
www.allitebooks.com

http://www.allitebooks.org

Learning Puppet

Build intelligent software stacks with the Puppet
configuration management suite

Jussi Heinonen

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Puppet

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1270815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-983-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jussi Heinonen

Reviewers
Vlastimil Holer

Ashish Jaiswal

Amar Krishna

Eric Stonfer

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Nikhil Karkal

Content Development Editor
Anish Sukumaran

Technical Editors
Dhiraj Chandanshive

Pramod Kumavat

Copy Editors
Janbal Dharmaraj

Rashmi Sawant

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jussi Heinonen is a seasoned systems developer and an open source enthusiast
who lives in Cambridge, UK. He has been working for various software businesses
in the media and telecommunications sectors since 1998. During this period, he
acquired a few Linux certifications, and more recently, in 2014 and 2015, he passed
the Puppet Certified Professional exam. He currently works at the Financial Times
as a senior integration engineer. His role revolves around building and designing
software delivery pipelines that enable developers to create high-quality software
quickly and frequently. In his spare time, he likes to spend time with his family
and loves to watch games at Arsenal Football Club.

There are many people who have contributed to this book, and I'd
like to take this opportunity to say thanks to them.

First and foremost, a big thank you to the folks at Packt Publishing,
especially Nikhil and Anish, for giving me the opportunity to write
this book. Your support and guidance throughout the writing
process has been invaluable.

Secondly, a huge credit to the reviewers, in particular, Vlastimil
Holer, who have helped me streamline the content of this book and
improve the reading experience.

Thirdly, I'd like to thank my lovely wife, Thury, and my children,
Markus, Jakob, and Elisa, for allowing me to take occasional breaks
from daddy duties to concentrate on writing this book.

Finally, I would like to thank my colleagues at the Financial Times,
namely the members of the Integration Engineering team and Team
CMS. In the past years, I've been working with them in various
projects involving Puppet. This has enabled me to hone my
Puppet skills and learn how to use this tool to solve specific
business problems.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vlastimil Holer is a systems engineer who focuses on automation. He has worked
with Unix-like systems for more than a decade, and he first used Puppet in 2008
while preparing and managing the growing deployment of the GoodData cloud BI
on Amazon EC2. Currently, he is working on the CERIT Scientific Cloud project at
Masaryk University, where he manages and automates the computing, cloud,
and storage infrastructures.

Ashish Kumar Jaiswal has been working for the past 4 and a half years and has
worked on Puppet for almost 4 years. Puppet was the root cause for the growth of
his technical career.

He is currently working on a project called obmondo.com—an "Operations as a
service" project—using Puppet to automate server configuration and management.
This project sets up the whole Puppet infrastructure without a Puppet server, and
it's just far off to click on the profile you want your server to have.

I would like to thank Corey Ralph, an Aussie guy who was my
manager at my previous organization, and my wife, Dhara Jaiswal.
She is just too kind at heart. I would also like to thank my beautiful
family, which includes my mom, dad, and two sisters.

www.allitebooks.com

http://www.allitebooks.org

Amar Krishna is a DevOps professional and loves to automate everything that
comes his way. He has used Puppet and scripting for automation. He started his
career with Linux and PHP and moved on to high-performance computing, where
he worked with one of the largest clusters in India. Then, he moved on to the cloud
computing world, where he worked on tools such as CloudStack and OpenStack. He
was involved in one of the biggest cloud projects in India. Currently, he is working at
Reliance Jio Infocomm.

This was his first book as a reviewer and he loved it. He would like to review more
books in the future.

I would really like to thank all my colleagues for helping me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Puppet Development in Isolation	 1

Puppet Manifests	 2
Downloading Oracle VirtualBox	 4
Downloading the Puppet Learning VM	 5
Importing the Puppet Learning VM into VirtualBox	 6
Virtual machine snapshots	 8
Snapshot of the virtual machine	 9
Puppet on command line	 11

Puppet version	 12
The open source Puppet	 13
The Puppet Enterprise edition	 13

Puppet resources	 13
Managing resources from the command line	 14

Puppet dry run	 17
Use Puppet to examine the current state of resources	 18
Puppet is run as a user root	 20
Puppet DSL and manifests	 21

Managing resources with the puppet apply command	 22
Creating Puppet manifests	 24

Idempotency	 26
Puppet command line versus Puppet manifests	 27
Managing files and directories with a file resource	 28

Puppet configuration	 31
Summary	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Managing Packages in Puppet	 35
Restoring a snapshot	 36
Introducing VirtualBox Guest Additions	 37

Shared folders	 37
Host-only networking	 38
Configuring shared folders	 38
Configuring the host-only network interface	 40
Testing shared folders	 42
Using the file resource to configure network interface on
the virtual machine	 43

Restart networking	 44
Creating the puppet-agent node	 45

Take a snapshot of the virtual machine	 46
Branch the virtual machine by creating a clone from the snapshot	 46
Purging package resources	 49

Summary	 51
Chapter 3: My First Puppet Module	 53

Introducing the Puppet module	 54
The Puppet module structure	 54

The Puppet module name format	 55
Generating a Puppet module	 55

A Puppet class	 57
Resources inside the Puppet class	 58
Rename the module directory	 59
Applying a Puppet class	 59
Installing a module from Puppet Forge	 61
Installing Apache HTTP Server	 63
Testing the Apache HTTP Server	 64
Customizing a web server with facts and templates	 65

Puppet templates	 66
Creating a template file	 67
Creating a file resource for the template file	 67

Facts by the facter	 69
Facter on the command line	 70
Accessing facts from the Puppet template	 70
Accessing facts from Puppet manifests	 72
A simple for loop in the Puppet template	 73

Testing repeatable deployment	 75
Shut down the virtual machine	 76
Revert the machine state to the previous snapshot	 76
Reduce memory allocation for the virtual machine	 76
Create a linked virtual machine clone from the snapshot	 77
Power on both the virtual machines and apply the webapp class	 78

Summary	 80

Table of Contents

[iii]

Chapter 4: Monitoring Your Web Server	 81
Monitoring the architecture	 82
Creating a Nagios module for the client and server	 83

A recap on the state of virtual machines and snapshots	 84
Cloning the virtual machine for Nagios module development	 85
Generating the Nagios module	 86
Puppetize the Nagios Server installation	 87

Configuring the Nagios Server web interface	 91
Applying the nagios::server class	 92
Verifying Nagios Server installation	 93

Creating nagios::client class	 94
Testing the nagios::client class	 98

Enable monitoring on the web server	 100
Configuring the web server host and checks on the Nagios Server	 100

Creating a Nagios host	 101
Summary	 106

Chapter 5: Load Balancing the Cluster	 107
The parameterized class	 108

Calling a class with parameters	 108
Creating a parameterized class	 109

The defined type	 110
Calling the defined type	 110
Creating the defined type	 111

The load balancing architecture	 112
Building the load balancer node	 114

Cloning a new virtual machine for the load balancer	 114
Reducing the virtual machine memory allocation	 115
Creating a snapshot and starting the virtual machine	 115
Creating a load balancer module	 115
Installing the load balancer using class parameters	 116
Deploying the load balancer	 118
Verifying the load balancer deployment	 119

Adding parameters to the loadbalancer class	 122
Load balancing web server nodes	 126

Enabling load balancing on the loadbalancer class	 127
Applying and testing the load balancer	 130

Launching the second web server node	 131
Summary	 132

Table of Contents

[iv]

Chapter 6: Scaling Up the Puppet Environment	 133
Puppet Master	 134

The Puppet Master components	 135
Certificate Authority for authorization	 135
Mcollective for orchestration	 135
PuppetDB for exported resources, PuppetDB queries, and reporting	 136

Connecting Puppet Agent with Puppet Master	 137
Creating the bootstrap module for Puppet Master and Puppet Agent	 137
Configuring static IP address on Puppet Master	 138
Defining resource processing order with the arrow notation	 139
Creating class bootstrap::master	 140
Referencing an out-of-scope variable from Puppet template	 142
Conditional statements	 144

The if statement	 144
Creating site.pp file for node classification	 147
Applying bootstrap class on Puppet Master	 148
A first look at the Puppet Enterprise Console	 150

Bypassing the certificate warning message	 150
Logging on to the Puppet Enterprise Console	 151

503 Service Temporarily Unavailable?	 151
Creating a node group	 152
Bootstrapping Puppet Agent	 153
Applying the bootstrap::agent class via the bootstrap class	 155
Signing the certificate on the Puppet Enterprise Console	 157
Adding nodes to the node group	 158
Deploying the Web Server node against Puppet Master	 159
Bootstrapping Load Balancer and Nagios Server nodes	 161

Summary	 162
Chapter 7: Making the Configuration Dynamic	 163

An introduction to PuppetDB and exported resources	 164
Exported resources	 164
Exporting and importing resources	 165

Exporting resources	 166
Importing resources	 168

Testing exported resources	 170
Purging resources	 173
Purging resources with the nagios::purge class	 174
The PuppetDB query	 175
Installing the dalen-puppetdbquery module	 177
Adding puppetdbquery into the RUBYLIB environment variable	 177
Examples of Puppet query commands on the command line	 179

Querying certname with action nodes	 180

Table of Contents

[v]

Querying facts with action facts	 180
Using the puppetdbquery functions	 182

The query_nodes function	 182
The query_facts function	 183
Creating a custom type for testing PuppetDB queries	 183

Using the PuppetDB query to configure the load balancer	 186
Testing the PuppetDB query manifests on the load balancer node	 190

Summary	 191
Chapter 8: Extending Puppet	 193

Puppet functions	 194
Creating a Puppet module for custom functions	 194
Writing a function	 196
Test-driving the Puppet function	 197

Testing a Puppet function on the Puppet Agent node	 197
Testing a Puppet function against Puppet Master	 198

Distributing SSH keys with a Puppet function	 200
Creating a public and private key pair	 200
Writing a Puppet function to distribute a public key	 201
Calling the custom function from the file resource	 202
Testing the password-less SSH session	 205

Creating custom facts	 205
External facts	 206

Creating facts that return structured data	 208
Writing custom facts in Ruby	 210

Creating a custom fact to extract certname	 211
Distributing certname records across the cluster	 213

Summary	 217
Chapter 9: The Puppet Enterprise Console	 219

Role-based Access Control	 220
Creating a user and assigning a role	 220

Creating a user account	 220
Enabling login for a user account	 221
Assigning a role to the account	 223

Creating a node group	 224
Signing the Puppet agent's certificate	 225
Adding a node to the node group	 228
Classifying nodes in the Puppet Enterprise Console	 230

Moving the site.pp file temporarily out of the modulepath	 232
Using Live Management	 232
Accessing reports via the Puppet Enterprise Console	 236
Searching nodes with Inventory Search	 241
Summary	 246

Table of Contents

[vi]

Chapter 10: Troubleshooting Puppet	 247
Prerequisites	 248
Troubleshooting node definition issues	 249

Making the node definition file and ENC work concurrently	 251
Diagnosing duplicate declaration errors	 254

Using the defined() function to avoid duplicate declarations	 258
Using the $name variable in custom types	 259

Getting around dependency cycle errors	 261
Troubleshooting missing resources	 265

Diagnosing template errors	 265
Diagnosing missing source file errors	 267

Rectifying certificate errors	 269
Listing certificates on the Puppet Master	 269
Removing Puppet certificate on Puppet Master	 270
Regenerating Certificate Signing Request	 271
Signing a certificate on the command line	 272

Finding help online	 273
Summary	 274

Index	 275

[vii]

Preface
This book is a step-by-step guide to get started with Puppet development, and use
Puppet modules as the building blocks to deploy production-ready application
clusters in the virtual environment.

The journey begins with the installation of the development environment on the
VirtualBox hypervisor and the installation of the Puppet Learning VM that will be
used platforms to test and develop Puppet modules.

You will learn how to manage virtual machines and snapshots effectively and
enhance the developer's experience with advanced VirtualBox features.

Once the development environment is up and running, this book will focus on
Puppet module development in detail. You will be guided through the process
of how to utilize the existing modules that are available in the public module
repository, write your own modules, and use modules to deploy a real-world web
application that includes features such as monitoring and load balancing. When an
application cluster is deployed, the focus shifts to how to scale the environment and
turn the static configuration into a dynamic one through stored configurations and
PuppetDB. The latter part of the book will provide you with practical advice
on Puppet troubleshooting, and how to manage your environment with a wealth
of features provided by the Puppet Enterprise Console. Starting from the basics, this
step-by-step guide will walk you through the process of becoming the master of your
own Puppets.

Preface

[viii]

What this book covers
Chapter 1, Puppet Development in Isolation, teaches you how to set up the local Puppet
development environment quickly and start experimenting with Puppet on the
command line in a matter of minutes.

Chapter 2, Managing Packages in Puppet, shows you how to restore the virtual
machine snapshot and set up shared folders and host-only networking to enhance
the developer's experience. You can also learn how to purge a software package
using Puppet.

Chapter 3, My First Puppet Module, explains the concept of Puppet modules.
You will learn how to install third-party Puppet modules from Puppet Forge
and how to create and use your own modules.

Chapter 4, Monitoring Your Web Server, teaches you how to use Puppet to install the
Nagios monitoring server and how to add a web server to monitor using Puppet.

Chapter 5, Load Balancing the Cluster, introduces you to parameterized classes
and defined types and teaches you to use these to configure load balancing
in the cluster.

Chapter 6, Scaling Up the Puppet Environment, introduces you to the Puppet
Master, which enables you to centrally manage a large number of Puppet Agent
nodes. You will learn how to sign Puppet Agent certificates and join agents to the
Puppet environment.

Chapter 7, Making the Configuration Dynamic, teaches you how to use Puppet's
Exported Resources to pass Puppet resources between nodes. This chapter also
introduces you to the PuppetDB queries that are used to discover services in
the cluster.

Chapter 8, Extending Puppet, teaches you how to extend Puppet beyond its built-in
functionality. This chapter introduces you to custom facts and functions.

Chapter 9, The Puppet Enterprise Console, explores the Puppet Enterprise Console,
which is a web-based management console that runs on the Puppet Master node.
In this chapter, we will learn about Role-based Access Control and how to classify
nodes using the External Node Classifier.

Chapter 10, Troubleshooting Puppet, teaches you how to identify the most common
issues in Puppet and how to tackle them. This chapter provides you with basic
troubleshooting skills.

Preface

[ix]

What you need for this book
A computer that runs a Windows, Mac, or Linux operating system. The computer
should have a minimum of 4 GB of memory and 10 GB of free hard drive space.

Who this book is for
This book is aimed at people who are new to configuration management and IT
automation processes. You may have a background in software development,
and you may have set yourself a goal of learning how to take full control of the
software deployment process; or perhaps, you are more experienced in the
system administration field, and are looking for better ways to manage system
configuration changes at scale. Although previous experience in IT is helpful,
it is not a requirement. This book will get you up to speed with Puppet
development quickly and effortlessly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Experiment with the Puppet command-line commands puppet describe, puppet
resource, and puppet apply."

A block of code is set as follows:

file {
 '/etc/sysconfig/network-scripts/ifcfg-eth1':
 content =>
'DEVICE="eth1"
BOOTPROTO="dhcp"
ONBOOT="yes"',
}

Any command-line input or output is written as follows:

puppet describe --list | less

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Start the
Oracle VM VirtualBox Manager and select Import Appliance from the File menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Puppet Development
in Isolation

Welcome dear reader. You have arrived at the starting point of the journey to learn
Puppet. Whether you have a background in software development, IT infrastructure,
or somewhere in between or there about, I believe you have heard people
talking about Puppet, and how Puppet can help you automate the configuration
management and software deployment processes. I've been using Puppet on a daily
basis for the past 4 years, and I feel that it has improved my quality of life at work a
lot. I have a background in system administration, and I build software stacks from
a set of packages, configuration files, and other types of resources. Prior to Puppet,
I used to use various self-written scripts to automate the deployment processes
in order to make the process repeatable, but I'm doing much less of that since I
discovered Puppet. The problem with scripts, as I see it, is that they are hard to
transfer across and to hand over, as scripts are often complex and difficult to read
by people who are unfamiliar with the language in which the scripts are written.

Puppet can help you overcome this issue in a two-fold solution:

•	 Puppet manages resources, such as files, users, and services out of the box.
Instead of writing custom Shell scripts to manage resources, we write the
Puppet script, which we call the manifest.

•	 Puppet has its own language called Puppet DSL that is easy to understand
by the developers as well as the people involved in the infrastructure.

Puppet Development in Isolation

[2]

The moment I start feeling bored with the project I'm working on, because I'm not
learning new skills any more, I start to wrap things up, finalize the documentation,
and tidy up all the loose ends. The handover process for the project used to involve
several days of training followed by a period of several weeks of questions about
how the scripts work, and how to change the logic in them. The questions often
were as simple as "How do you do this thing in Bash?".

Now the logic has been moved away from the custom scripts to Puppet manifests
that are written in Puppet DSL. When I get a question such as "How do I do this
in Puppet?", I can reply by saying "Here is a book about Puppet called Learning
Puppet. By the end of this chapter, you'll already know how to manage your systems
with Puppet". There are dozens of books written on Puppet. This one aims to be a
little bit different from those by taking a slightly more practical approach to Puppet
development. We will perform the following tasks here:

•	 Download the Puppet Learning VM
•	 Take a snapshot of the Learning VM to enable an easy rollback to the original

system state
•	 Start the Learning VM
•	 Experiment with the Puppet command-line commands: puppet describe,

puppet resource, and puppet apply

Puppet Manifests
Before we get our hands dirty with Puppet, I'd like to expand the topic a little bit.

As you may already know, Puppet is a configuration management tool that enables
you to build application stacks from a set of files that the Puppet community refers
to as the manifests.

Manifests are a set of instructions that describes how operating systems and
application resources are managed by Puppet and how the system configuration
should look like after the manifest has been applied to the system.

Manifests are written in a language called Puppet DSL, where DSL stands for
Domain Specific Language. DSL is a commonly used term for programming
languages that are not general-purpose languages.

When I write Puppet manifests, I consider it a development process. I call it a
development process because the process consists of multiple rounds of iterations
during which the manifest evolves.

Chapter 1

[3]

Here is a simplified overview of the Puppet manifest development process:

For iteration 1, follow the given steps:

Begin by writing the initial manifest that installs a software package > Apply the
manifest > Ensure that package is installed.

For iteration 2, follow the given steps:

Extend the manifest to apply the configuration for the package > Apply the manifest
> Ensure that the configuration was correctly applied.

For iteration 3, follow the next steps:

Add the logic to start up the service > Apply the manifest > Ensure that the service
started > Finish.

In this example, the development processes had three rounds of iterations, each of
them containing a task called Apply the manifest.

The manifest develops from the initial version, which does very
little to the version of the manifest that manages the whole stack.

Imagine a situation where we write a manifest that creates a Linux user account with
a root level access but no password. An account with a root level access is equivalent
to a local administrator account on a Windows computer. When you apply the
manifest on your computer, Puppet will create a user account on your computer
without a password, which makes your computer vulnerable to attacks.

In contrast, if you apply the manifest in an isolated development environment, the
configuration change is easy to undo as you can quickly tear down the environment
and rebuild it from scratch.

Another reason for developing manifests in isolation is consistency. My choice of
operating system is Ubuntu Linux and I run it on MacBook Pro hardware. You may
run Mac OS X on the Mac mini, and a friend of mine just downgraded to Windows 7
as she was unhappy with the functionality offered by Windows 8.1.

Each of these operating system flavors will behave slightly differently, although all
of them do share similar capabilities such as running a virtualization software.

To ensure that the examples and exercises covered in this book produce consistent
results for you and me, we will start our journey by installing the VirtualBox
virtualization software package, which enables us to run a set of virtual
machines that forms our isolated development environment.

Puppet Development in Isolation

[4]

Downloading Oracle VirtualBox

To complete this task, you will need an Internet connection and
a web browser such as Mozilla Firefox.

If you prefer to use an alternative virtualization technology, you are free to do so as
long as the software supports the following functionalities, and you know how to
configure the software to enable the following functionalities:

•	 The ability to run multiple virtual machines concurrently
•	 Virtual machine snapshots
•	 Support for shared folders
•	 Support for host-only networking
•	 Support for the Open Virtualization Format (.ovf) and Virtual Machine Disk

(.vmdk) file formats

This book is based on Oracle VirtualBox Version 4.3. To ensure that the configuration
examples this book provides work well, I'd recommend that you download VirtualBox
Version 4.3.

VirtualBox 4.3 can be downloaded for free from the VirtualBox website at
https://www.virtualbox.org/wiki/Download_Old_Builds_4_3
(Google: virtualbox download 4.3).

On the download page, you should see a category for the VirtualBox platform
packages. Select the download option that is most suitable for your operating system:

•	 Windows users should download VirtualBox for the Windows hosts
•	 If your computer runs Apple software, choose VirtualBox for OS X hosts
•	 If you are a Linux user, you can either download the VirtualBox for Linux

hosts or alternatively, you may check the software repositories configured
on your system and see whether VirtualBox is made available for your
Linux distribution

https://www.virtualbox.org/wiki/Download_Old_Builds_4_3

Chapter 1

[5]

When you have downloaded the VirtualBox installation package, it is time to install
it. Double-click on the installation package that you downloaded, and you will see
the installation wizard pop up on the screen.

Install VirtualBox with the default options, and we will take a look at how to
configure VirtualBox to optimize it for our development environment.

Downloading the Puppet Learning VM
You now should have VirtualBox installed, which can run virtual machines for our
isolated development environment.

We will be using the Puppet Learning VM Version 3.7.1, which I've uploaded to an
Amazon S3 bucket.

The Puppet Learning VM is a virtual machine image that comes with preinstalled
Puppet software. Installing Puppet is not a difficult or too time-consuming task, but
it will save us all a little bit of our valuable time if we use the Puppet Learning VM,
so we can start experimenting with Puppet quicker.

Follow these steps to complete the download process:

1.	 To download the Puppet Learning VM Version 3.7.1, go to http://
learning-puppet-packt.s3-website-eu-west-1.amazonaws.com, and
click on the link that says To download Puppet Learning VM v.3.7.1 click here.

2.	 Once the download is finished, you should find a file called learn_puppet_
centos-6.5-pe-3.7.1-ptb-ovf.zip in the download folder of your
web browser.

3.	 Double-click on the learn_puppet_centos-6.5-pe-3.7.1-ptb-ovf.zip
file to open the Zip file archive manager and extract the files to the filesystem.

4.	 At this stage, I'd recommend that you create a dedicated directory under
your home directory that acts as a repository for virtual machine files as well
as the Puppet manifest files that we will create later in this book.

5.	 Once the zip archive has been extracted to the directory, you should find the
learn_puppet_centos-6.5.ovf and learn_puppet_centos-6.5-disk1.
vmdk files on the disk.

Next, we will import the virtual machine to the VirtualBox, take a snapshot of it,
and then we should be ready to start experimenting with Puppet.

http://learning-puppet-packt.s3-website-eu-west-1.amazonaws.com
http://learning-puppet-packt.s3-website-eu-west-1.amazonaws.com

Puppet Development in Isolation

[6]

Importing the Puppet Learning VM into
VirtualBox
The extracted virtual machine image file has to be imported to VirtualBox before we
can launch it. Here are the steps to import the image to VirtualBox:

1.	 Start the Oracle VM VirtualBox Manager and select Import Appliance from
the File menu. This will start the Import Virtual Appliance wizard:

2.	 Click on the browser button that says Choose a virtual appliance file to
import when you hover the mouse pointer over the button. Now you can
navigate to the directory where the VirtualBox files were extracted to. On my
computer, I extracted the files to the /home/jussi/learning/vm directory,
so I'll go to this location and select the file called learn_puppet_centos-
6.5.ovf. OVF is a virtual machine template file that is an open standard
XML file:

Chapter 1

[7]

3.	 Once the file is selected, click on Open, then click on Next, and you should
now be in the Appliance settings view:

Puppet Development in Isolation

[8]

Here, we can configure the virtual machine settings, such as increasing the amount
of memory or adding more processor cores.

We don't need to change the default settings, so let's just click on the Import button
to start the import process:

Virtual machine snapshots
While the virtual machine appliance is importing, I'll give you a quick introduction
to virtual machine snapshots and how we can use them.

A virtual machine snapshot stores the state of the virtual machine at a particular
point of time. We can have multiple snapshots of a virtual machine, and we can
easily switch between them.

The example I've just given may give you impression that snapshots are backups.
They are not!

Snapshots only contain the data that has changed since the previous snapshot, and
therefore, an individual snapshot cannot be used to reconstruct the whole virtual
machine. To reconstruct the virtual machine from the snapshot, VirtualBox will need
the virtual disk file (learn_puppet_centos-6.5-disk1.vmdk), all prior snapshots
plus the snapshot you want to restore the state to.

When you create a snapshot of the virtual machine, which we will do shortly, you
will tell VirtualBox to start writing changes to a snapshot file instead of the virtual
machine disk file.

Every time you create a snapshot, VirtualBox creates a new snapshot file and starts
writing changes to it.

Chapter 1

[9]

The snapshots are laid out in the following type of tree structure:

If a virtual machine has only one snapshot and we delete it, then VirtualBox
writes changes in the snapshot file onto the disk. If a virtual machine contains
more than one snapshot and you delete one, then VirtualBox merges two
consecutive snapshots.

Having many snapshots may have an impact on the disk's performance, because
the disk operations have to traverse through many snapshots to find the file to
make the changes. For disk performance reasons it is recommended that you
delete older snapshots when they are no longer needed.

Snapshot of the virtual machine
Before we start the virtual machine, we should take a snapshot of it so that we can
quickly revert to the point of time where we started.

www.allitebooks.com

http://www.allitebooks.org

Puppet Development in Isolation

[10]

To take a snapshot of the virtual machine and name it, follow the given steps:

1.	 First, select the virtual machine, then click on the Snapshots button at the top
right-hand corner of the Oracle VM VirtualBox Manager window:

2.	 In the Snapshots view, click on the Take snapshot button:

Chapter 1

[11]

3.	 Provide a name for the snapshot, I have named it Base image. Then,
click on OK:

Now, we have a snapshot that enables us to go back to the previous state of the VM
as we make changes to the system configuration.

Puppet on command line
Now it is the right time to start the real Puppet work:

1.	 Select the virtual machine from the list, and click on the Start button at the
top of the window.

Puppet Development in Isolation

[12]

2.	 Once the virtual machine has booted up, you should see a login prompt:

3.	 At the login prompt, type in the user name root and hit Enter. Then, type in
password puppet and hit Enter again.

4.	 You have now entered the development environment, where we can start
familiarizing with the Puppet commands and manage our system. You are
free to play around and change the configuration as much as you like.

5.	 If you happen to break the environment, you can easily restore the original
configuration from the snapshot as we did in the earlier paragraph.

Puppet version
The Puppet executable can be run from the command line. Let's begin with
confirming which version of Puppet we are running. We can check the version
by running the following command:

puppet --version

At the time of writing, the command run on the Learning VM, it shows the Version
as 3.7.3 (Puppet Enterprise 3.7.1.).

Chapter 1

[13]

The first Version number 3.7.3 is for the open source version of Puppet that we are
using. The second Version number 3.7.1 is for the Puppet Enterprise version number.

What is the difference between these two versions? The difference between them is
how these products are packaged, distributed, and supported.

The open source Puppet
The open source Puppet is the community-driven version of Puppet that is
developed by the open source community and maintained by Puppet Labs.
It can be used and distributed freely.

The Puppet Enterprise edition
The Puppet Enterprise edition is a distribution that is developed, maintained,
and supported by Puppet Labs, which is the commercial arm behind Puppet.

Companies can purchase the Puppet Enterprise license from Puppet Labs, and in
return, Puppet Labs provides support services and software updates for the Puppet
Enterprise software bundle that enables companies to get up and running with
Puppet quickly.

The Puppet Enterprise edition is free to use in environments that consist of 10 or less
Puppet managed hosts.

The environment that we will be building throughout the course of this book will
consist of four hosts only, which makes Puppet Enterprise a perfect fit for our goal
of learning Puppet.

Puppet resources
So now we know how to extract the version using the Puppet command-line utility.
Let's shift our focus to the resources next.

Resources in Puppet are known as types. Types are operating system resources
such as a file, a user, or a package. There are tens of built-in types in Puppet, and in
addition to these, you can create your own custom types to manage resources.

We will learn more about custom types later in Chapter 5, Load Balancing the Cluster,
but for now we will take a look at the built-in types and see how to use them.

A complete list of available built-in types is available on the Puppet Labs website at
http://docs.puppetlabs.com/references/latest/type.html.

http://docs.puppetlabs.com/references/latest/type.html

Puppet Development in Isolation

[14]

Run the puppet describe --list command in the Learning VM to list all the
built-in types known to Puppet.

The output will contain about 60 resources and their descriptions. To paginate the
output, you can extend the command by adding | less to the end of it.

Here is the command to view the output page by page:

puppet describe --list | less

You should now be able to scroll the output up and down using the arrow keys,
and you can exit the view by pressing Q on the keyboard.

All the Puppet types have attributes that are used to describe the characteristics of
the resources we want Puppet to manage.

For example, the type user has attributes such as a name for the user name and a
password for the user account password.

To list the available attributes for a specific type of resource, you can use the puppet
describe <type> command. For example, to list the available attributes of a type
user, you can run the puppet describe user, or puppet describe user | less
command to paginate the output.

If you scroll down the list of attributes, you can find a password attribute that is
used to set a password for the user account. Another attribute that you can find on
the list is called ensure, which defines the state of the user account. The attribute
can have three values:

•	 present: This ensures that an account is created unless it already exists
•	 absent: This ensures that the account is removed if it exists
•	 role: This is a specific user attribute of the Unix operating system, such as

Oracle Solaris, and therefore it has has no meaning when running Puppet
on Linux like we are doing

Managing resources from the command line
We can manage Puppet resources from the command line using the following
syntax: puppet resource <type> <name> <attribute1>=<value>
<attribute2>=<value>.

Let's create a user called Elisa on the system using Puppet. In the Learning VM
terminal, type in the following command and and hit the Enter key:

puppet resource user Elisa ensure=present

Chapter 1

[15]

When the command is executed successfully, it produces the following output:

The first line of the output displays a notice confirming that the user account Elisa
was created by Puppet. Lines 2-4 show the syntax that we will be using when we
declare resources in the Puppet manifest files. The manifest files will be explained
more in detail later.

Let's take a look at the syntax line by line:

•	 Line 1: Notice: /User[Elisa]/ensure: created
This displays a confirmation of an action that Puppet has created a user
called Elisa.

•	 Line 2: user { 'Elisa':
This declares a resource for a type user, which follows the opening curly
brace ({), that indicates that the user resource name and optional attributes
are to follow. The name 'Elisa': at the end of the line sets the Puppet
resource name, which will become the name of the user account. The Puppet
resource name must contain a colon at the end.

•	 Line 3: ensure => 'present'
This attribute means that a user account must be created unless it
already exists.

•	 Line 4: }

The closing curly brace indicates the end of the resource statement.

The name Elisa on line 2 has two use cases. Firstly, it declares the name of the Puppet
resource. Each Puppet resource must have a unique name, otherwise Puppet reports
an error.

Secondly, the name Elisa is used as the name of the user account that was created.
If the user statement contains a name attribute (alongside the ensure attribute), then
the value of the name attribute would become the name of the user account and the
name Elisa would only be used as the Puppet resource name.

Puppet Development in Isolation

[16]

As the name attribute is omitted, Puppet will use the name for the Puppet resource
name as well as for the user account name.

Declaring the following statement in the Puppet manifest would result in the Jakob
user account being created in the system, as the name attribute would take priority
over the Puppet resource name Elisa:

user { 'Elisa':

 ensure => 'present',

 name => 'Jakob',

}

This produces an output that is similar to the following, although the numeric
information in the output may vary between the systems:

uid=501(Elisa) gid=501(Elisa) groups=501(Elisa)

Next, we can remove the account Elisa from the system by setting the ensure
attribute value to absent.

puppet resource user Elisa ensure=absent

Assuming that the command executes successfully, you should see the
following output:

This output is very similar to how we created the user account Elisa except that
line 1 confirms that the user account Elisa was removed and line 3 has the ensure
attribute value set to absent, which results in the account being removed when
declaring a resource in the Puppet manifest file.

To confirm whether Puppet really removed the account, you can run the command
id Elisa again, which will confirm that the account no longer exists in the system.

Chapter 1

[17]

The command id Elisa should produce the following output:

id: Elisa: No such user

Congratulations! You just did two system configuration changes using Puppet.
It wasn't hard, right?

Puppet dry run
Sometimes, you want to simulate configuration changes without applying the
changes to the system. This can be done by adding the --noop parameter after
the resource keyword in the Puppet command.

To simulate account creation without creating the account, we can extend the
previous user account creation command with the --noop option:

puppet resource user Elisa ensure=present --noop

Line1 in the output tells us that the user account does not exist in the system, and if
you run the following command without the --noop option, Puppet would create
an account:

Notice: /User[Elisa]/ensure: current_value absent, should be present
(noop)

user { 'Elisa':

 ensure => 'absent',

}

The --noop option comes in handy when testing Puppet commands for a syntax.
To demonstrate this, we declare an invalid value removed for the attribute ensure:

puppet resource user Elisa ensure=removed --noop

Puppet will return an error that tells you that we have used an invalid value for the
ensure attribute:

Puppet Development in Isolation

[18]

Use Puppet to examine the current state of
resources
Puppet can also be used to query resources from the system. Information produced
by the query can be helpful when we are uncertain about what syntax we should be
using to create a resource.

Earlier, we created a user account called Elisa. This account was created without
a password, which means that the account cannot be used for interactive logins.
Let's recreate the user account and use the password attribute to set a password
for the account.

As passwords on Linux are encrypted, we must provide them to the password
attribute in the encrypted format.

We know that the user account root on the Learning VM uses the password puppet,
but we yet don't know how the password would look like in the encrypted format.

No problem, as we can query the password with the command and then use the
encrypted password when recreating the user account Elisa.

The following command shows all the attributes for the root user account:

Puppet resource user root

The preceding command produces the following output:

Chapter 1

[19]

Now we can create the user account Elisa with the password attribute, which is the
same as the value of the password attribute for the user root.

The following command will create the user account Elisa that uses the
password puppet:

puppet resource user Elisa ensure=present \

managehome=true \

password='1jrm5tnjw$h8JJ9mCZLmJvIxvDLjw1M/'

I've split the command into three lines with the backslash character at the end of the
first two lines.

The 1jrm5tnjw$h8JJ9mCZLmJvIxvDLjw1M/ string is a hash of
the password puppet. Please note that we have to use single quotes
around the password hash '1jrm5tnjw$h8JJ9mCZLmJvIxvDLj
w1M/' because the string contains characters that the Linux command
line otherwise interprets as a control character.

Now we can test whether we can log on to the system as the user Elisa.

www.allitebooks.com

http://www.allitebooks.org

Puppet Development in Isolation

[20]

Log out from the system using the logout command. Then, log in with the username
Elisa and password puppet. You will see the following welcome screen, which
confirms that the login of Elisa was successful:

Puppet is run as a user root
The root account in Linux is equivalent to an administrator account in the Windows
operating system. This is the user account that is commonly used for system
configuration changes.

The user account Elisa that we created does not have the same amount of privileges
as the root account.

To change the system configuration in the protected areas of the operating system,
we must run Puppet as a root user.

If you are still logged onto the system as user Elisa, you can try creating a user
account and see what happens.

As the user Elisa is not configured to run Puppet, we will do our test using the
Linux adduser command.

Chapter 1

[21]

Let's see what response we get if we try to create a user called Jakob using the
user Elisa:

useradd Jakob

The output of the preceding command shows you that the user Elisa did not have
sufficient permissions to add a new user to the system:

/usr/sbin/useradd: Permission denied

To avoid possible permission issues on Puppet managed systems, Puppet runs
as a user root that provides Puppet full control of the system to add and remove
users, install and uninstall software packages, as well as manage system services.

In the end, Puppet is your new system administrator, which manages the system
according to the instructions you have provided from the command line or in the
form of the Puppet manifest.

Puppet DSL and manifests
I've mentioned Puppet manifests earlier, but I haven't yet explained what manifests
are. Puppet manifests are text files that declare one or more Puppet resources.
Instead of running Puppet resource commands on the command line, you can
declare resources in the manifest file and apply the manifest to the system.

Puppet manifests uses the Puppet Domain Specific Language (DSL) and resource
statements in the manifest file, which are described in a syntax that looks very
similar to a Hash data type in the Ruby language.

We can use our user account Elisa as a simple example of the Puppet
manifest syntax.

First, log out from the user account Elisa by running the logout command.
Then, log on to the system as a root user and remove the user Elisa from the
system with the following command:

puppet resource user Elisa ensure=absent

Puppet Development in Isolation

[22]

Then, inspect the state of the user account Elisa with the following commands:

puppet resource user Elisa

user { 'Elisa':

 ensure => 'absent',

}

In the Ruby language, if we try to declare a hash called User that contains a key
Elisa with the value of the ensure attribute as absent, we will declare it using
the following syntax:

User = { 'Elisa' =>

 { 'ensure' => 'absent' }

}

If you compare the preceding two code blocks, you can see that the Puppet DSL
syntax looks similar to the Ruby language syntax, but it is slightly simpler
and easier to read than the Ruby equivalent.

The output of the preceding Puppet resource command is spread across three lines
only in order to make it easier for us to read. The Puppet parser that reads the
manifest file doesn't care about the line feed characters.

The preceding user resource can be declared on a single line as follows:

user { 'Elisa': ensure => 'absent', }

We now have the Puppet DSL representation of the user resource Elisa.

Managing resources with the puppet
apply command
We can apply this resource to the --execute (or -e) puppet apply command,
which will remove the user Elisa from the system.

As Elisa no longer exists in the system, let's change the ensure attribute value to
'present' so that Puppet can create the user Elisa:

puppet apply --execute "user { 'Elisa': ensure => 'present', }"

Chapter 1

[23]

Puppet will display the following output on the screen:

As you might have noticed, the output of the puppet apply command looks
different from the puppet resource command that we used earlier to create user
Elisa. Let's examine the output line by line:

•	 Line 1: Notice: Compiled catalog for learning.puppetlabs.vm in
environment production in 0.12 seconds

The Puppet report shows that the manifest was compiled successfully in
0.12 seconds. The manifest was compiled for the learning.puppetlabs.vm
Puppet host. The learning.puppetlabs.vm Puppet host is a member of the
Puppet environment called production.

•	 Line 2: Notice: /Stage[main]/Main/User[Elisa]/ensure: created
The Puppet report shows that the user Elisa was created successfully on
the system.

•	 Line 3: Notice: Finished catalog run in 0.22 seconds

The Puppet report shows that the Puppet run was completed successfully
in 0.22 seconds.

The preceding three lines relate to the following different stages of the Puppet run:

1.	 Before Puppet can apply the manifest or a set of manifests, it performs an
operation where it compiles a catalogue. A catalogue is a collection of Puppet
manifests. During the compilation stage, Puppet looks for possible errors in
the manifest files and ensures that the manifests were correctly formatted.

2.	 Once the catalogue is compiled, Puppet moves on to the second stage where
it applies the catalogue to the system.

3.	 The last step of the process is to produce a report of the results of the
Puppet run.

Puppet Development in Isolation

[24]

Creating Puppet manifests
We covered the Puppet DSL syntax that is used in the Puppet manifests. Let's try to
create a manifest and learn how to apply it to the system.

The simplest way to create a manifest is to use the puppet
resource command to create the resource definition and
redirect the output of the command to the manifest file.

The following are the steps to create a manifest:

1.	 Use the puppet resource command to declare a user resource and redirect
the command output to a file using a single greater than character > followed
by the filename:
puppet resource user Jakob > user.pp

This command won't return any message to the screen as you have
redirected the command output to a file called user.pp.

2.	 Before we inspect the contents of the user.pp file, let's add another user
definition to user.pp with the following commands. This time, the output
redirection is done using the double greater than characters >>. The
difference between the single and the double greater than characters is how
the output file is managed. The > character overwrites the file contents if the
file already exists, while the >> characters append to the file:
puppet resource user Markus >> user.pp

3.	 Let's take a look at the content of the user.pp file. To view the content, we
can open the file in the text editor. Linux systems usually come with multiple
text editors, such as Vi, but we'll use another editor called Nano, which is
easier to use than Vi.

4.	 You can open the user.pp file in the Nano text editor by typing the
following command:
nano user.pp

5.	 You will see that the user.pp file contains two user definitions: the first
definition is for the user Jakob and the second definition is for the user Markus.
Currently, both the resources have the ensure attribute value as absent,
which corresponds to the current state of the user accounts on the system.

Chapter 1

[25]

Here is the content of the file in the Nano text editor:

user { 'Jakob':

 ensure => 'absent',

}

user { 'Markus':

 ensure => 'absent',

}

6.	 Using the arrow keys on the keyboard, you can move the cursor around the
text file. Change both the ensure attribute values to present.

7.	 Once the ensure attribute values for both the user resources have been
changed, the content of the file should be as follows:
user { 'Jakob':

 ensure => 'present',

}

user { 'Markus':

 ensure => 'present',

}

8.	 Now press Ctrl + X on the keyboard and save the changes by pressing
Y and then Enter.

Well done! You have just created your first manifest file that manages two
resources. Now it's time to apply the manifest with the following command:
puppet apply user.pp

Puppet Development in Isolation

[26]

The following is the output generated by the preceding command:

You must have probably noticed that this time we ran the puppet apply command
without the -–execute option. The --execute option is only used to provide the
manifest content from the command line. Now that we have created the manifest
file, and if we want to apply it, the --execute option can be omitted. Typically, the
--execute option is used to pass parameters to the Puppet class that is declared in
the manifest. We will discuss the Puppet classes more in detail later on in this book.

Idempotency
Let's run the command again, and you will notice the difference in the command
output compared to the previous Puppet run:

puppet apply user.pp

This time, the output is shorter. The lines that notify us that the users Jakob and
Markus were created are missing in this Puppet run:

Notice: Compiled catalog for learning.puppetlabs.vm in environment
production in 0.14 seconds

Notice: Finished catalog run in 0.27 seconds

This is due to the idempotent nature of Puppet. As the users Jakob and Markus
already exist in the system, Puppet doesn't attempt to recreate these accounts.
Idempotency in Puppet means that you can apply the same manifest as many
times as you like, and only when the state of the resource in the system is different
from the state of the resource declared in the manifest, will Puppet ensure that the
required configuration changes are performed according to the manifest.

To demonstrate how Puppet handles idempotency, we will remove the user Markus
with the following command, which we are familiar with:

puppet resource user Markus ensure=absent

Chapter 1

[27]

Then, apply the manifest again with the puppet apply user.pp command, and you
can see that the user Jakob, which we did not remove earlier, does not appear in the
output but the user Markus is recreated.

Here is the command again:

puppet apply user.pp

The output of the command is as follows:

Notice: Compiled catalog for learning.puppetlabs.vm in environment
production in 0.15 seconds

Notice: /Stage[main]/Main/User[Markus]/ensure: created

Notice: Finished catalog run in 0.35 seconds

Puppet command line versus Puppet
manifests
So far, we have practiced how to manage system resources from the command
line with puppet resource command, and also learned how to manage resources
with the Puppet manifest and puppet apply command. When we start expanding
our environment with new hosts and increase the number of resources that Puppet
manages on these hosts, you will notice that the Puppet command line doesn't scale
very well. The Puppet command line typically manages a single resource, such as user
Elisa or user Jakob. Each of these resources was created with its own command. If I
have 100 user accounts to be managed, then that would result in the same amount of
commands to be run, which would be a very tiring job for anyone to do.

Puppet is a configuration management and automation tool that helps you eliminate
repetitive tasks, such as creating 100 user accounts. Instead of running the puppet
resource command 100 times, it is better if we add all our users once to a single
manifest file, call the file with a puppet apply command, and let the Puppet
do the hard work for us. Puppet manifests are types of recipes for your system
configuration. Once you have described your system configuration in the form
of a manifest, you can easily transfer the recipe onto another host and apply the
configuration with a single command.

Puppet Development in Isolation

[28]

Managing files and directories with a file
resource
The phrase "everything is a file" that is often associated with the Linux operating
system makes it an ideal environment for Puppet to manage. Puppet is very good
at managing files. Puppet's file resource can create files from static source files. You
can define the file content with the content attribute, or you can create files with
a dynamic content using templates. A file resource can also be used to manage
directories and links.

The syntax of a file resource is very similar to the user resource syntax, only the
set of available attributes is different. Here is a simple example of how to create
an empty directory called /root/Documents:

file { '/root/Documents':

 ensure => directory;

}

The first line defines the type of resource we want Puppet to manage, followed
by the name of the directory that Puppet creates.

The ensure attribute on line two says that the file resource must be a directory.
If we omit the ensure attribute, Puppet will create a file instead of a directory.

The closing curly brace } on the third and the last line ends the file resource
statement.

Let's do a practical experiment with the file resource and write a manifest file that
sets a log in greeting message when the user Jakob logs in. In order to do this,
our manifest must fulfill the following two criteria:

•	 The user Jakob must have a home directory to store the login
greeting message

•	 The user Jakob must have a custom .bash_profile file present under
the home directory

To start with, let's remove the user Jakob from the system so that we can easily
recreate the account with a password, and tell Puppet to create a home directory
for the user:

puppet resource user Jakob ensure=absent

Chapter 1

[29]

Now when the user Jakob has been removed, let's generate a user resource for Jakob
and redirect the output to the file called jakobs-login.pp. Again, we use the single
> character to create a new file:

puppet resource user Jakob > jakobs-login.pp

Then, using the >> notation to redirect the output to the jakobs-login.pp file, we
can generate the file resource snippet for the .bash_profile file that will be placed
under the home directory of Jakob with the following command:

puppet resource file /home/Jakob/.bash_profile >> jakobs-login.pp

Now that we have the manifest body ready for editing, we can open the
jakobs-login.pp file in the Nano editor:

nano jakobs-login.pp

On opening the file, you should see the following file content:

user { 'Jakob':

 ensure => 'absent',

}

file { '/home/Jakob/.bash_profile':

 ensure => 'absent',

}

Let's begin by changing the ensure attribute value from absent to present for the
user resource Jakob.

Then, to tell Puppet to create the home directory for the user, we need to use the
managehome attribute and set its value to true. The managehome attribute is specific
to a user resource, and we can use it to tell Puppet to create a home directory for
the user under the /home directory. The home directory is needed to store the
.bash_profile file, which we will take a look at shortly.

Finally, to enable Jakob to log in using the password puppet, we should set the
encrypted password attribute value to 1jrm5tnjw$h8JJ9mCZLmJvIxvDLjw1M/.

This is how the user resource for Jakob should look like after the changes:

user { 'Jakob':

 ensure => 'present',

 managehome => true,

 password => '1jrm5tnjw$h8JJ9mCZLmJvIxvDLjw1M/',

}

www.allitebooks.com

http://www.allitebooks.org

Puppet Development in Isolation

[30]

Before we move on to the file resource, let's save the changes with Ctrl + X and hit
Enter. Then, apply the manifest to the puppet apply command:

puppet apply jakobs-login.pp

If the Puppet run was successful, you should see the following output:

Notice: Compiled catalog for learning.puppetlabs.vm in environment
production in 0.63 seconds

Notice: /Stage[main]/Main/User[Jakob]/ensure: created

Notice: /Stage[main]/Main/File[/home/Jakob/.bash_profile]/ensure:
removed

Notice: Finished catalog run in 0.35 seconds

If we take a look at the third line of the output, we can see that Puppet removed
the /home/Jakob/.bash_profile file although we had not yet created it. This is
because of the managehome attribute that we declared for the user Jakob, which
results in the Linux environment to create the file when the user is created. Because
we haven't yet modified the file resource for /home/Jakob/.bash_profile in the
manifest, the ensure attribute value is absent. This results in Puppet removing
the file.

Don't worry, as we will now tell Puppet to recreate the file with the content that
we specify:

1.	 Open the jakobs-login.pp manifest file using the Nano editor using the
following command:
nano jakobs-login.pp

2.	 Using the arrow keys, move to the file resource that currently has the
following content:
file { '/home/Jakob/.bash_profile':

 ensure => 'absent',

}

3.	 Instead of updating the ensure attribute value from absent to present, we
can remove the attribute altogether and replace it with the content attribute.
To greet the user Jakob with his name when he logs in, we can specify the
content attribute in the following way:
file { '/home/Jakob/.bash_profile':

 content => 'echo Hello $(logname)',

}

Chapter 1

[31]

4.	 When you are done with the changes, you can save the file using Ctrl + X and
press Enter.

5.	 Now let's apply the most recent changes from the manifest;
puppet apply jakobs-login.pp

The output is as follows:

Notice: Compiled catalog for learning.puppetlabs.vm in
environment production in 0.22 seconds

Notice:/Stage[main]/Main/File[/home/Jakob/.bash_profile]/ensur
e: defined content as '{md5}7af0d63debeedf19adbd8bb239f5ab36'

Notice: Finished catalog run in 0.53 seconds

6.	 Now, it is the big moment to test whether our configuration changes work
as expected. Log out with the exit command and then log in as user Jakob
using the password puppet.

If the configuration changes were successful, you should see the bottom of
the login banner, showing the message Hello Jakob.

Puppet configuration
So far, we have discussed how to configure a system using Puppet. But what
about Puppet's own configuration? Can the Puppet configuration be managed
by Puppet itself?

The answer is yes, but if you decide to do so, do it with caution. Test your
Puppet configuration changes thoroughly in isolation, and test it multiple times
before pushing it into a live environment. It only requires a minor error in your
configuration, and your Puppet agents become non-functional.

There are two ways to manage the Puppet configuration. The Puppet configuration
can be managed from the command line by running the puppet config commands.
Or the configuration can be changed by editing the file in /etc/puppetlabs/puppet/
puppet.conf, if you are using the Puppet Enterprise edition as we are doing. In the
open source Puppet, the configuration file path is /etc/puppet/puppet.conf.

Let's view the contents of the file with the utility called less , which enables us to
browse the file with the arrow keys:

less /etc/puppetlabs/puppet/puppet.conf

Puppet Development in Isolation

[32]

The content of the puppet.conf file is similar to the ini configuration files, which
are commonly used with Windows applications. The data structure basically is a key
value pair separated by the = equivalence sign.

There are also sections in the configuration file that are marked with the section
name wrapped inside the block brackets. The sections are as follows:

•	 The [main] section
•	 The [master] section
•	 The [agent] section

The [main] section contains the configuration that is shared by the [master] and
[agent] sections.

The [master] section contains the configuration for the Puppet master, which we
will discuss in detail later in this book.

The [agent] section contains the configuration for the Puppet agent, which we have
already been using when managing resources on the command line.

When you take a look at the second line in the /etc/puppetlabs/puppet/puppet.
conf file, you can see a configuration key called certname with the learning.
puppetlabs.vm value. Using the arrow keys, when scrolling down to the [agent]
section, we find a key called environment with the value production.

Do you recall seeing these values before? You probably do from the output of the
puppet apply command that we ran earlier. Here is the output that I'm referring to:

Notice: Compiled catalog for learning.puppetlabs.vm in environment
production in 0.15 seconds

The Compiled catalog for learning.puppetlabs.vm string and the
environment production are defined in the Puppet configuration file. When running
Puppet in the standalone mode, as we are at this point, the configuration is not that
relevant; but later on in this book, when we link the Puppet Agents with the Puppet
Master, we will benefit from knowing how to change the Puppet configuration.

To change the Puppet Agent configuration, we can use the Nano text editor and edit
the file manually, but as an alternative, we can use the Puppet command-line utility
to change the configuration.

As an exercise, we can change the Puppet Agent's identity with the following
command:

puppet config set certname brandnew

Chapter 1

[33]

While we are at it, let's change the environment as well. As we are developing
Puppet, a suitable environment name for it is development, which we can set
with the following command:

puppet config set environment development

Puppet expects to find an environment-specific directory in the filesystem, so let's
create one with the following command:

mkdir /etc/puppetlabs/puppet/environments/development

Now run the puppet apply user.pp command, and you can see that the
configuration changes have become effective:

Notice: Compiled catalog for brandnew in environment development in
0.13 seconds

Notice: Finished catalog run in 0.27 seconds

Now we can try changing the configuration manually in the Nano editor. Open the
configuration file:

nano /etc/puppetlabs/puppet/puppet.conf

Press Ctrl + W to search for a certname key and replace the brandnew value with the
learning.puppetlabs.vm string .

Then, search for an environment key name, and Nano will take you a couple of lines
down to the end of the [main] configuration section. This line got added when we
changed the configuration with the puppet config set command. Now repeat the
search with Alt + W, and you will find another key called environment in the [agent]
configuration block with the original value production. Why duplicate keys? Well,
by default, the puppet config set command manages the configuration under
the [main] block of the configuration file. The keys specified in this section will take
priority over the configuration in the [master] and [agent] sections.

So, to revert to the environment value production, we can just remove the
environment development from the [main] configuration block.

Once the line has been removed, save the puppet.conf file by pressing Ctrl + X,
confirm the save operation by pressing Y for Yes, and then press Enter.

To confirm that the configuration changes were successfully applied, we can query
specific keys in the configuration file with the puppet config print command:

puppet config print certname environment

Puppet Development in Isolation

[34]

The output of the command should show that the configuration was successfully
changed. Here is a screenshot of the puppet config print certname
environment command before and after the change.

Summary
In this chapter, we thoroughly covered the basics of Puppet, such as how to run
Puppet on the command line, and how to use, generate, and edit manifests. We also
learned how to get the development environment up and running quickly with a
little installation effort using VirtualBox.

In the next chapter, we will be adding a little bit more functionality to VirtualBox,
and then start experimenting with the new type of Puppet resources; mainly, let's
take a look at how to remove resources with Puppet. This will contribute toward
the goal, which is to build a Puppet-managed environment that consists of multiple
virtual machines.

[35]

Managing Packages in
Puppet

This chapter is not just about learning how to manage packages in Puppet, although
the package management is one of the key deliverables of this chapter. Before we
dive into this, we have to revert our machine image to the snapshot revision that
we created in Chapter 1, Puppet Development in Isolation, so that all of the changes we
made in the virtual machine earlier are wiped out.

Once we have reverted to the snapshot, we will take a look at how to configure
shared folders and host-only networking that will be used later in this book.

Moving on, we'll do more "snapshotting", and learn how to create a virtual machine
clone from the snapshot, which will be used for our web server node that we are
going to build in Chapter 3, My First Puppet Module.

Once the virtual machine clone is run, we will purge software packages from the
system to create the slimmed down version of the Puppet Learning VM that has a
smaller memory footprint than the original Puppet Learning VM.

In this chapter, we will be doing a fair amount of VirtualBox-related tasks, but
once the chapter is completed, you will have the development environment fully
configured, and we can focus 100 percent on Puppet. We will cover the following
topics in this chapter:

•	 Introducing the VirtualBox Guest Additions
•	 Configuring shared folders
•	 Configuring the host-only-network interface
•	 Creating the Puppet-agent node
•	 Configuring Puppet environment and the certname
•	 Purging package resources

Managing Packages in Puppet

[36]

Restoring a snapshot
In Chapter 1, Puppet Development in Isolation, we learned how to snapshot the virtual
machine before we started to work on it. To go back to the original state of the virtual
machine, we need to restore the snapshot. In order to restore a snapshot, you should
shut down the virtual machine if it is currently running. This can be done from the
command line on the virtual machine with the poweroff command. Alternatively,
we can shut down the virtual machine using the VirtualBox Manager by navigating
to Machine | Close | Power Off:

Once the virtual machine has shut down, we can restore the snapshot that we created
in Chapter 1, Puppet Development in Isolation:

1.	 Click on the Snapshots button in the top right-hand corner.
2.	 Select the snapshot to restore. In Chapter 1, Puppet Development in Isolation, I

called it Base image.

Chapter 2

[37]

3.	 Click on the Restore Snapshot button.

Introducing VirtualBox Guest Additions
The VirtualBox Guest Additions is a package that unlocks a couple of handy features
in the virtual machine that makes our development environment more usable.
The features enabled by Guest Additions are the shared folders, mouse pointer
integration, paravirtualized videocard, timesync, and shared clipboard. At the
moment, we can only access the virtual machine through the console window that is
provided by the VirtualBox Manager. Writing Puppet manifests using the text editor
running inside the virtual machine is a bit clunky. Also, manifests that we create will
get deleted when we restore the snapshot.

Shared folders
The VirtualBox Guest Additions provides a service called shared folders that enables
us to share folders from the machine that VirtualBox is running on and access them
directly from the virtual machine. This means that we are no longer bound to use
the text editor inside the virtual machine, as we can use better text editors, such as
Notepad++ on Windows or Gedit on Linux. As the files stored in the shared folders
are stored outside the virtual machine on the host computer's hard drive, and not in
the virtual disk file used by the VM, we are guaranteed that the files are preserved
when we revert to the previous snapshot or delete the virtual machine.

Another advantage of shared folders is that folders can be attached to multiple
virtual machines simultaneously. This makes the manifest distribution easy as we
can write the manifest once, and we can then apply the manifest across all the virtual
machines by running the puppet apply command on each VM, pointing each to the
manifest file stored in the Shared Folders directory.

Managing Packages in Puppet

[38]

Host-only networking
In addition to shared folders, VirtualBox provides the so-called host-only networking
feature that enables us to attach virtual network interfaces to the virtual machine. This
feature is handy as we can create a private network inside the VirtualBox environment,
where virtual machines can communicate with each other directly. Virtual machines
that have the so-called host-only network adapter attached to them can operate in
isolation, and they are able to connect to each other using private IP addresses that
are allocated by the DHCP server built into the VirtualBox. When addresses are
allocated by the VirtualBox, there is no dependency to external routers. The host-only
networking feature enables us to spin up the development environment when we are
working offline, without any connectivity to Wi-Fi or the Internet.

Configuring shared folders
The shared folders service enables us to access files that are stored on the host
computer from the virtual machine. To configure shared folders, you need to decide
which directory you want to share and what mount point to use inside the virtual
machine to access the directory. In the following example, I'll share the /home/
jussi/learning directory on the host computer and use the /learning mount
point on the virtual machine.

Select the Puppet Learning VM from the list of virtual machines:

1.	 Click on the Machine menu and select Settings.

Chapter 2

[39]

2.	 Select the Shared Folders setting from the left-hand side pane.
3.	 In the Folders List view, click on the blue icon that has a green plus

sign on it.
4.	 In the Add Share view, we have to configure the following four properties:

°° Folder Path: This specifies the folder to be shared on the host
computer, for example, /home/jussi/learning. You can click
on the arrow sign at the end of the text field to go to the folder
you wish to share.

°° Folder Name: VirtualBox should automatically populate this field
with the name of the folder.

°° The Read-only checkbox should be left unchecked.
°° The Auto-mount checkbox should be checked.

5.	 Click on OK to save the settings.

www.allitebooks.com

http://www.allitebooks.org

Managing Packages in Puppet

[40]

Configuring the host-only network interface
The host-only network interface enables a virtual machine to communicate with
other virtual machines that are connected to the same virtual network. We will make
use of this later in the book when we run multiple virtual machines in parallel and
configure them to communicate with each other.

First, we should confirm that VirtualBox has the host-only network interface that we
can assign to the virtual machine:

1.	 Open the File menu and go to Preferences.
2.	 In Preferences, click on the Network option.
3.	 Go to the Host-only Networks tab.
4.	 If the host-only networks list is empty, we need to add a network. If that

list is not empty, we need not add a network and can skip through the
following steps.

5.	 Create a host-only network by clicking on the icon that has a green plus
sign on it.

6.	 Once a host-only network appears on the list, we should enable the
DHCP server.

7.	 Go to the Host-only Network setting by double-clicking on it.
8.	 The IPv4 address value on the Adapter tab should be set to 192.168.56.1.
9.	 On the DHCP Server tab, click on the Enable Server checkbox, then fill

out the following details:
°° Server Address: 192.168.56.1
°° Server Mask: 255.255.255.0
°° Lower Address Bound: 192.168.56.10
°° Upper Address Bound: 192.168.56.20

Chapter 2

[41]

10.	 Click on OK to close the host-only network configuration, and close the
settings view by clicking on OK.

11.	 Restart the VirtualBox Manager (exit and start the VirtualBox Manager) to
ensure that the DHCP Server is activated.

Next, we should attach the host-only network interface with the virtual machine:

1.	 In the virtual machine settings, select the Network settings from
Machine | Settings.

2.	 Select the Adapter 2 tab, and check the Enable Network Adapter checkbox.
3.	 In the Attached to: field, select Host-only Adapter from the

drop-down menu.
4.	 Ensure that the Name field has the value vboxnet0 (Linux) or

VirtualBox Host-Only Ethernet Adapter (Windows).

Managing Packages in Puppet

[42]

5.	 Click on OK to save the Network settings.

Testing shared folders
Let's take a look at whether the shared folders are available on the Puppet
Learning VM. Start the virtual machine and log on with the username root
and the password puppet.

We can check whether the shared folder configuration was successful by running
the following command:

df

Chapter 2

[43]

If the shared folders are working, you should see a /media/sf_learning mount
point appearing at the bottom of the view, as shown in the following screenshot:

Using the file resource to configure network
interface on the virtual machine
Before the virtual machine can start using the host-only network interface that we
added, we have to create a file that tells the operating system how the new network
interface should be configured.

We will configure the host-only network interface as a device name eth1 on the
virtual machine, set it to use the DHCP network address, and enable it when the
system boots up.

Such a configuration can be done by creating a /etc/sysconfig/network-scripts/
ifcfg-eth1 file with the following content:

DEVICE="eth1"
BOOTPROTO="dhcp"
ONBOOT="yes"

Red Hat-based Linux distributions store the network configuration
files under /etc/sysconfig/network-scripts.

Instead of creating the file manually, we can use Puppet's file resource to create the
file. Here's a file resource that does the configuration for us:

file {
 '/etc/sysconfig/network-scripts/ifcfg-eth1':
 content => 'DEVICE="eth1"
BOOTPROTO="dhcp"
ONBOOT="yes"',
}

Managing Packages in Puppet

[44]

The preceding file resource may initially look a bit messy, but let's take a look at it in
detail and try to make some sense out of it:

•	 Line 1 begins with the file resource.
•	 Line 2 defines the file path of the filename that will be created on the

target machine.
•	 Line 3 begins with the content attribute. As you may guess, the content

attribute defines the content of the file. Unlike the earlier Puppet resource
examples, line 3 does not end with a quote and a colon because the content
attribute value is spread over lines 4 and 5.

•	 Line 4 is part of the content attribute value and it declares the second line of
the file.

•	 Line 5 defines the third line of the file and terminates the content attribute
with a quote and a comma.

•	 Line 6 closes the file resource statement.

Now add the preceding file resource statement to the network.pp manifest file and
apply the manifest:

1.	 Open a new file in the Nano editor with the nano network.pp command.
2.	 Add the file resource that we created into the file.
3.	 Save the file by pressing Ctrl + X, then press Y and Enter to exit the

Nano editor.
4.	 Apply the manifest with the puppet apply network.pp command.

If no errors occurred while the manifest was applied, Puppet reports the
following lines:

Notice: Compiled catalog for learning.puppetlabs.vm in environment
production in 0.12 seconds

Notice: /Stage[main]/Main/File[/etc/sysconfig/network-scripts/ifcfg-
eth1]/ensure: defined content as '{md5}f98d0b3852ba630aeb2b7d37f8c74b26'

Notice: Finished catalog run in 0.27 seconds

Restart networking
To tell the operating system to refresh the network configuration, we can use the
following command:

service network restart

Chapter 2

[45]

If the network was restarted successfully, you should see the following information
printed on the virtual machine console:

Creating the puppet-agent node
We have now arrived at the point where we are going to "branch" the Puppet
Learning VM to create a slimmed down version of the Puppet Learning VM, which
I'll be referring to as the puppet-agent node. The slimmed down version of the
Learning VM is based on the current state of the Puppet Learning VM, but it will
have a smaller memory footprint than the original Puppet Learning VM, as we will
remove some of the packages that are preinstalled on the Puppet Learning VM. The
Puppet Learning VM in its current state will be used as the puppetmaster node that
manages the puppet-agent nodes. In Chapter 6, Scaling Up the Puppet Environment,
we will learn how to connect the puppet-agent nodes with the puppetmaster node,
but for now, we'll focus on how to branch the virtual machine and remove packages
from it using Puppet.

Managing Packages in Puppet

[46]

Take a snapshot of the virtual machine
To avoid having to repeat the fairly challenging task of configuring the host-only
network interface, I'd recommend that you create a new snapshot of it now.

Let's run through the steps one more time, and see how to create a snapshot of
the virtual machine:

1.	 Shut down the virtual machine from command line with the poweroff
command, or alternatively, select the ACPI Shutdown option under the
Machine menu at the top of the virtual machine window.

2.	 Once the virtual machine is powered off, click on the Snapshot button in the
top right-hand corner of the VirtualBox Manager window.

3.	 Click on the Take Snapshot button and provide a name for the snapshot.
The name I will use this time for the snapshot is host-only-networking.

Branch the virtual machine by creating a clone from
the snapshot
In order to create a clone of the virtual machine, it must be powered off. Once the
virtual machine is powered off, you can create a clone by performing these steps:

1.	 Go to the Snapshots view of the virtual machine.
2.	 Select the snapshot that has the shared folders and host-only networking

configured on it. On my machine, I will select the snapshot called
host-only-networking.

3.	 Then, click on the Clone button (Ctrl + Shift + C) to open the Clone Virtual
Machine dialog box.

Chapter 2

[47]

4.	 Provide a name for the clone. For example, you can call it puppet-agent.
5.	 Below the name field, you can see a checkbox for Reinitialize the MAC

address of all network cards. It is important to remember to check this box
to avoid an IP address conflict when running multiple virtual machine clones
in parallel.

Managing Packages in Puppet

[48]

6.	 Click on the Next button to move on to the Clone type view. Here, you can
see two options for the type of the clone: the Full clone (default) and the
Linked clone. We will go with the default Full clone.

7.	 Click on Next to go to the next view, where you are given options to clone
the Current machine state or Everything. We should choose the default
Current machine state option, and then click on the Clone button.

Chapter 2

[49]

8.	 Cloning shouldn't take more than a minute or two, and once cloning is
complete, you should see a new virtual machine appearing in the
VirtualBox Manager view.

Purging package resources
You should power on the new virtual machine so that we can take a look at what
packages can be removed to reduce the memory usage on the virtual machine.

Select the puppet-agent virtual machine from the list, and click on the Start
button. Once the machine has booted up, log in using the user name root and
the password puppet.

Once you have logged in, you can check the current memory consumption by
running the free –m command.

The command output shows the current memory usage of 1570 MB, and the
virtual machine has only 322 MB of free memory space. We should be able to
halve the memory consumption by removing packages that are not needed by
the puppet-agent node.

www.allitebooks.com

http://www.allitebooks.org

Managing Packages in Puppet

[50]

We want to remove all the packages that are used by the puppetmaster and only
retain the puppet and mcollective client packages that are needed to run the
puppet-agent node.

Here is the complete list of packages that we can safely remove from the system:

•	 pe-puppet-dashboard

•	 pe-puppetserver

•	 pe-puppet-license-cli

•	 pe-puppetdb

•	 pe-puppetdb-terminus

•	 pe-memcached

•	 pe-postgresql

•	 pe-activemq

•	 pe-console-services

Earlier, when we removed a file, we did it with an attribute called ensure.
To remove packages, we will also use the ensure attribute but with a value purge.
As all the package resources share the same attribute value, we should consolidate
the removal of all the packages into one package resource using an array of package
names as the Puppet resource name.

In the following example, I've split the package name array on multiple lines to make
it easier to read:

package {
 ['pe-puppet-dashboard',
 'pe-puppetserver',
 'pe-puppet-license-cli',
 'pe-puppetdb',
 'pe-puppetdb-terminus',
 'pe-memcached',
 'pe-postgresql',
 'pe-activemq',
 'pe-console-services']:
 ensure => 'purged';
}

Chapter 2

[51]

The preceding package resource contains the following elements:

•	 Line 1 begins with the package resources.
•	 Lines 2-10 declare the array of packages that we want Puppet to manage.

You will notice that the shutdown is much faster now due to the removal
of the packages.

We have already practiced quite a few times how to take a snapshot of the
virtual machine, so I will just provide you with a quick overview of the steps
without screenshots:

1.	 Ensure that the virtual machine is powered off.
2.	 Click on the Snapshots button in the top right-hand corner of the

VirtualBox Manager window.
3.	 Click on the Take Snapshot button.
4.	 Provide a meaningful name for the snapshot. I call my snapshot

puppet-agent-web.
5.	 Then, click on OK to create the snapshot.

Summary
I want to congratulate you for completing the development environment setup.
I hope that this chapter provided you with some new skills in the areas of
VirtualBox, Linux command line, and most importantly, how to manage packages
using Puppet. From now on, we will shift our focus away from VirtualBox, and start
building our development environment using Puppet.

Now, it is a good time to have a cup of tea and do a recap before diving into
Chapter 3, My First Puppet Module. I'll see you there!

[53]

My First Puppet Module
So far, we have learned how to manage Puppet resources with Puppet manifests.
In Chapter 1, Puppet Development in Isolation, we created a manifest called user.pp
that manages the user accounts for us. In Chapter 2, Managing Packages in Puppet, we
wrote more manifests, such as network.pp, to configure host-only network interface
and uninstall.pp to purge packages that are not needed on puppet-agent node.

Together with all the manifest files that we created so far, there are several of them
already, and we haven't yet started to develop Puppet manifests. As the number of
manifests expand, one may start wondering how files can be distributed and applied
efficiently across multiple systems.

This chapter will introduce you to Puppet modules and show you how to prepare a
simple web server environment with Puppet.

In this chapter, we will focus on the following key areas:

•	 Introduction to puppet modules
•	 Making use of Puppet modules that are available in the public Puppet

Forge repository
•	 Creating your own module (wrapper)
•	 Deploying a web server with a single Puppet command
•	 Introduction to facts and Puppet templates

My First Puppet Module

[54]

Introducing the Puppet module
The Puppet module is a collection of code and data that usually solves a particular
problem, such as the installation and configuration of a web server. A module
is packaged and distributed in the TAR (tape archive) format. When a module
is installed, Puppet extracts the archive file on the disk, and the output of the
installation process is a module directory that contains Puppet manifests (code),
static files (data), and template files (code and data).

Static files are typically some kind of configuration files that we want to distribute
across all the nodes in the cluster. For example, if we want to ensure that all the
nodes in the cluster are using the same DNS server configuration, we can include
the /etc/resolv.conf file in the module and tell Puppet to apply it across all
the nodes. This is just an example of how static files are used in Puppet and not a
recommendation for how to configure DNS servers.

Like static files, template files can also be used to provide configuration. The
difference between a static and template file is that a static file will always have the
same static content when applied across multiple nodes, whereas the template file
can be customized based on the unique characteristics of a node. A good example
of a unique characteristic is an IP address. Each node (or a host) in the network
must have a unique IP address. Using the template file, we can easily customize
the configuration on every node, wherever the template is applied.

It's a good practice to keep the manifest files short and clean to make them easy to
read and quick to debug. When I write manifests, I aim to keep the length of the
manifest file in less than a hundred lines. If the manifest length exceeds 100 lines,
then this means that I may have over-engineered the process a little bit. If I can't
simplify the manifest to reduce the number of lines, then I have to split the manifest
into multiple smaller manifest files and store these files within a Puppet module.

The Puppet module structure
The easiest way to get familiar with a module structure is to create an empty module
with the puppet module generate command. As we are in the process of building
a web server that runs a web application, we should give our module a meaningful
name, such as learning-webapp.

Chapter 3

[55]

The Puppet module name format
Before we create our first module, let's take a quick look at the Puppet
module naming convention. The Puppet module name is typically in the
format of <author>-<modulename>. A module name must contain one hyphen
character (no more, no less) that separates the <author> and the <modulename>
names. In the case of our learning-webapp module that we will soon create, the
author is called learning and the module name is webapp, thus the module name
learning-webapp.

As we create more modules during the course of this book, we will always use the
same author name so that each module that we create gets tagged as being written
by the same author.

Generating a Puppet module
Let's take a look at the following steps to create the learning-webapp
Puppet module:

1.	 Start the puppet-agent virtual machine.
2.	 Using the cd command, navigate to the directory that is shared via the

shared folder.
3.	 On my virtual machine, my shared folder appears as /media/sf_learning,

and I can move to the directory by running the following command:
cd /media/sf_learning

4.	 Then, I'll create an empty puppet module with the command puppet module
generate learning-webapp --skip-interview and the command returns
a list of files and directories that the module contains:
puppet module generate learning-webapp --skip-interview

Notice: Generating module at /media/sf_learning/learning-
webapp

Notice: Populating templates...

Finished; module generated in learning-webapp.

learning-webapp/metadata.json

learning-webapp/Rakefile

learning-webapp/manifests

learning-webapp/manifests/init.pp

learning-webapp/spec

My First Puppet Module

[56]

learning-webapp/spec/spec_helper.rb

learning-webapp/spec/classes

learning-webapp/spec/classes/init_spec.rb

learning-webapp/Gemfile

learning-webapp/tests

learning-webapp/tests/init.pp

learning-webapp/README.md

5.	 To get a better view of how the files in the directories are organized in
the learning-webapp module, you can run the tree learning-webapp
command, and this command will produce the following tree structure
of the files:

Here, we have a very simple Puppet module structure. Let's take a look at the files
and directories inside the module in more detail:

•	 Gemfile: A file used for describing the Ruby package dependencies that are
used for unit testing. This book does not cover unit testing.
For more information on Gemfile, visit http://bundler.io/v1.3/man/
gemfile.5.html.

•	 manifests: A directory for all the Puppet manifest files in the module.
•	 manifests/init.pp: A default manifest file that declares the main Puppet

class called webapp.

http://bundler.io/v1.3/man/gemfile.5.html
http://bundler.io/v1.3/man/gemfile.5.html

Chapter 3

[57]

•	 metadata.json: A file that contains the module metadata, such as the name,
version, and module dependencies.

•	 README.md: A file that contains information about the usage of the module.
•	 Spec: An optional directory for automated tests.
•	 Tests: A directory that contains examples that show how to call classes that

are stored in the manifests directory.
•	 tests/init.pp: A file containing an example how to call the main class

webapp in file manifests/init.pp.

A Puppet class
A Puppet class is a container for Puppet resources. A class typically includes
references to multiple different types of resources and can also reference other
Puppet classes.

The syntax for declaring a Puppet class is not that different from declaring
Puppet resources. A class definition begins with the keyword class, followed
by the name of the class (unquoted) and an opening curly brace ({). A class
definition ends with a closing curly brace (}).

Here is a generic syntax of the Puppet class:

class classname {
}

Let's take a look at the manifests/init.pp file that you just created with the
puppet module generate command. Inside the file, you will find an empty Puppet
class called webapp. You can view the contents of the manifests/init.pp file using
the following command:

cat /media/sf_learning/learning-webapp/manifests/init.pp

The init.pp file mostly contains the comment lines, which are prefixed with the #
sign, and these lines can be ignored. At the end of the file, you can find the following
declaration for the webapp class:

class webapp {
}

The webapp class is a Puppet class that does nothing as it has no resources declared
inside it.

My First Puppet Module

[58]

Resources inside the Puppet class
Let's add a notify resource to the webapp class in the manifests/init.pp file
before we go ahead and apply the class. The notify resource does not manage any
operating system resources, such as files or users, but instead, it allows Puppet to
report a message when a resource is processed.

As the webapp module was created inside shared folders, you no longer have
to use the Nano editor inside the virtual machine to edit manifests. Instead,
you can use a graphical text editor, such as a Notepad on Windows or Gedit
on the Linux host. This should make the process of editing manifests a bit easier
and more user friendly.

The directory that I shared on the host computer is /home/jussi/learning. When
I take a look inside this directory, I can find a subdirectory called learning-webapp,
which is the Puppet module directory that we created a moment ago. Inside this,
there is a directory called manifests, which contains the init.pp file.

Open the init.pp file in the text editor on the host computer and scroll down the file
until you find the webapp class code block that looks like the following:

class webapp {
}

If you prefer to carry on using the Nano editor to edit manifest files
(I salute you!), you can open the init.pp file inside the virtual
machine with the nano /media/sf_learning/learning-
webapp/manifests/init.pp command.

The notify resource that we are adding must be added inside the curly braces that
begins and ends the class statement; otherwise, the resource will not be processed
when we apply the class.

Now we can add a simple notify resource that makes the webapp class look like the
following when completed:

class webapp {
 notify { 'Applying class webapp':
 }
}

Chapter 3

[59]

Let's take a look at the preceding lines one by one:

•	 Line 1 begins with the webapp class, followed by the opening curly brace.
•	 Line 2 declares a notify resource and a new opening curly brace,

followed by the resource name. The name of the notify resource will
become the message that Puppet prints on the screen when the resource
from a class is processed.

•	 Line 3 closes the notify resource statement.
•	 Line 4 indicates that the webapp class finishes here.

Once you have added the notify resource to the webapp class, save the init.pp file.

Rename the module directory
Before we can apply our webapp class, we must rename our module directory. It is
unclear to me as to why the puppet module generate command creates a directory
name that contains a hyphen character (as in learning-webapp). The hyphen
character is not allowed to be present in the Puppet module directory name. For this
reason, we must rename the learning-webapp directory before we can apply the
webapp class inside it.

As the learning-webapp module directory lives in the shared folders, you can either
use your preferred file manager program to rename the directory, or you can run the
following two commands inside the Puppet Learning VM to change the directory
name from learning-webapp to webapp:

cd /media/sf_learning

mv learning-webapp webapp

Your module directory name should now be webapp, and we can move on to apply
the webapp class inside the module and see what happens.

Applying a Puppet class
You can try running the puppet apply webapp/manifests/init.pp command but
don't be disappointed when nothing happens. Why is that?

The reason is because there is nothing inside the init.pp file that references the
webapp class. If you are familiar with object-oriented programming, you may know
that a class must be instantiated in order to get services from it. In this case, Puppet
behaves in a similar way to object-oriented programming languages, as you must
make a reference to the class in order to tell Puppet to process the class.

My First Puppet Module

[60]

Puppet has an include keyword that is used to reference a class. The include
keyword in Puppet is only available for class resources, and it cannot be used in
conjunction with any other type of Puppet resources.

To apply the webapp class, we can make use of the init.pp file under the tests
directory that was created when the module was generated. If you take a look inside
the tests/init.pp file, you will find a line include webapp. The tests/init.pp
file is the one that we should use to apply the webapp class.

Here are the steps on how to apply the webapp class inside the Puppet Learning VM:

1.	 Go to the parent directory of the webapp module:
cd /media/sf_learning

2.	 Apply the webapp class that is included in the tests/init.pp file:
puppet apply --modulepath=./ webapp/tests/init.pp

3.	 When the class is applied successfully, you should see the notify resource
that was added to the webapp class that appears on lines 2 and 3 in the
following Puppet report:

Notice: Compiled catalog for web.development.vm in environment
production in 0.05 seconds

Notice: Applying class webapp

Notice: /Stage[main]/Webapp/Notify[Applying class webapp]/message:
defined 'message' as 'Applying class webapp'

Notice: Finished catalog run in 0.81 seconds

Let's take a step back and look again at the command that we used to apply to the
webapp class:

puppet apply --modulepath=./ webapp/tests/init.pp

The command can be broken down into three elements:

•	 puppet apply: The puppet apply command is used when applying a
manifest from the command line.

•	 modulepath=./: This option is used to tell Puppet what filesystem path
to use to look for the webapp module. The ./ (dot forward slash) notation
means that we want our current /media/sf_learning working directory to
be used as the modulepath value.

•	 webapp/tests/init.pp: This is the file that the puppet apply command
should read.

Chapter 3

[61]

Installing a module from Puppet Forge
Puppet Forge is a public Puppet module repository (https://forge.puppetlabs.
com) for modules that are created by the community around Puppet. Making use
of the modules in Puppet Forge is a great way to build a software stack quickly,
without having to write all the manifests yourself from scratch.

One of the key deliverables of this chapter is to build a fully functioning web server,
and we can do this very easily by building the web server from modules that are
available in Puppet Forge.

The web server that we are going to install is a highly popular Apache HTTP
Server (http://httpd.apache.org/), and there is a module in Puppet Forge called
puppetlabs-apache that we can install. The Puppetlabs-apache module provides
all the necessary Puppet resources for the Apache HTTP Server installation.

Note that the puppet module installation requires an Internet connection. To test
whether the Puppet Learning VM can connect to the Internet, run the following
command on the command line:

host www.google.com

On successful completion, the command will return the following output:

www.google.com has address 216.58.211.164

www.google.com has IPv6 address 2a00:1450:400b:801::2004

Note that the reported IP address may vary. As long as the host
command returns www.google.com has address …, the
Internet connection works.

Now that the Internet connection has been tested, you can now proceed with
the module installation.

Before we install the puppetlabs-apache module, let's do a quick search to confirm
that the module is available in Puppet Forge. The following command will search for
the puppetlabs-apache module:

puppet module search puppetlabs-apache

https://forge.puppetlabs.com
https://forge.puppetlabs.com
http://httpd.apache.org/

My First Puppet Module

[62]

When the search is successful, it returns the following results:

Then, we can install the module. Follow these steps to install the
puppetlabs-apache module:

1.	 In the Puppet Learning VM, go to the shared folders /media/sf_learning
directory by running the cd /media/sf_learning command.

2.	 Then, run the following command:
puppet module install --modulepath=./ puppetlabs-apache

The --modulepath=./ option specifies that the module should be installed in
the current /media/sf_learning working directory

3.	 The installation will take a couple of minutes to complete, and once it is
complete, you will see the following lines appear on the screen:

Notice: Preparing to install into /media/sf_learning ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/media/sf_learning

└─┬ puppetlabs-apache (v1.2.0)

 ├── puppetlabs-concat (v1.1.2)

 └── puppetlabs-stdlib (v4.8.0)

Let's take a look at the output line by line to fully understand what happened during
the installation process:

•	 Line 1 tells us that the module is going to be installed in the
/media/sf_learning directory, which is our current working directory.
This directory was specified with the --modulepath=./ option in the puppet
module install command.

Chapter 3

[63]

•	 Line 2 says that the module is going to be installed from
https://forgeapi.puppetlabs.com/, which is the address for
Puppet Forge.

•	 Line 3 is fairly self-explanatory and indicates that the installation process
is running.

•	 Lines 4 and 5 tell us that the puppetlabs-apache module was installed in
the current /media/sf_learning working directory.

•	 Line 6 indicates that as part of the puppetlabs-apache module installation,
a puppetlabs-concat dependency module was also installed.

•	 Line 7 lists another dependency module called puppetlabs-stdlib that got
installed in the process.

Now you can run the tree -L 1 command to see what new directories got created
in /media/sf_learning as a result of the puppet module install command:

tree -L 1

├── apache

├── concat

├── stdlib

└── webapp

4 directories, 0 files

The argument -L 1 in the tree command specifies that it should
only traverse one level of directory hierarchy.

Installing Apache HTTP Server
Now that the puppetlabs-apache module is installed in the filesystem, we can
proceed with the Apache HTTP Server installation.

Earlier, we talked about how a Puppet class can be referenced with the
include keyword. Let's see how this works in practice by adding the include
apache statement to our webapp class, and then applying the webapp class from
the command line.

Open the webapp/manifests/init.pp file in your preferred text editor, and add
the include apache statement inside the webapp class.

https://forgeapi.puppetlabs.com/

My First Puppet Module

[64]

I like to place the include statements at the beginning of the class before any
resource statement. In my text editor, the webapp class looks like the following
after the include statement has been added to it:

Once you have saved the webapp/manifests/init.pp file, you can apply the
webapp class with the following command:

puppet apply --modulepath=./ webapp/tests/init.pp

This time, the command output is much longer compared to what it was when
we applied the webapp class for the first time. In fact, the output is too long to be
included in full, so I'm only going to show you the last two lines of the Puppet
report, which shows you the step where the state of the Service[httpd] resource
has changed from stopped to running:

Notice: /Stage[main]/Apache::Service/Service[httpd]/ensure: ensure
changed 'stopped' to 'running'

Notice: Finished catalog run in 65.20 seconds

Testing the Apache HTTP Server
Assuming that the installation was successful, you can now test whether the
HTTP interface on the Puppet Learning VM is accessible in a web browser on
the host computer.

You must start by discovering what IP address the Puppet Learning VM uses for
the host-only network interface called eth1. The discovery is the easiest to do with
the facter utility that is installed as part of Puppet. We will take a look at the facts in
detail shortly, but for now, we can just query a key called ipaddress_eth1, and this
will return the IP address of the network interface, eth1.

Chapter 3

[65]

Here is the command and output when I run it on my Puppet Learning VM:

facter ipaddress_eth1

192.168.56.10

Facter shows that the host-only networking interface eth1 uses an IP
address 192.168.56.10. Based on this information, I can type in the URL
http://192.168.56.10 in the web browser on the host computer, and
the following web page will load up:

Customizing a web server with facts and templates
Installing the Apache HTTP Server was as simple as adding a line include apache
to the webapp class. The apache class provided by the puppetlabs-apache module
did the basic server installation for us and that's it.

To make the web server look like a real web application, we should add more
functionalities to it. We will start by adding a simple landing page, which will
replace the default index page, that the web server is provided with when we
accessed the address http://192.168.56.10/.

The source code of the landing page will live inside a Puppet template, and the
template will be defined as a file resource inside the webapp class.

My First Puppet Module

[66]

Puppet templates
Puppet templates (https://docs.puppetlabs.com/guides/templating.html)
are files that produce dynamic content for files on the target machine. Templates are
written in the ERB Templating Language, which is a mixture of static text, variable
references, and functions. The ERB language syntax can get complex especially when
using functions, but I like simple things, so we will begin by writing a template that
only contains static text, and learn how to create a file resource that populates the
template. Later, we will modify the template and learn how to use variables to make
the file content dynamic.

Puppet templates live inside the templates directory within the Puppet module.
Unfortunately, the Puppet module generate command does not create the templates
directory, so we have to create this directory by hand.

Here are the steps on how to create the templates directory inside the webapp
module from the command line:

1.	 Go to root of the webapp module:
cd /media/sf_learning/webapp

2.	 Create the templates directory using the mkdir command:

mkdir templates

As an alternative to the command line, you can create the
templates directory using the file manager program on
the host computer.

After the templates directory has been created, you will see the following directory
structure inside the webapp module:

tree -L 1

├── Gemfile

├── manifests

├── metadata.json

├── Rakefile

├── README.md

├── spec

├── templates

└── tests

4 directories, 4 files

https://docs.puppetlabs.com/guides/templating.html

Chapter 3

[67]

Creating a template file
You can create the template file in the text editor on the host computer, or
alternatively, use the Nano editor on the Puppet Learning VM to create the file.
The template file that I'm creating will initially have static content, and I'll save
it as index.html.erb under the directory templates.

Here is a simple HTML document that makes the content for the index.html.erb
file:

<html>
 <body>
 <h1>Welcome to Puppet Learning VM</h1>
 <p>The contents of this file was generated by Puppet</p>
 </body>
</html>

Once you have added the content to the file, save it in the templates directory
with the name, index.html.erb. Using the .erb file extension is not required,
but it is a good way to differentiate the template files from the static files.

Creating a file resource for the template file
The template file has been created, and we have to now instruct Puppet where to
find the template and where to populate the file on the target machine.

Open the manifests/init.pp file in the text editor on the host computer, and add
the following file resource statement to the webapp class:

file { '/var/www/html/index.html':
 content => template('webapp/index.html.erb'),
 owner => 'apache',
 require => User['apache'];
}

As we have introduced a couple of new attributes for the file resource, I think it is
worth taking a look at the preceding resource declaration in detail:

•	 Line 1 begins with a new file resource. The name of the resource defines
the path and the name of the file that Puppet will create from the template.

•	 Line 2 defines a content attribute, and the attribute value begins with a
function called template. The function takes an argument that defines the
location of the template file in the webapp module.

My First Puppet Module

[68]

The syntax of the template file location may look a bit strange, as it doesn't
specify the directory called template, where the template file lives. The
syntax that Puppet uses for referencing templates is in the format of
<modulename>/<template>.

•	 Line 3 defines an owner attribute that is used to specify a user account
that Puppet should make as the owner of the file on the target machine.
The apache attribute value results in the file owner to become an apache
user, which is the user account that runs the Apache HTTP Server process.

•	 Line 4 introduces a require attribute, which is used to set the order for
Puppet to process resources. The User['apache'] value means that Puppet
must process the apache user resource (declared in the puppetlabs-apache
module) prior to processing the file resource.
This attribute ensures that the apache user is created prior to setting the file
owner as the apache user.

•	 Line 5 closes the file resource statement.

The webapp class should have the following content once a new file resource has
been added to it:

Apply the Puppet class and visit the new landing page.

When the file resource is added to the webapp class, you can reapply the class with
the following two commands:

cd /media/sf_learning

puppet apply --modulepath=./ webapp/tests/init.pp

Chapter 3

[69]

After a successful Puppet run, you will see the following lines on the screen:

puppet apply --modulepath./ webapp/tests/init.pp

Notice: Compiled catalog for web.development.vm in environment
production in 5.97 seconds

Warning: The package type's allow_virtual parameter will be changing its
default value from false to true in a future release. If you do not want
to allow virtual packages, please explicitly set allow_virtual to false.

(at /opt/puppet/lib/ruby/site_ruby/1.9.1/puppet/type/package.rb:430:in
'block (3 levels) in <module:Puppet>')

Notice: Applying class webapp

Notice: /Stage[main]/Webapp/Notify[Applying class webapp]/message:
defined 'message' as 'Applying class webapp'

Notice: /Stage[main]/Webapp/File[/var/www/html/index.html]/ensure:
defined content as '{md5}751763924b26dc9a7f3e4c81bc4bf158'

Notice: Finished catalog run in 9.53 seconds

The warning message in the Puppet report output can be safely ignored.

If you open the web browser and type http://192.168.56.10/ in the address bar,
you should see your newly-designed landing page loading up in the browser:

Facts by the facter
Facter is an inventory application that comes bundled with Puppet, and it provides
an interface with a range of data about your system. Earlier in the chapter, we used
the facter command to query the IP address of an eth1 network interface. This is
just one of the many available system properties that are available via Facter.

My First Puppet Module

[70]

In addition to built-in facter queries, you can also create your own facts and bundle
them with the module or make Facter read values from particular files in the
filesystem. We will take a look at the custom facts later in this book, but for now,
we'll focus on how to make use of the built-in facts.

Facter integrates nicely with Puppet and Puppet templates. Next, we will practice
how to make use of the facter to turn the currently static landing page content into
a more dynamic web page and expose some of the system information on the
landing page.

Facter on the command line
Let's take a look at what system information is available out of the box with
Facter by running the following command:

facter

This command will show you all the available built-in facts. If the list of facts do not
fit into the window, you may view the facts page by page by extending the facter
command in the following way, and then use the arrow keys to scroll the command
output up and and down:

facter | less

To query a specific fact, such as the name of the operating system, you simply need
to provide the name of the fact as an argument for the facter command:

facter operatingsystem

On the Puppet Learning VM, the preceding command will produce the
following output:

CentOS

Accessing facts from the Puppet template
Accessing facts from the Puppet template is done by a reference to the variable
name that matches the name of the fact. For example, to reference the fact operating
system, we can do it with the following statement in the Puppet template:

<%= @operatingsystem %>

Chapter 3

[71]

Since Puppet Version 3.x, local variable references must be prefixed
with the @ sign. Although facts are not technically local variables, we
can reference them as local variables with the @ prefix. An alternative
and recommended way to reference nonlocal variables in Puppet 3.x is
to use the <%= scope['::operatingsystem'] %> template syntax.
I personally prefer the @ notation as it is shorter and it works just fine.

The name of the fact that we want to reference must be wrapped inside an expression
that begins with the opening marker <%= and ends with the closing marker %>.
When the ERB template parser reads the template and detects a character sequence
<%, followed by %>, it treats its contents as a block of executable Ruby code. Any
characters outside the <% and %> tags are treated as plain text.

A tag with the equals sign such as <%= means that the ERB template parser must
substitute the expression with the result of the command output.

For example, in order to allow the Puppet template to produce a string My
operating system is CentOS, we can use the following ERB syntax in the
template file:

My operating system is <%= @operatingsystem %>

Let's add the preceding statement to the existing template, and see what happens
when Puppet applies the template.

Open the index.html.erb file under webapp/templates/ in the text editor, and add
the statement to it. In the following example, I've wrapped the statement inside the
HTML <p> and </p> tags to allow the browser to display the text with a font that is
consistent with the rest of the page:

<html>
 <body>
 <h1>Welcome to Puppet Learning VM</h1>
 <p>The contents of this file was generated by Puppet</p>
 <p>My operating system is <%= @operatingsystem %></p>
 </body>
</html>

My First Puppet Module

[72]

Once you have saved the file, you can apply the changes with the following
commands:

cd /media/sf_learning/

puppet apply --modulepath=./ webapp/tests/init.pp

Once Puppet has applied the new version of the template, you should refresh the
browser window at http://192.168.56.10/ by pressing F5 on the keyboard. If
the changes were applied successfully, you should now have the page with the
following content in front of you:

Accessing facts from Puppet manifests
Facts are accessible in the Puppet manifest file through a reference to the
fact name prefixed with the $:: (dollar and double colon) character sequence.
For example, a reference to the fact operatingsystem can be done with the
$::operatingsystem notation.

Let's create a local Puppet variable and store some facter values in it. We can then
reference the local variable in the Puppet template, and use a simple for loop inside
the template to populate the Facter values on the landing page.

We can choose any name for the variable, and as we are going to store the
facter values in the variable, I'll call it $fact_list. A local variable in Puppet is
declared by adding a dollar character as a prefix for the variable name, for example,
$fact_list. In order to iterate through values in the variable, the variable type has
to be an array, which is created with the following syntax:

$fact_list = []

Chapter 3

[73]

The preceding example creates an empty array. Let's add some content to the array
with double-quoted strings separated by comma characters:

$fact_list = ["IP address $::ipaddress_eth1", "Uptime
$::uptime"]

The $fact_list array now contains two elements. The first element in the
array begins with a string IP address, followed by a reference to the fact called
ipaddress_eth1. The second array element contains an Uptime string and a
reference to the fact uptime.

Before we move on to editing the template file, you should add the $fact_list
array to the webapp class in the manifests/init.pp file. Once the array is added
to the webapp class, it should have the following content:

A simple for loop in the Puppet template
We now have a $fact_list array with two elements but nothing yet references
the variable. Next, we are going to modify the templates/index.html.erb file,
and learn how to reference the local variable from the template and iterate through
elements that are stored in the array.

A local variable reference in a template is done in exactly the same manner as
referencing facts, by adding the @ prefix to the variable name. The iteration over the
array can be done with the method each, which is a method provided by an array
data type in the Ruby programming language.

My First Puppet Module

[74]

The referencing and iteration can be done with the following code block:

<% @fact_list.each do | fact | %>
<p> <%= fact %> </p>
<% end %>

I'll explain what the preceding three lines do:

•	 Line 1 contains a reference to the variable facts, which we defined in the
init.pp manifest file. Variable facts call the Ruby array method each that
results in iteration over the array. Each element in the array is referenced
with the local variable called fact for which you can find a reference
on line 2.

•	 Line 2 begins with an HTML <p> tag, followed by a reference to the fact
local variable that was instantiated on line 1. The line ends with closing the
HTML </p> tag.

•	 Line 3 has the end statement that terminates the iteration created by the
each method.

Now it's time to try this out in action. Once you have added the preceding code block
to the templates/index.html.erb directory, the file should have the following
content, where the latest code addition is highlighted in red:

After you have saved the template file, apply the template with the
following commands:

cd /media/sf_learning/

puppet apply --modulepath=./ webapp/tests/init.pp

Chapter 3

[75]

Once Puppet has applied the new template, you will see the IP address and the
Uptime information displayed on the landing page when you reload the page.

Here's a screenshot showing you the landing page content after the changes were
applied successfully:

If you wait for a minute and try rerunning the puppet apply command and
reload the landing page, you should see that the Uptime value gets updated at
every Puppet run.

Testing repeatable deployment
One great thing about Puppet is that it makes the deployment process repeatable
across multiple machines. Once you have described the deployment process in the
form of Puppet manifests, you can quickly deploy a cluster of machines that share
the common configuration. For example, we can easily build a cluster of web servers
that are deployed by the webapp module. Let's try this in action and create two web
servers that incorporate the webapp module.

The high-level plan is as follows:

1.	 Shut down the currently running puppet-agent virtual machine.
2.	 Revert the machine state to the previous snapshot.
3.	 Reduce the virtual machine memory allocation.
4.	 Create a linked virtual machine clone from the snapshot.
5.	 Power on both the virtual machines.
6.	 Apply the webapp class to the virtual machines.

My First Puppet Module

[76]

Shut down the virtual machine
We have already shut down the virtual machine a few times, but as a reminder,
you can power off the machine from the command line by running the following
command:

poweroff

Alternatively, you can shut down the virtual machine by choosing the ACPI
Shutdown option under the Machine menu from the virtual machine console.

Revert the machine state to the previous snapshot
Restoring a snapshot only reverts the data that is stored on the virtual disk of the
virtual machine. Puppet modules that are stored in the shared folders will remain
available after the snapshot has been restored.

You can restore the snapshot by performing these steps:

1.	 In the VirtualBox Manager window, select the puppet-agent virtual machine.
2.	 Click on the Snapshots button in the top right-hand corner of the window.
3.	 Select the snapshot called puppet-agent-web that was created earlier.
4.	 Click on the Restore snapshot button.
5.	 Uncheck the Create a snapshot of the current machine state option.
6.	 Click on the Restore button.

Reduce memory allocation for the virtual machine
Reducing the memory allocation for the virtual machine is optional. If the host
computer has more than 4 GB of free memory, you may skip this step, but I'd
recommend that you reduce the allocation because the virtual machine runs just as
well with less memory; hence, we removed Puppet Enterprise packages in Chapter 2,
Managing Packages in Puppet.

The memory allocation can be changed in the following way:

1.	 Select the puppet-agent virtual machine from the list in the VirtualBox
Manager view.

2.	 Click on Settings.
3.	 Select the System option from the left-hand side pane.

Chapter 3

[77]

4.	 Reduce the Base Memory down to 512 MB, and then click on OK:

Create a linked virtual machine clone from the
snapshot
There are two types of virtual machine clones that can be created in VirtualBox.
Earlier, we created the so-called Full clone, but now we will try the other method
called a Linked clone, which is a faster way to clone virtual machines.

Here are the steps on how to create a Linked clone virtual machine:

1.	 In the VirtualBox Manager window, select the puppet-agent virtual machine.
2.	 Click on the Snapshots button in the top right-hand corner of the window.
3.	 Select the snapshot called puppet-agent-web.
4.	 Click on the Clone button above the snapshot list view.
5.	 Provide a name for the new virtual machine. I'll call it

puppet-agent-web-clone.

6.	 It is important to remember to check the Reinitialize the MAC address
of all network cards option.

7.	 Click on Next and choose the Linked clone option in the Clone type view.
8.	 Click on the Clone button to complete the cloning process.

You may notice that the creation of a Linked clone happens much quicker than
creating the Full clone.

My First Puppet Module

[78]

Power on both the virtual machines and apply the
webapp class
You should now see three virtual machines in the list of VMs in the VirtualBox
Manager view. These machines are called:

•	 learn_puppet_centos-6.5
•	 puppet-agent
•	 puppet-agent-web-clone

Power on the puppet-agent and the puppet-agent-web-clone virtual machines by
selecting the machine and then clicking on the Start button.

Once both the machines have booted up, you should find the IP address information
for each host displayed on the log on the screen under the section called My IP
information. Make a note of the IP address from the IP address range 192.168.56.x
for both the hosts. You will need this information in a little while after you have
applied the webapp class to both the hosts.

The following screenshot shows that the virtual machines that I powered on use IP
addresses 192.168.56.11 and 192.168.56.12:

Chapter 3

[79]

Now log on to both the virtual machines using these login details:

•	 Username: root
•	 Password: puppet

Then, apply the webapp class by running the following two commands on both
the machines:

cd /media/sf_learning

puppet apply --modulepath=./ webapp/tests/init.pp

Once the webapp class has been applied to both hosts, you can check whether
the landing page is available on both machines by opening the web browser on the
host computer and accessing http://<ipaddress>, where the <ipaddress> should
correspond to the IP address of your virtual machines.

The following screenshot shows the landing page from both the web servers,
following the successful deployment:

My First Puppet Module

[80]

Summary
So we have now come to the end of this chapter. I hope you found the content
useful and not too challenging. One of the key deliverables of this chapter was to
experiment with Puppet modules and learn how to create your own module as
well as make use of modules that other people have written. We also took a look
at Puppet templates and facts, which are fundamental building blocks of Puppet
modules. There are surely areas that you may feel I didn't cover in enough detail,
but try not to worry about it at this stage, as we will be revisiting modules,
templates, and facts throughout the course of this book.

[81]

Monitoring Your Web Server
For applications to be considered production-ready, they should include monitoring
that actively collects performance metrics and raises alerts when things go wrong.

Not so long ago, applications were deployed on a shared, beefy hardware that
was capable of running multiple applications and workloads in parallel. Software
deployments were done manually by the operations guy according to instructions
written by the developer. If the instructions were properly written, they also
included a step to set up monitoring for the application. The entire process was
carried out manually, which was fine when deployments only happened on a
weekly, monthly, or quarterly basis.

But deployments started to be more frequent when virtualization technologies
gained popularity, and it became easier to deploy each application on its own virtual
machine to make it more resilient against issues that were common with applications
deployed on the shared hardware.

The self-service infrastructure model introduced by cloud providers such as Amazon
changed the game even more. Nowadays, it isn't just the operations people who
carry out deployments, developers also deploy software in the cloud themselves. The
availability of pay-as-you-go charging options, as well as the easy to use self-service
infrastructure models, encourages us to launch instances of virtual machines on
demand and tear them down when instances are no longer needed.

Instead of deploying software on a weekly or monthly basis like we used to, today,
deployments are done on daily basis, or even more often. As deployments are
becoming more frequent, it is not viable to do things manually any more, and that's
why we use modern tools such as Puppet to automate deployments. The goal should
be to automate everything, including the monitoring.

In this chapter, we'll look at how Puppet can help you to make monitoring part of the
deployment process.

Monitoring Your Web Server

[82]

The chapter will cover the following topics:

•	 Monitoring the architecture
•	 Creating a Nagios module that provides client and server classes
•	 Deploying a Nagios server on the monitoring server host
•	 Deploying a Nagios client on the web server host
•	 Managing Nagios resources with Puppet's built-in types
•	 Creating checks for the the web server host
•	 Creating a custom type to easily create Nagios checks

Monitoring the architecture
The monitoring aspect will be built on an open source project called Nagios, which is a very
popular monitoring tool and fits well in Puppet managed environments, as Puppet
has built-in resource types for Nagios resources that make configuration easy.

Nagios uses a client-server architecture where the server issues monitoring check
commands to the client that runs on the monitored host and the client returns check
results back to the server. Nagios Server runs a database where it stores information
about Nagios resources, such as clients, what checks to be run on each client, and
the status of checks. Nagios Server also provides a web interface for administrators
to view the current status of checks and look at the metrics of checks in the form of
simple charts. One of the key features of the server is to trigger monitoring alerts
when status of checks changes. Alerts can be configured to be delivered by e-mail,
SMS, or by making a request to the API.

Nagios Client in comparison to the server is much simpler. Clients receive check
commands from the server, perform the check, and return results back to the
server for processing. Nagios Client daemon, the process that listens to incoming
requests from the Nagios Server, is called Nagios Remote Plugin Executor, which
is commonly referred to as NRPE. The NRPE daemon listens on TCP port 5666.

Chapter 4

[83]

The Nagios client-server architecture that we will create in this chapter can be
illustrated with the following diagram:

Creating a Nagios module for the
client and server
In Chapter 3, My First Puppet Module, we practiced creating our first Puppet module
for the web server that was deployed by the class called webapp. Now, we'll create
another module for Nagios that incorporates a parent class called nagios and two
subclasses, one for the Nagios Server called nagios::server and another for the
Nagios Client called the nagios::client.

Puppet dictates the class names that we can use within the module. Let's take
an example of the class nagios::server that we will create. The double colon
(::) notation in the class name acts as a separator between the parent class and the
subclass. In this case, server is a subclass of the parent class called nagios. This
nagios parent class must reside in the Puppet module called nagios, or else
Puppet won't be able to find the class. If you would declare the class nagios inside
the webapp class that was created in Chapter 3, My First Puppet Module, and apply it,
then Puppet would report the Error: Could not find class nagios error.

To avoid any problems with Puppet finding the nagios::server and
nagios::client classes, the module name must be nagios. Before we go
ahead with module creation, let's create a new clean virtual machine that can
be used for Nagios module development.

Monitoring Your Web Server

[84]

A recap on the state of virtual machines and
snapshots
Let's do a quick recap on the current state of virtual machines and snapshots before
we create a new clone. In the VirtualBox Manager view, I can see the following three
virtual machines:

•	 learn_puppet_centos-6.5-pe: This is the original Puppet Learning VM image
that we downloaded in Chapter 1, Puppet Development in Isolation. This virtual
machine has two snapshots:

°° The base image, which was taken at a very early stage in
Chapter 1, Puppet Development in Isolation, before we started
to work on the virtual machine

°° Host-only-networking, which was created after host-only networking
was configured

•	 puppet-agent: This virtual machine was created as a clone from the
host-only-networking snapshot of the original Puppet Learning VM.
This virtual machine has two snapshots:

°° The base image, which contains the state of the virtual machine
before any web server-specific changes

°° puppet-agent-web, which is the light version of the Puppet Learning
VM that only contains the minimal set of packages needed to run
Puppet manifests

•	 puppet-agent-web-clone: This virtual machine was created as a linked clone
from the snapshot puppet-agent-web that belongs to the puppet-agent
virtual machine

I'll include a screenshot of the VirtualBox Manager view on my machine, so you can
compare it with the view on yours:

Chapter 4

[85]

In the the preceding screenshot, you can see that I've highlighted the snapshot
puppet-agent-web of the virtual machine puppet-agent. This is the snapshot we
should use as the base to create a new clone for the Nagios module development.

Cloning the virtual machine for Nagios
module development
You may already be familiar with how to clone the virtual machine from the
snapshot, but just in case you need a reminder, here are the steps to carry out
the task:

1.	 In the VirtualBox Manager window, select the puppet-agent
virtual machine.

2.	 Click the Snapshots button in the right-hand top corner of the window.
3.	 Select the snapshot called puppet-agent-web.
4.	 Click on the Clone button above the snapshot list view.
5.	 Provide a name for the new virtual machine. I'll call it puppet-agent-nagios.
6.	 It is important to remember to tick the option Reinitialize the MAC address

of all network cards.
7.	 Click on Next and choose the Linked clone option in the Clone type view.
8.	 Click on the Clone button to complete the cloning process.

Once the clone is created, you should see a fourth virtual machine appearing on
the list called puppet-agent-nagios. Before you launch the new virtual machine,
create a new snapshot called Base image that can be used to roll back the machine
state in the case of an emergency. I trust the you are familiar with the snapshot
creation by now so I won't instruct it again, but if you feel unsure, you may revisit
the Snapshot of the virtual machine section in Chapter 1, Puppet Development in Isolation,
that instructs the process.

I'd also advise to lower the system memory allocation for the puppet-agent-nagios
virtual machine. This can be done in the virtual machine settings (shortcut keys
Ctrl + S) by selecting the System category and reducing the Base Memory to 512 MB.

Now, let's launch the virtual machine and start writing our new Nagios module.

Monitoring Your Web Server

[86]

Generating the Nagios module
Once the puppet-agent-nagios virtual machine is running, you can log in with the
username root and password puppet. Next, you need to change the directory to
/media/sf_learning and generate the Nagios module template files. This can be
done with the following command sequence:

cd /media/sf_learning

puppet module generate learning-nagios --skip-interview

The puppet module generate command will produce the following output:

Notice: Generating module at /media/sf_learning/learning-nagios

Notice: Populating templates...

Finished; module generated in learning-nagios.

learning-nagios/metadata.json

learning-nagios/Rakefile

learning-nagios/manifests

learning-nagios/manifests/init.pp

learning-nagios/spec

learning-nagios/spec/spec_helper.rb

learning-nagios/spec/classes

learning-nagios/spec/classes/init_spec.rb

learning-nagios/Gemfile

learning-nagios/tests

learning-nagios/tests/init.pp

learning-nagios/README.md

As in Chapter 3, My First Puppet Module, we renamed the webapp module so that
Puppet is able to find the module from the module path. We must also rename the
Nagios module directory so that the part learning- is not present. Use the following
command to rename the module directory learning-nagios to nagios:

mv learning-nagios nagios

Using the command, ls, you can list files and directories in the current working
directory. After renaming the learning-nagios module directory, we'll have the
following list of modules:

ls

apache concat nagios stdlib webapp

Chapter 4

[87]

Puppetize the Nagios Server installation
Nagios Server installation is very easy with Puppet as it only requires a couple of
resources to be declared in the manifest. To install Nagios Server, we need a manifest
file that installs the Nagios Server package and the Apache HTTP Server provided by
the Apache module that we used in Chapter 3, My First Puppet Module. The manifest
file also must declare a configuration file for the Nagios administration web interface.

We will wrap these resources into the Puppet class called nagios::server and place
the class into the file nagios/manifests/server.pp.

Here is the definition for the class nagios::server, which I'll explain more in detail
after the snippet:

class nagios::server {
 include apache
 include apache::mod::php
package { ['nagios','nagios-plugins-nrpe']:
 require => Package['httpd'],
 ensure => installed;
 }
 file fil { '/etc/httpd/conf.d/nagios.conf':
 require => Package['nagios'],
 notify => Service['httpd'],
 source => "puppet:///modules/nagios/nagios.conf";
 }
 exec { 'set-default-username':
 require => Package['nagios'],
 command => '/bin/echo default_user_name=nagiosadmin >> /etc/
nagios/cgi.cfg',
 unless => '/bin/grep default_user_name=nagiosadmin /etc/nagios/
cgi.cfg',
 notify => Service['nagios'];
 }
 service { 'nagios':
 require => Package['nagios'],
 ensure => running;
 }
}

Monitoring Your Web Server

[88]

To make it easier to explain the preceding code block, I've prefixed lines with line
numbers, which you should omit when writing the file server.pp:

•	 Line 1 begins the nagios::server class definition.
•	 Line 2 references the Apache module that we already used once when

building the web server in Chapter 3, My First Puppet Module. The Nagios
Server web interface also runs on the Apache HTTP server, so we install
it on the Nagios Server as well.

•	 Line 3 references a class apache::mod::php that is provided by the Apache
module. The Nagios Server web interface is written in the PHP programming
language, and in order to make web interface functional, we must enable
PHP module on the web server.

•	 Line 4 declares two package resources. The first package called nagios
installs the Nagios Server. The nagios-plugins-nrpe package installs NRPE
plug-in on the server that enables it to communicate with NRPE clients.

•	 Line 5 sets order in which resources must be processed. The require
attribute specifies that the web server installation package called httpd must
be processed prior to processing package nagios.

•	 Line 6 uses ensure attribute to indicate that package nagios must be installed.
•	 Line 7 closes the package resource statement.
•	 Line 8 begins with a file resource statement for the file /etc/httpd/conf.d/

nagios.conf on the target machine. This file will contain the Nagios web
interface configuration information for Apache HTTP Server.

•	 Line 9 defines that the package httpd, which creates the directory /etc/
httpd/conf.d, must be processed before Puppet populates the file
nagios.conf.
If this line was omitted, it could potentially cause an ordering issue where
Puppet tries to populate the file nagios.conf before the target directory is
created by the httpd package.

•	 Line 10 uses the notify attribute to set the resource processing order in a
similar manner as the require attribute. The notify attribute is slightly
more advanced in the sense that it can be used to send a signal to the
named resource when originating resource state changes.
In this case, the file resource notifies the service httpd when the file content
changes and the notify signal results in the process httpd to be restarted.

Chapter 4

[89]

•	 Line 11 declares a source attribute, which defines the source file to be used
to populate target file /etc/httpd/conf.d/nagios.conf.

•	 Line 12 closes the file statement.
•	 Line 13 begins an exec resource that sets the default username for the

Nagios Server web user interface in the file /etc/nagios/cgi.cfg.
By default, the Nagios installer configures a default username guest,
that provides limited access to the web interface.

•	 Line 14 sets the resource processing order so that Nagios package that
provides the file /etc/nagios/cgi.cfg is installed before the exec resource
attempts to edit it.

•	 Line 15 specifies the command that Puppet should execute on the command
line. This command uses the /bin/echo utility to print the string default_
user_name=nagiosadmin and the command output is redirected into the file
/etc/nagios/cgi.cfg.

•	 Line 16 makes the exec resource idempotent using the unless attribute.
The command specified as the attribute value tells Puppet to only execute
the command on line 15 unless the result of the command specified as the
attribute value is true.
This command uses the /bin/grep utility to check whether the string
default_user_name=nagiosadmin is already present in the file /etc/
nagios/cgi.cfg.

°° If the string is found, the command returns the value true and the
command on line 15 is not executed.

°° If the string is not found, the command returns the value false and
the command on the line 15 is executed.

•	 Line 17 uses the notify resource to signal the Nagios Server process to
restart in case the Exec resource modified the configuration.

•	 Line 18 closes the exec resource block.
•	 Line 19 defines a service resource for the Nagios Server process called

nagios. This resource must be declared so that the exec resource
set-default-username can notify the the Nagios service.

•	 Line 20 sets the ordering so that the package nagios is installed before the
service resource is processed.

Monitoring Your Web Server

[90]

•	 Line 21 specifies that the Nagios Server process should be in the
running state.

•	 Line 22 closes the service resource declaration.
•	 Line 23 marks the end of the class nagios::server.

You hopefully now have a better understanding of what the nagios::server class
does. Now, it's your turn to create the file server.pp. You can create the file inside
the puppet-agent-nagios virtual machine using the Nano editor, or you can create it
on the host computer using the graphical text editor.

Here is the screen capture from text editor on my computer after I've added the
content to server.pp:

Before we can test the nagios::server class, we need to create the configuration
source file for nagios.conf and place it inside the files directory within the Nagios
module. Because the puppet module generate command doesn't create the files
directory automatically, we must create it by hand. You can create the directory in
the file manager program on your machine, or alternatively, create the directory
on the command line inside the puppet-agent-nagios virtual machine. Here are the
commands for creating the files directory on the command line:

cd /media/sf_learning

mkdir nagios/files

Chapter 4

[91]

Configuring the Nagios Server web interface
The module should now have the files directory in place where we can store
the nagios.conf configuration file that the nagios::server class references.
The following example enables Nagios web interface on Apache HTTP Server.

For clarity, I've prefixed each line with a line number, which you should omit when
creating the file nagios/files/nagios.conf:

ScriptAlias /nagios/cgi-bin/ /usr/lib/nagios/cgi-bin/
<Directory /usr/lib/nagios/cgi-bin/>
 Options ExecCGI
 Allow from all
</Directory>
Alias /nagios /usr/share/nagios/html
<Directory /usr/share/nagios/html>
 Allow from all
</Directory>

Although the preceding configuration has very little to do with Puppet, I'd still like
to take a moment to explain what these configuration statements do:

•	 Line 1 creates an alias for script execution on the web server.
•	 Line 2 begins a directive for directory /usr/lib/nagios/cgi-bin that holds

scripts used by Nagios Server web interface.
•	 Line 3 enables scripts in directory /usr/lib/nagios/cgi-bin to be

executable by the web server.
•	 Line 4 makes the directory unrestricted and accessible from any host.
•	 Line 5 closes the Directory directive.
•	 Line 6 creates a web server resource alias /nagios. In practice, this

means that when you access the URL http://192.168.56.10/nagios,
the web server will provide web documents from directory /usr/share/
nagios/html.

•	 Line 7 begins a configuration block for Directory /usr/share/nagios/html.
•	 Line 8 configures the directory to be accessible for everyone.
•	 Line 9 closes the Directory directive.

Monitoring Your Web Server

[92]

Now, go ahead and create the file nagios.conf with the preceding content. Once
you have added all lines into the file, the contents should look very similar to the
following screenshot:

Applying the nagios::server class

A virtual machine must have a working Internet connection to
successfully apply the class.

Now we are ready to try out the new nagios::server module. As you may
recall from Chapter 3, My First Puppet Module, we used the file tests/init.pp to
apply the class. Similarly, here we will use the tests/init.pp file to apply the
nagios::server class. The only problem is that file tests/init.pp doesn't yet
have a statement in it that references class nagios::server. That's not really a
problem as we can easily change the file content.

When you open the tests/init.pp file, you will find the following statement inside
it that references class nagios, which is an empty class in file manifests/init.pp.

include nagios

Change the include statement to reference the class nagios::server instead with
the following statement:

include nagios::server

Chapter 4

[93]

Now we can apply the file tests/init.pp and Puppet should be able to locate
the nagios::server class. Run the following two commands inside the
puppet-agent-nagios virtual machine to apply the class:

cd /media/sf_learning

puppet apply --modulepath=./ nagios/tests/init.pp

At the first run, you will get a fairly long report from Puppet due to amount
of packages, files, and other type of resources that Puppet has to process.
Applying init.pp the second time will produce a lot shorter report that
looks like the following:

puppet apply --modulepath=./ nagios/tests/init.pp

Notice: Compiled catalog for web.development.vm in environment production
in 7.23 seconds

Notice: Finished catalog run in 11.39 seconds

Verifying Nagios Server installation
If Puppet didn't report any errors (errors are highlighted in red) during the
Puppet run, you should now have Nagios Server web interface accessible from
your web browser.

So that we can work out the address for the web interface, we should check what
IP address Nagios Server is using. You can use the ifconfig command to display
the IP address information on the host. Running the command without arguments
would print out IP address information from all network interfaces, but to query
information from particular interface, such as the host-only network interface that
uses device ID eth1, we can use the following command:

ifconfig eth1

The IP address that we are interested in is displayed on line 2 with name inet
addr: in the following output:

eth1 Link encap:Ethernet HWaddr 08:00:27:7A:63:99

 inet addr:192.168.56.10 Bcast:192.168.56.255
Mask:255.255.255.0

Monitoring Your Web Server

[94]

Based on the IP information that I just extracted, I can construct an URL
http://192.168.56.10/nagios. When I put this address into the web
browser's address bar and hit Enter, the following page will load up:

Creating nagios::client class
I hope you managed to get the Nagios Server installed and the web interface running
on your machine. Now you can spend some time exploring the Nagios user interface
using the links on the left hand side of the view. There is not much to see at this point
as we yet haven't configured any resources on the server. There are some resources
created by default that you can have a look right away.

Chapter 4

[95]

If you click the Services link that can be found in the navigation pane on your
left you will find a list of checks that are run on the host called localhost. The
localhost is the Nagios Server and it has some checks on it that all flag up
as CRITICAL.

There is a reason why all checks are in CRITICAL status, and that is because there is
no Nagios Client installed on the monitoring server and that's why the Nagios Server
is unable to check the state of it.

Next, we'll have a look at how to hook a Nagios Client with the server. Earlier in
the chapter, I mentioned the acronym NRPE, which is the name of the package
that makes a host a Nagios Client. Our mission now is to install the NRPE package,
configure it, and tell Puppet to start the process.

To begin the process, you should create a new file called client.pp and save it into
the directory called manifests inside the Nagios module. In the client.pp file,
create a class called nagios::client that does the installation, configuration, and
service management for us.

Monitoring Your Web Server

[96]

Here is how the content of the file should look like:

class nagios::client {
 package { 'nrpe'']:
 ensure => installed;
 }
 package { [
 'nagios-plugins-http',
 'nagios-plugins-ping',
 'nagios-plugins-ssh',
 'nagios-plugins-disk',
 'nagios-plugins-users',
 'nagios-plugins-swap',
 'nagios-plugins-procs',
 'nagios-plugins-load',
]:
 ensure => installed,
 require => Package['nrpe'];
 }
 exec { 'allowed-hosts'
 command => '/bin/sed -i 's/^allowed_hosts=127.0.0.1//g''/etc/
nagios/nrpe.cfg",
 onlyif => '/bin/grep ^allowed_hosts=127.0.0.1 /etc/nagios/nrpe.
cfg',
 require => Package['nrpe'],
 notify => Service['nrpe'];
 }
 service { 'nrpe':
 ensure => running,
 enable => true;
 }
}

Lines 1 to 20 look fairly straight forward but the exec resource on lines 21 to 27
may look a bit messy. Not to worry though, as I'll do my best to explain what each
line inside the class is for.

•	 Line 1 begins the new class nagios::client that we can associate with
every host we want to monitor.

•	 Line 2 specifies the package nrpe that provides the NRPE daemon
installation files.

•	 Line 3 defines that packages must be installed on the system.

Chapter 4

[97]

•	 Line 4 closes the package resource statements.
•	 Lines 5 to 14 define another package resource. Package resource name is an

array of Nagios plug-ins that we want to install.
•	 Line 15 contains an attribute ensure => installed to indicate that we want

all packages to be installed.
•	 Line 16 dictates the order which is to install package ['nrpe'] before

attempting to install plug-ins.
•	 Line 17 closes the package resource.
•	 line 18 begins an exec resource called allowed-hosts.
•	 Line 19 specifies the command to be run on the command line by Puppet.

This command uses utility called sed. Sed stands for stream editor and it is
powerful tool used for editing files from the command line.
The argument -i that follows the /bin/sed command specifies that the
file /etc/nagios/nrpe.cfg, which is named as the final argument of the
command, should be edited "in place". Running the command without the -i
argument would only print out the edited content of the file without actually
editing the file.
The argument 's/^allowed_hosts=127.0.0.1//g' specifies the text
^allowed_hosts=127.0.0.1 that we want to find and replace with empty
string that uses the notation //. For example, if we would like to find the
text find_me and replace it with the text replace_with, we would use the
expression 's/find_me/replace_with/g'.

•	 Line 20 introduces a new attribute called onlyif which sets a condition for
the exec resource in similar manner as the unless attribute that we used in
exec resource inside the class nagios::server.
The difference between onlyif and unless attributes is that the command
specified by the command attribute is executed only if the command specified
as the value of onlyif attribute returns true. In the case of unless attribute,
the command specified by the command attribute is executed, unless the
command in unless attribute returns true.

•	 Line 21 uses require attribute to define that the package nrpe must be
installed before exec resource is processed.

•	 Line 22 specifies a notify attribute that results in the service nrpe to be
restarted in case exec resource command is executed.

•	 Line 23 closes the exec resource statements.

Monitoring Your Web Server

[98]

•	 Line 24 creates a service resource that manages the nrpe service.
•	 Line 25 sets the state of the service to be running which means that Puppet

will start the service unless it has been already started.
•	 Line 26 defined an attribute enable => true which means that service must

be started automatically when system boots up.
•	 Line 27 closes the service resource statement.
•	 Line 28 closes the class nagios::client.

Now it's time to start typing and to create the client.pp under the manifests
directory. Here is a screenshot that shows the content of the file client.pp:

Testing the nagios::client class

You will need an Internet connection to test the nagios::client class.

Chapter 4

[99]

The nagios::client is now ready to be applied. Let's test it first on the
puppet-agent-nagios virtual machine before we try to apply it on the web
server host.

The easiest way to apply the class is to add an include nagios::client statement
into the file tests/init.pp, that currently only includes the nagios::server class,
and then apply the file with puppet apply command.

Open the nagios/tests/init.pp in text editor and add include nagios::client
statement into the file. Once it's been added, the nagios/tests/init.pp should
have the following content:

Once the nagios/tests/init.pp file has been saved, you can apply it with the
following commands:

cd /media/sf_learning

puppet apply --modulepath=./ nagios/tests/init.pp

If the nagios::client class is applied successfully, Puppet will produce the
following report:

Notice: Compiled catalog for web.development.vm in environment production
in 6.22 seconds

Notice: /Stage[main]/Nagios::Client/Package[nrpe]/ensure: created

Notice: /Stage[main]/Nagios::Client/Exec[allowed-hosts]/returns: executed
successfully

Notice: /Stage[main]/Nagios::Client/Package[nagios-plugins-all]/ensure:
created

Notice: /Stage[main]/Nagios::Client/Service[nrpe]/ensure: ensure changed
'stopped' to 'running'

Notice: Finished catalog run in 53.20 seconds

Monitoring Your Web Server

[100]

If you now go back to Nagios Server web interface and click the service link again,
you should see that the checks on the host localhost are slowly starting to change
from state CRITICAL to state OK, as seen in the following screen capture:

Enable monitoring on the web server
So, the monitoring server is now fully up and running, and so far it monitors one
host—the monitoring server itself. What we are most interested in is monitoring
the web server that we built in Chapter 3, My First Puppet Module. On a high level,
the process is the following.

•	 Configure web server host and checks on the Nagios Server
•	 Apply nagios::client class on the web server

Let's tackle the first bullet point first and add the web server host and the checks for
it on the Nagios Server.

Configuring the web server host and checks
on the Nagios Server
Nagios resources such as hosts and checks have built-in resource types in Puppet.
Nagios hosts are configured with the resource type called nagios_host and checks
are configured with the resource type nagios_service.

Monitoring checks in Nagios terminology are called services.

Chapter 4

[101]

Creating a Nagios host
Every host that we want to monitor must be configured on the Nagios Server.
Nagios host resource requires two pieces of information:

•	 Name of the host
•	 IP address of the host

The name can be whatever you like, and it does not have to match the host name of
the host. I like descriptive names, so I'll choose the name web-server for the web
server host.

The IP address is slightly trickier as we don't know for sure what IP address the web
server will get from the DHCP server when it boots up. For now, let's assume that
the web server gets the next available IP address from the DHCP server, which is
192.168.56.11. The IP address ending with .10 is allocated to the Nagios Server at the
moment. Later in the book we will have a look at how hosts can export resources that
enable Puppet to dynamically adjust the IP address when it changes.

So, we have chosen the name web-server and the IP address 192.168.56.11,
and we can now create the host with the following resource definition:

 nagios_host { 'web-server':
 host_name => 'web-server',
 address => '192.168.56.11',
 use => 'linux-server',
 target => '/etc/nagios/conf.d/hosts.cfg',
 notify => File['/etc/nagios/conf.d'],
 require => Package['nagios'],
 }

Let's walk through the nagios_host resource definition so that we know what each
attribute does:

•	 Line 1 declares a nagios_host resource called the web-server.
•	 Line 2 defines the host_name attribute which sets the name for the Nagios

host that will appear in the Nagios Server web interface.
•	 Line 3 defines the IP address that Nagios Server should use when contacting

the agent.
•	 Line 4 specifies a use attribute that acts as a reference to Nagios host

template that provides default values for a variety of attributes associated
with the host.

Monitoring Your Web Server

[102]

•	 Line 5 defines the target filename where Nagios host resource should be
stored in.
Target is used to override the default location of the Nagios configuration
files that Puppet uses. By default Puppet uses directory /etc/nagios to
store configuration files in to. The problem is that Nagios Server is not
configured to read configurations from this directory. Nagios Server,
however, is configured to look for configuration files that use the .cfg file
extension within the directory /etc/nagios/conf.d, and that's why we
specify the target file /etc/nagios/conf.d/resources.cfg as part of the
host resource definition.

•	 Line 6 creates a notify relationship with a file resource for directory
/etc/nagios/conf.d which we will create in a moment.

•	 Line 7 requires the package nagios that creates the directory /etc/nagios/
conf.d, to be installed prior to processing this resource. Puppet cannot
create the target file /etc/nagios/conf.d/hosts.cfg if the directory
does not exist.

•	 Line 8 closes the nagios_host resource definition.

Before we add the above nagios_host definition into the manifest file, we should
have a look at the nagios_service definition that will go into the same manifest
file and create a check for the web server:

 nagios_service { 'HTTP':
 host_name => 'web-server',
 service_description => 'HTTP',
 check_command => 'check_http',
 use => 'local-service',
 target => '/etc/nagios/conf.d/services.cfg',
 notify => File['/etc/nagios/conf.d'],
 require => Package['nagios'],
 }

•	 Line 1 declares a nagios_service resource called HTTP.
•	 Line 2 defines a host_name attribute that associates the check with the

web-server host
•	 Line 3 defines the service name for the check that is displayed in the

Nagios Server web interfaces.
•	 Line 4 specifies the NRPE plug-in name to be used to perform the

check. Plug-in check_http is used for checking the availability of web
server interfaces.

Chapter 4

[103]

•	 Line 5 references the Nagios service template called local-service.
•	 Line 6 defines the target file where the Nagios service resource is going to be

stored in.
•	 Line 7 creates a notify relationship to file resource /etc/nagios/conf.d

which is the directory where this nagios_service resource is stored in.
•	 Line 8 requires the package nagios, that creates the directory /etc/nagios/

conf.d, to be installed prior to processing this resource. Puppet cannot
create the target file /etc/nagios/conf.d/hosts.cfg if the directory
does not exist.

•	 Line 9 closes the nagios_service resource definition.

There is one more resource that must accompany the nagios_host and
nagios_service resources, and that is the file resource /etc/nagios/conf.d, which
was referenced with the notify attribute from both Nagios resources. This resource
resets the file ownership information so that the Nagios process is able to read the files
stored in the directory /etc/nagios/conf.d. Here is how to define the file resource:

 file { '/etc/nagios/conf.d':
 recurse => true,
 owner => 'nagios',
 require => Package['nagios'],
 notify => Service['nagios'];
 }

•	 Line 1 begins the file resource statement for directory /etc/nagios/conf.d.
•	 Line 2 uses recurse attribute which is specific to directories that we want to

manage recursively.
•	 Line 3 sets the directory owner as user nagios which is the user account that

runs the Nagios Server process.
•	 Line 4 requires the package nagios to be installed prior to processing the

file resource. Directory /etc/nagios/conf.d is created by the nagios
installer, and that's why the installation must happen before Puppet tries to
change the ownership of the directory.

•	 Line 5 notifies the nagios process to restart in case of any of the files inside
the directory had their owner information changed.

•	 Line 6 closes the file resource definition.

Now, create a file nagios/manifests/resources.pp and add the preceding three
resources into the file wrapped inside the class nagios::resources.

Monitoring Your Web Server

[104]

The content of file nagios/manifests/resources.pp should look like the following
after all resources have been added into it:

Once the file has been created, you should add the include nagios::resources
statement into the file nagios/tests/init.pp before you apply the file. Here's how
the content of the nagios/tests/init.pp file should look like after modification:

Next, we can apply the class on the Nagios Server with the following two
commands:

cd /media/sf_learning

puppet apply --modulepath=./ nagios/tests/init.pp

We are almost done with setting up the monitoring for the web server. Nagios Server
has been configured to monitor the HTTP interface on the web server but the web
server is not running at this point and there is no NRPE agent installed on it.

Chapter 4

[105]

However, this issue can be easily rectified by including the class nagios::client in
the class webapp which is found in the file webapp/manifests/init.pp.

This is how the beginning of the class webapp looks like once I've added the
statement include nagios::client into it:

Once the file webapp/manifests/init.pp has been saved, power on the virtual
machine puppet-agent in its current state, not from the snapshot, and once virtual
machine is powered on, log on to the machine as a user root using the password
puppet. Then, apply the webapp/tests/init.pp file with the following commands:

cd /media/sf_learning

puppet apply --modulepath=./ webapp/tests/init.pp

Once the webapp class has been applied on the web server node, you can go back to
Nagios Server web interface at http://192.168.56.10/nagios. After refreshing the
browser window by clicking the services link, a new host called web-server should
appear on the list.

Here's a screenshot from the Nagios Server web interface that shows the HTTP check
on the host web-server in OK state:

Monitoring Your Web Server

[106]

Summary
In this chapter, we learned how to create a Nagios module that includes
subclasses. Subclasses provide two streams of deployment logic. We used
nagios::server class to deploy the Nagios Server, and we installed Nagios
Client on the web server by including class nagios::client in the webapp
module. We also had a look at how to configure Nagios hosts and services with
Puppet's built-in resource types, nagios_host and nagios_service.

In the next chapter, we will continue to expand the cluster by adding a load balancer
node in front of the web and monitoring servers. The load balancer will provide a
single point of access to web interfaces of both servers.

[107]

Load Balancing the Cluster
Modern clusters running on cloud infrastructure are easy to scale up and down on
demand using tools such as Puppet. When new hosts are added in and older hosts
are removed from the cluster, it becomes increasingly difficult and impractical to
access the cluster services directly on the hosts. A common way to deal with this
issue is to add a load balancer or a proxy host in front of services that provides a
single point of entry for the user to access the variety of services behind it.

In this chapter you will learn how to make the cluster more resilient and easier to
use by adding a load balancer in front of the cluster. The load balancer is going to
be built on the Apache web server module that we have already used on the web
server and the monitoring server. We will create a new Puppet module for load
balancer that interacts with the Apache module by passing class parameters which
is a common way to change the behavior of a Puppet class.

This chapter will cover the following topics:

•	 Parameterized classes
•	 Defined types
•	 Load balancing architecture
•	 Installing proxy server and load balancer
•	 Creating parameterized class

Let's begin with an introduction to parameterized classes and defined types as we
will be using both of these in this chapter. Parameterized classes and defined types
are similar in the sense that both are used as a wrapper for Puppet resources.

Load Balancing the Cluster

[108]

In Chapter 4, Monitoring Your Web Server, we created the nagios::server class
and added multiple Puppet resources into it, such as the package and the
service called nagios. If we wanted, we could have created a defined type called
nagios::server, which first installs the Nagios package, and then starts the nagios
service; this would have worked as well as the class nagios::server. However,
since we only need a single instance of a nagios::server class, it makes more sense
to do this as a class.

If we needed multiple instances of nagios::server running on the same host, we
would have used defined type instead of the class because defined type can be called
multiple times, whereas the class can only be instantiated once per Puppet run.

The parameterized class
The class parameter is a mechanism to alter the default behavior of a Puppet class.
Typically, parameters are some kind of configuration information that is provided
to the class when it is instantiated. For example, installing a database server with a
parameterized Puppet class could provide you a parameter that defines how much
memory to allocate to the database server process. Or, if a database server process
should run as a certain user, you could provide a user parameter to the class, which
will then create the user account and start the process as the user.

Calling a class with parameters
When calling a class without parameters, we will use the include keyword followed
by the class name, for example, include apache.

When calling a class with parameters, the include key word is replaced with the
key word class and the syntax used with class key word becomes analogous to
any other type of Puppet resource. For example, by calling a class bicycle with the
parameter wheels and the parameter value 2, we would use the following syntax:

class { 'bicycle':
 wheels => '2',
}

Perhaps you find traditional bicycles a bit dull and unexciting and decide to go for a
unicycle; in which case, you call the class with parameter wheels => '1'. Or if you
are a family person like I am, and you need more space for kids and groceries,
you may prefer a tricycle which you can get with parameter wheels => '3'.

This is just an example of how class parameters can help to have a single
implementation of a class that caters for multiple needs.

Chapter 5

[109]

Creating a parameterized class
Now, we know how to call class with parameters, but before we can do this, the class
must be written in way that it understands the parameters that we are passing in.

Let's implement the bicycle class and add a simple exec resource into it, which
executes a fictional command that orders a bicycle from a nonfictional shop called
The School Run Centre (my local bike retailer based in Cambridge, UK):

class bicycle {

 exec { 'bicycle-order':

 command => "/usr/bin/the-school-run-centre order wheels=2"

}

The class bicycle in its current form doesn't yet understand parameters passed into
it, and if you're calling the class without parameters, using the include key word,
it will always place an order for a traditional two-wheel bike.

To make the bicycle class accept the parameter wheels and to make use of the
parameter value in exec resource, we must do the following alterations to the class:

class bicycle ($wheels='2') {

 exec { 'bicycle-order':

 command => “/usr/bin/the-school-run-centre order wheels=$wheels”

 }

}

Let's have a look at the preceding class definition more in detail:

1.	 Line 1 declares a class bicycle and class accepts a parameter called wheels.
The parameter wheels has a default value 2, which means that if parameter
is not provided, its value will be 2.
To make the parameter obligatory, you should omit the default value and
specify the parameter as $wheels. Only in this case will Puppet report an
error if the user doesn't supply the parameter when calling the class.

2.	 Line 2 begins the exec resource statement bicycle-order.
3.	 Line 3 specifies the command that Puppet executes when the class is called.

The command ends with a reference to input parameter $wheels.
4.	 Line 4 closes the exec resource block.
5.	 Line 5 ends the bicycle class definition.

Load Balancing the Cluster

[110]

The defined type
The defined type is a user-defined Puppet resource type that works in a very similar
manner as the parameterized class with exception that it can be called multiple
times. Continuing with our bicycle example, if we would create a defined type called
bicycle, we could use it to order more than one type of bicycle at the time. In other
words, you can order a unicycle and a tricycle in one go. But if you're using a class
bicycle, I can only order a unicycle for you or tricycle for me.

Calling the defined type
The defined type is referenced with the exactly the same syntax as when referencing
Puppet built-in resource types such as the exec, file, or the user resource.

To reference the defined type called bicycle, we'd do it in the following way:

bicycle { 'unicycle':
 wheels => '1';
}

As you can see, the syntax is almost identical to the bicycle class reference. The only
difference is that here we don't begin the definition with a class key word because
we are not referencing the class resource type. Instead, our resource type is called
bicycle, and the name of the resource, here I used unicycle, can be whatever you
like as long as the resource name is unique.

The preceding snippet would order a unicycle for you. But what if I also wanted a
bicycle, one that has 3 wheels? Well, this could be done with another bicycle resource
definition that looks like the following:

bicycle { 'tricycle':

 wheels => '3';

}

Now we have references to two different types of bicycles: one has 1 wheel and
another has 3 wheels. That's fine as long as the bicycle resource names are unique.
And this criteria is fulfilled as the first bicycle is called unicycle and the other one is
called tricycle.

Now, we know how to reference a defined type, but how does it look from the other
end of the tunnel? Let's have a look at how the type bicycle can be implemented.

Chapter 5

[111]

Creating the defined type
Creating the defined type is quite similar to creating a class. There is one tricky bit
to remember though when creating your own types and I've highlighted that part of
the code in the following declaration that creates the type bicycle:

define bicycle ($wheels='2') {

 exec { "bicycle-order-${name}":

 command => “/usr/bin/the-school-run-centre order wheels=$wheels”

 }

}

The tricky bit that I mentioned is found at the end of the line 2, but I'll run
you through the preceding type definition line by line and compare it to the
class definition:

1.	 Line 1 begins with the keyword define, which is used when we want to
define a new type in Puppet. For the bicycle class, we used the key word
class. For defined types, we must use the key word define.

2.	 Line 2 begins an exec resource definition that executes a command on the
command line every time the type is called. When comparing this definition
to the exec resource definition inside the class bicycle, we find that there
are two important changes.

3.	 The name of the exec resource is wrapped inside double quotes (") to enable
variable interpolation. In the bicycle class, we used single quotes ('), which
Puppet interprets as string literal. Because the resource name in the bicycle
type references the $name variable, we must use double quotes.

4.	 Reference to the $name variable helps to make the exec resource name
unique and avoid resource name clashes when the type is called multiple
times. The variable $name used in the defined type is a reference to the name
that the user defines when the type is called.

5.	 When the type bicycle is referenced with the name unicycle, the $name
variable value in the exec resource name becomes unicycle; thus, the exec
resource name is interpolated as bicycle-order-unicycle.

Load Balancing the Cluster

[112]

6. When the type bicycle is referenced the second time with the
name tricycle, the exec resource name is interpolated as
bicycle-order-tricycle.

7. Line 3 is identical to the line 3 found in the class bicycle. This specifies the
command that Puppet executes when the type is called.

8. Line 4 closes the exec resource.
9. Line 5 ends the type definition of bicycle.

I believe that's all we need to know about parameterized classes and defined types
before we move on and use them in real-life scenario.

The load balancing architecture
Before we dive into the Puppet module world again, let's have a quick look at the
system architecture and how the load balancer fits into it. The load balancer will
be installed on a dedicated virtual machine, which sits in front of the web and the
monitoring servers.

First, we will configure the load balancer in the so-called proxy mode, which means
that the load balancer is acting like a router for HTTP requests that it forwards to the
appropriate backend server based on the URL that the user is accessing.

For example, when a user requests resource http://loadbalancer_ipaddress/
nagios, the load balancer forwards the request to the monitoring server, and when
the requested resource is http://loadbalancer_ipaddress/webapp, the request is
routed to the web server.

Later, we will configure the load balancer, do some real load balancing between two
web server nodes and experience how load balancer makes services more resilient
against outages when one of the web servers suddenly drops offline.

Chapter 5

[113]

The following diagram illustrates the layout of the cluster that we will build now:

The top element in the preceding diagram is the web browser that runs on the user's
computer. The web browser connects to TCP port 80 on the load balancer machine.
The load balancer forwards the request either to the monitoring server or the web
server node based on the address that the user typed into the web browser.

If a user requests a web page, http://loadbalancer-ipaddress/monitoring, the
load balancer forwards the request to the monitoring server. If the requested web
page is http://loadbalancer-ipaddress/webapp, the load balancer routes the
request to the web server 1 node.

Load Balancing the Cluster

[114]

The 5th element in the diagram that is greyed out is the second web server
node that we will boot up later in the chapter when testing the load balancing
functionality. Once load balancing is enabled, the load balancer will forward and
request for http://loadbalancer-ipaddress/webapp to either one of the web
server nodes.

Building the load balancer node
Now we know how the cluster will look once the load balancer node has been
added to the cluster. To create the load balancer node, we will first create a new
virtual machine clone that will be used as the development environment for the
load balancer Puppet module development. Let's get on with it then.

Cloning a new virtual machine for the load
balancer
If you have any virtual machines running at the moment, I'd recommend to shut
them down now to reduce the memory usage on the host computer. We will begin
by creating a new clean virtual machine for the load balancer module development
using the following steps:

1.	 Select the virtual machine puppet-agent.
2.	 Click the Snapshots button.
3.	 Choose the puppet-agent-web snapshot.
4.	 Click the Clone button.
5.	 Provide a name for the new virtual machine, for example,

puppet-agent-loadbalancer and tick the box Reinitialize the
MAC address of all network cards.

6.	 Click on Next.
7.	 In the Clone type view, select Linked clone.
8.	 Click on Clone.
9.	 You should now see a new virtual machine called

nagios-agent-loadbalancer appearing on the virtual machine list.

http://loadbalancer-ipaddress/webapp

Chapter 5

[115]

Reducing the virtual machine memory allocation
Reduce the memory size of the machine by opening virtual machine settings
(Ctrl + S). Navigate to the System view and reduce the Base memory allocation
to 512 MB.

Creating a snapshot and starting the virtual
machine
Once the memory allocation has been reduced, I'd recommend that you create a
snapshot of the new virtual machine so that we can quickly restore the virtual machine
into its original state if we happen to break it during the development process.

By now, you probably know well how to create virtual machine snapshot in
VirtualBox, but as a reminder here are the steps on how to create a snapshot:

1.	 Select the new virtual machine from the list.
2.	 Click on the Snapshots button.
3.	 Click on the Take Snapshot button.
4.	 Provide a name of the snapshot, for example, Base Image.

Now we are ready to start the virtual machine. When the virtual machine comes up,
you can log in using the username root and password puppet.

Creating a load balancer module
After starting the virtual machine, now we'll create a new Puppet module for load
balancer that will use the apache module from Puppetlabs to do the base install of
the Apache HTTP Server and enable load balancing on it. In addition to the base
installation, we will add our own custom configuration that specifies which backend
services and nodes the load balancer should link to.

Once you have logged on to the virtual machine, you can create the load balancer
module with the following commands:

cd /media/sf_learning

puppet module generate learning-loadbalancer --skip-interview

Load Balancing the Cluster

[116]

The command puppet module generate will create a new module directory
called learning-loadbalancer that we must rename as loadbalancer so
that Puppet is able to locate the module. Assuming your current working directory
is /media/sf_learning, you can rename the directory learning-loadbalancer by
issuing an mv command in the following way:

mv learning-loadbalancer loadbalancer

As an alternative to the command line, you can rename the
learning-loadbalancer directory in the file manager program on
the host computer. On my machine, the folder is located in the following
path: /home/jussi/learning/learning-loadbalancer

Once the module directory has been renamed, you should have six modules in
the directory /media/sf_learning. You can list the directory content with the ls
command and the command should produce the following list of Puppet modules:

[root@learn /media/sf_learning]# ls

apache concat loadbalancer nagios stdlib webapp

Installing the load balancer using class parameters
Now that the loadbalancer module has been created, we can start adding
deployment logic into the class loadbalancer, which you can find inside the file
loadbalancer/manifests/init.pp:

To make it easier to keep track of the lines in the file init.pp, I've
removed all comment lines (lines beginning with #) and enabled line
numbers in Gedit text editor.

Open the file init.pp in text editor and add the following content to it:

Chapter 5

[117]

It only takes as little as 11 lines of Puppet configuration to turn the load balancer
node into a proxy server.

Let's look at the preceding loadbalancer class more in detail:

1.	 Line 1 begins the loadbalancer class definition.
2.	 Line 2 calls the apache class without passing any parameters to it. With this

statement, we express that we want Puppet to do the basic installation of
Apache HTTP Server.

3.	 Line 3 makes a reference to defined type called vhost that is provided by the
class apache. To make a reference to a type vhost that is declared inside a
class apache, Puppet uses notation apache::vhost followed by the name of
the type, in this case named as loadbalancer.

4.	 Line 4 sets a parameter ip that we pass into the type vhost. The value of the
parameter defines the address that the load balancer node is listening on for
incoming HTTP requests. For this, we use fact called ipaddress_eth1, which
is a reference to the IP address of the Host-Only Network interface on the
load balancer virtual machine. In my environment load balancer, the node
uses IP address 192.168.56.10 for the Host-Only Network interface.

5.	 Line 5 defines parameter docroot which is one of the required parameters
by the apache::vhost. The value of the parameter is not important for the
functionality of the load balancer, we just must provide the parameter with
some value when calling the type apache::vhost.

6.	 Line 6 defines a parameter proxy_pass, which is used to create a route via
load balancer to the web server and the monitoring server. The value of the
parameter begins with [sign, which in the Puppet language means that the
parameter value is a list of items. Lines 7 and 8 specifies the items on the list.

7.	 Line 7 defines the first item on the list, which is a dictionary type of data
where the data is presented in the format of key—value pairs. With this
configuration, we tell the load balancer to forward all requests for the
resource /nagios on the load balancer to the monitoring server URL
http://192.168.56.11/.
The first key is called path and the value is /nagios.
The second key is called url and the value of the url is
http://192.168.56.11/nagios.

Load Balancing the Cluster

[118]

8.	 Line 8 specifies another set of key—value pairs for the Web Server interface
at http://192.168.56.12/.
The dictionary entry path has a value /webapp.
The second dictionary entry url has the value http://192.168.56.12.

9.	 Line 9 ends the list with a closing block bracket].
10.	 Line 10 closes the block apache::vhost.
11.	 Line 11 ends the loadbalancer class definition.

So, now you should have rough idea of what is involved in the initial deployment of
the load balancer node. Next, we can try this in action.

Deploying the load balancer
Load balancer deployment requires Internet connectivity, so make sure that you are
connected to the Internet before you carry on.

We will begin by deploying the load balancer node before we boot up the Web
and the monitoring server nodes. As we are have used hardcoded IP addresses
in the loadbalancer class, we have to be careful with the order in which we boot
up the virtual machines in our cluster so that the nodes get allocated the correct IP
addresses from the DHCP server on VirtualBox.

Virtual machines should be started in the following order:

1.	 The load balancer node being the first node in the cluster should get IP
address 192.168.56.10.

2.	 The monitoring server started as the second in order should get IP address
192.168.56.11.

3.	 The web server is started as the third node and it should get IP address
192.168.56.12.

The load balancer node should be already up and running. If not,
then start it up now, but before you do this, make sure that you
haven't got other virtual machines running on VirtualBox.

Now that we have only the load balancer node running, we can apply the class
loadbalancer with the following commands:

cd /media/sf_learning

puppet apply --modulepath=./ loadbalancer/tests/init.pp

Chapter 5

[119]

The deployment should last a maximum of couple of minutes and it will produce
quite verbose Puppet report, which I'll not disclose here in full as it would take up
too much space in this chapter. Instead, I'll include the last two lines of the Puppet
report that are printed when the deployment is completed successfully:

 Notice: /Stage[main]/Apache::Service/Service[httpd]/ensure: ensure
changed 'stopped' to 'running'

Notice: Finished catalog run in 17.36 seconds

The first line reports the final step of the deployment where Puppet changes the state
of the Apache HTTP Server process from stopped to running. The last line shows
that the load balancer deployment on my machine took 17.36 seconds.

Verifying the load balancer deployment
Analyzing the Puppet report is one way to know whether the deployment was
successful, but what is more important is to know whether the service works in
real life. To verify the load balancer functionality, we will spin up the web and
monitoring servers and see whether we can access both web interfaces via load
balancer node's IP address.

But before we do this, let's do a quick test that shows whether the load balancer node
is trying to route request to the backend services:

Open the web browser on the host computer. Type in the URL
http://192.168.56.10/webapp and hit Enter.

If you get immediate response of 404 Not Found displayed at the top of the browser
window, then that's a sign that deployment was not successful. If this is the case, I'd
advise you to review the content of the class loadbalancer and check the syntax of
each line in the class.

However, if the request takes a few seconds to process and you then receive message
503 Service Temporarily Unavailable, this means that the load balancer attempted
to route the request to the web server interface but as the node is not yet running,
the request timed out. The following screenshot shows example 503 response:

Load Balancing the Cluster

[120]

Testing end-to-end functionality
Next, we will verify the functionality end-to-end and launch.

Depending on how much free memory you have on the host computer, you may
have to reduce the memory allocation in the virtual machine settings, which you can
access by pressing Ctrl + S and adjusting the Base Memory value under the System
category. You can reduce the amount of memory down to 256 MB and virtual
machines should still boot up fine.

Once the monitoring server comes up, you should see the IP address information
displayed on the log in prompt. The IP information shows that the monitoring
server has got IP address 192.168.56.11 from the DHCP server as shown in the
following screenshot:

Similarly, in the login prompt on the web server, the IP address information shows
that the web server is using the IP address 192.168.56.12:

If for any reason web and monitoring server nodes came up with different IP
addresses, you should reconfigure the load balancer node by adjusting the lines 7
and 8 in the file loadbalancer/manifests/init.pp, and point the /nagios and
/webapp resources to appropriate IP addresses. In case you made changes to the
loadbalancer class, you should apply your changes with the command puppet
apply --modulepath=./ loadbalancer/tests/init.pp on the load balancer node.

Chapter 5

[121]

Before we do our end-to-end tests, let's do a Puppet run on the other two nodes to
make sure that all services are started properly.

Log on to the web server node using the username root and password puppet.
Then, run the following two commands:

cd /media/sf_learning

puppet apply --modulepath=./ webapp/tests/init.pp

Then, log on to the monitoring server node using the same login details and apply
the nagios::server class with the following set of commands:

cd /media/sf_learning

puppet apply --modulepath=./ nagios/tests/init.pp

Now that all three virtual machines have been updated by Puppet, it is time to check
whether we can access monitoring and web server interfaces via the load balancer
node. In the class loadbalancer, we configured resource /nagios for the monitoring
server and the resource /webapp for the web server.

Open the web browser on the host computer type in the URL
http://192.168.56.10/nagios. This should give you the nagios server front-page:

Load Balancing the Cluster

[122]

Then, try the URL http://192.168.56.10/webapp and see whether the web
server landing page loads up. The following screenshot demonstrates the proxy
functionality quite nicely. If you look at the page content, it shows the web server's
IP address 192.168.56.12, but the IP address in the address field on the web
browser points to the IP address 192.168.56.10:

That's it. I hope your end-to-end tests were as successful as mine. Next, we will focus
on how to make the loadbalancer class more configurable by turning it into the
parameterized class.

Adding parameters to the loadbalancer
class
The load balancer node is now working, but the configuration is quite static in
the sense that the HTTP end points /nagios and /webapp are bound to back-end
services defined in the class loadbalancer. What if the web server's IP address
changes or we wanted to change the name of the end points? We could adjust the
loadbalancer class, but the better option is to make the loadbalancer class to
accept parameters that enables us to specify the end points and backend service
URLs when we call the class.

We currently use the following "hardcoded" URL mappings in the class
loadbalancer:

{ 'path' => '/nagios', 'url' => 'http://192.168.56.11/nagios' }

Chapter 5

[123]

This links the resource /nagios with URL http://192.168.56.11/nagios:

{ 'path' => '/webapp', 'url' => 'http://192.168.56.12/' }

This links the resource /webapp with URL http://192.168.56.12/.

To make the path and the url parameters configurable when calling the class, we
will add four input parameters to the class loadbalancer, which you can find on
lines 1 to 4 in the following screenshot:

Let's focus on the lines that were added or changed in the class loadbalancer:

1.	 Line 1 begins the class loadbalancer and defines the first input parameter
$nagios_path that we reference on line 10. The parameter $nagios_path
has a default value nagios, which we can override with our own value when
calling the class. If we don't provide the parameter $nagios_path, then the
default value will be used.

2.	 Line 2 defines the second input parameter $nagios_url and sets a default
value http://192.168.56.11/nagios. The parameter is referenced on
line 10.

3.	 Line 3 defines the third input parameter $webapp_path and gives it a default
value /webapp. The parameter is referenced on line 11.

4.	 Line 4 defines the fourth and the last input parameter $webapp_url with the
default value http://192.168.56.12/ and the reference to the parameter
can be found on line 11.

Load Balancing the Cluster

[124]

5.	 Line 10 contains references to input parameters $nagios_path (line 1)
and $nagios_url (line 2).

6.	 Line 11 references input parameters $webapp_path (line 3) and
$balancer_url (line 4).

That's all the changes required in the class loadbalancer to make it parameterized.
As all input parameters have default values, it is fully backwards compatible, and we
are not forced to provide parameters when calling the class.

But we of course want to try how parameters add functionality to the class, and this
we can do on the command line by applying the loadbalancer class with extra
options. In the following example, the path to the web server is changed from
/webapp to /web on the load balancer node.

On the load balancer node, move to the directory /media/sf_learning with the
following command:

cd /media/sf_learning

Then, apply the loadbalancer class with class parameters using the -e option:

puppet apply --modulepath=./ -e "class { 'loadbalancer': webapp_path
=> '/web' }"

When Puppet run is completed successfully, the default path value /webapp will
stop working and you should be able to access the web server interface using the
URL http://192.168.56.10/web.

To pass two or more parameters to the class, you can provide a comma separated list
of parameters in following way:

puppet apply --modulepath=./ -e "class { 'loadbalancer': nagios_path
=> '/', nagios_url => 'http://192.168.56.11/nagios/' }"

This command configures the root resource (/) to point to nagios server interface

After the command has been applied, you should now be able to access the nagios
web interface in the URL http://192.168.56.10:

Chapter 5

[125]

If you want to revert the configuration to the default, just use the same command
syntax without passing any parameters to the class. Here's the example command:

puppet apply --modulepath=./ -e "class { 'loadbalancer': }".

The same command in simpler format using the include keyword looks like this:

puppet apply --modulepath=./ -e "include loadbalancer"

That's how parameterized classes are created and instantiated. The class parameters
adds flexibility to how Puppet classes can be used and configuration changes
becomes quicker and easier to apply when we can change the configuration
with parameters instead of having to change the content of the class itself.

The load balancer node is now working as a proxy server for the web server and
monitoring server nodes. Next, we will have a look how we can turn the load
balancer node into a proper load balancer that spreads the requests across multiple
web server nodes.

Load Balancing the Cluster

[126]

Load balancing web server nodes
Load balancing is used to make services more resilient and scalable. In a typical
scenario, we have a cluster of nodes such as web servers. All of the servers provides
the same service, which means that incoming requests received from clients can be
processed on any of the servers in the cluster. So that the user doesn't have to decide
which server to send the request to, we add a load balancer in front of the cluster
which makes the decision and routes the requests to one of the cluster nodes. When
nodes in the cluster start to struggle with the number of incoming requests, and we
need to scale up the service, it is easy to add a new node in to the cluster. Then, we
can tell the load balancer that a new member node has joined the cluster and the load
balancer start routing requests to new node. At some point, when the number of
incoming requests goes down again, and the cluster can manage with fewer member
nodes, we just remove nodes from the cluster and the load balancer automatically
stops forwarding requests to decommissioned nodes. This is called horizontal scaling
of the service.

The following diagram illustrates how requests Req.1, Req.2, and Req.3 are load
balanced across three web servers in cluster:

Chapter 5

[127]

Next, we can try out this load balancing scenario in our virtual machine environment
and set up a cluster of two web servers and configure the load balancer node to route
requests to them. To achieve this, we must first make a couple of modifications in the
loadbalancer class and then create a new class called loadbalancer::create that
constructs the load balancer object and adds member nodes to it.

Enabling load balancing on the loadbalancer
class
To enable load balancing in the class loadbalancer, we will add couple of new
variables in to the class that we can reference from the class loadbalancer::create
that we will soon create.

Here's how the latest version of the class loadbalancer in file
loadbalancer/manifests/init.pp looks after variables and variable
references have been put in place:

Let's walk through the lines that were added or changed since the previous version
of the class:

1.	 Line 6 defines a string variable called $balancer_name that is referenced
on the line 7. The same variable will be also referenced from the class
loadbalancer::create later in the chapter.

Load Balancing the Cluster

[128]

2.	 Line 7 declares another string variable $balancer_url that references the
variable ${balancer_name} defined on line 6. The variable $balancer_url
is referenced on line 14 by the url attribute value.
Please note that variables in Puppet can be referenced with syntax $variable
or as ${variable}. Both work the same way, but the added curly braces in
variable reference makes. The later variant ${variable} is recommended by
Puppet Language Style Guide (https://docs.puppetlabs.com/guides/
style_guide.html).

3.	 Line 8 references the class loadbalancer::create that we will create in
a moment.

4.	 Line 14 that previously referred to the web server URL is now referencing the
variable ${balancer_url}, which translates to string balancer://webapp.

Let's not try to apply the loadbalancer class yet as it would produce an error
during Puppet run due to missing the class loadbalancer::create that we need
to create now.

In the text editor, create a new file loadbalancer/manifests/create.pp. The file
defines the class loadbalancer::create that creates the load balancer object and
adds two member nodes into it.

Here's the content for the file loadbalancer/manifests/create.pp and I'll explain
its functionality more in detail after the screenshot:

https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html

Chapter 5

[129]

Here's the break down of the file loadbalancer/manifests/create.pp:

1.	 Line 1 begins the class loadbalancer::create. This class doesn't accept
any parameters.

2.	 Line 2 references defined type apache::balancer that is provided by the
Apache module. The name of the type in this case becomes webapp that we
defined at the time when we added the variable $balancer_name into the
class loadbalancer in previous paragraph.

3.	 Puppet variables have "a scope" and we can reference variables from other
classes with syntax ${::classname::variablename}. We will talk about
variable scope more in detail in the next chapter.

4.	 Line 3 sets a Boolean value false for input parameter collect_exported.
With this parameter, we tell the defined type apache::balancer not to
collect exported resources.

5.	 Exported resources are not yet available in our Puppet environment, but
we will enable them and learn how to use them in Chapter 7, Making the
Configuration Dynamic.

6.	 Line 4 closes the defined type apache::balancer definition.
7.	 Line 5 begins the first of the two apache::balancermember definitions.

Type apache::balancermember is used to describe the URL where the load
balancer should forward requests to. For the first balancer member, we give a
name web1.

8.	 Line 6 defines the name of the cluster that this balancer member belongs to.
With the attribute balancer_cluster, we assign this balancer member to the
cluster that we created in the preceding apache::balancer block.

9.	 Line 7 sets the URL where requests are routed to.
10.	 Line 8 closes the first apache::balancermember block.
11.	 Line 9 begins the second balancer member definition for which I've given a

name web2.
12.	 Line 10 assigns the balancer member web2 to the the same cluster as the

balancer member web1.
13.	 Line 11 sets the URL to forward requests to on the node web2.
14.	 You may need to adjust this IP address if the node comes up with a different

address when it started up.
15.	 Line 12 closes the second balancer member definition.
16.	 Line 13 ends the class loadbalancer::create.

Load Balancing the Cluster

[130]

We now have all the assets ready for load balancer deployment. Make sure
that the class loadbalancer::create is saved as create.pp in the directory
loadbalancer/manifests so that Puppet is able to locate the class. Next, we will
apply the class loadbalancer and see how load balancing works in practice.

Applying and testing the load balancer
Let's apply the class loadbalancer first to see that we got the syntax right before we
join the second web server node in the cluster.

On the load balancer node, run the following two commands:

cd /media/sf_learning/

puppet apply --modulepath=./ loadbalancer/tests/init.pp

This time the puppet apply command will produce couple of warning messages,
which you can safely ignore.

The first message Warning: You cannot collect exported resources without
storeconfigs being set is related to exported resource collection, which we haven't
yet enabled in our environment.

The second message Critical: Scope(Concat::Fragment[01-webapp-
proxyset]): No content, source or symlink specified is produced by the
type concat::fragmentWhat. This message doesn't have functional impact on the
deployment so you can safely ignore this.

What you should ensure is that Puppet bounces the service HTTPD at the end of the
Puppet run, which is an indication that deployment was successful. On successful
run, the Puppet report will include the following two lines at the end:

Notice: /Stage[main]/Apache::Service/Service[httpd]: Triggered
'refresh' from 1 events

Notice: Finished catalog run in 13.42 seconds

Before we launch the second web server node, let's do a quick test to
ensure that the first web server is accessible via load balancer in the URL
http://192.168.56.10/webapp.

I've checked it and it works for me. Does it also work in your environment?

Chapter 5

[131]

Launching the second web server node
In Chapter 3, My First Puppet Module, we created the virtual machine called
puppet-agent-web-clone, which we can use as our secondary web server node.
If you have deleted it, you can easily recreate by following the process described
in Chapter 3, My First Puppet Module.

Launch the virtual machine puppet-agent-web-clone and once it's up and running,
perform the following three things on the virtual machine:

1.	 Check that second web server node got an IP address 192.168.56.13 from
the DHCP Server. The IP information is displayed in the login prompt. If it
reports a different IP address than 192.168.56.13, then you need to adjust
the line 11 in loadbalancer/manifests/create.pp and set the url attribute
value accordingly.

2.	 Run Puppet on the virtual machine to bring the configuration up to date with
the following commands:
cd /media/sf_learning/

puppet apply --modulepath=./ webapp/tests/init.pp

3.	 Then open the web browser and go to the address http://192.168.56.10/
webapp. If you keep refreshing the browser window (press F5), you should
notice from the IP address field that each odd request is routed to web server
1 at 192.168.56.12 and that even requests are routed to web server 2 at
192.168.56.13.

The following screenshot shows how two requests are forwarded to different
back end servers:

Load Balancing the Cluster

[132]

Summary
In this chapter, we discussed the use of parameters with Puppet classes and defined
types that makes Puppet modules more configurable and able to cater for multiple
use cases. We also had a look how to make an application cluster more scalable by
enabling load balancing on it.

In the next chapter, we will introduce Puppet environments that help us to manage
larger Puppet environments more efficiently and to make the configuration of hosts
more dynamic through exported resources.

[133]

Scaling Up the Puppet
Environment

Comparing our progress with football, we have reached the half way line in the
field, and we have scored quite a few goals in the game already. I hope you have had
your half time team talk, refueled yourself with cold drinks, and have stretched your
muscles for the second half action that is about to begin.

Until now, we have learned how to set up the development environment where
we can build new Puppet modules easily and test them in the cluster that consists
of multiple nodes. The environment was fully configured with Puppet, and in the
process, we got to experiment with various building blocks such as built-in resource
types, facts, variables, parameterized classes, and defined types.

But I believe that not all of this has been easy or problem free, not for me at least.
For example, when the cluster members (hosts) sometimes get new IP address from
the DHCP server and we then have to adjust the IP configuration in the manifest
files to enable nodes to communicate with each other. This is because the Puppet
configuration at the moment is standalone. There is no mechanism in place yet
that enables nodes to discover other members in the cluster and the services each
member provides.

This chapter introduces the concept of Puppet environments on the Puppet Master
that enables nodes to discover and share resources with each other. We will cover
the following key areas:

•	 Puppet Master and its components
•	 Setting the Puppet resource processing order with arrow notation
•	 Out-of-scope variables

Scaling Up the Puppet Environment

[134]

•	 Conditional statements
•	 Puppet environments and node classification
•	 Bootstrapping Puppet Agent and Puppet Master
•	 Linking Puppet Agent with the Master
•	 Puppet certificate management

Puppet Master
Like the famous song Master of Puppets in the late 90s by the heavy metal band
Metallica that goes on saying "Master of Puppets I'm pulling your strings", Puppet
Master in Puppet world pulls the strings on the Puppet Agent nodes. In other words,
Puppet Master coordinates with what manifests and classes will be applied to any
given Puppet Agent node.

The concept is quite simple. Instead of deploying Puppet modules locally on Puppet
Agent nodes, like we have done so far through Shared Folders, we will deploy
modules on the Puppet Master node. When Puppet Agent connects to Puppet
Master, the agent identifies itself using so-called Puppet certificates. Once Puppet
Master knows the identity of the agent, it compiles manifests into a catalogue and
hands over the catalog to the agent node for processing. One of the benefits of
using Puppet Master is that it makes resource distribution easy. We have to install
the Puppet module only once on the Puppet Master and it distributes the logic
contained in manifests and other types of Puppet resources across multiple
Puppet Agents automatically.

In addition to distributing resources to agents, Puppet Master provides services
such as authentication and authorization, deployment orchestration, reporting,
and perhaps most importantly, the ability to export and import resources between
Puppet Agent nodes. The mechanism to export and import resources is called
exported resources, which we will discuss more in detail in the next chapter.

Puppet Master can be started from the same puppet binary that we used before to
apply Puppet manifests. All you need to do is issue the command puppet master
--verbose –no-daemonize. This command starts Puppet in the master mode that
uses a web server that is built-in to the puppet binary. Starting Puppet Master from
puppet binary is sufficient for testing purposes when you have only a handful of
Puppet Agents to manage, but it doesn't scale up well when the number of agents
increases. This is due to limitation in the built-in web server library called WEBrick,
that is, single-threaded, and it therefore cannot handle concurrent connections.

Chapter 6

[135]

To overcome the issue with concurrency, it is recommended that you run Puppet
Master as a web application on a high-performance web server such as Apache
HTTP Server. The Puppet Learning VM that this book is based on comes bundled
with Puppet Master and Apache HTTP Server, so we don't have to worry about the
installation and configuration. If you are interested in the installation process, there
is good documentation available online that you can find by doing a search with the
key words puppetmaster and rack.

The Puppet Master components
The Puppet binary running inside the Apache HTTP Server is responsible for
distribution of Puppet resources to the clients. But what about the other services that
I briefly mentioned in the previous paragraph? Well, there is a separate component
for each of the services, which we should discuss now in few words.

Certificate Authority for authorization
Certificate Authority (CA) manages SSL certificates that are used to authenticate
nodes and encrypt HTTP connections between Puppet Agent and Puppet Master.
Before Agent can connect to Puppet Master, it must have a valid SSL certificate that
is signed by the CA, which is installed on the Puppet Master.

If Agent hasn't got a valid certificate, Puppet Master will reject the connection from
the Agent. The certificate signing process can be fully automated so that Puppet
Master automatically processes certificate signing requests that it receives from
the Agents. But for added security and control over which Agents are allowed to
connect to the Puppet Master, you can choose to manually sign the certificates
on the command line on the Puppet Master or in Puppet Enterprise Console.

Mcollective for orchestration
Orchestration is needed when we want to have a better control over the deployment
process in the environment that consists of multiple Puppet Agent nodes. As an
example, our cluster that consists of Load Balancer, Web Server, and Monitoring
Server nodes we could use orchestration to sequence the deployment in the
following three steps:

1.	 First, run Puppet on the Web Server node to deploy the web app.
2.	 Then, run Puppet on the Load Balancer node.
3.	 Finally, run Puppet on the Monitoring Server node to add Web Server and

the Load Balancer node into monitoring after the Web Server and Load
Balancer nodes are up and running to avoid unnecessary alerts to be raised
by the Monitoring Server.

Scaling Up the Puppet Environment

[136]

The orchestration component in Puppet is called Mcollective, which is a message
queue application built atop of an open source software called ActiveMQ. Message
queue is running on the Puppet Master node, and Puppet Agents that run
Mcollective clients registers with the message queue and consumes messages
that are sent to the queue by Puppet Master.

PuppetDB for exported resources, PuppetDB
queries, and reporting
Functionality-wise, I'd rate PuppetDB as the most interesting and exciting component
of all. Like the name implies, PuppetDB is a database application that stores various
information about Puppet Agents, such as the services they provide, facts, and in
what state the Puppet Agents are in.

PuppetDB helps to make cluster configuration more dynamic and automated in a
way that it enables Puppet to adjust the configuration at runtime. Every time Puppet
is run on the Puppet Agent node, the information in PuppetDB gets updated. For
example, if the IP address of a Puppet Agent changes, say as a result of Puppet Agent
node being rebooted, the new IP address gets updated into PuppetDB under fact
called ipaddress. In addition to facts, PuppetDB also keeps record on what resources
(for example, files and classes) have been applied on each node. Information about
resources is useful when we want to discover what services each node is running.
For example, PuppetDB can tell us that the Web Server node has the class webapp
applied on it and the Load Balancer node includes the class loadbalancer.

Information stored in PuppetDB can be queried in the Puppet manifest file and we
can utilize this information during the deployment. Instead of specifying static
IP address for the Web Server node in the loadbalancer class, we can write a
PuppetDB query that returns the IP address of the node that the class webapp has
applied on it. So, when the IP address of the Web Server node changes, we don't
have to tweak the configuration in the manifest and reapply it. Instead we just rerun
Puppet on the Load Balancer node, which results in new query to be made and
PuppetDB returns back the new IP address as a query result.

Another useful feature provided by PuppetDB is called exported resources.
Exported resources enable Puppet Agent nodes to export resources to PuppetDB
from where other nodes can collect or import exported resources. Here, the PuppetDB
query is used for exchanging information between nodes, and exported resources
are used for passing resources from node to another. We will look into exported
resources and PuppetDB more in detail and learn how to use them in Chapter 7,
Making the Configuration Dynamic.

Chapter 6

[137]

Before we can use any of these features, we have to link up Puppet Agent nodes with
the Puppet Master.

Connecting Puppet Agent with Puppet
Master
Before Puppet Agent can connect to Puppet Master, it has to find out the host name
of the Puppet Master and that host name must resolve an IP address that belongs to
the Puppet Master node. Our Puppet Master is currently configured to acquire an IP
address from DHCP server. This is not ideal because if the IP address changes on the
Puppet Master node, we have to reconfigure Puppet Agents to make the connection
to Puppet Master work again. To avoid this problem, it is good practice to configure
Puppet Master with a static IP address.

We will also create a new environment on the Puppet Master node and configure
Agent nodes to join this environment. As we have to do couple of tweaks on the
Puppet Master node as well as on the Puppet Agent nodes, I feel that it's best that
we consolidate all the bootstrap logic in a new Puppet module, which we'll call
the bootstrap.

Creating the bootstrap module for Puppet
Master and Puppet Agent
The module bootstrap will be created inside the shared folders, which is
mounted as /media/sf_learning across all nodes. You can use any of the existing
virtual machines to create the module, but I've decided that I will create a new
module on the Puppet Master node, which is called learn_puppet_centos-6.5 in
VirtualBox Manager.

First, launch the virtual machine, and then run the following commands to create the
bootstrap module:

1.	 Go to the shared folder directory:
cd /media/sf_learning

2.	 Create a module learning-bootstrap:
puppet module generate learning-bootstrap --skip-interview

Scaling Up the Puppet Environment

[138]

3.	 Rename the module directory to remove the prefix learning-:
mv learning-bootstrap bootstrap

4.	 Create a templates directory for Puppet templates:
mkdir bootstrap/templates

5.	 Using the command tree, we can verify that the directory was
successfully created, and it displays the following content:

Configuring static IP address on Puppet
Master
The first task for us is to change the network configuration on Puppet Master node
in a way that it uses static IP address instead of dynamic IP address. When the IP
address is fixed, it is easier for us to configure Puppet Agent nodes to connect to
known IP address.

Chapter 6

[139]

Defining resource processing order with the
arrow notation
Resource processing order can be defined within the resource with require and
notify attributes. If you have many resources that requires strict ordering, it may
be difficult to manage resources with these attributes.

Puppet provides an alternative syntax, which I call the arrow notation, to order
resources outside the resource definition block.

Let's take a look at an example where we have two Puppet resources: file {
'myfile':} and service { 'myservice': }.

If we want the file resource to be processed before the service resource,
we need to traditionally declare the require attribute inside the service resource
in the following way:

file { 'myfile': }
service { 'myservice':
 require => File['myfile'];
}

With the arrow notation, we can express the same ordering by removing the require
attribute and adding an arrow in between resources:

file { 'myfile': } -> service { 'myservice': }

Another form of the preceding arrow notation is an arrow with a tilde
character ~>. The arrow using tilde is an analog to the notify attribute. If we
would like the service { 'myservice': } to be restarted only in the case that the
resource file { 'myfile': } changes, we can express it with the notify attribute
in the following way:

file { 'myfile':
 notify => Service['myservice']
}
service { 'myservice': }

Scaling Up the Puppet Environment

[140]

The same results can be achieved with the tilde arrow notation like this:

file { 'myfile': }~> service { 'myservice': }

Next, we will try this in practice by ordering resources in the class
bootstrap::master using the arrow notation.

Creating class bootstrap::master
All Puppet Master-related configuration can be contained within a subclass called
bootstrap::master, which we will create in the file bootstrap/manifests/
master.pp.

Now, create a new file in the text editor with the following content and save it as
master.pp under the manifests directory.

Chapter 6

[141]

The preceding master.pp file creates a class bootstrap::master that contains a
bunch of Puppet resources. Let's look at them more in detail:

•	 Line 1 declares a class bootstrap::master.
•	 Line 2 is a comment related to the user resource on lines 3-6. Comments in

manifests must be prefixed with the # sign.
•	 Line 3 begins a user resource for user account pe-puppet. The pe-puppet

user runs the process pe-puppetserver, which is the Puppet Master process.
•	 On Line 4, the groups attribute defines the name of the group that the user

account pe-puppet should be member of.
•	 Line 5 closes the user resource statement.
•	 Line 6 is another comment line. You may leave the comment out if you like

but comments can be helpful when revisiting manifest again in future.
•	 Line 7 declares a file resource /etc/puppetlabs/puppet/environments/

development. The file resource creates a Puppet environment called
development.

•	 Line 8 sets an ensure attribute with value directory, which means that the
file resource type is a directory (instead of a file).

•	 Line 9 closes the file resources.
•	 Line 10 sets the resource order. With the arrow notation ->, we tell Puppet

that the /etc/puppetlabs/puppet/environments/development directory
must be created before the link manifests is created inside the directory.

•	 Lines 12 to 15 specify another type of file resources, which is defined as a
link using the ensure attribute (on line 13). The link uses the target attribute
(on line 14) to specify a file or directory that link should be pointed to.
These resources create a link /etc/puppetlabs/puppet/environments/
development/manifests that points to the directory /media/sf_learning/
manifests in shared folders, which we will create shortly.

•	 Line 16 adds another ordering constraint. Here, we tell Puppet that the
link specified on lines 12 to 15 must be processed before the link defined
on lines 18 to 21.

Scaling Up the Puppet Environment

[142]

•	 Lines 18 to 21 create another link /etc/puppetlabs/puppet/environments/
development/modules that points to the shared folder directory /media/
sf_learning.

•	 Line 23 begins the statement for a file resource /etc/sysconfig/network-
scripts/ifcfg-eth1, which is the file that defines the network interface
configuration for host-only network interface eth1.

•	 Line 24 references the template function that generates the content from
the template file ifcfg-eth1.erb, which we will create shortly. Here, I'm
using Puppet's built-in variable ${module_name} to reference the name of
the module where the template file lives in. In this instance, the value of the
variable becomes bootstrap. I like to use the ${module_name} variable in
the template function because I can reuse it easier in other modules.

•	 Line 25 closes the file resources definition.
•	 Line 26 creates order constraint between the file resource and the

service resource using arrow notation ~>. As mentioned in the previous
paragraph, the arrow notation ~> (tilde greater than) is a shorthand for the
notify attribute.

•	 Line 28 creates a service resource called network, which we want to restart
after the IP address on the host has been changed.

•	 As this resource has no attributes, we can define it as a one line statement to
make manifest more compact.

•	 Line 29 ends the bootstrap::master class definition.

Once you have added all these lines into the file, save it as master.pp inside the
directory bootstrap/manifests directory.

Referencing an out-of-scope variable from
Puppet template
Next, we'll have to create the template file that the bootstrap::master class is
referencing (on line 24 in master.pp). In this template file, we will use the so-called
out-of-scope variable reference, which in Puppet terminology means a variable that
is declared in an external Puppet class.

Chapter 6

[143]

You can find the out-of-scope variable references on lines 4 and 5 in the
following screenshot:

Let's have a look at the content of the template file bootstrap/templates/ifcfg-
eth1.erb:

•	 Line 1: The DEVICE parameter specifies the name of the network interface
that we want to configure. The interface eth1 is the name of the host-only
network interface that we added on the host in Chapter 2, Managing Packages
in Puppet.

•	 Line 2: BOOTPROTO specifies the protocol that network interface should
be using. The previous value of the parameter was dhcp, but as we are no
longer using DHCP, we set this to none.

•	 Line 3: The ONBOOT parameter value yes means that the network interface
should be activated at boot time.

•	 Line 4: IPADDR specifies the IP address that the operating system should
allocate for the network interface.
As we are in the process of disabling DHCP address and replacing it with a
static IP address, we must provide the value of the address somehow. Here,
we use the Puppet function scope to reference the out-of-scope variable
called puppetmaster_ip that is declared in the class bootstrap. This is done
with syntax such as scope['::class-name::variable_name'].

•	 Line 5: The NETMASK parameter defines the subnet mask for the network for
the IP address. Here, we use another out-of-scope variable reference, which
at this time references the variable puppetmaster_netmask defined in the
bootstrap class.

Now, go ahead and create new file in text editor with the the preceding content and
save the file as ifcfg-eth1.erb under the directory bootstrap/templates/. Then,
we can move on to adjust the main bootstrap class before we apply the class on the
Puppet Master node.

Scaling Up the Puppet Environment

[144]

Conditional statements
Let's have a look at how we can add more logic into Puppet manifests by introducing
conditional statements. We just created the class bootstrap::master, which we
will soon apply on the Puppet Master node. A little later, we'll create a class called
bootstrap::agent, which will be applied on the Puppet Agent nodes. This means
that we'll have two classes for different Puppet "roles" to choose from.

In Chapter 4, Monitoring Your Web Server, we had a similar decision to make
when we applied the nagios::server class on the Nagios Server node and
the nagios::client class on the Nagios Client nodes. The decision on which
class to apply on each node was done by us at the time when we ran the puppet
apply command.

With conditional statements, we can hand over this decision-making task to
Puppet and let Puppet to evaluate which class to apply on each node.

The two most commonly used types of conditional statements are the if and
case statements. Both of these statements are used to evaluate whether the given
condition is true or false. Based on the outcome of the evaluation, Puppet selects
the block of code to execute.

The if statement
If you have ever done programming or scripting, you are probably familiar with
the if statement; this is used to evaluate whether given the condition is true or false.
When the if condition is true, the program executes a block of code. Otherwise, this
block of code is ignored.

The syntax of the if statement in Puppet is as follows:

if condition1 {
 statement1
}

The if statement is often combined with the else statement that defines what to do
when condition is false or not true. Or, to evaluate multiple conditions, we can add
an elsif block in between else and if blocks in the following way:

if condition1 {
 statement1
}
elsif condition2 {
 statement2

Chapter 6

[145]

}
else {
 statement3
}

Let's see how we can utilize the if statement in the bootstrap module to
conditionally apply a class based on the value of variable role. Open the file
bootstrap/manifests/init.pp in the text editor and add the following
content to it:

The file init.pp defines a class bootstrap that has three input parameters and
conditional statements for checking the role of the node.

Let's look at the input parameters first on lines 2, 3, and 4.

•	 Line 2: The $puppetmaster_ip parameter defines the IP address of the
Puppet Master node. This parameter is referenced on line 4 in the template
file bootstrap/templates/ifcfg-eth1.erb, which we created a moment
ago. If we don't provide this parameter at the time when applying, the class
Puppet Master will be configured with the IP address 192.168.56.2.

•	 Line 3: The $puppetmaster_netmask parameter defines the subnet mask for
Puppet Master node. This variable is referenced in the template file ifcfg-
eth1.erb on line 5 and the default subnet mask value 255.255.255.0.

•	 Line 4: The $role variable defines the role of the Puppet node. The default
value is unquoted false, which means that the value is a so-called Boolean
value. The variable $role is referenced by the if statement on line 6, where
Puppet evaluates whether the role is master.

Scaling Up the Puppet Environment

[146]

The conditional statement that begins on line 6 and ends on line 11 has the
following logic:

•	 Line 6: The if $role == 'master' statement checks whether the input
parameter value is the master. This condition is true only if we provide this
parameter at the time when the class is applied, if we don't, it defaults to
false and the statement inside the if block is ignored.
We can provide the variable value by applying the class using syntax class
{ 'bootstrap': role => 'master' }.

•	 Line 7: If the condition on line 6 is true, then Puppet includes the class
bootstrap::master.

•	 Line 8: The if statement is closed with a closing curly bracket.
•	 Line 9: The else block (lines 9-11) is processed only if the if statement is

false. In practice, this means that if we don't set the value master for the
variable $role, the statement class { 'bootstrap::agent': role =>
$role } inside the else block is processed.
This statement passes the parameter role into the class bootstrap::agent,
and we can use the role parameter to configure the certname of the
Puppet Agent.

•	 Line 12 closes the class bootstrap.

Next, we should try to apply the class on the Puppet Master node. Before we apply
the class, I'd recommend that you revert Puppet Master virtual machine state to
snapshot host-only-networking.

Here are the steps required to restore the snapshot:

1.	 Select the virtual machine learn_puppet_centos-6.5 and click on the
Snapshots button.

2.	 Select the snapshot host-only-networking and click on the Restore
Snapshot button.

Chapter 6

[147]

3.	 Uncheck the box that says Create a snapshot of the current machine state,
and then click on the Restore button:

Creating site.pp file for node classification
We have already done node classification from the command line when applying
Puppet manifests. In Puppet terminology, node classification means to associate a
set of Puppet classes with the Puppet Agent node. Once Puppet Agent is linked with
the Puppet Master, we no longer run Puppet from the command line, instead, we
run Puppet Agent in so-called daemon mode. In the daemon mode, Puppet Agent
connects to Puppet Master periodically to check whether Puppet Master has new
manifests that should be applied on the agent.

The site.pp file defines what classes should be applied on the Puppet Agent
node when it connects to the Puppet Master. This file is stored under the directory
called manifests that lives in the root of the environment directory on the Puppet
Master. We defined an environment directory called development inside the class
bootstrap::master (line 7 to 9) that we created in the Creating class bootstrap::master
section. In the same class, we also created the directory manifests as a link (line 12
to 15) and pointed the link to the directory /media/sf_learning/manifests in the
shared folders, which doesn't exist yet.

Here you can find the example site.pp file that contains node classifications for
three nodes.

Scaling Up the Puppet Environment

[148]

Node classification begins with the keyword node followed by the certname
of the node, which is wrapped in single quotation characters. After certname,
there comes an opening curly brace { and a list of classes that should be applied
on the Puppet Agent. Node classification ends with the closing curly brace character
}, as shown in the following screenshot:

Before you create the site.pp file in text editor, create a new directory called
manifests under the Shared Folders directory (for example /home/jussi/
learning). Then, create site.pp with the preceding contents and save it inside
the directory manifests.

Applying bootstrap class on Puppet Master
Now, we are ready to apply the bootstrap class with role master:

1.	 Start the Puppet Master virtual machine. Once it boots up, you can log on
with the username root and password puppet.

2.	 Go to the directory /media/sf_learning:
cd /media/sf_learning

Chapter 6

[149]

3.	 Apply the bootstrap class with the role parameter and value master:

puppet apply --modulepath=./ -e 'class { 'bootstrap': role =>
'master' }'

Once Puppet has finished applying the class, you can check whether
the IP address was changed by running the command hostname -I.
The hostname command shows two IP addresses of which the second
address belongs to host-only network interface eth1.

Once Puppet has successfully applied the bootstrap class on the Puppet Master,
we must reboot the host so that Puppet Master services register the new IP address
192.168.56.2 and the new environment called development. You can reboot the
system by running the command reboot on the command line. Alternatively,
you can stop and start the virtual machine from the VirtualBox Manager.

Scaling Up the Puppet Environment

[150]

A first look at the Puppet Enterprise Console
Puppet Enterprise Console is a web application that runs on the Puppet Master
node. We will have a look at it more in detail in Chapter 9, The Puppet Enterprise
Console, but in this chapter, we will use it to create a node group and sign certificates
for Puppet Agent nodes.

Bypassing the certificate warning message
After rebooting the Puppet Master, you should be able to access Puppet Enterprise
Console from https://192.168.56.2. When you open the Enterprise Console
for the first time, you may see an SSL certificate warning message displayed in the
browser. The warning message is caused by a self-signed SSL certificate used by
Puppet Enterprise Console. Here is the certificate warning message that appears
when you're using Chromium web browser. To proceed to the login screen, we
need to first click the Advanced link, and then click the link that says Proceed to
192.168.56.2(unsafe):

Chapter 6

[151]

Logging on to the Puppet Enterprise Console
Once you have got past the certificate warning messages, you should see a login
form in front of you. You can log on to the Puppet Enterprise Console using the
username admin and password learningpuppet.

503 Service Temporarily Unavailable?
If you are seeing error 503 Service Temporarily Unavailable instead of the logging
screen, run the following commands on the Puppet Master node:

service pe-console-services restart

service pe-httpd restart

Then, refresh the browser window by pressing F5 key, and now the login form
should appear.

Scaling Up the Puppet Environment

[152]

Creating a node group
Puppet node group is a method to group Puppet Agents and link the group with
an environment. The class bootstrap::master (lines 7 to 9 in file bootstrap/
manifests/master.pp) that we applied on the Puppet Master created an
environment called development. Now, we need to add some Puppet Agents into
this environment, and that can be done with a node group that we'll create next.

1.	 Log on to Puppet Enterprise Console with the username admin and
password learningpuppet.

2.	 Click the Classification menu to open the node group list.
3.	 In the Node group name field, type in development. The parent name

should be default.
4.	 From the Environment drop-down menu, select the environment called the

development.
5.	 Click on the Add group button.

6.	 Find the development node group from the node group list and open it.
7.	 Click the Edit node group metadata link in the right-hand top corner of the

node group view.
8.	 Tick the Override all other environments checkbox. This option ensures

that the node group doesn't inherit any Puppet classes from the parent node
group. Only classes listed in the node classification file site.pp are applied
on the nodes in the development node group.

Chapter 6

[153]

9.	 Click on the Commit 1 change button to save changes.

We now have a node group called development that doesn't contain any nodes yet.
We can leave the Puppet Master node running while we bootstrap the Web Server
node. Once Puppet Agent node is bootstrapped, we will return to Puppet Enterprise
Console to sign the Agent's certificate and add it to the node group.

Bootstrapping Puppet Agent
The else block inside the class bootstrap (line 9 to 11) references the class
bootstrap::agent, which we haven't yet created. The bootstrap process on
the Agent should perform the following two tasks:

•	 Add a new Puppet Master IP address into the file /etc/hosts so that
the agents can connect to Puppet Master using the preconfigured Puppet
Master host name learning.puppetlabs.vm

•	 Configure a certname for the Puppet Agent based on the input
parameter role

Scaling Up the Puppet Environment

[154]

The bootstrap::agent class definition shown in the following screenshot will
perform these tasks for us:

The class bootstrap::agent contains two Puppet resources and an if statement.
Let's inspect the class line by line:

•	 Line 1 begins the class definition. This class accepts an input parameter
called role, which is passed in from the class bootstrap (line 10 in the file
bootstrap/manifests/init.pp).

•	 Line 2 defines a host resource for the host name learning.puppetlabs.vm.
•	 Line 3 adds a host alias called puppetmaster for the host resource.
•	 Line 4 sets the IP address for the host resources. Here we use an out of scope

variable to reference the variable puppetmaster_ip defined in the class
bootstrap.

•	 Line 5 closes the host resource definition.
•	 Line 6 has a if statement that checks whether input parameter $role was

defined. The default value false is defined as an input parameter on line 1.
Unless $role is defined at runtime, it defaults to false and the if block is
not processed.

Chapter 6

[155]

•	 Line 7 begins an exec resource statement, which sets the certname on the
node based on the value of the parameter $role.

•	 Line 8 specifies the command that sets the certname value for the Puppet
Agent. The value of the certname value is a combination of a variable $role
(wrapped in curly braces) and a string development.vm.

•	 Line 9 is needed to make the exec resource idempotent, which means that
the command on line 8 will be executed unless the command on line 9
returns a value 0. This command first prints out the current certname of the
host and the output of the command is piped (|) into the grep command that
matches the output to the pattern ${role}.development.vm.

•	 Line 10 closes the exec resource.
•	 Line 11 closes the if statement.
•	 Line 12 finally closes the class bootstrap::agent.

That's everything we need to bootstrap Puppet Agent nodes. Now, it's your turn to
create the file bootstrap/manifests/agent.pp with the preceding content. Once
you are done with it, it's time to apply it on the Web Server node.

Applying the bootstrap::agent class via the
bootstrap class
We will first apply the class bootstrap::agent on the Web Server node. The name
of the Web Server virtual machine is puppet-agent and it contains a snapshot called
puppet-agent-web, which we should restore prior to launching the virtual machine.

Here are the steps to bootstrap the Web Server node:

1.	 Restore the puppet-agent virtual machine to snapshot puppet-agent-web.
2.	 Launch the virtual machine.
3.	 Log on to virtual machine using the username root and password puppet.
4.	 Move to the shared folder directory /media/sf_learning:

cd /media/sf_learning

5.	 Apply the class bootstrap with the role web:

puppet apply --modulepath=./ -e 'class { 'bootstrap': role =>
'web' }'

Scaling Up the Puppet Environment

[156]

Please note that we don't call the class bootstrap::agent directly, but instead we
use the bootstrap class as the entry point. If we called bootstrap::agent directly,
the out-of-scope variable ${bootstrap::puppetmaster_ip} would not be visible to
the bootstrap::agent class that references it.

Initiate a connection with the Puppet Master:

puppet agent -t

When Puppet runs properly and you've run the puppet agent -t command,
the following activity is printed on the screen:

The command puppet agent -t that we executed as the last step of the
bootstrapping process initiates a connection with the Puppet Master. This command
creates a new certificate signing request, which the Agent sends to the Puppet
Master. You will also see a message Exiting: no certificate found and
waitforcert is disabled, which we will rectify by signing the Puppet Agent's
certificate on the Puppet Master.

Let the puppet-agent virtual machine keep running while we visit
the Puppet Enterprise Console to sign the certificate. Once the
certificate has been signed, we will rerun the puppet agent -t
command on Puppet Agent.

Chapter 6

[157]

Signing the certificate on the Puppet
Enterprise Console
The command puppet agent -t that we just ran on the Puppet Agent node resulted
in a certificate signing request the to the Puppet Master. Now, we can sign the
Puppet Agent certificate on the Puppet Enterprise Console by following these steps:

1.	 Open the URL https://192.168.56.2 in the web browser.
2.	 Log on with the username admin and password learningpuppet.
3.	 If you already were logged on to the Puppet Enterprise Console, refresh the

window by pressing F5.
4.	 Click on the 1 Node Request link in the right-hand top corner of the

landing page.

5.	 Click the Accept button to sign the certificate.

If you happen to find more than one node in the node request view,
only sign the certificate of the node web.development.vm.

Scaling Up the Puppet Environment

[158]

6.	 After clicking the Accept button, you should see a message Node request
accepted that confirms the certificate was signed successfully:

Next, we'll add the node web.development.vm into the development node group.

Adding nodes to the node group
Now that the certificate has been signed, we should add the Web Server node
into the node group called development. As mentioned earlier, node group is
a collection of nodes and each node group has an environment, which is also
called development. Once the node has been added to the node group, we can
rerun the command puppet agent -t on the node web.development.vm to
trigger deployment.

Chapter 6

[159]

Here are the steps on how to add the node web.development.vm to the node
group development:

1.	 On the Puppet Enterprise Console, go to the Classification menu.
2.	 Open the node group development.
3.	 In the Rules view, click the Certname textbox at the bottom of the page to

expose a list of Puppet Agent nodes.
4.	 Select the node web.development.vm.
5.	 Click on the Pin node button.
6.	 Click on the Commit 1 change button at the bottom of the page.

Deploying the Web Server node against
Puppet Master
We have now signed the Puppet Agent certificate and added the node web.
development.vm into the node group called development. Now, we can deploy the
node using the command puppet agent -t. The option -t stands for test and it
enables the Puppet Agent process to run on the foreground and to report Puppet
Agent activity on screen.

Running the puppet agent command without the -t option will
start the Puppet Agent process on the background and the activity
is logged into the file /var/log/messages.

Scaling Up the Puppet Environment

[160]

Here are the steps the Puppet in the agent mode:

1.	 Log on to the Web Server node with the username root and
password puppet.

2.	 Run Puppet Agent on the foreground:

puppet agent -t

During the Puppet Agent run, you will see the following messages, which you can
safely ignore:

Warning: Local environment: "production" doesn't match server specified
node environment "development", switching agent to "development".

This message means that the default Puppet environment production is overridden
by the environment development that we configured on the Puppet Master.

Warning: The package type's allow_virtual parameter will be changing its
default value from false to true in a future release. If you do not want
to allow virtual packages, please explicitly set allow_virtual to false.

 (at /opt/puppet/lib/ruby/site_ruby/1.9.1/puppet/type/package.rb:430:in
'block (3 levels) in <module:Puppet>')

This warning comes from the puppetlabs-apache module and it can be
safely ignored.

Chapter 6

[161]

When Puppet run finishes successfully, you should see the following lines at the
end of the Puppet run:

Notice: /Stage[main]/Apache::Service/Service[httpd]/ensure: ensure
changed 'stopped' to 'running'

Finished catalog run in 96.83 seconds

Info: /Stage[main]/Apache::Service/Service[httpd]: Unscheduling refresh
on Service[httpd]

The best way to verify whether the Web Server deployment was successful is to
open the Web Server URL http://192.168.56.11. Please note that Web Server IP
address may be different from 192.168.56.11 in your environment. You can check the
Web Server's IP address with commands hostname -I and ifconfig eth1.

Bootstrapping Load Balancer and Nagios
Server nodes
Congratulations for successfully connecting your first node with the Puppet
Master. Now, we should repeat the bootstrap process on the load balancer and
the Nagios nodes.

I feel that I don't have to describe this process in detail as it is identical to
bootstrapping process on the Web Server node. Just as a reminder: here is an
overview of the process of bootstrapping the load balancer and Nagios Server nodes:

1.	 Restore the virtual machines to the previous snapshot state.
2.	 Boot up the virtual machines and run the bootstrap commands.
3.	 The bootstrap command for load balancer and Nagios Server nodes are

as follows:
puppet apply --modulepath=./ -e 'class { 'bootstrap': role =>
'loadbalancer' }'

puppet apply --modulepath=./ -e 'class { 'bootstrap': role =>
'nagios' }'

4.	 Run the command puppet agent -t to generate the certificate
signing request.

5.	 Sign certificates and add nodes to the development node group on the
Puppet Enterprise Console.

Scaling Up the Puppet Environment

[162]

If you don't see the nodes loadbalancer.development.vm and
nagios.development.vm on the drop-down list when adding
nodes to the node group, try typing in both names, and then click on
the Pin node button.

6.	 Run the command puppet agent -t on Puppet Agent nodes to
deploy them.

Summary
In this chapter, we discussed Puppet features that help manage Puppet environments
at scale. By now, you should have a fairly good understanding on what Puppet
Master is used for, how to link Puppet Agents with the Master, and how to manage
the Agents' certificates. We discussed the concept of node classification and created a
site.pp file that defines which classes to associate with Puppet Agents.

This chapter also introduced a couple of new Puppet language features. These
features were out-of-scope variables that make variables accessible from one
Puppet module to another and conditional statements to enable Puppet to apply
decision-making logic to the manifest execution.

Next, in Chapter 7, Making the Configuration Dynamic, we'll learn how make use of
stored configurations and PuppetDB to enable nodes to exchange configurations
between them.

[163]

Making the Configuration
Dynamic

Having a Puppet Master that distributes manifests across multiple nodes is
convenient. However, getting Puppet agents linked up with the Puppet Master
requires a fair amount of time to get the manifests in the right order. One can ask if
this exercise really worth the effort. I'd say yes, but only if we utilize the additional
Puppet Master capabilities.

In the previous chapter, we briefly discussed the topic of PuppetDB. In this
chapter, we will learn how make use of it in practice to transform a static
configuration into a dynamic one using PuppetDB and a feature called
exported resources that sits on top of PuppetDB.

In this chapter, we'll cover the following topics:

•	 An introduction to PuppetDB and exported resources
•	 Exported resources versus PuppetDB
•	 Exporting and importing resources
•	 Tagging resources and using a tag as a filter when importing resources
•	 Creating a check on the Nagios client and exporting resources to the

nagios server
•	 Purging Nagios resources
•	 Querying PuppetDB from the command line
•	 Using the query_nodes and query_facts functions in Puppet manifests
•	 Purging resources from PuppetDB

Making the Configuration Dynamic

[164]

An introduction to PuppetDB and
exported resources
PuppetDB is a database service that is used to store and query information of Puppet
Agents. It typically runs on the Puppet Master node, but it can also be installed on a
separate database server for performance and/or security reasons.

PuppetDB consists of two key components:

•	 A SQL database to store data
•	 An API to query and manipulate the data

The software that provides the SQL database is called PostgreSQL, which is a
popular open source database project. The PostgreSQL process listens on the TCP
port 5432 for the incoming connections from the API. Although the PostgreSQL
database can be accessed directly from client software, it is not recommended.
Instead, the connection to PuppetDB should always be done via the API. PuppetDB
API exposes the information from the SQL database to the API clients via the HTTP
protocol, and it is also used by Puppet to query and store the information in the
database. PuppetDB API comes with a built-in web server called Jetty that listens
on TCP ports 8080 (HTTP) and 8081 (HTTPS).

The connectivity from the PuppetDB Client to the PostgreSQL database via
PuppetDB API can be illustrated with the following diagram:

Exported resources
One of the services that PuppetDB provides is called exported resources, also known
as storeconfigs. Exported resources enable the Puppet Agent nodes to exchange
resources between them by exporting a resource on one node and importing the
resource to another node. We can export any type of a Puppet resource, including
the custom types. In this chapter, we will learn how to export and import the built-in
resource types, nagios_host and nagios_service.

Before we dive into this, let's briefly take a look at the benefits of using
exported resources.

Chapter 7

[165]

Exported resources are useful when configuring a cluster of nodes that share services
between them, and the nodes need to be able to discover services from each other
automatically. If the formation of the cluster is static (a fixed number of nodes in the
cluster), its configuration can be managed without exported resources. However,
clusters these days are not static but dynamic. Modern clusters are scaled up and
down according to demand. To manage a configuration that can adjust to changes as
they happen, we need tools such as exported resources that dynamically adjust the
configuration of the cluster.

To demonstrate how exported resources enable you to turn a static configuration into
a dynamic one, we will revisit the nagios module, which we created in Chapter 4,
Monitoring Your Web Server, and modify it slightly.

Exporting and importing resources
Before we add logic to export and import resources, let's take a look at the
nagios::resources class in its current form:

Lines 2 to 9 include the nagios_host definition of our web server. The
nagios_service resource on lines 10 to 18 defines the HTTP monitoring
check, which is associated with the web server node.

Making the Configuration Dynamic

[166]

This configuration works fine as long as the web server node uses the IP address
192.168.56.11 (set by the address attribute on line 4). When the IP address of the
web server changes, or we add another web server for monitoring, we are required
to manually update the manifest to reflect the changes in the cluster.

A better way to do this is to make the nagios_host and nagios_service resources
as exported resources, and let the nagios server node import them. This way, the
resources get automatically updated when the IP address changes or when we add
more nodes to the cluster, and we don't have to manually update the manifest every
time the change happens.

To achieve this, we are going to move the nagios_host and nagios_service
resources to a new class called nagios::check_http, and make the resources
exported.

Exporting resources
Let's create a new file called check_http.pp under the nagios/manifests directory,
and declare a nagios::check_http class with the following content:

You can cut lines 2 to 18 from the nagios::resources class, paste them
into the nagios::check_http class, and remove the target, notify,
and require attributes.

The nagios::check_http class declares the nagios_host and nagios_service
resources that are exported. To export a resource, we prefix the type with a double
at sign notation, as in @@nagios_host and @@nagios_service.

Chapter 7

[167]

Let's take a look at the nagios::check_http class more in detail:

•	 Line 1 begins with the nagios::check_http class definition.
•	 Line 2 declares an exported resource @@nagios_host.

The name of the resource is a reference to facter ipaddress_eth1. The
reason why we use facter as the exported resource name is because the
name of the resource must be unique for every resource that is exported.
If we use a fixed string, for example, web-server, for the resource name,
this would cause a Duplicate declaration error when the resources are
collected from more than one node. Using facter ipaddress_eth1 as
the resource name, we can be sure that the resource name is unique when
multiple nodes export the same resource.

•	 Lines 3 and 4 set the host_name and address attribute values based on
facter ipaddress_eth1.

•	 Line 5 associates nagios_host with the host template called linux-server.
•	 Line 6 introduces a tag attribute, which is often used with exported resources.

We tag the nagios_host resource with the name of the Puppet environment
(the ${::environment} variable reference) of the node that exports the
resource. When the resource is imported, which we will do on the Nagios
Server host shortly, we will use the tag as a filter to only collect the resources
that are exported on hosts that belong to a specific environment.

•	 Line 7 closes the nagios_host resource definition.
•	 Line 8 declares another exported resource called nagios_service,

which creates a Nagios HTTP check.
As every Puppet resource name must be unique, we construct a unique
name by joining the value of facter ipaddress_eth1 and a string _HTTP.
By creating a unique name this way, we can associate this check with
multiple hosts and not have to worry about the resource name clashes.

•	 Line 9 associates the check with the nagios_host resource.
•	 Lines 10 to 12 define attributes that must be supplied with the

nagios_command resource.
Refer to Chapter 4, Monitoring Your Web Server, for a description of
the attributes.

•	 Line 13 tags the nagios_service resources with the name of the environment.
•	 Line 14 closes the nagios_service definition.
•	 Line 15 closes the nagios::check_http class.

Making the Configuration Dynamic

[168]

Once the nagios::check_http class has been created, save the file as check_http.pp
under the manifests directory.

Then we need to associate the class with the web server node. You can choose
whether you want to do it by adding an include nagios::check_http statement to
the webapp class in the learning/webapp/manifests/init.pp file or by associating
the nagios::check_http class via the node definition file learning/manifests/
site.pp.

I would prefer to include the class in the node definition file learning/manifests/
site.pp. This is how the definition of the web.learning.vm node will look like after
I've associated the nagios::check_http class with the node on line 4:

Importing resources
Before we can see how exported resources work, we must configure a resource
collector that imports the nagios_host and nagios_service resources from
PuppetDB to the nagios server host. Importing resources is done with the
Resource_type <<| tag == search_expression |>> syntax.

For example, to collect all the nagios_host resources that belong to our
environment, we do it with the following statement:

Nagios_host <<| tag == $::environment |>>

The statement begins with a reference to the type of the resource we wish to collect.
When referencing a Puppet resource, the resource type must begin with a capital
letter (Nagios_host instead of nagios_host). After the resource type declaration,
we have the so-called spaceship notation <<| |>> with an optional tag parameter
inside it. Although the tag parameter is optional, I recommend that you use it;
otherwise, the collection is done for every nagios_host resource that is stored
in PuppetDB.

Chapter 7

[169]

We can collect the exported nagios_host and nagios_service resources by
altering the nagios::resources class in the file resources.pp file, as shown
in the following screenshot:

The nagios::resources class contains two file resources and a resource for
importing the nagios_host and nagios_service resources.

File resources (on lines 2 to 9) create the so-called symbolic links that are needed
when purging Nagios resources with Puppet. We will cover Nagios resource
purging in detail later in this chapter, but here is some background on why these
symbolic links are needed.

By default, Puppet stores the nagios_host resources in the /etc/nagios/nagios_
host.cfg configuration file and the nagios_service resources in the /etc/nagios/
nagios_service.cfg file. The issue with these file locations is that the nagios server
does not process these files unless it is explicitly told to do so in the main nagios
server configuration file, /etc/nagios/nagios.cfg. Symbolic links are created to
workaround this problem.

By default, the nagios server processes all the files, including symbolic links,
that have the .cfg file extension in the /etc/nagios/conf.d directory. To
make Puppet play nicely with the default nagios server configuration, we
create two links in the /etc/nagios/conf.d directory, which points to the
/etc/nagios/nagios_host.cfg and /etc/nagios/nagios_service.cfg files.

Once the links are created, we declare the resource collection for the
nagios_host and nagios_service resources.

Making the Configuration Dynamic

[170]

Resource definitions for nagios_host and nagios_service that were
previously present in this class have been replaced by the resource collectors
for Nagios_host and Nagios_service.

There are two import statements:

•	 Lines 10 to 13 collect all the Nagios_host resources that are tagged with the
name of our environment:

°° Using the require attribute, we tell Puppet that the nagios package
must be installed prior to collecting the Nagios_host resources

°° The notify attribute sends a restart signal to the nagios service after
the collection is finished

•	 Lines 14 to 17 repeat the same steps as lines 10 to 13 but for the
Nagios_service resource

Testing exported resources
Now that we have created the nagios::check_http class for exporting resources
and a nagios::resources class that collects resources, we can test how the resource
collection works in practice.

Before we apply manifests, let's move the /etc/nagios/conf.d/hosts.cfg and
/etc/nagios/conf.d/services.cfg files to the /etc/nagios/ directory and
rename them. This can be done by running the following two commands on the
command line on the nagios server:

mv /etc/nagios/conf.d/hosts.cfg /etc/nagios/nagios_host.cfg

mv /etc/nagios/conf.d/services.cfg /etc/nagios/nagios_service.cfg

Here is a screenshot that shows you the output of the mv commands followed by the
ls command to list the files in a new location:

Chapter 7

[171]

For testing, we need the following three virtual machines running:

•	 Puppet Master: It stores the exported resources in PuppetDB. This host is
called learn_puppet_centos-6.5 in the VirtualBox Manager.

•	 Web server: It exports the nagios_host and nagios_service resources.
This host is called puppet-agent in the VirtualBox Manager.

•	 Nagios server: It imports resources from PuppetDB. This host is called
puppet-agent-nagios in the VirtualBox Manager.

When working with exported resources, it is important to know in which order to
run Puppet on nodes. For the nagios server node to successfully import resources
from the web server node, the Puppet run that exports the resources must happen
before the run that imports resources. As resources are exported on the web server
node, we must run Puppet on it before we run Puppet on the nagios server node that
imports resources.

Run the puppet agent -t command on nodes in the following sequence:

1.	 The web server (puppet-agent).
2.	 The nagios server (puppet-agent-nagios).

The Puppet run on the web server node doesn't show any nagios-related activity in
the Puppet report but, when Puppet is run on the nagios server node, you will see
the new Nagios_host and Nagios_service resources being imported on the server.

Here is a screenshot of the Puppet run that shows the resources that are imported on
the nagios server:

Making the Configuration Dynamic

[172]

After the Puppet run is complete on the nagios server, open the nagios web interface
at http://192.168.56.12/nagios. Click on the Services link in the navigation
pane, which is on the left-hand side of the page, to list all the hosts, and check
whether they are currently configured on the nagios server as shown in the
following screenshot:.

The list should contain the following three hosts:

•	 192.168.56.11: This is the web server host that we just created with the
exported resources

•	 localhost: This is the nagios server itself
•	 web-server: This is the original nagios_host record that was created in

Chapter 4, Monitoring Your Web Server

If nagios throws an error message Whoops! Error: Could not
read host and service status information!, when you
click on the Services link, rerun puppet agent -t to start the
nagios server process.

Chapter 7

[173]

Purging resources
As you probably noticed that the Services view in the nagios web interface
contains two nagios host resources for the web server. There is a resource for the
host 192.168.56.11 that we created on the web server using exported resources a
moment ago. There is also a resource for the nagios host called web-server, which
was created in Chapter 4, Monitoring Your Web Server. Although we just removed
the nagios_host record from the nagios::resources class and reran Puppet,
the resource didn't get removed. Why is that?

The reason for this is because Puppet does not automatically remove resources
when resources are removed from the manifest file. Instead, we have to explicitly
tell Puppet to purge resources of a certain type that are no longer present in the
manifests. Puppet has a special resource type called resources that can be used
to purge resources that are no longer needed. To purge old resources using type
resources, we can use the following syntax:

resources { 'type_of_resource':

 purge => true;

}

To purge the old nagios_host and nagios_service resources from the nagios
server, we will create a new class that contains all the purging-related logic,
and associate this class with the nagios server.

Let's create a new class called nagios::purge with the following content:

On lines 2 to 4, we declare a resource called resources that is applied to the
nagios_host and nagios_service resource types. The resource contains a
purge => true attribute that tells Puppet to delete all the nagios_host and
nagios_service resources that have been removed from the manifests.

Making the Configuration Dynamic

[174]

Once Puppet has purged resources, we tell it to reload the nagios process using the
exec resource type that is defined on lines 7 to 10.

The notify arrow notation (tilde + greater-than) on line 5 means that only if the
nagios_host and/or nagios_service resources are purged, then the notify
signal is sent to the exec resource. Note the refreshonly => true attribute on
line 8. This attribute is specific to the exec resource, and it means that the resource
will only be processed if the notify signal is received.

In other words, the reload-nagios exec resource will only run the
/etc/init.d/nagios reload command, in case the nagios_host or
nagios_service resources were purged.

Once you have created the nagios::purge class, save the file as
nagios/manifests/purge.pp.

Purging resources with the nagios::purge
class
We are now ready to try resource purging on the nagios server. Before we do this,
let's add the nagios::purge class to the catalog of the nagios server.

Open the node classification file, manifests/site.pp, and add an include
nagios::purge statement to the nagios.development.vm node definition block,
as shown on line 14 in the following screenshot:

Chapter 7

[175]

Once you've saved the file, go to the nagios server console and run the
puppet agent -t command. The following output confirms that the nagios_host
and nagios_service resources were removed successfully, and the nagios server
process got reloaded:

Now go to the nagios web interface at http://192.168.56.12/nagios, and refresh
the page by clicking on the Services link in the navigation pane on the left-hand side
of the page. Did the web server nagios host disappear from the list?

You should now have a fairly good understanding of how exported resources can be
used to exchange Puppet resources between nodes. Next, we will take a look at how
to query the node information from PuppetDB.

The PuppetDB query
Where exported resources are used to exchange Puppet resources between nodes,
the PuppetDB query is used to query information about the Puppet agent nodes.

For example, if we wish to find out the IP address that belongs to the nagios server
node, we can make a query that asks for the value of the ipaddress_eth1 facter on
the node that has the nagios::server class in its catalog.

Making the Configuration Dynamic

[176]

Or if we want to know what certnames belong to Puppet agents in our environment,
we can make a query that returns a list of certnames that belong to an environment
called development.

There are a a couple of aspects to the PuppetDB query that some users may find a bit
off-putting.

Firstly, the PuppetDB query syntax is quite complex, and the PuppetDB
documentation available online (http://docs.puppetlabs.com/puppetdb/)
signally fails to make it easier to learn. For example, to query the value of the
ipaddress_eth1 fact of the nagios.development.vm node, we use the following
command on the Puppet Master node:

curl -G http://localhost:8080/v3/facts/ipaddress_eth1 --data-
urlencode 'query=["=", "certname", "nagios.development.vm"]'

Let's take a look at this command more in detail:

•	 The command that we use is called curl. Curl is a handy utility that enables
you to make HTTP requests from the command line.

•	 The http://localhost:8080/v3/facts/ipaddress_eth1 URL we connect
to is the PuppetDB API endpoint for querying facts.
In this instance, the fact we want to query is called ipaddress_eth1.

•	 The --data-urlencode option encodes the query parameters and appends
parameters to the URL.

The parameter we provided is certname=nagios.development.vm.

In English, this query can be described as "Please give me the value of fact
ipaddress_eth1 that belongs to the Puppet agent that has the certname value
nagios.development.vm".

The query response is the following set of key-value pairs.

[{

 "value" : "192.168.56.12",

 "name" : "ipaddress_eth1",

 "certname" : "nagios.development.vm"

}]

With this query, we learned that the node with certname nagios.development.
vm has an ipaddress_eth1 facter with value 192.168.56.12. That's nice, but how
can the query results be integrated with the Puppet deployment when the only
documented interface is from the command line using Curl?

http://docs.puppetlabs.com/puppetdb/
http://localhost:8080/v3/facts/ipaddress_eth1

Chapter 7

[177]

This brings us to the second issue with PuppetDB. There is no built-in interface to
the PuppetDB query from the Puppet manifest, which is similar to what we have
for exported resources, that uses the @@ notation to export resources and the <<||>>
notation to import resources in the Puppet manifest.

Don't give up hope yet as there is a simple solution that provides a remedy for both
of the previously mentioned issues. This is the Puppet community add-on module,
which we will take a look at next.

Installing the dalen-puppetdbquery module
The Puppetdbquery module, created by Mr. Erik Dalén (documentation is available
at https://github.com/dalen/puppet-puppetdbquery), is a handy tool that
provides a simple command-line interface to PuppetDB as well as the functions to
access PuppetDB from the manifests.

The Puppetdbquery module is available in Puppet Forge, and it can be installed with
the following command:

puppet module install dalen-puppetdbquery --
modulepath=/media/sf_learning/

The following screenshot shows the output of the preceding command:

Adding puppetdbquery into the RUBYLIB
environment variable
We have installed the dalen-puppetdbquery module in the
/media/sf_learning/puppetdbquery directory. Before we can start
experimenting with it, we need to add the module to the command-line
environment on Puppet Master.

https://github.com/dalen/puppet-puppetdbquery

Making the Configuration Dynamic

[178]

We can achieve this by adding the /media/sf_learning/puppetdbquery/lib path
to the RUBYLIB environment variable using the following command:

export RUBYLIB=/media/sf_learning/puppetdbquery/lib

To make this change permanent, we don't have to manually run the command every
time we log on to the Puppet Master. We can configure the bootstrap::master
class to create an /etc/profile.d/puppetdb.sh file, which contains the preceding
command.

Open the /media/sf_learning/bootstrap/manifests/master.pp file and add
lines 30 to 33, as shown in the following screenshot:

Once you have saved the file, reapply the bootstrap::master class on the Puppet
Master node using the following two commands:

cd /media/sf_learning

puppet apply --modulepath=./ -e "class { 'bootstrap': role => 'master'
 }"

The puppet apply command produces the following report, confirming that the
/etc/profile.d/puppetdb.sh file was created:

Chapter 7

[179]

To make the change effective, you must log out and log in to the Puppet Master
node. Once you are logged in again, you can verify that the puppetdbquery module
is available by running the puppet help query command, which displays the help
menu, as shown in the following screenshot:

An alternative to logging out and logging in again is that you can run the
source /etc/profile.d/puppetdb.sh command source to update
the RUBYLIB environment variable.

Examples of Puppet query commands on the
command line
Now we are ready to start experimenting with the puppet query command.
As seen in the preceding screenshot, puppet query has three actions: events,
facts, and nodes.

Making the Configuration Dynamic

[180]

Querying certname with action nodes
Let's first try the nodes action and make a PuppetDB query that returns the
certname of the node that includes the nagios::server class in its catalog.
We can do the query using the following command:

puppet query nodes 'Class["nagios::server"]'

A query returns the string nagios.development.vm, which is the certname of the
nagios server node.

To expand the scope of the query, we need to also include the certname of the node
that has the webapp class in its catalog. We can do this using the or operator to join
two search patterns:

puppet query nodes 'Class["nagios::server"] or Class["webapp"]'

In addition to the string nagios.development.vm, the query returns a string
web.development.vm, which is the certname of the web server node, as shown
in the following screenshot:

Querying facts with action facts
Querying facts works in a similar fashion to querying nodes. The syntax for
querying facts is the puppet query facts 'search pattern'. This will print out all the
facts from the nodes that match the search pattern. To filter the query results so that
the command only returns the selected facts instead of all the facts, we can use the
--facts parameter to specify a list of facts that the command should return.

Chapter 7

[181]

Here is a sample command on how to query the ipaddres_eth1 and uptime facts
from the nagios server node:

puppet query facts 'Class["nagios::server"]' --facts
ipaddress_eth1,uptime

This command will return the following hash of facts from the node:

nagios.development.vm.

nagios.development.vm
{"ipaddress_eth1":"192.168.56.12","uptime":"2:30 hours"}

To choose a different output format, we can add the –render-as yaml parameter
to make the query return the yaml document instead of the standard PuppetDB
query hash:

puppet query facts 'Class["nagios::server"]' --facts
ipaddress_eth1,uptime –render-as yaml

Here are the query results in the yaml document format:

nagios.development.vm:

 uptime: "2:30 hours"

 ipaddress_eth1: "192.168.56.12"

Following is the screenshot of the preceding output:

Making the Configuration Dynamic

[182]

Using the puppetdbquery functions
The Puppetdbquery module on the command line is a useful tool for testing query
patterns and discovering information about nodes in PuppetDB. How can these
queries be made part of the Puppet deployment?

The Puppetdbquery module comes with a couple of handy Puppet functions
called query_nodes and query_facts that allow us to make the PuppetDB queries
from the Puppet manifest. We can make use of these functions, for example, when
configuring a load balancer node to balance the HTTP requests between the web
server nodes. Instead of using static IP addresses for the load balancer configuration
(like we currently do in the loadbalancer/manifests/create.pp file), we can use
the query_nodes function to discover the IP addresses of all the web server nodes
and configure the load balancer accordingly. Using this method, the load balancer
configuration will automatically update if the web server node's IP address changes
or if we add more web servers to the environment.

Before we dive into this, let's take a look at the syntax of the functions.

The query_nodes function
The query_nodes function accepts two arguments:

•	 A query pattern
•	 A fact name (optional)

If only the query pattern is provided, the query returns a list of certnames that
match the pattern. If the fact name is provided, the response is a list of fact values
from the nodes that match the query pattern.

To give you a better idea of the syntax, we can convert one of the command-line
queries, as we did earlier in the query_nodes function call:

•	 The command line query:
puppet query nodes 'Class["nagios::server"] or
Class["webapp"]'

•	 The query_nodes function:

query_nodes('Class["nagios::server"] or Class["webapp"]')

When we call the function on the Puppet Master node, the query returns a list in the
following format:

['nagios.development.vm', 'web.development.vm']

Chapter 7

[183]

If we want the query_nodes function to return a list of facts instead of the
certnames, we can specify the fact as the second argument in the query with
the following syntax:

The query_nodes function returns a list of fact values:

query_nodes('Class["nagios::server"] or Class["webapp"]',
ipaddress_eth1)

This time, the query returns a list of IP addresses from the web server and nagios
server nodes, [192.168.56.11, 192.168.56.12].

The query_facts function
The query_facts function returns a hash of hashes that contains facts from the
nodes that match the query pattern.

To query the values of the ipaddress_eth1 and uptime facts from the nagios server
node, which we already tried on the command line, using the query_facts function.

On the command line, type the following command:

puppet query facts 'Class["nagios::server"]' --facts
ipaddress_eth1,uptime

Using the query_facts function in Puppet manifests, the syntax is slightly different:

query_facts('Class["nagios::server"]', [ipaddress_eth1,uptime])

This query returns a hash of hashes that contains the key-value pairs:

{ 'nagios.development.vm' =>
{"ipaddress_eth1":"192.168.56.12","uptime":"1:30 hours"} }

Creating a custom type for testing PuppetDB
queries
Getting the PuppetDB query syntax right can often be tricky. When creating queries,
it is important to test them properly to ensure that the queries return the desired
results. To test PuppetDB queries, I usually create a short manifest that I run on the
Puppet Master node, and examine the PuppetDB query results.

Making the Configuration Dynamic

[184]

Create a new file in a text editor called puppetdb.pp with the following content:

The preceding manifest contains a custom defined type (lines 1-3), three variables
(lines 4-6), and two references to a defined type (lines 7-8). Let's take a look at the
manifest in detail:

•	 Line 1 begins with a defined type called puppetdb_query.
This type is used for printing out PuppetDB query results.

•	 Line 2 uses a Puppet function called notice (https://docs.puppetlabs.
com/references/latest/function.html#notice) that outputs a string
value joined with the value of the ${name} variable, which is set at the time
when the type is called (lines 7-8).

•	 Line 3 closes the custom defined type block.
•	 Line 4 creates a variable called $list, where we store the PuppetDB query

results from the query_nodes function.

The query_nodes function makes a PuppetDB query that returns a list of
node names, such as a certname, that has the nagios::server or webapp
class in its catalog.

•	 Line 5 creates a $hash variable, where we store the results from the
query_facts function.
The $hash variable name implies that the query_facts function returns
a hash type of data (which means key-value pairs). The hash contains the
values of facts ipaddress_eth1 and the uptime.

•	 Line 6 defines the third and last variable that is used to store the hash
content of the $hash variable in the format of a string, hence the name
$hash_to_string.

https://docs.puppetlabs.com/references/latest/function.html#notice
https://docs.puppetlabs.com/references/latest/function.html#notice

Chapter 7

[185]

The hash data type has to be converted to the string format so that we can
use it when we call the type puppetdb_query (on line 8), which prints out the
results of this query.

•	 Line 7 calls the puppetdb_query defined type with the $list variable as the
name of the resource.
Calling the defined type with a data type list as the name of the resource
results in Puppet to call the type once per each element on the list.
Assuming that the query_nodes function (line 4) returns a list of two node
names, the type puppetdb_query is called twice.

•	 Line 8 makes another call to puppetdb_query, but this time using the
$hash_to_string variable as the resource name.

In this case, puppetdb_query is only called once, and the whole content
of the hash produced by the query_facts function (line 5) is printed on
the screen.

Once you have created the file, save it as puppetdb.pp under the Puppet module
directory learning (on the virtual machine /media/sf_learning/puppetdb.pp).

Then, we can try to apply the manifest to the Puppet Master node. Log on to the
Puppet Master and run the following two commands:

cd /media/sf_learning

puppet apply --modulepath=./ puppetdb.pp

Making the Configuration Dynamic

[186]

On a successful Puppet run, you should see the following events being reported.

The output from the Puppet run may look a little bit messy, but when we take a look
at it more closely, we can identify the following three Puppet events:

1.	 nagios.development.vm: This is the first record returned from
PuppetDB by the query_nodes function, and it matches the query pattern
Class["nagios::server"] (line 4 in puppetdb.pp).

2.	 web.development.vm: This is the second record returned from PuppetDB
by the query_nodes function, and it matches the query pattern
Class["webapp"] (line 4 in puppetdb.pp).

3.	 nagios.development.vm is {"uptime"=>"0:30 hours",
"ipaddress_eth1"=>"192.168.56.12"}: This is the content of the
hash returned from PuppetDB by the query_facts function (line 5 in
puppetdb.pp).

Using the PuppetDB query to configure the
load balancer
We now have a better understanding of how to interact with PuppetDB using the
query_nodes and query_facts functions. Let's see how we can make use of these
functions to configure the load balancer node.

In Chapter 5, Load Balancing the Cluster, we created the loadbalancer and
loadbalancer::create classes. The loadbalancer class created an HTTP proxy
that routes the requests to the nagios server as well as to web server nodes via a load
balancer that was created by the loadbalancer::create class.

One problem with these classes is that they are currently using the static IP
configuration for the nagios server and web server connectivity. The loadbalancer
class assumes that the nagios server has an IP address 192.168.56.11, and in the
loadbalancer::create class, we assume that the web server nodes have the IP
addresses 192.168.56.12 and 192.168.56.13.

Since Chapter 5, Load Balancing the Cluster, I've been bouncing all the virtual machines
a number of times, and VirtualBox has allocated different IP addresses to virtual
machines. At this moment, my web server has an IP address 192.168.56.11, and
the nagios server's IP address is 192.168.56.12. I guess in your environment,
virtual machines have a different set of IP addresses.

Chapter 7

[187]

You can check the host's IP address with the hostname -I and
ifconfig eth1 commands.

Unfortunately the virtual machine's IP addresses have changed, which means that
the load balancer configuration in my environment is currently broken. The good
news is that we can easily rectify the situation by making a couple of minor changes
to the loadbalancer and loadbalancer::create classes.

Let's first tackle the loadbalancer class, and add a couple of PuppetDB queries to it.
Here is a screenshot of the loadbalancer class in its current state:

The $nagios_url variable on line 2 defines the nagios server address as
http://192.168.56.11/nagios, and the variable is referenced on line 13
by the proxy_pass attribute.

Instead of using a predefined IP address in the $nagios_url variable, we can
use the query_nodes function to extract the nagios server IP address from
PuppetDB, and pass the IP address to the $nagios_url variable. We'll also add a
similar PuppetDB query for web server nodes, which we can reference from the
loadbalancer::create class.

Making the Configuration Dynamic

[188]

Here is a redesigned loadbalancer class that introduces you to two new PuppetDB
queries and constructs the $nagios_url variable value from the query results:

Let's take a look at what has changed in the loadbalancer class:

•	 Line 2 that was used to define the $nagios_url variable has been moved to
line 5.

•	 Line 4 was used to define the $webapp_url variable, but the variable is no
longer needed, so this has been removed.

•	 Line 3 creates a new variable called $nagios_server_ip. We store the nagios
server's IP address in this variable. The IP address is queried from PuppetDB
using the query_nodes function.

•	 Line 4 creates a $web_server_ips variable. This variable stores a list
of web server IP addresses, which are going to be referenced from the
loadbalancer::create class.

•	 Line 5 constructs the value for the $nagios_url variable based on the
$nagios_server_ip variable (on line 3).

Chapter 7

[189]

Before we try running this manifest on a load balancer, let's make a couple
of changes to the loadbalancer::create class, which currently has the
following content:

The loadbalancer::create class creates two apache::balancermember
records, which we are going to substitute with a defined type that creates the
apache::balancermember record for each web server IP address that the PuppetDB
query returns (line 4 in the loadbalancer/manifests/init.pp file). Here is the
screenshot of the newly designed loadbalancer::create class:

Making the Configuration Dynamic

[190]

Let's take a look at what has changed in the loadbalancer::create class:

•	 Lines 5 to 12 in the previous version of create.pp have been
replaced by the defined type balancermember (lines 5 to 10). The
balancermember type contains a reference to another defined type called
apache::balancermember, which creates a new load balancing endpoint
based on the ${name} variable. The endpoint URL is defined by the url
attribute on line 8, which has a value http://${name}/. The ${name}
variable is a reference to the name of the defined type, which is specified
at the time when a type is called (on line 11). For example, if the type is
referenced with a name 192.168.56.11, then the value of the url attribute
will be http://192.168.56.11/.

•	 Line 11 references the loadbalancer::create::balancermember defined
type (on lines 5 to 10). Here, we use the $::loadbalancer::web_server_ips
variable as the name of the type, which is a reference to the $web_server_ips
variable that is defined in the loadbalancer class (line 4 in the loadbalancer/
manifests/init.pp file). The $::loadbalancer::web_server_ips variable
stores the results of the PuppetDB query query_nodes('Class["webapp"]',
ipaddress_eth1). If the PuppetDB query returns a list of multiple IP
addresses (this means that PuppetDB contains a record for more than one node
matching the query pattern Class["webapp"]), the loadbalancer::create::
balancermember defined type is called once per each entry in the list.

Once you are done with the changes made to the init.pp and create.pp files and
have saved the files in the loadbalancer/manifests directory, we can move on to
apply manifests on the load balancer node.

Testing the PuppetDB query manifests on the load
balancer node
To test our manifest changes, you need to boot up the load balancer node and have
Puppet Master running of course.

Once the load balancer node is running, log in with the username root and
password puppet.

Then, execute the following two commands:

cd /media/sf_learning

puppet agent -t

Chapter 7

[191]

When the Puppet run completes successfully, you will see the following events
displayed on the screen:

If you have the nagios server and web server nodes running, you should be able to
access both of them via the load balancer node at http://<loadbalancer_ip>/
nagios and http://<loadbalancer_ip>/webapp.

You can find out the value of <loadbalancer_ip > by running the hostname -I or
ifconfig eth1 commands on the load balancer node.

Summary
In this chapter, we learned how to turn the Puppet configuration from static to
dynamic through exported resources and PuppetDB queries. We saw how exported
resources can help you dynamically create new monitoring checks, and how checks
can be easily purged using the resource type resources. We also saw how we can
interact with PuppetDB from the command line, and how to make PuppetDB
queries an integral part of deployments using the PuppetDB function.

[193]

Extending Puppet
In the earlier chapters, we explored various facts and functions that Puppet provides
out-of-the-box. You may recall that, in Chapter 3, My First Puppet Module, we created
a variable called $fact_list (line 3 in the webapp class), and we used it to store
values of facts $::ipaddress_eth1 and $::uptime. These two facts are built into
Puppet. Once we declared the $fact_list variable, we created a file resource with
the content attribute that used the template function (line 7 in the webapp class) to
populate the content of the file. The template function is a commonly used function
that comes bundled with Puppet.

When you start using Puppet on a regular basis, you soon realize that the built-in
facts and functions may not be sufficient to build configurations you want to build.
Luckily, custom facts and functions are quick and easy to write yourself.

This chapter will focus on how to extend Puppet beyond the built-in functionality.
We will learn how to create your own facts and functions, and how these are
distributed across the nodes in the environment.

In this chapter, we will cover the following topics:

•	 How functions work and how to distribute them
•	 Writing a simple function to distribute the SSH keys across all nodes in

the environment
•	 Writing a simple custom fact and making it available everywhere
•	 Converting fact string values to arrays and hashes

Extending Puppet

[194]

Puppet functions
So what do we know about Puppet functions?

•	 We can reference functions from the Puppet manifests... check!
•	 Function calls use the function_name(argument1, argument2)

syntax … check!
•	 Puppet has built-in functions, such as template()... check!
•	 Puppet can use custom functions, such as query_nodes() and

query_facts(), from the puppetdbquery module... check!

Let's talk about the last bullet point more in detail. How are custom functions created
and distributed?

Functions are written in the Ruby programming language, which are stored in the
lib/puppet/parser/functions directory in a Puppet module with a name that
uses the functionname.rb syntax.

All the functions that are stored in Puppet modules that are available in the Puppet
Agent's modulepath will be synchronized at the beginning of each Puppet run.
Once the functions have been synchronized, they can be referenced from the
Puppet manifests.

There is one important thing to remember about how functions are executed.
When running Puppet in "master-less" mode (puppet apply --modulepath ...),
functions are executed on the Puppet Agent node. When Puppet is run against
the Puppet Master (puppet agent -t), functions are executed on the Puppet
Master node.

The best way to demonstrate the difference in function execution is to create a simple
Puppet function and try running it in both the modes.

Creating a Puppet module for custom
functions
Although functions can be distributed from any Puppet module, I prefer to store
functions (and facts) in a dedicated Puppet module, which I have included in the
Puppet's modulepath, and I can then reference these functions from the other
Puppet modules.

Chapter 8

[195]

The name of the module is not that important, but I usually include the word lib
in the name of the module, which indicates that the module contains a library
of functions. A suitable name for our functions module can be, for example,
learning-flib.

Let's create a new module for functions with the following set of commands:

cd /media/learning

puppet module generate learning-flib –skip-interview

This command creates an empty Puppet module. Then, we rename the directory
from learning-flib to flib:

mv learning-flib flib

Now we use the mkdir command to create a directory structure to store functions,
facts, and tests:

mkdir -p flib/lib/puppet/parser/functions flib/lib/facter flib/tests

Once all the preceding commands have been executed, we can view the folder
structure with the tree flib/ command, as shown in the following screenshot:

Extending Puppet

[196]

Writing a function
Now that we have created a module to store our custom functions, we can write our
first function. Let's create a function called cli_command, which accepts a command-
line command as an argument, executes the command, and returns the results.

Here is the content of the cli_command function:

The syntax of the cli_command function looks very different from the syntax that
we have been using so far in Puppet manifests. This is because functions are written
in the Ruby programming language instead of Puppet DSL. Let's take a look at the
flib/lib/puppet/parser/functions/cli_command.rb file line by line:

•	 Line 1 references a newfunction method in the
Puppet::Parser::Functions Ruby module. As the name suggests, this
method is used to create new Puppet functions. The newfunction method
has three arguments:

°° The first argument :cli_command is the name of the function
prefixed with a colon character.

°° The second argument defines the type of the function. The type of the
function is rvalue, which means that this function returns a value. If
rvalue is not specified, the function is a statement type that does not
return a value.

°° The third argument :doc is a placeholder for the documentation. The
<<-'ENDHEREDOC' value indicates the end tag of the documentation
block (see line 8).

Chapter 8

[197]

•	 Lines 3 to 8 include the documentation for the function. It is not obligatory to
include the documentation in your function, but it is good practice to add a
short description of what the function does (line 3), how to use the function
(lines 5-4), and a description of what the function returns (lines 6-7).

•	 Line 11 is an optional error handler that checks whether the number of
arguments passed to the function is as expected.
If the number of arguments passed to the function is not 1, then the user will
receive a visible error message during the Puppet run.

•	 Line 14 executes the command that is passed to the function as an argument.
•	 Once you have created the function, save it as flib/lib/puppet/parser/

functions/cli_command.rb.

Test-driving the Puppet function
As I mentioned earlier, Puppet functions are executed either on the Puppet Agent
or on the Puppet Master, depending on whether the Agent is run against the
Puppet Master.

Let's test our new cli_command function in standalone mode without the Puppet
Master, before we try running it on the Puppet Master, and then compare the results
from the function.

Testing a Puppet function on the Puppet Agent
node
To decide whether we want the function to run on the Puppet Agent or on the
Master, we must have a class that calls the function. Open flib/manifests/init.
pp, and replace the content generated by the puppet module generate command
with the following four lines:

•	 Line 1 begins with class ftlib.

Extending Puppet

[198]

•	 Line 2 calls the function cli_command with the /opt/puppet/bin/puppet
config print certname command (Puppet Enterprise only), which returns
the certname of the node, where the function is executed. The output of
the command is stored in the $output variable. In Puppet open source,
the command would be slightly different—for example, /usr/bin/puppet
config print certname.

•	 Line 3 creates a notify resource that prints out the function's return value
that is stored in the ${output} variable.

•	 Line 4 closes the class ftlib.

Once the file has been saved, then we can try to apply the flib class to the web
server node. Log on to the Web Server node (with the username root and password
puppet), and run the following two commands:

cd /media/learning
puppet apply --modulepath=./ -e 'include flib'

On a successful run, Puppet will report a message saying Notice: Function cli_
command returns web.development.vm, which is an evidence of the function being
executed on the Puppet Agent node.

Testing a Puppet function against Puppet Master
Next, we can try to apply the flib class to the Puppet Agent against the Puppet
Master. In order to apply the class, we must include it in the Agent's catalog, which
is defined in the manifests/site.pp file.

Open the manifests/site.pp file and add a line include flib to the
'web.development.vm' block. To make the Puppet report shorter, I've also
commented out the include statements for the other classes associated with the
web.development.vm node.

Chapter 8

[199]

To run the function on the Puppet Master, we need to have both the web server and
the Puppet Master nodes running. Once you have both the nodes running, you can
apply the flib class by running the puppet apply -t command to the Web Server
node. This produces the following Puppet report:

When comparing the output of the commands, puppet agent -t and puppet
apply, we can see that the function applied to the puppet agent -t command
returns a certname learning.puppetlabs.vm that belongs to the Puppet Master.
The puppet apply command returns a certname web.development.vm, which is the
certname that belongs to the web server.

We now have enough evidence to show that the functions can be run on the Puppet
Agent and on the Puppet Master nodes, depending on the mode the Puppet Agent
runs on. Let's move on and write a function that distributes the file content across
the environment.

Extending Puppet

[200]

Distributing SSH keys with a Puppet function
Secure Shell, or SSH, is a protocol that is widely used for remote connectivity
between computers. It enables you to create a secure connection from one
computer to another. SSH provides a variety of authentication methods, such as
the username/password authentication but also password-less authentication based
on the public key infrastructure (PKI). Setting up the PKI authentication involves
the following steps:

1.	 Generate a public and private key pair.
2.	 Distribute a public key to a remote host.

In the following example, we will create a public/private key pair on the Puppet
Master, and then create a Puppet function that reads the public key on the Puppet
Master, and finally output its content to a /root/.ssh/authorized_keys file on the
Puppet Agent node.

Creating a public and private key pair
Creating public and private keys involves two commands, which we can Puppetize.
As the key pair creation is just a one-off job, I think we can as well do it manually,
and use Puppet for key distribution.

Here are the steps for creating a public and private key pair:

1.	 Start the Puppet Master node.
2.	 Log on to the Puppet Master with the following details:

°° username: root
°° password: puppet

3.	 Create a /root/.ssh directory for the keys:
mkdir /root/.ssh

4.	 Create keys with the ssh-keygen command:
ssh-keygen -N '' -f /root/.ssh/id_rsa

5.	 Finally, verify that the id_rsa (the private key) and id_rsa.pub (the public
key) files were created in the /root/.ssh directory:

ls /root/.ssh

When the preceding three commands are successfully run, you will see the following
events logged on the screen:

Chapter 8

[201]

Writing a Puppet function to distribute a public key
Now we have the public and private key pair on the Puppet Master, and we want
to distribute the public key to the Puppet Agent nodes. To achieve this, we'll write a
function called read_file that reads a file and returns its content.

Create a new file called read_file.rb and save it in the flib/lib/puppet/parser/
functions directory in the flib module. Here is the content of the read_file.rb file:

Extending Puppet

[202]

Let's take a look at the content more closely:

•	 Line 1 begins with a new Puppet function called read_line.
•	 Lines 3 to 8 provide the documentation for the function with examples on

how to use it and what it returns.
•	 Line 11 validates the number of arguments passed to the function. If the

number of arguments is 1, then the function will report an exception during
the Puppet run.

•	 Line 13 has the begin keyword, which in the Ruby programming language is
used to handle exceptions.

•	 Line 14 specifies the command that we want the function to execute.
The File.read method in Ruby reads a file that is provided as an argument
(args[0]) when the function is called.
If the file read operation fails, an exception is handled by the rescue block on
lines 15 and 16.

•	 Line 15 begins with the rescue block.
•	 Line 16 raises a Puppet::ParserError event in case the file read operation

on line 14 fails.
•	 Line 17 closes the begin/rescue block.
•	 Line 18 ends the read_file function.

Now save the file as flib/lib/puppet/parser/functions/read_file.rb after
which we'll take a look at how to create a file resource that calls the read_file
function.

Calling the custom function from the file resource
To push the public key onto the Puppet Agent, we need to create a file resource
that gets its content from the read_file function. By default, the public key is stored
in a file called authorized_keys that is stored in the .ssh directory under the user's
home directory. For example, if the root user's home directory is /root, then the
public key is stored in the /root/.ssh/authorized_keys file.

Let's move on and create a class called flib::public_key that declares two file
resources. Here is a screenshot of the class:

Chapter 8

[203]

In the preceding flib::public_key class, we have one file block (lines 2 to 8) that
declares two file resources:

•	 Lines 3 to 4 declare a file resource for a /root/.ssh directory, where we are
going to store the authorized_key file.

•	 Lines 5 to 7 create the /root/.ssh/authorized_keys file.

Using the require attribute (line 6), we ensure that the /root/.ssh resource
must be processed prior to processing the authorized_keys file.
The content attribute on line 7 calls the read_file function with a /root/.
ssh/id_rsa.pub argument, which is the path to the public key file on the
Puppet Master.

Let's add the flib::public_key class to the Puppet catalog and give it a test run.
Open the node definition file, manifests/site.pp, and change the include flib
statement to the include flib::public_key statement in the node definition block
for web.development.vm, as shown in the following screenshot:

Extending Puppet

[204]

Once you have saved the file, you can try running Puppet on the Web Server node.
To apply the catalog, you must have the Puppet Master and Web Server nodes
running in parallel. Once the Web Server is running, you can apply the catalog by
performing the following steps:

1.	 Log on to Web Server node with the following credentials:
°° Username: root
°° Password: puppet

2.	 Go to the Puppet module directory:
cd /media/sf_learning

3.	 Run Puppet in agent mode:
puppet agent -t

If you get a message "Could not retrieve catalog from remote
server: Error 400" on the Puppet Agent node, try restarting the pe-
console-services and pe-httpd processes on the Puppet Master
with the following commands:
service pe-console-services restart

service pe-httpd restart

When the Puppet run completes successfully, you will see the following events
reported on the screen:

Chapter 8

[205]

Testing the password-less SSH session
I trust that your Puppet run was successful. Let's verify it by doing a test to see
whether we can establish the password-less login from the Puppet Master to the
Web Server node. This can done by performing the following steps:

1.	 Log on to the Puppet Master node as a root using the password puppet.
2.	 Query the certname of the node we are currently on:

puppet config print certname

This returns the Puppet Master's certname: learning.puppetlabs.vm.

3.	 Open the SSH session on the Web Server node:
ssh 192.168.56.11

4.	 Query the certname of the node we are currently on:
puppet config print certname

The command returns the web server's certname web.development.vm.

5.	 Disconnect the SSH session with the exit command.

I hope the test worked well for you. Next, we will shift our focus from functions to
custom facts.

Creating custom facts
So far, in this book, we have been using Puppet's built-in facts, such as the
ipaddress_eth1 and uptime. In comparison to functions, facts are much easier to
use as they don't accept arguments. We just reference them like we reference any
Puppet variable using the $fact_name or $::fact_name syntax. Personally, I like
to use the $::fact_name syntax because it clearly defines the scope of the variable.
This is also the syntax recommended in the Puppet Language Style Guide (https://
docs.puppetlabs.com/guides/style_guide.html). The $:: prefix in Puppet
variables means that the variable scope is global ($::fact_name) as opposed to local
($fact_name). Although Puppet doesn't allow you to declare a local variable with
the same name as a fact, it is a good practice to include the scope prefix ($::) when
referencing facts. When someone is studying a manifest that I've written, they can
easily see from the $:: prefix that the variable is referencing the fact rather than the
local variable.

There are a couple of ways to create your own facts. Let's first take a look at the most
simple type of fact, which is called the external fact.

https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html

Extending Puppet

[206]

External facts
External facts are defined as key-value pairs in a text file that is stored in the /
etc/puppetlabs/facter/facts.d directory on the Puppet Agent node (Puppet
Enterprise only). In the Puppet open source, the path is /etc/facter/facts.d/.

External facts support three different types of document formats: text, JSON
(JavaScript Object Notation), and YAML (YAML Ain't Markup Language). For
example, to declare an external fact called text_fact in the text format that returns
a value Hello world, we create an /etc/puppetlabs/facter/facts.d/my_facts.
txt file with the following code:

text_fact=Hello world

In the preceding example, the string text_fact on the left-hand side of the = sign
is the key, and the string Hello world is the value of the key. Let's see how the
preceding example works in practice on the Web Server virtual machine. Start the Web
Server node if it's not already running, and run the the following three commands:

mkdir -p /etc/puppetlabs/facter/facts.d

This creates the required directory structure for the external fact.

echo text_fact=Hello world > /etc/puppetlabs/facter/facts.d/my_facts.txt

This creates a my_facts.txt file that defines an external fact called my_external_
fact that returns a value Hello world.

cat /etc/puppetlabs/facter/facts.d/my_facts.txt

This prints out the content of the my_facts.txt file.

Here is a screenshot of the Web Server console after the preceding three commands
have been executed:

Chapter 8

[207]

Next, we need to create a Puppet manifest file that calls the fact text_fact. For
testing purposes, we can create an external_fact.pp manifest file in the flib
module under the flib/manifests directory. Here is the content of the file, which
prints out the value of the fact when the manifest is applied by Puppet.

Then, apply the manifest to the Web Server node by running the following
two commands:

cd /media/sf_learning

puppet apply flib/manifests/external_fact.pp

When the manifest is successfully applied, Puppet reports a message Notice: My
external fact value is Hello world, as shown in the following screenshot:

Well done. You have just created your first custom fact!

What about the other two document formats, JSON and YAML, that I mentioned
earlier? Why would we choose to use them instead of the text format?

Extending Puppet

[208]

Creating facts that return structured data
JSON and YAML are used for structured data types, such as a hash and a list. Facts
defined in text format only return the string type of data. Let's take a look at how we
can create a fact that returns an array of strings that are defined in the YAML format.
Here is an example of the YAML document my_facts.yaml, which defines a fact
called yaml_fact that returns a list of strings:

--- # Begin YAML document
yaml_fact: # Name of the list/fact
 - Hello world # 1st list item
 - Hello Puppet # 2nd list item
 - Hello handsome! # 3rd list item

The preceding YAML document defines a fact called yaml_fact that contains a list
of strings. For clarity, I've added comments (the # prefix) that describe what each line
of the document means.

Once you have examined the preceding YAML document, create a /etc/
puppetlabs/facter/facts.d/my_facts.yaml file on the Web Server node using
the Nano editor. Just as a reminder, you can create the file in the Nano editor by
running the following command on the Web Server host:

nano /etc/puppetlabs/facter/facts.d/my_facts.yaml

To save the file and exit from the Nano editor, press Control + X, and confirm the
save operation by pressing Y and Enter.

It is important to use the correct file extension for the external facts file.
Facts defined in the YAML document will reside in the file that has the
.yaml file extension. The external facts file for the text data has the
extension .txt, and facts defined in the JSON format will reside in the
file that has a .json file extension.

Now that we have the YAML document ready, we need to write more Puppet code
that will consume the content of the document. We can do this by extending the
flib/manifests/external_fact.pp file. Open the file in the text editor, and add
lines 3 to 6 to it, as shown in the following screenshot:

Chapter 8

[209]

Let's take a look at the external_fact.pp file more closely, starting from line 3.

•	 Line 3 begins with the defined type yaml_fact_processor.
•	 Line 4 creates a notify resource, which prints one screen text YAML list item:

$name. The $name variable is a reference to the Puppet resource name.
•	 Line 5 closes the defined type.
•	 Line 7 calls the custom defined type named yaml_fact_processor.

The name of the type is a reference to the yaml_fact list, which we just
specified in the YAML document.

Using the list as a name of the defined type results in a type to be called once
per each list item.
As our yaml_fact list has three list items, we can expect that type to be
called three times.

Once you have added lines 3 to 6 to the external_fact.pp file, save it, and then
apply the manifest to the following commands:

cd /media/sf_learning

puppet apply flib/manifests/external_fact.pp

Extending Puppet

[210]

After Puppet has applied the manifest, you will see the following events reported on
the screen:

When analyzing the output in detail, we can see that the yaml_fact list got
processed by the defined type yaml_facts_processor that produced the
following messages:

Notice: YAML list item: Hello world

Notice: YAML list item: Hello Puppet

Notice: YAML list item: Hello handsome!

We now should have a fairly good understanding of how to create external facts that
return a string as well as more advanced data types, such as a list. Next, we will take
a look at how to write custom facts in the Ruby programming language.

Writing custom facts in Ruby
External facts are easy to create, but they are difficult to distribute. To make
custom facts available for all the nodes in the cluster, it is better to bundle them
with Puppet modules. In order to do this, custom facts must be written in the Ruby
programming language.

Chapter 8

[211]

Custom facts in the modules reside in the lib/facter directory, and the filename
must contain the name of the fact followed by the .rb file extension. For example,
if we create a custom fact called certname, we will store the implementation in the
lib/facter/certname.rb file.

Custom facts written in Ruby always include the following two statements:

Facter.add('fact_name') do

This is a method that adds a new custom fact to the inventory.

setcode do

This begins with a block of code that defines the action to be executed when a fact
is called.

Creating a custom fact to extract certname
Every Puppet Agent that connects to the Puppet Master must have a unique
certname. At the moment, there is no good visibility on what certnames have been
configured on the nodes in our cluster. Let's write a fact that extracts the certname
from the /etc/puppetlabs/puppet/puppet.conf file.

We already know how the certname can be queried using the puppet config print
certname command. This is a good starting point as we now only have to work on
how to create a fact that executes this command.

Here is an example of certname.rb that executes the command:

Extending Puppet

[212]

Let's take a look at the preceding code snippet in detail:

•	 Lines 1 to 4 are the comment lines that provide information on what
fact does.

•	 Line 5 calls the add method from the Facter module. The add method creates
a new fact called certname.

•	 Line 6 defines the setcode statement that marks the beginning of the code
block that contains the implementation of the fact.

•	 Line 7 defines the command that we want the facter to execute.
To make Ruby execute a command-line command, we simply wrap it inside
the statement that begins with %x[and the statement is terminated with
the] character.
To remove special characters from the command output, such as a
new line character \n, we will add the .chomp method at the end of
the execute statement.

•	 Line 8 closes the setcode block.
•	 Line 9 closes the Facter.add block.

So that's how the certname fact is created. Let's test it by creating a new class called
flib::certname that calls the certname fact and prints out the value. Here's the
content of the class:

•	 Line 1 begins with the ftlib::certname class
•	 Line 2 creates a notify resource that prints out the value returned by the

certname fact
•	 Line 3 closes the class

Then, we can test-drive the result by executing the following two commands on the
Web Server node:

cd /media/sf_learning/

puppet apply --modulepath= . -e 'include flib::certname'

Chapter 8

[213]

On a successful Puppet run, the following events are reported:

To demonstrate how custom facts are easy to distribute, we can try running the same
command on the Nagios Server host (virtual machine name: puppet-agent-nagios).

Launch the Nagios Server virtual machine, and log in with the username root and
password puppet. Then, run the preceding two commands on the host, and this
time, you will see the message My certname is nagios.development.vm appears
in the Puppet report.

Distributing certname records across the cluster
We now have a certname fact that prints out the certname of the node that calls
the fact. It's nice but not very useful in terms of functionality. Let's build a practical
application that populates the certname fact as a Puppet's host resource from one
node to another.

Extending Puppet

[214]

Host resources are stored in the /etc/hosts file. Currently, the file contains two
records: the first host record is for the Puppet Master that was created by the
bootstrap::agent class. The second record is a default record that points to the
local host.

Here is a screenshot showing the current content of the /etc/hosts file on the
Nagios Server. The output is produced by the cat /etc/hosts command.

We begin the process by extending the flib::certname class, and add a host
resource that is exported (with the @@ -prefix) and a line that imports host resources
from PuppetDB. Here is an example of how the class will look like once we have
added host resource statements:

The newly added content is found on lines 4 to 8. Let me explain what each added
line does:

•	 Line 4 creates the exported host resource that uses the $::certname fact as
the resource name.

•	 Line 5 tags the exported resource with our environment name.

Chapter 8

[215]

•	 Line 6 specifies the IP address that is going to be associated with
the host resources. The IP address gets its value from the built-in
ipaddress_eth1 fact.

•	 Line 7 closes the exported host resources.
•	 Line 8 specifies an import statement for the host resources. The import

statement uses the ${::environment} variable as a filter, which means
that we want Puppet to collect all the exported host resources that belong
to our environment.

Before we can apply the class, we need to include class flib::certname in the
node's catalog. This can be done by editing the node definition file manifests/
site.pp. In the following example, I've added the statement that includes
flib::certname in each node definition block (lines 6, 11, and 18).

Now we are ready to apply the flib::certname class starting from the Nagios
Server node, after which we can apply it to the Web Server node.

On the Nagios Server, run the following two commands:

cd /media/sf_learning/

puppet agent -t

Extending Puppet

[216]

When the Puppet run is successful, you will see the following lines appear on
the screen:

Then, we can proceed to run the same two commands on the Web Server node. The
command output on the Web Server will show you two new host records created:
one for certname web.learning.vm and another one for nagios.learning.vm.

If the host record creation is not visible in the Puppet report, this may be due to a
vast amount of changes happening during the Puppet run. To verify that the host
records got created, we can run the cat /etc/hosts command, and this will show
you two new records in the file. To verify that the records are effective, we can run a
Ping command against certname nagios.learning.vm, and this will show that the
Nagios Server replies to the ping. Here is the ping command:

ping -c 1 nagios.learning.vm

Chapter 8

[217]

The following screenshot shows the content of the /etc/hosts file and the results of
the ping command:

Summary
We have come to the end of this chapter in which we learned how we can extend
Puppet beyond the built-in functionality. The first half of the chapter was dedicated
to custom functions, and we discussed how to use create a custom function called
read_file that we used to distribute the public SSH key from the Puppet Master to
the Web Server node.

The latter half of the chapter focused on external facts and custom facts. We learned
how easy it is to create external facts and make them return structured data types.
We also experimented with custom facts that are written in Ruby and used this fact
to populate the certname from one host to another.

I hope you found the topics that we covered very useful. In the next chapter, we'll
take a look at the features and functionality of the Puppet Enterprise Console.

[219]

The Puppet Enterprise
Console

So far, our journey has been quite focused on how to manage Puppet from the
command line. However, I do acknowledge that not everybody is a great fan of
the command-line interfaces. I regularly have encounters with people who find the
command-line interfaces confusing and difficult to grasp. The Puppet Enterprise
Console aims to solve this problem by offering a sleek and easy-to-use web interface
to fully manage the Puppet environments and nodes, without having to log on to the
Puppet agent nodes to trigger the Puppet runs.

The Puppet Enterprise Console is a web-based management console that runs on the
Puppet Master node. It comes bundled with the Puppet Enterprise edition, which is
the version this book is based on.

In this chapter, we'll focus on the following topics:

•	 Role-based Access Control
•	 Creating a user account
•	 Assigning roles to a user account
•	 Creating a node group
•	 Adding a node to a node group
•	 Using the External Node Classifier
•	 Trigger the Puppet runs using Live Management
•	 Viewing the Puppet reports
•	 Discovering nodes using Inventory Search

The Puppet Enterprise Console

[220]

Role-based Access Control
A role defines what permissions a user account inherits. A role can be applied to a
single user or a group of users. A user cannot do anything in the Puppet Enterprise
Console until a role has been assigned to it.

Creating a user and assigning a role
I've a colleague called Terry who is a tester. To us colleagues, he is known as Terry
the Tester. He is a genuinely nice bloke and an excellent colleague to work with. Let's
imagine a scenario where Terry needs access to the Puppet Enterprise Console so
that he can manage nodes in his test environment. He is not interested in managing
the Puppet Enterprise (PE) user accounts. He just needs the ability to add nodes
to the node group, trigger the Puppet runs, and access the Puppet reports via the
Puppet Enterprise Console.

Creating a user account
To give Terry the appropriate level of access, we first have to create a user account
for Terry and then assign it an Operators role .

In case you are unable to access the PE console due to an error
Service Temporarily Unavailable, run the following
two commands on the Puppet Master to restart the PE console
processes and reload the login page:
service pe-console-services restart

service pe-httpd restart

Let's take it step by step and create the user account now. These are the hoops to
jump through:

1.	 Open the PE console at https://192.168.56.2. If the web browser warns
you about the SSL certificate you can ignore the warning and continue to
load the login page.

2.	 Log in with the username as admin and password as learningpuppet.

Chapter 9

[221]

3.	 Click on the Access Control link and go to the Users page.
4.	 On the Users page, type in the name of the user in the Full name field.

I'll call my user Terry the Tester, but you are free to pick which ever
name you fancy.

5.	 Then, enter the login name in the Login textbox. I choose the login name
terry (all in lowercase).

6.	 Finally, create the user account by clicking on the Add local user button on
right-hand side of the page, as shown in the following screenshot:

Enabling login for a user account
Terry now has an account, but he is unable to log in to the Puppet Enterprise Console
because we haven't provided him with the login details. What we should do next is
enable Terry's login by providing him with a link to the page where he can set his
own password using the following steps:

1.	 On the Users page, click on the account that you just created.
2.	 Click on the Generate password reset link in the top right-hand corner

of the page.

The Puppet Enterprise Console

[222]

3.	 In the Password reset link dialog box, copy the the address by pressing
Ctrl + C as shown in the following screenshot:

4.	 Open a new browser window, and paste the address into the address bar by
pressing Ctrl + V, then hit Enter to open the Reset Password page.

5.	 Enter the account password (minimum 6 characters) twice, and then click on
the Reset Password button as shown in the following screenshot.

For Terry, I set a password tester, all in lowercase:

Chapter 9

[223]

Terry's login has now been enabled, but he cannot do anything in the Puppet
Enterprise Console until we grant him rights by assigning a role to the account.

Assigning a role to the account
The Puppet Enterprise Console has three built-in roles for the user accounts:

•	 Administrators: A role that allows full access to the Puppet
Enterprise console

•	 Operators: A role that enables the management of node groups and signs
the Puppet Agent certificates

•	 Viewers: A role that provides read-only access to the Puppet
Enterprise console

As Terry requires access that enables him to manage the nodes in the test
environment, the most appropriate role for his account is the Operator role.
Perform the following steps to assign an Operator role for Terry's account:

1.	 Open the Access Control tab, and click on the Operator role.
2.	 Click on the Select a user to add to the role option, and select the account

Terry the Tester from the drop-down list.
3.	 Click on the Add user button.
4.	 Click on the Commit 1 change button in the bottom right-hand corner of the

page as shown in the following screenshot:

The Puppet Enterprise Console

[224]

Now we can try logging in as Terry the Tester. We first have to terminate our
current admin session by clicking on the admin link in the top right-hand corner
of the page and choosing Log out as shown in the following screenshot:

When the Log in form loads up, log on using the username terry and the
password tester.

Creating a node group
Terry the tester needs a test environment for testing the Puppet modules
that we developed in the development environment. A logical name for the
test environment is test. You may recall that in Chapter 6, Scaling Up the Puppet
Environment, we created a node group called development and associated it with
the environment named development. We'll repeat this process and create a test
node group, which we'll also associate with the development environment.

Why would we associate a test node group with the development environment?
Shouldn't the test node group have its own environment called test?

Yes, we can do that, but then we will have to modify the bootstrap::master
class, and add a file resource to it that creates an /etc/puppetlabs/puppet/
environments/test directory for the new environment. This will give us a new
environment with no Puppet modules in it.

As Terry's goal is to test the Puppet modules that we developed in the
development environment, the best option is to create a new node group and
associate the node group with the development environment. This way the nodes
in Terry's node group will automatically get access to all the modules that are stored
in the /etc/puppetlabs/puppet/environments/development directory on the
Puppet Master.

You can think of the Puppet environment as a repository for Puppet modules.
An environment can be shared by one or more node groups, but a node group
can belong to only one environment at the time.

Chapter 9

[225]

Perform the following steps to create a node group called test:

1.	 Click on the Classification link to open the list of node groups.
2.	 In the Node group name field, type in test.
3.	 In the Parent name field, select default from the drop-down menu.
4.	 In the Environment field, select development as the environment of the

node group.
5.	 Then, click on the Add group button to create a node group test as shown in

the following screenshot:

Signing the Puppet agent's certificate
We now have the test node group, but the node group doesn't have any nodes in it
yet. We'll add a web server to this node group, but before we can do this, we must
bootstrap the node and sign its certificate.

The Puppet Enterprise Console

[226]

In the list of virtual machines in the VirtualBox Manager, you can find a machine
called puppet-agent-web-clone. Select the virtual machine, and restore it back to
the snapshot called Base Image. By restoring the snapshot, we ensure that all the
configurations that have been applied to the node get deleted. We discussed the
snapshot restore in Chapter 3, My First Puppet Module in detail. Perform the following
steps to restore a snapshot:

1.	 Select the puppet-agent-web-clone virtual machine in the
VirtualBox Manager.

2.	 Click on the Snapshots button.
3.	 Select the Base Image snapshot.
4.	 Click on the Restore Snapshot button.

Start this virtual machine, and log on using the username root and password
puppet. Then, run the following commands to bootstrap the machine:

cd /media/sf_learning

puppet apply --modulepath . -e 'class { 'bootstrap': role => 'webclone'
}'

puppet agent -t

When the commands complete successfully, you will see the following events
reported on the console:

Chapter 9

[227]

When we return to the Puppet Enterprise Console and refresh the page, we can see
one new node request waiting in for certificate signing.

Click on the 1 Node Request link, and then click on the Accept button to sign
the certificate for the web-clone.development.vm agent as shown in the
following screenshot:

A message node request accepted will be displayed once the certificate is
successfully signed.

The Puppet Enterprise Console

[228]

Adding a node to the node group
So the certificate of the web-clone.development.vm agent has been signed, and
now we can add this node to the test node group. In the Puppet Enterprise Console,
click on the Classification link in the navigation bar, and open the test node group,
which you can find at the bottom of the node group list:

Chapter 9

[229]

Once inside the test node group view, we need to tweak the node group's metadata.
Click on the link that says Edit node group metadata at the top of the node
group view. Then, check the Override all other environments checkbox under
the Environment section. Lastly, confirm the change by clicking on the Commit 1
change button as shown in the following screenshot:

Once the metadata has been saved, and we are back in the node group view,
find a text box with the title Certname and type in the certname, web-clone.
development.vm. When we start typing the certname, a drop-down menu will
appear, and you can select the web-clone.development.vm certname by clicking
on it.

The Puppet Enterprise Console

[230]

Then, click on the Pin node button and commit changes by clicking on the button
that says Commit 1 change:

Well done! The web-clone.development.vm node has now been successfully added
to the test node group. Next, we'll take a look how to classify nodes in the Puppet
Enterprise Console.

Classifying nodes in the Puppet Enterprise
Console
In Chapter 6, Scaling Up the Puppet Environment, we discussed node classification.
We associated the Puppet classes with the Puppet agents in the manifests/site.pp
file, which resides in the root of the Puppet modules directory /media/sf_learning
on the Puppet Master node.

Chapter 9

[231]

Puppet Enterprise offers an alternative way to classify nodes. Instead of creating
the site.pp file that contains the node definitions, we can associate classes with the
Puppet agents via the Puppet Enterprise Console.

In the Puppet terminology, this is called an External Node Classifier (ENC) for
short. For users like Terry the Tester who likes to manage nodes via the Puppet
Enterprise Console instead of editing the site.pp file, the External Node Classifier is
a very useful feature. Let's take a look at how we can associate the webapp class with
the test node group:

1.	 In the test node group view, click on the Classes link.
2.	 In the Add new class textbox, type in webapp.
3.	 A drop-down menu will appear, which confirms that the webapp class is

available for the nodes in the test node group.
4.	 Click on the Add class button to add the webapp class in the catalogue.
5.	 Then, click on the Commit 1 change button to confirm the action, as shown

in the following screenshot:

The Puppet Enterprise Console

[232]

Moving the site.pp file temporarily out of the
modulepath
In Puppet Enterprise, the manifests/site.pp node definition file takes priority
over the ENC. This means that when the manifests/site.pp file is found in the
environment directory (/media/sf_learning/development), the Puppet Master
will classify the nodes against the file instead of ENC. If the file is moved outside the
environment directory on the Puppet Master, the nodes are classified against ENC.

To allow the webapp class to be applied to the newly added
web-clone.development.vm node, the site.pp file has to be temporarily
moved to a location outside the environment directory.

The easiest way to move the file is to move it on the host computer using the
preferred file manager program. The environment directory on my computer is
/home/jussi/learning, mapped as a /media/sf_learning shared folder on the
Puppet Master. Inside the /home/jussi/learning directory, I've a manifests
subdirectory that contains the site.pp file. To move the file, right-click on the
site.pp file and select Cut. Then, go back to root of the /home/jussi home
directory and right-click again and choose Paste.

After the Cut and Paste operations are completed, the site.pp file will appear under
/home/jussi, and the /home/jussi/learning/manifests directory is left empty.
Then, we are ready to try out the classification against ENC.

Using Live Management
Live Management is a powerful Puppet Enterprise component that enables you to
send commands to the Puppet Agent nodes. Perhaps the most useful feature of Live
Management is called runonce, which enables you to trigger the Puppet run on a
group of Puppet agents without having to log on to nodes and initiating the puppet
agent -t command from the command line. Let's take a look at how to access Live
Management and trigger the Puppet run on the web-clone.development.vm node.

The link to Live Management is located in the navigation menu at the top of the
Puppet Enterprise Console view as shown in the following screenshot:

Chapter 9

[233]

When you click on the Live Management menu, Puppet Enterprise automatically
runs a node discovery task, and displays the results in the Node Filter Results view
on the left-hand side of the page. On my machine, Puppet Enterprise discovered two
nodes: learning.puppetlabs.vm and web-clone.development.vm.

If the Puppet Enterprise discovers more nodes, such as the
loadbalancer.development.vm, web.development.vm,
and nagios.development.vm nodes, this means that Puppet
remembers these nodes from earlier deployments. Because I've had
to revert Puppet Enterprise to older snapshots a few times during the
course of the writing, as a result, Puppet has lost knowledge of the
other nodes.

The following screenshot shows the Node Filter Results view that contains
two nodes. By default, Puppet marks all the nodes as selected. Puppet will
perform the Live Management action on all the nodes in the selected state. To
deselect a node, simply click on the node name. If we want to perform an action
on the web-clone.development.vm node only, then we must deselect all the other
nodes, such as the learning.puppetlabs.vm node, which is the certname of the
Puppet Master node as shown in the following screenshot:

The Puppet Enterprise Console

[234]

Next, we will trigger a Puppet run on the web-clone.development.vm node using
the runonce function. runonce is found under the Control Puppet menu in the Live
Management view as shown in the following screenshot:

When you click on the runonce option, an empty form opens up. This form can be
used to narrow down the scope of the nodes, where the Puppet run is performed.
For example, we can set the Environment as development to run Puppet only on
nodes that belong to that environment.

Chapter 9

[235]

As we have already selected the web-clone.development.vm node in the
Node Filter Results view, we can leave all the form fields empty. Simply click
on the Run button at the bottom of the form, and this will trigger a Puppet run on
the web-clone.development.vm node as shown in the following screenshot:.

The Puppet Enterprise Console

[236]

Once you click on Run, the message Signalled the running Puppet Daemon is
displayed as shown in the following screenshot:

That's awesome, isn't it?

How does Terry the Tester know that the Puppet run was in fact triggered on the
web-clone.development.vm node, and more importantly, what were the results of
the Puppet run? We will find this out in reports, which we will take a look at in the
next section.

Accessing reports via the Puppet
Enterprise Console
Our Puppet deployments in the earlier chapters were triggered by executing the
puppet agent -t command on the command line. The output of the command
gave us a break down of the events that happened during the Puppet run in detail.
The runonce task that we just performed on the web-clone.development.vm node
didn't provide us any feedback on whether the Puppet run was a success or a failure.
That's because the Puppet run triggered by Live Management is done using the
component called Mcollective (we briefly discussed Mcollective in Chapter 6, Scaling
Up the Puppet Environment). Mcollective is a message queue application. Although
it is very good at passing messages from the Puppet Master to a large number of
Puppet agents, it is not very good at reporting back on the activities that happen on
the Puppet agent after the message has been processed from the message queue.

Puppet Enterprise provides a solution for this issue by exposing the Puppet reports
in the Puppet Enterprise Console. At the end of every Puppet run, the Puppet agent
sends a report to the Puppet Master, and the Puppet Master stores the report in
PuppetDB. We can access these reports from the Reports menu.

Chapter 9

[237]

When you click on the Reports link in the main navigation menu, the following view
opens up, showing a list of reports from the various Puppet agents:

The first report, the one at top of the list, is from the web-clone.development.vm
node. As you can see from the preceding screenshot, the most recent Puppet run
on the web-clone.development.vm node has not been successful. The Puppet run
failure is indicated by a round red symbol. We will take a look at the reason behind
the failure in a moment, but let's quickly check what other useful information is
available in the Reports overview:

•	 The first column (that doesn't have a heading) shows the status of the
Puppet run:

°° The round red symbol with an exclamation mark inside it indicates
a failure during the Puppet run

°° The green tick means that the Puppet run was successful,
and Puppet made no changes to the node during the run

°° The blue tick also symbolizes a successful run, but during the
run Puppet made a configuration change to the node

•	 The Reported at column shows the date and time of the Puppet run.

The Puppet Enterprise Console

[238]

•	 The Node column shows the certname of the node that the report was
produced on.

•	 The Total column shows the number of resources that Puppet manages on
the node.

•	 The Failed column tells the number of failures that occurred during the
Puppet run. In the preceding list, the web-clone.development.vm node
had one failure during the latest Puppet run.

•	 The Changed column indicates how many resources were
changed during the Puppet run. The most recent Puppet run on the
web-clone.development.vm node changed 80 resources on the system.

•	 The Unchanged column shows how many resources were processed on the
node but not changed during the Puppet run.

•	 The No-op column typically contains a zero value unless Puppet was run in
dry run mode using the --noop flag.

•	 The Skipped column is useful as it tells you the number of resources that
Puppet didn't change because of a failure in a resource that other resources
depend on.

•	 The Failed restarts column indicates the number Service resources that
Puppet failed to manage.

•	 The Config retrieval column shows you the time it took to compile the
catalogue for the Puppet agent from the Puppet Master.

•	 The Runtime columns tells you the duration of the Puppet run on the agent.

We can access the report by clicking on the timestamp link, which is found in the
Reported at column. If you click on the certname link in the Node column instead,
(by accident, which happens to me very often) then that takes us to the Nodes view.
Now click on the timestamp link, and a new page will open up that contains three
tabs: Metrics, Log, and Events as shown in the following screenshot:

I personally don't find the Metrics tab very useful. It just shows the
performance-related data. Unless we have hundreds of nodes in our
environment, performance should not become an issue.

Chapter 9

[239]

What I'm more interested in at the moment is to find out the cause of the failure
during the Puppet run. This information is available in the Log view. When I click on
the Log link, a familiar looking information shows up. The Log view contains events
similar to what Puppet reports when we run the puppet agent -t command on the
command line. There is one difference in how the information is displayed in the Log
view compared to the command-line view; the Log view conveniently displays the
log entries in the order of errors, warnings, and notices. On the command line, log
entries are displayed in real time so that the resources get processed. This sometimes
leads to a situation, where an error goes unnoticed if it occurs at an early stage of the
Puppet run, and the Puppet report is too long to fit on the screen. In the Log view,
this doesn't easily happen, as errors are always reported at the top of the view.

The following screenshot shows the Log view for the web-clone.development.vm
node. All 81 events (80 changes + 1 failure) in the report are too many to fit nicely
in to a single screenshot, therefore I've cropped the image to show the top three
events only:

Although Puppet reported one failure, we can see two error messages.
This is because the errors were reported from two different sources: Puppet
and /Stage[main]/Nagios::Client/Package[nrpe]/ensure.

Anyways the error messages are related as they have common fingerprints.
Puppet failed to install the nagios-common-3.5.1-1.el6.i686.rpm package,
which is the so-called RPM (Red Hat Package Manager) dependency for the
nrpe package. We've declared the nrpe package in the nagios::client class.
Errors like these typically occur when the RPM dependency package, such as
nagios-common-3.5.1-1.el6.i686.rpm, is removed from the third-party RPM
package repository, which our deployment depends on.

The Puppet Enterprise Console

[240]

The third message that is reported at the warning level is related to Puppet's failure
to install the nrpe package. A warning is given because the nagios-plugins-disk
package, which is also declared in the nagios::client class, requires the nrpe
package that failed to install due to errors at the top of the Log view.

Although Terry's test failed, it should be considered a success because he has
identified a problem in the deployment process.

So what information should be included in Terry's test report? Terry should
definitely include the preceding error messages in the report. He can either
copy and paste the errors into his report, or perhaps even better, copy the URL
(https://192.168.56.2/reports/35#!events-tab) from the address bar and
include the URL in the report. When a developer studies the report and clicks on
the URL, it takes him directly to the Puppet Enterprise Console's Reports view.

Please note that the URL specified previously may be different in
your development environment.

Another valuable piece of information that should be included in the report is
found on the Events tab. When you click on the Events link, the following
information is shown:

Chapter 9

[241]

The Events view displays a list of Puppet manifest files and resources that were
processed during the Puppet run. At the top of the view, in the Failed category,
we can see that the file that caused the failure during the Puppet run was /etc/
puppetlabs/puppet/environments/development/modules/nagios/manifests/
client.pp. This is the file path of the Puppet Master. The four notation at the end of
the filename indicates the line number in the client.pp file that caused the failure.

This information should also be included in Terry's test report as it clearly indicates
which manifest file developers should take a look at first before they start to analyze
the issue.

Terry the Tester has once again demonstrated how to add business value
by uncovering a bug in the deployment process. Well done, Terry! As a reward,
I'll buy you a bag of crisps on pay day.

Searching nodes with Inventory Search
In large Puppet environments, it may become difficult to find reports for a particular
node. Puppet Enterprise provides a handy feature that enables you to find nodes
quickly by searching nodes based on their fact values. This feature is called
Inventory Search.

We can access Inventory Search from the main navigation menu. When you click on
the Inventory Search link, a new form is loaded that contains two text fields and a
drop-down menu. The first text field defines the Fact Name, and the second text field
defines the Fact Value. In between the text fields, there is a drop-down menu for
comparison operator.

To search for a node that has a fact certname of value web-clone.development.vm,
we can do it with the following query:

•	 Fact name: certname
•	 Comparison operator: is
•	 Fact value: web-clone.development.vm

The Puppet Enterprise Console

[242]

Once you have set the query parameters, click on the Search button to begin
the query.

When a node or nodes matching the search pattern is found, the details are
displayed below the Search button.

Chapter 9

[243]

Once we have searched for one fact value, another set of text fields
appear that enable us to narrow down our search by defining another
fact value to include or exclude from the search.

When you click on the web-clone.development.vm node at the bottom of the page,
this takes you to the node details view that shows a variety of information about the
node. For example, in the Member Groups category, we can see the node groups
node belong to and which classes are associated with the node as shown in the
following screenshot:

The Puppet Enterprise Console

[244]

When you scroll down the page, we can find the Daily Run Status chart, showing
the Puppet run statistics during the past 30 days accompanied by the performance
chart that reveals the time elapsed for each of the last 30 Puppet runs:

Chapter 9

[245]

At the bottom of the page, we'll find a section called Inventory that lists all the facts
and fact values that belong to the node:

The Puppet Enterprise Console

[246]

Summary
In this chapter, we covered the most important parts of the Puppet Enterprise
Console. We discussed Role-based Access Control, which effectively means creating
a user account and assigning a role to it. We learned how to create a user account
for Terry the Tester and assign it an Operator role.

Following the Role-based Access Control, we discussed how to create a node group
and add a node to it. Once the node was added to the node group, we learned how
to use the External Node Classifier to associate the classes with the node group.

We also experimented with Live Management, which allows us to initiate the
Puppet runs on the Puppet agent nodes via the Puppet Enterprise Console, without
having to log on to the agent node and run Puppet from the command line.

The results of the Puppet run are validated in the Reports view, which provides
us with a break down of resources that were changed by Puppet in detail.

Finally, we looked at how to use Inventory Search to discover nodes based on
fact values.

I hope you enjoyed our exploration of the Puppet Enterprise Console. In the next
(and final) chapter, we will take a step back to the basics and learn how to
troubleshoot and overcome issues that most commonly occur with Puppet.

[247]

Troubleshooting Puppet
Over a period of time, Puppet environments tend to expand in terms of the
size of nodes as well as in the number of Puppet manifests and modules. When
environments grow, so does their complexity. Although Puppet is a tool that is
designed to manage large environments, it does occasionally get its pants in twist
for various reasons. I'd say most issues are caused by us, humans. A small number
of issues are caused by the weird behavior by design that some people refer to as
bugs. Issues often relate to the recent changes in the Puppet code or changes in
the environment configuration. When problems arise, it is important to be able to
identify the source of the problem before we can try to fix it.

In this final chapter, we'll take a look at how to identify the common issues in Puppet
and how we to tackle them.

In this chapter, we will cover the following topics:

•	 Node definition issues
•	 Diagnosing duplicate declaration errors
•	 Getting around dependency cycle errors
•	 Troubleshooting missing resources
•	 How to rectify certificate errors
•	 Finding help online

Troubleshooting Puppet

[248]

Prerequisites
Before we start looking at particular error situations, I'll switch over to use the
GNOME Terminal program and connect to the virtual machines via SSH instead
of connecting using the VirtualBox console. The Terminal program enables me to
adjust the background color to white, which makes error messages more visible and
easier to read.

In this chapter, you can continue using the VirtualBox console, but in case you wish
to make the same adjustments, then here is a breakdown of the changes that I'm
going to do before we continue:

1.	 Open the GNOME Terminal.
2.	 Click on the Edit menu, and select Profile Preferences.
3.	 In the Profile Preferences menu, go to the Colours tab.
4.	 Uncheck the box that says Use colours from system theme.
5.	 Click on the Background Colour tab, and select the white color.
6.	 Click on the Select button to apply the changes:

Chapter 10

[249]

To log on to the virtual machine via SSH, we have to look up the IP address of the
virtual machine. The IP address can be found by running the hostname-I command
on the host. This command returns two IP addresses from which we choose the
second IP address. On the web-clone.development.vm host, the second IP address
is 192.168.56.11.

Once the IP address is known to us, we can initiate the SSH session by running the
ssh root@192.168.56.11 command, where the address 192.168.56.11 is the IP
address of the web-clone.development.vm host.

When prompted, type in the password puppet, and press Enter to open the SSH
session on the virtual machine.

To confirm that the SSH session was successfully established to the correct virtual
machine, in this case, web-clone.development.vm, run the facter -p certname
command (the option -p to load custom facts). The command returns the certname
of the Puppet agent, as shown in the following screenshot:

Now we have done all the necessary adjustments to the Terminal, and we can start
troubleshooting Puppet.

Troubleshooting node definition issues
When we add new nodes to the Puppet environment, it is likely that the node
definition file manifests/site.pp does not contain any records that match the
certname of the new node that connects to the Puppet Master.

Troubleshooting Puppet

[250]

This results in an error 'Could not find default node or by name with
'web-clone.development.vm,...' during the Puppet run, as shown in the
following screenshot:

The preceding error scenario can be easily reproduced. You may recall that, in
Chapter 9, The Puppet Enterprise Console, we moved the manifests/site.pp file
outside the modulepath directory to enable node classification against the External
Node Classifier.

When we copy the site.pp file from the root of the home directory back to the
manifests directory in the modulepath directory (on my machine, the modulepath
directory is /home/jussi/learning), we effectively disable look-ups against the
External Node Classifier, and the nodes are classified against manifests/site.pp
instead.

Using Cut and Paste in the File Manager program, move the site.pp file
back to the learning/manifests directory. Then, run puppet agent -t on
the web-clone.development.vm host, and the preceding error message will be
displayed on the screen.

To successfully reproduce this node definition error, the Puppet
Master virtual machine must be up and running.

The preceding error message tells us that the Puppet Master could not find the
node definition for the certname, web-clone.development.vm. This is because
the learning/manifests/site.pp file does not contain a record of the host.

Chapter 10

[251]

There are a couple of ways to workaround this problem. The first and the most
obvious option is to add a node definition to web-clone.development.vm in
learning/manifests/site.pp using the following:

node 'web-clone.development.vm' {
}

Making the node definition file and ENC work
concurrently
The second (and a better) option is to add a node definition to the default node in
site.pp. The node definition of the default node works as a fallback option for
every host that doesn't have an explicit node definition block in the site.pp file.
The good news is that the default node definition enables the site.pp file and the
External Node Classifier to work in parallel. We can have certain classes defined in
site.pp and other classes defined in the External Node Classifier.

Let's try this out by creating two new classes called flib::site and flib::enc,
which are stored in the flib module. The classes are very simple. They include only
one notify resource each. Here is the content of the flib::site class that is stored
in the flib/manifests/site.pp file:

When you apply the class to the node, Puppet will output a Hello from site.pp
string.

Troubleshooting Puppet

[252]

The second flib::enc class looks very similar to the flib::site class,
except that it outputs a Hello from ENC string. Add the following content
to the flib/manifests/enc.pp file and save it:

Next, we need to add the node definition to the default node in the
manifests/site.pp file and include the flib::site class in it. It doesn't matter
where the node definition block is added to, at the top or at the bottom of the file. I'll
add it to the top of the manifests/init.pp file just to make the screenshot look a
bit more compact. This is how the first three lines of the site.pp file will look after
adding the default node definition that includes the flib::site class:

Next, we will change the node classification in the ENC by removing the webapp
class that is currently associated with the test node group, and replacing it with
the flib::enc class.

We covered node classification in Chapter 9, The Puppet Enterprise Console, but as a
reminder, here is a quick break-down of steps on how to replace the webapp class
with the flib::enc class in the Puppet Enterprise Console:

1.	 Log on to https://192.168.56.2 using the username terry and password
tester.

Chapter 10

[253]

2.	 Click on the Classification menu, and open the test node group, which is
found at the bottom of the node group list.

3.	 Go to the Classes tab.
4.	 In the Add new class section, type in the class name flib::enc, and then

click on the Add class button.
5.	 Do not click on Commit 2 changes yet.
6.	 In the Class: webapp section, click on the Remove this class link to remove

the webapp class from the ENC.
7.	 Now commit both the changes by clicking on the Commit 2 changes button

at the bottom of the page:

Voilà! We are now ready to test the node classification against the ENC and
manifests/site.pp:

1.	 Log on to the web-clone.development.vm node as the user root using the
password puppet.

2.	 Run the puppet agent -t command.

Troubleshooting Puppet

[254]

On a successful Puppet run, the classification error 'Could not find default
node or by name with 'web-clone.development.vm,...' is no longer reported.
Instead, two notify events are reported. One notify event says 'Hello from site.
pp' and the other event says 'Hello from ENC'.

Very good! We managed to rectify the node classification error; and, during
the process, we improved the classification by introducing the default node
classification that enables you to classify the node against site.pp and ENC.

Diagnosing duplicate declaration errors
Every Puppet resource must have a unique resource name. If a resource is declared
twice in the catalog, Puppet displays the following error: 'Error: Could not
retrieve catalog from remote server: Error 400 on SERVER: Duplicate
declaration: Resource[name]...'.

Duplicate declaration errors are very common and sometimes quite difficult to
rectify. If it is a simple case, where a resource is declared twice with the same name,
Puppet rightfully reports which files, and the line numbers in files, are clashing. Here
is an example of a scenario when a notify resource has been declared twice with the
same name:

Chapter 10

[255]

Let's take a look at the preceding error message in detail, and see what information
we can find from it so that it helps us troubleshoot the problem.

There are three important elements squeezed into one very long error message. The
first piece of information that is relevant to us is Error 400 on SERVER: Duplicate
declaration: Notify[Hello from ENC] is already declared.....

Here, Puppet specifies the name of the resource that is declared twice with the same
name. The clashing resource in this case is a type of notify, and the name of the
resource is Hello from ENC. You can probably guess which file is involved, as we
just declared this resource in the previous paragraph. However, let's take a look at
the other two important pieces of information that will help us troubleshoot
the problem.

The following two messages are embedded in the error message that shows you the
files (and the line numbers in the files) that are causing the clash:

...in file /etc/puppetlabs/puppet/environments/development/modules/flib/
manifests/site.pp:2

cannot redeclare at /etc/puppetlabs/puppet/environments/development/
modules/flib/manifests/enc.pp:2

So, according to Puppet, line 2 in the flib/manifests/site.pp file clashes
with line 2 in the flib/manifests/enc.pp file. This is indicated by Puppet with
filename:linenumber in the enc.pp:2 syntax.

Troubleshooting Puppet

[256]

Let's open these files in a text editor and compare the file content:

Oh dear! What have I done? For "quality and training" purposes, I've
copied the notify resource from flib/manifests/enc.pp and pasted it into
flib/manifests/site.pp, and this is causing the error. To eliminate the error, we
need to change the name of the notify resource in flib/manifests/site.pp by
making the name unique, such as Hello from site.pp.

In this instance, Puppet was very clear with its error reporting, and this helped
us identify the issue quickly. However, there are scenarios when the duplicate
declaration error message is not very helpful. Here is an example of an error
message when a duplicate declaration error occurs in the custom defined type:

Chapter 10

[257]

The preceding error message tells us that we have a duplicate declaration of the
Notify[message-of-day] resource on line 4 in the flib/manifests/hello.pp file.
Note that the error message contains the same filename and line number twice.

Let's examine the hello.pp file and see what resources it contains.

•	 Line 1 declares a custom defined type called flib::hello. flib::hello
accepts an input parameter called $message.

•	 Line 2 creates a notify resource called 'message-of-day'.
•	 Line 3 defines the message attribute for the notify resource. The message

attribute gets its value from the $message input parameter.
•	 Line 4 closes the notify resource. This is the line that the Puppet error

message complained about.
•	 Line 5 terminates the custom define type block.

We can clearly see that the flib::hello type contains only one notify resource.
So why is Puppet reporting a duplicate declaration error in this file? The answer
is found in the file that calls the flib::hello type. The type is called in the
flib/manifests/site.pp file. This is how the file looks since it was last edited.

Troubleshooting Puppet

[258]

The flib/manifests/site.pp file looks very different since the last time we had
a look at it. The notify resource that used to be in the file has been replaced with
two calls to the custom defined type flib::hello. The names of the message1 and
message2 types are unique and also both of them have unique message attribute
values. So why is Puppet not liking this? The reason is that we call the flib::hello
type twice, but the type includes a notify resource that has a static name
message-of-day (see line 2 in flib/manifests/hello.pp). If we call the
flib::hello type just once, Puppet will not complain, but because it's called
twice, we effectively declare the notify resource message-of-day twice, and
this is what Puppet is trying to tell us. It just doesn't say it very clearly.

So what's the remedy? Let's take a look at a couple of available options.

Using the defined() function to avoid
duplicate declarations
The defined() function is a handy way to prevent Puppet from declaring the same
resource twice. Typically, the defined() function is used in conjunction with the if
clause. The if clause and other conditional statements were discussed in Chapter 6,
Scaling Up the Puppet Environment.

To check whether the notify resource ["message-of-day"] has already been
declared, we can do it using the following syntax:

if ! defined(Notify["message-of-day"]) {
declare the the notify resource if not already declared
}

The exclamation mark (!) between the if and defined keywords negates the if
statement. To express this in a natural language, instead of saying if defined, we
can use defined.

Here is a new version of the flib::hello type that uses the defined() function:

Chapter 10

[259]

The content of the flib/manifests/hello.pp file is the same as before, except that
it now includes the if ! defined(Notify["message-of-day"]) { statement on
line 2, and the if statement is terminated with closing curly braces (}) on line 6.

Now we can try running Puppet on web-clone.development.vm, and see how the
new flib::hello type behaves:

As you can see, the defined()function helped us eliminate the duplicate declaration
error, and we can see that message1 prints out 'Defined types are great'.
Ideally, we want flib::hello to print out the messages of every call that we make
to the type. At the moment, it only prints out one message and all the consecutive
calls are ignored.

Using the $name variable in custom types
Puppet has its so-called reserved variables, which are built-in to Puppet. One of
these reserved variables is called $name. This variable is a reference to the name of
the resource, which we will define at the time when a resource is declared.

For example, in flib/manifests/site.pp, we have declared a resource
flib::hello with the message1 name. Here is how the resource is declared:

flib::hello { 'message1': message => 'Defined types are great' }

In the flib::hello type, any reference to the $name variable will resolve a value of
message1. This variable is extremely useful when we want to ensure that each and
every resource in the custom defined type has a unique name.

Troubleshooting Puppet

[260]

To ensure that each notify resource in the flib::hello type has a unique name, we
simply add the $name variable to the name of the notify resource. Instead of using
the static string message-of-day as the name of the notify resource, we include the
$name variable as part of the name.

Here is an example of the flib::hello type after the $name variable has been added
to two places. The notify resource in the defined() function on line 2 has the $name
variable added to the name of the resource. Also, the $name variable has been added
to the name of the notify resource on line 3:

Now we can rerun Puppet on web-clone.development.vm. The expected outcome
is to see both the messages, 'Defined types are great' and 'Duplicate
declaration messages are not nice', appear in the Puppet report:

Chapter 10

[261]

Getting around dependency cycle errors
Resource ordering is a very handy feature of Puppet, but it can sometimes cause so
much grey hair. A resource order can be set in the resource with attributes, such as
before, require, notify, and subscribe. Or to set the order outside the resource,
we can use the arrow notations such as -> (a hyphen and a greater than sign for
before) or ~> (a tilde and a greater than sign for notify).

When a resource ordering chain grows long, and we have dependencies between
resources that are declared in various different manifest files and modules, the
chance of a dependency cycle error increases.

Here is an example of an error message that is caused by the dependency cycle error:

The preceding error message shows a list of dependent resources separated by =>
sign. The message shows that the Exec['/tmp/script1.sh'] resource depends
on the Exec['/tmp/script2.sh'] resource, which has a dependency back to the
Exec['/tmp/script1.sh'] resource.

Troubleshooting Puppet

[262]

Let's take a look at the flib/manifests/site.pp manifest that is causing the
dependency cycle error:

The contents of the flib/manifests/site.pp file have been replaced once again.
It currently contains a variable named $script, a file resource, and two exec
resources. Resources are ordered with an arrow notation.

Let's examine the file line by line, and see if we can find the reason for the
dependency cycle error:

•	 Line 1 begins with the flib::site class.
•	 Line 2 defines a $script variable, which is a multiline variable that extends

to line 3:
The first line of the variable defines the /bin/bash program that is used as
an interpreter to the script.
The second line defines the /bin/echo $0 says hello command, which is
executed when the script is run.
The $0 is a Bash (Bourne Again Shell) variable that refers to the name
of the script itself. For example, if the script is saved in /tmp/script1.sh,
the resulting output of the /bin/echo $0 says hello command is
/tmp/script1.sh says hello.

•	 Line 5 defines the two file resources: /tmp/script1.sh and /tmp/
script2.sh.

Chapter 10

[263]

•	 Line 6 sets the content of the file based on the value of the $script variable,
which is the multiline variable defined on lines 2 and 3.
Line 7 defines the mode attribute, which is used to set the file access rights.
Value 0755 makes the files executable, which is required for the scripts
to work.

•	 Line 8 closes the file resources.
•	 Line 9 contains the arrow notation -> that sets the order, where the file

resource must be processed before the exec resource on line 9.
•	 Line 10 creates an exec resource that executes the /tmp/script1.sh script,

which the file resource creates on lines 5 to 8. The exec resource contains
the logoutput => true attribute, which enables the output of the script to
be visible in the Puppet report.

•	 Line 13 contains another arrow sign ->, and it sets the order so that the first
exec resource (line 10) is processed before the second exec resource (line 11).

•	 Line 14 creates another exec resource, which is similar to the first one. This
exec resource runs the /tmp/script2.sh script.

In addition to the logoutput => true attribute, this resource contains a
before => Exec['/tmp/script1.sh'] attribute.
The before attribute causes the dependency cycle error because it conflicts
with the arrow chain sign on line 13.

Now we can try removing the before => Exec['/tmp/script1.sh'] attribute
from line 1, and then save the flib/manifests/site.pp file. Now the file should
have the following content:

Troubleshooting Puppet

[264]

Then, rerun Puppet, and the dependency cycle error will no longer appear.
The following screenshot shows the resource ordering in action. In the beginning
of the Puppet run, it creates two script files, and then executes scripts in the order
of /tmp/script1.sh and /tmp/script2.sh:

So what type of ordering should we use, an arrow notation or the ordering
attributes? In my opinion, both are useful. An arrow notation is shorter and simpler,
and I typically use it to set the processing order for the resources that are created in
the manifest. Just like we did in the flib/manifests/site.pp manifest.

Ordering with attributes (before, require, and so on) is useful when we want to
depend on resources that are defined in other modules. Although an arrow notation
can be used to order resources across modules, I prefer to use ordering attributes
for cross-module dependency. For example, the Apache module defines a service
resource for the httpd service. My local module defines a file resource, /etc/
httpd/conf/httpd.conf. If I want the httpd service from the Apache module to
restart every time the /etc/httpd/conf/httpd.conf file changes, I'd simply set the
dependency with the notify attribute in the following way:

file { '/etc/httpd/conf/httpd.conf':
 content => '1.2.3',
 notify => Service['httpd'];
}

Chapter 10

[265]

Troubleshooting missing resources
When dealing with files and templates in Puppet modules, it sometimes happens
that the reference to a file or a template in the manifest is not correct. Despite many
years of puppeteering, I am still struggling to remember whether to use the content
or source attribute. If I have to use the source attribute, what is the format of the
URL that I must use when pointing to the file in a module? Did it have two or three
forward slashes? I give up and use copy and paste instead!

Diagnosing template errors
The problem with copy and paste is that it often contains references to different
Puppet modules. This results in Puppet reporting errors saying that Puppet cannot
find a particular resource. Here is an example of the error when Puppet fails to find a
template that is referenced in the flib/manifests/site.pp file:

The message Error 400 on SERVER: Could not find template 'webapp/
timestamp.erb' at /etc/puppetlabs/puppet/environments/development/
modules/flib/manifests/site.pp:4 is quite self-explanatory. Puppet cannot find
a timestamp.erb template in the webapp module.

Let's take a look at the content of the flib/manifests/site.pp file:

Troubleshooting Puppet

[266]

The template function used in the content attribute on line 4 contains a reference
to the webapp module. This is because I copied the attribute from line 7 to the
webapp/manifests/init.pp file. To fix the problem, I can either replace the string
webapp with the string flib. Or a better solution is to replace the string webapp with
the ${module_name} variable. The ${module_name} variable is one of the reserved
Puppet variables, which refers to the name of the module that references
the variable.

To workaround the problem, I'll replace the string webapp with the ${module_name}
variable. After making these changes, the flib/manifests/site.pp file has the
following content. Only line 4 has changes since we last looked at the file:

Before we attempt to run Puppet again, we should also make sure that the
timestamp.erb file is present in the flib module under the templates directory.
As the templates directory doesn't exist yet, we must first create it. This can be done
on the virtual machine by running the following command:

mkdir -p /media/sf_learning/flib/templates

Then, we must create the flib/templates/timestamp.erb file. The content of the
template is not very meaningful for the purpose of the exercise. Here is a simple
template that generates the current timestamp in the Ruby programming language:

Chapter 10

[267]

Once the file is saved as flib/templates/timestamp.erb, we can try running
Puppet on the web-clone.development.vm node:

Diagnosing missing source file errors
The error message related to the missing template was fairly clear. However, when
dealing with static files that are stored in the files directory, the error that Puppet
throws when a file is not found is slightly more confusing.

Here is an example when Puppet fails to find a flib/files/static_file file:

Troubleshooting Puppet

[268]

When you see the error message Could not evaluate: Could not retrieve
information from environment... for the first time, it is not obvious that the
error is caused by the missing flib/files/static_file file. The best clue is
that puppet:///modules/flib/static_file is at the end of the error message.
This indicates that Puppet is trying to retrieve a static_file file from the flib
module. The same URL is referenced by the source attribute on line 4 in the
flib/manifests/site.pp file:

To fix this genuine problem, we first need to create a flib/files directory, and add
the static_file file to it. This can be done by running the following two commands
on the web-clone.development.vm node:

mkdir -p /media/sf_learning/flib/files

touch /media/sf_learning/flib/files/static_file

Here is a screenshot that shows when the commands are run in the Terminal,
and Puppet is run after the command:

Chapter 10

[269]

Rectifying certificate errors
Every Puppet Agent has its own unique certificate. In Chapter 9, The Puppet Enterprise
Console, we learned how to sign a certificate for the web-clone.development.vm
node. Certificates are the lifelines for the Puppet agent, which means that, without a
working certificate, the Puppet agent can't get any service from the Puppet Master.
Certificates do sometimes stop working and this causes problems with deployments.
Certificates may stop working, for example, if a node is deleted on the Puppet
Master. Let's take a look at certificate errors and how to fix them.

Listing certificates on the Puppet Master
Certificates are stored on the Puppet Master. Certificates can be listed on the
command line by running the following command on the Puppet Master node:

puppet cert list --all

The command outputs a list of certificates that are currently active:

The second certificate from the bottom belongs to the web-clone.development.vm
node. Let's delete the certificate on the Puppet Master, and see how this affects the
Agent's functionality.

Troubleshooting Puppet

[270]

Removing Puppet certificate on Puppet
Master
A Puppet certificate can be deleted by running the puppet cert clean <certname>
command on the Puppet Master. To remove the certificate of the web-clone.
development.vm node, we run the following command:

puppet cert clean web-clone.development.vm

This command will produce the following output:

If you rerun the puppet cert list --all command, you will notice that the
certificate for the web-clone.development.vm node has disappeared from the
certificate list.

Before we jump on to the Puppet Agent node, we have one more command to be
run on the Puppet Master that makes the certificate removal effective. In Puppet
Enterprise 3.7, the certificate removal doesn't become effective until we restart the
pe-puppetserver process.

Here is the command to restart the pe-puppetserver process Puppet Enterprise 3.7:

service pe-puppetserver restart

When the process is successfully restarted, the following events are reported on
the console:

Chapter 10

[271]

Now let's take a look at what impact the certificate removal had on the
web-clone.development.vm node. When you log on to the node and run the
puppet agent -t command, the following stack of errors is displayed:

The errors are not very clear, but on several lines, we can see messages mentioning
SSL (Secure Socket Layer). SSL is the protocol that forms the basis of the Puppet
certificate management.

Regenerating Certificate Signing Request
Right now, we are in situation where the web-clone.development.vm node is
unable to connect to the Puppet Master. The Puppet Agent has a certificate stored
in the node, which has been removed from the Puppet Master.

To reestablish connectivity with the Puppet Master, we need to remove the old
certificate from the Puppet Agent and regenerate the Certificate Signing Request,
which we will then sign on the Puppet Master.

To delete the old certificate from the Puppet Agent, run the following command on
the web-clone.development.vm node:

rm -rf $(puppet agent --configprint ssldir)

Troubleshooting Puppet

[272]

Once the old certificate has been removed, we need to establish a connection to the
Puppet Master to regenerate the Certificate Signing Request. This can be done with
the usual puppet agent -t command, which produces the following output:

Signing a certificate on the command line
Unlike before, when we signed the certificate in the Puppet Enterprise Console,
we can sign a certificate from the command line. Let's first confirm that the signing
request has been received by the Puppet Master. Here is the command to do this:

puppet cert list

The command output shows that we have one certificate from the
web-clone.development.vm node that is waiting to be signed:

The puppet cert list --all command show all the certificates,
signed or unsigned, on the Puppet Master.
The puppet cert list command without the --all argument
only shows the certificates that are unsigned.

Then, we can sign the certificate for the web-clone.development.vm node. Signing
the certificate from the command line is done with the following command:

puppet cert sign web-clone.development.vm

Chapter 10

[273]

The output of the command confirms that the certificate was signed successfully.

Once the certificate has been signed, we can test the connectivity between the
web-clone.development.vm node and the Puppet Master. Testing is as simple as
running the puppet agent -t command on the agent.

The following screenshot shows you that the Puppet Agent is able to connect to the
Puppet Master, and the Agent is processing the flib::enc class, which is the class
that has been associated with the test node group, which: is a member of.

Finding help online
We have now covered the most common issues that users have to deal with when
working with Puppet. However, there are only a handful of issues that can be
squeezed into a single chapter. Thankfully, we have the Internet provides us with
various services, such as user groups, that enable collaboration between users.

Troubleshooting Puppet

[274]

To extend the coverage of the book beyond the printed pages, I've set up a
user group in Google called Learning Puppet - [PACKT], which you can find at
https://groups.google.com/forum/?hl=en#!forum/learning-puppet---packt.

I'm hoping that this group becomes a forum for all those who read this book, and
Puppet users in general, to help each other out with issues that they may encounter.
In addition to this, I'd love to see some feedback signed posted on this group that
will help me improve the content, in case there are any requests to make another
edition of the Learning Puppet book.

At the time of writing, the group is open for public to view the posts. Creating a
post is only available for group members. To become a member, send me a request
via a group, and I'll approve it. Later, when there are enough members, we can vote
whether to allow the public to post to this group.

Summary
We have just completed the tenth and final chapter of this book. This chapter focused
on the most common issues that I, and the people I work with, regularly encounter
with Puppet. We learned how to identify and rectify the node definition issues.
We also looked at how to work around duplicate declaration and dependency
cycle errors as well as what to do when Puppet reports resources are not found.
Finally, we created a Puppet Agent certificate problem and learned how to fix it
by regenerating the certificate signing request.

I hope you enjoyed this final chapter as well as the overall book.

Thanks!

https://groups.google.com/forum/?hl=en#!forum/learning-puppet---packt

[275]

Index
A
Apache HTTP Server

installing 63, 64
testing 64, 65

architecture
monitoring 82

C
Certificate Authority (CA) 135
certificate errors, rectifying

about 269
certificate, removing on

Puppet Master 270, 271
certificate, signing on

command line 272, 273
Certificate Signing Request,

regenerating 271
certificates, listing on Puppet Master 269

class parameter 108
custom facts

certname record, distributing
across cluster 213-217

creating 205
creating, to extract certname 211-213
external facts 206, 207
writing, in Ruby 210, 211

D
daemon mode 147
dalen-puppetdbquery module

adding, into RUBYLIB environment
variable 177-179

installing 177

defined type
about 110
calling 110
creating 111

dependency cycle errors
troubleshooting 261-264

duplicate declaration errors, diagnosing
$name variable, using in custom types 260
about 254-257
defined() function, using 258, 259

E
exported resources

about 164, 165
testing 170-172

external facts
about 206, 207
creating 208-210

External Node Classifier (ENC) 231

F
Facter

about 69, 70
facts, accessing from Puppet manifests 72
facts, accessing from Puppet

template 70, 71
on command line 70
simple for loop, in Puppet template 73-75

files and directories, Puppet module
Gemfile 56
manifests 56
manifests/init.p 56
metadata.json 57

[276]

README.md 57
Spec 57
Tests 57
tests/init.pp 57

I
Inventory Search

nodes, searching with 241-245

J
JSON (JavaScript Object Notation)

URL 206

L
learning-webapp Puppet module

creating 55
Live Management

about 232
using 232-236

load balancer
applying 130
testing 130

loadbalancer class
parameters, adding 122-125

load balancer node
building 114
virtual machine, cloning for

load balancer 114
load balancing

architecture 112
enabling, on loadbalancer class 127-129
web server nodes 126, 127

M
Mcollective 135, 136
missing resources, troubleshooting

about 265
missing source file errors,

diagnosing 267, 268
template errors, diagnosing 265, 266

N
Nagios 82
nagios::client class

creating 94-98
testing 99

Nagios host
creating 101-105

Nagios module, for client and server
creating 83
generating 86
nagios::client class, creating 94-98
Nagios Server installation 87-90
recap, on state of virtual machines

and snapshots 84
virtual machine, cloning for Nagios module

development 85
nagios::purge class

resources, purging with 174, 175
Nagios Remote Plugin Executor (NRPE) 82
nagios::resources class 165, 166
Nagios Server

about 82
checks, configuring 100

Nagios Server installation
about 87-90
nagios::server class, applying 92
Nagios Server web interface,

configuring 91
verifying 93

node definition issues, troubleshooting
about 249, 250
node definition file and ENC, making work

concurrently 251-254
node group

creating 224
node, adding 228, 229
nodes, classifying in Puppet Enterprise

Console 230
Puppet agent's certificate, signing 225-227
site.pp file, moving temporarily out of

modulepath 232
nodes

searching, with Inventory Search 241-245

[277]

O
Oracle VirtualBox

downloading 4

P
packages

managing, in Puppet 35
parameterized class

about 108
calling, with parameters 108
creating 109

parameters
adding, to loadbalancer class 122-125

public key infrastructure (PKI) 200
Puppet

running, as user root 20, 21
troubleshooting 247
using, for examining current state

of resources 18, 19
Puppet Agent, connecting with Puppet

Master
about 137
bootstrap::agent class, applying via

bootstrap class 155, 156
bootstrap class, applying on

Puppet Master 148, 149
bootstrap::master, creating 140-142
bootstrap module, creating 137
certificate, signing on Puppet Enterprise

Console 157, 158
conditional statements 144
if statement 144-146
load balancer, bootstrapping 161
Nagios Server nodes, bootstrapping 161
node group, creating 152, 153
nodes, adding to node group 158, 159
out-of-scope variable, referencing from

Puppet template 142, 143
Puppet Agent, bootstrapping 153-155
Puppet Enterprise Console 150
Puppet Enterprise Console, logging on 151
resource processing, defining over arrow

notation 139

site.pp file, creating for node
classification 147, 148

static IP address, configuring on Puppet
Master 138

Web Server node, deploying against
Puppet Master 159-161

puppet-agent node
creating 45
package resources, purging 49, 50
snapshot of virtual machine, taking 46
virtual machine clone, creating 46-49

puppet apply command 60
Puppet class

about 57
applying 59, 60
module directory, renaming 59
resources 58

Puppet command line
versus Puppet manifests 27

Puppet configuration 31-34
PuppetDB

about 164
for exported resources 136
queries 136
reporting 136
URL, for documentation 176

PuppetDB query
about 175-177
manifests, testing on load balancer 190, 191
used, for configuring load balancer 186-190

puppetdbquery functions
custom type, creating for testing PuppetDB

queries 183-185
query_facts function 183
query_nodes function 182
using 182

Puppet Domain Specific
Language (DSL) 21, 22

Puppet dry run 17
Puppet Enterprise Console

503 Service Temporarily Unavailable
error 151

about 150
certificate warning message, bypassing 150
logging on 151

[278]

Puppet Enterprise (PE) 220
Puppet Forge

about 61
module, installing from 61, 62
URL 61

Puppet function
about 194
SSH keys, distributing with 200
test-driving 197
testing, against Puppet Master 198, 199
testing, on Puppet Agent node 197, 198
writing 196, 197

puppetlabs-apache module 61
Puppet Language Style Guide

URL 128
Puppet Learning VM

downloading 5
importing, into VirtualBox 6-8

Puppet Learning VM Version 3.7.1
download link 5

Puppet manifests
about 2, 3, 21, 22
creating 24-26
files and directories, managing with file

resource 28-30
idempotency 26, 27

Puppet Master
about 134
components 135

Puppet Master components
Certificate Authority (CA) 135
Mcollective 135, 136

Puppet module
about 54
creating, for custom functions 194, 195
files and directories 56
generating 55, 56
installing, from Puppet Forge 61, 62
name format 55
Puppet class 57
Puppet template 66
structure 54

Puppet on command line
about 11, 12
Puppet resources 13
Puppet version 12

Puppet query commands
certname, querying with action nodes 180
examples 179
facts, querying with action facts 180, 181

Puppet resources
about 13, 14
managing, from command line 14-17
managing, with puppet apply

command 22, 23
Puppet template

about 66
file resource, creating for

template file 67-69
template file, creating 67

Puppet version
about 12, 13
open source Puppet 13
Puppet Enterprise edition 13

Q
query_facts function 183
query_nodes function 182

R
repeatable deployment, testing

about 75
linked virtual machine clone, creating from

snapshot 77
machine state, reverting to previous

snapshot 76
memory allocation, reducing for virtual

machine 76
virtual machine, shutting down 76
virtual machines, power on 78
webapp class, applying 79

reports
accessing, via Puppet Enterprise

console 236-241
resources

exporting 166, 167
importing 168, 169
purging 173, 174
purging, with nagios::purge class 174, 175

[279]

Role-based Access Control
about 220
log in, enabling for user account 221-223
role, assigning 220
role, assigning to account 223
user account, creating 220
user, creating 220

RPM (Red Hat Package Manager) 239

S
second web server node

launching 131
sed (stream editor) 97
snapshot

restoring 36
SSH keys, distributing with Puppet

function
custom function, calling from file

source 202-204
distributing, with Puppet function 200
password-less SSH session, testing 205
public and private key pair, creating 200
Puppet function, writing to distribute

public key 201, 202
SSL (Secure Socket Layer) 271

T
TAR (tape archive) format 54
troubleshooting, Puppet

about 247
certificate errors, rectifying 269
dependency cycle errors 261-264
duplicate declaration errors,

diagnosing 254-257
missing resources, troubleshooting 265
node definition issues,

troubleshooting 249, 250
online help, finding 273, 274
prerequisites 248, 249

V
VirtualBox 4.3

URL 4
VirtualBox Guest Additions

about 37

file resource, using for configuring network
interface on virtual machine 43, 44

host-only networking 38
host-only network interface,

configuring 40, 41
networking, restarting 44
shared folders 37
shared folders, configuring 38, 39
shared folders, testing 42

virtual machine
snapshot, capturing 9-11

virtual machine, cloning for load balancer
about 114
end-to-end functionality, testing 120-122
load balancer, deploying 118
load balancer deployment, verifying 119
load balancer, installing with class

parameters 116, 117
load balancer module, creating 115
snapshot, creating 115
virtual machine memory allocation,

reducing 115
virtual machine snapshots 8, 9

W
web server

customizing, with facts and templates 65
monitoring, enabling 100

web server host
configuring 100

web server nodes
load balancing 126, 127

Y
YAML (YAML Ain't Markup Language)

URL 206

Thank you for buying
Learning Puppet

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant Puppet 3 Starter
ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Instant Puppet 3 Starter

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how deterministic results can vastly
reduce your workload.

3.	 Deploy Puppet Server as a Ruby-on-Rails
application to handle thousands of clients.

4.	 Design your own module for complex
configurations.

Mastering Puppet
ISBN: 978-1-78398-218-9 Paperback: 280 pages

Pull the strings of Puppet to configure
enterprise-grade environments for performance
optimization

1.	 Implement puppet in a medium to large
installation.

2.	 Deal with issues found in larger deployments,
such as scaling, and improving performance.

3.	 Step by step tutorial to utilize Puppet
efficiently to have a fully functioning
Puppet infrastructure in an enterprise- level
environment.

Please check www.PacktPub.com for information on our titles

Learning Puppet Security
ISBN: 978-1-78439-775-3 Paperback: 236 pages

Secure your IT environments with the powerful
security tools of Puppet

1.	 Pass a compliance audit by showing the
concrete state of your systems using Puppet.

2.	 Secure your Puppet server to minimize risks
associated with misconfigured installations
using the gdsoperations/auditd module.

3.	 Attain in-depth knowledge of all the security
aspects related to Puppet with the help of a
step-by-step approach and attain the practical
skills required to develop applications.

Puppet 2.7 Cookbook
ISBN: 978-1-84951-538-2 Paperback: 300 pages

Build reliable, scalable, secure, high-performance
systems to fully utilize the power of cloud computing

1.	 Shows you how to use 100 powerful advanced
features of Puppet, with detailed step-by-step
instructions.

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
MCollective, and more.

3.	 Includes the latest features and updates
in Puppet 2.7.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Puppet Development
in Isolation

	Puppet Manifests
	Downloading Oracle VirtualBox
	Downloading the Puppet Learning VM
	Importing the Puppet Learning VM into VirtualBox
	Virtual machine snapshots
	Snapshot of the virtual machine
	Puppet on command line
	Puppet version
	The open source Puppet
	The Puppet Enterprise edition

	Puppet resources
	Managing resources from the command line
	Puppet dry run
	Use Puppet to examine the current state of resources
	Puppet is run as a user root
	Puppet DSL and manifests

	Managing resources with the puppet apply command
	Creating Puppet manifests
	Idempotency
	Puppet command line versus Puppet manifests
	Managing files and directories with a file resource

	Puppet configuration
	Summary

	Chapter 2: Managing Packages in Puppet

	Restoring a snapshot
	Introducing VirtualBox Guest Additions
	Shared folders
	Host-only networking
	Configuring shared folders
	Configuring the host-only network interface
	Testing shared folders
	Using the file resource to configure network interface on the virtual machine
	Restart networking

	Creating the puppet-agent node
	Take a snapshot of the virtual machine
	Branch the virtual machine by creating a clone from the snapshot
	Purging package resources

	Summary

	Chapter 3: My First Puppet Module

	Introducing the Puppet module
	The Puppet module structure
	The Puppet module name format
	Generating a Puppet module

	A Puppet class
	Resources inside the Puppet class
	Rename the module directory
	Applying a Puppet class
	Installing a module from Puppet Forge
	Installing Apache HTTP Server
	Testing the Apache HTTP Server
	Customizing a web server with facts and templates

	Puppet templates
	Creating a template file
	Creating a file resource for the template file
	Facts by the facter
	Facter on the command line
	Accessing facts from the Puppet template
	Accessing facts from Puppet manifests
	A simple for loop in the Puppet template

	Testing repeatable deployment
	Shut down the virtual machine
	Revert the machine state to the previous snapshot
	Reduce memory allocation for the virtual machine
	Create a linked virtual machine clone from the snapshot
	Power on both the virtual machines and apply the webapp class

	Summary

	Chapter 4: Monitoring Your Web Server

	Monitoring the architecture
	Creating a Nagios module for the
client and server
	A recap on the state of virtual machines and snapshots
	Cloning the virtual machine for Nagios module development
	Generating the Nagios module
	Puppetize the Nagios Server installation
	Configuring the Nagios Server web interface
	Applying the nagios::server class
	Verifying Nagios Server installation

	Creating nagios::client class
	Testing the nagios::client class

	Enable monitoring on the web server
	Configuring the web server host and checks on the Nagios Server
	Creating a Nagios host

	Summary

	Chapter 5: Load Balancing the Cluster

	The parameterized class
	Calling a class with parameters
	Creating a parameterized class

	The defined type
	Calling the defined type
	Creating the defined type

	The load balancing architecture
	Building the load balancer node
	Cloning a new virtual machine for the load balancer
	Reducing the virtual machine memory allocation
	Creating a snapshot and starting the virtual machine
	Creating a load balancer module
	Installing the load balancer using class parameters
	Deploying the load balancer
	Verifying the load balancer deployment

	Adding parameters to the loadbalancer class
	Load balancing web server nodes
	Enabling load balancing on the loadbalancer class
	Applying and testing the load balancer
	Launching the second web server node

	Summary

	Chapter 6: Scaling Up the Puppet Environment

	Puppet Master
	The Puppet Master components
	Certificate Authority for authorisation
	Mcollective for orchestration
	PuppetDB for exported resources, PuppetDB queries, and reporting

	Connecting Puppet Agent with Puppet Master
	Creating the bootstrap module for Puppet Master and Puppet Agent
	Configuring static IP address on Puppet Master
	Defining resource processing order with the arrow notation
	Creating class bootstrap::master
	Referencing an out-of-scope variable from Puppet template
	Conditional statements
	The if statement

	Creating site.pp file for node classification
	Applying bootstrap class on Puppet Master
	A first look at the Puppet Enterprise Console
	Bypassing the certificate warning message

	Logging on to the Puppet Enterprise Console
	503 Service Temporarily Unavailable?

	Creating a node group
	Bootstrapping Puppet Agent
	Applying the bootstrap::agent class via the bootstrap class
	Signing the certificate on the Puppet Enterprise Console
	Adding nodes to the node group
	Deploying the Web Server node against Puppet Master
	Bootstrapping Load Balancer and Nagios Server nodes

	Summary

	Chapter 7: Making the Configuration Dynamic

	An introduction to PuppetDB and exported resources
	Exported resources
	Exporting and importing resources
	Exporting resources
	Importing resources

	Testing exported resources
	Purging resources
	Purging resources with the nagios::purge class
	The PuppetDB query
	Installing the dalen-puppetdbquery module
	Adding puppetdbquery into the RUBYLIB environment variable
	Examples of Puppet query commands on the command line
	Querying certname with action nodes
	Querying facts with action facts

	Using the puppetdbquery functions
	The query_nodes function
	The query_facts function
	Creating a custom type for testing PuppetDB queries

	Using the PuppetDB query to configure the load balancer
	Testing the PuppetDB query manifests on the load balancer node

	Summary

	Chapter 8
: Extending Puppet
	Puppet functions
	Creating a Puppet module for custom functions
	Writing a function
	Test-driving the Puppet function
	Testing a Puppet function on the Puppet Agent node
	Testing a Puppet function against Puppet Master

	Distributing SSH keys with a Puppet function
	Creating a public and private key pair
	Writing a Puppet function to distribute a public key
	Calling the custom function from the file resource
	Testing the password-less SSH session

	Creating custom facts
	External facts
	Creating facts that return structured data

	Writing custom facts in Ruby
	Creating a custom fact to extract certname
	Distributing certname records across the cluster

	Summary

	Chapter 9: The Puppet Enterprise Console

	Role-based Access Control
	Creating a user and assigning a role
	Creating a user account
	Enabling login for a user account
	Assigning a role to the account

	Creating a node group
	Signing the Puppet agent's certificate
	Adding a node to the node group
	Classifying nodes in the Puppet Enterprise console
	Moving the site.pp file temporarily out of the modulepath

	Using Live Management
	Accessing reports via the Puppet Enterprise console
	Searching nodes with Inventory Search
	Summary

	Chapter 10
: Troubleshooting Puppet
	Prerequisites
	Troubleshooting node definition issues
	Making the node definition file and ENC work concurrently

	Diagnosing duplicate declaration errors
	Using the defined() function to avoid duplicate declarations
	Using the $name variable in custom types

	Getting around dependency cycle errors
	Troubleshooting missing resources
	Diagnosing template errors
	Diagnosing missing source file errors

	Rectifying certificate errors
	Listing certificates on the Puppet Master
	Removing Puppet certificate on Puppet Master
	Regenerating Certificate Signing Request
	Signing a certificate on the command line

	Finding help online
	Summary

	Index

