52d5d7c85973ca5f33000015/

OPENSHIFT GEAR NAME=lampstack

OFPENSHIFT_PHPMYADMIN IP=127.7.84.3

OPENSHIFT_MYS(L DB _HOST=127.7.84.2

OPENSHIFT PYPI MIRROR URL=http://mirrerl.eps.rhcloud.com/mirror/pythen/web/simple
OPENSHIFT_CRON_DIR=/var/lib/openshift/52d5d7c05973ca5f33000015/craon/

OPENSHIFT MYSOL DB PASSWORD=JerElgadNgFP
OPENSHIFT_APP_SSH_PUBLIC_KEY=/var/lib/fopenshift/52d5d7c@5973ca5f33000015/ . openshift_ssh/id_rsa.pub
OPENSHIFT_CLOUD DOMAIN=rhcloud.com

OPENSHIFT MYSOL IDENT=redhat:mysql:5.1:9.2.7

OPENSHIFT_PHPMYADMIN VERSION=4

OPENSHIFT_BUILD DEPENDENCIES DIR=/var/lib/openshift/52d5d7c05973cadf33000015/app-root/runtime/build-dependencies/
OPENSHIFT_METRICS_PORT=8880

OPENSHIFT_MYSQL_DB_USERNAME=adminRapRWMM

OPENSHIFT PHP PATH ELEMENT=/var/libfopenshift/52d5d7c05973ca5133000015/php/phplib/pear/pear
OPENSHIFT_MYSQL_DB_SOCKET=/var/lib/openshift/52d5d7c05973ca5f33000015/mysql//socket/mysql.sock
OPENSHIFT _METRICS LOG DIR=/var/lib/openshift/52d5d7cB85973ca5133000015/metrics//logs/
OPENSHIFT LAMPSTACK DEBUG=1
OPENSHIFT_PHP_DIR=/var/lib/openshift/52d5d7c65973ca5f33000015/php/

OPENSHIFT MYSOL DB URL=mysql://adminRapRWMM:JerElgadNgFP@l27.7.84.2:3306/
OPENSHIFT_PHPMYADMIN_LOG_DIR=/var/lib/openshift/52d5d7c@5973ca5T33600015/phpmyadmin//logs/
OPENSHIFT_PHPMYADMIN DIR=/var/lib/openshift/52d5d7cB5973ca51338808815/ phpmyadmin/

OPENSHIFT APP DNS=lampstack-packt.rhcloud.com

OPENSHIFT_PRIMARY CARTRIDGE DIR=/var/lib/openshift/52d5d7c05973ca5f33008015/php/

OPENSHIFT GEAR DNS=lampstack-packt.rhcleud.com

OPENSHIFT_CRON_IDENT=redhat:cron:1.4:8.8.9

OPENSHIFT_CARTRIDGE SDK_BASH=/usr/lib/openshift/cartridge_sdk/bash/sdk

OPENSHIFT APP SS5H KEY=/var/lib/openshift/52d5d7c85973ca5f33000015/ .0penshift ssh/id rsa
OPENSHIFT_LAMPSTACK _DEBUG_LEVEL=DEBUG

OPENSHIFT PHP PORT=8080

OFENSHIFT_DEPLOYMENT BRANCH=master

OPENSHIFT_PHPMYADMIN IDENT=redhat:phpmyadmin:4:0.8.7

OPENSHIFT PHP VERSION=5.3

OPENSHIFT_DEPENDENCIES DIR=/var/lib/openchift/52d5d7c05973ca5f33000015/app- root/runtime/dependencies/
OPENSHIFT_KEEP_DEPLOYMENTS=1

OFENSHIFT_AFP_NAME=lampstack

OPENSHIFT_LAMPSTACK LOGLEVEL=INFO

OPENSHIFT METRICS IP=127.7.84.4
OPENSHIFT_MYSQL_DB_LOG_DIR=/var/lib/openshift/52d5d7c05973ca5f33000015/mysql//log/
OPENSHIFT DATA DIR=/var/lib/openshift/52d5d7cB5973cas133808015/app-root fdata/

OPENSHIFT NAMESPACE=packt

OPENSHIFT_AUTO_DEPLOY=true

OPENSHIFT GEAR UUID=52d5d7c85973ca51330000815
OPENSHIFT_METRICS_IDENT=redhat:metrics:8.1:6.8.5

OPENSHIFT_BROKER _HOST=cpenshift.redhat.com

OPENSHIFT APP UUID=52d5d7c85973ca5f33080815

OPENSHIFT_PHPMYADMIN PORT=8088

OPENSHIFT UMASK=877

OPENSHIFT_CARTRIDGE SDK_RUBY=/usr/lib/fopenshift/cartridge_sdk/ruby/sdk.rb
OPENSHIFT_PHP_IP=127.7.84.1

[Lampstack-packt.rhcloud.com 52d5d7c@5973ca5f33000015]\=

The usernames, passwords, and IP address information that is displayed
for your application will be slightly different from the output shown

in the previous screenshot to reflect the specific server and generated
credentials that your application is using.

[63]

Application Maintenance

Setting your own environment variables

The OpenShift Online platform allows developers to set their own environment
variables that can be referenced from their application code. One use case might
be to set a logging level variable that your application code reads to determine the
amount of logging to perform. To illustrate this particular use case, we are going to
modify the hellodb.php file to read an environment variable that will determine
the logging level we want to use.

The first thing we need to do is to create, set an environment variable named
OPENSHIFT LAMPSTACK LEVEL, and set the value to DEBUG. We can do this by
using the RHC tool that we have installed on our local machine. Open up your
local terminal prompt and set the variable with the following command:

$ rhc set-env OPENSHIFT LAMPSTACK LOGLEVEL=DEBUG -a lampstack

Verify that the environment variable was set correctly by connecting to your
application gear with SSH and viewing the contents of the variable:

$ rhc ssh lampstack
$ echo $OPENSHIFT_LAMPSTACK_LOGLEVEL

The output from the previous command should be DEBUG.

Now that the environment variable has been created on the remote server, let's modify
the hellodb. php file to look like the following code:

<?php

$dbhost = getenv ("OPENSHIFT MYSQL DB _HOST") ;
$dbuser = getenv ("OPENSHIFT MYSQL DB USERNAME") ;
$dbpassword = getenv ("OPENSHIFT MYSQL_DB_PASSWORD") ;
$dbname = getenv ("OPENSHIFT APP_NAME") ;

$logdir = getenv ("OPENSHIFT LOG_DIR");

$logDebug = getenv("OPENSHIFT_LAMPSTACK_LOGLEVEL“) === "DEBUG" ? true
false;

The first modification we add is a new PHP variable that is set to true if the value of
the OPENSHIFT LAMPSTACK LOGLEVEL environment variable is DEBUG. If it has any
other value, or is not set, the $1ogbebug variable will be false:

Slogfile = fopen($logdir."lampstacklog", 'a');
mysgl connect ($dbhost, $dbuser, $dbpassword) or die(mysgl error()) ;

if ($logbebug) {fwrite($logfile, date("m/d/Y h:i:s a", time())."
Connected to database.\n");}

[64]

Chapter 3

The next modification, which we need to make to the source, will check if the value
of the $1ogDebug variable is true. If it is, we will then print a message to indicate
that a connection to the database was successfully established:

mysqgl select db($dbname) or die(mysgl error());

Sresult = mysgl query("SELECT * FROM users") or die(mysgl error());
if ($logbDebug) {fwrite($logfile, date("m/d/Y h:i:s a", time())." Ran
query SELECT * FROM users\n");}

The next modification we make is to only print the database query log message if the
$logDebug variable is true

echo "<table border cellpadding=3>";
echo "<tr><tds>Username</td>";
echo "<td>Email Address</td></tr>";

while ($ScurrentRow = mysgl fetch array(S$result))

{

echo "<tr>";

echo "<td>".$currentRow|['username']."</td>";
echo "<td>".$currentRow['email']."</td>";
echo "</tr>";

echo "</table>";
if ($logbebug) {fwrite($logfile, date("m/d/Y h:i:s a", time())."
Returned results to browser\n");}

The next modification we make is to only print the log message indicating that
results were returned to the browser if the $1ogbDebug variable is true:

fclose(Slogfile) ;

Once you have made the previous changes and saved the source file, push your
changes to the server using the following commands:

$ git commit -am "adding debug level log check"
$ git push

Once the changes have been deployed to your server, open up the logfile using the
information you learned previously in this chapter with the following command:

$ rhc tail -f app-root/logs/lampstacklog

[65]

Application Maintenance

Try setting the environment variable to a different value and then refresh the
hellodb.php file to ensure that information is not being logged. To do this,
run the following commands:

$ rhc set-env OPENSHIFT LAMPSTACK LOGLEVEL=INFO -a lampstack

$ rhc app stop -a lampstack
$ rhc app start -a lampstack

The Apache process that serves PHP source code loads the system environment
variables when the httpd server is started. When changing environment variables,
you will need to stop and restart your application gear in order for Apache to pick
up the new changes.

Summary

In this chapter, you learned some essential tools and commands that will help you
maintain applications that you have deployed on the OpenShift platform. Specifically,
you have learned key concepts such as how to stop and start applications, how to view
logfiles (including ones that you create and write information to from your application
code), how to back up and restore application snapshots, how to use SSH in order to
connect to your application gears that are deployed to OpenShift Online, and learned
about system environment variables and how to create and use them.

In the next chapter, we will take a break from the command line and application
maintenance and dig a bit deeper into the application development aspect of
the platform. We will focus on integrating OpenShift Online with integrated
development environments.

[66]

Using an Integrated
Development Environment

In this chapter, we are going to look at the software development aspects of the
OpenShift platform by exploring how to use integrated development environments
(IDEs) to interact with the OpenShift service. Developers are often passionate about
their software development environment of choice and I can't possibly cover each
environment in the scope of this chapter. However, we will be examining the most
popular IDE in use by developers today, Eclipse. We will learn how to download,
install, and configure the Eclipse IDE as well and how to install and configure the
OpenShift Eclipse plugin that is provided as part of the JBoss Tools project. After
we have our development environment configured, we will explore how to interact
with the OpenShift platform from within the IDE in order to create, delete, and
manage applications.

To use an IDE or not to use an IDE is
the question

There are often two types of software developers today: those that benefit from using
a full IDE and those that prefer a lightweight approach such at VI, EMACS, or Sublime
Text. If you are expecting me to preach the merits of using a simple text editor for
software development, you will be disappointed with the content of this chapter.

While I am a huge fan of using VI or Sublime Text for small single-page applications
or to make a quick change to a file, I am convinced that using an IDE is the most
productive way to work on large software projects. I equate using an IDE for
development to using a hammer to drive nails. Sure, you could use a brick or some
other blunt object with a nail, but a hammer was designed for the specific purpose of
driving nails.

Using an Integrated Development Environment

Likewise, IDEs are designed for one purpose: to make the life of a software developer
more productive. This is accomplished by providing a tight integration with the
language runtime, providing code insight, looking for compile errors as you write
software, and even integrating with source code revision systems.

Another benefit of using an IDE, when working on software projects that you intend
to deploy to the OpenShift platform, is the ability to have full control over all aspects
of your application from the same environment that you use to write the code.

The OpenShift IDE plugin allows you to create applications, view logfiles of your
application, debug your application code, use port forwarding to connect to your
remote databases, deploy code to the remote server, and many other features. By

the end of this chapter, you will understand the convenience of having this tightly
coupled integration with the Eclipse IDE.

Installing and configuring Eclipse

The Eclipse IDE is one of the most popular development environments in existence
and is often the primary editor for Java developers. Over the years, the Eclipse
platform has grown to support most programming languages including C++, PHP,
and others. In fact, a lot of newer IDEs are based on the Eclipse source code because
it has the reputation of being stable and performant as well as the ability to run on
most operating systems including Windows, Linux, and Mac OSX.

Downloading and installing Eclipse

To get started with the Eclipse platform, we first need to download the software
package. One of the great things about the Eclipse platform is that it is open source
software and is therefore free to both download and use. For this chapter, we will
be downloading the Kepler version of Eclipse from http://www.eclipse.org/
downloads/.

Even though I am showing the usage of the Kepler version of Eclipse, the
s newest version named Luna will also work with the same instructions.

[68]

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

Chapter 4

Once the page has loaded in your browser, download the Eclipse IDE for Java EE
Developers by selecting the correct version for your operating system, as shown in
the following screenshot:

Eclipse Downloads

Packages Developer Builds

Eclipse Kepler (4.3.1) SR1 Packages for [T RS

Eclipse Standard 4.3.1, 197 M8 Linux 32 Bit
ﬁ Downloaded 4,035,431 Times Other Downloads Linux 64 Bit
The Eclipse Platform, and all the tools needed to develop and debug it: Java and

Plug-in Development Tooling, Git and CVS...

Package Solutions Filter Packages v
Eclipse IDE for Java EE Developers, 245 MB Linux 32 Bit
@ Downiloaded 2,082,137 Times Linux 64 Bit
Tools for Java developers creating Java EE and Web applications, including a Java IDE,
tools for Java EE, |PA, JSF, Mylyn...

Eclipse IDE for Java Developers, 150 MB Linux 32 Bit
Downloaded 931,346 Times Linux 64 Bit

A= The essential tools for any Java developer, including a Java IDE, a CVS client, Git client,
XML Editor, Mylyn, Maven integration...

This will download a compressed archive of the Eclipse platform to your local
filesystem. Once the download has completed, extract the contents of the archive
using the correct command for your operating system. As an example, I am using
the Linux operating system; the archive for that platformis a . tar.gz file. To extract
the contents of the archive, I would open up a terminal prompt and change to the
location of the downloaded file. Once I am in that directory, I would issue the
following command:

$ tar zxvf eclipse-jee-kepler-SRl-linux-gtk-x86 64.tar.gz

[69]

Using an Integrated Development Environment

Once the contents have been extracted, the binary used to run the IDE is located inside
the eclipse directory. For example, if you extracted the contents to the Downloads
directory, you would see what is shown in the following screenshot:

Downloads
File Edit View Go Bookmarks Help

« > 4 H # !EJ & 3 i Downloads >

* My Computer

2 eclipse eclipse-jee-kepler-SR1-
(Ml Documents linux-gtk-x86_64.tar.
¥ Music 9z

[Pictures
[FE videos

¥ Devices

Open the eclipse directory and launch the environment by double-clicking on the
Eclipse executable file, as follows:

eclipse - + x
File Edit View Go Bookmarks Help

« > 4 O !B’>mDownioad5>eclipse> o] QE iz

v My Computer

L
L

about_files configuration dropins features
e) <1 DOCTY!
<html =
[fE Pictures [@
- . p2 lugins readme about.html
5 -startu <html =
> plqgins =m{ns:h~.
A e
artifacts.xml eclipse eclipse.ini epl-v10.html
- <Ixml w name=Ec
<! DOCTY) id=org.:
= “atal version
whaadw
icon.xpm notice.html .eclipseproduct
* Network
[i6 Netw
15 items, Free space: 55.2 GB e —

[70]

Chapter 4

The first thing the IDE will ask you is what workspace you would like to use. If you are
not familiar with the concept of a workspace, don't worry as it's not that complicated.
A workspace is simply a directory on your filesystem where Eclipse stores the settings
and configurations that you are working with for the given workspace. If this is the
first time you are using Eclipse, my advice is to use the default workspace that is
provided by clicking on the OK button, as shown in the following screenshot:

Workspace Launcher x
Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | fhomefgshipley/workspace Browse...

[Use this as the default and do not ask again

l Cancel ‘ [T]

If the download and installation were successful, you should see the following
welcome screen after selecting the default workspace:

Java EE - Eclipse

le Edit Navigate Search Project Run Window Help

& Welcome 52 i oA = &

il{ﬂfhi

Eclipse Java EE IDE for Web Developers

% Overview Tutorials
Get an overview of the features LN Go through tutorials
@4, Samples /_ What's New
" <

-~ Try out the samples “/ Find out what is new

[71]

Using an Integrated Development Environment

Downloading and installing the OpenShift

plugin

Now that our Eclipse IDE is installed and running, the next thing we want to do

is download and install the OpenShift plugin for the IDE. The OpenShift plugin is

packaged as part of the JBoss Tools project that is provided by the JBoss team at

Red Hat. In order to download, install, and use this plugin, open up your browser

and gotohttps://tools.jboss.org/downloads.

sl Alternatively, if you are familiar with the Eclipse Marketplace, you can

~Q simply search for JBoss Tools and install the plugin directly from within

the IDE. This is probably the simplest way to get the plugin installed.

On this page, you will be able to download the correct package for the version of

Eclipse that you have installed. Select the version of JBoss Tools that you would like

to install and click on the Download button.

The team that works on JBoss Tools has made it extremely easy to install the plugin
by simply dragging the install icon to your running Eclipse application. Move your

mouse over the icon to view the instructions and then drag it to your Eclipse

environment, as shown in the following screenshot:

Visit other Eclipse Sites

=

Login

eclipse g O)
marketplace @3 ave
Home My Marketplace Add Content
Markets > @ JIBoss Tools (Kepler) 4.1.1.Final
Search » 0 sHRRE EBwE .,

[. e ¥ O

—
2 MPC Downloads
y/ Top'10

[blnstall

Advanced Search -

More like this

[72]

https://tools.jboss.org/downloads

Chapter 4

The installation by dragging the Install icon may not work on some systems. If this
is the case with your particular installation, you can manually install the package by
clicking on Help and then on Install New Software... from within the Eclipse IDE,
as shown in the following screenshot:

[File Edit Navigate Search Project Run Window

g B YO YQUYN

i@ Welcome

1 (Z) Help Contents
%7 search

I Project Explorer &2 E=3)
Dynamic Help

Key Assist... Shift+Ctrl+L
Tips and Tricks...

&’ Report Bug or Enhancement...
Cheat Sheets...

Eclipse Marketplace...
Check for Updates
| Install New Software... |

About Eclipse

This will open up a dialog window that will allow you to add a new repository

to install packages from. Click on the Add button and then name the repository
JBoss Tools and prOVide http://download.jboss.org/jbosstools/updates/
stable/kepler/ for the location, as shown in the following screenshot:

Add Repository

Name: [JBossTools | Local...
Location: http://download.jboss.org/jbosstools/updates/stabl Archive...

@j { Cancel | l oK]

Once the new repository has been added, select all of the packages and then click on
the Next button.

Depending on the speed of your Internet connection, the installation
s may take a few minutes.

Once the installation of the plugin has completed, you will be prompted to restart
the IDE.

[73]

http://download.jboss.org/jbosstools/updates/stable/kepler/
http://download.jboss.org/jbosstools/updates/stable/kepler/

Using an Integrated Development Environment
Importing an existing OpenShift
application

After the installation of the plugin has completed and you have restarted the IDE,
the next step is to create a new project using the Eclipse IDE. In order to do this,
navigate to File | New | Other and then expand the OpenShift selection, as shown
in the following screenshot:

New
Select a wizard —(
Create a new OpenShift Application

Wizards:
[q |

+| (= |Boss Tools Web
+ = JPA
+! [= Maven
+| (= Mobile
- (= Openshift
O
+| = Plug-in Development
+| (= Remote System Explorer
+| [=- SAR / MBean Components

@ | Next> || Cancel

This will open up a new window where you can define a connection to the OpenShift
Online service. This screen is fairly straightforward and only requires that you enter in
the username and password combination that you used when creating your OpenShift
account in Chapter 1, Creating Your First OpenShift Application.

[74]

Chapter 4

Once you have authenticated to the OpenShift service and a new Eclipse connection
has been defined, you will be presented with a dialog window that will allow you to
either create a new application or to create an Eclipse-based project from an existing
application. To showcase some of the capabilities of the Eclipse integration, let's choose
to create a project from an existing application that we have already deployed to

the OpenShift platform. In order to do this, select the checkbox next to Use existing
application and then click on the Browse button. This will open up a dialog window
that displays all the currently running applications that you have deployed on the
OpenShift Cloud, as shown in the following screenshot:

Select Existing Application
Select Existing Application
Please choose the existing application that you want to import.
OPENSHIFT

Existing Applications on OpenShift
Name Type URL Refresh
firstphp php-5.3 http:/ffirstphp-packt.rhcloud.com/ .

Details...

| Cancel | OK

[75]

Using an Integrated Development Environment

Select the lampstack project that we created in Chapter 2, Creating and Managing
Applications, as highlighted in the preceding screenshot, and click on the OK button.
Once you click on this button, the dialog window will close and the previous window
will be shown again. After clicking on the Next button, the plugin will allow you to
define your project creation settings. Select the option of creating a new project and
click on Next. Finally, you will be presented with a window where you need to define
the location on disk where you want to create your Eclipse project files. Uncheck the
box next to Use default clone destination and then click on the Browse button to
specify the directory where you want your project source files to live, as shown in

the following screenshot:

New OpenShift Application
Import an existing OpenShift application

Configure the cloning settings by specifying the
clone destination if you create a new project, and the
git remote name if you're using an existing project.
OPENSHIFT

Cloning settings

"] Use default clone destination

Git Clone Destination: [Ihomefgshipleyfcodefeclipse | Browse...

Make sure that you have SSH keys added to your OpenShift account
author@grantshipley.com via 55H Key ard and that the private keys are listed in

S5SH2 Preferences

[76]

Chapter 4

After clicking on the Finish button, the OpenShift plugin will create a new project
using the existing source for the lampstack application. This is accomplished by
cloning the remote Git repository that resides on your OpenShift gear and integrating
the source code revision processes directly into the IDE. This will allow you to make
changes and deploy your software code without having to leave the environment. This
can be seen by expanding the lampstack folder under the Project Explorer view on the
left-hand side of the screen. Note that the IDE displays the project's Git information
next to the project's name to indicate which branch of the repository you are currently
working with, as shown in the following screenshot:

[5 Project Explorer £2 0 5 ¥ o= g

- Iz lampstack [lampstack master]
+ & libs
+| 2 misc
=l Gy php
i health_check.php
rig hellodb.php
iy index.php
[5) deplist.txt
=} README.md

. To fully realize the power of the Eclipse IDE while working with
~ PHP-based applications, you will need to download the Eclipse
Q PDT plugin that offers native support for developing applications
with the PHP language.

Creating and managing a new OpenShift
application

Creating a new application is similar to the process that we have already explored;
that is, using an existing OpenShift application. In order to see the full power of the
OpenShift integration with Eclipse, we need to also explore how to create a new
application. For this example, we are going to create a Java-based project while using
the Tomcat server.

[77]

Using an Integrated Development Environment

To create a new Java-based project, navigate to File | New | Project, and then select
OpenShift Application. After authenticating to the OpenShift service, we will see
the same dialog window that we saw previously, but this time we will want to select
to create a new project called Javasample. On the project creation dialog window,
clicking on the runtime type field will display a list of all the available runtimes on
the OpenShift platform. For this sample application, we will want to select Tomcat 7
(JBoss EWS 2.0) (jbossews-2.0) as shown in the following screenshot:

New OpenShift Application *

New or existing OpenShift Application
Create a new OpenShift Application.

OPENSHIFT

. Do-ltYourself 0.1 (diy-0.1)
Domain: | pa¢ |gsss Application Server 7 (jbossas-7) :
|Boss Enterprise Application Platform 6 (jbosseap-6)
Tomcat 6 (JBoss EWS 1.0) (jbossews-1.0)
[] Use exist] Tomcat 7 (jBoss EWS 2.0) (jbossews-2.0)

| Jenkins Server (jenkins-1)
New applicatii Node.js 0.10 (nodejs-0.10)
Nede.js 0.6 (nodejs-0.6)
Perl 5.10 (perl-5.10)
Type: PHP 5.3 (php-5.3)

PHP 5.4 (php-5.4)

Gear profile: | python 2.6 (python-2.6)
Embeddable Fython 2.7 (python-2.7)
Python 3.3 (python-3.3)
— Ruby 1.8 (ruby-1.8)
L] Cron 14 Ryby 1.9 (ruby-1.9)
[7] Jenkins PHP 5.3 with Zend Server 5.6 (zend-5.6)
7] MongoL PHP 5.4 with Zend Server 6.1 (zend-6.1)

Existing Appli

Name:

[] 10gen |

[7] MySQL 5.1 (mysql-5.1)

[T MySQL 5.5 (mysql-5.5)

[T] Openshift Metrics 0.1 (metrics-0.1)
[] PostgreSQL 8.4 (postgresql-8.4)

[PostgreSQL 9.2 (postaresal-9.2) o

Advanced >>

< Back Next > Cancel
|) | J

[78]

Chapter 4

The final two pieces of information that we want to define for our new application
are the gear profile and any add-on cartridges that we want to add to our application.
Select the small gear profile and the MySQL 5.5 (mysql 5.5) database for our
application. After completing these steps, the dialog window should look similar to
what's shown in the following screenshot:

New OpenShift Application x

New or existing OpenShift Application
Create a new OpenShift Application.

OPENSHIFT
Domain: | packt » | Manage Domains
Existing Application
["] Use existing application:
New application
Name: [JavaSampIe |
Type: | Tomcat 7 (JBoss EWS 2.0) (jbossews-2.0) =
Gear profile: | small = [Enable scaling

Embeddable Cartridges

["] 10gen Mengo Menitoring Service Agent (10gen-mms-agent-{ _ Select All
[7] Cron 1.4 (cron-1.4)

Deselect All
[7] Jenkins Client (jenkins-client-1) &J
MongoDB 2.2 (mengodb-2.2)
MySQL 5.1 (mysql-5.1)

Openshift Metrics 0.1 (metrics-0.1)
PostgreSQL 8.4 (postgresql-8.4)
PostareSQL 9.2 (postgresqgl-9.2) : E

0oOOEs0o0

Advanced >=>

< Back] Next > I Cancel

[79]

Using an Integrated Development Environment

After defining your project options, follow the onscreen instructions to complete the
project creation step. Once the project has been created, you will see two projects
under the Project Explorer view on the left-hand side of the Eclipse IDE, as shown in
the following screenshot:

[(5 Project Explorer 22 == ¥ = O

I- n—b’-:-—- javasample [javasample master] I

+| 'zg Deployment Descriptor: javasample
+ A JAX-WS Web Services
+| @ Java Resources
+| @i,]avaScript Resources
+| (g Deployed Resources
[} pom.xml
|5 README.md
ik
+| (= target
+| (5 webapps
|+ I=F lampstack [lampstack master] I

The project creation process can take several minutes as it uses the Maven

build system to compile the JavaSample application. This build process
= includes downloading several dependencies including the appropriate

JAR files used to connect to and work with databases.

Deploying changes

One of the useful features of the JBoss Tools plugin, which provides OpenShift
integration to the Eclipse IDE, is the ability to work on source code and then deploy
those changes to the cloud without having to leave the familiar landscape of the
IDE. To illustrate how this works, we are going to create a new JSP file that displays
a message to the user. However, before we begin adding new software code,

let's verify that our Javasample application was compiled and deployed to the
OpenShift platform during the project creation step.

[80]

Chapter 4

To verify that everything works correctly, we can use the internal web browser that is
part of the Eclipse IDE by viewing our application inside of the OpenShift Explorer. To
open this view, navigate to Window | Show View | Other and then select OpenShift
Explorer under JBoss Tools, as shown in the following screenshot:

Show View

=

+| (= Java Browsing
+| = JavaScript
+| (&= JavaServer Faces
-! = |Boss Tools
© Arquillia Cruiser
S
() Project Archives
+| = |Boss Tools Web
+| = |Boss Tools Web Services
JMX
+ = JPA

¥

Cancel | OK

You can also use the keyboard shortcut of Cmd + 3 (OS X) or Ctrl + 3
L (Windows/Linux) and type openshift.

This will open up a new tab at the bottom of the screen that will display all of the
applications that you have deployed to the OpenShift platform. Expand all of the
applications and right-click on JavaSample and then select Show in Web Browser.
This will open up the embedded web browser inside of Eclipse and point to the URL
of your application.

[81]

Using an Integrated Development Environment

If the application was compiled and deployed successfully, you should see something
similar to what's shown in the following screenshot inside the IDE:

Javs CF - Betzjavasample-packt.rhclond.com; - Eclipse
Fle £60 Maigate Search Frsect R Windew belp

Project Explorer I ¥ = B @ welcome to OpenShit B =

Welcome to your JBossEWS (Apache/Tomeat) application on
OpensShift

Deployirg code changes Managing your appication
z ek
=

Woking I your local G repostany

Develapment Resaurces
J3caa Doveloper Shudis

O Opensyft Exploner 11 =HE

Cplerpatac

Now that we have verified that our application has been deployed correctly,

let's create a new JSP file that will display a message to the user. Navigate to the

src | main | webapp directory under the Project Explorer view and then right-click
on the webapp directory. Once you right-click on this directory, you will be given
the options to create a new JSP file, as shown in the following screenshot:

[82]

Chapter 4

I75 Project Explorer £2 -

= 4 > javasample [javasample master]
+! 'ag Deployment Descriptor: javasample
+ A JAX-WS Web Services
+| & Java Resources
+| i, JavaScript Resources
+! [Deployed Resources
[pom.xml
=} README.md
{7 src
=| % main
+| fjava
+| [resources

=

+ & images
g index.html
i) SNOOP.-j5p

+| &% WEB-INF

Name the new file hello.jsp and click on Finish. Once the file has been created,
replace the contents with the following source code, which will greet the user and
display the current system's date and time:

<%
out.println("Hello from Eclipse!");
out.println ("The current date/time is " + new java.util.Date());

)
s>

Once the file has been saved, we need to perform three steps in order to deploy our
changes to the OpenShift server:

1. Add our new file to the revision control system.
2. Commit our changes to the repository.
3. Push our changes to the remote upstream repository.

Luckily, the Git integration inside of Eclipse can tackle the first two steps at the
same time. To add and commit our new file to the local repository, right-click on the
javasample project under the Project Explorer view and then select Team and then
finally choose Commit.

N You can also use the keyboard shortcut to commit changes to the
Git repository using the Ctrl + # key combination.

[83]

Using an Integrated Development Environment

This will open up a dialog window where we can input a message that will explain
the changes that we are committing to the Git repository. Enter a commit message
and then select the checkbox next to the sr¢/main/webapp/hello.jsp file, as shown in
the following screenshot, to indicate that this is the file we want to add and commit
to the repository:

Commit Changes

Commit Changes to Git Repository

Commit message

Adding a new source file that will greet the user and display the
current system date and time.

Author: gshipley <author@grantshipley.com>
Committer: gshipley <author@grantshipley.com>

Files (1/2)

£

Status Path

¥ .settings/.jsdtscope

|3 | s

'/‘? Commit and Push Cancel | Commit |

The last step is to push the changes we have made and committed to our local Git
repository to the upstream OpenShift gear. You can do this by right-clicking on the
javasample project and then selecting Team and finally Push to Upstream.

An alternative approach that is viewed by many as an easier way to commit and
push changes to Git repositories is using the built-in Git Staging view that is part of
the Eclipse IDE with OpenShift integration. To open this view, navigate to Window

| Show View | Other and expand the Git folder to select the Git Staging view. This
will open up a view at the bottom of the IDE that will allow you to drag unstaged
changes to the staged area and then allow you to commit and push in one step. To
try this out, make a small modification to the hello. jsp file and save the changes.
For example:

out.println("Hello from Eclipse!");

[84]

Chapter 4

The preceding line of code should be modified to read as follows:

out.println("Hello from OpenShift and Eclipse!");

Open up the Git Staging view and then drag the hello. jsp file to the Staged
Changed box and enter a commit message. Lastly click on Commit and Push
as shown in the following screenshot:

[Markers [Properties # Servers § Data Source Explorer 15 Snippets [Console O OpenShift Explorer -+ Palette &, Git Staging & s e»w T oo
} Javasample
Unstaged Changes (1) Commit Message
% fsdtscepa “Added a : after the date/time is statement.

gEhipley <autherGgrantshipieycoms
staged changes (1) =

taged Changes (1 tor: gehiphey <authon@grantshipieycom:s
s hello,jsp

Commit and Push Commit

Viewing your application’'s logfiles

As we discussed previously, viewing the logfiles of your running application is an
important tool in determining the current state of the application as well as a crucial
tool in the debugging process when something is not working as expected. The
OpenShift plugin for Eclipse provides the ability to view your application and server
logtiles from right inside of the IDE. To view the logfiles for an application deployed
on the OpenShift service, open up the OpenShift Explorer view and navigate to the
application whose logfiles you want to view. Once you have located the application,
you can simply right-click on it and then select to tail the files associated with it,

as shown in the following screenshot:

New 2

‘B Import Application...

(3 Delete Application
| o) Edit Embedded Cartridges...
© © Restart Application

B 'E] All Environment Variables

Visual/Source Sou' ¢ Edit Environment Variables...
@ Show in Web Browser
B il files...

= Markers = Pro
i & Port forwarding...

- &3 author@qgrantsh| _
~ @9 5" Create a Server Adapter..

- @ packt packt
+ g firstphp PH " Refresh
= Details
&1 MySQL 5.5 mysql-5.5

+| (% lampstack PHP 5.3 (php-5.3

[85]

Using an Integrated Development Environment

This will open up a dialog window that will allow you to specify any arguments that
you want to pass to the remote tail command as well as allow you to specify what
gears of the application you want to view. For most cases, using the defaults will
provide the information that you are looking for when viewing the logfiles.

Viewing logfiles for specific gears will be explained in Chapter 12,
. Scaling Applications, where we introduce the concept of automatic
% scaling of your application based upon the amount of web traffic your
R application receives. In short, the ability to view specific logs for a
particular gear will allow you to isolate problems to a specific server
while debugging application code.

Once you specify any arguments that you want to include, click on the Finish button
to begin viewing the files. The contents of all the logfiles will be displayed in the
Console tab at the bottom of the IDE, as shown in the following screenshot:

[f{ Markers = Properties 4! Servers ¥ Data Source Explorer [Snippets E Console 5%
javasample-packt.rhcloud.com [Tomcat 7 (JBoss EWS 2.0), MySQOL 5.5 on gear #53016abce0b8cd13410004
el shirdl kb sa o D LU L LR

==> jbossews/logs/catalina.out <==
Feb 16, 2814 10:02:084 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 32367 ms

==> jbossews/logs/localhost access 1o0g.2014-02-16.txt <==

127.12.250.1 - - [16/Feb/2014:22:02:18 -0508] "GET /hello.jsp HTTP/1.1" 280 74
127.12.250.1 - - [16/Feb/2814:22:11:06 -0588] "HEAD / HTTP/1.1" 208 -
127.12.250.1 - - [16/Feb/2014:22:11:06 -0500] "HEAD / HTTP/1.1" 208 -

Embedding add-on cartridges

As we discussed in Chapter 2, Creating and Managing Applications, embedding and
using cartridges is an integral part of the application development and deployment
process. Previously, we learned how to embed cartridges using the RHC
command-line tools. Embedding add-on cartridges is also available from within the
Eclipse IDE. If you recall, when we created the Javasample application earlier in this
chapter, we specified that the MySQL database cartridge should be included as part
of the application creation process. We will now use the Eclipse IDE to add both the
Cron and phpMyAdmin cartridges to our application.

To accomplish this task, right-click on your application from within the
OpenShift Explorer view and select Edit Embedded Cartridges... as shown
in the following screenshot:

[86]

Chapter 4

New

&% Import Application...
Eﬁ Delete Application

07 Edit Embedded Cartridges...

© Restart Application

[Z] All Environment Variables

[Edit Environment Variables...
@ Show in Web Browser

B Tail files...

&1 Port forwarding...

Ef’ Create a Server Adapter..

" Refresh
Details

This will open up a dialog window that will display all of the available add-on
cartridges that are applicable to your application. Select the Cron 1.4 (cron-1.4) and
phpMyAdmin 4.0 (phpmyadmin-4) cartridges and click on Finish, as shown in the

following screenshot:

Embed Cartridges

Please select the cartridges to embed into your application

Embeddable Cartridges

Edit Embedded Cartridges

OPENSHIFT

JO0000®\e0o0O

[E3}

[] 10gen Mongo Menitoring Service Agent (10gen-mms-agent-0.1)
[£ Cron 1.4 {cron-1.4) I

[] Jenkins Client (jenkins-client-1)
MongoDB 2.2 (mongodb-2.2)
MySQL 5.1 (mysql-5.1)

MySQL 5.5 (mysqgl-5.5)

OpenShift Metrics 0.1 (metrics-0.1)
PostgreSQL 8.4 (postgresql-8.4)
PostgreSQL 9.2 (postgresql-9.2)
RockMongo 1.1 (reckmongo-1.1)
SwitchYard 0.8.0 (switchyard-0)

[| Web Load Balancer (haproxy-1.4)

Cancel

=0

[87]

Using an Integrated Development Environment

Once the Cron and phpMyAdmin cartridges have been added to your application,
any authentication information needed for the newly added cartridges will be
displayed on a dialog window that opens.

You can verify that the cartridges were successfully added by expanding your
application in the OpenShift Explorer view where all of the cartridges that your
application is consuming are displayed.

Viewing your application’'s environment
variables

In Chapter 3, Application Maintenance, we discussed using environment variables
as well as how to create your own environment variable. As part of that chapter,
we created a new environment variable for our lampstack application called
OPENSHIFT LAMPSTACK LOGLEVEL. We then used the value of that variable to
determine the type of log output that we write to a custom logfile. The OpenShift
plugin for Eclipse allows us to view and edit custom environment variables as well
as the ability to view all system-level environment variables for our application.
To demonstrate this, let's view the custom environment variable that we created
in Chapter 3, Application Maintenance, using the Eclipse IDE instead of the RHC
command-line tools. To do this, right-click on the lampstack application in the
OpenShift Explorer view and then select Edit Environment Variables. This will
open up a dialog window that will display any custom variables we have defined
as well as the current value that is set for the variable. The following screenshot
shows this in action:

Manage Application Environment Variable(s) for application lampstack
Environment Variables
Please provide new environment variables or edit the existing ones
OPENSHIFT
Environment Variables
Name Value Add...
Edit...
Remove...
Refresh
Cancel | Finish |

[88]

Chapter 4

Using this dialog window, change the value of the OPENSHIFT_LAMPSTACK_
LOGLEVEL variable by highlighting the variable and changing the value to DEBUG.
Once you've changed the value, click on Finish to save your changes. Verify that

the changes were deployed to your remote running application by either viewing

the hellodb. php file from Chapter 3, Application Maintenance, or by viewing the
environment variables again from inside of Eclipse.

Viewing the details of an application

In Chapter 2, Creating and Managing Applications, we explored how to use the rhc app
show command to display all of the details for an application. For example, to view the
details of the 1ampstack application using the RHC command-line tools, we would
issue the following command at a terminal prompt:

$ rhc app show lampstack

As with most of the RHC command-line tools, there is an equivalent included as part
of the OpenShift Eclipse plugin. To view the details of an application, right-click on
the application name under the OpenShift Explorer view and select Details. This
will open up a new window that displays the following information:

* The name of the application

* The public URL of the application that can be used to view the application
inside of a web browser

* The type of runtime that is associated with the application, for example,
PHP, JBoss EAP, and so on

* The date the application was first created and deployed to the
OpenShift platform

* The user ID of the gear that your application code is deployed on
* The Git URL for the remote repository that resides on the OpenShift gear

* The connection information that allows you to connect to the remote
OpenShift gear using the SSH protocol

* All add-on cartridges that are embedded in your application

[89]

Using an Integrated Development Environment

Deleting an application

Previously in this chapter, we created an application called Javasample. Since we will
not be using this application in the future, we can safely remove it from the OpenShift
service in order to free up resources in our account. To delete this application from
inside of Eclipse, right-click on the application's name from within the OpenShift
Explorer view and select Delete Application. The OpenShift plugin will display a
dialog box asking you to confirm the operation since a delete operation cannot be
reversed, as shown in the following screenshot:

Application deletion

— You are about to destroy the "javasample” application.
? This is NOT reversible, all remote data for this application will be removed.

Cancel | l 0K]

To verify that your application has been deleted, refresh the OpenShift Explorer
view to ensure that the Javasample application is no longer listed.

& To refresh the view, right-click on your account name and
select Refresh.

You are probably wondering why the source code for the application we just deleted

is still showing in the Project Explorer view. This is because when deleting an
application, it only deletes the remote gear that your application has been deployed to,
while leaving the local copy of your application's source code and repository intact. To
fully delete the application and any source code on your local filesystem, you will need
to also delete the Eclipse project associated with the application. To do this, right-click
on your project and select the option of deleting it.

[90]

Chapter 4

Integrating OpenShift with other IDEs

What happens if your preferred IDE is not Eclipse? I am happy to report that
because of the popularity of the OpenShift platform, integration is also available

for the majority of the popular IDEs in use by developers today. While the actual
implementation of the OpenShift service may differ slightly in each IDE, the concepts
are the same. Some of the popular integrations that I have used in the past are
available for the following environments:

* JetBrains Intelli] IDEA

* Zend Studio

* Appcelerator Titanium Studio
* Code Envy

* Cloud9

Summary

In this chapter, we learned how to install and configure the popular Eclipse IDE

in order to work with the OpenShift platform. Once we had our development
environment installed and properly configured, we learned how to import existing
applications as well as how to create new applications from within the Eclipse IDE.
Next, we learned the essential workflow steps for creating, managing, and deploying
applications with OpenShift while using Eclipse. This included how to add, commit,
and deploy code changes to the OpenShift server. Lastly, we learned how to embed
cartridges, view logfiles, and how to use environment variables with our application.

In the next chapter, we will learn how to use the OpenShift Online service to create
and deploy Java EE applications using the JBoss Enterprise Application Platform
application server.

[91]

Creating and Deploying
Java EE Applications

In this chapter, we are going to learn how to use OpenShift in order to create and
deploy Java-EE-based applications using the JBoss Enterprise Application Platform
(EAP) application server. To illustrate and learn the concepts of Java EE, we are going
to create an application that displays an interactive map that contains all of the major
league baseball parks in the United States. We will start by covering some background
information on the Java EE framework and then introduce each part of the sample
application. The process for learning how to create the sample application, named
mlbparks, will be started by creating the JBoss EAP container, then adding a database,
creating the web services, and lastly, creating the responsive map UI.

The evolution of Java EE

I can't think of a single programming language other than Java that has so many
fans while at the same time has a large community of developers that profess their
hatred towards it. The bad reputation that Java has can largely be attributed to early
promises made by the community when the language was first released and then
not being able to fulfill these promises. Developers were told that we would be able
to write once and run anywhere, but we quickly found out that this meant that we
could write once and then debug on every platform. Java was also perceived to
consume more memory than required and was accused of being overly verbose by
relying heavily on XML configuration files.

Creating and Deploying Java EE Applications

Another problem the language had was not being able to focus on and excel at one
particular task. We used Java to create thick client applications, applets that could be
downloaded via a web browser, embedded applications, web applications, and so

on. Having Java available as a tool that completes most projects was a great thing, but
the implementation for each project was often confusing. For example, let's examine
the history of GUI development using the Java programming language. When the
language was first introduced, it included an API called the Abstract Window Toolkit
(AWT) that was essentially a Java wrapper around native Ul components supplied

by the operating system. When Java 1.2 was released, the AWT implementation was
deprecated in favor of the Swing API that contained GUI elements written in 100
percent Java. By this time, a lot of developers were quickly growing frustrated with the
available APIs and to further complicate the frustration, yet another new toolkit called
the Standard Widget Toolkit (SWT) was developed.

SWT was developed by IBM and is the Windowing toolkit in use
by the Eclipse IDE. It is considered by most to be the superior
toolkit when creating applications with a graphical user interface.

Another reason why developers began switching from Java to more attractive
programming languages was the implementation of Enterprise JavaBeans (E]B).
The first Java EE release occurred in December, 1999, and the Java community is
just now beginning to recover from the complexity introduced by the language in
order to create applications. If you were able to escape creating applications using
early EJBs, consider yourself lucky, as many of your fellow developers were
consumed by implementing large-scale systems using this new technology.

It wasn't fun; trust me. I was there and experienced it firsthand.

When developers began abandoning Java EE, they seemed to go in one of two
directions. Developers who understood that the Java language itself was quite
beautiful adopted the Spring Framework methodology of having enterprise grade
features while sticking with a Plain Old Java Object (POJO) implementation.
Other developers were wooed away by languages that were considered more
modern, such as Ruby and the popular Rails framework. While the rise in
popularity of both Ruby and Spring was happening, the team behind Java EE
continued to improve and innovate, which resulted in the creation of a new
implementation that is both easy to use and a pleasure to develop with.

I am happy to report that if you haven't taken a look at Java EE in the last few years,
now is the time to do so. Working with the language after a long hiatus has been a
rewarding and pleasurable experience. By the end of this chapter, you will have the
skills and knowledge to see past the legacy of Java and realize that it is an exciting and
refreshing language to use to create both simple and enterprise class applications.

[94]

Chapter 5

Introducing the sample application

For the remainder of this chapter, we are going to develop an application
called mlbparks that displays a map of the United States with a pin on the map
representing the location of each major league baseball stadium. The requirements
for the application are as follows:

* A single map that a user can zoom in and out of

* As the user moves the map around, the map must be updated with all
baseball stadiums that are located in the shown area

* The location of the stadiums must be searchable based on map coordinates
that are passed to the REST-based API

e The data should be transferred in the JSON format

* The web application must be responsive so that it is displayed correctly
regardless of the resolution of the browser

* When a stadium is listed on the map, the user should be able to click on the
stadium to view details about the associated team

The end state application will look like the following screenshot:

Map of MLE Parks - Masiis Firefos
B LSe yew Wigsry fedmats Poi b
Mo o 1L Paricy |*

- g arbrempam.r v e Ol Al W

MLB Stadiums

[95]

Creating and Deploying Java EE Applications

The user will also be able to zoom in on a specific location by double-clicking on the
map or by clicking on the + zoom button in the top-left corner of the application.
For example, if a user zooms the map in to the Phoenix, Arizona area of the United
States, they will be able to see the information for the Arizona Diamondbacks
stadium as shown in the following screenshot:

= - | S B [—— = TS E]
RO S Céir i Norn | P 2 &
- | | rfﬁmﬁ?r& | H‘:.p 14 :” St - L ' 15:12th
D e b S~ < > D e
efferson &:d1st/Ave | L \5 I@ ' \ .',
_;L_J__r. o _U & P § b b Phoenix § P
o't = G b il L A ><__-f
o = £ - =
>1< _->S'< N Pat -535%%3 Diamondbacks B >‘g< Al
g p i Stee® 14 3 Chese Field H i £ .
Iy el S55¢m Team Payroll: $89,000,000.00 5 g ' §
et 2] el |P = League: National League Z ﬁ' £
EL] > P i (CETES "PER P - P East Madiison Street E
] § 2 | 5 T I & u
3 3 _—u . ety ; ;
- East Jackson Street 3 .—- i | ~ East Jackson Street
EP ’ 1. | lg i |— p P PhoeniXyard[Rairoaastation
g P P e’ _ ‘
- oe—r K) > b H
: | 3
g P z P
) E East Buchanan Street 2
' B § i P
o :
East Lincoin Street : ><
1 % B E P =] P
g R 3] | M
% East Grant Streat |
E—E g [Camﬁam smeet ¢

To view this sample application running live, open your browser and type
http://mlbparks-packt.rhcloud.com.

Now that we have our requirements and know what the end result should look like,
let's start creating our application.

Creating a JBoss EAP application

For the sample application that we are going to develop as part of this chapter, we
are going to take advantage of the JBoss EAP application server that is available on
the OpenShift platform.

The JBoss EAP application server is a fully tested, stable, and supported
platform for deploying mission-critical applications. Some developers
prefer to use the open source community application server from JBoss
called WildFly. Keep in mind when choosing WildFly over EAP that

it only comes with community-based support and is a bleeding edge
application server.

[96]

Chapter 5

To get started with building the mlbparks application, the first thing we need to
do is create a gear that contains the cartridge for our JBoss EAP runtime. For this,
we are going to use the RHC tools, which we learned about in Chapter 2, Creating
and Managing Applications. Open up your terminal application and enter in the
following command:

$ rhc app create mlbparks jbosseap-6

Once the previous command is executed, you should see the following output:

Application Options
Domain: yourDomainName
Cartridges: jbosseap-6 (addtl. costs may apply)

Gear Size: default

Scaling: no
Creating application 'mlbparks' ... done
Waiting for your DNS name to be available ... done

Cloning into 'mlbparks'...

Your application 'mlbparks' is now available.

URL: http://mlbparks-yourDomainName.rhcloud.com/
SSH to: 5311180£f500446£54a0003bb@mlbparks-yourDomainName.rhcloud.
com

Git remote: ssh://5311180£500446£54a0003bb@mlbparks-yourDomainName.
rhcloud.com/~/git/mlbparks.git/

Cloned to: /home/gshipley/code/mlbparks

Run 'rhc show-app mlbparks' for more details about your app.

If you have a paid subscription to OpenShift Online, you might
J want to consider using a medium- or large-size gear to host your
Q Java-EE-based applications. To create this application using a
medium-size gear, use the following command:

$ rhc app create mlbparks jbosseap-6 -g medium

[97]

Creating and Deploying Java EE Applications

Adding database support to the application

Now that our application gear has been created, the next thing we want to do

is embed a database cartridge that will hold the information about the baseball
stadiums we want to map. Given that we are going to develop an application that
doesn't require referential integrity but provides a REST-based API that will return
JSON, it makes sense to use MongoDB as our database.

. MongoDB is arguably the most popular NoSQL database available today.
The company behind the database, MongoDB, offers paid subscriptions
s and support plans for production deployments. For more information on
this popular NoSQL database, visit www . mongodb . com.

As we learned in Chapter 2, Creating and Managing Applications, run the following
command to embed a database into our existing ml1bparks OpenShift gear:

$ rhc cartridge add mongodb-2.4 -a mlbparks

Once the preceding command is executed and the database has been added to your
application, you will see the following information on the screen that contains the
username and password for the database:

Adding mongodb-2.4 to application 'mlbparks' ... done

mongodb-2.4 (MongoDB 2.4)
Gears: Located with jbosseap-6

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:S$OPENSHIFT
MONGODB_DB_PORT/

Database Name: mlbparks
Password: q 6eZ22-fraN
Username: admin
MongoDB 2.4 database added. Please make note of these credentials:
Root User: admin
Root Password: yourPassword
Database Name: mlbparks

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB
DB PORT/

[98]

www.mongodb.com

Chapter 5

Importing the MLB stadiums into the database

Now that we have our application gear created and our database added, we need
to populate the database with the information about the stadiums that we are going
to place on the map. The data is provided as a JSON document and contains the
following information:

e The name of the baseball team

* The total payroll for the team

* The location of the stadium represented with the longitude and latitude
* The name of the stadium

* The name of the city where the stadium is located

* The league the baseball club belongs to (National or American)

* The year the data is relevant for

* All of the players on the roster including their position and salary

A sample for the Arizona Diamondbacks looks like the following line of code:

{ "name" : "Diamondbacks", "payroll":89000000, "coordinates": [
-112.066662, 33.444799 1, "ballpark":"Chase

Field", "city":"Phoenix", "league":"National League",
"vear":"2013", "players": [{ "name":"Miguel Montero",
"position":"Catcher", "salary":10000000 | S— 1}

In order to import the preceding data, we are going to use the ss# command, which
we learned in Chapter 3, Application Maintenance. To get started with the import,

ssH into your OpenShift gear for the mlbparks application by issuing the following
command in your terminal prompt:

$ rhc app ssh mlbparks

Once we are connected to the remote gear, we need to download the JSON file and
store it in the /tmp directory of our gear. To complete these steps, use the following
commands on your remote gear:

$ cd /tmp
$ wget https://raw.github.com/gshipley/mlbparks/master/mlbparks.json

Woaget is a software package that is available on most Linux-based
% operating systems in order to retrieve files using HTTP, HTTPS,
"~ orFTP.

[99]

Creating and Deploying Java EE Applications

Once the file has completed downloading, take a quick look at the contents using
your favorite text editor in order to get familiar with the structure of the document.
When you are comfortable with the data that we are going to import into the
database, execute the following command on the remote gear to populate MongoDB
with the JSON documents:

$ mongoimport --jsonArray -d $OPENSHIFT APP NAME -c teams --type
json --file /tmp/mlbparks.json -h $OPENSHIFT MONGODB DB HOST --port
SOPENSHIFT MONGODB DB PORT -u $OPENSHIFT MONGODB DB USERNAME -p
SOPENSHIFT MONGODB DB PASSWORD

If the command was executed successfully, you should see the following output on
the screen:

connected to: 127.7.150.130:27017

Fri Feb 28 20:57:24.125 check 9 30

Fri Feb 28 20:57:24.126 imported 30 objects

What just happened? To understand this, we need to break the command we issued
into smaller chunks, as detailed in the following table:

Command / argument Description

This command is provided by MongoDB
mongoimport to allow users to import data into

a database.

This specifies that we are going to import

--7 A
JsonArray an array of JSON documents.

Specifies the database that we are going
to import the data into. If you recall from
Chapter 3, Application Maintenance, we

-d SOPENSHIFT APP NAME are using a system environment variable
to use the database that was created by
default when we embedded the database
cartridge in our application.

This defines the collection to which we
-c teams want to import the data. If the collection
does not exist, it will be created.

This specifies the type of file we are going

--type json .
ype J to import.

[100]

Chapter 5

Command / argument Description

This specifies the full path and name of
--file /tmp/mlbparks.json the file that we are going to import into
the database.

This specifies the host of the
MongoDB server.

-h $SOPENSHIFT MONGODB DB HOST

This specifies the port of the

--port SOPENSHIFT MONGODB DB PORT
P ? - - - MongoDB server.

This specifies the username to be used for

-u SOPENSHIFT MONGODB DB USERNAME c .-
- - - authenticating to the database.

-p SOPENSHIFT MONGODB_DB_PASSWORD | This specifies the password to be used for

authenticating to the database.

To verify the data was loaded properly, you can use the following command that will
print out the number of documents in the teams collection of the m1bparks database:

$ mongo -quiet $OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB_DB
PORT/$OPENSHIFT APP NAME -u $OPENSHIFT MONGODB_DB_USERNAME -p
$OPENSHIFT MONGODB_DB_PASSWORD --eval "db.teams.count()"

The result should be 30.

Lastly, we need to create a 2d index on the teams collection to ensure that we can
perform spatial queries on the data.

Geospatial queries are what allow us to search for specific documents

that fall within a given location as provided by the latitude and
"~ longitude parameters.

To add the 2d index to the teams collection, enter the following command on the
remote gear:
$ mongo

$OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB DB PORT/$OPENSHIFT APP NAME
--eval 'db.teams.ensureIndex({ coordinates : "2d4" });°

[101]

Creating and Deploying Java EE Applications

Adding database support to our Java
application

The next step in creating the mlbparks application is adding the MongoDB driver
dependency to our application. OpenShift Online supports the popular Apache
Maven build system as the default way of compiling the Java source code and
resolving dependencies.

Maven was originally created to simplify the build process by allowing
_ developers to specify specific JARs that their application depends on.
% This alleviates the bad practice of checking JAR files into the source code
L repository and allows a way to share JARs across several projects. This is
accomplished via a pom.xml file that contains configuration items and
dependency information for the project.

In order to add the dependency for the MongoDB client to our mlbparks
applications, we need to modify the pom.xm1 file that is in the root directory of

the Git repository. The Git repository was cloned to our local machine during the
application's creation step that we performed earlier in this chapter. Open up your
favorite text editor and modify the pom.xm1 file to include the following lines of
code in the <dependencies> block:

<dependencys>
<groupIds>org.mongodb</groupId>
<artifactIds>mongo-java-driver</artifactIds>
<version>2.9.1l</versions>

</dependency>

Once you have added the dependency, commit the changes to your local repository
by using the following command:

$ git commit -am "added MongoDB dependency"

Finally, let's push the change to our Java application to include the MongoDB
database drivers using the git push command:

$ git push

_ The first time the Maven build system builds the application,
& it downloads all the dependencies for the application and then
e caches them. Because of this, the first build will always take a

bit longer than any subsequent build.

[102]

Chapter 5

Creating the database access class

At this point, we have our application created, the MongoDB database embedded,
all the information for the baseball stadiums imported, and the dependency

for our database driver added to our application. The next step is to do some

actual coding by creating a Java class that will act as the interface for connecting

to and communicating with the MongoDB database. Create a Java file named
DBConnection.java in the mlbparks/src/main/java/org/openshift/mlbparks/
mongo directory and add the following source code:

package org.openshift.mlbparks.mongo;

import java.net.UnknownHostException;

import javax.annotation.PostConstruct;

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Named;

import com.mongodb.DB;

import com.mongodb.Mongo;

@Named
@ApplicationScoped
public class DBConnection {
private DB mongoDB;
public DBConnection()
super () ;
}
@PostConstruct
public void afterCreate()
String mongoHost = System.getenv ("OPENSHIFT MONGODB_ DB HOST") ;
String mongoPort = System.getenv ("OPENSHIFT_ MONGODB_DB_PORT") ;
String mongoUser = System.getenv ("OPENSHIFT MONGODB_DB_USERNAME") ;
String mongoPassword = System.getenv ("OPENSHIFT MONGODB_DB_
PASSWORD") ;
String mongoDBName = System.getenv ("OPENSHIFT APP NAME") ;
int port = Integer.decode (mongoPort) ;

Mongo mongo = null;
try {
mongo = new Mongo (mongoHost, port) ;
} catch (UnknownHostException e) {
System.out.println("Couldn't connect to MongoDB: " +
e.getMessage() + " :: " + e.getClass());

[103]

Creating and Deploying Java EE Applications

}

mongoDB = mongo.getDB (mongoDBName) ;

if (mongoDB.authenticate (mongoUser, mongoPassword.toCharArray())

== false) {
System.out.println("Failed to authenticate DB ") ;
}
}

public DB getDB() {
return mongoDB;
}
}

The preceding source code as well as all source code for this chapter is
e available on GitHub at https://github.com/gshipley/mlbparks.

The preceding code snippet simply creates an application-scoped bean that is
available until the application is shut down.

. The eApplicationScoped annotation is used when creating application-
% wide data or constants that should be available to all the users of the
= application. We chose this scope because we want to maintain a single
connection class for the database that is shared among all requests.

The next bit of interesting code is the aftercreate method that authenticates to the

database using the system environment variables that we discussed in Chapter 3,
Application Maintenance.

Once you have created the DBConnection. java file and added the preceding source

code, add the file to your local repository and commit the changes as follows:

$ git add .

$ git commit -am "Adding database connection class"

Creating the beans.xml file

The DBConnection class we just created makes use of CDI for dependency injection.

CDI stands for Context Dependency Injection and is part of the
= official Java EE specification.

[104]

https://github.com/gshipley/mlbparks

Chapter 5

According to the official specification for CDI, an application that uses CDI must

have a file called beans . xml. The file must be present and located under the WEB- INF
directory. Given this requirement, create a file named beans .xml under the mlbparks/
src/main/webapp/WEB- INF directory and add the following lines of code:

<?xml version="1.0"7?>

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://java.
sun.com/xml/ns/javaee http://jboss.org/schema/cdi/beans 1 0.xsd"/>

After you have added the beans.xml file, add and commit it to your local
Git repository:

$ git add .

$ git commit -am "Adding beans.xml for CDI"

Creating the domain model

The next step is to create our model class that will hold information on a specific
baseball park. This model object is a POJO that is defined to contain the team name,
position (the longitude and latitude), ballpark name, team payroll, and the league

the team belongs to. Create a Java file named MLBPark . java under the mlbparks/
src/main/java/org/openshift/mlbparks/domain directory and add the following
source code:

package org.openshift.mlbparks.domain;

public class MLBPark ({
private Object name;
private Object position;
private Object id;
private Object ballpark;
private Object payroll;
private Object league;

public Object getName ()
return name;

}

public void setName (Object name) {
this.name = name;

}

public Object getPosition()
return position;

[105]

Creating and Deploying Java EE Applications

}
public void setPosition(Object position) {
this.position = position;

}

In the preceding code snippet, I have omitted the getters and setters
. for most of the variables. When creating your source file, make sure
% that you include a getter and setter for each variable in order to ensure
L that your application works correctly. Again, the complete source
code for this application can viewed at https://github.com/
gshipley/mlbparks.

Once you have created the MLBPark. java file and added the preceding listed source
code, add the file to your local repository and commit the changes:

$ git add .
$ git commit -am "Adding MLBParks model object"

Creating the REST services

The application that we are developing will provide data to the user interface by
providing a set of web services that will allow the code to make a request for all
available baseball parks as well as the ability to query for stadiums within a given
set of longitude and latitude parameters. We will be using the popular Java API for
RESTful Web Services (JAX-RS) to provide this functionality. To get started with
defining our available service, create a file named JaxrsConfig.java under the
mlbparks/src/main/java/org/openshift/mlbparks/rest directory and add

the following code snippet:

package org.openshift.mlbparks.rest;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/ws™")
public class JaxrsConfig extends Application(

}

The preceding code snippet defines the URL path that clients will use to
communicate with our REST web services. The definition occurs on the @
ApplicationPath ("/ws") line.

[106]

https://github.com/gshipley/mlbparks
https://github.com/gshipley/mlbparks

Chapter 5

Considering the preceding line of explanation, the entry point for our REST services
will be http://mlbparks-yourNameSpace.rhcloud.com/ws.

Now that we have our application path defined, we can begin to build the web

services for our application. Create a file named MLBParkResource.java under the
mlbparks/src/main/java/org/openshift/mlbparks/rest directory and add the
following code snippet:

package org.openshift.mlbparks.rest;

import
import
import
import
import
import
import
import
import

import

import
import
import
import

import

java.util.ArrayList;

java.util.List;

javax
javax.
javax.ws.rs.
javax.ws.rs.
javax.ws.rs.
javax.ws.rs.
org.
org.

com.
com.
com.
com.

com.

.enterprise.context.RequestScoped;
inject.Inject;

GET;

Path;
Produces;
QueryParam;

openshift.mlbparks.domain.MLBPark;

openshift.mlbparks.mongo.DBConnection;

mongodb
mongodb
mongodb
mongodb
mongodb

.BasicDBObject;
.DB;
.DBCollection;
.DBCursor;
.DBObject;

The preceding code snippet defines the package of the Java class as well as lists all
the imports that are required for the class to function properly.

After you have added the package and import statements, we can begin building
our class by defining the actual class as well as defining the database connection.
Add the following code snippet directly after the last import statement in your

source file:

@RequestScoped
@Path (" /parks")
public class MLBParkResource

@Inject

private DBConnection dbConnection;

The preceding code snippet creates a request-scoped bean with a default URL
path of parks. It then defines a DBConnection variable that will be injected with
an instance using CDI by leveraging the DBConnection class that we created
previously in this chapter.

[107]

Creating and Deploying Java EE Applications

Next, we want to add two helper methods to our MLBParkResource class. We will
use these to get our database collection as well as a method for populating the
MLBPark model object. Add the following source code to the class directly after the
definition of the DBConnection variable:

private DBCollection getMLBParksCollection() {
DB db = dbConnection.getDB() ;
DBCollection parkListCollection = db.getCollection("teams") ;
return parkListCollection;

private MLBPark populateParkInformation (DBObject dataValue)
MLBPark thePark = new MLBPark() ;
thePark.setName (dataValue.get ("name")) ;
thePark.setPosition(dataValue.get ("coordinates")) ;
thePark.setId(dataValue.get (" id") .toString()) ;
thePark.setBallpark (datavalue.get ("ballpark")) ;
thePark.setLeague (dataValue.get ("league")) ;
thePark.setPayroll (dataValue.get ("payroll")) ;

return thePark;

}

Finally, we get to create our first actual web service using JAX-RS. The first
service we are going to create will return all of the available baseball stadiums
in the database. To add this method, modify your source code to include a
getMLBParksCollection () method, as shown in the following source code:

@GET ()
@Produces ("application/json")
public List<MLBPark> getAllParks() {
ArrayList<MLBPark> allParksList = new ArrayList<MLBParks>() ;

DBCollection mlbParks = this.getMLBParksCollection() ;
DBCursor cursor = mlbParks.find() ;
try {
while (cursor.hasNext ()) {
allParksList.add (this.populateParkInformation (cursor.next())) ;

}

finally ({
cursor.close() ;

}

return allParksList;

[108]

Chapter 5

The preceding method states that it will accept GET requests (the @GET annotation)
and will return data in the JSON format (the @produces annotation). The body of
the method gets the database collection where the park information is stored, and
then performs a £ind () query to retrieve all of the stadiums. The code then iterates
over each result and populates an MLBPark model object with the data provided by
the query. Once all of the results have been parsed, the results are returned by the
method in the JSON format.

The last method we need to add to our class is the findParksWithin () method that
will allow the requester to pass in coordinates that we need to search for baseball
stadiums that fall within the provided locations:

@GET

@Produces ("application/json")

@Path ("within")

public List<MLBPark> findParksWithin (@QueryParam("latl") float latl,
@QueryParam("lonl") float lonl, @QueryParam("lat2") float lat2,
@QueryParam("lon2") float lon2) {

ArrayList<MLBPark> allParksList = new ArrayList<MLBParks>() ;
DBCollection mlbParks = this.getMLBParksCollection() ;

// make the query object

BasicDBObject spatialQuery = new BasicDBObject () ;
ArrayList<double[]> boxList = new ArrayList<doublel[]>();
boxList.add (new double[] { new Float(lon2), new Float (lat2)

boxList.add (new double[] { new Float(lonl), new Float (latl)

BasicDBObject boxQuery = new BasicDBObject () ;
boxQuery.put ("$box", boxList) ;

spatialQuery.put ("coordinates", new BasicDBObject ("Swithin",
boxQuery)) ;

System.out.println("Using spatial query: " + spatialQuery.
toString()) ;

DBCursor cursor = mlbParks.find(spatialQuery) ;
try {
while (cursor.hasNext ()) {
allParksList.add (this.populateParkInformation (cursor.next()));

[109]

Creating and Deploying Java EE Applications

finally {
cursor.close () ;

}

return allParksList;

}

Lastly, we need to add a closing curly brace to end our class:

}

Once you have performed these code changes, add the source file and commit your
changes to your local repository:
$ git add .

$ git commit -am "Adding REST web services"

Verifying the REST web services

At this point, we should have everything created and committed to our local
repository and should be ready to deploy the REST services to our running OpenShift
gear. To ensure that you have all of the changes committed to your local repository,
change the root directory of the application and issue the following command:

$ git status

M Make sure that you do not have any untracked changes on your local
Q filesystem. If you do have untracked changes, add the files and commit
the changes.

Guess what? We are finally ready to deploy the application and test the web services
that we created. To deploy your mlbparks application to your OpenShift gear, enter
the following command:

$ git push

. Thegit pushcommand might take a few minutes to complete as Maven
needs to download all the dependencies that are specified in the pom.
" xml file. This only happens the first time a build is performed or if new
dependencies are added that are not available in the cache.

Once the application has been deployed, open your favorite web browser and
point to http://mlbparks-yourDomainName.rhcloud.com/ws/parks.

[110]

Chapter 5

If the application is successfully deployed, you should see a listing of all baseball
stadiums and teams as depicted in the following screenshot:

Maozilla Firefox - -
fle Edit ¥iew Higtory Bookmarks Tools Help
L.} hutppmilbparks... oud.c cmfwefparks | 4 |

* | & mibparks-packt.rheloud.com/v v 0 KDuck Q <L &

amendbacks”, "position™:[-112. 868662, 33 839799] , " id": "S3115:84127b 120090 18058 , “bal Ipark” - "Chase Field®, “payroll=:E9eeeses, ~league” :"National League©},
o pusxl.xun :|-84.38839,33, TB-I!NSI "d": 5]113L~!412]‘b12|ﬁ!ﬂc19459',“b.|Ll;urh‘ - JyluLl‘:ESD@Nw.‘luayuL NJlAUI‘Il League®},

les”, "position®:[-76. 620214 39 264072) ,"1d":"53113e04127b12b0%0c 10a52" , "bal lpark” : "0ricle Park", paymlI':QlonowB."leagne “American League®},{"name®:*Red
K", nosiunn : 127169617, 175311368412 7b12b89BC 18250, "ballpark™: "Fenway Park","payroll® heauauau 1eaque “hmerican League},{"name":"White Sox","position”:
[-87.BI3IRR, 41 HI93AT] " -, "ballpark=:-U.5. Callular Fisld-, payroil-:117808088, “league” :American League"}, {*nama":“Cubs” -ponnnn--
[-87.656447,41.947384] . " " "bal lpark”:"Wrigley Field”, "payrol1® 1183686888, "League™: "National League™}, {"nane™ :"Tndians®, *pasition®
[-81.605236,41. 495965 ballpark":"Progressive Field",“payroll®:71000000,"league®: "American League®},["name®: "Red posltlon

[-84.506065,39.097437 ", "ballpark":"Great American Dallpark®,*payroll”:107000000, *league”: "National League®}. (" pesltlen

[-83.048487,42. 3387531, " ", "ballpark":"Comerica Park","payroll®; 150000000, "leag American League~},{"ni i =
184954281, 39, T56436] , *, *ballpark®: *Coors Field®, “payroll®: 73000088, " League®: "Nat tonal League® b, { *nam -
95.357204,29.756816) " *. “ballpark®:"Minute Maid Park®, "payroll”:32088808, ° Leagu r paaxlxuu
118240974, 3407322 ", "ballpark":"Dodger Stadium®,"payroll”:213000000, " league posltlon
-94.480419, 39, 951019 - 'ballpark':'Kauffnan stadium®, “payroll”: /8000808, " league’ posltlon
80.22148, 25, T18142] 5=, “ballpark®: ‘Marlins Park-, "payrall ;45800088 *league= \"position-

117.883843, 33 . BAOAT
-87.972043,43.020758
-93.276282,44.961739
73.846399,49. 750477

Bal Lpark®:
", "ballpark"

“Angel St |r.||ul| “payrall®: 157000888, " Leag
payrolt 72000000, 'league
", “ballpark" “payroll”;80000060, “league”;
", "ballpark” nayrnu 84000069, “leaque”: "National League"},{"nane"
=, “bal Lpark=: Yu.m Stadium®, "payrol1*: 218085888, " League": “Anerican League}, {“name s "Phi L ies® , “posit ion®
* "ballpark®:"Citizens Bank Park®, payroll®: 150000000, "lesgue: "National Lesgue®}, [“name®: "Athletics®, "position”:
®,"ballpark®:"0.co Coliseum®, "payroll” 60000000, "League”:"Anerican League}, ("name”:"Pirates”, *position®:

=, "ballpark":"PRC Park","payroll® ;55000000 "league”: "Rational League},{"name";"Mariners", pnslnon
53113084127b17b898c 188, "ballpark™ : "safeco Field™, “payroll=: 71eseses, "o i
S3113084127h1 2089 18461 ", "bal lpark™ : "PETCO Park”, "payrol1” :AS6A6688, * league” :
113264127b120090c10a70", "ballpark” : "Tropicana Field®,*payroll”:60000000, "league”
53113e84127b12b690c18a71", “ballpark®; "AT&T Park",“payroll": 137080800, “league”: "National League®},{"name":"Rangers",“position”:
97 BH17EG, 32, PAURIT 13e84177b 1760902183777, "bal Lpark®: "Rangers Rallpark in Arlington®, “payro BUBHEEE, "leaque”: "American League~},{"name=:"Cardinals",pasition:
o9.19485, 38, 623978] , 3eB41271120B98c 184737, *bal Lpark® : *Busch Stadium®, *payrol1": 115888888, * league® : *Haticnal League®}, { “nane”: *Blue Jays®, "position®:
-79.390611,43.642349] . 3113e84127012b090c18a74", "ballpark” - "Rogers Stadium®, “payroll®:115000000, " league”: "American League”},{"name”:*Nationals”, “position”:
-77.007283,38.8730681 , "id":"53113e04127b12b0%0c18a75", "ballpark® : "Nationals Park®, *payroll®:113000000, *league®: "Hational League®}]

pasition”:
", "position®:
=, “position®;
" "pesition:

T73.92842,48.829234), 7
-75. 16648] 3. 90565“,‘

122.201571,37.751554], "id
-B0. BUHEG, 48, 4969471,
122, 35283, 47 391291,
117.155617,32. 785664] ,
-82.65152,27.7668507] , *i
122.3%9871,37. 7781431,

position®:

Creating the user interface

The final piece of our application involves creating a user interface that interacts
with the web services that we have developed previously in this chapter, and then
presents the information to the user in a cohesive and usable manner. Developing
the user-facing parts of an application is where the real joy of programming is for
me. I love being able to take all of the backend services and data and then present
the results in a new and fascinating way. For this example, we are going to create a
web-based frontend, but given that the application services we developed previously
in this chapter are accessible via HTTP requests, the possibilities are limitless as to
how you can present the information to the user. If you have experience developing
mobile or thick client applications, I suggest that you develop a frontend using these
mediums as well.

As you can recall, the requirements for the application state that the application
should display a map of the United States with a pin on the map representing the
location of each major league baseball stadium. The user should be able to zoom in
and out on the map, and the map should automatically update the baseball stadiums
based on the visible area on the users' screen. When the user clicks on a stadium,

the information about the team should be displayed to the user. To fully understand
how to develop the frontend portion of the application, we are going to satisfy each
requirement in small increments and slowly build upon each step to fully develop
the frontend application.

[111]

Creating and Deploying Java EE Applications

Creating the map using Leaflet and
OpenStreetMap

In order to create the map for our application, we are going to use two projects:
Leaflet and OpenStreetMap.

The description provided on the official project page for Leaflet superbly describes

the features and benefits of the project. The official page (http://leafletjs.com/)
states that Leaflet is a modern open source JavaScript library for mobile-friendly,
interactive maps. Vladimir Agafonkin and a team of dedicated contributors developed
it. Weighing in at just about 33 KB of JavaScript, it has all the features most developers
will ever need for online maps.

Leaflet is designed with simplicity, performance, and usability in mind. It works
efficiently across all major desktop and mobile platforms out of the box, taking
advantage of HTML5 and CSS3 on modern browsers while still being accessible
on older ones. It can be extended with a huge amount of plugins, has a beautiful,
easy-to-use, well-documented API, and a simple code base that is readable and
easy to understand.

OpenStreetMap is a collaborative project that provides free and open map data
that can be integrated with applications. We will be using the data provided by
OpenStreetMap in conjunction with Leaflet in order to produce a map that is
visible to users.

For more information on OpenStreetMap and to learn how you

can contribute to the project, visit the official page of the project
’ athttp://www.openstreetmap.org/.

The first thing we want to do is remove the existing index.html file that is created
by the OpenShift Online template for JBoss EAP applications. The existing index file
presents a "getting started" page that looks like the following screenshot:

[112]

http://leafletjs.com/
http://www.openstreetmap.org/

Chapter 5

Hle Edit View Higtory Bockmarks Jools Help
| Welcome to Openshift = |

+ [& mibparks-packt.hcloud com

Deploying code changes

OpenShift uses the Git version control system for your source code,
and grants you access fo it via the Secure Shell [SSH) protocol. In order
to upload and download code to your application you need to give us
your public 35H key. You can upload it within the web console or install
the RHC command line tool and run rhe setup fo generate and
upload your key automatically.

Warking in your local Git reposilory

If you created your application from the command line and uploaded
your SSH key, rhe will automatically download a copy of that source
code repository (Git calls this 'cloning’) to your local system.

If you created the application from the web consale, you'll need to
manually cione the repasitory o your local system. Copy the
application's source code Git URL and then run:

5 git clone <git_url> <directory_to_create>

4 Within your project directory
Commit your changes and push to OpenShirt

5 git commit -a -m 'Some commit message’

$ git push

» Learn more about deploying and building your application
* See the README file in your local application Git reposilory for
more information on the options for deploying applications.

Sample Applications

Welcome to OpenShift - Mozilla Firefox

vOl Qv

Welcome to your JBoss EAP application on OpenShift

Managing your application

Web Console

¥ou can use the OpenShift web console to enable additional capabilities
via carlridges, add c 5 !
cusiom domain aliases, and manage domain memberships.

access

Command Line Tools

Installing the OpenShift RHC client tools allows you complete coniral of
your cloud environment. Read mare on how lo manage your application
from the command line in our User Guide.,

Development Resources

JBoss Developer Studio

The JBoss Developer Studio is a full featured IDE with OpenShift
integration built in. It gives you the ability io create, edit and deploy
applications without having fo leave the IDE. Links to download, install
and use the JBoss Developer Studio for Linux, Mac OS X, or Windows
can be found on the JBoss Developer Studio tools page.

Debugging
View debugging information about the server environment including
memary pools.

* Developer Center

» User Guide

+ OpenShift Support

+ Stack Overflow questions for OpenShift

IRC channel at #openshift on freenode.net
 Git documentation

To remove this file, switch to the mlbparks/src/main/webapp directory and issue

the following commands:

$ git rm index.html

$ git commit -am "Remove existing index file"

Now that we have removed the existing index file, it's time to create a new one. Open
your favorite text editor and create a file named index.html under the mlbparks/
src/main/webapp directory. The first bit of information we want to add to the source
file is some basic CSS that specifies the look and feel of the Ul components as well

as adding dependencies to pull in remote JavaScript resources for both Leaflet and
jQuery. Add the following lines of code to the top of the index.html file:

<!doctype htmls>
<html lang="en">
<head>

<!-- Set the title of the application that will be displayed on the

browser window -->

[113]

Creating and Deploying Java EE Applications

<title>Map of MLB Parks</title>

<!-- Specifiy to load the correct remote stylesheet for Leaflet
depending on the browser -->
<link rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.5.1/leaflet.css" />
<!--[if 1lte IE 81>
<link rel="stylesheet" href="http://cdn.leafletjs.com/
leaflet-0.5.1/leaflet.ie.css" />
<![endif]-->

<!-- Load in the remote JS for JQuery -->
<script src="http://code.jquery.com/jquery-2.0.0.min.js"></script>

<!-- Load in the remote JS for Leaflet -->

<script src="http://cdn.leafletjs.com/leaflet-0.5.1/leaflet.js"></
scripts>

<!-- Specify that we will be using the OSWALD font provided by Google

-->
<link href='http://fonts.googleapis.com/css?family=oswald'’
rel="'stylesheet' type='text/css'>

<!-- Set the initial parameters for the viewport-->
<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no" />

<!-- Create custom CSS styles for our display-->
<style type="text/css">
body {

padding: 0;

margin: 0;

}

html, body, #map {
height: 100%;
font-family: 'oswald';

}

.leaflet-container .leaflet-control-zoom {
margin-left: 13px;
margin-top: 70px;

}

#map {
z-index: 1;

[114]

Chapter 5

}

#title {
z-index: 2;
position: absolute;
left: 10px;

}

</style>

</head>

With the preceding code snippet, as described in the HTML comments, we have
created our HTML head section that included the dependencies for external
JavaScript libraries as well as created a few custom styles for our interface. The next
thing we need to do is start creating our map by implementing the <body> section
of the HTML code. Add the following directly underneath the closing </head> tag
from the previous section:

<body>
<hl id="title">MLB Stadiums</hl>

The preceding code will create the body section of the HTML file and create a label
that will be displayed according to the #title CSS style that we created in the
<head> portion of the HTML document.

The next thing we want to do is create an attribution on the map that lets our users
know that we are using the Leaflet project for the mapping API and OpenStreetMap
for the data that powers the map that will be displayed to the user. Add the
following lines of code to your index.html file directly under the h1 title tag:

<div id="map"></div>
<scripts>
Number.prototype.toCurrencyString = function() { return "s$"
+ Math.floor (this) .toLocaleString() + (this % 1).toFixed(2).
toLocaleString () .replace(/"0/,'"); }

center = new L.LatLng(39.82, -98.57);
zoom = 5;
var map = L.map('map') .setView(center, zoom) ;

var markerLayerGroup = L.layerGroup () .addTo (map) ;
L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
maxzZoom: 18,
attribution: 'Map data © <a href="http://openstreetmap.
org">OpenStreetMap contributors, <a href="http://creativecommons.
org/licenses/by-sa/2.0/">CC-BY-SA"'
}) .addTo (map) ;

[115]

Creating and Deploying Java EE Applications

What did we just do? We started by creating a <div> element that will contain the
actual map that is displayed to the user. After creating the <div> element, we created
a function called toCurrencystring () that will format numbers to a currency
representation, which will be displayed when a user views details about a stadium.
We then set the starting center point of the map to the latitude and longitude of
39.82 and -98.57, respectively. If you are not familiar with these coordinates, don't
worry; this is simply the location of the middle of the United States. To not introduce
bias in which stadium is displayed first, I couldn't think of a better way to start the
application than by being stadium-agnostic. If you do have a favorite MLB team, you
can certainly change these coordinates to the city of your favorite team.

After we set the center point of the map, we defined the default zoom level the user
will experience when loading the web page. We then added the attribution tile and
set the maximum level we want the users to be able to zoom in to.

The last thing we need to do before we can test that our map is displayed correctly
is close the open <scripts>, <body>, and <html> tags. Add the following code to the
very bottom of the index.html file:

</scripts>
</body>
</html>

Once you have added the closing tags, save your changes to the file, and then deploy
the application using the following commands:

$ git add .
$ git commit -am "Adding map to the application"

$ git push

If there are no code errors, the deployment should be completed successfully, as
indicated by the following output displayed on your screen:

remote: Preparing build for deployment

remote: Deployment id is 02e426b5

remote: Activating deployment

remote: Starting MongoDB cartridge

remote: Deploying jbosseap cartridge

remote: Starting jbosseap cartridge

remote: Found 127.7.150.129:8080 listening port
remote: Found 127.7.150.129:9999 listening port

remote: /var/lib/openshift/5311180£500446£54a0003bb/jbosseap/standalone/
deployments /var/lib/openshift/5311180£500446£54a0003bb/jbosseap

[116]

Chapter 5

remote: /var/lib/openshift/5311180£f500446£54a0003bb/jbosseap
remote: Artifacts deployed: ./ROOT.war

remote: ----------------"-~-~-~------

remote: Git Post-Receive Result: success

remote: Activation status: success

remote: Deployment completed with status: success

Verifying that the map was deployed and is
responsive

In the previous section, we created and deployed the basics of a mapping application
using the Leaflet and OpenStreetMap projects. To verify that the map was created
correctly and is getting displayed to the user via the web application, open your
favorite browser and point to the URL of your application. If everything works as it
should, you will see the following map including the title in the top-left corner of the
map as well as the attributions of the projects we have used. Your browser should
look like the following screenshot:

Map of MLB Parks - Mozilla Firefox
Hle Edit View History Bookmarks Tools Help
| i Map of MLB Parks | *

- mibparks-packt.rheloud.com O Qv o < #&

MLB Stadiums

+

[117]

Creating and Deploying Java EE Applications

If you recall from the requirements, the application should also be responsive in
nature so that it can be viewed just as easily on a mobile device.

A responsive web design means that your application's user interface
should be able to adapt to different devices and resolutions without
' hindering the user experience.

To verify that our application is indeed responsive, pull out your smartphone and
load the URL of your application in the browser of your mobile device. As you can see
in the following images, the Leaflet library we are using for our mapping capabilities
implements responsive web design, gets displayed correctly on these mobile devices,
and gets updated based on the orientation of the device (portrait or landscape):

Carrier T 3:40 PM -

mibparks-packt.rhcloud.com ¢

MLB Stadiums

+

MLB Stadiums

[118]

Chapter 5

Getting the stadiums from our REST services

Now that we have verified that our map is deployed and is functioning correctly,
we are ready to add the stadium information as pins on the map. The first step in
order to accomplish this is to create a function that will perform the REST call to our
backend services that we created previously in this chapter. Open up the index.
html file and add the following code snippet before the closing </script> tag at the
bottom of the file:

function getPins (e) {
bounds = map.getBounds () ;

url = "ws/parks/within?latl=" + bounds.getNorthEast().lat + "&lonl="
+ bounds.getNorthEast () .1lng + "&lat2=" + bounds.getSouthWest () .lat +
"&lon2=" + bounds.getSouthWest () .1lng;

$.get (url, pinTheMap, "json")

}

The preceding code snippet might look complicated but it is really quite simple.
The first thing we do is define a function called getPins () that will contain the
logic for making the call to our REST service that we have already deployed as
part of our application.

After our function is defined, we get the area of the map that is currently visible
on the screen and assign it to the bounds variable. We then create a URL for the
endpoint we are calling and pass in the correct latitude and longitude for the
viewable area.

Finally, we create the REST call, passing in the URL of the endpoint as well as the
callback function (pinTheMap) that we will get processed once we receive a response
from the service.

Adding the stadiums to the map

In the previous section, we stated that we wanted to call a function named
pinTheMap when a response is received from the web service. In this section, we
are going to add this function to our index.html file directly after the getPins ()
function. Open the index.html file again and add the following code snippet
directly after the getPins () function but before the closing </script> tag at the
bottom of the file:

function pinTheMap (data) {
//clear the current pins
map.removelayer (markerLayerGroup) ;

//add the new pins

[119]

Creating and Deploying Java EE Applications

var markerArray = new Array(data.length)

for (var i = 0; i < data.length; i++){
park = datalil;
var popupInformation = "" + park.name + "</br>" + park.

ballpark + "</br>";

popupInformation += "Team Payroll: " + park.payroll.
toCurrencyString() + "</br>";

popupInformation += "<bsLeague: " + park.league + "</br>";

markerArray[i] = L.marker([park.position[l], park.position[0]]).
bindPopup (popupInformation) ;

}

markerLayerGroup = L.layerGroup (markerArray) .addTo (map) ;

}

The preceding function takes a data parameter that contains all of the baseball
stadiums' information for the viewable map area that is displayed on the screen. The
first thing the function does is clear any other pins (markers) on the map, as we are
going to replace them with the information passed in via the data variable. After

the existing pins are removed, the function iterates over each element in the array of
stadiums and creates a string that contains all of the information we want to display
about the stadium and the associated baseball team. We then add this string to an
array called makerArray and finally, we add this information to the map.

Automatically updating the map

The final bit of code that we need to add will provide the functionality that updates
the map if the user changes the zoom level or drags the map around to display a new
section of the United States. Open the index.html file again and add the following
code directly after the pinTheMap () function but before the closing </script> tag
and the bottom of the file:

map.on('dragend', getPins) ;
map.on ('zoomend', getPins) ;
map .whenReady (getPins) ;

Testing the application

Congratulations! You have just completed an application that includes a dynamic
map of the world that will also display all of the baseball stadiums in use by MLB.
To verify that everything is working correctly, deploy your changes using the
following commands:

$ git commit -am "Adding stadiums to map"

$ git push

[120]

Chapter 5

Once your application has been deployed, open your web browser and play around
with the application. The application you have just developed and deployed should
match the images at the beginning of this chapter.

Taking the easy way out

Don't hate me for telling you this at the very end of the chapter, but there is an easy
way out if you couldn't get all the source code typed in or copied over just right.
OpenShift allows you to create applications from existing Git repositories with a
single command. To try this out, delete your existing mlbparks application and enter
in the following command to create an application, add MongoDB, download the
mlbparks application source code, import the dataset, and deploy the code:

$ rhc app create mlbparks jbosseap-6 mongodb-2.4 --from-code https://
github.com/gshipley/mlbparks.git --timeout 3600

It is important to remember that when you delete an application gear
M on OpenShift, the local copy of the source code remains intact. For this
Q reason, you will need to delete the mibparks directory on your local
machine or the preceding command will fail if you executed it where
an mlbparks directory already exists.

Summary

In this chapter, we learned how to create a Java-EE-based application using the JBoss
EAP application server. As part of the development process, we learned how to use
the MongoDB NoSQL database as well as how to import data into the database. After
importing the data, we created a spatial index that allowed us to perform geospatial
queries to find all stadiums within a given latitude and longitude. Lastly, we learned
how to create a frontend for the application by taking advantage of two popular open
projects, which are Leaflet and OpenStreetMap. Using these two projects allowed us to
quickly create a responsive application that behaves in the same way regardless of the
device the user accesses the application from.

In the next chapter, we are going to continue to learn how to build and deploy a
Java applications to the OpenShift platform by converting this application to the
Spring Framework.

[121]

Creating and Deploying
Spring Framework
Java Applications

In this chapter, we are going to learn how to use OpenShift in order to create and
deploy Java applications that utilize the popular Spring Framework. To illustrate
how to do this, we are going to convert the mlbparks application that we wrote

in Chapter 5, Creating and Deploying Java EE Applications, so that it uses the Spring
Framework instead of Java EE. First, we are going to cover the history of the
framework, and then we will learn how to create Tomcat-based applications on

the OpenShift platform. After we have created our application, we will embed the
MongoDB NoSQL database and then begin our application coding. We will then
learn how to deploy our application from either the source code or binary .war files.

An overview of the Spring Framework

In the beginning, there was E]B, and EJB was bad. Why would I say that? I spent the
early part of my career as a Java fan and I believed that Java could do no wrong. I
labored for weeks, months, and even years creating EJBs for highly scalable enterprise
class applications. Even though I fully understood the specification, I felt that creating
these JavaBeans was overly complex and required a lot of arcane interfaces and
coding structure that didn't make sense to me. Having worked with a lot of other Java
developers at the time, I realized that many of my fellow developers in the industry
shared this same opinion. While you could accomplish fantastic results with the early
EJB implementations, our friends were coding circles around us in more simple-to-use
languages. Of course, the argument we would always make for sticking with EJB and
Java normally included loaded terms such as scalable and enterprise grade.

Creating and Deploying Spring Framework Java Applications

At that time, I was on a team of two Java developers inside of a larger team of
developers consisting of PHP and Perl developers. I was so adamant about the merits
of Java that my team implemented weekly coding challenges to see how quickly we
could solve programming problems in our respective languages. We would be timed
on the length of the implementation and then on the execution speed of the code.
Given that the size of challenges was broken up into small chucks, we would normally
spend 10 minutes or less on the actual implementation to solve the problem. This was
a great experience for me, as I developed strong friendships with other developers that
continue to exist today even though 15 years have passed. More importantly, I began
to see merits in other languages, except Perl, of course!

As I have gained more experience in my career and learned to open my mind to see
the value in other languages, I have learned an important lesson: a language is just a
tool, and you can accomplish great things regardless of your programming language
weapon. To develop great applications, you need to understand how to architect
software and put all the moving pieces together in an extensible manner. If you are

a hardcore Java enthusiast, I probably just committed the cardinal sin by speaking ill
of your language. Don't get me wrong; I love Java today and use it for many projects.
However, let's be honest with each other; the early version of web programming in
Java was really bad and not a joy to program in.

Where was I? Oh, sorry, we are supposed to be talking about the Spring Framework.
As I said previously, the early implementation of E]B left a bad taste in a lot of Java
developers' mouths. We wanted something simple and quick that still allowed us to
create enterprise-grade applications. We were tired of EJB and wanted to get back to
the roots of Java. Enter the Spring Framework!

The Spring Framework was a radical departure from the traditional way of
developing software using the Java programming language. The biggest selling
point of Spring was its ability to develop applications using only POJO(s). POJO
breathed new life into the language and dramatically reduced the complexity of
programming. It also introduced an inversion of control and had tight integration
with the Hibernate ORM project. Many felt that using Spring alongside Hibernate
was a marriage made in heaven and would stand the test of time.

The first 1.0 GA version of Spring was released in March, 2004, and I am happy to
report that this framework is still innovative and is still a very popular framework.
The framework was originally created by Rod Johnson but has gone through several
ownership changes over the years. Recently, VMWare spun the Spring Framework
out to its own company, which is called Pivotal.

[124]

Chapter 6

Spring Framework version | Release date
1.0 March, 2004

2.0 October, 2006
3.0 December, 2009
4.0 December, 2013

The Spring Framework consists of the following core modules:

Module name
IoC
AOP

Description

Inversion of the Control container

Aspect-oriented programming

Provides API(s) to communicate with

Data access
data stores

Provides API(s) to wrap code inside of

Transactions transactions with the rollback capability

The model view controller framework that

MVC -
creates applications

API(s) to create objects that can be accessed

Remote access
over the network

Authentication API(s) for authentication and authorization

API(s) for the implementation of
message-driven Java code

Messaging

On top of the core modules, several subprojects exist to provide API(s) that work
with social networks, Big Data, and even to help develop mobile applications.
For a complete list of Spring components, you can visit the official project site at
http://www.spring.io.

Creating a Spring application

Now that we have a good understanding of why Spring was created and the
modules available as part of the distribution, let's explore how to create and
deploy applications on the OpenShift platform. For the sample application,
called springmlb, we are going to convert the application we created in the
previous chapter to utilize this framework. Just to recap, the requirements
for the application are as follows:

* A single map that a user can zoom in and out

* As the user moves the map around, the map must be updated with all
baseball stadiums that are located in the shown area

[125]

http://www.spring.io

Creating and Deploying Spring Framework Java Applications

* The location of the stadiums must be searchable based on map coordinates
that are passed to the REST API

e The data should be transferred in the JSON format

* The web application must be responsive so that it is displayed correctly
regardless of the resolution of the browser

* When a stadium is listed on the map, the user should be able to click on the
stadium to view details about the associated team

The final state application will look like the following screenshot:

Map of MLR Parks - Masiis Firetor

MLB Stadiums

Now that we have our requirements and know what the end result will look like,
let's start creating the application.

Taking the easy way out

For the remainder of this chapter, we are going to build a Spring-based application
using the source code included as part of this chapter. If typing in the source code is
not your cup of tea, there are several options available to you.

The first option is to clone the Git repository that is available on GitHub. Head over
to the project page at https://github.com/gshipley/springmlb for instructions.

[126]

https://github.com/gshipley/springmlb

Chapter 6

The second option is to chain the RHC command arguments together to create

the application, embed the database, and download the source code —all with one

command. Keep in mind that after running the RHC command, you will still need

to import the JSON documents into the database, as outlined in this chapter. If you
want to take this approach, enter the following command:

$ rhc app create springmlb tomcat7 mongodb-2.4 --from-code https://
github.com/gshipley/springmlb.git

When the preceding command is finished, all you need to do is import the data.
Magic indeed!

Creating a Tomcat gear on OpenShift

You decided to do all of the coding yourself? Awesome; let's get to work.

If you are familiar with Spring, chances are that you are deploying your applications
on the popular Tomcat servlet container. While Spring-based applications will
certainly work and perform well on the JBoss suite of application servers, I have
found that developers typically deploy their Spring applications on top of Tomcat.
For this reason, we are going to learn how to create Tomcat-based gears on the
OpenShift platform.

The first thing we need to do is create a gear that will hold our application code.
In order to do this, enter the following command in your terminal prompt:

$ rhc app create springmlb tomcat

After entering the preceding command, you'll most certainly see the following
error message:

Short Name Full name

jbossews-1.0 Tomcat 6 (JBoss EWS 1.0)

jbossews-2.0 Tomcat 7 (JBoss EWS 2.0)

There are multiple cartridges that match Tomcat. Please provide the short name of
the correct cart.

This is because OpenShift supports multiple versions of the Tomcat servlet
container and the platform did not know which version you wanted to use for your
deployment. For the application that we are going to create, let's select the Tomcat 7
servlet container for our springmlb application with the following command:

$ rhc app create springmlb tomcat?7

[127]

Creating and Deploying Spring Framework Java Applications

If you received an error message stating that you have reached your
maximum number of gears, you will need to delete an application that
you are no longer using. The free tier for OpenShift Online only allows

% users to create a limited number of running applications without
paying for the service. I would suggest that now might be a good time
to review the affordable pricing plans available for the service and
consider upgrading to a pay-as-go account.

If the preceding command is executed successfully, your application gear is created
and the default template application is cloned to your local filesystem under the
springmlb directory.

. If you want to use a newer version of Tomcat than what is provided
& by default, such as an alpha version, we will cover how to do this
/" later in the book when learning about creating Do-It-Yourself (DIY)
application gears.

Adding the MongoDB NoSQL database to

our application

As we learned in Chapter 2, Creating and Managing Applications, OpenShift provides
several add-on cartridges that allow developers to extend the functionality of a gear.
The steps required to add a database and import data are exactly the same as what
we did in Chapter 5, Creating and Deploying Java EE Applications, where we imported
all of the stadium information.

To embed the MongoDB database into our existing springmlb OpenShift gear, run
the following command:

$ rhc cartridge add mongodb-2.4 -a springmlb

Once the command is executed and the database has been added to your application,
you will see the following information on the screen that contains the username and
password for the database:

Adding mongodb-2.4 to application 'springmlb' ... done
mongodb-2.4 (MongoDB 2.4)
Gears: Located with jbossews-2.0

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT
MONGODB_DB_PORT/

[128]

Chapter 6

Database Name: springmlb
Password: JE£8CTqQJSGY9

Username: admin
MongoDB 2.4 database added. Please make note of these credentials:

Root User: admin
Root Password: JEf8CTQJSGY9

Database Name: springmlb

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB
DB PORT/

To get started, SSH to your OpenShift gear for the springmlb application by issuing
the following command in your terminal prompt:

$ rhc app ssh springmlb

Once you are connected to the remote gear, you need to download the JSON file and
store it in the /tmp directory of your gear. To complete these steps, use the following
commands on your remote gear:

$ cd /tmp
$ wget https://raw.github.com/gshipley/springmlb/master/mlbparks.json

Once the file has completed downloading, take a quick look at the contents using
your favorite text editor in order to get familiar with the structure of the document.
When you are comfortable with the data that we are going to import into the
database, execute the following command on the remote gear in order to populate
MongoDB with the JSON documents:

$ mongoimport --jsonArray -d $OPENSHIFT APP NAME -c teams --type
json --file /tmp/mlbparks.json -h $OPENSHIFT MONGODB DB HOST --port
SOPENSHIFT MONGODB DB PORT -u $OPENSHIFT MONGODB DB USERNAME -p
SOPENSHIFT MONGODB DB PASSWORD

If the command was executed successfully, you should see the following output on
the screen:

connected to: 127.7.150.130:27017

Fri Feb 28 20:57:24.125 check 9 30

Fri Feb 28 20:57:24.126 imported 30 objects

[129]

Creating and Deploying Spring Framework Java Applications

To verify that the data was loaded properly, use the following command that will print
out the number of documents in the teams collections of the springmlb database:

$ mongo -quiet $OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB DB
PORT/$OPENSHIFT APP NAME -u $OPENSHIFT MONGODB DB USERNAME -p
$OPENSHIFT_MONGODB_DB_PASSWORD --eval "db.teams.count ()"

The result should be 30.

Lastly, we need to create a 2d index on the teams collection to ensure that we can
perform spatial queries on the data.

To add the 2d index to the teams collection, enter the following command on the
remote gear:

$ mongo $OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB DB PORT/$OPENSHIFT
APP NAME --eval 'db.teams.ensureIndex({ coordinates : "2d4" });'

Adding Spring support to the application

As we have learned previously in this book, OpenShift makes use of the Maven build
system for Java-based projects. Because of this, we can simply add the dependencies
for the Spring Framework to our pom.xm1 file that is included in the default template.
To accomplish this, open up the pom.xml file in the application's root directory

with your favorite text editor or IDE. The first thing we want to do is remove the
dependencies for PostgreSQL and MySQL by removing the following lines from the
<dependenciess> section of the file:

<dependency>

<groupld>org.postgresqgl</groupld>
<artifactIds>postgresgl</artifactIds>
<version>9.2-1003-jdbc4</version>

</dependency>

<dependency>
<groupId>mysgl</groupId>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.25</version>

</dependency>

Once we have removed these unneeded dependencies, we can add support for the
Spring Framework by adding the following code in the <dependencies> section of
the pom.xml file:

<dependencys>
<groupld>org. springframework</groupIlds>

[130]

Chapter 6

<artifactIds>spring-webmvc</artifactIds>
<version>4.0.2.RELEASE</version>

</dependency>

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactId>javax.servlet-api</artifactIds>
<version>3.1.0</versions>
<scope>provided</scope>

</dependency>

<dependencys>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactIds>
<version>2.3.1l</versions>

</dependency>

<dependencys>
<grouplds>org.springframework.data</groupId>
<artifactIds>spring-data-mongodb</artifactIds>
<version>1.3.4.RELEASE</version>

</dependency>

We also need to add a configuration item in the file to specify that we do not want
the build to fail if we are missing a web.xml file in our project. For this, add the
following line of code directly after the <configuration> opening tag under the
<builds> section of the file:

<failOnMissingWebXml>false</failOnMissingWebXml >

Once you have added the preceding XML code, save your changes to the file.

Adding a configuration to the application

Now that we have our application skeleton created and have added support for

the Spring Framework and associated dependencies, the next thing we want to do

is set up the connection information for our MongoDB database in our Java source
code. In order to do this, create a new directory under your application's root folder,
called src/main/java/org/springapp/config. Once this directory has been
created, create a new source code file named ApplicationConfig.java and add the
following code snippet:

package org.springapp.config;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.data.authentication.UserCredentials;

[131]

Creating and Deploying Spring Framework Java Applications

import org.springframework.data.mongodb.MongoDbFactory;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.SimpleMongoDbFactory;

import com.mongodb.Mongo;

@Configuration
public class ApplicationConfig {

@Bean
public MongoTemplate mongoTemplate () throws Exception
String openshiftMongoDbHost = System.getenv ("OPENSHIFT MONGODB DB
HOST") ;
if (openshiftMongoDbHost == null) {
return new MongoTemplate (new Mongo (), "springmlb") ;

}

int openshiftMongoDbPort = Integer.parselnt (System.
getenv ("OPENSHIFT MONGODB DB_PORT")) ;
String username = System.getenv ("OPENSHIFT MONGODB DB USERNAME") ;
String password = System.getenv ("OPENSHIFT MONGODB DB PASSWORD") ;
Mongo mongo = new Mongo (openshiftMongoDbHost,
openshiftMongoDbPort) ;
UserCredentials userCredentials = new UserCredentials (username,
password) ;
String databaseName = System.getenv ("OPENSHIFT APP NAME") ;
MongoDbFactory mongoDbFactory = new SimpleMongoDbFactory (mongo,
databaseName, userCredentials) ;
MongoTemplate mongoTemplate = new MongoTemplate (mongoDbFactory) ;
return mongoTemplate;

}

The preceding code snippet specifies the connection information in order to connect
to the MongoDB database that we embedded previously in this chapter.

Note that we are connecting to the database by utilizing the environment
variables for the username, password, host, and so on that are created by
g the OpenShift platform.

[132]

Chapter 6

Now that we have written our Java code that specifies our database connection
information, the next step is to create a webMvcConfig class that extends the
WebMvcConfigurerAdpater class, which ships as part of the Spring Framework.
This allows us to create a JSON view for our REST endpoint. Create a new file called
WebMvcConfig.java and place it in the src/main/java/org/springapp/config
directory. Once you have created the new file, add the following source code:

package org.springapp.config;

import org.springapp.rest.MLBParkResource;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.
WebMvcConfigurerAdapter;

import org.springframework.web.servlet.view.json.
MappingJackson2JdsonView;

@EnableWebMvc

@ComponentScan (basePackageClasses = MLBParkResource.class)
@Configuration

public class WebMvcConfig extends WebMvcConfigurerAdapter {

@Bean

public MappingJackson2JsonView jsonView()
MappingJackson2JsonView jsonView = new MappingJackson2JsonView () ;
jsonView.setPrefixJson (true) ;

return jsonView;

}

The last configuration item that we need to add to our application is the
SpringAppWebApplicationInitializer class that implements the
WebApplicationInitializer interface, which is a standard interface for the Spring
Framework. Create this file under the src/main/java/org/springapp/config
directory and add the following source code:

package org.springapp.config;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;

[133]

Creating and Deploying Spring Framework Java Applications

import javax.servlet.ServletRegistration.Dynamic;

import org.springframework.web.WebApplicationInitializer;

import org.springframework.web.context.support.
AnnotationConfigWebApplicationContext;

import org.springframework.web.servlet.DispatcherServlet;

public class SpringAppWebApplicationInitializer implements
WebApplicationInitializer

@Override
public void onStartup (ServletContext servletContext) throws
ServletException {
AnnotationConfigWebApplicationContext webApplicationContext = new
AnnotationConfigWebApplicationContext () ;

webApplicationContext.register (ApplicationConfig.class,
WebMvcConfig.class) ;

Dynamic dynamc = servletContext.addServlet ("dispatcherServlet",
new DispatcherServlet (webApplicationContext)) ;

dynamc.addMapping (" /api/v1/*") ;
dynamc.setLoadOnStartup (1) ;

}

The preceding source code loads our configuration and specifies the default URL
mapping of /api/v1 for the REST web services that we are going to create.

Adding the domain model to the application

At this point in the development process, we should have accomplished the
following tasks:

* Created a new application gear to hold our source code
* Added the MongoDB NoSQL database to our OpenShift gear

* Added configuration items to our Java source code

Now, it is time to add our domain model that represents the baseball stadium object.
Create a new file named MLBPark.java and place it in the src/main/java/org/
springapp/domain directory. Once the new Java file has been created, add the
following lines of code:

package org.springapp.domain;

import org.springframework.data.annotation.Id;

[134]

Chapter 6

import org.springframework.data.mongodb.core.index.Indexed;
import org.springframework.data.mongodb.core.mapping.Document;

@Document (collection="teams")
public class MLBPark {

@Id
private String id;

private String name;

@Indexed

private double[] coordinates;

private String ballpark;

private long payroll;

private String league;

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public double[] getCoordinates() {
return coordinates;

}

public void setCoordinates (double[] coordinates) {
this.coordinates = coordinates;

}

public String getBallpark() {
return ballpark;

}

public void setBallpark (String ballpark) {
this.ballpark = ballpark;

}

public long getPayroll() {
return payroll;

}

public void setPayroll (long payroll) {

[135]

Creating and Deploying Spring Framework Java Applications

this.payroll = payroll;

}

public String getLeague()
return league;

}

public void setLeague (String league) {
this.league = league;

Adding the REST endpoint to the application

The final piece of Java code that we need to add is the actual logic for the REST web
service that will be available at the /api/v1/parks URL. The class will contain the
following two methods:

* getAllParks (): This method will return a JSON document that contains all
the baseball stadiums that we imported previously in this chapter

e findParksWithin (): This method will return baseball stadiums within the
supplied latitude and longitude

Create a new source file named MLBParkResource. java, and place the file in the
src/main/java/org/springapp/rest directory. Once the file has been created,
add the following code snippet:

package org.springapp.rest;
import java.util.List;

import org.springapp.domain.MLBPark;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.geo.Box;

import org.springframework.data.mongodb.core.geo.Point;

import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;
import org.springframework.http.MediaType;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

[136]

Chapter 6

import org.springframework.web.bind.annotation.ResponseBody;

@Controller
@RequestMapping (" /parks")
public class MLBParkResource

@Autowired
private MongoTemplate mongoTemplate;

@RequestMapping (method = RequestMethod.GET, produces = MediaType.
APPLICATION JSON_ VALUE)
public @ResponseBody List<MLBPark> getAllParks() {
return mongoTemplate.findAll (MLBPark.class) ;

}

@RequestMapping (value="within", method = RequestMethod.GET, produces
= MediaType.APPLICATION JSON VALUE)
public @ResponseBody List<MLBParks> findParksWithin (@
RequestParam("latl") float latl, @RequestParam("lonl") float lonl, @
RequestParam("lat2") float lat2, @RequestParam("lon2") float lon2) {
Query query = Query.query(Criteria.where ("coordinates") .within (new
Box (new Point (lon2,lat2), new Point (lonl,latl))));
return mongoTemplate.find(query , MLBPark.class) ;

Deploying the application

At this point, we have all the pieces of the puzzle in order to deploy our application
and to verify that the REST web service is behaving correctly. To deploy the code, we
need to add all of the new source files that we created to our local repository, commit
the changes, and finally, push the new code to our OpenShift gear. Change to the root
directory of your application and execute the following commands:

$ git add
$ git commit -am "Adding configuration and REST endpoint"

$ git push

Once you push the changes, the build process will begin. The first time a Java
application is built using the Maven build system, it can take a few minutes as all
of the new dependencies are downloaded to your gear. On subsequent builds, the
process will be faster as the dependencies are cached in the local Maven repository.

[137]

Creating and Deploying Spring Framework Java Applications

Once your application has been deployed, try it out by visiting the link for
the application in your web browser at http://springmlb-packt.rhcloud.com/
api/vl/parks.

Ensure that you replace the example namespace, which is packt,
with the correct one for your OpenShift account.

If everything has been deployed correctly, you should see the following screenshot:

Mazilla Firefax — + %
Hle Edit View History Bookmarks Jools Help
L hitpsfpspringmib-.. comfapipv] fparks | 4 |
| & springmib packt theloue com gy v O [@r pucknucke q o &
{"1d": 15bab2 * . “name” ;"D dbacks®, "position®:mull, “ballpark®:“Chase Field®,“payroll®:05000000, " league”:"National League®},
"id":"53335020715bab219244e443" , "name": "Braves”, "position® :null, "ballpark=:"Turner Field","payroll®:@5000000,"league":"National League®},
=id" : "53335828f 15bab2 1924484447, = =i "Orioles™, "pesition”:inull, "ballpark™: "Oriole Park","payroll®:92009690, "league™:"American League'},
= 50" : "SITIAIAN 15kl 197 840445 =, "position”snull, "ballpark®: *Femary Park®, “payrol1: 158080808, " Leagque®: “Aser tcan League®},
=id":*53335020715bab219244e445" 11, "ballpark®:"U.5. (e'llular I'ie'ld'.'payrnll'!ll?ﬁm “league®:"American League®},
=id":"53335026815bab219244e447" “position®:null,"ballpark":“Wrigley Field","payroll":183060800,league": Natmnal League}
-id": "53335828F 15bab? 1974202487 , “name -position-:null, “ballpark: "Progressive Field-, "payroll-: 71666808, “league” :~american League™h,
1d®: "533358281 15bab2192440449%, sition® null, Ini Lpark® t American Bal |||.|rl| “payrol1®: 187660884, " league® : "Hat 1onal League®},
=id":*533350207 15bab219244e483" , " K payrou +150000000, *|eaque”: *Aerican League"}.
=id"; "53335028f 15bab219244e44b" , = H H tinnal League“},
- " " S3950281 15babZ 197420440 " , “name pasition” i1, “ballpark” : ‘Minute Maid P = :-american LeagueT},
14" : "533350281 15bab2192440444", ") “position”:null, "ballpark®: "Dodger Stadium® :"National League®},
=id":*53335020f15bab2192448442" " position®:null, "ballpark=:"Kauffman Stadium®, *payroll®:78000000, *league®:"Anerican League®},

53335028 15bab219249e44f ",

“pesition”:null,"ballpark=: "Marlins Park-", 'payroll':dbm,'league' Rational League™},
533358281 15bab2192440458%,

pasition :null, "bal lpark": "Angel Stadium®,“payroll®:157808688, *league” :"Aser ican League®},

"1d" : 533350281 15bab219244e451' “ballpark®:*Miller Park", payrall':?lom,'leaqu "Natlonal League®},
=id":"5333502015bab2192448452 =, "position® null bal'lpark *Target Field","payroll®:00000000,"leag ue"'!uerican League),

-id" : "53335078f 15bab 1974400453 “pasition®:null, “ballpark=:-Citi Field,"payroll-:B4808008, “league" sehational League™},

1 “position” i, “allpark® : “Yankee Stadium®, "payrol 1 : 716868688, * League® - Aser ican Loague™},

=id cux:ens Bank Parl: *payroll” 15menen Ieague‘:‘National League”}.
=id “0.co Coliseum™, naymu +B0000808, “league”: "American League},

-id s=FuC Fark® , ~payrolL-:55080008, ~League=: “ational League-},

id =:"Safeco Field™,"payroll™:71888888, " league™: "American League™h,

=id “PETCO Park® . "payroll”:65000000, "league®:"National League},

ropicana Field®, "payroll-:69696960, “league”:"American League"},

S*ATAT Park®, "payroll®:137808008, " league” : “Nat tonal League®},

*:*Rangers Ballpark in Arlington®, "payroll”:120000000, *league” : "Anerican League®),
pesnmn N *:"Busch Stadium®,"payroll®:115000000, "league”: "National League®},
position”:null, "ballpark™:"Regers Stadium”,"payroll”: 115860000, ~leaque™:"Aserican League™},

LTposition”:null, "ballpark®: "Kationals Park®, “payroll”: 113868606, *league® : "Nat sonal League®}]

:"Nat ionals

:"533358281 15bab? 1924404517, "na

Congratulations! You just wrote and deployed a Spring application complete with
MongoDB, REST-based web services, and geospatial capabilities.

Adding the web frontend

If you recall from Chapter 5, Creating and Deploying Java EE Applications, we are using
the Leaflet and OpenStreetMap projects in order to create our frontend. Since we
covered these technologies in the previous chapter, we will not be covering the
HTML source file in this chapter in depth. Instead, I will list the instructions for
removing the default index.html file that is part of the gear template and provide
the source code for the new file that will communicate with our REST web service.

The first thing we want to do is remove the existing index.html file that is created
by the OpenShift Online template for Tomcat-based applications. The existing index
file presents a getting started page that looks like the following screenshot:

[138]

Chapter 6

Welcame to OpenShift - Mozilla Firefoo s
Elle Edit View Higtory Hookmarks Iools Help
T Widc ome o GpenShilt I + |

| & springmib-packt sheloud com * 0| (@7 vuckoucksa a o &

Welcome to your JBossEWS (Apache/Tomcat) application on OpenShift

Deploying code changes Managing your application

OpenShift uses the Git version control system for your source code, and grants you Wb Console

access fo it via the Secure Shell {S5H) pratocol. In order to upload and download code You can use the OpenShift web console to enable additional capabilities via cartridges,
o your application you nead to give us your public S5H key. You can uplaad it within add collab s P i custom domain aliases, and manage
the weh consale ar ingiall the RHC eammand line taal and run | rhe s e Z : z -

domain memberships.
genarate and upload your key automatically
Command Line Tools

Working in your local Git repository Installing the OpenShift RHG chent tools allows you complate controd of your cloud

I you crealed your from the line and your SEH key, rhe environment. Read more on how to manage your application from the command line in
will aulomalically download a copy of thal source code reposilory (Gil calls this ‘cloning’) our User Guide,

to your local system.

If you created the application from the web console, you'll need to manually clone the Development Resources
repository to your local system. Copy the application’s source code Git URL and then JBoss Devek Studio
run:

The JBoss Developer Sludio is a full lealured 1DE with OpenShill integration buill in. It

gives you the ability lo creale, edil and deploy applhications withoul having to leave the
S git clome <git_urls cdirectory_to_creates IDE. Links to download, inslall and wse the JBoss Developer Studio for Linux, Mac 08
X, or Windows can be found on the JBoss Developer Studio tools page.

Within your project directory

& Commit your changes and push to OpenShift Debugging
$ git commit -a -m ‘Some commit message’ View debugging information about the server environment including memary pools.
§ git push

= Developer Cenler
User Guide
OpenShift Support

» Learn more about deploying and building your application :
» Stack Overflow questions for OpenShift
.

» See the HEADME lile in your local application Gil repository for more information

J 5 B 1pl o 5. "
on the oplions for deploying application IRC channel at #opanshift on freenode. net

Git decumentation

Buitun

£5 OPENSHIFT

oy P it

To remove this file, switch to the springmlb/src/main/webapp directory and issue
the following commands:

$ git rm index.html

$ git commit -am "Remove existing index file"

Now that we have removed the existing index file, it's time to create a new one.
Open your favorite text editor and create a file named index.html under the
springmlb/src/main/webapp directory. Once the file has been created, add the
following source code:

<!doctype html>
<html lang="en">
<head>
<title>Map of MLB Parks</title>

[139]

Creating and Deploying Spring Framework Java Applications

<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.5.1/
leaflet.css" />
<!--[if 1lte IE 8]>
<link rel="stylesheet" href="http://cdn.leafletjs.com/
leaflet-0.5.1/leaflet.ie.css" />
<![endif]-->
<script src="http://code.jquery.com/jquery-2.0.0.min.js"></scripts>
<meta name="viewport" content="width=device-width, initial-
scale=1.0, maximum-scale=1.0, user-scalable=no" /> <style type="text/
css">
body {
padding: 0;
margin: 0;
}
html, body, #map
height: 100%;
font-family: 'oswald';
}
.leaflet-container .leaflet-control-zoom {
margin-left: 13px;
margin-top: 70px;

}

#map { z-index: 1;}
#title { z-index: 2; position: absolute; left: 10px; }
</style>

</head>

The preceding code snippet creates the <HEAD> element of the HTML file and
specifies the JavaScript dependencies that we need for both the Leaflet and JQuery
projects. We also define some custom CSS styles that we will use while creating the
layout of the HTML page. We are now ready to create the <BODY> section of the
HTML file. Open the index.html file again and add the following code directly after
the closing </HEAD> tag:

<body>
<hl id="title"s>MLB Stadiums</hl>
<div id="map"></div>
<script src="http://cdn.leafletjs.com/leaflet-0.5.1/leaflet.js"></
scripts>
<scripts
center = new L.LatLng(39.82, -98.57);
zoom = 5;

[140]

Chapter 6

var map = L.map('map') .setView(center, zoom) ;
var markerLayerGroup = L.layerGroup () .addTo (map) ;
L.tileLayer ('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
maxzoom: 18,
attribution: 'Map data © <a href="http://openstreetmap.
org">OpenStreetMap contributors, <a href="http://creativecommons.
org/licenses/by-sa/2.0/">CC-BY-SA"'
}) .addTo (map) ;

In the preceding code snippet, we defined the center of the map that the user will see
when opening the web page. The center is set to the 39. 92 and -98.57 coordinates,
which is the center of the United States. We also created our attribution tag that
will be displayed on the bottom right-hand corner of the map.

It is now time for us to create a couple of functions to get the locations of the stadiums
by calling our REST API and then placing the pins or markers on the map in order to
display the location of each stadium. Open the index.html file and add the following
lines of code to the bottom of the file:

function getPins (e) {
bounds = map.getBounds () ;
url = "api/vl/parks/within?latl=" + bounds.getNorthEast () .
lat + "&lonl=" + bounds.getNorthEast () .lng + "&lat2=" + bounds.
getSouthWest () .lat + "&lon2=" + bounds.getSouthWest () .1lng;

$.get (url, pinTheMap, "json")

Number.prototype.toCurrencyString = function() { return "$"
+ Math.floor (this) .toLocaleString() + (this % 1).toFixed(2).
toLocaleString () .replace(/*0/,'"); }

function pinTheMap (data) {
//clear the current pins
map . removelayer (markerLayerGroup) ;

//add the new pins
var markerArray = new Array(data.length)
for (var i = 0; i < data.length; i++){
park = datalil;
var popupInformation = "" + park.name + "</br>" + park.
ballpark + "</br>";
popupInformation += "Team Payroll: " + park.payroll.
toCurrencyString() + "</br>";
popupInformation += "<bs>League: " + park.league + "</br>";

[141]

Creating and Deploying Spring Framework Java Applications

markerArray[i] = L.marker([park. coordinates [1], park.
coordinates [0]]) .bindPopup (popupInformation) ;

}

markerLayerGroup = L.layerGroup (markerArray) .addTo (map) ;

map.on ('dragend', getPins);
map.on ('zoomend', getPins);
map . whenReady (getPins)

</script>
</body>
</html>

Once the code has been added, save your changes, and then deploy the application
again with the following commands:

$ git add index.html

$ git commit -am "adding UI"

$ git push

Once the code has been deployed, point your web browser to the URL of

your application, and you should see the finished application as shown in the
following screenshot:

[142]

Chapter 6

Bl G Nwn Mghery feokicts ok ek
Vg of LD Pk +

& [pringrobpachs cked cor T R Y

MLB Stadiums

Having fun with the web Ul

Fantastic! At this point, our first iteration of the application is complete and
functional, but it's time to make a few tweaks to the user interface. One of the great
benefits of using projects such as Leaflet and OpenStreetMap is being able to switch
out the tiles that are displayed to the user. For instance, suppose we are tired of the
same look and feel of our application and want to spice it up a bit by showing the
terrain view. In order to accomplish this, let's switch out the tiling system in the
index.html file. The existing line that specifies the tiles is as follows:

L.tileLayer ('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
Change the preceding line of code to the following line of code:

L.tileLayer ('http://{s}.tile.stamen.com/terrain/{z}/{x}/{y}.png', {

[143]

Creating and Deploying Spring Framework Java Applications

Save and commit your change and then push the code to your OpenShift server.
When the deployment is complete, you should see the following new map available:

TP O MLB Faris - Paarilla Flrefos

Pretty fancy, isn't it? Why stop there; let's try out a watercolor view with the
following code change:

L.tileLayer ('http://{s}.tile.stamen.com/watercolor/{z}/{x}/{yv}.png', {

The map now looks like the following image:

[144]

Chapter 6

s of MLR Parks - Masilla Flrefor

licensed under Creative Commons. For more information on using these

is The preceding map tiles are made available by Stamen Design and are
tile sets and attribution, head over to http://maps.stamen.com/.

Summary

In this chapter, we learned how to create a Spring-Framework-based application
using the Tomcat 7 servlet container. Along the journey, we tackled tasks such as
using environment variables to configure the MongoDB database and how to create
REST-based web services. We also explored how to change the tile sets that are
displayed to the user when interacting with the application.

In the next chapter, we are going to learn how to use a continuous integration
environment by adding support for the popular Jenkins project to our baseball
parks application.

[145]

http://maps.stamen.com/

Adding a Continuous
Integration Environment
to Applications

In this chapter, we are going to learn how to add a continuous integration
environment to the mlbparks application that we wrote as part of Chapter 5, Creating
and Deploying Java EE Applications. For this chapter, we are going to use the popular
Jenkins build system, which is a fully supported cartridge on the OpenShift Online
platform. We will start by creating a Jenkins server and then add the Jenkins client to
our existing application. At the end of this chapter, any code changes we make to the
mlbparks application will be compiled by our Jenkins server instead of being built
on the OpenShift application gear where the mlbparks application resides.

What is continuous integration?

Continuous integration (CI) is not a new concept in the software development
industry, but it might be new to you. For this reason, I am going to cover the high-level
basics of what it is and why you would want to use it while developing applications
that you deploy to the OpenShift platform.

The implementation of a CI server gained popularity with the rush of development
teams practicing the Agile/Scrum methodology of development. In this type of
environment, developers work in iterations or sprints and the team should have a
shippable software project at the end of each cycle. Granted, not all features will be
implemented, but the idea is that after a sprint, the code that has been written should
be tested, should be able to be demoed, and should be able to be released if the team
chooses. Because of the amount of work that each team member puts in while working
on a specific feature independently of the rest of the team, many saw a challenge in
merging all of the code together at the end of a sprint without breaking other code or
having extensive merge conflicts.

Adding a Continuous Integration Environment to Applications

The CI movement was used to alleviate and ease the pain of massive merges at the
end of a sprint cycle by encouraging developers to write unit tests and commit their
code to the integration environment frequently. Once the code has been committed
to the CI environment, the unit tests will run and a full build will be performed. If
any compilation issues or test failures surfaced during the build, the team will be
notified and the developer will be able to resolve the errors quickly —after being
publicly shamed for breaking the build, of course!

In the OpenShift world, another use case for a Cl server is to allow for greater uptime
of your application. As you have learned throughout this book, when you push code
changes to your OpenShift gear, the build occurs on the remote gear. Once the build
is finished, the code is deployed to the application server. The OpenShift deployment
process performs the following steps:

* The developer makes code modifications

* The developer adds and commits all changes to the local Git repository

* The developer pushes the changes up to the remote OpenShift gear

* The prebuild action hooks are executed, if they exist

* The application server on the remote OpenShift gear is stopped

* The new code is built on the remote OpenShift gear

* The deployment of new application code is performed on the OpenShift gear

* The application server is restarted on the remote OpenShift gear

This might look good on the surface and will suffice for the majority of applications,
but there are a couple of gotchas that developers might not be aware of. First of all,
the application server is stopped and does not serve requests while the application
code is being compiled. Depending on the size of your application code base, this
could mean a significant amount of downtime while your application is being built.
Second, and most importantly, if the application fails to get built due to compilation
failures, the application server will not be restarted and your application will be in
outage until you resolve the build errors. Once the build errors have been corrected,
the developer then needs to start the build process all over again.

Implementing the Jenkins CI environment as an OpenShift cartridge can help
alleviate these two problem areas. Once the Jenkins server has been added to
your application, all builds will be performed on a separate builder gear and then
deployed once the compilation is successful. The new workflow while using the
Jenkins CI cartridge is as follows:

* The developer makes code modifications

* The developer adds and commits all changes to the local Git repository

[148]

Chapter 7

* The developer pushes code to the remote repository with a git
push command

* OpenShift is aware that you have Jenkins CI enabled and triggers a
build on the CI server

* Jenkins runs all tests and performs a build by creating a separate
builder gear that only lives for the life of the build process

* The application server is stopped
* The code is deployed

* The application server is started

Using a CI environment, such as Jenkins, with your OpenShift application ensures
that your OpenShift gear is only stopped while performing a deployment of code
that has been successfully compiled and has passed all tests. Furthermore, you can
enable hot deployment so that your application server is not stopped during

a deployment.

Summarizing this, a few of the benefits of leveraging the Jenkins CI environment for
your application include the ability to have archived build information, no application
downtime while the code is being built, failed builds not getting deployed to your
OpenShift gear, and more resources being available in order to build your application
as each build spins up a new gear for a short-lived period of time.

Adding support for a Jenkins server

Now that we understand a few of the advantages of using a CI environment for your
OpenShift applications, let's get started by adding the Jenkins server to our mlbparks
application that we created in Chapter 5, Creating and Deploying Java EE Applications.

To get started with adding CI support to the application, the first thing we need

to do is create an application gear that contains the Jenkins software. The Jenkins
cartridge is a top-level web cartridge on the OpenShift platform and is available just
like any other runtime. In order to create our server, issue the following command:

$ rhc app create ciserver jenkins

After entering the preceding command, the OpenShift platform will spin up a new
gear and deploy the Jenkins server software. You should see the following output
once the process is complete:

Using jenkins-1 (Jenkins Server) for 'jenkins'
Application Options

[149]

Adding a Continuous Integration Environment to Applications

Domain: packt
Cartridges: jenkins-1
Gear Size: default

Scaling: no

Creating application 'ciserver' ... done
Jenkins created successfully. Please make note of these credentials:
User: admin
Password: eXUWlFGnIsiq

Note: You can change your password at: https://ciserver-packt.rhcloud.
com/me/configure

Waiting for your DNS name to be available ... done

Cloning into 'ciserver'...
Your application 'ciserver' is now available.
URL: http://ciserver-packt.rhcloud.com/
SSH to: 535ed9225004467d8d000852@ciserver-packt.rhcloud.com

Git remote: ssh://535ed9225004467d8d000852@ciserver-packt.rhcloud.
com/~/git/ciserver.git/

Cloned to: /home/gshipley/code/ciserver

Run 'rhc show-app ciserver' for more details about your app.

1
> Make a note of the username and password, as this information will

be required in order to log in to the server.

[150]

Chapter 7

Verifying that the Jenkins server is up

and running

At this point, we should have a Jenkins server deployed and running on the OpenShift
service. To test this out, go to http://ciserver-yourDomainName.rhcloud. com.

1
‘\Q Ensure that you replace yourDomainName in the preceding URL with the

domain name of your account that you created previously in this book.

Upon entering the preceding URL, you will be presented with the Jenkins
authentication page. Provide the username and password that were displayed on
the screen when you created the server and click on the log in button, as depicted
in the following screenshot:

Jenkins - Mozilla Firefox -+ x
Ele Edit View History Bookmarks Ipols Help

Jﬁjenkms “ + |
- [ﬂ ttps://ciserver-packt.rhcloud.com/login?from=%2F vl [Q' DuckDuckGo OJ @ =
Jenkins —

Jenkins

User: (admin

Password’ (ggggeesseses

[E] Remember me on this computer

Help us localize this page Page generaled: Apr 28, 2014 8:44:17 PM REST API Jenkins ver. 1.509.1

[151]

Adding a Continuous Integration Environment to Applications

If the authentication was successful, you should see the main Jenkins dashboard,
as shown in the following screenshot:

Dashboard [Jenkins] - Mozilla Firefox - +
File Edit View History Bookmarks Tools Help

]Q Dashboard [Jenkins] U - ‘
« [©) @ nteps ciserver-packt.rhcloud.com v Ol [ﬂv DuckDuckGo Q| @ *®
.
Jenkins @ admin 1og out
Jenkins EMABLE AUTO REFRESH
[add description
= New Job Wielcome to Jenkins! Please create new obs to get started.
& peooe
=% Buid History

Manage Jenkins
V. Manage Jenkins
& o views

Build Queue

No builds in the queue.

Build Executor Status

EHe\E us localize this page Pag

d: Apr 28, 2014 B:48:17 PM REST API Jenkins ver. 1.508.1

Congratulations; you now have a Jenkins server running on your OpenShift account!

Embedding Jenkins into an existing
application

Now that we have a Jenkins server set up and running, we can add support to our
mlbparks application, which will allow all future builds to get compiled on builder

gears created by the Jenkins server. To embed the Jenkins support cartridge in your
application, use the following command:

$ rhc cartridge add jenkins-client -a mlbparks

[152]

Chapter 7

Once you enter the preceding command, you should see the following output,
which provides the status of the operation:

Using jenkins-client-1 (Jenkins Client) for 'jenkins-client'

Adding jenkins-client-1 to application 'mlbparks' ... done

jenkins-client-1 (Jenkins Client)

Gears: Located with jbosseap-6, mongodb-2.4

Job URL: https://ciserver-packt.rhcloud.com/job/mlbparks-build/

Associated with job 'mlbparks-build' in Jenkins server.

Verify that the Jenkins client was added to your application by running the
following command:

$ rhc app show mlbparks

You should see the following information indicating that Jenkins has been enabled
for the mlbparks application:

mlbparks @ http://mlbparks-packt.rhcloud.com/ (uuid:
5311180£500446£54a0003bb)

Domain: packt

Created: Feb 28 4:13 PM

Gears: 1 (defaults to small)

Git URL: ssh://5311180£500446f54a0003bb@mlbparks-packt.rhcloud.

com/~/git/mlbparks.git/
SSH: 5311180£500446£f54a0003bb@mlbparks-packt.rhcloud.com
Deployment: auto (on git push)

jbosseap-6 (JBoss Enterprise Application Platform 6)

Gears: Located with mongodb-2.4, jenkins-client-1

mongodb-2.4 (MongoDB 2.4)

[153]

Adding a Continuous Integration Environment to Applications

Gears: Located with jbosseap-6, jenkins-client-1

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT
MONGODB_DB_PORT/

Database Name: mlbparks
Password: g 6eZ22-fraN

Username: admin

jenkins-client-1 (Jenkins Client)

Gears: Located with jbosseap-6, mongodb-2.4

Job URL: https://ciserver-packt.rhcloud.com/job/mlbparks-build/

The Jenkins client has now been embedded into the mlbparks application. This
will ensure that all future builds will be performed on builder gears created by the
continuous integration server instead of the OpenShift gear that contains the JBoss
application server.

Using the Jenkins web console

Now that we have our Jenkins CI server up and running as well as the client added
to the application, it's time to take a look at the Jenkins web console in order to
understand the workflow that is followed when a developer pushes new source code
to the remote Git repository.

Open your web browser and go to the main Jenkins dashboard where you will see a
new item labeled mlbparks-build, as shown in the following screenshot:

[154]

Chapter 7

Dashboard [Jenkins] - Mozilla Firefox - + x
File Edit View History Bookmarks Tools Help
] Dashboard [Jenkins] @
-« [© & hitps://ciserver-packt.rhcloud.com v ‘ﬂ [@' DuckDuckGo ql @ %

(7) admin | log out

Jenkins ENABLE AUTO REFRESH
[add descrition
= New Job
- Al
Pecple
a Fes s w Name 1 Last Success Last Failure Last Duration

= Build History Ve
— LJ mibparks-build MN/A N/A N/A @

P Manage Jenkins

a My Views Leoend a RSS for all RSS for failures B RSS for just latest builds

Build Queue

No buikis in the queue.

Build Executor Status

E Help us localize this page Page generated: Apr 28, 2014 9:05:43 PM RBEST AP| Jenkins ver. 1.509.1

In order to view details about the build configuration, click on the mlbparks-build
item and then select Configure on the next page. This will display configuration
items for the build that will happen when the new code is pushed to the remote
mlbparks Git repository. This should look similar to the following screenshot:

mibparks-build [Jenkins] - Mozilla Firefox - + x
File Edit View History Bookmarks Tbols Help
£ mibparks-build [Jenkins] B
« » lﬂ https://ciserver-packt.rhcloud.com/job/mibparks-build/ v ")] [@v DuckDuckGo Q] 4} *®

Jellkills |, se (%) admin | log out

Jenkins mibparks-buid ENABLE AUTO REFRESH

4 Back to Dashiboard Project mlbparks-build

O,-\ Status

. [add description
= Changes
—_— Disable Project

“ Workspace

() D How r,‘ Workspace

@ Delete Project
(Ranoogas,

Build History (trend)

[E) RS for i) RSS for falures Permalinks

[155]

Adding a Continuous Integration Environment to Applications

A few interesting configuration items are displayed on this page, which will allow
you to fine-tune how your builds for the specified application are performed. Let's
look at each section that might be of interest.

The first interesting configuration is concerned with the builder. The following
configuration states that Jenkins should create a builder with a small size gear using
the JBoss EAP cartridge and that the Jenkins master will wait for 5 minutes for the
slave to come online, as shown in the following screenshot:

Application UUID (53111801500446/5420003bb)

Builder Size (srmal -@I
Builder Timeout (300000 .@'
Buiker Type [rednat-ibosseap-6 ©

If you have a large application that takes a considerable amount of time to compile,
you might consider moving the builder size to a medium or large size gear.

Gear sizes for OpenShift Online come in three flavors: small, medium,
M and large. Small gears consist of 512 MB of memory, medium gears
Q contain 1 GB of memory, and large gears can consume up to 2 GB of
memory. To get access to larger gear sizes, you must upgrade your
account to a paid offering on the platform.

The next configuration item of interest is the Source Code Management section.

It specifies the URL of the Git repository to be used, the branch to be used, and so
on. This section is important if you want to use Jenkins to build a project that exists
outside of OpenShift Online. This will be useful for developers who have an existing
repository that they would like to build from.

[156]

Chapter 7

A couple of common use cases for this are a repository that is hosted internally
behind the company's firewall or a private repository that is hosted on GitHub.

As you can see in the following screenshot, the default location is the Git repository
that is hosted on your application's gear:

Source Code Management

O cvs
& ait

Repositories

URL of repository (ssn-//5311180500446154a0003bb@mibparks-packt rhcloud.com/~/gitimibparks git L2
Advanced...
Delete Repository

Add

Branches tobuid Branch Specifier (blank for default): [+ &
Delete Branch
Add
Advanced...
Repository browser [(Auto) :] .@.
None
D Subversion

The last configuration item that is interesting is under the Build section. In this
section, you can specify a shell script for building the project. If you want a glimpse
under the hood of how OpenShift deploys a new build to an existing server, this
section of code should have your mouth watering.

[157]

Adding a Continuous Integration Environment to Applications

By default, the shell script that is executed is as shown in the following screenshot:

Execute shell ®

Command [-.urce $OPENSHIFT_CARTRIDGE_SDE_BASH

aliaz rsync="rszync --delete-after -az -e "$GIT_SSH'™

remove previous metadata, if any
rm -f 30PENSHIFT_HOMEDIR/app-deployments/current/metadata.jseon

if ! marker_present "force_clean_build"; then
don't fail if these rsyncs fail
zet +e
rsync Supstream_ssh:'$0PENSHEIFT_BUILD_DEPENDENCIES_DIR'
$0PENSHIFT_BUILD_DEPENDENCIES_DIR
rsync jupstream_ssh:'$0PENSHIFT_DEPENDENCIES_DIR' $0PENSHIFT_DEPENDENCIES_DIR
sel -e
£i

Build/update libs and run user pre_build and build
gear build

Bun tests here
Deploy new build
Stop app

$GIT_SSH Supstream_ssh
$GIT_COMMIT"™

"gear stop --conditional --exclude-web-proxy --git-ref

deployment_dir="$GIT_SSH jupstream_ssh 'gear create-deployment-dir’'

Push content back to application

rsync SOPENSHIFT_HOMEDIR/app-deployments/current/metadata.json $upstream_sshi:app-
depl
rsync --exclude .git $WORKSPACE/ $upstream_ssh:app-root/runtime/repo/

rsync $OPENSHIFT_BUILD_DEPENDENCIES_DIR Supstream ssh:app-root/runtime/build-
dependencies/

rsync $OPENSHIFT_DEPENDENCIES_DIR jupstream_ssh:app-root/runtime/dependencies/

yments/5deployment_dir/metadata.json

Configure / start app
$GIT_SSH $upstream_ssh "gear remotedeploy --deployment-datetime $deployment_dir™

See the listof available emironment variables

Building code with Jenkins

Now that you have the Jenkins client embedded into your mlbparks application
gear, any future git push commands will send the code to the Jenkins server
for compilation. To test this out, let's make a small code change to our mlbparks
application by editing the index.html file found under the /src/main/webapp
directory. Open the file and find the following line of code:

<hl id="title">MLB Stadiums</hl>

[158]

Chapter 7

Once you have found the preceding line of code, change the line of code as follows:

<hl id="title">MLB Stadiums with CI</hl>

In order to see our new build server in action, we need to commit the change to our
local repository and then push the change to our remote Git repository. For this,
enter the following commands:

$ git commit -am "Changing index message"

$ git push

You should notice a slightly different workflow than what you are used to seeing
when performing a build on the application server gear. If everything went
smoothly, you will see the following output:

Counting objects: 11, done.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (6/6), 463 bytes | 0 bytes/s, done.
Total 6 (delta 4), reused 0 (delta 0)

remote: Executing Jenkins build.

remote:

remote: You can track your build at https://ciserver-packt.rhcloud.com/
job/mlbparks-build

remote:

remote: Waiting for build to
Schedule. ...ttt ittt eeeeeeeeeeenseenssesssanssanssensssnssnnsss

remote: Waiting for job to
Lo 111 < 30 =Y o =

remote: SUCCESS

remote: New build has been deployed.

remote: ------------c--cmmomnooa--

remote: Git Post-Receive Result: success

remote: Deployment completed with status: success

To ssh://5311180£500446£54a0003bb@mlbparks-packt.rhcloud.com/~/git/
mlbparks.git/

d4b77ea..d6d%ae9 master -> master

[159]

Adding a Continuous Integration Environment to Applications

Awesome! We just performed a build using the Jenkins CI server, and then
automatically deployed the binary artifact to our JBoss EAP server. Don't believe me?
Load the mlbparks application in your browser and notice that the title for the map
has changed, as shown in the following screenshot:

Vieg T FCE Farka ~ Pl Tt
[vow Hwy Buokmats T b
mpiia-satd o1 Consnipe.. ¥ | b oo s

MLB Stadiums with CI |

.

You might have noticed that the build using the Jenkins server took a bit longer

than building the code on the application server gear. This is because there is some
overhead involved with dynamically creating a new builder gear on the OpenShift
platform and then having to perform a full Maven build without an available cache of
.jar files. Even though the build might have taken a bit longer, the benefits of using
a CI environment far outweigh the additional time required for building. While the
build is being performed, you can authenticate to the Jenkins web console and view
the status of the build as well as view the console output from the builder gear.

Troubleshooting the build

What happens if the build didn't get completed? This is a common problem that I

see when talking to users who are using OpenShift Online and integrating with the
Jenkins CI server. 99 times out of 100, it is because they have run out of free resources
on the service. This is an important concept to understand if your build failed as it

is most likely due to this problem. At the current time, the free tier for OpenShift
Online generously allows users to create up to three gears before requiring the user
to upgrade their account with more access.

[160]

Chapter 7

If you remember from earlier in this chapter, the Jenkins CI server creates a dynamic
gear on the fly for all builds with a profile that is specified in the build configuration
items. Even though this builder gear is short lived, it still counts against your gear
ratio on the platform. What this means is that in order for you to utilize the Jenkins
build server, you can only have two running gears when performing a build. As an
example, the mlbparks application will consume the following gears:

* One gear for the core JBoss EAP server that serves application requests.
This is the http://mlbparks-yourUsername.rhcloud. com gear.

* One gear for the Jenkins server. This is the http: //ciserver-
yourUsername.rhcloud.com gear.

* One gear that will be created dynamically in order to perform builds,
and then will be destroyed after the build is complete.

Manually triggering a build

One of the great things about integrating your application with the Jenkins CI
environment is the ability to start a new build without having to modify or push your
source code. To initiate a new build, log in to the Jenkins dashboard and select the
mlbparks builder. Once you are on this page, simply click on the Build Now button
that is located on the left-hand side of the screen, as shown in the following screenshot:

mlbparks-build [Jenkins] - Mozilla Firefox - + ¥
Eile Edit View History Bookmarks Tools Help
£ mibparks-build [Jenkins] 2 ”{::} Map of MLB Parks ® “ +* |
<« [©) @ htps ciserver-packt.rhcloud.com/job/mlbparks-builc vo [G' DuckDuckGo Q] @ F 3

() admin | log out

Jenkins mibparks-build ENABLE AUTO REFRESH

e Project mibparks-build
0, st
» S [‘fadd description

»...; Changes
= Disable Project

I’IE‘ Workspace

i} Buid Now E Workspace

G Delete Project

Last Successful Artifacts

7 Confiqure /:CT D nitkeen oB&
E]ROOTwar 38270 KB&
Build History (trend) e
& #1 Apr28 2014 9:37:31 PM | f Recent Changes
l—
F—’ RSS for al\r’ RSS for failures
Permalinks

« Last build (#1). 22 min ago
« Last stable build (#1). 22 min ago
* Last build (#1). 22 min ago

[161]

Adding a Continuous Integration Environment to Applications

Once you click on the Build Now button, a new build will be scheduled on the server
and will be reflected under the Build History section of the dashboard:

Build History (trend)
#1 Apr 28 2014 9:37:31 PM
y_aw aw W

[} RSS for all) RSS for faiures

For more information about the current build, you can click on build under the Build
History section in order to view the details, including the console output, as shown in
the following screenshot:

mibparks-build #1 Console [Jenkins] - Mozilla Firefox - +
File Edit View History Bookmarks Tools Help

£ mibparks-build #1 Console [Jenkins] U + ‘

<« [©) @& ntips ciserver-packt.rheloud.com/job parks-build/1/console v ol [Gv DuckDuckGo Q] @ *®
Jenkins mibparks-buiki # .
B Back fo Project Progress: %]

Console Output

Started by user Jenkins System Builder

Building remotely on mlbparksbldr in workspace /var/lib/openshift/535f01f5e@b8cdflb6@@0@18c/app-root
fruntime/repo

Checkout:repo / fvar/lib/openshift/535f01f5e0b8cdflb600018c/app-root/runtime/repo -
hudson.remoting.Channel@lbl8cda:mlbparksbldr

Using strategy: Default

Checkout:repo / fvar/lib/openshift/535f01f5e0b8cdflb600018c/app-root/runtime/repo -
hudson.remoting.LocalChannel@lfcd3ae

+ Wiping out workspace first.

G - Cloning the remote Git repository

Cloning repository origin

Fetching upstream changes from ssh://5311180f500446F54a0003bbamlbparks-packt. rhcloud. com/~/git
/mlbparks.git

Seen branch in repository origin/HEAD

Seen branch in repository origin/master

Commencing build of Revision d6d9ae9c5efbl2fee974ece5c218329a31099284 (origin/HEAD, origin/master)
Checking out Revision d6d9ae9c5efbl28ee974ece5c218329a31099284 (origin/HEAD, origin/master)

No change to record in branch origin/HEAD

No change to record in branch origin/master

[repo] $ /bin/sh -xe /tmp/hudson7290974363620184392.5h

+ source fusr/lib/openshift/cartridge_sdk/bash/sdk

++ '[' false true ']

++ 00_BASH_SDK=true

+ alias 'rsync=rsync --delete-after -az -e '\''fusr/libexec/openshift/cartridges/jenkins
/binfgit_ssh_wrapper.sh'y'''

+ upstream_ssh=5311188f58044675430003bb@mlbparks-packt.rhcloud. com

+ rm -f fvar/lib/openshift/535f81f5eBbBcdflbEBBR1BC/ /app-deployments/current/metadata.json

+ marker_present force_clean_build

+ '[' -f fvar/lib/openshift/535f@1f5eB8bB8cdf1bEBEB1BCc/app-root/runtime/repo//.openshift/markers
/force_clean_build ']’

+ set +e

+ rsync --delete-after -az -e /usr/libexec/openshift/cartridges/jenkins/bin/git_ssh_wrapper.sh
'5311188T500446f54a30083bb@mlbparks-packt. rhcloud. com: $0PENSHIFT_BUILD DEPENDENCIES DIR' /fvar/lib
fopenshift/535f01f5eBb8cdf1bbBEB1BC/app-root/runtime/build-dependencies/

+ rsync --delete-after -az -e /usr/libexec/openshift/cartridges/jenkins/bin/git_ssh_wrapper.sh
'5311188T500446f54a30083bb@mlbparks-packt. rhcloud. com: $0PENSHIFT_DEPENDENCIES DIR' /var/lib/openshift
/535f81f5eBbBcdf1b6BBB1BC /app-root/runtime/dependencies/

+ set -e

+ gear build

Building git ref 'origin/HEAD', commit d6d9ae9

Building jbosseap cartridge

Found pom.xml... attempting to build with 'mvn -e clean package -Popenshift -DskipTests'
Apache Maven 3.8.3 (r1875437; 2811-86-20 13:22:37-8408)

Maven home: fetc/alternatives/maven-3.8

Java version: 1.7.8_55, vendor: Oracle Corporation

Java home: fusr/lib/jvm/java-1.7.8-openjdk-1.7.08.55/jre

Default locale: en_US, platform encoding: ANSI_X3.4-1968

0S name: "linux", versien: "2.6.32-431.11.2.e16.bz844450.x86_64", arch: "i386", family: "unix"
[INFO] Scanning for projects...

[INFO]

.

[INFO] Building mlbparks 1.8

.

.

O, staus
E Console Output
View as plain text

_,; Edit Build Information

E Help us localize this page

REST API Jenkins ver. 1.509.1

[162]

Chapter 7

Summary

In this chapter, we learned how to implement the popular Jenkins continuous
integration environment with our applications that have been deployed on the
OpenShift Online platform. We started by creating a Jenkins server, and then moved
to embedding the Jenkins client to an existing application, mlbparks, that we created
in Chapter 5, Creating and Deploying Java EE Applications. After we embedded the
client, we explored some configuration items that can be modified in order to gain
more performance from our builds. Lastly, we performed builds using the new CI
environment using the git push command as well as manually starting a build
while using the web console of the Jenkins server.

In the next chapter, we are going to take team development a bit further by exploring
how to create multiple domains for an OpenShift account and how to add additional
developers with restricted access rights to an application in that domain.

[163]

Using OpenShift for
Team Development

In this chapter, we are going to explore how to use the OpenShift Online platform

to manage a team of developers that might be working on the same application or
deploying applications under the same account. Learning how to utilize the access
controls and permission system that are built into OpenShift will provide the account
owner, who might be paying the bills, the authority to grant specific rights to an
individual developer. The current access permissions that can be assigned by the
account owner are view, edit, and administer.

The view permission level only allows the user to view the details of an application
for the domain, such as the name, the add-on cartridges, the number of gears, the
amount of storage, and so on. A user with the view access role will not be able to
clone the Git repository, SSH to the gear, stop or start the application, or embed
add-on cartridges. This role is simply for viewing information about the running
applications under the domain.

The edit permission level will allow the user to perform all functions on the domain,
such as adding cartridges, creating new applications, deleting applications, viewing
and changing the source code, and triggering new deployments. However, this role
does not grant you the permission to modify, add, or delete users from the domain
access list.

The administer permission level allows you to give full control of the domain to
another user. Caution should be observed when granting this permission level,
as the added user will be able to modify any setting for the specified domain.

Using OpenShift for Team Development

Setting up multiple domains

OpenShift Online allows a user to create multiple domains that are associated with
their account. Keep in mind that domain in this context does not refer to the domain
name of the application, but a unique identifier for grouping your applications. You
can think of an OpenShift domain as a filing cabinet into which you can organize
your applications by placing them in the correct cabinet. To understand the impact
the domain has on your application, let's examine the URL for an application that

is hosted on OpenShift. The standard naming convention for an application URL is
http://appname-domainname.rhcloud. com.

As you can see in the preceding example, the domain that you choose will become
a part of the URL for the application. Given this, it is important to choose a domain
that accurately reflects what you are trying to accomplish with the domain.

A common use case for team development is to have a domain for different
environments that your application will go through before reaching production.
These domains can be named dev, ga, stage, and production. You can create
additional domains for your account by using the command line or the web console.

Adding multiple domains to an OpenShift account is only

available if you are on a paid plan to use the service. For more
s information on the available pay-as-you-go offerings, visit

http://www.openshift.com/pricing.

Adding a new domain with the command line

To add a new domain to your application using the command line, you can use the
RHC client tools that we have been using throughout this book. For example, to create
a new domain under your account called packtdev, issue the following command:

$ rhc domain create packtdev

If the domain was created as requested, you should see the following output on
the screen:

Creating domain 'packtdev' ... done

You may now create an application using the rhc create-app command.

You might have seen an error message while executing the preceding command.
The most common error message is as follows:

Creating domain 'packtdev' ... You may not have more than 1 domain.

[166]

http://www.openshift.com/pricing

Chapter 8

If you received the preceding message, remember that in order to create additional
domains, you need to be on one of the paid offerings for Openshift.com.

The other common error message that users might see is the following:

Creating domain 'packtdev' ... Namespace 'packtdev' is already in use.
Please choose another.

This error message indicates that another user has already created a domain with
the name that you are trying to use. Each domain that is created on the OpenShift
platform must be unique across all users of the system.

Once your domain has been created, you can view a list of all domains associated
with your account using the following command:

$ rhc domain list

Adding a new domain with the web console

The OpenShift web console provides a user interface to interact with and manage
the domains associated with your account. In order to create a new domain using
the web console, log in to the platform by opening up a web browser and going to
http://www.openshift.com Once you have authenticated to the web console,
you will see the main dashboard as depicted in the following screenshot:

Applications | OpenShift Online by Red Hat - Mozilla Firefox - 4
Elle Edit View History Bookmarks Tools Help
3 Applications | Openshift Online by... || + |

@ [@ https:/fopenshift.redhat.com/app/console/applicatio v 0| [G' DuckDuckGo Q| J_/L 3

2 author@grantshipley.com ~

OPENSHIFT ONLINE

Applications Settings Help

Applications 20f16
Available in domain packt You maywant to...
Use an empty domain
ciserver 1 o packtdev
Use your own domain name
Create a scalable application
m‘bpa rks 1 From the command line

|Boss Enterprise Application Platform 6, MongoDB 2.4, Jenkins Client The rhc client lets you:

Access logs
Save and restore backups
Connect directly to internal services

Add Application...

[167]

OpenShift.com
http://www.openshift.com

Using OpenShift for Team Development

Click on the See all domains link on the right-hand side of the screen, as shown in
the preceding screenshot. This will take you to the area of the console where you can
manage the domains associated with your account. In order to create a new domain,
click on the Add Domain... button that is underneath your existing domains.

Domains | OpenShift Online by Red Hat - Mozilla Firefox

Ele Edit View History Bookmarks Tools Help
£3 Domains | Openshift Online by Re... H + ‘

4 | @ hitps://openshift.redhat.¢ Domains | OpenShift Online by Red Hat Duc Go QI & -

OPENSHIFT ONLINE

Help

Domains

Your domains

pa(jkt 2 applications 2 gears 2 members
packtdev 0 applications 0 gears 1 member
Add Domain...

After clicking on the Add Domain... button, you will be presented with a screen
where you can provide the name of the domain that you want to add to your
account. Enter the name and then click on the Create button, as shown in the

following screenshot:

Create a Domain | OpenShift Online by Red Hat - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help
& Create a Domain | Openshift Onlin... H + ‘

da [0 iiiectiononchif codbot cominnaicagsole/domains
Create a Domain | OpenShift Online by Red Hat ¢

OPENSHIFT ONLINE

Applications Settings Help

Create a Domain

Domains group applications for collaboration and logical organization. Each domain name must be unique, and Is the suffix of the public
URLs we assign to your applications. See the User Guide for information about adding a custom domain names to an application.

http://applicationname- | packtga .rhcloud.com

Cancel Create

[168]

Chapter 8

Once the domain has been added, you will be presented with the settings page that
will allow you to modify the configuration for your account. We will cover this settings
page in more detail in Chapter 9, Using the OpenShift Web Console. For the time being, go
back to the domain list for your account to verify that the new item was successfully
added. If everything went smoothly, you should see the new domain listed as shown
in the following screenshot:

Domains | OpenShift Online by Red Hat - Mozilla Firefox
File Edit View History Bookmarks Tools Help
£ Domains | OpenShift Online by Re... ﬂ L ‘

- IH ttps://openshift.redhat.com/app/console/domains 'OHGV:':/:'_=:’IE: Q|

]
»

OPENSHIFT ONLINE

Applications Settings Help

Domains
Your domains
packt 2 applications ~ 2gears 2 members
packtdev 0applications ~ Ogears 1 member
packtqa 0 applications O gears 1 member
Add Domain...

Adding members to a domain

Now that we understand the different roles that can be assigned to a user for a
specific domain, it's time to learn how to add new members that will contribute to
the projects. The OpenShift platform allows you to add additional members to your
domain as long as the user you are adding has an existing account on the platform.
If you don't know any other users of the OpenShift platform and just want to try
some of these examples out, feel free to use the user account that I have created for
the examples in this book, which is authoregrantshipley.com.

You can add members to your domain using either the web console or the
command-line utilities. We will start by learning how to manage members by
leveraging the command line and then learn how to perform the same functions
via the web console.

[169]

Using OpenShift for Team Development

Managing members with the command line

In order to add members to a domain using the command line, we will take advantage
of the RHC command-line tools that we have used throughout the examples in

this book. The first thing we want to do is list the existing members of our domain.

To accomplish this task, open up your terminal window and type in the following
command, making sure to replace yourDomainName with the correct name of the
domain that you want to list the membership for:

$ rhc member list -n yourDomainName

M When performing actions that involve managing members,
Q you must specify the domain you want to perform the action
on by using the -n argument.

Since we haven't added any members to our domain yet, the only user with
membership should be you. For example, my username is authoregrantshipley.
com, so the output when I run the command is as follows:

Login Role

author@grantshipley.com admin (owner)

In order to add a new member to the domain, you simply use the member add
arguments as follows:

$ rhc member add authordev@grantshipley.com -n yourDomainName

Upon the execution of the preceding command, you should see the following message,
which indicates that the operation was successful:

Adding 1 editor to domain ... done
To verify that the new member was added, execute the following command:

$ rhc member list -n yourDomainName

[170]

Chapter 8

You should see the following output, which confirms that the new member
was added:

author@grantshipley.com admin (owner)

authordev@grantshipley.com edit

Modifying a member's role in a domain

An interesting thing that you might have noticed is that we did not specify the role
that we wanted to be applied to the member. In the case where a role is not specified,
the OpenShift platform will default the membership to the edit role. Let's imagine
that we made a mistake and actually wanted to add the new member under the
view-only role. In order to change a role for a member, you can simply execute the
rhc member add command again while also specifying the role to be applied to the
member. For example, to update the role for the author+devegrantshipley.com
member, we can simply issue the following command:

$ rhc member add author+dev@grantshipley.com -n yourDomainName --role
view

You should see the following output, thus confirming the operation was successful:

Adding 1 viewer to domain ... done

\
‘Q To view the available roles and the associated access rights for each one,

you can use the rhc member help command.

To verify that the new member was added, execute the following command:

$ rhc member list -n yourDomainName

[171]

Using OpenShift for Team Development

You should see the following output, thus confirming that the new member
was added:

author@grantshipley.com admin (owner)

authordev@grantshipley.com view

Deleting a member from a domain

The time will come when someone you have granted a membership role decides to
stop working on the application, moves to a new development team, or perhaps leaves
the company. When this happens, it is important that you are able to remove their
access to the domain and all associated applications. Performing this management task
is an easy and straightforward process by utilizing the rhc member remove command,
as shown in the following example:

$ rhc member remove authordev@grantshipley.com -n yourDomainName
Once the command has been executed, you should see the following confirmation:

Removing 1 member from domain ... done

Managing members with the web console

The OpenShift Online web console provides the membership management
functionality directly in your browser. In order to access this functionality, log in
to your OpenShift account and then navigate to the domain management screen
as shown in the following screenshot:

[172]

Chapter 8

Domains | OpenShift Online by Red Hat - Mozilla Firefox
Fle Edit View History Bookmarks JIools Help
£ Domains | Openshift Online by Re... U + |

v 0| [@v DuckbuckGo Q| & =

4 [@ hitpsy/jopenshift.redhat.com/app/console/domains

OPENSHIFT ONLINE

Help

Domains

Your domains

packt 2 applications ~ 2gears 1 member
packtdev O applications O gears 1 member
packtqa O applications O gears 1 member
Add Domain...

On this page, you can see the number of applications that belong to the domain, the
total number of gears consumed by all of the applications, as well as the number of
members who have access to the domain. In order to manage the membership for

a particular domain, simply click on the domain that you want to manage, and you
will be presented with the following screenshot:

Domain packt | OpenShift Online by Red Hat - Mozilla Firefox
Elle Edit View History Bookmarks Tools Help
€3 Domain packt | OpenShift Online ... U + |

4 [@ https:/jopenshifi.redhat.com/app/console/domal v 0 [@v Duck 0 Q| @ *

OPENSHIFT ONLINE

Help

Domain packt 2
Applications Seftings

[E3) Allow small gears
ciserver 1

Members
Jenkins Server

No one else can see this domain. Add members...

Delete this domain...

mlbparks 1

|Boss Enterprise Application Platform 6, MongoDB 2.4, Jenkins Client

[173]

Using OpenShift for Team Development

On this screen, you can see all the applications that you have deployed as well as

the number of gears that each application is consuming. On the right-hand side of
the screen, you will see the Members section that will list all the current members
with permissions for the domain. In order to add a new member to the domain,
simply click on the Add members... link. After clicking on this link, a dialog will be
presented where you can enter the username of the member you want to add as well
as the corresponding role that should be assigned to the member, as shown in the
following screenshot:

Domain packt | OpenShift Online by Red Hat - Mozilla Firefox - 4+
Fle Edit View History Bookmarks Tools Help
&5 Domain packt | OpenShift Online ... H +
[@ https;/jopenshift.redhat.com/app/console/domain/packt v 0| IG" DuckDuckGo Q| @ *

OPENSHIFT ONLINE

Applications

Domain packt 2
Applications Settings
@A\Iuw small gears
ciserver 1
Members
Jenkins Server
2 author@grantshipley.com Owner
author+dev@grantshipley.cc| Can edit =
mlbpa rks 1 Add auser...

|Boss Enterprise Application Platform 6, MengoDB 2.4, Jenkins Client
Cancel | Save

What can members do?
View - Read-only access to the domain and its applications.

Edit - Add, edit, control and delete applications inthe domain, including S5H and
Git access

Administer - Everything except change allowed gear sizes and the domain name.

[174]

Chapter 8

Once you have added the username and role for the new member, click on the Save
button. After the operation is complete, you will see a message indicating that the
addition of the member was successful.

Domain packt | OpenShift Online by Red Hat - Mozilla Firefox - 4
Fle Edit View History Bookmarks Tools Help
£3 Domain packt | OpenShift Online .. “ +* |
[@ nttps:/jopenshift.redhat.com/app/console/domain/packt v")”ﬂv DuckDuckGo Q| @ F 3

OPENSHIFT ONLINE

Help

Domain packt 2

<7 Added 1 member.

Applications Settings
[Allow small gears
ciserver =1
Jenkins Server EmEEE
2 author@grantshipley.com Owner

L author+dev@grantshipley.co... Can edit

mlbpa rks o Edit members...
JBoss Enterprise Application Platform 6, MongoDB 2.4, Jenkins Client

Delete this domain...

[175]

Using OpenShift for Team Development

Modifying a member's role and deleting a member

In order to modify the permissions or role that a member has for a domain, you can
simply click on the Edit members... link, and a dropdown that allows you to select
the new role list will be presented. Highlight the new role and click on the Save
button, as shown in the following screenshot:

Domain packt | OpenShift Online by Red Hat - Mozilla Firefox
Elle Edit View History Bookmarks Tools Help
€3 Domain packt | Openshift Online ... u * |

Q|

-
»

4« [@ hitps;/jopenshift.redhat.com/app/console/domain/packt v IQV:‘ ckDuckGo

OPENSHIFT ONLINE

Applications Sel s Help

Domain packt 2

Added 1 member.

Applications Seftings
53] Allow small gears
ciserver 1
Jenkins Server EmEEE
1 author@grantshipley.com Owner
A author+dev@grantshipley.co.
mibparks 1 P No role

Can view

|Boss Enterprise Application Platform 6, MongoDB 2.4, jenkins Client
Cancel || Save
Can administer
What can members do?
View — Read-only access to the domain and its applications.
Edit - Add, edit, control and delete applications in the domain, including SSH and
Git access
Administer - Everything except change allowed gear sizes and the domain name.

Delete this domain..

In order to delete a member from a domain, you can click on the x button that is
displayed next to the users role, and then click on the Save button.

Promoting code between environments

One of the most common questions that I get asked about the OpenShift Online
platform by larger organizations and development teams is how to perform code
promotion between different environments.

Organizations want to allow developers to have full control over the development
environment where they can create gears on demand in order to take advantage of
the speed with which they can develop the software.

[176]

Chapter 8

The QA team wants full access to the QA environment as well as to be the only
ones who can provision servers and deploy stable builds from the development
environment. Once the QA team has deployed the application to their environment,
they don't want pesky developers to be able to log in to the gears and modify
configuration settings or code that might invalidate their test cases.

In the production environment, the system administrators and release engineers
need full control over the environment while locking out both the development and
quality assurance teams.

Fortunately, using the information you have learned in this chapter, you should have
the tools and knowledge required to accomplish this common scenario by creating
additional domains and assigning proper membership and roles to each domain.

For this scenario to work properly, you will need to create three domains: dev, ga,
and production. Once the domains have been created, you can then begin assigning
access permissions to each member in the corresponding team that needs access

to that environment. The following diagram shows how you can configure your
account for this scenario:

Ve N
| Development | |
| staff I I
N v

/T T T TN
| | Production |
| I staff |
N J

Edit access

‘ Edit access ‘

Admin access Admin access Admin access

—
dev domain

TR T

—
ga domain

RS T

—
production domain

[T

[177]

Using OpenShift for Team Development

To fully understand this concept, let's look at each team in a bit more detail:

Development staff: This has full admin access to the dev domain. It will
allow the member of the operations team to add additional team members,
provision gears, create applications, embed cartridges, clone repositories,
and push code to the continuous integration environment. This team has
no access to the ga or production domains.

QA staff: This has full admin access to the ga domain. It will allow the
member of the operations team to add additional team members, provision
gears, create applications, embed cartridges, clone repositories, and deploy
code. This has edit access to the dev domain. Having this edit access is
essential in order to be able to create a copy of the final build that is
deployed to the development environment.

Production staff: This has full admin access to the production domain.
It will allow the member of the operations team to add additional team
members, provision gears, create applications, embed cartridges, clone
repositories, and deploy code. This has edit access to the ga domain.
Having this edit access is essential in order to be able to create a copy of
the final build that has passed all tests in the QA environment.

Promoting the code

The developers have been hard at work and have deployed the final version of the

application to their development environment. It is now time to hand this build over
to the QA team so that they can run their test suite and validate the release. Since the
QA team has edit permissions on the development domain and admin permissions on
the QA domain, they will be able to simply clone the existing deployment, including
all the runtimes, databases, data in the database, and any additional add-on cartridges.
Luckily, this can be accomplished with a single command that is provided as part of
the RHC tool suite. For example, if the application was named mlbparks, the QA team
can simply enter the following command:

$ rhc app create devmlb -n gaDomainName --from-app devDomainName/mlbparks

M Keep in mind that if the application you are cloning from the
Q development domain has a dependency on a Jenkins server, the
QA domain must also have a Jenkins server available for use.

[178]

Chapter 8

Once the preceding command has been executed, you will see the following output:

Application Options
Domain: gaDomainName

Cartridges: jbosseap-6 (addtl. costs may apply), mongodb-2.4, jenkins-
client-1

From app: mlbparks
Gear Size: Copied from 'mlbparks'
Scaling: no (copied from 'mlbparks')
Creating application 'devmlb' ... done
MongoDB 2.4 database added. Please make note of these credentials:
Root User: admin
Root Password: B8spTFvYFAK6
Database Name: devmlb

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT MONGODB
DB PORT/

Associated with job 'devmlb-build' in Jenkins server.
Waiting for your DNS name to be available ... done
Setting deployment configuration ... done

Pulling down a snapshot of application 'mlbparks' to

/var/folders/jd/bdhxtn214mgfpmy72dyyy4140000gn/T/mlbparks temp clone.tar.
gz ...
done

Restoring from snapshot /var/folders/jd/bdhxtn2l4mgfpmy72dyyy4140000gn/T/
mlbparks temp clone.tar.gz to

application 'devmlb'

Cloning into 'devmlb'...

Wait, what? Did that really just happen? Indeed, it did. We just cloned an existing
application that was created by a team member in another domain to our own
environment. Not only did we clone the application code, but we also cloned all
of the add-on cartridges and any data that was populated in the database. Pretty
powerful stuff!

[179]

Using OpenShift for Team Development

Adding access using SSH keys

So far in this chapter, we have discussed the concept of using the built-in
membership management system in order to allow additional users access to
your domain. Another option, although not recommended, is that you simply add
the user's SSH key to which you want to grant access to your OpenShift account.
The easiest way to accomplish this is to make the user send you their public SSH
key and upload it via the web console. For this, log in to the OpenShift console
and click on the Settings tab at the top of the screen.

Domain packt | OpenShift Online by Red Hat - Mozilla Firefox
Ele Edit Yiew Higtory Bookmarks Tools Help
03 Domain packt | OpenShift Online ... | & |

* & redhat.com v O) DuckDuck | I &

OPENSHIFT ONLINE

Domain packt 2

Applications Semings

ciserver
enkins Server
Owner
Can edit
mibparks

1Boss Ererprise Application Platform &, MongoD@ 2.4, jenking Client

Once you are on the Settings page, you will see all of the SSH keys that are associated
with your account. To add a new key, click on the button labeled Add a new key...
and paste the contents of the user's public key into the text area.

[180]

Chapter 8

Add a public key | OpenShift Online by Red Hat - Mozilla Firefox
Bic Edd View Hitory Bookmarks Tooks Help

3 add a public key | Openshift Onlin... | 4

* & redhat.com . w v 0| () DuckDuck q| I &

OPENSHIFT ONLINE

Settings

Add a public key

Key name * Before you can upload and download code, you need to upload a

aNewKey servers. If this Is your first time

¥Out S5H keys and remaote

Paste the contents of your public key file
Each gear In your application will have a copy of your public key -
this allows you to read and write to your Git repository as well as to
access your application gears via S5H,

Cancel Create

Once you have added the user's key, they will be able to clone the Git repository that
resides on the remote OpenShift gear as well as push code changes to the server.

. The user will not be able to perform operations on the application —such

& as adding cartridges or restarting the server —as these operations require
" the RHC command-line tools as well as an authorization token that can

only be obtained by knowing the username and password for the account.

You can also add an SSH key to your account using the following command:

$ rhc sshkey add <name> <path to SSH key file>

To remove a key, issue the following command:

$ rhc sshkey remove <name>

[181]

Using OpenShift for Team Development

Summary

In this chapter, we learned how to create and manage additional domains for your
OpenShift account. We also learned how to add new members to a domain and specify
the access role that is associated with each member. The available access roles are view,
edit, and administer. We also learned how to utilize the membership system in order
to promote code from one environment to another by cloning the existing deployed
application. Finally, we learned how to add SSH keys to your account that will provide
access to other developers in order to clone your Git repository as well as push new
code to your OpenShift gear.

In the next chapter, we are going to focus on the OpenShift web console and learn
how to manage your account and application from the browser. We will also learn
how to add a custom domain name to your application so that you can use any URL
that you own to access your application.

[182]

Using the OpenShift
Web Console

In this chapter, we are going to focus on and learn how to interact with the OpenShift
platform by using the web console that is available to all users of the system. We are
going to start by learning how to create applications. After we learn how to create
applications, we are going to explore how to embed add-on cartridges, and then
learn how to manage applications deployed to the platform. Finally, we are going to
learn how to create and apply a custom domain name for an application.

Creating applications

Previously in this book, we created several applications using the command-line
tools that are provided by the platform. There will often be times when you want
to quickly spin up an application, such as the Drupal CMS system, without having
to use the command line. A popular use of the web console is to browse available
community cartridges and application stacks, as all of these are integrated into the
web console. This can save you a lot of time by being able to view a list of approved
projects that you can get started with versus having to search Google to find what
you are looking for.

To get started with creating an application with the web console, the first thing you
need to do is log in to the platform by opening up your favorite browser and visiting
http://www.openshift.com.

Once the site is loaded, click on the LOG IN button on the right-hand side of the
page and provide your authentication details.

http://www.openshift.com

Using the OpenShift Web Console

1
‘\Q Your authentication details are the username and password that you

created in Chapter 1, Creating Your First OpenShift Application.

After you are successfully authenticated to the platform, you will be presented with
the application dashboard. In order to create a new application on the platform,
click on the Add Application... button as shown in the following screenshot:

Applications | OpenShift Online by Red Hat - Mozilla Firefox
Fle Edit Veew Higtory Bookmarks Jook Help
) hpplications | Openshift Online by... | & |

* @ redhat.com * 0 [(Br DuckDuck al . M

OPENSHIFT ONLINE

Applications

Applications 20f16

Available in domain packt YOU May Want ..

ciserver 1
rikins, Server

mibparks 1

JEoss Enterpr

Platform 6, MongoDB 2.4, jerkans Client From the command line

@ rhc client bets your

After clicking on this button, the system will display the first step of the create
application wizard where you can choose the runtime or application stack that
you want to use for your gear. This page is broken up into several areas:

* Featured applications area: This section of the page will display any
currently highlighted application stacks that are available for you to use.
This is normally populated with new and exciting cartridges that may
have been contributed by the community.

* Instant applications area: These applications are preconfigured code
repositories that normally consist of a full application stack for popular
applications and frameworks. A good example is the WordPress instant
application that includes the PHP runtime, a MySQL database, and the
WordPress source code —all ready to use. Instant applications are also
commonly referred to as quickstarts.

* Language-specific areas: These areas are dedicated to specific runtimes and
applications that are tagged for a specific language. The sections are broken
down into areas such as Java, Python, and PHP.

[184]

Chapter 9

* Code anything area: This area is set aside for developers who want to create
an application based on an existing custom cartridge that they have a URL
for. Developers also have the ability to create a DIY application, which will
be covered in Chapter 13, Using the Do-It-Yourself Cartridge.

Each of these areas will display a list of choices that the user can choose from when
creating a new application. An example of one of these sections is shown in the
following screenshot, which displays the area focused on PHP-based applications:

PHP see all

PHP 5.3

PHP 5.3 with Zend Server 5.6
PHP 5.4

PHP 5.4 with Zend Server 6.1
C:a.kePII—{F.’.

Reveal.js

Each item listed in the preceding screenshot contains a logo for the specific
application type on the left-hand side of the item and then the title for the choice. On
the right-hand side of the selection is a list of images that will help you understand
information on the cartridge you will be installing. The shield, as shown in the

PHP 5.3 selection in the preceding screenshot, lets the user know that this cartridge
will receive automatic security updates from the OpenShift team. The icon to the
right of the shield in the PHP 5.3 example is a symbol that represents a cartridge.
Furthermore, the icon displayed to the right of the CakePHP choice informs the user
that this is a quickstart.

[185]

Using the OpenShift Web Console

When choosing a cartridge, it is important to understand the difference

between those that receive automatic security updates and those that

don't. For cartridges that receive automatic updates, the OpenShift team

% will routinely patch cartridges that power your application to ensure that

L any security errata is applied. This allows the developer to have one less

thing to worry about. On the other hand, if automatic security updates
are not provided for the chosen cartridge, the developer is responsible for
updating and applying any security errata to the gear.

If you want to search for a particular application type, you can use the search box at
the top of the screen or browse all of the selections based on the tag associated with
the item, as indicated in the following screenshot:

OPENSHIFT ONLINE

1) Choose atype of application

Choose a web programming cartridge or kick the tires with a quickstart. E Cartridge - A managed runtme for your applicanon.
After you create the application you can add cartridges to enable ¥ Quickstart - A quick way to try out a new b jogy with code and libraries
dditional ¢ ilities like . metrics, and continuous build preconfigured. You ane responsible for updating core e for security
suppart with Jenkins. updates.
0 Recehes sstomatic security updates

@, or| Browselb;

Featured

Verlx 2.1

|Boss Fuse 6.1

Vertx Is a lightweight. high pertor

mmunity
uppors Apple’s Push

esigned for
an algha

use a medium
¥ Bype to create B0 mtmory
sh related aspects of their all gear may result

In slow interface responsheness.

[186]

Chapter 9

Using instant applications

To learn how to create OpenShift gears based on an instant application, we are
going to utilize the search box at the top of this page. Scroll to the top and enter
codeigniter, and then press the Enter key on your keyboard or click on the
magnifying glass on the right-hand side of the search box. Once the search is
complete, the Codelgniter quickstart will be displayed on the screen.

Codelgniter

Get up and running quickly with a Codelgniter installation on Openshift's
platform-as-a-service. The backend database is MySQL and the database
name is the same as your application name (using
$_ENV['OPENSHIFT_APP_NAMET).

Useful resources:

https://www.openshift.com/blogs/getting-started-with-php-codeigniter-
mongodb-paas

Learn more

If you want to dig a little bit deeper to understand all of the components that will be
installed on your gear as well as where the source code will initially be cloned from,
you can click on the Learn more link:

Codelgniter
REVIEWED | Added by sgoodwin on Friday, May 10, 2013
Deploy Now
Get up and running quickly with a Codelgniter installation on OpenShift's platform-as-a-service. 0
The backend database is MySQL and the database name is the same as your application name votes

(using $_ENV[OPENSHIFT_APP_NAMET).
Useful resources:

« hitps://www.openshift.com/blogs/getting-started-with-php-codeigniter-mongodb-paas
Uses php-5, mysql-5 with code from hitps:/github.com/openshift/CodelgniterQuickStart
Language: PHP

Website: hitp:/ellislab.com/codeigniter
Tags: framewe etart anm e

[187]

Using the OpenShift Web Console

As we can see from the preceding screenshot, this instant application will install
the PHP runtime, a MySQL database, and then clone the source for the Codelgniter

framework from the listed GitHub repository.

Codelgniter is a popular Model-View-Controller framework that is
+ written for the PHP language. It has a small footprint and was designed

for developers who want a simple toolkit to create robust and full-
g featured PHP applications. For more information on this framework, visit

the official project page at http://ellislab.com/codeigniter.

Now, click on the Deploy Now button at the top of the screen to be presented with

the second step of the application creation wizard.

OPENSHIFT ONLINE

Applications

Based On

Public URL

Source Code

Gears

Cartridges

Scaling

Help

se a type of a catio 2 | Configure the application 3

Codelgniter Quickstart +

Get up and running quickly with a Codelgniter installation on OpensShift's platform-
as-a-service. The backend database is MySQL and the database name is the same as your
application name (using $_ENV['OPENSHIFT_APP_NAME"]).

Useful resources:
https:/fww.openshift.com/blogs/getting-started-with-php-codeigniter-mongodb-paas

Learn more

http:// | php - packt j .rhcloud.com

You can also create a new domain.

Openshift will automatically register this domain name for your application. You can add
your own domain name later.
https://github.com/openshift/Codelgnite = Branch/tag

Your application will start with an exact copy of the code and configuration provided in this
Git repository. OpenShift may expect certain files to exist in certain directories, which may
require you to update your repository after creation

Small
Gears are the application containers running your code. For most applications, the small
gear size provides plenty of resources. You can also upgrade your plan te get access to
more gear sizes

pHP5.3 -| and MysqQLs.a |
Applications are composed of cartridges - each of which exposes a service or capability to
your code. All applications must have a web cartridge.

No scaling j

Openshift automatically routes web requests to your web gear. If you allow your
application to scale, we'll set up a load balancer and allocate mare gears to handle traffic
as you need it.

Back Create Application +H @

[188]

http://ellislab.com/codeigniter

Chapter 9

This step of the application's creation process has the following sections:

Based On: This will display information on the quickstart or instant
application template that will be used to create your gear. This area
also contains information to let you know whether the cartridge will be
automatically updated with security errata.

Public URL: This allows you to specify the name of the application that will
be appended to your OpenShift domain in order to create the full URL of the
application. If you have multiple domains associated with your account, a
drop-down list will be provided in order to allow you to select the domain
under which you want the application to be created.

Source Code: This area contains the optional GitHub repository that your
application will clone upon creation. For a quickstart or instant application,
this field will be automatically filled in with the correct repository. If you are
creating an application from scratch, you can leave this field blank.

Gears: This allows you to specify the size of the gear that the application will
reside in. If you are on the free plan, the only option available will be a small

gear. However, paid users have the option to select additional gear sizes with
more available memory and disk space.

Cartridges: This specifies the runtime cartridge that will be used for your
application. If you are creating an application based on a quickstart or
instant application, this area will also contain any add-on cartridges that are
required for the application to be deployed.

Scaling: This allows you to specify whether you want your application to
automatically scale up to additional gears based on the amount of HTTP
traffic that the gear is handling. This will be explained in more detail in
Chapter 12, Scaling Applications.

For this example, change the name of the application from php to codeigniter,
and then click on the Create Application button at the bottom of the screen.

[189]

Using the OpenShift Web Console

After the gear has been created, you will see a confirmation screen that displays
some vital information. This information will include the connection information for
the MySQL database and the command that clones your newly created application's
remote Git repository.

While the authentication and connection information is provided
M . e
~ for databases added to your application, it is important to
remember that the recommended way of connecting is through
the use of environment variables.

OPENSHIFT ONLINE

Applications

3) Nextsteps

v MySQL 5.1 database added. Please make note of these credentials:
Root User: adminZdC791J
Root Password: K39g6KCglLptY
Database Name: codeigniter

Connection URL: mysgl://S0PENSHIFT_MYSQL_DB_HOST:SOPENSHIFT_MYSQL_DB_PORT/

You can manage your new MySQL database by also embedding phpmyadmin.
The phpmyadmin username and password will be the same as the MySQL credentials above.

Your application has been created. Continue to the application overview page.

Making code changes Manage your app
Install the Git client for your operating system, and from your command line The console Is convenient, but if you need deeper
run control try our other client tools

git clone ssh://53643F65¢0b8cdaes1000802@codeigniter- Command-Line

packt.rhcloud.com/~/git/codeigniter.git/ All of the capabilities of Openshift are exposed through
cd codeigniter/ our command line tool, rhc. Follow these steps to install
the client on Linux, Mac OS X, or Windows.

Verify that your application has been created by visiting the site with your web
browser. If everything is working correctly, you should see the following screenshot:

[190]

Chapter 9

Welcome to Codelgniter - Mozilla Firefox
Ele Edit View History Bockmarks Iools Help
{""} Welcome to Codelgniter u + ‘

Q|

&
»

4+ | @ codeigniter-packt rhcloud.com v 9| [@v duckbuckco

Welcome to Codelgniter!

The page you are looking at is being generated dynamically by Codelgniter.

If you would like to edit this page you'l find it located at.
application/views/welcome_message.php

The corresponding controller for this page is found at.
application/controllers/welcome.php

If you are exploring Codelgniter for the very first time, you should start by reading the User Guide

Page rendered in 0.0147 seconds

Modifying the source code

Now that we have our application gear created, let's examine how to make
modifications to the source code. If you recall from Chapter 2, Creating and Managing
Applications, when an application is created using the command-line tools, part of the
process is to clone the remote Git repository to your local machine. When creating
applications using the web console, this step is not performed. In order to push new
code changes to your OpenShift gear, you will need to clone the repository for your
application. This can be performed in one of two ways. You can either use the RHC
command-line tools or use the Git command to clone the repository.

First, let's learn how to clone the repository using the Git command that is installed
on your operating system. Open a command line and navigate to the directory where
you want the source code to be located. Once you are in this directory, issue the
following command:

$ git clone <git remote url>

o Ensure that you replace <git_remote_urls> with the correct
~ URL that was provided to you on the confirmation screen when
Q you created the application. The URL for your Git repository is

also available via the rhc app show command.

[191]

Using the OpenShift Web Console

This will create a directory on your local filesystem named codeigniter. Switch
to this newly created directory and edit the welcome message.php file that is
located under the php/application/view directory. Change <hl>Welcome to
CodeIgniter!</hl>to <hl>Welcome to CodeIgniter on OpenShift!</hls.

Once you have modified and saved this file, you can push the changes up to
the OpenShift gear using the same process that you are already familiar with,
namely the commit and push commands:

$ git commit -am "Change welcome message"
$ git push
After the modified code has been deployed, verify that the change was successful

by opening your application in a web browser. If everything went as expected,
you should see the updated text as shown in the following screenshot:

Welcome to Codelgniter - Mozilla Firefox -+ x
Eile Edit View Histery Bookmarks Tools Help
("} Welcome to Codelgniter “ * |

4 @ codeigniter packt.rhcloud.com v 0] [@ v buckbuckso o I &

Welcome to Codelgniter on OpenShifi!

The page you are looking at is being generated dynamically by Codelgniter

If you would like to edit this page you'll find it located at:

application/views/welcome_message.php

The corresponding controller for this page is found at

application/controllers/welcome.php

If you are exploring Codelgniter for the very first time, you should start by reading the User Guide.

Page rendered in 0.0330 seconds

[192]

Chapter 9

As you can see, once you have cloned the application's repository to your local
machine, the workflow for changing the source code is the same, regardless of
what tool you used to create the application.

Now that we know how to clone an application using the Git command, let's
explore how to perform the same function with the RHC client tools. You might

be wondering why you would want to use the RHC command-line tools to clone

an OpenShift repository instead of using the Git command proper. Using the RHC
tools provides a lot of convenience to the developer in that the developer does not
need to know the URL of the Git repository. The developer only needs to know the
name of the application that he/she wants to clone locally. Furthermore, for the
RHC context-aware commands to work properly, you will need to use the RHC tools
to clone the repository, as this adds additional metadata to the .git/config file.

To clone the codeigniter application that we created using the RHC command-line
tools, enter the following command:

$ rhc git-clone codeigniter

The metadata that is added to the .git/config file as part of the clone
using the RHC command-line tools contains the app-1id, app-name,

and domain-name of the application.

Managing applications

The OpenShift web console allows you to perform many, but not all, administration
tasks for your application that the command-line tools allow. This includes adding
cartridges, restarting your application, adding custom domain names, managing
SSH keys, and deleting an entire application.

[193]

Using the OpenShift Web Console

Adding cartridges

Most applications that are created on the OpenShift platform will rely on add-on
cartridges to extend the functionality of the application. The most common use

case of an add-on cartridge is the addition of a database cartridge to an application.
During this section, we are going to learn how to embed add-on cartridges using the
web console.

Now that you are familiar with how to create applications using the web console,
create a new gear named cartadd and then navigate to the application's overview
page, as shown in the following screenshot:

OPENSHIFT ONLINE

Applications Settings Help

cartadd-packt.rhcloud.com chenge Started

packt

Cartridges Source Code

ssh://536460cb4382ec8252000b1d@cartad
Status Gears Storage

PHP 5.4 Started 1small 1GB

Pass this URL to 'git clone’ to copy the repository
locally.
Databases Continuous Integration
Add MongoDB 2.4 Enable Jenkins
Add MysSQL 5.5
Add PostgresSQL 9.2

Remote Access

Want to leg in to your application?

Members from domain packt
Or, see the entire list of cartridges you can add author@grantshipley.... Owner
author+dev@grantshi.. Can edit

Delete this applicaticn...

[194]

Chapter 9

On this page, you can see all of the current cartridges associated with the application
as well as have the ability to add additional ones. To view a list of all of the available
cartridges for the runtime that you have chosen for your gear, click on the Or, see the
entire list of cartridges you can add link. This will take you to a page that details all
of the available cartridges.

OPENSHIFT ONLINE

Applications

1 | Choose a cartridge type 2 | Configure the cartridge

Choose a cartridge to add to your application.

MongoDB 2.4

MongoDB is a scalable, high-performance,
open source NoSQL database.

MySQL 5.1

MySQL is a multi-user, multi-threaded SQL
database server.

MySQL 5.5

MySQL is a multi-user, multi-threaded SQL
database server.

PostgreSQL 8.4

PostgreSQL is an advanced Object-
Relational database management system

PostgreSQL 9.2

PostgreSQL is an advanced Object-
Relational database management system

Jenkins Client

The Jenkins client connects to your Jenkins
application and enables builds and testing
of your application. Requires the Jenkins
Application to be created via the new
application page. Based on Jenkins Client
1.509+

OpenShift Metrics 0.1

An experimental cartridge that
demonstrates retrieving real-time statistics
from your application. May be removed or
replaced in the future.

SwitchYard 0.8.0

SwitchYard is a lightweight service delivery
framework providing full lifecycle support
for developing, deploying, and managing
service-oriented applications.

Cron 1.4

The Cron cartridge allows you to run
command line programs at scheduled
times. Use this for background jobs and
periodic processing.

Has Dependencies

RockMongo 1.1
‘Web based MongoDB administration tool.

Requires the MongoDB cartridge to be
installed first

phpMyAdmin 4.0

Web based MySQL admin tool. Requires
the MySQL cartridge to be installed

[195]

Using the OpenShift Web Console

Let's install the MongoDB 2.4 cartridge by clicking on the box for that selection. Once
you click on the add-on cartridge that you want to embed in your gear, you will be
shown a confirmation page that displays information about the cartridge. To confirm
that you want to embed this cartridge, click on the Add Cartridge button at the
bottom of the screen.

1 | Choose a cartridge type 2 | Configure the cartridge 3 | Nextsteps

MongoDB 2.4
MongoDB is a scalable, high-performance, open source NoSQL database.

Website: http//www.10gen.com
77 OpenShift maintained

U Receives automatic security updates

Using Gear Size Small

Do you want to add the MongoDB 2.4 cartridge to your application?

Back Add Cartridge +0

Once the cartridge has been added to your gear, you will see a confirmation screen
that will provide you with the details that you will need in order to authenticate to
the database.

If a particular add-on cartridge that you want to use is not listed on
the Add Cartridge page, you can search GitHub for community-based
R . . .
cartridges, such as Redis, that you can install and use on the platform.

Restarting an application

In order to restart an application from the web console, browse to the application's
overview page of the gear you want to restart by clicking on the application name
from the OpenShift dashboard. Once you are on the application's page, restarting
the gear is as simple as clicking on the Restart button in the top-right corner of the
page. For example, if you wanted to restart the cartadd application that we created
in the previous section of this chapter, you can click on the button highlighted in the
following screenshot:

[196]

Chapter 9

cartadd-packt.rhcloud.com change Started 1
Restart Application
Cartridges Source Code
ssh://5364€
Status Gears Storage
PHP 5.4
Started 1small 1GB s T
locally. Confirm restart of application
‘cartadd?
MongoDB 2.4 Database: cartadd User: admin Password: show
Remote Acces
Want o log in’ Cancel Restart
Continuous Integration Tools and Support
Enable Jenkins Add 10gen Mongo Members from domain packt
Monitoring Service Agent author@grantshipley... Owner
Add RockMongo 1.1 author+dev@grantshi... Can edit

Once the application has been restarted, you will receive a confirmation message on
the application's overview page.

There is currently no way to stop or restart a specific cartridge, such as

MongoDB, via the web console. If you only want to restart a specific
= cartridge instead of the entire gear, you will need to use the RHC

command-line tools.

Adding a custom domain name and
SSL certificate

OpenShift Online supports the use of custom domain names for an application so
that a user does not have to use the automatically generated one that is based on the
application name and domain for the users' account. For example, suppose that we
want to use http://www.example.com domain name for the cartadd application
that we created in a previous section of this chapter. The first thing you need to do
before you set up a custom domain name is buy the domain name from a domain
registration provider.

Once the domain name has been purchased, you have to add a CNAME record for
the custom domain name with the DNS provider for your domain. Once you have
created the CNAME record, you can let OpenShift Online know about the CNAME
using the web console.

For more information on what a CNAME record is, it is suggested that
s you visit http://en.wikipedia.org/wiki/CNAME_ record.

[197]

http://en.wikipedia.org/wiki/CNAME_record

Using the OpenShift Web Console

To add a custom alias to the cartadd application, browse the application's overview
page and click on the change link next to your application's name.

cartadd-packt.rhcloud.com change Started 1 <

packt

In the following page, you can specify the custom domain name for your application.
Go ahead and add a custom domain name of www.example.com, as shown in the
following screenshot:

2 author@grantshipley.com ~

OPENSHIFT ONLINE

Applications Settings Help

New Alias for cartadd
Aliases allow you to use your own domain names for your apps on Openshift. To set up your own domain name for app cartadd
1. Set up the CNAME record with your DNS provider 2

2. Configure OpensShift to use your alias:

Application URL cartadd-packt.rhcloud.com
The current application URL. Set up a CNAME record with your DNS provider pointing to this URL.

Domain name* | www.example.com|

Enter your custom domain name. e.g. www.example.com or something.example.com

When adding a custom domain name for your application, you also have the option
to add a custom SSL certificate for the domain name that you are adding. For this,
you will need to first purchase an SSL certificate from a provider, and then upload
the certificate, certificate chain, private key, and pass key.

[198]

Chapter 9

SSL Certificate

Optionally upload an SSL certificate for your custom domain alias to allow secure HTTPS communication with your app.

SSL Certificate * | Browse... | Nofile selected.

Certificate files must be Base64 PEM-encoded and typically have a .crt or .pem extension. You may
combine multiple certificates and certificate chains in a single file, but the RSA or DSA private key must
always be provided In a separate file.

ssLCertificate Chain | growse... | Nofile selected.
Optionally you can provide a certificate chain in a separate PEM-encoded file.
Certificate Private Key* | growse... | Nofile selected.

RSA or DSA private key file for the root certificate in PEM-encoded format.

Private Key Pass Phrase | esssess

Pass phrase for the certificate private key, required if the provided private key is encrypted.

Cancel Save

‘“Q Adding a custom SSL certificate is only available on one of the many

pay-as-you-go plans offered by the OpenShift platform.

Once you have added the custom domain and optionally added a custom SSL
certificate, you should see the new domain name listed on the application's
overview page.

If you point your web browser to http: //www.example.com, you
+ will notice that your application is not displayed. This is because the
% domain name has not been set up with a DNS registry. In order to verify
that this vhost was added to your application gear, you can add an entry
in your /etc/hosts or equivalent file for your operating system.

[199]

Using the OpenShift Web Console

Creating a URL for application cloning

A great feature of OpenShift that is not widely known is its ability to create a URL
that will populate the application creation fields on the web console in order to
allow someone to clone your application with a single click. This is a very powerful
feature if you want to share the application code among a group of developers, as it
eliminates the headache of a new developer having to set up an environment. As an
example, we are going to create a single click URL for the mlbparks application that
we wrote as part of Chapter 5, Creating and Deploying Java EE Applications. The URL is
broken down into the following parts:

* The main domain name for the OpenShift Online service that creates
custom applications (https://openshift.redhat.com/app/console/
application_types/custom).

* The cartridges that will be used for the application passed in as an array since
more than one cartridge might be needed for the application. For instance,
the mlbparks application requires the JBoss EAP cartridge as well as the
MongoDB cartridge:

cartridges [] =jbosseap-6&cartridges [] =mongodb-2.4

* The initial Git repository for the application. For the mlbparks application,
we are going to use the GitHub repository that contains the source code
from Chapter 5, Creating and Deploying Java EE Applications (initial git_
url=https%3A%2F%2Fgithub.com/gshipley/mlbparks. git).

* The last argument, which is name=mlbparks, is the default name that will be
populated when the user clicks on the URL.

The complete URL that incorporates all of the preceding arguments to perform this
magic is https://openshift.redhat.com/app/console/application_types/
custom?cartridges[] =jbosseap-6&cartridges[] =mongodb-2.4&initial git_
url=https%3A%2F%2Fgithub.com/gshipley/mlbparks.git&name=mlbparks.

M For an even better experience when sharing these custom URLs, you
might consider using a URL shortening service that makes it even easier
for a new user to get started deploying your application.

[200]

https://openshift.redhat.com/app/console/application_types/custom
https://openshift.redhat.com/app/console/application_types/custom
https://openshift.redhat.com/app/console/application_types/custom?cartridges[]=jbosseap-6&cartridges[]=mongodb-2.4&initial_git_url=https%3A%2F%2Fgithub.com/gshipley/mlbparks.git&name=mlbparks
https://openshift.redhat.com/app/console/application_types/custom?cartridges[]=jbosseap-6&cartridges[]=mongodb-2.4&initial_git_url=https%3A%2F%2Fgithub.com/gshipley/mlbparks.git&name=mlbparks
https://openshift.redhat.com/app/console/application_types/custom?cartridges[]=jbosseap-6&cartridges[]=mongodb-2.4&initial_git_url=https%3A%2F%2Fgithub.com/gshipley/mlbparks.git&name=mlbparks

Chapter 9

Deleting an application

The OpenShift web console makes it extremely easy to delete an application that you
no longer need. This is important if you want to free up a gear for use by another
application. To learn how to perform this task, let's delete the cartadd application
that we created earlier in this chapter.

Navigate to the application's overview page for the cartadd application and click
on the Delete this application... button that is in the bottom right-hand corner of

the page.

OPENSHIFT ONLINE

Applications Help

cartadd-packt.rhcloud.com change Started 1

packt

Cartridges Source Code

- - s5h://536460cb4382ec8252000b1d@cartad
Status Gears Storage

PHP 5.4 Sel eI Pass this URL to 'git clone' to copy the repository
locally.
MongoDB 2.4 Database: cartadd User:admin Password: show
Remote Access
Want to log in to your application?
Continuous Integration Tools and Support
Enable Jenkins Add 10gen Mongo Members from domain packt
Monitering Service Agent author@grantshipley.... Owner
Add RockMongo 1.1 author+dev@grantshi... Can edit
Or, see the entire list of cartridges you can add Delete this application...

Once you click on the Delete this application... button, you will be presented
with a confirmation screen that ensures that you really want the system to
perform this action. If you are sure you want to remove the application, click on
the Delete button.

OPENSHIFT ONLINE

Applications Help

Delete Application
Are you sure you want to delete the application 'cartadd?

This will delete all the code and data associated with the app, and cannot be undone. Make sure this Is something you really want to do!

[201]

Using the OpenShift Web Console

Once the delete operation is complete, you will be returned to the application
dashboard, and a confirmation message will be displayed letting you know that
the action was a success.

Summary

In this chapter, we learned how to use the OpenShift web console to create
applications, and how to embed add-on cartridges to extend the functionality of the
newly created gear. After this, we explored how to manage an existing application by
adding a custom domain and SSL certificate. We also learned how to create a reusable
URL that enables you to share your application with others by allowing them to create
a clone of the gear with a single URL. Lastly, we learned how to delete applications
with the web console when they are no longer in use.

In the next chapter, we are going to learn how to debug applications that are running
on a remote OpenShift gear. We will learn how to enable remote debugging inside of
the Eclipse IDE, and then, how to set break points to step through the application code.

[202]

10

Debugging Applications

If you are a software developer, you know that being able to debug application code
is critical when developing and troubleshooting applications. In this chapter, we

are going to learn how to use port forwarding to connect to remote databases. After

this, we are going to explore how to use remote debugging to debug the application
code by setting breakpoints from within the Eclipse and Intelli] IDEs. Finally, we are
going to learn how to leverage OpenShift Online partners to enhance the capabilities
of our application to add support for log viewing and monitoring.

Using port forwarding

As we have learned previously in this book, you can embed add-on cartridges to
your application gears, such as MySQL and MongoDB. However, connections to
these remote data stores are restricted to requests that come from the local gear
where the cartridge resides. This is great for security but a poor experience if you
want to remotely connect to a database in order to import data or to view, edit, or
create the schema of the database. Fortunately, the RHC command-line tools come
equipped with a feature that allows you to connect to the remote database using
port forwarding. Don't be alarmed if you don't understand the details of how port
forwarding works as the client tools automate the process.

Port forwarding translates connections created on one host to another
by utilizing the available SSH connection. This allows users to connect
to remote daemons on a private network by treating them as locally
g running services as long as the local machine has access to the remote
private network.

Debugging Applications

To illustrate how port forwarding works on the OpenShift platform, we are going to
forward the MongoDB database that we created in Chapter 5, Creating and Deploying
Java EE Applications, so that we can connect to it locally. The first thing we want to do is
run the port forwarding command on our local machine with the following command:

$ rhc port-forward -a mlbparks
Once you enter the preceding command, you will see the following output:

Checking available ports ... done

Forwarding ports

To connect to a service running on OpenShift, use the Local address

Service Local OpensShift

java 127.0.0.1:3528 => 127.7.150.129:3528
java 127.0.0.1:4447 => 127.7.150.129:4447
java 127.0.0.1:5445 => 127.7.150.129:5445
java 127.0.0.1:8080 => 127.7.150.129:8080
java 127.0.0.1:9990 => 127.7.150.129:9990
java 127.0.0.1:9999 => 127.7.150.129:9999
mongodb 127.0.0.1:27017 => 127.7.150.130:27017

Press CTRL-C to terminate port forwarding

1
‘\Q Port forwarding will remain active until you stop the process by pressing

Ctrl + C on your keyboard.

In the preceding output, we can see that several ports on the remote server are now
available on the local machine. For instance, MongoDB is running at the remote IP
address of 127.7.150.130 on port 27017 but is now available locally by connecting
to127.0.0.1, or localhost, using port 27017. A developer will connect locally and
all the traffic will be forwarded via an encrypted SSH connection to the remote
OpenShift gear, as shown in the following diagram:

[204]

Chapter 10

Connects
MongoDB on
localhost Traffic is forwarded to remote MongoDB via SSH
[) a—
— S)
» OpenShift host
+—
1IN S N 1IN S N

Connecting to MongoDB

Now that we have our NoSQL database available on the local machine, we can
connect to it just as if it were running locally. In order to be able to communicate
with MongoDB, you will need to have the MongoDB client installed on your
local machine.

The instructions for installing the client on Ubuntu are listed in the
following section, but you will need to consult the official MongoDB
documentation for instructions on how to install the client for your
operating system.

To install the client tools on an Ubuntu-based operating system, open a terminal
window and enter the following command:

$ sudo apt-get install mongodb-clients

In order to connect to the remote MongoDB database, you will need to know

the username and password to authenticate to the data store. You can find this
information by showing information about the MongoDB cartridge that you added
to the mlbparks application with the following command:

$ rhc cartridge show mongodb -a mlbparks

This will display all of the relevant details that you need in order to connect to the
database, including the username and password, as shown in the following output:

Using mongodb-2.4 (MongoDB 2.4) for 'mongodb'
mongodb-2.4 (MongoDB 2.4)

[205]

Debugging Applications

Gears: Located with jbosseap-6, jenkins-client-1

Connection URL: mongodb://$OPENSHIFT MONGODB DB HOST:$OPENSHIFT
MONGODB_DB_PORT/

Database Name: mlbparks
Password: g 6eZ22-fraN

Username: admin

In the preceding output, the username is admin and the password is q_é6ez22-fraN.

1
‘Q Be sure to use the proper username and password for your cartridge

installation and not the one displayed as an example in this book.

Now that we have the authentication information and the mongo client installed,
we can connect using the following command on our local machine:

$ mongo 127.0.0.1:27017/mlbparks -u admin -p q 6eZ22-fraN

This will present you with the MongoDB shell. To verify that you are indeed
connected to the remote MongoDB database, issue a command to get the count of
baseball teams in the database:

$ db.teams.count ()

If you want to see the JavaScript source code that MongoDB is running
& to execute the query, you can leave off the parenthesis of any command
to view the source of the command.

If everything went correctly, the result should be 30.

You can also use your favorite database management software to connect to and
manage your database. For example, let's examine how to use the popular UMongo
package to connect to our remote MongoDB instance.

. UMongo is written in Java and is therefore available for the three big
% operating systems: Windows, Mac OS X, and Linux. To download this
— software package, head over to the official download site at http://

www . edgytech. com/umongo.

[206]

http://www.edgytech.com/umongo
http://www.edgytech.com/umongo

Chapter 10

Once you have downloaded the UMongo tool, start the program and select File and
then Connect to create a new connection. Once the connection dialog is displayed,
click on the edit icon to modify the current connection.

Connect

Connect || | Cancel |

After clicking on the edit connection icon, you will be presented with a dialog that will
allow you to enter the connection and authentication information for the database.
Remember to use the correct username and password for your database and ensure
that you specify the 127.0.0.1 IP address and the corresponding port.

Connect Dialog

Name : | MLBParks on remote apenshift |
Either provide a URI ...
—
URI': v

ar the settings below

Servers : | localhost: 27017 v

Connection Mode : [Automatic v

Databases : [mlbparks |

User : |admin |

Password : ***********11

Connection

Socket Type : [Plain v

Connect Timeout : 2,000 |5
Socket Timeout : ot

Safe Writes : |
Secondary Reads : [|

Proxy

Type : [None v

Host : [localhost |

4

Port : [9,000 |
@ Help | | & Reset ok | | cancel

[207]

Debugging Applications

Once you have connected to the database, you can run queries and use the tool just
as if the database was running locally. This is illustrated in the following screenshot
where I ran a query to list all of the documents in the teams collections:

UMongo
Eile Toals Help
= Mongo Instances Collaction Command Document Sharding Tools
= & Mongo: localhost/127.0.0.1
& MongoD: localhost/127.0 Name : teams
B mibparks (44/47684) Full Mame : mlbparks.teams
+ [/ openshift (1/80) oot X
system.indexes (4/360 Query Options :
+ system.users (1/96) Write Concern: 4 { "getlasterror”: 1}

Read Preference : 4 { "mode": "primary"'}
Stats: 4 { "serverUsed": "localhost/127.0.0.1:27017", "ns": "mibparks.teams” , "count": 30, "size" : 46816 , "avgObjSize"

> id_(1/81786)
- 5
mibparks.teams / Find |3/

&

[N

] Result View Tools ‘ oxt

L id 1 "53113e84127b12b090c18a58"} , "name" : "Diamondbacks" , "payroll’ : 89000000 , "coordinates” : [-112.0§
Lt id 1 "53113e84127b12b090c18a59"} , " " ", "payroll" : 85000000, "ballpark" : "Turner Field" , "coor|
L d 53113e84127b12b090c18a5a"} . " "Qriole Park", "coarg
L d 532113e84127b12b090cl8a5h nway Park" , "c{
L id 53113e84127b12b090c18a5¢c .S. Cellular Fiel
L id 53113e84127b12b090c18a5d"} , pa ‘Wrigley Field" , "coor|
L d 53113e84127b12b090c1Ba5e"} . " ", "payroll*: 71000000, "ballpark” : "Progressive Field" ,
L d 1 "53113e84127b12b090cl a5} . " ", "payroll" : 107000000, *ballpark" : "Great American Ballp
+ L id " "53113e84127b12b090c18a60"} , "name": "Tigers" , "payroll' : 150000000, "ballpark" : "Comerica Park" , "c{
L id 1 "53113e84127b12b090c18a61"} , "payroll" : 73000000, "ballpark”: "Coors Field" | "coordinates” : [-104.994
+ L id 53113e84127b12b090cl8a62"} , " ", "payroll” : 32000000, "hallpark” : "Minute Maid Park"
L d 53113e84127b12b090c1Ea63! "payroll" : 213000000, "ballpark" ; "Dodger Stadium®|
H{md 53113e84127b12b090cl8a64 ayroll' : 78000000, " k" "Kauffman Stadium”,
L id 53113e84127b12b090c18a65"} , ", “payroll' : 45000000, " "Marlins Park" , "cool
+ L id 53113e84127b12b090c18a66"} , " ‘Angels", "payroll' : 152000000, "ballpark" : "Angel Stadium" , "g
L d 1 "53113e84127b12b090c18a67"} . " Erewers" , "payroll*: 72000000, "ballpark" : "Miller Park" , "coor{
L d 1 "53113e84127b12b090c18a68"} | " Twins" , "payroll’ : 80000000 , "ballpark" : "Target Field" , "coord
L id " "53113e84127b12b090c18a69"} , " Mets" , "payroll" : 84000000 , "ballpark” : "Citi Field" , "coordinats
v id" " "53113e84127b12b090c18a63"} , "name" : "Vankees" , "payroll” : 210000000 , "ballpark” : "Yankee Stadium® ¥
“ > : "
Jobs:

Once you are finished with your work on the remote database, remember to close the
port forwarding connection by pressing Ctrl + C in the terminal window where the
connection is established.

Using Eclipse for Java debugging

As a developer, being able to set breakpoints and step through code is crucial to the
development process when trying to debug or troubleshoot your application code.
OpenShift supports this functionality by allowing Java developers to enable remote
debugging by setting a marker that alerts the platform that you want to enable this
feature. Don't worry if you don't understand the marker system at this point, as we
cover it in detail as part of Chapter 11, Using the Marker and Action Hook System. For
the purposes of this chapter, we are going to create a new marker and add it to our
application using the Git revision control system.

[208]

Chapter 10

Open your terminal prompt and go to the directory where your mlbparks application
is cloned on your local machine. Once you are in your application's directory, run the
following command to create a blank file named enable_jpda in the .openshift/
markers directory of your application:

$ touch .openshift/markers/enable jpda

If you are not familiar with JPDA, you can find more information at
http://en.wikipedia.org/wiki/Java Platform Debugger Architecture.

Once you have created this empty file, add the file to your repository, commit the

change, and then push the marker to your OpenShift gear:

$ git add .
$ git commit -am "enable remote debugging"
$ git push

You can also create this marker directly inside of Eclipse by right-clicking on your
mlbparks project, selecting OpenShift, and then selecting Configure Markers....

1 Project Explorer 82 = B8
S-S ~
N
! New .
= A Go Into
+ 'ag Dey
BIEE Showin Shift+Al+W »
+| o) Wek
= tri+
o A A = Copy Ctri+C
55 Copy Qualified Name
+ P jave _ i _
| Paste Ctrl+Vv
< m Java
B Jav ¥ Delete Delete
+ (3Dep
* Exdep Build Path »
[port Refactor Shift+Al+T »
5H REA Import »
+| s Export »

|

&1arg & pefresh F5
Close Project
Close Unrelated Projects

=y Mark as Deployable
Validate
Show in Remote Systems view
Profile As
Debug As
Bun As
Compare With
Replace With
Restore from Local History...
Maven >
Java EE Tools 3

T v VYT VoW

™ Configure Markers...
Team v [
Configure 3
Source >

Properties Alt+Enter

[209]

http://en.wikipedia.org/wiki/Java_Platform_Debugger_Architecture

Debugging Applications

Once you select Configure Markers..., a dialog will be presented where you can
select to enable JPDA, as shown in the following screenshot:

Configure OpenShift Markers for project mlbparks

Configure OpenShift Markers

Add or remove markers to enable OpensShift features in the application mibparks.
The markers will be created/deleted directly in /mlbparks/.openshift/markers

Markers
Marker
[&d Enable |PDA
| Force Clean Build
"] Hot Deploy
=] Java 7
"1 Skin Mawen Build

Marker Description

File

enable_jpda

: force_clean_build

skin_maven_huild

Will prevent scalable applications from scaling up or down according to application load

Cancel

OPENSHIFT

OK]

Once JPDA has been enabled and the marker has been pushed to the OpenShift gear,
the next step is to enable port forwarding for our application. This will allow us to
connect to the debug port (8787) on the remote machine as if it were a local running
server. You can start port forwarding using the command-line method we learned in
the previous section of this chapter, or you can use the IDE to start the forwarding.

To enable port forwarding from within the Eclipse IDE, go to the OpenShift Explorer
view and find the mlbparks application. Right-click on the application and select Port

forwarding... from the menu, as shown in the following screenshot:

- & author@grantshipley E Tail files

& packtdev packtc 'Fﬁ‘ Port forwarding... I

- & packt packt s
$r . " Create a Server Adapter...
+ [ciserver |enkin
«#* Refresh

+| (2 codeigniter PH
Details
- S

[210]

Chapter 10

The IDE will verify that the SSH authentication is configured with the remote
OpenShift gear, and then it will present a dialog that shows you the current status of
each port. At this point, you can start forwarding by clicking on the Start All button
on the right-hand side of the dialog.

Application port forward

Please configure port forwarding for the 'mlbparks' application

OPENSHIFT

Service | Local Address Local Port Remote Address Remote Port Status Refresh

java 127.0.0.1 3528 127.7.150.129 3528 Stopped I

. Start Al

java 127.0.0.1 4447 127.7.150.129 4447 Stopped ;J
java 127.0.0.1 5445 127.7.150.129 5445 Stopped

java 127.0.0.1 8080 127.7.150.129 8080 Stopped

java 127.0.0.1 9990 127.7.150.129 9990 Stopped

java 127.0.0.1 9999 127.7.150.129 9999 Stopped

mongodb: 127.0.0.1 27017 127.7.150.130 27017 Stopped

[£5] Use "127.0.0.1' as the local address for all Services

[Find free ports for all Services

——

Once the forwarding has started, you can click on the OK button to hide the
dialog window.

[211]

Debugging Applications

The next step is to create a debug configuration that contains the information required
to connect to our remote JBoss EAP server running on OpenShift. For this, click on

the Run menu item at the top of the Eclipse IDE. After clicking on Run, select Debug
Configurations, and then select Remote Java Application in the available options.
Once this item has been selected, click on the new button in the top-left corner in order
to create a new configuration. You can then provide the connection information that
was displayed when you started port forwarding.

Debug Configurations x

Create, manage, and run configurations

Attach to a Java virtual machine accepting debug connections

INEEERR . E 3 Y Name: | MLBParkResource |
[al I+t Connect ~_E» Source} = gcmmcn}
& Apache Tomcat Project:
& Eclipse Application [mlbparks] l Blwse.,
B3 Eclipse Data Tools Connection Type:
& Generic Server | Standard (Socket Attach) L]
& Generic Server(External Launch) Connection Properties:
Ju GWT JUnit Test Host: |localhost |
E HTTP Preview
& J2EE Preview e
Java Applet [Allow termination of remaote VM
31 Java Application
Ju JUnit
Ji JUnit Plug-in Test
m2 Maven Build
% 0SGi Framework

-1 & Remote Java Application -

Filter matched 21 of 21 items l Apply] l fevett]

[Close] Debug

[212]

Chapter 10

After the connection information has been entered, click on the Apply button, and
then click on Debug to establish a remote debug session.

The last thing we need to do in order to debug our application is to set a breakpoint
in our application code. Open the MLBParkResource . java file located under the
src/main/java/org/openshift/mlbparks/rest directory and set a breakpoint in
the following line in the findParkswithin method:

ArrayList<MLBPark> allParksList = new ArrayList<MLBParks>() ;

The IDE will display an icon next to the line on the left-hand side in order to let you
know that a breakpoint has been added.

Java EE - mibparks/src/main/java/org/openshift/mlbparks/rest/MLBPark
File Edit Source Refactor Navigate Search Project Run Window Help

s @ | nield- Bminis=® 2lalz» Hitvovar Grveri®o P
[?5 Project Explorer 3 ==Y ¥ =0 [J] MLBParkResource.java X | @ Map of MLB Parks
= g S @GET
- " @Produces("application/json")
+| 7@ AX-RS Web Services @Path("within")
+ 2 Depl t Di tor: mibpark: public List<MLBPark> findParksWithin(@QueryParam("latl") float latl,
i eployment Descriptor: mibparks @QueryParam("lonl") fleat lonl, @ueryParam("lat2") fleat lat2,
+| |1, Web Resources @QueryParan(*lon2") float lon2) {
* A JAXWS Web Services » ArrayList<MLBPark> allParksList = new ArrayList<MLBPark>();
+ 3% Java Resources DBCollection mlbParks = this.getMLBParksCollection();

+

=i Javascript Resources 4/ make the query object

+! (g Deployed Resources BasicDBObject spatialQuery = new BasicDBObject();
*/ (& deployments ArrayList<double[]> boxList = new ArraylList<double[]=();
i) pom.xml boxList.add(new double[] { new Float({lon2), new Float(lat2) });
E,README md boxList.add(new double[] { new Float(lonl), new Float(latl) });
-l gy src BasicDBObject boxQuery = new BasicDBObject();
= boxQuery.put("Shox", boxList);
=| g main
- Eyjava spatialQuery.put("coordinates", new BasicDBObject("$within", boxQuery));
& System.out.println("Using spatial query: " + spatialQuery.toString());
= Egorg
-/ 3 openshift DBCursor cursor = mlbParks.find(spatialQuery);
try {
- 5 mlbparks while (cursor.hasNext()) {
+ (z domain) allParksList.add(this.populateParkInformation{cursor.next()));
+| [zy mongo } finally {
- gy rest ; cursor.close();
4} JaxrsConfig.java
[} MLBParkResource.java N return allParksList;

[213]

Debugging Applications

Open a web browser and enter the URL for your application, and you will see that
the application breaks at the specified location and allows you to step through the
code by using the debug perspective that is part of the Eclipse IDE.

Debug - mibparks/src/main/java/org/of t/mibparks/rest/MLEParkResource.java - Eclipse
File Edit Source Refactor Navigate Search Project FRun Window Help

g vl =) = 2,

i Debug = v R’) Ja 95 Breakpaoints &
i
= MLBParkitesource findParkswithin(float, float, float, fleat) line: 73
= MLBParkitesources Froxy$_5$_WeldClientPrewy findParkswithinifloat, float, fleat, flc
= Matived cemsorlmyl hod, Object, Object]]) line: not available [

ativeMet hodAc coessorlmplinvoke{ Object, Sbject(]) line: 57

gatingl cessorimpl.i { t. Objectl 1) line: 43
Method.invoked Object. Object...) line: 606

jectorimpl.invoke{Hittp . HEtpResp , Object) line: 167
ResourceMethod invokeOnTarget| HttpRequest, HitpRespense, Object) line: 269

Hit count: 0) Suspend thread

Conditional

I MLBParkResource java 2 G Map of MLB Parks S

a

ark> findParksWithini, n{"1at1") float latl,
n{*1on1"} fleat lonl =("Lat2") float Llat2,

" ArrayList<MLBParks allParksList = mew Arraylist<MLBParks();
DBCollection mlbParks = this.getMLBParksCallection(];

uery = new BasicoBUbject();
Arraylistedouble]]> boxlist = new Arraylistdoublel]>();
bosList.add(new double(] { new Float{lon?), mew Float{lat?} }};
boxList.add(new double[] { new Floatilonl). mew Fleat(latl} }):

BasicOB0bject bowQuery = new BasicDBObject(): v

i & =) {*[E a i~ Zlelalzxlmw HiBvTOrTQ v ®g

X R B

ST 0T RO

B | 2waEE Web [ixpeoun)

A
® 4 = + ¥ o
Suspend VM
B2 Outline = =

R A
@ org.openshift.mibparks. rest
- @, MLBParkResource
= dbConnection : [
qetMLEParksCollec tiond)
populateParkinformationDEOect)
getallFarks() - List-<MLEFark:

& e nn

M If the application did not break at the specified breakpoint, ensure that
Q you have port forwarding enabled and are running the application in

the debug mode.

Using IntelliJ for Java debugging

In the previous section, we learned how to use Eclipse for the remote debugging of
Java applications. In this section, we are going to show you how to use the popular
Intelli] IDE to perform the same action. As you will learn in this section, Intelli]
provides a cleaner experience as the port forwarding requirement is handled under
the covers by the IDE when you click on the Debug button. Installing the IDE is out
of the scope of this book, so I will assume that you have already downloaded and

installed the software.

[214]

Chapter 10

If this is the first time that you are using Intelli] to connect to your OpenShift
account, you will need to configure your credentials. Open the Settings pane and
browse to the Clouds section. Once this section is displayed, click on the plus sign
at the top of the dialog and select OpenShift. Enter your authorization information
and click on the Test connection button.

Settings
Q. cloud O+ =
IDE Settings) openshift Name: | openshift
Flugins Username(email): ‘authmr@grantshlp\ey.com

Passward: [eeeeee

|
]

Domain: ‘ packt
Upload Public S5H Key

If the connection was a success, exit the Settings pane, select Check out from
Version Control, and choose git as the version control system to be used.

Intelli) IDEA - %

e ' Welcome to Intelli) IDEA

Recent Projects Quick Start

mibparks
~Jeadefideajmlbparks

Create New Project

Import Project

7l &

(7

Open Project

<
a3
v

Check out from Version Control

Configure

oy Ka

Docs and How-Tos

'E

Intell] IDEA 12.1.2 Build 135.690. Check for updates now.

[215]

Debugging Applications

Once you select git, you will need to provide the URL for the Git repository of your

mlbparks application. Input the required information in the dialog and click on the
Clone button.

Clone Repository

Wes Repository URL: |1:,f'f53111801‘500446f5430003bb@m1bparks-packt.rhcloud.comf~fgit,-’m1bpar'ks.git,-" n | Test]

Parent Directory: | fhome/gshipley/code/intelli |D
Directory Name: [mibparks|]

| Cancel] | Help]

The next thing we need to do is configure a deployment for the mlbparks application
that we just cloned and created a project for. You can do this by clicking on the Run
menu item from the IDE menu and selecting Edit Configurations from the drop-down
list. This will open up a new dialog where you need to click on the green + button

to add a new configuration. Finally, select OpenShift Deployment to create a new
OpenShift deployment.

+ -0
Add New Configuration
= Applet
& Application
[& Cucumber java
Gradle
2 Grails
@ Griffon
151 JavaScript Debug
[Junit
£ Maven
@ Node-webkit

Openshift Deployment
Query Language Conscle
= Remote
& spyis
NG TestNG
XSLT

29 items more (irrelevant)...

[216]

Chapter 10

In the dialog box that is presented to you, name the deployment openshift and then

click on the OK button.
Run/Debug Configurations
+ — [% Name: | Openshift] | [J share [] single instance only
%~ Defaults -
C) openshift Deployment Server: | AR nl:|
Clopenshift Deployment: mibparks n

[Use custom application name:

v Before launch

+

[show this page

m | Cancel | | Apply | ‘ Help

To begin debugging your application, simply select Run and then select Debug

OpenShift from the IDE menu.

To speed up application deployments for the mlbparks application,

application with the following command:

you might want to consider removing the Jenkins client from the

$ rhc cartridge remove jenkins -a mlparks

Once your application has been deployed, you should see the console window from
within the IDE that lets you know that the port forwarding for the debug port has

been enabled by displaying the following text:

Connected to the target VM, address:
'socket!'

'127.0.0.1:8787",

transport:

[217]

Debugging Applications

To verify that the IDE is able to connect to the remote port for debugging, open the
MLBParkResource . java file located under the src/main/java/org/openshift/
mlbparks/rest directory and set a breakpoint in the following line in the
findParksWithin method:

ArrayList<MLBPark> allParksList = new ArrayList<MLBParks>() ;

The IDE will confirm that a breakpoint has been set on the line by highlighting the
line, as shown in the following screenshot:

mibparks - [~/code/Intelli}/mIbparks] - [mlbparks] - .../src/main/java/org/openshift/mlbparks/rest/MLBParkResource.java - Intelli] IDEA 13.1.2
Eile Edit Wiew Navigate Code Analyze Refactor Build Run Tools WC5 Window Help

DBCallection mlbParks = this.getMLBParksCollection();

/ make the query object

BasicDBObject spatialQuery = new BasicDBObject():

ArrayList<double[]= boxList = new ArraylList<double[]=();
boxList.add(new double[] { new Float{lon2), new Float(lat2) });
boxList.add(new double[] { new Float(lonl). new Float{latl] });

BasicDBObject boxQuery = new BasicDBObject():
boxQuery. put (“$hox", boxList);

spatialQuery.put(“coordinates™, new BasicDBObject("jwithin™, boxQuery)):
System.out.println("Using spatial query: " + spatialQuery.toString());

DBCursor cursor = mlbParks. find(spatialQuery):

mibparks) 7 src) 1 main) [java » [org » 7 openshift ;51 mibparks » £ rest) (@ MLBParkResource 3 ves vo [
" B Project - = | #- 1 | [index.html x = snoop.jsp x | [§] MLBParkResource.java x
L mibparks [} =
= .idea
=0 . /7 get all the mlb parks
31 .openshift o @GET ()
deployments & @Produces(“application/json™)
arc =] public List<MLBPark= getallParks() {
g main ArraylList<MLBPark> allParksList = new ArraylList<-=():
g Java) pBCollection mlbParks = this.getMLBParksCollection();
= org.openshiftmibparks DBCursor cursor = mlbParks,find();
v domain try {
mango while (cursor.hashext()) {
rest allParksList.add (this.populateParkInformation(cursor. next()));
}
© & JawrsConfig } finally {
€ % MLBParkResource cursor.close();
? .gitkeep
#resources return allParksList;
51 webapp 2] ¥
Il mibparks.iml
=} @GET
121 pom.xmi @Produces(“application/json™)
ok README.md fal @Path ("within™)
il External Libraries public List<MLBPark= findParksWithin(@QueryParam(*latl) float latl,
@QueryParam(“lonl") float lonl, @QueryParam(“lat2") float lat2,
(=] @QueryParam(“lon2"") fleat lon2) {
@ Arraylist<MLBPark= allParksList = new Arraylist<-=();

EICE[=]

spaload usnen 3

sseqeseq

[218]

Chapter 10

Open your browser and point to the URL of your application to confirm that the IDE
breaks at the requested line.

mibparks - [~/code/Intelli)/mIbparks] - [mlbparks] - .../src/main/java/org/op ift/mibparks/rest/MLBParkResource.java - Intellij IDEA 13.1.2 — +
Eile Edit View Navigate Code Analyze Refactor Build Run Tools WCS Window Help
mibparks sre main java org openshift mibparks rest) ic) MLBParkResource 4 | C) openshift = | B FS m Q
:) Project = @ = % 1| [i] indexhtml x | & snoop.jsp x | @ MLBParkResource.java x -
4
'E% mibparks } o al
il \idea } finally { g
I openshift cursor.close(); H
deployments 5
v sre return allParksList;
H main I | ik
E java , 3
o org.openshift. mbparks es("application/json®) E
v domain Y @Path(“within®) .
mongo MLBParks= findParksWithin (aQu F‘nlnm(1at1") float latl,
rest aran (“lonl™) fleat lonl, @Oue 2
€6 JaxrsConfig % f E
c MLBParkResource | @ MLEP: =
DECnIIe:tmn nibParks = th1s qetNLEF’arkanHectmn()
Debug) Openshift - L ';'
% | Debugger |] Console ++| k= 12 3 3 & % = §
[Frames = Variables o+ L7 watches -3
‘ B "http-127... n +Y this = {org.openshift.mlbparks.rest. MLBParkResource@10794} + ;‘:
xg (Bl -~ findParkswithin():73, MLBPal ‘aﬂl: Sjslzgé;
nl = -78,
= findParksWwithin{}-1, MLBPar &
G @ g lat2 = 23.241346 °
E & lon2 = -118.69629 :"‘
w @
tm® :
% E ava
b
=Rl :
*x = g
$%5 Debug 526 TODO [@ Terminal [Version Control @ 9: changes (@ Java Enterprise 5il Application Servers Event Log
= 731 LF + UTF-8 + Git master 3+ & &

Congratulations! You now know how to configure the popular Intelli] IDE in order
to work with OpenShift deployed projects, including the ability to set breakpoints
and step through the application code.

Using logfiles for debugging

The OpenShift Online platform has a great partner ecosystem where you can embed
various functionality to enhance your applications. In this section, we are going to
learn how to utilize the Logentries integration with existing OpenShift applications
in order to get a view of the system performance and logs.

[219]

Debugging Applications

The first thing you need to do is sign up for a free Logentries account by visiting
their website at https://logentries.com/. Once you have created an account,
you will need to make a note of your account key, which is provided under the
Profile tab of your account details.

Account

Summary Statements Users Profile AWS

My Profile

Username author@grantshipley.com
My email author@grantshipley.com
Name Grant Shipley
Timezone offset UTC-06:00

Notifications

Account key m

Once you have your account key, the next step is to add the Logentries source code
to your mlbparks application. Switch to the root directory of your application and
enter the following command to add the Logentries remote GitHub repository where
the OpenShift integration resides:

$ git remote add upstream -m master https://github.com/logentries/le
openshift.git

Once you have added the repository, you can merge the changes with the following
pull command:

$ git pull -s recursive -X theirs upstream master

This will create a new directory under your application's home folder named
logentries. Switch to this directory, edit the 1e_config.ini file, and enter the
account key for your Logentries account.

[220]

https://logentries.com/

Chapter 10

Once you have added your key, add and commit the changes and then push the code
to your OpenShift gear:

$ git add .

$ git commit -am "adding logentries support"

$ git push

Once your application has been deployed, head back over to the Logentries site, and
you will notice that it is already reporting CPU, disk, network, and memory statistics.

lsgentries : : B - -

@ Hosts

A Hcsts i Last 20min 's]
Aggregated View

hosts

mibparks (*)
mibparks

Iy mibparks

To view logfiles, click on the mlbparks host to view all of the logs that Logentries is
following. If a logfile that you want to watch is not listed in the console, this simply
means that it is not being followed by default. To specify additional logfiles to be
followed, SSH to your mlbparks gear and switch to the directory where your logfile
is located. For instance, if we wanted to add the JBoss EAP and MongoDB logfiles,
we will execute the following command:

$ rhc app ssh mlbparks

Once you're connected to the remote gear, run the following commands:

$ cd $OPENSHIFT LOG DIR

$ ${OPENSHIFT REPO DIR}logentries/le follow jbosseap.log
$ ${OPENSHIFT REPO DIR}logentries/le follow mongodb.log
$ ${OPENSHIFT REPO DIR}logentries/le monitordaemon

[221]

Debugging Applications

Once you have followed the JBoss EAP and MongoDB logs, refresh your Logentries
dashboard to see the change reflected.

Iagentries LOGS TAGS & ALERTS INSIGHTS ~ ACCOUNTS =
~

e . search logs Last 20min <

> Aggregated View o

2 hosts 'mlbparks

I mibparks Logs Settings + Add new log

CPU Utilization Disk Transfer Network Bandwidth

60% 55% 1.2GB 02GB 0.1GB 49.3MB

jposseaplog (1) °
linuxsyslog log (*) &= o
mongodb g (1 0

If you want to trigger an event that will show up in the MongoDB log, you can
restart the MongoDB cartridge with the following command:

$ rhc cartridge restart mongodb -a mlbparks

Once you have restarted MongoDB, click on the MongoDB log in the Logentries
dashboard to view the events that were sent to the server.

[222]

Chapter 10

kegentries

@ Hosts

>+ Aggregated View

LOGS TAGS & ALERTS INSIGHTS ~ ACCOUNTS ~ SUPPORT + LOGOUT

o |§-<(: ch events ¥r ¥ (%) Last 20min ls

hosts 'mlbparks 'mongodb.log

> I mibparks

Entries Graphs Tags & Alerts Settings

23:45:35.786 [signalProcessingThread] shutdown: removing fs lock...
23:45:35.797 dbexit: really exiting now

6
4
2
0 1!
21:28 21:30 21:32 21:34 21:36 21:38 21:40 21:42 21:44 21:4¢
Al 27
6 23:45:35.644 [signalProcessingThread] got signal 15 (Terminated), will
6 23:45:35.686 [signalProcessingThread] now exiting
6 23:45:35.686 dbexit:
6 23:45:35.686 [signalProcessingThread] shutdown: going to close listenin|
6 23:45:35.686 [signalProcessingThread] closing listening socket: 11
6 23:45:35.686 [signalProcessingThread] shutdown: going to flush diaglog.
I 6 23:45:35.694 [signalProcessingThread] shutdown: going to close sockets
6 23:45:35.694 [signalProcessingThread] shutdown: waiting for fs preallod
6 23:45:35.694 [signalProcessingThread] shutdown: lock for final commit..
6 23:45:35.694 [signalProcessingThread] shutdown: final commit...
6 23:45:35.702 [signalProcessingThread] shutdown: closing all files...
6 23:45:35.703 [signalProcessingThread] closeAllFiles() finished
6 23:45:35.703 [signalProcessingThread] journalCleanup...
6 23:45:35.703 [signalProcessingThread] removelournalFiles
6
6

Logentries is just one of many partners of the OpenShift Online
platform. For a complete list of partners and the integrations they
provide, visit the official OpenShift partner page at http://www.
openshift.com/partners.

[223]

http://www.openshift.com/partners
http://www.openshift.com/partners

Debugging Applications

Summary

In this chapter, we learned how to use port forwarding to connect to databases that
reside in the remote OpenShift gear. We also learned how to enable Java debugging
using the enable_jpda marker. Once JPDA was enabled, we explored how to
configure the Eclipse and Intelli] IDEs to set breakpoints and step through the
application code that is running on the OpenShift gear. Finally, we learned how to
view and monitor logfiles and system performance by integrating with Logentries,
which is an OpenShift Online partner.

In the next chapter, we are going to explore the OpenShift marker system as well
as application hooks that will allow you to customize your application to perform
actions at specific points in the development life cycle.

[224]

11

Using the Marker and
Action Hook System

In this chapter, we are going to learn how to use the marker and action hook systems
that are part of OpenShift Online. Using the action hook system, we can customize
the application by providing hooks that will be executed at defined points during
the deployment life cycle. The marker system allows us to enable hot deployment,
remote debugging, and the version of the Java SDK to be used to build and

run applications.

An overview of the marker system

The marker system is provided as a convenient way for developers to notify
the OpenShift platform that they want to change a particular behavior. In this
chapter, we are going to look at the hot_deploy, enable_jpda, and

disable auto_scaling markers.

The hot_deploy marker

As you have noticed when deploying code to the OpenShift Online platform, the
system performs several steps after a git push command is executed. The platform
stops all running services on the remote gear, builds the code, deploys the code,
and lastly, restarts all of the services. This is inconvenient and time consuming,
especially for languages that are interpreted, such as PHP, where a restart of the
application server is not required. In fact, even modern versions of Java application
servers support hot deploying application code without requiring a full restart of
the server.

Using the Marker and Action Hook System

In the following table, I have displayed the application runtime and depicted
whether the hot deploy marker is available for use with the runtime:

Application runtime Supports hot deploy
Tomcat/JBoss EWS Yes
JBoss AS / EAP Yes
PHP Yes
Perl Yes
Ruby Yes
Python Yes
Node.js Yes
Jenkins No
HAProxy No
Zend Server (PHP) Yes
DIY No

JBoss-specific markers

OpenShift supports several markers that are specific to JBoss-based applications that
will allow developers to control and manage some of the runtime features associated
with their application. The available markers for the JBoss Application Server are

as follows:

enable_jpda: Setting this marker will enable the remote debugging
of applications by enabling the Java Platform Debugger Architecture
(JPDA) socket.

If you are not familiar with JPDA, you can find more

information at http://en.wikipedia.org/wiki/

Java_Platform Debugger Architecture.

skip_maven build: Setting this marker will skip a Maven build when
a new application's code is pushed to the remote gear.

force_clean_build: This marker performs a full build using Maven,
including clearing the Maven dependency cache and downloading all
dependencies specified in the pom.xm1 file.

hot_deploy: This marker will deploy the newly built .war or .ear files
without restarting the application server.

[226]

http://en.wikipedia.org/wiki/Java_Platform_Debugger_Architecture
http://en.wikipedia.org/wiki/Java_Platform_Debugger_Architecture

Chapter 11

* java7: This marker will enable Java 7 to run your application and application
server. If this marker is not set, the base version of Java will be used, which is
Java 6 at the time of writing this book.

Creating and using markers

In order to use a marker, you simply create a file with the given name in the
.openshift/markers directory, which is located in the root directory of your
application. In order to illustrate this, let's create a new Java-based application
and enable some of the available markers.

The first thing we need to do is create a new application named markertest,
and then specify that we want to use the JBoss EAP application server:

$ rhc app create markertest jbosseap

Once you enter the preceding command, you should see the following output on
your screen, indicating that the operation was successful:

Using jbosseap-6 (JBoss Enterprise Application Platform 6) for 'jbosseap'
Application Options

Domain: packt

Cartridges: jbosseap-6 (addtl. costs may apply)

Gear Size: default

Scaling: no
Creating application 'markertest' ... done
Waiting for your DNS name to be available ... done

Cloning into 'markertest'...

Your application 'markertest' is now available.

URL: http://markertest-packt.rhcloud.com/
SSH to: 538266264382ecae6000009c@markertest-packt.rhcloud.com

Git remote: ssh://538266264382ecae6000009c@markertest-packt.rhcloud.
com/~/git/markertest.git/

Cloned to: /Users/gshipley/code/packt/markertest

Run 'rhc show-app markertest' for more details about your app.

[227]

Using the Marker and Action Hook System

Using the hot_deploy marker

Now that our application has been created, the first thing we want to do is enable
hot deployment. In order to do this, we simply need to create an empty file named
hot_deploy and place it in the . openshift/markers directory of our application.
For this, you can enter the following commands:

$ cd markertest

$ touch .openshift/markers/hot deploy

Now that we have our hot deploy marker file created, we simply need to add it to
our application repository and then push the changes to our remote gear as follows:
$ git add .

$ git commit -am "Adding hot deploy marker"

$ git push

Now that we have hot deployment enabled, all future deployments will occur
without having to restart the JBoss Application Server. Let's test this out by creating
a new JSP file and deploying the changes. Create a new file called date. jsp and

place it under the /src/main/webapp directory of your application. Once you have
created this file, add the following line of code and save the changes:

<%= new java.util.Date() %>
Now, we need to add, commit, and push the changes to our remote OpenShift gear:

$ git add .
$ git commit -am "Adding test file"
$ git push

Once you push the new code to your gear, you should see the following output,
which indicates that hot deployment has been enabled for your application:

remote: Not stopping cartridge jbosseap because hot deploy is enabled

The code will then be built and deployed. Once the code has been deployed, you
will see the following message, indicating that the application server does not need
to be started:

remote: Not starting cartridge jbosseap because hot deploy is enabled

[228]

Chapter 11

Using the force _clean_build marker

Using the force_clean build marker is similar to using the hot deploy marker.
You simply need to create an empty file in the . openshift/markers directory named
force_clean build, and when you push the code, the system will download all of
the dependencies again. Run the following commands to create and use this marker:

$ touch .openshift/markers/force clean build
$ git add .
$ git commit -am "adding a marker to perform a clean build"

$ git push

Once you push the change to your remote OpenShift gear, you will notice that Maven
downloads all the dependencies listed in the pom.xm1 file.

Keep in mind that your application will continue to perform a

clean build each time you push the new code until you remove
’ the force clean build marker.

To remove the marker, you can simply remove the file from your repository and
push the changes to your gear as follows:

$ git rm .openshift/markers/force clean build
$ git commit -am "removing clean build marker file"

$ git push

You will now see that your application is built using the Maven system. However,
the existing dependencies that have been downloaded will be used.

An overview of the action hook system

The OpenShift Online platform provides a system that allows developers an entry
point into the application build and deployment life cycle called action hooks. These
action hooks reside in the application's home directory under the .openshift/
action_hooks directory. One of the great things about action hooks is that they can
be written in any language, with the only requirement being that they be executable
by the gears' operating system. This opens up a whole world of possibilities in order
to plug into the build and deploy life cycle of your application.

Action hooks are scripts that can be written in virtually any programming
language that is executable on the remote operating system, including
Bash, Ruby, Python, Perl, and so on.

A

[229]

Using the Marker and Action Hook System

You might be wondering when you would want to use action hooks in your code.
One of the common use cases for which I implement action hooks is clearing and
rebuilding my application's database. This ensures that each time I deploy a new
version of the application that I am developing, I start with a fresh set of data in
the database.

Another example of when action hooks can be implemented is to alert the developer
when their application server is stopped or restarted. Logging this information via an
action hook will allow the developer to analyze how much time is spent during this
part of the life cycle.

There are two groupings of action hooks in the OpenShift platform. The first
grouping is called build action hooks and is performed after the developer issues
agit push command. This grouping of action hooks allows the developer to plug
directly into the build and deployment life cycle of their application.

The available action hooks for the build and deployment life cycle are as follows:

* pre_build: This action hook is executed directly before the application
is built. For example, the pre_build action hook will be executed before
Maven for Java-based projects.

* build: The build action hook is executed during the compilation, or build
phase, of the application.

* deploy: This action hook is executed as part of the deploy process for
an application.

* post_deploy: This action hook is executed directly after the application has
completed the deploy phase of the life cycle.

The second grouping of action hooks allows the developer to have an entry point
into the cartridge life cycle of an application. For example, a user can add an action
hook that is executed every time the MySQL database is restarted in order to refresh
the data in the database to its original state. The following action hooks are available
in order to plug into the cartridge life cycle:

* Cartridge start control action:

° pre start

° pre start {cartridgeName}

o

post_ start

post_start {cartridgeName}

[230]

Chapter 11

Cartridge stop control action:

o

[e]

o

[e]

pre_stop
pre stop {cartridgeName}
post_stop

post_stop {cartridgeName}

Cartridge reload control action:

[e]

o

[e]

o

pre_reload
pre_reload {cartridgeName}
post reload

post_reload {cartridgeName}

Cartridge restart control action:

o

[e]

o

[e]

pre_restart
pre restart {cartridgeName}
post restart

post restart {cartridgeName}

Cartridge tidy control action:

o

o

[e]

o

pre_tidy
pre_tidy {cartridgeName}
post_tidy

post_tidy {cartridgeName}

Creating and using action hooks

Now that we have a good understanding of what action hooks are useful for, and the
available ones that we can use, let's see how they work by integrating them into an
application. Create an application called action using the PHP-5.4 runtime with the
following command:

$ rhc app create action php-5.4

Once the application has been created and the source code has been cloned to your
local computer, switch to the . openshift directory of your application with the help
of the following command:

$ cd action/.openshift

[231]

Using the Marker and Action Hook System

Once you are in the directory, list all of the contents with the help of the
following command:

$ 1s -1
You should see the following output:

drwxr-xr-x 3 gshipley staff 102 May 26 10:04 action hooks
drwxr-xr-x 8 gshipley staff 272 May 26 10:04 cron
drwxr-xr-x 3 gshipley staff 102 May 26 10:04 markers
-rw-r--r-- 1 gshipley staff 0 May 26 10:04 pear.txt

As you can see in the preceding output, we have an action_hooks directory. This is
where all the scripts that you create should be located. Switch to the action_hooks
directory with the following command:

$ cd action hooks

Inside of this directory, you will notice a README . md file that ships as part of the
application template. This file will provide documentation on the available action
hooks by providing a link to the official OpenShift Online user guide.

Creating the deploy action hook

As an example of creating an action hook, we are going to create a simple hook that
will echo a message every time the application is deployed. In order to do this, create
anew file in the action/.openshift/action_hooks directory named deploy with
the following contents:

#!/bin/bash

echo " ***** Starting the deploy action hook #*#*#**% n

Once you have saved this file, you need to modify the script so that it is executable.
For this, we can use the chmod command:

$ chmod +x deploy

To verify that the script is now executable, enter the following command:
$./deploy

You should see the following output:

***k%* Starting the deploy action hook #*#*#*#**

[232]

Chapter 11

Now that we have our deploy action hook created, we need to add, commit, and push
the file to our remote gear. For this, run the following commands:

$ git add deploy
$ git commit -am "adding deploy action hook"

$ git push

Pay close attention to the output that is displayed on your screen while the git
push command is being executed. As part of the push process, the application code
is deployed and all associated action hooks are executed, including the one we just
added. The output from the command is as follows:

Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 577 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)
remote: Stopping PHP 5.4 cartridge (Apache+mod php)
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Building git ref 'master', commit 58c7bé6b
remote: Checking .openshift/pear.txt for PEAR dependency...
remote: Preparing build for deployment
remote: Deployment id is 7491a262
remote: Activating deployment
remote: ***** Starting the deploy action hook **#*#*%*
remote: Starting PHP 5.4 cartridge (Apache+mod php)
remote: Application directory "/" selected as DocumentRoot
remote: -------------------------
remote: Git Post-Receive Result: success
remote: Activation status: success
remote: Deployment completed with status: success
To ssh://538373ac4382ec3afl000lal@action-packt.rhcloud.com/~/git/action.
git/

dcaf5db..58c7b6b master -> master

If you notice, the output includes the following line, indicating that our deploy script
is being executed as part of the life cycle:

remote: ***** Starting the deploy action hook **#*#*%*

[233]

Using the Marker and Action Hook System

Now that we know that our deploy action hook is being executed, we can begin to
do more interesting things such as adding a database and refreshing the contents
each time the application is deployed. To start, let's embed a MySQL database into
our application:

$ rhc cartridge add mysqgl-5.5 -a action

Once the database has been added to the application, create a new file named
schema.sql in the root directory of the action application. Insert the following
lines of code into the file and save the changes:

DROP TABLE IF EXISTS “users”;
CREATE TABLE “users™ (
“user id~ int(11) NOT NULL AUTO_ INCREMENT,
“username” varchar (200) DEFAULT NULL,
PRIMARY KEY (“user_ id")
) ENGINE=InnoDB AUTO_ INCREMENT=2 DEFAULT CHARSET=utf8;
LOCK TABLES “users” WRITE;
INSERT INTO “users” VALUES (1, 'gshipley');
UNLOCK TABLES;

Ensure that this file is located in the root directory of the action application.
The code in the schema. sql file is SQL commands that perform the following
SQL operations:

* Drop the users table if it exists
¢ Create a table named users and define the columns for the table

¢ Insert a row into the users table

Now that we have a DDL file that will delete and create the schema, we want
to modify our deploy action hook to perform the SQL commands during the
deployment phase. To do this, open the .openshift/action_hooks/deploy
file and enter the following lines of code, replacing what is already there:

#!/bin/bash

echo " ***%* REFRESHING THE DATABASE ****x*

/usr/bin/mysgl -u "SOPENSHIFT MYSQL DB USERNAME"
--password="$OPENSHIFT MYSQL DB PASSWORD" --host="$OPENSHIFT MYSQL DB
HOST" SOPENSHIFT APP NAME < SOPENSHIFT REPO DIR/schema.sqgl

echo " ***%* REFRESH COMPLETE ****%

[234]

Chapter 11

Let's examine each line of the deploy script in detail to ensure that we fully
understand it:

#!/bin/bash: This line simply defines that the information contained in the
file is a script for the Bash Linux shell.

echo " *x**x REFRESHING THE DATABASE x*x* :This line informs the
user that we are going to refresh the database. This is what is printed on the
terminal when the action hook is being executed.

/usr/bin/mysgl -u "$OPENSHIFT_MYSQL DB_USERNAME"

- -password="$OPENSHIFT_MYSQL_DB_PASSWORD" --host="$OPENSHIFT
MYSQL_DB_HOST" $OPENSHIFT APP NAME < $OPENSHIFT REPO DIR/

schema . sql: This is where we connect to the MySQL database and run the
SQL commands that we defined in our schema. sql file. This line is further
broken down as follows:

o

/usr/bin/mysql: This is the path of the mysqgl executable on the
remote OpenShift gear.

° -u "SOPENSHIFT MYSQL DB USERNAME": This specifies the username
that will be used to authenticate to the database. Note that instead
of hardcoding the username, we are using the environment
variable for our application to ensure that this script is portable
across deployments.

° --password="$OPENSHIFT MYSQL DB PASSWORD": This is the
password for the user that we are authenticating with. Again, we are
using the environment variable instead of hardcoding the password.

° --host="$OPENSHIFT MYSQL_ DB HOST": When connecting to
MySQL, we need to specify the host that we are connecting to.
Remember that in OpenShift Online, a MySQL database has
its own internal private IP address and does not use 127.0.0.1.
For this reason, we have to specify the location of the server.

° SOPENSHIFT APP NAME: We specify the application name by itself in
order to alert MySQL of the database we want to connect to. Since
a default database is created based on the name of the application,
using the $OPENSHIFT APP_NAME environment will provide the
database with the correct information.

° < $OPENSHIFT REPO DIR/schema.sql: This is the last section of the
command and will simply redirect the contents of the schema.sgl
file into the database. When this happens, the SQL commands inside
of the file are executed against the database.

[235]

Using the Marker and Action Hook System

Testing the deploy action hook

Now that our schema file and action hook have been created, it's time to test them
out. Add all the new files to your repository, and then commit and push them to
your application as follows:

$ git add .
$ git commit -am "Adding deploy action hook to refresh database™"

$ git push

During the deployment, you will notice the following section of output that is
presented on the terminal screen:

remote: Preparing build for deployment
remote: Deployment id is cc259719

remote: Activating deployment

remote: Starting MySQL 5.5 cartridge

remote: **%%% REFRESHING THE DATABASE ***%%*
remote: **%%% REFRESH COMPLETE *%**%%*

This indicates that the refresh was successful. Let's test this out by logging in to our
remote gear and looking at the contents of the MySQL database. First, we need to
SSH in with the following command:

$ rhc app ssh action

Once you have been authenticated to the remote server, you will be presented with
a terminal prompt. To connect to MySQL, simply enter the following command:

$ mysql

When running the mysqgl command while connected to the remote

gear, the OpenShift platform will automatically authenticate you to
A
the database without having to provide any credentials.

From the MySQL shell, enter the following commands:

mysqgl> wuse action;

mysqgl> select * from users;

[236]

Chapter 11

You should see the following output:

1l row in set (0.00 sec)

Insert an additional row into the database with the following command:

mysqgl> insert into users values (null, 'reader');

Verify that the new user was added by running the select statement again. Now
that we have a new user created in the database, let's make a change to the code and
deploy the application again. Create a new file called hello.php in the root directory
of the application and add the following code:

<?php

echo "Learning how the deploy action hook works"

Once you have saved the file, add, commit, and push the changes to your remote gear:

$ git add hello.php
$ git commit -am "adding new file"

$ git push

During the deployment phase of the life cycle, you will see the following lines in the
remote server:

remote: Stopping MySQL 5.5 cartridge

remote: Stopping PHP 5.4 cartridge (Apache+mod php)

remote: Waiting for stop to finish

remote: Waiting for stop to finish

remote: Building git ref 'master', commit 1211b7a

remote: Checking .openshift/pear.txt for PEAR dependency...
remote: Preparing build for deployment

remote: Deployment id is a2edOfcf

remote: Activating deployment

[237]

Using the Marker and Action Hook System

remote: Starting MySQL 5.5 cartridge

remote: **%%*% REFRESHING THE DATABASE **¥*%%

remote: ***%*% REFRESH COMPLETE **%%%

remote: Starting PHP 5.4 cartridge (Apache+mod php)
remote: Application directory "/" selected as DocumentRoot
remote: -----------------~—-~-~------

remote: Git Post-Receive Result: success

remote: Activation status: success

remote: Deployment completed with status: success

You will notice that the database was refreshed, as indicated by the following two
lines of output:

remote: ***** REFRESHING THE DATABASE *****
remote: ***** REFRESH COMPLETE ****%*

To verify that the database was indeed refreshed, SSH to your application and
execute the mysgl command again:

$ rhc app ssh action

$ mysql
From the MySQL shell, enter the following commands:

mysqgl> use action;

mysqgl> select * from users;

You should see the following output:

1l row in set (0.00 sec)

Pretty awesome, huh? From now on, every time we deploy a new change to
our application, we can be assured that we are starting with a fresh set of data
in the databases.

[238]

Chapter 11

What would be even better is if we could refresh our database with a simple
reload command:

$ rhc cartridge reload mysql-5.1

Good news, you can do this by creating an action hook named post_reload_
{cartridgeName}. For example, you can copy the deploy action hook to a new file
with the following command:

$ mv .openshift/action hooks/deploy .openshift/action hooks/post reload
mysqgl-5.1

After you add the new file and push your changes, the script will get executed every
time you issue a reload command to the MySQL cartridge.

Summary

In this chapter, we learned about the marker and action hook functionality that is
provided as part of the OpenShift Online platform. We started by creating marker
files in order to enable hot deployment, and then created a marker to force a clean
build of our application code. After this, we learned how to use the marker system,
examined the action hook system, and learned how to create a deploy action hook
that refreshes the contents of the database after each new deployment. The action
hook system is a powerful feature that will allow you to customize the workflow of
your application by providing an entry point into the OpenShift system.

In the next chapter, we are going to learn about application scaling and how automatic
and manual scaling works. We will also learn how to customize the scaling algorithm
in order to allow us to scale based on metrics that are provided by the developer.

[239]

12

Scaling Applications

One of the great things about using Platform as a Service (PaaS), such as OpenShift
Online, is the ability to leverage application scaling to satisfy the demands of your
users for fast response times. Having an application that can handle all incoming
traffic, even under the heaviest of loads, is critical for production quality applications.
We all dream of a time when an application we have written is under such heavy
usage that adding additional servers to handle the capacity is a requirement. Unless
you are extremely familiar with system administration, setting up a clustered
environment is not an easy task. In this chapter, we will learn how to leverage the
provided scaling functionality inside of OpenShift so that our minds can be at ease
with regards to satisfying high demand for our applications. We will also examine how
to set scaling limits to ensure that we always stay under budget for our deployments.

Why scaling matters

One of the common use cases for OpenShift Online is developing a backend for
mobile applications. If you are not familiar with writing mobile applications,
don't worry. Follow along with me, as this use case is applicable to other types of
applications as well.

Imagine that you have spent thousands of hours developing a mobile application with
a backend hosted on a private server. The application is a calorie counter that looks up
food data and information via a REST API call. You developed the application using

a backend, as it wasn't feasible to store all of the food information on each device.
Having a backend that provides the data also allows you to update the database
without requiring each user of the application to update to a new version.

Scaling Applications

Sales have been slow during the initial rollout of your application, so one backend
server is more than adequate to handle all of the requests that users of your
application are performing. You wake up one morning and find out that your
application is listed as a featured application on the app store. Suddenly, the number
of users of your application has exploded and your backend server is not able to keep
up with the number of requests. Users of your application become frustrated and
leave a negative review while also deleting the application because the experience
was slow and unresponsive. At the most critical time for your application, your
backend server could not handle the increased amount of traffic, and you weren't able
to add additional servers fast enough to keep up with the increased traffic before your
users became frustrated. You think to yourself that you should have just started with
additional servers, but you didn't want to spend the additional money to maintain
servers when one was enough to handle all of the current traffic. Enter OpenShift

and automatic scaling.

Vertical and horizontal scaling

There are two types of scaling that IT people are familiar with: vertical scaling and
horizontal scaling.

You can think of vertical scaling as providing a single huge monolithic server that
has large amounts of RAM and CPUs on a single server. This huge server is typically
the only server that handles requests for your application. If the server is not able to
handle the number of incoming requests in a timely manner, the solution is to throw
more memory or CPUs into the server. For instance, traditional relational databases
typically reside on a single server that holds all of the data. Of course, this data can
be replicated for failovers, but generally, all requests go through a single server.

Horizontal scaling, on the other hand, is a new way of approaching the scalability
problems that we see today with web-based applications. Horizontal scaling means
having lots of smaller-sized servers working together to handle all of the requests of
a user instead of having a single large server. To illustrate the differences between
vertical and horizontal scaling, take a look at the following diagram:

[242]

Chapter 12

HTTP request HTTP request

IEXIIIT

TSI

[TTTRENTIIT [T TTRENTIITITIT TSI

Vertical scaling - a single large server Horizontal scaling - multiple small servers

IEXIIIT

IEXIIIT

)
{
)

An easy way to envision how horizontal scaling works is to imagine eating a bag of
potato chips. While eating these chips, you accidentally drop one on the ground but
decide not to pick it up. You then go about your business and leave the chip where
it fell. Not long after dropping the chip on the ground, an army of ants approaches
the chip. These ants break the chip into thousands of tiny pieces and each ant takes a
single fragment of the chip back to their home. Instead of a single ant trying to take
the whole chip back to the colony, they all worked together as a team to accomplish
the goal. This is how horizontal scaling works.

Using automatic scaling

One of the unique features of OpenShift Online is the ability to automatically scale
your application based on the amount of traffic that your application is receiving.
The platform monitors the number of concurrent HTTP requests and will add
additional gears to your application if the demand is not being met. The platform
will then monitor your gears and determine when it is safe to begin scaling back
when demand is being met.

. At the time of writing this book, if you have more than 16 concurrent
% connections, the platform will add an additional gear. For the current
e configuration limit of the number of concurrent connections, see the

official OpenShift Online documentation.

[243]

Scaling Applications

To understand how scaling works on OpenShift, let's examine what happens when
you create an application that is not scaled. For instance, suppose that we created an
application named notscaled that uses the PHP-5.4 runtime and a MySQL database.
We will create this application with the following command:

$ rhc app create notscaled php-5.4 mysql-5.5

When issuing the preceding command, a single gear will be created for you on the
OpenShift Online platform. This single gear contains both the PHP runtime and the
MySQL database, as depicted in the following diagram:

OpenShift gear

PHP-5.4 runtime

MySQL 5.5 database

Creating a scaled application with the
command line

By default, all applications that are created on the platform are not scaled, which
means that a single gear contains all of the application code and cartridges. In order
to create a scaled application, you need to pass the -s flag to an application when
creating it. For example, to create a scalable application with the PHP-5.4 runtime
and a MySQL database, we will enter the following command:

$ rhc app create scaledapp php-5.4 mysgl-5.5 -s

When creating a scaled application on OpenShift, the gear creation process differs
slightly in that a load balancer is added to the equation and the database resides
on its own distinct gear. A good way to think of a scaled application is not a single
gear but a gear group that belongs to the application. For example, given the
preceding command, our application would look like the following diagram from
a conceptual viewpoint:

[244]

Chapter 12

HAProxy load balancer

OpenShift gear

OpenShift gear

PHP-5.4 runtime

MySQL 5.5 database

Application gear group

You can verify that MySQL and PHP are indeed running on separate gears by

issuing the following command to view the details for your application:

$ rhc app show scaledapp

You will see the following output:

scaledapp @ http://scaledapp-packt.rhcloud.com/ (uuid:

5383e2c8500446265e000271)

Domain: packt

Created: 5:56 PM

Gears: 2 (defaults to small)

Git URL: ssh://5383e2c8500446265e000271@scaledapp-packt.rhcloud.
com/~/git/scaledapp.git/

SSH: 5383e2c8500446265e000271@scaledapp-packt.rhcloud.com

Deployment: auto (on git push)

mysqgl-5.5 (MySQL 5.5)

Gears:

Connection URL:
PORT/

Database Name:

1 small

mysql://$OPENSHIFT MYSQL DB_HOST:$OPENSHIFT MYSQL DB

scaledapp

[245]

Scaling Applications

Password: 3D2Lg4R-47jgs
Username: adminFshVG51

haproxy-1.4 (Web Load Balancer)

Gears: Located with php-5.4

php-5.4 (PHP 5.4)

Scaling: x1 (minimum: 1, maximum: available) on small gears

In the preceding output, we can see that we are consuming two gears for our
application: one for the PHP-5.4 runtime and an additional gear for the MySQL
database. You might be wondering why the application isn't consuming three
gears, one for each of the following:

* HAProxy
e PHP-54
e MySQL

This is because when creating a scaled application on OpenShift, HAProxy and the
runtime are initially collocated on the same gear. These two items will remain on the
same gear until three additional runtime gears are added. At this time, the PHP-5.4
runtime will be disabled on the head gear that is collocated with HAProxy, which
enables HAProxy to perform better under increased load.

Creating a scaled application with the web
console

Creating a scaled application with the web console is a very straightforward process.
Simply log in to the web console by visiting http: //www.openshift.com.

In order to create a scaled application with the web console, you will need to perform
the following steps:
1. Authenticate to the OpenShift platform.

2. Click on the Add Application button at the bottom of the
application dashboard.

[246]

http://www.openshift.com

Chapter 12

Select to create a new application based on the PHP-5.4 runtime.
Name the application webscaled.

5. Scroll to the bottom of the screen and select to scale the application based on
the web traffic.

The preceding steps are illustrated in the following screenshot:

OPENSHIFT ONLINE

Applications

ation @ Configure the application 3 | Nextsteps

Based On PHP 5.4 Cartridge @&

PHP is a general-purpose server-side scripting language originally designed for Web
development to produce dynamic Web pages. Popular development frameworks include:
CakePHP, Zend, Symfony, and Code Igniter.

http:/Awaw.php.net
¢ Openshift maintained

U Receives automatic security updates

Public URL http:// webscaled - packt ~| .rhcloud.com

You can also create a new domain.

OpensShift will automatically register this domain name for your application. You can add
your own domain name later.

Source Code Optional URL to a Git repository Branch/tag

We'll create a Git code repository in the cloud, and populate it with a set of reasonable
defaults. If you provide a Git URL, your application will start with an exact copy of the code
and configuration provided in this Git repository.

Gears Small

Gears are the application containers running your code. For most applications, the small
gear size provides plenty of resources. You can also upgrade your plan to get access to
more gear sizes.

Cartridges PHP 5.4

Applications are composed of cartridges - each of which exposes a service or capability to
your code. All applications must have a web cartridge.

Scaling Scale with web traffic j

OpenShift automatically routes web requests to your web gear. If you allow your
application to scale, we'll set up a load balancer and allocate more gears to handle traffic
as you need it.

Back Create Application H&s$

[247]

Scaling Applications

Click on the Create Application button to begin the gear-creation process. Once

the application has been created, click on the link titled continue to the application
overview page. Once you are on this screen, add the MySQL database by clicking on
the link highlighted in the following screenshot:

OPENSHIFT ONLINE

Applications S Help

webscaled-packt.rhcloud.com change

packt

Cartridges

Scales Status Gears Storage

PHP 5.4 1-16 Started 1small 1GB

Web Load Balancer

Databases Continuous Integration

Enable Jenkins
Add MysSQL 5.5

Add PostgreSQL 9.2

Or, see the entire list of cartridges you can add

Once the MySQL database has been added to your application, you will see that the
application is consuming two gears, as shown in the following screenshot:

[248]

Chapter 12

OPENSHIFT ONLINE

Applications S Help

webscaled-packt.rhcloud.com change

PackL

Cartridges
Scales Status Gears Storage
PHP 5.4 1-16 Started 1small 1GB
Web Load Balancer
Status Gears Storage
MySQL 5.5 Started 1small 1GB
Database: webscaled User: adminG9CYWIk Password: show

Continuous Integration Tools and Support

Enable Jenkins Add phpMyAdmin 4.0

Or, see the entire list of cartridges you can add

That's all there is to it. OpenShift Online will now automatically scale your
application when extra capacity is needed. This is truly a set-it-and-forget-it
type of mentality.

Using manual scaling

While automatic scaling is great for unplanned traffic spikes, manual scaling is a
better alternative when you know that you are going to have an increased demand
for your application. Let's explore this further using the same example that we

used previously in this chapter where we had a mobile backend that is hosted on
OpenShift Online. Suppose that we get an e-mail from Apple or Google letting us
know that our application is going to be featured in three days. Given that we know
about the potential for increased demand in advance, we would want to go ahead
and manually add a couple of gears to our gear group in order to ensure that our
customers have a great user experience.

[249]

Scaling Applications

The first thing we need to do to manually scale is disable automatic scaling for our
application. We can achieve this using a marker, as discussed in Chapter 11, Using the
Marker and Action Hook System. To create this marker, open a terminal window and
enter the following command, ensuring that you are in the application's root directory:

$ touch .openshift/markers/disable_auto_scaling
$ git add .
$ git commit -am "Disable automatic scaling for our application™"

$ git push

Once you have disabled automatic scaling, I have found that restarting the
application will ensure that HAProxy does not automatically scale down the
manually added gears:

$ rhc app stop -a scaledapp
$ rhc app start -a scaledapp

Now that automatic scaling has been disabled, we can manually add additional gears
using the RHC command-line tools:

$ rhc app-scale-up -a scaledapp

Once you enter the preceding command, a new gear will be created on the OpenShift
Online platform and will be added to your application gear group. Once the gear

has been added, the application code will be copied from the head gear to the newly
created gear using the rsync Linux utility. Once the application code has been copied
over, the platform will add the new gear to the HAProxy load balancer. Once the
command is complete, you will see the following output on your screen:

RESULT:
scaledapp scaled up

To verify that an additional gear has been added to your gear group, issue the
following command:

$ rhc app show -a scaledapp

At this point, you should see that your application is using three gears, as shown in
the following output:

scaledapp @ http://scaledapp-packt.rhcloud.com/ (uuid:
5383e2c8500446265e000271)

Domain: packt

Created: 5:56 PM

[250]

Chapter 12

Gears: 3 (defaults to small)

Git URL: ssh://5383e2c8500446265e000271@scaledapp-packt.rhcloud.
com/~/git/scaledapp.git/

SSH: 5383e2c8500446265e000271@scaledapp-packt.rhcloud.com

Deployment: auto (on git push)

Go ahead and add a couple of additional gears to clearly understand how
gear creation works. For example, if we had added five additional gears to our
application, we would see the following output on the command line:

scaledapp @ http://scaledapp-packt.rhcloud.com/ (uuid:
5383e2c8500446265e000271)

Domain: packt

Created: 5:56 PM

Gears: 7 (defaults to small)

Git URL: ssh://5383e2c8500446265e000271@scaledapp-packt.rhcloud.
com/~/git/scaledapp.git/

SSH: 5383e2c8500446265e000271@scaledapp-packt.rhcloud.com

Deployment: auto (on git push)
php-5.4 (PHP 5.4)

Scaling: x6 (minimum: 1, maximum: available) on small gears

You can also view this information by looking at your application in the web console,
as shown in the following screenshot:

OPENSHIFT ONLINE

Applications.

scaledapp-packt.rhcloud.com chang Started 7 &
Cartridges Source Code
5 650000271 @scaledapp-pach
PHP 5.4 Soles Sl Gears Sioruge
e Pass this URL 1o 'glt clone” to copy the repository locally.
Web Load Balancer Remaote Access

Want te log In to your application?

Members from domain packt

My=QL o9 author@grantshipley.com Cwner
MK Saledpe N SOININEIN/CD! Rieane 3o authorsdev@grantshipley_. Can edit
Continuous Integration Tools and Suppart Delete this application...
: Enable jenkins @ Add phpMyAdmin 4.0

O, see the entire list of cartridges you can add

[251]

Scaling Applications

Setting scaling limits

Often, there are times when you want to have your production application never fall
below a certain threshold of gears that serve the application content. This would be
true if you have a popular application where you know that in order to meet capacity,
you always need at least two gears that serve the traffic. Fortunately, OpenShift
supports this capability by allowing the developer to set a minimum number of gears
using both the command line and the web console. To illustrate this, let's set the
minimum number of gears for an application with the following command:

$ rhc scale-cartridge php-5.4 --min 2 --max -1 -a scaledapp

The preceding command will configure our application, which is scaledapp, to
always have a minimum of two PHP-5.4 web gears associated with it. You might
notice that we set the maximum to -1. The -1 value configures the application to
allow scale-up events until the maximum number of gears for the account has been
reached. Once the command has been executed, you will see the following output on
the terminal screen:

This operation will run until the application is at the minimum scale and
may take several minutes.

Setting scale range for php-5.4 ... done

php-5.4 (PHP 5.4)

Scaling: x2 (minimum: 2, maximum: available) on small gears

We can also set the minimum number of gears using the web console. Log in to the
OpenShift website and browse the overview page for your application. For example,
the scaledapp overview page looks like the following screenshot:

[252]

Chapter 12

OPENSHIFT ONLINE

Applications Help

Started 3 ¢

scaledapp-packt.rhcloud.com «

t

Cartridges Source Code
= e Status Gears Storage ssh://5383ff88e0b8cd69ac00036e@scaledapp-packl
o - started 2small 1GB § |
Pass this URL to ‘git clone’ to copy the repasitory locally.
< Web Load Balancer & G A
‘Want to log in to your application?
Status Gears Storage Members from domain packt
—~ Status s 5
MySQL 5.5 started 1small 1GB author@grantshipley.com Owner
Database: scaledapp User: adminN6SRZST Password: show authorsdev@grantshipley... Can edit
Continuous Integration Tools and Support Delctz this application.,
< Enable Jenkins @& Add phpMyAdmin 4.0

Or, see the entire list of cartridges you can add

Once you are on the application's overview page, click on the link under the Scales
tab that will allow us to configure the minimum and maximum number of gears for
the application. Change the minimum number to 4 and press the Save button.

OPENSHIFT ONLINE

Applications

Scale scaledapp

PHP 5.4 using 2

apenshift is configured to scale this cartridge with the web pr
ar removes coples of you

xy HAProoy. Dpenshift monitors the incaming web traffic to your application and automatically adds
cartridge (each running on their own gears) to serve requests as needed.

Control the number of gears Openshift will use for your cartridge:

Mln.rr:ulmil-'t 'J and Maximum Al available =] small gears | save

kach scaled gear 15 created the same way - the normal post, pre, and deploy hooks are executed. Each cartridge will have its own copy of runtime data, so be sure
to use a datahase If you need to share data across your web cartridges.

For status Information about traffic to your application, see the HAProxy status page:

hitty

caledapp-packlrheloud comMaproxy-status/

[253]

Scaling Applications

While having the ability to automatically or manually scale an application is a great
feature, one must also consider the cost associated with an infrastructure that is scaled
out. The OpenShift platform allows users to control the costs associated with scaling by
configuring the maximum number of gears to scale to. For instance, let's pretend that
we want our scaledapp application to have a minimum number of one gear but also
only support the ability to scale up to two gears. This will enable us to control the costs
associated with the application by never exceeding the two-gear limit for the PHP-5.4
runtime. To perform this action, we will enter the following command:

$ rhc scale-cartridge php-5.4 --min 1 --max 2 -a scaledapp

After entering the preceding command, you will see a confirmation message,
as follows:

This operation will run until the application is at the minimum scale and
may take several minutes.

Setting scale range for php-5.4 ... done

php-5.4 (PHP 5.4)

Scaling: x2 (minimum: 1, maximum: 2) on small gears

This can also be performed on the web console using the same method that we
discussed previously in this section by setting the values on the scaling dashboard,
as shown in the following screenshot:

Applications

Scale scaledapp

PHP 5.4 using 2

Openshift is configured to scale this cartridge with the web proxy HAProxy. Openshift monitors the incoming web traffic to your application and automatically adds
or removes copies of your cartridge (each running on their own gears) to serve requests as needed.

Control the number of gears Openshift will use for your cartridge:

Minimum | 1 | and Maximum 2z | small gears | save

Each scaled gear is created the same way - the normal post, pre, and deploy hooks are executed. Each cartridge will have its own copy of runtime data, so be sure
to use a database if you need to share data across your web cartridges.

For status information about traffic to your application, see the HAProxy status page:

http://scaledapp-packt.rhcloud.com/haproxy-status/

[254]

Chapter 12

Viewing the load-balancer information

When scaling applications on the OpenShift platform, regardless of using manual or
automatic scaling, a load balancer is used to pass requests to the appropriate gear.
The load balancer that is implemented as part of the system is the popular HAProxy
software load balancer.

HAProxy is a software load balancer that is commonly used to

, improve the performance of web applications and services by
balancing incoming requests over several servers. The load balancer

is written in the C programming language and is used by some of
the most popular websites on the Internet.

As part of the HAProxy installation on the OpenShift gears, a web dashboard is
provided so that you can view the number of gears and traffic associated with an
application. This dashboard is available at http://appname-domain.rhcloud. com/
haproxy-status/.

For example, if our application was called scalledapp and our domain was called
packt, the URL for the HAProxy dashboard will be http://scaledapp-packt.
rhcloud.com/haproxy-status/.

Open your favorite web browser and point to the HAProxy dashboard URL of your
application. The dashboard should look like the following screenshot:

@ webscaled-packt.rhcloud.com xy-tat v 73 () * DuckDuck a <
HAProxy version 1.4.22, released 2012/08/09
Statistics Report for pid 318675
» General process information
i P MNactiwe [osctp 1 Desplay option: External resources:
m-u el e S o= 3 [Jactwe u. going down [bacup U going down + Hele DOWN senvers + Prmascsae
s DOWRL, giing vp [ciom DAL ~ Reesh now - Lodales .4}
[—— " * OV exmen * Onine manual
Nete: LiP wah inad salancing dsabied s reponed as “NOLE'
Fronserd 1 1 1| wel 3 | 70| om0 o o o | oeen
Backend e o L] o o] 1| o o T w0 o L o o o @] hdmue o L L] L
Fronsend o 2 of 1] | & 24| 150] o] o o | oFEN
wiugew | 0| 0 o 2 o A [e[& iem| 1we] | @ o o o G mamue | Liokzaniss 1 o @)
Backeed o o 0| 2 of 1| 18 s 6 2s8| isw| o o of o o 0| znamue 1 |1|® o o

[255]

Scaling Applications

You can also access the HAProxy dashboard by clicking on the link next to the Web
Load Balancer cartridge on the application's overview page on the web console:

OPENSHIFT ONLINE

Applications

webscaled-packt.rhcloud.com Started 2

Cartridges Source Code

PHP 5.4 . sran:d Ge:

Pass this URL to 'git clone” to copy the repository locally.

Web Load Balancer : Remote Access
Want to log, in to your apglication

& Memibeers from domain packt
w

et Started 13mall 108 author@grantshipley.com Owner
e webscaled User: adminGCYWIK Fazsword: show authorsdevesgrantshipley_.. Canedi
Deelete this application...
Continuous Integration Tools and Support Ste this application
Enable Jenkins @l Add phpMyAdmin 4.0

Qr, see the entire list of cartridges you can add

Customizing the scaling algorithm

Often, there are times when the default scaling algorithm that ships as part of

your OpenShift gear is not meeting your needs. Perhaps you want to scale your
application based on the memory usage instead of the number of concurrent users.
Fortunately, there is an opportunity to modify this behavior by implementing your
own algorithm that will be inside of the action_hooks directory that we learned
about as part of Chapter 11, Using the Marker and Action Hook System.

The default scaling control file is located on GitHub and is thoroughly
. documented. For a better understanding of how the default scaling
% action works, consider reading the source code located at https://
i github.com/openshift/origin-server/blob/master/
cartridges/openshift-origin-cartridge-haproxy/usr/
bin/haproxy ctld.rb.

To illustrate how to write a custom scaling control file that will allow our application
to be scaled based on memory, let's create a new application called memscale using
the PHP-5.4 runtime:

$ rhc app create memscale php-5.4 -s

[256]

https://github.com/openshift/origin-server/blob/master/cartridges/openshift-origin-cartridge-haproxy/usr/bin/haproxy_ctld.rb
https://github.com/openshift/origin-server/blob/master/cartridges/openshift-origin-cartridge-haproxy/usr/bin/haproxy_ctld.rb
https://github.com/openshift/origin-server/blob/master/cartridges/openshift-origin-cartridge-haproxy/usr/bin/haproxy_ctld.rb
https://github.com/openshift/origin-server/blob/master/cartridges/openshift-origin-cartridge-haproxy/usr/bin/haproxy_ctld.rb

Chapter 12

Once the application has been created, switch to the . openshift/action_hooks
directory and perform the following command:

$ wget https://www.openshift.com/sites/default/files/haproxy ctld.rb .txt

This will download a sample control file that contains the necessary information to
be scaled based on memory usage. We need to change the name of the file in order
to remove the _.txt extension:

$ mv haproxy ctld.rb .txt haproxy ctld.rb

Once you have the file downloaded and the correct filename applied, add the changes
to your repository and then commit and push the file to your OpenShift gear:

$ git add
$ git commit -am "Adding custom scaling"

$ git push
The interesting bits of code in the control file are as follows:

Scale up when any gear is using 400M or more memory.
mem scale up = 419430400

Scale down when any gear is using 300M or less memory
mem _scale down = 314572800

min gears - Once this number of gears is met, don't try to
scale down any lower

min gears = 2

gear list['web'].each do |uuid, array|
mem usage = “ssh -1 ~/.openshift ssh/id rsa
#{uuid}e#{array['dns']} 'oo-cgroup-read memory.memsw.usage in bytes'’.
to i
if mem usage >= mem scale up
@log.error ("memory usage (#{mem usage}) on
#{array['dns']} is above threshold (#{mem scale up}), adding new gear")
self.add gear
end
end

In the preceding code sample, the application will automatically scale up when more
than 400 MB of memory is used and will then scale down when any gear in the gear
group consumes less that 300 MB of memory. The memory information is collected
by establishing an SSH connection to each gear in the gear group, and then reading
the memory information from the oco-cgroup-read command.

[257]

Scaling Applications

Summary

In this chapter, we learned how scaling works on the OpenShift platform. We started
by learning how to use automatic scaling to ensure that your application can handle
unexpected spikes in traffic. We then learned how to leverage manual scaling in order
to proactively add capacity to your application when you know in advance that you
will experience increased demand. After this, we learned how to control costs by
configuring your application to support the maximum number of gears. Finally, we
explored how to customize the scaling algorithm to scale based on memory usage
instead of the number of concurrent HTTP requests.

In the next chapter, we are going to learn how to extend the OpenShift platform
using the DIY cartridge. This cartridge will allow you to execute and run any binary
on your OpenShift gear.

[258]

15

Using the Do-It-Yourself
Cartridge

By default, OpenShift supports many of the most popular languages out of the box.
This includes runtimes for PHP, Python, Perl, Nodejs, Java, and Ruby. However, there
might be times when you want to try out a new programming language or server that
is not yet supported by the OpenShift platform with an official cartridge. In this
chapter, we are going to learn how to use the DIY cartridge to create and deploy
Version 8 of the popular Tomcat servlet container. OpenShift currently supports both
Tomcat 6 and 7. However, at the time of writing this book, support for Version 8 of
Tomcat as an official cartridge is not provided.

Understanding the DIY cartridge

The DIY cartridge creates an empty gear where users can run just about any program
that can speak HTTP. OpenShift Online is essentially a secured Red Hat Enterprise
Linux (RHEL) system. This means that any binary that will run on RHEL will run on
the DIY cartridge.

The way that the OpenShift Online DIY runtime exposes your application to the
outside world is by creating an HTTP proxy that is specified by the following
environment variables:

® OPENSHIFT DIY IP
¢ OPENSHIFT DIY PORT

Using the Do-It-Yourself Cartridge

The application that you deploy only needs to listen for HTTP connections
on the IP address and port that are specified in the preceding environment
variables. The OpenShift proxy will then marshal requests from the outside
world to your application.

In Chapter 11, Using the Marker and Action Hook System, we learned about the action
hook and marker systems. The DIY application type takes advantage of these
systems by using the .openshift/action_hooks/start script to control how the
custom server is started. Likewise, the .openshift/action hooks/stop script is
used to control how the server is stopped.

DIY applications are unsupported but are a great way for developers to

try out unsupported languages, frameworks, or middleware that don't
#— ship as official OpenShift Online cartridges. Furthermore, DIY-based

applications are not able to scale using the default scaling algorithm.

Creating an application with the
DIY cartridge

For the example in this chapter, we are going to create a DIY-based application
that will house the Tomcat 8 servlet container. The first thing we need to do

is create an application gear using the DIY cartridge. To perform this action,
enter the following command:

$ rhc app create tomcat8 diy

After entering the preceding command, you will see the following information
displayed on the screen:

Using diy-0.1 (Do-It-Yourself 0.1) for 'diy'

Application Options

[260]

Chapter 13

Domain: packt
Cartridges: diy-0.1
Gear Size: default

Scaling: no
Creating application 'tomcat8' ... done

Disclaimer: This is an experimental cartridge that provides a way to
try unsupported languages, frameworks, and middleware on OpenShift.

Waiting for your DNS name to be available ... done

Your application 'tomcat8' is now available.

URL: http://tomcat8-packt.rhcloud.com/

SSH to: 53841746500446265e00075f@tomcat8-packt.rhcloud.com

Git remote: ssh://53841746500446265e00075f@tomcat8-packt.rhcloud.com/~/
git/tomcat8.git/

Cloned to: /Users/gshipley/code/packt/tomcat8

Run 'rhc show-app tomcat8' for more details about your app.

As part of the output, you will notice that we created this application without
scaling enabled. This is because the DIY cartridge does not support scaling. The
reason for this is that scaling can be extremely complicated and is highly dependent
on the runtime to handle operations such as session replication across a cluster of
gears. Since the DIY cartridge allows you to execute any binary, the platform cannot
determine how to handle the runtime in a scaled environment.

[261]

Using the Do-It-Yourself Cartridge

You can also create an application with the DIY cartridge using the web console,
as shown in the following screenshot:

OPENSHIFT ONLINE

Applications.

2) cConfigure the application

Based On Do-It-Yourself 0.1 Cartridge @

Public URL hitps | tomecats - packt
O o1 T o

.rheloud.com

Source Code
wit
twith
Gears Small
Cartridges Do-It-Yourself 0.1
- -
catic
Scaling

Back Create Application 1@

In the preceding screenshot, you will notice that the user is not given a choice to scale
the application.

Now that we have our application created, visit http: //appname-domain.rhcloud.
com in your favorite web browser. For example, if our application was called
tomcat8 and our domain was called packt, the URL for the DIY-based application
will be http://tomcat8-packt.rhcloud. com.

Once you have loaded the URL in your web browser, you will be presented with the
following screenshot:

[262]

Chapter 13

- tomcatB-packt.rhchoud.com v | (v DuckDuck ql JF &

Welcome to your Do-It-Yourself application on OpenShift

supported languages. frameworks, and middleware on Cf-l?l\snll‘. To get started, add your framework of
ation. The only resiriction is that your application should bind fo

Managing your application
Web Console

You can use the OpenShift web console o enable additional capabiities via cartridges.
add collaborater access authorizations, custom domain aliases, and manage
domain memberships.

Stopping the default web server

Given the preceding screenshot, you are probably asking yourself how this is
happening when we stated that the DIY application type allows you to run any
binary. Knowing this information, you probably thought that you would be starting
with a blank slate on the application gear. This is not actually the case as the platform
ships a template for the DIY cartridge that includes a simple server written in the
Ruby programming language.

Since we are going to be installing and using the Tomcat 8 servlet container, we want
to stop the existing Ruby server that is running on our application gear. The Ruby
service in question is started and stopped via the action hook system that we learned
about in Chapter 11, Using the Marker and Action Hook System.

To view the start and stop script associated with the Ruby server, open your terminal
window and go to the root directory of the tomcats application. Once you are in this
directory, execute the following command:

$ cat .openshift/action hooks/start

This will display the source code that starts the server and should look like the
following output:

#!/bin/bash

The logic to start up your application should be put in this

script. The application will work only if it binds to

SOPENSHIFT DIY IP:8080

nohup $OPENSHIFT REPO DIR/diy/testrubyserver.rb $OPENSHIFT DIY IP
$OPENSHIFT REPO DIR/diy |& /usr/bin/logshifter -tag diy &

[263]

Using the Do-It-Yourself Cartridge

In order to delete and clean up the unused Ruby server, we will need to delete several
files, including the start and stop scripts. For this, perform the following commands:

$ git rm .openshift/action hooks/start
$ git rm .openshift/action hooks/stop

$ git rm diy/testrubyserver.rb

$ git commit -am "removing ruby server"

$ git push
Once the push command is executed, you will see the following output on the screen:

Counting objects: 9, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.

Writing objects: 100% (5/5), 508 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)

remote: Stopping DIY cartridge

remote: Building git ref 'master', commit 5£8e295
remote: Preparing build for deployment

remote: Deployment id is e8469a7d

remote: Activating deployment

remote: Starting DIY cartridge

remote: ---------------------o---

remote: Git Post-Receive Result: success

remote: Activation status: success

remote: Deployment completed with status: success

To ssh://53841746500446265e00075f@tomcat8-packt.rhcloud.com/~/git/
tomcat8.git/

67e52aa..5f8e295 master -> master

Verify that the Ruby server has been stopped and deleted by visiting the URL for your
application in a web browser. If the server was removed correctly, you should see the
following error message, indicating that a server is not running on your gear:

- tomeatg-packt.rhcloud.com v ol 0 q, Y

Service Temporarily Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.

Apachef2.2.15 (Red Hat) Server at tomcat8-packt.rhcloud .com Port 80

[264]

Chapter 13

Creating a Tomcat 8 server

At this point, we have an empty gear that does not have a server listening for
HTTP connections. We now want to download the Tomcat application code on
our remote gear. For this, we first need to SSH to our application gear with the
following command:

$ rhc app ssh tomcat8

Once you have been authenticated to the gear, we want to change to the persistent
data directory where we will place the Tomcat source code:

$ cd $OPENSHIFT DATA DIR

. The preceding command might look a bit odd if you are not familiar
Q with the Linux operating system. What the command does is switch
/~— to the directory that is specified in the OPENSHIFT DATA_ DIR
environment variable.

We now need to download the Tomcat 8 source code. For this, open a
browser and go to the official project page for Tomcat, which is located at
https://tomcat.apache.org/.

Once the project page loads, there is a link to download specific versions of the
servlet container on the left-hand side. We are interested in Version 8 of the server,
so click on that link as shown in the following screenshot:

« * (a2 apache.org v & | [@r ouckouck a)
&

earch the Site Search
Apache Tomcat Apache Tomcat

Horme

Apache Tomeat Is an open source software Implementation of the |ava Servet and JavaServer Pages technologles. The |ava Servet and JavaServer Pages
specifications are developed under the Java Community Process,

Apache Tomcat |5 developed In an open and participatory environment and released under the Apache License version 2. Apache Tomcat Is Intended to
be a collaboration of the best-of-breed developers from around the world. We Invite you to participate in this open development project. To learn mare
about geming Invelved, glick here,

Apache Tomeal powers numerous large-scale, mission-critical web applications across a diverse range of industries and organizations. Some of these
users and thelr storles are listed on the PoweredBy wiki page.

Apache Tomcat, Tomcat, Apache, the Apache feather, and the Apache Tomcat project logo are trademarks of the Apache Software Foundation.

[265]

https://tomcat.apache.org/

Using the Do-It-Yourself Cartridge

You will then be presented with a list of downloads that are available for the requested
version. Since we are on a Linux-based operating system, we want to download the
.tar.gz binary distribution. Right-click on the link for the . tar.gz version and select
to copy the link location, as shown in the following screenshot:

8.0.8

Please see the README file for packaging information. It explains what every distribution contains.

Binary Distributions

e Core:

S 32-bit Windows zip (pgp, mds)
o 64-bit Windows zip (pgp, md5)

o B4-bit Itanium Windows zip (pgp, mds)
o 32-bit/64-bit Windows Service Installer (pgp, mds)

Now that we have a link that points to the binary distribution of the Tomcat 8 servlet
container, we want to download it to our OpenShift gear. Open your terminal window
again and ensure that you are connected to your remote gear and you are in the
SOPENSHIFT_DATA DIR directory. Once you have verified this, enter the following
command, replacing the link in the example with the URL for the distribution that you
have chosen to download:

$ wget http://mirrors.gigenet.com/apache/tomcat/tomcat-8/v8.0.8/bin/
apache-tomcat-8.0.8.tar.gz

Once the download is complete, extract the contents using the tar command:

$ tar zxvf apache-tomcat-8.0.8.tar.gz

1
‘Q If you no longer need the . tar.gz package, it is okay to remove it

after you have extracted the contents.

This will create a new directory named apache-tomcat-8.0.8 in the
SOPENSHIFT DATA DIR directory.

At this point, we need to modify the configuration file for the Tomcat server to
specify the port and IP address that we will be using for our gear. To find out the
IP of your DIY gear, enter the following command on the remote gear:

$ env |grep DIY IP

The output provided will contain the IP address for your gear.

[266]

Chapter 13

Make a note of this information, as we will need it when we begin
s to modify the configuration file for Tomcat.

For example, the output returned for my gear is as follows:

OPENSHIFT DIY IP=127.11.60.1

The next thing that we need to do is modify the configuration that defines what IP
address and ports the server uses. This configuration file is named server.xml and
is in the conf directory of the server. To edit this file, enter the following command:

$ vi $OPENSHIFT DATA DIR/apache-tomcat-8.0.8/conf/server.xml

Once the file is opened, we will need to modify the <server port="8005"
shutdowns="SHUTDOWN" > line to <Server port="18005" address="127.11.60.1"
shutdown="SHUTDOWN" >.

Ensure that in all the examples in this chapter, you replace the supplied
s~ 1P address of 127.11.60.1 with the correct address for your gear.

Now, you need to make some changes to the following lines of code:

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443" />

Change the preceding lines of code to the following lines of code:

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
address="127.11.60.1"
redirectPort="8443" />

We then need to change the ports and address for AJP from <Connector
port="18009" protocol="AJP/1.3" redirectPort="8443" />to
<Connector port="18009" protocol="AJP/1.3" address="127.11.60.1
redirectPort="8443" />.

We also need to change the hostname section to include the address of our gear:

<Host name="localhost" appBase="webapps"
unpackWARs="true" autoDeploy="true">

[267]

Using the Do-It-Yourself Cartridge

Change the preceding lines of code to the following lines of code:

<Host name="tomcat8-packt.rhcloud.com" appBase="webapps"
unpackWARs="true" autoDeploy="true">

Ensure that you provide the correct hostname for your gear and not the one provided.

Once you have made the changes to the configuration file, we can now start the
server using the following command:

$ $OPENSHIFT DATA DIR/apache-tomcat-8.0.8/bin/startup.sh && tail -f
$OPENSHIFT DATA DIR /apache-tomcat-8.0.8/logs/*

The preceding command will start the Tomcat 8 server and then tail the logfiles so
that you can view any error messages that might be displayed during startup.

If you made the correct modifications to the server.xml configuration file,
you should see the following indication in the logs:

27-May-2014 01:34:01.140 INFO [main] org.apache.catalina.startup.
Catalina.start Server startup in 5422 ms

To verify that the server was started correctly, open your web browser and point
to the URL of your application gear. You will be greeted with the following page
that lets you know that the server is up and running;:

[268]

Chapter 13

[@ tomcats packt.cloud.com v 0| [ouc o L &
Home D 1 C E Wiki Mailing Lists Find Help
Apache Tomcat/8.0.8

\)“_A‘pache Software Foundation
- http://www.apache.org/

Recommended Reading: Server Status
Security Considerations HOW-TO

Manager App
Manager Application HOW-TO e —

Clustering!Session Replication HOW-TO Host Managper

Developer Quick Start

Tomeal Setup Bealms & AAA Examplus Sendet Specifications
First Web Application JDEC DMASCUICes Tomcal Versions
Documentation Getting Help

Tomcat 8.0 Documentation

FAQ and Mailing Lists

SCATALTNA_HOME/conf/tomcat.users. xml

In Tomcat 8.0 Access o
apphcation is spht betwe

Tomeat 8.0 Configuration

Tomcat Wiki
Fim
o

SCATALINA HOME/RUNNING . txt

jon in

itional imponant configuration

The following mailing lists are available

AL
IMPOITART ANAOUNCEMEMS, FElA3ES, SECUITY
vuinerability notficatons. (Low volume).

Release Notes

ch ol Developers may be mterested in.
an

Elandlo TomcaL 8.0 Bug Database

Migration Guide Tomeat .0 JavaDocs

Security Notices Tomsat 8.0 SV Repository

Pretty awesome, huh? We just created a new server using the Tomcat 8 binary
distribution and got it up and running on OpenShift Online in a matter of minutes.
I decided to use Tomcat for the example in this book because it is one of the most
popular servers that people try to get running. With just a few modifications to

the configuration, we were able to stand it up and have it start serving requests
very quickly.

One last bit of information before we end this chapter. You might have wondered
why we changed the port numbers, other than 8080, to something in the 18000
range. This is because OpenShift does not allow the binding of ports below 15000
for custom binaries except for a few exceptions, including 8080.

[269]

Using the Do-It-Yourself Cartridge

Summary

In this chapter, we learned how to use the DIY cartridge to create custom servers by
utilizing any binary that is executable on the RHEL operating system. We started
by creating an application, and then we removed the template Ruby server that
ships with the cartridge. After we removed the Ruby server, we downloaded and
configured the Tomcat 8 servlet container. Finally, we started the Tomcat 8 server
using the startup. sh script and verified that it was working by loading the servlet
container in our web browser.

Thank you for reading along through all the chapters in this book. Having progressed
through the content, you now have the knowledge and skills to be successful with the
OpenShift platform. You have learned the essential concepts that will enable you to
create and deploy applications to the public cloud while also learning a few tricks that
are not commonly known, such as changing the scaling algorithm, that will empower
you to take your applications to the next level.

[270]

The RHC Command-line
Reference

This appendix will serve as a reference for all of the available commands that a user
can execute by utilizing the RHC command-line tools. I often find that browsing
through an appendix such as this often exposes me to commands that I may not
have known about just by using a system. Therefore, I decided to include it as part
of this book so that you may stumble upon a feature that can save you time in your
development efforts.

Top-level commands

The top-level commands are the first items that you would enter in after issuing the
RHC command. These commands will allow you to control your OpenShift account
as well as perform actions on applications.

Getting started

The commands listed in the following table will allow you to perform tasks such as
setting up your account, creating applications, listing your applications, managing
cartridges, and managing environment variables for your OpenShift gear:

Top-level commands Description

setup This will set up your local system in order to connect
to the OpenShift servers. This includes creating

and uploading an SSH key as well as creating
authorization tokens.

create-app This allows you to create an application that will be
deployed to the OpenShift service

The RHC Command-line Reference

Top-level commands

Description

apps Running this command will list all of the applications
that you currently have deployed.
cartridges This will list all the available cartridges that you can

use for applications.

add-cartridge

This adds a cartridge to an existing application that
you have deployed.

set-env This allows you to create environment variables for a
specific application.
logout This will expire any authorization tokens that are

active for your current session.

Working with applications

The commands in the following table provide a mechanism for managing
applications that are actively deployed on the OpenShift platform:

Commands

Description

tail

This command opens up an SSH session and displays
all the logfiles of your running application.

port-forward

This command forwards ports using SSH so that you
can connect to remote services as if they were running
locally on your machine.

threaddump This command will allow you to view a thread dump
of an application process.
snapshot This command will allow you to create a backup of

your application code and database that you can later
use if you need to restore.

git-clone

This command will clone the remote Git repository
to your local machine and create metadata that will
allow you to perform context-aware RHC commands.

[272]

Appendix A

Management commands

The following table lists all the management commands along with their descriptions:

Command Description

account This command allows you to view information about your
OpenShift account.

alias This command allows you to create a custom domain name
(vhost) for your application.

app This command allows you to perform actions related to
an application on the platform, such as creating, deleting,
and modifying.

authorization This command allows the management of authorization tokens

for your account.

cartridge This command allows you to manage cartridges that have been
added to your application including the ability to stop, start,
and delete add-on cartridges.

deployment This command allows you to manage deployments for an
application. This is typically used to roll back from the current
deployment to a previous one.

domain This command allows the management of domains for your
OpenShift account including the ability to create new ones and
delete the existing ones.

env This command allows you to manage and view environment
variables that have been set for your application.

member This command allows you to manage membership items for a
specific domain. This is commonly used in team environments
where more than one developer needs access to deploy the
application code.

scp This command allows you to securely copy a file from your
local machine to your remote OpenShift gear.

server This command displays information about the remote
OpenShift service, including any maintenance information.

ssh This is a convenience command that will allow you to SSH to
your remote OpenShift gear.

ssh-key This command allows you to manage SSH keys that have been
added to your account. This includes the ability to create new
ones and delete old ones.

team This command allows you manage teams that are associated
with your account including the ability to create new ones and
delete the existing teams.

[273]

Getting Involved with the
Open Source Project

The open source project behind OpenShift, named OpenShift Origin, is a thriving
and vibrant community that is ready and willing to accept contributions from new
members. You might be wondering how you can get involved with the project. Good
news; there are several ways to get involved even if you don't want to contribute at
the source code level.

Now that you have decided that you want to contribute to the growing OpenShift
Origin community, let's go over a few basics that will help get you started. The
first thing you will want to look at is the official project website, which is located at
http://openshift.github.io.

At this location, you can learn more about the project, and I suggest that you start

by deploying your own OpenShift Origin environment in order to get familiar with
the project. What does this mean? All of the examples that we have used in this book
have been running on the publicly hosted version of OpenShift that is provided and
managed by Red Hat. The great thing about open source software is that you are free
to download the source code and compile it in order to run a PaaS that behaves almost
identical to the publicly hosted OpenShift Online. Granted, one of the major benefits
of PaaS, such as OpenShift Online, is that as a developer, you no longer have to worry
about the system administration aspects of running and managing servers. However, if
this is something you are interested in, you are welcome and encouraged to download
and install your own version of OpenShift Origin. If you don't want to go through

the hassle of installing and configuring the Origin code, the project provides prebuilt
virtual machines that you can download and run and that should work out of the box.
If you do decide that you want to install your own version instead of using a prebuilt
virtual machine, a great tool to get started with is called oo-install. The information for
this installation program can be found on http:/install.openshift.com.

http://openshift.github.io
http:/install.openshift.com

Getting Involved with the Open Source Project

Contributing to the project

First of all, why would you want to contribute to an open source project? There are
many reasons why you would want to work on a FOSS project even though you will
most likely not see any monetary reward for your efforts. Contributing to a project
that you like to use can be a rewarding experience as it helps you become a more
efficient and successful professional as well as gives you the benefit of helping other
people out. On top of this, you also get to shape the future of the project and take
part in developing a platform that is quickly becoming the next evolution of software
development. This is also a very interesting and exciting experience in that you get to
work on new technology that you might not get to use during the course of a normal
workday. You will meet and collaborate with new people who might just end up
being some of the smartest and passionate people that you have ever been able to
work alongside. There are countless reasons why you could decide to contribute to a
project, but the decision will have to be left to you. If you do decide to dip your toe in
the water and contribute to one of the most innovative and game-changing projects
that OpenShift Origin is, keep reading.

Let's start simple. The first step to contributing to OpenShift Origin could be to simply
download and install the project. Once you have the project up and running, push it

to the limits and try to find weird edge cases where the platform doesn't perform as
expected. Once you find these cases, start creating bug reports and discussing the issue
on the public mailing list. I can almost guarantee that you will be welcomed with open
arms and greeted in a friendly manner.

Going just a little bit deeper, you can also start contributing documentation to the
project. In my career, I have found that the pace at which open source projects move
is mind blowing. Given that there is such a dedicated group of engineers who work
on the code because it is a passion for them, the documentation often lags behind
by one or many releases. The biggest win for you to gain early on in a community

is by providing and helping out with documentation to explain new features to the
consumer of the project.

Is documentation not your strong point? Consider creating and maintaining
community-based cartridges and QuickStarts in order to allow users to run the
latest and greatest version of a runtime or database.

[276]

Appendix B

Want to work on the core code base? Knock yourself out! Fork the project on
GitHub and begin by fixing some of the bugs that have been logged against the
project. Once you have shown that you understand the code base well enough to
fix a few bugs, you can then explore adding new features to the project. Keep in
mind that it is better to communicate all new features on the public mailing list
before the implementation in order to ensure that others agree that the feature is a
good idea. I would hate for you to spend hours upon hours coding a new feature
only to get your pull request rejected because someone else is already working on
it. Communicate early and communicate often!

Last but not least, join the community by signing up for the public mailing list
and help users out on the official freenode IRC channel or on the StackOverflow
OpenShift forums.

The official IRC channel for the OpenShift project is
o #openshift on freenode.

I hope this appendix has shown you multiple ways in which you can contribute to
the project and has got you thinking that yes, you can provide valuable contributions
if you decide to do so. Remember, for all the information you need to get started,
simply head to the official project page and read the section on how to contribute.
The community doesn't bite; I promise.

[277]

Symbols

@ApplicationScoped annotation 104

-c teams command 100

-d $SOPENSHIFT_APP_NAME
command 100

[etc/passwd file

viewing 58, 59

-file /ftmp/mlbparks.json command 101

-h $OPENSHIFT_MONGODB_DB_HOST
command 101

--jsonArray command 100

-p $SOPENSHIFT MONGODB_DB_
PASSWORD command 101

--port SOPENSHIFT_MONGODB_DB_
PORT command 101

--type json command 100

-u $OPENSHIFT_MONGODB_DB_
USERNAME command 101

A

Abstract Window Toolkit (AWT) 94
access

adding, SSH keys used 180, 181
account command, management

commands 273

action hook

build 230

creating 231, 232

deploy 230

post_deploy 230

pre_build 230

system 229-231

using 231, 232

Index

add-cartridge command, top-level
commands 272
add-on cartridges
about 34, 35
embedding 86, 87
Advanced Packaging Tool (APT) 14
alias command, management
commands 273
app command
about 273
configure 30
create 30
delete 30
deploy 30
force-stop 30
reload 30
restart 30
show 30
start 30
stop 30
tidy 30
application
and Secure shell 56-58
backing up 53
cartridges, adding 194-196
cloning, URL adding for 200
code 44, 45
code anything area 185
creating 183-185
creating, with DIY cartridge 260-262
custom domain name, adding 197-199
databases, using with 38
deleting 32, 90, 201, 202
developing 42-44
featured applications area 184

information, displaying 30, 31
instant applications area 184
instant applications, using 187-190
language-specific areas 184
logfiles, creating 51-53
logfiles, viewing 50, 51
managing 193
phpMyAdmin add-on cartridge,
adding 38-42
restarting 196, 197
restoring 53
single logfile, viewing 53
snapshot, creating 54, 55
snapshot, restoring 55, 56
source code, modifying 191-193
SSL certificate, adding 197-199
starting 49, 50
stopping 49, 50
testing 120
application, creation process
based on 189
cartridges 189
gears 189
public URL 189
scaling 189
source code 189
application management, commands
git-clone 272
port-forward 272
snapshot 272
tail 272
threaddump 272
apps command, top-level commands 272
apt command 14
authorization command, management
commands 273
automatic scaling
using 243, 244

beans.xml file
creating 105

build
triggering, manually 161, 162
troubleshooting 160

C

cartridge command
about 272,273
add 35
list 35
reload 35
remove 35
scale 35
show 35
start 35
status 35
stop 35
storage 35
cartridges
about 33
adding 36, 37, 194-196
add-on cartridges 34, 35
using 35, 36
web cartridges 33, 34
cgroup information
viewing 59, 60
changes, OpenShift application
deploying 80-85
CI. See continuous integration
clean build marker
using 229
CNAME record
URL 197
code
between environments, promoting 176-178
building, with Jenkins 158-160
promoting 178,179
Codelgniter
URL 188
command line
new domain, adding with 166, 167
scaled application, creating with 244-246
used, for managing members 170
configuration, Spring application
adding 131-134
Context Dependency Injection (CDI) 104
continuous integration 147-149
Control Groups (cgroups)
about 19
URL 20

[280]

create-app command, top-level domain command, management

commands 271 commands 273
cron cartridge domain model
about 46 adding 134
adding 46, 47 creating 105, 106
cron job, adding 47 domain name, application

adding 197-199
E

D

database
MLB stadiums, importing 99-101 easy way 121
using, with application 38 Eclipse
database access class downloading 68-71
beans.xml file, creating 105 installing 68-71
creating 103, 104 URL 68
database support, JBoss EAP application using, for Java debugging 208-214
adding 98 enable_jpda marker 226
adding, to Java application 102 Enterprise JavaBeans (EJB) 94
debugging env command, management commands 273
logfiles, using for 219-222 environment variables
default web server about 61, 62
stopping 263, 264 setting 64-66
deploy, action hook viewing 88, 89
about 230
creating 232-235 F
testing 236-239 . o
deployment command, management findParksWithin() method 136
commands 273 force_clean_build marker 226

deployment process 148
details, OpenShift application G

viewing 89
develo rgn ent staff 178 getAllParks() method 136
P git-clone command, application

dir command 21 management commands 272
DIY cartridge 8

about 259 Git

o . . for OS X installation, URL 13
application, creating with 260-262 for Windows. URL 12

domain GitHub '

member, deleting from 172 URL 126
members, adding 169
members role, modifying 171 H
new domain, adding with

command line 166, 167 horizontal scaling 242, 243
new domain, adding with hot_deploy marker

web console 167-169 about 225,226

using 228

[281]

| Jenkins server
embedding, into existing

IDE application 152-154
about 67 status, verifying 151, 152
advantages 68 support, adding for 149, 150
OpenShift application, integrating with 91 Jenkins web console

information using 154-157
for application, displaying 30, 31 JPDA

integrated development environments. See URL 209

IDE
Intelli] L

i ing 214-21
using, for Java debugging 9 Leaflet
J used, for creating map 112-116
Linux

java7 marker 227 RHC command-line tools, installing 14
Java API for RESTful Web Services load-balancer information

(JAX-RS) API 106 setting 255

Java application Logentries 220, 223
database support, adding 102 logfiles, application

Java debugging creating 51-53
Eclipse, using for 208-214 single logfile, viewing 53
Intelli], using for 214-219 using, for debugging 219-222

Java EE viewing 50, 51, 60, 85, 86
history 93 logout command, top-level commands 272

Java Platform Debugger Architecture Is command 21

(JPDA) socket 226

JBoss M
URL 72

JBoss Enterprise Application Platform management commands

(JBoss EAP application) account 273
about 93 alias 273
creating 96, 97 app 273
database support, adding 98 authorization 273
database support, adding to Java cartridge 273
application 102 deployment 273
MLB stadiums, importing into domain 273
database 99-101 env 273

JBoss Tools member 273
URL 73 scp 273

Jenkins server 273
build, manually triggering 161, 162 ssh 273
build, troubleshooting 160 ssh-key 273
code, building with 158-160 team 273

manual scaling 249-251

[282]

map
automatic updation 120
creating, Leaflet used 112-116
creating, OpenStreetMap used 112-116
deployment, verifying 117, 118
response, verifying 117, 118
stadiums, adding 119, 120

marker
clean build marker, using 229
creating 227
enable_jpda marker 226
force_clean_build marker 226
hot_deploy marker 225, 226
hot_deploy marker, using 228
java7 227
JBoss specific 226, 227
skip_maven_build marker 226
system 225
using 227

member command, management

commands 273

members
adding, to domain 169
deleting 176
deleting, from domain 172
domain role, modifying 171
managing, command line used 170
managing, web console used 172-175
role, modifying 176

Microsoft Windows

RHC command-line tools, installing 10, 11

MLB stadiums, JBoss EAP application
importing, into database 99-101
MongoDB
connecting to 205-208
URL 98
MongoDB NoSQL database, Spring
application
adding 128-130
mongoimport command 100
multiple domains
setting up 166

N

Nintendo Entertainment System (NES) 33

(0

oo-install
URL 275
OpenShift application
add-on cartridges, embedding 86, 87
changes, deploying 80-85
creating 77-80
deleting 90
details, viewing 89
environment variables, viewing 88, 89
existing OpenShift application,
importing 74-77
integrating, with other IDEs 91
logfiles, viewing 85, 86
managing 79, 80
open source project 275
Tomcat gear, creating 127, 128
URL 183, 275
OpenShift Online application
about 7
account, creating 7-9, 19
configuring 20
creating 16, 18
gear placement 19
Git repository, cloning 20
source code, adding 21-23
URL 8
web console, using 23-28
OpenShift Online platform
cartridges 33
OpenShift Partner page
URL 223
OpenShift plugin
downloading 72, 73
installing 72,73
open source project
about 275
contributing to 276, 277
OpenStreetMap
used, for creating map 112-116
0s X
RHC command-line tools, installing 13

[283]

P

phpMyAdmin add-on cartridge
adding 38-42
Pivotal 124
Plain Old Java Object (POJO) 94
Platform as a Service (PaaS) 241
port-forward command, application
management commands 272
port forwarding
using 203, 204
post_deploy, action hook 230
pre_build, action hook 230
production staff 178

Q

QA staff 178

R

Red Hat Cloud command-line tools
about 9
configuring 15, 16
installing, for Linux 14
installing, for Microsoft Windows 10-12
installing, for OS X 13
Red Hat Enterprise Linux (RHEL)
system 259
REST endpoint, Spring application
adding 136
REST services
creating 106-110
REST web services, verifying 110, 111
stadiums, getting from 119
REST web services
verifying 110
RHC command, action arguments
about 29, 30, 271
app 36
create 36
lampstack 36
php-5.4 36
rhc 36
Ruby language runtime
installing 10
URL 10

S

sample application 95, 96
scaled application
creating, with command line 244-246
creating, with web console 246-249
scaling
algorithm, customizing 256, 257
automatic scaling 243, 244
horizontal 242, 243
limits, setting 252-254
manually 249-251
matters 241, 242
scaled application, creating with
command line 244-246
scaled application, creating with
web console 246-249
vertical 242,243
scp command, management commands 273
Secure shell
and application 56-58
Security Enhanced Linux (SELinux)
about 19
URL 20
server command, management
commands 273
set-env command, top-level commands 272
setup command, top-level commands 271
skip_maven_build marker 226
snapshot
creating 54, 55
restoring 55, 56
snapshot command, application
management commands 272
source code
adding, to OpenShift Online
application 21, 23
modifying 191-193
Spring application
configuration, adding 131-134
creating 125,126
deploying 137, 138
domain model, adding 134
easy way 126,127
MongoDB NoSQL database,
adding 128-130
REST endpoint, adding 136

[284]

Spring support, adding 130, 131
Tomcat gear, creating on
OpenShift 127,128
Spring Framework
about 123-125
core modules 125
URL 125
versions 124
ssh command, management commands 273
ssh-key command, management
commands 273
SSH keys
used, for adding access 180, 181
SSL certificate, application
adding 197-199
stadiums
adding, to map 119, 120
getting, from REST services 119
Standard Widget Toolkit 94
support, continuous integration
adding, for Jenkins server 149, 150

T

tail command, application management
commands 272
team command, management
commands 273
threaddump command, application
management commands 272
timeout parameter
setting 60
Tomcat 8 server
creating 265-269
Tomcat gear, Spring application
creating, on OpenShift 127, 128
top-level commands
about 271
add-cartridge 272
applications, working with 272
apps 272
cartridges 272
create-app 271
logout 272
management commands 273
set-env 272
setup 271

U

UMongo
URL 206
URL, application
creating, for application cloning 200
user interface
creating 111
map, automatic updation 120
map creating, Leaflet used 112-116
map creating, OpenStreetMap
used 112-116
map deployment, verifying 117
map response, verifying 117, 118
stadiums, adding to map 119, 120
stadiums, getting from REST services 119

\'

vertical scaling 242, 243

w

web cartridges 33, 34

web console
about 183
new domain, adding with 167-169
scaled application, creating with 246-249
used, for managing members 172-175
using 23-28

web frontend
adding 138-142

web UI 143,144

[285]

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning OpenShift

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Implementing OpenShift
ISBN: 978-1-78216-472-2 Paperback: 116 pages

A fast-paced, practical guide for using OpenShift to
deploy your own open source Platform-as-a-Service

1. Discover what the cloud is, tear through the
marketing jargon, and go right to the tech.

2. Understand what makes an open source
Implementing Platform-as-a-Service work by learning

OpenShift

the OpenShift architecture.

3. Deploy your own OpenShift
Platform-as-a-Service cloud using DevOps
orchestration and configuration management.

Java EE Development with Eclipse
ISBN: 978-1-78216-096-0 Paperback: 426 pages

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

1. Each chapter includes an end-to-end
sample application.

2. Develop applications with some of the

Java EE Development commonly used technologies using the
with Eclipse project facets in Eclipse 3.7.

3. Clear explanations enriched with the
necessary screenshots.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Java EE 7 First Look

Java EE 7 First Look
ISBN: 978-1-84969-923-5 Paperback: 188 pages

Discover the new features of Java EE 7 and learn to put
them together to build a large-scale application

1. Explore changes brought in by the Java
EE 7 platform.

2. Master the new specifications that have been
added in Java EE to develop applications
without any hassle.

3. A quick guide on the new features introduced
in Java EE 7.

Enterprise Application
Development with Ext JS
and Spring

Enterprise Application
Development with Ext JS

and Spring

ISBN: 978-1-78328-545-7 Paperback: 446 pages

Develop and deploy a high-performance Java web
application using Ext]S and Spring

1. Embark on the exciting journey through
the entire enterprise web application
development life cycle.

2. Leverage key Spring Framework concepts to
deliver comprehensive and concise Java code.

3. Build a real-world Ext JS web application that
interacts with dynamic database driven data.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Your First
OpenShift Application
	Creating your OpenShift Online account
	Installing and configuring the Red Hat Cloud command-line tools
	Installing the RHC command-line tools for Microsoft Windows
	Installing the RHC command-line tools for
OS X
	Installing the RHC command-line tools for Linux
	Configuring the RHC command-line tools

	Creating your first OpenShift Online application
	What just happened?
	Placement of your gear
	Creating your application account
	Configuring your application
	Cloning the remote Git repository

	Adding the source code to your application

	Using the web console
	Summary

	Chapter 2: Creating and Managing Applications
	Learning the essential RHC commands
	Displaying information about an application
	Deleting applications

	Understanding cartridges
	Web cartridges
	Add-on cartridges

	Using cartridges
	Adding cartridges

	Using databases with your application
	Adding the phpMyAdmin add-on cartridge
	Developing the application
	Understanding the code

	The cron cartridge
	Adding the cron cartridge
	Adding a cron job

	Summary

	Chapter 3: Application Maintenance
	Stopping and starting applications
	Viewing application logfiles
	Creating your own logfiles
	Viewing a single logfile

	Backing up and restoring applications
	Creating a snapshot
	Restoring a snapshot

	Secure shell and your application
	Understanding and viewing the /etc/passwd file
	Understanding and viewing cgroup information
	Setting the timeout parameter and viewing logfiles

	Understanding environment variables
	Setting your own environment variables

	Summary

	Chapter 4: Using an Integrated Development Environment
	To use an IDE or not to use an IDE is the question
	Installing and configuring Eclipse
	Downloading and installing Eclipse
	Downloading and installing the OpenShift plugin

	Importing an existing OpenShift application
	Creating and managing a new OpenShift application
	Deploying changes
	Viewing your application's logfiles
	Embedding add-on cartridges
	Viewing your application's environment variables
	Viewing the details of an application

	Deleting an application
	Integrating OpenShift with other IDEs
	Summary

	Chapter 5: Creating and Deploying
Java EE Applications
	Evolution of Java EE
	Introducing the sample application
	Creating a JBoss EAP application
	Adding database support to the application
	Importing the MLB stadiums into the database
	Adding database support to our Java application

	Creating the database access class
	Creating the beans.xml file

	Creating the domain model
	Creating the REST services
	Verifying the REST web services

	Creating the user interface
	Creating the map using Leaflet and OpenStreetMap
	Verifying that the map was deployed and is responsive

	Getting the stadiums from our REST services
	Adding the stadiums to the map
	Automatically updating the map
	Testing the application

	Taking the easy way out
	Summary

	Chapter 6: Creating and Deploying Spring Framework
Java Applications
	An overview of the Spring Framework
	Creating a Spring application
	Taking the easy way out
	Creating a Tomcat gear on OpenShift
	Adding the MongoDB NoSQL database to our application
	Adding Spring support to the application
	Adding a configuration to the application
	Adding the domain model to the application
	Adding the REST endpoint to the application

	Deploying the application
	Adding the web frontend
	Having fun with the web UI

	Summary

	Chapter 7: Adding a Continuous Integration Environment
to Applications
	What is continuous integration?
	Adding support for a Jenkins server
	Verifying that the Jenkins server is up and running

	Embedding Jenkins into an existing application
	Using the Jenkins web console
	Building code with Jenkins
	Troubleshooting the build

	Manually triggering a build
	Summary

	Chapter 8: Using OpenShift for
Team Development
	Setting up multiple domains
	Adding a new domain with the command line
	Adding a new domain with the web console

	Adding members to a domain
	Managing members with the command line
	Modifying a member's role in a domain
	Deleting a member from a domain

	Managing members with the web console
	Modifying a member's role and deleting a member

	Promoting code between environments
	Promoting the code

	Adding access using SSH keys
	Summary

	Chapter 9: Using the OpenShift
Web Console
	Creating applications
	Using instant applications
	Modifying the source code

	Managing applications
	Adding cartridges
	Restarting an application
	Adding a custom domain name and SSL certificate
	Creating a URL for application cloning
	Deleting an application

	Summary

	Chapter 10: Debugging Applications
	Using port forwarding
	Connecting to MongoDB

	Using Eclipse for Java debugging
	Using IntelliJ for Java debugging
	Using logfiles for debugging
	Summary

	Chapter 11: Using the Marker and
Action Hook System
	An overview of the marker system
	The hot_deploy marker
	JBoss-specific markers

	Creating and using markers
	Using the hot_deploy marker
	Using the force_clean_build marker

	An overview of the action hook system
	Creating and using action hooks
	Creating the deploy action hook
	Testing the deploy action hook

	Summary

	Chapter 12: Scaling Applications
	Why scaling matters
	Vertical and horizontal scaling
	Using automatic scaling
	Creating a scaled application with the command line
	Creating a scaled application with the web console

	Using manual scaling
	Setting scaling limits
	Viewing the load balancer information
	Customizing the scaling algorithm
	Summary

	Chapter 13: Using the Do-It-Yourself Cartridge
	Understanding the DIY cartridge
	Creating an application with the DIY cartridge
	Stopping the default web server
	Creating a Tomcat 8 server
	Summary

	Appendix A: RHC Command-line Reference
	Top-level commands
	Getting started
	Working with applications
	Management commands

	Appendix B: Getting Involved with the Open Source Project
	Contributing to the project

	Index

