
www.allitebooks.com

http://www.allitebooks.org

Learning Predictive Analytics
with R

Get to grips with key data visualization and predictive
analytic skills using R

Eric Mayor

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Predictive Analytics with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1180915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-935-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Eric Mayor

Reviewers
Ajay Dhamija

Khaled Tannir

Matt Wiley

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kevin Colaco

Content Development Editor
Siddhesh Salvi

Technical Editor
Deepti Tuscano

Copy Editors
Puja Lalwani

Merilyn Pereira

Project Coordinator
Kranti Berde

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Eric Mayor is a senior researcher and lecturer at the University of Neuchatel,
Switzerland. He is an enthusiastic user of open source and proprietary predictive
analytics software packages, such as R, Rapidminer, and Weka. He analyzes data
on a daily basis and is keen to share his knowledge in a simple way.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ajay Dhamija is a senior scientist in the Defence Research and Development
Organization, Delhi. He has more than 24 years of experience as a researcher and an
instructor. He holds an MTech (in computer science and engineering) from IIT Delhi
and an MBA (in finance and strategy) from FMS, Delhi. He has to his credit more
than 14 research works of international reputation in various fields, including data
mining, reverse engineering, analytics, neural network simulation, TRIZ, and so on.
He was instrumental in developing a state-of-the-art Computerized Pilot Selection
System (CPSS) containing various cognitive and psycho-motor tests. It is used to
comprehensively assess the flying aptitude of aspiring pilots of the Indian Air Force.
Ajay was honored with an Agni Award for excellence in self reliance in 2005 by the
Government of India. He specializes in predictive analytics, information security,
big data analytics, machine learning, Bayesian social networks, financial modeling,
neuro-fuzzy simulation, and data analysis and data mining using R. He is presently
involved in his doctoral work on Financial Modeling of Carbon Finance Data from IIT,
Delhi. He has written an international bestseller, Forecasting Exchange Rate: Use of
Neural Networks in Quantitative Finance (http://www.amazon.com/Forecasting-
Exchange-rate-Networks-Quantitative/dp/3639161807), and is currently
authoring another book in R named Multivariate Analysis using R.

Apart from Analytics, Ajay Dhamija is actively involved in information security
research. He has been associated with various international and national researchers
in the government as well as the corporate sector to pursue his research on ways
to amalgamate two important and contemporary fields of data handling, that
is, predictive analytics and information security. While he was associated with
researchers from the Predictive Analytics and Information Security Institute of India
(PRAISIA: www.praisia.com) during his research endeavors, he worked on refining
methods of big data analytics for security data analysis (log assessment, incident
analysis, threat prediction, and so on) and vulnerability management automation.

www.allitebooks.com

http://www.amazon.com/Forecasting-Exchange-rate-Networks-Quantitative/dp/3639161807
http://www.amazon.com/Forecasting-Exchange-rate-Networks-Quantitative/dp/3639161807
http://www.praisia.com
http://www.allitebooks.org

You can connect with Ajay at:

•	 LinkedIn: ajaykumardhamija
•	 ResearchGate: Ajay_Dhamija2
•	 Academia: ajaydhamija
•	 Facebook: akdhamija
•	 Twitter:@akdhamija
•	 Quora: Ajay-Dhamija

I would like to thank my fellow scientists from the Defense Research
and Development Organization and researchers from the corporate
sector, including Predictive Analytics and Information Security
Institute of India (PRAISIA). It is a unique institute of repute
and of due to its pioneering work in marrying the two giant and
contemporary fields of data handling in modern times, that is,
predictive analytics and information security, by adopting bespoke
and refined methods of big data analytics. They all contributed in
presenting a fruitful review for this book. I'm also thankful to my
wife, Seema Dhamija, the managing director at PRAISIA, who has
been kind enough to share her research team's time with me in
order to have a technical discussion. I'm also thankful to my son,
Hemant Dhamija. Many a time, he gave invaluable feedback that I
inadvertently neglected during the course of this review. I'm also
thankful to a budding security researcher, Shubham Mittal from
Makemytrip Inc., for his constant and constructive critiques of my
work.

www.allitebooks.com

http://www.allitebooks.org

Matt Wiley is a tenured associate professor of mathematics who currently resides
in Victoria, Texas. He holds degrees in mathematics (with a computer science minor)
from the University of California and a master's degree in business administration
from Texas A&M University. He directs the Quality Enhancement Plan at Victoria
College and is the managing partner at Elkhart Group Limited, a statistical
consultancy. With programming experience in R, C++, Ruby, Fortran, and JavaScript,
he has always found ways to meld his passion for writing with his love of logical
problem solving and data science. From the boardroom to the classroom, Matt enjoys
finding dynamic ways to partner with interdisciplinary and diverse teams to make
complex ideas and projects understandable and solvable.

Matt can be found online at www.MattWiley.org.

Khaled Tannir is a visionary solution architect with more than 20 years of
technical experience focusing on big data technologies and data mining since 2010.

He is widely recognized as an expert in these fields and has a bachelor's degree in
electronics and a master's degree in system information architectures. He completed
his education with a master of research degree.

Khaled is a Microsoft Certified Solution Developer (MCSD) and an avid technologist.
He has worked for many companies in France (and recently in Canada), leading
the development and implementation of software solutions and giving technical
presentations.

He is the author of the books RavenDB 2.x Beginner's Guide and Optimizing Hadoop
MapReduce, Packt Publishing, and a technical reviewer on the books Pentaho Analytics
for MongoDB and MongoDB High Availability, Packt Publishing.

He enjoys taking landscape and night photos, traveling, playing video games,
creating funny electronics gadgets using Arduino, Raspberry Pi, and .Net Gadgeteer,
and of course spending time with his wife and family.

You can reach him at contact@khaledtannir.net.

www.allitebooks.com

www.MattWiley.org
contact@khaledtannir.net
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Setting GNU R for Predictive Analytics	 1

Installing GNU R	 2
The R graphic user interface	 2
The menu bar of the R console	 3

A quick look at the File menu	 4
A quick look at the Misc menu	 5

Packages	 8
Installing packages in R	 9
Loading packages in R	 11

Summary	 14
Chapter 2: Visualizing and Manipulating Data Using R	 15

The roulette case	 16
Histograms and bar plots	 18
Scatterplots	 25
Boxplots	 28
Line plots	 29
Application – Outlier detection	 31
Formatting plots	 32
Summary	 34

Chapter 3: Data Visualization with Lattice	 35
Loading and discovering the lattice package	 36
Discovering multipanel conditioning with xyplot()	 37
Discovering other lattice plots	 39

Histograms	 39
Stacked bars	 41
Dotplots	 43
Displaying data points as text	 45

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Updating graphics	 47
Case study – exploring cancer-related deaths in the US	 50

Discovering the dataset	 50
Integrating supplementary external data	 55

Summary	 60
Chapter 4: Cluster Analysis	 61

Distance measures	 63
Learning by doing – partition clustering with kmeans()	 65

Setting the centroids	 66
Computing distances to centroids	 67
Computing the closest cluster for each case	 67
Tasks performed by the main function	 68

Internal validation	 69
Using k-means with public datasets	 71

Understanding the data with the all.us.city.crime.1970 dataset	 71
Finding the best number of clusters in the life.expectancy.1971 dataset	 77

External validation	 79
Summary	 79

Chapter 5: Agglomerative Clustering Using hclust()	 81
The inner working of agglomerative clustering	 82
Agglomerative clustering with hclust()	 86

Exploring the results of votes in Switzerland	 86
The use of hierarchical clustering on binary attributes	 92

Summary	 95
Chapter 6: Dimensionality Reduction with Principal
Component Analysis	 97

The inner working of Principal Component Analysis	 98
Learning PCA in R	 103

Dealing with missing values	 104
Selecting how many components are relevant	 105
Naming the components using the loadings	 107
PCA scores	 109

Accessing the PCA scores	 109
PCA scores for analysis	 110
PCA diagnostics	 112

Summary	 113
Chapter 7: Exploring Association Rules with Apriori	 115

Apriori – basic concepts	 116
Association rules	 116
Itemsets	 116

Table of Contents

[iii]

Support	 116
Confidence	 117
Lift	 117

The inner working of apriori	 117
Generating itemsets with support-based pruning	 118
Generating rules by using confidence-based pruning	 119

Analyzing data with apriori in R	 119
Using apriori for basic analysis	 119
Detailed analysis with apriori	 122

Preparing the data	 123
Analyzing the data	 123
Coercing association rules to a data frame	 127
Visualizing association rules	 128

Summary	 130
Chapter 8: Probability Distributions, Covariance,
and Correlation	 131

Probability distributions	 131
Introducing probability distributions	 131

Discrete uniform distribution	 132
The normal distribution	 133
The Student's t-distribution	 136
The binomial distribution	 137
The importance of distributions	 138

Covariance and correlation	 139
Covariance	 141
Correlation	 142

Pearson's correlation	 142
Spearman's correlation	 145

Summary	 146
Chapter 9: Linear Regression	 147

Understanding simple regression	 148
Computing the intercept and slope coefficient	 150
Obtaining the residuals	 151
Computing the significance of the coefficient	 154

Working with multiple regression	 156
Analyzing data in R: correlation and regression	 156

First steps in the data analysis	 157
Performing the regression	 160
Checking for the normality of residuals	 161
Checking for variance inflation	 162

Table of Contents

[iv]

Examining potential mediations and comparing models	 163
Predicting new data	 166

Robust regression	 169
Bootstrapping	 170
Summary	 173

Chapter 10: Classification with k-Nearest Neighbors and
Naïve Bayes	 175

Understanding k-NN	 176
Working with k-NN in R	 179

How to select k	 181
Understanding Naïve Bayes	 182
Working with Naïve Bayes in R	 186
Computing the performance of classification	 190
Summary	 192

Chapter 11: Classification Trees	 193
Understanding decision trees	 193
ID3	 195

Entropy	 195
Information gain	 197

C4.5	 198
The gain ratio	 198
Post-pruning	 199

C5.0	 199
Classification and regression trees and random forest	 200

CART	 200
Random forest	 201

Bagging	 201
Conditional inference trees and forests	 201
Installing the packages containing the required functions	 202

Installing C4.5	 202
Installing C5.0	 202
Installing CART	 202
Installing random forest	 202
Installing conditional inference trees	 203
Loading and preparing the data	 203

Performing the analyses in R	 204
Classification with C4.5	 204

The unpruned tree	 204
The pruned tree	 205

C50	 206

Table of Contents

[v]

CART	 207
Pruning	 208
Random forests in R	 210

Examining the predictions on the testing set	 211
Conditional inference trees in R	 212

Caret – a unified framework for classification	 213
Summary	 213

Chapter 12: Multilevel Analyses	 215
Nested data	 215
Multilevel regression	 218

Random intercepts and fixed slopes	 218
Random intercepts and random slopes	 219

Multilevel modeling in R	 221
The null model	 221
Random intercepts and fixed slopes	 225
Random intercepts and random slopes	 228

Predictions using multilevel models	 233
Using the predict() function	 233
Assessing prediction quality	 234

Summary	 235
Chapter 13: Text Analytics with R	 237

An introduction to text analytics	 237
Loading the corpus	 239
Data preparation	 241

Preprocessing and inspecting the corpus	 241
Computing new attributes	 245

Creating the training and testing data frames	 245
Classification of the reviews	 245

Document classification with k-NN	 245
Document classification with Naïve Bayes	 247
Classification using logistic regression	 249
Document classification with support vector machines	 252

Mining the news with R	 253
A successful document classification	 253
Extracting the topics of the articles	 257
Collecting news articles in R from the New York Times article
search API	 259

Summary	 262

Table of Contents

[vi]

Chapter 14: Cross-validation and Bootstrapping Using Caret
and Exporting Predictive Models Using PMML	 263

Cross-validation and bootstrapping of predictive models using
the caret package	 263

Cross-validation	 263
Performing cross-validation in R with caret	 264
Bootstrapping	 267
Performing bootstrapping in R with caret	 267
Predicting new data	 268

Exporting models using PMML	 268
What is PMML?	 268
A brief description of the structure of PMML objects	 269
Examples of predictive model exportation	 271

Exporting k-means objects	 271
Hierarchical clustering	 272
Exporting association rules (apriori objects)	 274
Exporting Naïve Bayes objects	 274
Exporting decision trees (rpart objects)	 274
Exporting random forest objects	 275
Exporting logistic regression objects	 275
Exporting support vector machine objects	 276

Summary	 276
Appendix A: Exercises and Solutions	 277

Exercises	 277
Solutions	 282

Appendix B: Further Reading and References	 293
Index	 299

Preface

[vii]

Preface
The amount of data in the world is increasing exponentially as time passes. It is
estimated that the total amount of data produced in 2020 will be 20 zettabytes
(Kotov, 2014), that is, 20 billion terabytes. Organizations spend a lot of effort and
money on collecting and storing data, and still, most of it is not analyzed at all, or
not analyzed properly. One reason to analyze data is to predict the future, that is, to
produce actionable knowledge. The main purpose of this book is to show you how
to do that with reasonably simple algorithms. The book is composed of chapters
describing the algorithms and their use and of an appendices with exercises and
solutions to the exercises and references.

Prediction
What is meant by prediction? The answer, of course, depends on the field and the
algorithms used, but this explanation is true most of the time—given the attested
reliable relationships between indicators (predictors) and an outcome, the presence
(or level) of the indicators for similar cases is a reliable clue to the presence (or level)
of the outcome in the future. Here are some examples of relationships, starting with
the most obvious:

•	 Taller people weigh more
•	 Richer individuals spend more
•	 More intelligent individuals earn more
•	 Customers in segment X buy more of product Y
•	 Customers who bought product P will also buy product Q
•	 Products P and Q are bought together
•	 Some credit card transactions predict fraud (Chan et al., 1999)
•	 Google search queries predict influenza infections (Ginsberg et al., 2009)
•	 Tweet content predicts election poll outcomes (O'Connor and

Balasubramanyan, 2010)

Preface

[viii]

In the following section, we provide minimal definitions of the distinctions between
supervised and unsupervised learning and classification and regression problems.

Supervised and unsupervised learning
Two broad families of algorithms will be discussed in this book:

•	 Unsupervised learning algorithms
•	 Supervised learning algorithms

Unsupervised learning
In unsupervised learning, the algorithm will seek to find the structure that
organizes unlabelled data. For instance, based on similarities or distances between
observations, an unsupervised cluster analysis will determine groups and which
observations fit best into each of the groups. An application of this is, for instance,
document classification.

Supervised learning
In supervised learning, we know the class or the level of some observations of a
given target attribute. When performing a prediction, we use known relationships in
labeled data (data for which we know what the class or level of the target attribute
is) to predict the class or the level of the attribute in new cases (of which we do not
know the value).

Classification and regression problems
There are basically two types of problems that predictive modeling deals with:

•	 Classification problems
•	 Regression problems

Classification
In some cases, we want to predict which group an observation is part of. Here,
we are dealing with a quality of the observation. This is a classification problem.
Examples include:

•	 The prediction of the species of plants based on morphological measurements

Preface

[ix]

•	 The prediction of whether individuals will develop a disease or not, based on
their health habits

•	 The prediction of whether an e-mail is spam or not

Regression
In other cases, we want to predict an observation's level on an attribute. Here, we are
dealing with a quantity, and this is a regression problem. Examples include:

•	 The prediction of how much individuals will cost to health care based on
their health habits

•	 The prediction of the weight of animals based on their diets
•	 The prediction of the number of defective devices based on manufacturing

specifications

The role of field knowledge in data
modeling
Of course, analyzing data without knowledge of the field is not a serious way to
proceed. This is okay to show how some algorithms work, how to make use of them,
and to exercise. However, for real-life applications, be sure that you know the topic
well, or else consult experts for help. The Cross Industry Standard Process for Data
Mining (CRISP-DM, Shearer, 2000) underlines the importance of field knowledge.
The steps of the process are depicted as follows:

The Cross Industry Standard Process for Data Mining

Preface

[x]

As stressed upon in the preceding diagram, field knowledge (here called Business
Understanding) informs and is informed by data understanding. The understanding
of the data then informs how the data has to be prepared. The next step is data
modeling, which can also lead to further data preparation. Data models have to
be evaluated, and this evaluation can be informed by field knowledge (this is also
stressed upon in the diagram), which is also updated through the data mining
process. Finally, if the evaluation is satisfactory, the models are deployed for
prediction. This book will focus on the data modeling and evaluation stages.

Caveats
Of course, predictions are not always accurate, and some have written about the
caveats of data science. What do you think about the relationship between the
attributes titled Predictor and Outcome on the following plot? It seems like there is
a relationship between the two. For the statistically inclined, I tested its significance:
r = 0.4195, p = .0024. The value p is the probability of obtaining a relationship of this
strength or stronger if there is actually no relationship between the attributes. We
could conclude that the relationship between these variables in the population they
come from is quite reliable, right?

The relationship between the attributes titled Predictor and Outcome

Preface

[xi]

Believe it or not, the population these observations come from is that of randomly
generated numbers. We generated a data frame of 50 columns of 50 randomly
generated numbers. We then examined all the correlations (manually) and generated
a scatterplot of the two attributes with the largest correlation we found. The code is
provided here, in case you want to check it yourself—line 1 sets the seed so that you
find the same results as we did, line 2 generates to the data frame, line 3 fills it with
random numbers, column by column, line 4 generates the scatterplot, line 5 fits the
regression line, and line 6 tests the significance of the correlation:

1 set.seed(1)
2 DF = data.frame(matrix(nrow=50,ncol=50))
3 for (i in 1:50) DF[,i] = runif(50)
4 plot(DF[[2]],DF[[16]], xlab = "Predictor", ylab = "Outcome")
5 abline(lm(DF[[2]]~DF[[16]]))
6 cor.test(DF[[2]], DF[[16]])

How could this relationship happen given that the odds were 2.4 in 1000 ? Well,
think of it; we correlated all 50 attributes 2 x 2, which resulted in 2,450 tests (not
considering the correlation of each attribute with itself). Such spurious correlation
was quite expectable. The usual threshold below which we consider a relationship
significant is p = 0.05, as we will discuss in Chapter 8, Probability Distributions,
Covariance, and Correlation. This means that we expect to be wrong once in 20 times.
You would be right to suspect that there are other significant correlations in the
generated data frame (there should be approximately 125 of them in total). This is
the reason why we should always correct the number of tests. In our example, as
we performed 2,450 tests, our threshold for significance should be 0.0000204 (0.05 /
2450). This is called the Bonferroni correction.

Spurious correlations are always a possibility in data analysis and this should be
kept in mind at all times. A related concept is that of overfitting. Overfitting happens,
for instance, when a weak classifier bases its prediction on the noise in data. We
will discuss overfitting in the book, particularly when discussing cross-validation
in Chapter 14, Cross-validation and Bootstrapping Using Caret and Exporting Predictive
Models Using PMML. All the chapters are listed in the following section.

We hope you enjoy reading the book and hope you learn a lot from us!

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

What this book covers
Chapter 1, Setting GNU R for Predictive Analytics, deals with the setting of R, how to
load and install packages, and other basic operations. Only beginners should read
this. If you are not a beginner, you will be bored! (Beginners should find the chapter
entertaining).

Chapter 2, Visualizing and Manipulating Data Using R, deals with basic visualization
functions in R and data manipulation. This chapter also aims to bring beginners up
to speed for the rest of the book.

Chapter 3, Data Visualization with Lattice, deals with more advanced visualization
functions. The concept of multipanel conditioning plots is presented. These
allow you to examine the relationship between attributes as a function of group
membership (for example, women versus men). A good working knowledge of R
programming is necessary from this point.

Chapter 4, Cluster Analysis, presents the concept of clustering and the different
types of clustering algorithms. It shows how to program and use a basic clustering
algorithm (k-means) in R. Special attention is given to the description of distance
measures and how to select the number of clusters for the analyses.

Chapter 5, Agglomerative Clustering Using hclust(), deals with hierarchical clustering.
It shows how to use agglomerative clustering in R and the options to configure
the analysis.

Chapter 6, Dimensionality Reduction with Principal Component Analysis, discusses the
uses of PCA, notably dimension reduction. How to build a simple PCA algorithm,
how to use PCA, and example applications are explored in the chapter.

Chapter 7, Exploring Association Rules with Apriori, focuses on the functioning of the
apriori algorithm, how to perform the analyses, and how to interpret the outputs.
Among other applications, association rules can be used to discover which products
are frequently bought together (marked basket analysis).

Chapter 8, Probability Distributions, Covariance, and Correlation, discusses basic
statistics and how they can be useful for prediction. The concepts given in the title
are discussed without too much technicality, but formulas are proposed for the
mathematically inclined.

Chapter 9, Linear Regression, builds upon the knowledge acquired in the previous
chapter to show how to build a regression algorithm, including how to compute
the coefficients and p values. The assumptions of linear regression (ordinary least
squares) are rapidly discussed. The chapter then focuses on the use (and misuse)
of regression.

Preface

[xiii]

Chapter 10, Classification with k-Nearest Neighbors and Naïve Bayes, deals with the
classification problems of using two of the most popular algorithms. We build
our own k-NN algorithm, with which we analyze the famous iris dataset. We also
demonstrate how Naïve Bayes works. The chapter also deals with the use of
both algorithms.

Chapter 11, Classification Trees, explores classification using no less than five
classification tree algorithms: C4.5, C5, CART (classification part), random forests,
and conditional inference trees. Entropy, information gain, pruning, bagging, and
other important concepts are discussed.

Chapter 12, Multilevel Analyses, deals with the use of nested data. We will briefly
discuss the functioning of multilevel regression (with mixed models), and will then
focus on the important aspects in the analysis, notably, how to create and compare
the models, and how to understand the outputs.

Chapter 13, Text Analytics with R, focuses on the use of some algorithms that we
discussed in other chapters, as well as new ones, with the aim of analyzing text.
We will start by showing you how to perform text preprocessing, we will explain
important concepts, and then jump right into the analysis. We will highlight the
importance of testing different algorithms on the same corpus.

Chapter 14, Cross-validation and Bootstrapping Using Caret and Exporting Predictive
Models Using PMML, deals with two important aspects, the first is ascertaining
the validity of the models and the second is exporting the models for production.
Training and testing datasets are used in most chapters. These are minimal
requirements, and cross-validation as well as bootstrapping are significant
improvements.

Appendix A, Exercises and Solutions, provides the exercises and the solutions for the
chapters in the book.

Appendix B, Further Reading and References, it provides the references for the chapters
in the book.

What you need for this book
All you need for this book is a working installation of R > 3.0 (on any operating
system) and an active internet connection.

Preface

[xiv]

Who this book is for
If you are a statistician, chief information officer, data scientist, ML engineer, ML
practitioner, quantitative analyst, or student of machine learning, this is the book for
you. You should have basic knowledge of the use of R. Readers without previous
experience of programming in R will also be able to use the tools in this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
Now, open the R script file called helloworld.R."

A block of code is set as follows:

print("Hello world")

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " The File
menu contains functions related to file handling."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xv]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/9352OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/9352OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9352OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com

Chapter 1

[1]

Setting GNU R for
Predictive Analytics

R is a relatively recent multi-purpose statistical language that originates from
the older language S. R contains a core set of packages that includes some of the
most common statistical tests and some data mining algorithms. One of the most
important strengths of R is the degree to which its functionalities can be extended
by installing packages made by users from the community. These packages can
be installed directly from R, thereby making the process very comfortable. The
Comprehensive R Archive Network (CRAN), which is available at http://cran.r-
project.org, is a repository of packages, R sources, and R binaries (installers). It
also contains the manuals for the packages. There are currently more than 4,500
available packages for R, and more are coming up regularly. Further, what is also
great is that everything is free.

The topics covered in this chapter are:

•	 Installation of R
•	 R graphic user interface, including a description of the different menus
•	 Definition of packages and how to install and load them
•	 Along the way we will also discover parts of the syntax of R

Among almost 50 competitors, R is the most widely used tool for predictive
modeling, together with RapidMiner, according to yearly software polls from
KDnuggets (most recently available at http://www.kdnuggets.com/2015/05/
poll-r-rapidminer-python-big-data-spark.html). Its broad use and the extent
to which it is extendable make it an essential software package for data scientists.
Competitors notably include Python, Weka, and Knime.

http://cran.r-project.org
http://cran.r-project.org
http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html
http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html

Setting GNU R for Predictive Analytics

[2]

This book is intended for people who are familiar with R. This doesn't mean that
people who do not have such a background cannot learn predictive analytics by
using this book. It just means that they will require more time to use this book
effectively, and might need to consult the basic R documentation along the way.
With this extended readership in mind, we will just cover a few of the basics in
this chapter while we set up R for predictive analytics. The writing style will be as
accessible as possible. If you have trouble following through the first chapter, we
suggest you first read a book on R basics before pursuing the following chapters,
because the effort you will need to invest to understand and practice the content
of this book will keep increasing from Chapter 2, Visualizing and Manipulating Data
Using R. Unlike other chapters, this chapter explains basic information. Users who
are more familiar with R are invited to skip to Chapter 2, Visualizing and Manipulating
Data Using R or Chapter 3, Data Visualization with Lattice.

Installing GNU R
If this is not yet done, download the installer for your operating system on
CRAN. Launch the installer and follow the specific instructions for your operating
system. We will not examine these here as they are straightforward; just follow
the instructions on screen. The following pages offer a quick reminder or a basic
introduction to the interface in R. Here are the addresses where you can find the
installers for each OS:

•	 For Windows: http://cran.r-project.org/bin/windows/
•	 For Mac OS X: http://cran.r-project.org/bin/macosx/
•	 For Linux: http://cran.r-project.org/bin/linux/

These links also serve as pointers to R under MacOS X and Linux, which are not fully
described here.

The R graphic user interface
The following snapshot represents the default window when starting R. The default
window is highly similar across platforms, which is why it is not necessary to
display all screenshots here. More importantly, most of what is covered will apply
to any recent build of R. Advanced readers might be interested in using a more
sophisticated development tool such as RStudio available at http://www.rstudio.
com/. Because of space limitations, we will not describe it here.

http://cran.r-project.org/bin/windows/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/
http://www.rstudio.com/
http://www.rstudio.com/

Chapter 1

[3]

The encompassing window displayed in the picture below, R graphic user
interface (RGui), contains a basic graphic user interface. You can see the menu bar
on the top of the window. We will look at some of its elements more closely in the
following screenshot:

A snapshot of the RGUI window

The menu bar of the R console
When the R console window is active, there are seven accessible menus: File, Edit,
View, Misc, Packages, Windows, and Help. If you use a platform other than
Windows 7, you might notice some differences, but none are important.

Setting GNU R for Predictive Analytics

[4]

Some functions of the File and Misc menus are worth commenting upon briefly.
Functions from the Packages menu will be commented upon in the next section.
Function is a term that can loosely relate to something the program does, or more
specifically, a succession of steps programmatically defined, oftentimes involving an
algorithm, and explicitly called by some piece of code. When discussing functions
accessed through a menu, we will indicate the name of the menu item. When
discussing functions as they appear in code, we will indicate the function name
followed by brackets (). Sometimes, a function selectable from the menu corresponds
to a single function in code; other times, several lines of code are necessary to
accomplish the same thing as the menu function through code.

A quick look at the File menu
The File menu contains functions related to file handling. Some useful functions of
the File menu are as follows:

•	 Source R code: Opens a dialogue box from which an R script can be selected.
This script will be run in the console.

•	 New script: Opens a new window of the R editor, in which R code can be
typed or pasted. When this window is active, the menu bar changes.

•	 Open script: Opens a dialogue box from which an R script can be selected.
This script will be loaded in a new window of the R editor.

•	 Change dir: Opens a dialogue window where a folder can be selected. This
folder will become the working folder for the current session (until changed).

Here are some quick exercises that will help you get acquainted with the File menu.
Before this, make sure that you have downloaded and extracted the code for this
book from its webpage.

Let's start by changing the working folder to the folder where you extracted this
book's code. This can be done using the Change dir function. Simply click on it
in the File menu and select the folder you wish to use.

Now, open the R script file called helloworld.R; this can be done using the Source
R code function. The file should be listed in the dialogue box. If this is not the
case, start by selecting the folder containing the R code again. The file contains the
following code:

Chapter 1

[5]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

print("Hello world")

This line of code calls the print() function with the argument "Hello world".

Experiment running the first line of R code: select the content of the file, right click on
it, and click on Run line or selection.

Alternatively you can simply hit Ctrl + R after having selected the line of code. As
you might have guessed, the function returns as an output in the Console window:

[1] "Hello world"

Let's imagine you want to create a new script file that prints Hi again, world when
run. This can be done by clicking on New script in the File menu and typing the
following:

print("Hi again, world")

Now save this file as hiagainworld.R in the working folder. Use the Save function
from the File menu of the R editor (not the console).

This book will not cover all functions in detail. If you want to know
more about a function, simply precede its name by a question mark,
for instance, ?print().

A quick look at the Misc menu
The Misc menu contains functions that are related to various aspects not otherwise
classified as a menu in the RGui. Some useful functions of the Misc menu are as
follows:

•	 Stop current computation and Stop all computations: When handling big
datasets and computationally exigent algorithms, R may take longer than
expected to complete the tasks. If for any reason, the console is needed
during this time, the computations can be stopped by using this function.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Setting GNU R for Predictive Analytics

[6]

•	 List objects: Pastes and runs the ls() function in the console. This outputs
the list of objects in the current workspace.

•	 List search path: Pastes and runs the search() function in the console. This
outputs the list of accessible packages. We will discuss this feature in the next
section.

Try exercising these functions of the Misc menu:

Enter the following code in console:

repeat(a = 1)

This code will cause R to enter an infinite loop because the repeat statement
continually runs the assignment a = 1 in the code block, that is, what is contained
between the parentheses (). This means that R will become unavailable for further
computation. In order to give R some rest, we will now exit this loop by stopping
the computation. In order to do this, select Stop current computation from the Misc
menu. You can alternatively just press the Esc key to obtain the same result.

After doing the exercise above, get to know which objects are in the current
workspace. In order to do this, simply click on List objects. The output should be as
follows:

[1] "a"

Each time we create a variable, vector, list, matrix, data frame, or any other object, it
will be accessible for the current session and visible using the ls() function.

Let's seize the opportunity to discuss some types of R objects and how to access their
components:

•	 We call variable an object containing a single piece of information (such as
the a object above).

•	 A vector is a group of indexed components of the same type (for instance,
numbers, factors, and Booleans). Elements of vectors can be accessed using
their index number between square brackets, []. The following will create a
vector b of three components, by using the c() function (for concatenate):
b = c(1,2,3)

The second element of vector b is accessed as follows:

b[2]

•	 We call attribute a vector that is related to a measurement across
observations in a dataset (for example, the heights of different individuals
stored in a vector is an attribute).

Chapter 1

[7]

•	 A list is a special type of vector that contains other vectors, or even matrices.
Not all components of a list need to be of the same type. The following code
will create a list called c containing a copy of variable a and vector b:
c = list(a,b)

We use double brackets [[]], to access the components of a list. The copy of
the a object stored in the list c that we just created can be accessed as follows:
c[[1]]

Accessing the first element of the copy of vector b stored in list c can be done
as follows:

c[[2]][1]

•	 A matrix can only contain elements of the same type. These are arranged
in rows and columns. The following will create a 3 × 2 matrix of numbers
(numbers 1 to 6), with odd numbers in the first column.
M = matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 2)

The first row of the matrix can be accessed as follows:
M[1,]

The second column of the matrix can be accessed as follows:
M[,2]

The second element of the first column of the matrix can be accessed as
follows:

M[2,1]

•	 A dataframe is a list of vectors that have the same dimensions, analogous to
a spreadsheet. The following will create a data frame containing two vectors.
The first contains the letters a, b, and c. The second contains the numbers 1,
2, and 3.
f = data.frame(c("a","b","c"),c(1,2,3))

The first vector of data frame f can be accessed as follows:
f[,1]

This actually subsets the entire row of the first vector of the data frame.
(Notice we did not have to use the double brackets notation here, but
sometimes, this is necessary, depending on how the data frame has been
generated.) When dealing with data frames (but not matrices), the comma
can be omitted, meaning that the following is equivalent:
f[1]

Setting GNU R for Predictive Analytics

[8]

The first element of the second vector of the data frame f (the element
corresponding to the intersection of the first row and the second column
of the data frame) can be accessed as follows:
f[1,2]

Subsetting can be more complex. For instance, the following code returns
the second and the third rows of the first column of the data frame (note that
matrices are subset in a similar manner):

f[2:3,1]

Packages
As mentioned earlier, GNU R is a statistical programming language that can be
extended by means of packages. Packages contain functions and datasets that allow
specific types of analyses to be performed in R. We have seen at the end of the last
section that some packages are loaded by default in R. Others are already a part of R.
The image below provides a list of the packages that come out of the box with R. This
list can very easily be obtained with the following code:

library(lib = .Library)

Available packages in base R

Chapter 1

[9]

Now, let's have a look at which packages are directly accessible, by selecting List
search path from the Misc menu. This is what our output looks like:

[1].GlobalEnv package:stats package:graphics

[4] package:grDevices package:utils package:datasets

[7] package:methods Autoloads package:base

Accessible packages start with the prefix package:

Typing search() in the console would produce the
same output.

Now, let's go a little further and list the content of one of these packages. In order to
do this, type the following in the console:

objects(package:stats)

This will list the content of the stats package. The first two lines should look like this:

[1] acf acf2AR add.scope

[4] add1 addmargins aggregate

Installing packages in R
The content of this book is partly relying on packages that are not part of the basic
installation of R. We will therefore need to install packages that we will download
from CRAN. The Packages menu contains functions that allow installing and
loading packages, as well as the configuration of local and distant repositories.
Useful functions of the Packages menu include the following:

•	 Load package: Provides a frontend for the library() function, which loads
a package provided as an argument.

•	 Install packages: Allows selecting a package to install. This requires
configuring a mirror for CRAN first.

•	 Install package(s) from local zip files: Opens a dialogue box in which a ZIP
file containing a package can be selected for installation in R.

Mirrors are basically different copies of CRAN. In case one mirror
is down, the others provide redundancy. You can use any, but the
closest to you will generally be faster. We use 0-Cloud here.

Setting GNU R for Predictive Analytics

[10]

We will discuss plotting in the next chapters. Most graphics in this book will be
created using functions already available in R. These tools allow producing very
accurate and informative graphics, but these are static. Sometimes, you might want
to display your results on the web. Also, it sometimes comes in handy to be able
to switch rapidly between two plots, for instance, to notice subtle differences. For
these reasons, we will also introduce some basics of animation for displaying R
plots on web pages. We will not discuss this in detail in this book, but we think it is
something you might want a little introduction to.

In order to exercise the use of the menu and install the package required for
animating graphics, let's start by installing the animation package. Select the Install
package(s) function of the Packages menu, and then, select the animation package
from the list. You will have to scroll down a little bit. If R asks you for a mirror, select
0-Cloud or a location next to you, and confirm by clicking OK.

Alternatively, the next line of code will install the required package:

install.packages("animation")

Type this line of code in R Console; if you are using the e-book version of this book,
copy and paste it in the console.

Alternatively, it is also possible to install packages in R from local files. This is useful
in case the machine you are using R on does not have Internet access. To do so, use
the Install package(s) from local zip function from the Packages menu and select
the ZIP file containing the package you want to install. One easy way to do this is to
copy the ZIP file in the working folder prior to attempting to install it. You can also
use the following code, provided the package is called package_0.1 and is in the
working folder:

install.packages(paste0(getwd(),"/package_0.1.zip")), repos = NULL)

What we have done here deserves a little explanation. We are calling three functions
here. By calling install.packages(), we tell R that we want to install a package.
The repos attribute is set to NULL, which tells R that we do not want to download the
package from a repository but prefer to install the package from a local file instead.
The first argument passed to the function is therefore a filename (not a package name
on CRAN as in the previous example). As we do not want to type in the whole path
to the ZIP file as the first argument (we could have done so), we instead use the
paste0()function to concatenate the output of getwd(), which shows the current
working folder, and the filename of the ZIP file containing the package (between
parentheses). The previous line of code allowed us to introduce the use of string
concatenation in R while installing a package.

Chapter 1

[11]

As R will automatically look in the working folder, we could have typed the
following:

install.packages("package_0.1.zip")), repos = NULL)

Loading packages in R
Now that the animation package is installed, let's load it; select Load package from
the Package menu. A dialogue box appears and prompts you to select the package
that you want to load. If the installation was successful (which is most certainly the
case if you didn't notice an error message), the package should be in the displayed
list. Select it and confirm by clicking on OK.

Alternatively, you can simply type the following, which will also load the package:

library(animation)

A good thing to do when you load a package is to check that the functions you want
to use are functional. For instance, it might be the case that some dependencies need
to be installed first, although this should be done automatically when installing the
package. In this book, we will use the saveHTML() function to animate some content
and generate web pages from the plots. Let's test it with the following code:

1 df=data.frame(c(-3,3),c(3,-3))
2 saveHTML({
3 for (i in 1:20) {
4 plot(df)
5 df = rbind(df,c(rnorm(1),rnorm(1)))
6 }
7 },
8 img.name = "plot",
9 imgdir = "unif_dir",
10 htmlfile = "test.html",
11 autobrowse = FALSE,
12 title = "Animation test",
13 description = "Testing the animation package for the first time.")

Setting GNU R for Predictive Analytics

[12]

Line 1 creates a data frame of two columns. These are populated with -3 and 3
in the first row and with 3 and -3 in the second row. Lines 2 and 7 to 13 create
and configure the animation. Lines 3 to 6 are where the content of the animation
is generated. This is the part you might wish to modify to generate your own
animations. Here, we plotted the values in the data frame and then added a new row
containing random numbers. This code block will be iterated 20 times, as it is part of
a for loop (see line 3). The reader is invited to consult an introduction to R if any of
this is unclear.

For now, copy and paste the code in the console or type it in. The output should look
like this:

animation option 'nmax' changed: 50 --> 20

animation option 'nmax' changed: 20 --> 50

HTML file created at: test.html

If you do not get the message above, first check whether the code that you typed
in corresponds exactly to the code provided above. If the code corresponds, repeat
steps 1 to 4 of the current section, as something might have gone wrong.

If you got the message above, open the HTML file in your browser. The file is in your
working directory. The result should look like the image below. This is a scatter plot,
which we will discuss further in the next chapter. The plot starts with the display
of two data points, and then, new data points are randomly added. This plot (see
below) is only provided as a test. Feel free to adapt the graphical content of the
book by using the package (for example, you can simply paste the loops containing
graphics in the code above, that is, instead of the for loop here), and of course, use
your own data.

Chapter 1

[13]

An animation produced using the Animation package

As an exercise in installing and loading packages, please install and load the prob
package. When this is done, simply list the contents of the package.

We are sure that you have managed to do this pretty well. Here is how we would
have done it. To install a package, we would have used the Install package(s)
function in the Package menu. We could also have typed the following code:

install.packages("prob")

Setting GNU R for Predictive Analytics

[14]

Alternatively, we would have downloaded the .zip file (currently, prob_0.9-2.
zip) from CRAN: http://cran.r-project.org/web/packages/prob/.

Then, we would have used Install package(s) from local zip from the Packages
menu and selected the ZIP file containing the prob package in the dialogue box.

Finally, we would have used the following code instead:

path = "c:\\user\\username\\downloads\\prob_0.9-2.zip"
install.packages(path, repos = NULL)

In order to load the package, we would have selected Load package from the
Package menu, and chosen the file containing the package in the dialogue box.

This might be counterintuitive, but using code is way easier and more efficient than
using the GUI. In order to load the prob package, we could have also simply used
the following code:

library(prob)

We would have listed the contents of the package by using the objects() function:

objects(package:prob)

The output lists 43 functions.

We have presented the exercises in the chapter together with their solutions here.
The exercises for the next chapters will be part of the Appendix A, Exercises and
Solutions, together with their solutions.

Summary
In this chapter, we explained where to find the installer for R for all platforms,
described the graphic user interface, and examined its menus, particularly how
to create and run scripts. We also described how to load packages and discovered
some of the basics of the syntax of R. In the next chapter, we will start visualizing
data. We will explore this by looking at an example of a roulette game.

http://cran.r-project.org/web/packages/prob/

Chapter 2

[15]

Visualizing and Manipulating
Data Using R

Data visualization is one of the most important processes in data science. Relationships
between variables can sometimes more easily be understood visually than relying only
on predictive modeling, or statistics, and this most often requires data manipulation.
Visualization is the art of examining distributions and relationships between variables
using visual representations (graphics), with the aim of discovering patterns in data.
As a matter of fact, a number of software companies provide data visualization tools
as their sole or primary product (for example, Tableau, Visual.ly). R has built-in
capabilities for data visualization. These capabilities can of course (as with almost
everything in R) be extended by recourse to external packages. Furthermore, graphics
made for a particular dataset can be reused and adapted for another with relatively
little effort. Another great advantage of R is of course that it is a fully functional
statistical software, unlike most of the alternatives.

In this chapter, we will do the following:

•	 Examine the basic capabilities of R with regards to data visualization, by
using some of the most important tools for visualization: histograms, bar
plots, line plots, boxplots, and scatterplots.

•	 Generate data sets based on virtual European roulette spins and develop
basic data manipulation (for example, subsetting) and programming skills
(use of conditions and loops).

•	 This will give us the opportunity to have a look at visualization tools with
data for which the theoretical distributions and relationships are known in
advance; whereas, usually, the theoretical distribution is unknown and the
aim of visualization is to get an understanding of the data structures and
patterns. Working with known theoretical distribution allows for observing
deviations from what is expected.

www.allitebooks.com

http://www.allitebooks.org

Visualizing and Manipulating Data Using R

[16]

The roulette case
Roulette is a betting game which rewards the player's correct prediction of its
outcome. The game consists of a ball spinning around a wheel which rotates in the
opposite direction. The wheel features 37 numbered pockets. Each of the number
has a color (18 are red, 18 are black and one, the zero, is green). The aim of the game
is to bet on one or several outcomes regarding the pocket on which the ball lands.
Numbers can range from 0 to 36, and several types of bets are available such as the
color of the number, it being even or odd, and several other characteristics related to
the number or the position on the wheel (as marked on the betting grid). The image
below is a representation of an European roulette wheel. The ball is represented by
the tiny white circle. In this example it landed on the pocket corresponding to the
number 3.

A representation of a roulette wheel

Numbers are ordered on the wheel in such a way that the position of a number on
the wheel is as unrelated as possible to the possible bets, (except of course bets on the
position itself, which we will not describe here). The order of the numbers, starting
from 0 is visible on the image above. As you can notice, the color of the numbers
alternates when moving forward on the wheel (red, black, red, and so on). Also, the
order seems to be unrelated to the betting grid. We will see if this is the case at the
end of the chapter.

Chapter 2

[17]

The table below is a schematic representation of the betting grid at European roulette.
Red numbers are italicized. Betting on each number returns 35 times the amount if
the number is drawn (plus the initial bet). Betting on color (red or black), odd vs even,
1-18 vs 19-36 return each the betted amount (plus the initial bet), if the drawn number
corresponds to that attribute. The probability of occurrence of any of these is 18/37
or 0.487. Betting on the 1st dozen, 2nd dozen, 3rd dozen and each of the 2:1 column
returns for each 2 times the amount if the drawn number falls in that category (plus
the initial bet). The probability of occurrence of any of these is 12/37 or 0.32. Bets are
lost if the drawn number fails to be within the betting category. In the example above,
the ball stopped on number 3. Examples of winning bets in the depicted example are
Red, first dozen, 1-18, the 3rd column, and of course betting on number 3.

The following table depicts a betting grid at roulette.

A representation of a betting grid at roulette

Visualizing and Manipulating Data Using R

[18]

Histograms and bar plots
Roulette is a fascinating example of a betting game using random outcomes. In order
to explore some properties of roulette spins, let's visualize some randomly drawn
numbers in the range of those in an European roulette game (0 to 36). Histograms
allow the graphic representation of the distribution of variables. Let's have a look at
it! Type in the following code:

1 set.seed(1)
2 drawn = sample(0:36, 100, replace = T)
3 hist(drawn, main = "Frequency of numbers drawn",
4 xlab = "Numbers drawn", breaks=37)

Here we first set the seed number to 1 (see line 1). For reproducibility reasons,
computer generated random numbers are generally not really random (they are
in fact called pseudo-random). Exceptions exist, such as numbers generated on
the website http://www.random.org (which bases the numbers on atmospheric
variations). Setting the seed number to 1 (or any number really) makes sure the
numbers we generate here will be the same as you will have on your screen, when
using the same code and the same seed number. Basically, setting it allows the
reproduction of random drawings. On line 2, we use the sample() function to
generate 100 random numbers in a range of 0 to 36 (0:36). The replace argument
is set to true (T), which means that the same number can be drawn several times.

The hist() function (lines 3 and 4) will plot the frequency of these numbers. The
hist() function takes a multitude of arguments, of which we use 4 here; main,
which sets the title of the graphic, xlab, which sets the title of the horizontal axis
(similarity, ylab would set the title of the vertical axis), and breaks, which forces
the display of 37 breaks (corresponding to the number of possible outcomes of the
random drawings). For more information about the hist() function, you can simply
type ?hist() in your R console.

http://www.random.org

Chapter 2

[19]

As you can notice on the graph below, the frequencies are quite different between
numbers, even though each number has an equal theoretical probability to be drawn
on each roll. The output is provided in the figure below:

A histogram of the frequency of numbers drawn

Let's dwell a little upon the representation of mean values using bar plots. This will
allow us to have a look at other properties of the roulette drawings. The mean values
will represent the proportions of presence of characteristics of the roulette outcomes
(for example, proportion of red number drawn). We will therefore build some
new functions.

Visualizing and Manipulating Data Using R

[20]

The buildDf() function will return a data frame with a number of rows that
correspond to how many numbers we want to be drawn, and a number of columns
that correspond to the total number of attributes we are interested in (the number
drawn, its position on the wheel and several possible bets), totaling 14 columns.
The matrix is first filled with zeroes, and will be populated at a later stage:

1 buildDf = function(howmany) {
2 Matrix=matrix(rep(0, howmany * 14), nrow=howmany,ncol=14)
3 DF=data.frame(Matrix)
4 names(DF)=c("number","position","isRed","isBlack",
5 "isOdd","isEven","is1to18","is19to36","is1to12",
6 "is13to24","is25to36","isCol1","isCol2","isCol3")
7 return(DF)
8 }

Let's examine the code in detail: on line one, we declare the function, which we call
buildDF. We tell R that it will have an argument called howmany. On line 2, we assign
a matrix of howmany rows and 14 columns to an object called Matrix. The matrix
is at this stage filled with zeroes. On line 3, we make a data frame called DF of the
matrix, which will make some operations easier later. On lines 4 to 6, we name the
columns of the data frame using names() functions. The first column will be the
number drawn, the second the position on the wheel (the position for 0 will be 1, the
position for 32 will be 2, and so on). The other names correspond to possible bets on
the betting grid. We will describe these later when declaring the function that will
fill in the matrix. On line 7, we specify that we want the function to return the data
frame. On line 8, we close the function code block (using a closing bracket), which we
opened on line 1 (using an opening bracket).

Our next function, attributes(), will fill the data frame with numbers drawn from
the roulette, their position on the roulette, their color, and other attributes (more
about this below):

1 attributes = function(howmany,Seed=9999) {
2 if (Seed != 9999) set.seed(Seed)
3 DF = buildDf(howmany)
4 drawn = sample(0:36, howmany, replace = T)
5 DF$number=drawn
6 numbers = c(0, 32, 15, 19, 4, 21, 2, 25, 17, 34, 6, 27,
7 13, 36, 11, 30, 8, 23, 10, 5, 24, 16, 33, 1, 20, 14,
8 31, 9, 22, 18, 29, 7, 28, 12, 35, 3, 26)

Chapter 2

[21]

The function is not fully declared at this stage. We will break it down in several
parts in order to explain what we are doing here. On line 1, we assign the function
to object attributes, specifying that we have 2 arguments; howmany for the number of
rows corresponding to how many numbers we want to be drawn, and Seed for the
seed number we will use (with default value 9999). On line 2, we set the seed to the
provided seed number if it is not 9999 (as we need the function to be able not to set
the seed for analyses we will do later). On line 3, we create the data frame by calling
the function buildDf() we created before. On line 4, we sample the specified amount
of numbers. On line 5, we assign these numbers to the column of the data frame called
drawn. On line 6, we create a vector called numbers, which contains the numbers 0 to
36, in the order featured on the roulette wheel (starts with 0, then 32, 15 …).

In the remaining of the function (presented below), we populate the rest of
the attributes:

9 for (i in 1:nrow(DF)){
10 DF$position[i]= match(DF$number[i],numbers)
11 if (DF$number[i] != 0) { if (DF$position[i]%%2) {
12 DF$isBlack[i] = 1} else {DF$isRed[i] = 1}
13 if (DF$number[i]%%2) { DF$isOdd[i]=1}
14 else {DF$isEven[i]=1}
15 if (DF$number[i] <= 18){ DF$is1to18[i]=1}
16 else { DF$is19to36[i]=1}
17 if(DF$number[i] <= 12){ DF$is1to12[i]=1}
18 else if (DF$number[i]<25) { DF$is13to24[i] = 1}
19 else { DF$is25to36[i] = 1}
20 if(!(DF$number[i]%%3)){ DF$isCol3[i] = 1}
21 else if ((DF$number[i] %% 3) == 2) {
22 DF$isCol2[i] = 1}
23 else { DF$isCol1[i] = 1}
24 }
25 }
26 return(DF)
27 }

Visualizing and Manipulating Data Using R

[22]

On line 9, we create a loop, meaning that the code block will iterate from i = 1, to i =
the number of numbers we have drawn (the number of rows of the data frame). We
open the code block using an opening bracket. On line 10, we assign to the attribute
position of the drawn number on the wheel, using function match(). On lines 11
to 12, we create a nested condition, stating that if the number is not 0, we assign 1 to
attribute isBlack is the position of the number is even, or 1 to isRed if the position
is odd (remember the color of the numbers alternate – red, black, red ...). On line 13
and 14, we assign 1 to attribute isOdd if the number if odd, or 1 to attribute isEven
if the number is even. On lines 15 and 16, we assign 1 to attribute is1to18 if the
number is smaller or equal to 18, or 1 to attribute is19to36 if the number is higher
than 18. On lines 17 to 18, we assign 1 to either is1to12, is13to24 or is25to36
depending on the value of the number (that's self-explanatory). Finally, on lines 20
to 26, we assign the column number on the betting grid, by setting the value of either
isCol1, isCol2, or isCol3 (on the table representing the betting grid, isCol1 is the
left 2:1 column, isCol2 the middle 2:1 column and isCol3 the right one). As we
have used nested conditions here, we close the code block on lines 24 and 25. On line
26, we tell R that we want the function to return the resulting data frame. On line 27,
we close the code block of the function (that we opened on line 1).

Now that we have our functions ready, we can now focus on visualizing some data.
The following code will generate 1,000 roulette spins (let's use a seed number of 2 so
that the calculation of the random number is the same on your machine as in mine):

Data=attributes(1000,2)

It is now time to explore the relationship between our variables in the following
graph. We will first ask R to plot several graphs on the plotting area. To do so, we
will rely on the mfrow argument of the par() function (line 1). We then tell R to plot
2 rows of 3 graphs corresponding to the proportion of red numbers (the mean of
the values, as these are represented by 1 for presence and 0 for absence) in the 2:1
columns 1, 2 and 3 on the first row, and the proportion of even number in columns
1, 2 and 3 in the second row. Notice that for all 6 plots we use subsetting (using
subset() function here) to select the portion of the data we are interested in. We
use attribute ylim to define the range of the plotting area (from 0 to 1), and attribute
main to print the title of the plots.

1 par(mfrow = c(2,3))
2 barplot(mean(subset(Data, isCol1 == 1)$isRed), ylim=(c(0,1)),
3 main = "Prop. of red in Col. 1")
4 barplot(mean(subset(Data, isCol2 == 1)$isRed), ylim=(c(0,1)),
5 main = "Prop. of red in Col. 2")
6 barplot(mean(subset(Data, isCol3 == 1)$isRed), ylim=(c(0,1)),
7 main = "Prop. of red in Col. 3")

Chapter 2

[23]

8 barplot(mean(subset(Data, isCol1 == 1)$isEven), ylim=(c(0,1)),
9 main = "Prop. of even numbers in Col. 1")
10 barplot(mean(subset(Data, isCol2 == 1)$isEven), ylim=(c(0,1)),
11 main = "Prop. of even numbers in Col. 2")
12 barplot(mean(subset(Data, isCol3 == 1)$isEven), ylim=(c(0,1)),
13 main = "Prop. of even numbers in Col. 3")

Bar plots of the proportion of red, and even numbers drawn from Columns 1, 2 and 3

As can be seen on the graphs, the proportion of red numbers drawn from columns
1, 2 and 3 is different, whereas the proportion of even numbers is relatively similar
between all the columns. This can be expected from the betting grid.

Visualizing and Manipulating Data Using R

[24]

You might have noticed that we have lost important information in the process; the
total of numbers drawn from each column, and the number of zeros; and we needed
to produce one bar plot per column, which is a bit tricky. Let's solve these problems
by first adding a single attribute which indicates the membership of the drawn
numbers to Column 1, Column 2 and Column 3.

1 for (i in 1:nrow(Data)){
2 if(Data$isCol1[i]== 1){ Data$Column[i]=1 }
3 else if (Data$isCol2[i] == 1) { Data$Column[i] = 2 }
4 else if (Data$isCol3[i] == 1) { Data$Column[i] = 3 }
5 else {Data$Column[i] = 0 }
6 }

On line 1, we start a for loop that will iterate from i = 1 to i = the number of rows
in data frame Data. We use nested condition in lines 2 to 5 to determine the column
number (1 if attribute isCol1 equals to 1, 2 if attribute isCol2 equals to 1, 3 if
attribute isCol3 equals to 1, or 0 if neither of these conditions is satisfied. We close
the code block on line 6.

We now can plot the column in relation to the proportion of red, and even numbers.
For now, our attributes isRed and isEven are ordered with 0 coming first and 1
second. We want just the opposite, as we want the number of numbers coded 1 to
appear at the bottom of the graph. We therefore reorder the values of our attributes
using the levels attribute of the factor() function (lines 1 and 2). We will use par()
again to get both graphs on the same plotting area. We then generate the stacked bar
plots using the barplot() function again. Notice we do not plot mean values this
time, but the content of the table in which the cells correspond to the intersections of
the attributes Column and isRed or isEven. We rely on the argument name.arg to
name the sections of the plots:

1 Data$isRed = factor(Data$isRed, levels = c(1,0))
2 Data$isEven = factor(Data$isEven, levels = c(1,0))
3 par(mfrow = c(2,1))
4 barplot(table(Data$isRed,Data$Column),
5 main = "Red numbers in Columns 1, 2 and 3",
6 names.arg = (c("0","Column 1", "Column 2", "Column 3")))
7 barplot(table(Data$isEven,Data$Column),
8 main = "Even numbers in Columns 1, 2 and 3",
9 names.arg = (c("0","Column 1", "Column 2", "Column 3")))

Chapter 2

[25]

A bar plot of the number of Red and Even numbers drawn

As can be seen on this stacked bar plot, approximately the same amount of numbers
have been drawn from each of the columns. The number 0 has been drawn around
50 times, which is about twices often as expected given its theoretical probability
equal to those of the other numbers (1000 * (1/37) = 27).

Scatterplots
Until now we have observed frequencies of the relationship between categorical
membership (nominal attributes) and frequencies or means. It is also useful
to have a look at relationships between numerical attributes. We will rely on
scatterplots for this purpose. This will require a little scripting again, as we will
examine the relationships between proportions. Let me first introduce the function
proportions() which will generate the proportions for us, for all of our nominal
attributes. This function takes one argument, DF, and call our attributes() function
by default. We could instead give as an argument the data frame with the numbers
we have previously drawn and the attributes.

www.allitebooks.com

http://www.allitebooks.org

Visualizing and Manipulating Data Using R

[26]

The body of the function computes and returns the transpose of the means of each
nominal attributes:

1 proportions = function(n = 100) {
2 DF=attributes(n)
3 return(data.frame(t(colMeans(DF[3:ncol(DF)]))))
4 }

The body of this function calls our attributes() function and passes the number of
roulette draws to it (line 2). It then returns a data frame which contains the transpose
means of all the columns, except columns 1 and 2 (which are not of interest here).

Our next function multisample() will return a data frame containing the
proportions of each attribute of each of k samples (one sample per row) of n
numbers drawn. It will by default draw 100 samples of 100 numbers. After starting
the function declaration on line 1, we set the seed to the provided value, or the
default value on line 2. We then create a vector containing the values returned by a
first call to the proportions() function. In the following loop, we append iteratively
values returned by function proportions() (lines 4 to 7). Finally, we return the
resulting data frame (line 8), and close the function code block (line 9).

1 multisample = function(n=100,k=100, Seed=3){
2 set.seed(Seed)
3 ColMeans.df=proportions(n)
4 for (i in 1:k-1){
5 ColMeans.df=rbind(ColMeans.df,
6 proportions(n))
7 }
8 return(ColMeans.df)
9 }

We are now able to examine the relationship between proportions of numbers using
scatterplots. Scatterplots display each observation on a plane by plotting the values of
two attributes. On line 1, we first create a data frame of proportions using the default
arguments for multisample() function. This will not take too long to compute.
Having a look at the roulette grid, one can see that 10 out of the 18 red numbers are
odd. Will we be able to spot this relationship from the random drawings? We will
investigate this visually. We plot the proportions of red and the proportions of even
numbers using a scatterplot (lines 3 to 6). The main argument set the title of the graph
(line 4). The xlab argument sets the title of the horizontal axis (line 5). The ylab
argument sets the title of the vertical axis (line 6). We also add and a line (called slope)
showing the direction of the relationship using abline() function on line 7.

Chapter 2

[27]

The function here uses the coefficients of a linear model as argument. I will discuss the
lm() function which provides such coefficients in the chapter about regression:

1 samples = multisample()
2 par(mfrow=c(1,1))
3 plot(samples$isOdd,samples$isRed,
4 main = "Relationship between attributes Red and Even ",
5 xlab = "Proportion of Even numbers",
6 ylab = "Proportion of Red numbers")
7 abline(lm(samples$isOdd~samples$isRed))

The output is provided below:

A scatterplot showing the relationship between the proportion of Red and Even numbers

Visualizing and Manipulating Data Using R

[28]

The graph depicts the values on our two attributes (the proportion of even numbers
on the x axis and the proportion of red numbers on the y axis) for each of our
samples. The line represents the linear relationship between these two proportions;
the higher the proportion of even numbers, the higher the proportion of red
numbers. Again, this can be expected from the betting grid.

Boxplots
As we can also notice from the scatterplot, whereas most of the samples have a
relatively balanced proportion of red or even numbers, these proportions are very
small or large in some cases. We could examine the dispersion of those values
using a histogram again, but the boxplot is much more interesting, so we will use
it instead. Boxplots are representations of the distribution of an attribute. We could
have a look at only one attribute by specifying its name as an argument from the
boxplot() function. We will instead look at all the arguments at once by giving the
data frame as an argument:

boxplot(samples)

Boxplots of all the attributes

Chapter 2

[29]

As can be seen from the boxplots, the proportions of red, black, odd, even, numbers
below 18, and numbers higher than 18 are a little below 50% on average, which is
what is expected as 18 of 37 numbers are in each of these categories. We can also
notice that the average proportion of numbers between 1 and 12, 13 and 24, 25 and
36, as well as numbers on columns 1, 2 and 3 are a bit below 33%, which is expected
as well. What might surprise us is that there is a huge variation around these average
values. On each boxplot, the bottom box represents the data points that are in the
second quartile. The top box represents data points that are in the third quartile.
Thus, 50% of our data points fit in the two boxes. The space between the whiskers
represents 150% of the interquartile range (the distance between the third and first
quartile, or Q3-Q1). Finally, outliers are displayed as separate points on the boxplots.
We can visually notice that the space between the whiskers it is about as large for the
attributes on the right large of the graph as for attributes on the left side, even though
the median proportion is much lower.

Line plots
Line plots provide the same information as bar plots. They might allow to
understand relationships between attributes better because the values are linked
by lines which give a better feeling of the difference between the values. We
will investigate the variability of the proportions of each attribute by plotting its
proportion from each sample. On line 1, we will first configure the plotting area
contain 12 plots (as we have 12 attributes). Notice we use the oma attribute to set
the outer margin, and the mar attribute to set the inner margin. On line 2, we set
the names to be used in the titling of the axis (using the ylab attribute, see line 4).
We then iteratively create, for each attribute, a graph plotting each value (lines 3
to 5). The type attribute is set to l (line 5) in order to plot lines instead of dots as
in a scatterplot.

1 par(mfrow=c(4,3), oma = rep(0.1,4), mar = rep(4,4))
2 names=colnames(samples)
3 for (i in 1:ncol(samples)){
4 plot(samples[,i], xlab="Sample", ylab=names[i],
5 type = "l")
6 }

Visualizing and Manipulating Data Using R

[30]

The output is provided below:

Variability of the proportion of each attribute

Chapter 2

[31]

Application – Outlier detection
You might remember that at the beginning of the chapter, we noticed in the stacked
bar plot that in our sample of 1,000 roulette spins, the zero was drawn about twice
as often as we would expect. We just mentioned it but didn't really have a point of
comparison. We now have proportions from 100 samples and thus can examine this
a little further. The proportion of zeros can be obtained from the data we have as we
simply have to subtract from 1, the sum of proportions of red and black numbers for
each of the samples. So let's do this, and add the attribute to the data frame, and get
the mean value of this proportion:

samples$isZero = 1-(samples$isRed+samples$isBlack)
Mean = mean(samples$isZero)
Mean

The mean value is 0.0277. We can compute the value we would expect is 1/37,
which is 0.0270. The average value of the proportion of zeros in all our 100 samples
is therefore almost identical to the expected value. This in no way means that there
are no outliers.

There are several ways to detect outliers. When seeking detection of outliers in
multivariate data, the Mahalanobis distance or leverage points can be used. As
these do not rely on visualization, we will not discuss them here. The interested
reader can refer to the paper Unmasking outliers and leverage points by Rousseeuw
and van Zomeren.

Our problem here is univariate, and a simple visualization technique is enough for
the current purpose. A simple and classic approach is to see how many of the values
(here proportions of 0) fall outside of the mean + or – 3 standard deviations. So let's
start by computing the thresholds (lines 1 and 2). We then plot the proportions of
zeroes from all our samples (lines 3 and 4). Notice we use the ylim attribute (line 3)
to specify that we want the vertical boundaries of our graph to include all possible
values (a proportion can range from 0 to 1). We will then add two lines showing the
limits of the interval between the mean and 3 standard deviations above and below it
(lines 6 and 7):

1 upper = Mean+(3*sd(samples$isZero))
2 lower = Mean-(3*sd(samples$isZero))
3 par(mfrow=c(1,1))
4 plot(samples$isZero, main = "Proportion of zeros",
5 xlab = "sample", ylab= "", ylim = c(0,1))

Visualizing and Manipulating Data Using R

[32]

6 abline(h=upper)
7 abline(h=lower)0

Finding extreme proportions of zeros visually

We can notice that there is only one value above the upper threshold. All other
values are thus not considered as outliers, as the fit in the range of the mean plus or
minus 3 standard deviations. We can also notice that the lower threshold is below 0.
This is not possible for proportions.

Formatting plots
Plots in R can be formatted in many ways. We have already seen some of them in
this chapter. In this section, we briefly explore some of these options. Let's go back
to the data frame containing the 1,000 roulette spins and examine the relationship
between the position on the roulette and the number by color. On line 1, we call the
plot function. On line 2, we specify the attributes to be plotted, and add a little jitter
to the data, using the jitter() function, otherwise, many points will be stacked
over each other. The factor argument of this function controls the amount of jittering.
We also reduce the size of the dots, using the cex attribute (line 3). We then title our
graph and axes (lines 4 to 6).

Chapter 2

[33]

Finally, we want to color the dots according to whether the number drawn is red or
not (line 7). For this purpose, we use the col attribute:

1 plot(
2 jitter(Data$position, factor=4),jitter(Data$number, factor=4),
3 cex = 0.5,
4 main = "Relationship between number and position on the
5 wheel", xlab = "Position",
6 ylab="Number",
7 col=as.factor(Data$isRed))

Relationship between number drawn and position on the wheel

Visualizing and Manipulating Data Using R

[34]

As we can see from the graph, there is a relationship between the position on the
wheel and the number, when considering color. Yet, red is associated with numbers
higher than 18 in the first half of the wheel, counting from 0, and with small numbers
on the second half of the wheel (and reversely for Black).

Summary
In this chapter, we have examined a number of possible ways to explore data
visually. We have used the flexibility of R to produce samples programmatically
to generate data on the fly, which we have used to illustrate how to use basic plots.
We have examined some of the associations in the game of roulette and developed
functions according to our analytical needs. We have also examined how to recode
data, and use only a subset of data, and introduced the concept of multiple sampling.

The next chapter will deal with more advanced graphs using the lattice package.
This comes in handy when dealing with several group memberships (for example,
ethnicity and gender at once).

Chapter 3

[35]

Data Visualization
with Lattice

In the previous chapter, we discovered how to easily visualize our data using
standard functions of R. You might remember that at some point, when discussing
bar plots, we visualized the frequency of an attribute based on the case's membership
a group. This required that we generated several plots, each displaying the data in
one of the groups. Dealing with this kind of issue more easily is mostly what trellis
graphics are about.

Trellis graphics allow the visualization of data based on group membership
effortlessly. With features such as multipanel conditioning (Becker & Cleveland, 1996,
p. 6), understanding the structure of your data becomes a seamless visualizing
experience.

Multipanel conditioning means that data is displayed on multiple panels which
are defined as a function of group membership. It is particularly interesting when
membership to several characteristics are involved (for instance age group and
gender). In these cases we are confronted with multivariate data. An interesting
property of trellis graphics is that they are objects, which can be assigned a name,
copied, and most importantly modified on the fly. We will discover these aspects in
this chapter, as well as several types of useful plots.

Trellis graphics were introduced in the S language in the 1990s (Cleveland, 1993).
The lattice package is the implementation of trellis graphics in R. It is now part of
the list of packages that comes out-of-the box with R.

www.allitebooks.com

http://www.allitebooks.org

Data Visualization with Lattice

[36]

Loading and discovering the lattice
package
The lattice package is included in R version 3. We will first load the lattice
package with the command line:

library(lattice)

We can now have a look at the objects that are included in the package. This requires
listing the loaded packages, which can be done by typing:

search()

The output is displayed on the image below:

Packages in the R search path

The Lattice package is number 2 in this list. This position can vary, depending on
whether you have loaded other packages as well.

The ls() function will allow us to inspect the content of lattice (or any other
loaded package), as we have seen in Chapter 1, Setting GNU R for Predictive Modeling.
Because the lattice package is in second position as just discussed, we type:

ls(2)

The output, composed of approximately 150 elements, is too long to be printed here.
This illustrates the many graphing possibilities offered by lattice. We suggest you
go through it on your screen. The idea is to get the feel of the content of the package
by exploring it. If an object name seems intriguing, simply type its name, preceded
by a question mark. This will launch the HTTP help server and provide you with
information for that particular function. We will just comment on some elements
of the package. There are some functions that produce graphic objects, such as
barchart(), bwplot(), cloud(), histogram(), parallel().

Chapter 3

[37]

There are also functions that add elements, such as points, lines, other shapes or
text, to an object (during or after its creation). These include llines(), lpoints(),
ltext(), and lrect(). Another type of important object of the lattice package are
functions that configure panels, that is, the area that contains the visualizations, or
add elements to panels on the fly. These functions start with the prefix panel. While
some work with most lattice plots, others are specialized. We will only have a look
at some of the features of lattice in this chapter.

We will not discuss all functions and arguments here. The interested reader can
consult the package documentation available at:

http://cran.r-project.org/web/packages/lattice/index.html

Discovering multipanel conditioning
with xyplot()
The first thing we will do next is to check that lattice works properly. For this
example, we will use the iris dataset. The iris dataset is one of the best known in
data science. It is composed of four numeric attributes Sepal.Length, Sepal.Width,
Petal.Length and Petal.Width which are measures of iris plants, as well as a
factor, or nominal attribute Species which describes the membership of the plants to
3 different iris species: Virginica, Setosa and Versicolor. The data set is composed of
150 observations.

Doing this first plot will also allow us to discover the formula syntax used in most
plots with lattice:

xyplot(Sepal.Length ~ Sepal.Width | Species, data = iris)

In this line of code, we have used the xyplot() function to visualize the relationship
between the sepal length and the sepal width of iris flowers conditioning on
Species. This means that one scatterplot is produced for each of the groups. The
function xyplot(), as well as most functions in the lattice package uses a formula
syntax, similar to what we will use when discussing regressions. So here is a quick
word about the formula syntax. The formula part of the line of code above is Sepal.
Length ~ Sepal.Width. The ~ operator (tilde or wavy dash) is used to parse the
left-hand side of the formula Sepal.Length here, with what we want to visualize in
the y axis (or what we want to model in the case of regression for instance), from the
right-hand side of the formula, where we tell R the attributes (Sepal.Width here)
what we want to use on the x axis (or the predictors in a regression model).

http://cran.r-project.org/web/packages/lattice/index.html

Data Visualization with Lattice

[38]

Values on the left-hand side are usually vectors, and those on the right-hand side are
usually vectors or matrices. We specify the dataset to be used after a comma, using
the argument data. We will use more complex formulae later, including the case of
formula with no left-hand side.

The vertical bar symbol | is a requirement of xyplot(). It means that the display is
conditioned on the grouping attribute that follows (here the attribute is Species).
The plot is reproduced in the figure below:

Visualizing the features of the iris dataset conditioning on a group

Chapter 3

[39]

Discovering other lattice plots
We have just discovered one type of plot in lattice as well as multipanel conditioning.
Lattice is a rich package which features diverse plots. We have already encountered
the multi-paneled scatterplot obtained using xyplot(). We will have a look at some
more lattice multi-paneled graphs in this section: histograms, stacked bars, dotplots,
as well as a customization of the scatterplot, where points are replaced by text.

Histograms
In the previous chapter, we examined the overall distribution of an attribute using
the hist() function. The distribution of some measures can vary between groups,
that is, it can be more or less skewed in some groups compared to others. The
histogram() function in the lattice package allows for a visual inspection of this.
We will examine variability in temperatures by month using the airquality dataset.
This dataset has six attributes (Ozone, Solar.R, Wind, Temp, Month, and Day), of
which you will find a description by typing:

?airquality

To generate a lattice graphic with a histogram of Temp for each month, type:

histogram(~Temp | factor(Month), data = airquality,
 xlab = "Temperature", ylab = "Percent of total")

Not using a left-hand side in the formula above has the effect of plotting the values
of the right-hand side on the y axis, instead of those of another variable, as in the
previous example. Notice we use the factor() function here. This function allows
us to tell R that we want to consider the values in the variable Month as categories,
instead of as quantities as it would have by default.

Data Visualization with Lattice

[40]

The effect is that the plot is produced for each month (from May to September). The
output is provided below. We can notice that the temperature increases from May to
July and then decreases:

Histograms of temperature by month

Chapter 3

[41]

Stacked bars
Stacked bar graphs are very useful representations of multiway data. We call
multiway data in which 3 or more factors are plotted or analyzed together. In this
example, we will use fictitious sales data from a company specializing in selling
DVDs, and Blu-ray discs in 2006. The company has 5 branches and has 5 departments
in each branch: Movies, TV series, documentary, music and instructional. The
following code will create the salesdata data frame containing sales record for
years 2004 and 2014 (in hundreds of thousands). We will then examine the sales
as a function of branches, departments and year.

5 "Branch 3", "Branch 4", "Branch 5"), 5)
6 salesdata$Dept = c(rep("Movies",5),rep("TVSeries",5),
7 rep("Documentary",5),rep("Music", 5), rep("Instructional", 5))
8 salesdata$Sales = c(50.795, 25.469, 30.241, 100.658, 36.412,
9 45.632, 30.541, 31.421, 70.212, 25.412, 5.124, 3.124, 4.065,
10 10.258, 0.82, 10.658, 5.474, 6.541, 10.698, 76.584, 1.021,
11 0.504, 0.76, 0.15, 0.3, 203.18, 101.876, 120.964, 402.632,
12 145.648, 182.528, 122.164,125.684, 280.848, 101.648, 20.496,
13 12.496, 16.26, 41.032, 3.28, 42.632, 21.896, 26.164, 42.792,
14 306.336, 4.084, 2.016, 3.04, 0, 0)

On line, we build a matrix of 50 rows and 4 columns filled with zeroes, and coherce
it to a data frame before populating it. As a reminder, a data frame is a list of vectors
that can be of different types but all of the same length. A matrix can only contain
elements of the same type. On line 2, we name the columns of the data frame.
We will have attributes Year, Branch, Dept (for department) and Sales (for sales
volume). From line 3 to 12, we populate the data frame.

Data Visualization with Lattice

[42]

The following code will produce a stacked bar chart of the data:

barchart(Dept ~ Sales | Branch, groups = Year, data = salesdata,
 auto.key = list(space = 'right'), stack = TRUE)

A stacked bar chart of yearly sales by department and branch

Chapter 3

[43]

We used the barchart() function to generate the graph. In the formula argument, we
included the department (attribute Dept) on the left as we want it to be displayed on
the y axis, we want the sales (attribute Sales) on the x axis, so we put it second (after
the tilde ~ symbol). We continued our formula by stating that we want the graph to be
conditioned on Branch (after the vertical line which means conditioned on), we want
each panel to discriminate between the years, so we assigned Year to the groups
argument. We asked for stacked graphs using the stack argument, and finally we
asked for the key of the graph to be placed on the right using the auto-key argument.
The stacked argument allows specifying that we want a stacked bar graph.

On this graph, we can see that the sales were much higher in 2014 than in 2004.
Whereas branch 4 increased mostly in movies and TV series sales, branch 5 became
apparently specialized in musical DVDs and Blu-rays and generated an increased
income in this department. Branches 1, 2 and 3 were not as lucky and didn't increase
their sales as much, but still managed to survive the crisis.

Dotplots
The dotplot() is a useful graphing function in R. It allows for the representation of
the relationship between a numeric attribute and one or more factor attributes. We
will use the salesdata dataset again to illustrate the use of the dotplot() function.
We will reuse the formula we used for producing the stacked bars chart, as well
as most of the argument assignations. This is possible because the same options
can be used for generating most lattice objects. We will also add a title using the
argument main, and increase the size of the dots a bit using the argument cex:

dotplot(Dept ~ Sales | Branch, groups = Year, data = salesdata,
 cex = 2, auto.key = list(space = "right"),
 main = "Sales by department, branch and year")

Data Visualization with Lattice

[44]

The following is the output:

A dot plot of yearly sales by department and branch

We can interpret this graph the same way we did for the stacked bar graph, as it
represents the same data. It is sometimes useful to use multiple visualizations for a
better understanding of the data.

Chapter 3

[45]

Displaying data points as text
An interesting feature of xyplot() is the possibility to display data point as text
in multi-paneled scatterplots conditioned on one attribute or the combination of
attributes. In what follows, we will examine the relationship between fertility (y
axis) and education (x axis) in Swiss districts. We will use multi-paneled scatterplots
conditioned on high versus low infant mortality and whether the district is rural
versus non rural. We will display the observation as the name of the district.

The following code starts by creating a new data frame from the swiss dataset
(line 1). We then add three additional attributes. The first is Mortality, which is
computed as whether Infant.Mortality is higher than the mean value across the
dataset (lines 2 to 5). Remember that in the Chapter 2, Visualizing and Manipulating
Data Using R, we used the subset() function combined with if statements to subset
data based on a condition. Here we rely on an alternative solution by including the
condition into brackets. For instance, lines 2 and 3 mean fertility$Mortality (the
attribute Mortality of data frame fertility) takes the value High infant mortality
in observations where fertility$Infant.Mortality is higher than the mean of
swiss$Infant.Mortality.

The second additional attribute is Rural, which is computed as whether
Agriculture is higher than the mean value across the dataset (lines 6 and 9).
Finally, the attribute District (that is, the district where the data was collected).
This is simply the row names of the dataset (line 10). After this initial part, attributes
Mortality and Rural are recoded in order to make the values understandable in the
graph. Here is the code for this data preparation:

1 fertility=swiss
2 fertility$Mortality[(fertility$Infant.Mortality >
3 mean(swiss$Infant.Mortality))==TRUE]="High infant mortality"
4 fertility$Mortality[(fertility$Infant.Mortality >
5 mean(swiss$Infant.Mortality))==FALSE]="Low infant mortality"
6 fertility$Rural[(fertility$Agriculture >
7 mean(swiss$Agriculture)) == TRUE] = "Rural"
8 fertility$Rural[(fertility$Agriculture>
9 mean(swiss$Agriculture)) == FALSE] = "Non-rural"
10 fertility$District = rownames(fertility)

In the plotting section below, we first include the formula, that specifies which
relationship between attributes to plot, including the conditioning on Mortality *
Rural (the combination of which will result in 4 panes; line 1), we then configure
the groups (line 2). An important part of the graph is the configuration of the panel
(line 3 and 4).

www.allitebooks.com

http://www.allitebooks.org

Data Visualization with Lattice

[46]

We create a panel function in which we call ltext(), which allows printing text and
lattice graphics, in this case, the district names. This replaces the default printing of
data points as dots. We then configure the main title of the graph (line 5):

1 xyplot(Fertility ~ Education | Mortality * Rural, data =
 fertility,
2 groups = as.character(District),
3 panel = function(x, y, subscripts, groups) {
4 ltext(x, y, labels = groups[subscripts], cex=.4)},
5 main = "Fertility and education in 1888 Occidental
 Switzerland")

On the resulting graph, presented in the figure below, we can notice the relationship
between education and fertility, especially in non-rural areas. We can also see that
fertility is lowest in non-rural areas where infant mortality is low:

A multi-panel plot of the relationship between fertility and education, conditioning on
infant mortality and agriculture

Chapter 3

[47]

Updating graphics
We have seen how easy it is to create multi-panel plots using xyplot(), barchart()
and other functions of lattice. We mentioned in the introduction that lattice
graphics can be customized on the fly. Yet, we haven't taken that opportunity yet. In
this section, we will see how lattice plots can be customized using the update()
function. Note that the customizing can be done when creating the object as well.
We will use another simple dataset for this purpose: the ChickWeight dataset. This
dataset contains four attributes which describe the growth of chickens through time,
with several diets; weight: the weight of the chicken, Time: the age of the chicken,
Chick: the identifier of the chicken, and Diet: how the chicken was fed.

Our interest will focus on the relationship between the diet and growth (variations in
weight through time).

xyplot(weight ~ Time | Diet, data=ChickWeight)

As can be seen in the figure below, chickens increase in weight through time, with
all diets. It can be noticed that there is a huge variation in growth with diet 1 (bottom
left of the graph), whereas diet 4 has the least variation in growth.

Chicken growth as a function of diet

Data Visualization with Lattice

[48]

We also want to see if there are individual differences in chickens, that is, how much
this varies between chicks. More precisely, we will plot the data for each diet on a
separate panel, and the data for each chick with a different representation (the color
of the observation). We will do this using the argument groups and assign a name to
the graph (the displaying of the graph will be differred until we call it by name):

Graph = xyplot(weight ~ Time | Diet, groups = Chick,
 data=ChickWeight)

Relying on the update() function with the name of our graph as a first argument
(line 1), we add a customized title for the graphic (line 2), as well as for the x axis
and y axis (lines 3 and 4):

1 Graph = update(Graph,
2 main = "Chicken growth by diet",
3 ylab = "Weight of the chicken",
4 xlab = "Days since birth")

We also want to add an index for each chicken, for instance in order to find them
in our dataset more easily later on. We also want the panels to be displayed in the
opposite order (diet 1 first). Note that the order of the panels can be fully customized.

Graph = update(Graph, index.cond = list(c(3,4,1,2)))

We can now plot the graph by typing its name:

Graph

Or using the function print() with the name of the graph as argument:

print(Graph)

Chapter 3

[49]

Chicken growth as a function of diet (showing values for individuals)

The resulting graph is presented on the image above. We can now notice that within
each type of diet, some chickens present a lower growth than others. Other aspects
of graphs can be freely customized. We will see some others more in the following
pages when discussing the thorough visual inspection of a particular dataset. For
now, simply type the following line in order to discover all options for xyplot() –
most options also apply to the other types of graphs we have encountered:

?xyplot

Data Visualization with Lattice

[50]

Case study – exploring cancer-related
deaths in the US
In this section, we will explore the rate of death due to cancer in the US. This will
allow us to have a better feel of the importance of plotting data using a practical
example. We will also discover interesting tools along the way. We will start by
discovering the dataset, plotting some data, integrating data from other sources.

The dataset is part of latticeExtra, so we will install and load it first:

install.packages("latticeExtra")
library(latticeExtra)

Note that this may update lattice and require to restart R.

Discovering the dataset
Let's start by having a look at the attributes in the dataset and 3 rows of data:

head(USCancerRates, 3)

This outputs, included in the figure below, shows that there are 8 attributes, which
relate to the rate of death due to cancer for males and females as well as the 95%
confidence intervals (lower and higher bounds for both). Two other attributes allow
identifying the county and state were the data of each row comes from.

Let's now have a look at some global descriptive statistics:

summary(USCancerRates)

The output is included below. We can see that the rate for males (attribute rate.
males) is apparently lower than the rate for females (attribute rate.female). The
6 states with the most counties are Texas, Georgia, Virginia, Kentucky, Missouri
and Illinois. These represent about a third of the dataset: there are 3,041 counties
altogether (attribute county).

Chapter 3

[51]

The first three observations of the data set and its summary

We will now produce a plot we haven't encountered yet in order to examine the
relationship between deaths of males and females caused by cancer; the parallel
coordinates plot. The plot on the whole dataset would be unreadable because
there are many rows. For this reason, we will create the plot only on the basis of a
subsample of 75 randomly drawn counties. We also want to discard the confidence
intervals from the plot. For this reason, we will only consider columns (male.rate),
2 (female.rate) and 7 (state), which we will reorder (state first). After obtaining
the subsample, we will plot it using a parallel plot. We will set the horizontal.axis
argument to False in order to have the values in the y axis and the attribute names
on the x axis:

set.seed(987)
subsample=USCancerRates[sample(1:nrow(USCancerRates),75),c(7,4,1)]
parallelplot(subsample, horizontal.axis=F, groups=subsample$state)

Data Visualization with Lattice

[52]

The following is the output:

The parallel coordinates plot

The parallel coordinates plot allows us to have a look at the relationship between
several attributes at the same time. You could do this for instance for 5, 10, 20 or
even more attributes, plotted at the same time, and at the case level, that is, each
observation is plotted in the parallel coordinates plot. We can notice that for some
counties, the rates are higher for males, and for some others for females. Is this
related to the state? We will now produce the same plot, but separately for each
state. We will use the full dataset this time. This will require changing our call to
the function a bit:

Chapter 3

[53]

parallelplot(~USCancerRates[,c(4,1)]|USCancerRates$state,
 horizontal.axis=F,data=USCancerRates, varnames =c("F","M"))

From the graph, it can be noticed that there this is also much variation of some states:
in some states, females' rates are higher than males', in other states, it is the opposite,
whereas, most states feature a variety of cases. But as we have seen in the descriptive
section, males' average rate seems higher:

A parallel coordinates plot of rates of death due to cancer, by state

Another interesting question is whether the rate in females is related to the rate in
males, that is, irrespective of which group has the highest rate, do females have
higher rates in states where males have higher rates? We touched that topic before,
but didn't examine the issue specifically. What we need to do now is to produce a
scatter plot by state of the relationship between males and females and add a fit line
in order to notice the difference. We do so by declaring a panel function (lines 5 to
7) and specifying (on line 7) that the regression line should be printed. This is very
similar to what we have done in Chapter 2, Visualizing and Manipulating Data Using
R. We will use xyplot() again. A more sophisticated version of this graph has been
proposed in Lattice: Multivariate Data Visualization with R, Deepayan Sarkar (2008),
which we highly recommend reading:

1 xyplot(rate.male ~ rate.female | state,
2 data=USCancerRates, main = "Death due to cancer",

Data Visualization with Lattice

[54]

3 ylab= "Rates in males",
4 xlab = "Rates in females",
5 panel = function(x, y, ...) {
6 panel.xyplot(x,y)
7 panel.abline(lm(y~x))
8 }
9)

Scatterplots of male and female rates of death due to cancer, by state

As we can see from the graph, there is usually a positive relationship between the
rate of females and the rate of males. This means that in counties where 'male' rates
are high, 'female rates are high as well.

Chapter 3

[55]

Integrating supplementary external data
Something we might be interested in knowing is whether the percentage of
individuals without health insurance is predictive of the rates of deaths due to
cancer, and if this varies geographically.

We might hypothesize, for instance, that people without insurance seek less
treatment and for this reason could be more likely to die from cancer. Testing this
requires adding this attribute to the dataset. Information about health insurance by
state is readily available from Cambell (1999), and represents the average for years
1996 to 1998.

NoInsur = c(15.1, 16.3, 24.3, 21.6, 21.2, 15.6, 11.8, 13.7,
 18.7, 17.6, 17.3, 12.9, 12.1, 11, 11.1, 14.8, 19.8,
 13.2, 13.8, 11.8, 11.2, 9.6, 19.6, 12.1, 17.6, 10.4,
 18.1, 10.9, 16.5, 22, 17.2, 15.5, 13.1, 11.1, 17.7,
 14.3, 10, 10, 16.4, 11.9, 13.9, 24.4, 13.1, 10.1,
 13.1, 12.4, 16.5, 9.4, 15.3)

There could be geographical differences in rates of death due to cancer. For instance,
counties from southern states are exposed to more sun rays, which are causes from
skin cancers. We will consider the states' central longitude and latitude. These have
been computed from the table United States State available at http://www.ala.org/
magirt/publicationsab/usa. In order to import this in R, we start by creating a
vector with the list of states. We then create two vectors, for the longitude (negative
is West, positive is East) and the latitude (negative is South, positive is North):

state = c("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Colorado", "Connecticut", "Delaware",
 "Florida", "Georgia", "Idaho", "Illinois", "Indiana",
 "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine",
 "Maryland", "Massachusetts", "Michigan", "Minnesota",
 "Mississippi", "Missouri", "Montana", "Nebraska",
 "Nevada", "New Hampshire", "New Jersey", "New Mexico",
 "New York", "North Carolina", "North Dakota", "Ohio",
 "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island",
 "South Carolina", "South Dakota", "Tennessee", "Texas",
 "Utah", "Vermont", "Virginia", "Washington",
 "West Virginia", "Wisconsin", "Wyoming")

http://www.ala.org/magirt/publicationsab/usa
http://www.ala.org/magirt/publicationsab/usa

Data Visualization with Lattice

[56]

CentLong = c(-86.68, 21.5, -111.93, -92.12, -119.27, -105.56,
 -72.75, -75.40, -83.81, -83.18, -114.13, -89.50, -86.43,
 -93.37, -98.54, -85.77, -91.43, -69.01, -77.25, -71.72,
 -86.43, -93.38, -89.88, -92.44, -110.04, -99.68, -117.03,
 -71.58, -74.71, -106.03, -75.82, -79.88, -100.30, -82.67,
 -98.72, -120.52, -77.60, -71.52, -80.94, -100.24, -85.98,
 -99.58, -111.53, -72.53, -79.47, -120.84, -80.19, -89.83,
 -107.55)
CentLat = c(32.63, 61.38, 34.17, 34.75, 37.27, 39.00,
 41.53, 39.15, 27.75, 32.68, 45.50, 39.75, 39.81, 41.93,
 38.50, 37.88, 30.97, 45.22, 38.81, 42.04, 44.99, 46.44,
 32.50, 38.31, 46.68, 41.50, 38.50, 44.03, 40.14, 34.17,
 42.76, 35.23, 47.47, 40.20, 35.31, 44.13, 40.99, 41.58,
 33.61, 44.21, 35.83, 31.17, 39.50, 43.86, 38.00, 47.27,
 38.92, 44.81, 43.00)

Now let's group the four vectors in a data frame:

DF = data.frame(state, CentLong, CentLat, NoInsur)

We are now finally going to know if there is a relationship between the percentage of
individuals without insurance and the central latitude of the state:

1 xyplot(DF$NoInsur~DF$CentLat,
2 main = "State latitude and health insurance coverage",
3 xlab = "Latitude",
4 ylab = "Percent of noninsured individuals")

Chapter 3

[57]

The relationship between state latitude and percent age of non-insured individuals

We can notice a strong negative relationship is more in the North, the less is the
percentage of noninsured people.

We now need a function to match the states' names in the USCancerRates dataset
and the states' names in our dataset of supplementary attributes. On lines 1 to 3, we
start by creating three vectors (filled with zeros for now). We then create a copy of
USCancerRates, with these three additional attributes included (line 4):

1 CLong = rep(0,nrow(USCancerRates))
2 CLat = rep(0,nrow(USCancerRates))
3 NInsur = rep(0,nrow(USCancerRates))
4 cancer = data.frame(USCancerRates[c(7,1,4)],CLong, CLat, NInsur)

Data Visualization with Lattice

[58]

The following code will fill the three attributes with the correct values for us:

1 for (i in 1:nrow(cancer)) {
2 for (j in 1:nrow(DF)) {
3 if (cancer[i,1] == DF[j,1]) {
4 cancer[i,4:6] = DF[j,2:4]
5 next
6 }
7 }
8 }

Here we will loop through each row of the cancer data frame (line 1), and of the DF
data frame (line 2). This is called nested looping. If the value of state on the current
row (i) of the cancer data set corresponds to the current value of state (j) in the DF
dataset (line 2), the values for row j of attributes CentLong, CentLat and NoInsur
([2:4]) from data frame DF will be copied to in attributes CLong, CLat and NInsur
([4:6]) of data frame cancer (line 4).

Now that we have our dataset ready, let's examine the relationship between
healthcare coverage and the rate of male and female death due to cancer:

1 xyplot((rate.female + rate.male)/2 ~ NInsur |
2 ifelse(cancer$CLat>median(cancer$CLat),"North","South"),
3 data = cancer,
4 index.cond=list(c(2,1)),
5 panel = function(x, y, ...) {
6 panel.xyplot(x,y)
7 panel.abline(lm(y~x))
8 panel.loess(x,y, col = "Red") },
9 xlab = "Percent of noninsured individuals",
10 ylab = "Mortality due to cancer",
11 main = "Health insurance coverage and Mortality due to
12 cancer by latitude"
13)

Chapter 3

[59]

The relationship between health insurance coverage and mortality due to cancer

The attribute on the y axis is the average of female and male values for each state (see
line 1). We group on latitude in order to examine if the pattern is different North and
South. As CLat (the central latitude) is a numeric attribute, we split it in two with the
ifelse() function, using the median value as a criterion (see line 2 below). This is
a nice way to assign different values depending on a condition (we have discussed
other ways above and before in this book) ! On line 4, we use the index.cond
argument to determine the order of the panels (we want South first).

Data Visualization with Lattice

[60]

We added more information on the graph: the black line is the regression slope,
configured with the call to the panel.abline() function (see line 7). The red curve
is the loess function (see line 8), which fits to a polynomial by performing local
regressions (we thank a reviewer for this added information). The result is that the
line is locally smoothed, highlighting deviations from linearity. It is configured
with the panel.loess() function. Note that these functions are embedded in the
definition of the panel which takes place by assigning a new function to the panel
argument (starting at line 5). This new function starts with a call to the default
setting for xyplot().

The graph shows that the relationship between the rate of death due to cancer and
percent age of noninsured individuals is somewhat positive (although close to flat)
in counties from northern states, whereas, unexpectedly, it is negative (and more
pronounced) in southern states. This might be due to confound non-measured factors
which might mediate or moderate the relationship between the number of noninsured
individuals and cancer-related mortality. Globally, counties in northern states have
a lower rate of death due to cancer compared to counties in southern states.

Summary
In this chapter, we have explored some of the functions of the lattice package. We
have seen how easy it is to plot data as a function of groups. We have described some
of the customization possibilities of lattice graphs. Through the example of the
USCancerRates dataset, we have discussed the importance of data integration, which
is merging data from several sources in order to build knowledge. In the process of
exploring the functions of lattice, we have made some fascinating discoveries. In
the next chapter, we will discover unsupervised clustering with kmeans().

[61]

Cluster Analysis
Unsupervised cluster analysis refers to algorithms that aim at producing homogeneous
groups of cases from unlabeled data. The algorithm doesn't know beforehand
what the membership to the groups is, and its goal is to find the structure of the
data from similarities (or differences) between the cases; a cluster is a group of
cases, observations, individuals, or other units, that are similar to each other on
the considered characteristics. These characteristics can be anything measurable
or observable. The choice of characteristics, or attributes, is important as different
attributes will lead to different clusters.

In this chapter, we will discuss the following topics:

•	 Distance measures
•	 Partition clustering with k-means, including the steps in the computations of

clusters, and the selection of the best number of clusters
•	 Applications of k-means clustering

Clustering algorithms use distance measures between the cases in order to create
these homogeneous groups of cases (we will discuss this next). It is therefore
important to transform the data on all dimensions to a similar scale before
performing partition clustering with tools such as kmeans(). This is important
because the distances are computed from all the dimensions we consider. If one
dimension has a range of values higher than the others (for example, values in
centimeters compared to meters), differences in this dimension will be given
much more importance compared to the others. This is also true for agglomerative
clustering, with tools such as hclust(), or any algorithm using distance measures,
such as nearest neighbor classification, which we will discover in an upcoming
chapter.

Cluster Analysis

[62]

There are several ways of scaling the dimensions for this purpose. Examples include:

•	 In case of comparable units (for example, centimeter and meter), the
transformation of one metric to the other (for example, dividing the
attribute measured in centimeters by 100).

•	 Normalizing, which is subtracting from each observation the lowest value
and performing the division of the result by the difference between the
maximum and the minimum. The mathematical equation is provided next:

•	 The use of z scores, which can be computed by subtracting the mean from
the value of each observation, and dividing the result by the standard
deviation. The mathematical equation is provided next:

This should be preferred for most cases, and can be done easily in R using the
scale() function.

•	 When using scores based on textual data, one can compute the ratio of the
frequency of appearance of each term (relative to the total number of words)
in each document multiplied by the ratio of the total number of documents
over the inverse of the number of documents featuring the considered
term. This is known as the tf-idf ratio. In the equations, t is the term under
consideration, d is a specific document, D is the corpus containing all
documents, and N is the number of documents in D:

Chapter 4

[63]

Distance measures
Partitioning clustering algorithms iteratively define k cluster centers and assign
cluster membership (or the probability of group membership) to cases based on
distances between the case and the cluster. Agglomerative clustering algorithms
also create clusters based on distances, starting with each individual belonging to
a separate cluster and the grouping clusters two by two. The k-nearest neighbors
algorithm also uses distance measures.

Consider only one attribute, for instance the height of individuals. The distance of
someone measuring 180 cm and someone measuring 170 cm will be 10 on this sole
dimension considering the algebraic difference between the two measures as our
distance metric. Things get a little more complicated when we add more attributes, such
as weight (we will not consider variable scaling here). Let's say the first individual is
clearly overweight (90 kg), and the second has a normal weight (80 kg). Considering
only the sum of the difference between the measures as our distance metric, the
difference between the individuals would be: (180-170) + (90-100) = 0. This clearly
doesn't reflect the huge differences between these individuals; one is bigger and
slimmer than the other. Several distance metrics are available. Here are some examples:

The metrics closest to the sum of differences measure we just examined are the
Euclidean and the Manhattan distances.

The Manhattan distance sums the absolute value of the differences on all considered
dimensions. Its mathematical equation is provided next:

Take the case of our previous example, abs(180-170)+abs(90-100) = 20. For one
dimension, it is equivalent to the difference between two observations: abs(180-170)
= 180-170 = 10. The Manhattan distance can be selected in hclust(), which we will
discover later, but not in kmeans().

The Euclidean distance sums the squares of the differences and then performs a
square root on the result. In case of only one dimension, the result is equal to the
difference between observations. Its mathematical equation is provided below:

Cluster Analysis

[64]

Considering our previous example, sqrt((170-180)^2) = 10, just as 180-170. The
Euclidean distance is the only distance available in kmeans() from the stats
package (provided by default in R). We will only work with this function here (and
one of our own in order to better understand how k-means works). But, in case you
need to run k-means using other distances, you might be happy to know that the
Kmeans() function from the amap package allows to select other distances.

The cosine similarity is another important distance (similarity measure). It is used
in information retrieval and text mining. It is computed by performing the ratio of
the dot product of the considered dimensions and the product of the square root
of the sum of the squared values on the dimensions. The mathematical equation is
provided below:

The skmeans() function from the skmeans package allows one to run
k-means with cosine similarity as the distance metric, but not kmeans(),
the standard implementation of k-means in R.

The correlation coefficient, an association measure, can also be used as a distance
measure. Its mathematical formula is presented below.

The correlation coefficient can only be used with two dimensions.

The Jaccard index measures the similarity between two sets. It is used for categorical
attributes. It is computed by dividing the number of elements that are common
between two sets over the sum of common elements, elements only in the first set
and elements only in the second set. For instance if A, B, C, and D are in set 1, C, D,
E, and F are in set 2, and X, Y, Z, and A are in set 3, the similarity of set 1 and set 2
will be 0.33: 2/(2+2+2). On this metric, the similarity between set 1 and set 3 will be
0.14: 1/(1+3+3). Its mathematical formula for two sets (A and B) is presented below:

Chapter 4

[65]

The Jaccard index is not readily accessible either in Kmeans(), but hclust() uses
it as a custom distance matrix, which can be constructed in this case with the
vegdist() function from the vegan package (along with other distance measures).
Distance matrices for common distance metrics can be computed using the dist()
function from the stats package (provided with R).

Readers interested in distance measures might find having a look at the Encyclopedia of
Distances, by Michel Marie Deza and Elena Deza (Second edition, 2013) worthwhile.

Learning by doing – partition clustering
with kmeans()
Perhaps the most widely used clustering family of algorithms is k-means. In
this section, we will examine how it works and ways to assess the quality of a
clustering solution.

K-means is a partitioning algorithm that produces k (user-defined number) clusters
of cases that are more similar to each other than to cases outside the cluster. K-means
starts by randomly initiating the centroid (the value of the considered dimensions)
of each cluster. From now, the process, aiming at creating homogenous clusters, is
iterative until a final solution is found. For each case, the distance from the centroid
of each cluster is computed, and cases are assigned to the closest cluster. After this
step, k-means computes the new values of the centroid of each cluster, as the means
of all the cases belonging to the cluster. The process stops when the distance between
the cases and the centroid is not decreasing anymore. It is noteworthy that the final
result at convergence depends upon the initial random values of the centroids. For
this reason, it is advocated to configure kmeans() to repeat the process several times
and select the best solution (using the nstart argument). The figure below illustrates
this process. We will only use the default algorithm with kmeans(), but the function
provides several to choose from—Hartigan-Wong, Lloyd, Forgy, and MacQueen—
using the algorithm argument. We will discuss this later. The interested reader can
inquire about the differences using the references provided in the ad-hoc R manual
page (type ?kmeans in the console).

Steps in the k-means algorithm family

Cluster Analysis

[66]

In what follows, we will build our own k-means implementation in order to better
understand its functioning. There is a slight difference in our implementation in that
we do not initiate the centroids randomly. Instead we will attribute membership to
the clusters randomly, and then compute the centroids. This is equivalent, but easier
programmatically. This implementation is intended only for pedagogical purposes.
It lacks several important features, and sometimes converges non-optimally. For
proper analyses, please use kmeans() or an implementation from another package
available on CRAN.

Setting the centroids
First, we need a function that attributes membership to the clusters randomly. We
do this for all the observations at the same time, and return the result as vector
clusters (see line 2). Our function takes 2 arguments: the number of observations
(numrows) and the number of clusters (k).

1 set.random.clusters = function (numrows, k) {
2 clusters = sample(1:k, numrows, replace=T)
3 }

We then create a function that computes the centroids—that is, the means for
each case on each dimension and each cluster. Our function takes 2 arguments: the
data frame on which to cluster the data (df), and the current cluster assignments
(clusters).

1 compute.centroids = function (df, clusters) {
2 means = tapply(df[,1], clusters, mean)
3 for (i in 2:ncol(df)) {
4 mean.case = tapply(df[,i], clusters, mean)
5 means=rbind(means, mean.case)
6 }
7 centroids = data.frame(t(means))
8 names(centroids) = names(df)
9 centroids
10 }

On line 2, we assign to vector means the mean values of attribute in column 1 for
each of the clusters. In a loop, we assign to vector mean.case the values of attribute
in column i for each cluster, and append it to means (lines 4 and 5). We then make a
data frame from the transpose of object means and assign it to object centroids (line
8) We name the columns of this object as the columns in the original data frame (line
9). Finally we return centroids (line 9).

Chapter 4

[67]

Computing distances to centroids
We then need a function that computes the distance between the actual values
and the centroid of the clusters. This function takes the data and the centroids as
arguments. It first creates a blank matrix that will contain the distances (line 2). It
then loops over the cases and the clusters (see the code blocks started on lines 3
and 4) and computes the squares of the differences for the current case and current
cluster, computes the square root of those, and assigns the value to the correct spot in
the matrix (line 5). It finally returns the matrix of Euclidean distances (line 8).

1 euclid.sqrd = function (df, centroids) {
2 distances = matrix(nrow=nrow(df), ncol=nrow(centroids))
3 for (i in 1:nrow(df)) {
4 for (j in 1:nrow(centroids)) {
5 distances[i,j] = sum((df[i,]-centroids[j,])^2)
6 }
7 }
8 distances
9 }

Computing the closest cluster for each case
We now need a function that will compare, for each case, its distance to each of the
clusters and select the cluster where this value is minimum—that is, assign the case
to a cluster based on this comparison. For this purpose, on line 2, we simply use the
which.min() function, which indicates in which column the minimal value is, as an
argument of the apply() function, which applies a function to each row of its input.
We wrap this in the cbind() function, which allows it to return column-shaped
vectors. If the number of returned clusters is less than expected (tested on line 3),
we restart the process by assigning cases to random clusters, using the set.random.
clusters() function (line 5). In other words, we take the precaution of restarting
the process of setting the centroids randomly if we find an empty cluster.

1 assign= function (distances) {
2 clusters=data.frame(cbind(c(apply(distances, 1, which.min))))
3 if(nrow(unique(clusters))<ncol(distances)){
4 #precaution in case of empty cluster
5 clusters=set.random.clusters(nrow(distances),ncol(distances))
6 }
7 clusters
8 }

Cluster Analysis

[68]

Tasks performed by the main function
We now almost have everything we need for our basic k-means implementation.
We finally need to wrap this together in a main function, which we call kay.means().
Here we set initial cluster value (line 2) and then iterate over the computation of
centroids (line 7), the calculation of distances (line 8), and the re-assignment of clusters
(line 11). Notice the code block is contained in a while loop, which stops when the sum
of squares of the distances (that is the total sum of squares within clusters) is the same
twice in a row (when ss.old equal to ss – this value is set on line 10), and output the
clustering solution (line 14).

1 kay.means = function (df, k) {
2 clusters = set.random.clusters(nrow(df),k)
3 ss.old = 1e100
4 ss = 1e99
5 while(ss!=ss.old) {
6
7 centroids = compute.centroids(df, clusters)
8 distances = euclid.sqrd(df, centroids)
9 ss.old=ss
10 ss = sum(distances)
11 clusters = assign(distances)
12 }
13 names(clusters) = "Clusters"
14 clusters
15 }

Let's try this using a very popular dataset, which we have already encountered
in the previous chapter: the iris dataset, where observations are 150 iris flowers.
Attributes are the species of the flowers and their petal and sepal length and width.
So, in this case, we know the groups beforehand and are interested in knowing
whether k-means can predict it from the other attributes. Let's start by having a look
at the correct classification, which is in the 5th column of the data set.

iris[5]

We will not display the full output here, but you will see in your console that cases 1
to 50 are of species Setosa, cases 51 to 100 are of species Versicolor, and cases 101
to 150 of species Virginica.

We will use our knowledge of the dataset to determine the number of clusters. We
select three clusters as we know there are three species. We will talk later about
determining the number of clusters when this information is not available.

Chapter 4

[69]

Internal validation
Our goal now is to assess the quality of our clustering solution. We are lucky, as
we have the right answer already (which is not always the case). In order to check
how well our clustering solution did, we first append a column to the iris dataset
with the clustering solution of our implementation of k-means, and observe the
convergence between the clustering and the species by creating a cross-tabulation of
the data.

set.seed(1)
irisClust = cbind(iris, kay.means(iris[1:4], 3))
tableClust=table(unlist(irisClust[5]), unlist(irisClust[6]))
tableClust

The output is provided here:

1 2 3
setosa 0 0 50
versicolor 3 47 0
virginica 36 14 0

Our implementation of k-means did a good job on this dataset: flowers of the Setosa
species are classified in cluster 3, flowers of the Versicolor species are almost all
classified in cluster 2, while flowers of the Virginica species are mostly classified in
cluster 1, with a larger degree of misclassifications in cluster 2 (about a third). As we
have information about the correct solution, we can compute indices of the correctness
of our cluster solution. For instance, we can compute Cohen's kappa, which assesses
the agreement of our clustering solution with the correct one. See the paper A coefficient
of agreement for nominal scales, by Cohen (1960) for a description of the measure. The
closer its value is to 1, the better the agreement. This index is in the psych package,
which needs installing and loading before we proceed with the analysis.

install.packages("psych"); library(psych)

The index requires that categories are given the same name in both the classification
and the original solution. We therefore need to recode our data to proceed:

irisClust = cbind(irisClust, rep(0,nrow(irisClust)))
names(irisClust[7]) = "Species.recode"
irisClust[7][irisClust[5]=="setosa"] = 3
irisClust[7][irisClust[5]=="versicolor"] = 2
irisClust[7][irisClust[5]=="virginica"] = 1

Cluster Analysis

[70]

We now have the data of both our clustering solution (in column 6) and the
correct solution (in column 7) in the same format. We can now apply Cohen's
kappa to our data:

kappa=cohen.kappa(cbind(irisClust[6],irisClust[7]))

The value of Cohen's kappa, 0.83 for the unweighted kappa (which we rely upon),
shows good agreement, whereas the weighted value shows even better agreement:

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha)

Cohen Kappa and Weighted Kappa correlation coefficient and confidence boundary
output is as follows:

lower estimate upper
unweighted kappa 0.75 0.83 0.91
weighted kappa 0.87 0.91 0.95
Number of subjects = 150

We can also compute the rand index, which is another measure of agreement. We
can find it in the flexclust package. Please install and load it before you proceed:

install.packages("flexclust"); library(flexclust)

Here we can simply reuse the cross-tabulation we produced earlier:

randIndex(tableClust)

The value of the index is .716, indicating also a good agreement. Try using the
kay.means() function with a different seed, such as 3 for instance, and notice
the differences.

While clustering solutions using k-means are always dependent on initial centroid
values, our implementation is even more vulnerable. It is always a good idea to
perform a cluster analysis with different seeds, which we will do later using the
nstart argument with kmeans(). Nevertheless, our custom function fulfilled its
purpose, which is to give the reader a sense of how k-means works.

Chapter 4

[71]

Using k-means with public datasets
In what follows, we are going to learn more about partition clustering with k-means
while exploring a dataset from the cluster.datasets package. This package
contains datasets that were published in the book, Clustering algorithms, by Hartigan
(1975), with examples of analyses. So let's start by installing this dataset on your
machine, and loading it.

install.packages("cluster.datasets")
library(cluster.datasets)

Understanding the data with the
all.us.city.crime.1970 dataset
We will first focus on getting to know the data, scaling the data to a common metric,
and cluster interpretability. Our first exploration will concern the crime rates among
different US cities in 1970. The dataset all.us.city.crime.1970 affords such
investigation:

data(all.us.city.crime.1970)
crime = all.us.city.crime.1970

Let's investigate the attributes in the dataset:

ncol(crime)
names(crime)
summary(crime)

There are 10 attributes. A look at the R manual page (type ?all.us.city.
crime.1970) allows us to understand what these variables are about. Most of them are
pretty obvious considering their name, and we will not comment further here. Looking
at the descriptive statistics, one can notice that there was a quite important number of
crimes in the 24 cities for which data is available in this dataset: summing over murder,
rape, robbery, assault, burglary, and car.theft, around 2,500 crimes took place
per 100,000 residents, which means that about 2.5 percent of the population was the
victim of a crime that year (considering that one person could only be a victim of one
crime). It might be interesting to know if cities differ in relation to the crimes that
are committed. We will manually explore several clustering solutions. We will only
consider here dimensions related to crime, which is attributes 5 to 10. Before we run
kmeans(), let's have a look at the relationship between the attributes.

plot(crime[5:10])

Cluster Analysis

[72]

The resulting image is not displayed here because it will be updated some lines
below. As you can see on your screen, there is visibly a strong positive association
between the rate of some crimes (such as burglary and rape), and a weaker for
others (such as murder and burglary). Overall it seems that the more of one crime
type is committed, the more the others are as well. We can confirm this intuition
looking at the correlation matrix (rounded to three decimals).

round(cor(crime[5:10]),3)

Here is the output:

murder rape robbery assault burglary car.theft
murder 1 0.526 0.638 0.709 0.353 0.495
rape 0.526 1 0.414 0.667 0.694 0.410
robbery 0.638 0.414 1 0.699 0.551 0.559
assault 0.709 0.667 0.699 1 0.596 0.428
burglary 0.353 0.694 0.551 0.596 1 0.382
car.theft 0.495 0.410 0.559 0.428 0.382 1

Yet, the relatively modest values of some correlations permits to imagine a
specialization of crime in some cities.

We will run kmeans() on this dataset with an increasing number of clusters (from
2 to 5), and will examine to solutions visually and concurrently. We will have a
detailed look at the output of only the first and last clustering models, at the end.
We will let the reader modify the code with regards to the number of clusters. We
could have implemented a loop to do this, but we think it is more interesting if you
have a look at each solution individually at your pace. In all our models, we will
ask k-means to repeat the procedures 25 times (using argument nstart) in order to
be sure to have a good clustering solution. We will of course start by standardizing
our data, in order to avoid one attribute that is more important than the others in
computing the distances.

1 crime.scale = data.frame(scale(crime[5:10]))
2 set.seed(234)
3 TwoClusters = kmeans(crime.scale, 2, nstart = 25)
4 plot(crime[5:10],col=as.factor(TwoClusters$cluster),
5 main = "2-cluster solution")
6 ThreeClusters = kmeans(crime.scale, 3, nstart = 25)
7 plot(crime[5:10],col=as.factor(ThreeClusters$cluster),
8 main = "3-cluster solution")
9 FourClusters= kmeans(crime.scale, 4, nstart = 25)

Chapter 4

[73]

10 plot(crime[5:10],col=as.factor(FourClusters$cluster),
11 main = "4-cluster solution")
12 FiveClusters = kmeans(crime.scale, 5, nstart = 25)
13 plot(crime[5:10],col=as.factor(FiveClusters$cluster),
14 main = "5-cluster solution")

The relationship between several types of crimes and cluster membership for k=2 to k=5

Cluster Analysis

[74]

An important aspect of cluster analysis is the interpretation of the clusters. As can
be seen in the preceding screenshot, the interpretation of the clusters in the 2-cluster
solution is quite straightforward. Cities with a low criminality make up the black
cluster, whereas the red cluster is composed of cities with higher criminality.

The pattern is more complex in the model with three clusters. At first sight, it seems
that this cluster is about a low average and high criminality. But this is denied by a
closer inspection: burglary and car.theft can be high in the green cluster, rape
and murder can be low to average, while assault and robbery are low. The black
cluster seems to be concerned with cities with average crime. But looking more
closely, murder can be higher in this cluster than in the red one; this is true to a lesser
extent for rape and car.theft. We could consider this cluster as representing cities
with a high murder rate and an average rate of other crimes. The red cluster is the
most dispersed of the three, yet it is the easiest to interpret. Cities in this cluster
have average to high values for all the study's dimensions of crime. The solutions
with four and five clusters are even more difficult to interpret. It is usually advised
to consider a number of clusters manageable for interpretation (not hundreds of
clusters) and that are meaningful, even if a larger number of clusters explains the
data better.

Let's now examine the textual output of R for our first (TwoClusters) solution.

TwoClusters

Here is the output:

K-means clustering with 2 clusters of sizes 11, 13

Cluster means:

 murder rape robbery assault burglary car.theft

1 -0.9128346 -0.6991864 -0.8438639 -0.8328348 -0.5708682 -0.7166146

2 0.7723985 0.5916192 0.7140387 0.7047064 0.4830424 0.6063662

Clustering vector:

 [1] 1 2 1 1 2 1 2 2 2 2 2 2 1 1 2 2 1 1 1 2 2 1 1 2

Within cluster sum of squares by cluster:

[1] 18.39421 47.16265

 (between_SS / total_SS = 52.5 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

Chapter 4

[75]

The Cluster means reports the centroids for the final iteration of the algorithm, usually
when convergence is achieved. This information confirms our visual interpretation of
the clustering solution—one factor has high means on all crime dimensions, whereas
the other has low means. This section is directly accessible
as data by typing: TwoClusters$centers.

The Clustering vector reports on the membership of the observations to each of the
clusters—for instance, the first observation is part of cluster 2 (low criminality),
whereas the last is part of cluster 1 (average to high criminality). This section is
directly accessible as data by typing: TwoClusters$cluster.

The section Within cluster sum of squares by cluster reports on the overall squared
distance between the data points and their centroid, within each of the clusters. We
can also see a division between the between sum of squares (BSS) and the total sum
of square (TSS). The BSS refers to the overall squared difference, for each data point,
between the mean of its centroid and the overall mean. The TSS refers to the overall
squared distance of the data points to the mean of all the means.

We can also see (under Available components) that we can examine other values we
have not yet seen—totss is the total sum of squares, tot.withinss is the total of the sum
of squares within clusters, between ss is the total sum of squares within clusters,
size is the number of cases classified in each of the clusters, iter is the number of
iterations required for convergence, and ifault signals warnings and problems
(with a value of 0 if there is no issue).

We are now going to plot the differences between the value BSS/TSS for each of
the clusters. Basically, this value shows how much of the data is explained by the
clustering solution, as it divides the BSS by the TSS. It involves computing the ratio
differences to a vector and using the plot() function. The first value is the ratio for
the TwoClusters model.

1 v=rep(0,4)
2 v[1] = TwoClusters[[6]]/TwoClusters[[3]]
3 v[2] = (ThreeClusters[[6]]/ThreeClusters[[3]]) - v[1]
4 v[3] = (FourClusters[[6]]/FourClusters[[3]]) - sum(v[1:2])
5 v[4] = (FiveClusters[[6]]/FiveClusters[[3]]) - sum(v[1:3])
6 plot(v, xlab = "Number of clusters ",
7 ylab = "Ratio difference")

Cluster Analysis

[76]

Following is the output:

Differences between the between and total sum of squares among our models

We can see in the preceding graph that the ratio is around .5 in the TwoClusters
solution, and that it doesn't increase much with more clusters. The TwoClusters
solution should therefore be preferred. Moreover, we have seen that solutions with
more than two clusters are difficult to interpret. A BSS/TSS = 1 is the best possible
value, yet it will seldom be reached.

Chapter 4

[77]

Finding the best number of clusters in the life.
expectancy.1971 dataset
We will now use the life.expectancy.1971 dataset about life expectancy in
several countries in 1971. It includes 10 attributes: the country were the data has been
collected, the year of data collection, and the life expectancy (remaining) for male
and female individuals aged 0 years old, 25, 50, and 75. As with the previous dataset,
this one also does not specify the membership of our cases to categories. So again, we
will have to decide on the number of clusters by ourselves. We will examine how to
do so more precisely. We will create a function for this purpose. Before we do that,
let's discover the dataset we will use.

Let's start by loading and examining to dataset.

data(life.expectancy.1971)
life.expectancy.1971

A partial view of the output is provided below:

country year m0 m25 m50 m75 f0 f25 f50 f75
1 Algeria 1965 63 51 30 13 67 54 34 15
2 Cameroon 1964 34 29 13 5 38 32 17 6
3 Madagascar 1966 38 30 17 7 38 34 20 7
4 Mauritius 1966 59 42 20 6 64 46 25 8
...
22 Trinidad 1962 64 43 21 7 68 47 25 9
23 Trinidad 1967 64 43 21 6 68 47 24 8
24 US 1966 67 45 23 8 74 51 28 10
25 US (Nonwhite) 1966 61 40 21 10 67 46 25 11
26 US (White) 1966 68 46 23 8 75 52 29 10
27 US 1967 67 45 23 8 74 51 28 10

Cluster Analysis

[78]

Even without computing the mean and standard deviations for the variables, we
can notice that there is quite some variation regarding life expectancy (please refer
to the complete output on your screen as well). A first observation, which is broadly
documented, is that women have a longer remaining life expectancy than men, at
all ages. A country strikes in this list—in Madagascar, at the time of data collection,
women apparently did not have longer life expectancy than men in their young and
old years. Further, the mean life expectancy at birth was only 38 for both women and
men. This is also the life expectancy of females in Cameroon at that time, whereas
males were expected to live even a little less (34 years). Looking at the table, we can
notice that Trinidad and the US are entered several times, as data collection was
carried out more than once. We will therefore discard case 23 (the second entry
for Trinidad), as well as both cases 24 and 27 (US, data collected in 1966 and 1967)
because cases 25 and 26 are more specific, as they provide estimations for White
and Nonwhite individuals. Let's create a new dataset without these cases before we
proceed with cluster analysis.

life = life.expectancy.1971[-c(23,24,27),]

Here we will scale the data. The importance of scaling data has been discussed
in the first section of this chapter. We also add some attributes to the dataset,
corresponding to the ratio of male life expectancy to female life expectancy at all
ages, as the difference between male and females would be lost in data scaling
(all means will be 0).

life.temp = cbind(life, life$m0/life$f0, life$m25/life$f25,
 life$m50/life$f50, life$m75/life$f75)

If you run this, you will notice an error. It happens that attribute f50 is composed of
strings instead of numeric values (type mode(life$f50) to check this). This is a type
of problem you might encounter when dealing with data you have not prepared
yourself (and sometimes even with your data). The solution is obviously to convert
the attribute to numeric values before being able to compute the ratios.

life$f50 = unlist(lapply(life$f50, as.numeric))

We can now repeat our assignment to life.temp with a successful result, and scale
the data frame (omitting rows 1 and 2: name of country and year of data collection).
We first convert to a data frame to get rid of information about mean and standard
deviation that is contained in the returned object; we then convert to a matrix again.

life.scaled = as.matrix(data.frame(scale(life.temp[-(c(1,2))])))

We continue discussing this data next.

Chapter 4

[79]

External validation
When examining the iris dataset, we had the correct solution regarding the number
of clusters and the classification of cases. This is not the case here—we can not tell
before running the analyses the number of groups in our data. We will therefore
rely on computational trickery to discover them; cluster analysis will be performed
iteratively and the clustering solutions will be compared using several indexes for
determining the ideal number of clusters. More information about such indexes can
be found in the paper Experiments for the number of clusters in k-means, by Chiang
and Mirkin (2007). Here we rely on NbClust() function from the NbClust package,
which we install and load:

install.packages("NbClust"); library(NbClust)

We simply call the function specifying the data and clustering algorithm to be used.
By default, the function will perform clustering using the Euclidean distance and
compute all available indexes. The reader is advised to consult the documentation
for more information about customization.

NbClust(life.scaled, method = "kmeans")

Part of the output is provided below. This shows that three clusters is the most
appropriate solution.

* Among all indices:

* 3 proposed 2 as the best number of clusters

* 10 proposed 3 as the best number of clusters

* 1 proposed 8 as the best number of clusters

* 1 proposed 12 as the best number of clusters

* 1 proposed 13 as the best number of clusters

* 7 proposed 15 as the best number of clusters

 ***** Conclusion *****

* According to the majority rule, the best number of clusters is 3

Summary
In this chapter, we discovered clustering with the k-means algorithm family. We
explored several distance measurements and learned how to scale data on a similar
metric. We explored in detail the mechanism through which k-means creates
clusters. We also examined how to select the best number of clusters and assessed
the quality of clustering solutions. In the next chapter, we will explore hierarchical
clustering using hclust().

[81]

Agglomerative Clustering
Using hclust()

Unlike partition clustering, which requires the user to specify the number of k
clusters and create homogeneous k groups, hierarchical clustering defines clusters
without user intervention from distances in the data and defines a tree of clusters
from this. Hierarchical clustering is particularly useful when the data is suspected
to be hierarchical (leaves nested in nodes nested in higher level nodes). It can also
be used to determine the number of clusters to be used in k-means clustering.
Hierarchical clustering can be agglomerative or divisive. Agglomerative clustering
usually yields a higher number of clusters, with less leaf nodes by cluster.

Agglomerative clustering refers to the use of algorithms, which start with a number
of clusters that is equal to the number of cases (each case being a cluster) and merges
clusters iteratively one by one, until there is only one cluster that corresponds to the
entire dataset. Divisive cluster is the opposite, it starts with one cluster, which is then
divided in two as a function of the similarities or distances in the data. These new
clusters are then divided, and so on, until each case is a cluster. In this chapter, we
will discuss agglomerative clustering. The reader might be interested in consulting
the paper Hierarchical clustering schemes by Johnson (1967).

In this chapter, we will cover the following:

•	 The inner working of agglomerative clustering
•	 The use of hclust() for agglomerative clustering with numerical attributes
•	 The use of hclust() with binary attributes

Agglomerative Clustering Using hclust()

[82]

The inner working of agglomerative
clustering
As briefly mentioned, agglomerative clustering refers to algorithms. Let's start with
the example of the data we used last in the previous chapter:

1 rownames(life.scaled) = life$country
2 a=hclust(dist(life.scaled))
3 par(mfrow=c(1,2))
4 plot(a, hang=-1, xlab="Case number", main = "Euclidean")

We started by adding the name of each country as the row name of the related
case (line 1), in order to display it on the graph. The function hclust() was then
used to generate a hierarchical agglomerative clustering solution from the data
(line 2). The algorithm uses a distance matrix, provided as an argument (here the
default is the Euclidean distance) to determine how to create a hierarchy of clusters.
We have discussed measures of distance in the previous chapter. Please refer to
this explanation if in doubt. Finally, the hclust object a at line 2 was plotted in a
dendrogram (line 4 in the following diagram). At line 3, we set the plotting area
to include two plots.

The following figure (left panel), displays the clustering tree. At the beginning of the
creation of the cluster hierarchy (or tree), each case is a cluster. Clusters are joined
one by one on the basis of the distance between them (represented by the vertical
lines); clusters with smaller distances are selected for merging. As can be seen from
the distances plotted in the figure, hclust() first joined Panama and Costa Rica in
a new cluster. It then aggregated Canada and US (White) in a cluster, as they were
the next cases with the smallest Euclidean distance, and it also did so for Grenada
and Trinidad, Mexico and Columbia, and El Salvador and Ecuador. Next, it joined
the cluster formed by Grenada and Trinidad with Jamaica. Clusters with the next
smaller distance were then US (Nonwhite) and Chile, which were merged together.
Then the cluster Canada and US (White) was merged with Argentina. The algorithm
continued merging clusters until only one remained. It is quite interesting that
hclust() produces life expectancy clusters that are closely related to the distance
between countries; countries that are close geographically generally have similar
life expectancies.

Chapter 5

[83]

Dendrograms of remaining life expectancy in several countries (Euclidean distance)

As we have mentioned, we used hclust() with the default (Euclidean distance)
matrix in the previous example. Results can be different, although usually not
dramatically, using other distance metrics. We have no reason to infer that the
shortest distance between the points is not the best measurement here, but to
illustrate the potentially different results using different measure distances, we
will be using the Manhattan distance instead of Euclidean distance. On line 1 of the
following code, we assign the hclust object returned by hclust() with argument
configuration manhattan, which sets the distance metric. We then simply plot the
resulting tree. The hang is set to a negative value in order to get the distance that
is to be plotted from 0:

1 a = hclust(dist(life.scaled, method= "manhattan"))
2 plot(a, hang=-1, xlab="Case number", main = "Manhattan")

Agglomerative Clustering Using hclust()

[84]

The preceding figure (right panel) displays the result of our aggregative cluster
analysis with hclust(). We can notice that, although there are many similarities, the
clustering solution is not the same, as compared to an Euclidean distance. We can
see that Madagascar and Cameroon form a cluster that cannot be joined to the other
clusters until reaching the last step in both solutions. Also, in both solutions, the US
(White) and Canada are very similar to each other (form a cluster quite fast), as well
as Costa Rica and Panama. But let's have a look at Algeria. In the Euclidean distance
solution, it forms a cluster with Nicaragua, but in the Manhattan distance solution,
it clusters with Nicaragua and Dominican Republic. Seychelles forms a cluster
with Tunisia in the Euclidean distance solution, but they cluster with South Africa,
Argentina, Canada, and US in the Manhattan distance solution.

Indeed, the choice of the distance matrix is not without incidence on the results.
It has to be chosen as a function of the data (what they represent). Choosing the
method to determine cluster proximity also plays an important role in agglomerative
clustering. hclust() provides several methods including single linkage, complete
linkage, average linkage, and Ward's minimum variance. The single linkage method
computes the proximity of clusters as the smallest distance between the points of the
clusters. The complete linkage method computes it as the maximum distance between
points of the cluster; average linkage uses the average distance of the points from
one cluster to the points of the other. Finally, Ward minimum variance agglomerates
clusters by minimizing the variance around centroids in the resulting clusters. Note
that Ward's minimum variance method requires a squared Euclidean distance matrix.

These methods have different properties (The R Core Team, 2013, p.1301):

"Ward's minimum variance method aims at finding compact, spherical clusters.
The complete linkage method finds similar clusters. The single linkage method
(which is closely related to the minimal spanning tree) adopts a 'friends of friends'
clustering strategy. The other methods can be regarded as aiming for clusters with
characteristics somewhere between the single and complete link methods."

We will examine differences in results later in the chapter.

Chapter 5

[85]

Before we proceed, let's examine, this time visually, how the algorithm proceeds
using a simple fictitious dataset. As visual representations are limited to three
dimensions, we will only use three attributes, but the computation is similar with
more attributes. We will display these using the scatterplot3d() function of the
plot3D package, which we will install and load after creating the attributes. We then
examine the clustering solution provided by hclust() in order to assess whether it
confirms the impressions we get from visual inspection:

A1 = c(2,3,5,7,8,10,20,21,23)
A2 = A1
A3 = A1

install.packages("scatterplot3d")
library(scatterplot3d)
scatterplot3d(A1,A2,A3, angle = 25, type = "h")

demo = hclust(dist(cbind(A1,A2,A3)))
plot(demo)

A 3D scatterplot and dendrogram exemplifying agglomerative clustering

Agglomerative Clustering Using hclust()

[86]

As can be noticed on the left panel of the previous screenshot, there are three groups
of two points that are very close to each other. Another point is quite close to each
of these groups of two. Consider that the groups of two constitute a group of three
with the points that lie closest to them. Finally, the two groups on the left are closer
to each other than they are to the group of three on the right. If we have a look at the
dendrogram, we can see that the very same pattern is visible.

Agglomerative clustering with hclust()
In what follows, we are going to explore the use of agglomerative clustering with
hclust() using numerical and binary data in two datasets.

Exploring the results of votes in Switzerland
In this section, we will examine the case of another dataset. This dataset represents
the percentage of acceptance of the themes of federal (national) voting objects in
Switzerland in 2001. The first rows of data are in the following table. The rows
represent the cantons (the Swiss name for states). The columns (except the first)
represent the topic of the voting. The values are the percentage of acceptance of the
topic of voting. The data has been retrieved from the Swiss Statistics Office (www.bfs.
admin.ch) and are provided in the folder for this chapter (file swiss_votes.dat).

The first five rows of the dataset

To load the data, save the file in your working directory or change the working
directory (use setwd() to the path of the file) and type the following line of code.
Here, the sep argument is set to indicate that tabulations are used as separators, and
the header argument is set to T (true), meaning that the provided data has column
headers (attribute names):

swiss_votes = read.table("swiss_votes.dat", sep = "\t",
 header = T)

www.bfs.admin.ch
www.bfs.admin.ch

Chapter 5

[87]

Here we are interested in knowing whether, in year 2001, we can find clusters
in the voting behavior of the populations of the cantons. We will perform the
analysis repetitively using the three methods discussed previously and examine
the potential differences.

After computing the distance matrix (line 1), we start with the default method
(complete linkage as on line 2), and then the single (line 3) and average (line 4)
methods. On line 5, we set the plotting area to contain three vertical graphs on line 4,
and proceed to plot the graphs on lines 6 to 14:

1 dist_matrix = dist(swiss_votes[2:11])
2 clust_compl = hclust(dist_matrix)
3 clust_single = hclust(dist_matrix, method = "single")
4 clust_ave = hclust(dist_matrix, method = "average")
5 par(mfrow = c(3,1))
6 plot(clust_compl, labels=swiss_votes$Canton, hang = -1,
7 main = "Complete linkage", xlab = "Canton",
8 ylab = "Distance")
9 plot(clust_single, labels=swiss_votes$Canton, hang = -1,
10 main = "Single linkage", xlab = "Canton",
11 ylab = "Distance")
12 plot(clust_ave, labels=swiss_votes$Canton, hang = -1,
13 main = "Average linkage", xlab = "Canton",
14 ylab = "Distance")

It can be seen that, as mentioned by the R Core Team (2013), the Complete linkage method
produces compact clusters, whereas the Single linkage function is more inclusive. The
Average linkage function produces a clustering solution that lies somewhere in between.
What is also interesting to notice is that points (here cantons) that are grouped together
using one method are not necessarily grouped together using another method. The
choice of the clustering solution is therefore important in analyzing the data.

Agglomerative Clustering Using hclust()

[88]

One way to proceed to such a choice is based on the interpretability of the results and
domain knowledge. One thing that explains shared opinions is geographical proximity,
as people who are close communicate more frequently and thereby share ideas (Latané,
1996). The clustering solution which relies on Complete linkage better exemplifies the
impact of geographical proximity (take a look at a map of Switzerland), which allows
interpreting the results using this rationale. We will therefore investigate the differences
between clusters more precisely in this solution.

Dendrograms of Swiss votes

Chapter 5

[89]

We can see, on the corresponding cluster tree for Complete linkage, that that there are
four subgroups. The first is composed of NW, OW, AI, SZ; the second of TI, SH,
GL, UR, TG, AR, and SG; and so on. We know that most of the cantons composing
a cluster are close, geographically, but we don't know exactly what this means in
relation to the data. We now want to examine the differences between the clusters
in terms of voting behavior. The first thing we want to do now is assign the cantons
to a cluster on the basis of the clustering solution with the Complete linkage method.
We determined that four clusters are good for this data, after examining the
clustering tree. We now want to display the cluster assignment:

clusters=cutree(clust_compl, k = 4)
cbind(clusters,swiss_votes[1])

The output is provided below:

clusters Canton
1 1 AG
2 2 AI
3 3 AR
4 1 BE
5 1 BL
6 1 BS
7 1 FR
8 4 GE
9 3 GL
10 3 GR
11 4 JU
12 1 LU
13 4 NE
14 2 NW
15 2 OW
16 3 SG
17 3 SH
18 1 SO
19 2 SZ

Agglomerative Clustering Using hclust()

[90]

clusters Canton
20 3 TG
21 3 TI
22 3 UR
23 4 VD
24 1 VS
25 1 ZG
26 1 ZH

We can see that cluster 1 corresponds to the last cluster, the subcluster on the
dendrogram, cluster 2 to the first, cluster 3 to the second, and cluster 4 to the
third (on the diagram).

We will create a scatterplot with the acceptance of two votes in order to examine these
patterns. The first vote, of which the acceptance rates are depicted on the x axis (called
Protection in the data frame), was related to the implementation of a protection
and support service that would aim at guaranteeing peace within the country. The
second vote, of which the acceptance rates are depicted on the y axis (called Taxes2
in the data frame), was related to the implementation of an environmental tax on
nonrenewable energy. Both themes were rejected by the population in all cantons.
Yet, there are important differences in the extent of the rejection.

We plot the graphic using the following code. Notice the order of the colors in order
to understand which cluster they represent:

plot(swiss_votes$Protection,swiss_votes$Taxes2,
 pch=15, col=gray.colors(4)[clusters],
 xlab="Protection and support services for peace",
 ylab = "Tax on non-renewable energy")

Chapter 5

[91]

A scatterplot of 2 votes, by cluster

Generally, the agreement to both votes are related; the more the population of a
canton agrees with one of the votes, the more it will agree with the other. We can
notice that the cluster on the left (cluster 2 in the preceding output) has the lowest
agreement in the case of both votes, and the cluster on the right (cluster 4 in the
output), has the higher agreement in the case of both votes as well. The other two
clusters are in between in the case of these two votes. We think this is an interesting
visual representation, but wouldn't it be nice to have a table with the mean
agreement for each vote and cluster? This is very easy to obtain:

round(aggregate(swiss_votes[2:11], list(clusters), mean),1)

Agglomerative Clustering Using hclust()

[92]

The output is provided in the following figure:

One can notice that the second cluster (corresponding to the first cluster on the left
on the scatterplot) has a mean value that is generally smaller than the other clusters.
We can see that the agreements in the other clusters vary as a function of the topic of
the votes, with cluster 4 being generally less conservative. The interested reader can
find more about Swiss politics on the following page: http://www.admin.ch/org/
polit/00054/index.html?lang=en.

The use of hierarchical clustering on
binary attributes
The previous datasets that we have used are composed of numerical attributes.
Data is sometimes composed of binary attributes. By binary, we mean that there are
only two possible modalities for the attribute. Examples of such attributes include
characteristics such as gender (woman/man), currently married (yes/no), and
organization type (private/public).

The distance metric to be provided to hclust() has to take the nature of the
attributes into account; that is, it must be computed accordingly. The binary
distance is the required type for such data. A distance matrix containing the binary
distance can be obtained using the following line of code, where df is the data frame
on which to compute the distance:

dist(df, method="binary")

Here we will use the Trucks dataset from the vcd package. Install and load it
(as well as the data) using the following code:

install.packages("vcd")
library(vcd)
data(Trucks)
head(Trucks)

http://www.admin.ch/org/polit/00054/index.html?lang=en
http://www.admin.ch/org/polit/00054/index.html?lang=en

Chapter 5

[93]

The few lines of the data displayed here (requested on the last line of the preceding
code) allow us to notice that it requires frequency weighting:

Freq period collision parked light
1 712 before back yes daylight
2 613 after back yes daylight
3 192 before forward yes daylight
4 179 after forward yes daylight
5 2557 before back no daylight
6 2373 after back no daylight

For instance, the first row represents 712 cases of truck accidents that occurred
during the day before a new safety policy was implemented, with a collision at the
back of the vehicle, when it was parked. We want 712 cases instead of one row. This
can be done using the following code:

Trucks.wd<- Trucks[rep(1:nrow(Trucks),Trucks$Freq),]

For further analyses, we will remove attributes Freq (number 1) and light
(number 5):

Trucks.rm = Trucks.wd[, -(c(1,5))]

As the number of cases makes the process very slow, and also for visibility reasons,
we will randomly sample 100 cases only:

set.seed(456)
Trucks.sample = Trucks.rm[sample(nrow(Trucks.rm), 100),]

We also need to set one value to off (0), for each attribute. All other values will be
considered on (1):

1 Trucks.onoff = data.frame(matrix(nrow =
2 nrow(Trucks.sample), ncol = ncol (Trucks.sample)))
3 for (i in 1:nrow(Trucks.sample)) {
4 for (j in 1:ncol(Trucks.sample)) {
5 if (Trucks.sample[i,j] != Trucks.sample[1,j])
6 Trucks.onoff[i,j] = 0
7 else Trucks.onoff[i,j] = 1
8 }
9 }
10 names(Trucks.onoff)=names(Trucks.sample)

Agglomerative Clustering Using hclust()

[94]

We can now proceed with the analysis and plot the dendrogram:

b = hclust(dist(Trucks.onoff, method= "binary"))
plot(b)

As can be seen in the following figure (because of random sampling, your figure
might look different, but what follows should be valid anyway), there are lots of
cases that have a distance of 0 in the figure, as we didn't configure the plot to be
aligned on 0; this means that it is the actual distance of the cases. As the distance is
often 0, hclust() didn't proceed to the usual grouping by pair that we have seen in
the previous examples. One can further see that most cases are part of clusters that
are relatively distant from one another, which makes sense from observing the data.

A dendrogram of truck accidents (binary data)

Even though we have randomly selected 100 cases only, the dendrogram is still quite
dense. For this reason, we will only comment on the left part. So let's have a look at
cases 96, 92, 76, 52, 5, and 23. In the output, we can see that all cases share the same
values on these attributes:

Trucks.onoff[c(96,92,76,52,5,23),]

Chapter 5

[95]

The output is provided here:

period collision parked
96 1 1 0
92 1 1 0
76 1 1 0
82 1 1 0
5 1 1 0
23 1 1 0

Summary
In this chapter, we discovered hierarchical (or nested) clustering, particularly in its
agglomerative form. We used several distance metrics (Euclidean, Manhattan, and
binary) as well as several linkage functions. We discussed how to interpret the result
of clustering and how cluster analysis can be used for further inquiry of the data,
and discussed real-life examples. Another popular application we did not discuss
here is text classification. We have also seen that datasets sometimes require some
effort (preprocessing) to be made compliant with analytic requirements. In the next
chapter, we will see how to use principal component analysis, notably to perform
dimensionality reduction.

[97]

Dimensionality Reduction
with Principal Component

Analysis
Nowadays, accessing data is easier and cheaper than ever before. This has led to
the proliferation of data in organizations' data warehouses and on the Internet.
Analyzing this data is not a trivial task, as its quantity often makes analysis difficult
or unpractical. For instance, the data is often more abundant than available memory
on the machines. The available computational power is also often not enough to
analyze the data in a reasonable time frame. One solution is to have recourse to
technologies that deal with high dimensionality in data (Big Data). These solutions
typically use the memory and computing power of several machines for analysis
(computer clusters). But most organizations do not have such an infrastructure.
Therefore, a more practical solution is to reduce the dimensionality of the data
while keeping the essential information intact.

Another reason to reduce dimensionality is that, in some cases, there are more
attributes than observations. If scientists were to store the genome of all inhabitants
of Europe and the United States, the number of cases (approximately 1 billion)
would be much less than the 3 billion base pairs in the human DNA.

Most analyses do not work well or at all when observations are fewer than attributes.
Confronted with this problem, data analysts might select groups of attributes that go
together (for instance, height and weight) according to their domain knowledge, and
reduce the dimensionality of the dataset.

Dimensionality Reduction with Principal Component Analysis

[98]

The data is often structured across several relatively independent dimensions,
with each dimension measured using several attributes. This is where Principal
Component Analysis (PCA) is an essential tool, as it permits each observation to
receive a score on each dimension (determined by PCA itself) while allowing us
to discard the attributes from which the dimensions are computed. What is meant
here is that, for each of the obtained dimensions, values (scores) are produced
that combine several attributes. These can be used for further analyses. In the next
section, we will use PCA to combine several attributes in questionnaire data. We will
see that participants' self-reports on items such as lively, excited, enthusiastic, (and
many more) can be combined in a single dimension we call positive arousal. In this
sense, PCA performs both dimensionality reduction (discards the attributes) and
feature extraction (computes the dimensions).

Another use of PCA is to check that the underlying structure of the data corresponds
to a theoretical model. For instance, in a questionnaire, a group of questions might
assess construct A, another group construct B, and so on. PCA will find two different
factors, if indeed there is more similarity in the answers of participants within each
group of questions compared to the overall questionnaire. Researchers in fields such
as psychology use PCA mainly to test their theoretical model in this fashion.

In what follows, we will:

•	 Examine how PCA works
•	 Continue with a tutorial on using PCA in R, in which we will notably

discover how to interpret the results, select the appropriate number of
dimensions, and perform diagnostics

The inner working of Principal
Component Analysis
Principal Component Analysis aims at finding the dimensions (principal component)
that explain most of the variance in a dataset. Once these components are found, a
principal component score is computed for each row and each principal component.
Remember the example of the questionnaire data we discussed in the preceding
section. These scores can be understood as summaries (combinations) of the
attributes that compose the data frame.

Chapter 6

[99]

PCA produces the principal components by computing the eigenvalues of the
covariance matrix of a dataset. There is one eigenvalue for each row in the covariance
matrix. The computation of eigenvectors is also required to compute the principal
component scores. The eigenvalues and eigenvectors are computed using the
following equation, where A is the covariance matrix of interest, I is the identity
matrix, k is a positive integer, λ is the eigenvalue and v is the eigenvector:

What is important to understand for current purposes is that the principal components
are sorted by descending order as a function of their eigenvalues (each row is a
principal component): the higher the eigenvalues, the higher the variance explained.
The more the variance is explained, the more useful the principal component is in
summarizing the data. The part of variance explained by a principal component is
computed as a function of the eigenvalues by dividing the eigenvalue of the principal
component of interest by the sum of the eigenvalues. The equation is as follows, where
partVar is the part of variance explained and eigen is the eigenvalue:

Although this equation is more complex than this short explanation, the scores
can be thought of as the matrix multiplication (operator %*% in R) of the factor
loadings and the mean centered data matrix. In other words, the scores are made
from the original data weighted by the factor loadings. The factor loadings are
equal to the eigenvectors in an unrotated solution (we will see later what unrotated
means). By definition, factorial scores also allow us to examine the relationship
between attributes and dimensions: the higher the loading, the higher the strength of
the relationship.

Dimensionality Reduction with Principal Component Analysis

[100]

In what follows, we create our own PCA function. The reader is advised to use it
for didactic purposes only and not for actual analyses, as some adjustments made
in PCA are not implemented here. Once we have our function ready, we will
examine the principal components in the iris dataset using our own solution and
then compare it with the results of the princomp() function provided in the stats
package. We will see that the mentioned adjustments usually leave the components
that explain most variance (those of most interest) are largely unaffected, but less
important components are quite affected:

1 myPCA = function (df) {
2 eig = eigen(cov(df))
3 means = unlist(lapply(df,mean))
4 scores = scale(df, center = means) %*% eig$vectors
5 list(values = eig$values,vectors = eig$vectors, scores = scores)
6 }

In this function, we first compute in line 2 the eigenvalues and eigenvectors using
function eigen(). We then create on line 3 a vector called means containing the means
for each of the attributes of the original dataset. In line 4, we then use this vector to
center the values around the means and multiply (matrix multiplication) the resulting
data frame by the eigenvectors data frame to produce the principal component scores.
In line 5, we create an object (then returned by the function) of a class list containing
the eigenvalues, the eigenvectors, and the principal component scores.

In what follows, we examine the principal components in the iris dataset
(omitting the Species attribute):

my_pca = myPCA(iris[1:4])
my_pca

The following screenshot provides part of the output:

Chapter 6

[101]

PCA results using the custom myPCA function

Now let's compare the eigenvalues in our function and the corresponding values
when using princomp(). We first run princomp() on the data and assign the
result to the pca object. The sdev component of the princomp objects is the square
root of the eigenvalues. In order to obtain a comparable metric, we apply this
transformation to the eigenvalues in the my_pca object for comparison using the
sqrt() function:

pca = princomp(iris[1:4], scores = T)
cbind(unlist(lapply(my_pca[1], sqrt)), pca$sdev)

The following is the output:

[,1] [,2]
values1 2.0562689 2.0494032
values2 0.4926162 0.4909714
values3 0.2796596 0.2787259
values4 0.1543862 0.1538707

Dimensionality Reduction with Principal Component Analysis

[102]

We can see that the standard deviation of the principal components (the eigenvalues
squared) is quite similar between our function in the first column and princomp() in
the second column.

The summary of the object generated by princomp() provides the amount of
variance explained by each of the components:

summary(pca)

The output is as follows:

Importance of
components

Comp. 1 Comp. 2 Comp. 3 Comp. 4

Standard
deviation

2.0494032 0.49097143 0.27872586 0.153870700

Proportion of
variance

0.9246187 0.05306648 0.01710261 0.005212184

Cumulative
proportion

0.9246187 0.97768521 0.99478782 1.000000000

We can compare these values to the result using our function:

my_pca[[1]] / sum(my_pca[[1]])

The output appears as follows:

[1] 0.924618723 0.053066483 0.017102610 0.005212184

We can see that the values are identical and, clearly, the first component is the most
important, as it explains more than 92 percent of the variance in the dataset.

The eigenvectors are not directly accessible from the princomp() function, but we
computed the scores, which are much more useful. So, let's compare the scores
generated by our function and princomp(). We will do so by measuring the
correlation between them. We start by creating a dataset with the score of both
analyses, then run the correlation analysis but display only the part of the output we
are interested in, that is, the correlation between our principal component scores, and
those of princomp():

scores = cbind(matrix(unlist(my_pca[3]),ncol = 4), pca$scores)
round(cor(scores)[1:4,5:8],3)

Chapter 6

[103]

The output is provided here:

Comp. 1 Comp. 2 Comp. 3 Comp. 4
0.999 -0.008 0.014 0.032
0.059 -0.985 -0.151 -0.055
-0.293 -0.44 -0.848 -0.041
0.936 0.219 0.056 0.269

On the diagonal lines, we can see that the correlation between our scores and the
scores of princomp() is almost perfect for the first two components (the sign is not
important in this case as we will explain later). The third component is already less
correlated, and the correlation with the last is not that good. In what follows, we will
discover how to use PCA with existing datasets.

Learning PCA in R
In this section, we will learn more about how to use PCA in order to obtain
knowledge from data, and ultimately reduce the number of attributes (also called
features). The first dataset we will use is the msg dataset from the psych package.
The motivational state questionnaire (msq) dataset is composed of 92 attributes, of
which 72 are ratings of adjectives by 3,896 participants describing their mood. We
will only use these 72 attributes for current purpose, which is the exploration of the
structure of the questionnaire. We will therefore start by installing and loading the
package and the data, and assign the data we are interested in (the mentioned 72
attributes) to an object called motiv:

install.packages("psych")
library(psych)
data(msq)
motiv = msq[,1:72]

Dimensionality Reduction with Principal Component Analysis

[104]

Dealing with missing values
Missing values are a common problem in real-life datasets, such as the one we
use here. There are several ways to deal with them, but here we will only mention
omitting the cases where missing values are encountered. Let's see how many
missing values (we will call them NAs) there are for each attribute in this dataset:

apply(is.na(motiv),2,sum)

A view of the missing data in the dataset

We can see that, for many attributes, this is unproblematic (few missing values). But,
in the case of several attributes, the number of NAs is quite high (anxious: 1849;
cheerful: 1850, idle: 1848, inactive: 1846, tranquil: 1843). The most probable
explanation is that these items have been dropped from some of the samples in
which the data has been collected.

Removing all cases with NAs from the dataset would dramatically reduce the
number of rows of the dataset in this particular case. Try the following in your
console to verify this claim:

na.omit(motiv)

For this reason, we will simply deal with the problem by removing these attributes
from the analysis. Remember, there are other ways, such as data imputation, to solve
this issue while keeping the attributes. In order to do so, we first need to know which
column number corresponds to the attributes we want to suppress. An easy way to
do this is simply by printing the names of each column vertically (using cbind() for
something it was not exactly made for); we will omit cases with missing values on
other attributes from the analysis later:

head(cbind(names(motiv)),5)

Chapter 6

[105]

Here, we only print the result for the first five columns of the data frame:

[,1]
[1,] active
[2,] afraid
[3,] alert
[4,] angry
[5,] anxious

We invite the reader to verify on his screen that we suppress the correct columns
from the analysis using the following vector to match the attributes:

ToSuppress = c(5, 15, 37, 38, 66)

Let's check whether it is correct:

names(motiv[ToSuppress])

Here is the output:

[1] "anxious" "cheerful" "idle" "inactive" "tranquil"

Selecting how many components are relevant
In the following line of code, we run PCA on a data frame where we suppress
the columns with several NAs (using -ToSuppress), and omit cases with NAs on
other attributes:

Pca = princomp(na.omit(motiv[,-ToSuppress]))

There are as many components as there are attributes, as can be verified using the
following code, which displays the dimensions of an object provided as an argument:

dim(Pca$loadings)

Here is the output:

[1] 67 67

Dimensionality Reduction with Principal Component Analysis

[106]

The element loadings of princomp object Pca contain the loadings of each attribute
on each principal component. These were defined when discussing the inner
working of PCA. We will inspect those later, once we determine the number of
meaningful principal components. This can be done using a scree test, a plot of the
eigenvalues. The square root of the eigenvalues is given in the stdev element of
princomp objects (called Pca in this case), as we have seen earlier. We therefore need
to square these values in order to obtain the eigenvalues back, as follows:

plot(Pca$sdev^2)

Cattel's scree test

Chapter 6

[107]

The Cattel scree test is represented in the preceding figure. An elbow in the plot is
observed after the fifth value. We will therefore consider that five factors represent
our data sufficiently well. Another way to determine the number of relevant
principal components, the Kaiser criterion, is to keep those with an eigenvalue
higher than 1. As can be seen on the graph (the eigenvalues are plotted on the y
axis), the two criteria converge. We will therefore inspect the loadings on five factors.
These are automatically ordered by decreasing eigenvalue (the square root of the
eigenvalue, to be more specific).

Naming the components using the loadings
Now that we know the number of factors we need, we will rerun the analysis using
the principal() function from the psych package. This will allow us to examine
the loadings in a sorted fashion and make them independent from the others using
a rotation. The psych package has already been loaded, as the data we are analyzing
come from a dataset that is included in psych.

We can now run the analysis. This time, we want to apply an orthogonal rotation
(varimax), in order to obtain independent factorial scores. Precisions are provided
in the paper Principal component analysis, by Abdi and Williams (2010). We also want
the analysis to use imputed data for missing values and estimate the scores for each
observation on each retained principal component. We use the print.psych()
function to print the sorted loadings, which will make interpretation of the principal
components easier:

Pca2 = principal(motiv[,-ToSuppress],nfactors = 5,
 rotate = "varimax", missing = T, scores = T)
print.psych(Pca2, sort =T)

Dimensionality Reduction with Principal Component Analysis

[108]

The annotated output displayed in the following screenshot has been slightly altered
in order to allow it to fit on one page.

The results of the PCA with the principal() function using the varimax rotation

Chapter 6

[109]

The names of the items are displayed in the first column of the first matrix of results.
The column item is their order. The component loadings for the five retained
components are displayed next (RC1 to RC5). We will comment on h2 and u2 later.
The loadings of the attributes can be used to name the principal components. As
can be seen in the preceding screenshot, the first component could be called Positive
arousal, the second component Negative arousal, the third Serenity, the fourth
Exhaustion, and the last Fear. It is worth noting that the MSQ has theoretically four
components obtained from two dimensions: energy and tension. Therefore, the fifth
component we found is not accounted for by the model.

The h2 value indicates the proportion of variance of the variable that is accounted for
by the selected components. The u2 value indicates the part of variance not explained
by the components. The sum of h2 and u2 is 1.

Below the first result matrix, a second matrix indicates the proportion of variance
explained by the components on the whole dataset. For instance, the first component
explains 21 percent of the variance in the dataset (Proportion Var) and 38 percent
of the variance is explained by the five components. Overall, the five components
explain 56 percent of the variance in the dataset (Cumulative Var). As a remainder,
the purpose of PCA is to replace all the original attributes by the scores on these
components in further analyses. This is what we discuss next.

PCA scores
At this point, you might wonder where data reduction comes into play. Well, the
computation of the scores for each factor allows reducing the number of attributes
for a dataset. This has been done in the previous section.

Accessing the PCA scores
We will now examine these scores thoroughly. Let's start by checking that the scores
are indeed uncorrelated:

round(cor(Pca2$scores),3)

This is the output:

RC1 RC2 RC3 RC4 RC5
RC1 1.000 -0.001 0.000 0.000 0.001
RC2 -0.001 1.000 0.000 0.000 0.000
RC3 0.000 0.000 1.000 -0.001 0.001
RC4 0.000 0.000 -0.001 1.000 0.000
RC5 0.001 0.000 0.001 0.000 1.000

Dimensionality Reduction with Principal Component Analysis

[110]

As can be seen in the previous output, the correlations between the values are equal
to or lower than 0.001 for every pair of components. The components are basically
uncorrelated, as we requested. As the principal() function didn't remove any cases
but imputed the data instead, we can now append the factor scores to the original
dataset (a copy of it). Let's start by checking that indeed it contains the same number
of rows:

nrow(Pca2$scores) == nrow(msq)

Here's the output:

[1] TRUE

Indeed, both datasets contain the same number of observations. As principal()
retains the order of the original attributes, we can merge the PCA scores with the data:

bound = cbind(msq,Pca2$score)

PCA scores for analysis
As mentioned at the beginning of this section, the dataset also contains other
attributes. As a preliminary to the next chapter, we will now examine the
relationship between Extraversion, Neuroticism, Lie, Sociability, and Impulsivity
(columns 80 to 84) and the PCA scores (columns 93 to 97).

Correl = cor(na.omit(cbind(bound[80:84],bound[93:97])))

In some disciplines, the significance of the estimates is essential. We will discuss
significance in the next chapter. But, if you want to know the significance of the
correlations in this example, use the following code instead:

install.packages("Hmisc")
library(Hmisc)
Correl_and_sig =
 rcorr(as.matrix(na.omit(cbind(bound[80:84],bound[93:97]))),
 type = "pearson")
Correl = Correl_and_sig[[1]]
Sig = Correl_and_sig[[3]]

The significance of the correlations is in the Sig matrix. The correlations are in the
Correl object.

Chapter 6

[111]

In a correlation table, the information below and above the diagonal line is repeated.
Further, we are not interested in knowing the correlations between the original
attributes and the correlations between the PCA scores (which we know to be
approximately 0). It therefore makes sense to select only a portion of the correlation
matrix. We further want the results to be rounded to the second decimal in order to
make the reading easier. The following line of code does all of this for us:

round(Correl, digits = 2)[6:10,1:5]

Extraversion Neuroticism Lie Sociability Impulsivity
RC1 0.16 -0.16 0.07 0.18 0.07
RC2 -0.06 0.27 -0.11 -0.1 0.01
RC3 -0.04 -0.16 0.06 -0.01 -0.06
RC4 0.08 0.07 -0.06 0.08 0.05
RC5 -0.11 0.18 0.02 -0.1 -0.07

We can also display the significance of these correlations:

round(Sig, 2) [6:10,1:5]

The output is as follows (p values are displayed):

Extraversion Neuroticism Lie Sociability Impulsivity
RC1 0.000 0 0.000 0.000 0.000
RC2 0.000 0 0.000 0.000 0.430
RC3 0.013 0 0.000 0.648 0.000
RC4 0.000 0 0.000 0.000 0.004
RC5 0.000 0 0.318 0.000 0.000

We will just comment that most correlations (see the preceding table) reach
significance at the usual (but still arbitrary) threshold of p <0.05. Exceptions are
r(RC5, Lie) and r(RC3, Sociability).

The p value refers to the probability of obtaining the value or
a higher value (a lower value if a negative value is obtained) if
the correlation is actually 0 in the population.

Dimensionality Reduction with Principal Component Analysis

[112]

We will only comment on the correlations of which the absolute value is 0.16 or
more. This corresponds to at least (another arbitrary threshold) 2.5 percent of shared
variance or more: The part of shared variance is the correlation squared. RC1 (which
we called Positive arousal) is positively related to Extraversion (for example,
being outgoing) and negatively to Neuroticism (for example, being anxious) and
Sociability. RC2 (which we called Negative arousal) is positively correlated with
Neuroticism. RC3 (which we called Serenity) is negatively related to Neuroticism.
RC5 (which we called Fear) is positively related to Neuroticism.

It is worth noting that, in disciplines such as psychology, the mean of the items that
load more on a component than on others are computed and used instead of the PCA
scores. While this practice has its justifications, it does not maximize the explained
variance as using PCA scores does.

PCA diagnostics
Here we will briefly discuss two diagnostics that can be performed on the dataset
that will be subjected to analysis. These diagnostics should be performed by
analyzing the data with PCA in order to ascertain that PCA is an optimal analysis for
the considered data.

The first diagnostic is Bartlett's test of sphericity. This test examines the relationship
between the variables together, instead of two by two as in a correlation. To be more
specific, it tests whether the correlation matrix is different from an identity matrix
(which has ones on the diagonals and zeroes elsewhere). The null hypothesis is
that the variables are independent (no underlying structure). The paper When is a
correlation matrix appropriate for factor analysis? Some decision rules by Dzuiban and
Shirkey (1974) provides more information on the topic.

This test can be performed by the cortest.normal() function in the psych package.
In this case, the first argument is the correlation matrix of the data we want to subject
to PCA, and the n1 argument is the number of cases. We will use the same dataset as
in the PCA (we first assign the name M to it):

M = na.omit(motiv[-ToSuppress])
cortest.normal(cor(M), n1 = nrow(M))

The output is as follows:

Tests of correlation matrices

Call:cortest.normal(R1 = cor(M), n1 = nrow(M))

Chi Square value 829268 with df = 2211 with probability < 0

Chapter 6

[113]

The last line of the output shows that the data subjected to the analysis is clearly
different from an identity matrix. The probability to obtain these results if it were an
identity matrix is close to 0 (do not pay attention to the > 0; it is simply extremely
close to 0). You might be curious about what the output of an identity matrix is.
It turns out we have something close to it: the correlations of the PCA scores with
varimax rotation that we examined before. Let's subject the scores to analysis:

cortest.normal(cor(Pca2$scores), n1 = nrow(Pca2$scores))

Tests of correlation matrices:

Call:cortest.normal(R1 = cor(Pca2$scores), n1 = nrow(Pca2$scores))

Chi Square value 0.01 with df = 10 with probability < 1

In this case, the results show that the correlation matrix is not significantly different
from an identity matrix.

The other diagnostic is the Kaiser Meyer Olkin (KMO) index, which indicates
the part of the data that can be explained by elements present in the data set. The
higher this score, the more the proportion of the data is explainable, for instance, by
PCA. The KMO (also called Measure of Sample Adequacy(MSA)) ranges from 0
(nothing is explainable) to 1 (everything is explainable). It can be returned for each
item separately, or for the overall dataset. We will examine this value. It is the first
component of the object returned by the KMO() function from the psych package.
The second component is the list of the values for the individual items (not examined
here). It simply takes a matrix, a data frame, or a correlation matrix as an argument.
Let's run in on our data:

KMO(motiv)[1]

This returns a value of 0.9715381, meaning that most of our data is explainable by
the analysis.

Summary
In this chapter, we examined how PCA works. We briefly discussed how to deal with
a dataset in cases where most values are missing on some attributes. We examined
how to determine the adequate number of components and the proportion of variance
they explain. We also saw how to give a meaningful name to the component. Finally,
we began examining linear relationships between attributes using correlations. In the
next chapter, we will discuss association rules with apriori.

[115]

Exploring Association
Rules with Apriori

Association rules allow us to explore the relationship between items and sets of
items. Such items can be as diverse as the contents of a market basket, the words
used in sentences, the components of food products, and so on. Let's go back to the
first example: transactions in a shop. Each transaction is composed of one or more
items. We are interested in transactions of at least two items because, of course,
there cannot be relationships between several items in the purchase of a single item.
Imagine customers are purchasing the following sets of items, for which each row
represents a transaction. We will use this example more thoroughly in this section:

•	 Cherry coke, chips, lemon
•	 Cherry coke, chicken wings, lemon
•	 Cherry coke, chips, chicken wings, lemon
•	 Chips, chicken wings, lemon
•	 Cherry coke, lemon, chips, chocolate cake

At first sight, you will notice that there seems to be an association between purchases
of cherry coke and lemon, as four out of five (80 percent) transactions have both
elements. Other possible associations are featured in this short list of transactions.
Can you discover them?

Now, imagine doing this task for lists of thousands of transactions, comprising
dozens of items. I bet you'd be bored before finishing this task, and you might miss
important associations. The point of mining association rules is to do exactly that job
in an automated way and derive indicators of the reliability of these associations.

Exploring Association Rules with Apriori

[116]

In this chapter, we will:

•	 Examine the important concepts in associations rules
•	 Examine how apriori, an algorithm frequently used for such

analysis, works
•	 Discover the use of market basket analysis with apriori in R

Apriori – basic concepts
There are some concepts about apriori that need to be understood before going
further in this chapter: association rules, itemsets, support, confidence, and lift.

Association rules
An association rule is the explicit mention of a relationship in the data, in the form
X => Y, where X (the antecedent) can be composed of one or several items. X is
called an itemset. In what we will see, Y (the consequent) is always one single item.
We might, for instance, be interested in what the antecedents of lemon are if we are
interested in promoting the purchase of lemons.

Itemsets
Frequent itemsets are items or collections of items that occur frequently in
transactions. Lemon is the most frequent itemset in the previous example, followed
by cherry coke and chips. Itemsets are considered frequent if they occur more
frequently than a specified threshold. This threshold is called minimal support. The
omission of itemsets with support less than the minimal support is called support
pruning. Itemsets are often described by their items between brackets: {items}.

Support
The support for an itemset is the proportion among all cases where the itemset of
interest is present. As such, it allows estimation of how interesting an itemset or a
rule is: when support is low, the interest is limited. The support for {Lemon} in our
example is 1, because all transactions contain the purchase of Lemon. The support for
{Cherry Coke} is 0.8 because Cherry Coke is purchased in four of five transactions
(4/5 = 0.8). The support for {Cherry Coke, Chips} is 0.6 as three transactions
contain both Cherry Coke and Chips. It is now your turn to do some math. Can you
find the support for {Chips, Chicken wings}?

Chapter 7

[117]

Confidence
Confidence is the proportion of cases of X where X => Y. This can be computed as
the number of cases featuring X and Y divided by the number of cases featuring
X. Let's consider the example of the association rule {Cherry Coke, Chips} =>
Chicken wings. As we have previously mentioned, the {Cherry Coke, Chips}
itemset is present in three out of five transactions. Of these three transactions,
chicken wings are only purchased in one transaction. So the confidence for the
{Cherry Coke, Chips} => Chicken wings rule is 1/3 = 0.33.

Lift
Imagine both the antecedent and the consequent are frequent. For instance, consider
the association rule, {Lemon} => Cherry Coke, in which lemon has a support of 1
and cherry coke a support of 0.8. Even without true relationship between the items,
they could co-occur quite often. The proportion of cases where this can occur is
computed as support(X) * support(Y). In our case, 1 * 0.8 = 0.8. Lift is a measure
of the improvement of the rule support over what can be expected by chance—that
is, in comparison to the value we just computed. It is computed as Support(X=>Y) /
Support(X) * Support(Y).

In the current case:

Lift = support({Lemon, Cherry Coke}) / Support(Lemon)* Support(Cherry Coke) =

(4/5) / ((5/5) * (4/5)) = 1

As the lift value is not higher than 1, the rule does not explain the relationship
between lemon and cherry coke better than could be expected by chance.

Now that we have discussed some basic terminology, we can continue with
describing how the frequently used algorithm, apriori, works.

The inner working of apriori
The goal of apriori is to compute the frequent itemsets and the association rules in
an efficient way, as well as to compute support and confidence for these. Going into
the details of these computations is beyond the scope of this chapter. In what follows,
we briefly examine how itemset generation and rule generation are accomplished.

Exploring Association Rules with Apriori

[118]

Generating itemsets with support-based
pruning
The most straightforward way to compute frequent itemsets would be to consider all
the possible itemsets and discard those with support lower than minimal support.
This is particularly inefficient, as generating itemsets and then discarding them is a
waste of computation power. The goal is, of course, to generate only the itemsets that
are useful for the analysis: those with support higher than minimal support. Let's
continue with our previous example. The following table presents the same data
using a binary representation:

Transaction Cherry Coke Chicken wings Chips Chocolate cake Lemon
1 1 0 1 0 1
2 1 1 0 0 1
3 1 1 1 0 1
4 0 1 1 0 1
5 1 0 1 1 1

With a minimal support higher than 0.2, we can intuitively see that any itemset
containing chocolate cake would be a waste of resources, as its support could
not be higher than that of chocolate cake (which is lower than minimal support).
The {Cherry Coke, Chips, Lemon} itemset is frequent, considering a minimal
support of 0.6 (three out of five). We can intuitively see that all itemsets that
feature items in {Cherry Coke, Chips, Lemon} are necessarily also frequent:
Support({Cherry Coke}) = 0.8, Support({Chips}) = 0.8; Support({Lemon})
= 1, Support({Cherry Coke, Chips}) = 0.6; Support({Cherry Coke, Lemon})
= 0.8; and Support({Chips, Lemon}) = 0.8.

Apriori uses such strategies to generate itemsets. In short, it discards supersets of
infrequent itemsets without having to compute their support. Subsets of frequent
itemsets, which are necessarily frequent as well, are included as frequent itemsets.
These are called support-based pruning.

Chapter 7

[119]

Generating rules by using confidence-based
pruning
Apriori generates rules by computing the possible association rules that have one
item as consequent. By merging such rules with high confidence, it builds rules
with two items as consequents and so on. If it is known that both association rules
{Lemon, Cherry Coke, Chicken Wings} => {Chips} and {Lemon, Chicken
wings, Chips} => {Cherry Coke} have high confidence, we know that {Lemon,
Chicken wings} => {Chips, Cherry Coke} will have high confidence as well. As
an exercise, examine the preceding table to discover whether or not these rules have
high confidence.

We now know more about how apriori works. Let's start analyzing some data in R!

Analyzing data with apriori in R
In this section, we will continue with another supermarket example and analyze
associations in the Groceries dataset. In order to use this dataset and to explore
association rules in R, we need to install and load the arules package:

install.packages("arules")
library(arules)
data(Groceries)

Using apriori for basic analysis
We can now explore relationships between purchased products in this dataset. This
dataset is already in a form exploitable by apriori (transactions). We will first use
the default parameters as follows:

rules = apriori(Groceries)

Exploring Association Rules with Apriori

[120]

The output is provided in the following screenshot:

Running apriori on the Groceries dataset with default parameters

We can see on the first line the parameters used in the analysis—in this case, the
default. Around the middle of the output (where the arrow is), we see that there are
169 items in 9835 transactions in this dataset, and that 0 rules have been found (see
second to last line). If you try this with your own data, you might find rules with
the default parameters if you have very solid associations in your data. Here, the
confidence and support thresholds are clearly too strict. Therefore, we will try again
with a more relaxed minimal support and confidence, as follows:

rules = apriori(Groceries, parameter =
 list(support = 0.05, confidence = .1))

The output is provided on the top part of the following screenshot. We notice that
five rules that satisfy both minimal support and confidence have been generated.
We can examine these rules using the inspect() function (see the bottom part
of the screenshot) as follows:

inspect(rules)

Chapter 7

[121]

Let's examine the output:

Running apriori on the Groceries dataset with different support and confidence thresholds

The first column (lhs) displays the antecedents of each rule (X itemsets in our
description in the first section). The second column (rhs) displays the consequents
of the rules. We can see that whole milk is bought relatively frequently when yogurt,
rolls/buns, and other vegetables are bought, and that other vegetables are bought
frequently when milk is bought.

Exploring Association Rules with Apriori

[122]

Detailed analysis with apriori
In this section, we will examine more complex relationships using the ICU dataset:
a dataset about the outcomes of hospitalizations in the ICU. This dataset has 200
observations and 22 attributes. In order to access this dataset, we first need to install
the package that contains it (vcdExtra). We will then have a look at the attributes:

install.packages("vcdExtra")
library(vcdExtra)
data(ICU)
summary(ICU)

The output is provided in the screenshot that follows. The attribute died refers to
whether the patient died or not. The attributes age, sex, and race refer to the age
(in years), sex (Female, Male) and race (black, white, or other) of the patient. The
attribute service is the type of ICU the patient has been admitted into (medical or
surgical). Attributes cancer, renal, infect, and fracture refer to the conditions
the patient suffered during their stay in the ICU. The cpr attribute refers to whether
or not the patient underwent cardiopulmonary resuscitation. The systolic and
heartrate attributes refer to measures of cardiac activity. The previcu and admit
attributes refer to whether the patient has been in the ICU previously, and whether
the admission was elective or an emergency. Attributes po2, ph, pco, bic, and
creatin refer to blood measures. Attributes coma and uncons refer to whether the
patient has been in a coma or unconscious at any moment during the stay in the ICU.

The summary of the ICU dataset

Chapter 7

[123]

Preparing the data
As can be seen in the preceding screenshot, the race and white attributes are a bit
redundant. We will therefore remove the race attribute (the fourth column). One
can also see that there are both numerical (age, systolic, hrtrate) and categorical
(died, sex, race) attributes in the dataset. We need only categorical attributes.
Therefore, we will recode the numeric attributes into categorical attributes. We
will do this with the cut() function on a copy of our dataset. This function simply
creates bins by dividing the distance between the minimal and maximal values by
the number of bins. As always, domain knowledge would be useful to create more
meaningful bins. The reader is advised to take some time to become familiar with the
dataset by typing ?ICU:

ICU2 = ICU[-4]
ICU2$age = cut(ICU2$age, breaks = 4)
ICU2$systolic = cut(ICU2$systolic, breaks = 4)
ICU2$hrtrate = cut(ICU2$hrtrate, breaks = 4)

The dataset isn't in a format readily usable with apriori (transactions) yet. We first
need to convert the coercions to transaction format before we can use it:

ICU_tr = as(ICU2, "transactions")

Using the discretize() function from the arules package
allows the use of different types of binning. For instance, the
following code line creates a new attribute named agerec with
four bins of approximately equal frequency:
agerec = discretize(ICU$age, method="frequency",
categories=4)

Analyzing the data
We will first perform an analysis of all associations with thresholds of .85 for
support and .95 for confidence, as follows:

rules = apriori (ICU_tr,

 parameter = list(support = .85, confidence = .95))

Exploring Association Rules with Apriori

[124]

This leads to 43 rules. Let's have a closer look at these. Only the first 10 will be
displayed in the following screenshot:

A view of association rules in the modified ICU dataset

With high confidence and support, the absence of a cancer is associated with creatin
levels lower than or equal to 2. Low arterial concentration of carbonic oxide (<= 45) is
associated with high blood concentration of oxygen (>= 60). Patients who did not have
a history of renal failure did not need CPR, had a blood pH higher or equal to 7.25, and
had a creatin level lower or equal to 2. Patients with a blood concentration of oxygen
higher than or equal to 60 had a blood pH higher than or equal to 7.25 and a creatin
level equal to or lower than 2. We let the reader interpret the rest of the relationships.

Interestingly, even though the confidence and support of the rules are high, the
lift value is not higher than 1—that is, not better than could be expected by chance
given the support of the antecedent and the consequent. Further testing might allow
us to know more about this. The fisher exact test permits the testing of statistical
interdependence in 2x2 tables. Each of our rules can be represented in a 2x2 table—for
instance, the antecedent itemset in the rows (yes versus no) and the consequent in the
columns (yes versus no). This test is available in the interestMeasure() function, as
well as other tests and measures. I am not giving too much detail about this measure;
instead, I am focusing on interpreting the results. Only the significance of the test is
returned here. If you need the test value, please refer to the next subsection about how
to export rules to a data frame, and then use the fisher.test() function from the
stats package.

Chapter 7

[125]

Regarding the significance value returned here (also known as the p value), when
it is lower than 0.05 this means that the antecedent and the consequent are related
for a particular rule. If it is higher than 0.05, it is considered non-significant, which
means we cannot trust the rule. We will discover more about statistical distributions
in the next chapter, but you might want to have a look now! Let's use this test to
investigate the rules we generated before, rounding the results to two digits after
the decimal point:

IM = interestMeasure(rules, "fishersExactTest", ICU_tr)
round(IM, digits=2)

The results are provided in the following table, in order of the rules:

[1] 1 0.66 0 0 0.02 0.02 0 0 0.57 0 0
[12] 0 0.17 0 0.17 0 0 0.55 0.13 0.13 0 0
[23] 0 0 0 0 0 0 0 0 0 0 0
[34] 0 0 0 0.17 0 0 0.02 0.01 0 0.02

We can see that the first and second rules are non-significant, but the following are
significant, in most instances. For instance, the {cancer = No} => {creatin =
<=2} rule as well as {pco = <=45} => {po2=>60} are significant, which means that,
when the antecedent is present, the consequent is present relatively more often than
absent (and conversely).

We might have higher lift values when looking at what the antecedents of death
in the ICU are. For this analysis, we will set the rhs parameter of the appearance
argument to died=Yes. We will use lower confidence and support thresholds for this
analysis as follows:

rulesDeath = apriori(ICU_tr,
 parameter = list(confidence = 0.3,support=.1),
 appearance = list(rhs = c("died=Yes"), default="lhs"))

Exploring Association Rules with Apriori

[126]

The analysis returned 63 association rules with these confidence and support
thresholds. Let's have a look. Again, we only display the first 10 association rules
in the following screenshot:

View of association rules in the modified ICU dataset, with patient death as a consequence

Instead of running apriori again, it is also possible to use
the subset() function to select rules. The following line of
code will create an object called rulesComa containing only
rules where the consequent is coma=None using the existing
rules. In the previous and following code, using rhs instead
of lhs would have included the rules containing the selected
antecedents instead of the selected consequents:

rulesComa = subset(rules, subset = rhs %in%
 "coma=None")

Chapter 7

[127]

We can see that 34 percent of patients who were admitted in emergency and had
an infection died in the ICU, as did 30 percent of patients who were non-white and
whose ICU admission service was medical. Skipping through the results (rule 9
and 10), 31 percent of patients who didn't have a cancer, but were infected and non-
white, died in the ICU, as did 31 percent of non-white patients who were infected
with a blood oxygen concentration of 60 or more. We will let the reader examine
the rest of the results. Looking at the lift value for all the rules here, we can see that
these are a bit higher than 1, suggesting that the rules are more reliable than could be
randomly expected.

Coercing association rules to a data frame
We have seen how to generate association rules using apriori with constraints,
such as minimal support and confidence, or a given consequent. Suppose we want to
perform some action on the rules—for example, sort them by decreasing lift values.
The easiest way to do this is to coerce the association rules to a data frame, and then
perform the operations as we would usually do. In what follows, we will use the
rules we generated last and coerce them to a data frame using the as() function. We
will then sort the data frame by decreasing lift and display the first five lines of the
sorted data frame:

rulesDeath.df = as(rulesDeath,"data.frame")
rulesDeath.df.sorted =
 rulesDeath.df[order(rulesDeath.df$lift,decreasing = T),]
head(rulesDeath.df.sorted)

The following screenshot shows the output:

Data frame displaying the five highest lift values

The output shows that the following association rules have the highest lift values,
and therefore have the highest performance compared to a random model:

•	 {cancer=No,infect=Yes,admit=Emergency,po2=>60,white=Non-white}
=> {died=Yes}

•	 {infect=Yes,admit=Emergency,po2=>60,white=Non-white} =>
{died=Yes}

•	 {cancer=No,infect=Yes,admit=Emergency,fracture=No,po2=>60} =>
{died=Yes}

Exploring Association Rules with Apriori

[128]

Also note that the equivalent could have been obtained without coercing the
association rules to a data frame with the following code line:

rulesDeath.sorted = sort(rulesDeath, by ="lift")
inspect(head(rulesDeath.sorted,5))

Visualizing association rules
As for other analyses, visualization is an important tool when examining association
rules. The arulesViz package provides visualization tools for association rules.
There are plenty of examples in the Visualizing Association Rules: Introduction to the
R-extension Package arulesViz article by Hasler and Chelluboina (2011). Here, we
will only discover a plotting method that provides great added value to existing
plotting tools in R, because of the informative graphics it provides, and also because
of its simplicity. This method is called Grouped matrix-based visualization. It uses
clustering to group association rules. The reader is advised to read the mentioned
paper to learn more about it. Here are a few examples using our data. Let's start by
installing and loading the package:

install.packages("arulesViz"); library(arulesViz).

For this purpose, we will first create a new set of association rules for the ICU_tr
object, using a minimal support of 0.5. As confidence will not be displayed on the
graph, we will set the threshold to 0.95—that is, all included rules will have high
support. We will also use the minlen = 2 and maxlen = 2 parameters in order to
obtain only rules with exactly one populated antecedent as follows:

morerules = apriori(ICU_tr, parameter=list(confidence=.95,
 support=.5, minlen=2,maxlen=2))
plot(morerules, method = "grouped")

The resulting graphic is shown in the following screenshot. The graphic displays
antecedents in the columns and consequents in the rows. The size of the circles
displays support (bigger circles mean higher support) and their color displays the lift
value (a darker color means a higher lift). Looking at the graph, we can see that the
{uncons=No} => {coma = None} rules have high support and high lift value. The
{coma = None} => {unconsc = No} rule, of course, displays the same pattern. We
can see that rules with a consequent creatin level <=2 have a generally low lift value.
Even if the support is high, interpreting these rules must be done with caution, as
they do not show an improvement compared to a random model. The reader is free
to interpret the other rules displayed in the following screenshot:

Chapter 7

[129]

Grouped matrix-based visualization of association rules in the ICU dataset

A final word regarding visualization of association rules: as you now
know, it is easy to coerce association rules to a data frame. Once this
is done, you can use the tools we discussed in Chapter 2, Visualizing
and Manipulating Data Using R, and Chapter 3, Data Visualization with
Lattice, and others to visualize the support, confidence, or lift of the
rules, or perform analyses using these values.

Exploring Association Rules with Apriori

[130]

Summary
In this chapter, we discovered some important concepts regarding association rules.
In particular, we examined how important support, confidence, and lift measures
are in the assessment of association rules, and that high support and confidence do
not necessarily mean that an association rule is useful. We uncovered the efficient
working of the apriori algorithm for mining association rules and discovered the
use of apriori in R in mining several datasets. We have also seen that it is often
necessary to recode some variables before being able to analyze the data. Finally,
we have discovered Grouped matrix-based visualization.

In next chapter, we will examine statistical distributions and correlations.

[131]

Probability Distributions,
Covariance, and Correlation

In Chapter 6, Dimensionality Reduction with Principal Component Analysis, we discussed
principal component analysis. In the previous chapter, we discovered association
rules using apriori in R. In this chapter, we will examine the following:

•	 Probability distributions
•	 A short introduction to descriptive statistics (mean and standard deviation)
•	 Covariance and correlation, notably what they mean and how they

are computed
•	 How to perform correlation analysis in R

Probability distributions
In this section, we very briefly examine important distributions for common
statistical problems with data consisting of quantities: the normal distribution and
Student's t-distributions. We first introduce the idea of distributions with a discrete
uniform distribution. We conclude with binomial distribution. We will try to be as
non-technical as possible in this introduction to allow readers without statistical
knowledge to follow easily; however, don't worry, we will be highly technical
when explaining how to build functions that estimate correlations and regression
coefficients.

Introducing probability distributions
Here, we introduce the idea of distributions using discrete uniform and binomial
distributions.

Probability Distributions, Covariance, and Correlation

[132]

Discrete uniform distribution
You might remember that, in Chapter 2, Visualizing and manipulating data using R, we
examined outcomes of the roulette game. We showed that each of the 37 numbers
(0 to 36) in European roulette has an equal probability of occurring, 1/37, that is
approximately 0.02702. This is called a Bernoulli trial. The outcome of infinite draws
would form a uniform distribution. Another example we have examined is rolling
a die. We have shown that the probability of each number occurring is 1/6, that is,
approximately 0.16667. If we rolled a die infinite times (or a large number of times),
the histogram of the outcomes will show that each number has occurred an equal
number of times. Let's examine this with the following code:

rolls = sample(6, size = 1000000, replace = TRUE)
hist(rolls)

A histogram of a million die rolls

Chapter 8

[133]

The normal distribution
Of course, not all attributes will follow such a distribution (in fact, most do not).
Imagine the height of adults; you do not see as many people measuring, say, 140
cm, 180 cm, or 200 cm. Some heights are much more common than others, right?
The normal distribution is usually applied to attributes such as height. The normal
distribution acknowledges that some values of an attribute are much more likely to
occur than other; values close to the arithmetic mean. The more a value is distant
from the mean, the less likely it is to occur under the normal distribution. In fact,
around 68 percent of the observations should have values between the mean minus
one standard deviation and the mean plus one standard deviation, and 95 percent of
observations should have values between the mean minus two standard deviations
and the mean plus two standard deviations. It is important to know that the normal
distribution assumes that the entire population is known, but it is widely used to
analyze samples with a large number of observations.

The following code plots the shape (the probability density function) of the standard
normal distribution (also called the z distribution), which has a mean of 0 and a
standard deviation of 1:

curve(dnorm(x, 0 ,1), lwd = 2, xlim=c(-3,3), xlab="", ylab="",
 main = "The standard normal distribution")

Probability Distributions, Covariance, and Correlation

[134]

The following diagram (at the top of the frame) presents this plot. You will notice
that this distribution is symmetrical.

The standard normal distribution (at the top of the frame) and a histogram of the heights of adults

Chapter 8

[135]

Let's compare this shape to that of self-reported height (in inches). The data is from
the Galton dataset of the HistData package:

install.packages("HistData")
library(HistData)
hist(Galton$parent, xlab="Height",
 main="Height of adults in inches")

The preceding diagram (bottom frame) presents this plot. We can see that the
histogram of the height of adults is quite close to the shape of the normal distribution.

Inspecting data visually is not always enough. The Shapiro test (shapiro.test())
might be more informative. Let's create a vector that is not randomly distributed (x1)
and another that is randomly distributed. We then test whether both attributes are
normally distributed or not:

x1 = runif(1000)
x2 = rnorm(1000)
shapiro.test(x1)

The output for x1 is provided here:

 Shapiro-Wilk normality test

data: x1

W = 0.957, p-value < 2.2e-16

Given the extremely low p-value, it is almost impossible to obtain this result if the
data in the population the sample was drawn from was normally distributed. As
p-value is lower than 0.05 (the usual threshold), we can conclude that the data is not
normally distributed—just as we designed it to be. Let's examine x2:

shapiro.test(x2)

The output for x2 is provided here:

 Shapiro-Wilk normality test

data: x2

W = 0.9988, p-value = 0.7777

The p-value is very different in this case. The probability (to obtain this result if the
data, in the population that the sample was drawn from, was normally distributed)
is about 77.7 percent. As the p-value is higher than 0.05, we conclude that the data is
not different from a normal distribution.

Probability Distributions, Covariance, and Correlation

[136]

The Student's t-distribution
The Student's t distribution resembles the normal distribution but is used when
there are not many observations. What is important to know is that the sample size
affects the shape of the t distribution. The degrees of freedom are the number of
independent parameters that remain to be known before the data is fully known.
Let's take the example of a sample of 10 observations on an attribute a. If we know
the mean of the a attribute, we only need nine observations to know the value of the
10th, as we can rely on the mean and the nine known observations to infer the value
of the remaining observation. The following plot shows the t distribution for 14
(in black) and 199 degrees of freedom (in gray) corresponding to sample sizes of
14 and 200:

curve(dt(x, 14), col = "black", lwd = 2, xlim=c(-3,3), xlab="",
 ylab="", main = "The t distribution")
curve(dt(x, 199), col = "grey", lwd = 2, add=T)

The t-distribution for 14 (in black) and 199 (in grey) degrees of freedom

Chapter 8

[137]

The binomial distribution
Now imagine that we want to know the chances that a specific outcome (say, 6 for
instance) will have; we will call these successes for a precise number times when
throwing a die repeatedly (for example, 100 times). This kind of questioning requires
us to draw upon the binomial distribution.

We can compute this as follows: we first obtain the binomial coefficient, which is
computed as the factorial of the number of throws of dice, divided by the number
of the expected number of successes, minus the difference between the number of
throws of dice and the expected number of successes. We multiply this result by
the probability of a single success to the power of the expected number of successes
multiplied by 1 (the probability of a single success), to the power of the difference
between the number of throws of dice and the expected number of outcomes. Sorry,
this was a little complicated. In order to show this more practically, let's use R code
to examine the probability that a six exactly appears different number of times (from
0 to 20) in 100 draws. We will rely on the choose() function to compute the binomial
coefficient. Here is the code for computing and plotting the probabilities:

p = 1/6
N = 100
n = 1
v = rep(1,40)
for (n in 0:40) {
 v[n] = choose(N, n) * (p^n) * (1 - p)^(N-n)
}
plot(v, type="l", xlab = "Exact number of successes", ylab =
 "Probability")

Probability Distributions, Covariance, and Correlation

[138]

The resulting binomial distribution is displayed here:

Binomial distribution for 100 throws of dice (p = 1/6)

We can notice that we reach the highest probability of getting an exact number of
successes when that number is around 16. It is almost impossible to get more than
30 successes in 100 throws of a fair dice.

The importance of distributions
Probability distributions are important because the significance of the tests
performed are based upon them. Significance is tested by looking where the t or z
values corresponding to the estimates (we will see how they are obtained later) lie on
the distribution, with the corresponding degrees of freedom (for the t distribution).
Further, most statistical tests, such as regression and correlation, assume the data is
distributed normally. In most cases, a value must be at least in the extreme 5 percent
of the distribution to be considered significant. This is the approach we will rely on
in this chapter.

Chapter 8

[139]

Covariance and correlation
Before going in depth into the topic of this section, let me remind the reader of three
mathematical notions that will be used in this chapter: arithmetic mean, variance,
and standard deviation. Some have been already discussed in other chapters, but
a more formal definition is interesting for the purposes of the chapter.

The arithmetic mean is a measure of central tendency. Considering a sample of
observations of an attribute—for instance, the height of individuals—the arithmetic
mean is simply the sum of the values of the observations divided by the number of
observations. We are interested in computing the mean height of three individuals
measuring 160 cm, 170 cm, and 180 cm.

The formula for the mean is:

Type the following in the R console to compute the arithmetic mean of this sample:

(160 + 170 + 180) / 3

R outputs the following:

[1] 170

Check the solution by typing this:

mean(c(160,170,180))

Our computation of the mean was correct—R outputs:

[1] 170

Variance is a measure of dispersion of the data—that is, how different the values
are in a sample or population. Considering a sample of observations of an attribute,
the variance is computed as the sum of the squared mean subtracted observations
(the sum of squares) divided by the number of observations minus 1 (the degrees of
freedom). The formula for the variance is:

Probability Distributions, Covariance, and Correlation

[140]

Type the following to obtain the variance of heights of the three individuals:

Variance = ((160-170)^2 + (170-170)^2 + (180-170)^2) / (3-1)
Variance

The output is as follows:

[1] 100

Now type the following to check our solution:

var(c(160,170,180))

The output is 100 again.

Standard deviation is another measure of dispersion. Unlike variance, it is expressed
in the same unit as the data. The formula for standard deviation is as follows:

In other words, considering a sample of observations of an attribute, the standard
deviation is the square root of the variance. Type the following to obtain the standard
deviation of height in the three individuals presented previously:

sqrt(Variance)

The output is 10. Now type the following:

sd(c(160,170,180))

Our computation of the standard deviation is correct; the output is 10 as well.

Let's now proceed to the main topics of this section.

Covariance and correlation are measures of how much two attributes are related—
that is, how much they change together. For instance, one can easily figure out that
the weight of individuals is related to their height (positive relation) more than to the
length of their hair. The weight of individuals is most probably not at all related to
the length of the last movie they have seen.

Chapter 8

[141]

Covariance
The covariance of two normally distributed numeric attributes (data consisting of
quantities or that can be treated as quantities) is computed as the sum of the mean
subtracted observations of both attributes multiplied together, divided by the
number of observations in the sample minus 1. The formula for the covariance
is as follows:

Imagine our three individuals (ordered by increasing height) weigh 55 kgs, 70 kgs,
and 85 kgs. The arithmetic mean for the weight is therefore 70. The covariance of the
two measures (height and weight) can be computed as follows:

Covariance = ((160-170) * (55-70) + (170-170) * (70-70) + (180-170) *
(85-70)) / (3-1)
Covariance

The output is 150. Let's check it using the ad hoc function:

heights=c(160,170,180)
weights=c(55,70,85)
cov(heights,weights)

The output is 150 again! Our solution is correct.

The problem with covariance is that it is not a standardized measure of association—
that is, the value of the measure depends upon the unit in which the attributes are
measured. In our example, the heights were previously measured in centimeters.
Let's try it with the same values converted to meters. For this purpose, we will
divide the height measures in centimeters by 100:

cov(heights/100, weights)

The result is 1.5.

Measuring the height in inches and the weight in pounds would have led to a totally
different covariance value. The covariance allows knowing about the direction of the
relationship between two attributes, but not the magnitude of the relationship. This
is because, as mentioned previously, the covariance is not a standardized measure of
association between two attributes. The correlation does not present such a drawback.

Probability Distributions, Covariance, and Correlation

[142]

Correlation
The correlation is a standardized measure of association between attributes. We have
already mentioned the correlation a few times in the previous chapters, but let's
examine it in more details.

Pearson's correlation
Pearson's correlation indicates the strength of the association between two normally
distributed numeric attributes.

Before we continue on the topic, let's examine how the measure is computed. There
are multiple ways to compute the correlation. The easiest to remember (considering
we already know how to compute the covariance) is to simply divide the covariance
by the product of the standard deviations of both attributes. Let's try again, using
our previous example (measures of height in centimeter). To obtain the correlation of
height and weight, we simply type:

Covariance / (sd(heights) * sd(weights))

The output is 1. Let's check that we computed the correlation correctly, with the
following line of code:

cor(heights,weights)

We were right! The output is 1 again. So what does this value mean? A correlation
can have any value comprised between -1 and 1. A value of -1 means a complete
and negative correspondence of the changes in the values of the two attributes. A
correlation of 1 means a complete and positive correspondence. A value of 0 means
that the two attributes are independent of each other. The correlation allowed us to
examine the strength of the correspondence of changes in height and weight in our
example, that is, a perfect association between the two attributes.

It is worth mentioning that the Pearson's correlation only assesses linear relationships
between the attributes. Let's have a look at what is meant here using the classic
example of Anscombe's quartet. The dataset is part of the datasets package and,
therefore, directly available to us:

data(anscombe)

The dataset is composed of eight attributes x1, x2, x3, x4, y1, y2, y3, and y4. We
want to know the correlation between each of the x and y attributes that share their
numbers (x1 and y1; x2, and y2, …). This is achieved using the following code:

c1=cor(anscombe$x1, anscombe$y1)
c2=cor(anscombe$x2, anscombe$y2)
c3=cor(anscombe$x3, anscombe$y3)

Chapter 8

[143]

c4=cor(anscombe$x4, anscombe$y4)
c1; c2; c3; c4

These four correlations have a value of 0.816. Does this mean that the relationship
between each of the x and y attributes is the same? You might already suspect that
this is not the case at all. In Chapter 2, Visualizing and Manipulating Data Using R and
Chapter 3, Data Visualization with Lattice, we have looked at scatterplots already,
and discovered that they allow visualizing the relationship between two attributes.
Let's examine the relationships that we are interested in here. This demonstration is
inspired by the example in the documentation (type ?anscombe):

par(mfcol=c(1,4))
plot(anscombe$x1, anscombe$y1)
plot(anscombe$x2, anscombe$y2)
plot(anscombe$x3, anscombe$y3)
plot(anscombe$x4, anscombe$y4)

Figure 8.4: Scatterplots of four relationships yielding the same correlation (Anscombe's quartet)

From the preceding diagram, we can see that the relationship between x1 and y1 is
positive and linear (y1 increases as x1 increases), but a bit noisy. The relationship
between x2 and y2 is curvilinear—y2 increases as x2 increases up to an x1 value of
11, and decreases from the x1 value of 12. The relationship between x3 and y3 is
linear but not as strong as for the first example. The correlation is so high because of
a bivariate outlier at x1 = 13.

Probability Distributions, Covariance, and Correlation

[144]

Finally, we can see that x4 is constant (with values equal to 8) and that, here again,
a bivariate outlier is responsible for the strong association between x4 and y4. Note
that, without this observation, the correlation could not be computed as there would
be no variance in x4. In this extreme case, looking at the plot would already have
discouraged any further analysis of the relationship between x4 and y4!

It is quite tempting to simply take note of the correlation between attributes,
especially when they show interesting linear patterns in the data or confirm our
hypotheses. We should refrain from drawing conclusions from a mere look at the
correlations, and always visualize the data first. It is also necessary to always examine
the significance of the correlations before drawing any conclusion from them.
Therefore, I suggest using the cor.test() function instead of the cor() function, as
it performs a significance test and informs about the 95 percent confidence intervals.
In the case of the relationship between x1 and y1, check the following code:

cor.test(x1, y1)

The output follows and shows that the correlation is significantly different than 0
(p-value = 0.00217). Relying on 95 percent confidence intervals, the true value
of the correlation lies between lower and upper bounds of the confidence intervals.
These are respectively of 0.42 and 0.95. Note that we can know whether the
correlation is significant by looking at the confidence interval; if it doesn't include 0,
the correlation is significant at the given threshold (here 95 percent). The estimate of
the correlation lies exactly in between these values and is 0.814205, which we can
round to 0.816.

Pearson's product-moment correlation is as follows:

data: x1 and y1

t = 4.2415, df = 9, p-value = 0.00217

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.4243912 0.9506933

sample estimates:

 cor

0.8164205

We obtain the part of variance shared between two attributes by squaring the
correlation. In the present case, the two attributes share 0.8164205^2*100 = 66.65424
% of their variance.

Chapter 8

[145]

For the interested reader, assessing the significance of the correlation requires
the computation of the corresponding t value, which is obtained by dividing the
correlation by the square root of 1 minus the correlation, divided by the degrees
of freedom (the sample size minus 2). The significance is then obtained from the
Student's t distribution.

Spearman's correlation
When the attributes are not normally distributed, Spearman's correlation should
be used. This correlation coefficient first ranks the observations of both attributes
included in the analysis. It then computes the differences between the ranks of each
observation on these two attributes. Finally, it computes the correlation coefficient. In
the computation, 6 times the sum of the observation-wise differences, divided by the
number of observations multiplied by the number of observations squared minus 1,
is subtracted from 1.

Let's examine this in an example using the following attributes named A and B:

A = c(3,4,2,6,7)
B = c(4,3,1,6,5)

We first compute the ranks of observations of A and B:

RankA = rank(A); RankB = rank(B)

The spearman correlation can be computed like this:

1 - ((6 * sum((RankA-RankB)^2)) / (5* (5^2 -1)))

The output is 0.8. Let's check if our answer is right:

cor(A,B,method = "spearman")

We did it correctly; the output using the function in R is 0.8 as well:

As mentioned earlier, it is necessary to know the significance of the correlation,
which we can obtain using the following code:

cor.test(A,B, method = "spearman")

Probability Distributions, Covariance, and Correlation

[146]

The output follows and can be interpreted as the output of the test for a Pearson's
correlation (but note, no confidence intervals are provided here):

 Spearman's rank correlation rho

data: A and B

S = 4, p-value = 0.1333

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8

In this case, the correlation, although high, is not significantly different from 0, as the
p value fails to reach the threshold of 0.05 (p-value = 0.1333).

Summary
In this chapter, we have briefly examined what statistical distributions are and why
they are important when doing statistical inference. After a short introduction to
descriptive statistics (mean and standard deviation), we have discovered how to
obtain covariance and correlation coefficients programmatically. In the next chapter,
we will discuss regression analysis in R.

[147]

Linear Regression
In Chapter 7, Exploring Association Rules with Apriori, we examined association
rules with apriori. In the previous chapter, we have notably examined statistical
distribution and the relationships between two attributes using several measures of
association. These didn't infer any causation between the attributes, only dependence.
If we have normally distributed attributes and want to examine how one attribute
affects another attribute, we can rely on simple linear regression instead. If we want
to examine how several attributes affect an attribute, we can rely on multiple linear
regressions.

In this chapter, we will notably:

•	 Build and use our own simple linear regression algorithm
•	 Create multiple linear regression models in R
•	 Perform diagnostic tests of such models
•	 Score new data using a linear regression model
•	 Examine how well the model predicts the new data
•	 Have a quick look at robust regression and bootstrapping

Linear Regression

[148]

Understanding simple regression
In simple regression, we analyze the relationship between a predictor (the
attribute we think to be the cause) and the criterion (the attribute we think is the
consequence). There are two very important parameters (among others) that result
from a regression analysis:

•	 The intercept: This is the average value of the criterion when the predictor is
0, which is when the effect of the predictor is partialed out

•	 The slope coefficient: This indicates by how many units, on average, the
criterion changes (with reference to the intercept) when the predictor
increases by one unit

Regression seeks to obtain the values that explain the relationship the best, but such
a model only seldom reflects the relationship entirely. Indeed, measurement error,
but also attributes that are not included in the analysis affect also the data. The
residuals express the deviation of the observed data points to the model. Its value
is the vertical distance from a point to the regression line. Let's examine this with
an example of the iris dataset. We have already seen that the dataset contains data
about iris flowers. For the purpose of this example, we will consider the petal length
as the criterion and the petal width as the predictor.

We will now create a scatterplot, with the petal width on the x axis and the petal
length on the y axis, in order to display the data points on these dimensions. We
will then compute the regression model and use it to add the regression line to the
plot. This should look familiar, as we have already done this in Chapter 2, Visualizing
and Manipulating Data Using R, and Chapter 3, Data Visualization with Lattice, when
discussing plots in R. This redundancy is not accidental—plotting data and their
relationship is one of the most important aspects of analyzing data:

1 plot(iris$Petal.Length ~ iris$Petal.Width,
2 main = "Relationship between petal length and petal width",
3 xlab = "Petal width", ylab = "Petal length")
4 iris.lm = lm(iris$Petal.Length ~ iris$Petal.Width)
5 abline(iris.lm)

Chapter 9

[149]

The following plot has been manually annotated in gray in order to make the
discussion more intelligible:

Annotated scatterplot of petal length and petal width (iris dataset) with regression line

In this example, the intercept is around 1.1 and the slope coefficient is around 2.2
(about 3.3 minus the intercept). As mentioned before, the vertical distance from the
line to a point is the residual for that specific point.

Now that this is understood, we will examine how these values can be computed,
before going into the results in greater depth.

Linear Regression

[150]

Computing the intercept and slope coefficient
In simple regression, data can be modeled as the intercept, plus the slope multiplied
by the value of the predictor, plus the residual. We are now going to explain how
to compute these.

The slope coefficient can be computed in several ways. One is to multiply the
correlation coefficient by the standard deviation of the criterion divided by
the standard deviation of the predictor. Another is to first compute the value
corresponding to the number of observations multiplied by: the sum of the
observation-wise products of the criterion and the predictor minus the sum of
the values of the predictor multiplied by the sum of the values of the criterion
multiplied. The result is then divided by the number of observations multiplied
by the sum of the squared values of the predictor minus the squared sum of the
predictors. Another way is to rely on matrix computations, which we will not
examine here.

The intercept can simply be computed as the mean of the criterion minus the slope
coefficient multiplied by the mean of the predictor.

Let's take the same example as before to compute the regression coefficient
(using the two computations we have seen), and the intercept.

To compute the slope coefficient using the first way presented, we start by
computing the correlation coefficient of the petal length and petal width, and
the standard deviation of the predictor and criterion. We then perform the
described computation:

SlopeCoef = cor(iris$Petal.Length,iris$Petal.Width) *
 (sd(iris$Petal.Length) / sd(iris$Petal.Width))
SlopeCoef

The outputted value is 2.22994. Let's program a function that implements the
other way to compute the slope we've seen. The criterion will be called y and the
predictor x:

1 coeffs = function (y,x) {
2 ((length(y) * sum(y*x)) -
3 (sum(y) * sum(x))) /
4 (length(y) * sum(x^2) - sum(x)^2)
5 }
6 coeffs(iris$Petal.Length, iris$Petal.Width)

Chapter 9

[151]

The output is 2.22994 again. Let's compare it to the model we built using the lm()
function previously:

iris.lm

The output first reminds us of the function call we used, which is pretty handy as
working with many different models can sometimes be confusing. The intercept and
slope coefficients are provided. As can be seen, with a difference of 0.07, we are very
close with our own computations:
Call:

lm(formula = iris$Petal.Length ~ iris$Petal.Width)

Coefficients:

 (Intercept) iris$Petal.Width

 1.084 2.230

Let's now build a function that computes the intercept and returns both intercept and
coeff﻿﻿﻿﻿﻿﻿﻿﻿﻿icient:

1 regress = function (y,x) {
2 slope = coeffs(y,x)
3 intercept = mean(y) - (slope * mean(x))
4 model = c(intercept, slope)
5 names(model) = c("intercept", "slope")
6 model
7 }
8 model = regress(iris$Petal.Length, iris$Petal.Width)
9 model

The value of the intercept is 1.08358, which is the same (but unrounded) as that in
the output of the lm() function.

Now that we have seen how to compute the intercept and slope coefficients, let's
turn to how residuals can be obtained.

Obtaining the residuals
Let's say it once more; the criterion value of any observation can be obtained by
summing the intercept, the slope coefficient multiplied by its predictor value, and the
residuals. As we now know the intercept and slope coefficient and have the data, we
can compute the residuals as follows:

resids = function (y,x, model) {
 y - model[1] - (model[2] * x)
}

Linear Regression

[152]

Let's compute the residuals for our model:

Residuals = resids(iris$Petal.Length, iris$Petal.Width, model)

Let's display the first six residuals:

head(round(Residuals,2))

The output is as follows:

[1] -0.13 -0.13 -0.23 -0.03 -0.13 -0.28

Let's also display the residuals computed by the lm() function:

head(round(residuals(iris.lm),2))

Comparing the preceding and following outputs, we can see that the values are
the same:

1 2 3 4 5 6
-0.13 -0.13 -0.23 -0.03 -0.13 -0.28

Residuals are very important for several reasons. There is not enough space to
explain all of them. Let's just say that an assumption of regression is that residuals
are normally distributed. If residuals are not normally distributed, this can be
caused by the non-normal distribution of our data, and/or because of nonlinear
relationships between the predictors and criterion.

The Quantile-Quantile plot (Q-Q plot) allows visually comparing the actual
distribution of the residuals in terms of quantiles, to the theoretical distribution
(quantiles as well). This plot can be easily obtained in R. Type the following:

plot(iris.lm)

Then simply click on the R Graphics window (or, if you are using RStudio, hit
Return in the console) until the R Graphics window displays the following:

Chapter 9

[153]

Q-Q plot of the residuals in the iris.lm model

As the residuals fit on the dotted line reasonably well, we can conclude they are
distributed normally. But notice that the values in both extremities do not fit the line
so well, so these observations might threaten the reliability of our results. We should
be fine but still, we will examine robust regressions and bootstrapping at the end of
the chapter.

We will examine the linearity of residuals further in our practical example in the
next section.

Linear Regression

[154]

Computing the significance of the coefficient
As we have seen in the first section of the chapter, determining the significance of the
estimates is essential for interpretation; even a big coefficient cannot be interpreted
if it is not significantly different from 0. Here, you will learn a little more about the
computation of the significance for simple regression:

1.	 The first thing we need to do is to compute the standard error of the slope
coefficient (a value that assesses its precision).

2.	 We obtain the standard error by first taking the square root of: the sum of
the squared residuals (SSR) divided by the degrees of freedom (DF—that is,
the number of observations minus two).

3.	 We then divide this value (called S in the following code) by the square root
of the squared mean subtracted values of x.

4.	 After we obtain the standard error, we can compute a t-score by dividing
the slope coefficient by the standard error.

5.	 The score is then compared to 0 on a t-distribution.

There is also a significance test for the intercept. In order to compute the standard
error, we first:

1.	 Compute 1 divided by the number of observations, plus the square mean of
the predictor, divided by the sum of the squared mean subtracted values of
the predictor.

2.	 We take the square root of this value and multiply it by the value S that we
saw previously.

After we obtain the standard error for the intercept, its t-score can be computed as
seen previously. The following code implements this and returns the standard error,
t score, and significance for both the slope coefficient and the intercept of a simple
linear regression:

1 Significance = function (y, x, model) {
2 SSE = sum (resids(y,x,model)^2)
3 DF = length(y)-2
4 S = sqrt (SSE / DF)
5 SEslope = S / sqrt(sum((x-mean(x))^2))
6 tslope = model[2] / SEslope
7 sigslope = 2*(1-pt(abs(tslope),DF))
8 SEintercept = S * sqrt((1/length(y) +
9 mean(x)^2 / sum((x- mean(x))^2)))
10 tintercept = model[1] / SEintercept
11 sigintercept = 2*(1-pt(abs(tintercept),DF))

Chapter 9

[155]

12 RES = c(SEslope, tslope, sigslope, SEintercept,
13 tintercept, sigintercept)
14 names(RES) = c("SE slope", "T slope", "sig slope",
15 "SE intercept", "t intercept", "sig intercept")
16 RES
17 }

Let's see this in practice using the example of the iris dataset.

round(Significance(iris$Petal.Length,iris$Petal.Width, model), 3)

The output is as follows:

SE slope T slope sig slope SE intercept T intercept sig intercept
0.051 43.387 0 0.073 14.85 0

Let's now compare our results with the results obtained with lm():

summary(iris.lm)

The following output shows that we obtain the exact same results using our function:

Call:
lm(formula = iris$Petal.Length ~ iris$Petal.Width)

Residuals:
Min 1Q Median 3Q Max
-1.33542 -0.30347 -0.02955 0.25776 1.39453

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.08356 0.07297 14.85 <2e-16 ***
iris$Petal.Width 2.22994 0.0514 43.39 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4782 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

Linear Regression

[156]

If you have been following all along, you now know how to write functions that
compute the intercept, slope coefficient and residuals, standard errors, t values,
and significance for simple regression. Congratulations! We wish to mention that,
as always, the code is presented for pedagogical purposes only, and that the tools
provided by default in R or the packages available on CRAN should always be used
for real applications.

In the next section, we will briefly examine how multiple regression works, then
switch to a more practical section using multiple regression. We will discover
important new concepts in the process.

Working with multiple regression
In multiple regression, we are interested in testing the impact of several predictors
on a criterion, instead of just one in simple regression. Here, the value of the
observations can be computed as the intercept plus the slope coefficient multiplied
by the predictor value (for each predictor) plus the residuals.

The analysis estimates the unique contribution of the predictors to the criterion—that
is, each obtained slope coefficient value (there is one for each predictor) and the
intercepts that are controlled for the influence of the other predictors on the criterion.
We are not going to detail the calculation of the slope and intercept for multiple
regression as this involves more complex explanations than for simple regression
and will not add much to your understanding; most of what we have seen (except
the calculation of the coefficients and degrees of freedom) remains valid for multiple
regression. We will now directly skip to a more practical section.

Analyzing data in R: correlation and
regression
In the previous section, we saw how to perform simple regression analysis in R.
We also saw that multiple regression is more complex to compute but have
discussed that most of what we have already seen applies to multiple regression
as well.

Chapter 9

[157]

First steps in the data analysis
In what follows, we will use a dataset of 40 cases generated from a covariance
matrix obtained from a subsample of real data we collected, which is about burnout
components, work satisfaction, work-family conflict, and organizational commitment
in hospitals. There are six attributes in the dataset that we will analyze here; all are
self-assessments made by nurses:

•	 Commit: Commitment to their hospital (criterion here)
•	 Exhaust: Emotional exhaustion (one of the three components of burnout)
•	 Depers: Depersonalization (one of the three components of burnout)
•	 Accompl: Accomplishment (one of the three components of burnout)
•	 WorkSat: Work satisfaction
•	 WFC: Work-family conflict

Our goal here is to understand how burnout dimensions and work satisfaction affect
commitment of nurses to their hospital.

We start by generating the data and examining the correlation table and significance.
Make sure the matcov.txt file is in your working directory before running this code:

1 library(psych)
2 install.packages("MASS"); library(MASS)
3 matcov = unlist(read.csv("matcov.txt", header=F))
4 covs = matrix(matcov, 6, 6)
5 means = c(4.47,14.95,4.87,36.08,5,1.88)
6 set.seed(987)
7 nurses = data.frame(mvrnorm(n=40, means, covs))
8 colnames(nurses)= c("Commit","Exhaus","Depers","Accompl",
9 "WorkSat","WFC")
10 corr.test(nurses)

Linear Regression

[158]

The output is provided here:

Call:corr.test(x = nurses)
Correlation matrix

Commit Exhaus Depers Accompl WorkSat WFC
Commit 1.00 -0.64 -0.27 0.27 0.76 -0.52
Exhaus -0.64 1.00 0.20 0.12 -0.50 0.68
Depers -0.27 0.2 1.00 0.04 -0.51 -0.02
Accompl 0.27 0.12 0.04 1.00 0.23 0.15
WorkSat 0.76 -0.50 -0.51 0.23 1.00 -0.39
WFC -0.52 0.68 -0.02 0.15 -0.39 1.00
Sample Size
[1] 40
Probability values (entries above the diagonal are adjusted for multiple tests)

Commit Exhaus Depers Accompl WorkSat WFC
Commit 0.00 0.00 0.73 0.73 0.00 0.01
Exhaus 0.00 0.00 1.00 1.00 0.01 0.00
Depers 0.10 0.23 0.00 1.00 0.01 1.00
Accompl 0.09 0.45 0.79 0.00 0.96 1.00
WorkSat 0.00 0.00 0.00 0.16 0.00 0.13
WFC 0.00 0.00 0.92 0.35 0.01 0.00

The values with a probability value lower than 0.05 are significant by common
standards. We can see, for instance, that, in this subsample, commitment is
significantly correlated with exhaustion, work satisfaction, and work-family conflict,
but not with depersonalization and accomplishment. We can also see that the
predictors are intercorrelated—that is, they share part of their variance. We will
examine whether this constitutes a problem for a regression analysis later.

Let's plot the relationship to see if the relationships indeed seem linear:

plot(nurses)

Chapter 9

[159]

Scatterplots of attributes in the provided nurse's dataset

Here, we will only comment on the scatterplots in which commitment is included.
We can see that there is visibly a negative linear association between commitment
and exhaustion and work-family conflict. There is visibly a positive linear
relationship between commitment and work satisfaction. Notice that there are
also other relations visible on the plots, such as the visible relation between work-
family conflict and exhaustion. From these scatterplots, nothing in the data seems
problematic for the relationships we are exploring.

Linear Regression

[160]

We will include some more regression diagnostics, but you are also encouraged
to read about the assumptions of linear regression (for instance, at http://www.
basic.northwestern.edu/statguidefiles/mulreg_ass_viol.html), and check
whether the data fulfils these assumptions. If the assumptions of regression are
violated, it is possible (actually probable) that the results are unreliable. Readers can
also read about the detection of multivariate outliers here: https://stat.ethz.ch/
education/semesters/ss2012/ams/slides/v2.2.pdf.

Sadly, there is not enough space to check all these here.

Performing the regression
We want to know if there is a relationship between our predictors and the criterion.
We first want to know whether the three burnout dimensions predict commitment
to the hospital.

We create the model by using the formula syntax as an argument in the lm()
function. What is on the left of the tilde (~) sign is the criterion, on the right are
the predictors, separated by a plus (+) sign:

model1 = lm(Commit ~ Exhaus + Depers + Accompl, data = nurses)

Let's examine the coefficients and their significance in the summary of the model:

summary(model1)

The following output shows that exhaustion and accomplishment are predictors
of commitment to the hospital (look at p-value under Pr(<|t|) or refer to *)—
exhaustion negatively (more emotionally exhausted people are less committed)
and accomplishment positively (more accomplished people are more committed):

Call:
lm(formula = Commit ~ Exhaus + Depers + Accompl, data = nurses)

Residuals:
Min 1Q Median 3Q Max
-1.35915 -0.3259 0.02808 0.35635 0.97905

Coefficients:
Estimate Std. Error t value Pr(>|r|)

(Intercept) 4.331261 0.398985 10.856 6.62E-13 ***
Exhaus -0.048725 0.008625 -5.649 2.05E-06 ***
Depers -0.027053 0.019795 -1.367 0.18021

http://www.basic.northwestern.edu/statguidefiles/mulreg_ass_viol.html
http://www.basic.northwestern.edu/statguidefiles/mulreg_ass_viol.html
https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v2.2.pdf
https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v2.2.pdf

Chapter 9

[161]

Accompl 0.032923 0.010392 3.168 0.00313 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4892 on 36 degrees of freedom
Multiple R-squared: 0.55, Adjusted R-squared: 0.5125
F-statistic: 14.67 on 3 and 36 DF, p-value: 2.116e-06

We can also see that p-value for F-statistic is significant (bottom of the output),
and that 55 percent of variance (see Multiple R-squared) is predicted. The adjusted
R-squared considers the number of predictors in the calculation of its value. It is
recommended that you specify which value you use when reporting the results, or
you can also report both values. Here, we can see that Adjusted R-squared is just a
bit lower than Multiple R-squared, meaning that the results are not much affected
by the number of predictors.

Checking for the normality of residuals
We have seen that it is important that residuals are normally distributed. We can do
this visually by plotting, as in the following line of code:

hist(resid(model1), main="Histogram of residuals",
 xlab="Residuals")

From the preceding output, we might suspect a slight deviation from normality.

Histogram of the residuals

Linear Regression

[162]

We can test this suspicion with the Shapiro-Wilk test, using the following code:

shapiro.test(resid(model1))

The output follows and shows that the residuals do not significantly depart
from normality:

 Shapiro-Wilk normality test

data: resid(model1)

W = 0.9776, p-value = 0.6001

Let's examine the Q-Q plot (type plot(model1) and click on the RGraphics window
until the appropriate plot appears). This leads to a similar conclusion but, as in the
iris preceding dataset example, some observations might prove problematic. We
briefly discuss robust regression at the end of the chapter. Robust regression does not
assume a normal distribution of residuals. For now, we proceed with the following
regression diagnostic.

Checking for variance inflation
We also want to check whether there is a problem of variance inflation in our
analysis—that is, whether the predictors are correlated a lot (multicollinear). For this
purpose, we will rely on the vif() function of the HH package. The function takes
the lm formula as an argument:

install.packages("HH"); library(HH)
vif(Commit ~ Exhaus + Depers + Accompl, data = nurses)

The output follows:

Exhaus Depers Accompl
1.054369 1.040318 1.015791

There are several rules-of-thumb to assess this. One is to consider vif values higher
than 10 to be problematic, another is to consider a predictor as problematic if the
square root of the vif value is higher than 2. This is not the case here, therefore,
we consider our data to be non-multicollinear here.

Chapter 9

[163]

Examining potential mediations and
comparing models
Let's now examine whether including work-family conflict and work satisfaction
permits to predict an additional part of variance. We first will ask R to fit a second
model, and then will compare model1 and model2 using the anova() function:

model2 = lm(Commit ~ Exhaus + Depers + Accompl + WorkSat,
 data = nurses)
anova(model1,model2)

The following output shows that indeed the second model predicts additional
variance in comparison to model1 (see the significance of the F statistic for the
comparison (under Pr(>F)):

Here is an analysis of the variance table:

Model 1: Commit~Exhaus+Depers+Accompl
Model 2: Commit~Exhaus+Depers+Accompl+WorkSat

Res.Df RSS Df
Sum of
Sq F Pr(>F)

1 36 8.6161
2 35 5.7181 1 2.898 17.738 0.0001685 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We will now examine the second model, as the additional variance predicted is
significantly different from 0:

summary(model2)

Linear Regression

[164]

The output is provided here:

Call:
lm(formula = Commit ~ Exhaus + Depers + Accompl + WorkSat, data = nurses)

Residuals:
Min 1Q Median 3Q Max
-0.98119 -0.22736 -0.01279 0.26613 0.73625

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.969672 0.65044 3.028 0.004598 **
Exhaus -0.029524 0.00846 -3.49 0.001326 **
Depers 0.014686 0.019123 0.768 0.447656
Accompl 0.017392 0.009345 1.861 0.071142 .
WorkSat 0.46372 0.110103 4.212 0.000168 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4042 on 35 degrees of freedom
Multiple R-squared: 0.7014, Adjusted R-squared: 0.6673
F-statistic: 20.55 on 4 and 35 DF, p-value: 8.662e-09

This model predicts 70 percent of variance in commitment, which is pretty good. We
can see that work satisfaction is a significant predictor of commitment to the hospital,
that the unique contribution of accomplishment is no longer significant (there is
therefore a potential mediation), and that the contribution of exhaustion has been
reduced when including work satisfaction in the model (there is therefore a potential
partial mediation). This might be because of a mediation of the relationship between
the two burnout components and commitment by job satisfaction. Let's test this
relationship:

model3 = lm(WorkSat ~ Exhaus + Depers + Accompl, data = nurses)
summary(model3)

Chapter 9

[165]

Let's examine the output:

Call:
lm(formula = WorkSat ~ Exhaus + Depers + Accompl, data = nurses)

Residuals:
 Min 1Q Median 3Q Max
-1.57359 -0.26967 -0.06299 0.24855 1.47504

Coefficients:
Estimate Std. Error t value

(Intercept) 5.0927 0.49899 10.206 3.59E-12 ***
Exhaus -0.04141 0.01079 -3.839 0.000482 ***
Depers -0.09001 0.02476 -3.636 0.00086 ***
Accompl 0.03349 0.013 2.577 0.014217 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6118 on 36 degrees of freedom
Multiple R-squared: 0.5162, Adjusted R-squared: 0.4758
F-statistic: 12.8 on 3 and 36 DF, p-value: 7.59e-06

We can notice that 51 percent of the variance of job satisfaction is predicted by the
burnout components. All three burnout components are significantly related to work
satisfaction (p < .05), negatively for emotional exhaustion and depersonalization and
positively for personal accomplishment.

In order to ascertain mediation, we need to proceed to Sobel tests. The bda package
contains the necessary function, called mediation.test(). Let's try to see whether
the effect of exhaustion on commitment is mediated by work satisfaction:

install.packages("bda"); library(bda)
mediation.test(nurses$WorkSat,nurses$Exhaus,nurses$Commit)

Linear Regression

[166]

In the following output, under Sobel, we can see that p.value is significant, as the
presence of work satisfaction in the model decreases the effect of exhaustion, that
work satisfaction is significant even though exhaustion is present in the model,
and that, because the Sobel test is significant, we can confirm that there is indeed a
partial mediation of the effect of exhaustion on commitment by work satisfaction. In
other words, exhaustion decreases work satisfaction, and in turn, work satisfaction
increases commitment.

Sobel Aroian Goodman
z.value -2.9722704 -2.93647119 -3.00941168
p.value 0.00295606 0.0033197 0.00261754

The value resulting from the Sobel test follows a z distribution. In order to obtain
this value, the slope coefficients of the predictor regressed on the mediator (a) are
multiplied by the slope coefficient of the mediator regressed on the criterion (b). This
value is then divided by the square root of: b squared multiplied by the squared
standard error of a plus a squared multiplied by the squared standard error of b.
The formula is as follows:

Showing this is important, as very often, analysts include dozens or hundreds
of predictors in their models without taking into consideration that the included
predictors could themselves be related to each other. Readers are therefore advised
to check for meaningful relationships between the attributes they intend to include
as predictors in regression analyses before drawing conclusions on the final model!

Predicting new data
A particularly interesting use of regression is to examine how well a model predicts
new data. This is easily achieved in R. We will first build the dataset named nurses2
in the same way we did for the first dataset:

1 matcov2 = unlist(read.csv("matcov2.txt", header = F))
2 covs2 = matrix(matcov2, 6, 6)
3 means2 = c(4.279, 13.152, 5.156, 39.28, 5.153, 1.875)

Chapter 9

[167]

4 set.seed(987)
5 nurses2 = data.frame(mvrnorm(n=40, means2, covs2))
6 colnames(nurses2)= c("Commit","Exhaus","Depers","Accompl",
7 "WorkSat","WFC")

To fit new data, we rely on the predict.lm() function:

predicted = predict.lm(model1, nurses2)

This results in the vector of predicted values being assigned to the criterion, which
we call predicted.

As we have the real values for the commitment of individuals to the hospital in the
second dataset as well, we can examine the correlations between those:

cor.test(predicted, nurses2$Commit)

The following output shows that the correlation between the predicted values and
the real values is 0.5766194. This value is significant and might seem pretty good at
first sight:

 Pearson's product-moment correlation

data: predicted and nurses2$Commit

t = 4.3506, df = 38, p-value = 9.848e-05

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.3231561 0.7528925

sample estimates:

 cor

0.5766194

Let's square this value to know how much of the variance in the commitment of the
individuals of the second sample is predicted by the model:

0.5766194 ^2 *100

The output is 33.24899. This means only 33 percent of the variance in commitment
is predicted by the model, compared to 55 percent in the training data!

Now, we can also compute the residuals:

residuals_test = nurses2$Commit - predicted

Linear Regression

[168]

We are now able to compute the F value for our model. We have seen that the F
value is used to assess the overall significance of the model. In our case, the F
value is obtained as follows:

1.	 First, we need to know the number of degrees of freedom for the model; this
is equal to the number of predictors we have, which is 3. We also need the
degrees of freedom for the error; this is the number of observations minus
the degrees of freedom of the model, minus 1.

2.	 We then compute the sum of squares for the model as the sum of squared
differences between the predicted values and the mean of the criterion. The
sum of squares for the error is obtained as the sum of the squared differences
between the observed and the predicted values.

3.	 We then compute the mean squares for the model as the sum of squares for
the model divided by the degrees of freedom for the model. We compute the
mean squares for the error as the sum of squares for the error divided by the
degrees of freedom for the error.

4.	 Finally, we obtain the F-statistic by dividing the means squares for the model
by the mean squares for the error.

The following function does just that:

1 ComputeF = function(predicted, observed, npred) {
2 DFModel = npred # the number of predictors
3 DFError = length(observed) - DFModel -1
4 SSModel = sum((predicted - mean(observed))^2)
5 SSError = sum((observed - predicted)^2)
6 MSModel = SSModel / DFModel
7 MSError = SSError / DFError
8 F = MSModel / MSError
9 F
10 }

Let's try, first, with the original model to check whether the function works fine.
The output is 14.67, which is the same as the one outputted when we requested
the summary of model1:

ComputeF(unlist(model1[5]), nurses$Commit, 3)

Now let's try to see if the new data is predicted well enough by the model:

ComputeF(predicted, nurses2$Commit, 3)

Chapter 9

[169]

The outputted F value is 10.4842.

We can test this value using the following line of code. The output shows that the
threshold F value at a ceiling of 0.05 on the F distribution for our model is 2.866266:

qf(.95, df1=3, df2=36)

We can therefore, trust that our model significantly predicts new data.

Robust regression
In the example datasets that we used in this chapter, we have seen that some
observations might threaten the reliability of our results, because of the deviations
of their residuals from a normal distribution. The Shapiro test performed on the
residuals of model1 (nurses dataset) has shown that the distribution of the residuals
was not significantly different from a normal distribution. However, let's be
particularly cautious and analyze the same data using robust regression.

As we mentioned earlier, robust regression does not require the residuals to be
normally distributed, and therefore, fits our purpose. We will not explore the
algorithm. For details about this, the reader can consult Robust Regression in R by Fox
and Weisberg (2012). Here, we simply perform robust regression using the rlm()
function of the MASS package. Let's first install and load it:

install.packages("MASS"); library(MASS)
model1.rr = rlm(Commit ~ Exhaus + Depers + Accompl, data = nurses)
summary(model1.rr)

The output is as follows:

Call: rlm(formula = Commit ~ Exhaus + Depers + Accompl, data = nurses)
Residuals:
Min 1Q Median 3Q Max
-1.4052046 -0.3233886 -0.0003426 0.3734567 1.0108386

Coefficients:
Value Std. Error t value

(Intercept) 4.3602 0.3849 11.3271
Exhaus -0.0518 0.0083 -6.2306
Depers -0.0279 0.0191 -1.4602

Linear Regression

[170]

Accompl 0.0338 0.01 3.3676

Residual standard error: 0.5536 on 36 degrees of freedom

You might notice that the output of rlm() is laconical in comparison to the output
of lm(). There are no p-values provided, no R-squared values, no F test. This makes
the use of rlm() quite unpractical, as the user will have to compute them by hand.
There is so much controversy on how to do it that the computations in other software
packages are currently questioned! The reader interested in computing the robust
R-squared can read the paper A robust coefficient of determination for regression by
Renaud and Victoria-Feser (2010).

For our example, it seems that the results using lm() and rlm() are pretty similar
(see the output of the preceding summary of model1). Therefore, relying on lm() is
advised here. However, if you want to be really sure, why not try bootstrapping.

Bootstrapping
The principle of (nonparametric) bootstrapping is to create a number of sample K
of size N drawn with replacement from the original sample, where N is the original
sample size. The parameters are estimated for each sample separately. This allows
computing their confidence intervals, a measure of the variability of the parameters.
Apart from making deviations from normal distributions less problematic, using
bootstrapping is useful for samples that have a small number of observations (less
than 100), as with ours.

We will discuss bootstrapping in Chapter 14, Cross-validation and Bootstrapping
Using Caret and Exporting Predictive Models Using PMML, but let's have a sneak-peek
now! Bootstrapping is easily performed using several functions in R—for instance,
the boot() function in the boot package. But let's have a little fun and perform
bootstrapping ourselves, 2,000 times. We will first generate the samples and obtain
the estimates. We then display the estimates for the first six samples (rounded to the
third decimal):

1 ret = data.frame(matrix(nrow=0, ncol=6))
2 set.seed(567)
3 for (i in 1:2000) {
4 data = nurses[sample(nrow(nurses), 40, replace = T),]
5 model_i <- lm(Commit ~ Exhaus + Depers + Accompl,

Chapter 9

[171]

6 data = data)
7 ret = rbind(ret,c(coef(model_i),summary(model_i)$r.square,
8 summary(model_i)$fstatistic[1]))
9 }
10 names(ret) = c("Intercept","Exhaus","Depers",
11 "Accomp","R2","F")
12 round(head(ret), 3)

The following is the output. As you can see, the values of the parameters are all
different. This is because, as we mentioned, they are based on different samples.
Yet, they are not far apart from the others:

Intercept Exhaus Depers Accomp R2 F
1 4.080 -0.037 -0.055 0.041 0.585 16.928
2 4.196 -0.052 -0.048 0.040 0.694 27.273
3 5.054 -0.052 -0.047 0.022 0.736 33.416
4 4.103 -0.041 -0.042 0.037 0.545 14.373
5 4.663 -0.041 -0.022 0.022 0.454 9.980
6 4.525 -0.049 -0.035 0.029 0.497 11.874

Using the same seed number as before, we can see which observations of the original
data were selected for, say, the first sample:

set.seed(567)
sample(nrow(nurses), 40, replace = T)

In the following output, we can see that the first and 21st observations of the original
dataset appear three times, the 3rd, 11th, and 12th, while the others appear twice.
The 6th, 9th, 10th, and others appear once. And, finally, observations 4, 5, 7, and
others do not appear in this sample:

[1] 30 36 26 20 11 10 3 21 24 22 14 11 15 24 1 3 21 30 2 12

[21] 6 21 9 16 1 34 37 34 16 39 22 29 2 38 29 38 37 28 12 1

Linear Regression

[172]

As we mentioned, generating several samples in this fashion allows you to get a
sense of the variability of the parameters, and confidence intervals are a good way to
determine this variability. So let's compute the 95 percent confidence intervals based
on the data we just generated. The formula to compute confidence intervals for the
mean is:

Here z is the threshold value of the 97.5th percentile (1 – (0.05/2)) in the z
distribution. It is obtained with the following line of code:

qnorm(0.975)

So here we go:

1 CIs = data.frame(matrix(nrow = ncol(ret), ncol = 2))
2 for (j in 1:ncol(ret)) {
3 M = mean(ret[,j])
4 SD = sd(ret[,j])
5 lowerb = M - (1.96* (SD / sqrt(2000)))
6 upperb = M + (1.96* (SD / sqrt(2000)))
7 CIs[j,1] = round(lowerb,3)
 CIs[j,2] = round(upperb,3)
8 }
9 names(CIs) = c("95% C.I.lower bound", "95% C.I.upper bound")
10 rownames(CIs) = colnames(ret)
11 CIs

The resulting confidence intervals are provided here:

95% C.I. lower bound 95% C.I. upper bound
Intercept 4.297 4.325
Exhaus -0.048 -0.048
Depers -0.029 -0.027
Accomp 0.033 0.033
R2 0.558 0.570
F 18.179 19.139

Chapter 9

[173]

The confidence intervals encompass all the values between the lower and upper
bounds. We can see that no confidence interval contains 0, meaning that, with a 95
percent threshold, values reported are statistically different from 0 (more correctly
put, there is only a 5 percent chance of observing values inside these bounds
if the true value of the parameters in the population is 0). So we conclude that
bootstrapped coefficients are different from 0, as is the multiple R-squared value.

As you might have noticed, the value to which to compare the confidence intervals
for F is not 0, but a value that depends upon the degrees of freedom. We computed
this value earlier and it was 2.866266. As the confidence interval for F does not
include this value, we can be assured that the bootstrapped model predicts a
significant part of variance.

Summary
In this chapter, we examined how to develop functions that perform simple
regression analyses, and how to multiply regression in R using a real life example.
We have examined the importance of significance tests for regression, and have
briefly discussed robust regression and bootstrapping. Note that, when data about
the predictors and the criterion are collected simultaneously, causation cannot be
established. In order to ascertain causation, data must be collected longitudinally—
that is, the predictors before the criterion.

In the next chapter, we will examine the classification of observations using the
Naïve Bayes and k-Nearest Neighbor algorithms.

[175]

Classification with k-Nearest
Neighbors and Naïve Bayes

In Chapter 8, Probability Distributions, Covariance, and Correlation, we examined
statistical distributions, covariance, and correlation. In the previous chapter, you
learned about regression. Here, we will focus on classification using Naïve Bayes
and k-Nearest Neighbors (k-NN). The problem we want to solve, when using both
algorithms, is as follows:

•	 We have data in which class (the attribute we want to predict) values are
known. We call this training data.

•	 We have data in which class values are not known (or we pretend we don't
know to test that our classifier works, in which case we call this testing data).

•	 We want to predict unknown class values using information from data where
the class is known.

For instance, imagine we have collected data about the health habits of individuals.
For half of these individuals, we know whether or not they have developed a
disease, say, in the following year. For the other half of our sample, we don't know
if they have developed this disease. We will seek to gain knowledge about the
unknown values by using the observed relationships in the data where we know
the disease outcome (the class).

In this chapter, we will discover two new algorithms for data classification:

•	 Naïve Bayes
•	 k-Nearest Neighbors

Classification with k-Nearest Neighbors and Naïve Bayes

[176]

Understanding k-NN
Remember that, in Chapter 4, Cluster Analysis, we discovered that distance matrices
are used by k-means to cluster data into a user-specified number of groups of
homogenous cases. k-NN uses distances to select the user-defined number of
observations that are closest (neighbors) to each of the observations to classify.
In k-NN, any attribute can be categorical or numeric, including the target. As we
discuss categorization in this chapter, I will limit the description to categorical target
(called class attributes).

The classification of a given observation will be made as a majority vote in the
neighbors—that is, the most frequent class among the k closest observations. This
means that the classification of observations will depend on the chosen number of
neighbors. Let's have a look at this. The following figure represents the membership
of gray-outlined circles to two class values: the plain grey-lined and the dotted
grey-lined. Notice there is one filled grey circle as well, of which we don't know the
class membership. The black circles or ellipses contain the closest neighbors on two
imaginary attributes, with k = 1, k = 3, and k = 5 being the closest neighbors:

Nearest neighbors with different k values

One can see that, with k = 1, the membership of the filled circle would be dotted
grey-lined, as the neighbor has this membership, but, with k = 3, the filled circles
would be classified as filled grey-lined as the majority of the neighbors (two out
of three) have this membership. With k = 5, the filled circle would be classified as
dotted grey-lined, because three out of five of the neighbors have this membership.

Chapter 10

[177]

The neighbors are determined according to a distance measure. We discussed
distances in Chapter 4, Cluster Analysis, so I'll just provide a quick reminder here.

Distances can be understood as a measure of how much observations differ from one
another, overall, on all the considered attributes. There are several types of distances.
For instance, the Euclidean distance is the square root of the sum of the squared
differences on each attribute between two observations. Its formula is provided here:

The Manhattan (or taxi cab distance) is the sum of the absolute differences on each
attribute between two observations. Its formula is:

We will use the most common distance—Euclidean distance—in this chapter.

Before going in depth into the analyses of data with R, let's classify some data
by hand and examine whether we did it right by relying on the knn() function.

For this exploration, we will rely on the iris dataset one more time.

We will start by computing the Euclidean distances between each observation.
We want the full distance matrix so that we can determine the k-NN more easily
(but not optimally):

1 distances = dist(iris[1:4], upper = T, diag = T)

We now need to create a data frame from the distances. This is only done in our
manual implementation of k-Nearest Neighbors. For this purpose, we will install and
load the reshape2 package. Using the melt() function, we will obtain an attribute
containing all the distances, instead of the matrix of distances we created previously:

2 install.packages("reshape2"); library(reshape2)
3 distances.df <- melt(as.matrix(distances))

Classification with k-Nearest Neighbors and Naïve Bayes

[178]

Now that we have our data frame, we will select the k closest observation to each
observation and assign a value to each unclassified observation based on the values
of the majority of its neighbors:

4 k = 5
5 N = length(levels(as.factor(distances.df$Var2)))
6 Nearest = matrix(nrow= N, ncol = k)
7 level_count = length(levels(as.factor(iris[[5]])))
8 classif = rep(0,N)
9 for (i in 1:N) {
10 temp = subset(distances.df, Var2 == i)
11 nearest =
12 unlist(head(temp[order(temp$Var2,temp$value),],k)[1])
13 votes = iris[0,5]
14 for (j in 1:length(nearest)) {
15 votes[j] = iris[5][nearest[j],]
16 classif[i]= which.max(table(votes))
17 }
18 }
19 iris$Species_class[classif == 1] = "setosa"
20 iris$Species_class[classif == 2] = "versicolor"
21 iris$Species_class[classif == 3] = "virginica"
22 table(iris$Species,iris$Species_class)

The following output shows some differences in our classification and the correct
classes of the data, but overall, our version of k-NN worked pretty fine:

setosa versicolor virginica
setosa 50 0 0
versicolor 0 47 3
virginica 0 2 48

The following line of code allows us to identify which observations were classified
incorrectly:

rownames(iris)[iris$Species != iris$Species_class]

The output shows that this was the case for observations in rows 71, 73, 84, 107,
and 120.

Chapter 10

[179]

Does our version of k-NN work as well as the version implemented in R in the knn()
function? Let's find out! We first install and load the class package, which contains
the knn() function:

install.packages("class"); library(class)

As we did with our version of knn, we will use the same data as training and testing
data (this is easier but not optimal as we will see later):

iris$knn_class = knn(iris[1:4],iris[1:4],iris[[5]], 5)

There are 150 observations in the iris dataset. Let's see how many are classified in
the same class by our implementation of k-NN and the knn() function:

sum(iris$knn_class == iris$Species_class)

The output is 150, which means that both implementations performed as well with
this data. Nevertheless, as always, the code presented here is meant for understand
the algorithm only, and will only work if the training and testing data are the same.
It therefore has only pedagogical applications. Be sure to always use functions
available on CRAN for real data analysis.

Working with k-NN in R
When explaining the way k-NN works, we have used the same data as training and
testing data. The risk here is overfitting: there is noise in the data almost always (for
instance due to measurement errors) and testing on the same dataset does not let us
examine the impact of noise on our classification. In other words, we want to ensure
that our classification reflects real associations in the data.

There are several ways to solve this issue. The most simple is to use a different set
of data for training and testing. We have already seen this when discussing Naïve
Bayes. Another, better, solution is to use cross-validation. In cross-validation, the
data is split in any number of parts lower than the number of observations. One
part is then left out for testing and the rest is used for training. Training is then
performed again, leaving another part of the data out for testing, but including the
part that was previously used for testing. We will discuss cross-validation in more
detail in Chapter 14, Cross-validation and Bootstrapping Using Caret and Exporting
Predictive Models Using PMML.

Here, we will use a special case of cross-validation: leave-one-out cross-validation, as
this is readily implemented in the function knn.cv(), which is also included in the
class package. In leave-one-out cross-validation, each observation is iteratively left
out for testing, and all other observations are used for training.

Classification with k-Nearest Neighbors and Naïve Bayes

[180]

We will perform leave-one-out cross-validation using the Ozone dataset, which
contains air quality data. We will now install and load the mlbench package,
as it contains the data. Missing data will be omitted here:

install.packages("mlbench"); library(mlbench)
data(Ozone)
Oz = na.omit(Ozone)

The dataset originally contains 366 observations (203 after omitting observations
containing a missing gate) and 13 attributes. Type ?Ozone after installing the
package for a description of the attributes. The first attribute is the month where the
observation was collected. For the purpose of the analysis, we will recode the month
in a new attribute—data collected between April and September will be coded 1, and
the others 0:

Oz$AprilToSeptember = rep(0,length(Oz[,1]))
Oz$AprilToSeptember[as.numeric(Oz[[1]])>=4 &
 as.numeric(Oz[[1]])<=9] = 1

There are 92 observations that were collected between April and September. The
task will be to classify the observations on this attribute. In order to illustrate the
importance of using cross-validation, we will do this first using the whole dataset
for training and testing. Later, we will rely on cross validation. Notice that the first
argument of knn() is the training dataset, the second is the testing dataset, the third
is the class attribute, and the fourth is the number of neighbors. It is recommended to
set k to odd values in order to avoid ties. We will use three neighbors here. We will
see how to select k later:

Oz$classif = knn(Oz[2:13],Oz[2:13],Oz[[14]], 3)

We then examine the confusion matrix:

table(Oz$classif,Oz[[14]])

The following confusion matrix shows that the majority of the observations were
classified correctly, but about 15 percent were misclassified, (12+19) / 203 = 0.1527094:

0 1
0 92 12
1 19 80

Remember that, in this case, all the observations are part of the training dataset. What
happens if we classify observations that are not used for training ? Let's find out:

Oz$classif2 = knn.cv(Oz[2:13],Oz[[14]], 3)

Chapter 10

[181]

Note that knn.cv() takes the dataset as the first argument, the class as
the second argument, and k as the third argument.

Let's examine the confusion matrix:

table(Oz$classif2,Oz[[14]])

The following confusion matrix shows that, again, most observations were correctly
classified, but the proportion of incorrectly classified observations is higher
(27+28)/203 = 0.270936:

0 1
0 83 27
1 28 65

The proportion of incorrectly classified observations is almost twice as high
as before. This matters because, when attempting to predict data that is really
unknown, we could have unrealistic expectations about the performance of k-NN,
if relying on the data used for training for testing. We will discuss performance
measures at the end of the chapter.

How to select k
Duda, Hart, and Stork (in their book, Pattern Classification, 2000) propose to select k
as the square root of the number of observations. While such a rule-of-thumb has the
merit of simplicity, it does not always lead to better classifications. In the case of our
example, the ratio of misclassified observations using leave-one-out cross-validation
rises to 35 percent when setting k to the square root of the number of observations.

Another way to select k is to choose the number of neighbors that maximizes some
performance measure. This implies running the analysis several times with different
k values until such maxima is found. We can also set a reasonable limit of neighbors,
an arbitrary 10 percent of the dataset. So let's do this with the data in our example. We
will be maximizing accuracy (the opposite of the misclassification ratio), but another
measure (for instance precision or recall—see the end of the chapter) can be used:

1 Accur = rep(0,20)
2 for (i in 1:20) {
3 classification = knn.cv(Oz[2:13],Oz[[14]], i)
4 Accur[i] = sum(classification == Oz[[14]])/203
5 }

Classification with k-Nearest Neighbors and Naïve Bayes

[182]

So let's examine the best number of neighbors for our data:

6 which.max(Accur)

The output is 3, so we selected the best number initially!

Now that we have a working knowledge of classification using k-NN, let's see how
to do it with Naïve Bayes.

Understanding Naïve Bayes
Naïve Bayes uses conditional probabilities in order to classify the observations.
In this section, you will learn how it works. We will invent a simple dataset, and
a disease, for this purpose. Let's have a look at the table. The table shows health
behaviors of 11 individuals and whether or not 10 of them have developed DiseaseZ
(the name of our made up disease) one year after these behaviors have been assessed.
What we want to know is whether the individual is at risk of developing the
disease. We will solve this using existing data about the individual and associations
previously found in other individuals:

Smoking Drinking PhysicalActivity Movies Music Sunbathing DiseaseZ
YES YES NO NO NO YES YES
YES NO YES NO YES YES NO
NO YES NO NO YES NO YES
NO NO YES NO NO YES YES
YES YES NO NO NO NO YES
NO NO YES YES NO NO NO
NO YES YES YES NO NO NO
YES YES YES YES YES YES YES
NO NO NO NO NO NO NO
YES YES YES YES YES YES YES
NO YES NO YES NO YES

What we can tell from the table is that the probability of developing DiseaseZ is
6/10 = 0.6. We will call it the prior probability—if we don't know anything about
an individual, we can tell he/she has a 60 percent chance of developing DiseaseZ.
The posterior probability is what we want to know—that is, the probability that an
individual will develop the disease knowing their health behavior. This requires
computing the conditional probabilities for each of the health behaviors—that is,
what is the probability that a behavior is performed by someone who has developed
the disease, and someone who hasn't.

Chapter 10

[183]

The reader can load the dataset as follows (make sure the file diseaseZ.txt is in
your working directory):

1 DiseaseZ = read.table("DiseaseZ.txt", header = T, sep="\t")

We first create two datasets, one with individuals with DiseaseZ and the other with
individuals without DiseaseZ, and compute the number of cases in each:

2 Sick = subset(DiseaseZ, DiseaseZ=="YES")
3 NotSick = subset(DiseaseZ, DiseaseZ=="NO")
4 dim(Sick)[1]
5 dim(NotSick)[1]

The output indicates that there are six individuals in the Sick data frame, and four in
the NotSick data frame, which is what we computed before. We can now obtain the
conditional probabilities using the following code:

6 prob.Sick = colSums(Sick[,1:6]== "YES")/6
7 prob.NotSick = colSums(NotSick[,1:6]== "NO")/4

The probabilities of having performed the behaviors for individuals who were and
were not sick (rounded to the second decimal) are displayed in the following table.
As a reminder, behaviors performed by the individual to classify are indicated by an
X in the last row of the table:

Smoking Drinking PhysicalActivity Movies Music Sunbathing
DiseaseZ
== 1 0.67 0.83 0.5 0.33 0.5 0.67
DiseaseZ
== 0 0.25 0.25 0.75 0.50 0.25 0.25

X X X

As can be noticed from the conditional probabilities alone, there are differences in
the performance of the behaviors between people who have and have not developed
the disease. Proportionally, more people who have been smoking, drinking, listening
to music, and have been sunbathing have developed the disease, compared to those
who haven't. Performing physical activities, going to see movies and listening to
music are related to not having the disease in this fictitious example.

Classification with k-Nearest Neighbors and Naïve Bayes

[184]

But is there an association between the behaviors? I mean, do people who smoke
also drink? This is a possibility, but Naïve Bayes assumes that all the attributes that
are used to predict the classes are independent of each other. This is clearly not the
case in the real world. But, it turns out, Naïve Bayes classifies the observations quite
reliably even though it is based on this unrealistic assumption. Naïve Bayes uses the
conditional joint probabilities to determine the class of the observations for which the
class is unknown. So let's try computing those ourselves. In order to do this, we also
need the probabilities of not having performed the behaviors given the class. They
are equal to 1 minus the probability of performing the behaviors.

The probabilities of not having performed the behaviors are displayed here:

Smoking Drinking PhysicalActivity Movies Music Sunbathing
DiseaseZ
== 1 0.33 0.17 0.5 0.67 0.5 0.33
DiseaseZ
== 0 0.75 0.75 0.25 0.5 0.75 0.75

We now can compute the probability that our unclassified individual has or has not
developed DiseaseZ by computing the joint probability of each behavior given both
outcomes, multiplied by the prior probability. Let's recall that the individual has
not been smoking, has been drinking, didn't take physical activities, has been to the
movies, has not listened to music, and has been sunbathing.

For the outcome DiseaseZ == 1, the joint probability is:

(.33 * .83 * .5 * .33 * .5 * .67) * .6 = 0.009083894

For the outcome DiseaseZ == 0, the joint probability is:

(.75 * .25 * .25 * .5 * .75 * .25) * .4 = 0.001757813

As this value is higher for DiseaseZ == 1 as compared to DiseaseZ ==0, we will
conclude that the individual to classify is at risk of developing the disease.

Now let's have a look at what an R implementation of Naïve Bayes finds out! We start
by installing and loading the e1071 package that contains the naiveBayes() function:

1 install.packages("e1071")
2 library(e1071)

We then train a classifier (we will use observations 1 to 10 for training), and inspect
its content:

3 Classify = naiveBayes(DiseaseZ[1:10,1:6],
4 DiseaseZ[1:10,7])
5 Classify

Chapter 10

[185]

Let's examine the values as shown in the following output. We can see that the prior
probabilities are the same as we computed before: 0.4 for not having DiseaseZ,
and 0.6 for having DiseaseZ, so we computed this right. Good! Now let's examine
the conditional probabilities. We are not going to comment on all. We'll just have a
look at those under smoking. We reported a conditional probability of smoking of
0.67 among individuals who developed DiseaseZ. The classifier reports the same
thing (but rounds after seven decimals, whereas we did this after two). We found a
conditional probability of not smoking of 0.33 (that is 1 minus 0.67, as probabilities
must sum to 1) among those individuals. That's what the classifier found as well.
For individuals who didn't develop the disease, we computed a probability of 0.25
of being a smoker, and a probability of 0.75 of not being a smoker. I will let you
examine the output to see what values are reported by the classifier:

The classifier for our first example

Classification with k-Nearest Neighbors and Naïve Bayes

[186]

We determined that the individual to classify was at risk of developing DiseaseZ,
based on her or his behaviors and the associated probabilities. Let's now see what
Naïve Bayes estimates:

predict(Classify, DiseaseZ[11,1:6])

As indicated in the output, the predict() function, given the naiveBayes()
classifier and the behavior of the individual to classify as arguments, gives the same
answer to this classification problem as we did:

[1] YES

Levels: NO YES

It is worth mentioning that Naïve Bayes is not limited to categorical predictors, and
works in a similar way with continuous ones, using density estimations instead of
conditional probabilities.

Now that we have demonstrated how Naïve Bayes works, we are going to examine
its use in detail.

Working with Naïve Bayes in R
For this example of working with Naïve Bayes in R, we are going to use the Titanic
dataset. The classification problem we have is to know whether or not individuals
died in the Titanic accident. We will create a training dataset and a testing dataset
(in order to test how well the classifier performs).

The first thing we need to know is how to convert the Titanic dataset (of class table)
to a data frame:

1 Titanic.df_weighted = data.frame(Titanic)

Let's have a look at the dataset:

Class Sex Age Survived Freq
1 1st Male Child No 0

2 2nd Male Child No 0
3 3rd Male Child No 35

4 Crew Male Child No 0

5 1st Female Child No 0
6 2nd Female Child No 0
7 3rd Female Child No 17

Chapter 10

[187]

Class Sex Age Survived Freq

8 Crew Female Child No 0

9 1st Male Adult No 118

10 2nd Male Adult No 154

11 3rd Male Adult No 387

12 Crew Male Adult No 670

13 1st Female Adult No 4

14 2nd Female Adult No 13

15 3rd Female Adult No 89

16 Crew Female Adult No 3

17 1st Male Child Yes 5

18 2nd Male Child Yes 11

19 3rd Male Child Yes 13

20 Crew Male Child Yes 0

21 1st Female Child Yes 1

22 2nd Female Child Yes 13

23 3rd Female Child Yes 14

24 Crew Female Child Yes 0

25 1st Male Adult Yes 57

26 2nd Male Adult Yes 14

27 3rd Male Adult Yes 75

28 Crew Male Adult Yes 192

29 1st Female Adult Yes 140

30 2nd Female Adult Yes 80
31 3rd Female Adult Yes 76
32 Crew Female Adult Yes 20

Classification with k-Nearest Neighbors and Naïve Bayes

[188]

As can be seen, there are five attributes: the class of the individuals (first class,
second class, third class, or crew), their sex and age, whether they survived, and the
frequency of cases in each cell. In order to create our training and testing datasets, we
first need to reconstruct the full dataset—that is, without the frequency weightings.
We'll write some ad hoc code to do just this:

1 Titanic.df_weighted = data.frame(Titanic)
2 # creating empty data frame to be populated
3 Titanic.df = Titanic.df_weighted[0,1:4]
4
5 # populating the data frame
6 k=0
7 for (i in 1:nrow(Titanic.df_weighted)){
8 if (Titanic.df_weighted[i,5]>0) {
9 n = Titanic.df_weighted[i,5]
10 for (j in 1:n) {
11 k = k + 1
12 Titanic.df [k,] =
13 unlist(Titanic.df_weighted[i,1:4])
14 }
15 }
16 }

Let's check whether we obtained the right output. We'll create a table again, and
compare it to the Titanic dataset:

table(Titanic.df) == Titanic

We omit the output here. Suffice to say that the entries in both tables (the one we
just built, and the Titanic dataset) are identical. We now know we computed the
data correctly.

What we want to do now is create the two datasets that we need—the training
dataset and the test dataset. We will go for a simple way of doing this instead of
using stratified sampling. Random sampling is enough for our demonstration
purposes here. We will set the seed to 1 so that the samples are identical on your
screen and in this book:

1 set.seed(1)
2 Titanic.df$Filter= sample(c("TRAIN","TEST"),
3 nrow(Titanic.df), replace = T)
4 TRAIN = subset (Titanic.df, Filter == "TRAIN")
5 TEST = subset (Titanic.df, Filter == "TEST")

Chapter 10

[189]

Now let's build a classifier based on the data in the TRAIN dataset, and have a look at
the prior and conditional probabilities:

6 Classify = naiveBayes(TRAIN[1:3],TRAIN[[4]])
7 Classify

The output, in the following screenshot shows that the conditional probability
(hereafter, simply probability) of dying, for individuals in the training dataset,
is 0.687395, whereas the probability of surviving is 0.3126095. Looking at
the conditional probabilities, we can see that people in first class have a higher
probability of surviving; in second class, the relative probability of surviving is
reduced; and third class passengers and crew members had high probabilities of
dying rather than that of surviving. Looking at the attribute Sex, we can see that
males had a higher probability of dying, which is the opposite of what is observed
for females. Children had a higher probability of surviving, whereas for adults, these
probabilities were quite similar.

The classifier for our second example

Classification with k-Nearest Neighbors and Naïve Bayes

[190]

We will now examine how well the classifier will be able to use this information to
classify the other individuals—that is, those of the testing dataset:

TEST$Classified = predict(Classify,TEST[1:3])
table(TEST$Survived,TEST$Classified)

As shown in the diagonals of the outputted confusion table presented here,
the classifier correctly predicted nonsurvival (true negatives) in 645 cases, and
survival (true positive) in 168 cases. In addition, the classifier incorrectly predicted
nonsurvival in 186 cases (false negative), and survival (false positive) in 60 cases:

No Yes
No 645 60
Yes 186 168

Computing the performance of
classification
There are several measures of performance that we can compute from the
preceding table:

•	 The true positive rate (or sensitivity) is computed as the number of true
positives divided by the number of true positives plus the number of false
negatives. In our example, sensitivity is the probability that a survivor is
classified as such. Sensitivity in this case is:
168 / (168 + 186) = 0.4745763

•	 The true negative rate (or specificity) is computed as the number of true
negatives divided by the number of true negatives plus the number of false
positives. In our example, specificity is the probability that a nonsurvivor is
classified as such. Specificity in this case is:
645 / (645 + 60) = 0.9148936

•	 The positive predictive value (or precision) is computed as the number of
true positives divided by the number of true positives plus the number of
false positives. In our example, precision is the probability that individuals
classified as survivors are actually survivors. Precision in this case is:
168 / (168 + 60) = 0.7368421

Chapter 10

[191]

•	 The negative predictive value is computed as the number of true negatives
divided by the number of true negative plus the number of false negatives. In
our example, the negative predictive value is the probability that individuals
classified as nonsurvivors are actually nonsurvivors. In this case, its value is:
645 / (645 + 186) = 0.7761733

•	 The accuracy is computed as the number of correctly classified instances
(true positives plus true negatives) divided by the number of cases correctly
classified plus the number of incorrectly classified instances. In our example,
accuracy is the number of survivors and nonsurvivors correctly classified as
such. In this case, accuracy is:
(645 + 168) / ((645 + 168) + (60 + 186)) = 0.7677054

•	 Cohen's kappa is a measure that can be used to assess the performance
of classification. Its advantage is that it adjusts for correct classification
happening by chance. Its drawback is that it is slightly more complex to
compute. Considering two possible class values, let's call them No and Yes.
The kappa coefficient is computed as the accuracy minus the probability
of correct classification by chance, divided by 1 minus the probability of
correct classification by chance. The probability of correct classification by
chance is the probability of correct classification of "Yes" by chance plus the
probability of correct classification of "No" by chance. The probability of the
correct classification of "Yes" by chance can be computed as the probability of
observed "Yes" multiplied by the probability of classified "Yes". Likewise, the
probability of correct classification of "No" by chance can be computed as the
probability of observed "No" multiplied by the probability of classified "No".
Let's compute the kappa for the preceding example.

•	 In the preceding example, the probability of the observed "No" is (645
+ 60) / (647+60+186+168) = 0.6644675. The probability of the classified
"No" is: (645 + 186) / (645 + 186 + 60 + 168) = 0.7847025. The probability
of correct classification of "No" by chance is therefore: 0.6644675 *
0.7847025 = 0.5214093. The probability of observed "Yes" is: (186 + 168) /
(186+168+645+60) = 0.3342776. The probability of classified "Yes" is: (60+186)
/ (60+186+645+186) = 0.2284123. The probability of correct classification
of "Yes" by chance is therefore: 0.3342776 * 0.2284123 = 0.07635312. We can
now compute the probability of correct classification by chance as: 0.5214093
+ 0.07635312 = 0.5977624. We have seen that accuracy is 0.7677054. We can
compute the kappa as follows:
(0.7677054 – 0.5977624) / (1 - 0.5977624) = 0.4224941.

Classification with k-Nearest Neighbors and Naïve Bayes

[192]

Kappa values can range from -1 and 1. Values below zero are meaningless. A
kappa of zero means that the classification is not better than what can be obtained
by chance. A kappa of one means a perfect classification. Usually values below .60
are considered bad, and values above .80 are preferred. In the case of our example
(kappa below .60), we would not trust the classification, and refrain from using the
classifier any further.

Summary
In this chapter, we have seen how k-NN and Naïve Bayes work by programming our
own implementation of the algorithms. You have discovered how to perform these
analyses in R. We have shown you that it is not optimal to test our classifier with the
data it has been trained with. We have seen that the number of neighbors selected
in k-NN impacts the performance of the classification and examined different
performance measures. In the next chapter, you will learn about decision trees.

[193]

Classification Trees
In Chapter 9, Linear Regression we discussed regression. In the previous chapter, we
were interested in classification using k-NN and Naïve Bayes. In this chapter, we
will continue the topic of classification and discuss it in the context of decision trees.
Decision trees notably allow class predictions (group membership) of previously
unseen observations (testing datasets or prediction datasets) using statistical criteria
applied on the seen data (training set).

Here, we will briefly examine the statistical criteria of six algorithms:

•	 ID3
•	 C4.5
•	 C5.0
•	 Classification and regression trees (CART)
•	 Random forest
•	 Conditional inference trees

We will also examine how to use decision trees in R, notably, how to measure the
reliability of the classifications using training and test sets.

Understanding decision trees
Before we go in depth into how decision tree algorithms work, let's examine their
outcome in more detail. The goal of decision trees is to extract from the training data
the succession of decisions about the attributes that explain the best class, that is,
group membership.

Classification Trees

[194]

In the following example of the conditional inference tree, we try to predict survival
(there are two classes: Yes and No) in the Titanic dataset we used in the previous
chapter. Now to simplify things, there is an attribute called Class in the dataset.
When discussing the outcome we want to predict (the survival of the passenger), we
will use a lowercase c (class), and when discussing the Class attribute (with 1st, 2nd,
3rd, and Crew), we will use a capital C. The code to generate the following plot is
provided at the end of the chapter, when we describe conditional inference trees:

Example of decision tree (conditional inference tree)

Decision trees have a root (here: Sex), which is the best attribute to split the data
upon, in reference to the outcome (here: whether the individuals survived or not).
The dataset is partitioned into branches on the basis of this attribute. The branches
lead to other nodes that correspond to the next best partition for the considered
branch. We can see that the attribute called Class is the best for both Male and
Female branches. The process continues until we reach the terminal nodes, where no
more partitioning is required. The proportion of individuals that survived and didn't
is indicated at the bottom of the plot.

Chapter 11

[195]

Here, we have used only categorical attributes, but numeric attributes can also
be used in the prediction of a categorical outcome in C45, CART, and conditional
inference trees.

We will now examine different algorithms for the generation of the decision about
the attributes upon which to partition the data. We will start with an easy algorithm
and continue with more complex ones.

ID3
ID3 is one of the simplest algorithms to produce decision trees with categorical
classes and attributes. We chose to explain it because of its simplicity (but will not
examine its use here). We will then build upon this understanding when discussing
the other algorithms.

ID3 relies on a measure called information gain to build the trees. The goal is to
maximize the predictive power of the tree by reducing the uncertainty in the data.

Entropy
Entropy is a measure of uncertainty in a source of information. We discuss it before
we talk about information gain, as information gain relies on the computation
of entropy.

Entropy is easily understood using an example. Let's consider three opaque boxes
containing 100 M&Ms each. In box 1, there are 99 red M&Ms and 1 yellow. In box 2,
there are as many red and yellow M&Ms. In box 3, there are 25 red M&Ms and
75 yellow. Knowing this, we want to guess the color of the next M&M we pick
from each of the boxes.

As you have guessed, it is easier to guess the color of the picked M&M in the first
box, because there is only one yellow M&M in the box. In this case, there is almost
no uncertainty. Contrarily, there is maximal uncertainty in the case of the second
box, because there is an equal probability that the M&M we pick from the box is red
or yellow. Finally, in the third box there is a relative uncertainty, because picking a
yellow M&M is three times as likely as picking a red one.

Classification Trees

[196]

Entropy is a measure of what we could intuitively grasp from previous knowledge
of the content of the boxes. In the following formula for the computation of entropy
(where c is the number of classes), p refers to the probability of each of the outcomes:

Let's examine the entropy for the M&Ms problem.

Here, entropy is measured as minus the probability of red multiplied by the base
two logarithm of the probability of red, minus the probability of yellow multiplied
by the base two logarithms of the probability of yellow:

- p_red * log2(p_red) - p_yellow * log2(p_yellow)

In box 1, the entropy is:

- (99/100) * log2(99/100) - (1/100) * log2(1/100) #= 0.08079314

In box 2, the entropy is:

- (50/100) * log2(50/100) - (50/100) * log2(50/100) # = 1

In box 3, the entropy is:

- (25/100) * log2(25/100) - (75/100) * log2(75/100) #= 0.8112781

Computing the entropy of attributes containing more categories can be done
 in a similar way: the sum of all - p_category * log2(p_category), where
p_category is the probability of each of the different categories iteratively
considered. For instance, let's imagine a yellow M&M is replaced by a blue
M&M in the third box. The entropy in that box is now:

- (25/100) * log2(25/100) - (74/100) * log2(74/100) - (1/100) *
 log2(1/100) #= 0.8735663

Now that entropy is understood, let's discuss information gain.

Chapter 11

[197]

Information gain
In the context of decision trees, information gain measures the difference in
uncertainty that is obtained by a partition of the data. It consists of the entropy
before the partition is performed from the entropy after the partition is done. To
illustrate this, let's take the example of the Titanic data we have discussed. We
need to preprocess the data first:

1 #preparing the dataset
2 Titanic.Weights = as.data.frame(Titanic)
3 Titanic.df = Titanic.Weights[rep(1:nrow(Titanic.Weights),
4 Titanic.Weights$Freq),]
5 Titanic.df = Titanic.df[,1:4]

The following code shows how many people did and didn't survive on the Titanic:

table(Titanic.df$Survived)

The output is provided here:

No Yes

1490 711

The entropy among all cases is computed as:

EntropAll = -(1490/2201) * log2(1490/2201) -(711/2201) *
 log2(711/2201) #= 0.9076514

The following code displays how many of the male and female individuals did and
didn't survive:

table(Titanic.df$Sex,Titanic.df$Survived)

Here is the output:

 No Yes

Male 1364 367

Female 126 344

The entropy among males is:

EntropM = -(1364/1731) * log2(1364/1731) -(367/1731) *
 log2(367/1731) # = 0.745319

Classification Trees

[198]

The entropy among females is:

EntropF = -(126/470) * log2(126/470) -(344/470) *
 log2(344/470) # = 0.8387034

The entropy after the partition is performed is computed as the sum of the entropies
for each category weighted by the proportion of the observations they contain:

EntropSex = ((1731/ 2201) * EntropM) + ((470/ 2201) *
 EntropF) # = 0.7652602

The information gain is:

InformationGain = EntropAll - EntropSex # = 0.1423912

While we provided an example only for the sex, ID3 computes the information gain
for all attributes that have not been selected at higher nodes. It iteratively creates the
next node selecting the attribute that provides the highest information gain. It then
continues until there are no more unused attributes, or if the node consists only of
attributes of the same class. In both cases, a leaf node is created. Generally speaking,
ID3 favors splits on attributes with a high number of modalities, and therefore, can
produce inefficient trees.

C4.5
C4.5 works in ways similar to ID3, but uses the gain ratio as a partitioning criterion,
which in part resolves the issue mentioned previously. Another advantage is that
it accepts partition on numeric attributes, which it splits into categories. The value
of the split is selected in order to decrease the entropy for the considered attribute.
Other differences from ID3 are that C4.5 allows for post-pruning, which is basically
the bottom up simplification of the tree to avoid overfitting to the training data.

The gain ratio
Using the gain ratio as partitioning criterion overcoming a shortcomes of ID3, which
is to prefer attributes with many modalities as nodes because they have a higher
information gain. The gain ratio divides the information gain by a value called split
information. This value is computed as minus the sum of: the ratio of the number of
cases in each modality of the attribute divided by the number of cases to partition
upon, multiplied by the base 2 logarithm of the number of cases in each modality of
the attribute (iteratively) divided by the number of cases to partition upon.

Chapter 11

[199]

The formula for split information is provided here:

Post-pruning
A problem frequently observed using predictive algorithms is overfitting. When
overfitting occurs, the classifier is very good at classifying observations in the
training dataset, but classifies unseen observations (for example, those from a testing
dataset) poorly. Pruning reduces this problem by decreasing the size of the tree
bottom up (replacing a node by a leaf on the basis of the most frequently observed
class), thereby making the classifier less sensitive to noise in the training data.

There are several ways to perform pruning. C4.5 implements pessimistic pruning.
In pessimistic pruning, a measure of incorrectly classified observations is used to
determine which nodes are to be replaced by leaves on the basis of the training
data only. In order to do this, a first measure is computed as: the multiplication of
the number of leaves multiplied by 0.5, plus the sum of the errors. If the number
of correctly classified observations in the most accurate leaf of the node plus 0.5 is
within one standard deviation around the previously computed value, the node is
replaced by the classification of the leaf.

C5.0
C5.0 is an improvement of C4.5. New features include boosting and winnowing.
The aim of boosting is to increase the reliability of the predictions by performing the
analysis iteratively and adjusting observation weights after each iteration. Higher
weight is given to misclassified observations giving them a higher importance in the
classification, which usually makes the predictions better. Winnowing refers to the
suppression of useless attributes for the main analysis.

Classification Trees

[200]

Classification and regression trees and
random forest
We will now introduce classification and regression trees (CART) and random forest.
CART uses different statistical criteria to decide on tree splits. Random forest uses
ensemble learning (a combination of CART trees) to improve classification using a
voting principle.

CART
There are a number of differences between CART used for classification and the
family of algorithms we just discovered. Here, we only superficially discuss the
partitioning criterion and pruning.

In CART, the attribute to be partition is selected with the Gini index as a decision
criterion. In classification trees, the Gini index is simply computed as: 1—the sum
of the squared probabilities for each possible partition on the attribute. The formula
notation is:

This is more efficient compared to information gain and information ratio. Note that
CART does not only do necessary partitioning on the modalities of the attribute, but
also merges modalities together for the partition (for example, modality A versus
modalities B and C).

CART can predict a numeric outcome, which is not the case for the attributes we
have seen previously. In the case of regression trees, CART performs regression
and builds the tree in a way that minimizes the squared residuals. As this chapter
is about classification, we will focus on this aspect here.

Regarding pruning, CART uses another dataset and generated pruned trees from
iterative simplification of the previous tree (replacement of nodes by leaves). It then
selects the tree that minimizes a measure called cost complexity. Cost complexity
is computed as the error rate of the considered tree, plus the number of leaves
multiplied by a complexity parameter. The complexity parameter can be set by the
user (or determined by CART). It can range from 0 to 1. The higher the value, the
smaller the obtained tree.

Chapter 11

[201]

Random forest
In random forest, an algorithm close to CART is used to produce trees. Differences
include the use of bagging and the selection of random predictors at each partition
of the tree. Each tree votes on the classification and the majority vote wins—how
democratic!

Bagging
The algorithm generates T trees (the default in the function we will use is T=500).
For each T, a different random sample (sampling with replacement) of observation is
obtained from the observation pool. The size of each of the samples is always the same
as the number of observations in the original data. The aim of bagging is to reduce the
impact of measurement error (noise) in the data and therefore avoid overfitting.

Random selection of attributes: for each partition, a number of attributes is selected.
The analysis is used on these predictors. As for bagging, this procedure avoids
overfitting to the training set, and therefore, a potentially better performance in
predicting a test set.

Conditional inference trees and forests
Unlike previous algorithms, conditional inference trees rely on statistical significance
in the selection of attributes on which to perform partitions. In conditional inference
trees, the class attribute is defined as a function of the other attributes (iteratively). In
short, the algorithm first searches for the attributes that significantly predict the class,
in a null hypothesis test that can be selected in the call of the function. The strongest
predictor (if any) is then selected for the first partition. Nodes are created after
splitting the partition attribute, if numeric, in a way that maximizes the goodness
of the split (we do not detail the required computations here). The algorithm then
repeats the operation for each of the nodes and continues until no attribute remains,
or none is significantly related to the class. More information is available in the
documentation of the partykit package.

Classification Trees

[202]

Installing the packages containing the
required functions
Let's start by installing the different packages.

Installing C4.5
J48 is the implementation of C4.5 in Weka. It is readily available to R users through
the RWeka package. Let's start by downloading and installing RWeka:

install.packages("RWeka"); library(RWeka)

This should work fine if the Java version (32 or 64 bit) matches the version of R
that you are running. If the JAVA_HOME cannot be determined from the Registry
error occurs, please install the correct Java version as explained at http://www.r-
statistics.com/2012/08/how-to-load-the-rjava-package-after-the-error-
java_home-cannot-be-determined-from-the-registry/. The package discussed
is the rJava package, but the advice given should work just fine for issues with
RWeka too.

Installing C5.0
C5.0 is included in the C50 package, which we will install and load:

install.packages("C50"); library(C50)

Installing CART
The rpart() function of the rpart package allows us to run CART in R. Let's start
by installing and loading the package:

install.packages("rpart"); library(rpart)

We'll also install the rpart.plot package, which will allow us to plot the trees:

install.packages("rpart.plot"); library(rpart.plot)

Installing random forest
Let's install and load the randomForest package:

install.packages("randomForest"); library(randomForest)

http://www.r-statistics.com/2012/08/how-to-load-the-rjava-package-after-the-error-java_home-cannot-be-determined-from-the-registry/
http://www.r-statistics.com/2012/08/how-to-load-the-rjava-package-after-the-error-java_home-cannot-be-determined-from-the-registry/
http://www.r-statistics.com/2012/08/how-to-load-the-rjava-package-after-the-error-java_home-cannot-be-determined-from-the-registry/

Chapter 11

[203]

Installing conditional inference trees
Let's install and load the partykit package that contains the ctree() function, which
we will use. We also install the Formula package, which is required by partykit:

install.packages(c("Formula","partykit"))
library(Formula); library(partykit)

Loading and preparing the data
Let's start by loading arules; the package contains the AdultUCI dataset, which we
will use first:

install.packages("arules")
library(arules)

In this dataset, the class (the attribute named income) is the annual salary of
individuals—whether it is above (modality large) or below (modality small) $50,000.
The attributes and their type can be seen on the following summary of the dataset:

data(AdultUCI)
summary(AdultUCI)

Here is the output:

Summary of the AdultUCI dataset

We can see that there are a lot of missing values. We will therefore now remove
the observations containing missing values from the dataset. There are also two
attributes we will not use: fnlwgt and education-num. The following are attributes
three and five, which we will therefore also remove from the dataset:

ADULT = na.omit(AdultUCI)[,-c(3,5)]

Classification Trees

[204]

We are now ready to generate our training and testing datasets. For this purpose,
we will use the createDataPartition() function of the caret package, which we
install with its dependencies:

install.packages("caret", dependencies =
 (c("Suggests","Depends")));
library(caret)
set.seed(123)
TrainCases = createDataPartition(ADULT$income, p = .5,
 list=F)

Notice the income attribute is unbalanced; there are far more small income than large
income individuals. Hence, we will rebalance this skewed dataset by oversampling
the minority class in the training dataset:

1 TrainTemp = ADULT[TrainCases,]
2 AdultTrainSmallIncome = TrainTemp[TrainTemp$income == "small",]
3 AdultTrainLargeIncome = TrainTemp[TrainTemp$income == "large",]
4 Oversample = sample(nrow(AdultTrainLargeIncome),
5 nrow(AdultTrainSmallIncome), replace = TRUE)
6 AdultTrain = rbind(AdultTrainSmallIncome,
7 AdultTrainLargeIncome[Oversample,])
8 AdultTest = ADULT[-TrainCases,]

Performing the analyses in R
Now that we have our data ready, we will focus on performing the analyses in R.

Classification with C4.5
We will first predict the income of the participants using C4.5.

The unpruned tree
We will start by examining the unpruned tree. This is configured using the
Weka_Control(U= TRUE). J48() argument in RWeka, which uses the formula
notation we have seen previously. The dot (.) after the tilde indicates that all
attributes except the class attribute have to be used. We used the control
argument to tell R that we want an unpruned tree (we will discuss pruning later):

C45tree = J48(income ~ . , data= AdultTrain,
 control= Weka_control(U=TRUE))

Chapter 11

[205]

You can examine the tree by typing:

C45tree

We will not display it here as it is very big: the size of the tree is 5,715, with 4,683
leaves; but we can examine how well the tree classified the cases:

summary(C45tree)

The performance of the classifier on the training dataset

We can see that even though about 89 percent of cases are correctly classified, the
kappa statistic (which we discussed in the previous chapter) is .78, which is not bad.
In practice, a value of 0.60 or higher is highly recommended.

The following will try to classify the test set and assign the predictions to a new
attribute in a data frame called Predictions:

Predictions = data.frame(matrix(nrow = nrow(AdultTest), ncol=0))
Predictions$C45 = predict(C45tree, AdultTest)

The pruned tree
Let's examine what happens with a pruned tree, before we see the result on unseen
data (the testing dataset):

C45pruned = J48(income ~ . , data= AdultTrain,
 control= Weka_control(U=FALSE))

Classification Trees

[206]

The resulting tree is smaller, but still quite big; it has a size of 2,278 and 1,767 leaves.
Typing the following line, you will see that around the same number of instances
were correctly classified and that kappa is now 0.76. Pruning the tree decreased the
classification performance on the training data:

summary(C45pruned)

The following will try to classify the test set and assign those to a new attribute
called PredictedC45pr, which we will examine later:

Predictions$C45pr = predict(C45pruned, AdultTest)

C50
As a reminder, C50 performs boosting, which is the reiteration of the classification
with a higher weight given to misclassified observations. Let's run a boosted C5.0
with 10 trials (boosted 10 times) and examine the output. Only the accuracy and
confusion matrix are displayed here, but you can examine the tree on your screen:

C50tree = C5.0(y = AdultTrain$income, x = AdultTrain[,-13],
 Trials = 10)
summary(C50tree)

Here is part of the output (at the bottom of your screen):

Evaluation on training data (22654 cases):

Decision Tree

Size Errors

708 1980 (8.7%) <<

(a) (b) <-classified as

---- ----

10061 1266 (a): class small

714 10613 (b): class large

The size of the tree is 714, which is much smaller than the previously unpruned
version of C4.5. We can see that the accuracy is a bit better using boosted C5.0 (8.4
percent misclassified observations). What about the kappa value? Let's try another
way to get it this time! It can be obtained by first creating a table from the confusion
matrix and then, calling the cohen.kappa() function on it:

1 TabC5.0= as.table(matrix(c(10061,1980,714,10613),
2 byrow=T, nrow = 2))

Chapter 11

[207]

3 library(psych)
4 cohen.kappa(TabC5.0)

The output shows that the kappa value is .77. In this case, C5.0 is similar to C4.5,
on the training data. Let's now create the prediction on unseen data, which we will
examine later:

Predictions$C5.0 = predict(C50tree, AdultTest)

CART
We will try to classify the same data again and see how well the CART performs on
our training and testing datasets:

CARTtree = rpart(income ~. , data= AdultTrain)

The following line of code displays a big output about the performed splits. We will
not comment on this here as the following plot is more informative:

summary(CARTtree)

Here, we will simply include the plot of the tree that is more readable:

rpart.plot(CARTtree, extra = 1)

As can be noted on the graph, the tree is far simpler than with C4.5 or C5.0:

A graph of the tree using CART

Classification Trees

[208]

Obtaining the confusion matrix for the training data is a bit more difficult with
CART. It requires predicting the class on the training data. The predictions are made
in terms of probabilities (as you can see when looking at the tree in its textual form).
We, therefore, recode values higher than .5 as a large income and those lower, as
a small income. We will also create a temporary data frame of the data without
missing values and will create the confusion matrix on this data frame. Finally,
we display the confusion matrix and the kappa value:

1 ProbsCART = predict(CARTtree, AdultTrain)
2 PredictCART = rep(0, nrow(ProbsCART))
3 PredictCART[ProbsCART[,1] <=.5] = "small"
4 PredictCART[ProbsCART[,1] >.5] = "large"
5 TabCART = table(AdultTrain$income, PredictCART)
6 TabCART
7 cohen.kappa(TabCART)

The output is shown here:

 large small

small 8640 2687

large 1630 9697

The accuracy for this classification is not very different from the other algorithms:

(8640+9696)/sum(TabCART) = 81%.

However, the kappa value is lower (0.62). Classification with CART is not good for
this dataset, but there are ways to improve it.

Pruning
As mentioned previously, pruning in CART is based on the generation simplified
trees from another dataset. So let's try to obtain an even simpler tree than before. The
cp argument on the code corresponds to the complexity parameter that we discussed
at the beginning of the section:

CARTtreePruned = prune(CARTtree, cp=0.03)

Chapter 11

[209]

The tree is even smaller now:

rpart.plot(CARTtreePruned, extra = 1)

A graph of a pruned tree using CART

I will now comment on this tree a bit. The root node is on the relationship attribute.
Let's examine the modalities of this attribute:

levels(AdultTrain$relationship)

The output is as follows:

[1] "Husband" "Not-in-family" "Other-relative" "Own-child"

[5] "Unmarried" "Wife"

From the plot, we can see that people who are Not-in-family, live with Other-
relative, with their Own-child, and are Unmarried have mostly a small income.
Among people who are not in these categories, the tree splits on the attribute
capital-gain. People with a capital gain lower than 4668 mostly have a low
income. The people in the other categories mostly have a large income.

Using the same approach as before, we obtain an accuracy of 78 percent on the
training dataset, and 81 percent on the second set. The kappa values here are only
0.56. This is not encouraging. However, remember that things can go much better
with other datasets, including your data (give it a try).

We now classify the test set for later:

ProbsCARTtest = predict(CARTtreePruned, AdultTest)
Predictions$CART[ProbsCARTtest[,1] <=.5] = "small"
Predictions$CART[ProbsCARTtest[,1] >.5] = "large"

Classification Trees

[210]

Random forests in R
RF = randomForest(y = AdultTrain$income, x = AdultTrain[,-13])

The confusion matrix can be obtained by typing:

RF

The output is as follows:

Call:

 randomForest(x = AdultTrain[, -13], y = AdultTrain$income)

 Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 3

 OOB estimate of error rate: 35.79%

Confusion matrix:

small large class.error

small 11301 26 0.0022954

large 8081 3246 0.7134281

This is pretty disappointing. The classification is even worse than with CART. What
about prediction accuracy on the testing dataset? Let's add this to our Predictions
data frame:

Predictions$RF = predict(RF, AdultTest)

Here, we used the default parameters. The classification should depend
notably on two arguments (type ?randomForest() in the console for
more arguments):

•	 mtry: This determines the number of predictors to be included
for each split. By default, mtry = sqrt(p), where p is the total
number of predictors in the analysis.

•	 cutoff: This determines the cutoff for the probability of
membership to be used in the classification. By default, for
dichotomous classification, cutoff = c(0.5, 0.5), which
means that a cutoff value of 0.5 is used as a threshold.

Chapter 11

[211]

Examining the predictions on the testing set
In the previous section, we predicted the income attribute on the testing set using
several algorithms. We can now examine which algorithm was better in these
predictions. We could do this manually, but it is faster and more fun to design some
code that gives immediate access to the accuracy of the different algorithms on this
data. So here we go:

1 values = data.frame(matrix(ncol = ncol(Predictions), nrow = 6))
2 rownames(values) = c("True +", "True -", "False +", "False -",
3 "Accuracy", "Kappa")
4 names(values) = names(Predictions)
5 for (i in 1:ncol(Predictions)) {
6 tab = table(AdultTest$income,Predictions[,i])
7 values[1,i] = tab[1,1]
8 values[2,i] = tab[2,2]
9 values[3,i] = tab[1,2]
10 values[4,i] = tab[2,1]
11 values[5,i] = sum(diag(tab))/sum(tab)
12 values[6,i] = cohen.kappa(tab)[1]
13 }
14 round(values,2)

In the output, we can see that although the algorithms all reached more than 70
percent of classification accuracy, the kappa value was never above 0.56. This is not
sufficient and we would not trust such a classification in practice. Contrary to what
could be expected, random forest performed the worst. It is, therefore, crucial to
always try several algorithms, and pick the one that works the best with your data:

C45 C45pr C5.0 CART RF
True + 9400 9352 9438 7543 11300
True - 2737 2920 2949 3338 793
False + 1927 1975 1889 3784 27
False - 1017 834 805 416 2961
Accuracy 0.8 0.81 0.82 0.72 0.80
Kappa 0.52 0.55 0.56 0.43 0.28

Classification Trees

[212]

Conditional inference trees in R
The following code was used to produce the figure we saw at the beginning of
the chapter:

1 set.seed(999)
2 TitanicRandom = Titanic.df[sample(nrow(Titanic.df)),]
3 TitanicTrain = TitanicRandom[1:1100,]
4 TitanicTest = TitanicRandom[1101:2201,]

Let's now generate and plot the tree:

CItree <- ctree(Survived ~ Class + Sex + Age, data=TitanicTrain)
plot(CItree)

We can examine the classification of the confusion matrix of the training and testing
datasets as we did using the previously presented algorithms:

1 CIpredictTrain = predict(CItree, TitanicTrain)
2 CIpredictTest = predict(CItree, TitanicTest)
3 TabCI_Train = table(TitanicTrain$Survived,CIpredictTrain)
4 TabCI_Test = table(TitanicTest$Survived,CIpredictTest)
5 TabCI_Train

The training dataset has the following confusion matrix:

CIpredictTrain

 No Yes

No 724 10

Yes 231 135

Here, we display the confusion matrix for the testing dataset:

CIpredictTest

 No Yes

No 746 10

Yes 226 119

We can see that in both datasets, only about a third of the individuals who survived
were correctly classified. The kappa values are very low—0.42 for the training set and
0.4 for the testing set, despite statistical significance at all splits in the training set!

Chapter 11

[213]

Yet, having a look at the figure at the beginning of the chapter, we can see that
almost all women were correctly classified. Sometimes, some subgroups are easier to
classify than others. This means that depending on the aim of your analysis, even the
preceding results might be very informative!

Caret – a unified framework for
classification
As we have seen, there are a number of differences between algorithms. For instance,
some use the formula notation and some the matrix notation. The caret package
uses a similar notation for all the algorithms it supports. Further, it contains tools
that perform sampling operations, such as generating training and testing data
with the same characteristics (stratified sampling), the use of boosting of bagging
with several algorithms, and cross-validation samples. Examples of cross-validation
include, for instance, the use of 10 subsamples, of which one is iteratively used as
testing data and the rest as training data (or the leave-one-out cross-validation,
where one observation is iteratively used as testing data and the rest as training
data). Other features are included as well, such as examining the performance of
the classification, as we have done previously. The caret package will be further
discussed in Chapter 14, Cross-validation and Bootstrapping Using Caret and Exporting
Predictive Models Using PMML.

Summary
In this chapter, we performed classifications using decision trees. We explored the
criteria used by several algorithms to perform the splits and described the features of
these algorithms. We described how to examine the performance of the algorithms
and discussed the importance of doing this on the training and testing datasets. In
the next chapter, we will discuss multilevel regression in R.

[215]

Multilevel Analyses
In Chapter 10, Classification with k-Nearest Neighbors and Naïve Bayes, we discussed
association with k-Nearest Neighbors and Naïve Bayes. In the previous chapter, we
examined classification trees using notably C4.5, C50, CART, random forests, and
conditional inference trees.

In this chapter, we will discuss:

•	 Nested data and the importance of dealing with them appropriately
•	 Multilevel regression including random intercepts and random slopes
•	 The comparison of multilevel models
•	 Prediction using multilevel modeling

Nested data
If you have nested data, this chapter is essential for you! What is meant by nested data
is that observations share a common context. The examples include:

•	 Consumers nested within shops
•	 Employees nested within managers
•	 Teachers and/or students nested within schools
•	 Nurses, patients, and/or physicians nested within hospitals
•	 Inhabitants nested in neighborhoods

Multilevel Analyses

[216]

We could imagine way more cases of data nesting. What they all have in common is
a data structure similar to the one depicted in the following figure:

A depiction of nested data

We will only discuss two levels of data with unique membership in this chapter,
but of course, more complex situations can arise. For instance, in all the preceding
examples, shops, managers, schools, hospitals, and neighborhoods can be nested
within higher level units (for example, companies, cities) which could be a third
level in the analyses). Also, crossed memberships could be imagined, for example,
patients sharing a hospital but not a neighborhood. This type of data is more
complex to analyze and as always, space is scarce in this chapter. Note also that it
usually happens that data is collected at both levels, for instance: the job satisfaction
of employees (level 1), and the type of leadership of the managers (level 2).

If your data has a hierarchical structure, traditional regression analysis will most likely
produce unreliable results. This is because the observations are not independent, but
the analysis assumes they are. One of the consequences is that standard errors can be
underestimated, which could lead to spuriously significant results.

Another problem is known as the Robinson effect, which refers to the increase in
the statistical relationship between attributes when data is aggregated as compared
to when they are not. While the phenomenon has not been been named after the
castaway, but the researcher who discovered the phenomenon, the result of blindly
aggregating data on the higher level and examining relationships between attributes
at that level might only lead to the shipwreck of the analysis.

Spurious results can also be due to characteristics of the context that are shared by
observations within the groups. Drawing conclusions at one level with data collected
at another level is likely to be erroneous because relationships might be different
at different levels. The atomistic fallacy is drawing conclusions at the lower level
from data at a higher level. The ecological fallacy is just the opposite—drawing
conclusions at a higher level from data at a lower level.

Chapter 12

[217]

Let's examine an example of ecological fallacy visually in the following figure:

A depiction of opposing findings at different levels

This plot represents fictional data from seven groups on two hypothetical attributes:
Attribute x and Attribute y. Imagine we compute the average values for each of the
groups (the mean of the dots in the dashed ovals); these aggregated values would
show a strong positive relationship (thick dashed line) between Attribute x and
Attribute y. However, if we examine the real relationship within each group, we can
see that Attribute x is actually slightly negatively related to Attribute y within each
group (thin plain lines).

Another related problem is the Simpson's paradox (named after the statistician,
not the cartoon character). In analyzing this dataset, we would also find a positive
relationship if we simply considered all the groups together in a regression analysis
at level 1; the positive relationship is due to the fact that the groups differ in the
values of Attribute y because of an unmeasured attribute, and concurrently, they
also differ in the values of Attribute x. In other words, the level of the unmeasured
attribute (here related to an increase in both x and y) is shared by the observations
within each group, but not between groups. Not making the distinction between
groups in the analysis would also lead to inaccurate results.

Multilevel Analyses

[218]

Multilevel regression
To solve all these issues, we can rely on a kind of analysis that can partial out (take
away) the variance due to the context. This can be done using multilevel regression
analysis (also known as mixed-effect regression). We will not go into the detail
of the computations of such highly complex analyses but will simply provide the
amount of information necessary to understand and perform the analysis at a basic
level. The necessary diagnostic checks are not fully presented here. Simply note that
diagnostics for linear regression apply, and that additional diagnostics should be
performed, such as checking the normality of residuals at level 2. We will not discuss
this further here. The Handbook of multilevel analysis book, edited by De Leeuw and
Meijer, provides the necessary information for diagnostics of multilevel models.

When we discussed regression in Chapter 9, Linear Regression, we showed that the
value of a criterion attribute for an observation is computed as the sum of:

•	 The intercept (the average value when the value of all included predictors
equal 0)

•	 The slope coefficient multiplied by the value of the predictor
(for each predictor)

•	 The residual (the difference between the predicted value and the
observed value)

We explained how the regression algorithm finds the parameters that minimize the
residuals on the whole sample.

Random intercepts and fixed slopes
In multilevel modeling, when considering predictors only at level 1 and considering
a common slope for all groups, the value of a criterion attribute on an observation is
schematically computed as the sum of:

•	 A common intercept
•	 A group-specific residual (which is the difference between the group's

intercept and the common intercept)
•	 The slope coefficient multiplied by the value of the predictor

(for each predictor)
•	 An observation specific residual

In this type of model, the effect of the attributes at level 1 is considered the same
across all groups. Only the intercept varies.

Chapter 12

[219]

When considering predictors at levels 1 and 2 and considering common slopes for all
groups, the computation is schematically the sum of:

•	 A common intercept
•	 A group-specific residual corresponding to the difference between the

group's intercept and the common intercept
•	 An overall slope coefficient multiplied by the value of the predictor (for each

predictor at level 1)
•	 An observation-specific residual

The computations are actually more complex, but this goes beyond the material
covered in this chapter. Simply note that it is the job of multilevel regression to find
the parameters that minimize the residuals on the whole sample.

Random intercepts and random slopes
Until now, we have considered that the slope of level 1 predictors is the same
across groups. This is not always the case. Let's examine this with an example. We
will use simulated data generated from real data, with attributes about burnout
(personal accomplishment, depersonalization, and emotional exhaustion) and work
satisfaction. You might remember that we have used similar data in the chapter
about regression.

The following code loads the covariance's data and generates the dataset from it
(100 observations for each of 17 hospitals):

1 library(MASS)
2 set.seed(999)
3 Covariances = read.table("Covariances.dat", sep = "\t", header=T)
4 df = data.frame(matrix(nrow=0,ncol=4))
5 colnames(df) = c("Hospital","Accomp","Depers","Exhaus","WorkSat")
6 for (i in 1:17){
7 if(i == 1) {start_ln = 1}
8 else start_ln = 1+((i-1)*4)
9 end_ln = start_ln + 3
10 covs = Covariances[start_ln:end_ln, 3:6]
11 rownames(covs)=Covariances[start_ln:end_ln,2]
12 dat=mvrnorm(n=100, c(rep(0,4)), covs)
13 df = rbind(df,dat)
14 }

Multilevel Analyses

[220]

15 df$hosp = as.factor(c(rep(1,100), rep(2,100), rep(3,100),
16 rep(4,100), rep(5,100), rep(6,100),
17 rep(7,100),rep(8,100),rep(9,100),
18 rep(10,100),rep(11,100),rep(12,100),
19 rep(13,100),rep(14,100),rep(15,100),
20 rep(16,100),rep(17,100)))

The following code will plot the relationship (using an lm() model) between
depersonalization and work satisfaction with each of the hospitals:

1 library(lattice)
2 attach(df)
3 xyplot(WorkSat~Depers | hosp, panel = function(x,y) {
4 panel.xyplot(x,y)
5 panel.lmline(x,y)
6 })

As can be seen on the following plot, there is usually a negative relationship between
depersonalization and work satisfaction, but groups do not show this pattern to the
same extent, and in some cases the relationship is not even present.

The relationship between depersonalization and work satisfaction by the hospital

Chapter 12

[221]

Whether to take into account these variations or not in the analysis is the decision of
the analyst. We will discuss this further in the next section. A random slopes model
refers to a model in which the slopes are allowed to vary between groups.

For now, let's examine the schematic computation of the individual values when
dealing with random slopes models. This value is obtained as the sum of:

•	 A common intercept.
•	 A group-specific residual (the difference between the group's intercept and

the common intercept).
•	 A group-specific coefficient multiplied by the value of the predictor, for

each predictor for which random slopes are included. This group's specific
coefficients are composed of a fixed part, the common slope; and a random
part, the residual that corresponds for each slope to the variation of the
group around that slope.

•	 For each predictor for which the slope is not allowed to vary between groups
(if any), a slope coefficient multiplied by the value for the predictor.

•	 An observation-specific residual.

Again, the job of multilevel regression is to find the parameters that minimize the
residuals. Note that the effect of some predictors can be defined as varying between
groups, and the others as not varying.

Multilevel modeling in R
Now that we have examined (laconically) the basics of multilevel modeling
equations, we can turn to how to build multilevel models in R and predict
unseen data.

For this purpose, we will first load our dataset produced using the same procedure
as mentioned previously (except that the attributes are not scaled). Here again, there
are 100 generated observations for each of the 17 hospitals:

NursesML = read.table("NursesML.dat", header = T, sep = " ")

The null model
We will examine the variation in our attributes considering hospitals and observations
as a unit of analysis, that is, we will compare whether there is more variation at the
hospital and observation levels. What we could do is compute this by hand.

Multilevel Analyses

[222]

The following will compute the mean for the attribute we want to predict (WorkSat)
for each of the hospitals:

means = aggregate(NursesML[,4], by=list(NursesML[,5]),
 FUN=mean)[2]

We can display the variance of work satisfaction in hospitals and observations
as follows:

var(unlist(means)) #at the hospital level
var(NursesML[,4]) #at the observation level

The output is 0.0771365 for hospitals and 0.7914461 for observations. Far more
variance lies at the observation level than at the hospital level. Yet, the variance at
the hospital level is present at the observation level and vice versa. The results
are therefore not trustworthy.

Using multilevel modeling to examine such differences is the correct way to perform
the comparison. In order to do it, we need to fit a multilevel model that only includes
a constant and the clustering variable. This is known as the null model. We will start
by installing and loading the lme4 package. The lmer() function in this package
allows fitting multilevel models. The version download at the time of writing this
text is 1.1-8. Your output could vary if you download a different version:

install.packages("lme4"); library(lme4)

We first tell R that the hosp attribute is a factor:

NursesML$hosp = factor(NursesML$hosp)

We fit the null model as follows:

null = lmer(WorkSat ~ 1 + (1|hosp), data=NursesML)

Let's examine the summary of the null model:

summary(null)

Chapter 12

[223]

The output is provided here:

The output of the null model

Under Random effects, we can see that Variance for Intercept is 0.06988. This
is the variance at the hospital level. The residual variance, that is, the variance at
the observation level is 0.72564. The total variance in work satisfaction is therefore
0.06988 + 0.72564 = 0.79552. We can compute the proportion of variance at the
hospital level (known as the intraclass correlation) as 0.06988 / 0.79552 = 0.08784191.
Approximately, 9 percent of variance lies at the hospital level. A rule of thumb is
to consider that datasets with less than 5 percent of variance at level 2 (the hospital
here) could be analyzed using traditional regression without being much concerned
about the nesting of data. Note that this applies only if there are no predictors at level
2. Under Fixed effects, we only have Intercept here. Its value of 5.10679 in the
null model means that the average value among observations is about 5.10. We can
compare this value with the value that is returned by the simple mean() function:

mean(NursesML[,4])

The result, 5.106792, is identical.

It is possible to obtain the intercept in each of the hospitals as follows:

coef(null)

We have already computed the mean at the hospital level (which is stored in the
means object). We can therefore display those easily:

means

Multilevel Analyses

[224]

Both outputs are presented here (intercepts on the left). Note that we can notice
minor differences due to the computations using lmer(), because these are based
on the distribution of the values in the hospitals:

(Intercept) x
1 5.313038 1 5.334455
2 4.945022 2 4.928223
3 5.810795 3 5.883899
4 5.113663 4 5.114376
5 5.184669 5 5.192756
6 5.055792 6 5.050496
7 5.359504 7 5.385746
8 4.975973 8 4.962389
9 4.759738 9 4.7237
10 5.16671 10 5.172932
11 5.330523 11 5.353755
12 4.829187 12 4.80036
13 5.042653 13 5.035993
14 5.061342 14 5.056623
15 4.999852 15 4.988747
16 5.056085 16 5.05082
17 4.810918 17 4.780195

The intercepts we display here are composed of a fixed part (the overall intercept)
and a random part (one value per hospital), which correspond to the deviation of
each hospital. The random part can be obtained using the ranef() function:

ranef(null)

Note that the coef() function only returns the preceding intercepts
because we have not yet included predictors in the analysis. We will
do this in a moment.

We will examine how to test the normality of residuals after we introduce
random slopes.

Chapter 12

[225]

Random intercepts and fixed slopes
We will now perform our first analysis for sep. In this case, we want to examine
the relative impact of personal accomplishment, depersonalization, and emotional
exhaustion on work satisfaction. We will not yet include potential variation of the
effect of the predictors between hospitals. It is common to center the predictors
around the grand mean before running the analyses. We therefore prepared the
following training and testing datasets, which contain 50 observations per hospital.
You can now load the datasets:

NursesMLtrain = read.table("NursesMLtrain.dat",
 header = T, sep = " ")
NursesMLtest = read.table("NursesMLtest.dat",
 header = T, sep = " ")

Let's make sure the hosp attribute is considered a factor in both datasets:

NursesMLtrain$hosp = factor(NursesMLtrain$hosp)
NursesMLtest$hosp = factor(NursesMLtest$hosp)

Let's now fit the model in the training data:

model = lmer(WorkSat ~ Accomp + Depers + Exhaust + (1|hosp),
 data=NursesMLtrain, REML = F)

The first thing we want to know is whether the model we just computed fits the
data better than a null model. This requires comparing a value in both models: the
-2loglikelihood. As we now have a different dataset than when we computed the
null model, we have to fit this model again. Another reason is that the comparison of
-2loglikelihood values is unreliable with restricted maximum likelihood (REML, the
estimator used by default in lmer()). We will not explain this further and simply use
maximum likelihood (ML) instead by stating REMPL = F:

null = lmer(WorkSat ~ 1 + (1|hosp), data=NursesMLtrain, REML = F)

We can compare the -2loglikelihood values using the anova() function (even
though a chi-square test is actually performed), as for traditional regression models:

anova(null, model)

Multilevel Analyses

[226]

The output is as follows:

Model comparison (null versus model)

The AIC and BIC columns refer to the Akaike Information Criterion and Bayes
Information Criterion. As for the -2loglikelihood value, these are measures of
how well the data fits the model, but they take the model complexity (the number
of included parameters) into account. The deviance column is also a measure of
model fit. Smaller values are preferred for AIC, BIC and deviance, whereas the
-2loglikelihood values should increase with better fit. The Chisq column refers
to the difference in -2loglikelihood between models (which closely follow a chi-
square distribution). The degrees of freedom (next column) for the chi-square test
are computed as the difference in degrees between the two models. Finally, the last
column is p-value for the test. The three asterisks show that the model is significant
at a value close to 0, as displayed on the significance codes below the table. From
this, we conclude that the model with the three predictors included is better than
the null model.

We can compute the additional part of variance explained by our model using the
r.squaredLR() function from the MuMIn package, which we first install and load.
The r.squaredLR() function takes our model with the predictors and the null
model as arguments:

install.packages("MuMIn"); library(MuMIn)
r.squaredLR(model,null)

The output shows that the (pseudo) R squared value is 0.189, meaning that our
model predicted about 19 percent of the variance in the null model.

We can now examine the summary of the model as follows:

summary(model)

Chapter 12

[227]

The output is as follows:

A summary of the random intercept model

Unfortunately, lmer() does not provide p values for the coefficients. Obtaining
p values is often considered essential in hypothesis testing (although examining
the confidence intervals is sometimes preferred). To obtain the p values, we need
to perform their computation ourselves. Note that there is some debate as to the
reliability of the computation of p values in multilevel modeling, which is why this
is not included by default in the output. We start by extracting the t-values. We then
compared these to a normal distribution and output them:

tvals = coef(summary(model))[,3]
tvals.p <- 2 * (1 - pnorm(abs(tvals)))
round(tvals.p,3)

Multilevel Analyses

[228]

The following output shows that the intercept, personal accomplishment,
depersonalization, and emotional exhaustion are significantly different than
0 at p < .001.

(Intercept) Accomp Depers Exhaust
0.000 0.000 0.019 0.000

We can now examine Fixed effects. We can see that at the mean level of each
of the predictors (we are using centered attributes), the average work satisfaction
when all predictors are at their average level is 5.11854. An increase of one unit in
personal accomplishment is related to an increase of 0.17611 in work satisfaction,
whereas an increase of one unit in depersonalization and emotional exhaustion are
related to a decrease of 0.07335 and 0.29215. Of course, these are just estimates.
The confidence intervals can be obtained using the confint.merMod() function:

confint.merMod(model)

The following output shows the true values with a 95 percent confidence. Examining
whether the confidence intervals include 0 is another way of determining whether a
predictor is significant. Notice that all predictors have confidence intervals that do
not include 0 (meaning that they are significant). We will plot relationships between
predictors and the criterion attribute in the next section. Note that the .sig01 and
sigma values refer to the standard deviations at level 2 (.sig01) and level 1 (sigma).
Both are different from 0 (as 0 is not included in the confidence intervals):

2.50% 97.50%
.sig01 0.1740378 0.39715380
sigma 0.7222870 0.79515650
(Intercept) 4.9773312 5.25975309
Accomp 0.1013788 0.25092248
Depers -0.1350151 -0.01166813
Exhaust -0.3498438 -0.23442925

Random intercepts and random slopes
In the previous model, we did consider common slopes for all hospitals. Now we
want to draw conclusions on hospitals in general (the population), rather than on
the hospitals in which we collected data. We therefore need to allow the slopes to
vary between hospitals. Also, a visual inspection of the slopes in each hospital might
warrant the inclusion of random slopes in the model in case of simple variations.
This is the case in our data— we have presented the second figure here.

Chapter 12

[229]

We, therefore, fit a new model with random slopes:

modelRS = lmer(WorkSat ~ Accomp + Depers + Exhaust +
 (1+Accomp+Depers+Exhaust|hosp), data=NursesMLtrain, REML = F)

We compare this model to the null model:

anova(null, modelRS)

The output (not provided here) shows that our last model fits the data better than
the null model. We now examine the level 2 residuals for normality using the
sjp.lmer() function of the sjPlot package:

install.packages("sjPlot"); library(sjPlot)
sjp.lmer(modelRS, type = "re.qq")

As displayed in the following figure, the residuals for the intercept and each of the
predictors are fairly normal, as almost points aligned to the normal distribution.
Yet some deviation is observed, particularly for emotional exhaustion.

A QQ plot of level 2 residuals

Multilevel Analyses

[230]

We perform the same operation for the level 1 residuals using the qqnorm() function:

qqnorm(resid(modelRS))

The following screenshot shows that the level 1 residuals are fairly normal as well:

A QQ plot of level 1 residuals

Using the following code we observe that the variance explained by our model is
around 19 percent:

r.squaredLR(model,null)

We can now examine our model in more detail:

summary(modelRS)

Chapter 12

[231]

The output is as follows:

A summary of the random intercept and the slopes model

We notice that new values have appeared, notably the variance and standard
deviations for the slopes of our three predictors at level 2, and the correlations
between those (under Random effects). We notice that the coefficients (under Fixed
effects) are also different.

Again, we test for the impact of the predictors on work satisfaction as follows:

tvals = coef(summary(modelRS))[,3]
tvals.p <- 2 * (1 - pnorm(abs(tvals)))
round(tvals.p,3)

Multilevel Analyses

[232]

The following output shows that all three predictors are significant at p < .05:

(Intercept) Accomp Depers Exhaust
0 0.002 0.010 0

We can also plot the slopes using the plotLMER.fnc() function from the language
package:

install.packages("languageR"); library(languageR)
par(mfrow=c(1,3))
plotLMER.fnc(modelRS)

The three plots are presented as follows:

The relationship between the predictors and work satisfaction in the previous model

Remember that we centered our predictors. The 0 values on the x axis, therefore,
refer to the mean of the predictors.

Chapter 12

[233]

If you are curious about the impact of sampling on the estimates, you can
run the following code and see what changes in the models we computed.
You should find small differences each time you run the code! Just a
heads up: use other model names as compared to those we used here.
Otherwise, you will not find the same results in the following section:

#loading the initial dataset
NursesML = read.table("NursesML.dat", header = T,
 sep = " ")
NursesML$hosp = factor(NursesML$hosp)
#creating the training and testing sets (50% in each)
library(caret)
trainObs = createDataPartition(NursesML[,5], p = .5,
 list=F)
NursesMLtrain = NursesML[trainObs,]
NursesMLtest = NursesML[-trainObs,]

grand mean centering the predictors
for (i in 1:3){
 NursesMLtrain[i] = NursesMLtrain[i]-
 colMeans(NursesMLtrain[i])
 NursesMLtest[i] = NursesMLtest[i]-
 colMeans(NursesMLtest[i])
}

Predictions using multilevel models
Now that we have our model ready, we can predict work satisfaction in the
testing dataset.

Using the predict() function
One way to do so is simply to use the predict() function. The allow.new.levels
argument specifies that we allow new hospitals in the analysis. As we have the
same hospitals in the training and testing sets, we set its value to F (false) (which
is actually the default value):

NursesMLtest$predicted = predict(modelRS, NursesMLtest,
 allow.new.levels = F)

Multilevel Analyses

[234]

Assessing prediction quality
There is no perfect way to measure the quality of the predictions for nested data. A
simple estimate of the quality of our prediction is the correlation test. Because of the
nested structure of our dataset, we will perform the test for each hospital separately:

1 correls = matrix(nrow=17,ncol=3)
2 colnames(correls) = c("Correlation", "p value", "r squared")
3 for (i in 1:17){
4 dat = subset(NursesMLtest, hosp == i)
5 correls[i,1] = cor.test(dat$predicted, dat$WorkSat)[[4]]
6 correls[i,2] = cor.test(dat$predicted, dat$WorkSat)[[3]]
7 correls[i,3] = correls[i,1]^2
8 }
9 round(correls, 3)

The output provided here shows some variation in the correlations, which are all
significant at p < .05, except for hospital number 10. The third column displays the
part of variance that is shared by the predictions and the observed values:

Correlation p value r squared
[1,] 0.488 0.000 0.238
[2,] 0.282 0.047 0.080
[3,] 0.511 0.000 0.262
[4,] 0.481 0.000 0.232
[5,] 0.471 0.001 0.222
[6,] 0.342 0.015 0.117
[7,] 0.347 0.014 0.120
[8,] 0.385 0.006 0.148
[9,] 0.498 0.000 0.248
[10,] 0.203 0.157 0.041
[11,] 0.482 0.000 0.232
[12,] 0.459 0.001 0.211
[13,] 0.594 0.000 0.353
[14,] 0.358 0.011 0.128
[15,] 0.565 0.000 0.320
[16,] 0.442 0.001 0.195
[17,] 0.823 0.000 0.677

Chapter 12

[235]

We can rely on multilevel analyses to test how well the predicted values are related
to the observed values (the following model named modelPred), and compare it
to a null model (model called nullPred). We will include random slopes, as the
preceding correlations show some variation between hospitals in the data. Before we
do that, we start by centering the predicted values:

1 NursesMLtest$predicted = NursesMLtest$predicted –
2 mean(NursesMLtest$predicted)
3 nullPred = lmer(WorkSat ~ 1 + (1|hosp), data=NursesMLtest,
4 REML = F)
5 modelPred = lmer(WorkSat ~ predicted + (1+predicted|hosp),
6 data=NursesMLtest, REML = F)

The output of the following line of code shows that modelPred fits the data better
than nullPred:

anova(nullPred,modelPred)

The output of the following line shows that 27.99 percent of the variance of work
satisfaction is accounted for by the prediction, which is in line with the model
performance in the testing set. Whether this value is good or bad depends on
the context:

r.squaredLR(modelPred,nullPred)

Summary
In this chapter, we saw why it is necessary to use analyses that account for the
structure of the data when dealing with nested data. We have examined how to fit
several types of multilevel models and saw how to predict new data. In the next
chapter, we will deal with text mining, including document classification.

[237]

Text Analytics with R
In the previous chapter, we examined how to deal with nested data using multilevel
analyses. In Chapter 11, Classifiation Trees we discovered how to classify data using
decision trees. Here, we will deal with textual data. This chapter will cover the
following topics:

•	 A brief introduction to text analytics
•	 How to load and preprocess text
•	 How to perform document classification
•	 How to perform basic topic modeling to extract meaning
•	 How to download news articles using R

An introduction to text analytics
It might come as a surprise, or not, textual data represents the greatest part of the
overall data accessible to companies and data analysts. Textual data is often available
only in unstructured form. Imagine, for instance, an e-mail, a company memo,
or a post on a blog. What they have in common is that text is mostly presented in
the form of words arranged in sentences arranged in paragraphs. More complex
documents are also composed of sub-sections, sections, and chapters. Humans derive
meaning from this basic structure and the relationships between these elements.
But for machines to classify documents and extract meaning, text preprocessing
is required.

Text Analytics with R

[238]

There are several usual steps in the preprocessing of textual documents for
classification. These include:

1.	 Importing the corpus.
2.	 Converting text to lowercase, so that, in the analyses, words that include

capital letters are not distinguished from words that do not. For instance, the
following words are the same after converting to lowercase:

°° Documents
°° DOCUMENTS
°° documents

3.	 Removing punctuation so that words followed/preceded by punctuation
signs are not treated differently compared to words that are not. For instance,
the following words are the same after removing punctuation:

°° documents.
°° documents:
°° documents

4.	 Removing numbers contained in the text. Text often includes numbers.
These can interfere with the analyses (as they are considered as words).
It is, therefore, useful to discard numbers.

5.	 Stop word filtering, which is the suppression of uninformative words
(contained in most documents), such as:

°° it
°° me
°° where
°° some

6.	 Removing extra whitespaces occurring in the original text or resulting from
the previous operations.

7.	 Performing stemming. Textual analysis often requires replacing words with
their stem. The following words are the same after stemming:

°° documentation
°° documented
°° documents
°° document

Chapter 13

[239]

8.	 Performing other necessary transformations, which we will examine in the
next section. It is important to note that the task of the analyst is to determine
which of the preceding steps are necessary for a particular analysis.
Additional steps include:

°° Tokenizing and building the term-document matrix. In this step,
each unit (usually the unit is a single word, but can also be an
n-gram, that is, two or more contiguous words) is assigned to a
column. Documents are presented in rows. The cells (the intersection
of columns and words) represent either the presence/absence of each
word in each document, the count of each word in each document, or
the term frequency–inverse document frequency (the tf–idf measure).
This measure takes into account the rarity of the words in the whole
corpus (scarcer words are more informative than common words).
We discussed how to compute the measure in Chapter 4, Cluster
Analysis.

°° Pruning rare tokens, which is the suppression of words that occur
infrequently in the corpus.

Once these steps are performed, it is possible to analyze term associations and
perform document classification on the basis of the term-document matrix in an
efficient way, using algorithms we have already discovered and others we will
discover here.

In the following sections, we will examine how to perform text analytics with R,
focusing on classification and the extraction of meaning.

Loading the corpus
Before we start, let's perform some preliminary steps by running the following code:

1 URL = "http://www.cs.cornell.edu/people/pabo/
2 movie-review-data/review_polarity.tar.gz"
3 download.file(URL,destfile = "reviews.tar.gz")
4 untar("reviews.tar.gz")

This downloads the data you will use in a compressed file. Line 1 and 2 here should
be typed on the same line in your console or script window with nospace between
the quotation marks. Next, the file is uncompressed in a folder called txt_sentoken
in your working directory. Change your working directory to point to this folder by
using the following code line:

setwd("txt_sentoken")

Text Analytics with R

[240]

The folder contains the subfolders pos and neg. The pos folder contains 1,000
positive film reviews, whereas the neg folder contains 1,000 negative film reviews.
The reviews were collected by researchers at Cornell University. We will analyze
these texts here. The first thing we will do is load both corpora into R.

For this purpose, and to accomplish most of the tasks we will deal with here, we will
download and load the tm package:

install.packages("tm"); library(tm)

We will now load the two corpora separately into R—the first corpus containing
the positive reviews followed by the corpus containing the negative reviews. The
pattern="cv" argument allows us to specify that we only want to load the files that
contain cv in their name:

1 SourcePos = DirSource(file.path(".", "pos"), pattern="cv")
2 SourceNeg = DirSource(file.path(".", "neg"), pattern="cv")
3 pos = Corpus(SourcePos)
4 neg = Corpus(SourceNeg)

There are other ways to load a corpus. We will not list them all, but we will provide
the most common ones here so that you're all set if you wish to use other formats.

If we were using a data frame source or a vector source for the positive examples,
instead of using DirSource, we would have written (do not run this code now):

Pos = DataframeSource(theDataframeName) # for a data frame corpus
Pos = VectorSource(theVectorName) #for a vector corpus

Both types of corpora can simply be created from CSV files.

If we were using PDF files (which would require installing the application xpdf), or
word documents (which would require the application antiword), we would have
written (do not run this code now either):

SourcePos = DirSource(file.path(".", "pos"),
 readerControl=list(reader=readPDF) # for pdf files
SourcePos = DirSource(file.path(".", "pos"),
 readerControl=list(reader=readDOC) # for word files

There are other sources available. For a full list, type:

getSources(); getReaders()

Going back to our analysis, we can check if our corpora have been loaded correctly:

pos

Chapter 13

[241]

The following output shows that the positive reviews have been loaded correctly:

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1000

Let's examine the corpus of negative reviews:

neg

The following output shows the negative reviews have been loaded correctly:

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1000

We can now append the corpora and check whether this operation worked as well
(it did, as displayed in the following code). Remember, the first 1,000 reviews are the
positive ones and the other 1,000 reviews are the negative ones:

reviews = c(pos, neg)
reviews

The output shows we do have 2,000 cases here:

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 2000

We can see that the joint corpus contains 2,000 documents as we requested

Data preparation
In this section, we will start by preprocessing the corpus for analysis and then
inspecting it. We will then build the training and testing data frames.

Preprocessing and inspecting the corpus
We can see that the joint corpus contains 2,000 documents as we requested. We
can now perform the steps we discussed in the preceding section. We will build a
function that performs them all at once for this purpose (we will use this function
again later in the chapter):

1 install.packages("SnowballC")
2 preprocess = function(corpus, stopwrds =
3 stopwords("english")){

Text Analytics with R

[242]

4 library(SnowballC)
5 corpus = tm_map(corpus, content_transformer(tolower))
6 corpus = tm_map(corpus, removePunctuation)
7 corpus = tm_map(corpus,
8 content_transformer(removeNumbers))
9 corpus = tm_map(corpus, removeWords, stopwrds)
10 corpus = tm_map(corpus, stripWhitespace)
11 corpus = tm_map(corpus, stemDocument)
12 corpus
13 }

Let's run the function on our corpus:

processed = preprocess(reviews)

Now that our corpus is preprocessed, we can create the term-document matrix. We
can use the following code to generate the term-document matrix with frequencies
in the cells:

term_documentFreq = TermDocumentMatrix(processed)

Using this term-document matrix, we can examine, for instance, the five most
frequent terms in the corpus:

asMatrix = t(as.matrix(term_documentFreq))
Frequencies = colSums(asMatrix)
head(Frequencies[order(Frequencies, decreasing=T)], 5)

This is the output:

film movi one like charact

11109 6857 5759 3998 3855

The following code will show which terms occur more than 3,000 times:

Frequencies[Frequencies > 3000]

This will generate the following output:

charact film get like make movi one

3855 11109 3189 3998 3152 6857 5759

Chapter 13

[243]

By making a little change to the matrix, we can also examine words that occur in
most documents. We start by creating a new matrix in which terms are either present
(1) or absent (0)–this can take some time:

Present = data.frame(asMatrix)
Present [Present>0] = 1

The following code will display the frequency of the five terms with higher
document frequency:

DocFrequencies = colSums(Present)
head(DocFrequencies[order(DocFrequencies, decreasing=T)], 5)

This will provide the following output:

film one movi like charact

1797 1763 1642 1538 1431

The following code will show which terms occur in more than 1,400 documents:

DocFrequencies[DocFrequencies > 1400]

This will result in the following output:

charact film like make movi one

1431 1797 1538 1430 1642 1763

We can simply compute the number of terms that occur more than once in the corpus
and their proportion relative to all the terms by:

1 total = ncol(asMatrix)
2 moreThanOnce = sum(DocFrequencies != Frequencies)
3 prop = moreThanOnce / total
4 moreThanOnce
5 total
6 prop

The output shows that the total number of terms is 30,585. Within these, 9,748 terms
occur more than once, which is 31.9 percent of the terms.

Text Analytics with R

[244]

Our interest is in performing prediction on unseen cases. The tf–idf measure is more
meaningful for such tasks, as it increases the weights of terms that occur in many
documents, thereby making the classification more reliable. Therefore, we will use it
for what comes next instead of raw frequencies in a new term-document matrix:

term_documentTfIdf= TermDocumentMatrix(processed,
control = list(weighting = function(x) weightTfIdf(x,
normalize = TRUE)))

We have just seen that there are plenty of infrequent terms (about two-thirds
of these terms occur only once). Infrequent terms might degrade performance
in classification. We will remove sparse terms from the matrix by using the
removeSparseTerms() function. This function has an argument called sparse, which
allows a limit to be set for the degree of sparsity of the terms. A sparsity of 0 means
that all documents must contain the term, whereas a sparsity of 1 means that none
contain the term. We use a value higher than 0.8 to filter out most terms but still have
enough terms to perform the analysis using the following code:

SparseRemoved = as.matrix(t(removeSparseTerms(
term_documentTfIdf, sparse = 0.8)))

Let's examine how many terms are now included in the term-document matrix:

ncol(SparseRemoved)

The output shows that there are now only 202 terms remaining. We will now check
if all the documents contain the remaining terms by examining if the documents
have a value of 0 as the total of all terms (that is, they contain no term):

sum(rowSums(as.matrix(SparseRemoved)) == 0)

The output is 0, which means that all of the documents contain at least 1
remaining term.

Before we continue with the classification, you can, if you wish, examine the list of
terms by using the following (not reproduced here):

colnames(SparseRemoved)

Chapter 13

[245]

Computing new attributes
Now, we will use these 202 terms to classify our documents based on whether
the reviews are positive or negative. Remember that the rows 1 to 1,000 represent
positive reviews, and rows 1,001 to 2,000 negative ones. We will now create a vector
that reflects this:

quality = c(rep(1,1000),rep(0,1000))

The length of the reviews may be related to their positivity or negativity. We will,
therefore, also include an attribute that reflects review length in the processed
corpus (before the removal of sparse terms):

lengths = colSums(as.matrix(TermDocumentMatrix(processed)))

Creating the training and testing data
frames
We now need to create a data frame that includes the criterion attribute (quality),
the length of the reviews, and the term-document matrix:

DF = as.data.frame(cbind(quality, lengths, SparseRemoved))

Let's now create our training and a testing dataset:

1 set.seed(123)
2 train = sample(1:2000,1000)
3 TrainDF = DF[train,]
4 TestDF = DF[-train,]

Classification of the reviews
At the beginning of this section, we will try to classify the corpus using algorithms
we have already discussed (Naïve Bayes and k-NN). We will then briefly discuss
two new algorithms: logistic regression and support vector machines.

Document classification with k-NN
We know k-Nearest Neighbors, so we'll just jump into the classification. We will try
with three neighbors and five neighbors:

1 library(class) # knn() is in the class packages
2 library(caret) # confusionMatrix is in the caret package

Text Analytics with R

[246]

3 set.seed(975)
4 Class3n = knn(TrainDF[,-1], TrainDF[,-1], TrainDF[,1], k = 3)
5 Class5n = knn(TrainDF[,-1], TrainDF[,-1], TrainDF[,1], k = 5)
6 confusionMatrix(Class3n,as.factor(TrainDF$quality))

The confusion matrix and the following statistics (the output has been partially
reproduced) show that classification with three neighbors doesn't seem too bad: the
accuracy is 0.74; yet, the kappa value is not good (it should be at least 0.60):

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 358 126

 1 134 382

Accuracy : 0.74

95% CI : (0.7116, 0.7669)

No Information Rate : 0.508

P-Value [Acc > NIR] : <2e-16

Kappa : 0.4876

Let's examine the solution with five neighbors:

confusionMatrix(Class5n,as.factor(TrainDF$quality))

The output shows that there is not much difference between the three neighbor and
five neighbor solutions, but five neighbors is worse:

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 358 126

 1 134 382

Accuracy : 0.682

95% CI : (0.6521, 0.7108)

Chapter 13

[247]

No Information Rate : 0.508

P-Value [Acc > NIR] : <2e-16

Kappa : 0.364

Further, we have only looked at the training dataset. How well would things go with
the testing data set? We'll only take a look at the three neighbors solution:

set.seed(975)
Class3nTest = knn(TrainDF[,-1], TestDF[,-1], TrainDF[,1], k = 3)
confusionMatrix(Class3nTest,as.factor(TestDF$quality))

The following output shows that the classification is pretty bad on the testing
dataset; the accuracy is just about what we would expect by attributing all attributes
to one class and the kappa value is about 0, showing that there is no improvement
over classification by chance:

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 235 226

 1 273 266

Accuracy : 0.501

95% CI : (0.4695, 0.5324)

No Information Rate : 0.508

P-Value [Acc > NIR] : 0.68243

Kappa : 0.032

Maybe we will have more luck using Naïve Bayes. Let's see!

Document classification with Naïve Bayes
Let's start by computing the model, following which we will try to classify the
training dataset:

1 library(e1071)
2 set.seed(345)
3 model <- naiveBayes(TrainDF[-1], as.factor(TrainDF[[1]]))
4 classifNB = predict(model, TrainDF[,-1])
5 confusionMatrix(as.factor(TrainDF$quality),classifNB)

Text Analytics with R

[248]

The partial output here presents the confusion matrix for the training dataset and
some performance information. We can see that the classification is not too bad with
regard to accuracy, yet, the kappa value is too low (it should be at least 0.60):

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 353 139

 1 74 434

Accuracy : 0.787

95% CI : (0.7603, 0.812)

No Information Rate : 0.573

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.573

Let's examine how well we can classify the test dataset using the model we just
computed:

classifNB = predict(model, TestDF[,-1])
confusionMatrix(as.factor(TestDF$quality),classifNB)

The following output shows that the results on the testing data are still
disappointing; the accuracy has dropped to 71 percent and the kappa value
is quite bad:

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 335 173

 1 120 372

Accuracy : 0.707

95% CI : (0.6777, 0.7351)

No Information Rate : 0.545

P-Value [Acc > NIR] : < 2e-16

Kappa : 0.4148

Chapter 13

[249]

Classification using logistic regression
We can check the association between review length and quality using logistic
regression as a quick tutorial. There is sadly no space to explain logistic regression in
detail. Let's simply say that logistic regression predicts the probability of an outcome
rather than a value, as in linear regression. We will only give an interpretation of the
results, but first let's compute the model:

model = glm(quality~ lengths, family = binomial)
summary(model)

The following is the output of this model:

Call:
glm(formula = quality ~ lengths, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7059 -1.1471 -0.1909 1.1784 1.398

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6383373 0.1171536 -5.449 5.07E-08 ***
lengths 0.0018276 0.0003113 5.871 4.32E-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 2772.6 on 1999 degrees of freedom
Residual deviance: 2736.4 on 1998 degrees of freedom
AIC: 2740.4

Number of Fisher Scoring iterations: 4

Text Analytics with R

[250]

The output shows that the length of the review is significantly associated with the
perceived quality of the movie. The estimates are given in log odds, so we must
perform an exponentiation to know what the slope means:

exp(0.0018276)

The output is 1.001828. A value of exactly 1 would mean there is no relationship
between the length of the review and the perceived quality of the movie. Here, the
value is slightly higher than 1, but remember that the unit is the term in the processed
review. The intercept represents the odds that a movie with a review containing 0
terms is considered good. It has therefore no interpretable meaning here. The value of
the exponentiated slope means the odds of a movie being considered good increases
by 0.01829 percent for each additional term. Let's compute the fitted values in terms of
probability and examine the relationship by plotting them.

We obtain the probabilities of movies being classified as good for each review using
either of the following lines of code:

Prob1 = exp(-0.6383373 + lengths * 0.0018276) /
 (1 + exp(-0.6383373 + lengths * 0.0018276))
Prob2 = model$fitted

The attribute Prob1 is the value computed manually, whereas the attribute Prob2
contains the values computed by the glm() function. Both attributes have the same
value up to the fourth decimal.

We can classify documents with a probability higher than 0.5 as positive reviews and
display the confusion matrix:

1 classif = Prob1
2 classif[classif>0.5] = 1
3 classif[classif<=0.5] = 0
4 table(classif, quality)

The following output shows that more instances are correctly classified than
incorrectly classified, but that many instances are not correctly classified:

quality
classif 0 1
0 614 507
1 386 493

Chapter 13

[251]

The output of the following line of code shows that the kappa value is only 0.11,
which is pretty bad:

cohen.kappa(table(classif, quality))

Now that the basics of logistic regression are understood, let's get to business. Can
we obtain a reliable classification using logistic regression by including the linguistic
content of the review in the analysis (the 100 terms)? We will attempt this here:

model2 = glm(quality ~ ., family = binomial, data = TrainDF)

In Linear Regression, we warned you about multicollinearity: when
predictors are strongly correlated, the reliability of the estimates
(the slopes coefficients) is threatened because of the assumption
of the independence of the predictors. But be assured, this is not a
problem for the predictive power of a model; the adjusted coefficient
of determination (the value-adjusted R squared we discussed in that
chapter) is unaffected by multicollinearity. In other words, in case
of multicollinearity, we cannot disentangle the contribution of the
separate predictors, but we can accurately know their contribution
together. Including so many predictors is therefore not much of a
problem because we are not interested in the slope coefficients but
only the predictions.

Let's now examine the fitted values in the training set and how well we can predict
perceived movie quality:

TrainDF$classif = fitted.values(model2, type= "response")
TrainDF$classif[TrainDF$classif>0.5] = 1
TrainDF$classif[TrainDF$classif<=0.5] = 0

Let's now examine the performance of our classification in detail. We will omit the
output and briefly show the results:

confusionMatrix(TrainDF$quality, TrainDF$classif)

We can see that we have a 0.857 percent accuracy (which is meaningful given we
have an almost equal number of positive and negative reviews) and a kappa value of
0.71. We can therefore be satisfied by our classification.

Text Analytics with R

[252]

We can now use the model we just created to predict the values in the testing set:

1 TestDF$classif = predict(model2, TestDF, type = "response")
2 TestDF$classif[TestDF$classif>0.5] = 1
3 TestDF$classif[TestDF$classif<=0.5] = 0
4 confusionMatrix(TestDF$quality, TestDF$classif)

As you can see on your screen, the predictions in the testing dataset are poorer than
what we observed in the training dataset. We still have an accuracy of 0.72, which is
not too bad, but the kappa value has dropped to 0.45. We might obtain better results
using another algorithm we have yet to discover: support vector machines.

Document classification with support vector
machines
Support vector machines (SVM) attempt to find a separation between the two
classes that is as broad as possible. Cases are then classified depending on their
position in the separations. Unlike logistic regression, SVMs are not limited to linear
relationships. Actually, any kind of relationship can be discovered with SVM by
using the kernel trick. We will not go into detailed explanations of SVM here, as
these are quite complex. The interested reader can refer to the book, Learning with
kernels: Support Vector Machines, Regularization, Optimization, and Beyond, by Scholkopf
and Smola (2001).

Let's directly fit the model using SVM and examine the reliability of the predictions:

1 library(e1071)
2 modelSVM = svm (quality ~ ., data = TrainDF)
3 probSVMtrain = predict(modelSVM, TrainDF[,-1])
4 classifSVMtrain = probSVMtrain
5 classifSVMtrain[classifSVMtrain>0.5] = 1
6 classifSVMtrain[classifSVMtrain<=0.5] = 0
7 confusionMatrix(TrainDF$quality, classifSVMtrain)

We have an excellent classification using SVM on the training dataset. It is even
better than with logistic regression: the accuracy is 0.93 and the kappa value is 0.85.

What performance will we get for the classification using the testing set? Let's
find out:

1 probSVMtest = predict(modelSVM, TestDF[,-1])
2 classifSVMtest = probSVMtest

Chapter 13

[253]

3 classifSVMtest[classifSVMtest>0.5] = 1
4 classifSVMtest[classifSVMtest<=0.5] = 0
5 confusionMatrix(TestDF$quality, classifSVMtest)

Sadly, our classification of the testing set was not better than with logistic regression
(it was even a little worse). Depending on the context, the performance of the
algorithm (here, 71 percent of data was correctly classified, kappa = 0.42) might be
sufficient. In other contexts, much better performance might be required.

We have shown you different alternatives so that you can try them on your data. We
didn't have much luck with our classification of the reviews on the testing dataset
here. This really depends a lot on the dataset. Before you get too disappointed by
document classification, let's examine a successful case.

Mining the news with R
In this section, we discuss news mining in R. We start with a successful document
classification and then discuss how to collect news articles directly from R.

A successful document classification
In this section, we examine a particular dataset which features a term-document
matrix of 2,071 press articles containing the word flu in their title. The articles were
found on LexisNexis using this search term in two newspapers, The New York Times
and The Guardian, between January 1980 and May 2013. For copyright reasons, we
cannot include the original articles here. These have been preprocessed in a similar
way to what we have seen before with another software, Rapidminer 5. In addition
to the term-document matrix, the type of seasonal flu versus other (avian and swine
flu)–is included in the first column of the data frame (the SEASONAL.FLU attribute).
When articles discussed seasonal flu and other strands, they were coded as other
(value 0). Terms were coded as present (1) or absent (0) in each article. Let's load the
dataset (make sure it is in your working directory):

Strands = read.csv("StrandsPackt.csv", header = T)

Let's examine how many articles about seasonal flu we have here:

colSums(Strands[1])

The output is 777.

Text Analytics with R

[254]

Our task here will be to predict whether the flu discussed in the article is seasonal
flu or another type. Before we do this, we can examine the most frequent terms
associated with each class. Remember, the first column is the class, which we exclude
from the document frequencies:

Seasonal = subset(Strands, SEASONAL.FLU == 1)
FreqSeasonal = colSums(Seasonal)[-1]
head(FreqSeasonal[order(FreqSeasonal, decreasing=T)], 20)

The following output shows the top 20 terms in document frequency in the articles
that discuss seasonal flu:

 year peopl vaccin influenza

 513 460 431 380

 diseas com http www

 362 359 357 357

 nytim week get time

 356 354 340 324

 state url season report

 314 311 302 295

 viru control risk center

 295 284 281 272

Let's examine other strands:

Other = subset(Strands, SEASONAL.FLU == 0)
FreqOther = colSums(Strands[Strands[,1] == 0])[-1]
head(FreqOther[order(FreqOther, decreasing=T)], 20)

The output of these strands follows. One can easily see that terms with most
document frequency are different between the classes. Yet, there are some terms
featured in both such as influenza, vaccine, and viru. The low overlapping of the
most frequent terms can give us hope that we will be able to classify the instances:

 peopl viru com www

 1449 1281 1108 1108

 case nytim url vaccin

 1104 1091 1044 1043

 offici infect report influenza

 1008 1000 975 964

 time outbreak world strain

Chapter 13

[255]

 918 915 867 864

 govern countri dai sai

 845 836 835 828

What we didn't mention before is that there are thousands of terms included in
the term-document matrix here. We are faced with an example of the curse of
dimensionality as logistic regression cannot handle more features than cases. We
could use more complex analyses, such as ridge logistic regression. But let's be
creative! We are going to use logistic regression by repeating the analysis say 100
times, with each time a different random set of predictors, say 300. We will aggregate
the resulting probabilities, which will help us determine the class of our articles. This
is known as ensemble learning, which we have already discovered when discussing
random forests. The usefulness of ensemble learning for strong learners, such as
logistic regression, is under debate, yet we will see that this works pretty well here.

We will first determine training instances and build matrices to store the predictions
in the training and testing sets:

1 set.seed(1234)
2 TrainCases = sample(1:nrow(Strands),1086)
3 TrainPredictions = matrix(ncol=1086,nrow=100)
4 TestPredictions = matrix(ncol=1085,nrow=100)

We will now run the 100 logistic regression analyses. We will first determine which
terms to exclude (we only want 300 terms), and then assign the columns we wish
to keep (the class and the 300 terms). From these, we will create a training set and
a testing set. We will then fit the model and assign the predictions for the testing
and training sets for the current iteration in the respective matrices. Be aware that
running the loop will take some time:

1 for (i in 1:100) {
2 UNUSED = sample(2:ncol(Strands), ncol(Strands)-300)
3 Strands2 = Strands[,-UNUSED]
4 StrandsTrain = Strands2[TrainCases,]
5 StrandsTest = Strands2[-TrainCases,]
6 model = glm(StrandsTrain$SEASONAL.FLU~.,
7 data = StrandsTrain, family="binomial")
8 TrainPredictions[i,] = t(predict(model,StrandsTrain,
9 type="response"))
10 TestPredictions[i,] = t(predict(model,StrandsTest,
11 type="response"))
12 }

Text Analytics with R

[256]

Latest versions of R display warning messages: fitted probabilities
numerically 0 or 1 occurred. The inspection of the estimates (not displayed)
show this is not a problem here. But this might be a concern sometimes. It is the
analyst's job to check that everything works fine. In the present case, this happened
because some terms were never used in each of the classes, leading to infinitely small
or large odds ratios.

Now that we have this ready, we will compute the mean of the probability
predictions for each article in the training and testing datasets and assign a
classification:

1 PredsTrain = colMeans(TrainPredictions)
2 PredsTrain[PredsTrain< .5] = 0
3 PredsTrain[PredsTrain>= .5] = 1
4 PredsTest = colMeans(TestPredictions)
5 PredsTest[PredsTest< .5] = 0
6 PredsTest[PredsTest>= .5] = 1

Let's first examine the reliability of the classification on the training set:

confusionMatrix(PredsTrain,StrandsTrain$SEASONAL.FLU)

The following partial output shows that the classification was almost perfect; the
accuracy is above 99 percent and the kappa value is about 0.98:

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 689 5

 1 1 391

Accuracy : 0.9945

95% CI : (0.988, 0.998)

No Information Rate : 0.6354

P-Value [Acc > NIR] : <2e-16

Kappa : 0.9881

We can be very happy about the classification of the training set. But what about the
testing set? Let's have a look:

confusionMatrix(PredsTest,StrandsTest$SEASONAL.FLU)

Chapter 13

[257]

The output shows that things also went quite well in the training set; more than 86%
of cases are correctly classified, and the kappa value is 0.69, which is above the 0.65
threshold we fixed. Of course, as in most cases, the classification of the training set
had better reliability.

Confusion Matrix and Statistics

Reference

Prediction 0 1

 0 655 98

 1 49 283

Accuracy : 0.8645

95% CI : (0.8427, 0.8843)

No Information Rate : 0.6488

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.6936

Classifying documents can be tricky and depends as much on your data as on how
imaginative you are in circumventing the limitations of the algorithms you use.

Extracting the topics of the articles
We have seen that we can reliably classify whether the articles discuss seasonal
flu or not. It is therefore likely that the topics discussed in the articles are
different. Wouldn't it be nice to be able to get a better understanding of this in a
straightforward manner? It turns out we can!

We first separate the two types of articles (discussing Seasonal versus Non.Seasonal
flu) and remove the attribute that makes this distinction:

Seasonal = subset(Strands,SEASONAL.FLU ==1)[,-1]
Non.Seasonal = subset(Strands,SEASONAL.FLU ==0)[,-1]

We will need to convert these data frames to a tm document-term matrix. The
as.wfm() and as.dtm() functions of the qdap package will help us do that:

install.packages("qdap"); library(qdap)
seasonal.tm <- as.dtm(as.wfm(t(Seasonal)))
non.seasonal.tm <- as.dtm(as.wfm(t(Non.Seasonal)))

Text Analytics with R

[258]

We also need to install the topicmodels package and load it:

install.packages("topicmodels"); library(topicmodels)

We will skip the explanations of the inner working of the algorithms for lack of space
and simply perform a basic analysis with default parameters.

For each document-term matrix, we will arbitrarily generate two topics. For more
information about how many topics to include, the interested reader can refer
to the paper How many topics? Stability analysis for topic models, by Greene and
colleagues (2014).

Topics.seasonal = LDA(seasonal.tm, 2)
Topics.non.seasonal = LDA(non.seasonal.tm, 2)

We can now examine the top 10 terms associated with each of the topics in both
document-term matrices:

1 Terms.seasonal = terms(Topics.seasonal, 20)
2 Terms.non.seasonal = terms(Topics.non.seasonal, 20)
3 Terms.seasonal
4 Terms.non.seasonal

The output of both document-term matrices is displayed side by side in the
following screenshot:

Terms associated with the topics in the seasonal and non-seasonal flu articles

Chapter 13

[259]

For seasonal flu, Topic 1 is associated with terms related to seasonality, prevention
in a concrete sense (for example, vaccin or shot), and counts of cases of the flu.
Topic 2 is also associated with terms regarding seasonality, as well as with terms
regarding the action that can be taken in a more abstract sense (for example, protect
or recommend) with regard to the flu. In the non-seasonal articles, both topics are
related to the spread of the virus, but the first topic discusses reports on the virus,
including its strain, the number of cases, and prevention. The second topic focuses on
the spread of the virus with terms such as outbreak, pandem, and spread. There are
some similarities and differences in the articles on both seasonal and non-seasonal
flu strands.

Collecting news articles in R from the New
York Times article search API
Searching the news and comparing information can take a huge amount of time.
In this section, we will show how to simplify the process using R. First, of course,
we need to download the recent news related to our interest. The fall of the Euro is
currently much debated. What is the current news on the topic? How can we use
text mining to learn more about the topic? Let's find out!

The first step is to install and load the tm.plugin.webmining package that will help
us in this task:

install.packages("tm.plugin.webmining")
library(tm.plugin.webmining)

The package can download news from several generic sources such as Yahoo News,
Google News, The New York Times News, and Reuters News. Due to space restrictions,
we will here examine the news from The New York Times only.

Text Analytics with R

[260]

First, we need to obtain a developer key from http://developer.nytimes.com/.
Click on 1 Request an API key (see the top panel of the following screenshot). You
will first have to register on the website and sign in. After this, you will reach the
API key registration page (see the bottom panel of the screenshot). Simply enter your
details and select Issue a new key for Article search API. Your key will be displayed
on the next screen. Be sure to keep it safe. You are all set.

Registering a key on the NY Times article search API

We start by downloading the news related to the Euro. The following code will
download 100 articles:

1 nytimes_appid = "YOUR_KEY_HERE"
2 NYtimesNews <- WebCorpus(NYTimesSource("Euro",
3 appid = nytimes_appid))
4 NYtimesNews

http://developer.nytimes.com/

Chapter 13

[261]

The output shows that 100 articles were downloaded, as set by default:

<<WebCorpus>>

Metadata: corpus specific: 3, document level (indexed): 0

Content: documents: 100

You might want to save the content of the articles. This can be done by simply using the
writeCorpus() function. The following code will save individual text files to the working
directory:

writeCorpus(NYtimesNews, path = "M:/")

There are cases in which you might want to add the newly published articles to your corpus.
This can be done using the corpus.update() function. Here, the following line of code
could be used to do this once:

updated = corpus.update(NYtimesNews)

We can now preprocess the text as we did before:

preprocessedNews = preprocess(NYtimesNews)

We also build the term-document matrix:

tdmNews = TermDocumentMatrix(preprocessedNews)

I saved the term-document matrix so that you can do the following with me and get
the same results (results with your corpus will differ as you have not retrieved the
same articles as I did). In order to load your file, type the following:

loaded_tdm = dget("tdmNews")

We can inspect the most frequent terms (those that occur over 100 times) like this:

findFreqTerms(loaded_tdm, low = 100)

The following output shows the list of terms that satisfy the query. We can notably
see that Europe, Germany, and Greece are mentioned as top terms. Other mentions
related to finance are also present such as bank, debt, and currency:

bank countri currenc debt econom euro europ
european germani govern greec greek minist new
percent said union will zone

Text Analytics with R

[262]

What are the word associations we can observe in the data? Let's focus on the terms
bank and greec. We will ask for correlations higher than 0.5 for bank and 0.45 for
greek:

Assocs = findAssocs(loaded_tdm, terms = c("bank", "greek"), corlim =
 c(0.5, 0.45))

We can display the correlations in textual form by typing (the output is not
displayed here):

Assocs

We can also examine relationships visually here for bank:

barplot(Assocs[[1]], ylim = c(0,1))

A visualization of high term correlations related to "bank"

Summary
In this chapter, we discussed how to deal with text in R in order to perform
classification. We examined how to load documents from several sources, preprocess
them, and how to compute term frequencies. We compared the reliability of
various algorithms in the classification such as Naïve Bayes, k-Nearest Neighbors,
logistic regression, and support vector machines. Additionally, we examined how
to perform basic topic modeling in order to extract meaning. We then studied how
to automatically download news articles from sources such as The New York Times
Article Search API and extract and visualize associations between terms.

In the next chapter, we will discuss cross-validation and how to export models using
the PMML.

[263]

Cross-validation and
Bootstrapping Using Caret

and Exporting Predictive
Models Using PMML

In Chapter 12, Multilevel Analyses, we examined how to fit and predict nested data
using multilevel analyses. In the previous chapter, we discussed text mining in R.
In this chapter, we will discover how to perform cross-validation and bootstrapping
using the caret package and how to export models using Predictive Model Markup
Language (PMML).

Cross-validation and bootstrapping of
predictive models using the caret package
In this section, we will discuss how to examine the reliability of a model with cross-
validation. We start by discussing what cross-validation is.

Cross-validation
You might remember that, in several chapters, we used half of the data to train the
model and half of it to test it. The aim of this process was to ensure that the high
reliability of a classification, for instance, was not due to the fitting of noise in the
data rather than true relationships. We have seen, for instance, in the previous
chapter, that the reliability of a classification on the training set is usually higher
than in the test set (unseen data).

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[264]

The process of using half of the data for training and half for testing is actually a
special case of cross-validation, that is, two-fold cross-validation. We can perform
cross-validation using more folds. Two very common approaches are ten-fold
cross-validation and leave-one-out cross-validation. In ten-fold cross-validation,
the data is randomly split into 10 groups that contain the same number of cases (or
approximately). For the following explanation, we will call these groups 1 to 10. The
analysis is performed 10 times. The first time the analysis is performed, groups 1 to
9 are used to train the algorithm and group 10 is used to test the model. The second
time, groups 1 to 8 and 10 are used for training and group 9 for testing, and so on
(see the following figure). So each group is included at some point for training, with
8 other groups, and each group is used for testing individually. Doing things this
way allows for more accurate estimates of the reliability of the algorithm on the data
as the analysis is performed several times with different sets, which permits the
obtaining of distribution of measures of reliability. Another advantage is that 9/10th
of the data is used in the training set at each iteration, and we can use all cases at
both testing and training stages.

Representation of training and testing sets in 10-fold cross validation

Leave-one-out cross-validation is quite similar, except that the data is not split into
groups. Using this approach, the analysis is performed as many times as there
are cases, and each of the cases is used once for testing and the rest of the time
for training.

Performing cross-validation in R with caret
There are several ways of performing cross-validation in R. Using the caret package
is one of the most effective ways, as the package provides a unified framework to use
with different algorithms. This is exactly what we are going to do in the rest of this
section, keep it simple.

Chapter 14

[265]

First, we start by installing (if not already done) and loading the package:

install.packages("caret"); library (caret)

We can determine the number of folds with the trainControl() function.

Here for ten-fold cross-validation the number of folds will be as follows:

CtrlCV = trainControl(method = "cv", number = 10)

Here, for leave-one-out cross-validation the number of folds will be as follows:

CtrlLOO = trainControl(method = "LOOCV")

Now that we have set this, we can perform the analyses! We will do so using ten-
fold cross-validation (replace CtrlCV by CtrlLOO for leave-one-out cross validation).
To simplify, we will use the iris dataset for some examples. If any of the following
required packages are not installed on your system, please use the install.
packages() function to install them:

•	 Naive Bayes:
install.packages("klaR")
modelNB = train(Species ~ ., data = iris, trControl = CtrlCV,
method = "nb")

Packages klaR and MASS are required and loaded automatically

•	 C4.5:
This requires loading RWeka

library(RWeka)
modelC45 = train(Species ~ ., data = iris,
 trControl = CtrlCV, method = "J48")

•	 C5.0:
modelC50 = train(Species ~ ., data = iris,
 trControl =CtrlCV, method = "C5.0")

•	 The C50 and plyr packages are loaded automatically:
modelCART = train(Species ~ ., data = iris,
 trControl =CtrlCV, method = "rpart")

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[266]

•	 The rpart package is loaded automatically:
modelRF = train(Species ~ ., data = iris, trControl = CtrlCV,
 method = "rf")

•	 The randomForest package is loaded automatically

We have covered the other algorithms in this book, and many more are available.
To get the list, simply type:

names(getModelInfo())

We can inspect the accuracy of the models as follows (we take the example of the
Naïve Bayes classification):

modelNB

The output reproduced here displays information about the sample, classes, and
predictors; a summary of the method used; and more importantly the average
accuracy and kappa values, and their standard deviations for different tuning
parameters, which differ depending of the algorithm used (see the end of the output
for a description). We can see that the average accuracy and kappa values are excellent,
with small standard deviations:

Naive Bayes

150 samples

 4 predictor

 3 classes: 'setosa', 'versicolor', 'virginica'

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...

Resampling results across tuning parameters:

 usekernel Accuracy Kappa Accuracy SD Kappa SD

 FALSE 0.9533333 0.93 0.05488484 0.08232726

 TRUE 0.9533333 0.93 0.05488484 0.08232726

Tuning parameter fL was held constant at a value of 0.

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were fL = 0 and usekernel = FALSE.

Chapter 14

[267]

Bootstrapping
The aim of bootstrapping is also to obtain a more precise image of the reliability of
the model on the data. This is done in a different fashion. Instead of partitioning the
data for training and testing, a random sample of n cases is selected N times from the
original set with replacement (meaning that the same case can occur several times at
each iteration), where N is the number of iterations and n is the number of cases. The
analysis is performed on each of the samples independently, which gives mean and
standard deviation for the estimates.

Performing bootstrapping in R with caret
Bootstrapping is done in a way similar to cross-validation, simply by specifying it
using the trainControl function:

CtrlBoot = trainControl(method="boot", number=1000)

Let's take our examples again:

•	 Naive Bayes:
modelNBboot = train(Species ~ ., data = iris,
 trControl = CtrlBoot, method = "nb")

•	 C4.5:
modelC45boot = train(Species ~ ., data = iris,
 trControl = CtrlBoot, method = "J48")

•	 C5.0:
modelC50boot = train(Species ~ ., data = iris,
 trControl = CtrlBoot, method = "C5.0")

•	 CART:
modelCARTboot = train(Species ~ ., data = iris,
 trControl = CtrlBoot, method = "rpart")

•	 Random forests:
modelRFboot = train(Species ~ ., data = iris,
 trControl = CtrlBoot, method = "rf")

The output is quite similar to what we have seen previously. We will, therefore, not
comment on it.

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[268]

Predicting new data
Predictive models are built with the intent of predicting unseen data.
This can be done very easily. In what follows, we first partition the data in two
sets using stratified sampling, one of 75 percent, which we will use to train and
test using cross-validation, and another of 25 percent, which contains unseen
data (data that we have not yet used):

forCV = createDataPartition(iris$Species, p=0.75, list=FALSE)
CVset = iris[forCV,]
NEWset = iris[-forCV,]

We now create the cross-validated model (with Naïve Bayes):

model = train(Species ~ ., data = CVset, trControl = CtrlCV,
 method = "nb")

We can now predict our unseen data using this model:

Predictions = predict(model, NEWset)

Exporting models using PMML
Let's get started with PMML and the way models are exported using it.

What is PMML?
PMML is a standard for sharing predictive models across software. The standard has
been developed and improved by the Data Mining Group since 1997. Using PMML,
the user can notably build a model using one software package and use another
software package for prediction. The export and/or import of models using PMML
is currently supported by a wide range of solutions including (but not restricted to)
R, Rapidminer, SAS Enterprise Miner, SPSS Modeler, and Weka.

Numerous algorithms are supported by PMML. The following table presents the
list of algorithms we have explored for which models can be exported using the
PMML package in R (actually, most of them). The function to generate the models,
the package containing the function, and the chapter of this book where we have
discussed it are also indicated:

Chapter 14

[269]

ALGORITHM FUNCTION PACKAGE CHAPTER
K-means clustering kmeans (stats) 4
Hierarchical clustering hclust (stats) 5
Association rule mining apriori arules 7
Linear regression lm (stats) 9
Naïve Bayes classification and
regression naiveBayes e1071 10
Classification and regression trees rpart rpart 11
Random forest for classification
and regression randomForest randomForest 11
Logistic regression glm (stats) 13
Classification with Support Vector
Machines svm e1071 13

The PMML package also supports other models that we have not discussed here. The
list can be found in the package documentation at http://cran.r-project.org/
web/packages/pmml/pmml.pdf.

A brief description of the structure of PMML
objects
PMML objects are generated using XML. The PMML translates a simple linear
regression model (preceded by the R output). As always, we start by installing and
loading the required package:

install.packages("pmml"); library(pmml)
model = lm (Sepal.Length ~ Sepal.Width, data = iris)
model

The model output is as follows:

Call:

lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

Coefficients:

(Intercept) Sepal.Width

 6.5262 -0.2234

http://cran.r-project.org/web/packages/pmml/pmml.pdf
http://cran.r-project.org/web/packages/pmml/pmml.pdf

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[270]

We now generate the PMML code for the model:

pmml(model)

The following output is displayed, in a commented form:

Information about the format of the document is first included, which is as follows:

<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.dmg.org/PMML-4_2
http://www.dmg.org/v4-2/pmml-4-2.xsd">

The header, featuring details about the user, the software package, the date, and the
algorithm that generated the model is then included:

<Header copyright="Copyright (c) 2015 mayore" description="Linear

Regression Model">

<Extension name="user" value="mayore" extender="Rattle/PMML"/>

<Application name="Rattle/PMML" version="1.4"/>

<Timestamp>2015-02-18 13:36:46</Timestamp>

</Header>

Next is the data dictionary that describes the attributes included in the analysis:

<DataDictionary numberOfFields="2">

<DataField name="Sepal.Length" optype="continuous" dataType="double"/>

<DataField name="Sepal.Width" optype="continuous" dataType="double"/>

</DataDictionary>

Then comes information about the model, including the algorithm used, the role of
the variables included in the analysis, and the generated output:

<RegressionModel modelName="Linear_Regression_Model"
functionName="regression" algorithmName="least squares">

<MiningSchema>

<MiningField name="Sepal.Length" usageType="predicted"/><MiningField
name="Sepal.Width" usageType="active"/>

</MiningSchema>

<Output>

<OutputField name="Predicted_Sepal.Length" feature="predictedValue"/>

</Output>

Chapter 14

[271]

<RegressionTable intercept="6.52622255089448">

<NumericPredictor name="Sepal.Width" exponent="1"
coefficient="-0.2233610611299"/>

</RegressionTable>

</RegressionModel>

</PMML>

The PMML code for different algorithms can include more or less information, but
the structure is always quite similar to the one we presented previously.

Examples of predictive model exportation
In this section, we present some examples of model exportation using PMML. As we
have already discovered using the linear regression example previously, the process
is quite simple: it usually consists of presenting the model as an argument to the
pmml() function. Here, we simply propose some very basic examples of exporting
to PMML. If you want to know more about PMML, I suggest reading the book
PMML in Action: Unleashing the Power of Open Standards for Data Mining and Predictive
Analytics, Guazzelli, Wen-Ching, Tridivesh, CreateSpace Independent Publishing.

Exporting k-means objects
Here we start by creating a k - means model:

iris.kmeans = kmeans(iris[1:4],3)

We then export the model to PMML:

pmml_kmeans = pmml(iris.kmeans)

Next, save it as an XML file:

saveXML(pmml_kmeans, data=iris, "iris_kmeans.PMML")

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[272]

Opening the document (see figure) allows us to check whether the model has been
appropriately exported.

A snapshot of the content of the file with the PMML code

Hierarchical clustering
Exporting a hierarchical clustering model using PMML is a bit more complex. As an
example, we first generate a data frame for hierarchical clustering:

DF = cbind(c(rep(1,4),rep(2,4),rep(3,4),rep(4,4)), rep(c(1,2,3,4),4),
 rep(c(rep(1,2),rep(2,2),rep(3,2),rep(4,2)),2))

We then create our hclust object using the default parameters:

DF.hclust = hclust(dist(DF))

We now want to export it to a PMML object. Note that this will convert the model to
a kmeans representation, which is required to include the cluster centroids. So we
need to determine the number of clusters. We discussed ways to do this in Chapter 5,
Agglomerative Clustering Using hclust().

Chapter 14

[273]

Here, we will simply plot the dendrogram and decide on this basis:

plot(DF.hclust)

Dendrogram for our dataset

In the figure, we can see that a two or four cluster model would describe the
data well. The four cluster cut would have few data points, so we prefer the
two cluster solution.

We now cut the tree using two clusters:

Cut = cutree(DF.hclust, k = 2)

Then, we extract centroids:

centroids = aggregate(DF, list(Cut), mean)

We can now export to PMML and save:

pmml_hclust = pmml(DF.hclust, centers = centroids)
saveXML(pmml_hclust, data=DF, "DF_hclust.PMML")

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[274]

Exporting association rules (apriori objects)
It is easier to export association rules using PMML. We will use the Adult dataset
that already contains the transactions for the AdultUCI data as follows:

library(arules)
data(Adult,AdultUCI)
names(AdultUCI)

As a reminder, the attributes are as follows:

[1] age workclass fnlwgt education education-num

[6] marital-status occupation relationship race sex

[11] capita-gain capital-loss hours-per-week native-country
income

We generate the rules as follows:

Adult.Apriori = apriori(Adult)

Save the PMML code:

saveXML(pmml(Adult.Apriori), "Adult_Apriori.PMML")

Exporting Naïve Bayes objects
Here, first load the e1071 package containing the naiveBayes() function:

library(e1071)

We then build the classifier:

iris.NaiveBayes = naiveBayes(Species ~ Sepal.Length + Sepal.Width +
 Petal.Length + Petal.Width, data = iris)

Finally, we save to a file containing the PMML code:

saveXML(pmml(iris.NaiveBayes,dataset = iris, predictedField =
 "Species"), "iris_NaiveBayes.pmml")

Exporting decision trees (rpart objects)
We start by creating the classifier:

iris.rpart = rpart(Species ~ Sepal.Length + Sepal.Width +
 Petal.Length + Petal.Width, data = iris)

Chapter 14

[275]

The tree (not displayed here) is obtained by typing:

iris.rpart

We can now export it to PMML and save it to an XML file:

saveXML(pmml(iris.rpart), data = iris, "iris_rpart.pmml")
typing pmml(iris.rpart) would display the pmml object

Exporting random forest objects
We start by loading the randomForest package:

library(randomForest)

We then grow the forest (we use default parameters here):

iris.RandomForest = randomForest(Species ~ Sepal.Length + Sepal.Width
 + Petal.Length + Petal.Width, data = iris)

Finally, we export to PMML and save the file:

saveXML(pmml(iris.RandomForest), data = iris,
 "iris_randomForest.pmml")

Exporting logistic regression objects
We first generate some data:

set.seed(1234)
y = c(rep(0,50),rep(1,50))
x = rnorm(100)
x[51:100] = x[51:100] + 0.2

Then, we build the model (attribute y is the class):

glm.model = glm(y ~ x, family = "binomial")

Next, save it to a file containing the PMML code:

saveXML(pmml(glm.model), "glm_model.PMML")

Cross-validation and Bootstrapping Using Caret and Exporting Predictive Models Using PMML

[276]

Exporting support vector machine objects
We use the iris dataset again (Species is the class):

iris.svm = svm(Species ~ Sepal.Length + Sepal.Width + Petal.Length +
 Petal.Width, data = iris)

We now export to PMML and save:

saveXML(pmml(iris.svm), "iris_svm.PMML")

Summary
In this chapter, we discussed the basics of cross-validation and bootstrapping as
well as exporting predictive models using PMML. We saw some examples of how to
perform cross-validation and bootstrapping using the caret package. We showed
how to predict data usage from the models we created. We explored the PMML
structure, examined how to export to PMML, and saw how to save the resulting
object to an XML file for use in other software packages.

[277]

Exercises and Solutions

Exercises
Here, we provide the exercises for most chapters and recommend that you practice
your newly acquired skills after reading each chapter.

Chapter 1 – Setting GNU R for Predictive
Modeling
Chapter 1 already contains the exercises and solutions.

Chapter 2 – Visualizing and Manipulating
Data Using R
Have a look at the following exercises and try to perform the required tasks.

Let's have a little fun now! For this exercise, imagine a player betting on red for 1,000
consecutive trials. You'll have to plot the variations in money throughout the game.
Use the isRed attribute of the data frame Data that we built at the beginning of
the chapter. The player here starts with $1,000 and bets 1 in every game. The worst
possible outcome is leaving with nothing, but also without debts. The line graph you
will use has to be wide rather than tall; that is, 10 x 4 inches (use the documentation
of the par() function to know how to configure this). Does the player end up
winning or losing money?

Exercises and Solutions

[278]

Chapter 3 – Data Visualization with Lattice
Here, simply plot the relationship between Petal.Length and Petal.Width in the
iris dataset and include the regression line.

Chapter 4 – Cluster Analysis
Here, simply determine the best number of clusters in the iris dataset (omit the
Species attribute), using several distances measures (use distance = "euclidean",
distance = "maximum", and distance = "manhattan"). Always use method =
"kmeans". What is the best number of clusters for each distance (use a majority rule).
Do the results surprise you?

Chapter 5 – Agglomerative Clustering
Using hclust()
Use hclust() to perform clustering on the iris dataset (omit the Species attribute).
Use different methods for distance calculation (configurable using the method
argument of the dist() function); and different linkage options (configurable using
the method argument of the hclust() function).

Chapter 6 – Dimensionality Reduction with
Principal Component Analysis
The bfi dataset (in the psych package) contains the responses of 2,800 participants
to the Big Five Inventory (http://www.ocf.berkeley.edu/~johnlab/bfi.htm),
which measures the five dimensions of personality. This contains 25 items of the
inventory, five per dimension of personality: Neuroticism (N1-N5), Extraversion
(E1-E5), Conscience (C1-C5), Agreeability (A1-A5), and Openness (O1-O5); as well
as the variable's gender, education, and age at the end of the data frame.

Perform the following using the 25 items:

•	 Examine the missing values.
•	 Perform the diagnostics (omit cases with missing values). What do you find?
•	 Run PCA using princomp().
•	 Plot the eigenvalues to determine the number of components to be retained.
•	 Rerun the analysis with that number of components using principal() with

the varimax rotation and save the PCA scores.
•	 What is the proportion of cumulative variance explained by all

the components?

http://www.ocf.berkeley.edu/~johnlab/bfi.htm

Appendix A

[279]

•	 Name the components by looking at the loadings.
•	 What is the relationship (correlation) between each component

and attribute age?

Chapter 7 – Exploring Association Rules
with Apriori
Using the ICU dataset, without the attribute race, obtain the association rules
with support = 0.1, confidence = 0.8, minlen = 2 containing pco=<=45 as
an antecedent. You should obtain 13 rules. Convert the rules object to a data frame.
Create an object containing the significance values of fisher's exact test for these rules
(rounded to two decimal places), and append it as a column to the data frame you
just created. Visualize the relationship between lift and significance of fisher's exact
test (the p value) using the plot() function.

Chapter 8 – Probability Distributions,
Covariance, and Correlation
Try performing the following exercises:

1.	 Adapt the code we used when discussing the binomial distribution to
compute the probability of getting a red number in European roulette
spins between:

°° 40 and 49 times
°° 51 and 60 times

Are these numbers different ? If so, or if not, why?

2.	 Compute the correlation between petal length and petal width in the
iris dataset using the cor.test() function. Is the correlation positive
or negative? Is it significant?

Chapter 9 – Linear Regression
Try performing the following exercises:

1.	 Using the nurses dataset, examine the effect of a work-family conflict
(attribute WFC) on work satisfaction (WorkSat) in the first model
called model01.

2.	 Create a second model called model02, in which you include WFC and
exhaustion (Exhaus) as predictors of WorkSat.

Exercises and Solutions

[280]

What happens to the relationship between WFC and WorkSat?

1.	 Test the relationship between WFC (predictor) and Exhaus (criterion).
2.	 If it is significant, perform a sobel test for the mediation of the relationship

between WFC and WorkSat by Exhaus.

Chapter 10 – Classification with k-Nearest
Neighbors and Naïve Bayes
In this exercise, you will try to classify the observations in the Ozone dataset using
knn(). The class is the season and is computed (approximately) as follows:

1 library(mlbench)
2 data(Ozone)
3 Oz = na.omit(Ozone)
4 Oz$season = rep("winter",length(Oz[,1]))
5 Oz$season[as.numeric(Oz[[1]])>=3 & as.numeric(Oz[[1]])<=5]
6 = "spring"
7 Oz$season[as.numeric(Oz[[1]])>=6 & as.numeric(Oz[[1]])<=8]
8 = "summer"
9 Oz$season[as.numeric(Oz[[1]])>=9 & as.numeric(Oz[[1]])<=11]
10 = "autumn"

You will determine the best number of neighbors on the basis of the kappa value in
the training set (higher is better). Finally, based on the kappa value in the testing set
with the best number of neighbors, would you trust the classification?

The training and testing datasets are obtained as follows:

1 set.seed(5)
2 Oz$samples = sample(0:1, nrow(Oz), replace =T)
3 TRAIN = subset(Oz, samples == 0)
4 TEST = subset(Oz, samples == 1)

The class (season, the target attribute) is in column 14. Do not include columns
1 and 15 in the analyses. Take care of unlisting the class, for instance, with the
unlist() function, if you use subsetting, otherwise, use the df$attribute
notation for the class.

Appendix A

[281]

Chapter 11 – Classification Trees
Classify the observations in the iris dataset (class is Species) using C4.5 (pruned
tree) and CART (using the default arguments). Which produces the best classification
in terms of accuracy in the testing set? Create a function that assesses accuracy.

The training and testing sets are generated as follows:

IRIStrain = iris[as.numeric(row.names(iris)) %% 2 == T,]
IRIStest = iris[as.numeric(row.names(iris)) %% 2 == F,]

Chapter 12 – Multilevel Analyses
Try performing the following exercises:

•	 Using the NursesML dataset, visualize whether the relationship between
exhaustion (attribute Exhaust) and work satisfaction (WorkSat) varies
between hospitals. Include the regression line. Perform the same step for
the relationship of depersonalization (Depers) and work satisfaction.

•	 Using the modelPred model, determine which difference in the observed
work satisfaction is obtained from an increase of 1 in the predicted values.

•	 What is the intercept of the model (that is, the average value of work
satisfaction for the average predicted value)?

Chapter 13 – Text Analytics with R
The tm package contains a corpus of 50 news articles that we access as follows:

data(acq)
acq

What are the terms that occur more than 100 times is this corpus before and after
preprocessing with the preprocess() function?

Using the preprocessed data, plot the sorted term frequencies above 10 with terms
(row names) on the x axis. Use the barplot() function.

Exercises and Solutions

[282]

Solutions
You will find the solutions to the exercises below.

Chapter 1 – Setting GNU R for Predictive
Modeling
Chapter 1 already contains the exercises and solutions.

Chapter 2 – Visualizing and Manipulating
Data Using R
One way to solve this is to first create a vector with a size of 1001 (line 1). The first
value is the money that the player comes with (assigned on line 2). On line 3, we
assign a copy of the isRed attribute to the wins vector. On lines 5 to 7, we compute
the amount of money at each trial by adding 1 to the money on the next turn if the
drawn number is red, and remove 1 if the number is not red. On line 8, we set the
graphic parameters to contain a single plot (using argument mfrow) and to be of the
required dimensions (10 by 4 inches) using the pin argument. Finally, we generate
the plot on line 9:

1 money = rep(0,1001)
2 money[1] = 1000
3 wins = Data$isRed
4 for (i in 1:nrow(Data)) {
5 if (wins[i] == 1) money[i+1] = money[i] + 1
6 else money[i+1] = money[i] - 1
7 }
8 par (mfrow = c(1,1), pin=c(5,2))
9 plot(money, type = "l", xlab = "Trial number")

Run the code and have a look at your screen to know more about the outcomes of the
player's game!

Chapter 3 – Data Visualization with Lattice
We plot these elements as follows:

library(lattice)
xyplot(Petal.Length ~ Petal.Width | Species, data = iris,
 panel = function(x, y, ...) {

Appendix A

[283]

 panel.xyplot(x,y)
 panel.abline(lm(y~x))
}
)

Chapter 4 – Cluster Analysis
The following code performs all the operations:

library(NbClust)
NbClust(iris[1:4],distance="euclidean", method= "kmeans")
NbClust(iris[1:4],distance="manhattan", method= "kmeans")
NbClust(iris[1:4],distance="maximum", method= "kmeans")

The outputs all show that a two-cluster solution is the best according to a majority
rule. This is surprising because we know there are three classes in the dataset, and
kmeans() is very accurate at classifying the cases. But apparently, this is not the best
way to classify the data. Without prior knowledge, we could have concluded that
there are observations for only two species of flowers in the dataset.

Chapter 5 – Agglomerative Clustering
Using hclust()
We first create a vector with all the possible distances allowed by the dist()
function; we then create a list, called d, of one element—the first distance matrix
(with the Euclidean distance). We then add the other distance matrices to the list.
Please note that the binary distance was included here for demonstration purposes,
but the binary distance is of no practical use with quantitative data:

1 dist.types = c("euclidean", "maximum", "manhattan", "canberra",
2 "binary", "minkowski")
3 d = list(dist(iris[1:4], method = dist.types[1]))
4 for (i in 2:length(dist.types)) d = c(d,list(dist(iris[1:4],
5 method = dist.types[i])))

Next, we create a vector with all the possible agglomerating methods allowed by
hclust(). We then perform the analysis six times for each of these methods (once
per distance matrix), saving the result of each iteration in a matrix of lists:

1 agglo.types = c("ward.D", "ward.D2", "single", "complete",
2 "average", "mcquitty", "median", "centroid")

Exercises and Solutions

[284]

3 M = array(list(), 8)
4 for (i in 1:length(agglo.types)) {
5 OneDList = list(hclust(d[[1]], method = agglo.types[i]))
6 for (j in 2:length(dist.types)) OneDList =
7 c(OneDList, list(hclust(d[[j]], method = agglo.types[i])))
8 M[[i]] = OneDList
9 }

The 48 hclust models stored in the M matrix could be used for selecting the best
models, for instance, by examining the plotted models. We can plot results with
complete linkage and Euclidean distance (graph not included) like this:

plot(M[[4]][[1]])

The reader can notice that the results using binary distance (for example, with
complete linkage as follows) are meaningless:

plot(M[[4]][[5]])

Chapter 6 – Dimensionality Reduction with
Principal Component Analysis
Here are the solutions. Before anything, let's make sure the psych package is loaded:

library(psych)

•	 The display of the number of missing values can be done for all items in one
line of code:
summary(bfi[,1:25])

We can see that there are between 9 and 36 missing values for each of the
items.
We assign the cases without missing values to a new object called Dat,
retaining only the bfi measures:
Dat = na.omit(bfi[,1:25])

We can know how many cases of the original dataset contain missing values
using the following line of code. The answer is 364:

dim(bfi)[1] - dim(Dat)[1]

Appendix A

[285]

•	 We examine the results of Bartlett's test of sphericity as follows:
cortest.normal(Dat)

The results show that the data set is significantly different from an identity
matrix. We can examine the KMO index using the following code:
KMO(Dat)

The results show that the overall MSA value is large (0.85), as are most
individual item values (lowest at 0.76). We deduce from these tests that
performing PCA on this data is warranted.

•	 We run the PCA using the following line of code:
pcas = princomp(Dat)

•	 We plot the eigenvalues (the squared standard deviations) like this:
plot(pcas$sd^2)

We find that a five-factor solution seems optimal, which is great as we have
five theoretical factors of personality (the questionnaire is designed that way)

•	 We rerun the analysis with five factors and include the scores as follows:
pcas2 = principal(Dat,nfactors=5, rotate="varimax", scores=T)

We add the factorial scores to the dataset as follows:

Dat = cbind(Dat, pcas2$scores)

•	 The output of the following line of code shows that the cumulative
proportion of variance is 54 percent (under Cumulative var, last column).
pcas2

•	 The component loadings also appear on the output (under Standardized
loadings). We can see that the component called RC1 is mostly related to
items with letter E (extraversion). RC2 loads higher on items with letter
N (neuroticism), RC3 with items with letter C (conscience), RC4 with items
with letter O (openness). Finally, RC5 has a higher loading with items with
letter A (agreeability).

Exercises and Solutions

[286]

Chapter 7 – Exploring Association Rules
with Apriori
You will find the solution to this exercise below.

•	 Here we will start from the beginning, by first obtaining a dataset without
an attribute in column 4 (race):
library(vcdExtra)
ICU_norace = ICU[-4]

•	 We then load the arules package and generate the transaction list:
library(arules)

•	 We then prepare the dataset:
ICU_norace$age = cut(ICU_norace$age, breaks = 4)
ICU_norace$systolic = cut(ICU_norace$systolic, breaks = 4)
ICU_norace$hrtrate = cut(ICU_norace$hrtrate, breaks = 4)
ICU_norace_tr = as(ICU_norace, "transactions")

•	 Then, we generate the rules:
rulesLowpco = apriori(ICU_norace_tr, parameter =
 list(confidence = 0.8, support=.1, minlen = 2),
 appearance = list(lhs = c("pco=<=45"), default="rhs"))

•	 We create a data frame from the rules as follows:
rulesLowpco.df = as(rulesLowpco,"data.frame")

•	 We create the vector of the p value for Fisher's exact test as follows:
IM = interestMeasure(rulesLowpco, "fishersExactTest",
 ICU_norace_tr)

•	 We then append it to the data frame:
rulesLowpco.df$IM= round(IM, digits = 2)

•	 Finally, we plot the relationship between lift and the p value. We can see that
the higher the lift, the lower the p value:
plot (rulesLowpco.df$lift, rulesLowpco.df$IM, xlab = "lift",
 ylab = "Significance")

Appendix A

[287]

Chapter 8 – Probability Distributions,
Covariance, and Correlation
The following code will compute the probabilities of each outcome of interest:

1 p = 18/37
2 N = 100
3 n = 1
4 v40_49 = rep(1,10)
5 v51_60 = v40_49
6 i=1
7 for (n in 40:49) {
8 v40_49[i] = choose(N, n) * (p^n) * (1 - p)^(N-n)
9 i = i + 1
10 }
11 i=1
12 for (n in 51:60) {
13 v51_60[i] = choose(N, n) * (p^n) * (1 - p)^(N-n)
14 i = i + 1
15 }

•	 We can display the probability of obtaining between 40 and 49 red numbers
drawn by summing the individual probabilities. The result is approximately
53.5 percent:
sum(v40_49)

•	 We can do the same for the probability of obtaining between 51 and 60 red
numbers. The result is approximately 34.7 percent:
sum(v51_60)

So it would be better to bet on black, right ? Well, this wouldn't make
a difference. Because of the presence of the 0, which isn't black nor red,
the probabilities of winning a several bets is strongly lower than the
probabilities of losing, as the risk of losing each trial is higher than the
chances of winning (19/37 versus 18/37).

•	 The correlation between petal width and petal length can be computed
as follows:

cor.test(iris$Petal.Width,iris$Petal.Length)

The correlation between these attributes is around 0.963, and is significant
at p < .001.

Exercises and Solutions

[288]

Chapter 9 – Linear Regression
•	 We examine the effect of work-family conflict (attribute WFC) on work

satisfaction (WorkSat) in the first model called model01:
model01 = lm(WorkSat ~ WFC, data = nurses)

•	 We create a second model called model02, in which you include WFC and
exhaustion (Exhaus) as predictors of WorkSat:
model02 = lm(WorkSat ~ WFC + Exhaus, data = nurses)

•	 We can check the relationship between WFC and Worksat in both models
using the following code. We notice that the effect of WFC on work satisfaction
is significant in model01, but not anymore in model02, that is when
exhaustion is included in the model.
summary(model01)
summary(model02)

•	 Here is the code for computing model03 with WFC included as a predictor
of exhaustion:
model03 = lm(Exhaus ~ WFC, data = nurses)

The summary of model03 shows that WFC is a significant predictor of Exhaus:

summary(model03)

•	 We therefore perform a Sobel test for the mediation of the relationship
between WFC and WorkSat by Exhaus as follows:
library(bda)
mediation.test(nurses$Exhaus, nurses$WFC, nurses$WorkSat)

We can see that the value for the Sobel test is significant, which attests to the
presence of the mediation

Chapter 10 – Classification with k-Nearest
Neighbors and Naïve Bayes
The following code will generate the kappas values for numbers of neighbors
ranging from 2 to 10 (the first value is for two neighbors, the second for three):

1 library(psych); library(class)
2 kappas = rep(0,9)
3 for (i in 1:9) {

Appendix A

[289]

4 set.seed(2222)
5 pred.train = knn(train = TRAIN[,2:13], test = TRAIN[,2:13],
6 cl = TRAIN$season, k = i+1)
7 tab = table(pred.train,TRAIN[,14])
8 kappas[i] = cohen.kappa(tab)[1]
9 }

Using the following code, we notice that the two clusters' solution has the
highest kappa:

which.max(kappas)

We therefore use this solution to predict our data in the testing set and compute
the kappa value, which is only 0.19 (that's pretty bad!):

pred.test = knn(train = TRAIN[,2:13], test = TEST[,2:13],
 cl = TRAIN$season, k = 2)
cohen.kappa(table(pred.test,TEST[,14]))[1]

Chapter 11 – Classification Trees
The C4.5 model is generated as follows:

library(RWeka)
IRIS.C45 = J48(Species~ . , data= IRIStrain,
 control= Weka_control(U=FALSE))

We compute the predictions as follows:

C45.preds = predict(IRIS.C45, IRIStest)

The CART model is generated as follows:

library(rpart)
IRIS.CART = rpart(Species ~. , data= IRIStrain)

The following line of code computes a data frame with the predicted probabilities:

CART.probs = as.data.frame(predict(IRIS.CART, IRIStest))

We now obtain the column number in which the predicted probabilities are the
highest for each case:

CART.preds = apply(CART.probs, 1, which.max)

Exercises and Solutions

[290]

Finally, we assign the name of that column to each observation:

for (i in 1:length(CART.preds)) {
 col= as.numeric(CART.preds[i])
 CART.preds[i] = names(CART.probs[col])
}

Let's obtain the confusion matrix for both classifications:

CONF.C45 = table(IRIStest$Species, C45.preds)
CONF.CART = table(IRIStest$Species, CART.preds)

We create a function that computes the accuracy of a confusion matrix for us:

acc = function(table) {
 sum(diag(dim(table)[1])*table) / sum(CONF.C45)
}

We can see that, for this dataset, CART has a little advantage in accuracy
(0.95 versus 0.92):

acc(CONF.C45)
acc(CONF.CART)

Chapter 12 – Multilevel Analyses
We obtain the graph for the relationship between Exhaust and WorkSat as follows:

library(lattice)
attach(NursesML)
xyplot(WorkSat~Exhaust | as.factor(hosp), panel = function(x,y) {
 panel.xyplot(x,y)
 panel.lmline(x,y)
})

We generate the second graph as follows:

xyplot(WorkSat~Depers | as.factor(hosp), panel = function(x,y) {
 panel.xyplot(x,y)
 panel.lmline(x,y)
})

Appendix A

[291]

We obtain the answer to questions 2 and 3 using the following line of code. The first
value is the intercept, the second value is the coefficient for the predicted value (the
increase on the actual work satisfaction for an increase of 1 in the predicted value):

coeffs(modelPred)

Chapter 13 – Text Analytics with R
This is easily done as follows. For the original corpus type the following code:

DTM = as.matrix(DocumentTermMatrix(acq))
FR = colSums(DTM)
FR[FR>100]

For the preprocessed corpus type the following code:

acq2 = preprocess(acq)
DTM2 = as.matrix(DocumentTermMatrix(acq2))
FR2 = colSums(DTM2)
FR2[FR2>100]

We obtain the graph as follows:

barplot(sort(FR2[FR2>30]), names.arg = rownames(sort(FR2[FR2>30])))

[293]

Further Reading and
References

Preface
Chan, P. K., Fan, W., Prodromidis, A. L., and Stolfo, S. J. Distributed data mining
in credit card fraud detection. Intelligent Systems and their Applications, IEEE, 14. 67-74.
1999.

Culotta, A. Towards detecting influenza epidemics by analyzing Twitter messages
in Proceedings of the first workshop on social media analytics. ACM. 115-122. July 2010.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., and
Brilliant, L. Detecting influenza epidemics using search engine query data. Nature,
457. 1012-1014. 2009.

Kotov, V. E. Big data, big systems, big challenges in M. Broy & A. V. Zamulin (Eds.).
Perspectives of System Informatics . 41-44. Springer, Berlin. 2014.

O'Connor, B., Balasubramanyan, R., Routledge, B. R., and Smith, N. A. From tweets
to polls: Linking text sentiment to public opinion time series. ICWSM, 11. 122-129.
2010.

Shearer C. The CRISP-DM model: the new blueprint for data mining. Journal of
Data Warehousing, 5. 13-22. 2000.

Further Reading and References

[294]

Chapter 1 – Setting GNU R for Predictive
Modeling
Becker, R. A., Cleveland, W. S., and Shyu, M. J. The visual design and control of
trellis display. Journal of Computational and Graphical Statistics, 5. 123-155. 1996.

Leisch. F. Creating R packages: A tutorial. Technical report. Ludwig Maximilians
Universität München. 2009.

Chapter 2 – Visualizing and Manipulating
Data Using R
Lillis, D. A. R Graph Essentials. Packt Publishing. 2014.

Rousseeuw, P. J. and Van Zomeren, B. C. Unmasking multivariate outliers and
leverage points. Journal of the American Statistical Association, 85. 633-639. 1990.

Chapter 3 – Data Visualization with
Lattice
Becker, R. A., Cleveland, W. S., and Shyu, M. J. The visual design and control of
trellis display. Journal of Computational and Graphical Statistics, 5. 123-155. 1996.

Campbell, J. A. Health insurance coverage in Department of Commerce (Ed.) Current
population reports. 15-44. Department of Commerce, Washington. 1999.

Cleveland, W. S. Visualizing data. Hobart Press, Summit. 1993.

Sarkar, D. Lattice: multivariate data visualization with R. Springer, New York. 2008.

Chapter 4 – Cluster Analysis
Chiang, M. M. T., and Mirkin, B. Experiments for the number of clusters in k-means.
In L. P. R. Correia and J. Cascalho (Eds.). Progress in Artificial Intelligence. 395-405.
Springer, Berlin. 2007.

Cohen, J. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20. 37-46. 1960.

Appendix B

[295]

Deza, M. M. and Deza, E. Encyclopedia of distances. Springer, Berlin. 2013.

Hartigan, J. A. Clustering algorithms. Wiley Publishing, New York. 1975.

Chapter 5 – Agglomerative Clustering
Using hclust()
Day, W. H. and Edelsbrunner, H. Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of Classification, 1. 7-24. 1984.

Johnson, S. C. Hierarchical clustering schemes. Psychometrika, 32. 241-254. 1967.

Latané, B. Dynamic social impact: The creation of culture by communication. Journal
of Communication, 46. 13-25. 1996.

The R Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing. 2013.

Chapter 6 – Dimensionality Reduction
with Principal Component Analysis
Abdi, H., and Williams, L. J. Principal Component Analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2. 433-459. 2010.

Dziuban, C. D., and Shirkey, E. C. When is a correlation matrix appropriate for factor
analysis? Some decision rules. Psychological Bulletin, 81. 358-361. 1974.

Chapter 7 – Exploring Association Rules
with Apriori
Adamo, J. M. Data mining for association rules and sequential patterns: sequential and
parallel algorithms. Springer, Berlin. 2012.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... and Steinberg,
D. Top 10 algorithms in data mining. Knowledge and Information Systems, 14. 1-37.
2008.

Further Reading and References

[296]

Chapter 8 – Probability Distributions,
Covariance, and Correlation
Forbes, C., Evans, M., Hastings, N., and Peacock, B. Statistical distributions. Wiley
Publishing, Hokoben. 2011.

Chapter 9 – Linear Regression
Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduction to linear regression
analysis. Wiley Publishing, Hokoben. 2012.

Renaud, O. and Victoria-Feser, M. P. A robust coefficient of determination for
regression. Journal of Statistical Planning and Inference, 140. 1852-1862. 2010.

Chapter 10 – Classification with
k-Nearest Neighbors and Naïve Bayes
Duda, R. O., Hart, P. E., and Stork, D. G. Pattern classification. Wiley Publishing,
New York. 2001.

Chapter 11 – Classification Trees
Mingers, J. An empirical comparison of selection measures for decision-tree
induction. Machine Learning, 3. 319-342. 1989.

Mitchel, T. Decision tree learning. Machine learning. 52-80. McGraw Hill, Burr Ridge.
1997.

Chapter 12 – Multilevel Analyses
Hox, J. Multilevel analysis. Techniques and applications. Routledge, New York. 2010.

Appendix B

[297]

Chapter 13 – Text Analytics with R
Delgado, M., Martín-Bautista, M. J., Sánchez, D., and Vila, M. A. Mining text data:
special features and patterns in Hand, David J. (Eds.). Pattern Detection and Discovery.
140-153. Springer, Berlin. 2002.

Greene, D., O'Callaghan, D., and Cunningham, P. How many topics? Stability
analysis for topic models in P. A. Flach, T. De Bie, and N. Cristianini (Eds.). Machine
learning and knowledge discovery in databases. 498-513. Springer, Berlin. 2014.

Scholkopf, B., and Smola, A. J. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Cambridge: MIT press. 2001.

Chapter 14 – Cross-validation and
Bootstrapping Using Caret and Exporting
Predictive Models Using PMML
Guazzelli, A., Lin, W. C., and Jena, T. PMML in action: unleashing the power of open
standards for data mining and predictive analytics. CreateSpace. 2012.

Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and
model selection. Proceedings of the 14th International Joint Conference on Artificial
Intelligence. 1137-1145. Morgan Kaufmann, Montreal. 1995.

[299]

Index
A
agglomerative clustering

about 81
hclust(), using 86-91
inner working 82-86
vote results, exploring 86-91

analyses, performing
C4.5, used for classification 204
C50 206, 207
CART 207
conditional inference trees, in R 212
predictions on testing set, examining 211

anova() function 225
apriori

about 116
association rule 116
confidence 117
confidence-based pruning 119
detailed analysis 122
inner working 117
itemsets 116
itemset, support 116
lift 117
support-based pruning 118
used, for analyzing data in R 119
used, for basic analysis 119-121

arithmetic mean 139, 140
association rule 116
attribute 6

B
bar plots

example 18-25
between sum of squares (BSS) 75

Big Five Inventory
URL 278

binary attributes
hierarchical clustering, using on 92-94

binomial distribution 137, 138
bootstrapping 170-173
boxplots

example 28, 29

C
C4.5

about 198
gain ratio 198
installing 202
post-pruning 199

C5.0
about 199
installing 202

caret package
about 213
used, for bootstrapping of predictive

models 263-267
used, for cross-validation of predictive

models 263-266
cbind() function 67
Class attribute 194
classification and regression trees (CART)

about 200-208
installing 202
pruning 208, 209
random forests, in R 210

classification performance
computing 190, 191

[300]

classification, with C4.5
about 204
pruned tree 205, 206
unpruned tree 204, 205

clustering algorithms 61
coef() function 224
Comprehensive R Archive Network

(CRAN)
about 1
URL 1

conditional inference trees
about 201
in R 212, 213
installing 203

confidence-based pruning
used, for generating rules 119

confint.merMod() function 228
cor() function 144
corpus

inspecting 241-244
loading 239-241
processing 241-244

correlation
about 139-142
Pearson's correlation 142-144
Spearman's correlation 145

cor.test() function 144
covariance

about 139-141
formula 141

createDataPartition() function 204
ctree() function 203
cutoff parameter 210

D
data

loading 204
preparing 203

data analysis
about 156
correlation 156
models, comparing 163-166
new data, predicting 166-169
normality of residuals, checking 161, 162
potential mediations, examining 163-166
regression 156

regression, performing 160, 161
steps 157-160
variance inflation, checking 162

data frames
testing 245

data preparation
about 241
attributes, computing 245
corpus, preprocessing 241-244

data visualization 15
decision trees 193-195
detailed analysis, with apriori

about 122
association rules, coercing to data

frame 127, 128
association rules, visualizing 128, 129
data, analyzing 123-127
data, preparing 123

dimensions
scaling, example 62

discretize() function 123
distance measures

using 63, 64
dist() function 65, 283
dotplot() function 43, 44

E
eigen() function 100
entropy 195, 196
exercises 277-281

F
factor() function 39
Female branch 194
forests 201

G
gain ratio 198
glm() function 250
GNU R

installing 2
URL, for installation on Linux 2
URL, for installation on Mac OS X 2
URL, for installation on Windows 2

[301]

graphics
updating 47-49

Grouped matrix-based visualization 128

H
hclust() tool

about 278
using, with agglomerative clustering 86-91

hierarchical clustering
using, on binary attributes 92-94

histograms
about 39
example 18-25

I
ID3

about 195
entropy 195, 196
information gain 197

ifelse() function 59
information gain 197, 198
installing

packages, in R 9, 10
intercept, simple regression

computing 150, 151
interestMeasure() function 124
itemsets 116

K
Kaiser Meyer Olkin (KMO) 113
kay.means() function 70
KDnuggets

URL, for yearly software polls 1
k-means

about 61
used, for partition clustering 65, 66
using, with public datasets 71

k-Nearest Neighbors (k-NN)
about 176-179
k, selecting 181, 182
used, for document classification 245, 247
working, with in R 179-181

knn() function 177-179

L
lattice package

discovering 36, 37
loading 36, 37
URL 37

lattice plots
data points, displaying as text 45, 46
discovering 39
dotplot() function 43, 44
histograms 39
stacked bars 41, 43

life.expectancy.1971 dataset
best number of clusters, searching 77, 78
external validation 79

linear regression
URL 160

line plots
example 29

logistic regression
used, for document classification 249-252

lpoints() function 37
lrect() function 37

M
maximum likelihood (ML) 225
mean() function 223
Measure of Sample Adequacy(MSA) 113
melt() function 177
menu bar, R console

about 3
File menu 4, 5
Misc menu 5-8

models
exporting, with PMML 268

multilevel modeling
about 221
null model 221-224
random intercepts and fixed

slopes 225-228
random intercepts and random

slopes 228-233
multilevel models

predict() function, using 233
prediction quality, assessing 234, 235
used, for predicting work satisfaction 233

[302]

multilevel regression
about 218
random intercepts and fixed slopes 218, 219
random intercepts and random

slopes 219-221
multipanel conditioning

discovering, with xyplot() function 37, 38
multiple regression

working 156

N
Naïve Bayes

about 182-186
used, for document classification 247, 248
working with, in R 186-190

nested data
about 215-217
examples 215
Robinson effect 216
Simpson's paradox 217

news mining
about 253
article topics, extracting 257-259
document classification 253-257
news articles, collecting 259-262

normal distribution 133, 135
NursesML dataset 281

O
Outlier detection 31, 32

P
package installations

C4.5 202
C5.0 202
CART 202
conditional inference trees 203
data, loading 203
data, preparing 203
random forest 202

packages
about 8, 9
installing, in R 9, 10
loading, in R 11-14

panel.loess() function 60
partition clustering

centroids, setting 66
closest cluster, computing 67
distances, computing to centroids 67
internal validation 69, 70
k-means, using 65, 66
main function, task performed 68

PCA
about 98
components with loadings,

naming 107, 109
diagnostics 112, 113
inner working 98-102
missing values, dealing with 104, 105
relevant components, selecting 105-107
scores, accessing 109, 110
scores, for analysis 110-112
uses 98
using, in R 103

Pearson's correlation 142-144
plot() function 75
plotLMER.fnc() function 232
plots

formatting 32, 34
predict() function

about 186
using 233

predictions
examining, on testing set 211

predictive model exportation, examples
about 271
association rules (apriori objects),

exporting 274
decision trees (rpart objects), exporting 275
decision trees (rpart objects), exporting 274
hierarchical clustering 272, 273
k-means objects, exporting 271
logistic regression objects, exporting 275
Naïve Bayes objects, exporting 274
random forest objects, exporting 275
support vector machine objects,

exporting 276
Predictive Model Markup Language

(PMML)
about 263, 268, 269
object structure, describing 269, 270

[303]

predictive model exportation,
examples 271

URL 269
used, for exporting models 268

predictive models
bootstrapping, with caret package 263-267
cross-validation, with caret

package 263-266
new data, predicting 268

preprocess() function 281
principal component analysis. See PCA
probability distributions

about 131
binomial distribution 137, 138
Discrete uniform distribution 132
importance 138
normal distribution 133-135
Student's t distribution 136

public datasets
all.us.city.crime.1970 dataset 71-76
k-means, using with 71
life.expectancy.1971 dataset 77

Q
qqnorm() function 230
Quantile-Quantile plot (Q-Q plot) 152

R
R

about 1
analyses, performing 204
conditional inference trees 212
data, analyzing 156
data, analyzing with apriori 119-121
k-NN, working with 179-181
multilevel modeling 221
Naïve Bayes, working with 186-190
news mining 253
packages, installing in 9, 10
packages, loading in 11-14
PCA, using 103

random forest
about 200, 201
bagging 201
installing 202

ranef() function 224
references 294-297
regression 139
removeSparseTerms() function 244
review classification

about 245
document classification,

with k-NN 245, 247
document classification, with logistic

regression 249-252
document classification, with Naïve

Bayes 247, 248
document classification, with support

vector machines (SVM) 252, 253
R graphic user interface (RGui) 2, 3
Robinson effect 216
robust regression

using 169, 170
roulette case 16, 17
rpart() function 202
r.squaredLR() function 226

S
scale() function 62
scatterplots

example 25-28
simple regression

about 148, 149
coefficient significance,

computing 154-156
intercept 148
intercept, computing 150, 151
residuals, obtaining 151-153
slope coefficient 148
slope coefficient, computing 150, 151

sjp.lmer() function 229
skmeans() function 64
slope coefficient, simple regression

computing 150, 151
significance, computing 154-156

Spearman's correlation 145
stacked bars 41, 43
Student's distribution 136
support-based pruning

used, for generating rules 118

[304]

support vector machines (SVM)
used, for document classification 252, 253

T
term-document matrix 239
text analytics

about 237
textual documents, preprocessing 238, 239

tokenizing 239
total sum of square (TSS) 75
training

creating 245

U
update() function 48
USCancerRates dataset

discovering 50-54
supplementary external data,

integrating 55-60
used, for exploring cancer related

deaths 50

V
variable 6
vector 6
vegdist() function 65

W
writeCorpus() function 261

X
xyplot() function

about 45
used, for discovering multipanel

conditioning 37

Thank you for buying
Learning Predictive Analytics with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1.	 Perform factor manipulation and
string processing.

2.	 Learn group-wise data manipulation
using plyr.

3.	 Handle large datasets, interact with database
software, and manipulate data using sqldf.

Introduction to R for Quantitative
Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for quantitative finance

1.	 Use time series analysis to model and forecast
house prices.

2.	 Estimate the term structure of interest rates
using prices of government bonds.

3.	 Detect systemically important financial
institutions by employing financial
network analysis.

Please check www.PacktPub.com for information on our titles

Haskell Financial Data Modeling
and Predictive Analytics
ISBN: 978-1-78216-943-7 Paperback: 112 pages

Get an in-depth analysis of financial time series from
the perspective of a functional programmer

1.	 Understand the foundations of financial
stochastic processes.

2.	 Build robust models quickly and efficiently.

3.	 Tackle the complexity of parallel programming.

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into
real-world applications

1.	 Harness the power of R for statistical
computing and data science.

2.	 Use R to apply common machine learning
algorithms with real-world applications.

3.	 Prepare, examine, and visualize data
for analysis.

4.	 Understand how to choose between machine
learning models.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting GNU R for
Predictive Analytics
	Installing GNU R
	The R graphic user interface
	The menu bar of the R console
	A quick look at the File menu
	A quick look at the Misc menu

	Packages
	Installing packages in R
	Loading packages in R

	Summary

	Chapter 2: Visualizing and Manipulating Data Using R
	The roulette case
	Histograms and bar plots
	Scatterplots
	Boxplots
	Line plots
	Application – Outlier detection
	Formatting plots
	Summary

	Chapter 3: Data Visualization
with Lattice
	Loading and discovering the lattice package
	Discovering multipanel conditioning
with xyplot()
	Discovering other lattice plots
	Histograms
	Stacked bars
	Dotplots
	Displaying data points as text

	Updating graphics
	Case study – exploring cancer-related deaths in the US
	Discovering the dataset
	Integrating supplementary external data

	Summary

	Chapter 4: Cluster Analysis
	Distance measures
	Learning by doing – partition clustering with kmeans()
	Setting the centroids
	Computing distances to centroids
	Computing the closest cluster for each case
	Tasks performed by the main function
	Internal validation

	Using k-means with public datasets
	Understanding the data with the
all.us.city.crime.1970 dataset
	Finding the best number of clusters in the life.expectancy.1971 dataset
	External validation

	Summary

	Chapter 5: Agglomerative Clustering Using hclust()
	The inner working of agglomerative clustering
	Agglomerative clustering with hclust()
	Exploring the results of votes in Switzerland
	The use of hierarchical clustering on
binary attributes

	Summary

	Chapter 6: Dimensionality Reduction with Principal Component Analysis
	The inner working of Principal Component Analysis
	Learning PCA in R
	Dealing with missing values
	Selecting how many components are relevant
	Naming the components using the loadings
	PCA scores
	Accessing the PCA scores

	PCA scores for analysis
	PCA diagnostics

	Summary

	Chapter 7: Exploring Association
Rules with Apriori
	Apriori – basic concepts
	Association rules
	Itemsets
	Support
	Confidence
	Lift

	The inner working of apriori
	Generating itemsets with support-based pruning
	Generating rules by using confidence-based pruning

	Analyzing data with apriori in R
	Using apriori for basic analysis
	Detailed analysis with apriori
	Preparing the data
	Analyzing the data
	Coercing association rules to a data frame
	Visualizing association rules

	Summary

	Chapter 8: Probability Distributions, Covariance, and Correlation
	Probability distributions
	Introducing probability distributions
	Discrete uniform distribution

	The normal distribution
	The Student's t-distribution
	The binomial distribution
	The importance of distributions

	Covariance, correlation, and regression
	Correlation
	Covariance

	Summary

	Chapter 9: Linear Regression
	Understanding simple regression
	Computing the intercept and slope coefficient
	Obtaining the residuals
	Computing the significance of the coefficient

	Working with multiple regression
	Analyzing data in R: correlation and regression
	First steps in the data analysis
	Performing the regression
	Checking for the normality of residuals
	Checking for variance inflation
	Examining potential mediations and comparing models
	Predicting new data

	Robust regression
	Bootstrapping
	Summary

	Chapter 10: Classification with k-Nearest Neighbors and Naïve Bayes
	Understanding k-NN
	Working with k-NN in R
	How to select k

	Understanding Naïve Bayes
	Working with Naïve Bayes in R
	Computing the performance of classification
	Summary

	Chapter 11: Classification Trees
	Understanding decision trees
	ID3
	Entropy
	Information gain

	C4.5
	The gain ratio
	Post-pruning

	C5.0
	Classification and regression trees and random forest
	CART
	Random forest
	Bagging

	Conditional inference trees and forests
	Installing the packages containing the required functions
	Installing C4.5
	Installing C5.0
	Installing CART
	Installing random forest
	Installing conditional inference trees
	Loading and preparing the data

	Performing the analyses in R
	Classification with C4.5
	The unpruned tree
	The pruned tree

	C50
	CART
	Pruning
	Random forests in R

	Examining the predictions on the testing set
	Conditional inference trees in R

	Caret – a unified framework for classification
	Summary

	Chapter 12: Multilevel Analyses
	Nested data
	Multilevel regression
	Random intercepts and fixed slopes
	Random intercepts and random slopes

	Multilevel modeling in R
	The null model
	Random intercepts and fixed slopes
	Random intercepts and random slopes

	Predictions using multilevel models
	Using the predict() function
	Assessing prediction quality

	Summary

	Chapter 13: Text Analytics with R
	An introduction to text analytics
	Loading the corpus
	Data preparation
	Preprocessing and inspecting the corpus
	Computing new attributes

	Creating the training and testing data frames
	Classification of the reviews
	Document classification with k-NN
	Document classification with Naïve Bayes
	Classification using logistic regression
	Document classification with support vector machines

	Mining the news with R
	A successful document classification
	Extracting the topics of the articles
	Collecting news articles in R from the New York Times article search API

	Summary

	Chapter 14: Cross-validation and Bootstrapping using Caret and Exporting Predictive Models Using PMML
	Cross-validation and bootstrapping of predictive models using the caret package
	Cross-validation
	Performing cross-validation in R with caret
	Bootstrapping
	Performing bootstrapping in R with caret
	Predicting new data

	Exporting models using PMML
	What is PMML?
	A brief description of the structure of PMML objects
	Examples of predictive model exportation
	Exporting k-means objects
	Hierarchical clustering
	Exporting association rules (apriori objects)
	Exporting Naïve Bayes objects
	Exporting decision trees (rpart objects)
	Exporting random forest objects
	Exporting logistic regression objects
	Exporting support vector machine objects

	Summary

	Appendix A: Solution to Exercises
	Exercises
	Solutions

	Appendix B: Further Reading and References
	Index

