
www.allitebooks.com

http://www.allitebooks.org

Learning Puppet for
Windows Server

Organize your Windows environment using Puppet
tools to unload administrative burdens in a short time

Fuat Ulugay

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Puppet for Windows Server

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1170815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-187-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Fuat Ulugay

Reviewers
Rudi Broekhuizen

Jordan Olshevski

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Dharmesh Parmar

Technical Editor
Tanmayee Patil

Copy Editor
Kausambhi Majumdar

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Fuat Ulugay is currently the IT and ERP director for SOCAR Turkey. He lives in
Istanbul, Turkey. Also, he has worked as an SAP ABAP and SAP CRM consultant
for more than 10 years.

He is a great fan of open source projects. He implements and teaches them whenever
possible. He is good at penetration testing, network security monitoring, industrial
control systems security, system administration, and virtualization. Also, he is
leading and teaching the security team at his company. He has a blog at http:/
hacktr.org, where he writes on open source and security-related topics.

I would like to thank my wife, Cigdem, for her continuous support
while writing this book. Also, I would like to thank my little son,
Omer Faruk, for his patience and playtime sacrifice when I was
working on this book.

www.allitebooks.com

http:/hacktr.org
http:/hacktr.org
http://www.allitebooks.org

About the Reviewers

Rudi Broekhuizen is a system administrator at Naturalis Biodiversity Center
in the Netherlands. From 2005 to 2013, his main focus was on Microsoft products,
VMware virtualization, and networking.

Since 2013, he has been involved in transforming the IT organization to take a
more DevOps-oriented approach. His main focus shifted to Linux, automated
configuration management using Puppet, monitoring and analytics, OpenStack,
and replacing closed source software with open source software.

To see what Rudi is currently working on, take a look at some of his code at
https://github.com/rudibroekhuizen and https://github.com/naturalis.

Also, do not hesitate to leave a comment on his blog at https://rudibroekhuizen.
wordpress.com/.

Jordan Olshevski is a professional services engineer at Puppet Labs. He has a
background in software engineering and systems administration. He frequently
consults enterprise organizations and has a passion for improving the lives of
engineers through DevOps tooling and Agile methodologies. In his spare time, he
enjoys listening to jazz music and contributing to the open source community.

www.allitebooks.com

https://github.com/rudibroekhuizen
https://github.com/naturalis
https://rudibroekhuizen.wordpress.com/
https://rudibroekhuizen.wordpress.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Installing Puppet Server and Foreman 1

The differences between using Puppet with Windows and with Linux 2
Installing Puppet Server 3

Connecting your server with SSH 4
Installing Puppet 4

Installing Foreman 11
The Foreman interface 13
Keeping your server secure 15

Backups 16
Keeping your server up to date 16
Do not enable root account 17
The user password policy 18

Do not use old passwords that have been used before 18
Using at least a 10 char complex password 18
Expiring password in 90 days 19
Locking account 19

Using SSH with key file to connect 20
Creating the public and private key 21
Getting the key to your computer and converting it into the PuTTY format 22
Connecting from Linux 27
Disabling the SSH logins with a password 28

The firewall rules 29
Checking which ports to keep open 29
Defining firewall rules 30
Making the iptables rules persistent 32

Summary 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Installing Puppet Agents 35
Downloading and installing the Puppet agent 35

Signing the certificate 38
Installing the Puppet agent on multiple clients 40

Modifying the MSI file 41
Using software to push the agents 44
Using a domain controller to push the agents 50

Managing the node certificates 57
Displaying the certificates 57
Signing the certificates 58
Deleting the certificates 59

The host groups 60
Managing the host groups 60
Assigning the hosts to hosts groups 62

Summary 63
Chapter 3: Your First Modules 65

The module structure 65
The module layout 65
Modules for creating the files and folders 66

The Hello World module 66
Creating the directory structure 67
Creating the manifest file 67

Importing the module class in Foreman 68
Assigning the class to a host 70
Assigning the class to a host group 72

Uploading files 73
Creating folders 75
Managing services 76
Running commands 81

Running the command on certain conditions 84
Managing users 85
Summary 88

Chapter 4: Puppet Forge Modules for Windows 89
Installing modules from Puppet Forge 90
Managing the registry 92

Writing the manifests 94
Limitations with the registry module 96

The access control list 97
Changing the permissions of a folder 99

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Purging permissions 102
Purging permissions and locking a file from user changes 103

Firewall 103
The firewall rule example 104

The reboot module 106
Summary 108

Chapter 5: Puppet Facts, Functions, and Templates 109
Puppet facts 109

Using the facts in manifests 111
Adding the custom facts 112

Adding Windows users as custom facts 114
Making sure our code works only for Windows 115
Including the necessary libraries 115
Defining your variables with empty values 115
Finding the registry values 116

The Puppet templates 120
An example template to edit the registry keys 124

The Puppet functions 129
The stdlib functions 130

Some string functions – downcase, upcase, and capitalize 130
The pw_hash function 131

Your first function 132
Summary 134

Chapter 6: Using Puppet for Windows Security 135
Locking the Startup folder 135
Locking the hosts file 139
Stopping unnecessary services 142
Making sure that the security-related services are running 144
Denying all incoming traffic and allowing only the necessary ports 148
Making the local administrator passwords unique 153

The password function 153
The module 154
The Ruby code to generate the password 155
The test 156

Summary 156
Chapter 7: Reporting and Monitoring 157

Checking the infrastructure statistics 158
Checking the statuses of hosts from Foreman 159

Audits 162
Facts 164

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Reports 164
YAML 165

Checking the report details of hosts from Foreman 166
Checking the statuses of hosts from the terminal 170

node.rb 170
The host YAML files 171
Facts 172
The Puppet SSL certificates 173
Checking the logs from the terminal 174

Summary 176
Chapter 8: Installing Software and Updates 177

Installing a software with package resource 177
What is Chocolatey? 182

Installing Chocolatey 182
Installing a software with Chocolatey 184
Uninstalling a software with Chocolatey 185

Using Chocolatey to install a software 189
Installing Firefox as an example 192
Installing Chocolatey using Puppet 193

Using Chocolatey to update a software 194
Using Puppet and Chocolatey to update mostly used software 198
Updating the Puppet agents 199

Updating the server 200
Updating the agents with Chocolatey 201

Uninstalling a software 205
Uninstalling an older version of a software that cannot be
differentiated by its name 207

Summary 209
Index 211

[v]

Preface
Puppet is a configuration management tool. It allows you to automate all your IT
configurations by giving you the control of what you do to each node (Puppet agent),
and also, focusing on when and how you do the configurations. In this context,
Puppet is a cross-platform tool that is widely used for Unix-like and Microsoft
Windows systems. However, it has been popularly used for Unix-like systems.
This book provides insights into using Puppet for Windows administration tasks,
such as server setup, application updates, and service management.

This book kicks off with the fundamentals of Puppet by helping you with the
installation of Puppet on a Windows Server, and progresses with the introduction
of the Foreman interface to manage Puppet nodes. Next, you will deal with the
installation of Puppet agents on multiple clients and how to connect them to your
Puppet server by grouping your nodes for easy management. Then, you will become
familiar with the scripting of Puppet manifests along with an understanding of
the module structure in Puppet. You will further move on to the installation of the
Puppet Forge modules and their usage in Windows along with advanced topics
such as facts, functions, and templates.

Moreover, you will venture into the security aspects for Windows by gaining
insights into the various security settings that will make your server and clients
more secure from hackers that use different attack vectors. You will also use
Puppet and Chocolatey to install and update software.

Finally, you will round off by learning how to check the details of reporting and
status monitoring along with the automation of installing and updating software
for multiple Windows clients, arming you with ample artillery to tame Puppet for
your future projects.

Preface

[vi]

What this book covers
Chapter 1, Installing Puppet Server and Foreman, starts with an introduction to Puppet.
It continues with the installation of the operating system of the server. Next, it deals
with the installation of Puppet Server and Foreman. Finally, this chapter ends with
the security settings of the server.

In this chapter, we start by learning what Puppet is. Then, we continue with the
differences of Puppet implementation. We get hands-on experience by installing
Puppet Server and Foreman. The last step is to learn how to keep your server secure.
In the next chapter, we will deal with the Puppet agents and their installation on
the hosts.

Chapter 2, Installing Puppet Agents, starts with setting up agents for single hosts. Next,
it continues with modifying the MSI package for Puppet agent installation. After
modifying the MSI file, this chapter shows how to use it to install the Puppet agents
on multiple hosts by a third-party software and domain group policy. Lastly, the
chapter finishes with the management of host certificates and host groups.

Chapter 3, Your First Modules, starts with writing your first module and continues
with some basic module examples for file, directory, service, and user management.
It also shows how to import the classes to Foreman and assign them to the hosts or
host groups.

Chapter 4, Puppet Forge Modules for Windows, takes us into the world of Puppet Forge,
where you can find many ready-to-use modules for Windows. The modules that are
explained are registry, ACL, firewall, and reboot.

Chapter 5, Puppet Facts, Functions, and Templates, explains how to write Puppet facts,
functions, and templates. This chapter shows how to display facts and write your
custom facts. Also, it explains the templates to create dynamic content files. It gives
details of the stdlib functions and how to create a custom function.

Chapter 6, Using Puppet for Windows Security, shows practices to make Windows more
secure using Puppet. The purpose of this chapter is to make hacking activity harder
for hackers and keep our systems as secure as possible. The sample practices are
locking the startup folder and hosts file, starting the necessary services and stopping
the unnecessary ones, setting the firewall rules, and finally, making the local
administrator passwords unique.

Chapter 7, Reporting and Monitoring, shows many details about monitoring and
checking the statuses of the host, such as how to see the statuses of the hosts in a
summary, what information is available for the hosts, reporting the details of Foreman,
and checking the definitions, statuses, and facts of the hosts in the terminal. Finally,
this chapter deals with how to see the access and error logs for Foreman and Puppet.

Preface

[vii]

Chapter 8, Installing Software and Updates, shows how to install a software using
the Puppet package resource. Next, we continue with the details and usage of
Chocolatey. Later, we use Puppet and Chocolatey together to make our installations
and updates much easier. This chapter checks some of the commonly used software
and how to always keep them updated. Finally, this chapter shows how to update
the Puppet agents and uninstall the software.

What you need for this book
To learn and try the examples in this book, a computer with at least 8 GB of RAM and
100 GB of free hard disk space will be enough. You can use VMware or VirtualBox to
install your server and test the clients. For system administrators, a server for Puppet,
a domain controller, and some of the clients for testing will be enough.

Who this book is for
This book is for the Windows administrators who are looking for ways to automate
the management tasks of Windows servers and clients. The target audience should
have an experience in Windows administration and a basic knowledge of Linux
and Puppet.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Use the ssh-keygen command to generate the keys."

A block of code is set as follows:
class firewallrules {
 windows_firewall::exception { 'WINRM':
 ensure => present,
 direction => 'in',
 action => 'allow',
 enabled => 'yes',
 protocol => 'TCP',
 local_port => '3389',
 remote_ip => '10.10.10.20,10.10.10.21',
 display_name => 'Windows RDP Rule allow ips',

Preface

[viii]

 description => 'Inbound rule for Windows RDP allow [TCP
 3389]',
 }
}

Any command-line input or output is written as follows:

$ sudo puppet module install puppetlabs-reboot

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "For the
dashboard, from the Monitor menu click on Dashboard".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/B04731_1877EN_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/B04731_1877EN_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/B04731_1877EN_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

[1]

Installing Puppet Server and
Foreman

Puppet is a configuration management software that allows the defining and
enforcing of the desired state across your nodes and keeps them in this desired state.
Nodes are the clients and servers that are connected to and managed by Puppet.
Puppet supports both Linux and Windows environments. Also, it is available both
commercially and in open source. In this book, we will deal only with the open
source version.

However, you may also want to use or give Puppet Enterprise a go, which is
the commercial solution. There is a virtual appliance available to download
on the Puppet website https://puppetlabs.com/download-learning-vm.
You can download and test it. It supports up to ten nodes for free. Of course,
using the commercial version is easier as it has complete support and additional
functionalities. The problem with it is that, you need to pay for it and have a budget.
Following are the additional advantages, if you want to check the Enterprise Puppet.
For more details, please check out the URL https://puppetlabs.com/puppet/
commercial.

• Event inspection
• Role-based access control
• Puppet Server reporting
• Puppet Enterprise installer
• Puppet Enterprise console
• Puppet Node Manager

https://puppetlabs.com/download-learning-vm
https://puppetlabs.com/puppet/commercial
https://puppetlabs.com/puppet/commercial

Installing Puppet Server and Foreman

[2]

While reading books based on Puppet, we come across one little problem: the
books are all about managing Linux systems. There are almost no resources
explaining the details about managing Windows servers and clients. Thus, it was
a challenge for me to use Puppet in the Windows environment. While doing this, I
had to deal with many problems and learn the hard way. In this book, I will make
it much easier for you to use Puppet for Windows. By the end of this book, you
will have a solid understanding of how to write manifests for Windows and deal
with the configuration problems. There will be practical step-by-step examples to
complete the tasks. However, we will not delve much into technical and theoretical
discussions. The book will show you one easy way of doing it. However, this does
not mean that this is the only way to do it.

For example, we will use the Foreman web interface with Apache to manage hosts.
This does not mean that this is the only way. You can use Puppet without any server
and you can distribute the manifests with Git. This is called the masterless mode.
You can only implement this with Apache and handle all the manifests from the
terminal. You can also use the enterprise version. These are the perfectly possible
ways of using Puppet, but may require more effort or money. The list of ways
mentioned here is not exhaustive and every implementation method has not been
covered. I have tried many ways and different usages, and came to the conclusion
that using Foreman with Puppet is one of the easiest ways to start. This maximizes
the benefits and minimizes the effort. However, this is subjective and some people
may feel more comfortable without the graphical interface, or may switch to the
enterprise version.

The differences between using Puppet
with Windows and with Linux
Here, I will tell you some basic differences and not deal with an exhaustive list of
all the differences between Windows and Linux. When checking out Puppet and
writing the manifests, you may realize that it is much easier with Linux but harder
to complete the same tasks with Windows. Here are some examples:

• File resource: This manages the permissions, ownership, and contents of
the files. Permission settings do not work as successfully for Windows, as it
works for Linux; we will use ACL module for this purpose.

• Package resource: This manages the packages and software installation. For
Windows, we cannot directly install a package and keep it updated as we
do in Linux, because Window sit does not have a package manager such as
aptitude or yum. First, we need to first find the installer and send it to the
host to handle the installation.

Chapter 1

[3]

• Puppet agent updates: These are not easy with packages and requires
manual steps.

• Firewall: This has support for Linux, but not an official support for Windows
Firewall. We need to write our own manifests, or we can find a solution from
Puppet Forge.

• Windows Task Scheduler: This is not fully supported and has only
rudimentary functionality.

• Windows Server: This has a very limited support.

This list may continue in this way. Thus, as we can see, the differences are not in
favor of Windows. In this book, we will solve these types of problems and show you
how to handle them in an easy way.

Installing Puppet Server
We will start with the installation of the operating system of the Puppet Server.
From now on, the Puppet Server will be called Puppet Master. We will use the
Ubuntu server 14.04 LTS. Some users may prefer Enterprise Linux such as Red
Hat or CentOS. If you prefer another flavor of Linux, this is also fine. Following
are the server requirements. The requirements are fine for 500 to 1000 nodes. These
requirements will change according to the number of your nodes:

• Ubuntu Server 14.04 LTS
• At least 4 GB RAM
• At least 2 Core CPU
• At least 40 GB of hard disk space

You can download the Ubuntu Server 14.04 LTS ISO from http://www.ubuntu.
com/download/server. Using Long Term Support (LTS) versions, ensure that you
do not have to upgrade your server for a long time and that there will be few issues
about upgrading the distribution. If you want to test it first locally on your computer,
you can also download and install VirtualBox from https://www.virtualbox.org/
wiki/Downloads. All the examples in this book have been created in VirtualBox.

You should have a new installation with the OpenSSH server. We will use SSH to
connect to the server.

www.allitebooks.com

http://www.ubuntu.com/download/server
http://www.ubuntu.com/download/server
https://www.virtualbox.org/wiki/Downloads
http://www.allitebooks.org

Installing Puppet Server and Foreman

[4]

Connecting your server with SSH
We will use SSH to connect to our server. The installation is very easy. You can use
the following command to install:

$ sudo apt-get install ssh -y

• sudo: This enables you to run a command with root privileges.
• apt-get: The APT package handling utility is used to install and uninstall

software.
• install: This option is used with apt-get to install a package.
• ssh: This is the ssh server package name that will be installed.
• -y: The apt-get installation asks, "Do you want to continue [Y/n]?". This

flag gives the answer as yes and the command runs without interruption.

If you use Windows as your operating system, you can connect using PuTTY.
Download this from the link http://www.chiark.greenend.org.uk/~sgtatham/
putty/download.html.

If you use Linux, you can connect from the terminal by the ssh command. For
example,

$ sshusername@serverip

From now on, we will use ssh to connect to our server.

Installing Puppet
Puppet installation usually follows the following steps:

• Set the hostname
• Set FQDN
• Set the static IP, gateway and DNS
• Add the Puppet repositories
• Install Puppet

Let's have a look at each of them.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Chapter 1

[5]

Setting the hostname
I will use puppetmaster as the hostname. You can use either vim or nano for text
editing. If you have never used vim before, it will be easier for you to use nano.

$ sudonano /etc/hostname

• sudo: For configuration changes, we will need the root privileges. If we
do not run the command with sudo, we cannot save our changes to the
configuration file.

• nano: This is the command to run the nano text editor.
• /etc/hostname: This is the filename for the hostname configuration.

Use CTRL + X and Y to save.

Setting FQDN
I will use puppetmaster.example.com. Use the following command to edit the
/etc/hosts file:

 $ sudonano /etc/hosts

Change the contents as follows. Use your own IP according to your network.

127.0.0.1 localhost
127.0.1.1 puppetmaster.example.com
10.10.10.10 puppetmaster.example.com puppetmaster

http://puppetmaster.example.com/
http://puppetmaster.example.com/

Installing Puppet Server and Foreman

[6]

To verify that the changes are effective, use the hostname and hostname
-f commands.

You also need to add the IP and fully qualified domain name (FQDN)
to your company DNS, so that the other computers can find your
server. I assume that, as a Windows system administrator, you already
know how to do this. The IPs used here may not suit your network
and IP ranges, so please change all the IP details throughout the book
according to your needs.

Setting static IP, gateway, and DNS
For your server, give a static IP and define your gateway and nameserver IPs.

First, define your IP gateway and subnet mask. For this, we will edit the /etc/
network/interfaces file. Following is the sample detail I have added for my
Puppet Master:

$ sudonano /etc/network/interfaces

Chapter 1

[7]

As you can see, the details are self-explanatory:

• eth0: This is the network interface name
• address: This is your server's IP
• netmask: This is the subnetmask
• broadcast: This is the broadcast IP
• gateway: This is the gateway IP

Now, let's set the nameserver IPs. To set NS records, we need to edit /etc/
resolvconf/resolv.conf.d/base, as follows:

$ nano /etc/resolvconf/resolv.conf.d/base

The sample contents of this file are shown in the following screenshot. In our
example, we are using the Google DNS IPs. Here, you can use your company's
DNS IPs.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Installing Puppet Server and Foreman

[8]

After saving the file, reboot the server. After rebooting, you can check using the
following command whether you have the correct IP, netmask, and broadcast:

$ ifconfig

• ifconfig: This command is used to get info and make the changes in the
network interfaces

• eth0: This is the network interface name
• inet addr:10.10.10.10: This is the IP address of our server
• Bcast:10.10.10.255: This is the broadcast IP
• Mask:255.255.255.0: This is the netmask IP

Check whether the gateway is correct using the following command:

$ route -n

• route: This command shows and manipulates the IP routing table
• -n: This flag is to show the address details in numeric format instead

of hostnames

Chapter 1

[9]

Lastly, check whether nameserver works correctly. Run the nslookup command and
enter any address, as follows:

$ nslookup

• nslookup: This is the command to interactively query the Internet names
servers. If no nameserver is provided, this will use the default one.

• google.com: When we enter any hostname, this will provide the details
about it

• exit: This command ends nslookup

As you can see in the preceding screenshot, it checks from 8.8.8.8. Now we
can say that our network settings are correct. To exit nslookup, you can use the
exit command.

Adding the Puppet repositories
We will first add the Puppet repositories for installation. Secondly, we will update
the repositories. Lastly, we will update our server before installing Puppet.

Here are the details to add the Puppet repositories:

$ sudowget https://apt.puppetlabs.com/puppetlabs-release-trusty.deb

$ sudodpkg -ipuppetlabs-release-trusty.deb

• wget: This is a utility for non-interactive downloads of files from the Web.
We use this here to download the puppetlabs-release-trusty.deb file.

• dpkg: This is the package manager for Linux Debian. The option -i is used
for installation.

Now, update the repository info, as follows:

$ sudo apt-get update

http://google.com/

Installing Puppet Server and Foreman

[10]

Lastly, install the updates, as follows:

$ sudo apt-get upgrade -y

• update: This option is used to resynchronize the package index files from
their resources

• upgrade: This option is used to upgrade to the newest version of the already
installed software

Installing Puppet
Now, it is time to install Puppet Master and its agent on your server. We will also do
some configurations. The command to install Puppet is as follows:

$ sudo apt-get install -y puppetmaster puppet

Now, let's make sure that Puppet Master starts automatically. For this purpose, we
need to edit /etc/default/puppetmaster. You need to change the START=no value
to START=yes. If it is already yes, you can leave this as it is and continue. You also
need to enable puppet agent on the server. We will edit the /etc/default/puppet
file. Again, we need to make sure that START=yes exists. We also need to change
the server details for the puppet agent. Change the /etc/puppet/puppet.conf file
and enter the server details. Just after [main], add the line server=puppetmaster.
example.com.

http://puppetmaster.example.com/

Chapter 1

[11]

After making the changes, we will restart the services as shown here:

$ sudo service puppetmaster restart

$ sudo service puppet restart

Check whether they are running using the following commands:

$ sudo service puppetmaster status

$ sudo service puppet status

As you can see in the preceding screenshot, the services are running without
any problem. So we completed the installation of Puppet Master and Puppet
agent on our server.

Installing Foreman
After installing Puppet Master, our next step is to install the Foreman web
user interface that will be used to manage and report. Foreman is an open source
project that can be used with Puppet or Chef. With Foreman and Puppet, you can
manage your servers for configuration management, orchestration, and monitoring.
For installation of Foreman, we will first add the relevant repositories, and after that
install it.

Add repository details, as follows:

$ sudo -i

echo "deb http://deb.theforeman.org/ trusty stable" > /etc/apt/sources.
list.d/foreman.list

echo "deb http://deb.theforeman.org/ plugins stable" >> /etc/apt/
sources.list.d/foreman.list

You can also use sudonano to add the details to the relevant files. In the preceding
commands, echo outputs the text to the screen or a file. > overwrites the file, if it
exists; if it does not exist, the file will be created. >> adds content to the end of the
file without overwriting it.

Installing Puppet Server and Foreman

[12]

We need to add the key for the repository, as we are manually adding the source
details using this command:

wget -q http://deb.theforeman.org/pubkey.gpg -O- | apt-key add -

Now we have successfully added the repository details; we can continue with the
repository updates, as follows:

apt-get update

We need Apache as our web server. So, we install apache2 and foreman-installer
as shown in the following:

apt-get install -y foreman-installer

The final step is to run the foreman-installer. It will take some time to complete.
For my server, it took more than five minutes.

foreman-installer

Do not forget to write down the user and password details to connect your server.
In the next section, we will see the basics of the user interface.

Chapter 1

[13]

The Foreman interface
Now, just open a browser and enter your URL. In our example, the URL is
https://puppetmaster.example.com. You will get the login page.

Log in with your username and password and you will get a screen as follows.
In this screen, you will see only one host, which is our Puppet Master server.
We added its agent before, and now we can see that it was connected just two
minutes ago. This means that we can even manage Puppet Master with Puppet.

www.allitebooks.com

https://puppetmaster.example.com
http://www.allitebooks.org

Installing Puppet Server and Foreman

[14]

The next step is to change your password. From the right upper corner, go over to
Admin User and click on My account. Set a new password as per your convenience.
Make sure that the password is strong.

Now let's check out the dashboard. For the dashboard, from the Monitor menu
click on Dashboard. In the dashboard, you will see the summary statuses of all
your hosts. At the moment as we have only one host, there is not much detail.
When we will have more hosts, we will check again, and then find that there will be
many different statuses. Most of the statuses of your hosts will fall under one of the
statuses listed, as follows:

• Hosts that have modifications without any error
• Hosts with errors

Chapter 1

[15]

• Hosts with good reports in the last 35 minutes
• Out-of-sync hosts

We will finish reviewing the Foreman interface. This will be enough for now.
We will later see more details of the interface to manage our hosts.

Keeping your server secure
Puppet Master must be protected well. It is a high-risk asset. With Puppet, you
can install software on all your servers and clients. Puppet agents on Linux and
Windows run with root and admin rights respectively. Think about a scenario where
a hacker gets control of it. He can easily run any command, install backdoors, and
fully compromise your IT infrastructure.

I suggest using the Ubuntu Server version that does not have a graphical user
interface. This will ensure that there will not be much unnecessary software on your
Puppet Master. Having only the necessary software on it helps you to have a more
secure server, and also to keep the performance higher.

Installing Puppet Server and Foreman

[16]

Security rule:
Do not install any software that is not necessary. If vulnerable
software does not exist, it cannot be attacked.

Backups
Keep frequent backups of your server.

There are many good backup solutions such as Backup Exec and Veeam. There are
also hardware level backup solutions for storage devices. As a last option, you can
also use free backup solutions such as Burp backup or a version control system
(VCS). VCS will only back up your code and configuration.

Backup solutions and how to handle them is out of the scope of the book. Every
company and system administrator has or should have their backup solution.
If you do not have one, it is really time to implement one of the solutions as soon
as possible. Without backups, your most important concern and risk will be
business continuity.

Keeping your server up to date
Every day we see that there are new vulnerabilities, and with new security updates
they are patched. So you must have a good policy of updates. The updates are very
easy with Ubuntu; you only run two commands, as follows:

$ sudo apt-get update

$ sudo apt-get upgrade

I will not explain these commands again. You can check the section Installing Puppet
in this chapter to see the details if you need.

Before updating your server, ensure that in case of problems, you can go back. If
you are using a virtual machine, such as Puppet Master, take a snapshot before the
updates. If you use hardware, take a new backup before you start.

Lastly, it is also a good idea to have a development environment. Testing the updates
in development and then updating the production server would be a good practice.

Chapter 1

[17]

Do not enable root account
Some administrators do not feel happy about entering a sudo command and
password whenever there is a need for root privilege. To simply bypass this
problem, they enable the root account and use it for every task.

The problem with using the root account is that, you have many processes and
software running with root privileges. Assuming that one of them is vulnerable,
and a hacker targets your server. When the hacker uses this vulnerability and opens
a shell, the privileges that he will have are directly related to the process. So, if the
process runs with root privileges, the hacker gains root access. Root access implies
total control of the server. If the process is using a limited user account, the hacker
will gain these privileges. This means that he still has a long way to go and find some
way to escalate the privileges.

Also, when you use the root account, you also need to protect the server from
yourself. The root account can do everything; with great power comes great
responsibility. If you do something wrong, accidentally, you may need to restore
your server from a backup. If you do not have a backup, things may get worse.

Always use a limited account and use sudo only when needed. This will protect you
from hackers and also from yourself.

Check status of the root account, as follows:

$ sudopasswd root -S

If not locked, lock it using the following:

$ sudopasswd root –l

From now on, in this chapter, all the following details are
not related to the implementation and installation of Puppet.
However, it is suggested to complete these steps in a live
environment. When learning in a test environment, security may
not be your initial concern. In this case, simply go to Chapter 2,
Installing Puppet Agents

Installing Puppet Server and Foreman

[18]

The user password policy
Another important point is to have a decent password policy. With the correct
password policy, we will make it harder for the passwords to be cracked. In the
Windows Group Policy, there are also settings for password policy. Thus, the
Windows administrators can easily understand its necessity. Here are some
points to improve upon.

Do not use old passwords that have been used
before
To limit the old passwords that can be used, we need to edit the /etc/pam.d/
common-password file. PAM is Pluggable Authentication Modules. PAM enables
us to change the authentication process of Linux.

$ sudonano /etc/pam.d/common-password

password [success=1 default=ignore] pam_unix.so obscure sha512
remember=5

• pam_unix.so is the default PAM module
• obscure sha512 will encrypt the new passwords with sha512
• success=1 skips the next rule
• remember=5 will prevent the user from using the last five passwords

Using at least a 10 char complex password
To set more complex passwords, we will install the libpam-cracklib library,
as follows:

$ sudo apt-get install libpam-cracklib

After this, we again edit the /etc/pam.d/common-password file as follows:

$ sudonano/etc/pam.d/common-password

password requisite pam_cracklib.so retry=3 minlen=10 difok=3 ucredit=-1
lcredit=-1 dcredit=-1 ocredit=-1

• retry=3 ensures that while setting the password, if the user cannot
successfully set a password three times, the passwd command will abort

• minlen=10 is the minimum length for the password

Chapter 1

[19]

• difok=3 is the minimum number of characters that must be different from
those of the previous password

• ucredit=-1 sets the minimum number of required uppercase characters to 1
• lcredit=-1 sets the minimum number of required lowercase characters to 1
• dcredit=-1 sets the minimum number of required digits to 1
• ocredit=-1 sets the minimum number of required symbols to 1

Here are the /etc/pam.d/common-password details after the changes:

Expiring password in 90 days
The password expiration details are in the /etc/login.defs file. Change the value
of PASS_MAX_DAYS to 90 and it will be forced to update the password every 90 days,
as follows:

$ sudonano/etc/login.defs

PASS_MAX_DAYS 90

Locking account
This policy makes sure that any brute force attempt will fail, or need too much time
to complete. We will lock the user account for 10 minutes, if five times there are
consecutive login failures. For this purpose, we need to modify the /etc/pam.d/
common-auth file. After the lock and wait time, if the user successfully logs in with
the correct password, the failed attempts counter will be reset to zero. Otherwise,
each failed attempt after the lock will cause another 10 minutes of lock. So, I suggest
here that you keep a backup user with the sudo rights, as follows:

$ sudonano/etc/pam.d/common-auth

auth required pam_tally2.so deny=5 onerr=fail unlock_time=600

• pam_tally2.so is the PAM module that comes with Ubuntu installation
and used for account locks.

• deny=5 is the setting used to set the number of failed logins to lock
an account.

Installing Puppet Server and Foreman

[20]

• onerr=fail if something weird happens, the PAM login status will be fail
or success. The default status is fail.

• unlock_time=600 is the number of seconds after which the account will be
unlocked.

After completing all the changes, restart your server with the reboot command for
all the changes to be applied. This is done as follows:

$ sudo reboot

You can check a user's login attempts with the following command:

$ sudo pam_tally2 -u username

• pam_tally2 is the command for the login counter PAM
• -u is used to set the user

Here is an example output after two unsuccessful login attempts:

If you want to reset the counter and unlock the user, you can use the following
command. -r switch is used to reset the failures counter.

$ sudo pam_tally2 -u username -r

Using SSH with key file to connect
This step makes sure that even if somebody gets your password, it will not be
usable. Thus, we will use the SSH key files. The SSH key files are used to identify
yourself to an SSH server using the public-key cryptography and challenge-response
authentication. We will disable the password logon option and it will be only
possible to connect with a key file. We will also put a password to the key file, to
make sure that it is also not usable without the password.

Chapter 1

[21]

Creating the public and private key
Use the ssh-keygen command to generate the keys, as follows:

$ ssh-keygen

ssh-keygen first asks for the folder to save the keys. Just push the Enter key and
continue. The next question is the passphrase. Make sure that you enter a password.
Using the password with your key makes sure that, when somebody gets your key,
it will be unusable.

Now go to the .ssh folder, as follows:

$ cd .ssh

Under this folder, you will see these two files:

• id_rsa: Private key
• id_rsa.pub: Public key

Installing Puppet Server and Foreman

[22]

We need to add the details of the public key to a file called authorized_keys.
This will make it possible to log in with the private key.

$ cat id_rsa.pub >authorized_keys

• The cat command displays the content of a file in the terminal
• The > symbol adds the content of a command output to a file and if the file

has content, it will be overwritten
• The authorized_keys is the file that will be required for the ssh connection

with a key

Here is an example screenshot:

Change the authorized_keys file permissions, otherwise the key will not work.
This is done as follows:

$ chmod 600 authorized_keys

This command will allow only the user to edit and write the file; any group or other
users will not be able to change it.

Getting the key to your computer and converting it
into the PuTTY format
Now, we need to get the contents of id_rsa to our computer that we will use to
connect to Puppet Master.

Chapter 1

[23]

To do this, you can use FileZilla to connect and download the file. Or you can
use any FTP client with SFTP support. Here is a screenshot for the SFTP
connection definition:

You need to enter the following:

• Host: The server IP is 10.10.10.10. This is the IP that we gave to our Puppet
Master server while installing.

• Protocol: SFTP.
• Logon Type: Normal.
• User: Your username.
• Password: Your password.

www.allitebooks.com

http://www.allitebooks.org

Installing Puppet Server and Foreman

[24]

After you have filled the details, click the Connect button. When you connect, you
will see your user folder and the .ssh folder, as follows:

Chapter 1

[25]

Download the id_rsa file to your documents folder. After this, you need to convert
the file with PuTTYgen.exe. Open PuTTYgen.exe and click the Load button. You also
need to select the All Files (*.*) option, as shown here:

After you click it open, it will ask for the password. After this, click on Save private
key and give a name to your key. I saved it as puppetmaster.ppk. Now, we are
ready to use this key to connect to Puppet Master.

Installing Puppet Server and Foreman

[26]

To do it, first fill in the details as follows:

• Host Name: username@ipaddress
• Port: 22
• Saved Sessions: Give a name for the session

Chapter 1

[27]

Now go to SSH | Auth. Select the key file, as follows:

After this, go back to Session from the Category section and use the Save button.
This will make sure that you can reuse the connection and do not have to define
the same settings again.

Now you will be able to connect by double-clicking your saved session name.
It will ask for the key file password and then you will be able to connect.

Connecting from Linux
To connect from Linux systems, you do not need to convert the private key. You can
just connect from the terminal with the ssh command, as follows:

$ sshusername@serverip -ikeyfile

When I change this command to my example, it will be as shown here:

$ sshpuppet@10.10.10.10 -iid_rsa

mailto:puppet@10.10.10.10
mailto:puppet@10.10.10.10

Installing Puppet Server and Foreman

[28]

Disabling the SSH logins with a password
This is our last step for SSH. After disabling the password login option, there will be
no possibility for an hacker to use brute force against an account. Also, there will be
no possibility to log in, even if the hacker knows the password.

We need to change the /etc/ssh/sshd_config file to disable password, as follows:

$ sudonano /etc/ssh/sshd_config

Find the PasswordAuthentication text, uncomment it, and set the value to no.

After changing the value and saving the file, restart the ssh service, as shown here:

$ sudo service ssh restart

Now, here is the output when I try to log in without the key:

Chapter 1

[29]

The firewall rules
For the servers and clients, the rule for security is: "Deny all incoming connections
and allow only those needed." Here are the steps:

• Check which ports to keep open
• Define the firewall rules
• Make the firewall rules persistent

Checking which ports to keep open
We will use netstat to check the listening ports and running services. Here, we
already know that for administrative purposes, we need to keep the SSH port 22
open. But we also need to check other ports that Puppet and Foreman are using.
The command to check the listening ports and services is as follows:

$ sudonetstat -nlput

• netstat: The command to check network connections.
• n flag: This shows addresses in the numeric format
• l flag: This shows only the listening ports
• p flag: This shows the PID name of the program that the socket belongs to
• u flag: This shows the UDP ports
• t flag: This shows the TCP ports

Installing Puppet Server and Foreman

[30]

Here are the ports that we need to keep open:

• 22: ssh
• 80,445: HTTP and HTPPS ports to connect Foreman
• 8443: Foreman proxy is running on this port as a proxy
• 8140: Puppet Master listens to this port

You can also remember that in the section Installing Foreman when the installation
finishes, it gives the details about the 8443 and 8140 ports.

Defining firewall rules
We will use iptables as the firewall. It comes preinstalled on the Ubuntu Server. First,
let's check the rules that we have. If no rules are defined previously, all the policies
will be in the ACCEPT state. The commands to check the iptables rules are as follows:

$ sudoiptables -L -v

• iptables: This is the command to manage the firewall
• L flag: This lists all rules
• v flag: Verbose output. This shows the rule options and packet counters

Allowing ingress traffic for the SSH port 22
We will accept traffic from any source when the destination port is port 22. Here is
the command:

$ sudoiptables -A INPUT -p tcp --dport 22 -j ACCEPT

• -A flag is used for adding rules.
• -p tcp, here p flag is for the protocol definition and TCP is the protocol.

Chapter 1

[31]

• --dport 22, here, dport is the destination port definitions and the port is 22.
• -j ACCEPT, here, j flag tells what to do. Here, we accept the packet, if it

matches the rule.

Allowing ingress traffic for HTTP port 80
We will accept traffic from any source when the destination port is port 80.
Here is the command:

$ sudoiptables -A INPUT -p tcp --dport 80 -j ACCEPT

Allowing ingress traffic for HTTPS port 443
We will accept traffic from any source when the destination port is port 443.
Here is the command:

$ sudoiptables -A INPUT -p tcp --dport 443 -j ACCEPT

Allowing ingress traffic for Foreman proxy port 8443
We will accept traffic from any source when the destination port is port 8443.
Here is the command:

$ sudoiptables -A INPUT -p tcp --dport 8443 -j ACCEPT

Allowing ingress traffic for Puppetmaster port 8140
We will accept traffic from any source when the destination port is port 8140.
Here is the command:

$ sudoiptables -A INPUT -p tcp --dport 8140 -j ACCEPT

Allowing all that is established from us
We need to define this rule. Otherwise, any traffic connection will not be complete.
We will be able to send traffic outside, but never be able to get answers back. So, we
will allow any incoming packet that is related to our outgoing traffic.

$ sudoiptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

• -m: This flag is used to match certain conditions. It can be used with different
types of modules.

• state --state ESTABLISHED,RELATED: state is the module name that
checks the statuses of a connection. Here, we allow any connection that is
related to the established and related connections.

Installing Puppet Server and Foreman

[32]

Denying all the incoming traffic
This time, we do not give any protocol or port number. So, this means that all the
input traffic will be dropped.

$ sudoiptables -P INPUT DROP

After completing the rules, let's check the iptables rules again:

As you can see in the preceding screenshot, all the rules are defined in the order
that we defined.

IMPORTANT:
Define the "deny all" rule last. The order of the rules is
important. The first rule will be applied first. So, if you first
define the "deny all" rule, you will not be able to connect with
SSH and your connection will drop.

Making the iptables rules persistent
The rules we defined are not persistent. So whenever you restart your server, the
rules will be lost. To prevent this, we will install iptables-persistent. This
software will keep our rules and will enable them at the startup. First install it using
the following command:

$ sudoapt-get install iptables-persistent

While installing, it will ask you to save the current configuration to a file name such
as /etc/iptables/rules.v4. Answer this with a yes. The second question will be
about IPv6. We did not define any rules for it, so answer no for this.

After completing the setup, reboot your server and list the rules of iptables to see
that they are still there.

Chapter 1

[33]

Summary
In this chapter, we started by learning what Puppet is. After this, we continued with
the differences between Puppet implementations. We got hands-on experience by
installing Puppet Server and Foreman. The final step was learning about how to keep
your server secure. In the next chapter, we will deal with the Puppet agents and their
installation on the hosts.

www.allitebooks.com

http://www.allitebooks.org

[35]

Installing Puppet Agents
In the previous chapter, we completed the setup of our Puppet Master server.
So far, this has been purely in Linux. From now on, we will mostly deal with
Windows, Foreman GUI, and Puppet Master. In this chapter, we will learn how to:

• Install the Puppet agent
• Modify the installation file
• Use third-party software to install the Puppet agent on multiple hosts
• Use a domain controller to install Puppet on multiple agents

The first step is to install a Puppet agent on a host computer and make the necessary
configurations, so that the host and server can have a connection.

Downloading and installing the
Puppet agent
This is a very easy step. We just need to log in to one of our Windows servers or
clients, and install the Puppet agent. You can download the latest installation file
from https://downloads.puppetlabs.com/windows/. Always download the latest
version that is compatible with your server. Make sure that the version number
of your agent is not greater than your Puppet Master's version.

You can check your Puppet's version in Puppet Master using the following command:

$ puppet --version

Finally, download the correct version that is supported by your server/client, that is,
32 bits or 64 bits.

https://downloads.puppetlabs.com/windows/

Installing Puppet Agents

[36]

After the download, you need administrative rights to install the software. Just
double-click and install the agent using the Next, Install, and, Finish buttons. You just
need to enter the FQDN of the server correctly, as shown in the following screenshot:

After the installation, we can check whether everything has proceeded fine.
Normally, you do not need to check whether it was installed properly. However, you
may need the following details for troubleshooting. So, it is best to learn how to deal
with the agent, and then test whether it is running without any problems.

The Puppet agent runs as a Windows service. Let's check whether there is one such
service. When we check it, we can see whether it is listed as a service and whether it
has already started, as shown in the following screenshot:

Chapter 2

[37]

Now, from the Command Prompt, we will check the version of the agent and try
a test run.

You will need to open cmd.exe with administrator rights, otherwise
the Puppet test will work incorrectly. You will, also, need to run a
new instance after the installation. If you try to use an already running
Command Prompt, it will fail to find the puppet command, as the new
path definitions are not active in the running instance.

The command for checking the version in Windows is also the same as that of
Puppet Master. The command is as follows:

C:\> puppet --version

Test run the agent using the following command:

C:\> puppet agent --test

Installing Puppet Agents

[38]

For puppet to correctly resolve puppetmaster.example.com, it
is best to add a record in your DNS server. This detail was covered
in Chapter 1, Installing Puppet Server and Foreman. If you did not add a
record in your DNS, you can also change the hosts file locally using
C:\Windows\System32\drivers\etc\hosts. However, this is
not suggested because in this case, you have to manually modify each
computer's hosts file.

In the following screenshot, we can see that the agent version is 3.7.4 and the test
run gives a certificate error. This is normal. We will now sign the certificate from
Foreman and after this, the agent will be able to connect. The agent version and
the result of the test run is as shown here:

Signing the certificate
Go to the Foreman web user interface. From the menu, select Infrastructure | Smart
Proxies. On the smart proxies screen, as shown in the following screenshot, select
Certificates, as this is the section to manage your hosts' certificates:

Chapter 2

[39]

Here, you will see the new host and its status. As you can see in the following
screenshot, the host is waiting in the pending status. Click the Sign button and
sign the new host's certificate:

After this, we can go back to our host and run a new test to see what happens:

Installing Puppet Agents

[40]

During the first run, the host successfully connected to the server. However, there
is an error informing that it cannot find the node definition. This is fine. In the first
connection, the node definition will be created. As you can see in the preceding
screenshot, when you run the test again, there is no error because the node
definition was created previously.

Now, let's switch back to Foreman and check whether the host details can be seen
here. From the menu, select Hosts | All hosts. The details are as follows. We can
see that the new host is added to our hosts list:

Summarizing, you only need the following two steps:

• Install the agent with correct server details
• Sign the certificate

All the other steps are for information and troubleshooting when you have problems
of host connections.

Installing the Puppet agent on multiple
clients
After looking at how to install the Puppet agent on one Windows host, it may occur
to you that installing the agent on each host manually will be really cumbersome,
if you have hundreds or thousands of hosts. In this section, we will deal with the
different options of installing the agent on multiple hosts.

Chapter 2

[41]

Here are some options, as follows:

• You can use third-party software
• You can use the domain controller
• You can use the Microsoft System Center Configuration Manager

Modifying the MSI file
As we are sticking to free tools to get things done, it is hard to find a software that is
capable of modifying the MSI settings and sending the installation to multiple hosts.
However, if you have a configured MSI file to use, it is reasonable to use a free or
shareware software.

In this section, we will modify the Puppet agent installation MSI, so that it includes
the FQDN server. After this, we can silently push the installation and it can run in
the background without disturbing the users of the clients and servers.

To change the MSI file of the Puppet agent installation, we will use Orca from
Microsoft. To get Orca, we need to install Microsoft Windows SDK for Windows
7 and .NET Framework 4. Go to http://www.microsoft.com/en-us/download/
details.aspx?id=8279 and download it. Before installing this SDK, you need
to install .NET 4. If you do not have this, the link to download it is http://www.
microsoft.com/en-us/download/details.aspx?id=17851.

After downloading the SDK, run the winsdk_web.exe file. Use the Next button,
until you see the following screen. Just select Tools under Windows Native Code
Development and continue the installation:

http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=17851

Installing Puppet Agents

[42]

After the installation is complete, go to the C:\Program Files\Microsoft SDKs\
Windows\v7.1\Bin folder and find Orca.msi:

This is the software that we need, to change the MSI file details. Install this software.
During installation, when asked, select the Typical installation. When the installation
is complete, you will see the Orca link in the Start menu:

Chapter 2

[43]

After executing Orca, open the Puppet agent installation MSI file. Select
CustomAction on the left-hand side section:

We will change the following three parameters here, and set their values to the
Puppet Master FQDN:

• SaveCmdLinePuppetMasterServer

• SetFromCmdLinePuppetMasterServer

• SaveCmdLinePuppetAgentEnvironment

Here are the details after setting the values:

After the changes are complete, we just save the file and exit. Now we have a file
with custom installation parameters. This MSI can be used for bulk installations.
We can use this with third-party software or with a domain policy to install it on
multiple hosts.

www.allitebooks.com

http://www.allitebooks.org

Installing Puppet Agents

[44]

Using software to push the agents
After modifying the MSI file according to our needs, the second step is to install it on
the clients and servers that we have. We already have the option to install it on one
system at a time. However, this is really not desirable and requires a lot of manual
work. So, we need to find a way to push the installation.

We will use the PDQ Deploy to distribute the agent. The PDQ Deploy has a trial
version and is enough for our needs. To download the application, go to http://
www.adminarsenal.com/pdq-deploy. This will ask you to fill a short form with
your name, surname, e-mail, and, company details. After filling this, you will get the
download link. Download the application and install it. It needs .NET 4.0, or above,
to run. Even if you don't have .NET, it will be installed. After the PDQ Deploy is
installed, run it and it will start with a welcome screen:

http://www.adminarsenal.com/pdq-deploy
http://www.adminarsenal.com/pdq-deploy

Chapter 2

[45]

Continue with Next and select Use Free Mode in the next screen. After this, it will
ask for credentials:

Now, we are on the screen to deploy our agent. Click Create a new Package from
this screen:

Installing Puppet Agents

[46]

In the package details screen, enter the name as Puppet Agent and the version
information for your agent:

After this, go to Step 1 on the left-hand side menu:

Chapter 2

[47]

First, select the install file. Ensure that the MSI options are as follows:

• Operation: Install
• Restart: Never
• Quiet: Yes

When the details are complete, click the save icon in the top left of the screen. Now
you will have a new Puppet Agent package on the screen. Right-click on it and select
Deploy Once. In the next screen, we need to select our target computers. There
are many options for this. You can select them from Active Directory in your PDQ
library (where there is a list of already used computers), from a target list, or even
from a text file. Also, you have the option to add the IPs of the hosts one by one:

Installing Puppet Agents

[48]

For this example, we will use Active Directory, which fits best to the needs of a
Windows system administrator. In the testing environment, there are only two
Windows 7 hosts connected to the server and these two will be used as examples:

After we are done, we can click Deploy Now and see the progress. As you can see,
it provides the list of targets and statuses. The deployment of the two hosts took 17
seconds to run, and then finished successfully:

Chapter 2

[49]

Now, let's check the Windows test host to see whether everything is fine. In the
following screenshot, we can see that the installation is successful and there are the
details in the Start menu. Also, when we check from the Command Prompt, it can be
seen that the host is successfully connected and is waiting for certificate signing.
The following screenshot shows the successful installation:

Installing Puppet Agents

[50]

To make sure that the host has connected to the Puppet Master, we can check
whether the certificate has been generated. In the certificate details, we can see
that the new hosts are waiting to be signed:

With the PDQ Deploy's free version, we can deploy hundreds or thousands of hosts
in one shot. It is also good to see the success and failure details. If there are failures,
we can handle them manually or try again by focusing on the problematic ones.

Using a domain controller to push the agents
Windows administrators may prefer to install software through a group policy and
may not like the option to use third-party tools. So this is our second option. You can
use your own preferred method.

We will use our domain controller's group policy to install the MSI package of
the Puppet agent on all the domain servers and client computers. First, place your
installation file in a folder and share this folder. The sharing needs to have Everyone
read rights. We will use the network share link for the group policy, so that the
installation file is accessible to everyone.

Chapter 2

[51]

Here is the share link for this example:

file://WIN-6AG2O6XJN3W/Users/Administrator/Desktop/puppet.

From the Start menu, Administrative Tools, we will run Group Policy
Management. Here, you can find your domain name. Right-click on the domain
name and select Create a GPO in this domain, and Link it here...:

file://WIN-6AG2O6XJN3W/Users/Administrator/Desktop/puppet
file://WIN-6AG2O6XJN3W/Users/Administrator/Desktop/puppet

Installing Puppet Agents

[52]

For this example, we will use PuppetAgent as the policy name. After creating the
policy object, go to the scope details and add Domain Users, and also, remove
Authenticated Users:

Now, right-click on the PuppetAgent object and select Edit. Here, go to User
Configuration | Policies | Software Settings | Software installation. On the
right-hand side white space, right-click and select New | Package:

Chapter 2

[53]

You can select Computer Configuration here, and the agent can be
installed on all your computers without any user dependency. However,
the installation will be applied after getting the policy and restarting the
relevant computers.

In the new window, we need to select the installation file. We have already created
a shared folder, and now we will select it. A shared folder will guarantee that
everybody has access to the installation file. In the following screenshot, you can see
that the network share is selected:

www.allitebooks.com

http://www.allitebooks.org

Installing Puppet Agents

[54]

Click Open and in the next window, select the Advanced radio button and click OK.
A new window will open. Go to the Advanced tab. Select the Assigned radio button
and the Install this application at logon checkbox:

Now we have finished. For the installations to start, first the domain computers have
to get the policy. After the policy update, the Puppet agent will be installed at the
first logon. The status of the certificates in Foreman will be as shown in the following
screenshot. As you can see, we have only one host and that is, Puppet Master (the
previous configurations and certificates are removed for testing purposes):

Chapter 2

[55]

To verify whether the configuration was successful and to make it quicker, we will
manually make a policy update. To update the policy, manually run the following
command in the Command Prompt of Windows. gpupdate is used for the group
policy update. The force parameter forces for an update:

C:\>gpupdate /force

The policy update shows a warning that there is an update that will be implemented
after logoff and logon. We will answer this with Y:

Installing Puppet Agents

[56]

After logon, let's check whether the Puppet agent is installed. As you can see from
the Start menu, it has been successfully installed:

We are done with the windowstest host. Now, let's just restart windowstest2 to
verify whether it also gets the policy and installs the agent. After restarting, try
logging in to windowstest2 and check whether the agent shows that the installation
was again successful.

Chapter 2

[57]

Our last step is to check Foreman for the certificates. As you can see in the following
screenshot, this step was also successful. Here, we only need to sign the certificates
as the last step:

Managing the node certificates
One of the important areas that we need to cover is the management of the host
certificates. Puppet uses certificates for a secure connection between the Puppet
Master and the hosts. Without signing the certificates, it is not possible to manage
any host. For the management of the certificates, we have the following two options:

• Using the Foreman UI
• Using the Puppet Master server terminal with SSH

Displaying the certificates
Let's start with the Foreman UI, which we are already familiar with. In the previous
section, Signing the certificate, we already added a host and signed its certificate.
To refresh our memory, let's do it again.

Installing Puppet Agents

[58]

Go to Infrastructure | Smart Proxies from the top menu. In the next screen, click
on Certificates. As you can see in the following screenshot, we have four hosts
at the moment. One of them has been already signed and the others are waiting
to be signed:

Now, let's check this from the terminal. The commands are as follows:

• $ sudo puppet cert list --allpuppet cert: This command is used for
the Puppet certificate management

• list: This option lists the certificates that are not signed yet
• --all: This option also lists the signed certificates

From the following screenshot, we can see the output. The signed certificates have a
plus sign at the beginning of the line:

Signing the certificates
In Foreman, just click the Sign button for the relevant host and it will be signed. To
do this from the terminal, here is the command:

$ sudo puppet cert sign hostname

Chapter 2

[59]

The following is the output to sign a host certificate:

Deleting the certificates
From Foreman, it is very simple to delete the certificates. If the certificate is already
signed, there will be a Delete button. If it is not signed yet, you can click the small
downward arrow just to the right of the Sign button and click Delete:

To delete from the terminal, the command is as follows:

$ sudo puppet cert clean hostname

The following is the output of a certificate deletion:

If you want to delete the host certificate from the host computer, you can
delete the SSL folder under C:\ProgramData\PuppetLabs\puppet\
etc\. If you delete both the certificates from the host and the server, the
Puppet agent will create a new certificate in the next run. This is useful for
problem certificates.

Installing Puppet Agents

[60]

The host groups
The host groups are used for the management of different computer groups. For
example, we can create a group for the servers and another group for the clients,
or we can create different groups for each department such as finance, human
resources, and information technology. If you have different needs for different
hosts, then it makes sense to create groups and assign the relevant hosts to them.

For our example, we will keep it simple and create two host groups for the servers
and the clients. After this, we will also create subgroups.

Managing the host groups
From the top menu, we select Configure | Host Groups. From the new screen, we
select the New Host Group button. We need to fill the following:

• Name: Name of the group.
• Environment: We only have the production environment at the moment, and

we are selecting it.
• Puppet CA: This is the server for the Puppet certificate authority server. In

our case, it is same as the Puppet Master.
• Puppet Master: This is the Puppet server.

Chapter 2

[61]

After entering all the details, click the Submit button, and your first host group
will be saved. Now, we will create another group of clients. This time you will
see that there is one new selection, which is Parent. This means that you can
create subgroups.

After this, we will create two child host groups: Windows Servers and Linux
Servers. While creating these, we need to select Servers as a parent group.
When you select a parent, the child will inherit the details from it:

Installing Puppet Agents

[62]

After creating all the groups for our scenario, we can see all these groups in the
following screenshot. From the button in each line, we can handle different tasks
as follows:

• Nest: Create a child group for the relevant group
• Clone: Clone the group
• Delete: Delete the group

Assigning the hosts to hosts groups
From the top menu, we go to Hosts | All Hosts, select the relevant hosts, and use
Select Action | Change Group to assign the hosts to a group:

Chapter 2

[63]

As you can see in the following screenshot, we have selected two of the clients and
assigned them to the Clients group.

After finishing all the assignments here, we can see all the hosts and their host groups:

Summary
In this chapter, we first learned how to install Puppet agents on a single computer.
Next, we learned how to modify an MSI package, so that we can use it for a silent
install. After this, we used the MSI file to install the Puppet agents on multiple hosts
using either third-party software or domain group policy.

After finishing the installations, we continued with the management of the host
certificates. Finally, we learned how to manage the host groups.

In the next chapter, we will begin to write our first modules to manage the hosts.

[65]

Your First Modules
In the previous chapter, we learned the installation of Puppet agents on multiple
hosts. Now, we will start writing our first modules. We will cover the following
topics in this chapter:

• Module structure and defining modules
• Modules to create files and directories
• Assigning classes to hosts and hosts groups
• Modules to manage services
• Modules to manage users
• Modules to run commands

The module structure
We will start with the basic module structure. Puppet uses manifests to apply
settings to hosts. Puppet manifests are the files containing the Puppet code.
The manifests, files, and data are packed as a module structure. You can write
your own modules or you can download pre-built open source modules from the
Puppet Forge. We will deal with Puppet Forge modules in Chapter 4, Puppet Forge
Modules for Windows.

The module layout
A module is simply a directory tree with the following structure:

• manifests: This contains the manifests in the module
• files: This folder contains the static files that are used by the module

Your First Modules

[66]

• templates: This contains templates that will be used by the Puppet
manifests

• lib: This contains plugins, such as custom facts and resource types

After the basic structure definition, we will start with our first modules in the
next section.

Because each module needs to have an init.pp file with a class
name the same as its module, we will see that in Foreman the class
names are exactly same as the module names.

You can also create a module with the puppet generate module command. The
following are the details of how to write the command. For more details, please
refer to https://docs.puppetlabs.com/puppet/latest/reference/modules_
fundamentals.html#writing-modules. The command is as follows:

puppet module generate <USERNAME>-<MODULE NAME>

Modules for creating the files and folders
Now, we are starting with our first module definition. The first will be a very easy
one. On all the hosts, we will create a file with the content, Hello World!, under the
C:\ Windows\Temp> directory.

The Hello World module
To write our first module, we will connect to the Puppet Master with SSH. The
working directory for Puppet modules is /etc/puppet/modules. The following is
the screenshot of the /etc/puppet directory:

https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html#writing-modules
https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html#writing-modules

Chapter 3

[67]

As we can see from the screenshot, the modules folder is owned by the root. Thus,
we will switch to the root account to continue working with the modules directory.
The following command will give you the root credentials and will also keep you in
the directory you are working:

$ sudo -s

If you are not yet at the correct directory, just use the cd command to go to
/etc/puppet/modules:

cd /etc/puppet/modules

Creating the directory structure
The next step is to create our module structure. The most basic one has the following:

• One directory with the module name
• Another directory, under the module name, named manifests

We will use the mkdir command to create the directories. Here is a sample screenshot:

If the tree command does not work, it can be
installed using apt-get install tree.

Creating the manifest file
After completing the directory structure, the next step is to create the manifest file.
For a module, we need to create the init.pp file under the manifests file. init.
pp file contains the class definition for the module. The class name and the module
name should be the same. To create the new file, you can use the Nano text editor:

cdhelloworld/manifests

nanoinit.pp

Your First Modules

[68]

The class name must be the same as the module name. The following is the class
definition:

classhelloworld {

}

Now, we will define the file that will be created. In the following code snippet, you
can see the very basic definition of this:

file { 'path and name of file':
content => "Content of file",
}

The following are the details of the manifests:

• Line 1: This defines the class name
• Line 2: This defines the file path and name
• Line 3: This defines the content of the file
• Lines 4 and 5: These end the class and file definitions

We have finished the creation of our first module. Now, we will continue in Foreman
and import the module class. After the import, we can use the class for our hosts or
host groups.

In line 2 of code snippet in the preceding screenshot, for path
definition, we used the forward slash / symbol. Normally, in
Windows, the backslash \ symbol is used. However, backslash is an
escape sign in Linux. Puppet correctly works with forward slashes
on Windows. Thus, while defining the file paths, we can use /.

Importing the module class in Foreman
Log in to the Foreman user interface. From the top menu go to Configure | Puppet
classes. After this, click on the Import from yourserveraddress button. For our
example in this book, the button is Import from puppetmaster.example.com.

Chapter 3

[69]

After clicking on the button, we will see our newly created module name. You
will also see the different environments: common, development, example_env,
and production. As you will recall, we assigned all our hosts to the production
environment. We will do the same and assign the module to the production
environment. To do this, just click on the checkbox in the production line and
after this click on the Update button:

We are using only the production environment to keep things
simple. In the real world, it will be a good idea to use the
development and production environments. The development
environment can be used to test your modules. When you
feel comfortable, you can assign the module to the production
environment and the relevant hosts.
To keep this even simpler, you can use /etc/puppet/
environments/production/, so that the class appears only
in the production environment while you are trying to import it.
However, in live environments, it will be easier to first put it under
/etc/puppet/modules. First, import into the development test
and after this, import into production.

Your First Modules

[70]

After the successful import of the module, you will see your module class under the
Puppet classes:

Assigning the class to a host
We have imported the class and now we will assign it to a host. To do this, we will
browse to all the lists of the hosts and select one of them by clicking the Edit button.
For this example, we will continue with windowstest.example.local:

Chapter 3

[71]

In the host details complete the following steps:

1. Click the Puppet Classes tab.
2. Click the little grey-colored plus button near the module name.
3. Click on the black-colored plus button. This will assign the helloworld

module to the host. To save your changes, click on the Submit button in
the bottom-left corner of the page:

We are done with assigning our module to a host. The last step is to test and see
whether everything works fine. To check, follow these steps:

1. Go to your host and open a Command Prompt with administrator rights.
Run the puppet agent --test command.

2. Open a Windows Explorer window and check the C:\Windows\Temp\ folder
for the hello.txt file.

Your First Modules

[72]

In the following screenshot, we can see that our first module and the file creation is
successful:

Assigning the class to a host group
Assigning the class to a host group is almost the same as assigning it to a host. First,
go to Configure | Host Groups from the top menu. Click one of the listed host
groups. For this example, we can use the Clients group. Click the Clients group
and follow the same steps that you followed while assigning a module to a host.

Chapter 3

[73]

To check if the class is assigned to the hosts in a host group, we will check the details
of windowstest2. In the host lists, click on Edit for windowstest2 and go to the
Puppet Classes tab. As you can see in the following screenshot, the helloworld class is
assigned to the host. However, there is no "minus" button near the class and it cannot
be removed at the host level. This is because it is assigned at the host group level:

Uploading files
If you have a very long text file or a binary file, it really does not make sense to
use the content option. In this case, we will directly refer to the file and it will be
uploaded. Later, if we make any changes in our file in the server, this change will be
also applied to all the hosts.

Here is the definition:

file { 'path and name of file':
source => 'puppet:///modules/modulename/filename',
}

We will, again, use the hello.txt file, but this time we will create the details
under our module. For this purpose, create the files folder under the helloworld
module. After this, create the hello.txt file under the files folder.

Your First Modules

[74]

The module structure is as shown in the following screenshot, and we can also see
the contents of the hello.txt file:

The next step now is to change our init.pp file. The following are the details of
the init.pp file. Just be aware that we are not using the files folder in the source
definition:

As we have already imported the module class in Foreman, we do not need to repeat
the steps. Now, we can just have a test run and see the results, as follows:

Chapter 3

[75]

As you can see, these results are fine. Puppet checks the md5 hash of the file to see
whether it is different. You can see in the preceding screenshot that it says content
changed from one md5 to another. However, we only have a tiny problem.

Copying the file permissions from the source is deprecated for Windows. We can just
remove this warning by adding additional details in the file definition. We need to
add a line, source_permissions => ignore. Here are the new details:

Now just make a change in hello.txt and run the test again. There will be no
warning, as shown here:

Creating folders
For creating folders, we again use the file definition. The details are as follows:

file { 'folder':
ensure => 'directory',
source_permissions => ignore,
 }

Your First Modules

[76]

Now, let's create a helloworld folder in the helloworld class. Here are the details:

Here are the test run details. As you can see, the helloworld folder was created
successfully:

Managing services
Puppet resource type service is used to manage services. In Windows, the
management capabilities are somewhat limited. However, if we want to make sure
that a service always runs or always stops, we can use the service type.

Chapter 3

[77]

Here is how to write this:

service { 'servicename':
ensure =>running,stopped
enable =>true,false,manual
 }

The following points explain the preceding code:

• First line is the service name in Windows.
• ensure => running makes sure that the service is running. You can also use

stopped option to make sure that the service is not running.
• enable => true ensures that the service will autostart after a reboot. The

false option ensures that the service is disabled. Lastly, the manual option
sets the starting of the service to manual.

As an example, let's start with disabling the Windows file and print sharing features.
You can see the service details in the following screenshot. The service display name
is Server and the service name is LanmanServer. We will disable this service on all
client machines, so that the users cannot use print and file sharing:

Your First Modules

[78]

We will also create a module for this. The following is the module structure:

The only command that we did not mention in the preceding screenshot is the touch
command. This command creates empty files with the specified name. The manifest
details are as follows:

As you can see in the preceding screenshot, we defined a new class and module
named disablesmb. We made sure that it is stopped and disabled. After this, we will
import the new class to Foreman and assign it to the Clients host group. If you need
help with these steps, please check out the previous section, Modules for creating the
files and folders. Now, let's move on to testing of the Puppet agent to see the results:

Chapter 3

[79]

As we can see in the preceding screenshot, there is a dependent service, Computer
Browser. We need to stop this, if we want to continue. So, we will define another
service detail. Also, we need to make sure that, first Computer Browser stops, and
after this the Server service stops. When we check the service name, it is Browser,
so here are the details:

As you can see in the preceding screenshot, we first defined the 'Browser' service
and then stopped it. However, Puppet does not run manifests in an ordered top
to down fashion. So we added to our 'LanmanServer' service definition a new line,
require. This definition will only run after the 'Browser' service definition. The
uppercases and lowercases are also important. You should be careful while writing
a require line.

Your First Modules

[80]

The require definition from Puppet Labs: require causes
a resource to be applied after the target resource.

Now let's test this again:

As we can see, this time it ran without any errors. Now let's check the service details
and whether it has been stopped and disabled:

As you can see in the preceding screenshot, the service has been stopped and
disabled. You can use the same logic to enable and make sure a service is running.
For example, it is a good practice to enable and again run the stopped antivirus
services.

Chapter 3

[81]

Running commands
The exec resource type is used to execute commands. The command in the exec
resource must be able to run multiple times without any problems or harm. If
it causes problems, it must be limited with conditions and run only when these
conditions are met.

exec can directly execute .com, .bat, .exe, and so on. Also, it can log the output and
the exit status. If you want to run the shell built-in commands in this case, Puppet
does not support these commands directly. Assuming that you want to use the echo
command, you need to use it with cmd and the command should look as follows:
cmd.exe /c echo helloworld. Now let's check the most basic definition:

exec { 'execname':
command => 'command to execute',
}

As you can see, the simplest exec definition requires only one attribute, which is
command. This command will execute every time Puppet runs. The default running
interval for Puppet is 30 minutes. So, if the default interval is not changed, it will be
executed every 30 minutes.

The following is the definition in detail. These are not the full details. If you need
more details, please refer to https://docs.puppetlabs.com/:

exec { 'resource title':
command => # (namevar) The actual command to execute.
creates => # A file to look for before running the command.
path => # The directory of command.
logoutput => # Whether to log command output
refreshonly => # The command should only be run as a refresh.
returns => # The expected exit code(s). Any different exit code
will return error.
timeout => # The maximum time the command should take.
}

https://docs.puppetlabs.com/

Your First Modules

[82]

Now let's write our module class. As an example we will write a simple clean-up
manifest that deletes the unnecessary files. To keep it simple, we will delete only the
files and folders under C:\Windows\Temp. Here are the details:

The module structure is as follows:

The manifest details are as follows:

In the preceding screenshot, the command lines are as follows:

• Line 1: The comment about the class.
• Line 2: The class definition and its name.
• Line 3: The exec type definition.
• Line 4: The command to be executed:

 ° In this line cmd.exe /C is to execute the shell built-in command, del
 ° The del command has many parameters here: /Q for going into quite

mode and asks for no confirmation, /F forces to delete anything even
it is read-only, and /S deletes subdirectories

• Line 5: This is the path for cmd.exe.

Chapter 3

[83]

Now let's test this. Here are the C:\Windows\Temp details before the Puppet run:

Here are the test run results and folder details:

Your First Modules

[84]

Running the command on certain conditions
If you want to run the command only once or whenever a condition is met, you can
use the creates and refreshonly, subscribe attributes.

The creates attribute will create a file and when this attribute sees the file in the
next run, the command will not execute. So, the command will run only when the
specified file does not exist. Here is a sample code:

cleanup windows
classcleanuppc {
exec { 'deltemp':
command => 'cmd.exe /C del /Q /F /S C:\Windows\Temp*.*',
path => 'C:\Windows\System32',
creates=> 'C:\testfile.txt',
 }
}

One important point is here that, the file will not be created by Puppet. So, if only
the command or some other software, which you have checked, creates this file, the
creates attribute will be useful. Otherwise, the command will continue to run each
time.

For the refreshonly attribute, the command will bind to another resource with
subscribe. Here is the example code:

The subscribe attribute binds this exec command to the helloworld folder creation
in our helloworld module that we created previously. refreshonly makes sure
that it will only run manually. The following is the test run:

Chapter 3

[85]

As you can see, this time the command is triggered by an event.

As a final detail, there is also a native Puppet resource, tidy, to clean up the
unnecessary files. Even if we write our own code to clean up a folder, it will be a
good practice to stick to native resource types whenever possible. tidy removes the
unnecessary files according to a given criteria. Here is a class definition example:

classcleanuppc {tidy { 'deltemp ':
path=> "C:/Windows/Temp/",
recurse=> 1,
matches => ["*.*"]
 }

}

For more information, you can check the following link: https://docs.
puppetlabs.com/references/latest/type.html#tidy.

Managing users
The user resource type is used to manage the local users. It was first built for Linux
systems, so it has its limitations. The following is the list of attributes that can be
used for Windows. One of the important limitations is that, Puppet can manage
the local users (not domain users). The attributes are as follows:

• name: The user name.
• ensure: The state of the user (present, or absent).
• comment: The description of the user, usually the full name.
• groups: The groups that the user will be assigned. Note that you can't use

the gid attribute.
• home: The home directory of the user. This folder needs to be created

separately.
• manage home: If this value is set to true, it will create the home directory

when the user is created, and will delete the home directory, if the user
is set to absent.

• password: Note that passwords can only be specified in clear text, since
Windows has no API to set the password hash.

https://docs.puppetlabs.com/references/latest/type.html#tidy
https://docs.puppetlabs.com/references/latest/type.html#tidy

Your First Modules

[86]

After covering the details, here is an example definition:

user { 'testuser':
ensure => 'present',
name => 'puppetuser',
comment => 'Puppet User',
groups => ['Administrators', 'Users'],
password => 'Qwer1234',
}

In the preceding example, we define a user resource named 'testuser'. This
resource creates a Windows user named 'puppetuser'. This user is a member of the
'Administrators' and 'Users' groups. The user has a comment, 'Puppet User'.

One more important point is that, in attributes you can use more than one value
using arrays. For array definitions, you can use [and]. We used an array for the
preceding groups.

Also, we need to add this resource definition to a module so that it is usable. For our
example, we will create a module named createuser. The following is the module
structure:

The following screenshot shows the sample class. You may notice that the code is
colored. If you use vim as the editor, it will display the manifest code in color. Also,
we added a comment line in the manifest. You can use the # symbol to add the
comment lines:

Chapter 3

[87]

Now, after completing the import and assignments in Foreman, we can test the
module. The following are the test run details:

We can see that the test run returns a successful result. Now let's check whether the
user really exists. In the following screenshot, we can see that the user is created as a
local user:

Your First Modules

[88]

In the following screenshot, we can see that the groups are also correctly set:

We are done with the user creation. Also, you can try yourself the ensure =>
'absent' option to remove a user.

Summary
In this chapter, first we learned how to install and create our modules, and import
the classes into Foreman. After the import, we assigned the classes to hosts and
hosts groups.

We also learned the different types of resources and their usages, such as creating
files and folders, managing services, running commands, and managing users.

In the next chapter, we will learn about the Puppet Forge modules for Windows.

[89]

Puppet Forge Modules
for Windows

Puppet Forge is a website that is used to share the Puppet modules. The website is
https://forge.puppetlabs.com. There is good documentation of Puppet Forge
that explains how to write your own modules on Puppet docs. You can find the
details at http://docs.puppetlabs.com/forge/. There are lot of modules written
to solve the daily administration and configuration problems. Before starting to write
a specific module for yourself, it is a good place to check whether your needs are
already covered by a module in Puppet Forge.

There are different levels of certification for modules in Puppet Forge. The best level
is the Supported level. Supported means that:

• The module is tested by Puppet Enterprise
• It is subject to the Puppet Enterprise support
• It will be maintained over the life cycle of the module with bug and

security patches
• It will be tested and ensured that it is compatible with multiple platforms

Another level is Approved. Approved means that the modules meet the Puppet Labs'
standards of quality composition, reliable operation, and active development. What is
missing for the Approved modules is, that Puppet does not give enterprise support.

In this chapter, we will learn about the following:

• Installing modules from Puppet Forge
• Managing the registry with the registry module
• Managing file and folder permissions with the Access Control List

(ACL) module

https://forge.puppetlabs.com
http://docs.puppetlabs.com/forge/

Puppet Forge Modules for Windows

[90]

• Managing the firewall rules with an unsupported module example
• Rebooting Windows with the reboot module

Installing modules from Puppet Forge
Installing the Puppet modules from Puppet Forge is very easy and can be done
using only one command, as follows:

$ sudo puppet module install modulename

If you are using the Puppet environment, you can also use the following command:

$ puppet module install -i /etc/puppet/environments/production/modules
modulename

The only thing we need to know here, is the module name. For example, let's search
for the registry module to see what we get. The details are given as follows:

Chapter 4

[91]

As you can see, we have the puppetlabs/registry supported module. After clicking
on this, we can use the following command to install it:

The supported and approved modules also have the documentation and examples
in the module page. You can see the documentation table of contents in the
following screenshot:

Puppet Forge Modules for Windows

[92]

Managing the registry
In the previous topic, we learned how to install a module from Puppet Forge.
The example was on the registry module. The command to install the registry
module is as follows:

$ sudo puppet module install puppetlabs-registry

As you can see in the preceding screenshot, the new module is installed. The stdlib
module was also installed. As we can see, it is a dependency for registry. stdlib
is used to add the library resources for Puppet. We will deal with stdlib later in
functions and facts.

After the installation, we again need to import these modules to
Foreman. When we check the new modules, we will see that only
stdlib is available. This is not an error. The registry module
does not have an init.pp file under manifests folder, so the
module cannot be directly imported. However, we still can use it.

As an example, we will create a new module that makes sure that the Windows
Firewall is active and all three profiles are running. Here is the current status
of the firewall in our sample client:

Chapter 4

[93]

As you can see, all the Domain networks, Home or work (private) networks, and
Public networks profiles are disabled.

The details to change in the registry are under HKLM\SYSTEM\CurrentControlSet\
Services\SharedAccess\Parameters\FirewallPolicy\. There are three
folders and settings that have to be changed. You can see the details in the
following screenshot:

Puppet Forge Modules for Windows

[94]

We need to change each of the EnableFirewall value to 1 for DomainProfile,
PublicProfile, and StandardProfile. After precisely setting the firewall keys,
the changes will be effective after the Windows reboot.

Writing the manifests
Here is an example code, and the matched fields are shown in the following
screenshot:

 registry::value { 'firewalldomain':
key => 'HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\
Parameters\FirewallPolicy\DomainProfile',
value => 'EnableFirewall',
type => 'dword',
data => '1',
}

As you can see, the entire folder is the key field. The details in the folder are value
and the assigned detail in value is data. Also, we need to be careful about the type,
otherwise we may corrupt the firewall settings.

Chapter 4

[95]

Now, we can start writing our module. The module name is firewallon. Here are
the manifest details:

Here are the test run details:

Puppet Forge Modules for Windows

[96]

Now, let's restart the Windows client to see whether the firewall profiles are
activated. Here is the screenshot after the restart:

We can also start the firewall service with the service type. You can
try this yourself. After setting the correct values, you can enable the
Windows Firewall service and this will enable the firewall without
a restart.

Limitations with the registry module
Before finishing this section, we need to mention that there are some limitations with
the registry module. The supported keys are as follows:

• HKEY_LOCAL_MACHINE (hklm)

• HKEY_CLASSES_ROOT (hkcr)

Other predefined root keys (for example, HKEY_USERS) are not currently supported.
Finally, Puppet does not support recursive deletion of the registry keys.

Chapter 4

[97]

The access control list
The ACL module manages the Access Control Lists in Windows. The Linux way
of giving rights to folders and files does not work correctly in Windows. The
ACL module adds a type provider to Puppet. We can use this acl type to assign
permissions and rights to files and folders.

To install acl, you need to write the following command:

$ sudo puppet module install puppetlabs-acl

Here are the definition details of an acl:

acl { 'name':
target=> 'absolute/path',
target_type=> '<file>',
purge=> '<true| false | listed_permissions>',
permissions=> [
{ identity=> '<identity>',
rights=> [<rights>],
perm_type=> '<perm_type>',
affects=> '<affects>',
child_types => '<child_types>'
}
],
owner=> '<owner>',
group=> '<group>',
inherit_parent_permissions => '<true | false>',
}

Here are the details of the each parameter and attribute:

• name: The name of the ACL resource. If the target is not defined, this can
be also used as a target.

• target: The location of the ACL resource.
• target_type: The only valid value is file. No need to define this one.
• purge: The valid values are true, false, and listed_permissions. The

default is false. We can use this parameter to make sure that some of the
permissions are absent. To do this, we need to use the listed_permissions
option. This parameter will not affect the permissions inherited from
the parents.

Puppet Forge Modules for Windows

[98]

• inherit_parent_permissions: To remove the parent permission,
inherit_parent_permissions => 'false' can be used. However,
you can lock the folder completely. So, you may need to modify each
host manually to re-enable the folder.

• group and owner: We can set the owner and group of the file or folder
with this attribute.

• permissions: This is an array of the Access Control Entries (ACE).
The ACEs must be in explicit and correct order.

• identity: This can be a user, group or SID.
• rights: This is also an array. The valid values are full, modify,

mask_specific, write, read, and execute.
• mask: The mask is an element that only works, if 'mask_specific' is set

in the rights element. The value must be an integer representing the
mask permissions passed in to a string. For more details about "integer
representing mask permissions", please visit https://msdn.microsoft.
com/en-us/library/aa394063(v=vs.85).aspx.

• perm_type: This can be 'allow' or 'deny', and it defaults to 'allow'.
• child_types: This determines how an ACE is inherited downstream

from the target. The valid values are 'all', 'objects', 'containers'
or 'none'. It defaults to 'all'.

• affects: This determines how the downstream inheritance is
propagated. The valid values are 'all', 'self_only',
'children_only', 'self_and_direct_children_only',
or 'direct_children_only'. This defaults to 'all'.

After covering all the details, we can continue with the examples. First, as you
can see, there are default values and we do not need to use most of the preceding
parameters. Let's start with a simple example.

https://msdn.microsoft.com/en-us/library/aa394063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394063(v=vs.85).aspx

Chapter 4

[99]

Changing the permissions of a folder
In this example, we have a C:\testacl folder. The details can be seen as follows.
Under this folder, there is an empty file named test.txt. test.txt inherits the
permissions from its parent and the details are same as its parent folder:

In our example, we will create a new user named testy and assign full rights to it.
As you will recall, we already learned how to create users. If you need to remember
the details, you can go to Chapter 3, Your First Modules to refresh your memory.

Here is a sample code to give the permissions. As you can see, it is very simple.
Only the folder name, user, and permission details are defined. All the other
values that are not defined will be the default values:

acl { 'c:/testacl':
permissions => [
{ identity => 'testy', rights => ['full'] },
],
}

Puppet Forge Modules for Windows

[100]

As an example module, we will use acltestmodule as a module name. Here is a
sample structure of it:

Here are the manifest details:

In the previous manifest, we have also put a require line. This will prevent any errors
about the user and make sure that, firstly the user creation runs and after this, the
relevant permissions are set.

After running the test, its details will be as follows:

As we can see, first the user is created and after this, the permissions are set. Our
next step is to check the folder and file to see whether the rights are correctly set.

Chapter 4

[101]

The C:\testacl permissions are as follows:

As we can see in the following screenshot, the permissions are applied to all the
sub-objects:

Puppet Forge Modules for Windows

[102]

Purging permissions
After many trials, it is understood that for the current Puppet 3.7.4 version, the purge
=> 'listed_permissions' option is not working properly. So we need to do this
the hard way:

• First, set the purge => true option.
• Second, set inherit_parent_permissions => 'false', so that nothing

is inherited.
• Third, define all the default permissions that are required:

permissions => [
{ identity => 'SYSTEM', rights => ['full'], child_types => 'all'
},
{ identity => 'Administrators', rights => ['full'] },
{ identity => 'Authenticated Users', rights => ['read','execute']
},
],

• Finally, define the extra permissions you want to add, excluding the ones
you want to remove.

Here is the sample code:

In this example, we used the same module limiting the testy user's rights to read
and execute. As we are purging all the permissions and not inheriting any, we set
all the required permissions manually.

Chapter 4

[103]

Keep in mind that using purge => true and inherit_parent_
permissions => 'false' together and not setting the permissions
correctly, may cause the relevant files and folders to be locked. You
may need to manually connect and correct the permissions.

Purging permissions and locking a file from
user changes
If you want to lock a file or folder from any user changes, you can lock with the
following code:

acl { 'C:\testacl':
purge => true,
permissions => [
{ identity => 'SYSTEM', rights => ['full'], child_types => 'all' },
{ identity => 'Administrators', rights => ['full'] },
],
inherit_parent_permissions => false,
}

In this example, only the SYSTEM user and Administrators can change the folder.
All other user permissions are removed.

Firewall
First of all, there is no supported or approved module for the Windows
Firewall management. We will use puppet/windows_firewall as an example.
The link to the module details is https://forge.puppetlabs.com/puppet/
windows_firewall. When we use the unsupported modules, the problem is
that it may not work as expected. However, we can check the code details and
create our own modules accordingly.

Here are some details of this module:

• When you try to enable the firewall, it does not enable all the profiles.
While testing Windows 7, it did not enable the domain profile.

• When the rule with the same name already exists, it will do nothing.
So when you want to change an existing rule, this will not work.

• When ensure => absent is used, it gives error and does not work correctly.
• So this module is good only to add new rules.

https://forge.puppetlabs.com/puppet/windows_firewall
https://forge.puppetlabs.com/puppet/windows_firewall

Puppet Forge Modules for Windows

[104]

This example module is given here to learn that when we use
unsupported ones, they need to be tested carefully. Otherwise,
we may have many problems. We may still use these modules to
check the code details and create our own modules.

To install the module, we can use the following command:

$ sudo puppet module install puppet-windows_firewall

The firewall rule example
We will create an example that creates a rule that only allows certain IPs to connect
to the 3389 port.

Here is the sample code:

classfirewallrules {
windows_firewall::exception { 'WINRM':
ensure => present,
direction => 'in',
action => 'allow',
enabled => 'yes',
protocol => 'TCP',
local_port => '3389',
remote_ip => '10.10.10.20,10.10.10.21',
display_name => 'Windows RDP Rule allowips',
description => 'Inbound rule for Windows RDP allow [TCP 3389]',
}
}

Here are the details of the preceding code:

• direction: The values are 'in' for the incoming traffic and 'out' for the
outgoing traffic.

• action: The values are 'allow' and 'block'.
• enabled: The value can be 'yes' or 'no'.
• protocol: TCP, UDP, ICMP and so on are available.
• local_port: The port or ports. These are the ports to which we are

allowing access.

Chapter 4

[105]

• remote_ip: The remote IP or IPs that will be defined.
• display_name: The name of the rule.
• description: The description of the rule.

Here is the module structure:

Here is the manifest example:

Here are the run details:

Puppet Forge Modules for Windows

[106]

Here is the new rule in the firewall details:

The reboot module
This module adds a type to reboot Windows and Linux systems. It is supported
by Puppet Enterprise. We possibly need time to reboot our systems. We cannot
use reboot without any conditions. Otherwise, each run will cause a reboot and
everybody will start complaining about the reboots. So, it is a good practice to
limit these with a notice or register option.

The URL for the puppetlabs/reboot module is https://forge.puppetlabs.com/
puppetlabs/reboot. To install this, simply run the following command
on a terminal:

$ sudo puppet module install puppetlabs-reboot

Following is a sample reboot definition. In this example, the reboot subscribes
to a file creation. Whenever testfile.txt is created, it will trigger the reboot:

reboot { 'name':
subscribe => File['c:/testfile.txt'],
}

https://forge.puppetlabs.com/puppetlabs/reboot
https://forge.puppetlabs.com/puppetlabs/reboot

Chapter 4

[107]

Now, let's see this in an example. We will create a simple module that creates a file.
Whenever this file is created, it will trigger a reboot. Our example module name is
testreboot. The structure is as follows:

Here are the manifest details:

We can see the following result screen of the test run:

Puppet Forge Modules for Windows

[108]

After the restart, running Puppet again does not trigger a reboot. It will only reboot
again, whenever c:/windows/temp/testreboot.txt is missing.

The testreboot and cleanuppc class together may cause a reboot
each time the Puppet agent runs. This happens because cleanuppc
deletes the contents of the C:Windows\Temp folder, and
testreboot runs, if it does not see the testreboot.txt file under
C:Windows\Temp. So, it will be good to remove the assignment of
the cleanuppc class before testing the testreboot class.

Summary
In this chapter, we started with learning what Puppet Forge is and the supported
and approved modules. We learned how to install modules from Puppet Forge.
The modules that we learned about are: registry, ACL, firewall, and reboot.

In the next chapter, we will dive in to more advanced subjects such as:

• Puppet facts
• Puppet functions
• Puppet templates

[109]

Puppet Facts, Functions,
and Templates

In this chapter, we will learn more advanced details of Puppet such as:

• Puppet facts
• Puppet templates
• Puppet functions

If you are familiar with programming languages, this chapter will be much easier
to follow. Puppet uses Ruby as the coding language. We will not dive deep into the
coding aspect and will use only enough coding to solve our problems. So, even if
you do not have any coding experience, it will not be too hard to follow.

Puppet facts
Facts are structured data about the system that we can use anywhere in our manifests.
They are imported to the Puppet parser as top scope variables. To display the facts
of a host, we can use the facter command. We can write the command as follows
to display the host-specific facts in each host's Command Prompt:

C:\>facter -p

Puppet Facts, Functions, and Templates

[110]

In the following screenshot, we can see a sample output of the command. As we can
see, there are many details such as architecture, domain, OS version, interfaces, and
IP addresses:

Another easier way to look at the facts is by using our Foreman interface. In the top
menu, go to Hosts | All Hosts and select the relevant host that you want to check
out. Now, click the Facts button and you can see the following details:

Chapter 5

[111]

As you can see in the following screenshot, we have the facts of a host again:

Using the facts in manifests
After learning how to display the facts, now let's continue with how to use them. In
our example, we will change our firewallon module and it will run only if the host
is Windows; when the host is Linux, it will display a predefined message. Here is our
example code:

if $::osfamily == 'windows' {
...
} else {

}

In the preceding code, it will include the code details for Windows when the
operating system family is Windows and will include another code when it is not.
To display a message we will use notify. Following is the sample format:

notify {'message':}

Here is the example that we will use:
notify {"This module runs only for Windows OS family. This host
has OS family $::osfamily installed.":}

Puppet Facts, Functions, and Templates

[112]

As you can see, we can also use variables in the text fields. When we use a variable,
we also need to use the quotation mark (") instead of an apostrophe (').

The following shows the modified firewallon module details:

Here is the output of a test run when it is assigned to the Puppet Master:

As you can see, it is not running the module and displaying any messages.

Adding the custom facts
We may also need custom facts. For example, when dealing with users, it is
important to know the Windows users and make changes accordingly. We will start
with a simple example that shows how to add a custom fact.

This example custom fact is a simple one. We will create a fact named firstfact
and make its value Hello World!. We can add custom facts by modules. In a
module structure, it adds the facts under the lib/facter folder. To remember where
we put our custom facts, we will create a module named common and put all our facts
in this folder. The name of the module is not important here and you can give it any
name. For now, we will just use common. Here is the module structure:

Chapter 5

[113]

We will put our custom fact definitions under the facter folder and the files must
have the .rb extension. The name of the file is not important. All the .rb files will be
processed.

Now, let's continue with the code details of defining a fact:

Facter.add("factname") do
setcode do
"factvalue"
end
end

As you can see from the preceding code, it is really self-explanatory. We will
use Facter.add for each fact definition. The following is the example code for
firstfact:

We do not need to define our common module. The facts will be defined automatically
for each host. The following screenshot shows the output of a test run after the fact
definition:

Puppet Facts, Functions, and Templates

[114]

Now, it is time to check whether we have the fact details. The following screenshot
shows that the fact is correctly defined and available:

Adding Windows users as custom facts
We have learned all about the Puppet facts, how to list them, see the values, and
define the custom facts. Now, we come to a more useful fact definition. We will find
Windows users and their SID values and put them in the custom facts. We will later
need them when we need to do user-specific changes. This is a more advanced topic.
However, we will learn many other details when we are done with this.

Here are the steps to find the users:

1. Find the user profile details in the registry.
2. Loop each entry and get the user name and SID details.
3. Put the details in the users and sids arrays and define them as facts.

Chapter 5

[115]

Again, we will create a file under the common module of the lib/facter folder. We
will name it as users.rb. Here is the module structure:

Making sure our code works only for Windows
First of all, as this is a Windows-only module, we will add a condition so that it
works only for Windows. The code details are given as follows:

ifFacter.value(:osfamily) == 'windows'
...
...
end

As you can see, this is somewhat different from manifest coding. Here, we are using
Ruby. When we refer to a fact, we need to use Facter.value(:factname).

You do not need to know the Ruby language. I found most of the
details from Google search and created my own facts with a little
bit coding.

Including the necessary libraries
We will read the Windows Registry, so we need to include the library for this. The
command is given as follows:

require 'win32/registry'

Defining your variables with empty values
We will use two variables, users and sids, and we define them in the beginning
with empty values. This is done as follows:

users = ''
sids = ''

Puppet Facts, Functions, and Templates

[116]

So far, the complete code that we have written is as follows:

Finding the registry values
Before reading the registry, we need to know what we have to read and how to
parse the data. We will need the values under HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows NT\CurrentVersion\ProfileList. Each key starting with
S-1-5-21 is a user SID. Under these keys, each ProfileImagePath value has the
folder of this user. The following is a screenshot to see this more clearly:

So, we will get the SID value from the keys under ProfileList and we will get
the username from ProfileImagePath. After removing C:\Users\, the rest is the
username. After understanding the logic, let's continue with the coding.

Chapter 5

[117]

This section becomes a little bit complicated, so first we will start with the code and
later define each line. Here is the code:

The explanation for the preceding code is as follows:

• Lines 7, 8, 9, and 21 are as follows:
Win32::Registry::HKEY_LOCAL_MACHINE.open(
'Software\Microsoft\Windows NT\CurrentVersion\ProfileList'
) do |reg|

end

In lines 7, 8, Win32::Registry::HKEY_LOCAL_MACHINE.open reads the
registry details.
In lines 9, 21: do |reg|
do-end is a loop block. Here for each detail from the registry, it will loop and
assign the details to the reg variable.
Now, we have all the keys and their subdetails in the reg variable.

• Lines 10 and 20 are as follows:
reg.each_key do |key|

end

Here we are looping for each of the registry keys and assigning them to the
key variable.

Puppet Facts, Functions, and Templates

[118]

• Line 11 is as follows:
k = reg.open(key)

In this command, as you know, we already have the reg variable defined.
Also, we defined the key variable. Now, we are opening the key from reg
and assigning the details to the k variable.

• Line 12 is given as follows:
profile = k["ProfileImagePath"]

Under the key, there is the ProfileImagePath value; read its data and assign
it to the profile variable. You can see the ProfileImagePath value and its
data details for one of the users as follows:

• Lines 13, 14, and 15 are as follows:
len = profile.length
len = len - 9
user = profile[9,len]

Here we know that C:\Users\ is a character string with length 9. We first
get the complete length of the profile variable in line 13. After this, we get
the length of the username at line 14 and assign it to the len variable. Finally
from the profile, we get the username at line 15 and assign it to the user
variable.

• Lines 16, 17, 18, and 19 are as follows:
if profile[0,8] == 'C:\Users'
users = user + ',' + users
sids = key + ',' + sids
end

At line 16, we first check whether the profile variable starts with 'C:\
Users'. If it does not, then we will not use it. At line 17, we fill the users
variable with the user details in a comma delimited format. In line 18, we
fill the SIDs. As you will remember, the SID was the key value. So we can
directly use it.

Chapter 5

[119]

Now we have finished the hardest part. We can continue with defining the facts.
This is the easiest part as we have already filled our variables with the correct values.
Here are the code details for our users and sids facts:

Facter.add("users") do
setcode do
users
end
end

Facter.add("sids") do
setcode do
sids
end
end

Here is the complete coding screenshot:

Puppet Facts, Functions, and Templates

[120]

Now we will again run the Puppet agent and check the facts to see whether we get
the details. The following is the output of facter in one of the Windows hosts and
we can see the users and sids facts:

Now, if you want to get only the relevant fact details, you can also use the following
commands:

C:\>facter –p users
C:\>facter –p sids

As a final notice, this code will work only for the users that are
logged in and who have profile details created.

The Puppet templates
Templates are used to specify the contents of files. When we have a file to be created
and its content needs to be created dynamically, we use templates. Templates are
written in the ERB templating language. ERB is supported by Ruby. You can refer
to http://ruby-doc.org/stdlib-1.8.7/libdoc/erb/rdoc/ERB.html for more
information. To use a template, we need to create a folder named templates under
the relevant module. In the templates folder, we can use any file name with the
.erb extension.

http://ruby-doc.org/stdlib-1.8.7/libdoc/erb/rdoc/ERB.html

Chapter 5

[121]

We will start with a simple file creation example. As you will remember, our first
module was the helloworld module and we created a file in the hosts from static
content. Now let's go back to this and add some dynamic content.

To refresh our memory, here are the details of the helloworld module. The manifest
details are as follows:

As we can see, it is now creating a file and a directory. The file is created from the
static content. Here is the module structure:

We will create a new templates directory and under this another hello.erb file.
After this, it will look as follows:

Puppet Facts, Functions, and Templates

[122]

Now let's write our simple template. When we write any code in a template, we start
with <% and end with %>. We can also use the facts in templates and any variable that
we have defined. To use facts, we add a @ symbol in front of them. When we want to
include the variable value, we use = after <%. After learning these details, here are the
contents of hello.erb:

Hello World!
I am a computer running <%= @operatingsystem %> as operating
system.

As you can see in the preceding code, we have used the operatingsystem fact as our
dynamic content. Now let's change the manifest accordingly. To define the content of
a file from the template, we need to add an attribute to the file resource as follows:

content => template('classname/templatefile.erb'),

Here is our new manifest accordingly:

Chapter 5

[123]

In the preceding manifest, we referred to the new template that we have just created.
Now we come to testing. Here are the details of hello.txt after a test run:

As we can see, it has correctly written the operating system as Windows. However,
there is a tiny problem. The Linux file format and the Windows file format have
different line endings. We can correct this by adding <%= "\r\n" %>. Here is the
new template file that will also put the line feeds:

After running the Puppet test again, here are the file details:

Now, we also have the correct line feeds. In the next topic, we will use templates to
solve a more advanced problem.

Puppet Facts, Functions, and Templates

[124]

An example template to edit the registry keys
Now, we will start a more advanced example. In this example, we will use
FortiClient SSLVPN. You can install it manually to complete this example. You can
download the file from http://hacktr.org/download/forticlient-sslvpn/.

Assume that you are using FortiGate as a firewall in your company. You are
installing the SSLVPN client on all of your user computers and also need to define
the connection details. You want to automate the installation and connection
definition. There are hundreds of computers in different locations. Completing all of
these installations and connection definitions may lead to a good amount of work for
the helpdesk, if they are not automated. (We will tell you how to install the software
with Puppet in the final chapter.)

Following is the screenshot of FortiClient SSLVPN after its initial installation. As we
can see, there is no connection definition:

http://hacktr.org/download/forticlient-sslvpn/

Chapter 5

[125]

Now let's add a new connection detail from Settings. In the new window, click the
New Connection button to add the details:

In the preceding screenshot, you can see the sample details. After adding the details,
we can search these details in the registry and learn where to add the values. Navigate
to start menu, Run and run regedit.exe. Search for the text with the description
example vpn. The first search brings the HKEY_CURRENT_USER details. This is not
useful and we need to search more, wherever the changes are made under an SID.

Puppet Facts, Functions, and Templates

[126]

The following is the correct entry. This entry is under HKEY_USERS and under an SID.
We will define the connection detail for each user. So the full path is HKEY_USERS\
[SID]\Software\Fortinet\SslvpnClient\Tunnels\. SID is the variable and will
change for each user.

Now right-click the example key on the left-hand side and export the key. We will
check its details and understand how to write a registry entry correctly. The exported
.reg file details are shown as follows:

Chapter 5

[127]

Now we have enough details to write our template and define the connection details
for all the users. We will create a module named fortivpn. Its structure is given as
follows:

Here are the template details:

Now let's see what we have done at the each line sids = @sids.split(',').

As you will remember, we defined the sids fact before and now we are using it as
@sids. We added each SID in the comma delimited format. Now we can split the
values and assign them to a variable in an array format. We accomplish this by the
"split(',') command:

"sids.each do |sid|":

Here, we loop for each value of sids and assign it to the sid variable. At line 8, we
delete the entries that may exist. Between lines 9 and 13, we define the new values.
Line 16 ends the loop.

Puppet Facts, Functions, and Templates

[128]

We will create a .reg file from this template. With the .reg file, we will update the
registry using the exec resource and execute regedit.exe /s registryfile.erb.
Now, let's switch to our manifest.

As you can see from the preceding screenshot, we are creating a new file from the
forti.erb template from lines 3 to 6. After this, the regedit.exe command is
executed. The exec resource will run only if the fortissl.reg file is changed. This
is done by subscribing to the file at line 11.

First, we import the module into Foreman and assign it to the host. We will not
mention this repeatedly after creating each module. As a rule of thumb, if we create a
new module and want to test it, we have to import it and assign it to a host.

The following are the test run details:

Chapter 5

[129]

After the test run, here are the details in FortiClient SSLVPN:

As you can see, we do not need to stick to only one solution. We have
the option to use the registry module from Puppet Forge or we can
execute the changes by a command.

The Puppet functions
Functions are predefined codes of Ruby. For example, the template('modulename/
templatename') code we used in the templates example is a function that is calling
the template file as content. Most of the functions return a value or modify the
catalog. In the next section, we will start with the stdlib functions.

Puppet Facts, Functions, and Templates

[130]

The stdlib functions
There are many ready-made functions in the stdlib module. The complete module
name is puppetlabs-stdlib. As the module name implies, the stdlib module has
many standard definitions that can be used in different modules. In this section,
we will just see some of the function examples and how to use them. You can find
the full reference from https://forge.puppetlabs.com/puppetlabs/stdlib. To
install the module, use the following command in the Puppet Master terminal:

$ sudo puppet module install puppetlabs-stdlib

For the following examples, we will create a sample module named testfunctions.
The module will not do anything at all but will display the results of the tested
functions. The following is the structure of our module:

Some string functions – downcase, upcase, and
capitalize
The names of the following functions already imply what they do:

• downcase: This returns the given text in lowercase
• upcase: This returns the given text in uppercase
• capitalize: This capitalizes the first letter of the given text

Following is our sample code:

just testing some stdlib functions
classtestfunctions {
$strvar1 = 'tHis IS A text.'
notify { "This is the default text: ${strvar1}":}

$strup1 = upcase($strvar1)
notify { "This is the upcase function output: ${strup1}":}

$strdown1 = downcase($strvar1)
notify { "This is the downcase function output: ${strdown1}":}

$strcap1 = capitalize($strvar1)
notify { "This is the capitalize function output: ${strcap1}":}
}

https://forge.puppetlabs.com/puppetlabs/stdlib

Chapter 5

[131]

In the previous text, we defined different variables such as strvar1, strup1,
strdown1, and strcap1. As you can see, we changed the details of strvar1 for each
variable with a function and we displayed the results with notify. Following is the
output of the module test run:

As you can see, the output is not in an ordered fashion and
according to our manifest. This is because the manifests are not
processed in this way. If you need an order, you have to define it
clearly with the require parameter.

The pw_hash function
This function hashes a password. It needs three parameters. First one is the password
text, second is the hash type (possible values: MD5, SHA-256, and SHA-512), and the
third value is the salt.

Puppet Facts, Functions, and Templates

[132]

In the following example, to make the output clear, we are commenting the other
function codes:

Following is the test run results:

The purpose of this topic was to show you how to use functions and show some
example functions in stdlib. If you need more functions, first please check out the
stdlib functions. If you cannot find the relevant function, it is time to write your
own function.

Your first function
After learning about the functions, it is time to create your own function. To create
your function, first of all, you need to install the stdlib module. We installed it in
the previous section, so we can start writing our custom function.

To create our new function, we need to create a myfirstfunction.rb file under the
stdlib/lib/puppet/parser/functions stdlib module. Here is a simple code:

module Puppet::Parser::Functions
newfunction(
:myfirstfunction,
:type => :rvalue,

Chapter 5

[133]

:doc => "Testing the first function. ") do |args|
value = args[0]
result = "Hello World Function: " + value
return result
end
end

As you can see in the preceding code, this is a very simple function. Now let's
explain each line. Following is a screenshot with the line numbers:

The file name for this function is myfirstfunction.rb. You should think of the first
two lines and the last line as prerequisites to write the function.

• Line 3: The function name.
• Line 4: The type of the function. It says that the function will return a value.
• Line 5: :doc is the text documentation of function. do |args| is to get the

input parameters of the function.
• Line 6: This gets the first parameter of the function and assigns it to the

value variable. You can use more than one parameter such as args[0],
args[1].

• Line 7: This concatenates the value with the Hello World Function: text
and assigns it to the result variable.

• Line 8: This returns the result variable as a function output.

Again, we will use our test functions module and will add the following lines:

$strtest1 = myfirstfunction('test123')
notify { "This is the myfirstfunction function output: ${strtest1}":}

Puppet Facts, Functions, and Templates

[134]

Here are the results of the test run:

This function was just a simple example. From now on, you can create any function
with complex details. In the security section later, we will create our own function
that will create different passwords for the local admin user of each host.

Summary
In this chapter, we learned many advanced topics. We started off with facts. In
Puppet facts, we learned how to display them and checked out a few standard facts
that are already defined. After this, we created our own facts. Another topic was the
templates to create dynamic content files. We used a template to create some registry
entries for each user in Windows. Then, we finally rounded off with functions. We
learned the stdlib functions and how to call them in the manifests. Finally, we
created our own simple custom function and used it in a manifest.

In the next chapter, we will see how we can use Puppet to secure our hosts and put
them in a desired state.

[135]

Using Puppet for
Windows Security

Let's do a quick recap of what we have learned until now. We learned how to write
modules, facts, templates, and functions. We learned how to deal with files and the
firewall, execute commands, and many such details. Now, we will bring them all
together and use them for the following security practices:

• Locking the Startup folder for each user
• Locking the hosts file
• Stopping unnecessary services
• Making sure that the necessary services are running
• Denying incoming traffic and allowing only the necessary ports
• Making the local administrator password unique

For each topic, we will also address why we need these settings. The best thing with
Puppet is that when you make a security setting, it cannot be undone. If somebody
changes the settings, Puppet will correct it in the next run (the default interval is
30 minutes).

Locking the Startup folder
Normally, each user in Windows can change the contents of the Startup folder. The
Startup folder items are executed when the user is logged in. A hacker can enter his
code here, so that after each restart his code can run again and connect to the command
and control centre. To prevent this, we will lock every user's Startup folder.

Using Puppet for Windows Security

[136]

The full path of the Startup folder for a user is C:\Users\puppet1\AppData\
Roaming\Microsoft\Windows\Start Menu\Programs\Startup. This is also
shown in the following screenshot:

The permission details are as described in the following screenshot. As we can see,
the user has full control:

To change all the users' Startup folder permissions, we need to know the IDs of the
users. As you will remember, we have already defined the users as a fact in Chapter
5, Puppet Facts, Functions, and Templates, in the Adding Windows users as custom facts
section topic. In addition to this, we need to use the ACL module that we mentioned
in Chapter 4, Puppet Forge Modules for Windows in The access control list section.

Chapter 6

[137]

In this example, we are creating a new module named lockstartup. Following are
the details of the code:

Here are the details of each line:

Line 4:

Here, we are getting the values of the users fact and putting the values in an
$array_users array variable. Remember that we defined the users fact in Chapter 5,
Puppet Facts, Functions, and Templates. The array variable does not have to start with
the array keyword, we can give any name to it.

Line 7:

Here, we have defined a new type. This type will work for each of the array values
that we send. The basic usage is as follows:

definetypename {
 $Inputvariable = $name

}

The input can be used with the $name variable. We can call the type multiple times
using the following code as required:

typename { $anarray:; }

This code will call the type for each value of the array. Even though a loop
command is not available in the manifests, it is possible to execute the same
code for each array value.

Using Puppet for Windows Security

[138]

Lines between 10-17:

These are the lines that are calling the acl. We are setting the full control for the
SYSTEM, and ADMINISTRATORS All Authenticated Users will have read and
execute rights. Line 10 ensures that all the permissions are purged, so that only
the permissions we enable will be available.

Line 20:

This calls the new defined type for each value in the array.

Now, it is time to test the module. The results of the test run are shown in the
following screenshot:

As we can see in the preceding screenshot, the code runs without any problems
for the users except the Administrator user. So, what is the problem with the
Administrator user? This happens when there is a user who has never logged in.
However, he or she has executed some command with his or her credentials. In this
case, Windows creates the user folder and the SID details in the registry. However,
the problem is that the Startup folder will not be created if the user does not log
in. The following screenshot shows that the Startup folder does not exist for the
Administrator user.

Chapter 6

[139]

So, this error is not a problem:

Now, let's check the permissions of a user. As we can see in the following screenshot,
only the users that we have defined are present and Authenticated Users do not
have full control:

Locking the hosts file
The hosts file is the file that Windows uses to resolve any domain names before
confirming with a nameserver. Let's assume that your favorite bank's IP is changed
in that file and when you try to do some transactions you open a cloned version of
your bank's website. You assume that it is the legitimate site because you see the
name correctly displayed in the address bar.

Using Puppet for Windows Security

[140]

Normally, the hosts file can be changed only by administrators. However, we want
to ensure that it cannot be changed even by administrator accounts and is always
same in all the hosts. Achieving this is very easy with Puppet. We will only upload
our ideal copy of the hosts file to Puppet Master under a module and with a file
resource we will maintain it in all of our hosts.

In the following screenshot, you can see the full path of the hosts file:

C:\Windows\System32\+drivers\etc

The following items are contained in a hosts file. In this example, as we do not
own the example.com domain, the IP of puppetmaster.example.com is here with
a local IP. Now, assume that there is another IP and domain to collect your bank
information or any other important information.

Chapter 6

[141]

We will just insert another line with a comment in the last line informing that it is
locked by puppetmaster, as shown in the following code snippet:

Locked by Puppetmaster. Do not change. All of the changes will be
overwritten.

After adding these details to the last line, we will insert this file into our module.
The module name will be lockhostsfile and the following screenshot shows the
module structure:

The manifest details are shown in the following screenshot. As we can see, it is a
very simple manifest with only one file resource:

We can see the output, as shown in the following screenshot, when we run the
Puppet agent:

Using Puppet for Windows Security

[142]

The following screenshot shows the details of the hosts file after a test run:

As a test run, you can change the contents of the hosts file or even delete it. It will
be back with its contents in the next run.

Stopping unnecessary services
In this section, we will stop the services that we do not use frequently. In the
Managing services section under Chapter 3, Your First Modules, we already stopped the
SMB service for file and printer sharing. For users, we do not want them to share the
folders and printers directly. All the sharing must be achieved through the file server
or the document management system. Also, leaving these services open gives more
opportunities to hackers to understand and footprint the target system. When we
disable the SMB service, the hackers cannot exploit them.

We will create a module named stopservices. It will have a very basic structure and
will only have an init.pp file. The structure is shown in the following screenshot:

First, let's copy and paste the code we used previously:

Chapter 6

[143]

In the next step, we will also disable Remote Desktop Services for clients. We can
do this only if we use a remote desktop management solution. Most corporations
have this, so it becomes unnecessary to use RDP at the same time. Let's check its
details. The following screenshot shows the RDP services. We need to stop the
selected services. First, we need to stop Remote Desktop Services UserMode Port
Redirector (UmRdpService) and after this, Remote Desktop Services (TermService):

After adding these details, our manifest appears as shown in the following screenshot.
In the manifest, we have also added the service display names for easy reference:

Using Puppet for Windows Security

[144]

The following screenshot shows the test run details:

We may not disable SMB and RDP on the server side. However, after disabling
SMB and RDP on the client computers, the hackers will have a really hard time
attacking them.

Making sure that the security-related
services are running
After stopping the unnecessary services, the next step is to start any stopped services
that are required. The most important security services for us are the firewall and
antivirus services. The steps in this section are really specific to each enterprise; you
could be using the Windows Firewall or any antivirus firewall. Also, you could have
different options for the antivirus software. Here, we assume that you are using the
Windows Firewall and Trend Micro antivirus software.

If you want to test the same scenario you may download Trend Micro Antivirus+
2015 from http://downloadcenter.trendmicro.com/.

Most of the time, the new generation antivirus software protect their services and
tasks. So stopping the services of an antivirus may not be an easy task. You may use
Process Hacker (http://processhacker.sourceforge.net/index.php) to do this.

http://downloadcenter.trendmicro.com/
http://processhacker.sourceforge.net/index.php

Chapter 6

[145]

The following screenshot assures us that the antivirus is running properly:

The following screenshot shows the processes for Trend Micro in Process Hacker.
We will terminate all of them from Process Hacker. You need to have administrator
rights to do this:

Using Puppet for Windows Security

[146]

The services details are shown in the following screenshot:

We will check the following two services: Platinum Host Service (Platinum Host
Service) and Trend Micro Solution Platform (Amsp). So let's start writing our
manifest. The module name will be startservices. Here are the structure details:

As we know the service names, now we can write the manifest details:

Chapter 6

[147]

The following screenshot shows the test run details:

As we can see in the preceding screenshot, the services for Trend Micro have
started again.

Now, we can also include the Windows Firewall service in our list. The name
for this is MpsSvc. The following screenshot shows the details of the manifest
after including Windows Firewall:

While testing, you can first manually stop the firewall service to see if it starts again.
The test run results are shown in the following screenshot:

Using Puppet for Windows Security

[148]

Here, a last point to note is that you can include any service in this example. For
example, it will be a good idea to add any backup services and update services in
this manifest.

Denying all incoming traffic and allowing
only the necessary ports
We will first ensure that the firewall is running. After this, we will apply some rules
to enable some ports and disable others.

To ensure that the firewall is running, we need to first ensure that the profiles are
enabled and second, the firewall service is enabled and running. We have already
mentioned how to enable firewall profiles in the topic Chapter 4, Puppet Forge Modules
for Windows in the Managing the registry section. The following screenshot shows the
code from that section.

For the changes to take effect, we restart the firewall service. For this purpose, the
firewall service will be notified for each registry change. Thus, whenever one of the
profiles is changed from disabled to enabled, the firewall service will restart to
activate the changes.

Chapter 6

[149]

The new module name is winfirewall and the following screenshot shows
its structure:

The following screenshot shows the details after the inclusion of the service details.
You can see that the service details are commented. We have already defined this
service in the stopservices module. Thus, defining it again will give an error. You
can directly refer to a definition in another module. You only need to ensure that the
module you refer to is active and assigned to the host or host group:

Now, let's see the test results. In our example, the domain and public profiles are
disabled and the firewall service is stopped.

Using Puppet for Windows Security

[150]

Be careful about defining a resource with the same name in different
modules. If you have the same names, it will give a duplicate
error. In our example, we have a registry value change named
firewalldomain in the winfirewall class and also in the
firewallon class. While assigning firewalldomain to your hosts,
please remove the firewallon class. The new class that we have
defined is more detailed, and the other class is not needed anymore.

As we can see in the previous screenshot, the profiles are enabled and the firewall
service has been restarted.

Our next step is to check the firewall rules. By default, if there are no rules, the
inbound connections are denied in the Windows Firewall. The details can be seen
in the following screenshot:

Chapter 6

[151]

However, there are default rules that enable the SMB and RDP ports in the profiles.
So, we need to find and delete, or disable them. As they are default rules, disabling
them may be a better option than deleting them. The following screenshot shows
the default RDP inbound rule:

To disable this rule, we will use the netsh command that works in Command
Prompt. We are not using the unsupported firewall module, as the results are
not satisfactory. The command to disable the rule is as follows:

C:\>netshadvfirewall firewall set rule name="Remote Desktop (TCP-In)" new
enable=no

Using Puppet for Windows Security

[152]

Also, we want to deny all the traffic for the 445 port. Checking the default settings
in the rules, we can see in the following screenshot that File and Printer Sharing
(SMB-In) is enabled. So, we will disable this too:

The following command disables this rule for all the profiles:

C:\>netshadvfirewall firewall set rule name="File and Printer Sharing
(SMB-In)" new enable=no

After learning these details, we update our manifest and the details are shown in
the following screenshot:

Chapter 6

[153]

The successful test run is shown in the following screenshot:

In this section, we enabled the firewall profiles and their services. Further, we disabled
some of the default rules for the services we do not want to use. Your needs may differ
from this example, and you can add more rules here or remove some of the examples
that we have defined.

Making the local administrator
passwords unique
One of the problems of almost all companies is that the local admin passwords for
Windows clients are the same for all clients. This implies that if you get one of the
client computer's local admin password, you can use it for all the company computers.
Further, if you are not using a disc encryption solution, obtaining the hash of the
Security Account Manager (SAM) file password is very easy. The worse bit is that
Windows enables the use of hash to authenticate, which means that you can directly
use the hash to log in to other computers and do not need to crack the hash to get
the real password. The solution to this problem is to differentiate the local admin
password and make it unique for all your clients. This will ensure that one local
admin password/hash is usable only for that computer.

In this section, we will create a localadmin module. The module will create a local
user with admin rights for each computer. It will also generate a password that is
unique to the computer. We will also create a function to generate the passwords.

The password function
The function name will be hashpass. As you will recall, we need to create our
function under the /etc/puppet/modules/stdlib/lib/puppet/parser/
functions folder.

Using Puppet for Windows Security

[154]

The function details are shown in the following screenshot:

We have already seen how to create a function in Chapter 5, Puppet Facts, Functions,
and Templates, in the Your first function section. Thus, we will directly start with the
hashing section, as follows:

• Line 4: As we are using the SHA algorithm, we need to include the
relevant libraries.

• Line 5 and 6: We are using the fully qualified domain name (FQDN)
of the computer and also including a text to make it unpredictable.

• Line 7: We are generating a hash from the string.
• Line 8: We are using the string of the hash beginning from the fifth

character and including 10 characters after this. For example, the string is
1234567890abcdefgh. The result will be 567890abcd. We are also adding
the extra character, '.X', to increase the complexity. Finally, the password
becomes: 567890abcd.X.

• Line 9: This returns the value of the password.

The module
Now, we will write a simple module. This module will create a local user with
administrator rights. For password generation, it will use our newly created
function. The module structure is shown in the following screenshot:

Chapter 6

[155]

The module details are shown as follows:

As we can see, this module is very simple. We are just calling the function to get
our password and create a lcladmin user with that password.

The Ruby code to generate the password
"How to find the password?" is a question that would have popped up in your mind.
We answer this by creating a small Ruby script, which is almost identical to our
function. This code will get the FQDN and the extra text, justatext, we used
as input and will generate the password. Under /etc/puppet/modules, we will
create hash.rb as shown in the following screenshot:

As shown in the previous screenshot, this code is very similar to the hashpass
function. However, we have made some changes. The first input argument is FQDN
in line 3. The second argument is the justatext text that we used in the function.
The last argument is the .X text that we have put at the end of the password. As
we can see, even if somebody obtains this code, it will be very hard to generate the
correct password. We did not put any documentation in this code on purpose.

Using Puppet for Windows Security

[156]

The test
The following screenshot shows the results, when we run it on the host:

Now, let's check the output of our hash.rb code in Puppet Master. In this example,
the host that we run has the FQDN as WINDOWSTEST.example.local. Thus, the
sample code to be executed is as follows:

$ rubyhash.rbWINDOWSTEST.example.localjustatext .X

To easily find the FQDN, you can use the following command:

C:\>facter fqdn

The resultant password is as obtained in the following screenshot:

Now, we can use the password obtained in the previous screenshot to log in to the
host with the local admin.

Summary
In this chapter, we used many concepts together to put the hosts we manage in to
an ideal state of security. The purpose was to prevent or hinder any hacking activity.
We locked the startup folders for Windows users. We locked the hosts file. We
also started the necessary services and stopped the unnecessary ones. Further, we
tried to set our Windows Firewall to an ideal state. Finally, we made all the local
administrator passwords unique.

In the next chapter, we will see reporting and monitoring of hosts.

[157]

Reporting and Monitoring
We dealt with many different scenarios and learned a lot of things in the first six
chapters. We learned how to deal with users, services, and files. We learned how to
write manifests, templates, and functions. We learned how to use these details for
security. What we need to learn more about is how to check your hosts and their
reports. Without any reporting, we cannot know the statuses of our hosts. We do not
know whether our classes are implemented successfully or not, whether everything
is as expected, or there are errors. Without these facts, we cannot say that everything
is working as expected. In this chapter, we will learn how to check the following:

• The statuses of hosts from Foreman
• The report details of hosts from Foreman
• The statuses of hosts from the terminal
• The logs from the terminal

Reporting and Monitoring

[158]

Checking the infrastructure statistics
In Foreman, we can check the general statistics of our infrastructure such as the
OS distribution, architecture distribution, environment distribution, and number
of CPUs. To display and access the statistics, select Monitor | Statistics from the
top menu. A sample screenshot is provided as follows:

Chapter 7

[159]

Checking the statuses of hosts from
Foreman
We have already used Foreman interface many times in this book. We will now check
its details for reporting purposes. The first thing we will check with Puppet is the
general statuses of all the hosts. The general overview will show us a summary of all
the hosts' statuses. We will see how many hosts have performed successful operations
and how many of them failed. We can see the dashboard interface in Foreman from
the Monitor | Dashboard top menu. The following is a screenshot of the dashboard:

In this dashboard, we can see a general summary of all the hosts on the basis of
following details:

• Hosts that had performed modifications without error: These are all the
hosts that have modifications performed without any error in the last 35
minutes. Here is the search string for this:
last_report > "35 minutes ago" and (status.applied > 0 or status.
restarted > 0) and (status.failed = 0)

• Hosts in error state: Any host that has an error while implementing
modifications in the last 35 minutes. Here is the search string for this:
last_report > "35 minutes ago" and (status.failed > 0 or status.
failed_restarts > 0) and status.enabled = true

Reporting and Monitoring

[160]

• Good host reports in the last 35 minutes: These are the hosts that run
the Puppet agent successfully without implementing any modifications.
The search string is as follows:
last_report > "35 minutes ago" and status.enabled = true and
status.applied = 0 and status.failed = 0 and status.pending = 0

• Hosts that had pending changes: These are the hosts with pending status
without any time limit. The search string is as follows:
status.pending > 0 and status.enabled = true

• Out of sync hosts: These are the hosts that did not connect to Puppet in the
last 35 minutes. The search string is as follows:
last_report < "35 minutes ago" and status.enabled = true

• Hosts with no reports: These are the hosts without any report. These hosts
may be newly added or they may also have a problem. The search string is
as follows:
not has last_report and status.enabled = true

• Hosts with alerts disabled: These are the disabled hosts that display any
alerts. The search string is as follows:

status.enabled = false

To see more details, you can click on one of the lines. For example, clicking on Out of
sync hosts gives details similar to one shown in the following screenshot:

If one of the hosts in the previous screenshot shows that the servers are out of sync,
it may imply a problem. In the case of the previous screenshot, these are client
computers and it is possible that the user has shut them down.

Chapter 7

[161]

In the next step, we can click on one of the hosts and see what happens with each
click in more detail:

In general, we can see the Runtime and Resources graphics for the last seven days in
the preceding screen. There are also tabs such as Properties, Metrics, and Templates.
In the Properties tab, we can see some of the details of the host such as Domain,
IP Address, MAC address, Puppet Environment, and Operating System. In the
Metrics tab, we can see the number of the different report statuses:

Reporting and Monitoring

[162]

The Templates tab is related to provisioning and is out of scope. Lastly, we can
see some buttons named Audits, Fact Values, Reports, and YAML. Let's check
each of them.

Audits
In this section, we can see the administration activities handled for this host and
when they were done. This information is important when you want to check the
change details for a host. You can see who made the changes and its date details:

If you want to check one of the audits in more detail, you can click on them. In the
previous screenshot, it is underlined where to click. After clicking the first line 6/
Clients, we can see more about the change details. In the following screenshot,
we can see that for the Clients hostgroup, the firewallon class was assigned:

Chapter 7

[163]

If you also want to see all the audit details that are not only related to the hosts, you can
check this out from the Monitor | Audits top menu. Following is a screenshot for this.
In general level audit, we can see information such as host, hostgroup, class additions,
and deletions; you will also see new additions of operating systems and architecture.
There are many more details in this audit list. I suggest that you review from the oldest
to the newest. This will help you to understand what is going on in general:

Reporting and Monitoring

[164]

Facts
In this section, we can see all the fact details of a host. Here, the listed facts are the
structured data about the relevant host. If you need to refresh your memory about
facts, you can check the topic Puppet facts in Chapter 5, Puppet Facts, Functions, and
Templates.

In the preceding screenshot, we can see the information such as the IP address, number
of processors, MAC address, and uptime. You can get more useful information about
the host such as the operating system, memory size, Puppet agent version, filesystems,
your custom facts, partitions, FQDN, bios version, and virtualization info.

Reports
Here, we can see the reports list of the host. We will check out this part in more detail
later in this chapter:

Chapter 7

[165]

YAML
YAML is a recursive acronym for YAML Ain't Markup Language. YAML keeps
the structured data of the host. In this, you can see which classes are assigned, the
parameter values, and environment info:

Reporting and Monitoring

[166]

In this section, we saw how we can check the statuses of the hosts and get more
information about them. In the next section, we will continue with the details
of reporting.

Checking the report details of hosts
from Foreman
Now, we will check more details about the reports. To check the reports, you can go
to Monitor | Reports from the top menu. The default report list will display only the
eventful reports. Eventful means that either of the following two events has occurred:
a configuration change or an error.

Chapter 7

[167]

If there are no changes or errors, it will not be displayed in the default reports tab.
To display all the reports, just remove eventful = true from the search, and run
an empty search. You will have all the reports listed. You can see, in the following
screenshot, the list of reports that have events or no events:

Reporting and Monitoring

[168]

Now, let's check the details of a report with an error:

The first problem with the preceding report is that the server time and the client time
are not same as seen in the highlighted area of the screenshot, Host times seems to
be adrift!. To overcome this problem, I suggest that you install the ntp service on
your Puppet Master server, so that it can accurately fetch the time and date details
from Internet. The installation is very simple, just write this command in the terminal
of Puppet Master:

$ sudo apt-get install ntp

You can also use the ntp module from Puppet Forge to install the ntp service.
The details of the module can be found at https://forge.puppetlabs.com/
puppetlabs/ntp.

https://forge.puppetlabs.com/puppetlabs/ntp
https://forge.puppetlabs.com/puppetlabs/ntp

Chapter 7

[169]

As we can see, the two errors in the list are about the password details of the
user we are trying to create. This happened when we were trying to create a local
administrator with a simple password. Here, Windows detected a failed criteria and
did not let the user to be created. You may have also noticed that these details are
also displayed when you run puppet agent --test in any host that the class is
assigned to. In the reports, you can find the older runs and see what happened.

The following is another report with a successful apply event .Let's check the details
of this report:

In this report, we can see that the apply events have only level notice; and the event
only displays a notify message. Also, it is possible to have reports without any events.
The following is a screenshot of an uneventful report:

Reporting and Monitoring

[170]

As we can see, this is giving a Nothing to show message. We completed the different
aspects of reports in Foreman and learned how to check the report details. As you
can see, it is very easy with Foreman to check the reports and their details.

Checking the statuses of hosts from the
terminal
We checked the features of the Foreman interface. Now, it is time to check the details
from the terminal. You may not need these details, as Foreman is enough for your
daily management. However, sometimes Foreman may not be enough and you
may need to troubleshoot. In this section, we will see the details of hosts as they are
recognized correctly by Puppet via node.rb. In this, there are the node definitions,
facts files for hosts, and signed certificates.

node.rb
node.rb under /etc/puppet/node.rb is one of the tools that we can use to check
whether the related host is accurately defined and has no problems. node.rb is
Foreman-specific and will only work with it. You need to run it with root rights.
The command usage is as follows:

$ sudo -i
/etc/puppet/node.rb hostname

If the preceding command gives error in your environment, because Ruby was not
added at the beginning, the following command will work:

ruby /etc/puppet/node.rb hostname

Chapter 7

[171]

The following screenshot shows the result of node.rb:

The host YAML files
These files have the host config details in a YAML file. The folder for them is /var/
lib/puppet/yaml/foreman. The following screenshot shows the folder details:

Now, let's check one of the YAML file for a host. We will use "less filename" to display
the contents of a file. In our example, we can again check puppetmaster.example.
com. The command is as follows:

less puppetmaster.example.com.yaml

Reporting and Monitoring

[172]

The contents of the file are as shown in the following screenshot. You can also check
the details with the node.rb output, and can see that they have identical results:

There is also another file for every host ending with -push-facts.yaml. This file
shows the time when the details are pushed. Here are the details of puppetmaster.
example.com-push-facts.yaml:

Facts
A copy of facts submitted to the master from the agents, when requesting a catalog,
is available in the var/lib/puppet/yaml/facts folder. You can check their details
again with the less command:

less puppetmaster.example.com.yaml

Chapter 7

[173]

The Puppet SSL certificates
The SSL certificate details for Puppet are in the /var/lib/puppet/ssl/ folder:

The signed certificates of the hosts are under the /var/lib/puppet/ssl/ca/signed
folder:

Reporting and Monitoring

[174]

These certificates become important when you have problems with them. For example,
sometimes the certificate in the host and in Puppet Master does not match. In this case,
you check the details here.

Checking the logs from the terminal
There are not many details to discover in the terminal for reporting. However,
there are logs that are not displayed in Foreman. We may need to check these logs
for troubleshooting purpose. The logs that we will check are under the var/log/
apache2 folder. The following screenshot shows the contents of this folder:

As we can see from the preceding screenshot, there are some logs with zero byte size.
We do not need to check these files. When we check the apache config, we will see
that there are different sites enabled under /etc/apache2/sites-enabled/:

You can match the config files with the log files, as follows:

• 05-foreman.conf file is for the port 80 access and it is logged under the
foreman_access.log and foreman_error.log files.

• 05-foreman-ssl.conf file is for the port 443 access and it is logged under
the foreman-ssl_access.log and foreman-ssl_error.log files.

• 25-puppet.conf file is for the port 8140 access and it is logged under the
25-puppet_access_ssl.log and puppet_error_ssl.log files.

• 15-default.conf is the default config file. This one is not used for Puppet
or Foreman.

Chapter 7

[175]

You can also check out each config file and see that the logging config was set in it.
The following screenshot shows an example for the 25-puppet.conf file details:

When you want to see what happens in one of the logs in real time, it is a good
idea to use the tail command. With the -f flag, it will display the last 10 lines, and
whenever there are new records, it will display them in real time. The following
screenshot shows an example screen:

If you want to see the error logs, you can also check out the contents of the
logs that contain error in the name.

Reporting and Monitoring

[176]

To see all the Apache logs details for a specific host, you can use the
following command:

cat * | grep –r puppetmaster.example.com | less

You can also replace the puppetmaster.example.com hostname with any
specific term that you search for.

Summary
In this chapter, we learned how to see the statuses of hosts in the summary, and
after this, we checked the information available for the hosts. We also checked the
reporting details of Foreman. After this, we switched to the terminal and checked
the definitions, statuses, and facts of the hosts. Finally, we checked the access and
error logs for Foreman and Puppet that are generated by Apache.

In the next chapter, we will see how we can automatically install and update software
using Chocolatey with Puppet.

[177]

Installing Software
and Updates

In this last chapter, we will learn how to install, update, and uninstall a software.
We will also automate these processes as much as possible. You will learn the
following topics:

• How to install a software with Puppet
• What is Chocolatey
• How to install and update a software with Chocolatey
• How to use Chocolatey and Puppet together to install/update the mostly

used softwares
• How to update Puppet agents
• How to uninstall a software using Chocolatey

Installing a software with package
resource
We will begin by understanding how to install a software with Puppet. Here, the
idea is to create one class to install the application on all the hosts, so that you do
not need to repeat the task on hundreds of computers.

However, we will need some preparations first. We will need to install the software
on a sample host and remember the name of the installation. The installation name
will be used as the package name. We will use a simple software called Workrave as
an example. This tiny software helps users to have micro rests and prevent "repetitive
stress injury". You can download the software from http://www.workrave.org/
download/.

http://www.workrave.org/download/
http://www.workrave.org/download/

Installing Software and Updates

[178]

We need to download the Windows installer:

After downloading the installer, we will install it on one of our test hosts. This will
provide us with the installation details that we need for our Puppet module:

Double-click the installation file and install it by selecting the Next, Accept, and OK
buttons, whichever you see. After installing it on the test host, we will need to learn
how to install it silently. The silent installation is needed so that when we push the
software to the hosts, the users are not disturbed by the installation screens that are
awaiting input. To find the software, first, we try to find out the help details from the
command line:

"C:\Users\puppet1\Downloads>workrave-win32-v1.10-installer.exe /?"

Chapter 8

[179]

This will be unsuccessful for this installer. Normally, for numerous installers, this
step gives the options that show how to install it silently. If you do not find any
details, the next option is to search the Internet. When we search for workrave
unattended install, we can find out that it is using Inno Setup. The following link
shows the details for the Inno Setup switches: http://unattended.sourceforge.
net/InnoSetup_Switches_ExitCodes.html. Checking out the documentation
reveals that the '/VERYSILENT' switch can be used. Using this information, we can
try to silently install the software from the command line:

C:\Users\puppet1\Downloads>workrave-win32-v1.10-installer.exe /verysilent

Now, it is time to learn how Puppet sees this new installation. Thus, we will use the
following command. This command will list all the installed software:

C:\>puppet resource package

The output can be seen in the following screenshot:

http://unattended.sourceforge.net/InnoSetup_Switches_ExitCodes.html
http://unattended.sourceforge.net/InnoSetup_Switches_ExitCodes.html

Installing Software and Updates

[180]

As you can see, Workrave details are also present. These are the details that we will
use in our module. If you do not want to use the command to get these details, you
can also check out Control Panel for a list of all the softwares. We can see in the next
screenshot that the names of the installed software match with the command output.
The advantage of using the command output is that you can just copy and paste the
code here:

Now, we can continue with writing our module as we have collected enough
information. The package resource type in Puppet can install or uninstall a software.
Here is the sample code:

 package { 'Software name as we see in installation details':
 ensure => installed,
 source => 'installation file path and name',
 install_options => ['installparamater1','installparamater2'],
 }

After learning the basic structure, let's create our module. We will use
installworkrave as the module name. We will also create the files folder
in this and put our installation file here. Here is the structure:

Chapter 8

[181]

Here are the manifest details:

As you can see in the previous screenshot, we also included a file upload section.
We need the installation file on the host, otherwise, Puppet cannot install it. So, we
first upload the file to the host's C:\Windows\Temp directory and then, we show it
as the source file for the installation. We also use /VERYSILENT as the installation
option, so that the installation takes place in the background.

Now, it is time for a test run. As you can see, it successfully uploads the installation
file and installs the software:

We completed installing the software using the Package type. Next, we will continue
with easier ways of installation using Chocolatey.

Installing Software and Updates

[182]

What is Chocolatey?
Chocolatey is a package manager for Windows. There are commands for Linux such
as apt-get and yum for package management. They are very easy to use. Whenever
you need to install something, you just write apt-get install packagename or yum
install packagename. Here, the idea is to have a similar functionality in Windows.
You can see more details about Chocolatey at https://chocolatey.org.

After learning what Chocolatey is, we will install it manually and install some software
using this. In the later sections, we will see how to use Chocolatey with Puppet.

Installing Chocolatey
The installation of Chocolatey is very simple. You can see the following details on
the previous link:

https://chocolatey.org

Chapter 8

[183]

Open Command Prompt with administrator rights and copy and paste the
following command:

C:\> @powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-
object net.webclient).DownloadString('https://chocolatey.org/install.
ps1'))" && SET PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

The output of this installation command is shown in the following screenshot.
As you can see, the installation is very easy. After installing Chocolatey, just close
Command Prompt and open a new one:

Installing Software and Updates

[184]

Now, write the following command to see if Chocolatey is installed and it is giving
the output:

C:\> choco --version

The following screenshot verifies its functionality:

Installing a software with Chocolatey
Now, let's try to install a software with Chocolatey. To do this, we need to know the
package name. For example, assume that we want to install Notepad++. Let's check
this out at https://chocolatey.org/. Searching for notepad brings the details as
shown in the following screenshot:

https://chocolatey.org/

Chapter 8

[185]

As you can see, there are two results for the same version. The package ending with
.install is for portable installations. We will use the regular one. We can see how to
install Notepad++ in the following screenshot. The command is as follows:

C:\> choco install notepadplusplus

In the following screenshot, we can see the installation steps and output:

Uninstalling a software with Chocolatey
Chocolatey, also, has the option to uninstall the installed packages. However, there
are some exceptions such as:

• The software to be uninstalled must be installed using Chocolatey
• The software choco package must have its uninstall script

Installing Software and Updates

[186]

As you can see, the uninstall part may not work properly. Let's check the details for
Notepad++. On the Web, check the details for the package. In the Files section, there
must be an uninstall script, otherwise, the uninstall will not work correctly. It means
that when you want to uninstall it, you need to do it manually:

Chapter 8

[187]

Now, let's check out another software that we can install and uninstall. This time we
will check out 7-Zip. Here are the details of 7-Zip:

Installing Software and Updates

[188]

As you can see in the previous screenshot, this has the uninstall file. Now, let's try to
install and uninstall. The following is the installation screenshot:

As you can see in the following screenshot, it seems to have been uninstalled
successfully:

Normally, all the packages should also have an uninstall
package. However, never assume this and check whether it can
be uninstalled correctly. When checked, you will see that most
of the packages do not have an uninstall option. So the uninstall
functionality of Chocolatey is not dependable at the moment.
Another important point is that choco uninstall will not
give errors, even if it does not uninstall the package.

Chapter 8

[189]

Using Chocolatey to install a software
After learning Chocolatey and its limits, we will continue with using Chocolatey
with Puppet. Using both of them together will be a great plus for us and all the
installation process will be much easier. When we manage installations with
Chocolatey in Puppet, we will not need to find the installation package, its version,
and how to run it silently. The installation will be completed with a very little effort.

To use Chocolatey with Puppet, there is a module from Puppet Forge that we
need to install. Go to Puppet Forge website and search for Chocolatey. You can
see the module in the following screenshot. We will install the chocolatey/
chocolatey module:

To install the module, go to Puppet Master, open a terminal window, and run the
following command:

sudo puppet module install chocolatey-chocolatey

Installing Software and Updates

[190]

The following screenshot shows a successful installation:

Now, it is time to install a software using Chocolatey. For this purpose, we need to
write a module. A sample manifest is as follows:

package { 'notepadplusplus':
 ensure => installed|latest|'1.0.0'|absent,
 provider => 'chocolatey',
 install_options => ['-pre','-params','"','param1','param2','"'],
 uninstall_options => ['-r'],
 source => 'https://myfeed.example.com/api/v2',
}

Now, let's check the details step by step:

• package { 'notepadplusplus': Here, we define the package name that is
listed in https://chocolatey.org/.

• ensure: Here, you have different options. installed makes sure that it
is installed. latest updates the software whenever there is a new version
at https://chocolatey.org/. If you give the version number, such as
'1.0.0', it will install this version. absent uninstalls the package. Do not
trust the uninstall functionality as we have mentioned previously!

• provider => 'chocolatey': Here, we change the package provider so
that the installation is handled by Chocolatey.

• install_options: Normally, the Chocolatey packages are installed silently.
However, you also have the option to use different installation options.

• uninstall_options: Here you can put different options, for the
uninstallation.

• source: We will not use this one. However, if you have different sources or
your own Chocolatey server, you can reference it here.

https://chocolatey.org/
https://chocolatey.org/

Chapter 8

[191]

The following is a more simple form that we will normally use. As you can see, it is
very simple to install software using Chocolatey:

package { 'notepadplusplus':
 ensure => installed,
 provider => 'chocolatey',
}

As you will remember, we used Workrave as an example before. Now, let's write
a new module that uses Chocolatey, and then compare it with our default first
module to see the differences. We will create a new module named chocoworkrave.
The module structure is as shown in the following screenshot:

Our old module structure, installworkrave, is shown in the following screenshot:

Here, we can already see that there is less effort required. We do not need to find and
upload the installation file. The following screenshot shows the manifest details for
chocoworkrave:

Installing Software and Updates

[192]

The following manifest shows the details for installworkrave:

As you can see, more effort is required with the default provider. You need to find the
exact name of the installation. You need to download the installation and upload it to
server. You need to send the installation to the host. You need to give the installation
options. When you have Chocolatey as provider, you just need to know the package
name.

The workrave package for Chocolatey has problems, and is
not working properly. So, if you see that your installation is
not working properly, do not spend time with it.

Installing Firefox as an example
First, search Chocolatey for Firefox and find the relevant package:

Chapter 8

[193]

In our example, as you can see in the previous screenshot, the name of the package is
firefox. Now, let's write our module. We can use chocofirefox as a name for our
module. The structure of the module is shown in the following screenshot:

The manifest details are shown in the following screenshot:

Further, the test results are shown in the following screenshot. We can see that the
installation was a success:

Installing Chocolatey using Puppet
It may occur to you that installation of Chocolatey to each host may be a burden.
To install Chocolatey automatically on each host, you can use a module named
ceritsc/chocolatey_sw in Puppet Forge. After the installation of this module,
if you assign this module to any of your hosts or host groups, Chocolatey will
be installed on them.

Installing Software and Updates

[194]

Using Chocolatey to update a software
One of the challenges for IT is to keep the client software up to date. It is easy for
Windows updates that can be handled automatically. However, when it comes to
third-party softwares, the updates may become a burden. Next, we will see how
Puppet and Chocolatey deal with updates.

As an example, we will use the Java Runtime installation. We will first install an
older version and see whether it is updated correctly. Here is the package that we
will use:

Chapter 8

[195]

When we scroll down, we will also see some older versions. We will first install the
older version, 7.0.75. We will do it manually from Command Prompt:

Clicking on the older version will give us the details about installing it via
Chocolatey. The following are the details:

Installing Software and Updates

[196]

We can see in the following screenshot that the command successfully installs
Java 7.0.75:

To update Java, we will create a new module named chocojre. Here is the module
structure for this:

Here are the details of the module:

Now, let's test this and see whether the update works as expected. First, let's be sure
that the correct version was installed from Control Panel\Programs\Programs
and Features in our Windows host. As we can see in the following screenshot,
Chocolatey has installed both 32 and 64-bit versions of Java:

Chapter 8

[197]

When we test run Puppet, it gives the details as shown in the following screenshot.
As you can see, it has been successful:

Re-checking the programs in Windows, we see that the new Java version is installed.
However, there is a little problem; the old version is also there. For most software,
the old version will be no more; however, this is not the case for Java.

Installing Software and Updates

[198]

Using Puppet and Chocolatey to update
mostly used software
We learned how to use Chocolatey to install and update a software. Now, the next
step is to remove some of the burden from our shoulders. I know that there are
always problems with some of the updates for certain softwares. There are always
new versions and new workload to fulfill.

Here is a list of softwares that we mostly need and are frequently updated. You can,
of course, create your own list:

• The Java Runtime environment
• Adobe Reader
• The Flash Player plugin
• The Flash Player plugin activex
• Firefox
• Chrome
• iTunes
• 7-Zip

After creating the list of softwares, our next step is to check https://chocolatey.
org/ and find their package names:

• The Java Runtime environment: javaruntime
• Adobe Reader: adobereader
• The Flash Player plugin: flashplayerplugin
• The Flash Player plugin activex: flashplayeractivex
• Firefox: firefox
• Chrome: google-chrome-x64
• iTunes: itunes
• 7-Zip: 7zip

After learning each of the package's name, you can use one module and put all of
them in it, or you can create one module for each of them. It will be better if we
stick to the second option. Sometimes, there are cases where you should not update
a software. For example, your document management software may be using an
older version of Java. Upgrading it to the newer version may just cause problems
for the users. In this case, you may have to use different update policies for different
softwares. Keeping the modules separate will help you to easily differentiate.

https://chocolatey.org/
https://chocolatey.org/

Chapter 8

[199]

The example manifest for 7-Zip is as follows:

install 7zip using chocolatey
class choco7zip {
 package { '7zip':
 ensure => latest,
 provider => 'chocolatey',
 }
}

Here, by just changing the class name and package name, you can create many
different modules to update different kinds of software. When you are done with
these modules, you will never have to deal with the Java, Adobe, or Flash updates.
This will increase your end user satisfaction, as they will not see the popups of the
software updates, which they cannot complete because of missing admin rights.
Also, it will help your security and you will have your updates implemented sooner.
The on-time updates will patch the security problems and vulnerabilities.

If you want to keep the updates in one class, you can use the following sample class.
In this class, you only need to add additional package names:

update software using chocolatey
class choco7zip {

$packages = ["javaruntime", "adobereader", " flashplayerplugin"]

package { $packages:
 ensure => latest,
 provider => 'chocolatey',
 }
}

One more detail you need to know is that you can also use the
latest option for installation. So instead of writing ensure =>
installed, ensure => latest will help you to install the
latest version and keep it updated.

Updating the Puppet agents
One of the challenging tasks we may have is to update of the Puppet agents. Before
updating the agents, ensure that the agent version is never higher than the server
version. Thus, we should first start updating our server.

Installing Software and Updates

[200]

Updating the server
Before updating your server, ensure that you have a backup. The easiest method to
update is to write the following commands. These two commands will update your
Linux server and if there are any updates related to Foreman and Puppet, they will
also be implemented:

$ sudo apt-get update
$ sudo apt-get upgrade -y

The following screenshot shows that there are many updates for the server:

After some major updates, the server may require a restart. In this case, write the
following command to restart your server:

$ sudo reboot

To check the Puppet Server version, write the following command:

$ puppet --version

The following screenshot shows the output for the Puppet version. As you can see, it
is 3.8.1 in the server:

Chapter 8

[201]

Updating the agents with Chocolatey
In Chapter 2, Installing Puppet Agents, and in the Installing the Puppet agent on multiple
clients section, we learned how to install the clients on multiple hosts. You can also
stick to this option to send the new version of Puppet agent. However, in a corporate
environment, if laptops are used, it may be hard to find every host while sending the
update. Trying to find online computers and sending the updates again and again
may become a burden for you. It will be much easier if Puppet also handles its
agent updates.

Let's check the version in one of our hosts. We can see in the following screenshot
that the current version is 3.7.4:

Now, we will upgrade it to version 3.8.1. To do this, search for puppet at
https://chocolatey.org/. The following screenshot shows the puppet package:

https://chocolatey.org/

Installing Software and Updates

[202]

This is already the version we require. While testing this package, the default
installation causes a restart. We do not want to disturb the users with a restart. So,
we will overwrite its parameters. To do this, we need to first check the installation
parameters of the puppet installation file. You can download the installation from
https://downloads.puppetlabs.com/windows/. After the download, write
the package name followed by /? in Command Prompt. This will show you the
installation option similar to the one shown in the following screenshot:

https://downloads.puppetlabs.com/windows/

Chapter 8

[203]

In the previous screenshot, you can see that we need two options, /norestart and
/quiet, to install the agent silently and prevent a reboot. After learning these details,
we are ready to continue with the manifest details.

We will create a module named puppetagent. The following screenshot shows the
module structure:

Here are the manifest details:

In these details, we can see two more installation options:

• -override: This option is used to override any options that were defined
• -installArgs: This is used to indicate that there are new

installation arguments

Always use the version number to prevent problems. This will
ensure that you are not having a version newer than your server
and that you have full control over the Puppet agent versions.

Installing Software and Updates

[204]

After completing all the details, it is test time again. Let's see what happens when we
do a test run:

The previous screenshot shows that it first gives an error. Although, we have put the
NORESTART option, it tries to execute the shutdown /a command, which causes an
error code with 1116. However, when we check the version, we can see that the update
is successful. Finally, the next run gives no error as the installation is successful.

Chapter 8

[205]

Installing Puppet 3.7.5 gives no error, However, the 3.8.1 version
gives an error, which is not important. This is again the case when
we may see in new open-source technologies. Putting everything
together, it will be best to test any module with Chocolatey before
going live.
Another problem is that sometimes, the update may not correctly
run and you may need to correct it manually on the host. If your
Puppet agent does not run correctly anymore, use the following
command in Command Prompt to fix the agent: choco install
puppet -version 3.8.1 –force.

Uninstalling a software
After learning the different ways of installing a software, now we will learn how to
uninstall a software. At times, you may need to remove some softwares from each
client. Instead of dealing with them one by one, you can use Puppet and automate the
removal process. For this purpose, it is fine to use the package resource of Puppet.

As an example, we will uninstall the older versions of Java. In the following screenshot,
you can see that we have both Java 7 and 8 installed. We can remove version 7:

Installing Software and Updates

[206]

Here, we will uninstall two packages: Java 7 Update 75 and Java 7 Update 75 (64-
bit). We have already created a module for Java Update: chocojre. Now, let's
modify it so that it does not only install the latest version, but also uninstalls the
older one. We will, also, require the latest version before uninstalling the previous
version. There is no easy way to remove all older versions. So, we need to specify
each of them manually. For uninstalling, the only change we need to add is ensure
=> absent. The following screenshot shows the modified manifest:

Here are the test run results:

Chapter 8

[207]

At times, there are leftovers from the upgraded software; it is a good idea to remove
the older versions. It will be much easier to use one module to update the same
software and uninstall its older versions.

Uninstalling an older version of a software
that cannot be differentiated by its name
Assume that we have a case where there are two versions of a software installed.
We want to install the older version. However, we cannot differentiate them by
their names because they are identical. We had this situation after upgrading
Puppet. As you can see in the following screenshot, there are two different
Puppet agent versions installed with the same name:

Installing Software and Updates

[208]

Here, if we use ensure => absent, both the packages will be removed. In this case,
the Puppet connection will be lost. Here, we will need a slightly advanced approach.
Now, we know that the Puppet agent installation is an MSI package. Checking the
registry details, we can find its uninstall string. We will run regedit.exe and go to
the HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall folder. Here,
we need to find Puppet version 3.7.4. The following screenshot shows the details:

Here is the full uninstall string:

MsiExec.exe /X{9241D505-58E0-47CF-97A1-5E195F02FA94}

We will also add /Q so it uninstalls quietly. The new command becomes:

MsiExec.exe /Q /X{9241D505-58E0-47CF-97A1-5E195F02FA94}

When you run the uninstallation of older Puppet agents, it also
breaks the newer ones. So, this is just an example to show you how to
uninstall older packages. Normally, installation packages automatically
remove the older version. However, it is not always the case as we see
in Puppet agent and Java. As Puppet older uninstallation file breaks
the newer one, never use this code in production.

Chapter 8

[209]

We will add our uninstallation code to our puppetagent module. Also, we are
inserting a condition that the uninstallation will only work when the Puppet agent
version is 3.8.1. This will prevent the uninstallation from working, when the running
version is an older one. The following screenshot shows our module with new details:

Summary
In this chapter, we learned how to install a software using the Puppet package
resource. Then, we continued with the details and usage of Chocolatey. Later, we
used both Puppet and Chocolatey in tandem to make our installations and updates
much easier. We also checked out some of the softwares that are most used and how
to always keep them updated. Finally, we learned how to update Puppet agents and
uninstall a software.

We have completed our last chapter, so the book has also come to an end. If you
want to learn more about Puppet, there are many more books about it. The Puppet
documentation is, also, one of the places you may check out from time to time. If you
have problems and need to ask questions, there are different options available such as:

• For Enterprise users, Puppet has commercial support at
https://tickets.puppetlabs.com/secure/Dashboard.jspa

• Google groups such as puppet-users and puppet-bugs
• The #puppet IRC channel on freenode

https://tickets.puppetlabs.com/secure/Dashboard.jspa

[211]

Index
A
Access Control Entries (ACE) 98
Access Control Lists (ACL)

about 97, 98
file, locking from user changes 103
folder permissions, modifying 99-101
permissions, purging 102

C
capitalize function 130
Chocolatey

about 182
installing 182-184
software, uninstalling with 185-188
URL 190, 198
used, for installing software 189-192
used, for updating agents 201-205
used, for updating software 194-196
used, for updating used software 198, 199

commands
running 81-83
running, on certain conditions 84, 85

custom facts
adding 112-114
Windows users, adding as 114, 115

D
downcase function 130

F
files

uploading 73-75

Firefox
installing, with Chocolatey 192, 193

firewall
about 103
rule example 104, 105
URL 103, 104

firewall rules
about 29
defining 30-32
iptables rules, making persistent 32
ports, checking 29, 30

folders
creating 75

Foreman
hosts statuses, checking 159
installing 11, 12
interface 13, 14
module class, importing 69, 70
report details of hosts, checking 166-170

FortiClient SSLVPN
URL 124

fully qualified domain name
(FQDN) 6, 154

H
host groups

about 60
hosts, assigning to 62, 63
managing 60-62

hosts file
locking 139-142

hosts statuses, from Foreman
audits 162, 163
checking 159-162
facts 164

[212]

report list 164
YAML Ain't Markup Language

(YAML) 165, 166
hosts statuses, from terminal

checking 170
facts 172
host YAML files 171, 172
logs, checking 174
node.rb 170, 171
Puppet SSL certificates 173

I
incoming traffic

denying 148-153
infrastructure statistics

checking 158
Inno Setup switches

URL 179

L
Linux

key, connecting from 27
using, with Puppet 2, 3

local administrator passwords
creating 153
generating, ruby code 155
module, writing 154, 155
password function 153, 154
testing 156

Long Term Support (LTS)

M
module

about 65
directory structure 67
files folder 65
for creating files and folders 66
Hello World module 66, 67
layout 65, 66
lib folder 66
manifest file, creating 67, 68
manifests folder 65
structure 65
templates folder 66
URL 66

module class, importing in Foreman
class, assigning to host 70, 71
class, assigning to host group 72
steps 68, 69

N
necessary ports

allowing 148-153
node certificates

deleting 59
displaying 57, 58
managing 57
signing 58

ntp module
URL 168

O
Orca 41

P
PDQ Deploy

about 44
URL 44

Pluggable Authentication Modules
(PAM) 18

Process Hacker
URL 144

Puppet
about 1, 2
facts 109
functions 129
installing 4
installing, with Chocolatey 193
server, installing 3
templates 120
used, for updating used software 198, 199
using, with Linux 2, 3
using, with Windows 2, 3
virtual appliance, URL 1

Puppet agent
certificate, signing 38-40
downloading 35-38
installing 35-38
installing, on multiple clients 40
server, updating 200

[213]

updating 199
updating, with Chocolatey 201-205
URL 35

Puppet agent installation, on multiple
clients

about 40
domain controller, using to push

agents 50-56
MSI file, modifying 41-43
software, used for pushing 44-50

Puppet facts
about 109, 110
using, in manifests 111, 112

Puppet Forge
approved level 89, 90
modules, installing from 90, 91
supported level 89
URL 89

Puppet functions
about 129
first function 132, 133
stdlib functions 130

Puppet installation
DNS, setting 6-9
FQDN, setting 5, 6
gateway, setting 6-9
hostname, setting 5
repositories, adding 9, 10
static IP, setting 6-9
steps 10, 11

Puppet server
connecting, with SSH 4
installing 3

Puppet templates
about 120-123
example, for editing registry

keys 124-129
pw_hash function 131

R
reboot module

about 106-108
URL 106

registry
limitations 96
managing 92-94
manifests, writing 94-96

Ruby
URL 120

S
Security Account Manager (SAM) 153
security-related services

testing 144-147
server, securing

about 15
backups 16
firewall rules 29
root account, avoiding 17
SSH, using with key file 20
updates, checking 16
user password policy 18

services
managing 76-80

software
installing, with Chocolatey 184-192
installing, with package resource 177-181
older version of installed software,

uninstalling 207, 208
uninstalling 205, 206
uninstalling, with Chocolatey 185-188
updating, with Chocolatey 194-196

SSH, using with key file
about 20
connecting, from Linux 27
converting, to PuTTY format 22-27
public and private key, creating 21, 22
SSH logins, disabling with password 28

Startup folder
locking 135-138

stdlib functions
about 130
capitalize function 130, 131
downcase function 130, 131
pw_hash function 131
upcase function 130, 131
URL 130

[214]

T
terminal

hosts statuses, checking 170
logs, checking 174-176

Trend Micro antivirus software
URL 144

U
unnecessary services

terminating 142-144
upcase function 130
user password policy

10 char complex password, using 18
about 18
account lock, locking 19, 20
old passwords, avoiding 18
password expiry 19

users
comment attribute 85
ensure attribute 85
groups attribute 85
home attribute 85
manage home attribute 85
managing 85-88
name attribute 85
password attribute 85

V
version control system (VCS) 16
VirtualBox

URL 3

W
Windows

using, with Puppet 2, 3
Windows users

adding, as custom facts 114, 115
condition, setting 115
necessary libraries, including 115
registry values, searching 116-120
variables with empty values, defining 115

winfirewall class 150
Workrave

about 177
URL 177

Y
YAML Ain't Markup Language

(YAML) 165, 166

Thank you for buying
Learning Puppet for Windows Server

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Creating Mobile Apps with
Sencha Touch 2
ISBN: 978-1-84951-890-1 Paperback: 348 pages

Learn to use the Sencha Touch programming
language and expand your skills by building 10
unique applications

1. Learn the Sencha Touch programming
language by building real,
working applications.

2. Each chapter focuses on different features
and programming approaches; you can decide
which is right for you.

3. Full of well-explained example code and rich
with screenshots.

Sencha MVC Architecture
ISBN: 978-1-84951-888-8 Paperback: 126 pages

A practical guide for designers and developers to
create scalable enterprise-class web applications in
ExtJS and Sencha Touch using the Sencha
MVC architecture

1. Map general MVC architecture concept to
the classes in ExtJS 4.x and Sencha Touch.

2. Create a practical application in ExtJS as well
as Sencha Touch using various Sencha MVC
Architecture concepts and classes.

3. Dive deep into the building blocks of the
Sencha MVC Architecture including the class
system, loader, controller, and application.

Please check www.PacktPub.com for information on our titles

Learning Ext JS 4
ISBN: 978-1-84951-684-6 Paperback: 434 pages

Sencha Ext JS for a beginner

1. Learn the basics and create your first classes.

2. Handle data and understand the way it works,
create powerful widgets and new components.

3. Dig into the new architecture defined by Sencha
and work on real world projects.

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style.

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application.

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Puppet Server and Foreman
	The differences between using Puppet with Windows and with Linux
	Installing Puppet Server
	Connecting your server with SSH
	Installing Puppet

	Installing Foreman
	The Foreman interface
	Keeping your server secure
	Backups
	Keeping your server up to date
	Do not enable root account
	The user password policy
	Do not use old passwords that have been used before
	Using at least a 10 char complex password
	Expiring password expires in 90 days
	Locking account lock

	Using SSH with key file to connect
	Creating the public and private key
	Getting the key to your computer and converting it into the PuTTY format
	Connecting from Linux
	Disabling the SSH logins with a password

	The firewall rules
	Checking which ports to keep open
	Defining firewall rules
	Making the iptables rules persistent

	Summary

	Chapter 2: Installing Puppet Agents
	Downloading and installing the
Puppet agent
	Signing the certificate

	Installing the Puppet agent on multiple clients
	Modifying the MSI file
	Using software to push the agents
	Using a domain controller to push the agents

	Managing the node certificates
	Displaying the certificates
	Signing the certificates
	Deleting the certificates

	The host groups
	Managing the host groups
	Assigning the hosts to hosts groups

	Summary

	Chapter 3: Your First Modules
	The module structure
	The module layout
	Modules for creating the files and folders
	The Hello World module
	Creating the directory structure
	Creating the manifest file

	Importing the module class in Foreman
	Assigning the class to a host
	Assigning the class to a host group

	Uploading files
	Creating folders
	Managing services
	Running commands
	Running the command on certain conditions

	Managing users
	Summary

	Chapter 4: Puppet Forge Modules for Windows
	Installing modules from Puppet Forge
	Managing the registry
	Writing the manifests
	Limitations with the registry module

	The access control list
	Changing the permissions of a folder
	Purging permissions
	Purging permissions and locking a file from user changes

	Firewall
	The Firewall rule example

	The reboot module
	Summary

	Chapter 5: Puppet Facts, Functions, and Templates
	Puppet facts
	Using the facts in manifests

	Adding the custom facts
	Adding Windows users as custom facts
	Making sure our code works only for Windows
	Including the necessary libraries
	Defining your variables with empty values
	Finding the registry values

	The Puppet templates
	An example template to edit the registry keys

	The Puppet functions
	The stdlib functions
	Some string functions – downcase, upcase, and capitalize
	The pw_hash function

	Your first function

	Summary

	Chapter 6: Using Puppet for Windows Security
	Locking the Startup folder
	Locking the hosts file
	Stopping unnecessary services
	Making sure that the security-related services are running
	Denying all incoming traffic and allowing only the necessary ports
	Making the local administrator passwords unique
	The password function
	The module
	The Ruby code to generate the password
	The test

	Summary

	Chapter 7: Reporting and Monitoring
	Checking the infrastructure statistics
	Checking the statuses of hosts from Foreman
	Audits
	Facts
	Reports
	YAML

	Checking the report details of hosts
from Foreman
	Checking the statuses of hosts from the terminal
	node.rb
	The host YAML files
	Facts
	The Puppet SSL certificates
	Checking the logs from the terminal

	Summary

	Chapter 8: Installing Software and Updates
	Installing a software with package resource
	What is Chocolatey?
	Installing Chocolatey
	Installing software with Chocolatey
	Uninstalling a software with Chocolatey

	Using Chocolatey to install a software
	Installing Firefox as an example
	Installing Chocolatey using Puppet

	Using Chocolatey to update a software
	Using Puppet and Chocolatey to update mostly used software
	Updating the Puppet agents
	Updating the server
	Updating the agents with Chocolatey

	Uninstalling a software
	Uninstalling an older version of a software that cannot be differentiated by its name

	Summary

	Index

