
www.allitebooks.com

http://www.allitebooks.org

Learning Puppet Security

Secure your IT environments with the powerful security

tools of Puppet

Jason Slagle

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Puppet Security

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-775-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Jason Slagle

Reviewers

Vlastimil Holer

Jeroen Hooyberghs

Michael J. Ladd

Stephen McNally

Marcus Young

Commissioning Editor

Dipika Gaonkar

Acquisition Editor

Meeta Rajani

Content Development Editor

Akshay Nair

Technical Editors

Tanmayee Patil

Sebastian Rodrigues

Copy Editors

Sonia Michelle Cheema

Rashmi Sawant

Wishva Shah

Project Coordinator

Mary Alex

Proofreaders

Simran Bhogal

Maria Gould

Paul Hindle

Linda Morris

Indexer

Tejal Soni

Production Coordinator

Shantanu N. Zagade

Cover Work

Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jason Slagle is a veteran of systems and network administration of 18 years.
Having worked on everything from Linux systems to Cisco networks and SAN
storage, he is always looking for ways to make his work repeatable and automated.
When he is not hacking a computer for work or pleasure, he enjoys running, cycling,
and occasionally, geocaching.

Jason is a graduate of the University of Toledo from the computer science and
engineering technology program with a bachelor's degree in science. He is currently
employed by CNWR, an IT and infrastructure consulting company in his hometown
of Toledo, Ohio. There, he supports several prominent customers in their quest
to automate and improve their infrastructure and development operations. He
occasionally serves as a part-time instructor at the University of Toledo.

Jason has previously worked as a technical reviewer on Puppet 3: Beginner's Guide
and Puppet Monitoring and Reporting.

I would like to thank my wife, Heather, and my son, Jacob. They've
been greatly supportive during this process.

Additionally I'd like to thank my mentor, Allen Rioux. Without you,
none of this would have been possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vlastimil Holer is a systems engineer, with focus on automation. He has
worked with Unix-like systems for more than a decade, and irst used Puppet in
2008 while preparing and managing the growing deployment of the GoodData cloud
BI on Amazon EC2. Currently, he works on the CERIT Scientiic Cloud project at
Masaryk University, where he manages and automates their computing, cloud,
and storage infrastructure.

Jeroen Hooyberghs is an open source and Linux consultant, working for Open
Future in Belgium. In this position as well as in his earlier roles in Linux system
administration, he obtained technical expertise through a lot of open source
solutions, such as Puppet. In 2014, he became a Puppet Certiied Professional and
Oficial Puppet Trainer. As a reviewer, he contributed to Mastering Puppet and
Puppet Cookbook, Third Edition.

Michael J. Ladd is a senior manager of systems engineering at Leapfrog Online
LLC of Evanston, Illinois. He has been working with Linux systems for more than
15 years, and has been using Puppet for over 5 years. In addition to wrangling
computers, Michael enjoys writing music and working through an ever-growing
list of books to read. He writes very occasionally at www.mjladd.com, and can be
reached at mjladd@gmail.com.

I would like to thank my admirable wife, Jen, for her support and
encouragement, and my spirited daughter, Piper.

www.allitebooks.com

www.mjladd.com
mailto:mjladd@gmail.com
http://www.allitebooks.org

Stephen McNally received his MBA from Tennessee Technological University
in 2013 with focus on management information systems. Stephen has experience in
procuring, deploying, maintaining, administering, and decommissioning some of the
world's fastest supercomputers. Most notably, his team deployed the irst academic
petascale supercomputer, Kraken. Stephen has IT experience in multiple industries,
including automotive manufacturing, healthcare, and research computing. He
oversees all aspects of HPC operations as the group leader for some of the world's
brightest and most talented administrators and programmers.

I would like to thank my wife, Christina, and my son, Sutton,
for providing their love and support during this process.

Marcus Young recently graduated with a degree in computer science and
mathematics, before getting involved in system administration and DevOps. He
currently works in software automation using open source tools and technologies.
His hobbies include playing ice hockey and brewing beer. He also enjoys hardware
projects based on microcontrollers and single-board computers. He is currently
working on Implementing Cloud Design Patterns for AWS.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents

Preface v

Chapter 1: Puppet as a Security Tool 1

What is Puppet? 2

Declarative versus imperative approaches 3

The Puppet client-server model 5

Other Puppet components 6

PuppetDB 6

Hiera 7

Installing and coniguring Puppet 8
Installing the Puppet Labs Yum repository 8

Installing the Puppet Master 9

Installing the Puppet agent 10

Coniguring Puppet 10
Puppet services 11

Preparing the environment for examples 12

Installing Vagrant and VirtualBox 12
Creating our irst Vagrantile 13

Puppet for security and compliance 17

Example – using Puppet to secure openssh 18
Starting the Vagrant virtual machine 19

Connecting to our virtual machine 20

Creating the module 20

Building the module 20

The openssh coniguration ile 22
The site.pp ile 23
Running our new code 23

Summary 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Tracking Changes to Objects 27

Change tracking with Puppet 28
The audit meta-parameter 28

How it works 29

What can be audited 29

Using audit on iles 30
Available attributes 30

Auditing the password ile 31
Preparation 31

Creating the manifest 31

First run of the manifest 32

Changing the password ile and rerunning Puppet 33
Audit on other resource types 34
Auditing a package 35

Modifying the module to audit 36

Things to know about audit 39
Alternatives to auditing 40

The noop meta-parameter 41

Purging resources 42

Using noop 42
Summary 45

Chapter 3: Puppet for Compliance 47
Using manifests to document the system state 48
Tracking history with version control 50

Using git to track Puppet coniguration 50
Tracking modules separately 53

Facts for compliance 55

The Puppet role's pattern 55

Using custom facts 56

The PCI DSS and how Puppet can help 58
Network-based PCI requirements 58

Vendor-supplied defaults and the PCI 59

Protecting the system against malware 67

Maintaining secure systems 71

Authenticating access to systems 71

Summary 71

Chapter 4: Security Reporting with Puppet 73
Basic Puppet reporting 73

The store processors 75

Example – showing the last node runtime 77

Table of Contents

[iii]

PuppetDB and reporting 79
Example – getting recent reports 83

Example – getting event counts 85

Example – a simple PuppetDB dashboard 86

Reporting for compliance 88
Example – inding heartbleed-vulnerable systems 88

Summary 91
Chapter 5: Securing Puppet 93

Puppet security related coniguration 93
The auth.conf ile 94
Example – Puppet authentication 95

Adding our second Vagrant host 95

The ileserver.conf ile 98
Example – adding a restricted ile mount 99

SSL and Puppet 102
Signing certiicates 103
Revoking certiicates 104
Alternative SSL conigurations 106

Autosigning certiicates 107
Naïve autosign 108

Basic autosign 108

Policy-based autosign 110

Summary 114
Chapter 6: Community Modules for Security 115

The Puppet Forge 116

The herculesteam/augeasproviders series of modules 120
Managing SSH with augeasproviders 122

The arildjensen/cis module 125

The saz/sudo module 129
The hiera-eyaml gem 132
Summary 137

Chapter 7: Network Security and Puppet 139
Introducing the irewall module 139
The irewall type 141
The irewallchain type 146
Creating pre and post rules 147
Adding irewall rules to other modules 151

Is allowing all to NTP dangerous? 153

Summary 155

Table of Contents

[iv]

Chapter 8: Centralized Logging 157

Welcome to logging happiness 158
Installing the ELK stack 159

Logstash and Puppet 164
Installing Elasticsearch 164

Installing Logstash 167

Reporting on log data 171

Installing Kibana 172

Coniguring hosts to report log data 176
Summary 180

Chapter 9: Puppet and OS Security Tools 181
Introducing SELinux and auditd 182

The SELinux framework 182

The auditd framework for audit logging 186

SELinux and Puppet 187
The selboolean type 187

The selmodule type 190

File parameters for SELinux 191

Coniguring SELinux with community modules 192
Coniguring auditd with community modules 197
Summary 200

Appendix: Going Forward 201
What we've learned 201
Where to go next 202

Writing and testing Puppet modules 202

Puppet device management 203

Additional reporting resources 204

Other Puppet resources 205

The Puppet community 206

Final thoughts 207
Index 209

[v]

Preface
Using Puppet is currently one of the hottest trends right now in the IT industry. As
the industry moves away from manual provisioning towards automation, the usage
of Puppet and its associated tools will only continue to grow.

With the rise of automation, and the repetitive tasks that security often entails,
it makes perfect sense for Puppet to be a strong security tool. With proper
coniguration, Puppet can assist in securing your servers, showing compliance with
various standards, and generally easing the workload of security-related personnel.

This book is a practical introduction to Puppet for security professionals. It will
guide you into the world of automation, showing you how to make repetitive tasks a
breeze. With the knowledge learned here, you can begin the process of bringing your
system conigurations into code, where they can be audited and treated much like
you would treat a code base.

Starting with the beginning, and assuming that you only have the knowledge of
Linux operating systems, we will explore the basics of Puppet. From there on, we
will cover examples and concepts of increasing complexity and skill until you are
ready to start on your own. In doing this, we will cover using the Puppet code for
auditing, as well as using reports and other data to show compliance. We'll explore
centralized logging, and learn how you can use Puppet to make your SELinux
tasks easier.

Preface

[vi]

What this book covers
Chapter 1, Puppet as a Security Tool, provides an introduction to Puppet. We'll build a
development environment that we'll use in all the chapters, and explore some simple
examples with Puppet.

Chapter 2, Tracking Changes to Objects, explores various ways to audit changes to
resources, such as iles. Puppet provides a number of ways to handle this, and we'll
review their pros and cons.

Chapter 3, Puppet for Compliance, looks at the use of Puppet for compliance purposes.
Version control for our manifests will be introduced, and it will explain how the
manifests can be used for auditing and compliance purposes. We'll also review
some speciic examples of how Puppet can help with the PCI DSS.

Chapter 4, Security Reporting with Puppet, looks at how to report on some of the things
we covered in the previous chapters. We'll build reporting on various system facts,
as well as some simple reporting covering when Puppet last ran on our hosts.

Chapter 5, Securing Puppet, covers what it takes to secure Puppet itself. Since Puppet
is in charge of all of your systems, ensuring that it is secure is important. We'll cover
the various security coniguration iles Puppet uses, as well as how it uses SSL to
ensure security.

Chapter 6, Community Modules for Security, takes a look at various modules that are
available at the Puppet Forge. We'll explore modules to make managing various
coniguration iles easier, as well as modules that provide some security hardening
of hosts.

Chapter 7, Network Security and Puppet, will explore using Puppet to manage the
irewall of the local host. We'll primarily be concentrating on the Puppet module,
which manages iptables and its associated set of tools that are used to manage
irewall rules. We'll also cover how to extend your modules to handle irewall
resources.

Chapter 8, Centralized Logging, introduces the use of Puppet to manage centralized
logging using Logstash. We'll cover the installation of Logstash as well as its
dashboard component, Kibana. We'll then build a simple module to ship logs
to a central server.

Chapter 9, Puppet and OS Security Tools, covers using Puppet to manage SELinux
and auditd. We'll cover the options available for Puppet for SELinux, as well as
community modules for both SELinux and auditd.

Preface

[vii]

Appendix, Going Further, covers information on developing good modules,
an analysis of Puppet device management, useful reporting tools, and a brief
discussion on the Puppet community.

What you need for this book
The examples in this book are all written using CentOS 6. The source present in
this book uses Vagrant to run the examples. Vagrant is a wonderful tool to use
for development, as it allows you to specify how full virtual machines should be
conigured.

To use Vagrant, you'll need the following software:

• VirtualBox: This is the virtualization container we'll use. You can ind it at
http://www.virtualbox.org.

• Vagrant: This tool is what we'll use to manage our virtual machines. You can
get it at http://www.vagrantup.com.

Who this book is for
This book is targeted at experienced system administrators who focus on security,
and it also targets security professionals. It assumes an intermediate to advanced
level of system administration ability, but does not require any previous experience
with Puppet.

Convention
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If not speciied, this defaults to $vardir/reports, so /var/lib/puppet/reports
on CentOS."

http://www.virtualbox.org
http://www.vagrantup.com

Preface

[viii]

A block of code is set as follows:

node default {

 include openssh

 include users

 include clamav

 include puppetdb

 include puppetdb::master::config

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

node default {

 include openssh

 include users

 include clamav

 include puppetdb

 include puppetdb::master::config

}

Any command-line input or output is written as follows:

sudo service puppetmaster restart

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[ix]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

[1]

Puppet as a Security Tool
Imagine you're sitting at home one day after a long day of work. Suddenly, you get
a phone call that a new security vulnerability was found and all 300 of your servers
will need to be patched. How would you handle it?

With Puppet, inding which one of your servers was vulnerable would be an easier
task than doing so by hand. Furthermore, with a little additional work, you could
ensure that every one of your servers is running a newer nonvulnerable version of
the Puppet package.

In this chapter, we will touch on the following concepts:

• What is Puppet?
• Declarative versus imperative systems

• The Puppet client-server model

• Other components of the Puppet ecosystem used for security

• Installing Puppet

• How Puppet fits into a security role

Once this is complete, we will build the environment we'll use to run examples in
this book and then run our irst example.

Much of the information in this chapter is presented as a guide to what we will
accomplish later on in this book.

www.allitebooks.com

http://www.allitebooks.org

Puppet as a Security Tool

[2]

What is Puppet?
The Puppet Labs website describes open source Puppet as follows:

Open source Puppet is a coniguration management system that allows you to
deine the state of your IT infrastructure, then automatically enforces the correct
state.

What does this mean, though?

Puppet is a coniguration management tool. A coniguration management tool is
a tool that helps the user specify how to put a computer system in a desired state.
Other popular tools that are considered as coniguration management tools are Chef
and CFEngine. There are also a variety of other options that are gaining a user base,
such as Bcfg2 and Salt.

Chef is another coniguration management tool. It uses pure Ruby Domain-speciic
Language (DSL) similar to Puppet. We'll cover what a domain-speciic language
is shortly. This difference allows you to write the desired state of your systems in
Ruby. Doing so allows one to use the features of the Ruby language, such as iteration,
to solve some problems that can be more dificult to solve in the stricter domain-
speciic language of Puppet. However, it also requires you to be familiar with Ruby
programming. More information on Chef can be found at http://www.getchef.com.

CFEngine is the oldest of the three main tools mentioned here. It has grown
into a very mature platform as it has expanded. Puppet was created out of some
frustrations with CFEngine. One example of this is that the CFEngine community
was formally quite closed, that is, they didn't accept user input on design decisions.
Additionally, there was a focus in CFEngine on the methods used to conigure
systems. Puppet aimed to be a more open system that was community-focused. It
also aimed to make the resource the primary actor, and relied on the engine to make
necessary changes instead of relying on scripts in most cases.

Many of these issues were addressed in CFEngine 3, and it retains a
very large user base. More information on CFEngine can be found
at http://www.cfengine.com.

http://www.getchef.com
http://www.cfengine.com

Chapter 1

[3]

Bcfg2 and Salt are both tools that are gaining a user base. Both written in Python,
they provide another option for a user who may be more familiar with Python
than other languages. Information on these tools, as well as a list of others that are
available, can be found at https://en.wikipedia.org/wiki/Comparison_of_
open-source_configuration_management_software.

Coniguration management tools were brought about by a desire to make system
administration work repeatable, as well as automate it.

In the early days of system administration, it was very common for an administrator
to install the operating system needed as well as install any necessary software
packages. When systems were simple and few in number, this was a low effort
way of managing them.

As systems grew more complex and greater numbers of them were installed, this
became much more dificult. Troubleshooting an application as it began to run
on multiple systems also became dificult. The difference in software versions on
installed nodes and other coniguration differences created inconsistencies in the
behavior of multiple systems that were running the same application. Installation
manuals, run books, and other forms of documentation were often deployed to try to
remedy this, but it was clear that we needed a better way.

As time moved on, system administrators realized that they needed a better way
to manage their systems. A variety of methods were born, but many of them were
home built. They often used SSH to manage remote hosts. I also built several such
systems at various places before coming across Puppet.

Puppet sought to ease the pain and shortcomings of the early days. It was a big
change from anything that was present at the time. A large part of this was because
of its declarative nature.

Declarative versus imperative approaches
At the core of Puppet is software that allows you to specify the state of the system
and let Puppet get the system there. It differs from many of the other products in the
coniguration management space due to its declarative nature.

In a declarative system, we model the desired state of the resources (things
being managed).

https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software

Puppet as a Security Tool

[4]

Declarative systems have the following properties:

• Desired state is expressed, not steps used to get there

• Usually no flow control, such as loops; it may contain conditional statements

• Actions are normally idempotent

• Dependency is usually explicitly declared

The concept of actions being idempotent is a very important one
in Puppet. It means that actions can be repeated without causing
unnecessary side effects. For example, removing a user is idempotent,
because removing it when it doesn't exist causes no side effects. Running
a script that increments to the next user ID and creates a user may not be
idempotent, because the user ID might change.

Imperative systems, on the other hand, use algorithms and steps to express their
desired state. Most traditional programming languages, such as C and Java, are
considered imperative. Imperative systems have the following properties:

• They use algorithms to describe the steps to the solution

• They use flow control to add conditionals and loops

• Actions may not be idempotent

• Dependency is normally executed by ordering

In Puppet, which is declarative, the users can describe how they want the system to
look in the end, and leave the implementation details of how to get there up to the
types and providers within Puppet. Puppet uses types, which represent resources,
such as iles or packages. Each type can optionally be implemented by one or
more provider.

Types provide the core functionality available in Puppet. The type system is
extensible, and additional types can be added using pure Ruby code. Later on in this
chapter, we'll use the ile and package types in our example.

Providers include the code for the type that actually does the low level
implementation of a resource. Many types have several providers that implement
their functionality in different ways. An example of this is the package type. It has
providers for RPM, Yum, dpkg, Windows using MSI, and several others. While it
is not a requirement that all types have multiple providers, it is not uncommon to
see them, especially for resources that have different implementation details across
operating systems.

Chapter 1

[5]

This system of types and providers isolates the user from having to have speciic
knowledge of how a given task is done. This allows them to focus on how the system
should be conigured, and leave speciic implementation details, such as how to put
it in that state, to Puppet.

A few tools, such as Chef, actually use more of a hybrid approach. They can be
used in a declarative state, but also allow the use of loops and other low control
structures that are imperative. Puppet is slowly starting to gain some support for this
in their new future parser, however these are experimental and advanced features at
this point.

While the declarative approach may have a larger learning curve, especially around
dependency management, many sysadmins ind it a much better it with their way of
thinking once they learn how it works.

The Puppet client-server model
Puppet uses a client-server model in the most common conigurations. In this mode,
one or more systems, called Puppet Masters, contain iles called manifests. Manifests
are code written in the Puppet DSL. A DSL is a language designed to be used for a
speciic application. In this case, the language is used to describe the desired state of
a system. This differs from more general purpose languages, such as C and Ruby, in
that it contains specialized constructs for the problem being solved. In this case, the
resources in the language are speciic to the coniguration management domain.

Manifests contain the classes and resources which Puppet uses to describe the
state of the system. They also contain declarations of the dependencies between
these resources.

Classes are often bundled up into modules which package up classes into reusable
chunks that can be managed separately. As your system becomes more complicated,
using modules helps you manage each subsystem independently of the others.

The client systems contain the Puppet agent, which is the component that
communicates with the master. At speciied run intervals (30 minutes by default), the
agent will run and the following actions will take place:

1. Custom plugins, such as facts, types, and providers, are sent to the client,
if configured.

2. The client collects facts and sends them to the master.

3. The master compiles a catalog and sends it to the client.

4. The client processes the catalog sent by the master.

5. The client sends the reporting data to the master, if configured.

Puppet as a Security Tool

[6]

The catalog, sent to the client by the master, contains a compiled state of the system
resources of the client. The client then applies this information using types and
providers to bring the system into the desired state. The following illustration
shows how data lows between the components:

It is also possible to run Puppet in a masterless mode. In this mode, the Puppet
manifests and other needed components, such as custom facts, types, and providers,
are distributed to each system using an out of band method, such as scp or rsync.
Puppet is then applied on the local node using cron or some other tool.

cron has the advantage of not requiring the server setup with open ports that the
master-based setup has. In some organizations, this makes it easier to get past
information security teams. However, many of the reporting and other beneits we
will explore in this book are less effective when run in this fashion. The book Puppet
3: Beginners Guide, John Arundel, Packt Publishing, has a good amount of information
about such a masterless setup.

Other Puppet components
Puppet has a number of other components that form part of the Puppet ecosystem,
which are worth exploring due to their use as security tools. The speciic components
we are going to explore here include PuppetDB and Hiera.

PuppetDB
PuppetDB is an application used to store information on the Puppet infrastructure.
Released in 2012, PuppetDB solved performance issues present in the older
storeconfigs method that stored information about Puppet runs.

Chapter 1

[7]

PuppetDB allows you to store facts, catalogs, reports, and resource information (via
exported resources). Mining this data, using one of the reporting APIs, is an easy and
powerful way to get a view of your infrastructure. More information on PuppetDB
will be presented in Chapter 3, Puppet for Compliance, as well as Chapter 4, Security
Reporting with Puppet.

Hiera
Hiera was a new feature introduced in Puppet 3. It is a hierarchal data store, which
helps to keep information about your environment. This allows you to separate data
about the environment from code that acts on the environment. By doing so, you can
apply separate security policies to the code that drives the environment and data
about the systems.

Before Hiera, it was not uncommon to see large sections of Puppet code dedicated
to maintaining sites or installation of speciic information on the systems under
management. This area was often dificult to maintain if the ability to override
parameters using many different factors was needed.

By adding a hierarchy that can depend on any facts, it becomes much easier to store
the data needed for the systems under management. A model of most speciic to
least speciic can then be applied, which makes it much easier to override the default
data at a site, environment, or system level.

For example, let's say you had a set of development environments where a certain
group of development accounts needed to get created, and SSH access to those
accounts was granted. However, these accounts and the access granted should
only exist in the development machines, and not in production. Without Hiera,
there would likely be site-speciic information in the modules to manage the SSH
coniguration, and perhaps in the user creation module to manage the users. Using
Hiera, we can add a fact for the type of system (production or development) and
store which users get created there, or have access. This moves the list of users with
access to the system out of the code itself, and into a data ile.

As our examples get more complicated later in this book, we will explore using Hiera
to store some system data.

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Puppet as a Security Tool

[8]

Installing and coniguring Puppet
Puppet can be installed in a variety of ways. Since this book is focused on the
security-related aspects of Puppet and is not a beginner's guide, we will cover
the most common way it is installed on our target system. There are many good
reference books available for more in-depth information on installing Puppet,
including Puppet 3: Beginner's Guide, John Arundel, Packt Publishing.

In our examples, we'll be using CentOS 6 as our operating system. If you are using
a different operating system and following along on your own, please see the
installation instructions for your operating system at http://www.puppetlabs.com,
or follow along using Vagrant as outlined later.

Since we will be using Vagrant for our examples, the base box we are using already
has the Puppet repository installed on it as well as the Puppet agent. We'll provide
instructions for the installation of these elements for those who wish to use CentOS
without using Vagrant.

Installing the Puppet Labs Yum repository
The currently recommended way to install Puppet on CentOS machines is to use the
Puppet Labs Yum repository. This repository, which can be found at https://yum.
puppetlabs.com, contains all the Puppet Labs software as well as the dependencies
required to install them, such as several Ruby gems not present in the main CentOS
repository. On installation, Ruby and these dependencies will also be installed.

Adding this repository is relatively simple. Execute the following command as a root
(or using sudo, as shown here):

sudo rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-
6.noarch.rpm

After running this command, you will see an output similar to this:

Retrieving https://yum.puppetlabs.com/puppetlabs-release-el-
6.noarch.rpm

Preparing...
[100%]

 1:puppetlabs-release
[100%]

Once this is complete, you're done! The Puppet Labs repository is added and we can
use it to install the current version of any of the Puppet Labs products.

http://www.puppetlabs.com
https://yum.puppetlabs.com
https://yum.puppetlabs.com

Chapter 1

[9]

Installing the Puppet Master
The next step is to install the Puppet Master. As mentioned earlier, this system acts
as the controller that all of your client agents will then use to communicate with to
receive catalog information. This package is normally installed on only a few systems
that act as servers for coniguration management information.

Installing the master with the repository is as easy as executing the
following command:

sudo yum -y install puppet-server

This will instruct yum to install the Puppet server without conirmation. The output
will be as follows:

Puppet as a Security Tool

[10]

Installing the Puppet agent
On all the systems that we wish to manage by using Puppet, we'll need to install the
Puppet agent. This agent is a piece of software that is responsible for communicating
with the master and applying changes.

Installing the Puppet agent is very easy and similar to installing the master in the
preceding section. You simply run the following:

sudo yum -y install puppet

After this is complete, you'll see that the the Puppet agent is installed on the local
machine and is ready to talk to the master.

Coniguring Puppet
Now that we have a perfectly working Puppet Master, we need to conigure it.
Installation of the packages will include a base level coniguration. There are some
changes we will want to make to the base Puppet coniguration to enable some
features that we'll use in the future. As we go through this book, we'll make changes
to these iles several times.

The main coniguration iles in use by Puppet are present in the /etc/puppet
directory.

In this directory, there are a number of coniguration iles that control how Puppet
behaves. Information on these iles can be found at https://docs.puppetlabs.
com/puppet/3.7/reference/config_about_settings.html. For now, we only
need to concern ourselves with the Puppet coniguration ile.

Open the /etc/puppet/puppet.conf ile with your favorite editor (make sure that
you use sudo) and edit it to look similar to the following:

[main]
 # The Puppet log directory.
 # The default value is '$vardir/log'.
 logdir = /var/log/puppet

 # Where Puppet PID files are kept.
 # The default value is '$vardir/run'.
 rundir = /var/run/puppet

 # Where SSL certificates are kept.
 # The default value is '$confdir/ssl'.
 ssldir = $vardir/ssl

[agent]

https://docs.puppetlabs.com/puppet/3.7/reference/config_about_settings.html
https://docs.puppetlabs.com/puppet/3.7/reference/config_about_settings.html

Chapter 1

[11]

 # The file in which puppetd stores a list of the classes
 # associated with the retrieved configuratiion. Can be loaded
in
 # the separate ``puppet`` executable using the ``--
loadclasses``
 # option.
 # The default value is '$confdir/classes.txt'.
 classfile = $vardir/classes.txt

 # Where puppetd caches the local configuration. An
 # extension indicating the cache format is added
automatically.
 # The default value is '$confdir/localconfig'.
 localconfig = $vardir/localconfig
 report = true
 pluginsync = true
[master]
 reports = store

We've made a handful of changes to the ile from the default version and will cover
them here.

The irst change is adding the report = true section to the agent coniguration
section. This will cause clients to send reports containing information about the
Puppet run. We'll use these reports for later analysis in Chapter 4, Security Reporting
with Puppet.

The second change is to add pluginsync = true to the agent section. While this has
become the default in the more recent versions of Puppet, it does not hurt to add it
in. This causes the clients to sync custom facts, providers, and other Puppet libraries
from the master. We will see how this is used in later chapters.

The inal change we have made is to add the master section and add reports =
store. This causes the master to save reports to the local ilesystem on the Puppet
Master. We'll use this later to do analysis of our Puppet runs for security-related
purposes.

Puppet services
Both the Puppet Master and the agent are usually run as services. This allows the
agent to check its run frequency and apply any changes. We've not explicitly started
the services here, although we'll need to start the master in order to use it from our
agent. To do this, we run the following command:

sudo service puppetmaster start

www.allitebooks.com

http://www.allitebooks.org

Puppet as a Security Tool

[12]

In order for the Puppet Master to start at boot, we'll also issue the following
command to enable it to autostart:

sudo chkconfig puppetmaster on

It's pretty common to use Puppet to manage Puppet, and in a later chapter, we'll do
this to show how we can use Puppet to secure the Puppet Master.

It's worth noting that Puppet running with a default web server
coniguration will not scale beyond a few dozen hosts. Scaling Puppet is
outside the scope of this book. More information on scaling Puppet can be
found at http://docs.puppetlabs.com/guides/scaling.html.

Preparing the environment for examples
As mentioned in the preface, we're going to use Vagrant to run our examples. In
case you missed it, Vagrant is a tool that helps you automate the creation of virtual
machines for testing. In this case, it's a great tool for us to use to quickly build-out
our build and example environments.

We'll be using CentOS 6 in these examples, but most of them should run without
much modiication on other platforms. You will need to adjust the package names
and perhaps conigure the ilenames for other operating systems. Many community
modules, which we will explore in later chapters, support multiple lavors of Linux
as well as other Unix-like systems. The powerful descriptive language of Puppet
makes this easy to do.

While the use of Vagrant is not required, it will help us to maintain a clean
environment for each of the examples we run, and will also ease the creation of
virtual machines. If you choose not to use Vagrant for this, you can still run the
examples using the manifests and modules provided with the source accompanying
this book.

Installing Vagrant and VirtualBox
In order for us to use Vagrant, we must irst install it. To do this, we need to install
the required dependencies followed by Vagrant itself. We'll be using VirtualBox to
host the virtual machines in these examples, since it is the most supported virtual
machine provider.

http://docs.puppetlabs.com/guides/scaling.html

Chapter 1

[13]

VirtualBox can be downloaded from http://www.virtualbox.org. On this site,
you will ind packages for installing a variety of operating systems. You simply
need to pick the package for your chosen operating system and install it using the
instructions found on the site.

Once we have VirtualBox installed, we can approach installing Vagrant. Vagrant
has several methods of installation. These methods include OS packages for Linux,
as well as installers for OS X and Windows. Older versions of Vagrant supported
installation via the Ruby gem utility, but this has been removed in later versions.

Vagrant can be found at http://www.vagrantup.com. Once you're there, you can
download the package or installer for your OS. Once downloaded, you can install
the package using your operating system's package manager, or by executing the
downloaded package. In Windows and OS X, this is suficient to have a working
installation of Vagrant.

More in-depth installation instructions can be found on the Documentation tab on
the Vagrant website; however, the package or installer will do most of the work.

It is worth noting that if you are using Windows, you will perform most of the work
we're doing in a command shell on the DOS command box. However, if you use a
local editor, you should be able to follow along with no issues.

Creating our irst Vagrantile
Now that we have Vagrant installed, we'll create our irst Vagrant coniguration.
Vagrant uses a ile called Vagrantfile to control its operation.

First, we start by creating a directory for our project. In this case, we'll call it
puppetbook. We'll end up building on this setup in later chapters to automate
coniguration of our examples. This will allow us to focus on the Puppet tasks, and
not so much on getting our test systems into the desired state.

Inside this directory, we'll create a directory called master_manifests. The purpose
of this directory is to hold the Puppet manifests that we'll use to provision the
base VM.

We'll be using the Puppet provisioner to do our work. This is one of a handful of
methods you can use to provision a Vagrant virtual machine. Using this provisioner,
we'll write a Puppet manifest that will describe the desired state of our machine.
Vagrant will then use this manifest to run Puppet locally and conigure the system.

http://www.virtualbox.org
http://www.vagrantup.com

Puppet as a Security Tool

[14]

Next, we'll create a Vagrantfile. In your favorite editor, go ahead and open
Vagrantfile. Add the following contents. We'll cover what each one does in
a moment:

Vagrant.configure(2) do |config|

 config.vm.define :puppetmaster do |master|

 master.vm.box = "centos65-x64-puppet"

 master.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet.box"

 master.vm.hostname = "puppet.book.local"

 master.vm.network "private_network", ip: "10.78.78.30",
netmask: "255.255.255.0"

 master.vm.provision "shell", inline: "yum –y update puppet"

 master.vm.provision "puppet" do |puppet|

 puppet.manifests_path = "master_manifests"

 puppet.manifest_file = "init.pp"

 end

 end

end

It's possible that by the time you read this, the Vagrant box referenced
in the preceding code will be deprecated. This book was written
using the Puppet Labs CentOS 6 machine images. You can go to
http://puppet-vagrant-boxes.puppetlabs.com/ and ind
a replacement. You want a CentOS 6 x86_64 box with Puppet (called
plain there) and VirtualBox addons.

Go ahead and save the ile. We'll cover what each ile does here:

Vagrant.configure(2) do |config|

This line sets up Vagrant using coniguration version 2. It uses Ruby blocks to create
a Vagrant coniguration with the config variable:

config.vm.define :puppetmaster do |master|

This line deines a virtual machine called puppetmaster. Vagrant supports
multimachine setups, which is a feature we'll use later on in the book. For now, we'll
deine a single machine. Much like the preceding code, we use a block called master:

master.vm.box = "centos65-x64-puppet"

http://puppet-vagrant-boxes.puppetlabs.com/

Chapter 1

[15]

This deines the box we'll use for our Puppet Master. It is a symbolic name, but it
makes sense to name it according to what it is. If you refer to the same box later,
it'll use the same base and not download the box iles an additional time:

master.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet.box"

This deines the URL we'll download our box ile from. In this case, we're grabbing
it from the hosted Puppet Vagrant boxes on Puppet Labs. We could get a box from
any number of other places, but the Puppet Labs boxes come with the Puppet agent
preinstalled and the Puppet repository is already available and ready for use.
If you wish to explore other box options, there is a directory of them available
at http://www.vagrantcloud.com:

master.vm.hostname = "puppet.book.local"

This command simply sets the host name of our machine. It is important for the
master as it inluences the certiicate name that gets created at installation:

master.vm.network "private_network", ip: "10.78.78.30", netmask:
"255.255.255.0"

This line creates a private network for our virtual machines to use. We assign it the
IP address 10.78.78.30/24 (78 is PU on a phone dial pad):

master.vm.provision "shell", inline: "yum –y update puppet

"Wait," you say, "I thought we were using the Puppet provisioner?"

As it turns out, the Puppet Labs base box comes with Puppet 3.4 installed. The
current version we wish to use in this book is 3.7.3. We use the yum statement to
upgrade Puppet before the provisioner starts. Otherwise, we get issues when the
Puppet run updates the agent:

master.vm.provision "puppet" do |puppet|

Here, we tell Vagrant we're going to use the Puppet provisioner, and open a block
called puppet to do so:

puppet.manifests_path = "master_manifests"

Here, we give the path to the manifest directory. This is relative to the path that the
Vagrantfile is in. As you can recall, we created this directory earlier:

puppet.manifest_file = "init.pp"

http://www.vagrantcloud.com

Puppet as a Security Tool

[16]

We deine the Puppet manifest to be called init.pp. This is the default name of a
Puppet manifest. Vagrant defaults to default.pp if it's not speciied:

end

end

end

These lines undo each of the preceding blocks and close out the ile.

If we run Vagrant now, it will throw an error because it cannot ind the init.pp ile,
so let's go ahead and create it inside the master_manifests directory. To save space,
we'll call out each block and describe its function rather than giving the entire ile
and explaining it:

package { 'puppet-server':

 ensure => 'present',

}

The preceding resource declaration will install the Puppet Master. By specifying the
ensure value of present, we make sure it's installed; however, we tell Puppet that
we do not care about the version and do not wish to upgrade it:

file { '/etc/puppet/puppet.conf':

 ensure => 'present',

 owner => 'root',

 group => 'root',

 mode => '0644',

 source => '/vagrant/master_manifests/files/puppet.conf',

 require => Package['puppet-server'],

}

The preceding resource declaration has a good amount more going on. Here, we're
going to manage a ile called /etc/puppet/puppet.conf. We ensure that it is
present, then set the owner, group, and mode to set the values. Using the source
parameter, we source the ile from the local ilesystem. Vagrant, by default, will
mount the directory containing the Vagrantfile as /vagrant, so we can take
advantage of that mount to get the ile without otherwise copying it.

The last line here shows off the explicit dependency management of Puppet.
We require that the puppet-server package is installed before we install the
coniguration ile. This will ensure that the directory is created, and the package
installation does not overwrite the coniguration ile:

service { 'puppetmaster':

 ensure => 'running',

 require => File['/etc/puppet/puppet.conf'],

}

Chapter 1

[17]

This last resource declaration ensures that the Puppet Master service is running.
It depends on the coniguration ile being there.

In a real-world example, we're likely to use subscribe instead of require here. This
would restart the service if the coniguration ile changed. However, since we're
using the local Puppet provisioner and not running this code under a Puppet Master,
this code will only be run once, so it is unnecessary to use subscribe.

We need one last ile to make the system work. The ile resource depends on a ile
called master_manifests/files/puppet.conf. We've covered the contents of this
ile in the Puppet installation section, so we will not repeat them here. You simply
need to copy the ile to the directory for the provisioner to use.

When we're done, the complete directory structure of this setup will look as follows:

.

├── Vagrantfile

└── master_manifests

 ├── files

 │ └── puppet.conf

 └── init.pp

Once we're set up, we're in a good position to run the examples that we'll present in
this book. As these examples get more complex, we'll add the necessary data to this
structure to add things such as client machines.

Puppet for security and compliance
Puppet is a perfect tool for security and compliance. So much security work involves
ensuring that a given version of a service is on every server, or whether a user
account exists or not.

Much of this work is also very tedious and repetitive. When work such as this is
done across many servers, the likelihood that some of them will be different grows.
These snowlakes, or systems that are unique and unlike other systems, can cause
security issues or can be hard to troubleshoot.

On top of being able to maintain a system in a ixed state, we can use some Puppet
resources, such as PuppetDB, to do some fairly in-depth reporting. Using custom
facts, you can collect any information you wish to send to a central place. This can
include things such as software versions, hardware coniguration, and much more.
By using this information, we can start to work toward creating a full coniguration
management and security platform.

Puppet as a Security Tool

[18]

Through Puppet, you will be able to centrally manage the major coniguration
aspects of all of your systems. Keeping this coniguration in version control and
treating it as code gives you all the beneits that developers have been able to enjoy
for years. You'll quickly be able to see how the state of a system has evolved over
time, as well as look where bugs might have been introduced and have caused
security issues.

Additionally, there is an increasing movement to use Puppet for compliance and
auditing. By demonstrating that Puppet is indeed running on a system and showing
the manifests running on it, you can ensure that a system is in a given state. This
information can be shown to auditors as documentation on how systems are
conigured.

Getting to the point of 100-percent coverage in system coniguration using Puppet
requires commitment and time. Using community modules, as we'll explore later,
can lessen that work. However, the results of doing this are very high. Disaster
recovery can be made simpler because systems can quickly be rebuilt. Installing
the latest tripwire on all systems becomes as simple as updating the manifests
and letting the systems check in. These beneits can make the job of a security
professional much easier.

As we progress through this book, we will explore many of these abilities in-depth,
but for now, let's look at a simple example we can use to learn some of the Puppet
concepts and language.

Example – using Puppet to secure

openssh
Now that we've got the system set up for our use, we can inally approach the main
example for this chapter. In this example, we're going to use what has traditionally
been one of the irst things used to show off Puppet and install SSH. However,
in this case, we're going to use a hardened coniguration utilizing some options
recommended by the security community.

The example of securing SSH is one that we will return to several times in this book
as we expand upon our coniguration management toolkit and branch out into
things such as irewall management.

Chapter 1

[19]

Starting the Vagrant virtual machine
Since this is our irst time using Vagrant, we'll cover how to start a virtual machine.
In the directory with the Vagrantfile, run the following command:

vagrant up

Once this is done, you'll see the output from Vagrant indicating the actions it's
taking, as well as output from the commands it runs—this includes the Shell
provisioner and the Puppet provisioner. When it's done, you'll end up with
something that is similar to the following:

You'll notice some warnings on the screen here. These are options that are changing
with the newer version of Puppet. Our manifest could add an allow_virtual
setting to get rid of the second warning. The irst warning, however, is a result of
how Vagrant is calling Puppet.

Puppet as a Security Tool

[20]

Connecting to our virtual machine
Once your machine has booted, simply issue the following command to connect:

vagrant ssh

This will connect you to the machine using ssh. Once this is complete, we can start
working on our module.

Creating the module
We'll be using a Puppet module to secure SSH. As such, we should go ahead and
create the directory to hold our module. You can issue the following commands to
create the module skeleton on the guest virtual machine:

sudo mkdir –p /etc/puppet/modules/openssh/manifests
sudo mkdir –p /etc/puppet/modules/openssh/files

These directories will hold the manifests for Puppet to compile as well as our
coniguration ile. For our irst simplistic example, we will use a static SSH
coniguration ile. In later chapters, we will build upon it and make it dynamic
with the various options that are available.

It's also possible to make the /etc/puppet/modules/openssh
directory a symlink to a directory in /vagrant. If you create the
directory in /vagrant, you can use any editor on your host system to
edit the iles and have it immediately available in the guest. This saves
you the trouble of having to conigure a good editing environment on the
guest machine.

Building the module
Now that we have the framework, we'll build our irst module. Much like the
preceding code, we'll go through it section by section covering what each resource
does. The manifest we're building will be very similar to the one we used to
provision the Puppet Master for the use of.

First, we'll edit the /etc/puppet/modules/openssh/manifests/init.pp ile to
create the module's main manifest. This manifest is the main unit of the Puppet
code, which is invoked when we include the module. As we go through each of the
sections, we'll go through what they do. A complete manifest ile can be found on
this book's website, but you should really build it along with us. This will help you
with understanding and memorization:

class openssh {

Chapter 1

[21]

The preceding line deines the class. The class in the init.pp ile is always named
after the module. It's a new construct we've not seen before that is unique to
creating modules:

 package { 'openssh-server':

 ensure => 'latest',

 }

The preceding section is similar to the puppetmaster section. The only difference is
that we're using latest instead of present. Being a security-related package, it may
make sense to make sure that you keep openssh up to date.

Alternatively, if your environment requires it, you could specify a ixed version
to install. This might be useful if you require pretested versions or have validated
versions. You must weigh the beneits, ensuring that you run the most recent version
of the software, including the risk of almost immediately installing it when it is
available, and that you're using the latest tag:

 file { '/etc/ssh/sshd_config':

 ensure => 'present',

 owner => 'root',

 group => 'root',

 mode => '0600',

 source => 'puppet:///modules/openssh/sshd_config',

 }

As your Puppet code becomes more complex, care must be
taken on how you name your iles inside your module. It can
sometimes be useful to create the full path to the ile under the
modules directory, so there is no confusion as to the destination
of the time. We omit these here only because our modules are
simple, and it makes the examples easier to follow.

This is similar to the Puppet Master coniguration ile, but we introduced a new
construct here. We're sourcing the ile from puppet master by using the special
puppet:// uniform resource identiier (URL). When Puppet runs, it will fetch the ile
from the master for use on the agent. The source ile should be present in the /etc/
puppet/modules/openssh/files directory on the master:

 service { 'sshd':

 ensure => 'running',

 }

www.allitebooks.com

http://www.allitebooks.org

Puppet as a Security Tool

[22]

Here, as before, we ensure that ssh is running when we run Puppet:

 Package['openssh-server']

 -> File['/etc/ssh/sshd_config']

 ~> Service['sshd']

}

This is also a new construct called resource chaining. It is an alternative way to
specify that we do things in the order listed: irst, the package, followed by the ile,
and then the service. Note the tilde on the service dependency. This shows that we're
notifying the service. It means that if the coniguration ile changes, the service will
be restarted.

In a declarative system, there needs to be a way to ensure that things are
run in the correct order. One of the more dificult things for new Puppet
users is to grasp the concept that their manifests don't necessarily run
in a top-down order. This concept is so hard that in recent versions of
Puppet, the default has been changed to a process in the manifest order
by default. More information on resource ordering and this change can be
found at http://puppetlabs.com/blog/introducing-manifest-
ordered-resources.

The openssh coniguration ile
To build the coniguration ile we're going to use, we'll start with the openssh
coniguration ile shipped with CentOS and make a few changes. First, we'll copy
the existing coniguration ile with the following command:

sudo cp /etc/ssh/sshd_config /etc/puppet/modules/openssh/files/

Next, we'll edit the ile with your favorite editor. Make sure you run it in sudo as you
won't have permission to edit the ile. We'll uncomment and change the following
lines in the ile:

PermitRootLogin no

MaxAuthTries 3

http://puppetlabs.com/blog/introducing-manifest-ordered-resources
http://puppetlabs.com/blog/introducing-manifest-ordered-resources

Chapter 1

[23]

We'll start with these changes to demonstrate how the process works. Then, save
the ile.

Next, we need to make sure the Puppet agent can read it. We'll set the permissions in
such a manner that the Puppet user can read it. Execute the following:

sudo chgrp puppet /etc/puppet/modules/openssh/files/sshd_config

sudo chmod 640 /etc/puppet/modules/openssh/files/sshd_config

The site.pp ile
Now, we need to bring it all together to tell Puppet to use our module. By default,
Puppet runs a ile called site.pp on the master to determine what actions to take
when a node checks in. We need to add the new module to the ile for Puppet to
run it.

The ile lives in /etc/puppet/manifests on our Vagrant guest. Go ahead and open
it in your favorite editor and add the following section:

node default {

 include openssh

}

This adds a default node declaration and includes our openssh module on that node.
It will ensure that our new module gets used.

Running our new code
Now that we've got it all built, let's go ahead and see the fruits of our labor. Execute
the following command:

sudo puppet agent --test

Puppet as a Security Tool

[24]

You should see the output as follows:

If you're running these examples outside Vagrant, you will have a bit
more work to do. We're using Vagrant to set our hostname to Puppet, and
the master by default has its own certiicate signed. If you are running
without Vagrant, you will need to add a host ile entry or DNS pointing
to your master, and you may need to sign the certiicate. We'll cover
certiicate singing in Chapter 5, Securing Puppet.

Victory! You can see that Puppet changed the ile to disallow root logins and change
the maximum authentication attempts to 3.

As with any new technology, the learning curve can seem somewhat overwhelming
at irst. We've now gone through a rather lengthy example to effectively make
a two-line edit to a coniguration ile on a single machine. This was a short and
simple example to explore some base concepts of Puppet. Using this concept, we
could apply this same edit to hundreds or even thousands of machines in our
infrastructure with very little additional effort. We'll also be exploring more in-
depth examples as we gain a skillset. With some practice, you will ind that applying
changes across one of many machines becomes second nature with Puppet.

Chapter 1

[25]

Summary
In this chapter, we built a foundation for things we will do in chapters to come. First,
we covered what Puppet is, and how it differs from other tools in its space. We gave
a brief introduction to some of the other Puppet components we'll be using in this
book as well.

Moving on from this, we covered how to install Puppet on CentOS. We went
through a full installation example and covered the basics of coniguration iles.

Then, we covered the coniguration and installation of Vagrant and used it to run our
irst example. In this example, we conigured SSH with a secure coniguration ile.

Finally, we introduced how Puppet its into a security ecosystem. While keeping
with the basics, we've begun exploring how Puppet can be used to process simple
coniguration tasks to secure your systems.

This chapter focused on several high-level concepts. As we get further into the book,
we'll go more in-depth in examples and they will get much more powerful. As
an introductory chapter, the hope was to get you up and running with a working
manifest. In future chapters, we will assume a base level of knowledge and link to
references you can use if needed.

Additionally, if you wish to get some more information on the base Puppet language
before we proceed, there are several books available. Some of them were mentioned
earlier in this chapter, and we'll cover more as we proceed through the book. The
documentation at http://docs.puppetlabs.com is also very informative, if a little
dry at times.

In the next chapter, we'll begin to use our knowledge gained here to explore how
Puppet can be used to track changes to resources on our ilesystems.

http://docs.puppetlabs.com

[27]

Tracking Changes to Objects
Have you ever wanted to know whether the content of the iles on your server has
changed or whether the packages installed on the server have changed? Perhaps you
have developers who have access to edit iles. Maybe you need to gather information
on what has changed for production use.

If you have changed the tracking requirements that require you to report on speciic
items changing on our system, then the Puppet auditing and change tracking system
can be a great solution.

Change tracking is the act of monitoring systems for changes and reporting on them.
It is a component of more comprehensive auditing, which includes the reporting
and other activities surrounding it, ensuring that a system is in compliance. There
are numerous software packages available that do this. Many of them are special-
purpose tools, such as Tripwire, OSSEC, and AIDE. Puppet can be used to conigure
many of these tools, which often require fairly extensive setups. Additionally, some
of these tools require commercial licenses to obtain the full feature set.

With proper coniguration, you can use Puppet to do change tracking. Beyond this,
Puppet can be used to make sure that changed resources return to their expected
states, including correcting the content, owner, or mode of the ile.

In this chapter, we will cover the following topics:

• How change tracking works in Puppet

• An overview of the audit meta-parameter

• Examples of using the audit meta-parameter

• Caveats of the audit meta-parameter

• Using noop to get a similar workflow to the audit meta-parameter

Tracking Changes to Objects

[28]

Change tracking with Puppet
Puppet has a variety of ways to track changes. In its normal mode of operation,
Puppet will track (and correct) changes to any resources in its catalog. This is by its
nature what it's designed for. This can let you know that items have changed, but at
the same time let you know that you can correct them to be the way you want them
to be speciied.

If you don't have a set state for your resources and you just want to know whether
they have changed, you can use the audit meta-parameter. There is some evidence
that this will be deprecated in Puppet 4; however, it is currently still available as this
book is being written.

Finally, one can use noop to monitor changes. In this mode, Puppet will report on
any changes to a resource from its baseline; however, it will not make an effort to
change them back.

Noop can be used in a variety of fashions and will be covered at the end of
the chapter.

The following table summarizes the available change tracking options:

Declared resources Audit Noop

Requires definition of the
baseline of a resource

Yes No Yes

Corrects the resource if it
becomes out of compliance

Yes No No (although you can run
without noop to do so)

Allows you to specify what
parameters are monitored

No, only what's in the
baseline is monitored

Yes No, see declared resources

Supported in later Puppet
versions

Yes No Yes

We'll cover the audit and noop methodologies later in the section. We've already
covered what can be done with declared resources in the previous chapter, and we
will continue to build on it in the later chapters.

The audit meta-parameter
The audit meta-parameter is the primary change tracking method currently in
Puppet. It was introduced in Puppet 2.6, and it provides a way to monitor a resource
without enforcing a state on it.

Chapter 2

[29]

With the introduction of Puppet Enterprise 1.2, Puppet Enterprise gained a
compliance dashboard that allowed you to conigure and track ile changes. This
dashboard has since been removed, but it relied heavily on the audit meta-parameter
and allowed you to quickly set up auditing.

The audit meta-parameter is a bit of a divergence in the Puppet world. The
declarative nature of Puppet is to model the desired state of a resource and allow
Puppet to get it there. The audit meta-parameter can allow you to say that you may
not care about the state of an item, but you want to know if it changes.

How it works
The audit system works by keeping track of the state of the attributes you monitor.
At the end of every run, it persists the state of those objects.

If at the start of a run Puppet notices that the current state of an object changes,
it raises an alert. Additionally, information on these changes is reported back to
the master as part of any reports. This report data can be used to generate logs of
changes to attributes.

Internally, Puppet implements auditing by persisting the state of the audited objects
to a YAML ile. This data is stored on each of the agent nodes, and not on the master
server. On each Puppet run, YAML is read and the state in the ile is compared to the
existing state.

What is YAML?

YAML is a markup language. Originally, it was called "Yet another
markup language". It is now known as "YAML Ain't Markup Language".
YAML is a way to store data in a ile similar to formats such as JSON.
Puppet stores much of its internal data in the YAML format, and as we
approach reporting and other processing of Puppet data, we will need to
parse and create YAML iles.

What can be audited
Being a meta-parameter, audit can be applied to any resource. The code to handle
the audit meta-parameter is present in the Puppet core. In theory, any attribute on
any resource should be permitted to be audited, but there are likely cases that are
untested and do not work well.

Tracking Changes to Objects

[30]

Files, users, and packages are the most common use cases for auditing since they
tend to be the resources that are critical security-wise.

Using audit on iles
The most common use case for audit is auditing whether a given ile has changed.
The audit system was designed for a particular customer's needs by Puppet.
Indications are that this need was largely around auditing iles. For this reason,
support around auditing iles as well as documentation is the strongest for auditing
the ile type.

To use audit on a ile, we add the audit meta-parameter to its declaration. For
example:

file { '/etc/shells':

 audit => 'all',

}

This tells Puppet that it should audit every attribute on the ile /etc/shells. If
anything on this ile changes, it will log messages in the local log ile as well as
generate report events indicating the changes.

Available attributes
On paper, any attribute is available to be audited. However, some attributes do not
make sense. The Puppet language reference as of version 3.6 lists many available
attributes for the ile type. A current available list can be found at https://docs.
puppetlabs.com/references/latest/type.html#file. The attributes that
directly change the iles and represent their state on the system are listed in the
following table, along with a brief description of what they do:

Attribute Purpose

content This is the md5sum checksum of the content. This changes whenever the
file content changes.

ctime This denotes the creation time of the file per the Unix operating system's
stat system call.

ensure This contains the type of file, directory, or link if managed by Puppet.

group This denotes the Unix group of the file.

mode This is the file's Unix mode.

mtime This denotes the last modification of the file per the Unix operating
system's stat system call.

owner This denotes the Unix user who owns the file.

https://docs.puppetlabs.com/references/latest/type.html#file
https://docs.puppetlabs.com/references/latest/type.html#file

Chapter 2

[31]

Attribute Purpose

selrange This denotes the SELinux range component of the file on systems
supporting SELinux.

selrole This denotes the SELinux role of the file on systems supporting SELinux.

seltype This denotes the SELinux type of the file for systems supporting SELinux.

seluser This denotes the SELinux user of the file for systems supporting SELinux.

type This contains the type of the file—typically, the same as ensure if
managed.

Some of these attributes will not be present on all systems. For instance, on a
non-Linux system, the SELinux attributes will not be present. Additionally, on a
Windows system, there is an underlying mapping in place to turn the Windows
concepts of ile security into a fake Unix mode.

Auditing the password ile
Now that we've seen how the audit resource works on iles, it's time to perform
an example. Building on our last exercise, we will audit the password ile and see
the results.

Preparation
The following steps need to be performed to audit the password ile:

1. If you're following along from the last example, go ahead and start the
virtual machine with the following command:

vagrant up

2. Once the system is up, go ahead and SSH into it using the
following command:

vagrant ssh

You should now be logged in to the system.

Creating the manifest
Unlike the last chapter, we are going to build this manifest straight into the /etc/
puppet/manifests/site.pp ile. Since the example is short and for demonstration
purposes, it does not make sense to create an entire module to hold it.

www.allitebooks.com

http://www.allitebooks.org

Tracking Changes to Objects

[32]

As previously mentioned, it is considered bad form to add Puppet
resources directly to the main manifest in most cases. We do so here to
keep the length of the examples to a minimum since we'll have plenty
of opportunities to create modules. For this and other best practice
information on writing Puppet code, see https://docs.puppetlabs.
com/guides/style_guide.html.

Inside the /etc/puppet/manifests directory, we'll edit the site.pp ile. Once we
are in the ile, edit the default node to have an additional ile resource as follows:

node default {
 include openssh
 file { '/etc/passwd':
 audit => 'all',
 }
}

First run of the manifest
Once this is done, execute Puppet. To do so, run the following command:

sudo puppet agent –test

The output should be as follows:

https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html

Chapter 2

[33]

In the preceding screenshot, Puppet records the initial value of all of the elements of
the ile. It will use this data later to determine whether any of it changes.

Changing the password ile and rerunning
Puppet
After we conirm that things look good, we'll go ahead and add a user. This will
have the effect of changing the password ile. We can also change a user password or
perform any number of other operations on user accounts.

We're going to add a puppettest user. To do so, execute the following command:

sudo useradd puppettest

Once this is complete, we will need to run Puppet again to see the outcome. Run the
following command:

sudo puppet agent -test

Again, observe the output, as shown in the following screenshot:

Tracking Changes to Objects

[34]

In the preceding screenshot, we can see that three different attributes have changed.
The irst attribute is the content attribute. This makes perfect sense since we
changed the ile.

The second attribute that has changed is the ctime attribute. This tells us that
something rewrote the entire ile.

The inal attribute that has changed is mtime. We would expect this also since the ile
was changed.

The Puppet agent logs these changes in its local log ile, but this data is also present
in the report output. We'll cover how we can use this data in Chapter 4, Security
Reporting with Puppet.

Audit on other resource types
While a ile is the most common resource that can be audited, any resource can be
audited. This even includes custom types. Additionally, even classes and deines
can be audited; however, the mechanism is a bit different. In the case of deines and
classes, the meta-parameter is inherited by all of the resources contained in that class
or deine, but not in any that are included inside it.

The basic mechanism of the audit parameter works in the same way as it does in the
ile case. You need to specify a list of attributes to monitor and Puppet will persist
their state. If the state changes between runs, then it will trigger an audit alert. An
example of auditing just the owner and mtime (modiied time) attributes of the sshd
daemon in /usr/sbin is as follows:

file { '/usr/sbin/ssh':

 audit => ['owner', 'mtime'],

}

However, as one would expect, the attributes to be audited differ for each type. The
package type, for example, only supports auditing the ensure value. This makes
sense since it's the only value that has a concrete state on the system. In this case, it
represents the currently installed version of the package.

Chapter 2

[35]

Determining the attributes that can be audited for a given resource requires some
trial and error. The following table shows some of the more prevalent resource types
and the auditable resources:

Resource Auditable attributes

cron ensure, command, environment, hour, minute, month, monthday,
special, target, user, and weekday

group ensure, attributes, gid, and members

mount ensure, atboot, blockdevice, device, dump, fstype, options, pass,
and target

package ensure, package_settings

service ensure, enable, and flags

user ensure, attributes, auths, comment, expiry, gid, groups, home,
iterations, keys, password, password_max_age, password_min_
age, profiles, project, roles, salt, shell, and uid

Not all of these resources can be audited in all cases. For instance, many of the user
resources are only appropriate on Solaris systems.

Determining what resources can be audited on other resources can be done by
reviewing https://docs.puppetlabs.com/references/latest/type.html.
Look for the entries that say they represent the concrete state on the system.
These attributes are usually able to be audited. One can also use the output of the
Puppet resource command on a resource to get an idea. For more information
on the Puppet resource command, see https://docs.puppetlabs.com/
references/3.7.latest/man/resource.html.

Auditing a package
In this example, we'll extend our openssh module to audit the version installed.
We'll then downgrade the package so that the version changes. Afterwards, we can
verify whether the audit worked as expected.

In a production environment, it would make sense to audit at least the
sshd binary along with the package. It's quite possible for the attacker
to change the binary without even touching the package. Auditing the
package is more useful to ind system administrators upgrading packages
to unauthorized versions by accident.

https://docs.puppetlabs.com/references/latest/type.html
https://docs.puppetlabs.com/references/3.7.latest/man/resource.html
https://docs.puppetlabs.com/references/3.7.latest/man/resource.html

Tracking Changes to Objects

[36]

Modifying the module to audit
First, make sure the Vagrant machine is running. If you need to restart your Vagrant
machine, see the irst exercise to get it running.

Once it is running, go ahead and SSH it into the machine. Again, if you need a
reference, refer to the earlier chapter.

Now we'll edit the openssh manifest and add the audit parameter. Edit the /etc/
puppet/modules/openssh/manifests/init.pp ile with your favorite editor. Make
sure to use sudo if you are working on the live ile.

Locate the package declaration and change it to look like the following:

 package { 'openssh-server':

 ensure => 'latest',

 audit => 'all',

 }

Go ahead and save the ile. Once complete, run Puppet using the following
command:

sudo puppet agent --test

The output of the command should be as follows:

Chapter 2

[37]

As you can see, it recorded the ensure value, setting it to the currently installed
package version.

Now that we have done this, let's downgrade the package and see what the outcome
is like.

To downgrade openssh-server, run the following command:

sudo rpm -Uvh –-oldpackage \
http://vault.centos.org/6.4/os/x86_64/Packages/openssh-server-5.3p1-
84.1.el6.x86_64.rpm \
http://vault.centos.org/6.4/os/x86_64/Packages/openssh-5.3p1-
84.1.el6.x86_64.rpm \
http://vault.centos.org/6.4/os/x86_64/Packages/openssh-clients-5.3p1-
84.1.el6.x86_64.rpm

The preceding command is all on one line.

The output of the preceding command is shown in the following screenshot:

Tracking Changes to Objects

[38]

The preceding command is a handful. Due to the nature of openssh, it
doesn't seem to get many updates. Because of dependencies, we need to
downgrade multiple packages, resulting in the large command.

When we run Puppet next, it will re-upgrade openssh since we have
set it to the latest version. This will ensure that we're not running an old
version of important software such as openssh.

Now we want to run Puppet again and observe the output. We'll once again run a
command that should be familiar to you by now:

sudo puppet agent -test

Once it's complete, go ahead and run it again to demonstrate that Puppet did indeed
update the package for us based on the latest attribute in the openssh module.

After both the runs are complete, the output should look something like
the following:

Chapter 2

[39]

Notice that we have two different audit-like outputs here. The irst one
shows that the package has been changed, and the second one shows that
it has been changed again from the original value.

This is one of the caveats of audit. If we audit managed resources and
they are changed, we end up generating two audit records. This happens
because the audit checks are performed at the beginning of the run before
Puppet runs. This means that the next time Puppet runs, the audit still has
the original value stored and reports that it changed again. We'll cover
some of the other caveats of audits in the next section.

Things to know about audit
The audit meta-parameter is a weird it in the Puppet world. Puppet is about
deining the state of your machines, and the audit parameter doesn't do that. Over
its lifespan of several years, it has been fairly controversial. Based on the discussion
happening on the mailing list as well as comments on the blog post announcing the
feature, some users felt that the idea was good, but having it in the manifest was a
bad idea.

Audit was a key part of the Puppet Compliance dashboard, which existed in Puppet
Enterprise. This dashboard provided a GUI around running audit and also allowed
you to convert the rules to baseline Puppet manifests. This made compliance a
breeze under light workloads.

In Puppet Enterprise 3.0, the Compliance dashboard, which relied on this
technology, was deprecated and removed from Puppet Enterprise. A page at
https://docs.puppetlabs.com/pe/latest/compliance_alt.html suggests that a
noop approach be used instead, which we'll cover in a later section.

Additionally, the Puppet Labs ticket seems to indicate that the audit functionality is
going to be deprecated in Puppet 4 (https://tickets.puppetlabs.com/browse/
PUP-893).

This does not necessarily indicate that you should not use the audit meta-parameter.
If you have small compliance needs, it's a good way to get started as you work to
build a baseline for use in alternative worklows.

We'll explore some of these possible worklows in the next section.

https://docs.puppetlabs.com/pe/latest/compliance_alt.html
https://tickets.puppetlabs.com/browse/PUP-893
https://tickets.puppetlabs.com/browse/PUP-893

Tracking Changes to Objects

[40]

Alternatives to auditing
The Puppet audit feature essentially works by creating a baseline of a resource. It
then monitors that the resource does not change from that baseline.

Using the tools Puppet provides us, we can manually build a baseline and have
Puppet run against it. This will allow us to accomplish the same goal as auditing.

We can then apply the baseline we create to either ensure that the resource stays in
the baseline state or to monitor that it has left it without changing it back.

We do this using the Puppet resource face to give us information on the resource
in question. A face is what Puppet calls the mechanism to extend its command-line
objects.

We call the Puppet face with the Puppet resource command. Go ahead and request
for help using the following command:

puppet help resource

You'll get an output that will list all of the possible arguments—almost like a
man page.

The Puppet resource face allows us to export the current state of any object as a
baseline. For example, consider the openssh package from the earlier section. Try
running the following command:

puppet resource package openssh-server

The output of the preceding command should look something like the following:

package { 'openssh-server':

 ensure => '5.3p1-94.el6',

}

This is the full representation needed to put the package in the state it is currently in.
In the case of a package, this is only the version that is necessary.

Using this Puppet resource command, you can very quickly build a baseline of all
of the objects you care about. However, once it's done, how do we use it?

Chapter 2

[41]

The noop meta-parameter
Puppet has a built-in mechanism to indicate that a resource should be checked but
not acted on. This is called the noop mode. Noop is supported in two modes. In the
irst mode, the entire run can be considered a noop run. This is accomplished by
adding the --noop lag on the run. In the second method, we use the noop meta-
parameter.

The noop meta-parameter is very similar to the audit one. You can add the
parameter to any resource. It supports a true and a false value to indicate whether
noop is on or off.

It's worth noting that the noop meta-parameter overrides the command-line setting.
In other words, even if you have noop set to false in the manifest and execute Puppet
with the noop setting as true, the resource will still be applied.

One last tool in the noop tool chain is the resource default. Suppose you have a class
for your baseline data and you want to ensure that all of the resources in that class
are set with noop as true. We can use the concept of a resource default to do this.

To add a resource default, you can use the type of resource with a capital letter. You
can then set the parameter defaults for resources in that scope. In Puppet, a scope
deines the search order and set of area in the manifest searched while attempting to
resolve a default or variable. In past versions, scoping was much more complicated
due to the widespread use of variable inheritance, but that has largely been replaced
due to the dificulties in understanding how it worked.

Deining how Puppet scopes work is outside the scope of this book (isn't
that funny?); however, if you're interested in learning more you can ind
the details at https://docs.puppetlabs.com/puppet/latest/
reference/lang_scope.html#scope-lookup-rules.

For our purposes here, we'll consider the class to be in the scope since that is the
most likely area for you to declare the parameter defaults. In the next example, we'll
show the use of parameter defaults in our auditing class.

www.allitebooks.com

https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules
https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules
http://www.allitebooks.org

Tracking Changes to Objects

[42]

Purging resources
In our giant bag of tricks around monitoring change, we have one inal trick. We call
this resource purging.

If you consider the earlier example in this chapter, where we monitor the password
ile, you might see an issue. While we can monitor the password ile, or enforce
the state of particular users, we do not have a good way to stop a user from getting
added.

Puppet contains a special type called resources to manage this. The resources type
supports relatively few parameters, which are as follows:

Parameter Description

name The resource type to manage

purge A true/false value indicating whether to purge unmanaged resources

unless_system_
user

A user-specific flag indicating to skip the system users

unless_uid A user-specific flag indicating to skip the given uid values

The resources type also accepts meta-parameters. This means we can manage users,
for instance, with purge and noop as true. This has the effect of logging any users
that which we are not explicitly managing. In effect, it lets us audit the password ile
in a much more granular way.

We can do a similar thing with packages that will give us the ability to log or remove
any packages that we have not explicitly targeted for installation.

In the next section, we'll go through an example of using noop to emulate the audit
meta-parameter.

Using noop
So, what do all of the previous examples look like in action? In this section, we'll
set up auditing on the password ile using the preceding noop parameters and
the resources.

First, start your Vagrant machine and SSH into it.

We'll create a module to hold this called useraudit. To do this, let's irst create the
skeleton of our module much like in Chapter 1, Puppet as a Security Tool. On your
virtual machine, run the following command:

sudo mkdir –p /etc/puppet/modules/useraudit/manifests

Chapter 2

[43]

This module is only going to have manifests, so it's the only directory we'll make.

For brevity in this book, we're creating bare bones skeleton example
modules. The module format is very powerful and contains metadata
such as versioning and dependency data. See https://docs.
puppetlabs.com/puppet/latest/reference/modules_
fundamentals.html or check out the book Extending Puppet by
Alessandro Franceschi for more information.

Now that we have a module structure, let's make the manifest. Create the /etc/
puppet/modules/useraudit/manifests/init.pp ile and set the content to be
as follows:

class useraudit {

 User {

 noop => true,

 }

 user { 'bob':

 ensure => present,

 noop => false,

 managehome => true,

 }

 resources { 'user':

 purge => true,

 unless_system_user => true,

 unless_uid => 500,

 noop => true,

 }

}

We're doing a number of things here. First, we're setting the user default to enable
noop. Then, we create a bob user. This is to demonstrate that we can override noop
with the meta-parameter. Finally, we're using the resources type to purge any users
in the noop mode. This essentially reports on any users that are not system users or
users who were manually exempted from this check with the unless_uid parameter.

Now, we need to add our new class to the sitewide manifest so that it gets included
in our test system. To do this, we edit the /etc/puppet/manifests/site.pp ile.
Make it look as follows:

node default {

 include openssh

 include useraudit

}

https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html

Tracking Changes to Objects

[44]

Once this is done, go ahead and run Puppet with the following command:

sudo puppet agent -test

Observe the output, which should be similar to the following screenshot:

As you can see, a number of things happened. The irst is that Puppet noticed that
the nfsnobody user existed but wasn't managed. When we created the manifest,
we essentially told it to skip all the users below user 500 as well as user 500. The
nfsnobody user is the uid value 65534, so it was not skipped. We would also want
to exempt it from checks by modifying the unless_uid line in the preceding code
as follows:

unless_uid => [500, 65534],

We can specify a user ID there as well as an array of user IDs or a range of user IDs
in the format low-high. This gives us a good amount of lexibility in exempting users
from the audit.

The second thing this did is create the bob user, which was called out in our manifest.

Now, much like we did earlier, let's create ourselves another user without Puppet
and see what happens.

Run the following command to make a dummy user:

sudo useradd dummy

Now let's run Puppet again. Go ahead and run the following command:

sudo puppet agent -test

Chapter 2

[45]

You should see an output like the following screenshot:

And success! The output looks very similar to the audit output.

Summary
In this chapter, we looked at the available change tracking methodologies in Puppet.
We started by exploring the audit meta-parameter. We looked at how it can be used
to manage ile and package change tracking.

After this, we looked at some of the limitations of the audit subsystem. It serves a
purpose, but has some issues and doesn't quite it into the Puppet paradigm since it
doesn't model state.

Finally, we looked at how we can replicate the worklow using other tools Puppet
provides us. By creating our own baseline and using noop, we can duplicate the
functionality audit provides, and even pull the system back to the baseline
as desired.

In the next chapter, we'll explore how to use these change tracking tools and more to
make the compliance department happy. After that, we'll see how we can report on
all of this data we've been collecting.

[47]

Puppet for Compliance
Whether you run one, ive, or 10,000 machines; if you're in the business world, you
have some level of necessary compliance. Compliance issues can be complicated.
There is nothing most system administrators hate more than dealing with an
auditor for several days. What if there was a way in which your systems would be
self-documenting? These documents would show the system state and can be given
to the auditor. With Puppet, this is possible.

In this chapter, we will explore how to do the previously mentioned points. We'll
cover the following topics before we wrap it up:

• Using manifests to document the system state

• How version control helps show history

• PCI DSS and Puppet

• How we can use facts to show system information

What is the PCI DSS? The Payment Card Industry Data Security Standard (PCI
DSS) is a set of standards created for the credit card industry, to address the
cardholder security information. The author of this book has personal experience
with the PCI DSS in his work with companies that process credit card information.
Much of the information that we'll cover that is speciic to PCI applies to other
compliance frameworks, such as Sarbanes-Oxley, as well.

As the master of the current state of a system, Puppet is in an ideal position to help
you with compliance issues. With some education and demonstration, many auditors
will accept Puppet manifests, as showing the state a system is in, if accompanied by
reporting, showing that Puppet has run.

Puppet for Compliance

[48]

Using manifests to document the system

state
One of the strongest tools in the Puppet compliance tool chest is the concept of the
manifest. Since the manifest represents the system's desired state, we can use the
data found in it to show what the system looks like.

Consider the following example: you have an audit requirement that says key
security-related services and software must be kept up to date. Working with
your security team, you've identiied a list of packages that fall under this. For the
purposes of our example, we'll say they're openssh, kerberos, and openssl.

We can write a manifest that looks like the following, to ensure that this is the case:

class compliance(

 $ensure = latest,

 $packages = ['openssh', 'kerberos', 'openssl']

) {

 package { $packages:

 ensure => $ensure,

 }

}

As we noted earlier, normal practice would dictate that to use
the preceding pattern, you would be sourcing these packages
from your own local repository and would promote them after
testing. Puppet can even help manage your local yum repository
coniguration with the yumrepo resource.

The preceding class should seem familiar, but we've introduced a few new concepts.
First, we will pass an array of resources. Arrays of resources are a quick way to
create similar resources, while only sacriicing a bit of readability. Second, we will
list the packages as class parameters. Class parameters are a way of passing data to
a class. In this case, we can deine the class with no parameters and it'd handle the
default packages. For example, consider the following declaration of the class:

include compliance

Using this command, we'd get the openssh, kerberos, and openssl packages set
to the latest version. However, we have a system where we need to also do the
openldap package. In this case, you can do the following:

class { 'compliance':

 packages => ['openssh', 'kerberos', 'openssl', 'openldap'].

}

Chapter 3

[49]

Using this syntax, we make the class more lexible. With Hiera, which we will cover
in a future chapter, this becomes even more powerful.

We can then apply the compliance class to any system that we want to ensure
compliance on. This will have the effect of upgrading any of these packages, as the
updates become available whenever Puppet runs.

If we combine this with a report showing when Puppet last ran on each of the
machines in the environment, we essentially produce a documentation showing that
our environment must be in the state the manifest describes it to be in.

We've seen a lot of examples using packages, but we can also use these methods with
any other resource, such as services or iles. Often times, in compliance situations, we
need to ensure that insecure services are not installed or running.

Keeping insecure packages uninstalled is just an extension of the preceding
package example, so we won't show it here. However, we can see how to prevent the
service from running. We'll use xinetd (which handles telnet and more) and tftpd
in our examples.

The manifest to do this would be similar to the following:

class compliance(

 $services = ['xinetd', 'tftpd']

) {

 service { $services:

 ensure => stopped,

 enable => false,

 }

}

This is somewhat similar to our preceding example. However, in this case, we make
sure the services are stopped. We also use the enable attribute to ensure that the
service is set to not start on boot.

What about other non-managed services?

These examples deal with services the OS knows about. It is
certainly possible to start the service outside the control of Puppet
and it may not be detected with this methodology. There are ways
to handle this, but they can quickly become complex and very
case-speciic. In most cases, you would use an exec resource to
ensure that running processes are acceptable.

Puppet for Compliance

[50]

Tracking history with version control
If we're using Puppet manifests and data for compliance purposes, we will want to
track the history of the manifests and data. There are many version control systems
out there, and a comparison of them is beyond the scope of this book. However, most
of the Puppet communities have standardized on using git.

While we do not aim to be a comprehensive resource on git, or the use of git with
Puppet, for the sake of compliance, it makes sense to explore the common worklow
that will aid a security professional in their everyday work.

If you want more details than this book provides on git
and Puppet, I recommend that you read Mastering Puppet,
Thomas Uphill, Packt Publishing for a Puppet-speciic view,
or http://git-scm.com/book for a more general
overview of git.

Using git to track Puppet coniguration
We'll start with the simplest use case. In this case, we'll just track the entire contents
of the Puppet coniguration directory under git. This is how many users begin their
deployments, and it can work while they are small.

We'll start by making sure git is installed. Run the following command in your
Vagrant virtual machine:

sudo yum -y install git

Now that's done, let's go ahead and set git up to track our installation.

We're going to assume that you're leaving off where we left off in Chapter 2, Tracking
Changes to Objects. If you're dealing with a system in a different state, the output of
the various commands may be different, but the concept is identical. We need to
perform the following steps:

1. Move into the puppet directory with the following command:

cd /etc/puppet

2. Then, let's go ahead and create our git repository:

sudo git init

You'll be greeted with the output, as follows:
Initialized empty Git repository in /etc/puppet/.git/

http://git-scm.com/book

Chapter 3

[51]

3. Now, we have a git repository created. However, it's not very interesting.
Let's see what git currently thinks with the git status command:

[vagrant@puppet puppet]$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be
committed)

#

auth.conf

environments/

fileserver.conf

manifests/

modules/

puppet.conf

nothing added to commit but untracked files present (use "git
add" to track)

4. As you can see, everything is untracked. We can go ahead and solve this. In
our very simplistic case, we'll just add the entire Puppet directory with the
following command:

sudo git add .

5. Now, we'll commit it to the git repository, as follows:

sudo git commit -m "Initial Commit"

We'll see an interesting output showing the files and directories that were
added, along with some administrative information:

[vagrant@puppet puppet]$ sudo git commit -m "Initial Commit"

[master (root-commit) 7c38a9b] Initial Commit

 Committer: root <root@puppet.book.local>

Your name and email address were configured automatically
based

on your username and hostname. Please check that they are
accurate.

You can suppress this message by setting them explicitly:

 git config --global user.name "Your Name"

 git config --global user.email you@example.com

www.allitebooks.com

http://www.allitebooks.org

Puppet for Compliance

[52]

If the identity used for this commit is wrong, you can fix it
with:

 git commit --amend --author='Your Name <you@example.com>'

 10 files changed, 390 insertions(+), 0 deletions(-)

 create mode 100644 auth.conf

 create mode 100644
environments/example_env/README.environment

 create mode 100644 fileserver.conf

 create mode 100644 manifests/example1/site.pp

 create mode 100644 manifests/example3/site.pp

 create mode 100644 manifests/site.pp

 create mode 100644 modules/openssh/files/sshd_config

 create mode 100644 modules/openssh/manifests/init.pp

 create mode 100644 modules/useraudit.full/manifests/init.pp

 create mode 100644 puppet.conf

We'd probably want to follow the instructions to set a username and e-mail and
amend the commit. This will make it easier to track who made the changes. Note that
the -m command-line argument sets the commit message on the command line. If
you omit this, it will open your default editor (which is usually vi) to prompt you for
a commit message.

In a real production environment, we'd likely want to use a git server solution. This
can be as simple as a directory, where we store the common git information, or as
complex as an an online service designed to handle git. When doing this, each user
would make changes as their own user, and we would use a method (manual, hook,
script, and so on) to check out a read-only copy on the Puppet Master. This will
allow us to audit and track who made what changes to the Puppet environment. This
helps you with auditing by showing the users who made the changes, which can
then be compared to an authorized users list.

Our worklow from this point on is the same. We make changes to iles, use
git add to add the iles to the git repository, then use git commit to commit them
with a message.

Chapter 3

[53]

We can then use a variety of commands in git to review the history of the repository
at any given point. The simplest just being git log. The output of this would be
as follows:

[vagrant@puppet puppet]$ git log

commit 7c38a9b721e40b1f7ce556e3876f1b087cd1c42d

Author: root <root@puppet.book.local>

Date: Tue Aug 19 17:36:33 2014 -0700

 Initial Commit

If there were more commits, you would see multiple entries. However, as you can
see, it tracks the author, when the change was made, and the comment.

For more information on git and the various commands,
please check out the git website at http://git-scm.org.

Tracking modules separately
As the complexity of your git environment increases, there comes a desire to
track the state of modules separately from the main repository. This lets you use
different life cycles for the various modules. It also lets individual groups work on
various modules.

There are several solutions available to solve this problem. The irst one that
many users attempted to use was git submodules. The git submodules provide
a methodology to store a link from one git repository inside another. The inside
version can be pinned to a speciic revision, allowing you to independently set the
version of the module.

However, while this seems like a workable solution, it presents a number of challenges.
As the number of modules you track grows, a lot of spurious commits get made to the
main repository, simply to update the submodules to the new versions. Additionally,
the steps to do this usually entail no less than three or four git commands. This is
cumbersome and hard to manage with many frequently changing submodules.

Several custom solutions to this problem have been developed. The most popular
currently are librarian-puppet and r10k.

http://git-scm.org

Puppet for Compliance

[54]

Both librarian-puppet and r10k handle installation of modules from both the
Puppet Forge and version control. The Puppet Forge is an online resource of
community modules used for installation. We'll see how to use it, and highlight
some security-related modules, in Chapter 6, Community Modules for Security.

Librarian-puppet and r10k both use a ile called puppetfile to handle the
installation of modules. In this ile, we list modules to be installed and the source we
want to get them from. This is normally either version control or the Puppet Forge.

R10k differs from librarian-puppet in having built-in support for dynamic
environments. Dynamic environments let you create a separate full set of Puppet
code for different life cycles of code. This allows you to quickly and easily develop
Puppet code without impacting on production. More information on this feature can
be found on the link at the end of this section.

Once we have our puppetfile conigured, we execute the program of our choice,
and it downloads the modules and links them into the modules directory. In this
way, we do not have to track the modules in our main version control repository.

We'll go over a quick example showing how to install the stdlib module using
r10k. We don't use it in the later examples in the book, but in cases, where we use the
puppet module command in later examples, you can just substitute the appropriate
r10k coniguration. We won't be doing dynamic environments, or any of the other
advanced features of r10k, but we will cover the basic use case of installing modules.
We need to perform the following steps to install modules:

1. We'll start by installing r10k. This is packaged as a Ruby gem. We need to have
the gem command installed. We can install it with the following command:

sudo gem install r10k

2. Now, we need to make a puppetfile. In our case, the file is very simple,
since we're simply installing one module. Create the /etc/puppet/
puppetfile file and add the following line:

mod 'puppetlabs/stdlib', '4.5.1'

3. Once that's done, we just need to run r10k in the proper mode with the
following command:

sudo r10k puppetfile install

The command won't give any output. However, when it completes running, you will
ind that the modules/stdlib directory exists.

Chapter 3

[55]

These programs will become invaluable as you grow your Puppet environment,
and start to treat your infrastructure as code.

For more information on librarian-puppet, check out its website
at http://librarian-puppet.com/. Likewise, for more
information on r10k, check out its website at https://github.
com/adrienthebo/r10k.

Facts for compliance
In addition to using Puppet, to show the system state and reporting on that, we
can use the powerful fact system to report information on the system. Using this
information and reporting mechanisms, we can quickly build the documentation on
our systems for use in our compliance audits.

Additionally, the power of creating custom facts really shines here. As we'll see
in Chapter 6, Community Modules for Security, Puppet makes it very easy to grab
information on your systems and store it in a common place. With PuppetDB and
some reporting glue, you can turn this data into fairly comprehensive compliance
documents. We'll explore some simple cases here and see how we can use this data
in future chapters.

The Puppet role's pattern
Before we continue discussing facts, we're going to take a short detour to discuss a
best practice.

One of the common patterns used in the Puppet world is the concept of a role.

In this pattern, a role deines what we expect a system to do from a business
perspective. It becomes a larger part of what's known as the roles and proiles
pattern. We use roles to group together speciic conigurations for a service that
is required to deliver a business function.

In some cases, the role is determined from the hostname. In others, it's determined
from the data passed into the instance of a virtual machine. However, the role is
obtained, it is very often used to determine what set of modules and manifests gets
applied to a system.

Let's consider an example. Say, we have a three-tier web application. In this system,
we have frontend web servers, application servers, and database servers.

http://librarian-puppet.com/
https://github.com/adrienthebo/r10k
https://github.com/adrienthebo/r10k

Puppet for Compliance

[56]

Coniguration of these servers is going to differ, as per their compliance needs.
Perhaps, the database server stores credit card data, so it needs to ensure that disk
encryption is used. Using the role fact, we can get a quick inventory of what each
system type is, along with the other data on the system. This is all with just the
addition of one custom fact.

We can extend the roles pattern to cover other logical systems. In this case, we'll
explore the role of the Puppet Master.

Using custom facts
Puppet uses facter as its method for providing state information about the system.
In addition to the large number of built-in facts about the system, it's also possible
to create your own. There are a couple of ways to do this. One way, is to create
Ruby plugins, which provide fact information. The second way, is to use the facter
external fact methodology. We'll cover this in the following steps:

1. Let's go ahead and implement the simplest form of custom fact, using
the built-in facter external fact mechanism. First, let's create the external
fact directory:

sudo mkdir -p /etc/facter/facts.d

2. Then, edit the /etc/facter/facts.d/role.yaml file with your favorite editor
and make it look exactly as follows (YAML can be picky about formatting):

role: puppetmaster

3. Once we're done, run the following command:

sudo facter -p role

The -p flag tells facter to behave in a similar manner to a Puppet run. This
emits some Puppet-specific facts, as well as loading any custom plugins that
have been synced over by Puppet. If all goes well, you should see the output
similar to the following:

[vagrant@puppet ~]$ sudo facter -p role

puppetmaster

This data would then be available in any Puppet manifests as ::role, as well as
for use in Hiera. Furthermore, it will be stored in PuppetDB and any other report
processor for later use. As mentioned earlier, we'll explore the reporting aspect of
this in the next chapter.

Chapter 3

[57]

This is a very simple case of extending facter. However, as mentioned earlier, the
facter library will allow a user to implement custom facts in Ruby, as shell scripts
or as structured data iles (YAML, JSON, and specially formatted text iles). With the
recent version of Puppet (Puppet 3.4 and later and Facter 2.0.1 and later), one can
even sync external facts straight to the client via the plugin sync mechanism. Before
this, we'd have to write the facts in Ruby to have plugin sync distribute them. This
makes it much easier for system administrators who may not know Ruby to create
and use custom facts.

Let's consider a somewhat more in-depth example using a shell script.

A common compliance (and general security) practice, is to ensure that no accounts
exist without passwords. We can use an external fact to expose a count of accounts
without passwords.

Edit /etc/facter/facts.d/passwordlesscount.sh with your favorite editor. Add
the following contents:

#!/bin/sh

echo -n "passwordlesscount="

getent shadow | cut -d: -f2 | grep -x '' | wc -l

Go ahead and save the ile and make it executable by executing the command:

sudo chmod a+x /etc/facter/facts.d/passwordlesscount.sh

Finally, let's execute the facter command again:

sudo facter -p passwordlesscount

The output should be 0. If you add a passwordless account, the count increases to 1.

While this is more complicated than our irst example, it is still pretty simplistic.
However, it shows the power of using facts. With some thought, you can report quite
a lot of information using the fact system, such as the number of accounts, whether
things have passwords. You can also report the SELinux state, out-of-date package
count, and many more. With this information, you can build reports that make
showing compliance much easier than collecting the information by hand.

In the next section, we'll show speciic examples for using Puppet to deal with
compliance challenges that the PCI DSS brings about.

Puppet for Compliance

[58]

The PCI DSS and how Puppet can help
The PCI DSS is a set of standards for security, created by the Payment Card
Industry. It provides a framework on how computer systems handling credit card
transactions should be conigured. With recent high proile intrusions, including the
Target intrusion of late 2013 resulting in the theft of over 40 million cards, as well
as the more recent Home Depot attack; it has become even more important that any
company, processing credit card information, ensures that they are secure. In this
section, we'll approach some speciic controls of the PCI DSS standard, and see how
you can conigure Puppet to remain in compliance. In some cases, we'll provide
concrete examples, and in others, we'll provide references to other sections of the
book, where these speciic problems are solved.

While we will be approaching several key areas of the PCI DSS, this section is not
intended to be a comprehensive list of tutorials on how to do all PCI DSS-related
hardening. There are many other areas that Puppet can assist with, if conigured
correctly. Additionally, one should engage a qualiied assessor if there are any
questions about any of the sections of the PCI DSS.

A good overview of the PCI DSS standard can be found
on Wikipedia at http://en.wikipedia.org/wiki/
Payment_Card_Industry_Data_Security_Standard.

Network-based PCI requirements
The PCI DSS contains a wealth of requirements surrounding secure networks. While
many of them (and indeed many of the PCI DSS requirements) are around policy,
there are a few concrete ones that Puppet can help you with.

Several of the requirements are surrounding limiting host access to required services.
In Chapter 7, Network Security and Puppet, we will see how to manage the host irewall
with Puppet. Using this methodology, one can conigure the irewall to only allow
access to individual services. As mentioned earlier, the manifest that allows this shows
that the process is in place and alleviated needing to check each individual host.

Additionally, Puppet contains support to manage a variety of network devices
directly. There are modules to support Juniper, Cisco, and F5 devices in various
stages of their life cycles. Support for these modules continues to build.

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Chapter 3

[59]

As this ecosystem develops, it opens the opportunity to expand management of
your devices with a coniguration management system. This will bring many of
your coniguration items into one place, further lowering the burden of providing
compliance information to auditors.

We'll briely touch on the device management aspects in Appendix, Going Forward.

Vendor-supplied defaults and the PCI
The second major section of the PCI DSS deals with vendor-supplied security
parameters. Again, this is an area that Puppet can help you with. We'll build on
some earlier examples and give a more complete example of some of the concepts
in this section.

In the simplest sense, we can use use ensure => 'absent' to guarantee that the
vendor-supplied user resources are not enabled whenever we come across them.
However, this is really a default allow value. We'll only remove accounts that we
explicitly remove. A better course of action is to use a default deny value—if we
don't manage or know a user, we will remove it. This requires a bit more work to
maintain, but it's more secure.

To do this, we'll write a somewhat more complicated user module. Some of the
features we'll use here are more in-depth than the features we've discussed.
We'll explain some of them and use references for others.

We're going to create a module to handle the user creation. However, this time we'll
use the Puppet method of generating a template. This is a better practice for modules
you may need to manage with librarian-puppet or r10k.

To begin, let's go ahead and create our module. We can do this in our home
directory because we can link it in, or add it to our local librarian-puppet or r10k,
and install it later.

Let's run the following command to create the module:

puppet module generate pupbook/users

You can replace pupbook with another username if you'd like.

Puppet for Compliance

[60]

Once we do this, Puppet will ask us for a series of questions to help write our
metadata. It looks as follows—go ahead and answer similarly:

Chapter 3

[61]

Your output can vary a bit depending on the version of
Puppet you are running this on.

When you get to this point, go ahead and answer yes to generate your
module template.

You'll see that several iles and directories were created. Some are familiar, such as
the manifests directory. I'll briely explain the others here.

• Rakefile: This contains a set of instructions for Ruby to run tasks. In this
case, tests.

• README.md: This is a general README for the module. In a real module, you
would describe it here.

• metadata.json: This file contains the metadata generated. The metadata in
this file is parsed by tools, such as the puppet module tool, librarian-puppet,
and r10k to install dependencies and other actions.

• tests/init.pp: This contains a simple class intended to test the module.

• spec/*: This contains the directory and its files hold spec tests for the module.
It's a good idea to write spec tests on anything more than a simple module.

An entire book can be written on Puppet testing. We'll not
cover the concept of spec tests here other than mentioning
them. You can ind more information on rspec at http://
rspec.info/, and on spec tests for Puppet at http://
puppetlabs.com/blog/the-next-generation-of-
puppet-module-testing. The source that accompanies this
book contains a working, but basic, spec test for this module.
It's how the code was tested to ensure that it works.

Now, we'll go ahead and create our deine. In puppet, a deine is like a macro.
It's intended to hold reusable code that can be used to build other things. This is
different from how we use, and create, a class that is intended to hold resources that
are only declared once.

Let's create the manifests/users.pp ile. In this ile, we'll create a deine that both
this module and other modules can use to create users. Open the ile and make it
look like the following:

define users::user (

 $userid,

 $password = '!!',

 $username = $title,

http://rspec.info/
http://rspec.info/
http://puppetlabs.com/blog/the-next-generation-of-puppet-module-testing
http://puppetlabs.com/blog/the-next-generation-of-puppet-module-testing
http://puppetlabs.com/blog/the-next-generation-of-puppet-module-testing

Puppet for Compliance

[62]

 $managehome = true

) {

 group { $username:

 ensure => present,

 }

 user { $username:

 ensure => present,

 password => $password,

 uid => $userid,

 gid => $username,

 }

 if ($managehome) {

 file { "/home/${username}":

 ensure => 'directory',

 owner => $username,

 group => $username,

 mode => '0750',

 }

 }

}

We'll use this structure to manage users we create. We do this instead of the user
type directly, because we can extend this to manage other resources. Notice that we
can handle the creation of the users group (the OS would do this too in most cases,
but this way, it's explicit). We can also manage their home directory. We can extend
this to manage anything else we want about the user.

There are a handful of community modules that perform the preceding functions,
as well as manage things, such as additional groups and SSH keys. The ones that
are of particular interest are the camptocamp/accounts and torrancew/accounts
modules, which seem to be popular. Also, Puppet Enterprise comes with the
pe_accounts module that handles all these things. For more information, see
http://forge.puppetlabs.com and search for the account or user.

Next, we'll create a params class. This is a very common pattern in the Puppet
module community. It separates the OS-speciic data from the core module
functionality. This also puts us in a great position to override the functionality on
systems, where we need to make it different. A good description of this pattern can
be found at https://docs.puppetlabs.com/guides/module_guides/bgtm.html.

http://forge.puppetlabs.com
https://docs.puppetlabs.com/guides/module_guides/bgtm.html

Chapter 3

[63]

Edit the manifests/params.pp ile and insert the following CentOS 6 speciic logic:

class users::params {

 case $::osfamily {

 'RedHat': {

 $verarray = split($::operatingsystemrelease,'[.]')

 $majver = $verarray[0]

 case $majver {

 '6': {

 $systemusers =
[0,1,2,3,4,5,6,7,8,10,11,12,13,14,99,81,69,173,68,38,499,89,74,72,
32,29,52,498,65534]

 }

 default: {

 fail("OS Version ${majver} not supported")

 }

 }

 }

 default: {

 fail"OS ${::osfamily} not supported")

 }

 }

}

Note that the users array is all on one line. As you can see, we set some defaults
based on the family of the OS (it's better to use the family than the version since
the Red Hat family, for instance, has a ton of OS releases, such as Scientiic and
CentOS. Watch out for Fedora though, which is also in that family). Then, we use
some Puppet logic to split the operatingsystemrelease fact. If you have the lsb-
release package installed, you get a lsbmajdistrelease fact, but it's not hard to
just split, and it works with other operating systems, as well as the older version of
Puppet. Puppet 3.3+ ships with the osmajversion fact that does the same thing. We
use this to deine a huge array of default system users that we want to allow to exist.
We can also choose to represent this array using a custom fact. However, an array
support in facts is still somewhat new. The list has a couple of VirtualBox-/Vagrant-
speciic users, so if you use this in your environment, you should verify and update
the preceding list.

Puppet for Compliance

[64]

Now, we'll create the structure to use the resources type to purge the users while
ignoring all the system users. Edit manifests/init.pp:

I've cut the screen to make the screenshot look smaller. Notice how the Puppet
module generate command includes some documentation to ill out. This can be
used by some tools to generate the module documentation for the user. To keep our
example short, we'll just remove it. So, go ahead and remove all of the content and
replace it with the following:

class users (

 $systemusers = $users::params::systemusers

) inherits users::params {

 validate_array($systemusers)

 resources { 'user':

 purge => true,

 unless_system_user => 1,

 unless_uid => $systemusers,

 }

Chapter 3

[65]

 users::user { 'vagrant':

 userid => 500,

 password => '1WZR2vRP.$tHmVAmIwW1bxpSfZ7y8k3.',

 }

}

Notice how we can use inheritance and the params pattern to set the default value
of the system users. You can override this with Hiera, or an explicit resource
declaration on a per-instance basis.

We can also create the Vagrant user for our VirtualBox here. I used the password
hash from the VirtualBox here locally.

To use this module, irst, we have to include it in our modules. In a production
environment, you'd likely use r10k or librarian-puppet for this, however, in our case,
it's suficient to just copy it. Go ahead and copy the pupbook-users directory to
/etc/puppet/modules/users.

We're using the module to validate that we are, indeed, being passed an array as
the argument to the user's command. We need to install it in the puppetmaster
directory. To do so, run the following command:

sudo puppet module install puppetlabs/stdlib

This command downloads the module from the Puppet Forge and installs it in your
module path.

Finally, we need to include the new module we created in your node declaration.
In /etc/puppet/manifests/site.pp, modify the declaration to look like the
following:

node default {

 include openssh

 include users

}

The puppetlabs-stdlib module contains a large number of
utility functions, such as the preceding validators. It also contains
glue such as run stages that can simplify your environment's
dependencies. Nearly every module you write will end up using
some function from stdlib, so it's useful to study. You can ind
more information at https://forge.puppetlabs.com/
puppetlabs/stdlib.

https://forge.puppetlabs.com/puppetlabs/stdlib
https://forge.puppetlabs.com/puppetlabs/stdlib

Puppet for Compliance

[66]

Now, go ahead and run Puppet with the normal sudo puppet agent -test
command. You should see the output similar to the following screenshot:

You might also see some other users if you created them in the previous chapters,
as well as the custom facts from the stdlib module syncing over. However, the inal
output should look generally, as shown in the preceding screenshot.

As you can see, the only change here was to change the mode on our Vagrant user's
home directory.

At the time of writing, there was a bug present in the Puppet
core preventing this example from working properly. It's been
iled at https://tickets.puppetlabs.com/browse/
PUP-3132, and its progress can be tracked here. The edits
necessary to make this work are also present in this ticket. In
our case, the output should look, as shown in the preceding
screenshot, but in reality, due to the bug, we end up matching
many of the users in the system's user list.

https://tickets.puppetlabs.com/browse/PUP-3132
https://tickets.puppetlabs.com/browse/PUP-3132

Chapter 3

[67]

For the production use of this module, you must deine all of your users in Puppet.
This goes for system users, such as Apache if you need Apache installed. However,
if this is done correctly, it is a very powerful tool to ensure that no errant users are
on the machine, and once again, shows compliance with a number of the PCI DSS
requirements.

There are a number of other pieces of this section of the PCI DSS that can be
addressed with Puppet. There is a large section of requirements having to do
with managing coniguration standards for systems. This includes things, such as
disabling services, keeping documentation of the system state, and so on. These
tasks can all be easily accomplished with Puppet. We'll cover a community module
that covers the CIS standard (which is called out speciically as a standard to use) in
Chapter 6, Community Modules for Security. We can also use an approach, very similar
to the earlier one, to manage both the packages and services. The modules to manage
packages in particular will be quite large, since it would need to list every permitted
package, but it is possible. Use of the puppet resource command, covered in the
last chapter, will make automating the creation of a baseline package much simpler.

Protecting the system against malware
The next area where Puppet can be a big help is in protecting the system against
viruses and malware. By Puppetizing your anti-virus agent, you can ensure that all
systems contain an anti-virus. To handle keeping the anti-virus up to date, we can
either Puppetize the updates, or expose a fact with the current anti-virus version.

There are a number of well-developed community modules targeting installation
and coniguration of the ClamAV virus scanner. We will cover these in Chapter 6,
Community Modules for Security. Instead of covering how to write a module to install
and conigure ClamAV, we'll focus on exposing a fact for the currently installed
ClamAV database.

Before we can do that, we need to get ClamAV installed. We can just use yum to do
this, but there's not a task too small to create the Puppet module to handle this for us,
as this will improve our skills and be reusable across multiple machines.

In doing this, we will need to use Fedora EPEL—Extra Packages for Enterprise
Linux. Luckily, there's a wonderful community module to help us—stahnma/epel,
as shown in the following steps:

1. Go ahead and install it with the following command:

sudo puppet module install stahnma/epel

Puppet for Compliance

[68]

What's with the software repositories?

Software repositories are very important when using Puppet,
as the best practice is to install packages using the operating
system package manager whenever possible. Ideally, one
would run a local mirror of all of the repositories in question
that would allow you to precisely control the versions of
packages that get installed on systems. This would include
repositories, such as EPEL, as mentioned earlier, as well as
the base operating system repositories. Using the yumrepo
resource type, it is possible to use Puppet to manage all of
your configured repositories on Red Hat machines.

2. Now that we've got this installed, cd back to your home directory, and we'll
make a module to hold our ClamAV resources. Run the following command:

puppet module generate pupbook/clamav

3. Answer the questions, as we did in the earlier example on compliance, and
we'll get started. First, we'll need to create the resource that installs ClamAV.
From the pupbook-clamav directory, edit the manifests/init.pp file. In
this file, we'll include EPEL to ensure that it's installed, as well as add our
package declaration. When you're done, it should look as follows:

class clamav {

 require epel

 package { 'clamav':

 ensure => present,

 }

 users::user { 'clam':

 managehome => false,

 require => Package['clamav']=

 }

}

4. Save it, and add include clamav to the default node definition in the /etc/
puppet/manifests/site.pp file.

A thing to note here, is that ClamAV creates a user, so we create that user in our
manifest, doing it after the package. If we do not, our earlier module will purge the
user created by the package. By putting it in the module that installs ClamAV, it
keeps it close to the source. This ties into the roles and proiles pattern we briely
introduced earlier, and we will touch on in a later chapter.

Then, we need to copy the pupbook-clamav directory to /etc/puppet/modules/
clamav.

Chapter 3

[69]

After that, we'll go ahead and run Puppet. This will have the effect of installing
ClamAV. So, run Puppet using the following command (you should be getting
used to this by now!):

sudo puppet agent --test

The output will look like the following screenshot:

Again, if this is your irst run, you may see some more outputs, as some of the EPEL-
related items are synchronized over. In general, the output should be similar though.

Now that we have ClamAV installed, we can go ahead and create our fact. We can use
the output of the clamscan -V command within a facter fact to give us the version
information. We'll create a fact in our clamav module to give us the information.

In our module, we create the lib/facter directory inside our module. You can use
the mkdir -p ~/pupbook-clamav/lib/facter command to do this.

Inside this directory, we're going to create a ile called clamversion.rb. Go ahead
and open this ile with your favorite editor. We want it to look like the following:

Facter.add(:clamversion) do

 confine :kernel => "Linux"

 setcode do

Puppet for Compliance

[70]

 Facter ::Core::Execution.exec ('/usr/bin/clamscan -V
2>/dev/null')

 end

end

Save the ile, and recopy your module into /etc/puppet/modules. Once complete,
we'll rerun Puppet with sudo puppet agent --test. We should see the output like
the following:

We can see that it copied our plugin to the master. The md5sum may vary
depending on spacing and so on.

Then, we run the following command:

sudo facter -p clamversion

We'll get the output similar to the following:

[vagrant@puppet ~]$ sudo facter -p clamversion

ClamAV 0.98.4/19120/Sat Jun 21 04:57:20 2014

Success! Now, we can report this data with our favorite reporting mechanism.

We also learned how to write custom facts using a Puppet module. These will
automatically get synced to all of your agents.

Chapter 3

[71]

Maintaining secure systems
There is a section of the DSS that handles maintaining secure systems. One of the
objectives in this section, is that we keep our system patched and up to date.

By using manifests, such as those we saw in Chapter 1, Puppet as a Security Tool,
we can identify security-related packages and make sure they are kept at a given
version, or that we keep them at the latest. This will ensure that the security patches
are installed.

Authenticating access to systems
A later section of the PCI DSS standard covers authentication best practices. Using
many of the same methods we used in the vendor defaults section, we can ensure
that only permitted and documented users have access to systems.

In this section, there are also controls around authentication lockouts and timeouts.
We can use some of the same methods we learned here to secure openssh to do
some of these things. We'll explore some of these examples in Chapter 6, Community
Modules for Security, when we take a look at using augeasproviders to manage the
SSH coniguration.

Summary
In this chapter, we looked at how to use Puppet to solve various compliance
challenges. We looked at how to use Puppet manifests to document the system
state. This can be unbelievably helpful in showing how a system is conigured.

Additionally, we then looked at how version control can help you show the history
of the system coniguration, when various things changed, as well as possibly help
us show who made the changes.

Finally, we looked at speciic challenges that the PCI DSS creates, and how we
can use Puppet to solve them, including several examples of the use of Puppet to
automate some of the PCI DSS requirements.

Compliance is a journey, not a destination. As we learn more and get more familiar
with the Puppet ecosystem, we will learn many more ways to use Puppet to assist
us in our compliance needs. We'll explore some additional resources to review in
Appendix, Going Forward.

In the meantime, in the next chapter, we'll move on and explore how we can use
Puppet to generate security and compliance-related reporting.

[73]

Security Reporting

with Puppet
By now, we've been over a lot of use cases involving using Puppet for security.
However, we have a recurring theme. We've gathered data, written manifests,
and created facts. However, what do we do to turn this into proven security and
compliance information?

We need to take the data and information from our runs and turn it into reports.
Puppet has a comprehensive system to store data, and we'll use this to create reports
showing the state of our system and to show compliance.

In this chapter, we plan to cover the following topics:

• Basic reporting in Puppet

• Using PuppetDB to create reports

• Reporting on compliance

We'll use several examples to show how these topics will help us on our security
journey. By the end of this chapter, you should be comfortable creating reports
using the basic Puppet data, as well as reporting via PuppetDB. There are additional
resources that we'll then direct you, to expand your skills.

Basic Puppet reporting
Puppet has several methods that can be used for low end reporting needs. Some of
these methods, such as parsing the local run output data iles or logs, can be performed
on the client, but most of them rely on the Puppet Master to properly perform.

Security Reporting with Puppet

[74]

Puppet's reporting system is based on a concept of report processors. Many different
report processors exist. A summary of some of the most common ones are listed in
the following table:

Processor Description

HTTP This posts the report information to the URL given as a
configuration parameter.

Store This stores the completed Puppet reports in files on the
filesystem. These can then be post-processed to do reporting.

Tagmail This report processor can be configured to send e-mails based
on "tags", which can be applied to classes.

PuppetDB This stores the reports in the PuppetDB database. This can then
be queried to create reports.

Report processors can also be written in Ruby to handle custom requirements, as
needed. There are community report processors readily available that use this report
customization support to allow reporting to IRC, Nagios (an open source reporting
system), Twitter, SNMP, and many others. There are also other products, such as The
Foreman that enables reporting, as well as other functions.

In this chapter, we will explore the use of store and the PuppetDB report processors.
We'll take a look at what we can do with these processors to create relevant security
reports.

Another common report processor that is in wide use is the HTTP processor. This
processor allows you to post the report results to an application listening on a given
URL. Your application can be conigured to receive the Puppet reports and update
the information accordingly. Using this method requires software development that
is out of the scope for this book. However, an excellent resource on Puppet reporting
that covers many of the concepts in this chapter is the book Puppet Reporting and
Monitoring, Michael Duffy, Packt Publishing, available at https://www.packtpub.
com/networking-and-servers/puppet-reporting-and-monitoring.

A complete list of built-in processors can be found at
https://docs.puppetlabs.com/references/latest/
report.html. Additionally, much more information
on reporting, including links to some of the community
processors mentioned earlier can be found at https://docs.
puppetlabs.com/guides/reporting.html.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://docs.puppetlabs.com/references/latest/report.html
https://docs.puppetlabs.com/references/latest/report.html
https://docs.puppetlabs.com/guides/reporting.html
https://docs.puppetlabs.com/guides/reporting.html

Chapter 4

[75]

The store processors
The simplest report processor available within Puppet is the store processor.
As mentioned earlier, this processor simply stores the report data as a ile on the
Puppet Master.

This ile is in a YAML format. This is a human-readable text format that is also
systematically parsable. It contains information on the entire Puppet run, in a format
called internally Puppet::Transaction::Report.

This report format is versioned and has been through ive
versions at the time of writing (the irst version was 0). Since
we are concentrating on more recent Puppet versions, we will
explore Version 4. Information on each of the individual versions
that have existed can be found at https://docs.puppetlabs.
com/guides/reporting.html#report-formats.

The report information contains a wealth of useful information for security reporting,
such as when Puppet last ran, the status of resources, and so on.

When we initially conigured Puppet way back in Chapter 1, Puppet as a Security Tool,
we conigured it to enable the store processor. As such, if you've been following
along, we should already have some reports that we can examine. Let's go ahead and
take a look at some of the elements of one of the stored reports.

We'll take a look at a report for a run that installed the ClamAV virus scanning
software. This is one of the last runs we did in the last chapter, and it does a good job
of showing what a successful run looks like.

What if the Puppet report directory is owned by root?

There is some chance that the Puppet report directory ended up
owned by root due to the Vagrant coniguration of your virtual
machine. If this is the case, execute the following command:

sudo chown puppet
/var/lib/puppet/reports/puppet.book.local

Once complete, if you wish to follow along, remove the clamav
package with sudo yum –y remove clamav and rerun Puppet
with sudo puppet agent -test. This will regenerate the
report and allow you to follow along. Managing the ownership of
the report directory seems like a good job for Puppet!

https://docs.puppetlabs.com/guides/reporting.html#report-formats
https://docs.puppetlabs.com/guides/reporting.html#report-formats

Security Reporting with Puppet

[76]

The reports get dropped to the directory speciied by the reportdir coniguration
option in the puppet.conf coniguration ile. If not speciied, this defaults to
$vardir/reports, so /var/lib/puppet/reports on CentOS.

We'll go ahead and pop into this directory and take a look at the iles. There should
be one for each run we've done. They add up quickly, and there are community
modules to manage this data, such as the one at https://forge.puppetlabs.com/
rcoleman/puppet_maint. If you only see one, see the earlier note. The YAML ile
we're looking at has also been included with the source code for this chapter. The
ilename is 201409080013.yaml.

First, let's take a look at the top-level elements. The contents should look as follows:

The preceding screenshot was captured in an editor on
the host system. However, you can get Vim to do a similar
thing with the following Vim commands:

• :set shiftwidth=2

• :set foldlevel=1

• :set fdm=indent

• :set number

Immediately, we can see some useful things. Notice that the report_format value is
4, which is consistent with what we expected it to be based on the version of Puppet
we're running.

We can also see the hostname of the machine we're running on. In this case, it's
puppet.book.local. You can use this if you consume reports from many hosts.

https://forge.puppetlabs.com/rcoleman/puppet_maint
https://forge.puppetlabs.com/rcoleman/puppet_maint

Chapter 4

[77]

Next, we can see the general status of the run. In this case, it is changed. This status
can be one of the three options: changed, failed, or unchanged. Changed indicates
that work was done during this run. Since we installed ClamAV, we would expect
this to be changed.

If, however, we notice that it was failed, we might want to lag the host for further
inspection, or parse the logs section of the report to ind out why it has failed.

Now, we'll move on to examine the kind parameter. This covers what type of run we
did this time. This can be "inspect" if we're running an inspection run for auditing, or
an "apply" run if we're running normally. We can use this to differentiate our audit
runs and report on just them.

There are two inal pieces of information we want to consider. The irst is
configuration_version and the second is time. These both will assist us in
determining when we last ran. The configuration_version value is a string that
contains, by default, the epoch time that the coniguration was parsed. This will often
be cached and is a good indication of when the coniguration was last considered.
We can also set a custom script to set this data in our coniguration ile. We can, for
instance, set this as a version control commit ID, or any other data.

The time data is quite straightforward. It is the time when the run was started.
We can use this data to determine whether we have a recent run. We can also, for
instance, set up alerting of a run we do not see for a given host, at least, so often.

Example – showing the last node runtime
In our very simple case, let's whip together a really simple shell script that can parse
through a directory of reports and output the last run time and status for each of our
hosts in a nice table.

I'll do this in a shell script to demonstrate how lexible the YAML report format is.
If you go more in-depth with reporting this way, you would likely want to use a
programming language that supports YAML natively. However, for simple cases, we
can take advantage of the fact that they're just text iles and do the limited amount of
parsing we need to do.

Let's edit a ile called report.sh in your home directory, and make the content look
as follows:

#!/bin/bash

if [$# -eq 1]; then

 DIR=$1

else

Security Reporting with Puppet

[78]

 DIR="."

fi

cat << EOF

<!doctype html>

<html lang="en">

<head>

<title>Puppet Run Report</title>

</head>

<body>

<table border=1>

<tr><th>Hostname</th><th>Last Run</th><th>Status</th></tr>

EOF

for i in $(find ${DIR} -mindepth 1 -maxdepth 1 -type d)

do

 FILE=$(ls -t $i/*.yaml|head -n 1)

 if [-f ${FILE}]; then

 HOST=$(grep "^ host:" $FILE |cut -c 9-)

 RUN=$(grep "^ time:" $FILE | cut -c 9-)

 STATE=$(grep "^ status:" $FILE | cut -c 11-)

 fi

 echo
"<tr><td>${HOST}</td><td>${RUN}</td><td>${STATE}</td></tr>"

done

cat << EOF

</table>

</body>

</html>

EOF

Taking a look at the code, it's pretty simplistic. First, we set a variable for the
directory to process. We process the current directory if one is not passed.

Then, we output a header for the HTML. We use a bash syntax that lets us read until
a tag to make this easier.

After this, we get on to the meat of the script. We go through each subdirectory in
the directory we're processing and look for the most recent YAML ile. In each of
these iles, we grab the three pieces of information that we're outputting. We use a
simple combination of grep and cut to grab that information, since we're dealing
with text iles.

We then output a line about the host we read from the ile and loop. This should give
an output of one line for each host.

Chapter 4

[79]

Finally, we output some trailing footer information to make a complete HTML ile.

While I am not an HTML whiz, this is a perfectly serviceable output, albeit a bit
plain. The output from our example will look something like the following:

If you had more hosts, we'd expect to see more information there.

There is considerably more information that we can gather from the reports. The
reports contain logs from the runs that were performed, as well as information on all
of the resources contained within the catalog.

A wealth of information on the Version 4 report format can be
found at https://docs.puppetlabs.com/puppet/3/
reference/format_report.html#report-format-4.

Now, let's move on and see how we can scale this to more easily gather information
about our hosts.

PuppetDB and reporting
We briely touched on what PuppetDB was in Chapter 1, Puppet as a Security Tool. It is
a backend database engine that stores information on your Puppet environment.

We can query this information directly to see the current status of a host, get
information on its current resources, and more. Additionally, it contains a complete
set of reports if conigured to do so.

PuppetDB contains a very rich API allowing us to use RESTful API calls via HTTP to
retrieve information.

https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4
https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4

Security Reporting with Puppet

[80]

REST, which is shorthand for Representational State Transfer,
is a method of laying out an API using representations of a
given resource. In this case, the resources will be information
about Puppet. It makes querying and modifying information
using HTTP fairly straightforward.

Before we can play with PuppetDB, we need to install it. Luckily, there's a handy
Puppet module provided by Puppet Labs that can help us.

Go ahead and spin up your machine (refer to Chapter 1, Puppet as a Security Tool or
Chapter 2, Tracking Changes to Objects if you need a refresher), and let's get PuppetDB
installed so that we can explore it.

First, let's get the PuppetDB module installed. To do so, run the following command:

sudo puppet module install puppetlabs-puppetdb

This will install the PuppetDB module, as well as several prerequisites we will need
to run it. These include modules to manage PostgreSQL, and a number of utility
modules. It'll also bring in a module to manage the local irewall. We'll use the same
module in Chapter 7, Network Security and Puppet.

Now, we need to add the module to our manifest, so Puppet will install it (and even
conigure it) for us.

We'll use all of the defaults for a single host installation. since that is suficient for our
local testing. Let's edit our site.pp ile in /etc/puppet/manifests and add lines so
that it looks like the following:

node default {

 include openssh

 include users

 include clamav

 include puppetdb

 include puppetdb::master::config

}

We added the two include lines at the bottom. The irst will install PuppetDB and
all of its prerequisites, such as Java and PostgreSQL. The second will conigure your
Puppet Master to use PuppetDB.

Chapter 4

[81]

Now, let's run Puppet with our usual sudo puppet agent --test command.
It will scroll a ton of stuff on your screen as it synchronizes the types and
providers—copying the needed libraries to the client system. It'll then get to the meat
of installing PuppetDB and coniguring the master. In the end, it should give the
output like the following:

We can notice that we receive a broken pipe error. This is due to the Puppet Master
restarting during our run; hence, it is unavailable to receive the report. If you run
Puppet again, you'll notice that it runs ine. However, if you're still running the user
audit code from the last chapter, the users module tries to delete the PuppetDB
and Postgres users. For now, we'll just remove this manifest by removing the line
from the site.pp ile. Edit /etc/puppet/manifests/site.pp and remove the
include users line, as well as the include clamav line. Removing the clamav line
is necessary because it uses our users module. You can also modify the module to
handle the new users by either adding the user deinition or adding the new users to
the system user's parameter.

We need to make one last change. The PuppetDB module doesn't conigure our master
to store reports in PuppetDB, and we need this to do our work. We'll ix that now.

Edit the /etc/puppet/puppet.conf ile. In this ile, in the [master] section, ind the
line, as follows

reports = store

Security Reporting with Puppet

[82]

Replace that line with the following:

reports = store, puppetdb

Then, restart the puppetmaster service with the following command:

sudo service puppetmaster restart

Once this is done and you run Puppet, it should run normally. In fact, you likely
won't even notice that PuppetDB is there. However, it is there and it's waiting to
assist you.

As was previously mentioned, PuppetDB uses a RESTful API for access. In a
nutshell, that means we'll be making HTTP queries to get the report information.

To get that information, we'll need to use a query API. The query API supports a
large number of endpoints, or URLs available to serve the information, and covering
them all would quickly turn our book into an entire book on reporting, so we'll focus
on speciic ones to get some quick reports.

If you want to explore the APIs more in-depth, the earlier
mentioned Puppet Reporting and Monitoring book is a wonderful
resource. You can also ind information on the query API at
https://docs.puppetlabs.com/puppetdb/2.2/api/
query/v3/query.html.

Let's go ahead and duplicate the information in the basic report in the last section via
PuppetDB to show a basic report. We'll explore some additional endpoints later in
this chapter.

First, we need to get our interesting report into PuppetDB. To do that, we'll simply,
manually remove the clamav package and let Puppet reinstall it. To do so, run the
following commands:

sudo yum -y remove clamav

sudo puppet agent --test

We should go ahead and create a report showing ClamAV being installed. This is
similar to our earlier report.

Now, we'll use the report's endpoint to get information about the reports on a node.
However, we'll want to approach this in a slightly different way than we did earlier.

First, we'll use the node's endpoint to get a list of nodes. We can do this on the
command line using curl, as follows:

curl -Gs 'http://localhost:8080/v3/nodes'

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html
https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

Chapter 4

[83]

This will give the output similar to the following:

[{

 "name" : "puppet.book.local",

 "deactivated" : null,

 "catalog_timestamp" : "2014-09-08T02:31:52.988Z",

 "facts_timestamp" : "2014-09-08T02:31:45.760Z",

 "report_timestamp" : "2014-09-08T02:32:17.916Z"

}]

This output is in JSON. It's a bit harder to parse in bash, but we can use a helper
library to assist us. This is present in EPEL, so we can install it as follows:

sudo yum -y install jq

We can then use the jq program to process this JSON output in bash.

Why all this bash scripting?

In reality, you wouldn't likely use bash to do this work. While it's
possible using tools, such as jq, we'd be better served with a more
fully featured language. I have used bash here, since it's something
most Linux admins will know offhand, and since the previous
example is bash. There even exists helper libraries in languages,
such as Ruby and Python to assist you with these reporting queries.

If we pipe the previous output to jq with a specially formatted query string, we can
get the information we're after. The command is as follows:

curl -Gs 'http://localhost:8080/v3/nodes' |jq -r '.[].name'

The jq command will return the name tag of each of the elements of the array. This
is the list of hostnames we care about.

Example – getting recent reports
For each hostname, we need to get the most recent report. To do this, we'll use the
report's endpoint in PuppetDB and restrict it to the node we care about. This is a
bit more complicated as a curl command, because we need to ilter the data we are
querying to just a single node.

We'll start by statically listing our host, and then we'll build the pieces into a script.

Security Reporting with Puppet

[84]

The command to do this is a doozy. We'll run the command and then break it into
usable chunks:

curl -Gs 'http://localhost:8080/v3/reports' --data-urlencode 'order-
by=[{"field": "end-time", "order": "desc"}]' --data-urlencode
'query=["=", "certname", "puppet.book.local"]' --data-urlencode
'limit=1'

If your output is a blank set ([]), make sure you're reporting
to PuppetDB, and that you've completed a run. See the previous
section for details.

The preceding command should be on one single line.

We use a handful of PuppetDB arguments here. We pass these to curl with -data-
urlencode and curl turns them into the POST or GET arguments, as needed. The irst
one, order-by, lets us order our output. In this case, we order by the end time of the
run in a descending order.

The second argument is a query argument. There exists a very powerful set of operators
available for use in the PuppetDB query language. A complete document explaining the
syntax can be found at https://docs.puppetlabs.com/puppetdb/2.2/api/query/
v3/query.html. In this case, what we're after is quite simple. We want the reports of a
given host. In this case, our host would be, puppet.book.local.

The inal argument is a limit. This simply limits the number of results we get back. In
this case, we're limiting to 1.

Together, this will return the output like the following:

[{
 "hash" : "0081fb5b58c05c1a24bfc4893f035f6f6ccd9ad3",
 "puppet-version" : "3.7.0",
 "receive-time" : "2014-09-08T02:51:40.951Z",
 "report-format" : 4,
 "start-time" : "2014-09-08T02:51:18.863Z",
 "end-time" : "2014-09-08T02:51:38.248Z",
 "transaction-uuid" : "cb40f17e-dd9a-4246-991e-29390d2cc663",
 "configuration-version" : "1410143505",
 "certname" : "puppet.book.local"
}]

This returns a good amount of information on the run. Already, you can see that
we have the start and end time of the run. As a matter of fact, the only data we're
missing is the run status.

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html
https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

Chapter 4

[85]

As it would turn out, PuppetDB doesn't actually store that status like a stored
report does. There is currently a feature request in it to add this information to the
PuppetDB backend. You can track that request at https://tickets.puppetlabs.
com/browse/PDB-36.

PuppetDB instead stores the status of each individual event that happened on the
node. We can use this information to display an even more useful summary in our
example report.

Example – getting event counts
We'll now take a look at how we can use the individual event data to create reporting
on aggregate event counts.

To do this, we'll use one inal endpoint, the event-counts endpoint. This endpoint, as
you might imagine, provides information on event counts from a run. We'll query it
based on the hash of the report returned earlier. This will give us information on an
individual run.

We need to summarize these events by some value. In this case, we can use the node
certname since we're querying an individual report.

The command to get the information is as follows:

curl -Gs 'http://localhost:8080/v3/event-counts' --data-urlencode
'query=["=", "report", "0081fb5b58c05c1a24bfc4893f035f6f6ccd9ad3"]' -
-data-urlencode 'summarize-by=certname'

Once again, that is all on one line and be sure to use the hash of the report you ran in
the previous section, or you will get no data.

It should return the results, as follows:

[{

 "subject" : {

 "title" : "puppet.book.local"

 },

 "subject-type" : "certname",

 "failures" : 0,

 "successes" : 1,

 "noops" : 0,

 "skips" : 0

}]

https://tickets.puppetlabs.com/browse/PDB-36
https://tickets.puppetlabs.com/browse/PDB-36

Security Reporting with Puppet

[86]

However, there's our information, even containing information on skipped resources
(resources are skipped if a resource it depends on fails) and noop resources. If there was
no report, or if there were no changed resources, you would receive an empty hash.

Example – a simple PuppetDB dashboard
We can use the information obtained to this point, in order to build a script such as
our earlier one. The script will be somewhat more complicated but can report on
more data. In the simplest case here, we'll report on the number of successful and
failed resources, or simply return unchanged if no resources changed. If there are no
changed resources, the preceding event counts will return null.

The script to do this is as follows:

#!/bin/bash

cat << EOF

<!doctype html>

<html lang="en">

<head>

<title>Puppet Run Report</title>

</head>

<body>

<table border=1>

<tr><th>Hostname</th><th>Last Run</th><th>Status</th></tr>

EOF

HOSTS=$(curl -Gs 'http://localhost:8080/v3/nodes' |jq –r \
'.[].name')

for H in ${HOSTS}

do

 REPINFO=$(curl -Gs 'http://localhost:8080/v3/reports' \

--data-urlencode 'order-by=[{"field": "end-time", "order": \
"desc"}]' --data-urlencode "query=[\"=\", \"certname\", \

\"${H}\"]" --data-urlencode 'limit=1')

 REPHASH=$(echo ${REPINFO}|jq -r '.[0].hash')

 START=$(echo ${REPINFO}|jq -r '.[0]|.["start-time"]')

 ECOUNT=$(curl -Gs 'http://localhost:8080/v3/event-counts' \

--data-urlencode "query=[\"=\", \"report\", \"${REPHASH}\"]" \

--data-urlencode 'summarize-by=certname')

 ELEN=$(echo ${ECOUNT}|jq '.|length')

 if [$ELEN -eq 0]; then

 STATUS="unchanged"

Chapter 4

[87]

 else

 SUC=$(echo ${ECOUNT}|jq '.[0].successes')

 FAIL=$(echo ${ECOUNT}|jq '.[0].failures')

 STATUS="${SUC} successes, ${FAIL} failures"

 fi

 echo "<tr><td>${h}</td><td>${START}</td><td>${STATUS}</td></tr>"

done

cat << EOF

</table>

</body>

</html>

EOF

I've noted the wrapped lines with \ at the end.

As you can see, the shell of the script is very similar to what we found earlier.
However, the main loop has changed. In this case, we build a list of hosts by
querying the node's endpoint. We then take this list and gather information about
each using irst, the report's endpoint and then, the event-count's endpoint. We use
some jq magic to format it, and then inally we output the information line.

The output to this command, when run, is very similar to the earlier output, with
the addition of the number of successful or failed resources when ran. The output is
shown in the following screenshot:

As you can see, PuppetDB provides a very powerful base to report from. We've not
even scratched the surface of what's possible. We'll take a look at some other things
we can do next.

Security Reporting with Puppet

[88]

Reporting for compliance
When we consider compliance, there are a number of common areas we can report
on. To do the actual reporting, we can use whatever method we choose. This could
be one of the previously discussed ways, such as processing the stored reports or
using PuppetDB.

We already looked at the irst big piece in showing compliance. That is,
demonstrating when the Puppet run last happened on each of our hosts. We have
shown an easy way to accomplish this with both PuppetDB and stored reports,
earlier in this chapter. The information on the last run status exists in all of the report
formats and can easily be reported on. Setting up alerts on that data is also easily
done using concepts, shown earlier wrapped up with some alerting logic.

However, we've not approached reporting on the auditing data. Luckily, reporting
on that is not much more dificult.

The report format contains a wealth of information on the run, as well as data on the
facts present on a host that can be used to report on the current state of the system.
It can also be parsed to show what is changing and when. When put together with
the manifest documentation, it can produce a complete history of all the changes that
Puppet made to your host over time.

We'll use an example of auditing the openssl package and using it to report on the
heartbleed-vulnerable version of openssl, as our compliance example here.

More information on heartbleed can be found at https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160.

Example – inding heartbleed-vulnerable
systems
Heartbleed became a big issue in mid-2014. It was discovered that certain default
versions of openssl were shipped in such a way that they left a remote vulnerability
open. Using this vulnerability, one could potentially discover the private SSL key,
along with other memory data.

Sysadmins scrambled to patch their systems and ensure that heartbleed was no
longer present. For those using Puppet, this became a case of using an ensure value
on the resource, as well as some dependency logic to ensure that it was updated, and
applications using openssl were restarted. We'll show how to use a noop resource to
report on the currently installed version of openssl. One can then extend this to look
for the heartbleed vulnerability.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

Chapter 4

[89]

There are a couple of ways in which we can approach this. One way is to expose the
openssl version as a fact. For certain very critical items, we may go down this route.
However, if you are managing many packages in this manner, it quickly becomes
overwhelming to try to maintain facts for each package. It is, however, fairly easy to
report on this data if these facts are created using the PuppetDB fact's endpoint.

Another methodology is to use the audit meta-parameter. This makes sense since
what we are essentially doing is auditing the version of openssl installed. This
does, however, depend on the deprecated audit meta-parameter, so let's examine
one last method.

The irst step in doing this, is to create our noop resource. To do that, we will create
a noop resource set to pin openssl to the latest version. In this case, we're asserting
that we always want openssl to be the latest, but we want to know if it's going to
change, rather than Puppet updating it.

This example will somewhat follow the package auditing example in Chapter 2,
Tracking Changes to Objects. I'll abbreviate the example here and you can refer to it if
you need more in-depth instructions.

First, let's go ahead and set up the openssl package for audit, with ensure =>
'latest'. To do so, we'll edit /etc/puppet/manifests/site.pp and add the
following command to our default node deinition:

 package { 'openssl':

 ensure => 'latest',

 noop => 'true',

 }

This should run without any issues, auditing the irst version installed. The output
when running Puppet should be similar to the following screenshot:

Security Reporting with Puppet

[90]

As you can see, on our test box, we have an update available but not installed.

To report on this data, we'll use PuppetDB. We'll explore the endpoint required to
get the information, as well as the commands needed to do it. However, to save
space, we won't show the entire script. The script to report on this data will be found
with the book source for reference.

The endpoint we'll use to do this is the events endpoint. The resources endpoint
contains information about the resource, but it does not contain information about
its current state. If you did this via stored reports, or your own report processor, you
could retrieve the information needed to do it from the Puppet::Resource::Status
class, and look for, and examine, the child events.

We can query the events endpoint for the information required with the
following command:

curl -sG 'http://localhost:8080/v3/events' --data-urlencode
'query=["and", ["=", "certname", "puppet.book.local"], ["=",
"resource-title", "openssl"]]'

We'll get the output similar to the following:

[{

 "containment-path" : ["Stage[main]", "Main", "Node[default]",
"Package[openssl]"],

 "new-value" : "latest",

 "containing-class" : "Main",

 "report-receive-time" : "2014-09-08T23:27:32.576Z",

 "report" : "05b824e576a703dc76b34670cead9e3e3d8b8070",

 "resource-title" : "openssl",

 "property" : "ensure",

 "file" : "/etc/puppet/manifests/site.pp",

 "old-value" : "1.0.1e-15.el6",

 "run-start-time" : "2014-09-08T23:27:08.314Z",

 "line" : 9,

 "status" : "noop",

 "run-end-time" : "2014-09-08T23:27:29.863Z",

 "resource-type" : "Package",

 "timestamp" : "2014-09-08T23:27:29.973Z",

 "configuration-version" : "1410218830",

 "certname" : "puppet.book.local",

 "message" : "current_value 1.0.1e-15.el6, should be 0:1.0.1e-
16.el6_5.15 (noop)"

}]

Chapter 4

[91]

Notice right away that we see the current version, and the message tells us the
version we expect. We can use our jq command to spit out the current version.
The command to do that would be as follows:

jq -r '.[0] | .["old-value"]'

By piping the irst curl value to it, we get the output of just the version. This could
be used in whatever reporting we're using.

It's worth noting, however, that the preceding command will return all of the events
for the openssl resource title. In reality, we'd need to include this in a loop like our
former script to ensure that we only look at the most recent report for each box.
Additionally, if openssl is the latest version, the event would be missing. In that
case, much like we did with the unchanged resources in the earlier PuppetDB script,
we'd just need to return that we have the latest version of OpenSSL installed.

The inal step would be to look for vulnerable versions. Looking at the CentOS
advisory at http://lists.centos.org/pipermail/centos-announce/2014-
April/020249.html, we can see that versions before 1.0.1e-16 are vulnerable. As you
can see, our system is indeed vulnerable. We can add the vulnerability status to our
report if we knew the vulnerable versions on the various operating systems we run.

With some creativity and the PuppetDB API guide, we can produce a rich set of
reports on our systems.

Summary
Reporting is something that seems to constantly be a work in progress. We can
always make our reports more comprehensive and thorough. In much the same way,
the PuppetDB library and the Puppet reporting engine itself has seen a large amount
of progress recently.

An entire book could be dedicated to the topic of reporting with Puppet (in fact, as
mentioned earlier, one has been!). We've only touched on the beginnings of building
a rich reporting environment to get you started with your reporting needs.

Using either stored reports or PuppetDB, we can fairly quickly build in-depth
reports on our environment and the resources in them. We can do this in any
number of languages.

There exists a good number of available off-the-shelf tools that can also be installed
and help us with this. Puppetboard is a great example of one that can provide a lot of
quick insights into your Puppet environment from a security standpoint. We'll touch
briely on Puppetboard in Appendix, Going Forward.

http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html
http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html

Security Reporting with Puppet

[92]

We've now spent time exploring basic reporting on reports using the store endpoint
and some simple shell scripting. We also expanded on that knowledge to handle
reporting from PuppetDB, including a good number of examples useful to build a
very quick reporting dashboard. Using this information, we're armed to start using
the data Puppet provides for reporting purposes.

Now that we've got the basics behind us in setting up Puppet for security and
reporting on the data, we'll spend some time in the next chapter talking about
how to secure Puppet itself before moving on to more advanced topics.

[93]

Securing Puppet
As your Puppet Master is a tool that conigures your systems, ensuring that it
is secure is very important. Puppet can change any facet of the systems under
management. Since it can cause great damage to systems as well as create numerous
security issues if compromised, it is very important to ensure that your Puppet
Master is properly secured. For instance, if your Puppet Master is compromised, it
is easy to add a user to every system under management, add that user to sudoers,
and reconigure SSH to allow the user to log in.

Luckily, Puppet has a fairly secure, out-of-the-box coniguration. However, as your
environment grows and you use more advanced features, you'd want to review how
to secure your Puppet environment.

In this chapter, we'll explore the following aspects of securing your Puppet installation:

• Puppet security related configuration files

• Puppet SSL configuration

• Autosigning Puppet client certificates

At the end of this chapter, you should have a good understanding of the various
Puppet coniguration settings that you will require to secure Puppet. Additionally,
you should have a good grasp of how Puppet uses SSL and autosigning.

Puppet security related coniguration
Present in the Puppet core are several coniguration iles that control the security and
access control of the base Puppet Master. Over time, these coniguration iles have
evolved to add more functionality and more ine-grained access controls. In addition
to the main Puppet coniguration ile, puppet.conf, the primary coniguration iles
we'll examine are the iles related to the authentication, ile server, and autosigning
conigurations.

Securing Puppet

[94]

We'll cover autosigning later on in this chapter. For now, let's look at the other
authentication and ile server conigurations.

The auth.conf ile
The auth.conf coniguration ile is the main ile controlling access to the Puppet
API resources. Internally, it is called the rest_authconfig ile because it controls
access to the RESTful API that the various Puppet commands utilize to perform
their functions.

Using this coniguration ile, you can lock down access to various endpoints. The
default coniguration settings used by Puppet are suficient in most cases. These
defaults can be found at https://docs.puppetlabs.com/guides/rest_auth_conf.
html#default-acls if you wish to review them. If you have special security needs,
such as the need to allow off-host systems to use a subsystem, you may consider
modifying the settings in this ile to handle them. We'll cover an example of one such
situation at the end of this section.

The auth coniguration ile is made up of a series of stanzas that describe paths. Here
is a brief example of one of these stanzas:

path ~ ^/catalog/([^/]+)$

method find

allow $1

The paths found in these coniguration sections correspond to URLs in the Puppet
API. The options available in each stanza are as follows:

Option Description

path This is required. It contains the path component of the URL in question.
When prefixed with ~, it is assumed to be a regular expression.

Environment This is an optional list of environments that the path refers to.

method This is an optional method to which the path applies. It can be any one
of find, search, save, or destroy.

Auth This defines whether authentication is required. It can be set to yes
to indicate that authentication is required, no to forbid authenticated
requests, or any to allow both authenticated and non-authenticated
requests.

allow This shows a comma-separated list of hosts allowing regular
expressions. Capture arguments are allowed for regular expressions
allowing very complex directives.

allow_ip New in version 3.0, this directive permits IP addresses. They can be
specified as whole IPs, IPs with asterisks in them, or CIDR ranges.

https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls
https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls

Chapter 5

[95]

Puppet maintains a default internal set of authentication parameters that are utilized
if there is no entry with the same path. In the case of a speciic entry with the same
path as a default entry, the default entry is not applied.

More information on the auth.conf ile and the
default permissions can be found at https://docs.
puppetlabs.com/guides/rest_auth_conf.html.

Additionally, the ile is consulted in a top-down manner. This means that typically,
you would put the most speciic entries at the top, while leaving the more general
entries lower in the ile.

Example – Puppet authentication
Now let's examine an example of limiting access using the auth.conf ile. However,
to do this, we irst need to make some changes to our Vagrant environment, and then
we'll move on to the example.

Adding our second Vagrant host
Before we can undertake the examples in this chapter, we need to extend our Vagrant
setup to add a second host. In doing this, we'll have a host to test some of our
coniguration items from so that we can see an allowed case and a disallowed case.

One of the challenges of doing that is getting the resolution of the Puppet-related
hostnames right. There are a handful of Puppet-speciic Vagrant solutions, such as
Beaker, that are used for speciic tasks. Beaker is worth mentioning because of its
value in testing, but we will not be using it in any of our examples.

Beaker is an acceptance test framework that can conigure virtual Vagrant machines
using speciications. This can include installing speciic versions of Ruby or
Puppet. It can also be used to generically provision a set of Vagrant machines using
somewhat simpliied coniguration syntax.

If you get into testing the modules you write (and you should),
you should really look at using Beaker. More information on
Beaker can be found on its website at https://github.com/
puppetlabs/beaker/.

Beaker is a bit heavy for our usage. We're going to stick to a smaller subset of the
features we require for our use, and use a Vagrant plugin. The plugin we're going
to use is called hostmanager. Its website can be found at https://github.com/
smdahlen/vagrant-hostmanager.

https://docs.puppetlabs.com/guides/rest_auth_conf.html
https://docs.puppetlabs.com/guides/rest_auth_conf.html
https://github.com/puppetlabs/beaker/
https://github.com/puppetlabs/beaker/
https://github.com/smdahlen/vagrant-hostmanager
https://github.com/smdahlen/vagrant-hostmanager

Securing Puppet

[96]

Working with hostmanager
The hostmanager plugin lets us add some logic to the Vagrantfile that results in
the /etc/hosts ile being written with the IPs of all the other machines. We'll use
this so that our Puppet agents can ind the master:

1. To use the plugin, we first need to install it. This can be done with the
following command:

vagrant plugin install vagrant-hostmanager

This will make the hostmanager plugin available for our use.

Are plugins safe?

We use the hostmaster plugin for Vagrant here for ease of
use. For a development environment, this is fine. However,
for a production environment, it is best to have a properly
functioning DNS that will eliminate the need for a plugin
such as hostmanager.

2. Next, we need to add some default configuration options to our
Vagrantfile. If you're following along with us, you'll note that we're
starting from the base files again, as opposed to starting from where we left
off in Chapter 4, Security Reporting with Puppet. You can use the VM covered
in Chapter 4, Security Reporting with Puppet but that's not required, as this
example does not build upon it. If you're using the source included with the
book, the Vagrantfile already has the required modifications.

3. In the Vagrantfile, we'll add some options to tell hostmanager to run, and
give it some necessary instructions. At the top of the file, right below the
Vagrant.configure line, add the following:

 config.hostmanager.enabled = true

 config.hostmanager.ignore_private_ip = false

 config.hostmanager.include_offline = true

This enables the hostmanager plugin. It also includes the private IPs of our
VMs and the IPs of any offline VMs. These are useful options for our testing
setup as they allow us to ping offline hosts, and so on.

4. Now, under the master configuration section, add the following:

 master.hostmanager.aliases = %w(puppet)

Chapter 5

[97]

This will add an alias for Puppet with no domain. This may not be necessary
in your environment, but depending on how your local DNS is configured,
your hosts may end up utilizing the wrong host as the Puppet Master. We
want them to use our local Vagrant master, and it's possible that they hit our
production master if we do not make this change.

Now that this is complete, we'll add our second VM. If we need to add a
third VM, it will look very similar to this.

5. Below the end line of the master configuration, we need to add a section for
our new agentone VM. Add the following lines:

 config.vm.define :agentone do |ao|

 ao.vm.box = "centos65-x64-puppet"

 ao.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet.box"

 ao.vm.hostname = "agentone.book.local"

 ao.vm.network "private_network", ip: "10.78.78.50",
netmask: "255.255.255.0"

 ao.vm.provision "shell", inline: "yum –y update puppet"

 end

The included source has an additional line in the file we just
saw. That line is meant for a later example. You can safely
delete it for now.

The box URL and the network line should be on one line. This is very similar to the
existing master coniguration. The only difference is we only currently have the shell
provisioner, which will use the shell to update Puppet since we're not setting up the
master. We may need to add another provisioner later, but for now, this is suficient
for our use. The complete ile, including the additions we just made, is shown here
for reference:

Vagrant.configure(2) do |config|

 config.hostmanager.enabled = true

 config.hostmanager.ignore_private_ip = false

 config.hostmanager.include_offline = true

 config.vm.define :puppetmaster do |master|

 master.vm.box = "centos65-x64-puppet"

 master.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet

.box"

 master.vm.hostname = "puppet.book.local"

 master.vm.network "private_network", ip: "10.78.78.30",
netmask: "255.255.255.0"

Securing Puppet

[98]

 master.hostmanager.aliases = %w(puppet)

 master.vm.provision "shell", inline: "yum update puppet -y"

 master.vm.provision "puppet" do |puppet|

 puppet.manifests_path = "master_manifests"

 puppet.manifest_file = "init.pp"

 end

 end

 config.vm.define :agentone do |ao|

 ao.vm.box = "centos65-x64-puppet"

 ao.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet.box"

 ao.vm.hostname = "agentone.book.local"

 ao.vm.network "private_network", ip: "10.78.78.50", netmask:
"255.255.255.0"

 ao.vm.provision "shell", inline: "yum –y update puppet"

 end

As you can see here, the URL and the network lines should not wrap.

Now that this is complete, we can go ahead and begin the example.

The ileserver.conf ile
The second coniguration ile we'll review is fileserver.conf. This ile contains the
coniguration for Puppet's built-in ile server.

Much like the auth.conf ile, in most cases, the default coniguration is suficient. In
this section, we'll cover what the options currently are, what the ile used to do, and
the occasions when we might want to move away from the default coniguration.

By default, Puppet will serve iles under the /files API endpoint to clients. This
also handles serving iles that are contained within the files directory of individual
modules. These iles are accessed with the puppet:///modules/modulename/
filename URL within Puppet.

The fileserver.conf ile allows you to create additional ile "mount points". These
mount points can serve other directories on the ilesystem to Puppet clients. Each
mount point can have individual policies and authentication parameters associated
with it. This allows you to create, for instance, an area for secured iles that can only
be accessed by a single host. It also lets you create a set of directories that each host
can access, but other hosts cannot access the directory.

Chapter 5

[99]

Much like the auth.conf ile before it, the fileserver.conf ile is made up of a
series of stanzas. These iles are similar in nature to ini iles on a Windows machine.
Here is an example of one of these entries:

[ourfiles]

 path /path/to/ourfiles

 allow *

The following is a table of the possible values, for reference:

Option Description

[mountpoint] This is the name of the file mount. This is the way you reference
files in this location. Replace mountpoint with the actual mount
name you want.

path This is the path to the file on the Puppet Master filesystem.

allow or deny This denotes allowing or denying access to the hosts. It can include
asterisks. In almost all cases, you should use allow * and use
the auth.conf file to manage access. See the notes that follow for
more details on this.

Individual mount point entries start with a header like [secretfiles]. In this case,
secretfiles is the name of our mount point, and it can be accessed via our Puppet
module by specifying the source as puppet: ///secretfiles/<file>.

Under each mount point, you must specify a path using the path directive. This is the
path to the iles on the local ilesystem. This can allow you to move iles out of your
primary version control for security-related purposes. For instance, you can move
private SSL keys to a ile share that only the hosts that need to use the keys can access.

The inal directive is an authorization directive. It can be either allow or deny. At the
irst glance, this seems like a way to limit what can access the iles, and indeed, this
used to be the case. However, in recent versions of Puppet, it is recommended that
you use the auth.conf ile to limit access, and therefore, simply use allow * in this
ile. We'll explore how to limit access via the auth.conf ile in the next example.

Example – adding a restricted ile mount
In this example, we'll add a ile mount that only allows access from the agentone host.
This is a common request for things such as keys that you don't want compromised:

1. We'll be working on our Vagrant Puppet Master here, so use vagrant up
and vagrant ssh to connect to it.

Securing Puppet

[100]

2. To begin, let's edit the /etc/puppet/fileserver.conf file on the Puppet
Master file to add support for our additional file server mount. We'll store
the data in /srv/secret, so let's start by creating a directory structure
there. We'll also store some secret data in the directory. To do so, issue the
following commands:

sudo mkdir -p /srv/secret/agentone.book.local

echo "sup3r s3kr37" |sudo tee
/srv/secret/agentone.book.local/secret

sudo chown puppet /srv/secret/agentone.book.local/secret

3. Once that's done, we'll configure our new file server. Go ahead and edit
the /etc/puppet/fileserver.conf file. In it, you will find a bunch of
documentation and comments. At the end of the file, add this:

[agentone]

 path /srv/secret/agentone.book.local

 allow *

This will create the file server mount and allow anything. Remember that
we're going to use auth.conf to limit access to the host resources.

4. With that, we should configure auth.conf. When you edit /etc/puppet/
auth.conf, you will notice that it has all the default authentication permissions.

In this case, we need to make sure we insert our new data into the correct
place in the file. We'll insert it right before the file stanza, which should be
near line 88.

Locate the section that looks like this:

Allow all nodes to access all file services; this is
necessary for

pluginsync, file serving from modules, and file serving
from custom

mount points (see fileserver.conf). Note that the `/file`
prefix matches

requests to both the file_metadata and file_content
paths. See "Examples"

above if you need more granular access control for custom
mount points.

path /file

allow *

We'll insert our changes above it. The changes are as follows:

path ~ ^/file_(metadata|content)s?/agentone/

allow agentone.book.local

Chapter 5

[101]

5. This should allow only agentone to access that resource. Next, we need to
restart the Puppet service:

sudo service puppetmaster restart

6. Finally comes the fun part. Let's go ahead and create a node definition
referencing the file, and see what happens.

We'll do this in the site.pp file since this is simple and it's a test. As a reminder,
typically you'd use a module for all of the manifest code. However, for our
testing purposes, we'll use site.pp to keep the length of this book reasonable.

Edit /etc/puppet/manifests/site.pp and make it look as follows:

node default {
 file { '/tmp/secret':
 ensure => file,
 source => 'puppet:///agentone/secret',
 }
}

7. Save it and run Puppet on agentone and the master. First, we'll go for
agentone. Run Puppet there with sudo puppet agent -test. First, we'll
need to sign the certificate. We'll cover signing in more detail in the next
section, so I'll just explain it in brief here.

The first time you run the agent on agentone, you'll receive a message that
indicates that the certificate was created and waitforcert is disabled. This
means that the master has a certificate request for the agent.

8. We need to process the certificate request on the master. As I said before,
we'll cover this in more detail in the next section. For now, let's just go ahead
and sign it with the following command on the master:

sudo puppet cert sign agentone.book.local

Now that it's done, we should be able to rerun the agent on agentone, and
you should see the output as shown in the following screenshot:

As you can see, this has successfully created the file in question.

Securing Puppet

[102]

9. We'll also run this on the Puppet Master to see how it behaves there. Once
you do so, you should see the following output:

You can see here that we're not allowed to access the resource.

This example shows some of the power that auth.conf can provide. With some
work, you can extend this pattern to allow a host to only access its own resources, for
instance. You can also allow access from a management host to some resources for
monitoring or reporting.

Let's move on and explore how Puppet uses SSL for encryption and authentication.

SSL and Puppet
SSL is a core component of Puppet. The Puppet Master uses SSL certiicates to
authenticate client systems. Proper management of SSL is vitally important to
ensure that your Puppet system is secure and behaves properly.

This section assumes you have some knowledge about the
working of SSL. If you require a primer on SSL, a good reference is
https://info.ssl.com/ssl-made-easy-for-beginners/.

By default, the Puppet Master will act as an SSL Certiicate Authority (CA). As
part of the SSL CA, the master will accept certiicate requests from new agents.
You can then choose whether to sign the certiicate on the master. There is also a
methodology to enable autosigning. We'll cover this in the next section.

https://info.ssl.com/ssl-made-easy-for-beginners/

Chapter 5

[103]

Puppet can also support use of an external certiicate authority. You might want to
do this if you already have a certiicate authority conigured to allow you to utilize
existing certiicates. This avoids the overhead of needing two separate certiicate
authorities. At the end of this section, we will cover some more information about
external CAs and the conigurations supported for them.

Signing certiicates
Puppet uses the cert face command (as a reminder, face is a Puppet command)
to manage signing and revoking of certiicates. By default, when a node starts up
for the irst time and does not have a certiicate, it will create a Certiicate Signing
Request (CSR). A CSR is the agent's way of registering itself with the master and
requesting access to resources. We'll demonstrate this now.

If you did the last example, issue this command to clean up, and we'll start over:

vagrant destroy -f

Once the cleanup is complete, restart the Vagrant hosts with the following command:

vagrant up

Once they boot, use vagrant ssh agentone to connect to the agent guest. Once
there, we'll run Puppet in our normal way, using sudo puppet agent -test.

When a host is new and Puppet is run for the irst time, you'll see output like this:

As you can see, we created an SSL certiicate request, and we sent it to the master.
We also exited because, by default, we will not wait for the certiicate to be signed.

Securing Puppet

[104]

On the master, we should now be able to see the certiicate if we check with the
Puppet cert face command. Open a new terminal, and connect to the master with
vagrant ssh puppetmaster. Once logged in, we'll issue this command:

sudo puppet cert list

We should see an output like what is shown in the following screenshot:

As you can see, the certiicate request is now present on the master. The next step is
to sign it. The command to do so is as follows:

sudo puppet cert sign agentone.book.local

The Puppet Master will return some information indicating that the certiicate is
signed and the request has been removed.

Once this is done, go ahead and run the agent on the agentone machine again. You
should now see the normal output. In this case, since our site.pp ile is empty, we
won't have any output other than the run being successful. If you happen to still be
using the example from Chapter 4, Security Reporting with Puppet, you should see it
apply all of the same manifests you have in your default node to the machine.

Revoking certiicates
Now that you know how to sign a certiicate, we may want to ask for the opposite.
What happens if we need to get rid of a host? Perhaps we've decommissioned it,
or perhaps the host is doing bad things and we need to lock it out of the Puppet
infrastructure. In the SSL world, we do this by revoking the certiicate.

In the Puppet world, we have two operations that can be used to do this. The irst is
the revoke operation, and the second is the clean operation.

Chapter 5

[105]

If a host has been compromised or is still around but you do not want it checking
into Puppet, the proper thing to do is to revoke its certiicate. To do this for our
example host, we issue the following command:

sudo puppet cert revoke agentone.book.local

We'll do that, and then we'll go ahead and rerun the Puppet agent on agentone. The
output on the master gives only the serial number of the revoked certiicate. Once
this is done, we actually have to restart the master. To do that, we run the following
on our master node:

sudo service puppetmaster restart

When we rerun the agent, the output looks signiicantly worse, as you can see here:

The agent sees that its certiicate is revoked, and it does not run the catalog. It also
does not try to request a new certiicate.

Now, we'll use the clean command to remove the certiicate. The old certiicate is
still in the Certiicate Revocation List (CRL), however, so it's dead forever. We'll
have to tell the master to remove the certiicate from itself, and then force the agent
to request a new certiicate. It's a common mistake to try to issue a new certiicate
request before the old certiicate is removed from the master, and this will fail.

Securing Puppet

[106]

On the master, issue the following command:

sudo puppet cert clean agentone.book.local

On the agent, go ahead and rerun Puppet. You will notice that the agent is still
showing errors about the certiicate being revoked. At this point, we need to
manually remove the local certiicate so that the agent requests a new certiicate. We
can do that by removing the SSL directory on the client with the following command:

sudo rm /var/lib/puppet/ssl -rf

Once this is complete, it should behave as if it were a new node, and we should be
permitted to sign a certiicate for the host again.

Care needs to be taken when doing this on the master. It is
possible that you accidentally remove all the downstream
certiicates. Though it's also possible to recover from this, it's not
fun! I speak from experience as I have forgotten more than once
that puppet cert clean -all doesn't only do requests.

Alternative SSL conigurations
In addition to the normal mode of operation in which the Puppet Master serves
as the CA, it also supports a mode where an external certiicate authority is used.
The setup of this particular mode is out of the scope of this book, as it requires an
external web server to proxy requests. We will, however, discuss the various modes
that can be utilized for SSL coniguration.

When the external CA is set up, the external web server, usually Apache or Nginx,
authenticates the client with the SSL certiicate and uses certain headers in the
request to indicate to Puppet that the client is authenticated, and it also speciies
what the hostname of the client is.

In this case, you also have to manage getting the certiicates on the client and the
master manually. Puppet will not provide certiicates in the external CA mode.

There are three possible modes to use in this setup. We'll cover them in increasing
order of complexity.

The irst method is simply an external root CA. This CA handles the issuing of all
the certiicates, that is, for both the master and the agents. In this mode, you copy the
CA certs and the certiicates to both the agent and the master. You then conigure the
web server on the master to use the CA certiicate. No changes are required on the
agent in this mode.

Chapter 5

[107]

In the second and third methods, we introduce intermediate certiicate authorities.
These have their certiicates signed by the root, and they issue the downstream
certiicates for the master and agents. In the second scenario, we use one
intermediate authority to serve both the master and the agent. In the third scenario,
which is the most complex scenario, we use a separate intermediate authority for the
masters and the agents.

The server-side setup in this case is nearly identical. The only change is that you have
to give the master the certiicate bundle. On the client side, you also need to provide
the certiicate bundle consisting of the root and intermediate CA certiicates.

As was mentioned earlier, coniguring Puppet in this manner
is a very advanced operation. If you wish to read more about
it or attempt it, more information can be found on the Puppet
site at https://docs.puppetlabs.com/puppet/3.7/
reference/config_ssl_external_ca.html.

Autosigning certiicates
As your Puppet environment grows, manually signing certiicates can become
an issue. This is particularly true in cases where machines are being created
automatically due to scaling, or because a cluster is expanding.

Puppet contains two primary methods to assist with this. They are basic autosign
and policy-based autosign. In basic autosign, we give a list of hosts that we will sign
certiicates for. With policy-based autosign, we call an external script that allows
us to determine whether a given certiicate request is signed. We'll now cover these
types of autosign methodologies and their potential use cases.

There exists a third type of autosign, which is used to simply tell the master to sign
all certiicates. It is known as naïve autosign. This should not be used except in
certain test cases, so here, we'll cover only how to enable it. Besides, we're focusing
on security, and in most cases, you can use at least basic autosign.

In these examples, we're going to need two agent machines to successfully
demonstrate some concepts. To do so, we'll add a construct to our Vagrantfile,
like this:

 config.vm.define :agenttwo do |at|

 at.vm.box = "centos65-x64-puppet"

 at.vm.box_url = "http://puppet-vagrant-
boxes.puppetlabs.com/centos-65-x64-virtualbox-puppet.box"

 at.vm.hostname = "agenttwo.book.local"

https://docs.puppetlabs.com/puppet/3.7/reference/config_ssl_external_ca.html
https://docs.puppetlabs.com/puppet/3.7/reference/config_ssl_external_ca.html

Securing Puppet

[108]

 at.vm.network "private_network", ip: "10.78.78.51", netmask:
"255.255.255.0"

 at.vm.provision "shell", inline: "yum update puppet -y"

 end

As before, do not wrap the box URL or the network type. If you need more assistance
with this, refer back to the earlier example on the Puppet coniguration. It has more
details on how this should work.

Go ahead! Destroy and recreate your environment so that we can start afresh. To do
so, issue the following commands:

vagrant destroy -f

vagrant up

This will reset the environment and allow us to start over, with fresh machines to
practice autosigning.

Naïve autosign
Enabling naïve autosign is very simple. To do so, you edit the /etc/puppet/
puppet.conf ile and add the following to its master section:

autosign = true

Doing this will cause Puppet to automatically sign any certiicate requests it receives.

As noted before, this has very signiicant security implications and should not be
done without speciic reasons to do so. It's usually only used in test environments to
enable automated testing without the need to do more complex signing.

Basic autosign
Basic autosign has been around for a long time in the Puppet world. For a long
time, it was the only real method to automatically sign certiicates. This resulted
in a number of third-party solutions to do this that policy-based autosign aims to
supplement or replace.

To perform basic autosign, you need to conigure the autosign ile. By default,
Puppet runs with autosign = $confdir/autosign.conf, which is /etc/
puppet/autosign.conf on Red Hat based operating systems. This ile should
not be executable. In policy-based autosign, the autosign ile is referenced in the
coniguration points to an executable script. If your autosign.conf ile is executable,
Puppet will attempt to run it as a policy-based autosign script.

Chapter 5

[109]

The autosign ile contains a list of hostnames or host expressions. In this case, host
expressions are just hostnames beginning with an asterisk (*). It does not support
more complex regular expressions.

Let's give it a try. On the master, let's create the /etc/puppet/autosign.conf ile
and add agenttwo to the ile. It should contain this:

agenttwo.book.local

Once this is done, we can try to run Puppet on both agents. First, we'll do it on
agentone. Run Puppet using the normal sudo puppet agent -test command.
You should notice that the agent reports that it requested a certiicate, and then exits,
since waitforcert is disabled.

Now, run the same command on agenttwo. This is where the magic happens.
The output should be similar to what is shown in the following screenshot:

As you can see, we've gone through an entire run here. We made a cert and it was
accepted immediately. If you check out /var/log/messages on the master, you will
see a request and then the immediate signing of the certiicate.

Now, if you think about it for a second, you'll see a potential problem—no
authentication took place. Therefore, a client can pretend to be any of the listed hosts
and get a signed certiicate and a compiled catalog. This can reveal information about
the host.

Securing Puppet

[110]

This is somewhat mitigated if you use only full hostnames and remember to remove
them when the hosts are deprovisioned. Alternatively, you can use policy-based
autosigning. We'll cover that now.

Policy-based autosign
Policy-based autosign is a relatively new feature in Puppet, introduced in Puppet 3.4.
It allows you to build a custom executable that Puppet will call each time it receives
the CSR. That executable will receive the common name (usually the hostname) as
an argument, and the CSR on standard input. The policy executable can then make a
decision and return a piece of code to let the master know whether to autosign or not.

Coniguring this requires a bit of work, but when done correctly, it can let you use
special metadata to authenticate requests.

For this example, we're going to create a simple policy-based autosign script. We'll
rely on our Vagrant provisioner to ensure that one of our hosts gets the necessary data
and the other doesn't. This will allow us to see the behavior of the autosign process.

The irst thing we need to do is to create our policy-based autosign script. This script
needs to take the CSR, decode it, and look for any special data we've added. In the
case of this script, we're going to be adding a special pre-shared key using a Puppet
attribute. Then, on the master, we'll look for the presence of the key to indicate that
the client is authenticated.

This is a simple key held in a ile, which is the word banana.

Let's create our policy-based autosign script as /etc/puppet/autosign-policy.rb.
Edit the ile on the master by adding the following content:

#!/usr/bin/env ruby

require "openssl"

include OpenSSL

csr = OpenSSL::X509::Request.new $stdin.read

atts = csr.attributes()

if atts.empty?

 exit 1

end

key = nil

Chapter 5

[111]

atts.each do |a|

 if (a.oid=="extReq")

 val = a.value.value.first.value.first.value

 if val[0].value == "1.3.6.1.4.1.34380.1.1.4"

 key = val[1].value

 end

 end

end

if key == "banana"

 print "Match\n"

 exit 0

else

 print "No match\n"

 exit 1

end

Now let me give you a bit of explanation: the beginning of the script imports all the
necessary pieces. Once that's done, we create an internal openssl object from stdin.
Once we have that, we start the magic!

If our cert doesn't have any attributes, we exit. If it does, we search for an extReq
attribute. Once we ind that, we grab it using the giant string gathered via trial and
error. I'm actually surprised that Ruby doesn't have any helper methods to get that
data. The chained value and the irst calls are really ugly!

Then we check whether our extension has the right object ID (oid). An oid is an
element of the SSL certiicate request that contains information. Every ield is
contained within an oid. In this case, it is one of the Puppet oid values that is used
for a pre-shared key. We save it in a variable.

Finally, we compare that value to our secret key, banana, and exit with the exit code 0
if it matches. This tells Puppet to sign the certiicate. Otherwise, we exit in a negative
manner, which is by using any exit code other than zero; we use 1 in our case.

Now that we have a script, we need to conigure our master to use it. To do so, edit the
Puppet.conf ile on the master. Add the following line under the [master] subsection:

autosign = /etc/puppet/autosign-policy.rb

We also have to make the policy script executable. To do so, issue this:

sudo chmod a+x /etc/puppet/autosign-policy.rb

Securing Puppet

[112]

Now that we've set up the master, let's deal with some housekeeping. Rather than
reprovision the master, we'll simply clean the certiicates off the master and both of
the agents. To do this, issue the following commands on the master:

sudo puppet cert clean agentone.book.local

sudo puppet cert clean agenttwo.book.local

sudo rm /var/lib/puppet/ssl/ca/requests/*

sudo service puppetmaster restart

One or more of these commands may throw an error. That's okay; we're just being
thorough. Next, let's destroy the agents so that our provisioner can add the secret
key to one of them. Issue the following commands on the host:

vagrant destroy agentone

vagrant destroy agenttwo

Now, we'll create the magic for the agent systems. In the Vagrant directory, create a
ile called secret.yaml, containing the following:

extension_requests:

 pp_preshared_key: banana

More information on the SSL extensions supported by
Puppet can be found at https://docs.puppetlabs.
com/puppet/latest/reference/ssl_attributes_
extensions.html#data-location-and-format.

We'll modify our Vagrant provisioner on one of our hosts to copy that ile to the
correct location on the agent system. To do so, modify the agentone (ao) section of
the Vagrantfile, and add the following after the irst shell provisioner:

ao.vm.provision "shell", inline: "cp /vagrant/secret.yaml
/etc/puppet/csr_attributes.yaml"

Note that this should be on one line.

Go ahead and start agentone and agenttwo using the following commands:

vagrant up agentone

vagrant up agenttwo

https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-location-and-format
https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-location-and-format
https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-location-and-format

Chapter 5

[113]

Once they're up, we'll need to run Puppet on each of the nodes. When running on
agentone, you should see a somewhat more interesting output than before. It should
look something like this:

As you can see, Puppet picked up our additional attributes. Once they were
included, the agent signed the certiicate.

Now, run the Puppet agent on agenttwo. You should see the old, familiar
waitforcert message, as we did not install the extra attributes on agenttwo.

This is a somewhat simplistic example, but it shows all the building blocks used to
build a policy-based signing system. The pre-shared key example can be extended to
have multiple keys.

Additionally, you could check whether this is a valid instance on the cloud, for
example. We could do this by having our policy script query our cloud provider's
API to look for information on the instance requesting the certiicate signing.

Securing Puppet

[114]

Summary
Since Puppet is so integral to the environment and has the ability to change the
coniguration of any system, it is vital that we protect it from potential attacks.

Luckily, the default out-of-the-box coniguration is very secure. However, if we wish
to approach advanced scenarios or extend Puppet, we might get into situations that
warrant changing defaults.

Additionally, as our environment grows and becomes more complex, it makes sense
to start to investigate ways to automate Puppet itself. Autosign has many tools
available to make this easier for us.

Now that we've secured the Puppet Master software, in the next chapter, we'll
move on to examine how community-contributed modules can help us with security,
as well as getting us up to speed quicker. Then we'll move on to cover network
security, which can be used to further restrict access to our Puppet master, thus
further securing it.

[115]

Community Modules

for Security
An open source tool is only as good as its community, and Puppet has a great
one. Now that we've covered the basics and you have a functional Puppet
setup, including reporting, we'll move on to how you can quickly improve that
infrastructure. In many ways, the communities behind Puppet, right from the users
to the vendors and sponsors, are what set Puppet apart from its competitors.

In this chapter, we will explore community-maintained modules that assist with
security. There are a great number of modules available, so we'll try to focus on some
that have good beneits or a module structure to model your own modules on. In
particular, we'll cover the following in this chapter:

• The importance of the Puppet Forge

• The augeasprovider module by herculesteam, which allows you to use
augeas to manage a variety of files in a native Puppet manner

• The CIS module by arildjensen, which allows you to apply most of the
Center for Internet Security standards to a machine

• The sudo module by saz, used to manage sudo

• The hiera-eyaml gem, used to encrypt data in Hiera

By the end of this chapter, we should have a good toolkit to harden our hosts.
Additionally, we'll have good understanding of where to go to look for modules.

Community Modules for Security

[116]

The Puppet Forge
The Puppet Forge is a website run by Puppet Labs. It was born as a methodology for
system administrators and developers using Puppet to share their Puppet modules
with others. It can be found at http://forge.puppetlabs.com.

Over the years, the Forge has seen many improvements, in both its function as well
as the number of modules available.

At the time of writing this book, there are more than 3,000 modules on the Forge.
These modules include coniguration of everything from MySQL to the Apache web
server. Like many community projects, however, the quality and support of these
modules varies.

In the early days of the Forge, it was like the wild west. Many modules were posted,
but there were very lax standards on quality, and it was unknown whether a given
module would work on your OS.

On the quality front, the community and Puppet Labs have done a great job at
encouraging the community to adapt a set of standards and design patterns around
modules. This allows things such as Hiera to work in a predictable manner, and the
old habit of forking a module to make very minor changes is much less prevalent.

However, the problem of compatibility with both Puppet versions as well as various
operating systems still existed. To solve that, the Puppet Forge introduced additional
module metadata that can express those properties.

With the most recent modules on the Forge, you can quickly see which versions of
Puppet and operating systems are supported.

We'll go on a brief tour of the Forge before looking at a few select modules. The
Forge itself is pretty easy to use, so we'll keep this brief. The following screenshot
shows the Forge home screen:

http://forge.puppetlabs.com

Chapter 6

[117]

The preceding screenshot shows how the front page of the Forge currently looks.
We'll include some additional features further down the page later, but this is the
meat of the page.

At the top of the page, you'll see a search box. This allows you to perform searches
based on keywords, authors, or metadata.

The main section of the page on the main site contains news and other information.
At the time of writing this book, it contained documentation about how to write a
good module. This contains some best practices and procedures used to produce
reusable modules.

The section to the right contains two new areas. They are the Puppet Supported and
Puppet Approved modules.

The Puppet Supported modules are all the modules that are maintained by Puppet
Labs. These are fully supported under Puppet Enterprise. This means that when
issues are found with these modules, you can use the Puppet Labs support resources
to assist you with them.

Community Modules for Security

[118]

All of these modules have very good platform coverage, as well as good design
patterns. Other than being great modules overall, they serve as a good place to get
guidance on design for your own modules.

The Puppet Approved modules were announced at PuppetConf 2014. These are
modules that are of exceptional quality, and while not oficially supported, they are
some of the best modules available. They tend to have good platform support and
adhere to the current best practices.

At the bottom of the page are sections that contain information on recent releases as
well as a leaderboard of the top contributors.

Once you search for modules, you'll receive a results screen that has some more
options worth pointing out. An example of such a screen is shown here:

In the center of this section, you'll ind the search results, but the real magic is to
the left.

Chapter 6

[119]

The ilter area allows you to narrow down your search for modules. It currently
works only with modules that provide metadata, but it allows you to ilter by a
number of options.

You can also search for modules using the search command in the modules' faces on
the command line. To do this, we issue a command such as the following:

sudo puppet module search network

Replace network with whatever term you happen to be searching for. When we
run this command, we'll see something similar to what is shown in the following
screenshot, showing us some details about the modules:

You can see that the output includes the name of the module, a short description, the
name of the author, and a list of keywords that apply to the module.

Community Modules for Security

[120]

Once you have identiied a module, we can install it with the puppet module
face. We've seen how to do this in previous chapters, and we'll show it later in this
chapter. Additionally, instructions can also be found on any speciic module page.

Now that we've explored the Forge, let's start looking at the modules we want to
focus on. First up is the augeasproviders suite of modules.

The herculesteam/augeasproviders

series of modules
The irst module we'll explore is a swiss army knife of sorts. It started as a single
module, but over time has become a series of modules. This is the augeasproviders
module, originally by domcleal, but now maintained by herculesteam.

These modules use augeas to implement types and providers. Types and providers
are the native Puppet interfaces for managing resources. They're written in Ruby
and have considerably more power in how they manage the underlying resources
compared to the built-in Puppet types they replace. They also add additional
types for many other resources such as entries in the SSH coniguration ile, or
management of the Apache web server coniguration ile.

Augeas is a coniguration ile editing tool. It parses coniguration iles into an
internal tree and then allows you to use commands to manipulate that tree. Once
changes are made, the ile can then be written back out. This allows you to modify
just part of a coniguration ile without internally parsing the entire ile.

Once in augeas, there are a set of commands that can be used to modify the
coniguration in the ile. Sections can be added, deleted, or even rearranged.

The advantage over the native method of managing these resources as entire iles is
that the augeas-based providers support editing a ile by several different modules.
Additionally, they will leave the structure and comments in the iles intact, which
can ease readability and preserve OS defaults that you may not intend to change in
your module.

When managing a ile such as the Puppet coniguration ile, if separate modules
need to add coniguration options, coordination between those modules can become
dificult. The file_line resource and other resources aim to address some of that,
but augeas is a perfect solution to those problems.

Chapter 6

[121]

The augeasproviders modules implement types and providers for more than 15
different coniguration formats. Some of the more important security-related ones
are as follows:

Provider Description

kernel_parameter This manages passing kernel parameters to the grub or
grub2 configuration files

pam This manages pam authentication configuration

puppet_auth This manages the Puppet auth.conf file

shellvar This allows management of any shell configuration file

sshd_config This manages the sshd_config file sections

sshd_config_subsystem This manages the SSH subsystems such as SFTP

sysctl This allows Linux sysctl management

syslog This allows management of the syslog configuration

These providers expose native Puppet types for the coniguration in question. For
instance, let's look at an example of using the puppet_auth type based on work
performed in the last chapter. As you may recall, we added the following entry
to auth.conf:

path ~ ^/file_(metadata|content)s?/agentone/
allow agentone.book.local

We can handle that using the augeasproviders type by adding a resource like the
following to a Puppet manifest:

puppet_auth { 'Allow agentone':
 ensure => present,
 path => '^/file_(metadata|content)s?/agentone/',
 path_regex => true,
 allow => 'agentone.book.local',
 authenticated => 'yes',
 ins_before => 'path[allow][. = "/file"]',
}

By using these resources, you can build the authentication coniguration in a
much more automated fashion than managing the ile as a whole. Using the
power of exported resources, you could even have various modules register
needed mount points.

This and many of the other modules in this series are very popular. Much more
information can be found at the website of the module, http://augeasproviders.com.

Let's look at a more complete example for securing SSH.

http://augeasproviders.com

Community Modules for Security

[122]

Managing SSH with augeasproviders
Managing the SSH coniguration of a host is often done with just a template or a
lat ile. However, as the coniguration gets more complex, it makes sense to try to
manage this in a more organized fashion.

This also has the advantage of being more lexible, as noted earlier. You could have
a development server role that allows users to log in with passwords, while your
main production server only allows for key-based login. Doing this with ile-based
management involves using facts and variables to determine this at the time the
template would be written, which can be very dificult to do correctly.

To do this, we'll use the sshd_config type and provider from the augeasproviders
module. We perform the following steps:

1. Let's go ahead and start up our VM. We can start where we left off at the
end of the previous chapter, or use the code included with the book and
follow along.

2. In either case, let's go ahead and use vagrant up to start our three VMs.

3. Now, we need to get the modules needed installed on the master. Let's go
ahead and install the module. We'll only install the sshd_config module
instead of the entire suite.

4. To do so, on the Puppet Master, issue the following command:

sudo puppet module install herculesteam-augeasproviders_ssh

Once complete, the output is as follows:

As you can see, it installed two additional modules. The irst is the
augeasproviders_core module, which contains some methods used by the other
modules. It also includes stdlib, which much like the C standard library contains
a series of useful utility functions, such as validation functions for parameters and
various type conversion functions.

Chapter 6

[123]

Once these modules are installed, we can start to conigure our sshd_config module.

Remember way back in Chapter 1, Puppet as a Security Tool, we made some changes
to the sshd_config ile in order to prevent root login and set the maximum
authentication attempts. We're going to re-implement these changes via this module.
This allows us to more easily create per host conigurations, and use methods such as
exporting resources to manage the coniguration.

To begin, let's dust off our old openssh module from Chapter 1, Puppet as a Security
Tool. We'll modify that module to use the augeasproviders module instead of using
the lat ile.

First, let's go ahead and remove the files directory from that earlier module and
start to modify the init.pp ile to manage this. As previously mentioned, we'd
usually use multiple iles for the manifest. We will look at a complete example at the
end of this section.

Go ahead and edit the init.pp ile from that same module and delete the ile-related
sections of the module, leaving the content looking as follows:

class openssh {

 package { 'openssh-server':

 ensure => 'latest',

 }

 service { 'sshd':

 ensure => 'running',

 }

}

Now we can go ahead and start using the augeasproviders types to modify the
existing coniguration. Between the package and the service, let's add our commands
to the manifest to manage just the SSH coniguration settings we are concerned with.

Where the ile section of the manifest was present, let's add the following:

 sshd_config { 'PermitRootLogin':

 value => 'no',

 notify => Service['sshd'],

 require => Package['openssh-server'],

 }

 sshd_config { 'MaxAuthTries':

 value => '3',

 notify => Service['sshd'],

 require => Package['openssh-server'],

 }

Community Modules for Security

[124]

Notice how we also moved the dependency information into our coniguration
stanza. This eliminates the need to use the dependency chain we had in the ile
before, which is why it was removed in the preceding code.

Now, let's add it to our default manifest so it'll run on our agent nodes. Edit the
/etc/puppet/manifests/site.pp ile. Add the following lines:

node default {

 include openssh

}

Now, we need to run our code on one of our agent boxes. Connect to agentone and
run Puppet. Remember to sign the certiicate if necessary—see Chapter 5, Securing
Puppet, if you need a reminder of how that works.

Once that is complete, you'll see a whole bunch of plugins get synced down to the
client, and when it completes, the output will look like the following:

Chapter 6

[125]

As you can see, we've now made the changes to the coniguration ile. As a test, go
ahead and modify one of the other coniguration items in /etc/ssh/sshd_config.
Additionally, change MaxAuthTries to a higher value such as 8. Run Puppet again,
and notice it only changes the one value back, like the following:

As you can imagine, that's pretty powerful, since we can keep the OS level settings
and just change what we need changed. You can also move logic relating to
coniguration into the module that uses it, as opposed to trying to centralize it in the
module writing a monolithic coniguration ile. You can parameterize the values of
the various pieces of the coniguration using this method as well, either using the
traditional approach of creating a parameter for each tunable, as I do in the module
referenced in the following section, or using the newer augeasproviders instances
class, which allows you to pass an entire hash of augeas coniguration data into the
module. More information on that can be found at the URL for augeas provided in
the preceding section.

For a more complete example of a module that manages this via
augeasproviders, see https://github.com/jmslagle/
jslagle-ssh.

The arildjensen/cis module
The next module we'll take a look at is the CIS module by arildjensen. This module
implements the Center for Internet Security benchmark standard for RHEL 6. In
terms of support, this module lags a bit since it only supports Red Hat 6-based
operating systems. However, it can serve as a great base for building your own
module for another Unix-/Linux-like operating system.

https://github.com/jmslagle/jslagle-ssh
https://github.com/jmslagle/jslagle-ssh

Community Modules for Security

[126]

The CIS benchmarks are a set of coniguration standards that establish a baseline or
benchmark for a secure system. It is a widely used and accepted set of standards,
referenced in the PCI DSS standards and others.

The CIS benchmarks exist for a variety of operating systems and applications,
including VMware, Apache Tomcat, and others.

For more information on the CIS benchmarks, see http://
benchmarks.cisecurity.org/downloads/benchmarks/.

The arildjensen/cis module implements the security benchmark for Red Hat 6
systems. It implements each of the individual controls as facts or manifests. We'll
look at an example of its use.

Out of the box, the module contains a module that enables all of the controls. This
module is called a composition module that merely includes all of the other needed
classes to enable the controls in question. In many cases, this is suficient, but it can
also be used as a basis for creating a custom limited set of controls in your own
composition module. This is just a normal Puppet module that includes the classes
(in this case, the individual controls) we are concerned with.

We'll look at an example of doing that now. First we need to get the module
installed. To do that, we use what should be a familiar process by now. Issue the
following command on the Puppet Master:

sudo puppet module install arildjensen-cis

We'll see the familiar output:

Now that it's installed, we'll go ahead and build our own custom composition
module using this module.

For our exercise, we'll choose just a small handful of the controls. There are nine
different sections of the benchmark, each with a varying number of controls. Going
through each one for our exercise here would easily take the rest of the chapter, so
we'll build a small subset.

http://benchmarks.cisecurity.org/downloads/benchmarks/
http://benchmarks.cisecurity.org/downloads/benchmarks/

Chapter 6

[127]

For our example, we'll conigure the settings from section 2 and section 4.2 of the CIS
benchmarks document. A link to that document is found later in the chapter. This
will give us suficient controls to see how the module works and see it in action. In
production, you would want to review the CIS benchmarks and see which of the
benchmarks you would apply.

We'll build our own module to do this. So, let's start by creating a module scaffold.

First, let's create the module. Issue the following command in the Vagrant home
directory on the master to create a module scaffold:

puppet module generate pupbook-ourcis

You can accept the defaults for pretty much everything. You can add a description if
you wish, and set the other ields to N/A.

Next, let's modify the metadata to add the dependency. Edit the metadata.json ile
and make the dependency section look like the following:

 "dependencies": [

 {"version_requirement":">= 1.0.0","name":"puppetlabs-stdlib"},

 {"version_requirement":">= 0.2.0","name":"arildjensen-cis"}

]

Now, let's handle our init.pp ile. In this case, it's just going to include all of the CIS
module iles that we need. When complete, it should look as follows:

class ourcis {
 include cis::el6::2_1_1 # Remove telnet server
 include cis::el6::2_1_2 # Remove telnet client
 include cis::el6::2_1_3 # Remove rsh server
 include cis::el6::2_1_4 # Remove rsh client
 include cis::el6::2_1_5 # Remove NFS client
 include cis::el6::2_1_6 # Remove NIS server
 include cis::el6::2_1_7 # Remove tftp
 include cis::el6::2_1_8 # Remove tftp server
 include cis::el6::2_1_9 # Remove talk
 include cis::el6::2_1_10 # Remove talk server
 include cis::el6::2_1_11 # Remove xinetd
 include cis::el6::2_1_12 # Disable chargen UDP
 include cis::el6::2_1_13 # Disable chargen TCP
 include cis::el6::2_1_14 # Disable daytime UDP
 include cis::el6::2_1_15 # Disable daytime TCP
 include cis::el6::2_1_16 # Disable echo UDP
 include cis::el6::2_1_17 # Disable echo TCP
 include cis::el6::2_1_18 # Disable tcpmux server
 include cis::el6::4_2_1 # Disable source routed packets
 include cis::el6::4_2_2 # Disable ICMP redirect
 include cis::el6::4_2_3 # Disable Seucure ICMP redirect

Community Modules for Security

[128]

 include cis::el6::4_2_4 # Log suspicious packets
 include cis::el6::4_2_5 # Ignore broadcasts
 include cis::el6::4_2_6 # Ignore bogus ICMP
 include cis::el6::4_2_7 # Enable source validation
 include cis::el6::4_2_8 # Enable SYN cookies
}

Save the ile. The preceding code just includes the main module. Then, copy the
entire module to the modules tree. Remember we'll need to rename it to just be
ourcis. You can use the following command to do so:

sudo cp -a pupbook-ourcis /etc/puppet/modules/ourcis

And now let's apply it to our default node. Add an include line for our module
there as follows:

include ourcis

Now for the big reveal. We'll go ahead and run Puppet on one of our agent nodes
using sudo puppet agent --test. It will sync over a bunch of additional facts and
then run. Once it completes, the output will look as follows:

Chapter 6

[129]

And ta-da! It has enforced the required parts of the CIS benchmarks.

This module makes it very quick to get a system up to speed with the benchmarks. It
could fairly easily be extended to handle other operating systems using the generic
Linux controls. The abstraction is a bit odd, so it'll take some work to untangle, but
it's much easier than starting from scratch.

For more information on the puppet-cis module, refer to
the following link:

https://forge.puppetlabs.com/arildjensen/cis

Now we'll take a look at the sudo module to handle coniguring your sudoers ile.

The saz/sudo module
The next module on our module examination journey is the saz/sudo module. This
module presents a great methodology to manage the sudoers ile. It is actually used
by a large number of other modules for sudoers ile management.

The module itself is fairly simple, so this section will be short as we go over it.

The sudo module manages all aspects of your sudoers coniguration, which
can catch some people by surprise. The module has options to leave the system
coniguration alone, as well as not purging unmanaged sudoers entries. The
recommended path is to manage all the sudoer resources; however, the options are
there if needed.

To install the sudoers module, we'll issue the following command:

sudo puppet module install saz-sudo

We'll now create a few simple rules. But, before we do so, we need to take a look at
the /etc/sudoers ile. If you look at it, at the very bottom, you'll see an entry for
Vagrant. We must make sure we preserve this entry or we will cause Vagrant to stop
working. This entry is what Vagrant uses to do system provisioning.

That being said, the most prudent course of action is to implement the current
system rules before we add anything custom.

https://forge.puppetlabs.com/arildjensen/cis

Community Modules for Security

[130]

This is another situation where normally we'd use a module. However, for
simplicity, we're just going to add the rules into the site.pp ile. This allows us to
quickly model the desired coniguration for the book. However, in production, that
does not scale very far, so just don't do it. Your co-workers will thank you.

Let's edit our site.pp ile and add rules that match the current sudoers ile. We
need to add a single rule since there is one non-default entry present in the sudoers
ile. The irst entry is a default system entry that allows root to use sudo. The other
is the custom entry that Vagrant uses. They are as follows:

root ALL=(ALL) ALL

vagrant ALL=(ALL) NOPASSWD: ALL

In addition, the Vagrant coniguration requires that we have the required TTY setting
set to false for the Vagrant user using sudo. This is not the default on Red Hat-
based systems because it can allow for unsafe practices if a user executes sudo over
a non-interactive SSH session. However, since Vagrant is relying on passwordless
sudo to do its provisioning, we must allow that user to use sudo with no TTY. We'll
need to account for this in our coniguration also.

Recreating this in the sudo module turns out to be fairly simple. Add the following
to the site.pp ile:

include sudo

sudo::conf { 'vagrant':

 content => "Defaults:vagrant !requiretty\nvagrant ALL=(ALL)
NOPASSWD: ALL",

}

The Vagrant content line should be contained on a single line.

Chapter 6

[131]

Once it's done, run Puppet. It will change a variety of iles, and when complete,
give output similar to the following:

Notice that the Vagrant entry was removed from the ile (see the - entry); however,
we added a new ile called 10_vagrant. This contained the rule we created in the
preceding manifest.

It's worth noting that we could have used the config_file_replace option in the
sudoers class to tell the module to not replace the default coniguration ile. In this
case, adding our entry for Vagrant would have been unnecessary. Replacing the ile
has the advantage of ensuring that this important security-related ile is consistent on
all of your systems.

Now that we have the base down, we'll add one more sudo rule to the ile. In this
case, we'll allow the Puppet user to run puppet agent -test without a password.
We might use this rule in the case of having an automated system that populates the
Puppet repository once tests pass. In this case, you would want to be able to force a
Puppet run on a child system. The sudo rule to do this looks like the following:

puppet ALL=NOPASSWD: /usr/bin/puppet, /usr/local/bin/puppet

Community Modules for Security

[132]

To translate that to a sudo manifest item, the content just becomes the preceding
code. As such, you end up with the following:

 sudo::conf { 'puppet_puppet':

 content => 'puppet ALL=NOPASSWD: /usr/bin/puppet, /usr/local/bin/
puppet',

 }

Note that the content line should be one line.

When you run it, you will see the appropriate ile appear under the /etc/
sudoers.d/ directory.

Using that methodology, we can pragmatically manage our sudoers iles to ensure
the records we want on a host are present, and in most cases, only those items. This
is a huge beneit from a compliance standpoint. Even if someone adds an entry, it
will be removed at the next Puppet run.

If you want more information on this module, it can be found at
https://forge.puppetlabs.com/saz/sudo. It contains
documentation on the module as well as some examples.

The hiera-eyaml gem
The last module we're going to look at in this chapter is not a module at all. It's
actually a gem that installs an extension for Hiera.

As you recall from earlier, Hiera is a hierarchical data store which allows us to
separate our data from our code. For instance, it lets us move the NTP servers we're
using out of the manifests.

It supports a wide variety of methods to create a hierarchy, which allows us to
supplement or override coniguration data needed by various modules.

In fact, several of the modules we've looked at earlier in this chapter have great
Hiera bindings. Modules with strong Hiera bindings are constructed in a manner
that allows the coniguration of the main class to be passed in as parameters. Puppet
can query Hiera to get the values of these parameters, allowing us to override them
without changing Puppet code.

Of the modules covered in this chapter, CIS can use Hiera to conigure items such as
log servers or NTP servers. The sudo module allows coniguration of the sudoers
ile completely within Hiera by overriding and extending certain values.

https://forge.puppetlabs.com/saz/sudo

Chapter 6

[133]

One of the downfalls of Hiera out of the box is that it does not present a good way to
handle secure data as the value is stored in iles unencrypted. A compromise of that
data store, which is likely present in version control, could lead to a compromise of
sensitive data such as keys.

There have been a couple of attempts to solve the secret data problem. The irst was
hiera-gpg. It allows you to GPG encrypt an entire Hiera data ile.

While this solved the secret data problem, it came with manageability issues.
Without decrypting the ile, you couldn't easily tell what keys were present in
the ile. It also made tracking changes dificult. Finally, it was tricky to set up and
use, involving getting GPG set up and working and manually encrypting iles.
Additionally, since all of the entries were encrypted, it was not easy to separate our
duties. If you had access to decrypt the ile to edit it, you would be able to edit every
entry in the ile.

The hiera-eyaml module was created to address some of these issues. It uses an
inline encryption algorithm that allows the non-secret parts of the iles to stay in
plain text. It also comes with utility commands to decrypt the ile and launch an
editor. For these reasons, it is much easier to use than gpg-yaml.

We'll show a short example of its use here, but to do so we need to set up Hiera irst.

Since Puppet 3, Hiera has become a built-in default for Puppet data. Therefore, to use
it, we only need to create the appropriate data ile.

To do so, let's create the directory where we'll store our data iles. Run the
following command:

sudo mkdir /etc/puppet/hieradata

Now, we'll create the coniguration ile. To do so, we'll edit /etc/puppet/hiera.
yaml and add the following contents:

:backends:

 - yaml

:yaml:

 :datadir: /etc/puppet/hieradata

:hierarchy:

 - "%{::fqdn}"

 - common

This will conigure Puppet to use the directory we created previously as the data
directory, and enable two levels of the hierarchy: they are the FQDN of the host and
then a common ile. We now need to restart the Puppet Master with sudo service
puppetmaster restart.

Community Modules for Security

[134]

To demonstrate Hiera's use, let's make a quick module that takes a single parameter.
To keep it brief, we'll just show the command and then the edits.

First run the following:

puppet module generate pupbook-hieraexample

In this case, we can accept all the defaults. We'll edit the init.pp ile and make it
look as follows:

class hieraexample($secret = 'nope' {

 file { '/tmp/secret':

 ensure => present,

 content => $secret,

 }

}

This will simply write a ile with the content out. Copy the module into the /etc/
puppet/modules directory named hieraexample. Now we need to add it to our
site.pp ile. Edit the /etc/puppet/manifests/site.pp ile and include the new
module with include hieraexample.

Let's run it on the master and see what happens. Since we've not run on the master
yet, you'll see a bunch of things run when you run it. Once complete, if you check the
content of the /tmp/secret ile, it should contain our default, the word nope.

Now, let's make a Hiera common data ile to contain a more appropriate value. Edit
/etc/puppet/data/common.yaml and make it look like this:

hieraexample::secret: "yup"

Now, rerun Puppet again and you should see that it changed a ile. The contents of
the ile will now also contain the word yup. This is really cool, as now we don't need
to keep that data in our manifests or modules.

Moving on, we now need to install the hiera-eyaml plugin and conigure it for use.
Let's start by installing the gem on our Puppet Master machine. We'll use Puppet
to install the gem for us, additionally demonstrating that Puppet has the ability to
handle package installation via gem. To do so, issue the following:

sudo puppet resource package hiera-eyaml ensure=installed
provider=gem

Chapter 6

[135]

Here we used the Puppet resource face to create a command-line-based resource for
our package, passing the arguments we needed to get it installed. This can be useful
as it can abstract away package installation if you handle a variety of operating
systems such as Solaris and Linux. As long as you know the package name, and it's
present in a default repository, Puppet can install it.

When complete, this will output information on the package, which should show the
version that was installed.

We need to do some key generation. Let's go ahead and do that using the
following commands:

eyaml createkeys

sudo cp -a keys /etc/puppet/

sudo chown -R puppet:puppet /etc/puppet/keys

sudo chmod 0400 /etc/puppet/keys/*.pem

sudo chmod 0500 /etc/puppet/keys

This will copy the keys to a suitable location and then secure them. If you were using
version control, you would want to exclude the keys directory from being added to
version control to protect the private key.

Now we need to make our Hiera setup use our new super fancy encrypted backend.
To do so, edit /etc/puppet/hiera.yaml and make it look as follows:

:backends:

 - eyaml

 - yaml

:yaml:

 :datadir: /etc/puppet/data

:eyaml:

 :datadir: /etc/puppet/data

 :pkcs7_private_key: /etc/puppet/keys/private_key.pkcs7.pem

 :pkcs7_public_key: /etc/puppet/keys/public_key.pkcs7.pem

 :extension: 'yaml'

:hierarchy:

 - "%{::fqdn}"

 - common

The changes we made here were to include the backend. Then we conigured it to
use the data datadir as the other backend, and to use the yaml extension. We also
had to point it at our private key.

Community Modules for Security

[136]

Now, remember we need to bounce the Puppet Master since we made changes to the
hiera.yaml ile. To do that, issue sudo service puppetmaster restart.

So now let's edit an encrypted Hiera data ile for one of our hosts. We'll do this in our
directory then copy it in.

The Hiera editor doesn't seem to support handling empty iles, so irst let's just use
echo to get a header on the ile, then edit it with eyaml by doing the following:

echo "---" >agentone.book.local.yaml

eyaml edit agentone.book.local.yaml

Now, in this ile, let's edit the content to look as follows:

hieraexample::secret: DEC::PKCS7[sup3rs3kr37]!

Notice how we have the DEC::PKCS7 line with brackets. The eyaml backend will
encrypt anything present in those brackets. In this case, we're using the static text
sup3rs3kr37.

YAML and hiera-eyaml also support multiline data. More
information on YAML formatting, in particular how to handle
multiline data, can be found at http://www.yaml.org/
spec/1.2/spec.html#id2760844.

Once you complete editing the ile, take a look at the contents. They should look
similar to the following code (but they are different since we have differing keys):

hieraexample::secret:
ENC[PKCS7,MIIBeQYJKoZIhvcNAQcDoIIBajCCAWYCAQAxggEhMIIBHQIBADAFMAAC
AQEwDQYJKoZIhvcNAQEBBQAEggEAarwvO6zbXQm+8q0L5XLpkffqikvnWHGHTeynEV
NiXy/Yf8FpiMItfYPm0TDJ1AB/L6tOxBngN3Wxg0gG60YwkNhVKi5OOUudOdKP5GNZ
aU3RcCAuJlRvcwlyZ+jCGQ9V0W7/nfiQTJ6S2muuq1CoAuqvA9GfaZLkAEUUXGSfu3
XYt5k0/adngsQxLShtn5atWgnBW9zUVmI7l2BL750svc3UUUwWPgpzfmINT4up/OyI
kFNG2ykFP0AHcdhLQt2/ALPZUDTOI68w0O0BfPFA5wkwDPyDZb1PP1hfyzfBfmZztz
mB6RNiOaUevsSI12H3HKb8vNHBCWfvPxqMRBF9HjA8BgkqhkiG9w0BBwEwHQYJYIZI
AWUDBAEqBBB98Wid9hcLrsFTbXlth47XgBDmiWtMUMlHo/DG7CS2eLVU]

Notice how the DEC part has become ENC, and the value has become much longer.
This is the encrypted version of our preceding key.

Now, copy the ile into /etc/puppet/data.

Let's rerun the Puppet agent on the master to see what happens. There should be no
changes to the ile since it's still pulling its data from the common Hiera data ile.

http://www.yaml.org/spec/1.2/spec.html#id2760844
http://www.yaml.org/spec/1.2/spec.html#id2760844

Chapter 6

[137]

However, when you run Puppet on agentone and check the contents of the /tmp/
secret ile, they should contain our secret word.

As you can see, hiera-eyaml presents a good solution to handle any data you don't
want publicly visible. You can use it to store things like passwords and keys that you
do not want publicly visible in your code repository.

If you want more information on Hiera, please see
https://docs.puppetlabs.com/hiera/1/.
More information on hiera-eyaml can be found at
https://github.com/TomPoulton/hiera-eyaml.

Summary
The Puppet community is a wonderful resource that can make your life much easier.
When looking to automate a given piece of your infrastructure, it makes perfect
sense to go look at the Forge to see if someone else has made a module to conigure
the application or infrastructure piece you are looking to automate.

Even if the module does not support your operating system, concentrating work on
extending an existing module to support more operating systems or features betters
the community as a whole.

Picking modules to review here was actually really dificult. There are so many good
modules to choose from on the Forge.

To summarize, in this chapter, we explored modules that provided types and
providers for use in coniguring iles. These modules allow us to manage things we
would previously have managed as iles using native Puppet types.

We then looked at the cis module to harden Red Hat 6 systems. This module is an
example of some of the things we can use Puppet to harden on our systems.

After that, we used the sudo module to manage your sudoers iles, centralizing
coniguration of the security-related sudo data.

Finally, we saw how to use the hiera-eyaml gem to store encrypted data on your
Puppet Master.

In the next chapter, we'll look at using Puppet to handle your network security
needs. We'll see you then!

https://docs.puppetlabs.com/hiera/1/
https://github.com/TomPoulton/hiera-eyaml

[139]

Network Security and Puppet
One of the most important things to be done on a system, security-wise, is to ensure
that it is safe from network-based attacks.

Ensuring that your system only listens on expected ports and controls access to
services at the network level is a tedious, repetitive process. What if services could
automatically open the necessary irewall rules? What if the systems running a cluster
application could learn about one another and open access to just the other nodes?

With Puppet, all this is possible. We'll cover some of these cases in this chapter.
We'll cover the following topics:

• Basic information in the firewall module

• The firewall type

• The firewall chain type

• Pre and post rules—what they are and how they're used

• Adding firewall rules to your own modules in an extensible way

Let's get rolling with our irst topic!

Introducing the irewall module
The puppetlabs/irewall module is one of the supported modules from Puppet
Labs. This means that if you run Puppet Enterprise, you can oficially get support on
the module on operating systems it will currently run on. At present, this includes
Linux distributions. For this reason, this module is one of the best examples of
modules available.

Network Security and Puppet

[140]

The module happens to also be one of the older ones. The current incarnation of this
module dates back to early 2011. It also contains the code from an earlier iptables
module that dates all the way back to 2007.

The module manages irewall rules on your host. In its current form, it can manage
iptables irewalls for IPv4 and IPv6 as well as ebtables for Ethernet bridging and
iltering support. In this chapter, we'll cover the iptables IPv4 aspects of the module,
although the concepts will apply to all of the other types as well.

Iptables is the primary irewall interface on Linux hosts since kernel Version 2.4. It
will eventually be replaced by nftables, having been merged into the main Linux
kernel with kernel Version 3.13. However, for the moment, iptables is the primary
method of implementing host-level irewall services on the Linux kernel.

We could spend the rest of the book covering iptables and host-based irewalls. Instead,
we're going to cover just enough information to get you started using Puppet to
manage your host base solution. More information on iptables can be found at http://
netfilter.org/. There are also a number of books available on the subject, including
Designing and Implementing Linux Firewalls and QoS using netilter, iproute2, NAT and l7-
ilter, which can be found at https://www.packtpub.com/networking-and-servers/
designing-and-implementing-linux-firewalls-and-qos-using-netfilter-

iproute2-n.

The irewall consists of a series of chains. Each of these chains contains rules with
actions. The various rules may match packets based on a variety of factors. These can
be things like source and destination address or port, or even things like TCP lags.
Once a packet matches a rule, an action is applied to it. These actions are things like
forwarding or dropping the packet.

The puppetlabs-irewall module provides you with a series of Puppet types and
providers around the irewall concept.

If you remember, Puppet types are native Ruby implementations of functionality
in the Puppet core. These are extensible using custom types, of which the irewall
module provides two. These two types are the irewall and irewallchain types.

Providers are particular implementations of a type. The Puppet irewall module
types for irewall and irewall chains in turn have providers that implement the
irewall types for both iptables and ip6tables.

These types and providers enable you to manage their irewall coniguration using
native puppet resources as opposed to using iles and exec resources, which was
previously required. This increases the lexibility of managing the irewall over
using the exec type or managing iles with the saved iptables rules. With types and
providers, you do not need to centralize your rules or use exported resources. You
can instead embed the irewall logic into the modules that need ports open.

http://netfilter.org/
http://netfilter.org/
https://www.packtpub.com/networking-and-servers/designing-and-implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n
https://www.packtpub.com/networking-and-servers/designing-and-implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n
https://www.packtpub.com/networking-and-servers/designing-and-implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n

Chapter 7

[141]

Let's take a look at the speciic types along with some examples of their use.

The irewall type
The primary type provided and used in the irewall module is the irewall type. This
type contains a whole slew of parameters that allow you to conigure every aspect
of the irewall rules. This is necessary because the base iptables software has many
options that you can pass to rules. To model rules successfully, the underlying type
and provider needs to support all of the features that you can do on the command
line. This results in a very large parameter set. A summary of some of the most
commonly used parameters as of Version 1.2.0 are described in the following table:

Parameter Description

action This provides the action to be taken on the packet. This can be one of
the accept parameter that allows the packets, the reject parameter
that denies the packet and ends an ICMP unreachable code, or the
drop parameter that silently drops the packet. These options are
lowercase unlike in iptables where they are uppercase.

chain This is the iptables chain that this rule applies to. This is only relevant
to the iptables provider and requires this feature.

destination This specifies the destination address to be matched. This can contain
a CIDR range. You can negate the range by prefixing it with an
exclamation point (!).

dport This contains the destination port to match. This can also be a range or
array of ports.

dst_range This specifies the destination range. This is in x.x.x.x-y.y.y.y
format, such as 10.20.20.10-10.20.20.40.

ensure This specifies whether the given resource is present or absent. It
defaults to present.

jump For iptables, this attribute specifies the jump value. This can be LOG,
QUEUE, RETURN, DNAT, SNAT, MASQUERADE, REDIRECT, or MARK.
The values ACCEPT, DROP, and REJECT are used with the action
parameter, not with jump in this module.

name This provides the name of the rule. When rules are inserted, they are
sorted by name. As such, they must be prepended with numbers to
ensure proper ordering. For instance, rule 10-Allow_ssh will be
applied before rule 20-Deny_all.

port This specifies the port or range of ports to match. This can also be
a range or array of ports. This will match both the source and
destination port.

Network Security and Puppet

[142]

Parameter Description

proto This specifies the protocol to match. The default value is TCP,
however, UDP. ICMP and many other protocols are supported. All can
also be used to match all the protocols. For more information, see the
documentation at the link mentioned later in this section. These must
be lowercase in the manifest.

reject This is used to set the ICMP type that the packet is rejected with when
the action is reject.

source This specifies the source address of the packet to match. It can be a
single IP or a CIDR range.

sport This specifies the source port. It can be a port, a range of ports, or an
array of ports to match.

src_range This specifies a source IP range in x.x.x.x-y.y.y.y format. For
example, 10.30.40.1-10.30.41.23.

state This matches the state of a connection. It can be ESTABLISHED,
INVALID, NEW, or RELATED.

tcp_flags This matches the TCP Flags set on a packet. These can be any valid
TCP flags such as SYN, ACK, PSH, and so on. See the documentation for
more values.

The preceding attributes are just a subset of the available
parameters that are most commonly used. A full documentation
on all of the parameters can be found at https://forge.
puppetlabs.com/puppetlabs/firewall.

As previously mentioned under the name parameter, the rules are ordered based on
the name before being applied. The typical application of the ruleset is that names
are prepended with a number. This allows you to ensure that the rules are applied in
the order that is desired.

This module is somewhat dangerous compared to some of the others we looked at
also. If you misuse it, it is easy to lock yourself out of a host. Care should be taken to
test all the changes thoroughly before applying them to the production hosts.

Let's go through an example using the irewall module. We'll do a very simplistic
example that logs all the connections to our host via SSH.

For now, we'll create a separate module to manage our base irewall coniguration
and add our rules there. Later in this chapter, we'll discuss how to add rules to
your modules.

https://forge.puppetlabs.com/puppetlabs/firewall
https://forge.puppetlabs.com/puppetlabs/firewall

Chapter 7

[143]

To begin, let's go ahead and create our irewall module. In this case, I'm not going to
use the name irewall to avoid problems with namespaces (it's possible to do so, but
if we name it something else, we can avoid it completely).

To do this, run the following command in your home directory on the master. We'll
copy it over like we previously have:

puppet module generate pupbook-fw

Go ahead and answer all the questions or accept the defaults, and we'll move on to
deine some content for this module.

In this case, we're going to start by adding a irewall rule that logs ssh. We won't add
any additional rules or purge existing rules. We'll cover the functionality in the pre
and post rules sections since it requires a fair amount of coniguration, and we have
a full section that will cover these topics.

For the moment, let's make our pupbook-fw/manifests/init.pp ile look like
the following:

class fw {

 include ::firewall

 firewall { '050 log all ssh':

 ensure => present,

 proto => 'tcp',

 port => '22',

 jump => 'LOG',

 }

}

The preceding code contains our rule to log all ssh trafic. The only other line
in the module is an include of the firewall class. The purpose of this class is to
ensure that all the prerequisites needed to use iptables are met. On RHEL 6, this
handles installation of the iptables-persistent package, which ensures that
irewall rules are persisted across reboots.

We'll be applying this class to just one of our nodes to test it. So, add the following
command to the /etc/puppet/manifests/site.pp ile:

node 'agentone.book.local' {

 include fw

}

Network Security and Puppet

[144]

Before we use the irewall module, we obviously need to install it. Use the following
command to do this:

sudo puppet module install puppetlabs-firewall

Now we need to test it. Remember that you'll need to sign the certiicate if these are
new VMs. You can refer to Chapter 5, Securing Puppet, for a refresher.

When that's completed, we can go ahead and run Puppet on the agentone VM.
When you inish, you should get the output as follows:

Chapter 7

[145]

As you can see, the type and provider got synced over to our virtual machine and the
rule got created. We can conirm this by running the following command:

sudo iptables -L

When you run this, you should see the output like the following:

You can see our rule in the iptables coniguration. Now let's open a second SSH
connection and see what the logs say. Open another terminal and run a second
vagrant ssh agentone command to get on agentone. Then, we'll take a look at the
log ile in /var/log/messages.

You should see lots of messages, such as the following:

Oct 26 07:41:57 localhost kernel: IN=eth0 OUT= MAC=08:00:27:73:bf:
1c:52:54:00:12:35:02:08:00 SRC=10.0.2.2 DST=10.0.2.15 LEN=40 TOS=0x00
PREC=0x00 TTL=64 ID=17892 PROTO=TCP SPT=64974 DPT=22 WINDOW=65535
RES=0x00 ACK URGP=0

Oct 26 07:41:58 localhost kernel: IN=eth0 OUT= MAC=08:00:27:73:bf:
1c:52:54:00:12:35:02:08:00 SRC=10.0.2.2 DST=10.0.2.15 LEN=72 TOS=0x00
PREC=0x00 TTL=64 ID=17893 PROTO=TCP SPT=64974 DPT=22 WINDOW=65535
RES=0x00 ACK PSH URGP=0

Right away, we can see an improvement we want to make to the module. Right now,
it's logging ALL SSH packets. This will very quickly result in a large number of log
messages. To deal with this, we'll add some more options to our rule in our module.

To do this, edit your pupbook-fw/manigests/init.pp ile again, and in the
parameters, add the following:

state => 'NEW',

Network Security and Puppet

[146]

This will make the rule only match new packets.

Once this is done, rerun Puppet. You should receive an output that indicates it's
updated your rule and now state matches new. The iptables output will now look
like the following:

You will also see that the log messages have reduced to just initial SSH connections.

The example shows something else. Building Puppet modules is often an iterative
process. In this case, we created a module using what we knew we wanted—we
wanted to log SSH trafic. However, once it was built, it was determined that
this wasn't quite what we wanted. What we actually wanted was to log NEW SSH
connections. Therefore, we iterated on the module and improved it to meet the
actual goal.

This shows the importance of testing your changes. When dealing with the irewall
module in particular, it is very possible to lock yourself out of a machine. Therefore,
you should always test your changes prior to them going to production.

Fortunately, if you've been following along, you have a GREAT method to test
your changes using Vagrant. In Appendix, Going Forward, we'll explore some other
resources, such as rspec-puppet, that can be used to help test.

For now, let's take a look at the other irewall module type.

The irewallchain type
The irewallchain type is something that some people may never use. It allows you to
manage the irewall chains themselves under iptables.

Chapter 7

[147]

If you recall from the earlier section, the irewall rules are contained in chains.
Firewall chains are groupings of related rules. By default, the ilter table, which
handles packet iltering, contains three chains INPUT, OUTPUT, and FORWARD. These
chains ilter packet input when they are forwarded and on output. There are other
default chains present in other tables.

It is possible to add your own chain to better organize your irewall rules. You can
then use the jump rule to send packets into your new chain.

You can use this type if you want to change some default parameters about a chain
you created.

The parameters available to the irewall chain type are as follows:

Parameter Description

ensure What happens to the chain? The valid values are present and absent.

ignore This allows the user to specify rules to be ignored when purging rules. It
can be used to ignore rules added by other services dynamically. It takes
a regular expression or an array of regular expressions that matches the
iptables-save output.

name This contains the name of the chain. It should be in chain:table:protocol
format, such as MYCHAIN:filter:IPv4.

policy This specifies the default policy of the chain. This must be one of
accept, drop, queue, and return. See the iptables documentation for
more details. The value here must be in lowercase.

provider This is the provider of the type. Usually, it is not set. Currently, only the
iptables_chain command is supported.

purge This is the boolean value indicating whether rules unmanaged by Puppet
in the chain are dropped.

The most common parameters used here are the ignore, policy, and purge
parameters. These can be used as an alternative method of purging rules from what
we will see later in the chapter. One can also set the policy to drop, for instance, as
opposed to adding an explicit drop at the bottom of your rule set.

Now we'll explore a common pattern for implementing these types.

Creating pre and post rules
Over the years, a good pattern to deal with irewall rules has emerged. This pattern
uses the concept of a class that is applied before and after all other irewall rules. This
allows us to set up rules that are in place before any other—allowing local packets,
and so on. We can also add our default rule to the post rules.

Network Security and Puppet

[148]

If you follow the directions on the puppetlabs/irewall website at https://forge.
puppetlabs.com/puppetlabs/firewall, it instructs you on how to set up pre and
post rules. We'll be using a modiied version of this procedure since we're not going
to be managing every resource on our system.

The module instructions assume that you want the module applied to all hosts. As
such, they will purge irewall rules off all hosts that run Puppet. In a perfect world,
we'd reach a point where our entire infrastructure is Puppetized and this could be
the case. This is where we aim to get with our Puppet deployments as it means all
of our resources can be tracked and audited. It also makes systems easy to rebuild.
However, as this book is targeted at users just starting with Puppet, we're going
to assume that you're retroitting an existing environment and will not add these
default rules. In our case, we will only manage irewall rules on a host we explicitly
apply our irewall module to.

To create this pattern, we will need to create two more classes. These classes will also
be in our irewall module, and we'll call them pre and post.

The pre class will contain all of the irewall rules we want to be applied before any
other rules. We'll use this to set up things like allowing established connections,
permitting connections to a localhost, and so on.

We'll use the internal features of Puppet to ensure ordering. To make this somewhat
easier, we'll use resource defaults to set them up, so we don't need to add them to
each rule.

In our pre class, we'll do the things we previously mentioned, for example, allow
connections to a localhost. Allow ICMP and established connections. To do this, we'll
make the pre class look like the following:

class fw::pre {

 Firewall {

 require => undef, # Undo require

 }

 firewall { '000 Allow localhost':

 proto => 'all',

 iniface => 'lo',

 action => 'accept',

 } ->

 firewall { '001 Allow established':

 proto => 'all',

 state => ['RELATED', 'ESTABLISHED'],

 action => 'accept',

 } ->

https://forge.puppetlabs.com/puppetlabs/firewall
https://forge.puppetlabs.com/puppetlabs/firewall

Chapter 7

[149]

 firewall { '002 Allow ICMP':

 proto => 'icmp',

 action => 'accept',

 }

}

In this class, we set a default that unsets the require parameter. Later on in the main
irewall class, we'll set the default we're overriding here.

We will go on to create a series of default rules. These are modeled off by some of the
defaults that CentOS uses in its default coniguration. They are also similar to the rules
in the documentation for the module, although they have been reordered to an order
that I think makes more sense, such as moving rules that are commonly hit in the list.

Next, we'll move on to the post class. As a reminder, this will be applied after all the
other rules.

The post class should look like the following:

class fw::post {

 firewall { '999 accept all':

 proto => 'all',

 action => 'accept',

 before => undef,

 }

}

In a production environment, this should be the deny value with log and not the
accept value. In our test case, we'll accept all for demonstration purposes.

This should seem pretty familiar by now. The only thing to note here is that we're
overriding the before parameter to be undef in the resource so that it gets applied
after the other rules.

Now we'll revisit our main module and use it to pull all this together. Let's go
ahead and open the init.pp ile again. We'll edit it. The inal contents would look
like the following:

class fw {

 Firewall {

 before => Class['fw::post'],

 require => Class['fw::pre'],

 }

 include fw::pre

Network Security and Puppet

[150]

 include fw::post

 require ::firewall

 firewall { '050 log all ssh':

 ensure => present,

 proto => 'tcp',

 port => '22',

 jump => 'LOG',

 state => 'NEW',

 }

}

Our SSH rule is still in there. We just illed in some things around it. Notice at the top
we used class defaults as mentioned earlier. In this class, every rule will have the before
and require lines applied to it. This ensures that the ordering is applied correctly, and
you don't accidentally lose connection while things are applied. Then, we have to
include our pre and post classes. The remainder of the class is as it was earlier.

Let's go ahead and copy it back into its place and run it on our agentone node.

Once this is done, your output should be as follows:

Chapter 7

[151]

Running the sudo iptables -L command will show the following ouput:

And success! You can see that our rules were applied in the order we expected.

Now that we understand the basics of the irewall module, we'll explore how you
might add it to the modules you write.

Adding irewall rules to other modules
So far, we concentrated on using a single irewall utility class. While this is useful for
site or organization wide rules, it quickly becomes unwieldy to manage if there are
speciic exceptions for given hosts or applications. As such, there must be a better
way to manage irewall rules close to the applications we're installing via Puppet.

This section will also serve to introduce another common pattern that is being
applied in the Puppet world. This is the roles and proiles pattern.

The concept of the roles and proiles pattern is that we have utility modules. These
modules are responsible for being generic enough to conigure an underlying system.
Consider modules to conigure Apache or Samba. These modules will likely not contain
any site-speciic implementation. They are also the modules that will be reused.

From these modules, we build proiles. These proiles use the underlying utility
modules to build more complete services. For instance, this is where you would use
the Apache module to deine a given website or to deine a web server. You might
also create a proile to create a given set of samba mounts using the Samba module.

Network Security and Puppet

[152]

Finally, there are the roles. These roles become a collection of proiles that build
complete systems. The role may be a speciic website. It includes proiles for the
various websites. Perhaps it also includes a database server, or a particular version of
Nginx to use for proxying. The proiles would conigure these pieces, and the roles
would bring them together into a complete system.

This pattern was irst introduced by Craig Dunn in a blog post in 2012. Since then, it
has gained a lot of popularity in the Puppet world. The original blog post and more
information can be found at http://www.craigdunn.org/2012/05/239/.

The proile would tend to be where you would deine the irewall ruleset. It is really
dificult for the underlying module to do it in a way that is correct for all users. As
such, many modules include no irewall support or only very basic support. When
you add the irewall coniguration in the proile, you can include the correct class
logic to ensure that your ordering is right, and the speciic coniguration you want is
in place.

To demonstrate this, we'll use the proile pattern and the puppetlabs/ntp module to
create an Network Time Protocol (NTP) server proile. We'll also create a role for it
even though it will contain only one class.

Let's start by installing the ntp module. To do so, run the following command on
the master:

sudo puppet module install puppetlabs-ntp

Now that we've done this, we need to create two modules—one will hold our roles,
and the other will hold our proiles. The commands to do these are as follows:

puppet module generate pupbook-roles

puppet module generate pupbook-profiles

Go ahead and accept the defaults for these, and add a description as you see it.

First, we'll conigure the role. The role we're going to create is for an NTP server,
so we'll call it ntpserver. Let's edit the manifests/ntpserver.pp ile inside our
proiles module. We want it to look as follows:

class profiles::ntpserver {

 include ::ntp

 include ::fw

 firewall { '060 allow ntp':

 proto => 'udp',

http://www.craigdunn.org/2012/05/239/

Chapter 7

[153]

 port => '123',

 action => 'accept',

 before => [Class['::fw::post'], Class['::ntp']],

 require => Class['::fw::pre'],

 } }

}

Is allowing all to NTP dangerous?
For many years, it was common practice to allow anything to talk to NTP, and
indeed the default coniguration of most NTP servers would serve time to any client.
However, there has been a recent rash of ampliication attacks utilizing a deiciency
in the default coniguration of many servers. This attack has generated multi-gigabit
attacks against a variety of targets. As such, it is best to now lock down NTP serving
to the client networks you wish to provide time to.

This is a really simplistic proile because we're implementing a simple service. We
include the ntp module with default options (although they could be overriden by
Hiera, as in the last chapter). We then include the proper irewall coniguration to
ensure that port 123 / UDP is open.

The role will be even simpler and will look as follows:

class roles::ntpserver {

 include profiles::ntpserver

}

The ntpserver role only contains the ntpserver proile. In a more complex service,
you'd see it include more. Perhaps you have a management server role that also
serves as an NTP server. You'd also normally include a common proile that includes
everything common to all systems, such as SSH rules.

Now, copy the modules into the module directory and we'll test them.

Let's apply the ntpserver role to agentone and test it. To do so, we'll include the
ntpserver role on the node deinition. It should now look as follows:

node 'agentone.book.local' {

 include roles::ntpserver

}

Network Security and Puppet

[154]

Now, let's run Puppet on agentone. When complete, you should get the output like
the following:

Once again, we'll examine the iptables output and see that the rule was applied:

You can see the rule in the table.

Chapter 7

[155]

Using this pattern, you can create a complex system and have the irewall rules
follow the proiles that require them. It also keeps site-speciic logic away from
modules that implement functionality, which promotes module reusability.

Summary
Managing system irewalls is a repetitive and an error prone task. These sorts of
tasks are great for management by Puppet. Using the puppetlabs/irewall module,
we can implement system level irewall services with ease and with coniguration,
that is easily read and audited.

In this last chapter, we learned how to use the irewall type to manage our
irewalls. Using the parameters of the type, we can manage all the aspects of the
iptables coniguration.

We then learned a design pattern that allowed us to ensure that our rules got applied
in a consistent order, and also ensure that common rules are applied to all hosts in
our environment.

Finally, we learned a pattern that allowed us to build reusable modules and attach
the irewall coniguration needed for services to the service deinitions.

In the next chapter, we'll explore centralized logging, which is very important to
utilize in a secure environment. We'll see you there!

[157]

Centralized Logging
As a security professional, one of the key requirements is that you centralize logging
so it can be analyzed. This allows you to maintain a single point where all logs are
processed and acted upon.

Even those not in the security profession can beneit from this. Gathering all
application logs beneits operations as well as development professionals.

There are a large number of products on the market, both open source and
commercial, that can be used to tackle this problem.

On the commercial side, we have offerings such as Splunk or Loggly that can
be used to gather your logs and provide analysis on them. These are both great
products that can be Puppetized.

On the open source side, the most common solution seems to be converging around
Logstash, written by Jordan Sissel and now maintained by Elasticsearch.

In this chapter, we'll cover the installation of the Logstash environment using
Puppet. Some of the concepts are similar to those used by some of the commercial
products. However, these products tend to be harder to test. As such, we'll focus on
the open source tools. In particular, we will cover the following topics:

• What Logstash is

• Installing Logstash and its prerequisites with Puppet

• Using Kibana to report on log data

• Configuring hosts using Puppet to ship log data to Logstash

When we're complete, you should be able to implement a fairly complete centralized
logging host using what we've covered in this chapter.

Let's get to it!

Centralized Logging

[158]

Welcome to logging happiness
As previously mentioned, logging presents a challenge to many organizations.
Gathering and processing log iles is required for a number of reasons. It is used to
watch for anomalous behavior as well as look for unauthorized activity.

For many years, a centralized syslog host was the most common method used to
implement centralized logging. All of the hosts would ship their logs to one place
and analysis was done there.

This worked OK for systems that used syslog for all logging. However, syslog has
some drawbacks. It lacks a good way to deal with multiline records. Additionally,
it only has a limited number of granularity levels so everything ended up logged
in several giant log iles. Attempts were made with various syslog agents to
overcome some of these challenges, but there had to be a more complete way to
handle the problem.

Enter Logstash. Logstash is nothing more than a system that takes input from
multiple sources, parses it, and stores that output elsewhere. However, this
simplicity is what gives it so much power. It can parse data from any number of
sources, including syslog, iles, or other Logstash instances. It can also write to a
variety of places, including iles, Elasticsearch, or even systems such as Nagios. This
is not in any way a comprehensive list of inputs or outputs either. There are dozens
of them available for various scenarios.

Logstash alone is a neat product, but the real power presents itself in what is called
the Elasticsearch, Logstash, and Kibana (ELK) and stack. This stack consists of
Elasticsearch on the backend for searching, Logstash for log processing, and Kibana
for analytics.

When used together, these projects create a full log management solution, complete
with quick and powerful searching as well as a web interface to interact with your
logs. Using Kibana, you can even create dashboards to allow you to graph certain
events over time, plot them on a map, or other useful things.

Installing Logstash is simple; however, the agent or the forwarder must be installed
on all hosts. Additionally, for optimal performance, several of the components that
run with Logstash are best run on their own instances.

We'll quickly stand up Logstash in demo mode to show you some of its power, then
we'll approach using Puppet to conigure your Logstash environment.

Chapter 8

[159]

Installing the ELK stack
To install the ELK stack, we'll use the RPM-based downloads for both Elasticsearch
and Logstash. Then, we'll manually install Kibana since it does not yet have a package.

Packages for these can be downloaded from Elasticsearch at http://www.
elasticsearch.org/overview/elkdownloads/. We'll download the latest version
of Elasticsearch, Logstash, and Kibana. At the time this book was written, those are
1.4.0, 1.4.2, and 3.1.2 respectively.

We'll do this work on our agentone VM, as we should work to keep our
puppetmaster standalone. First, ire up the agentone VM. If you need a reminder
on how to do this using Vagrant, refer to Chapter 1, Puppet as a Security Tool, to get
a quick refresher course.

Once it's up, go ahead and SSH to agentone. Once it's booted, run the following
commands to install Elasticsearch and Logstash on the machine:

sudo yum install https://download.elasticsearch.org/elasticsearch/
elasticsearch/elasticsearch-1.4.0.noarch.rpm

sudo yum install https://download.elasticsearch.org/logstash/logstash/
packages/centos/logstash-1.4.2-1_2c0f5a1.noarch.rpm

You may need to adjust the versions to the ones you got previously from the
downloads page.

Logstash will pull in Java as it's needed for the application to run. Once it's installed,
we'll quickly conigure it to consume our syslog data on localhost just for testing
purposes.

Once that's installed, let's set about coniguring Logstash and Elasticsearch.
Elasticsearch contains a large number of coniguration parameters, but for our simple
example, the default coniguration will sufice. As such, we'll simply enable it and
start it. To do so, run the following commands:

sudo chkconfig elasticsearch on

sudo /sbin/service elasticsearch start

Now we'll move on to Logstash. We'll conigure Logstash to read our messages ile
and send it to Elasticsearch for us to use in Kibana.

To do so, edit the /etc/logstash/conf.d/logstash-example.conf ile to contain
the following:

input {

 file {

 path => "/var/log/messages"

http://www.elasticsearch.org/overview/elkdownloads/
http://www.elasticsearch.org/overview/elkdownloads/

Centralized Logging

[160]

 start_position => "beginning"
 type => "syslog"
 }
}

filter {
 if [type] == "syslog" {
 grok {
 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp}
%{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\
[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }
 syslog_pri { }
 date {
 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd
HH:mm:ss"]
 }
 }
}

output {
 elasticsearch { host => localhost }
}

We'll save this. This coniguration ile will read the syslog data from the /var/log/
messages ile and process it into elasticsearch. It will read some metadata from
the syslog_message parameter to create the timestamp and add a host parameter.
This is straight out of the Logstash documentation with some modiications to read
the syslog data from a ile instead of syslog. One thing worth noting is that in its
default coniguration, Logstash does not run as root. Therefore, it will not be able
to read the messages ile that is readable only by root. A simple solution is to add
the Logstash user to the root group and make the ile group readable; however, for
simplicity's sake, we'll run the following command to make it readable by all:

sudo chmod 644 /var/log/messages

You should be careful to not do the preceding actions in
production. This was applied on a test system where shortcuts
can be taken to keep the examples to a reasonable length. This
book presumes you have the knowledge to properly conigure
the mode and ownership of your log iles so that the Logstash
user can pick them up. More information on permissions can
be found at https://en.wikipedia.org/wiki/File_
system_permissions.

https://en.wikipedia.org/wiki/File_system_permissions
https://en.wikipedia.org/wiki/File_system_permissions

Chapter 8

[161]

Save this ile and let's start Logstash. To do this, run the following command:

sudo chkconfig logstash on

sudo /sbin/service logstash start

Give it a few minutes to come up and index some events. You should be able to see
that it has events processed by running the following command:

curl 'http://localhost:9200/_search?pretty'

If it has successfully indexed events, you should see something similar to
the following:

Centralized Logging

[162]

Now that we have some data, we'll concentrate on getting Kibana working so that
we can see what it looks like.

To run Kibana in its current form (Version 3), we will need a web server. We'll use
Apache in this example since it ships with Red Hat and has good Puppet support.
Let's go ahead and install it.

To do so, run the following command:

sudo yum install httpd -y Once this is done, we'll download and unpack
Kibana. First, download it with the following command:

cd /tmp && wget https://download.elasticsearch.org/kibana/kibana/kibana-
3.1.2.tar.gz

You may need to adjust the preceding ile.

Kibana is in between versions. As of time of this writing, it is on
Version 3, but Version 4 is in beta. Version 4 contains a built-in
web server, so its setup will vary slightly.

Next, we'll unpack it into the root of our HTML tree. To do so, run the following
command:

cd /var/www/html && sudo tar zxvf /tmp/kibana-3.1.2.tar.gz

Finally, we can start Apache and conigure it to start at boot by running the
following two commands:

sudo chkconfig httpd on

sudo /sbin/service httpd start

We'll also need to adjust some settings on Elasticsearch to allow Kibana to connect.
Edit the /etc/elasticsearch/elasticsearch.yml ile and add the following two
lines at the bottom:

http.cors.enabled: true

http.cors.allow-origin: http://10.78.78.50

Now, restart elasticsearch by running the sudo service elasticsearch
restart command.

Now, Kibana is running on our VM server. We should be able to hit it using the IP
we have for private hosts; in this case, it is http://10.78.78.50/kibana-3.1.2.

You should be greeted with a screen that looks like the following:

Chapter 8

[163]

If you scroll down, you'll see a Logstash dashboard. Go ahead and click on it. It'll
give you a nice starting point to conigure a dashboard. This screen looks like the
following screenshot:

Centralized Logging

[164]

On this main screen, we can see several sections. At the top of the page, there is a
query bar. If you type in that box, you can search all of the following events. For
instance, typing yum will let you search for any event that contains yum.

The middle box contains a time series histogram of events. It just shows how many
events occurred in a given bucket of time. You can zoom in and out with your mouse
and update the bottom pane.

The bottom pane contains all of the raw events in a paginated format. Additionally,
it contains a box on the left that is intended to help you quickly ilter data. I
encourage you to explore and play with this interface. It's fairly easy to use and the
documentation is good.

Kibana and Logstash are complex enough that one could write a book about just
them (and indeed, at least one does exist). The purpose of this section was to give
you enough of an introduction to know why you would want to use them, and what
you can do with them. Now we'll move on to managing them with Puppet.

Logstash and Puppet
When coniguring any service, especially a service that is present on many host, one
should look to Puppet for help. In the case of Logstash, we can conigure all of its
components using Puppet, and we can conigure our hosts to report data as well.
In this section, we'll see how to install the base Logstash components using Puppet.
Depending on the desired coniguration, this could be repeated for each host, or you
could use another system to transport logs, one of which we'll see in a later section.

We'll be extending the roles and proiles concept we introduced in the previous
chapter to conigure these services. As such, make sure you still have these
modules available.

Let's begin with Elasticsearch.

Installing Elasticsearch
Elasticsearch has a large variety of supported installation conigurations. It can be
installed as a cluster that shares data and allows searches to be split. It can also be
installed in a single node coniguration. In each coniguration, there are a number of
knobs that can be tuned to set things, such as the node name, instance name, and so on.

Elasticsearch provides an oficial Puppet module to manage this installation. This
module is one of the new Puppet approved modules. This means the module has
good support and is well designed.

Chapter 8

[165]

In our test case, we'll be accepting most of the defaults for the installation. In fact,
we'll essentially be duplicating what we did previously where we collocated the
elasticsearch server with the logstash host. There will only be a single node in
this cluster that holds the data.

In a production situation, you might wish to run multiple nodes in your cluster or,
depending on your usage, even multiple clusters. Fortunately, using facts, this is a
fairly easy operation.

To use the module, we irst have to install it. To do so, run the following on
the master:

sudo puppet module install elasticsearch/elasticsearch

Now that we have the module installed, we'll create a proile for it. As you can recall,
we use proiles to combine the utility module (in this case, the Elasticsearch module)
into a module we can use locally. As such, let's create a logstash-elasticsearch
proile that creates an elasticsearch instance for our Logstash installation. To
do so, go to the module directory for our proiles module, and create a new ile
called manifests/logstash-elasticsearch.pp. We want the contents to look
like the following:

class profiles::logstash-elasticsearch {

 include elasticsearch

 elasticsearch::instance { "${hostname}-ls-es01":

 config => {

 'http.cors.enabled' => 'true',

 'http.cors.allow-origin' => "http://${ipaddress_eth1}",

 }

 }

}

Once that's done, we'll create a role that uses this proile. We'll call the logstash-
server role. In production, we'd likely have a separate logstash-elasticsearch
role we'd apply to multiple hosts, but for our simple test (Or if you have a smaller
environment—less than 50 or so hosts), we can create it all on a single host.

One of the nice things about Puppetizing all of this is that we can parameterize this
in such a way that adding an additional Elasticsearch node becomes simple, and
reshaping the cluster is also easy.

For now, let's get our role created and test it out.

Centralized Logging

[166]

To do so, let's create our role in the roles module under manifests/logstash-
server.pp. We want the content to be as follows:

class roles::logstash-server {
 include profiles::logstash-elasticsearch
}

Finally, let's apply the role to our agentone node by inserting the following into the
/etc/puppet/manifests/site.pp ile:

node 'agentone.book.local' {
 include roles::logstash-server
}

Now go ahead and run Puppet on agentone. Remember that we're going to have to
sign the certiicate if you restarted the VM. Once complete, you should see output
such as the following:

Chapter 8

[167]

If you now check the process table with ps auxww|grep elastic, you'll see that we
have two instances of elasticsearch started now. This is because we've created a
new instance of elasticsearch with our given name. At this point, we should stop
the old elasticsearch service and disable it. To do so, run the following commands:

sudo chkconfig elasticsearch off

sudo /sbin/service elasticsearch stop

We also then want to restart our current cluster so it gets the right port. This
is optional, but it sure makes our lives easier in the future. To do so, run the
following command:

sudo /sbin/service elasticsearch-agentone-ls-es01 restart

Once complete, let's test it using curl and move on. Run the command curl
localhost:9200 and you should see output like the following:

{

 "status" : 200,

 "name" : "agentone-agentone-ls-es01",

 "cluster_name" : "elasticsearch",

 "version" : {

 "number" : "1.4.0",

 "build_hash" : "bc94bd81298f81c656893ab1ddddd30a99356066",

 "build_timestamp" : "2014-11-05T14:26:12Z",

 "build_snapshot" : false,

 "lucene_version" : "4.10.2"

 },

 "tagline" : "You Know, for Search"

}

You can see our new cluster name, so we know all is good. It appended our
hostname to the instance name, so it's present twice, but that is the price we pay for
the instance in Puppet being named well.

Now let's work on Logstash.

Installing Logstash
Much like the elasticsearch module, the logstash module is provided
by Elasticsearch. This module is fairly mature but is not part of the Puppet
Approved program.

Centralized Logging

[168]

There is a fairly tight coupling between the version of the module and the version
of Logstash it manages. In this case, we will want a Version > 0.5.0 since we're
managing Logstash 1.4. This is the latest version at the time this book was written,
so we can simply install it. If there are newer versions, the install commands would
need to be adjusted accordingly to match the version you wish to work with.

To install the module on the master, run the following command:

sudo puppet module install elasticsearch-logstash

This will get the module installed and should be second nature by now.

The logstash module uses a concept of coniguration ile snippets to perform its
work. It's used to rely on a fairly robust set of deines to do the work, however,
as conigurations became more complex, creating a system of types and plugins
to manage all possibilities became more dificult. As such, the project reverted to
using ile snippets that expose all of the possible coniguration functionalities in the
logstash module.

As mentioned previously, we'll deine a proile, and then we'll deine a role to
use that.

First, let's create our coniguration snippets. Basically, we're going to slice up the
coniguration ile we used in the irst section into three pieces. We'll then conigure
Logstash to use these pieces in a coniguration.

Let's create the input from the messages ile. To do this, we'll take the input section of
the coniguration ile from earlier and put it in a ile in the module path. We can then
use the logstash::configfile method to include it.

Before we can do that, we need to create the ile directory in our module. Inside the
proiles module, run the mkdir files command to create the directory to hold static
iles served by the master.

Then, let's edit the files/messages-input.conf ile and add the following
contents:

input {

 file {

 path => "/var/log/messages"

 start_position => "beginning"

 type => "syslog"

 }

}

Chapter 8

[169]

This should look familiar from earlier. We're creating a ile input that will pick up
the messages ile and classify it as syslog. It'll also pick up the entire ile through the
irst pass.

Now, let's add the second coniguration ile snippet. We'll call this ile files/
syslog-filter.conf. It should look as follows:

filter {

 if [type] == "syslog" {

 grok {

 match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp}
%{SYSLOGHOST:syslog_hostn

 add_field => ["received_at", "%{@timestamp}"]

 add_field => ["received_from", "%{host}"]

 }

 syslog_pri { }

 date {

 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd
HH:mm:ss"]

 }

 }

}

Note that the irst match line was wrapped. This should also be reviewed as it's the
same match line as the earlier one. It takes anything with a syslog type and applies
three ilters. The irst one is a grok ilter that splits the message into parts. The
second is a ilter that can parse the syslog priority. The inal one is a ilter that parses
the syslog type's date to set the event timestamp for Logstash internally.

Finally, let's conigure our output ile. We'll put this one in the files/
elasticsearch-output.conf ile. The contents are as follows:

output {

 elasticsearch { cluster => "Elasticsearch" }

}

In this case, we're sending the output to the elasticsearch cluster. This is a bit
different than earlier the one, as it uses discovery instead of pointing to a static host.
Your use of this depends on your paranoia. If your network is well controlled, it is
safe to use discovery. If you are worried about unknown hosts joining the cluster,
you should statically set the hosts to connect to using a template.

Centralized Logging

[170]

Now that we have our iles in place, we can go ahead and create our proile.
We'll create it as the manifests/logstash.pp proile. We'll create the contents
to look as follows:

class profiles::logstash {

 class { '::logstash':

 manage_repo => true,

 repo_version => '1.4',

 purge_configdir => true,

 }

 logstash::configfile { 'messages-input':

 order => 100,

 source => 'puppet:///modules/profiles/messages-input.conf',

 }

 logstash::configfile { 'syslog-filter':

 order => 200,

 source => 'puppet:///modules/profiles/syslog-filter.conf',

 }

 logstash::configfile { 'elasticsearch-output':

 order => 900,

 source => 'puppet:///modules/profiles/elasticsearch-output.conf',

 }

}

Note that the last source line was wrapped.

This proile will install Logstash, telling it to manage the repository on the
system and purge unmanaged coniguration iles. It then goes on to create three
coniguration ile resources for our snippets. We set the order to ensure that they get
added in the proper order, using numbers with 100 to allow us plenty of room to
expand in the future.

Now we add it to our logstash-server role in our roles proile, which should now
look like the following:

class roles::logstash-server {

 include profiles::logstash-elasticsearch

 include profiles::logstash

}

Chapter 8

[171]

Once that's done, we can go ahead and run Puppet on agentone again and observe
the output. It should look as follows:

Once this completes, run the curl command from the irst section. It is as follows:

curl 'http://localhost:9200/_search?pretty'

You should see the results returned, so on to Kibana!

Reporting on log data
As we saw earlier, Kibana is the graphical dashboard frontend in the ELK stack. It
provides a rich interface that allows you to turn normal boring log data (or any data
in Elasticsearch actually), into colorful dashboards that contain operational data.
We'll go over to install Kibana via Puppet here. Since in Version 3 this is just a web
application, this is a fairly straightforward procedure.

Centralized Logging

[172]

Installing Kibana
Since Kibana is just a web application running as static HTML, we'll conigure it
using a local web server as we did in the irst section. Much like in that section we'll
be using Apache to handle the installation of Kibana.

This will vary a bit from how we've handled the past installations. We're going to
create an end-to-end module to handle this instead of relying on a community module.

The irst step is to create our module to do it. We'll call it the pupbook-kibana
module. We're doing this because none of the community modules present solve
exactly what we're looking to do, and because it's a good exercise in a complete
functioning module. To get started, run the following command to generate our
module template:

puppet module generate pupbook-kibana

Now, we'll start lushing our module out. First, we'll create a class to install Kibana.
We'll call it the kibana::install class. To do so, let's edit the manifests/install.
pp ile and add the following content:

class kibana::install (

 $version = "3.1.2",

 $site = "https://github.com/elasticsearch/kibana/archive/",

 $target = "/var/www/kibana",

 $archtarget = "/opt/",

) {

 validate_string($version)

 validate_string($site)

 $archive = "v${version}.tar.gz"

 $downloadurl = "${site}/${archive}"

 file { $archtarget:

 ensure => directory,

 }

 file { $target:

 ensure => directory,

 }

 # We use curl to download

 package { 'curl':

 ensure => present,

 }

Chapter 8

[173]

 exec { 'download-kibana':

 command => "curl -L -s -S -k -o ${archtarget}/${archive}
${downloadurl}",

 path => "/bin:/usr/bin",

 creates => "${archtarget}/${archive}",

 require => [Package['curl'], File[$archtarget], File[$target]],

 notify => Exec['extract-kibana'],

 }

 exec { 'extract-kibana':

 command => "tar --strip-components=1 -zxf
${archtarget}/${archive} -C ${target}",

 path => "/bin:/usr/bin",

 refreshonly => true,

 }

}

Be aware that a few of the preceding lines were wrapped. They should be obvious,
but if you have questions, see the code included with the book.

This is a fairly complete example complete with some validation. We're allowing
parameters to be passed to the class to change what version we download, or where
we install.

First, we set some variables to make our lives a bit easier, containing things like our
archive name and the full URL we're downloading from.

Then, we go on to ensure that the directories we need are present, and the curl
package we use to download software is installed.

Finally, we hit the interesting parts. We have two exec resources here that do
the meat of the work. The irst one sets up a download of the kibana source to a
temporary location (the /opt location by default). This downloads the ile from
GitHub by default. It then notiies the other exec that will extract the archive contents
to our target directory.

Ideally, we'd like all the software to be distributed by package, and we could easily use
a tool to create the RPM. We would then need a repository infrastructure to hold it,
and so on. This is a great goal if you have multiple packages you're dealing with, but if
it ends up simply being a single package, this method will work. There are even utility
modules on the forge that can assist. Use the search term archive to ind them.

Once this install method runs, we will have a fully installed and working copy
of Kibana. We now need to conigure Apache to serve it. To do this, we'll use the
puppetlabs/apache module.

Centralized Logging

[174]

First, we need to install it with our now super familiar command on the
Puppet Master:

sudo puppet module install puppetlabs/apache

Now that it's installed, we'll create the necessary glue in our kibana module to use it
to serve the pages.

We can do this in our proile for Kibana, since that's what the proile is normally for.
However, I ind that since Kibana requires a web server to operate, it's a reasonable
choice to go ahead and conigure it in that module. The only reason you may not
want to is if you were to create a reusable module where the end user may wish to
use a different web server to serve up kibana.

Let's edit the manifests/apache.pp ile in our kibana module, and we'll make it
look as follows:

class kibana::apache {

 class { '::apache':

 default_vhost => false,

 }

 apache::vhost { 'kibana':

 docroot => '/var/www/kibana/src/',

 port => '80',

 require => Class['kibana::install'],

 }

}

This fairly simple class creates the apache::vhost for our Kibana coniguration.
If we had to interact with other apache::vhost, we'd need a more lexible way to
handle this (unless we wanted Kibana to be the default vhost), but we shouldn't be
mixing services that are unrelated anyway. A perfectly reasonable thing to do is to
run this interface on one of the logstash hosts as it is very lightweight.

We can create one last class that handles coniguring Kibana. However, in this case,
the default coniguration will sufice as it did earlier.

Let's glue it all together by adding it to the init.pp ile. Edit the manifests/init.
pp ile and add the following:

class kibana {

 include kibana::install

 include kibana::apache

}

Chapter 8

[175]

Continuing on this journey, we'll add this class directly to the role. Since it's speciic
to the site, we can skip the proile setup here and add it straight to the role. Edit the
roles/manifests/logstash-server.pp ile to make it look as follows:

class roles::logstash-server {

 include profiles::logstash-elasticsearch

 include profiles::logstash

 include kibana

}

Whew! That was a lot of work to get the entire stack up. None of it was dificult, but
since we created an entire module from scratch it had some more steps.

We've already applied the role to our host, so it's just a matter of running Puppet
on the agentone host now to see the results. When you do so, the output should be
similar to the following screenshot:

Centralized Logging

[176]

Now, hit http://10.78.78.50 with a browser. You should be greeted with the
Kibana welcome page we saw in the irst section of the chapter.

Now that we've got the entire ELK stack Puppetized, let's take a look at how we can
use Puppet to automate collecting data from each of our hosts.

Coniguring hosts to report log data
Now that we've been through the work of Puppetizing the host infrastructure for
Logstash, let's take a look at how to Puppetize the collection on our hosts. There are a
large number of ways to do this that contain various tradeoffs on things such as local
parsing and the size of the shipping solution.

For this exercise, we'll use Redis as a message queue. This is the recommended
coniguration if you wish to use a message queue based system, if you wish to use a
message queue and do not have one installed. It has the downside of having added
complexity due to needing Redis installed. However, our Redis installation in this
example is quite simple using a community module.

This is a well-supported and tested coniguration. There are other possible message
queues one could use instead of Redis, so if your environment has one set up, by all
means use that one.

The irst step is to get Redis installed. There are a stack of community modules that
can do this. We'll be using the most popular one in terms of downloads, which is the
thomasvandoren/redis command. To do this, irst we must get it installed. The all
too familiar following command does it:

sudo puppet module install thomasvandoren/redis

Now, we'll add a new proile for a Redis server. This will use a very default
coniguration, so it will be rather small. In our roles module, create the
manifests/logstash-redis.pp ile. The contents are as follows:

class profiles::logstash-redis {
 include redis
}

It's that simple. We'll use all of the default redis coniguration, including
the password. In production, you'd likely want to set authentication up for
these purposes.

Now, we'll create a new redis input for our indexer. To do this, let's irst create the
coniguration ile snippet for the input in the proiles module. To do this, edit the
files/redis-input.conf ile and add the following contents:

input {

 redis {

Chapter 8

[177]

 host => "localhost"

 data_type => "list"

 key => "logstash"

 type => "redis-input"

 }

}

This tells Elasticsearch that we want a redis-input listening on localhost. We'll
use the list data type, which is one of the methods Redis has to move data. We'll
set our key or queue to logstash, and the type (if not speciied on the shipper) to
redis-input.

Now, we can go ahead and conigure our proile for logstash to use this. To do this,
we'll add a new stanza to the manifests/logstash.pp ile to include our redis
coniguration ile. We'll place it right after our messages input and it should look
as follows:

 logstash::configfile { 'redis-input':

 order => 101,

 source => 'puppet:///modules/profiles/redis-input.conf',

 }

Additionally, we'll add our new logstash-redis proile to our logstash-server
role. To do this, edit the manifests/logstash-server.pp ile in our roles module
and make it look as follows:

class roles::logstash-server {

 include profiles::logstash-elasticsearch

 include profiles::logstash

 include kibana

 include redis

}

Once done, go ahead and run Puppet on agentone. You should see it install Redis
and reconigure Logstash. This may take some time as the module we're using
actually compiles and installs Redis. We're going to omit the screenshot of the
output for brevity (we've seen plenty of such outputs by now).

Now that we have that we can focus on the shipper side. To do this, we'll create
a new proile called logstash-shipper. We'll base it on the logstash proile.

There is an opportunity for improvement here by bringing the
common pieces of this coniguration together. This is a good
opportunity for you to practice what you've learned.

Centralized Logging

[178]

First, let's make our redis-input ile. For this example, we'll hardcode the IP to send
to. We'd want to do this via a template in a bigger environment, likely obtained from
Hiera. However, we're once again trying to keep these examples shorter and more
simple. Edit the files/redis-output.conf ile under the proiles module and add
the following content:

output {
 redis {
 host => '10.78.78.50'
 data_type => 'list'
 key => 'logstash'
 }
}

This looks very much like our input, but in this case, we're statically setting the host
to our Redis master.

Now, let's create the proile. Edit the manifests/logstash-shipper.pp ile and
include the following content:

class profiles::logstash-shipper {

 class { '::logstash':
 manage_repo => true,
 repo_version => '1.4',
 purge_configdir => true,
 }

 logstash::configfile { 'messages-input':
 order => 100,
 source => 'puppet:///modules/profiles/messages-input.conf',
 }
 logstash::configfile { 'syslog-filter':
 order => 200,
 source => 'puppet:///modules/profiles/syslog-filter.conf',
 }
 logstash::configfile { 'redis-output':
 order => 900,
 source => 'puppet:///modules/profiles/redis-output.conf',
 }

}

This is very close to our logstash proile, with only the output changing to use the
new coniguration we've put in place. Now, we can create a logstash-shipper role
by creating the manifests/logstash-shipper.pp ile under the roles module, as
shown in the following code:

class roles::logstash-shipper {

Chapter 8

[179]

 include profiles::logstash-shipper

}

This is another case where the role ends up being very short and only contains the
single module.

Now, let's add this as a default coniguration in our site.pp ile. Under the /etc/
puppet/manifests/site.pp code, add the following default node deinition:

node default {

 include roles::logstash-shipper

}

Finally, we're ready to go. On the master, run the sudo chmod 644 /var/log/
messages command to make our messages ile readable by Logstash, then run Puppet.

Now, let's return to our Kibana installation and see what we see there. We'll take
a short cut straight to the Logstash dashboard by going to http://10.78.78.50/
index.html#/dashboard/file/logstash.json. Once there scroll down to the
ilter section on the left-hand side and click on the host. You should see the output
as follows:

Centralized Logging

[180]

You can see that we now have data from both our Puppet master as well as
agentone. If you start up agenttwo, sign its certiicate, and run Puppet,
you would see logs from that host also.

Using this method, we can now ship logs from all of our hosts to our single
centralized Logstash server and analyze them using Kibana.

Summary
In this chapter, we explored centralized logging. We've seen why one might want to
implement it and what the beneits are.

We then looked at the Logstash environment and the ELK stack. This includes
Elasticsearch, Logstash, and Kibana that provide a complete log management
solution that can scale to many hosts.

After doing this, we explored how to install all of these pieces using Puppet. We
went through the acts of installing Elasticsearch, Logstash, and then Kibana using
Puppet to automate the system.

Finally, we explored how to use Puppet to manage your other hosts to ship logs to
this centralized logging solution and do this in a repeatable manner.

By doing all this, we saw many examples of how to implement solutions in
Puppet. The building block of tools available to you continues to grow. While we
didn't explore how to bring every log into this solution, we've given you enough
knowledge to expand what we've learned to be used in other situations.

More information on the ELK stack can be found at http://www.elasticsearch.
org/overview/.

In the next chapter, we'll cover how to use Puppet to help manage SELinux and
audited conigurations.

http://www.elasticsearch.org/overview/
http://www.elasticsearch.org/overview/

[181]

Puppet and OS

Security Tools
We learned a lot so far about using Puppet to secure your systems as, well as how to
use it to make groups of systems more secure. However, in all of that, we've not yet
covered some of the basic OS-level functions that are available to secure a system. In
this chapter, we'll review several of those functions.

SELinux is a powerful tool in the security arsenal. Most administrators experience
with it, is along the lines of "how can I turn that off ?" This is born out of frustration
with the poor documentation about the tool, as well as the tedious nature of the
coniguration.

While Puppet cannot help you with the documentation (which is getting better all
the time), it can help you with some of the other challenges that SELinux can bring.
That is, ensuring that the proper contexts and policies are in place on the systems
being managed.

In this chapter, we'll cover the following topics related to OS-level security tools:

• A brief introduction to SELinux and auditd

• The built-in Puppet support for SELinux

• Community modules for SELinux

• Community modules for auditd

At the end of this chapter, you should have enough skills so that you no longer need
to disable SELinux. However, if you still need to do so, it is certainly possible to do
via the modules presented here.

Puppet and OS Security Tools

[182]

Introducing SELinux and auditd
During the course of this chapter, we'll explore the SELinux framework for Linux
and see how to automate it using Puppet. As part of the process, we'll also review
auditd, the logging and auditing framework for Linux. Using Puppet, we can
automate the coniguration of these often-neglected security tools, and even move
the coniguration of these tools for various services to the modules that conigure
those services.

The SELinux framework
SELinux is a security system for Linux originally developed by the United States
National Security Agency (NSA). It is an in-kernel protection mechanism designed
to provide Mandatory Access Controls (MACs) to the Linux kernel.

SELinux isn't the only MAC framework for Linux. AppArmor is an alternative
MAC framework included in the Linux kernel since Version 2.6.30. We choose to
implement SELinux; since it is the default framework used under Red Hat Linux,
which we're using for our examples.

More information on AppArmor can be found at
http://wiki.apparmor.net/index.php/Main_Page.

These access controls work by conining processes to the minimal amount of iles
and network access that the processes require to run. By doing this, the controls
limit the amount of collateral damage that can be done by a process, which
becomes compromised.

SELinux was irst merged to the Linux mainline kernel for the 2.6.0 release. It was
introduced into Red Hat Enterprise Linux with Version 4, and into Ubuntu in
Version 8.04. With each successive release of the operating systems, support for
SELinux grows, and it becomes easier to use.

SELinux has a couple of core concepts that we need to understand to properly
conigure it. The irst are the concepts of types and contexts. A type in SELinux is
a grouping of similar things. Files used by Apache may be httpd_sys_content_t,
for instance, which is a type that all content served by HTTP would have. The httpd
process itself is of type httpd_t. These types are applied to objects, which represent
discrete things, such as iles and ports, and become part of the context of that object.
The context of an object represents the object's user, role, type, and optionally data
on multilevel security. For this discussion, the type is the most important component
of the context.

http://wiki.apparmor.net/index.php/Main_Page

Chapter 9

[183]

Using a policy, we grant access from the subject, which represents a running
process, to various objects that represent iles, network ports, memory, and so on.
We do that by creating a policy that allows a subject to have access to the types it
requires to function.

SELinux has three modes that it can operate in. The irst of these modes is disabled.
As the name implies, the disabled mode runs without any SELinux enforcement.
The second mode is called permissive. In permissive mode, SELinux will log any
access violations, but will not act on them. This is a good way to get an idea of where
you need to modify your policy, or tune Booleans to get proper system operations.
The inal mode, enforcing, will deny actions that do not have a policy in place. Under
Red Hat Linux variants, this is the default SELinux mode. By default, Red Hat 6 runs
SELinux with a targeted policy in enforcing mode. This means, that for the targeted
daemons, SELinux will enforce its policy by default.

An example is in order here, to explain this well.

So far, we've been operating with SELinux disabled on our hosts. The irst step in
experimenting with SELinux is to turn it on. We'll set it to permissive mode at irst,
while we gather some information. To do this, after starting our master VM, we'll
need to modify the SELinux coniguration and reboot. While it's possible to change
from enforcing mode to either permissive or disabled mode without a reboot, going
back requires us to reboot.

Let's edit the /etc/sysconfig/selinux ile and set the SELINUX variable to
permissive on our puppetmaster. Remember to start the vagrant machine and
SSH in as it is necessary. Once this is done, the ile should look as follows:

Puppet and OS Security Tools

[184]

Once this is complete, we need to reboot. To do so, run the following command:

sudo shutdown -r now

Wait for the system to come back online.

Once the machine is back up and you SSH back into it, run the getenforce command.
It should return permissive, which means SELinux is running, but not enforced.

Now, we can make sure our master is running and take a look at its context. If it's
not running, you can start the service with the sudo service puppetmaster start
command. Now, we'll use the -Z lag on the ps command to examine the SELinux
lag. Many commands, such as ps and ls use the -Z lag to view the SELinux data.
We'll go ahead and run the following command to view the SELinux data for the
running puppetmaster:

ps -efZ|grep puppet

When you do this, you'll see a Linux output, such as follows:

unconfined_u:system_r:initrc_t:s0 puppet 1463 1 1 11:41 ? 00:00:29
/usr/bin/ruby /usr/bin/puppet master

If you take a look at the irst part of the output line, you'll see that Puppet is running
in the unconfined_u:system_r:initrc_t context. This is actually somewhat of
a bug and a result of the Puppet policy on CentOS 6 being out of date. We should
actually be running under the system_u:system_r:puppetmaster_t:s0 context,
but the policy is for a much older version of Puppet, so it runs unconined.

Let's take a look at the sshd process to see what it looks like also. To do so, we'll just
grep for sshd instead:

ps -efZ|grep sshd

The output is as follows:

system_u:system_r:sshd_t:s0-s0:c0.c1023 root 1206 1 0 11:40 ? 00:00:00
/usr/sbin/sshd

This is a more traditional output one would expect. The sshd process is running
under the system_u:system_r:sshd_t context. This actually corresponds to the
system user, the system role, and the sshd type.

Chapter 9

[185]

The user and role are SELinux constructs that help you allow role-based access
controls. The users do not map to system users, but allow us to set a policy based on
the SELinux user object. This allows role-based access control, based on the SELinux
user. Previously the unconfined user was a user that will not be enforced.

Now, we can take a look at some objects. Doing a ls -lZ /etc/ssh command
results in the following:

As you can see, each of the iles belongs to a context that includes the system user, as
well as the object role. They are split among the etc type for coniguration iles and
the sshd_key type for keys.

The SSH policy allows the sshd process to read both of these ile types. Other
policies, say, for NTP , would potentially allow the ntpd process to read the etc
types, but it would not be able to read the sshd_key iles.

This very ine-grained control is the power of SELinux. However, with great power
comes very complex coniguration. Coniguration can be confusing to set up, if it
doesn't happen correctly. For instance, with Puppet, the wrong type can potentially
impact the system if not dealt with.

Fortunately, in permissive mode, we will log data that we can use to assist us with
this. This leads us into the second half of the system that we wish to discuss, which
is auditd.

In the meantime, there is a bunch of information on SELinux
available on its website at http://selinuxproject.
org/page/Main_Page. There's also a very funny, but
informative, resource available describing SELinux at
https://people.redhat.com/duffy/selinux/
selinux-coloring-book_A4-Stapled.pdf.

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Puppet and OS Security Tools

[186]

The auditd framework for audit logging
SELinux does a great job at limiting access to system components; however,
reporting what enforcement took place was not one of its objectives.

Enter the auditd. The auditd is an auditing framework developed by Red Hat. It is
a complete auditing system using rules to indicate what to audit. This can be used to
log SELinux events, as well as much more.

Under the hood, auditd has hooks into the kernel to watch system calls and other
processes. Using the rules, you can conigure logging for any of these events. For
instance, you can create a rule that monitors writes to the /etc/passwd ile. This
would allow you to see if any users were added to the system. We can also add
monitoring of iles, such as lastlog and wtmp to monitor the login activity. We'll
explore this example later when we conigure auditd.

To quickly see how a rule works, we'll manually conigure a quick rule that will log
the time when the wtmp ile was edited. This will add some system logging around
users logging in.

To do this, let's edit the /etc/audit/audit.rules ile to add a rule to monitor this.
Edit the ile and add the following lines:

-w /var/log/wtmp -p wa -k logins

-w /etc/passwd –p wa –k password

We'll take a look at what the preceding lines do. These lines both start with the –w
clauses. These indicate the iles that we are monitoring. Second, we have the –p
clauses. This lets you set what ile operations we monitor. In this case, it is write and
append operations. Finally, with the the –k entries, we're setting a keyword that is
logged and can be iltered on.

This should go at the end of the ile. Once it's done, reload auditd with the following
command:

sudo service auditd restart

Once this is complete, go ahead and log another ssh session in. Once you can simply
log, back out. Once this is done, take a look at the /var/log/audit/audit.log ile.
You should see the content like the following:

type=SYSCALL msg=audit(1416795396.816:482): arch=c000003e syscall=2
success=yes exit=8 a0=7fa983c446aa a1=1 a2=2 a3=7fff3f7a6590 items=1
ppid=1206 pid=2202 auid=500 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0
sgid=0 fsgid=0 tty=(none) ses=51 comm="sshd" exe="/usr/sbin/sshd"
subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 key="logins"

Chapter 9

[187]

type=SYSCALL msg=audit(1416795420.057:485): arch=c000003e syscall=2
success=yes exit=7 a0=7fa983c446aa a1=1 a2=2 a3=8 items=1 ppid=1206
pid=2202 auid=500 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=(none) ses=51 comm="sshd" exe="/usr/sbin/sshd"
subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 key="logins"

There are tons of ields in this output, including the SELinux context, the userID, and
so on. Of interest is the auid, which is the audit user ID. On commands run via the
sudo command, this will still contain the user ID of the user who called sudo. This is
a great way to log commands performed via sudo.

Auditd also logs SELinux failures. They get logged under the type AVC. These
access vector cache logs will be placed in the auditd log ile when a SELinux
violation occurs.

Much like SELinux, auditd is somewhat complicated. The
intricacies of it are beyond the scope of this book. You can
get more information at http://people.redhat.com/
sgrubb/audit/.

SELinux and Puppet
Puppet has direct support for several features of SELinux. There are two native
Puppet types for SELinux: selboolean and selmodule. These types support setting
SELinux Booleans and installing SELinux policy modules.

SELinux Booleans are variables that impact on how SELinux behaves. They are set to
allow various functions to be permitted. For instance, you set a SELinux Boolean to
true to allow the httpd process to access network ports.

SELinux modules are groupings of policies. They allow policies to be loaded in a
more granular way. The Puppet selmodule type allows Puppet to load these modules.

Additionally, there is support in the ile type for setting the SELinux data on iles, as
you may recall from an earlier chapter.

The selboolean type
The targeted SELinux policy that most distributions use is based on the SELinux
reference policy. One of the features of this policy is the use of Boolean variables that
control actions of the policy.

http://people.redhat.com/sgrubb/audit/
http://people.redhat.com/sgrubb/audit/

Puppet and OS Security Tools

[188]

There are over 200 of these Booleans on a Red Hat 6-based machine. We can
investigate them by installing the policycoreutils-python package on the
operating system. You can do this by executing the following command:

sudo yum install policycoreutils-python

Once installed, we can run the semanage boolean -l command to get a list of the
Boolean values, along with their descriptions. The output of this will look as follows:

As you can see, there exists a very large number of settings that can be reconigured,
simply by setting the appropriate Boolean value.

The selboolean Puppet type supports managing these Boolean values. The provider
is fairly simple, accepting the following values:

Parameter Description

name This contains the name of the Boolean to be set. It defaults to the title.

persistent This checks whether to write the value to disk for the next boot.

provider This is the provider for the type. Usually, the default getsetsebool
value is accepted.

value This contains the value of the Boolean, true or false.

Chapter 9

[189]

Usage of this type is rather simple. We'll show an example that will set the
puppetmaster_use_db parameter to true value. If we are using the SELinux
Puppet policy, this would allow the master to talk to a database. For our use, it's
a simple unused variable that we can use for demonstration purposes.

As a reminder, the SElinux policy for Puppet on CentOS 6 is outdated, so setting
the Boolean does not impact the version of Puppet we're running. It does, however,
serve to show how a Boolean is set.

To do this, we'll create a sample role and proile for our puppetmaster. This is
something that would likely exist in a production environment to manage the
coniguration of the master. In this example, we'll simply build a small proile and
role for the master.

Let's start with the proile. Copy over the proiles module we've slowly been
building up, and let's add a puppetmaster.pp proile. To do so, edit the profiles/
manifests/puppetmaster.pp ile and make it look as follows:

class profiles::puppetmaster {

 selboolean { 'puppetmaster_use_db':

 value => on,

 persistent => true,

 }

}

Then, we'll move on to the role. Copy the roles, and edit the roles/manifests/
puppetmaster.pp ile there and make it look as follows:

class roles::puppetmaster {

 include profiles::puppetmaster

}

Once this is done, we can apply it to our host. Edit the /etc/puppet/manifests/site.
pp ile. We'll apply the puppetmaster role to the puppetmaster machine, as follows:

node 'puppet.book.local' {

 include roles::puppetmaster

}

Puppet and OS Security Tools

[190]

Now, we'll run Puppet and get the output as follows:

As you can see, it set the value to on when run. Using this method, we can set any of
the SELinux Boolean values we need for our system to operate properly.

More information on SELinux Booleans with information
on how to obtain a list of them can be found at https://
access.redhat.com/documentation/en-US/Red_
Hat_Enterprise_Linux/6/html/Security-Enhanced_
Linux/sect-Security-Enhanced_Linux-Working_
with_SELinux-Booleans.html.

The selmodule type
The other native type inside Puppet is a type to manage the SELinux modules.
Modules are compiled collections of the SELinux policy. They're loaded into the
kernel using the selmodule command. This Puppet type provides support for this
mechanism.

The available parameters are as follows:

Parameter Description

name This contains the name of the module— it defaults to the title

ensure This is the desired state—present or absent

provider This specifies the provider for the type—it should be
selmodule

selmoduledir This is the directory that contains the module to be installed

selmodulepath This provides the complete path to the module to be installed
if not present in selmoduledir

syncversion This checks whether to resync the module if a new version is
found, such as ensure => latest

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html

Chapter 9

[191]

Using the module, we can take our compiled module and serve it onto the system
with Puppet. We can then use the module to ensure that it gets installed on the
system. This lets us centrally manage the module with Puppet.

The community module that we'll be using to manage SELinux in a later section uses
this type to load the module into Puppet. We'll see an example where this module
compiles a policy and then installs it, so we won't show a speciic example here.
Instead, we'll move on to talk about the last SELinux-related component in Puppet.

File parameters for SELinux
The inal internal support for SELinux types comes in the form of the ile type. We
covered these options briely in an earlier chapter, but really didn't add any details,
so we'll do so here.

The ile type parameters are as follows:

Parameter Description

selinux_ignore_defaults By default, Puppet will use the matchpathcon
function to set the context of a file. This overrides that
behavior if set to true value.

Selrange This sets the SELinux range component. We've not
really covered this. It's not used in most mainstream
distributions at the time this book was written.

Selrole This sets the SELinux role on the file.

seltype This sets the SELinux type on the file.

seluser This sets the SELinux role on the file.

Usually, if you place iles in the correct location (the expected location for a service)
on the ilesystem, Puppet will get the SELinux properties correct via its use of the
matchpathcon function. This function (which also has a matching utility) applies a
default context based on the policy settings. Setting the context manually is used in
cases where you're storing data outside the normal location. For instance, you might
be storing web data under the /opt ile.

The preceding types and providers provide the basics that allow you to manage
SELinux on a system. We'll now take a look at a couple of community modules that
build on these types and create a more in-depth solution.

Puppet and OS Security Tools

[192]

Coniguring SELinux with community
modules
We now looked at how to get a system up and working using SELinux under Puppet.
We can go ahead and build a module to manage our policies by hand, but why not
use a module someone else has invested time into. We're better off contributing work
back to make an existing module better if it can be made to work for us.

In this section, we'll be looking at the spiette/selinux module that contains a more
complete solution to manage SELinux on Puppet.

This module can handle setting SELinux to any of the three modes (disabled,
permissive, and enforcing). It can also handle compiling SELinux policy modules
and installing them on hosts. This allows you to track the more easily handled plain
text versions of the iles in version control with your Puppet data, instead of the
binary compiled policy modules.

Creating a full policy is out of the context of this book, so for our example purposes,
we'll irst use the default policy shipped with the module. Then, we'll create a very
simple policy module. I have used the SELinux Cookbook, Sven Vermeulen, Packt
Publishing, at the Packt Publishing website as a reference for creating an example
module for our use.

Let's get moving! First, we need to, as usual, install the module for our use. To do so,
run the following command on the master:

sudo puppet module install spiette-selinux

Now that it's installed, let's make a proile to handle our resources. Under our
proiles module, let's create a manifest called profiles/manifests/selinuxtest.
pp. We'll use this as the content to begin with:

class profiles::selinuxtest {

 class { 'selinux':

 mode => 'permissive',

 }

 selinux::module { 'rsynclocal':

 ensure => 'present',

 }

}

Chapter 9

[193]

These class and deined types are largely out of the module documentation for
the SELinux module, but we'll explore what they do. The irst declares the main
selinux class. We can pass one of two parameters in, and accept the defaults with
just an include or require parameter on the class. The irst parameter is the mode
parameter. It speciies the mode we want SELinux to be set to. In this case, it's
'permissive' mode. If changing the mode requires a reboot, it will log as such in
your manifest at each run.

The second parameter is installmake. This indicates if make should be installed
by this module, or if it is installed with another module. One of the downsides of
compiling this locally is that it requires make to be installed. In many cases, this
will be set to true value, which is the default value. If you happen to manage your
compiler tools in another manifest, you can set this to false value here.

The second thing present in this manifest is a selinux::module deined resource.
This deine is what sets the system up to compile and load a module. In this case,
we're going to load the default example rsynclocal module that ships with the
selinux module. This deine accepts the following parameters:

Parameter Description

ensure This contains one of present, enabled, disabled, or absent
values. This sets the state of the module on the target system.

modules_dir This specifies the directory on the target system that modules
are stored in. The default is under the Puppet var directory in a
directory called selinux.

source This is the source directory to the module. Defaults to
puppet:///modules/selinux/${name}.

ignore This contains any files that you want ignored in the preceding
directory. It is useful for excluding things, such as swap files, VCS
resources, and so on.

Now, let's create our role to hold our proile. Edit the roles/manifests/
selinuxtest.pp ile under our roles module and set the content to the following:

class roles::selinuxtest {

 include profiles::selinuxtest

}

Puppet and OS Security Tools

[194]

They say repetition is the key to learning, and by now the roles and proiles pattern
have become a second nature. Now, let's make sure the modules are present on our
system, and we'll include the module on our master as a test. We'll edit our /etc/
puppet/manifests/site.pp ile and add the new role to it, as follows:

node 'puppet.book.local' {

 include roles::puppetmaster

 include roles::selinuxtest

}

Now, let's run Puppet and see what happens! If you need a refresher here on how
to do this, you can refer to any of the previous chapters. The output should be
something similar to the following screenshot:

Notice that it did quite a bit. We can now run the following command and see that
our policy module is loaded:

sudo semodule -l|grep rsynclocal

You should see that the rsynclocal module is installed.

Chapter 9

[195]

We'll now quickly create a small policy module that we can use for a test to show
that it works. To do this, we're going to create essentially an empty module – we'll
deine types but give them no permissions. We'll then quickly be able to see that it
fails and it gets logged as expected.

To do so, create a selinuxtest directory under the profiles/files directory. From
the root of the profiles module, we can run the following command to do this:

mkdir -p files/selinuxtest

Inside this directory, we'll create our files/selinuxtest/selinuxtest.te module
ile. Edit this ile and make the contents look as follows:

policy_module(selinuxtest, 0.1)

gen_require(`
 type unconfined_t;
 class process transition;
')

type selinuxtest_t;
type selinuxtest_exec_t;

role unconfined_r types selinuxtest_t;
userdom_user_application_domain(selinuxtest_t, selinuxtest_exec_t)

A good high-level tutorial of writing a policy can be found at
http://billauer.co.il/selinux-policy-module-howto.
html. It explains what the preceding command does.

This essentially creates a blank type and exec type with no permissions. Once done,
let's add it to our profiles manifest, which should now look as follows:

class profiles::selinuxtest {
 class { 'selinux':
 mode => 'permissive',
 }

 selinux::module { 'rsynclocal':
 ensure => 'present',
 }

 selinux::module { 'selinuxtest':
 ensure => 'present',
 source => 'puppet:///modules/profiles/selinuxtest/',
 }

}

http://billauer.co.il/selinux-policy-module-howto.html
http://billauer.co.il/selinux-policy-module-howto.html

Puppet and OS Security Tools

[196]

Do notice how in our new module, we speciied the source inside our proile. The
ability to do this allows us to keep the selinux module as a utility module with no
local changes.

Now, if we run Puppet again, we should see the output like we did previously, that
indicated our module was compiled and installed.

Now, to test it, we'll just change the context of a binary to our new selinuxtest_t
type and try to run it. To do this, run the following command:

sudo chcon -t selinuxtest_t /bin/nano

Now, start nano and exit it. It'll run since we're in permissive mode. Then, we'll
grep nano from the audit log to see what happened:

You'll note that SELinux would have actually denied our attempt to use the
chcon parameter. However, you can also see that there are several AVC denies
on nano itself.

Chapter 9

[197]

As you can see, this provides a handy method to handle installation of your own
custom SELinux policy modules.

More information on this module can be found on its
GitHub page at https://forge.puppetlabs.com/
spiette/selinux.

Coniguring auditd with community
modules
Auditd has many less available community modules. This is likely due to its very
simple nature—coniguring can be done with a simple ile module and a couple of
packages in most cases. Nonetheless, let's take a look at a community module that
will manage your coniguration for you. It even provides a decent base ruleset and
contains very powerful customization options.

We'll be looking at the evenup/auditd module here. As mentioned previously, it has
most of the auditd options exposed and provides a decent default ruleset with the
option to override. We'll start by installing it:

sudo puppet module install evenup-auditd

The module contains a single entry point, the main auditd class that accepts four
parameters. They are as follows:

Parameter Description

logagent The module supports using Beaver to process auditd log files
(Beaver is a log shipper for Logstash). It can be beaver or null.

rules This is the path to the rules file – defaults to puppet:///
modules/auditd/auditd.

config_override This is a hash that contains values to override the default
config. It is explained later in the chapter.

package_name The auditd package name. Usually, it is determined
automatically.

This module uses a different pattern for coniguration, where you can supply a
config hash to override the settings. This is as opposed to exposing the 24 different
values as parameters. The names of these coniguration variables can be found
in the init.pp ile, as they aren't documented very well. Submitting a better
documentation is an easy way new users can give back to community modules.

https://forge.puppetlabs.com/spiette/selinux
https://forge.puppetlabs.com/spiette/selinux

Puppet and OS Security Tools

[198]

For our example, we'll simply accept all of the defaults. In this case, they're suficient,
so customizing the parameters is less important.

You might ask why when we've not customized the rules we pass auditd at all. As
it happens, the rule set that comes with the auditd module is fairly comprehensive,
and includes the rules that we used in our previous example and many more. If we
wished to customize the ruleset that got applied, we would do so by setting the rules
parameter to the module to a new ile. This would likely be present in our proiles
module as to avoid modifying the base module. We would then pass this using
either Hiera or a speciic class declaration that contains it.

We'll create our proile and our role and then apply it to the master.

We've been creating roles for most proiles. In reality, many
of these things, such as auditd would likely go in a common
role to get applied everywhere. That's where the roles pattern
shows its real power.

To do so, let's create the profiles/manifests/auditd.pp ile inside our proiles
module with the following content:

class profiles::auditd {

 include ::auditd

}

We use the :: here to stop the circular dependency caused by how classes are
resolved.

If we want to pass in a custom rule set, let's say in our proiles module, in the
profiles/files/etc/auditd/auditd.rules ile, it would look like the following:

class profiles::auditd {

 class { 'auditd':

 rules => 'puppet:///modules/profiles/etc/audit/auditd.rules',

 }

}

Either way, the next step would be as follows:

Then, we'll create the role. In the roles/manifests/auditd.pp ile in our roles, add
the following:

class roles::auditd {

 include profiles::auditd

}

Chapter 9

[199]

Finally, add the auditd role to the master in the /etc/puppet/manifests/site.pp
ile:

node 'puppet.book.local' {

 include roles::puppetmaster

 include roles::selinuxtest

 include roles::auditd

}

Now, we'll run Puppet and see what happens. It should look like the following:

You can see that it updated the rules and reloaded auditd. It added a lot of rules, so
the Puppet run itself should have triggered some of them. Look at the /var/log/
audit/audit.log ile, and look for the word key. Our new rules used keywords, so
you can ind them easily. You should see the output like the following:

type=SYSCALL msg=audit(1417268692.615:5661): arch=c000003e syscall=87
success=yes exit=0 a0=

50dfb10 a1=0 a2=c a3=617461635f746e65 items=2 ppid=9038 pid=9039
auid=500 uid=0 gid=0 euid=0

 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=679 comm="puppet"
exe="/usr/bin/ruby" sub

j=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="delete"

Puppet and OS Security Tools

[200]

You can see that it contains the auid, which is the user who did the sudo command.
It's a great way to log that, as was mentioned earlier.

By applying a module like this to all your hosts, you can quickly get auditd working
everywhere. Combine this with Logstash from the last chapter, and you have an
excellent way to manage audit logging.

Summary
This chapter set out to demystify some of the repetitiveness of coniguring SELinux
and auditd on Linux hosts. While it's not possible to explain all of the intricacies of
them in a book on Puppet, we hope that there was enough information to get you
started and perhaps, reverse the trend of just setting it to disabled or permissive.

First, we looked at what SELinux and auditd were, and gave a brief example of
how they can be used. We looked at what they can do, and how they can be used to
secure your systems.

After this, we looked at the speciic support for SELinux in Puppet. We looked at the
two built-in types to support it, as well as the parameters on the ile type.

Then, we took a look at one of the several community modules for managing SELinux.
Using this module, we can store the policies as text instead of compiled blobs.

Finally, we looked at a community module to manage auditd. While auditd is simple
to conigure, using a module saves the work of creating your own. Contributing back
is a good way to support open source.

Now, we'll move on and wrap up our time together, and review what we learned
and see where to go from here.

[201]

Going Forward
We've inally reached the end of our journey. It's time to examine where you'll go
from here as you continue to expand your experience with Puppet. There exists
a number of resources to further your education. In this chapter, we'll cover the
following topics:

• Where to get more information on developing good modules

• A brief discussion of Puppet device management

• Other useful reporting tools

• Some other useful Puppet tools

• A brief discussion of the Puppet community

• Some general thoughts on moving forward

What we've learned
We've covered a lot in our time together. In everything that we've covered, we
learned some useful patterns that will serve you, as you expand your skill base.
Speciic examples were shown that are useful in themselves, but the underlying
concepts being taught will assist you, as you build your own Puppet infrastructure.

Just as importantly, we learned that tools exist to make our lives easier. As security
professionals, often times, change can be viewed as the enemy. However, with the
right controls and processes in place, change can actually be a positive thing. Change
drives business values. A company that is not moving forward is falling behind.
Tools, such as Puppet and the others introduced in this book can help manage that
change and still satisfy the regulatory, and other, requirements that are present in
our jobs.

Going Forward

[202]

Where to go next
Puppet is a diverse ecosystem. The core Puppet tool itself is just a single tool in that
system. When combined with tools, such as Hiera, PuppetDB, and others, the real
power begins to shine. There are plenty of resources that will help you with these
tools. In this section, we'll briely explore where to go next, as you continue to delve
into the Puppet ecosystem.

Writing and testing Puppet modules
We've written our fair share of Puppet modules during this book. We even explored
some good patterns to use in doing so. However, there are several things we just
touched on that should be explored further, such as testing. Additionally, we'll
point out some other general resources that will help you on your way.

Puppet modules and data in Hiera should be considered code, just as any other
part of your system. As such, they should be tested thoroughly to ensure that they
operate properly. The prevailing method of doing that is using rspec with a number
of plugins.

The irst project is rspec-puppet. We use rspec-puppet to create behavior-driven
tests of our Puppet manifests. These test the catalog to ensure that the things we
are expecting to happen end up in the catalog. This also has a pleasant side effect of
compiling the catalog when we run them, so it catches any silly syntax errors. More
information on rspec can be found at http://rspec.info/, and on rspec-puppet
at http://rspec-puppet.com/.

The second useful project for testing is beaker and the beaker-rspec gem. Beaker is
an acceptance testing system that can use Vagrant or any number of other systems
to provision systems for testing. Along with the beaker-rspec plugin, beaker can
be used to write rspec tests that describe the state of the system. That is, Puppet runs
and then rspec validates it. It actually did what you expected it to do on the system.
This can sometimes vary from what you thought Puppet was going to do in
the catalog.

In addition to testing, there are a handful of patterns that are considered useful when
developing modules. We already covered several patterns earlier in the book, such
as the roles and proiles pattern. The Puppet Labs documentation contains a wealth
of good resources on good module development. For more information on this, see
https://docs.puppetlabs.com/guides/module_guides/bgtm.html.

http://rspec.info/
http://rspec-puppet.com/
https://docs.puppetlabs.com/guides/module_guides/bgtm.html

Appendix

[203]

Finally, there are a number of good books available on Puppet, and especially
module writing. Extending Puppet (https://www.packtpub.com/networking-
and-servers/extending-puppet), Alessandro Franceschi, Packt Publishing is a
resource written by a very experienced community member with a large amount of
experience writing reusable modules that are available to the public.

Puppet device management
In the past handful of years, there have been a number of initiatives to use Puppet
on devices other than actual computers. The irst iteration of this came back in 2011
with the release of support for managing F5 load balancers. Additional community
support exists for a variety of devices, such as Cisco switches and routers. With some
work, this model can even be extended to managing irewalls. Imagine getting all of
the same auditing beneits from Puppet being applied to your network devices.

The device management solution uses the concept of a proxy host that serves as an
intermediary between the host systems and the devices being managed. This proxy
host turns the device coniguration into resources and then sends the changes back to
the device to keep them in sync. The proxy host could be the Puppet Master, or any
node managed by Puppet and does not require additional software.

More information for the base device information can be found at https://docs.
puppetlabs.com/references/latest/man/device.html, as well as for the f5
module at https://forge.puppetlabs.com/puppetlabs/f5 and for Cisco switch
management at https://forge.puppetlabs.com/mburger/networkdevice.

The growing trend, however, seems to be running Puppet natively on the devices.
Cisco and Juniper both support some methods of running the Puppet agent on
devices for at least some of their lines. Cisco uses a container that runs Puppet and
can communicate with the host, while Juniper has native packages for their routers
running newer versions of Junos.

This has the advantage of being a simpler coniguration, since it does not require the
proxy hosts. Additionally, since the agent is tightly coupled with the device, there is
better support for that speciic device in the agent.

A brief introduction to the Cisco method of on-device management can be found
in the PuppetConf talk at http://puppetlabs.com/presentations/managing-
cisco-devices-using-puppet. Information on using Puppet on Junos can be
found at http://puppetlabs.com/solutions/juniper-networks.

https://www.packtpub.com/networking-and-servers/extending-puppet
https://www.packtpub.com/networking-and-servers/extending-puppet
https://docs.puppetlabs.com/references/latest/man/device.html
https://docs.puppetlabs.com/references/latest/man/device.html
https://forge.puppetlabs.com/puppetlabs/f5
https://forge.puppetlabs.com/mburger/networkdevice
http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
http://puppetlabs.com/solutions/juniper-networks

Going Forward

[204]

Additional reporting resources
We dedicated a chapter to explore reporting in Puppet, but largely focused on
internal tools that can help you do reporting.

There exists a good reference book for reporting in Puppet speciically, which is
Puppet Reporting and Monitoring at https://www.packtpub.com/networking-and-
servers/puppet-reporting-and-monitoring by Michael Duffy (full disclosure—I
was a technical reviewer of this book). It covers many of the Puppet reporting topics
in much greater detail than we can afford to do here.

We will, however, point out a couple of resources available that can help with
reporting out of the box. These resources are Puppetboard and The Foreman.

Puppetboard is a web-based user interface that replaces the Puppet Dashboard,
which was oficially moved to community support. It provides an interface into the
status of your Puppet runs, as well as a nice browser that lets you browse facts on
your hosts and other such things. We wrote the custom code to provide reporting
solutions for several of the problems in the reporting chapter, which can be run
natively in Puppetboard.

Puppetboard relies on PuppetDB being installed as it uses it as the data backend.
It uses data from PuppetDB to build rich dashboards with information about
your systems.

More information on Puppetboard can be found at https://github.com/puppet-
community/puppetboard.

Another good reporting-related tool for one to review is The Foreman. The Foreman
is more than just a reporting tool. It aims to be a complete life cycle management tool
that provisions your systems and then works with Puppet to conigure them. It can
even serve as an external node classiier that holds information about what classes
get applied to a node.

In addition to this, The Foreman contains reporting features on nodes similar to
those of Puppetboard. It can show trends in systems by type, show systems not
completing Puppet runs, and so on.

More information on The Foreman can be found at http://theforeman.org/.

These are not the only reporting engines available for Puppet. Other options, such as
Puppet Explorer exist at https://github.com/spotify/puppetexplorer and more
are added everyday.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://github.com/puppet-community/puppetboard
https://github.com/puppet-community/puppetboard
http://theforeman.org/
https://github.com/spotify/puppetexplorer

Appendix

[205]

Finally, don't forget Kibana. By bringing your log data into Logstash, you can use
Kibana to create reports. You can even conigure Logstash to send certain events
straight to an alerting system to alert on certain values. This can be used to build
reporting, as well as any of the previously mentioned software packages.

Other Puppet resources
There are a few other Puppet-related tools that don't really it elsewhere, so we're
going to talk about them briely here.

The irst such tool is Puppet Enterprise. In a security role, it may be important
for you to have certiied supported conigurations for the tools managing your
environment. Puppet Enterprise offers this, as well as additional features and
capabilities not present in the base open source system.

Puppet Enterprise contains prebuilt, self-contained, packages for a large variety of
operating systems. This includes all of the expected Linux variants, as well as other
operating systems, such as AIX and Solaris. This can make it much easier to deploy
Puppet on systems that it might otherwise be dificult to get a modern version of
Ruby on.

On top of that, Puppet Enterprise contains a powerful dashboard that permits
reporting, as well as system coniguration. It serves as a node classiier, so if you
use the roles and proiles pattern, for instance, you can apply proiles to the system
straight from the Puppet Enterprise management dashboard.

More information on Puppet Enterprise can be found at http://puppetlabs.com/
puppet/puppet-enterprise.

Another new item of the Puppet community is Puppet Server. This is a new rewrite
of the Puppet Master in Clojure that runs on the JVM. The system then uses JRuby
to run all of the existing Puppet code. This allows you to continue to write your
types in providers in Ruby, while using the proven power of the JVM to increase
the performance. This allows the Puppet Master to take advantage of things, such
as multithreading and a much better garbage collection system. It also simpliies the
coniguration over the old method of using Apache and Passenger.

This, of course, comes at the cost of running the master in the JVM. That may give a
certain amount of people cause for concern as they have previous bad experiences
with Java-based applications. However, from a security standpoint, the JVM is
a well-understood machine. Many more systems run in the JVM than run under
Apache with Passenger. In the end, this is an adjustment in the server running the
core Puppet Server and not a huge shift in paradigm.

http://puppetlabs.com/puppet/puppet-enterprise
http://puppetlabs.com/puppet/puppet-enterprise

Going Forward

[206]

Puppet Enterprise 3.7 is the irst version to use this new Java-based Puppet Server.

More information on Puppet Server can be found at http://puppetlabs.com/
blog/puppet-server-bringing-soa-to-a-puppet-master-near-you.

Finally, it should be mentioned that the core Puppet software is also improving.
Version 4 is about to be released that will contain a new parser and a good amount
of new functionalities. It's going to bring with it, the ability to solve a certain class of
problems easier, with tools such as iteration, which are missing in Puppet today.

If you want to try some of these new features out today, you can use the future
parser. This is the parser that is being worked on for Puppet 4. More information on
the future parser can be found at https://docs.puppetlabs.com/puppet/latest/
reference/experiments_future.html, and a presentation on Puppet 4 at http://
puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-

puppet-labs-kylo-ginsberg.

The Puppet community
No book would be complete without the mention of the excellent Puppet
community. One of the reasons Puppet has been successful is because the
community members are top notch and very helpful. We'll explore a few of the
community resources available to you if you need assistance.

The irst resource can be found at http://ask.puppetlabs.com site. This site
is a place where users can go to post questions for the community to answer. It is
in the style of various other question and answer sites. As your knowledge of
Puppet increases, you can earn badges to help other users out, with questions
they might have.

A second resource is the Puppet mailing lists. These lists are hosted at Google
Groups. Lists exist for users and development efforts. A reasonable amount of
discussion concerning future development and direction of Puppet takes place on the
lists. This is a good place to read about development of new patterns and discussions
on the future of Puppet. It is also a great place to go to ask questions if you get stuck
with a problem. You can ind the Puppet Users list at https://groups.google.
com/forum/#!forum/puppet-users.

http://puppetlabs.com/blog/puppet-server-bringing-soa-to-a-puppet-master-near-you
http://puppetlabs.com/blog/puppet-server-bringing-soa-to-a-puppet-master-near-you
https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html
https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html
http://puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-puppet-labs-kylo-ginsberg
http://puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-puppet-labs-kylo-ginsberg
http://puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-puppet-labs-kylo-ginsberg
http://ask.puppetlabs.com site
https://groups.google.com/forum/#!forum/puppet-users
https://groups.google.com/forum/#!forum/puppet-users

Appendix

[207]

Finally, there is a page that discusses general community. There are many other
community-based events available, including the Puppet Users groups in some cities,
Puppet Camps that are smaller regional conferences, and the giant PuppetConf that
draws thousands of Puppet users to one place. Additionally, there is an IRC channel
available for use in asking questions in a more real-time fashion. Information on all of
these resources can be found at http://puppetlabs.com/community/get-help.

Final thoughts
The journey to automation happiness is not one that happens overnight. Often
times, the tasks ahead of you can seem daunting. However, there is a simple
method that I use to approach such problems when they arise. Simply, start with
your area of greatest pain. If you spend a lot of time reviewing logs on systems, then
start using Puppet to implement centralized logging. If it's user and account creation,
then start there.

The operations industry as a whole is beginning to embrace the concepts that were
introduced in Japan after World War II. The description of the concepts often uses
the word lean. There are several important concepts I will leave you with.

The irst is Kata. Kata is the art of practicing something to obtain mastery. Growing
up, you often did this in school, especially with math. As with those, you must
practice your art to get better at it. As you engage in automating your environment
with Puppet—either to make your life easier or to appease auditors, you will get
better at it with practice. Do not be afraid to revisit the earlier code as you become
better. Improving it, often times, can make new code development go faster.

The second and last concept I'd like to introduce is Kaizen. This is the concept
of continuous improvement. You should consider your environments as never
complete. You iterate on the work you've done to continuously improve.
Perhaps as earlier, you started with centralized logging. As you iterate on it,
you'll build improved grok patterns, dashboard, and other things that will make
your environment better and easier to use and manage. Even in the simplest of
environments, there is always room for improvement.

I hope that you learned a lot throughout the course of this book and it helps you
move your environments forward. Go forth and automate!

http://puppetlabs.com/community/get-help

[209]

Index

A

AppArmor
URL 182

arildjensen module 125-129
attributes, audit

content 30
ctime 30
ensure 30
group 30
mode 30
mtime 30
owner 30
reference link 30
selrange 31
selrole 31
seltype 31
seluser 31
type 31

audit
about 39
attributes 30, 31
use cases 29
using, on iles 30

auditd
about 182
coniguring, with community

modules 197-200
for audit logging 186
references 187

auditd class, parameters
conig_override 197
logagent 197
package_name 197
rules 197

auditing
alternatives 40

audit meta-parameter 28, 29
audit system

working 29
augeas 120
augeasproviders

modules 121
reference link 121, 125
SSH, managing with 122-125

auth.conf ile
about 94
reference link 95

autosigning certiicates
about 107
basic autosign 108, 109
naïve autosign 108
policy-based autosign 110-113

B
bash scripting 83
basic autosign 108, 109
Bcfg2 3
Beaker

reference link 95
best practice, for writing Puppet code

reference link 32
built-in processors

reference link 74

C

CentOS advisory
reference link 91

Certiicate Authority (CA) 102
Certiicate Revocation List (CRL) 105
certiicates

revoking 104-106

[210]

signing 103, 104
Certiicate Signing Request (CSR) 103
CFEngine

about 2
URL 2

Chef
about 2
URL 2

CIS benchmark
URL 126

cis module 125-129
Cisco method, on-device management

reference link 203
classes 5
client-server model, Puppet 5, 6
community modules

about 62
auditd, coniguring with 197-200
reference link 62
SELinux, coniguring with 192-196

community processors
reference link 74

compliance, Puppet 17
components, Puppet

about 6
Hiera 7
PuppetDB 6

coniguration management tool 2
coniguration options

allow 94
allow_ip 94
auth 94
environment 94
method 94
path 94

contexts 182
cron 6
custom facts

using 56, 57

D

declarative systems
properties 4
versus imperative systems 3-5

default coniguration settings, Puppet
reference link 94

Domain-speciic Language (DSL) 2

E

ebtables 140
Elasticsearch

about 158
installing 164-167

ELK stack
installing 159-164

environment
preparing, for examples 12

F

facts
custom facts, using 56, 57
Puppet roles pattern 55
using, for compliance 55

iles
audits, using on 30

ileserver.conf ile
about 98, 99
restricted ile mount, adding 99-102

ile system permissions
URL, for wiki 160

ile type parameters, SELinux
selinux_ignore_defaults 191
Selrange 191
Selrole 191
seltype 191
seluser 191

irewallchain type 146, 147
irewall chain type, parameters

ensure 147
ignore 147
name 147
policy 147
provider 147
purge 147

irewall module 139, 140
irewall rules

adding, to modules 151, 152
irewall type

about 141-146
reference link 142

irewall type, parameters
action 141
chain 141
destination 141

[211]

dport 141
dst_range 141
ensure 141
jump 141
name 141
port 141
proto 142
reject 142
source 142
sport 142
src_range 142
state 142
tcp_lags 142

future parser
reference link 206

G

git
references 50, 53
used, for tracking Puppet

coniguration 50-53

H

heartbleed
reference link 88

heartbleed-vulnerable systems
inding 88-91

herculesteam modules 120
Hiera

about 7
reference link 137

hiera-eyaml
reference link 137

hiera-eyaml gem 132-136
hostmanager plugin

reference link 95
working with 96-98

hosts
coniguring, for reporting log data 176-180

I

imperative systems
properties 4
versus declarative systems 3-5

iptables
about 140
reference link 140

K

Kibana
about 171
installing 172-176

L

librarian-puppet
URL 55

logging 158
Loggly 157
Logstash

about 157, 158
and Puppet 164
installing 167-171

M

Mandatory Access Controls (MACs) 182
manifests

about 5
creating 31, 32
history, tracking with version control 50
used, for documenting system state 48, 49

modules
irewall rules, adding to 151, 152
modifying, for audit 36-39
reference link 43
tracking, separately 53, 54

N

Nagios 158
naïve autosign 108
National Security Agency (NSA) 182
Network Time Protocol (NTP)

about 152
drawbacks 153-155

noop
about 28
using 42-45

[212]

O

objects 182
open-source coniguration management

software
URL, for comparison 3

open source Puppet 2
openssh coniguration ile 22
options, ileserver.conf ile

[mountpoint] 99
allow 99
deny 99
path 99

P

package
auditing 35

packages, ELK stack
URL, for downloading 159

parameters, selboolean type
name 188
persistent 188
provider 188
value 188

parameters, selmodule type
ensure 190
name 190
provider 190
selmoduledir 190
selmodulepath 190
syncversion 190

params class
about 62
reference link 62

password ile
auditing 31
modifying 33, 34

Payment Card Industry Data Security
Standard (PCI DSS)

about 47, 58
authentication, to systems 71
network-based PCI requirements 58
secure systems, maintaining 71
system protection, against malware 67-70
URL 58
vendor-supplied defaults 59-67

policy
reference link 195

policy-based autosign 110-113
post rules

creating 147-151
pre rules

creating 147-151
presentation, Puppet 4

reference link 206
providers 140
providers, augeasproviders modules

kernel_parameter 121
pam 121
puppet_auth 121
shellvar 121
sshd_conig 121
sshd_conig_subsystem 121
sysctl 121
syslog 121

Puppet
about 1, 2
and Logstash 164
and SELinux 187
and SSL 102
client-server model 5, 6
compliance feature 17
components 6
coniguring 8-11
declarative, versus imperative

approaches 3-5
installing 8
reporting resources 204
rerunning 33
resources 205
security feature 17
URL, for coniguration settings 10
URL, for installation instructions 8
used, for tracking changes 28

Puppet agent
installing 10

Puppet Approved modules 118
Puppet authentication

about 95
second Vagrant host, adding 95

puppet-cis module
reference link 129

[213]

Puppet community
about 206
references 206

PuppetDB
about 6
reporting 79-83

Puppet device management
about 203
references 203

Puppet Enterprise
URL 205

Puppet Forge
about 116-120
URL 116

puppetlabs-irewall module 140
puppetlabs-stdlib module

about 65
URL 65

Puppet Labs ticket
reference link 39

Puppet Labs Yum repository
installing 8
URL 8

Puppet Master
installing 9

Puppet modules
references 203
testing 202
writing 202

Puppet, on Junos
reference link 203

Puppet report directory 75
Puppet reporting

about 73
last node runtime, displaying 77, 78
references 74
store processors 75, 76

Puppet roles pattern 55
Puppet scope

reference link 41
Puppet security-related coniguration

about 93
auth.conf ile 94, 95
ileserver.conf ile 98, 99

Puppet Server
URL 206

Puppet services 11

Puppet Supported modules 117
Puppet, used for securing openssh

about 18
code, running 23, 24
module, building 20-22
module, creating 20
openssh coniguration ile, building 22
site.pp ile 23
Vagrant virtual machine, starting 19
virtual machine connection 20

Puppet versions
reference link 75

R

r10k
URL 55

reporting, for compliance
about 88
heartbleed-vulnerable systems,

inding 88-91
reporting, on log data 171
reporting, PuppetDB

about 79-83
event counts, obtaining 85
recent reports, obtaining 83, 84
simple PuppetDB dashboard

example 86, 87
report processors

about 74
HTTP 74
PuppetDB 74
Store 74
Tagmail 74

Representational State Transfer (REST) 80
resource chaining 22
resource command

reference link 35
resource ordering

reference link 22
resources

purging 42
resource types

auditing 34, 35
parameters 42
references 35

[214]

rspec
reference link 202
URL 61

rspec-puppet
reference link 202

rsynclocal module, parameters
ensure 193
ignore 193
modules_dir 193
source 193

S

Salt 3
saz module

about 129-131
reference link 132

scaling, Puppet
reference link 12

security, Puppet 17
selboolean type

about 187-190
parameters 188

SELinux
about 182
and Puppet 187
coniguring, with community

modules 192-196
ile type parameters 191
references 185

SELinux Booleans
references 190

SELinux framework 182-185
SELinux policy modules

reference link 197
selmodule type

about 187, 190
parameters 190

services, Puppet 11
site.pp ile 23
software repositories 68
spec tests, Puppet

reference link 61
Splunk 157

SSH
managing, with augeasproviders 122-125

SSL
about 102
and Puppet 102
reference link 102

SSL extensions
reference link 112

store processors 75, 76
subject 183
sudo module

about 129-131
reference link 132

system state
documenting, with manifests 48, 49

T

types 182

V

Vagrant
installing 13
URL, for downloading 13

Vagrant Cloud
URL 15

Vagrantile
creating 13-16

Version 4 report format, Puppet
reference link 79

version control
modules, tracking 53, 54
Puppet coniguration, tracking

with git 50-53
used, for tracking manifests history 50

VirtualBox
installing 13
URL, for downloading 13

Y

YAML Ain't Markup Language
about 29
reference link, for formatting 136

Thank you for buying
Learning Puppet Security

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Puppet Reporting and Monitoring
ISBN: 978-1-78398-142-7 Paperback: 186 pages

Create insightful reports for your server
infrastructure using Puppet

1. Learn how to prepare and setup Puppet to
report on a wealth of data.

2. Develop your own custom plugins and work
with report processor systems.

3. Explore compelling ways to utilize and present
Puppet data with easy-to-follow examples.

Mastering Puppet
ISBN: 978-1-78398-218-9 Paperback: 280 pages

Pull the strings of Puppet to conigure
enterprise-grade environments for
performance optimization

1. Implement puppet in a medium to
large installation.

2. Deal with issues found in larger deployments,
such as scaling, and improving performance.

3. Step by step tutorial to utilize Puppet
eficiently to have a fully functioning
Puppet infrastructure in an enterprise- level
environment.

Please check www.PacktPub.com for information on our titles

Extending Puppet
ISBN: 978-1-78398-144-1 Paperback: 328 pages

Design, manage, and deploy your Puppet architecture
with the help of real-world scenarios

1. Plan, test, and execute your Puppet
deployments.

2. Write reusable and maintainable Puppet code.

3. Handle challenges that might arise in upcoming
versions of Puppet.

4. Explore the Puppet ecosystem in-depth,
through a hands-on, example driven approach.

Mobile Security: How to Secure,
Privatize, and Recover Your
Devices
ISBN: 978-1-84969-360-8 Paperback: 242 pages

Keep your data secure on the go

1. Learn how mobile devices are monitored and
the impact of cloud computing.

2. Understand the attacks hackers use and how to
prevent them.

3. Keep yourself and your loved ones safe online.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Puppet as a Security Tool
	What is Puppet?
	Declarative versus imperative approaches
	The Puppet client-server model
	Other Puppet components
	PuppetDB
	Hiera

	Installing and configuring Puppet
	Installing the Puppet Labs Yum repository
	Installing the Puppet Master
	Installing the Puppet agent
	Configuring Puppet
	Puppet services

	Preparing the environment for examples
	Installing Vagrant and VirtualBox
	Creating our first Vagrantfile

	Puppet for security and compliance
	Example – using Puppet to secure openssh
	Starting the Vagrant virtual machine
	Connecting to our virtual machine
	Creating the module
	Building the module
	The openssh configuration file
	The site.pp file
	Running our new code

	Summary

	Chapter 2: Tracking Changes to Objects
	Change tracking with Puppet
	The audit meta-parameter
	How it works
	What can be audited

	Using audit on files
	Available attributes

	Auditing the password file
	Preparation
	Creating the manifest
	First run of the manifest
	Changing the password file and rerunning Puppet

	Audit on other resource types
	Auditing a package
	Modifying the module to audit

	Things to know about audit
	Alternatives to auditing
	The noop meta-parameter
	Purging resources

	Using noop
	Summary

	Chapter 3: Puppet for Compliance
	Using manifests to document the system state
	Tracking history with version control
	Using git to track Puppet configuration
	Tracking modules separately

	Facts for compliance
	The Puppet role's pattern
	Using custom facts

	The PCI DSS and how Puppet can help
	Network-based PCI requirements
	Vendor-supplied defaults and the PCI
	Protecting the system against malware
	Maintaining secure systems
	Authenticating access to systems

	Summary

	Chapter 4: Security Reporting with Puppet
	Basic Puppet reporting
	The store processors
	Example – showing the last node runtime

	PuppetDB and reporting
	Example – getting recent reports
	Example – getting event counts
	Example – a simple PuppetDB dashboard

	Reporting for compliance
	Example – finding heartbleed-vulnerable systems

	Summary

	Chapter 5: Securing Puppet
	Puppet security related configuration
	The auth.conf file
	Example – Puppet authentication
	Adding our second Vagrant host

	The fileserver.conf file
	Example – adding a restricted file mount

	SSL and Puppet
	Signing certificates
	Revoking certificates
	Alternative SSL configurations

	Autosigning certificates
	Naïve autosign
	Basic autosign
	Policy-based autosign

	Summary

	Chapter 6: Community Modules for Security
	The Puppet Forge
	The herculesteam/augeasproviders series of modules
	Managing SSH with augeasproviders

	The arildjensen/cis module
	The saz/sudo module
	The hiera-eyaml gem
	Summary

	Chapter 7: Network Security and Puppet
	Introducing the firewall module
	The firewall type
	The firewallchain type
	Creating pre and post rules
	Adding firewall rules to other modules
	Is allowing all to NTP dangerous?

	Summary

	Chapter 8: Centralized Logging
	Welcome to logging happiness
	Installing the ELK stack

	Logstash and Puppet
	Installing Elasticsearch
	Installing Logstash

	Reporting on log data
	Installing Kibana

	Configuring hosts to report log data
	Summary

	Chapter 9: Puppet and OS Security Tools
	Introducing SELinux and auditd
	The SELinux framework
	The auditd framework for audit logging

	SELinux and Puppet
	The selboolean type
	The selmodule type
	File parameters for SELinux

	Configuring SELinux with community modules
	Configuring auditd with community modules
	Summary

	Appendix: Going Forward
	What we've learned
	Where to go next
	Writing and testing Puppet modules
	Puppet device management
	Additional reporting resources
	Other Puppet resources
	The Puppet community

	Final thoughts

	Index

