-

Professional Expertise Distilled

Learning Search-driven Application
Development with SharePoint 2013

Build optimum search-driven applications using SharePoint 2013's
new and improved search engine

Johnny Tordgeman [PACKT] enterprise™

;Y:—.‘:::-_a
PUBLISHING

http://www.allitebooks.org

Learning Search-driven
Application Development
with SharePoint 2013

Build optimum search-driven applications using
SharePoint 2013's new and improved search engine

Johnny Tordgeman

enterprise

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Learning Search-driven Application Development with
SharePoint 2013

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013
Production Reference: 1280613

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-100-3
www . packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co. uk)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Johnny Tordgeman

Reviewer
Samuel Zuercher [MVP]

Acquisition Editor
Aarthi Kumaraswamy

Commissioning Editor
Meeta Rajani

Technical Editors
Anita Nayak

Sonali S. Vernekar

Copy Editors
Insiya Morbiwala

Aditya Nair
Alfida Paiva

Laxmi Subramanian

Project Coordinator
Amey Sawant

Proofreader
Maria Gould

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Johnny Tordgeman is the CTO of E4D Solutions Ltd., a boutique development
and consulting firm in Israel. Johnny specializes in architecting enterprise-level
solutions built on top of Microsoft's SharePoint platform. Johnny utilizes the latest in
web technology and methodology in his solutions, such as HTML5, SPA, and MVC4.

Johnny is the author of MCTS: Microsoft Silverlight 4 Development (70-506) Certification
Guide, Packt Publishing, which was published in 2012.

Johnny is a skilled lecturer and a Microsoft-certified trainer and can be found
speaking at various conferences, open houses, and user groups.

You can always find Johnny at http://blog. johnnyt .me, on Twitter at @
JTordgeman, and on LinkedIn at http://www.linkedin.com/in/johnnytor.

I would like to dedicate this book to my son Roy and wife Ayelet.
You two are my source of inspiration and the best family I could
have ever hoped for.

First and foremost, I would like to thank Meeta Rajani and Sneha
Modi, my amazing editors. Without your help and support, this
book wouldn't have happened!

My dear family - Itzik, Varda, Yuval, and Shirly, and friends - Idan,
Yossi, Rani, Leon, Niv, Guy, Tal, Eyal, Itay, and Tung (Tony) Pham.

Thank you for the moral support and late nights we spent together.

This book and I owe a great deal to all of you.

[vww allitebooks.cond

http://blog.johnnyt.me
http://www.linkedin.com/in/johnnytor
http://www.allitebooks.org

About the Reviewer

Samuel Zuercher [MVP] (SharePoint MVP since 2011) works as a Senior
Consultant at Experts Inside, Switzerland, an international company he founded
with another SharePoint MVP, Christian Glessner. He has been working with
SharePoint since early 2006 and has in-depth knowledge from Version 2.0 onward.
He also holds certifications for every SharePoint version since then. As a Microsoft
Certified Trainer, he often trains people, from end users to technical specialists.
Additionally, he founded the Swiss SharePoint Community, is one of the main
drivers of Collaboration Days, and runs the blog sharepointszu.com. He speaks
about SharePoint in a variety of events all over the world. In his job, he is involved
in many SharePoint projects from concept to rollout and has a lot of experience.
His specialty is information and system architecture, no-code solutions, and social
collaboration. You can reach him via e-mail at szue@expertsinside.com, Twitter
at @SharePointSzu, or a variety of platforms such as Xing, LinkedIn, or Facebook.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

PACKT ©

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Getting Started with SharePoint 2013 Search 5
New features of SharePoint 2013 Search 5
Search administration 6

Ul changes and customization 7
Relevance and ranking features 9
New development methods 9
The search architecture 10
Content components 1"
Crawl component 11
Content-processing component 11
Query components 12
Web frontend 12
Query processing component 13

The index component 13
Analytics processing component 13
Summary 14
Chapter 2: Using the Out of the Box Search Components 15
Getting acquainted with result sources 15
Learning query rules 17
Creating query rules 19
Setting the result source 19
Setting query conditions 21
Setting the action 22
Using the content search web part 25

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Building a simple search-driven application 27
Adding content 27
Creating the result source 28
Creating a search vertical 30
Adding a query rule 31

Summary 34

Chapter 3: Using the New CSOM and RESTful APIs 35

Understanding the Keyword Query Language 35
The basics 36
Property restrictions 36

XRANK 38
Synonyms 38

Using the new client-side APIs 39

RESTful API 39
REST and SharePoint 2013 39
Using REST 41
REST and search 43

Client Side Object Model (CSOM) 46
CSOM and search 46

A SharePoint-hosted app 48

A provider hosted app 48

An autohosted app 48

Publishing an app 49

Building a SharePoint-hosted search-driven app 50
Create task apps (lists) 51
Understanding the requirements 51
Building the app 51

Summary 55

Chapter 4: Customizing the Look 57

Result types and design templates 57
Display templates 59
Result types 61
Styling results in a Content Search Web Part 62
Creating a custom display template 64

Getting the new properties 65
Getting the values of the new properties 66
Displaying the new properties 67

Enriching the Video Games Search Center 68
Modifying the default image display template 68
Creating the result type 69

Summary 71

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 5: Extending Beyond SharePoint 73
BCS for search 73
BCS and search 74
Building a BCS search connector 77
Setting the operations 77
Implementing the ReadList method 77
Implementing the Readltem method 79
Making the BCS model crawlable 81
Creating a search content source 84
Summary 87
Index 89

[iii]

vww allitebooks.conl

http://www.allitebooks.org

Preface

Learning Search-driven Application Development with SharePoint 2013 is a fast-paced,
practical, hands-on guide to the world of enterprise search in SharePoint 2013.
With step-by-step tutorials and real-world-based exercises, this book will give
you a head start in creating fresh and exciting search-driven applications using
SharePoint 2013's new search engine. The book covers a wide range of topics
such as Query Rules, Result Types and Display Templates, Working with

the new client APIs, and Business Connectivity Services.

What this book covers

Chapter 1, Getting Started With SharePoint 2013 Search, gives you a taste of the new
features SharePoint 2013 search brings to the table and then dives deep into the
architecture that holds this system together.

Chapter 2, Using the Out of the Box Search Components, shows you how to use

query rules and result sources and get a taste of building a simple search-driven
application. SharePoint 2013 provides a rich out of the box experience for developing
search-driven applications.

Chapter 3, Using the New CSOM and RESTful APIs, explains how to work with

these new APIs and build a SharePoint hosted search-driven app using the new
App developing approach. SharePoint 2013 changes the way we developers extend
the platform by providing a whole new set of client-based APIs.

Chapter 4, Customizing the Look, focuses on creating display templates that define how
a search result will render, and result types that define which display template a result
should have. SharePoint 2013 opens up a whole new way to design our search results.

Preface

Chapter 5, Extending Beyond SharePoint, introduces how to create an external

indexing connector and understand how to work with external data. In a real-world
environment, not all the information we wish to search for is hosted within SharePoint.
Business Connectivity Services (or BCS for short) enables us to extend beyond the
realms of SharePoint and index data from external systems.

What you need for this book

To run the examples shown in this book you will need a SharePoint 2013 server
with Visual Studio 2012 installed.

If you don't have access to a full SharePoint 2013 server, Office 365's SharePoint
Online and Visual Studio 2012 can also be used to run most of the examples in
this book.

Who this book is for

This book is written for SharePoint and JavaScript developers who wish to get
started working with SharePoint search. The book assumes working knowledge
with previous versions of SharePoint and some experience with JavaScript and
client-side development.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

[2]

Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr _mysql.conf

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

[31]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Getting Started with
SharePoint 2013 Search

SharePoint 2013 feels like a breeze of fresh air, offering many new features and
changes over older versions. In addition to a whole new social experience, a new
development model called Apps, and native HTML5 support, SharePoint 2013
introduces a new and improved search engine. As the title of the book implies,
this book is all about the new search engine. In this introductory chapter we will
get a taste of the new features SharePoint 2013 Search brings to the table and then
deep-dive into the architecture that holds this system together.

In this chapter, we will cover the following topics:

¢ New features of SharePoint 2013 Search

e The new search architecture

New features of SharePoint 2013 Search

The SharePoint 2013 Search engine is the most powerful enterprise search engine
Microsoft has created to date. With this new release, Microsoft combined all of the
best features of the legacy SharePoint Enterprise search engine with the best features
of the FAST search engine, which Microsoft acquired back in 2008.

The new features of SharePoint 2013 Search can be divided into four main categories
as follows:

* Search administration

* Ul changes and customization

* Relevance and ranking features

* New development methods

Getting Started with SharePoint 2013 Search

Search administration

One drawback of search in previous versions of SharePoint was that almost
everything had to be managed from the central administration page, which
meant that search was managed at the farm level.

SharePoint 2013 changed that by adding most of the search settings from the
farm level to site collections and sites (SPWebs). As SharePoint 2013 is offered

as a cloud service (through Office 365), and cloud users have no access to settings
in the farm-administration level, this was a welcome change that both cloud and
on-premise site administrations can take advantage of.

Let's have a look at what settings are available for us to administrate; these are
shown in the following screenshot:

Search

Result Sources

Result Types

Query Rules

Schema

Search Settings

Searchable calumns

Search and offline availability
Configuration Import
Configuration Export

We will discuss these settings in detail in Chapter 2, Using the Out of the Box Search
Components, but for now just keep in mind that a site administrator can configure
the search experience on his/her site in ways that were reserved exclusively to
farm administrators in previous versions.

In addition, Microsoft introduces a new crawling mode, continuous crawl.
Continuous crawl] helps to keep the search index as fresh as possible by crawling
SharePoint sites (and only SharePoint sites) every 15 minutes, by default; we can
change this value using PowerShell, as shown in the following snippet:

$ssa = Get-SPEnterpriseSearchServiceApplication
$ssa.SetProperty ("ContinuousCrawlInterval", <minutess>)

The value we use for <minutes> is the number of minutes between crawling.

When running, the crawler gets changes from the crawled SharePoint sites and
pushes them to the content processing component, which will process the new
content on the fly.

By enabling the continuous crawler, items appear in the search almost immediately
after being crawled.

[6]

Chapter 1

Ul changes and customization

If there is one change in SharePoint 2013 Search that just pops to the eyes, it is
the new and fresh user interface (UI). If you worked with SharePoint 2010 search,
you'll remember the following screenshot, showing a search-results page:

Search Resulks @ #

&« € [sharepointysites/fast/Pages rasults aspx Pk =923

all Sites Peaple

Preferences
P | hdvanced
Site 1-8 of & results Sort by [Relevance =] B &
Any Site
associatedbosm 3 Playstation 3
PlayStation All-stars Battle Rovale is a crossaver brawler style fighting game featuring aver 20 first,
and third party characters famous from a range of game franchises. Each playable character has its
Modified Date own unique set of attacks and moves, and the game features 1-4 player multiplayer mash-up
action, both online and in local play at home. Additional features include, taurnaments, rivalries, an
any Modified Date award system designed to encourage competition, full 1080p HD output, a range of different
PlayStation therned play environments, and full PlayStation trophy support.
Past Manth Dats: 3/23/2013

. bde3:/fassociatedbosmodel_assosiatedbosmode
Past Six Months AMgA=ts_ce=0404050009000g10204000309000vprtd
Fast rear

O XBOX360
The new ¥box 360 4GB Console, Here today, ready for tomorrow with a brand new, leaner |
machine. Wi-Fi is built-in for easier connection to the world of entertainment on Xbox LIVE, where
HD movies and TV stream in an instant, It's ready for the controller-free experiences of Kinect -
vou don't just play the game, you are the game. Xbox 360 is more games, entertainment and fun.
Date: 3/23/2013
bdc:ffassociatedbosmodel_associatedbosmode
AMwiA=s_ce=0404g509090009102 04000809000y prtd

L3 Wil
The new controller incorporates a 6.2-inch, 16:9 touch screen and traditional buttan cantrols,
including twa analog Circle Pads, This combination removes the traditional barriers hetween games,
players and the TV by creating a second window into the video game world. The rechargeable
controller includes a Power button, Home button, +Control Pad, A/B/%/Y buttons, L/R buttons and
ZL/ZR buttons, Itincludes a built-in accelerometer and gyroscope, rumble feature, camera, a
microphone, stereo speakers, a sensor strip and a stylus.
Date: 3/23/2013
bdcdi/fassociatedbesmodel_associatedbesmode . LI

By looking at the preceding screenshot, we can see that it sports a pretty simple Ul
We have textual refinements on the left side; predefined search scopes for websites
and people (All Sites and People) on top, and a main, simply styled results area
without grouping or categorization of results.

To customize the way the results are shown, we had to use XSL/XSLT, which is
quite a messy and unattractive way to design.

[71

Getting Started with SharePoint 2013 Search

Fast forward to the present day. The following screenshot displays how the results
page looks like in SharePoint 2013:

—=
/B Search: hello x W
<« C | & nhtipsy//hippodevs.sharepoint.com/search/Pages/results.aspx?k=johnny#k=hello 77 @ a =
1] Office 365 Outlook Calendar People MNewsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ $¥ 2
A
| hello ,O‘ Hello views X
)] Discussion Post
Everything People Videos Reports
(555 Johnny Tordgeman
Result type Hello 1 reply g Join me far this amazing session on
N . R T L= SharePoint 2013!
Posted by Johnny Tordgeman Friday, December 21, 2012 o |
: best reply - F21 2012 renly
Dicus=Rn Join me for this amazing session on SharePaint 2013! s Friday, December 21, 2012 1 reply, 1 like
Newsfeed post hippedevs.sharepaint.com/Lists/.../Hello v best reply
Web page hello! 2 replies [E3 Johnny Tordgeman
Posted by Johnny Tordgeman Sunday, December 23, 2012 1 like Sure thing!
V best reply . e
is is a new forum y. December 21, 2012 O replies,
Author th £ Y Friday, December 21,2012 0 replies, 1 like
hippodevs.sharepoint.com/Lists/.../hello!
Johnny Tordgeman
System Account Develcper Site - Test Forum - Management VIEW DISCUSSION
hello ...
Enter a name... hippodevs.sharepoint.com/Lists/Test Forum/Management.aspx
SHOWEEWER Developer Site - General Discussion - Management
Hello ... Join me for this amazing session an SharePoint 2013 ...
Modified date hippodevs.sharepaint.com/Lists/General Discussion/Management.aspx
[| Developer Site - Test Forum
helle ... Johnny Tordgeman 12 11:56 PM 2 No
— —— — hippodevs.sharepoint.com/Lists/Test Forum/Allitems.aspx
One Vear Ago Today
—_— Developer Site - General Discussion
. Hello ... Join me for this amazing session on SharePoint 2013 ... Johnny Tordgeman
All 12/34/20112 121 DRA 3 Rin s

Now that's quite different, isn't it? The Ul is modern thanks to the use of HTML
and JavaScript templates. Instead of messing around with XSLT, we now have

display templates to design our results using languages we already know and
love: HTML, JavaScript, and CSS.

Take a look at the refinement panel on the left. While we still have textual refiners,
we also have graphical ones, such as a scroller for dates.

We have new out-of-the-box search scopes — Videos and Reports —and results are
grouped by their types; for example, the first two results are discussion items from
a discussion board.

The biggest and most notable change, however, is the new hover panel. Whenever we
hover over a search result, we are presented with a floating panel containing additional
information about the hovered item. As SharePoint 2013 seamlessly integrates with
Office web apps, any Office document we hover over will show a preview of its
content in the new hover panel. The most important thing about the hover panel,
however, is that we, as developers, have complete control over the content of this
hover panel. Just like search results, the hover panel is also controlled by HTML,

CSS, and JavaScript.

[8]

Chapter 1

We will discuss all of these new and exciting customizations features in detail in
Chapter 4, Customizing the Look.

Relevance and ranking features

As mentioned earlier, SharePoint 2013 Search took the best features of SharePoint
Search and FAST and improved them. As such, SharePoint 2013 uses new and
improved ranking models to determine which items are to be displayed and
what would be their rank (the order in which they are displayed).

The key to successfully determine the relevancy of search results is to satisfy
the intent of the person who issues the query. Let's explain this statement with
an example; say I'm performing a search for Apple. Now, did I search for apple
the fruit or Apple the technology company?

SharePoint 2013 Search continuously tracks and analyzes search usage to determine
how content is connected, how often an item appears in search results, and which
search results people click in order to continuously improve the relevance of items
to the search query. So, if I clicked on a lot of fruit-related results, the search engine
will assume I was looking for apple the fruit, and not the technology company.

We will discuss these new features in Chapter 2, Using the Out of the Box Search
Components, and Chapter 3, Using the New CSOM and RESTful APIs.

New development methods

With this new release of SharePoint, Microsoft made changes to the search-
development model. The old SOAP web service (ASMX) has been deprecated
alongside the SQL query syntax that we could use to query against SharePoint data.

But, just like the the old saying goes, "out with the old and in with the new", we get
some new features to play with to replace the ones that are gone.

* A new Client Side Object Model (CSOM) object which enable us to access
the search service using JavaScript and C#. With the help of the search
CSOM, we can create search-driven applications even for servers that
don't have SharePoint 2013 installed on them.

* A dedicated Representational State Transfer (REST) service that enables us
to execute queries against the search service from client applications using
libraries such as jQuery or RestSharp. The REST service supports all of the
properties available in the CSOM object, but instead of working against
objects, we use the URL's query string to send parameters to it.

[o]

[vww allitebooks.cond

http://www.allitebooks.org

Getting Started with SharePoint 2013 Search

* Anenhanced keyword query language with new and improved operators
such as ONEAR and XRANK.

* Enhancements to the Business Connectivity Services Connector Framework,
which improves capturing and logging of exceptions to help us troubleshoot
errors during the crawl process.

We will discuss all of these topics in detail in Chapter 3, Using the New CSOM and
RESTful APIs, and Chapter 5, Extending Beyond SharePoint.

Now that we have a general idea about what's new in SharePoint 2013 Search,
let's go ahead and discuss the architecture that makes all of this happen.

The search architecture

SharePoint 2013 Search introduces a new search architecture that includes significant
changes and new additions compared to previous versions. Since Microsoft
consolidated FAST and SharePoint Search, the new search architecture has inherited
components from both products while maintaining high scalability and performance.

Let's have a look at the new search architecture and discuss its components; refer to
the following screenshot:

content @ ® Query
Query
: cm::ent Processing
RO Component
&
® @

Analytics
Em— Processing <
Component

As we can see from the diagram, the search architecture can be divided into four
components groups as follows:

* Content components

* Query components

* The index component

* The analytics-processing component

[10]

Chapter 1

Content components

The content components are in charge of getting content ready for indexing.
Each component has a well-defined role, which we will discuss next.

Crawl component

The crawl component is responsible for crawling content sources. It is the first

stop for data that is about to be indexed by the search engine. The crawl component
invokes connectors (both out-of-the-box and custom ones) that interact with the
content source in order to crawl it.

While indexing, the crawl component uses one (or more) crawl database to
temporarily store detailed tracking and historical information about the crawled
item, such as the last time the item was crawled and the type of update during the
last crawl.

Once an item is crawled, meaning both its data and its associated metadata is
crawled, the crawl component delivers it to the content-processing component.

Content-processing component

The content-processing component's job is to analyze content it receives from the
crawl component and feed it to the index component for indexing.

Content analysis is done by following a flow known as the Content Processing Flow,
which is depicted in the following diagram:

The rectangular blocks in the diagram represent stages that we cannot interact
with. We won't be discussing them as they are quite self-explanatory. The curved
rectangular blocks, however, represent stages that we can interact with during the
processing flow.

[11]

Getting Started with SharePoint 2013 Search

The Web service callout stage is similar to the pipeline extensibility stage of FAST
for SharePoint 2010, and allows you to add a callout from the content-processing
component to a web service of your own so you can manipulate the crawled
content before it gets indexed by the index component.

Unlike FAST's pipeline-extensibility stage, where code had to be executed in

a sandbox, the web service callout accepts a web service endpoint, which is
much easier and reduces the overhead involved in writing a console application
to accompany the content-flow process.

Calling a web service during the processing stage can be useful for two scenarios.

* Creating new refiners by extracting data from unstructured text using
our own logic

* Calculating new refiners based on the data of managed properties

You can find a great example on using the web service callout in Kathrine
Hammervold's post, Customize the SharePoint 2013 search experience with a Content
Enrichment web service, located at http://blogs.msdn.com/b/sharepointdev/
archive/2012/11/13/customize-the-sharepoint-2013-search-experience-
with-a-content-enrichment-web-service.aspx.

The next point of interaction is the word-breaking stage, which allows you to write
your own custom word-breaking logic for the content processor. Please refer to
the MSDN documentation on custom word breakers, located at http://msdn.
microsoft.com/en-us/library/jj163981.aspxX.

Query components

The query components are in charge of analyzing the search query and processing
the results.

Web frontend

The web frontend is where the search process actually begins. A user can interact
with the search service by either writing a search query in the search center (or a
search box) or developing against the new public APIs: REST/OData services and
the CSOM. Both the search center and public APIs are hosted on the frontend.

Once the user creates a query, the query is sent to the query-processing component
for analysis. The query-processing component analyzes the query and forwards it
to the index component. The index component returns the matching results to the
query-processing component for another analysis and from there the results are
forwarded to the web frontend to be displayed.

[12]

Chapter 1

Query processing component

As mentioned previously, the query-processing component's job is to analyze and
process both search queries and results.

When the query-processing component receives a search query from the frontend, it
analyzes it in an attempt to optimize its precision and relevance. A site administrator
can interact with a query using different techniques such as query rules or result
source. We will discuss these techniques in detail in the next chapter, but for now

it is important to understand that these manipulations are handled within the
query-processing components. As part of its query handling, the query-processing
component performs linguistic processes on the query, such as word-breaking

and stemming.

Once the query is optimized, it is sent to the index component, which will process
the optimized query and return a result set back to the query-processing component
and from there to the search frontend.

The index component

The index component is the heart of the search service, and without proper planning
it can easily become the bottleneck of the service as well.

The index component has the following two roles:

* Input: The index component is in charge of writing the optimized content
it gets from the content-processing component to the index file

* Output: The index component is in charge of returning results from the
index file to the query-processing component, by request

How the index component saves and manages this index file is out of the scope of

this book, but you can read more about this in the TechNet article Manage the index
component in SharePoint Server 2013, located at http://technet .microsoft.com/

en-us/library/jj862355.aspxX.

Analytics processing component

The analytics-processing component is a new addition to SharePoint Search. Its role
is to analyze both content and user actions with the content in order to improve the
search relevance for the user.

[13]

Getting Started with SharePoint 2013 Search

The analytics architecture consists of three main parts, as follows:

* The analytics-processing component, which runs the analytics jobs.

* The analytics-reporting database, which stores statistical information
such as usage data.

¢ The link database, which stores information about searches and crawled
documents. In addition, the link database is shared with the Content
Processing Component, which in turn stores links and anchors in it.
The information, the content-processing component stores is later
used by the analytics-processing component.

The analytics-processing component runs two types of analytics: search

analytics and usage analytics. The search analytics analyzes content from the
content-processing component for information such as links, information related
to people, and recommendations. The usage analytics analyzes user actions on an
item, such as the number of views it had or how many users clicked on it.

An important output of usage analytics are the recommendations. The
recommendations analysis creates recommendations on items based on how

users have interacted with this specific item in the past. The analysis calculates an
item-to-item relationship graph and updates it continuously based on search usage.

Keep in mind that the analytics-processing component is a "learning" component,
which means it learns by usage. The more usage the search system will have, the
better analytics it will provide.

Summary

This chapter marks the beginning of our journey to create search-driven applications
using SharePoint 2013. We started the chapter by discussing the new features of
SharePoint 2013 Search and divided them into four categories: administration
changes, UI changes, relevance and ranking changes, and new development
methods. Once we had an idea about what's new in SharePoint 2013 Search,

we went on and deep-dived into the new search architecture.

In the next chapter we will get our hands dirty, and once we understand
how to work with the out-of-the-box search components, we will build
our first search-driven application using them.

[14]

Using the Out of the Box
Search Components

Now that we know what's under the hood, let's get started with what we can do with
it! In the previous chapter, we briefly mentioned the new search settings for sites and
site collections. This chapter will dive deep into these settings. We will discuss the
administrative side of SharePoint Search where we can define query rules and

result sources and demonstrate the use of out of the box search components

in a search-driven application.

In this chapter we will cover the following topics:

* Getting acquainted with result sources
* Learning query rules
* Using the content search web part

* Building a simple search-driven app

Getting acquainted with result sources

The best way to explain what a result source is, is by using a real life example.

Say you need to buy some milk. You know that you need to go to the supermarket
and look for milk in the dairy department. You aren't going to be looking for milk
in the tools department or even other areas of the store (such as the fruits and
vegetables departments); you limit yourself to just the dairy department.

A result source acts the same. It allows you to restrict search queries to a specific
subset of content from the search index by defining a set of rules that must be met
by the content in order to show up as a result.

Using the Out of the Box Search Components

If the result source sounds familiar to you, it is because you have already
encountered it before. Take a look at the following screenshot taken from
the default SharePoint 2013 search center:

app ,C)

Everything People Videos Reports

Developer Site - App Packages

There are no items to show in this view of the "App Packages" document library
hippodevs.sharepoint.com/Lists/AppPackages/Forms/Allitems.aspx
DispForm.aspx

User Prafiles Demo App
hippodevs.sharepoint.com/Lists/DraftApps/DispForm.aspx?ID=75

e - Apps in Testing

App Title Version Created Modified ... Remote Event Receivers Demo 1.0.0.0
12/22/2012 6:41 AM ... User Profiles Demo App 1.0.0.0 3/11/2013 11:08 AM

S EVET B L

31172013 11:08 AM ..

hippodevs.sharepoint.com/Lists/DraftApps/allitems.aspx

Below the search box we have four search verticals. These verticals are actually using
result sources. Think about the Videos vertical. It takes your search query and looks
for files in the Local SharePoint Sites content source and ends up with a known
video file extension, that is, MP4.

A result source can be created at either the site, the site collection, or the application
service (farm) level. This allows even site owners to create and manage customized
search experiences for their users.

When creating a result source, we must specify which protocol (search provider)
we wish to use. The four available protocols are as follows:

* Local SharePoint: The search index of the local SharePoint farm.

* Remote SharePoint: The search index of the remote SharePoint farm.

* OpenSearch 1.0/1.1: An external search provider that implements the
OpenSearch protocol. An example of such a provider is Bing. com.

* Exchange: An Exchange Web Services endpoint.

[16]

Chapter 2

In addition to protocol, we can specify a query text; this is basically a query that
will run against the selected protocol to narrow down the results. For example, the
following query will return all the PDF files that contain the following search term:

{searchTerms} fileextension:pdf

A result source, in many cases, is the heart of a search-driven application as it
guarantees that only results that meet the specified rule be returned upon query.

Learning query rules

Query rules are a hot new feature of SharePoint 2013 search. In essence, query
rules are the infrastructure for query pipeline extensibility. Using query rules,
we can create conditional rules that will intelligently respond to what the user
is trying to search for.

Let's assume we have a knowledge center site that tags all of its assets
(videos, images, documents, and so on) using the following taxonomy
dictionary as shown in the following screenshot:

TAXONOMY TERM STORE
English v
4 {5 Taxonomy_EuZbexxhUmJUTMTycCe7MO==
45 Gaming
: g_‘_} Genres -
4) Hardware
(=_] Mintendo 3D5
(=_] Playstation 3
(=_] Playstation Vita
] wiiu

(] XBO¥X 360

If a user searches for one of these terms, we should display a result on top of
the other results, pointing the user to the knowledge center. A result that will
always appear on top of other results is called a promoted result.

Promoted results are very similar to SharePoint 2010's best bets, but with
one key difference: promoted results can react to taxonomy terms as well
as matched keywords.

[17]

Using the Out of the Box Search Components

A promoted result, for the knowledge center we mentioned previously, will look
as shown in the following screenshot:

| xbox 360) N o]
Search...
Everything People Videos Repor%s

' Healthpack Gaming co. Knowledge Center
Come visit the knowledge center!
hippodevs.sharepoint.com/search/pages/assestresults.aspx

Knowledge Center Pictures - Thumbnails

9 x 3299 468 KB 4/22/2013 1:57 AM XBOX 360 ... xbox-360-controller
7 KB 4/22/2013 1 M XBOX 360 ...
hippodevs.sharepoint.com/sites/HealthPacky.../Forms/Thumbnails.aspx

Now, let's assume the user has searched for xbox 360 pictures. If a user has
combined the terms "xbox 360" and "pictures" in a query, he/she is probably looking
for pictures of the Xbox 360 console and not a document titled xbox 360 pictures.
Using query rules, we can recognize the user's intent and act accordingly.

Since the user wanted pictures of the product, we added a nice block of results
to the page, showing pictures of the product. This scenario will look as shown
in the following screenshot:

| xbox 360 pictures L ‘

Everything People Videos Reports

mages Results for "xbox 360"

xbox-360
B
hippodevs.sharepoint.com/.../HealthPackkKnowledgePictures “

xbox-360-controller

Sl
hippodevs.sharepoint.com/.../HealthPackkKnowledgePictures w.}\

Knowledge Center Pictures

Type MName Picture Size File Size Modified Hardware Type ... xbox-360
3250 x 3209 462 KB 4, 57 &M XBOX 360 ...
hippodevs.sharepoint.com/sites/HealthPack/../Forms/Allitems.aspx

1 Xbox 360 Arcade Manual

Xbox 360 Arcade lets you play Xbox 360 games, DVD movies, and audio CDs ...
Stream pictures, music, and more to your Xbox 360 consale by connecting to your
Microsoft ® Windows®-based ...
hippodevs.sharepoint.com/sites/.../consolearcade_na_0707 pdf

Result blocks don't have to appear on top of all search results, like promoted results.
We can also add ranked result blocks. Ranked result blocks are result blocks that
appear among regular ranked results. Their rank among other results is based upon
usage. The more the items inside a ranked block get clicked, the higher the block will
be shown in the results page.

[18]

Chapter 2

Creating query rules

Query rules can be defined at either the site, the site collection, or the service
application (farm) level. To create a query rule, just head up to either the site
or site collection's Site Settings page (or the search service application) and
click on Query Rules under the Search Section.

When creating a query rule, you have to ask yourself the following three questions:
1. What search vertical (result source) is the user going to use?

2. Under which conditions should the query rule fire?
3. When the condition fires, what should the query rule do?

Now that we know how to plan our query rule, it's time to discuss how to put the
planning into practice.

Setting the result source

First, we have to set the result source we are going to use for the query rule.
This is done in the Manage Query Rules page shown in the following screenshot:

=
/ @ Manage Query Rules x
<« C' & nttps;//hippodevssharepoint.com/search/_layouts/15/listqueryrules.aspx?level =site @ a =
1] Office 365 Outlook Calendar People MNewsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ ¥ 2

) SHARE ¥y Follow [

Site Settings » Manage Query Rules

Use query rules to conditionally promote important results, show blocks of additional results, and even tune ranking. Changes
may take several seconds to take effect, but you can test immediately with Test a Query below. Note that dictionaries may take
several minutes to update. Learn more about query rules

For what context do you want to configure rules?

Select a Result Source.., v | Al User Segments v| | all Topic Categories v

=i New Query Rule | Order Selected Rules

Test a Query.. v

Select a source above to see rules that fire for queries on that source.

[19]

vww allitebooks.conl

http://www.allitebooks.org

Using the Out of the Box Search Components

The upper row of dropdowns is used to set the context of the query. The context
consists of a result source (first question), a user segment, and categories. In most
cases, you'll only have to set the result source.

You may now ask yourself: what if I want to target the "Everything" search vertical
and not a specific result source so that no matter what my users will search for, I can
react to it?. Well, the answer is simple: use the Local SharePoint Results (System)
result source.

The Local SharePoint Results result source is one of 16 out of the box result
sources that ships with SharePoint 2013 and is the default search vertical of any
search center. Among the other out of the box result sources, you'll find Documents
that narrows the search scope to document files only, Local People Search for
people-related results, and Conversations for social data results.

Once we select a result source, a list of all the related queries for that result source
will be displayed. If we pick Local SharePoint Results, a sum of eighteen query
rules will show.

Let's take the Adobe PDF query rule, as shown in the following screenshot, and
discuss how it answers questions two and three stated in the previous section:

Adobe PDF Advanced Query Text Match Add Ranked Result Blocks
pdf; pdf PDFs for "{subjectTerms}"

Advanced Query Text Match
Keywords: .pdf: pdf

Result Type Commonly
Clicked

Result Type: PDF

On Result Source

Local SharePoint Results

The lighter block on the left-hand side answers the second question by listing
all of the query conditions that will fire the query rule. The query rule will fire
for any query that:
* Contains the keywords pdf or .pdf at the beginning of the query
* Contains the keywords pdf or .pdf at the end of the query
* Aresult type of PDF is commonly clicked for this specific query
Result Type Commonly Clicked is a special query condition that fires the query

rule if other users in the system frequently clicked on a particular result type after
they typed the same query.

[20]

Chapter 2

The darker block on the right-hand side answers the last question. When the query
rule fires, it will add a ranked result block for the matching results and set the title of
PDFs for "{subjectTerms}" where the keyword subjectTerms represents the original
search query the user typed.

Setting query conditions

In the previous section, we answered the first question and set the result source
for the query. We also saw an example for query conditions that set the conditions
a query rule will fire under.

When writing a query rule, you have six different types of query conditions to
choose from. Some are quite self-explanatory (that is, Query Matches Keyword
Exactly) while some need further attention.

Query Matches Dictionary Exactly

The Query Matches Dictionary Exactly query condition is almost identical to
Query Matches Keyword Exactly, but instead of a free-text keyword, the rule
will fire if a query matches a term from the specified taxonomy term set.

Query More Common in Source

This query condition will cause the query rule to fire if the query the user typed
is more frequently used on a different result source than the one we are setting
the query rule for.

For example, we create a query rule for the Local SharePoint Results result source
and set the source of the Query More Common in Source rule to Local Video
Results. If a user searches for Gameplay videos in the Everything search vertical
with a query (which uses the Local SharePoint Results result source) and if that
query has more frequently been used on the Local Video Results result source,
the query rule will fire.

Result Type Commonly Clicked

This query condition will cause the query rule to fire if the query the user typed
often ends up with users clicking on a result of a particular type.

For example, if a significant number of users who previously performed a search
for Gameplay videos ended up clicking on a result of the type video, there is a big
probability that the user is performing the search to look for a video result; so, we
can provide it to him/her by showing a result block.

[21]

Using the Out of the Box Search Components

Advanced Query Text Match

This option allows us to type any regular expression we wish to create. Depending
upon the condition, the query rule will fire.

When creating a query rule, we can combine all of these condition types and create
a powerful rule that can react on the user's query even without the user explicitly
telling us what he is looking for. An example of such a combined rule can be seen
in the following screenshot:

Query Conditions
Define when a user Query Contains Action Term v

box query mak e om0 " ; e i "
You can specify multiple Action terms are commands like "download" or filters like "video". They match the

conditions of different types, start or end of a query.

or remove all conditions to fire (@ Action term is one of these phrases
for any query text. Every query {semi-colon separated)

condition becomes false if the
query is not a simple keyword
query, such as if it has quotes, () Action term is an entry in this dictionary
property filters, parentheses, or

special operators,

Images ; Image ; Pictures ; Picture

Import from term store

Remaove Condition
OR

Query More Comman in Source v

Cuery is more likely to be used in this source
Pictures (System) k4

Remove Condition

Add Alternate Condition

This query rule will fire if a query either contains one of the specified action terms
or if the query is more commonly used in the pictures result source.

Setting the action

Now that we have defined under which result source the query rule is going to run
and under what conditions, it's time to set what the query rule will actually do when
it fires; and with this, we answer the third and final question.

We have three possible actions to choose from, and each represents a different type
of action. Let's discuss these options now and gain an understanding of which action
is best suitable for which given situation.

[22]

Chapter 2

Promoted result

A promoted result is a result that appears on top of the results page. As we noted
before, it is very similar to SharePoint 2010's best bet result.

Promoted results are most useful when you wish to promote one particular result
and draw the user's attention to it. A promoted result doesn't have to be a textual
link. When we create a promoted result, we can choose whether it will be displayed
as a hyperlink (as shown in the beginning of the section) or as a banner as shown in
the following screenshot:

Add Promoted Result

Title
URL

[JRender the URL as a banner instead of as a hyperlink
Description

Save Cancel

When the checkbox Render the URL as a banner instead of as a hyperlink is
checked, SharePoint will render the hyperlink content inside of an iframe element,
ignoring whatever you wrote in the Title and Description fields.

Result block

A result block is a selection of results that are displayed as a group and that are
part of the core search results. What makes a result block stand out is the fact that
the result it shows aren't necessarily coming from the local SharePoint index or
from SharePoint.

[23]

Using the Out of the Box Search Components

When creating a result block, the two most basic settings we have to set are
Block Title and Query as can be seen in the following screenshot:

Add Result Block x

Query Variables
Query variables are set by the rule's query conditions. You can use
them in the block's title and query. Learn mare.
{searchboxquery} - the ariginal query from the search box
{subjectTerms} - the matched keyword phrase (e.g. amazaon)

Block Title
Title other languages

Results for "{subjectTerms}"

Query

Configure Query

{subjectTerms} Launch Query Builder
Search this Source Itermns
Query's original source he 2 |
F Seftings
P Ro g
QK Cancel

A query can be as simple as {subjectTerms}, which is the matched phrase from
the user's query, or it can be a complex one including properties and calculations.

We will discuss how to build queries in the next chapter, so for now we will use
the default query.

In addition to the query, we can specify the source of the query. All the out of
the box sources are available for use, along with any custom ones we will create.

The following are additional settings for a result block: whether or not to display a
show more link, should the block be ranked or promoted, the display template (UI)
of the block, and routing.

[24]

Chapter 2

Change ranked results by changing the query

This action type is the most powerful one as it allows us to not only show or promote
a given set of results but change the way the query is handled by SharePoint.

The query builder provides an easy way to either manipulate the query, to add
additional keywords, to filter managed properties, or even to change result ranks
using the XRANK keyword.

We will dive deep into the keyword query language and this action type in the
next chapter.

Using the content search web part

When working with out of the box SharePoint search web parts, SharePoint
2013 simplifies the process by cutting down the number of web parts from 17
in SharePoint 2010 to just four.

In addition to the core search web parts, there are a number of new web parts
that are powered by search. The most important of the bunch, without a doubt,
is the content search web part.

The content search web part is the evolution of the content query web part from
SharePoint 2007/2010. It allows us to display content straight from the search index,
based on a query. For example, we can use the content search web part to display
the latest document added on a specific site collection (that is, the knowledge center)
to any other site collection in our farm using a simple query!

The content search web part infrastructure relies on two factors:

* A query built using the query builder
e A display template to render the results
We will discuss display the template in detail in Chapter 4, Customizing the Look, but for

now, imagine display templates as HTML- and JavaScript-based template solutions for
rendering results. Gone are the days of using code and XSLT for UI design.

[25]

Using the Out of the Box Search Components

When working with the content search web part, always keep its limitations at the
back of your mind; they are as follows:

* The content the web part returns is only as fresh as the latest crawl. If you
just uploaded a document and are searching for it, you won't find it.

* Only major versions of content are shown. Since the search index never
crawls minor versions of content, this kind of content will not be shown
using the content search web part.

* If a site is marked not to be indexed, the search content web part will not
be able to query it; thus, it won't show any content from the site.

* At the time of writing the book, the content search web part is not
%ji\ available on Office 365. It is very likely that Microsoft will add it
g in a future update.

The content search web part has a few commonly used queries out of the box, such
as recently changed items, items matching a tag, items matching a content type,
and others. For example, we can easily set the content search web part to show all
the latest discussions in a given site or show all of the latest videos on entire web
applications. If we wish to create our own query, we can easily do so by switching
to the advanced mode as shown in the following screenshot:

Build Your Query

Learn how to build your query

REFINERS SORTING SETTINGS TEST

SEARCH RESULT PREVIEW

= RelevantResults (5)

Switch to Quick Mode

Local SharePoint Results (System) v

ntent you want to search by
esult source,

point13, sites/Communities/.../Our new communitiy

sharepoint13/sites/Lists/Community Discussion/Food

ywerd filter Property filter
y from the search box w| | Select property v
Add keyword filter Caontains v | | Select value v

Add property filter

Quern,

path:"http://sharepoint13" ContentTypeld:0x012002*

Test query

oK Cancel

[26]

Chapter 2

The query builder provides us with easy access to all of the managed properties

and keyword filters, in addition to a preview box that shows the result of our query.
The screenshot shows the query text for displaying all of the items of type discussion
in a web application, whose URL is http://sharepoint13.

Don't get discouraged if you don't understand the query right away, we will dive
deeper into the keyword query language in the next chapter.

Building a simple search-driven
application

With all the theory we just discussed, it's time to put the wheels in motion.
With the knowledge we gained so far in this chapter, we can build a simple
search-driven application that will use query rules to react to users' intentions.

First, let's get our infrastructure in order and create two new sites as follows:
* A team site called video Games Center that will host the content for

our search-driven application

* A search center site that we will use to create the search logic on

Adding content

In order to show search results, we first need something to search for. Let's follow
the ensuing steps to pour some content into our newly added team site:

1. Navigate to the newly added team site and add the following apps:

o

A picture library named videoGamesImages

° A document library named videoGamesDocuments

Once both the libraries have been created, rename them to video Games
Center Images and Video Games Center Documents respectively.

2. From the downloadable content of the book, unzip the videoGamesImages.
rar and VideoGamesDocuments. rar files and drag the files to the newly
created picture library and document library respectively.

3. If you are using Office 365, wait for about 15 minutes before the continuous
crawler picks up the new files. If you are using an on-premise installation,
continue to the next step to perform an incremental crawl.

[27]

Using the Out of the Box Search Components

4. Head over to SharePoint's central admin and click on Manage Service
Applications. Find your Search Service Application tab and click on it.

5. On the left-side menu, under the Crawling category click on
Content Sources.

6. Locate the Local SharePoint sites content source, and using the little
arrow on its right, click on Start Incremental Crawl as can be seen in
the following screenshot:

Search Service Application: Manage Content Sources

Use this page to add, edit, or delete content sources, and to manage crawls.

= New Content Source | [Refresh | P Start all crawls

ype Jame Status Current crawl duration Last crawl duration Last crawl completed Mext Full Craw
Fiv ILo:aI SharePoint sites - Idle 00:02:20 5/30/2013 9:53:21 AM Mone
=l Videa Edit Idle 00:02:40 5/19/2013 11:23:27 &AM Mone

View Crawl Log

Start Full Crawl

Start Incremental Crawl

7. The status for the content source will change to starting and then crawling.
Once the status returns to Idle, it means the crawl has finished and we can
move on to the next section.

Creating the result source

As we noted before, the result source is the heart of a search-driven application.
Follow these steps to create a result source called video Games that will narrow
the search to the two new libraries we just created:

1. Switch over to the search center site, then click on the cogwheel icon,
and then click on Site Settings.
Under the Search category, click on Result Sources.
Click on the New Result Source button at the top of the page.

Name our new result source Video Games Results. Our result source
queries a local SharePoint site (Video Games Center) and returns
SharePoint results, so leave the default settings for Protocol and Type.

[28]

Chapter 2

5. Now comes the interesting part. We wish to limit the query to only search
inside the two new libraries we created. To achieve this goal, we will use
the Keyword Query Language's site managed property that represents
the SharePoint result's absolute URL.

6. The Keyword Query Language's syntax is quite simple: <managed property
name>: <value>. We tell the search engine which managed property we
wish to use, what operator to use (contains, equals to, and so on) on it, and
what value to compare to. In our case, we are going to use site:<your site
urls/VideoGames*.

7. The previous query will tell the search engine to look for content inside
every library that contains the phrase "VideoGames" in its URL, under the
specified site URL. In our environment, the query text will look as follows:
{searchTerms} site:hippodevssp.sharepoint.com/VideoGames*.

8. To set the query, click on Launch Query Builder under Query Transform and
add the new query as stated in the preceding steps (make sure to replace the
site URL with your own). The page will look like the following screenshot:

Build Your Query

SEARCH RESULT PREVIEW

Froperty filter

Query after all transformations ¥ | | Select property v

Add keyword filter Contains | v| | Select value v
Add property filter

Query text
{searchTerms} site:hippodevssp.sharepoint.com/VideoGames™
sharep

.com/Forms/Allltems.aspx

sharepoint.com/.../VideoGamesmages

sharepoint.com/.../VideoGamesmages

sharepoint.com/.../VideoGamesmages

Test query - . . .
a hippodevssp.sharepoint.com/.../VideoGamesimages

oK Cancel

If everything went as expected, you should get a new preview of the affected results
on the right-side of the window when clicking on the Test query button.

Click on the OK button to save the new query. Click on the Save button to save the
result source.

[29]

vww allitebooks.conl

http://www.allitebooks.org

Using the Out of the Box Search Components

Creating a search vertical

Now that we have the brain behind our new search-driven application, let's add the
face as follows:

1.

At the enterprise search center, click on the cogwheel icon and then click
on Add a page.

Name the page anything you like and click on OK. This will create the
landing page for the new search vertical.

Locate the Search Results Web Part button, click on the little arrow on
its right, and choose Edit Web Part.

Click on the Change Query button. Above the button, we have the select

query dropdown. Since this results page is dedicated to our result source,
change the source in the dropdown to Video Games Results and click on
OK. Publish the page.

The page will show all the results from both of our libraries. Now let's add
a link to the new search vertical next to Videos so that it will be visible to
users. Click on the cogwheel icon and then on Site Settings.

Under the Search section, click on Search Settings.

Scroll down to the Configure Search Navigation section of the page and click
on Add Link. Give the new vertical a title of video Games, and using the
Browse button, browse to the page we created in step 2. Click on OK to save.

Navigate back to the search center site. Our new search vertical is proudly
shown as in the following screenshot:

earch... P

Everything People Conversations Videos Video Games

LA

So far we've created the simplest of search-driven applications. We've created a
new search vertical so users can search directly within the two asset libraries we've
created. But now let's add a bit of logic to the application using search queries.

[30]

Chapter 2

Adding a query rule

When we discussed query rules earlier in this chapter, we saw an example of

a user searching for xbox360 pictures and getting back a result block showing
images of an Xbox 360 console. Let's create this query rule now for our little
application as follows:

1.

Navigate to the search center, click on the cogwheel icon, and choose
Site Settings.

Under the Search section, click on Query Rules.

The result source we wish to create the query rule for is our newly added
Video Games Results. Select it using the first drop-down box (Select a
Result Source...) and click on New Query Rule.

Name the rule Images Rule.

For the query conditions, select Query Contains Action Term. Make sure
the first radio button (Action term is one of these phrases) is selected, and
type images ; image in the text box. We consider images and image as
actions because we do not want the search engine to look for <term> images
or <term> image but for <term> only. The terms images and image actas a
filter in this query.

The action we wish to perform is adding a result block; click on
Add Result Block.

Change the block title to {actionTerms} for "{subjectTerms}" so
users will know what they are looking at. Since both {subjectTerms}
and {actionTerms} are placeholders, the title will actually be the action
the user has searched for, followed by the term the user has searched for.
For example, images for Xbox 360.

[31]

Using the Out of the Box Search Components

8. The query area is where we should direct most of our attention.
We declared earlier that this result block should return only images.
But images alone are not enough. We don't want it to just take any image
from the picture library and show it. We want it to show pictures related to
the search query the user typed. By setting the query to {subjectTerms}
contenttype:picture, we are telling the search engine we wish to return
results that match the query term (that is, Xbox 360), but also that we only
want those results that have content of the type picture. Set the query as
shown in the preceding part. Your Edit Result Block pop-up should look
similar to the following screenshot:

Edit Result Block x

Query Variables
Query variables are set by the rule's query conditions. You can use
them in the block's title and query. Learn maore.
{searchboxquery} - the original query from the search box
{subjectTerms} - the unmatched query terms
{actionTerms} - the matched action term (e.g. image). May be
empty depending on your query conditions.

Block Title
Title other languages

{actionTerms} for "{subjectTerms}"

Query

Configure Query

{subjectTerms} contenttype:picture Launch Query Builder
Search this Source Items
Video Games Results v 2 |

[32]

Chapter 2

9. Once the query is set, click on the OK button and then on Save to save the
new query rule.

10. Navigate back to the search center and search for xbox360 images under the
new Video Games search vertical. The expected outcome is as shown in the
following screenshot:

xbox360 images)

Everything People Conversations Videos Video Games

images for "xbox360"

xbox360-3 o
hippodevssp.sharepoint.com/../VideoGamesimages =
iy

xbox360-2 :)
hippodevssp.sharepoint.com/../VideoGamesimages l E'
=

Video Games Center Images - All Pictures

Type Mame Picture Size File Size Modified ... playstation3-1 1500 x 1487 217
KB 4/29/2013 ... xbox360-1 1000 x 1000 61 KB 4,/29/2013 12:40 PM ...

hippodevssp.sharepoint.com/VideoGameslimages,/Forms/Allitems.aspx

[33]

Using the Out of the Box Search Components

Summary

This chapter mixed theory with practice. We started off by discussing result sources,
the heart of search-driven applications. We saw examples on what result sources are,
what they are used for, and got introduced to search verticals.

Query rules, the main concept of the chapter, was introduced next. Query rules

are a new addition to SharePoint, and they allow us to respond intelligently to user
queries. When building a query rule, you have to remember three questions: where
is the user going to use this query rule (which search vertical)?, what makes this
query rule fire?, and what does the query rule do once fired?

Once we understood the concept of query rules, we moved on and got introduced
to the new king of search-related web parts: the content search web part.

The chapter ended with a step-by-step tutorial on creating a small and simple
search-driven application based on the subjects discussed in this chapter.

While this search-driven application may seem simple, remember that it's only the
beginning and that we will further enhance it down the road.

Take some time to familiarize yourself with query rules and try to create additional
ones (for example, create a query rule that will detect if a certain query is more
commonly used in the Video Games Results vertical than the Everything vertical
and show results from that vertical in the result block). The more queries you create,
the more you'll appreciate their power.

[34]

Using the New CSOM and
RESTful APls

SharePoint 2013 changes the way we, developers, extend the platform. In the
previous versions, most, if not all, of the developing focus was on the server side.
SharePoint 2013, however, changes this philosophy and puts the client side in the
front seat. In this chapter, we will dive deep into the new client-side developing
methods, get a better understanding of the choice of query language in SharePoint
2013 —Keyword Query Language (KQL), and finish off with an introduction to
the new developing model introduced in SharePoint 2013 — Apps.

In this chapter, we will cover the following topics:

* Introducing the Keyword Query Language
* Using the new client-side APIs
* Introducing to apps

* Building a SharePoint-hosted search-driven app

Understanding the Keyword Query
Language

Whether users know it or not, every time they use SharePoint's search box,
they are actually writing a keyword query. A keyword query consists of either
a free text query, a property restriction, or both. In addition, keyword queries
can include operators, such as OR, AND, and NOT.

Using the New CSOM and RESTful APIs

The basics

A basic keyword query contains at least one search term (free text), and is

case insensitive, which means that a search for xbox will return items containing
both xbox and xBOX. Operators, on the other hand are case sensitive and must be
written using uppercase letters, so searching for items containing either "xbox"
or "playstation" will result in the following query: xbox OR playstation.

What if we wish to look for any item that begins with xbox and not just contains it?
That's why we have the asterisk (*) operator. Searching for xbox* will return items
such as xbox360, xbox720, and so on.

If we wish to look for items containing the exact phrase 'xbox 360', we put the
phrase between quotes. If we just type xbox 360 without quotes, we will get items
containing xbox and 360, but not necessarily the exact phrase "xbox 360". That means
an item containing the phrase "A new xbox dashboard is available for download.
Current 360 owners can get it right now" will be returned as a result, even though

it has nothing to do with the phrase we searched for.

Currently, keyword queries don't support suffix matching, which
%ji\ means we can't use the asterisk operator before a phrase, (that is,
xbox) only after (xbox).

Property restrictions

Property restrictions help to narrow down the search results by adding conditions
to the query that the results must meet in order to be shown to the user.

Property restrictions have a consistent syntax:
[Property Name] [Operator] [Property Valuel]
The property name is the name of the managed property we wish to filter by

(that is, Author, Site, Created, and so on).

Make sure the managed property you wish to filter by is set to
%@“ Queryable. Setting a managed property to Queryable is done
’ in the Search Schema page.

[36]

Chapter 3

Property restriction supports several operators; each has its own purpose.
The following operators are available:

Operator Description

Restricts the search for results for which the specified
property contains a specified value. An example would
be Author : Johnny. The example will return all the items
whose author name contains Johnny.

= Restricts the search for results for which the specified
property equals a specified value. An example would be
FileExtension=pptx. The example will return all the
items whose file type is PowerPoint and extension is . pptx.

<> Restricts the search for results for which the specified
property is not equal to a specified value. An example
would be Path<>http://sharepoint. The example will
return all the items whose path isn't http://sharepoint.

> / >= Restricts the search for results for which the
specified property is greater than / greater than or
equal to the specified value. An example would be
Created>=24/4/2013. The example will return all the
items that were created on or after April 24, 2013.

</ =< Restricts the search for results for which the specified
property is less than / less than or equal to the specified
value. An example would be Created<=24/4/2013. The
example will return all the items that were created on or
before April 24, 2013.

valuel..value2 Restricts the search for results for which the specified
property falls between a specified range. An example
would be Created=1/4/2013..30/4/2013. The example
will return all the items that were created between the 1+
and the 30" of April, 2013.

What gives keyword query its true power is the ability to combine property
restrictions together. Say, we wish to find all the documents containing the word
Console and authored by someone named Ben. Our query will look as follows:

Console AND IsDocument:1 AND Author:Ben

[37]

Using the New CSOM and RESTful APIs

What about all the Excel files containing the exact phrase "quarterly report",
authored between the January 1 and the March 30 and hosted on either the
finance department's intranet located at http://sharepoint/sites/finance
or the management's intranet at http://sharepoint /management? It may
sound quite complicated but the query will end up looking like the following;:

"quarterly report" AND FileExtension=xlsx AND
LastModifiedTime=1/1/2013..30/3/2013 AND
(path:http://sharepoint/finance OR
path:http://sharepoint/management)

By combining different managed properties and property restrictions, we can be
as specific or as open as we wish regarding our results.

XRANK

A special kind of property restriction is the XRANK property. XRANK is used to boost
results at query time based on a specific rule. Changing the results relevance on the
fly is an extremely powerful feature as it enables us to easily promote certain results
dynamically.

Say the HR department of our company wishes that if someone searches for a term
that is in their taxonomy term store (for example, Vacation), we will boost any result
that is a Word file. Using XRANK, our query will look as follows:

{searchTerm} XRANK (cb=1000) FileExtension=docx

The query searches for whatever the search term is and gives a constant boost (cb)
of 1000 points to any result that has a file extension of . docx.

Constant boost (or cb) is just one of the available parameters XRANK can handle. Other
parameters include normalized boost (nb), range boost (rb), or percentage boost (pb).

We will use XRANK later in the book. If you wish to dive deeper into XRANK,
visit the MSDN documentation about XRANK at http://msdn.microsoft.com/en-
us/library/ee558911.aspxX.

Synonyms

In some cases we wish to search for a term that has a synonym. Using the words
operator, we can specify synonyms and return results that match either of the
specified terms. The Words operator can be used with free text expressions only,
and it is not supported in property restrictions.

[38]

Chapter 3

Say we wish to find results that contain either Phone or Telephone. What would be
the difference between using Words (Phone, Telephone) and Phone OR Telephone?

The answer is simply the rank. When using the Words operator, both Phone and
Telephone are treated as synonyms and not separate terms. Therefore, any instance
of these words is ranked as if they were the same term. An item containing the term
Phone three times and the term Telephone two times will rank the same as an item
containing only the term Phone five times.

Using the Or operator means that each term is ranked on its own. An item with
three instances of Phone and two instances of Telephone will be ranked higher
than an item containing only Phone five times. OR ranks the terms as separate
terms, and as such each has its own ranking.

Using the new client-side APIs

For the first time in SharePoint history, Microsoft treats client-side developing as
a first-class citizen in SharePoint. With a set of RESTful APIs that provide access to
almost every aspect of SharePoint and a redesigned client-side object model, we,
SharePoint developers, can create powerful and engaging client-side applications.

Search, which is a major element in SharePoint 2013, embraces the new
methodology and enables us to develop search-driven applications using
JavaScript and managed code (C#).

Before we go ahead and discuss the usage of the new client-side APIs, let's dive
into what these APIs are.

RESTful API

REST (or Representational State Transfer) is a simple alternative to SOAP

(or Simple Object Access Protocol) based on an HTTP request/response pair.
To communicate with a REST service, the client sends an HTTP request using
a unique URI (Unique Resource Identifier).

REST and SharePoint 2013

SharePoint 2013's REST API allows us to perform CRUD (Create, Read, Update,
and Delete) operations on most of SharePoint's client object model types and
members using standard HTTP verbs. Reading content using REST is done using
the GET verb, inserting items is done using POST, PUT is used for updating content,
and Delete, big surprise here, is used for deleting content.

[39]

[vww allitebooks.cond

http://www.allitebooks.org

Using the New CSOM and RESTful APIs

By default, SharePoint uses the ATOM (XML) protocol to respond to REST calls,
but if we are planning on using a JavaScript framework such as jQuery, we would
much rather work with JSON objects. Changing the response protocol for a REST
call is done by sending an Accept header to the REST service with the desired
format. The Accept header is sent on a per-call basis.

Using REST is as easy as typing a URL in the browser's address bar. Most of
SharePoint's REST calls are structured using the following syntax:

http://servername/site/ api/<namespace>/object/parameters/?$0Data

The namespace is the main entry point for the REST call. The possible values for
an entry point are as follows:

* Site: This value corresponds to SPContext . Current . Site in SharePoint's
object model.

* Web: This value corresponds to SPContext . Current . Web in SharePoint's
object model.

* SP.UserProfiles.PeopleManager: This value represents the user profile
manager and enables us to work with social-related content.

* Search: This value is the jewel in the crown. It represents the search engine
and enables us to work with search-related content.

* Publishing: This value represents the publishing features of SharePoint 2013.

Once the namespace is set, it's time to specify an object. object, just like in
SharePoint's object model, represents a SharePoint item, for example, List. To get
the entire collection of lists under the current site, the following syntax is used:

http://servername/site/ api/web/lists

When we wish to target just a specific object (that is, a list), we use parameters.
An example for such a parameter is getbytitle. Using a parameter is as easy
as the following syntax:

http://servername/site/ api/web/lists/getbytitle ('Reports')
The preceding syntax will return all the items of a list named Reports.

What makes REST so unique is its ability to use OData query operators to filter
results. OData supports many query operators, and a complete list in the MSDN
documentation can be found at http://msdn.microsoft.com/en-us/library/
sharepoint/fpl142385 (v=office.15) .aspx.

A common use for query operators is returning a specific number of rows from a list.
The following syntax returns the top 10 rows from a list called Reports:

[40]

Chapter 3

http://servername/site/ api/web/lists/getbytitle ('Reports')/
items$Stop=10

And what if we wish to return a set of 10 results, starting from row 10? We use the
$skip operator:

http://servername/site/ api/web/lists/getbytitle ('Reports')/
items$skip=10Stop=10

Using REST

As fun as writing REST in a browser's address bar is, it's not really a useful method.
In most cases, we will find ourselves using REST in a JavaScript app. The easiest way
to use REST with JavaScript is by using jQuery's $.ajax and $.getjson methods.
Calling the preceding query using jQuery is done using the following code:

var restUrl =
"http://hippodevssp.sharepoint.com/sites/VideoGames/web/lists/
getbytitle ('Reports')/itemsStop=10";
$.getJSON (restUrl, function (data) {
/* do something useful with the data here */
3N

We mentioned earlier that in order to work with JSON objects, we
must add an Accept header telling SharePoint we wish to get a JSON
response. Adding the Accept header in jQuery is done using the
following code:

$.ajaxSetup ({
i {

'beforeSend': function (xhr)
xhr.setRequestHeader ("ACCEPT",
"application/json;odata=verbose") ;

}
- P -

As its name implies, $.getjson is only good for GET requests. If we wish to create
a POST request, we will use the $.ajax method.

Adding a new item to the Reports list is done using the following code:

$.ajax ({
url: "http://servername/site/ api/web/lists/getbytitle('Reports')/
items",
method: "POST",
data: JSON.stringify({ ' metadata': { 'type':
'SP.Data.ReportsListItem' }, 'Title': 'New item!'}),

headers:
"X-RequestDigest": $("# REQUESTDIGEST") .val ()

[41]

Using the New CSOM and RESTful APIs

"accept": "application/json;odata=verbose"
"content-type": "application/json;odata=verbose"
1
success: function () { alert("Success!") },

error: function (xhr, ajaxOptions, thrownError) {
alert ("POST error:\n" + xhr.status + "\n" + thrownError) ;

3N

Downloading the example code

\ You can download the example code files for all Packt books
~ you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register
to have the files e-mailed directly to you

A few things to notice in this REST call are as follows:

* The method property is set to POST as we are posting data back to SharePoint.

* The data property has a predefined syntax; the _ metadata JSON object
has its type always set to SP.Data.<List name>ListItem. In our case its
SP.Data.ReportsListItem. After the Type object, we can write all the
columns we wish to have on our new item.

* Make sure to add success and error callbacks. When things go the other way,
you will want to know what failed.

While not as common as jQuery, we can use REST with C# code as well. The following
code shows how to call REST using C# to read the items of the Reports list:

HttpWebRequest listRESTRequest =

(HttpWebRequest) HttpWebRequest .Create ("http://
hippodevssp.sharepoint.com/sites/videogames/ api/Web/lists/
getbytitle ('Reports')") ;
listRESTRequest .Method = "GET";

1listRESTRequest.Accept = "application/atom+xml";
listRESTRequest.ContentType = "application/atom+xml;type=entry";

HttpWebResponse listRESTResponse =
(HttpWebResponse) 1istRESTRequest . GetResponse () ;

StreamReader listReader = new

StreamReader (listRESTResponse.GetResponseStream()) ;
var listXml = new XmlDocument () ;
listXml.LoadXml (listReader.ReadToEnd ()) ;

To make things a little bit easier, you can use the great open source project
RESTSharp (http://restsharp.org/) to make REST calls in C#.

[42]

Chapter 3

REST and search

Now that we understand what REST is and how to use it, let's see how we can
relate it to search. The entry point for search is, big surprise, search. Under the
search namespace we have the following objects:

* query: This object performs a query against the search engine and
retrieves results.

* postquery: This object same as query, but allows the use of POST instead
of GET in order to overcome possible URL length restrictions.

* suggest: This object used to get query suggestions. Can only be used
with GET.

To perform a search, we use the query object with the querytext parameter,
as follows:

http://servername/site/ api/search/query?querytext='Xbox 360"’
Making this REST call on our Video Games site will result as follows:

" metadata":
"type": "SP.KeyValue"
1
n Ke-y-ll : n Rankll ,
"Value": "11.5442914962769",
"ValueType": "Edm.Double"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "DocId",
"Value": "27972637",
"ValueType": "Edm.Int64"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "WorkId",
"Value": "27972637",
"ValueType": "Edm.Int64"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "Title",
"Value": "Video Games Center Images",
"ValueType": "Edm.String"

b Ao

[43]

Using the New CSOM and RESTful APIs

" metadata": {

"type": "SP.KeyValue"
I
"Key": "Author",
"Value": "Johnny Tordgeman',
"ValueType": "Edm.String"
b A

Now that's a lot of JSON for just one result! When we use the REST API to perform
a search query, we get back all the information about that result. This information
includes the author, the result's rank, its title, and much more.

An equally important parameter of the Query namespace is sourceid. In the
previous chapter, we declared a result source called Video Games Results, which
narrows the query to only look for results in the predefined libraries. If we wish to
use that result source with our REST call, we append the sourceid parameter. The
sourceid parameter specifies the Globally Unique Identifier (GUID) of the result
source we wish to use. Searching for xbox360 within our Video Games Results
result source will look as follows:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99%bas652bl57a’

You may be asking yourself "where do I get the result source's unique identifier
from?" The answer is quite simple. When you click on a result source, look at the
end of the address bar. You'll find the source ID there as shown highlighted in the
following screenshot:

/' B Edit Result Source x

€« c

B ItSource.aspx?level =sitedsourceid

Newsfeed SkyDrive Sites »er

) SHARE Yy Follow [

EDITLINKS

Site Settings

videoGames

Edit Result Source

General Information

Name
e unique at each

level. For example
cesin a site cannot

Wideo Games Results

but one in a site and Description
one provided by the site collection

can.

Descriptio

other confi

(@ Local sharePoint

Select Local SharePoint for results O RemoteSharePoint

[44]

Chapter 3

When we wish to limit the number of results returned or wish to start at a
specified result index, we use the startrow and rowlimit parameters. The
former is a zero-based index specifying the first result that should be returned.
The latter specifies the maximum number of results that the search engine will
return. For example, if we wish to get a maximum of five results, starting from
the 10 result, we will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99bak52bl57a'&startrow=9&rowlimit=5

As we can see, each result item we get back has its full list of properties returned.
What if we only need one or two properties? We shouldn't waste bandwidth and
return all of the properties. This is when the selectproperties parameter should
be used. This parameter accepts a list of parameters that should be returned for each
result. If we wish to return only the Author and Title parameters for example, we
will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360"'&sourcei
d='9cdd3749-4930-4c8c-a911-99bak52bl57a'&selectproperties="'Title, Auth
or'

To get results in a specified language, we can set the culture parameter. It specifies
an LCID (Locale ID) representing the requested language. If we wish to return
results only in the English language, we will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99bak52bl57a' &selectproperties="'Title, Author
'&culture=1033

A full list of LCIDs can be found at http://msdn.
e microsoft.com/en-us/goglobal/bb964664 .aspx.

There are many more properties we can use for a search REST call. If you wish to
go deeper, check out Search Space's post on the SharePoint 2013 Search REST API at
http://blogs.msdn.com/b/nadeemis/archive/2012/08/24/sharepoint-2013-
search-rest-api.aspx.

[45]

Using the New CSOM and RESTful APIs

Client Side Object Model (CSOM)

Other than REST, SharePoint 2013 introduces a revamped client object model.
The client object model was first introduced in SharePoint 2010 and provided
a way for developers to interact with SharePoint using one of three methods:

* Managed code: Using C#
* Managed code: Using Silverlight
* Unmanaged Code: Using JavaScript

Since CSOM is not new to SharePoint 2013, we will not focus on how to work with
it for the remainder of the chapter. If you need a refresh, or wish to understand how
to perform basic operations with CSOM, head over to the MSDN documentation at
http://msdn.microsoft.com/en-us/library/fpl79912.aspx.

For the remainder of the chapter, we will focus on the JavaScript variant and
the search object.

CSOM and search

The entry point for search in CSOM is the KeywordQuery class, which is under
the Microsoft.SharePoint.Client.Search.Query namespace. The process of
sending a query to the engine and getting back results using CSOM is as follows:

1. We initiate the KeywordQuery class and use its set _queryText method to
set the search query.

2. We initiate the SsearchExecuter class and use its executeQuery method
to tell the client context object to perform the search once executed.

3. We execute the client context object using its executeQueryAsync method.
If the request succeeded, the success callback will be called.

The preceding steps result in the following code when trying to search for xbox360:

var context = SP.ClientContext.get current();

var keywordQuery = new
Microsoft.SharePoint.Client.Search.Query.KeywordQuery (context) ;

keywordQuery.set queryText ("xbox360") ;

var searchExecutor = new
Microsoft.SharePoint.Client.Search.Query.SearchExecutor (context) ;

results = searchExecutor.executeQuery (keywordQuery) ;

context .executeQueryAsync (onQuerySuccess, onQueryFailed) ;

[46]

Chapter 3

The rResultRows array is the result of successfully executing the query. We can
iterate through the array using jQuery's $.each method and print the results to the
user however we like. It is recommended we use some templating engine such as
jsRender or Handlebars to easily create the graphic representation of the results.

Other than set_queryText, the KeywordQuery object holds everything we discussed
earlier on the REST API section. Setting the result source ID is done using the
set_sourceId method, the culture is set using the set_culture method, and so on.

A common place to use either the REST API or the JavaScript CSOM is an app,
which is what we are going to discuss next.

An app in SharePoint 2013 is a new development model introduced in SharePoint
2013. The easiest way to explain what apps are is to compare it to the mobile world.
Think about apps for your smartphone. An app is a piece of software that you
install on your mobile OS from a marketplace or installation files (that is, . apk for
Android). Prior to the installation, the app tells you all the permissions it needs in
order to run, and you can choose whether to install it or not. Apps for SharePoint
are almost identical.

In a nutshell, apps are the evolution of SharePoint 2010's sandbox solutions.
Sandbox solutions were never a big hit in the SharePoint community as they

had a lot of limitations. One of the biggest limitations was that sandbox solutions
couldn't make calls to external web services. Apps tackle many of those limitations
and present a nice and lean client-based development model.

An app uses standard web technologies such as HTML and JavaScript. In some
cases, apps may use OAuth authentication as well. Just like mobile OS apps,
SharePoint apps also declare permission requests before they are installed, and

the site owner can choose whether to install an app or not. The following screenshot
shows an app request for access permissions:

.

Do you trust The Profileio®
Let it read items in all site collections.
Let it access basic information about the users of this site.

Allow application access to user profiles: Read

Trust It Cancel

Apps have three hosting options; each is used for different scenarios.

[47]

Using the New CSOM and RESTful APIs

A SharePoint-hosted app

A SharePoint-hosted App is basically an app that runs in the context of SharePoint.
SharePoint-hosted apps can only use client-side code to implement behavior and UX
(User Experience). A SharePoint-hosted app runs in an isolated sub website, which
is created during its installation, and as such, SharePoint-hosted apps do not require
any special authentication method.

A provider hosted app

A provider hosted app is an app that runs in any environment we choose and
written in any language we choose. It is up to us, the app developers, to supply
the hosting infrastructure, which can either be a local server or a cloud-based
provider such as Amazon. It is not recommended to use Windows Azure as an
infrastructure for provider hosted apps, as Azure has its own hosting option for
apps. Communication with SharePoint is done using CSOM and REST calls with
OAuth authentication through ACS (Azure Access Services).

An autohosted app

Autohosted apps are apps that are hosted on Windows Azure, and can make use
of Azure SQL for database purposes. Once installed, the app's web deployment
manifest creates a new Azure web service instance and an optional SQL database
instance. Just like provider hosted apps, autohosted apps communicate with
SharePoint using CSOM and REST and OAuth authentication.

Both autohosted and provider hosted methods enable us to write feature-rich apps
with code behind, without deploying anything to SharePoint. That helps to keep our
SharePoint installation more intact. SharePoint-hosted apps are client-side-based apps,
which are deployed on SharePoint, and as such cannot have any server-side code.

Regardless of which deployment option you choose, when an app is installed

to a SharePoint instance and added on a page, SharePoint basically adds an iframe
element, which displays the app's entrance page. Always keep in mind that apps
are isolated from the SharePoint runtime. Every time an app is executed, SharePoint
generates a new app domain with a unique URL.

[48]

Chapter 3

Publishing an app

Once our app is developed we want users to, well, use it. Publishing an app makes
it available to users. There are two places we can publish an app to:

* The Office Store: The Office Store is the public app catalogue for Office
applications. Everyone can access the store and acquire free or paid apps.
The Office Store supports all of the deployment models mentioned
previously. The Office Store, as shown in the following screenshot,
looks like any other marketplace you may know from the mobile world:

Communication
Apps for
SharePoint

Email less, communicate more

New Apps for SharePoint

CompartiMOss Translate

(0) ()]
General de Software BakTek
SharePoint 2013 SharePoint 2013

rore |aaa —ron | naa

Task & Calendar Sync
@

AvePoint Inc.

SharePoint 2013

rocr |aaa

- O s
|/ 10 Apps for SharePoint - OFf x ||
€& - € [[officemicrosoftcom/en-us/store/apps-for-sharepoint-FX102804987.aspx 75 @ & =
What's new Office Products ... Apps for Office and SharePoint ... -
Excel Outlook Project SharePoint Word Whi

AvePoint Meetings
0)

AvePoint Inc.

SharePoint 2013

roer |oaaa

[49]

vww .allitebooks.cond

http://www.allitebooks.org

Using the New CSOM and RESTful APIs

* An internal organization app catalogue: On-premise, SharePoint installation
and Office 365 tenants have a local organizational catalog where SharePoint
developers can develop apps for internal use only. No one outside the
organization can access these apps. Just like the Office Store, all the
deployment models are supported for the internal catalog.

Publishing an app to the Office Store requires you to register as a developer and fill
out tax-related forms. If you are interested in publishing apps, check out the MSDN
guide at http://msdn.microsoft.com/en-us/library/jj220037.aspx.

Apps can fill out an entire book (and actually have), and in our search-related book
we won't go any deeper. If you feel like you wish to go deeper (and you should),
check out Microsoft SharePoint 2013 App Development, Scot Hillier and Ted Pattison,
Microsoft Press.

In the next section, we are going to build a SharePoint-hosted search-driven app
that uses both REST and CSOM to access the search engine.

Building a SharePoint-hosted
search-driven app

Now that we know how to use the new client-side APIs, how keyword queries work,
and the overall idea of apps, let's combine all that knowledge and create a client-side
search-driven app.

We mentioned in the previous chapter that the Content Search Web Part is not
available in Office 365. What we will build now is a simple content search like
web part that will aggregate all the tasks a user has over the entire tenant.

The end result of this section is as follows:

Tasks App Part
Title % Complete Due Date Action
1 Categorize the new stock h B Thu May 16 2013
2 Aftend the new xbox accouncment show h . ¥ Tue May 21 2013
3 Learn more about Playstation 4 b Wed May 08 2013

[50]

Chapter 3

Create task apps (lists)

Create a task app (list) on the Video Games site, and any other sites you may
have. Add some tasks that are assigned to your user and other users and wait
a bit for the continuous crawl to pick up the new content.

Understanding the requirements

Our requirements are to display all the tasks from everywhere in the tenant for a
specific user. Naturally, you may think that creating a result source is the first step
in creating this app. Think about it a bit harder: when we created a result source
earlier, we created it on the Search site because the search happened on the search
site. Now, the search can happen on any site (wherever the site admin places our
app part) and should search any site.

So what should we do? We should simply query the Local SharePoint Results
source (which is the default one) with a query that uses property restriction.
The two properties we wish to restrict are:

* A content type of Task

* AnAssignedTo value of the user who performs the query

The resulting query of these property restrictions is as follows:

ContentType=Task AND AssignedTo='{username}'

Now we face another problem. How can we tell at runtime who the current user is?
Well, it's quite simple actually. You'll find out momentarily when we start building
our app.

Building the app

To get started, open the TasksApp-Starter project from the downloadable content
of the book.

The first task we shall complete is to get the current user's display name.

We will do that by using the JavaScript Client Object Model. Open the 2pp. js
file located under the scripts folder. Currently it consists of a single line that
initiates the client context. The easiest way to get the current user would be to
use the get_currentUser method of the CSOM's web object. Add the following
code snippet right after the context initiation line:

var user = context.get web().get currentUser();

[51]

Using the New CSOM and RESTful APIs

context.get_web will take care of getting the currently used web, while
get_currentUser will take care of getting the current user object.

In addition, we will need one global variable: appweburl. The variable will hold
the URL of the app itself. Add the following snippet following the previously
added code:

var appWebUrl;

Next, let's perform some initializations, which our app needs. Add the following
code snippet to app. js:

$ (document) .ready (function () {

appWebUrl =
decodeURIComponent (getQueryStringParameter ("SPAppWebUrl")) ;

$.ajaxSetup ({
'beforeSend': function (xhr) {

xhr.setRequestHeader ("ACCEPT",
"application/json;odata=verbose") ;

}
13N

context.load (user) ;
context .executeQueryAsync (onGetUserSuccess, onGetUserFail) ;

1)
The code handles the following;:

Sets the appwebUr1 variable to the query string value of SPAppWebUrl,
which represents the app subweb URL. It is the dynamic address the
app was assigned during its creation.

Adds an accept header to all outgoing Ajax calls from jQuery. This step is
required in order to get back JSON objects from SharePoint's REST APIL.

Loads and executes the current user object we initiated earlier. If the call
to get the user is successful, the onGetUserSuccess delegate is called;
otherwise the onGetUserFail delegate is called.

The onGetUserFail method is quite simple. Its entire purpose in life is to alert the
user that an error has occurred. Its implementation is as follows:

function onGetUserFail (sender, args)

}

alert ("Something went wrong: " + args.get errorDetails());

[52]

Chapter 3

The onGetUserSuccess method is the heart of our application. This method calls
the REST API and gets back the data that we will display to the user. The method

implementation is as follows:

function onGetUserSucces () {
var restURL = appWebUrl +
"/ api/search/query?querytext="'ContentType=Task AND
AssignedTo=\"" + user.get title() +

"\"'&selectproperties='Title, Author, PercentCompleteOWSNMBR, DueDateO

WSDATE, Path'";
$.getJSON (restURL, function (data) ({

SetTasksUI (data.d.query.PrimaryQueryResult.RelevantResults.Table.

Rows) ;
I3F;
}

The query consists of the property restrictions we discussed previously, and a set of
selected properties that we will use in our app. If we didn't specify which properties
we wanted, we would have got back 42(!) properties, and that's, in most cases, a

waste of bandwidth.

Once the getgsoN method gets data back from SharePoint, we send it to the

SetTaskUI method. All the results that the REST API returns are located under
the data.d.query namespace, and Rows is the collection of the results objects.

The setTaskUI method takes the results array and builds the HTML showing it
using the $.each method for iterating through the results array. The method's

implementation is as follows:

function SetTasksUI (dataRows) {
var htmlRows = "";
$.each(dataRows.results, function (index, item) {
var title = $S.grep(item.Cells.results, function (e) {
return e.Key == "Title"; });
var perComplete = parselnt($.grep(item.Cells.results,
(e) { return e.Key == "PercentCompleteOWSNMBR";
}) [0] .Value*100) ;

var dueDate = new Date($.grep(item.Cells.results, function

{ return e.Key == "DueDateOWSDATE"; }) [0].Value);

var path = $.grep(item.Cells.results, function (e) { return
e.Key == "Path"; }) [0].Value;

var className = dueDate > new Date() ? "regular" : "error";

function

(e)

[53]

Using the New CSOM and RESTful APIs

htmlRows += "<tr class='" + className + "'><td>"
+parselnt (index + 1) + "</td><td><div class='titleDiv'>" + title[0].Value +

"</divs></td><td><div class='progress progress-success
progress-striped's<div class='bar' style='width: "
+perComplete + "%'></div></div></td><td>"
+dueDate.toDateString() + "</td><td><div class='btn
btn-mini btn-warning's<i class='icon-edit icon-
white's</i>Edit</divs</td></tr>";

1)

$(".table") .append (htmlRows) ;
$(".btn-warning") .on("click", function () {
1)

$(".loader") .fadeOut (function ()

S (".content") .fadelIn() ;

1)
}

Each result in the results array is an object that has a key and a value. Using
the $.grep method, we can get an object's value by comparing an object property
(in our case, the key) to a specified value.

If you debug the app right now, you'll notice that you don't get any results back.
The reason for that is not that our query was incorrect or that we used the wrong
content type. The reason for that is we didn't request for the app's permission to
access the search engine.

To request the search permission click on the AppManifest .xml file, and
under the Permissions tab set the scope to Search and the permission to
QueryAsUserIgnoreAppPrincipal. Once set, your permission tab should
look as follows:

General Permissions Prerequisites Supported Locales Remote Endpoints

M Allow the app to make app-only calls to SharePoint.

Scope Permission Properties

Search QueryAsUserlgnorefppPrinci

[54]

Chapter 3

Run the app again and you should get a result similar to the following screenshot:
m—

<« C' £ https://hippodevssp-b42fi46a8al43d.sharepoint.com/sites/dev/Task:Ly & & =

Continue x ¥

Title % Complete Due Date Action
1 Categorize the new stock h W Thu May 16 2013 B Edt
2 Attend the new xbox accouncment show . | Tue May 21 2013 G Ean |
3 Learn more about Playstation 4 Wed May 08 2013 =

We haven't implemented the Edit button as it's not really search related. If you
are interested in seeing the full implementation, it will be posted on the author's
blog at http://blog.johnnyt .me.

Summary

This chapter covered a lot in terms of client-side developing. We started with
deep diving into the Keyword Query Language, and understood how to query the
search engine and get only the results and properties we wanted. We moved on to
discussing the new client APIs that SharePoint 2013 introduces: REST and CSOM.
We saw the differences between the two methods, use cases, and properties for
both. Next, we briefly discussed the concept of apps, the new development model
introduced in SharePoint 2013.

The chapter ended with a step-by-step tutorial on creating a client-side-based
SharePoint-hosted search-driven app based on the subjects discussed in this chapter.
In the next chapter we are going to deal with customizing the results' appearance.
Using result types and display templates, which are the two new concepts introduced
in SharePoint 2013, we can give each result type a unique appearance. So get your
artistic nature ready and head over to the next chapter.

[55]

Customizing the Look

So far we dealt with the logic behind search results: how to get them, how to show
only certain results, how to boost results, and so on. We have, however, relied on the
core presentation of SharePoint to display the results. In this chapter we are going to
focus on how to change the presentation of results. SharePoint 2013 introduced new
concepts called result types and display templates, which, by using standard web
technologies, help us achieve the look we are after.

In this chapter, we will cover the following topics:

* Working with result types
* Building a design template

Result types and design templates

Both result types and design templates are new concepts introduced in
SharePoint 2013. Kate Dramstad, a program manager from the SharePoint
search team at Microsoft, describes both concepts in a single, easy-to-remember
formula: result types + design templates = rich search experience.

Customizing the Look

When we perform a search we get back results. Some results are documents, others
are pictures, SharePoint items, or just about anything else. Up until SharePoint 2010,
all results, no matter which type they were, looked quite the same. Take a look at the
following screenshot showing a results page from FAST for SharePoint 2010:

. Search Results ; newsfeed %

&« C' | [sharepoint/sites/fast/Pages/resLits.aspx 7k =newsfead

ch Results $ System Account -

All Sites People

Preferences
newsfeed P advanced

Result Type 1-3 of 3 results Sortby: [Relevance =] B ®

Any Result Type

Web Pags & newsfeed.aspx

Text spsve spsve Edit My Profile My Memberships Untitled Newsfeed My Calendar

2 Date: 4/19/2013
http://sharepoint/sites/Elbit/newsfasd aspx
Site

3 newsfeed
Any Site Authors: Systern Account Date: 2/2/2013 Size: G4KB

sharepoint/sitas http://sharepoint/sites/Elbit/Pages/newsfeed. aspx

3] newsfeedHelper.is

Author ... ElbitGeneralPrototype(); newsfeed.init{decodeURIComponent ... nbsp;</div=");
newsfeed setFilter{$ithis).val(}), newsfeed); newsfeed getPosts
Any Author Date: 4/7/2013

http:/fsharepoint/sites/Elhit/SiteAssetsdavaScript/NewsfeedHelper.js
Systemn Account

Modified Date
Any Modified Date
Past Month

Past Six Months

Past Year

The results are dull looking, can't be told apart, and in order to find what you are
looking for, you have to scan the results up and down with your eyes and zero in
on your desired result.

[58]

Chapter 4

Now let's look at how results are displayed in SharePoint 2013:

] |
/B httpsi//hippodevsspshare x
&« C' | 8 nttps;//hippodevssp.sharepoint.com/search/Pages/results.aspx#k=xbox360 5 @ a =
] Office 365 Newsfeed SkyDrive Sites ... Admin~ [SIUUNRPOSIENEUTINE S
~
xbox360 jol Johnny Tordgeman replied. x
; ‘ ; ; Feed Post
Everything People Conversations Videos Video Games
FrZ 0 /chnny Tordgeman
Result type Video Games Center Images unbosing #xboi360:

Type MName Picture Size File Size Modified ... xbox360- i

Newsfeed post 4/29/2013 12:40 PM ... xbox360-3 1000 x 1000 176 KB 4/ |
Web page epoint.com/VideoG: /Forms/T] o ' |
. |
E2l /ohnny Tordgeman replied 20 minutes | 2
Author ago
unboxing #xbox360 ... & B

i
g

System Account 1 like Q l
g

johnny@johnnyt.me

EPZl Johnny Tordgeman said. ;;Em”w'ff 20 minutes ago Dreplies, 1 like
Oreplies Original Post

0 likes
FrZ 0 /chnny Tordgeman
buying a new #xbox360 today with #kinect!

21 minutes ago

Johnny Tordgeman

SHOW MORE

Modified date

One Year Ago Today xbox360-1
Al

wbhou2En 2 e

21 minutes
ago
1 reply
0 likes

VIEW CONVERSATION

What a difference! The page looks much more alive and vibrant, with easy
distinguishing of different result types and a whole new hover panel, which
provides information about the hovered item and is completely customizable.

Display templates

Search, and its related web parts, makes heavy use of display templates instead

of plain old XSLT (Extensible Stylesheet Language Transformations). Display
templates are basically snippets of HTML and JavaScript, which control the
appearance and behavior of search results. SharePoint ships with a bunch of display
templates that we can use out of the box, but we can also create our own custom ones.

[59]

vww allitebooks.conl

http://www.allitebooks.org

Customizing the Look

Similar to master pages, it is recommended to copy an existing display template
that is close in nature to what we strive to achieve and start our customization
from it. Customizing a display template can be done on any HTML editor, or

if you choose, even Notepad. Once we upload the HTML template, SharePoint
takes care of creating the companion JavaScript file all by itself.

If we tear apart the results page, we can distinguish four different layers of

display templates:
T 5N
/ B https://hippodevsspshare %\
€« C' & https;//hippodevssp.sharepoint.com/search/Pages/results.aspx#k=xbox260 > @ a =
1] Office 365 Newsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ £ 2
@ :
xhox360 jo Johnny Tordgeman replied... x
; ‘ ; : Feed Post
Everything People Conversgjons Videos Video Games
(O] FP7l Jchnny Tordgeman
Result type Video Games Center Images unbexing #xoox360:
Type MName Picture Size File Si Modified ... xbox360-1 1 \;’
Newsfeed post 4/20/2013 12:40 PM ... xbox360-3 1000 x 1000 176 KB 4/20/20 - 4
Web page hippod point.com/VideoG [Forms/Tt p: ‘ r
T ‘\ e o
B2l Johnny Tordgeman replied 20 minute: o " 1
Author ago
unboxing #xbox360 ... @ Tz A
System Account ® = @
‘ o
johnny@johnnyt.me F= Jonnny Tordgeman said 19 minute: 20 minutes ago 0 replies, 1 like
ago
Johnny Tordgeman xbox360 vs #playstation3! whos gonna win ... C'J\Ephz Original Post
oW MoRE 12daafdb-87b3-4574-0fd 1-89f1ca27e05b vs ae7615fc- likes)
o 8374-4941-bcd0-d5244a011f3al whos gonna win & Erzl Jchnny Tordgeman
_) buying a new #xbox360 today with #kinect!
Modified date EPSl /ohnny Tordgeman said :;E”“"”tﬁ 21 minutes ago
— buying a new #xbox360 today with #kinect ... buying 1 reply
a new c472bcef-8f42-4e2d-8b7a-2220071707fa today 0 likes
with 17827218-F194-49¢8-8bee-44932c4ab974
VIEW CONVERSATION
One Vear Ago Today <box360-1

epoint.com/...,/VideoG, ag

X

The layers are as follows:

* Filters layer: In the preceding screenshot they are highlighted with the
green border on the left and numbered 1. This layer shows the new
refinement panel area that is not limited to text alone, but also enables
the use of UX elements such as sliders, sliders with graphs, and so on.

* Control layer: In the preceding screenshot they are highlighted with the red
border in the middle and numbered 2. This layer shows that not only results
but also controls can be templated. We will see what a templated control
looks like later in the chapter.

[60]

Chapter 4

* Item layer: In the preceding screenshot they are highlighted with the orange
border in the middle and numbered 3. This layer shows that each result type
can be templated to look unique. For example, in the screenshot we see how a
site result (the first result), conversation results (next three results), and image
result (last one) looks like. Each result type has its own display template.

* Hover panel layer: In the preceding screenshot, they are highlighted with the
blue border on the right and numbered 4. They are introduced in SharePoint
2013, the hover panel shows information on a hovered result. The extra
information can be a preview of the document (using Office Web Apps),

a bigger version of an image or just about anything we like, as we can
template the hover panel just like any other layer.

Display templates are stored in a site's master page gallery under
S the Display templates folder.

Each one of these layers is controlled by display templates. But if design templates
are the beauty, what are the brains? Well, that is result types.

Result types

Result types are the glue between design templates (UX — user experience) and the
type of search result they template. You can think of result types as the brain behind
the templating engine.

Using result types enables administrators to create display templates to be displayed
based upon the type of content that is returned from the search engine. Each result
type is defined by a rule and is bound to a result source. In addition, each result type
is associated with a single display template.

Just like display templates, SharePoint ships with it a set of out of the box result types
that match popular content. For example, SharePoint renders Word document results
using the Item Word.html display templates within any result source if the item
matches the Microsoft Word type of content. However, if an item matches the PDF
type of content, the result will be rendered using the Item_ PDF.html display template.

Defining a result type is a process much like creating a query rule. We will create our
tirst result type and display template towards the end of the chapter.

Both result types and display templates are used not only for search results, but also
for other web parts as well, such as the Content Search Web Part.

[61]

Customizing the Look

Styling results in a Content Search Web Part

The Content Search Web Part (CSWP) comes in handy when we wish to show
search-driven content to users quickly and without any interaction on their side.

When adding a CSWP we have two sections to set: Search Criteria and Display
Templates. Each section has its unique settings, explained as follows:

1. The search criteria section is equivalent to the result type. Using the
Query Builder we tell the web part which result type it should get.
The Query Builder enables us to either choose one of the built-in queries
(latest documents, items related to current user, and so on) or build our
own. In addition, we can set the scope of the search. It can either be the
current site, current site collection, or a URL. For our example, we will
set the query to be Documents(System), meaning it searches for the latest

documents, and the scope to Current site collection:

Build Your Query

BASICS REFINERS SETTINGS TEST

slecl a gquery Documents (System)
Choose ntent you want to search b
selecting a result source,

by app Current site collection
pe the search results to a specific
ibrary, list or URL.

@ Don'trestrict by any tag

an limit results to content tagged with I) ‘e

specific terms, including site navigation terms.) Restrict by navigation term of current
page

(O Restrict by current and child navigation

terms

© Restrict on this tag

Switch to Advanced Made

m

Learn how to build your query

SEARCH RESULT PREVIEW

sharepoint13/Shared Documents/words.docx

ments/Boo

ings to create a good Book O..

sharepoint13/Shared Documents/Example outline.pdf

oK Cancel

[62]

Chapter 4

Next, we set the display template for the control holding the results. This is
equivalent to the Control layer we mentioned earlier. The CSWP provides
three control templates: List, List with Paging, and Slideshow. The control
templates change the way the container of the items looks. To compare the
different templates, take a look at how the container looks when the List
template is chosen:

Content Search -

Wwords

Book1

01_Important guidelines for Outline preparation

And the following screenshot displays how the exact same list looks when
the Slideshow template is chosen:

Content Search -

words

Since our content is not images, rendering the control as Slideshow makes
no sense.

[63]

Customizing the Look

4. Last but not least, we set the Item display template. As usual, SharePoint
comes with a set of built-in item templates, each designated for different item
types. By default, the Picture on left, 3 lines on right item display template
is selected. By looking at the preceding screenshot we can see it's not right for
our results. Since we are searching for documents, we don't have a picture
representing them so the left area looks quite dull. If we change the Item
display template to Two lines we will get a much more suitable result:

Content Search

@S words
B Bookl
@S 01_Important guidelines for Outline preparation

Display templates allow us to change the look of our results instantly. While playing
around with the out-of-the-box display templates is fun, extending them is even
better. If you look at the Two lines template that we chose for the CSWP, it seems
kind of empty. All we have is the document type, represented by an icon, and the
name of the document. Let's extend this display template and add the last modified
date and the author of the document to the display.

Creating a custom display template

As we mentioned earlier, the best way to extend a display template is to copy and
paste a template that is close in nature to what we wish to achieve, and customize it.
So, as we wish to extend the Two lines template, open SharePoint Designer, navigate
to Master Page Gallery | Display Templates | Content Web Parts of the site you
previously added the CSWP, and copy and paste the Item TwoLines.html file into
the same folder. Rename the newly created file to Item_TwoLinesWithExtraInfo.
html. As soon as you save the new filename, refresh the folder. You'll notice that
SharePoint automatically created a new file named Item TwoLinesWithExtralInfo.
js. The combination of the HTML and JavaScript file is what makes the magic of
display templates come to life. Edit the Ttem TwoLinesWithExtraInfo.html file,
and change its title to Two Lines with Extra Info.

[64]

Chapter 4

Getting the new properties

The first code block we should discuss is the cust omDocumentProperties block.
Let's examine what it holds between its tags:

<mso:CustomDocumentPropertiess>
<mso:TemplateHidden msdt:dt="string">0</mso:TemplateHidden>
<mso:ManagedPropertyMapping msdt:dt="string">'Link
URL' {Link URL}:'Path','Line
1'..</mso:ManagedPropertyMapping>
<mso:MasterPageDescription msdt:dt="string">This Item Display
Template will show a small
thumbnail..</mso:MasterPageDescription>

<mso:ContentTypeId
msdt :dt="string">0x0101002039C03B61C64EC4A04F5361F385106603</
mso:ContentTypeIds>

<mso:TargetControlType msdt:dt="string">;#Content Web
Parts;#</mso:TargetControlType>

<mso:HtmlDesignAssociated
msdt :dt="string">1</mso:HtmlDesignAssociated>

<mso:HtmlDesignConversionSucceeded
msdt :dt="string">True</mso:HtmlDesignConversionSucceeded>

<mso:HtmlDesignStatusAndPreview
msdt :dt="string"s>https://hippodevssp.sharepoint.com/search/_
catalogs/masterpage/Display%20Templates/Content%20Web%20Parts/Item
TwoLinesWithExtraInfo.html, Conversion
successful.</mso:HtmlDesignStatusAndPreviews

</mso:CustomDocumentProperties>
The most important properties from this block are:

* ManagedPropertyMapping: This property holds all the managed properties
that our display template will have access to. The properties are organized
in the key:value format. For example, if we wish to make use of the Author
property, we will declare it as 'Author' : 'Author'. The value can be a list of
managed properties, so if the first one is null, the mapping will be done using
the second one, and so on.

* ContentTypeld: This property sets the content type of the display template.
The specific value recognizes the file as a display template.

* TargetControlType: This property sets the target of the display template.
In our example it is set to Content Web Parts, which means the search
content web part and any other related search content web part. Other
possible values are SearchBox, SearchHoverPanel, SearchResults,
and so on.

[65]

Customizing the Look

Since we wish to display the author and the last modified date of the document, let's
add these two managed properties to the ManagedPropertyMapping property. Add
the following snippet in the beginning of the property, as follows:

<mso :ManagedPropertyMapping

msdt:dt="string">'Author: 'Author', 'LastModified': 'LastModifiedTime’,..
</mso:ManagedPropertyMapping>

We mapped the Author managed property to the Author key, and the
LastModifiedTime managed property to the LastModified key. Next,
we will discuss how to actually use the new properties.

Getting the values of the new properties
Using the newly added properties is done using plain old JavaScript.

1. Scroll down a bit until you see the following opening div statement:

<div id="TwoLinesg">

2. The div tag begins with what seems to be a comment markup (<! --),
but if you look closer you should recognize that it is actually JavaScript.
By using built-in methods and client object model code, display templates
can get any information out of SharePoint, and of the outside world. The
getItemvalue method is in charge of getting content back based on a given
managed property. That means if we wish to get the author of a result, and
we set the key to the managed property to be Author, the following line of
code will get it:

var author = $getItemValue (ctx, "Author") ;

3. The same goes for the last modified date. We used the key LastModified
for the managed property, and hence the following line of code will be used:

var last = $getItemValue (ctx,"LastModified") ;

4. Add these two lines just above the closing comment statement
markup (_#-->).

Remember that each result is rendered using this display template,
so the author and the last variables are unique for that one item
"~ that is being rendered.

[66]

Chapter 4

Displaying the new properties
The last part of the template comes right after the closing comment statement from

the previous section. You can see plain old regular HTML at this point, starting with
the following line:

<div class="cbs-Item" id="_ #= containerId =# "
data-displaytemplate="Item2Lines">

But if you look close enough you might notice something is weird with the id
property. It has an unusual suffix and prefix. This suffix and prefix are the template
placeholders. Whatever value is between these two will get replaced at runtime with
the value of its JavaScript variable.

Under the closing div tag of _#= 1line21d =#_, add the following snippet:

<div class="cbs-Line2 ms-noWrap">Author: #= author
=#_ </div>

<div class="cbs-Line2 ms-noWrap"><bsLast Modified: #= last
=#_ </div>

Author and LastModified are two variables we created in the previous section,
and now using the template placeholders we will display them to the users.

Save the new template, and navigate to the site you saved the new template on,
which should be the same site to which you added the CSWP earlier as well. Edit the
properties of the CSWP and change its display template to our new Two Lines with
Extra Info custom display template. Click on OK and you should get a result similar
to the following screenshot:

Content Search

85 words

Auther: Johnny Tordgeman;System Account
Last Medified: Monday, May 13, 2013

B5 Bookl
Author: Johnny Tordgeman:System Account
Last Modified: Sunday, May 12, 2013

85 01_Important guidelines for Qutline preparation
Author: Priyanka;System Account

Last Modified: Wednesday, September 5, 2012

."’El Top 10 things to create a good Book Outline
Author: Bansari Barot;System Account
Last Modified: Thursday, February 12, 2009

.“"El Example outline
Autheor: Rashmip;System Account
Last Modified: Friday, April 4, 2008

[67]

Customizing the Look

Enriching the Video Games Search Center

If you recall, we created a nice search vertical named Video Games in Chapter 2,
Using the Out of the Box Search Components. The search vertical was scoped to search
content in two specific folders we created. One of the fields we could input in our
images folder was keyword. By default, SharePoint 2013's images hover panel won't
show this field; but as this field is important to us, let's change the display template
of that hover panel and add it.

Before we go ahead and create the new result type, head over to your video

Games Center Images folder and add a few keywords to the images of your choice.
Once done, wait for the continuous crawl to pick up your changes, or if using an
on-premise installation, head over to the search service application and start an
incremental crawl, as shown in the previous chapter.

Modifying the default image display template

As we mentioned earlier, the best way to modify a display template is to pick up an
out of the box one and modify it. In order to change the image template hover panel,
we have to first edit the image display template itself and point it to the new hover
panel template we will be creating. To modify the default image display template
follow these steps:

1. Launch SharePoint Designer 2013 and open the search center site.

2. Navigate to Master Page Gallery | Display Templates | Search folder,
and locate the Ttem Picture.html file.

3. Once located, copy and paste it in the same folder.

Rename the new file to Item Console Picture.html. Click on the file
and under Customizations click on Edit file.

Change the title of the new template to Console Picture Item.

Under the body tag, locate the declaration of the hoverurl parameter
and change it as follows:

var hoverUrl =
"~sitecollection/_catalogs/masterpage/Display
Templates/Search/Item Console Picture HoverPanel.js";

7. Save the file and navigate back to the search folder.

[68]

Chapter 4

Now that we have a new image display template, we need to create the new hover
panel display template that we had specified for it. To create the new hover panel
display template follow these steps:

1.

5.

Locate the Item_Picture HoverPanel.html file, copy and paste it in the
same folder, and rename it to Item Console Picture HoverPanel.html.

Edit the file and add the Keywords managed property to the
ManagedPropertyMapping property, just like we did in the previous
example. The property should look like the following code:

<mso :ManagedPropertyMapping

msdt:dt="string">'Keywords': 'Keywords', 'Title'.. </
mso :ManagedPropertyMapping>

Under the div tag in Item Picture_ HoverPanel.html, locate the JavaScript
section (that begins with <! --#_) and before its closing element add the
following line of code:

var keywords = $SgetlItemValue (ctx, "Keywords") ;
This will get the content of the Keywords managed property.

To display the value of the keywords managed property to the user, add the
following lines of code under the span whose ID is:

#= ShtmlEncode (id + HP.ids.dimensions) =#:

Keywords: #= keywords =#_

Save the file.

We are done with creating the templates, so now it's time to create the result type.

Creating the result type

To create the result type that will match the new display template we created,
follow these steps:

1.

In your search center, navigate to Site Settings and click on Result Types
under the Search section.

In the Manage Result Types page, click on New Result Type. Give the
new result type a name such as Console Picture Type.

[69]

Customizing the Look

3. For the source select the Video Games Result source (reminder: we only
wish to have the new display template shown in our search vertical).

4. Click on Show more conditions on the left, and choose Path as the
property. For the operator select Contains any of and <your site urls/
VideoGamesImages/ as the value. In our example, the value would be
https://hippodevssp.sharepoint.com/VideoGamesImages/.

5. For the display type, choose Console Picture Item. This is the display
template we created in the previous section. Save the result type. Once
completed, your settings should look as shown in the following screenshot:

—
J;" B Edit Result Type x \ Y
€« C | B https;//hippodevssp.sharepoint.com/search/ layouts/15/ConfigureResultType.aspx?ID=817&action=edit&level=s Iy | =
] Office 365 Newsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ %% 2
) SHARE ¥ Follow [
~
Which custom properties should match?
Path v | | Contains any of.. v
https://hippodevssp.sharep
Add value
Add property
Actions
What should these results look like?
Console Picture Item v
Note: This result type will automatically update with the latest properties in your display template
each time you visit the Manage Result Types Page.
Display template URL
[J Optimize for frequent use
Save Cancel
¥
< >

We are now finished with the new result type and display template. Go ahead and
perform a search using our Video Games search vertical.

[70]

Chapter 4

Hover over any image result and our new hover panel display template will be
shown in all its glory as shown in the following screenshot:

playstation3 e

playstation3-2
Picture Library List ltem

Everything People Conversations Videos Video Games

Video Games Center

playstation3-1 1AM ... playstation3-3 1500 x
1187 130 KB 4/29/2013 12:40 PM ...

hippodevssp.sharepoint.com/VideoGamesimages/Forms/allitems.aspx

playstation3-3
hippodevssp.sharepoint.comy../VideoGamesimages

playstation3-2
hippodevssp.sharepoint.com/.../VideoGamesimages

playstation3-1
hippodevssp.sharepoint.com/../VideoGamesimages

1008 x 15
Keywords: Ficture
4 results
Changed by [| Johnny Tordgeman on 6/4/2013 8:01 PM
Preferences Advanced Search

OPEM SEMD VIEW LIBRARY

Summary

This chapter was all about prettifying items. We learned about result types and
display templates, what the different layers of display templates are, and how to
style results in search-related web parts.

We finished the chapter off by creating two new display templates: an item display
template based on the Two lines out of the box template and a new hover panel
display template for the image display template.

Display templates are a powerful feature, and among its popular usages are adding
a person's latest status updates whenever someone hovers over their result in the
people search, showing the user's latest tweets based on their username, and so

on. All of this can be achieved using display templates and a bit of JavaScript

client object model.

In the next and final chapter we will discuss the all-important concept of Business
Connectivity Services (BCS). Using BCS we can get content from external systems
and have SharePoint index and search them. So, go get your SQL server ready because
we are about to crawl an external database and perform search operations on it.

[71]

Extending Beyond
SharePoint

In this chapter we are going to deal with extending search beyond the scope of
SharePoint. So far we've seen search results coming only from within SharePoint,
and whether the results were documents, sites, conversations, or images, all came
from SharePoint. By leveraging the BCS, we can get SharePoint to index external
systems. In this chapter we are going to discuss how to build a .NET assembly BCS
that will crawl] the external system, and display the results to the user as if they were
regular plain old SharePoint results.

In this chapter we will cover the following topics:

¢ Introduction to BCS in the context of search

* Connecting with the SQL server using .NET assembly

BCS for search

BCS has been in use since SharePoint 2010. If you previously used BCS in
SharePoint 2010, you'll feel right at home. As noted before, BCS enables us
to connect to external data sources and display the data via web parts, lists,
user profile properties, or search.

When discussing BCS we need to understand that BCS is not a technology by itself.
It is a grouping term for a set of technologies, which takes care of getting the data
from the external system. An external system can be anything from databases
(such as SQL server or Oracle) to web services, and even cloud-based solutions.

Extending Beyond SharePoint

BCS uses the connectors framework to reach out to external systems. Out of the box,
we have four types of connectors we can use straight away: SQL, WCF, .NET, and
the newly added OData connector. While the Business Data Connectivity (BDC)
layer is in charge of connecting the external system, it does not know or dictate what
data will be returned from the system, or what would its schema look like. All the
operations and schema for the returned data are defined by an external content

type (ECT). An ECT specifies the definition of the fields (name and type) that will be
returned from the external source. For example, a Product ECT might specify that the
data that will be returned from an external system, SQL in this case, as follows:

* ProductID: This is an integer representing the unique ID of a product
* ProductName: This is a string representing the name of a product

* ProductPrice: This is a decimal representing a product's price

In addition to schema definition, an ECT also defines the operations available
for the BCS. Just like any modern system, these operations include Create-Read-
Update-Delete (CRUD) operations, and other operations such as file stream
reading or getting a list of items.

Now after all this, you may ask yourself what does any of this have to do with
search? Good question indeed. BCS is a very broad subject, and can fill out an
entire book (and it has), and as we are focused on the subject of search, the rest
of the chapter will deal with only search-related aspects of BCS.

. If you wish to go deeper with BCS, check out Professional Business
Connectivity Services in SharePoint 2010, Scot Hillier and Brad Stevenson,
=" Wrox Publishing. While the book deals with BCS in SharePoint 2010

and not SharePoint 2013, the core concepts are exactly the same.

BCS and search

SharePoint 2013 provides two distinct approaches for processing search queries to
return search results: federated and content crawling.

In the federated approach, the results returned by the search query are not crawled
(read: stored) by the search server. When we write a search term, the term is
forwarded to the external system and then gets processed by it. Once processing is
finished, the external system returns the results to SharePoint's search engine, which
in turn formats and renders the result. The biggest advantage with federated search
is that we don't really need to worry about getting the data to SharePoint, as the
external system is in charge of the search logic.

[74]

Chapter 5

In addition, using federated search we can access systems that don't have the ability
to get crawled (or even secured against crawling) but have an internal search engine
that is accessible.

Content crawling, on the other hand, returns results from SharePoint's search
service application's content index database. This database contains content that
was crawled by the search service application, and includes the text content and

any metadata the content item may have. Unlike the federated approach, it's our

job as developers to get the data into the search service application's index database
from the external system. And this is where BCS and search finally meet. Using BCS,
we can create a content crawling indexing connector that will bring the external
system's data back to SharePoint.

A BCS indexing connector is composed of the following parts:

* The BDC model file: This file provides the schema of the data and the
connection information to the external system

* The connector logic: This is a component that contains the code that
connects and crawls the external system

When we develop a BCS indexing connector, it's a good idea to have answers to
the following questions:

1. How are we going to connect to the external system? This includes server
IP address, database instance name, authentication, and so on.

2. What is the schema of the data we are crawling? How is it organized?
What types of fields are we going to crawl? (Think of ECT.)

3. How can we recognize data changes in the repository for the incremental
crawl? In order for the crawl to be able to perform incremental search (and
by doing that save time and bandwidth) it must have the ability to recognize
when content changes in the external system. This is done by either a
timestamp-based crawl or change-based log crawl, depending on the
external system APIs.

4. Do we need to secure the data we are crawling? In some cases the data we
crawl is public and everyone in our organization has access to it. But there
are cases where we need to implement a security method, so that users
searching through the crawled content will only get results they have access
to. This means that our connector must know how to read the permissions of
the external system and implement it at crawl time using a Windows Access
Control List (ACL).

[75]

Extending Beyond SharePoint

The first question is rather easy to answer, as you should be able to get all
the information from your IT department, or anyone else that works on
maintaining the external system.

When answering the second question we have a few additional parameters to be
taken into consideration. As we noted earlier, other than type and name, the ECT
also defines operations the BCS will perform. There are six possible operations the
BCS can perform, as follows:

Finder: This is a core operation that retrieves a list of items from the external
content source that are to be crawled. This method should return minimal
information about the items (usually only the ID) and not the entire item
content.

SpecificFinder: This is a core operation that retrieves individual items from
the external content source based on the list the finder operation generated.

ChangedIdEnumerator: This is an optional operation that returns minimal
information (usually ID) about items in the external content source, which
were modified after a given time. This is required when implementing a
changelog-based incremental crawling.

DeletedIdEnumerator: This is an optional operation that returns minimal
information (usually ID) about items in the external content source, which
were deleted after a given time. This is required when implementing a
changelog-based incremental crawling.

BinarySecurityDescriptorAccessor: This is an optional operation that
returns the security descriptor for an item from the external content source.
This operation is in charge of handling the security aspects of crawling, and
in fact creates the access control lists for each and every item it crawls. This is
required if you choose to implement item-level security.

StreamAccessor: This is an optional operation that returns a data stream
from a file. When we wish to crawl the content of a file, mostly Office files
or PDF, we have to implement a StreamAccessor operation.

Now that we are done with the theory side of BCS in search, let's get active and
create a BCS search indexer ourselves!

[76]

Chapter 5

Building a BCS search connector

Before we begin writing our connector, we need something to connect to. First,
extract the downloadable files for this chapter from the Packt Publishing website.
You'll notice there is a file called videoGamesDB.bak. This is a SQL database backup
with video games console content that we will crawl to our SharePoint. Restore this
database to a SQL server of your choice.

Now that we have content to crawl], let's move on and create the BCS connector.

Setting the operations

As this book is not a book about BCS, we've already created the basics for you.
Open the VideoGamesConnector-Starter project from the downloadable content
of the book in Visual Studio 2012. The BCS is partially done. What it's missing
are a few key factors, as follows:

e Implementation of the ReadList method
* Implementation of the ReadItem method
* Setting the BCS as crawlable

Implementing the ReadList method

Implementing the ReadList method is rather simple. All it does is connect to the
database and grab a list of all the items we are going to crawl. Since this is just a
preliminary step, we are not going to get all the information about the items, just their
IDs. Once the method finishes its run, it returns the list of IDs to the search engine,
which in turn will call the ReadItem method for each ID and get the full item content.

Open the DAL class and find the initialization of the _connectionString variable.
This variable will hold the connection string for the database hosting the consoles
table. Set the connection string according to your environment.

In this demo we are using a hardcoded value for the connection string.
In a real-world application this is not a good idea, as the code moves
%\ between environments (developing, testing, production, and so on)
g and so the connection string changes as well. It is advisable to use
SharePoint's Secure Store to store and retrieve this kind of information.

[77]

Extending Beyond SharePoint

Find the GetConsolesList method and implement it as follows:

List<VideoGamesEntity> items = new List<VideoGamesEntitys>() ;
SglConnection sglConnection = new SglConnection() ;
SglDataReader sglReader = null;
try
{
sglConnection = new SglConnection(connectionString) ;
sglConnection.Open/() ;
//Declare Sgl Command
SglCommand cmd = new SglCommand () ;
cmd. Connection = sglConnection;

cmd . CommandText = @"select ID from Consoles";
sglReader = cmd.ExecuteReader() ;

if (sglReader.HasRows)
{
DataTable dt = new DataTable() ;
dt .Load (sglReader) ;
foreach (DataRow row in dt.Rows)
{
VideoGamesEntity Entity = new VideoGamesEntity () ;
Entity.ID = row["ID"].ToString() ;
items.Add (Entity) ;

}

return items;

}

catch (Exception ex)
//Write to log
return items;

}

finally

{

// close reader
if (sglReader != null)

{

sglReader.Close() ;

[78]

Chapter 5

// close connection
if (sglConnection != null)

{

sglConnection.Close() ;

}

The implementation is rather simple. We initiate a new list of the

VideoGamesEntity class, named items. Next we connect to the SQL database

(using the _connectionString variable we initialized earlier) and perform a simple
select query for all the IDs of the Consoles table. Once we have the IDs we add them
to the items list and return the list back to the search engine. Next up we implement
the ReadItem method.

Implementing the Readltem method

As we noted earlier, the job of the ReadItem method is to bring all the content of a

given item. The method accepts an ID as an argument and uses that ID to bring the
corresponding item.

Locate the GetConsoleItem method and implement it as follows:

VideoGamesEntity Entity = new VideoGamesEntity () ;
SglConnection EntityConnection = null;
SglDataReader SglReader = null;

try

{

//Connection DB

EntityConnection = new SglConnection(connectionString) ;

//Open Connection (will be closed at the Finally statement)
EntityConnection.Open() ;

//Declare Sgl Command
SglCommand cmd = new SglCommand() ;
cmd. Connection = EntityConnection;
cmd. CommandText = @"select * from Consoles where ID=@IDParam";

//Declare Sgl Parameters:

[79]

Extending Beyond SharePoint

SglParameter IDParam = new SglParameter ("@IDParam",
SglDbType.Int, 10);
IDParam.Value = Int32.Parse (id) ;

//add new parameter to command object
cmd . Parameters.Add (IDParam) ;

SglReader = cmd.ExecuteReader () ;
//Checking if there is any results (suppose to be only 1)
if (SglReader.HasRows)
{
DataTable dt = new DataTable() ;
dt .Load (SglReader) ;
DataRow row = dt.Rows[0];

Entity.ID = id;
Entity.Title = row["Title"] .ToString() ;
Entity.Manufacturer = row["Manufacturer"].ToString() ;
Entity.HardDisk = row["Hard Disk"].ToString() ;
Entity.HighDefinition = bool.Parse (row["High
Definition"] .ToString()) ;
Entity.Wifi = bool.Parse(row["Wi-fi"].ToString()) ;
Entity.ImageUrl = row["Image Url"].ToString() ;

}

return Entity;

}

catch (Exception ex)

{

//Write to log
return Entity;

}

finally

{

// close reader
if (SglReader != null)

{

SqglReader.Close () ;

}

// close connection
if (EntityConnection != null)

{

EntityConnection.Close() ;

}

[80]

Chapter 5

No rocket science here. For each item from the ReadList method, the ReadItem
method gets called. The method connects to the SQL server and performs a select
query filtered by the given ID. Once results come back from SQL, we create a
VideoGamesEntity entity and set its properties. Finally we return the data filled
entity to the search engine for crawling. The search engine receives the new entity
and stores the new entity in the search index database. We now implemented the
two basic operations needed for BCS to operate. The next step is to set the connector
to be crawlable, or in other words, search enabled.

Making the BCS model crawlable

The BCS model has several properties that we can set which are related to search.
These properties include the following;:

* ShowlInSearchUI: This is a model-level property that specifies that this
model should be displayed in the search user interface. The value of this
property is ignored; what's important is the inclusion of the property itself in
the model. This property is required when building a searchable BCS model.

* InputUriProcessor / OutputUriProcessor: These are LobSystem level
properties, which enable custom processing of the input and output URLs
before passing it to the search system or connector.

* RootFinder: This is a method-level property which specifies the default
Finder method that the connector should use to enumerate the items for
crawling. This property is required for a searchable BCS model.

* DirectoryLink / AttachmentAccessor: These are two method-level
properties, which are used for creating association between entities.
It is recommended that you read the post on the blog regarding related
entities at http://blog.johnnyt.me/2013/03/crawling-with-fast-and-
sharepoint-2013/.

* AuthorField: This is a method-level property that specifies the author name
to display in the search results. This is usually set in the SpecificFinder
method to point to the field from the external content source that should
be used for displaying the author.

* DisplayUriField: This is a method-level property that specifies the URL
to show in the search results for a given item. This property overrides the
default profile page URL that the BCS service sets.

* DescriptionField: This is a method-level property that specifies the
description to display for the result.

[81]

Extending Beyond SharePoint

There are many more properties we can set for our searchable BCS and you
can find more information about them at the MSDN documentation page
located at http://msdn.microsoft.com/en-us/library/gg294165.aspx.

The first property we will set is the ShowInSearchUI property. Double-click on
the videoGamesModel . bdem file and switch the tab to BDC Explorer. Navigate
to the VideoGamesModel LOBSystemInstance and click on the three dots (...)
next to Custom Properties as shown in the following screenshot:

BDC Explorer =

Type here to search -

= *3 Model
= *3 VideoGamesModel
= B videoGamesMadel
= o LobSysteminstances
||:|laa VideoGamesModel I
*3 VideoGamesEntity

[+

BDC Explorer | Solution Explo.. Team Explorer

VideoGamesModel LobSystemninstance -

(Collection) |
Lrerault Lheplay MNarr
Is Cached
MName VideoGamesModel

Add a new property named showInSearchUI, and set the type to System.String
and the value to x.

[82]

Chapter 5

Next, we will set up the Root Finder property. In the BDC explorer pane, navigate
to the ReadList method. On the BDC Method Details pane (usually in the bottom
area) locate the ReadList instance and click on the three dots (...) next to Custom
properties, as shown in the following screenshot:

Bd VideoGamesConnector - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P - 0O x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM SQL IOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP

G- iR - W P Start - Debug - A _
g VideoGamesModelbdem & X Featurel feature DAL.cs ice.cs i ~ BDC Explorer v ax
g Type here to search

E %3 Model
= #3 VideoGameshMadel
= f videoGamesModel
@ pf LobSysteminstances
= *3 VideoGamesEntity
® © Readltem

¥ @ ReadList

#; VideoGamesE.. A

= Identifiers
& D
B Methods BDC Explorer | Solution Explo... | Team Explorer
@ Readitem 7 ReadList Methodinstance -
4
BDC Method Details - VideoGamesEntity - ix
[ool L
Name Direction Type Descriptor Do 3
4 Methods - ~TIT
Default Display Narr Entity1 List
< § Readlist ls Cached
4 @ Parameters Name ReadList
Y@ retumParameter Return & VideoGamesEntityList Return Parameter Ni returnParameter
%@ <Add a Parameter> PN
4 @ Instances Custom Properties
0 ReadList The custom properties of this element.
39 <Add a Method Instance> hd

Error List

Add a new property named RootFinder with a type of System.Stringand a
value of x.

Build and deploy the solution. If everything goes smoothly, continue to the next
section where we set the permissions and a content source of the newly added
searchable BCS.

[83]

Extending Beyond SharePoint

Creating a search content source

Now that we have a BCS connector ready for crawling, it's time to create a

content source that will use it. Head over to your server's SharePoint 2013 Central
Administration and click on Manage service applications. From the list of service
applications, click on the service whose type is Business Data Connectivity
Service Application (in a default installation it will be named Business Data
Connectivity Service). Here we can see a list of installed BCS models, and among
these we should find our searchable BCS model VideoGamesEntity. Whenever we
deploy a BCS model we have to set its permissions. Check the checkbox next to the
VideoGamesEntity model and click on Set Object Permissions on the ribbon.
Add the farm administrator account and give it all the available permissions.

Add the Everyone account and give it permissions to execute.

Now that the administrative part is behind us, let's create the content source.
Navigate back to the Manage service applications page and click on Search

Service Application. Under the Crawling category on the left-side menu, you'll

find Content Sources. Click on it to navigate to the content sources management
page. Click on New Content Source. The Add Content Source page appears. Give
the new content source the title video Games Content Source. The type of our new
content source is Line of Business Data, as we are using a BCS source. Change the
radio button to Crawl selected external data source and check the checkbox next to
VideoGamesModel, which is our BCS model as shown in the following screenshot:

- o
o ok 1

System Account ~ 'ﬂ' ?

e@|ﬁ> http://sharepoint13:48 © ~ ¢ || B Search Service Application: ... | |

SharePoint Newsfeed SkyDrive Sites

O sHare O,

Search Administration Name Name; * A

pe a name to describe this co Video Games Content Source

Diagnaostics

Crawl Log

Crawl Health Reports
Query Health Reports
Usage Reports

Content Source Type Select the type of content to be crawled:

of content will be

O SharePoint Sites

Crawling

Content Sources

Crawl Rules

Server Name Mappings
File Types

Index Reset
Pause/Resume

Crawler Impact Rules

Queries and Results
Authoritative Pages
Result Sources
Query Rules

Query Client Types
Search Schema
Query Suggestions
Search Dictionaries

O Web sites
O File Shares
() Exchange Public Folders
®) Line of Business Data
O Custom Repository
External Data Source Select the Business Data Connectivity Service Application:
Business Data Connectivity Sen-'lceﬂ

O Crawl all external data sources in this Business Data Connectivity
Application
® Crawl selected external data source

[l videoGamesModel

[84]

Chapter 5

Scroll all the way to the bottom of the page and click on OK. Our new content
source is ready! To perform a crawl, click on the little arrow to the right of the
content source name and click on Start Full Crawl. The content source will start
crawling. Once the status changes to Idle, check the Crawl Log page. If your content
source had seven successes, everything went great. Try to perform a search for xbox.
You'll get a result similar to the following screenshot:

= l:l-
e@'ﬁ} hitp://sharepoint13/sit @ ~ & H B search Center ‘ | A T
SharePoint Newsfeed SkyDrive Sites [EESTSEFNCCTITINE o L4
H> | xbox jo) ‘
Everything People Conversations Videos
Modified date 29
—_— XBOX 360 ...
videogamesmodel_videogamesmodel/.../297s_id=SBAAAAA==MQA=&s_ce=...
OnevearAgo Today
sult
Al Pref Advan
< >

This weird looking result you are seeing is a result from an external content
source. It is easily identified by the unusual looking URL it has.

When we perform a custom crawl we automatically create crawled properties.
Crawled properties represent the BCS model entity's properties. For our entity,

we have automatically created a number of crawled properties such as the ImageUrl,
Title, and so on. Crawled properties for a BCS model have an easy-to-remember
syntax: <BCS model name>.<Entity name>, that is videogamesmodel . Tit1le.

In order to display the crawled properties, we have to map the crawled properties

to managed properties. That is done through the Search Schema page. Head back

to the Search Service Application page, click on Search Schema, and then on New
Managed Property. We will map the ImageUrl crawled property to a new managed
property named ConsoleImageUrl, so type ConsoleImageUrl in the Property Name
textbox. The type of the crawled property is text (string in the entity model class). The
following main characteristics section defines how this property is going to be treated:

* Searchable means that the property is included in the full text index.
This means that if the managed property value contains the word
Console, searching for Console will return the result.

[85]

Extending Beyond SharePoint

* Queryable is very similar to searchable, but does not offer a full text index.
That means that if the property value is console, only searching for
propertyname : Console will return the result.

* Retrievable means that the managed property will be returned as part
of the search result. If we are going to use result types and display
templates (wWhich we should always consider) we have to mark the
property as retrievable.

* Refineable means that we can use this managed property in the
refinement panel and refine the results based on this property.

* Sortable means that we can sort the results based on this property.

Since we are not planning on performing a search based on the URL of an item,
the only characteristics we wish to add to the managed property is Retrievable.

The most important part of mapping a managed property is, well, mapping it.
Under the Mappings to crawled properties section, click on the Add a Mapping
button to bring up the mapping popup. Filter the categories to Business Data to
see all the available crawled properties as can be seen in the following screenshot:

Crawled property selection

Select crawled properties to map to New Property(Text)

Filter on a category:
v

Search for a crawled property name:

Select a crawled property:
docaclmeta
EntityName
EntityNamespace
VideoGamesEntity.HardDisk
VideoGamesEntity.HighDefinition
VideoGamesEntity.|D
VideoGamesEntity.ImageaUrl
VideoGamesEntity.Manufacturer
VideoGamesEntity.Title
VideoGamesEntity.Wifi

[86]

Chapter 5

The property we are after is VideoGamesEntity.ImageUrl, so select it and click
on OK. Click on OK again to save the new managed property.

In order to use the new managed property, perform another full crawl on the
related content source.

Once the crawl is finished, create a new result type and display template to retrieve
the new managed property and proudly display it to the users.

Summary

This was a pretty intensive chapter, but we hope you managed to soak in most,

if not all, of what it aimed to provide. Creating a BCS connector might seem like

a daunting task at first, but the more connectors you create, and the more you play
around with its different methods and variables, the more you will learn to love

it. Using BCS connectors we get the ultimate power of crawling external systems,
a task which used to be next to impossible in the past.

This chapter also brings our little book to an end. We hope you enjoyed working
with search, and we are sure that you will take everything you learned into an
exciting real-world project that combines with, or is completely based on, search.

[87]

Symbols
$.grep method 54

A

Access Control List. See ACL

ACL 75

ACS 48

analytics architecture
components 14

App, publishing to
internal organization App catalogue 50
Office Store 49

architecture, SharePoint 2013 Search
analytics-processing component 13, 14
components 10
content component 11
diagram 10
index component 13
query components 12

ATOM (XML) protocol 40

Azure Access Services. See ACS

B

BCS
about 73
operations 76
search 74,75
BCS indexing connector
BCS indexing 75
connector logic 75
BCS search connector
building 77
operations, setting 77

Index

BDC 74
Business Data Connectivity. See BDC

Cc

client-side APIs

app, publishing 49, 50

autohosted app 48

CSOM 46

provider hosted app 48

RESTful API 39

SharePoint-hosted App 48

using 39
Client Side Object Model. See CSOM
content components

about 11

content-processing component 11,12

crawl component 11
content-processing component 11
content search web part

using 25, 26
Content Search Web Part. See CSWP
ContentTypeld 65
Create-Read-Update-Delete. See CRUD
CRUD 74
CSOM

about 9, 46

search 46, 47
CSWP

about 62

results, styling 62-64
custom display template

creating 64

new properties, displaying 67

new properties, obtaining 65, 66

new properties values, obtaining 66

D

DAL class 77
design templates 58, 59
display templates
about 59
control layer 60
filters layer 60
hover panel layer 61
item layer 61

E

ECT 74

Exchange 16

Extensible Stylesheet Language
Transformations. See XSLT

external content type. See ECT

G

GetConsoleltem method 79
GetConsolesList method 78
get]SON method 53

index component
about 13
input role 13
output role 13

K

Keyword Query Language. See KQL
KQL
about 35
basics 36
property restrictions 36, 37
synonyms 39

L

LastModified key 66
Local SharePoint 16
Local SharePoint Results 51

M
ManagedPropertyMapping property 65

(0

OAuth authentication 47
onGetUserFail method 52
onGetUserSuccess method 53
OpenSearch 1.0/1.1 16
operations, BCS
BinarySecurityDescriptorAccessor 76
ChangedldEnumerator 76
DeletedldEnumerator 76
finder 76
SpecificFinder 76
StreamAccessor 76
operations, BCS search connector
AuthorField property 81
DescriptionField property 81
DirectoryLink / AttachmentAccessor
property 81
DisplayUriField property 81
InputUriProcessor / OutputUriProcessor
property 81
Readltem method, implementing 79, 81
ReadList method, implementing 77, 79
RootFinder property 81
setting 77
ShowInSearchUI property 81
operator
1 37
</=<37
<> 37
= 37
>/ >= 37
valuel value2 37

P

ProductID 74
ProductName 74
ProductPrice 74
property restrictions, KQL
about 36
operators 37
XRANK 38

[90]

Q

query components
about 12
query processing component 13
web front end 12
query conditions
advanced Query Text Match 22
Query Matches Dictionary Exactly 21
Query More Common in Source 21
Result Type Commonly Clicked 21
query rules
action, setting 22
creating 19
learning 17, 18
promoted result 23
query conditions, setting 21
ranked results modifications, by query
changing 25
result block 23, 24
result source, setting 19, 20

R

Readltem method 79
ReadList method 77
Remote SharePoint 16
Representational State Transfer. See REST
REST
about 9
and search 43-45
using 41, 42
RESTful API
about 39
REST, using 41
SharePoint 2013 39, 40
result sources
about 15
creating 28, 29
Exchange protocol 16
explaining 15, 16
Local SharePoint protocol 16
OpenSearch 1.0/1.1 protocol 16
Remote SharePoint protocol 16
Remote SharePointrotocol 16

setting 19, 20

result types 57-61

S

SetTaskUI method 53
SharePoint 2013 5
SharePoint 2013 Search

about 5

architecture 10

features 5
SharePoint 2013 Search, features

customization 7-9

development methods 9, 10

drawback 6

ranking features 9

relevance 9

search administration 6

Ul changes 7, 8
SharePoint-hosted search-driven App

about 50

app, building 51-55

requirements 51

task apps (lists), creating 51
Simple Object Access Protocol. See SOAP
simple search-driven application

building 27

content, adding 27, 28

query rule, adding 31, 33

result source, creating 28, 29

search vertical, creating 30
SOAP 39

T

TargetControlType 65

\'

VideoGamesEntity entity 81
Video Games Search Center
default Image display template, modifying
68, 69
enriching 68
result type, creating 69, 70

[91]

w

web front end 12
Web service callout 12

X

XRANK 38
XRANK keyword 25
XSLT 59

[92]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
Learning Search-driven Application
Development with SharePoint 2013

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise

"PUBLISHING

Microsoft SharePoint 2010
Business Application Blueprints
ISBN: 978-1-84968-360-9 Paperback: 282 pages

Master SharePoint application development by
building exciting SharePoint business solutions

1. Instant SharePoint - Build nine exciting
SharePoint business solutions

Microsoft SharePoint 2010 2. Expand your knowledge of the SharePoint
Business Application Blusprints platform so that you can tailor the sample
solutions to your requirements

3. Learn how the different development

Mike Oryszak PACKT] " ; techniques can be used in various situations
to support both client side and server side
development to solve different problems in
different environments.

Microsoft SharePoint for
Business Executives: Q&A

Handbook
ISBN: 978-1-84968-610-5 Paperback: 236 pages

100 Essential Questions and Answers about
SharePoint 2010 for Executives considering
SharePoint deployments

Microsoft SharePoint for
Business Executives: 1. Forget lengthy technical SharePoint guides
Q&A Handbook more suited for hands-on technical staff; get
equipped with the knowledge of SharePoint's
business potential before deployment

2. Get to grips with SharePoint governance,
the Cloud, staffing, development and much
more from a business perspective in this book
and e-book

Please check www.PacktPub.com for information on our titles

' enterprise 8

professional expertise distilled

"PUBLISHING

Microsoft SharePoint 2010
End User Guide: Business

Performance Enhancement
ISBN: 978-1-84968-066-0 Paperback: 424 pages

A from-the-trenches tutorial filled with hints, tips,
and real world best practices for applying SharePoint

2010 to your business

Microsoft SharePoint 2010 End User Guide:

Business Perf Enh t
usiness Ferformance Enhancemen 1. Designed to offer applicable, no-coding solutions

Taking the basics to the business with no-codin .

solutions for SharePoint 2010 3 to dramatically enhance the performance of

your business

2. Excel at SharePoint intranet functionality to
Michaol McCabo Petor Ward [PACKT] " : have the most impact on you and your team

3. Drastically enhance your End user SharePoint
functionality experience

Microsoft SharePoint 2010

Administration Cookbook
ISBN: 978-1-84968-108-7 Paperback: 288 pages

Over 90 simple but incredibly effective recipes to
administer your SharePoint applications

1. Solutions to the most common problems
encountered while administering SharePoint

Microsoft SharePoint 2010 in book and eBook formats

Administration Cookbook 2. Upgrade, configure, secure, and back up
your SharePoint applications with ease

e 3. Packed with many recipes for improving
LA Al collaboration and content management
with SharePoint

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with SharePoint 2013 Search
	New features of SharePoint 2013 Search
	Search administration
	UI changes and customization
	Relevance and ranking features
	New development methods

	The search architecture
	Content components
	Crawl component
	Content-processing component

	Query components
	Web frontend
	Query processing component

	The index component
	Analytics processing component

	Summary

	Chapter 2: Using the Out of the Box Search Components
	Getting acquainted with result sources
	Learning query rules
	Creating query rules
	Setting the result source
	Setting query conditions
	Setting the action

	Using the content search web part
	Building a simple search-driven application
	Adding content
	Creating the result source
	Creating a search vertical
	Adding a query rule

	Summary

	Chapter 3: Using the New CSOM and RESTful APIs
	Understanding the Keyword Query Language
	The basics
	Property restrictions
	XRANK

	Synonyms

	Using the new client-side APIs
	RESTful API
	REST and SharePoint 2013
	Using REST
	REST and search

	Client Side Object Model (CSOM)
	CSOM and search

	A SharePoint-hosted app
	A provider hosted app
	An autohosted app
	Publishing an app

	Building a SharePoint-hosted
search-driven app
	Create task apps (lists)
	Understanding the requirements
	Building the app

	Summary

	Chapter 4: Customizing the Look
	Result types and design templates
	Display templates
	Result types
	Styling results in a Content Search Web Part
	Creating a custom display template
	Getting the new properties
	Getting the values of the new properties
	Displaying the new properties

	Enriching the Video Games Search Center
	Modifying the default image display template
	Creating the result type

	Summary

	Chapter 5: Extending Beyond SharePoint
	BCS for search
	BCS and search

	Building a BCS search connector
	Setting the operations
	Implementing the ReadList method
	Implementing the ReadItem method
	Making the BCS model crawlable

	Creating a search content source

	Summary

	Index

-

Professional Expertise Distilled

Learning Search-driven Application
Development with SharePoint 2013

Build optimum search-driven applications using SharePoint 2013's
new and improved search engine

Johnny Tordgeman [PACKT] enterprise™

;Y:—.‘:::-_a
PUBLISHING

Learning Search-driven
Application Development
with SharePoint 2013

Build optimum search-driven applications using
SharePoint 2013's new and improved search engine

Johnny Tordgeman

enterprise

PUBLISHING

BIRMINGHAM - MUMBAI

Learning Search-driven Application Development with
SharePoint 2013

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013
Production Reference: 1280613

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-100-3
www . packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co. uk)

Credits

Author
Johnny Tordgeman

Reviewer
Samuel Zuercher [MVP]

Acquisition Editor
Aarthi Kumaraswamy

Commissioning Editor
Meeta Rajani

Technical Editors
Anita Nayak

Sonali S. Vernekar

Copy Editors
Insiya Morbiwala

Aditya Nair
Alfida Paiva

Laxmi Subramanian

Project Coordinator
Amey Sawant

Proofreader
Maria Gould

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Johnny Tordgeman is the CTO of E4D Solutions Ltd., a boutique development
and consulting firm in Israel. Johnny specializes in architecting enterprise-level
solutions built on top of Microsoft's SharePoint platform. Johnny utilizes the latest in
web technology and methodology in his solutions, such as HTML5, SPA, and MVC4.

Johnny is the author of MCTS: Microsoft Silverlight 4 Development (70-506) Certification
Guide, Packt Publishing, which was published in 2012.

Johnny is a skilled lecturer and a Microsoft-certified trainer and can be found
speaking at various conferences, open houses, and user groups.

You can always find Johnny at http://blog. johnnyt .me, on Twitter at @
JTordgeman, and on LinkedIn at http://www.linkedin.com/in/johnnytor.

I would like to dedicate this book to my son Roy and wife Ayelet.
You two are my source of inspiration and the best family I could
have ever hoped for.

First and foremost, I would like to thank Meeta Rajani and Sneha
Modi, my amazing editors. Without your help and support, this
book wouldn't have happened!

My dear family - Itzik, Varda, Yuval, and Shirly, and friends - Idan,
Yossi, Rani, Leon, Niv, Guy, Tal, Eyal, Itay, and Tung (Tony) Pham.

Thank you for the moral support and late nights we spent together.

This book and I owe a great deal to all of you.

http://blog.johnnyt.me

http://www.linkedin.com/in/johnnytor

About the Reviewer

Samuel Zuercher [MVP] (SharePoint MVP since 2011) works as a Senior
Consultant at Experts Inside, Switzerland, an international company he founded
with another SharePoint MVP, Christian Glessner. He has been working with
SharePoint since early 2006 and has in-depth knowledge from Version 2.0 onward.
He also holds certifications for every SharePoint version since then. As a Microsoft
Certified Trainer, he often trains people, from end users to technical specialists.
Additionally, he founded the Swiss SharePoint Community, is one of the main
drivers of Collaboration Days, and runs the blog sharepointszu.com. He speaks
about SharePoint in a variety of events all over the world. In his job, he is involved
in many SharePoint projects from concept to rollout and has a lot of experience.
His specialty is information and system architecture, no-code solutions, and social
collaboration. You can reach him via e-mail at szue@expertsinside.com, Twitter
at @SharePointSzu, or a variety of platforms such as Xing, LinkedIn, or Facebook.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

PACKT ©

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com

http://www.PacktPub.com

http://www.PacktPub.com

mailto:service@packtpub.com

mailto:service@packtpub.com

http://www.PacktPub.com

http://PacktLib.PacktPub.com

http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: Getting Started with SharePoint 2013 Search 5
New features of SharePoint 2013 Search 5
Search administration 6

Ul changes and customization 7
Relevance and ranking features 9
New development methods 9
The search architecture 10
Content components 1"
Crawl component 11
Content-processing component 11
Query components 12
Web frontend 12
Query processing component 13

The index component 13
Analytics processing component 13
Summary 14
Chapter 2: Using the Out of the Box Search Components 15
Getting acquainted with result sources 15
Learning query rules 17
Creating query rules 19
Setting the result source 19
Setting query conditions 21
Setting the action 22
Using the content search web part 25

Table of Contents

Building a simple search-driven application 27
Adding content 27
Creating the result source 28
Creating a search vertical 30
Adding a query rule 31

Summary 34

Chapter 3: Using the New CSOM and RESTful APIs 35

Understanding the Keyword Query Language 35
The basics 36
Property restrictions 36

XRANK 38
Synonyms 38

Using the new client-side APIs 39

RESTful API 39
REST and SharePoint 2013 39
Using REST 41
REST and search 43

Client Side Object Model (CSOM) 46
CSOM and search 46

A SharePoint-hosted app 48

A provider hosted app 48

An autohosted app 48

Publishing an app 49

Building a SharePoint-hosted search-driven app 50
Create task apps (lists) 51
Understanding the requirements 51
Building the app 51

Summary 55

Chapter 4: Customizing the Look 57

Result types and design templates 57
Display templates 59
Result types 61
Styling results in a Content Search Web Part 62
Creating a custom display template 64

Getting the new properties 65
Getting the values of the new properties 66
Displaying the new properties 67

Enriching the Video Games Search Center 68
Modifying the default image display template 68
Creating the result type 69

Summary 71

Lii]

Table of Contents

Chapter 5: Extending Beyond SharePoint 73
BCS for search 73
BCS and search 74
Building a BCS search connector 77
Setting the operations 77
Implementing the ReadList method 77
Implementing the Readltem method 79
Making the BCS model crawlable 81
Creating a search content source 84
Summary 87

Index 89

[iii]

Preface

Learning Search-driven Application Development with SharePoint 2013 is a fast-paced,
practical, hands-on guide to the world of enterprise search in SharePoint 2013.
With step-by-step tutorials and real-world-based exercises, this book will give
you a head start in creating fresh and exciting search-driven applications using
SharePoint 2013's new search engine. The book covers a wide range of topics
such as Query Rules, Result Types and Display Templates, Working with

the new client APIs, and Business Connectivity Services.

What this book covers

Chapter 1, Getting Started With SharePoint 2013 Search, gives you a taste of the new
features SharePoint 2013 search brings to the table and then dives deep into the
architecture that holds this system together.

Chapter 2, Using the Out of the Box Search Components, shows you how to use

query rules and result sources and get a taste of building a simple search-driven
application. SharePoint 2013 provides a rich out of the box experience for developing
search-driven applications.

Chapter 3, Using the New CSOM and RESTful APIs, explains how to work with

these new APIs and build a SharePoint hosted search-driven app using the new
App developing approach. SharePoint 2013 changes the way we developers extend
the platform by providing a whole new set of client-based APIs.

Chapter 4, Customizing the Look, focuses on creating display templates that define how
a search result will render, and result types that define which display template a result
should have. SharePoint 2013 opens up a whole new way to design our search results.

Preface

Chapter 5, Extending Beyond SharePoint, introduces how to create an external

indexing connector and understand how to work with external data. In a real-world
environment, not all the information we wish to search for is hosted within SharePoint.
Business Connectivity Services (or BCS for short) enables us to extend beyond the
realms of SharePoint and index data from external systems.

What you need for this book

To run the examples shown in this book you will need a SharePoint 2013 server
with Visual Studio 2012 installed.

If you don't have access to a full SharePoint 2013 server, Office 365's SharePoint
Online and Visual Studio 2012 can also be used to run most of the examples in
this book.

Who this book is for

This book is written for SharePoint and JavaScript developers who wish to get
started working with SharePoint search. The book assumes working knowledge
with previous versions of SharePoint and some experience with JavaScript and
client-side development.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

[2]

Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr _mysql.conf

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

[31]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

http://www.PacktPub.com

http://www.PacktPub.com/support

mailto:copyright@packtpub.com

Getting Started with
SharePoint 2013 Search

SharePoint 2013 feels like a breeze of fresh air, offering many new features and
changes over older versions. In addition to a whole new social experience, a new
development model called Apps, and native HTML5 support, SharePoint 2013
introduces a new and improved search engine. As the title of the book implies,
this book is all about the new search engine. In this introductory chapter we will
get a taste of the new features SharePoint 2013 Search brings to the table and then
deep-dive into the architecture that holds this system together.

In this chapter, we will cover the following topics:

¢ New features of SharePoint 2013 Search

e The new search architecture

New features of SharePoint 2013 Search

The SharePoint 2013 Search engine is the most powerful enterprise search engine
Microsoft has created to date. With this new release, Microsoft combined all of the
best features of the legacy SharePoint Enterprise search engine with the best features
of the FAST search engine, which Microsoft acquired back in 2008.

The new features of SharePoint 2013 Search can be divided into four main categories
as follows:

* Search administration

* Ul changes and customization

* Relevance and ranking features

* New development methods

Getting Started with SharePoint 2013 Search

Search administration

One drawback of search in previous versions of SharePoint was that almost
everything had to be managed from the central administration page, which
meant that search was managed at the farm level.

SharePoint 2013 changed that by adding most of the search settings from the
farm level to site collections and sites (SPWebs). As SharePoint 2013 is offered

as a cloud service (through Office 365), and cloud users have no access to settings
in the farm-administration level, this was a welcome change that both cloud and
on-premise site administrations can take advantage of.

Let's have a look at what settings are available for us to administrate; these are
shown in the following screenshot:

Search

Result Sources

Result Types

Query Rules

Schema

Search Settings

Searchable calumns

Search and offline availability
Configuration Import
Configuration Export

We will discuss these settings in detail in Chapter 2, Using the Out of the Box Search
Components, but for now just keep in mind that a site administrator can configure
the search experience on his/her site in ways that were reserved exclusively to
farm administrators in previous versions.

In addition, Microsoft introduces a new crawling mode, continuous crawl.
Continuous crawl] helps to keep the search index as fresh as possible by crawling
SharePoint sites (and only SharePoint sites) every 15 minutes, by default; we can
change this value using PowerShell, as shown in the following snippet:

$ssa = Get-SPEnterpriseSearchServiceApplication
$ssa.SetProperty ("ContinuousCrawlInterval", <minutess>)

The value we use for <minutes> is the number of minutes between crawling.

When running, the crawler gets changes from the crawled SharePoint sites and
pushes them to the content processing component, which will process the new
content on the fly.

By enabling the continuous crawler, items appear in the search almost immediately
after being crawled.

[6]

Chapter 1

Ul changes and customization

If there is one change in SharePoint 2013 Search that just pops to the eyes, it is
the new and fresh user interface (UI). If you worked with SharePoint 2010 search,
you'll remember the following screenshot, showing a search-results page:

Search Resulks @ #

&« € [sharepointysites/fast/Pages rasults aspx Pk =923

all Sites Peaple

Preferences
P | hdvanced
Site 1-8 of & results Sort by [Relevance =] B &
Any Site
associatedbosm 3 Playstation 3
PlayStation All-stars Battle Rovale is a crossaver brawler style fighting game featuring aver 20 first,
and third party characters famous from a range of game franchises. Each playable character has its
Modified Date own unique set of attacks and moves, and the game features 1-4 player multiplayer mash-up
action, both online and in local play at home. Additional features include, taurnaments, rivalries, an
any Modified Date award system designed to encourage competition, full 1080p HD output, a range of different
PlayStation therned play environments, and full PlayStation trophy support.
Past Manth Dats: 3/23/2013

. bde3:/fassociatedbosmodel_assosiatedbosmode
Past Six Months AMgA=ts_ce=0404050009000g10204000309000vprtd
Fast rear

O XBOX360
The new ¥box 360 4GB Console, Here today, ready for tomorrow with a brand new, leaner |
machine. Wi-Fi is built-in for easier connection to the world of entertainment on Xbox LIVE, where
HD movies and TV stream in an instant, It's ready for the controller-free experiences of Kinect -
vou don't just play the game, you are the game. Xbox 360 is more games, entertainment and fun.
Date: 3/23/2013
bdc:ffassociatedbosmodel_associatedbosmode
AMwiA=s_ce=0404g509090009102 04000809000y prtd

L3 Wil
The new controller incorporates a 6.2-inch, 16:9 touch screen and traditional buttan cantrols,
including twa analog Circle Pads, This combination removes the traditional barriers hetween games,
players and the TV by creating a second window into the video game world. The rechargeable
controller includes a Power button, Home button, +Control Pad, A/B/%/Y buttons, L/R buttons and
ZL/ZR buttons, Itincludes a built-in accelerometer and gyroscope, rumble feature, camera, a
microphone, stereo speakers, a sensor strip and a stylus.
Date: 3/23/2013
bdcdi/fassociatedbesmodel_associatedbesmode . LI

By looking at the preceding screenshot, we can see that it sports a pretty simple Ul
We have textual refinements on the left side; predefined search scopes for websites
and people (All Sites and People) on top, and a main, simply styled results area
without grouping or categorization of results.

To customize the way the results are shown, we had to use XSL/XSLT, which is
quite a messy and unattractive way to design.

[71

Getting Started with SharePoint 2013 Search

Fast forward to the present day. The following screenshot displays how the results
page looks like in SharePoint 2013:

—=
/B Search: hello x W
<« C | & nhtipsy//hippodevs.sharepoint.com/search/Pages/results.aspx?k=johnny#k=hello 77 @ a =
1] Office 365 Outlook Calendar People MNewsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ $¥ 2
A
| hello ,O‘ Hello views X
)] Discussion Post
Everything People Videos Reports
(555 Johnny Tordgeman
Result type Hello 1 reply g Join me far this amazing session on
N . R T L= SharePoint 2013!
Posted by Johnny Tordgeman Friday, December 21, 2012 o |
: best reply - F21 2012 renly
Dicus=Rn Join me for this amazing session on SharePaint 2013! s Friday, December 21, 2012 1 reply, 1 like
Newsfeed post hippedevs.sharepaint.com/Lists/.../Hello v best reply
Web page hello! 2 replies [E3 Johnny Tordgeman
Posted by Johnny Tordgeman Sunday, December 23, 2012 1 like Sure thing!
V best reply . e
is is a new forum y. December 21, 2012 O replies,
Author th £ Y Friday, December 21,2012 0 replies, 1 like
hippodevs.sharepoint.com/Lists/.../hello!
Johnny Tordgeman
System Account Develcper Site - Test Forum - Management VIEW DISCUSSION
hello ...
Enter a name... hippodevs.sharepoint.com/Lists/Test Forum/Management.aspx
SHOWEEWER Developer Site - General Discussion - Management
Hello ... Join me for this amazing session an SharePoint 2013 ...
Modified date hippodevs.sharepaint.com/Lists/General Discussion/Management.aspx
[| Developer Site - Test Forum
helle ... Johnny Tordgeman 12 11:56 PM 2 No
— —— — hippodevs.sharepoint.com/Lists/Test Forum/Allitems.aspx
One Vear Ago Today
—_— Developer Site - General Discussion
. Hello ... Join me for this amazing session on SharePoint 2013 ... Johnny Tordgeman
All 12/34/20112 121 DRA 3 Rin s

Now that's quite different, isn't it? The Ul is modern thanks to the use of HTML
and JavaScript templates. Instead of messing around with XSLT, we now have

display templates to design our results using languages we already know and
love: HTML, JavaScript, and CSS.

Take a look at the refinement panel on the left. While we still have textual refiners,
we also have graphical ones, such as a scroller for dates.

We have new out-of-the-box search scopes — Videos and Reports —and results are
grouped by their types; for example, the first two results are discussion items from
a discussion board.

The biggest and most notable change, however, is the new hover panel. Whenever we
hover over a search result, we are presented with a floating panel containing additional
information about the hovered item. As SharePoint 2013 seamlessly integrates with
Office web apps, any Office document we hover over will show a preview of its
content in the new hover panel. The most important thing about the hover panel,
however, is that we, as developers, have complete control over the content of this
hover panel. Just like search results, the hover panel is also controlled by HTML,

CSS, and JavaScript.

[8]

Chapter 1

We will discuss all of these new and exciting customizations features in detail in
Chapter 4, Customizing the Look.

Relevance and ranking features

As mentioned earlier, SharePoint 2013 Search took the best features of SharePoint
Search and FAST and improved them. As such, SharePoint 2013 uses new and
improved ranking models to determine which items are to be displayed and
what would be their rank (the order in which they are displayed).

The key to successfully determine the relevancy of search results is to satisfy
the intent of the person who issues the query. Let's explain this statement with
an example; say I'm performing a search for Apple. Now, did I search for apple
the fruit or Apple the technology company?

SharePoint 2013 Search continuously tracks and analyzes search usage to determine
how content is connected, how often an item appears in search results, and which
search results people click in order to continuously improve the relevance of items
to the search query. So, if I clicked on a lot of fruit-related results, the search engine
will assume I was looking for apple the fruit, and not the technology company.

We will discuss these new features in Chapter 2, Using the Out of the Box Search
Components, and Chapter 3, Using the New CSOM and RESTful APIs.

New development methods

With this new release of SharePoint, Microsoft made changes to the search-
development model. The old SOAP web service (ASMX) has been deprecated
alongside the SQL query syntax that we could use to query against SharePoint data.

But, just like the the old saying goes, "out with the old and in with the new", we get
some new features to play with to replace the ones that are gone.

* A new Client Side Object Model (CSOM) object which enable us to access
the search service using JavaScript and C#. With the help of the search
CSOM, we can create search-driven applications even for servers that
don't have SharePoint 2013 installed on them.

* A dedicated Representational State Transfer (REST) service that enables us
to execute queries against the search service from client applications using
libraries such as jQuery or RestSharp. The REST service supports all of the
properties available in the CSOM object, but instead of working against
objects, we use the URL's query string to send parameters to it.

[o]

Getting Started with SharePoint 2013 Search

* Anenhanced keyword query language with new and improved operators
such as ONEAR and XRANK.

* Enhancements to the Business Connectivity Services Connector Framework,
which improves capturing and logging of exceptions to help us troubleshoot
errors during the crawl process.

We will discuss all of these topics in detail in Chapter 3, Using the New CSOM and
RESTful APIs, and Chapter 5, Extending Beyond SharePoint.

Now that we have a general idea about what's new in SharePoint 2013 Search,
let's go ahead and discuss the architecture that makes all of this happen.

The search architecture

SharePoint 2013 Search introduces a new search architecture that includes significant
changes and new additions compared to previous versions. Since Microsoft
consolidated FAST and SharePoint Search, the new search architecture has inherited
components from both products while maintaining high scalability and performance.

Let's have a look at the new search architecture and discuss its components; refer to
the following screenshot:

content @ ® Query
Query
: cm::ent Processing
RO Component
&
® @

Analytics
Em— Processing <
Component

As we can see from the diagram, the search architecture can be divided into four
components groups as follows:

* Content components

* Query components

* The index component

* The analytics-processing component

[10]

Chapter 1

Content components

The content components are in charge of getting content ready for indexing.
Each component has a well-defined role, which we will discuss next.

Crawl component

The crawl component is responsible for crawling content sources. It is the first

stop for data that is about to be indexed by the search engine. The crawl component
invokes connectors (both out-of-the-box and custom ones) that interact with the
content source in order to crawl it.

While indexing, the crawl component uses one (or more) crawl database to
temporarily store detailed tracking and historical information about the crawled
item, such as the last time the item was crawled and the type of update during the
last crawl.

Once an item is crawled, meaning both its data and its associated metadata is
crawled, the crawl component delivers it to the content-processing component.

Content-processing component

The content-processing component's job is to analyze content it receives from the
crawl component and feed it to the index component for indexing.

Content analysis is done by following a flow known as the Content Processing Flow,
which is depicted in the following diagram:

The rectangular blocks in the diagram represent stages that we cannot interact
with. We won't be discussing them as they are quite self-explanatory. The curved
rectangular blocks, however, represent stages that we can interact with during the
processing flow.

[11]

Getting Started with SharePoint 2013 Search

The Web service callout stage is similar to the pipeline extensibility stage of FAST
for SharePoint 2010, and allows you to add a callout from the content-processing
component to a web service of your own so you can manipulate the crawled
content before it gets indexed by the index component.

Unlike FAST's pipeline-extensibility stage, where code had to be executed in

a sandbox, the web service callout accepts a web service endpoint, which is
much easier and reduces the overhead involved in writing a console application
to accompany the content-flow process.

Calling a web service during the processing stage can be useful for two scenarios.

* Creating new refiners by extracting data from unstructured text using
our own logic

* Calculating new refiners based on the data of managed properties

You can find a great example on using the web service callout in Kathrine
Hammervold's post, Customize the SharePoint 2013 search experience with a Content
Enrichment web service, located at http://blogs.msdn.com/b/sharepointdev/
archive/2012/11/13/customize-the-sharepoint-2013-search-experience-
with-a-content-enrichment-web-service.aspx.

The next point of interaction is the word-breaking stage, which allows you to write
your own custom word-breaking logic for the content processor. Please refer to
the MSDN documentation on custom word breakers, located at http://msdn.
microsoft.com/en-us/library/jj163981.aspxX.

Query components

The query components are in charge of analyzing the search query and processing
the results.

Web frontend

The web frontend is where the search process actually begins. A user can interact
with the search service by either writing a search query in the search center (or a
search box) or developing against the new public APIs: REST/OData services and
the CSOM. Both the search center and public APIs are hosted on the frontend.

Once the user creates a query, the query is sent to the query-processing component
for analysis. The query-processing component analyzes the query and forwards it
to the index component. The index component returns the matching results to the
query-processing component for another analysis and from there the results are
forwarded to the web frontend to be displayed.

[12]

Chapter 1

Query processing component

As mentioned previously, the query-processing component's job is to analyze and
process both search queries and results.

When the query-processing component receives a search query from the frontend, it
analyzes it in an attempt to optimize its precision and relevance. A site administrator
can interact with a query using different techniques such as query rules or result
source. We will discuss these techniques in detail in the next chapter, but for now

it is important to understand that these manipulations are handled within the
query-processing components. As part of its query handling, the query-processing
component performs linguistic processes on the query, such as word-breaking

and stemming.

Once the query is optimized, it is sent to the index component, which will process
the optimized query and return a result set back to the query-processing component
and from there to the search frontend.

The index component

The index component is the heart of the search service, and without proper planning
it can easily become the bottleneck of the service as well.

The index component has the following two roles:

* Input: The index component is in charge of writing the optimized content
it gets from the content-processing component to the index file

* Output: The index component is in charge of returning results from the
index file to the query-processing component, by request

How the index component saves and manages this index file is out of the scope of

this book, but you can read more about this in the TechNet article Manage the index
component in SharePoint Server 2013, located at http://technet .microsoft.com/

en-us/library/jj862355.aspxX.

Analytics processing component

The analytics-processing component is a new addition to SharePoint Search. Its role
is to analyze both content and user actions with the content in order to improve the
search relevance for the user.

[13]

Getting Started with SharePoint 2013 Search

The analytics architecture consists of three main parts, as follows:

* The analytics-processing component, which runs the analytics jobs.

* The analytics-reporting database, which stores statistical information
such as usage data.

¢ The link database, which stores information about searches and crawled
documents. In addition, the link database is shared with the Content
Processing Component, which in turn stores links and anchors in it.
The information, the content-processing component stores is later
used by the analytics-processing component.

The analytics-processing component runs two types of analytics: search

analytics and usage analytics. The search analytics analyzes content from the
content-processing component for information such as links, information related
to people, and recommendations. The usage analytics analyzes user actions on an
item, such as the number of views it had or how many users clicked on it.

An important output of usage analytics are the recommendations. The
recommendations analysis creates recommendations on items based on how

users have interacted with this specific item in the past. The analysis calculates an
item-to-item relationship graph and updates it continuously based on search usage.

Keep in mind that the analytics-processing component is a "learning" component,
which means it learns by usage. The more usage the search system will have, the
better analytics it will provide.

Summary

This chapter marks the beginning of our journey to create search-driven applications
using SharePoint 2013. We started the chapter by discussing the new features of
SharePoint 2013 Search and divided them into four categories: administration
changes, UI changes, relevance and ranking changes, and new development
methods. Once we had an idea about what's new in SharePoint 2013 Search,

we went on and deep-dived into the new search architecture.

In the next chapter we will get our hands dirty, and once we understand
how to work with the out-of-the-box search components, we will build
our first search-driven application using them.

[14]

Using the Out of the Box
Search Components

Now that we know what's under the hood, let's get started with what we can do with
it! In the previous chapter, we briefly mentioned the new search settings for sites and
site collections. This chapter will dive deep into these settings. We will discuss the
administrative side of SharePoint Search where we can define query rules and

result sources and demonstrate the use of out of the box search components

in a search-driven application.

In this chapter we will cover the following topics:

* Getting acquainted with result sources
* Learning query rules
* Using the content search web part

* Building a simple search-driven app

Getting acquainted with result sources

The best way to explain what a result source is, is by using a real life example.

Say you need to buy some milk. You know that you need to go to the supermarket
and look for milk in the dairy department. You aren't going to be looking for milk
in the tools department or even other areas of the store (such as the fruits and
vegetables departments); you limit yourself to just the dairy department.

A result source acts the same. It allows you to restrict search queries to a specific
subset of content from the search index by defining a set of rules that must be met
by the content in order to show up as a result.

Using the Out of the Box Search Components

If the result source sounds familiar to you, it is because you have already
encountered it before. Take a look at the following screenshot taken from
the default SharePoint 2013 search center:

app ,C)

Everything People Videos Reports

Developer Site - App Packages

There are no items to show in this view of the "App Packages" document library
hippodevs.sharepoint.com/Lists/AppPackages/Forms/Allitems.aspx
DispForm.aspx

User Prafiles Demo App
hippodevs.sharepoint.com/Lists/DraftApps/DispForm.aspx?ID=75

e - Apps in Testing

App Title Version Created Modified ... Remote Event Receivers Demo 1.0.0.0
12/22/2012 6:41 AM ... User Profiles Demo App 1.0.0.0 3/11/2013 11:08 AM

S EVET B L

31172013 11:08 AM ..

hippodevs.sharepoint.com/Lists/DraftApps/allitems.aspx

Below the search box we have four search verticals. These verticals are actually using
result sources. Think about the Videos vertical. It takes your search query and looks
for files in the Local SharePoint Sites content source and ends up with a known
video file extension, that is, MP4.

A result source can be created at either the site, the site collection, or the application
service (farm) level. This allows even site owners to create and manage customized
search experiences for their users.

When creating a result source, we must specify which protocol (search provider)
we wish to use. The four available protocols are as follows:

* Local SharePoint: The search index of the local SharePoint farm.

* Remote SharePoint: The search index of the remote SharePoint farm.

* OpenSearch 1.0/1.1: An external search provider that implements the
OpenSearch protocol. An example of such a provider is Bing. com.

* Exchange: An Exchange Web Services endpoint.

[16]

Chapter 2

In addition to protocol, we can specify a query text; this is basically a query that
will run against the selected protocol to narrow down the results. For example, the
following query will return all the PDF files that contain the following search term:

{searchTerms} fileextension:pdf

A result source, in many cases, is the heart of a search-driven application as it
guarantees that only results that meet the specified rule be returned upon query.

Learning query rules

Query rules are a hot new feature of SharePoint 2013 search. In essence, query
rules are the infrastructure for query pipeline extensibility. Using query rules,
we can create conditional rules that will intelligently respond to what the user
is trying to search for.

Let's assume we have a knowledge center site that tags all of its assets
(videos, images, documents, and so on) using the following taxonomy
dictionary as shown in the following screenshot:

TAXONOMY TERM STORE
English v
4 {5 Taxonomy_EuZbexxhUmJUTMTycCe7MO==
45 Gaming
: g_‘_} Genres -
4) Hardware
(=_] Mintendo 3D5
(=_] Playstation 3
(=_] Playstation Vita
] wiiu

(] XBO¥X 360

If a user searches for one of these terms, we should display a result on top of
the other results, pointing the user to the knowledge center. A result that will
always appear on top of other results is called a promoted result.

Promoted results are very similar to SharePoint 2010's best bets, but with
one key difference: promoted results can react to taxonomy terms as well
as matched keywords.

[17]

Using the Out of the Box Search Components

A promoted result, for the knowledge center we mentioned previously, will look
as shown in the following screenshot:

| xbox 360) N o]
Search...
Everything People Videos Repor%s

' Healthpack Gaming co. Knowledge Center
Come visit the knowledge center!
hippodevs.sharepoint.com/search/pages/assestresults.aspx

Knowledge Center Pictures - Thumbnails

9 x 3299 468 KB 4/22/2013 1:57 AM XBOX 360 ... xbox-360-controller
7 KB 4/22/2013 1 M XBOX 360 ...
hippodevs.sharepoint.com/sites/HealthPacky.../Forms/Thumbnails.aspx

Now, let's assume the user has searched for xbox 360 pictures. If a user has
combined the terms "xbox 360" and "pictures" in a query, he/she is probably looking
for pictures of the Xbox 360 console and not a document titled xbox 360 pictures.
Using query rules, we can recognize the user's intent and act accordingly.

Since the user wanted pictures of the product, we added a nice block of results
to the page, showing pictures of the product. This scenario will look as shown
in the following screenshot:

| xbox 360 pictures L ‘

Everything People Videos Reports

mages Results for "xbox 360"

xbox-360
B
hippodevs.sharepoint.com/.../HealthPackkKnowledgePictures “

xbox-360-controller

Sl
hippodevs.sharepoint.com/.../HealthPackkKnowledgePictures w.}\

Knowledge Center Pictures

Type MName Picture Size File Size Modified Hardware Type ... xbox-360
3250 x 3209 462 KB 4, 57 &M XBOX 360 ...
hippodevs.sharepoint.com/sites/HealthPack/../Forms/Allitems.aspx

1 Xbox 360 Arcade Manual

Xbox 360 Arcade lets you play Xbox 360 games, DVD movies, and audio CDs ...
Stream pictures, music, and more to your Xbox 360 consale by connecting to your
Microsoft ® Windows®-based ...
hippodevs.sharepoint.com/sites/.../consolearcade_na_0707 pdf

Result blocks don't have to appear on top of all search results, like promoted results.
We can also add ranked result blocks. Ranked result blocks are result blocks that
appear among regular ranked results. Their rank among other results is based upon
usage. The more the items inside a ranked block get clicked, the higher the block will
be shown in the results page.

[18]

Chapter 2

Creating query rules

Query rules can be defined at either the site, the site collection, or the service
application (farm) level. To create a query rule, just head up to either the site
or site collection's Site Settings page (or the search service application) and
click on Query Rules under the Search Section.

When creating a query rule, you have to ask yourself the following three questions:
1. What search vertical (result source) is the user going to use?

2. Under which conditions should the query rule fire?

3. When the condition fires, what should the query rule do?

Now that we know how to plan our query rule, it's time to discuss how to put the
planning into practice.

Setting the result source

First, we have to set the result source we are going to use for the query rule.
This is done in the Manage Query Rules page shown in the following screenshot:

=
/ @ Manage Query Rules x
<« C' & nttps;//hippodevssharepoint.com/search/_layouts/15/listqueryrules.aspx?level =site @ a =
1] Office 365 Outlook Calendar People MNewsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ ¥ 2

) SHARE ¥y Follow [

Site Settings » Manage Query Rules

you can test immediately wit

and even tune ranking. Changes
te that dictionaries may take

several minutes to update. Learn more about query rules

For what context do you want to configure rules?

Select a Result Source.., v | Al User Segments v| | all Topic Categories

=i New Query Rule | Order Selected Rules

Test a Query... v N4

Select a source above to see rules that fire for queries on that source.

[19]

Using the Out of the Box Search Components

The upper row of dropdowns is used to set the context of the query. The context
consists of a result source (first question), a user segment, and categories. In most
cases, you'll only have to set the result source.

You may now ask yourself: what if I want to target the "Everything" search vertical
and not a specific result source so that no matter what my users will search for, I can
react to it?. Well, the answer is simple: use the Local SharePoint Results (System)
result source.

The Local SharePoint Results result source is one of 16 out of the box result
sources that ships with SharePoint 2013 and is the default search vertical of any
search center. Among the other out of the box result sources, you'll find Documents
that narrows the search scope to document files only, Local People Search for
people-related results, and Conversations for social data results.

Once we select a result source, a list of all the related queries for that result source
will be displayed. If we pick Local SharePoint Results, a sum of eighteen query
rules will show.

Let's take the Adobe PDF query rule, as shown in the following screenshot, and
discuss how it answers questions two and three stated in the previous section:

Adobe PDF Advanced Query Text Match Add Ranked Result Blocks
pdf; pdf PDFs for "{subjectTerms}"

Advanced Query Text Match
Keywords: .pdf: pdf

Result Type Commonly
Clicked

Result Type: PDF

On Result Source

Local SharePoint Results

The lighter block on the left-hand side answers the second question by listing
all of the query conditions that will fire the query rule. The query rule will fire
for any query that:
* Contains the keywords pdf or .pdf at the beginning of the query
* Contains the keywords pdf or .pdf at the end of the query
* Aresult type of PDF is commonly clicked for this specific query
Result Type Commonly Clicked is a special query condition that fires the query

rule if other users in the system frequently clicked on a particular result type after
they typed the same query.

[20]

Chapter 2

The darker block on the right-hand side answers the last question. When the query
rule fires, it will add a ranked result block for the matching results and set the title of
PDFs for "{subjectTerms}" where the keyword subjectTerms represents the original
search query the user typed.

Setting query conditions

In the previous section, we answered the first question and set the result source
for the query. We also saw an example for query conditions that set the conditions
a query rule will fire under.

When writing a query rule, you have six different types of query conditions to
choose from. Some are quite self-explanatory (that is, Query Matches Keyword
Exactly) while some need further attention.

Query Matches Dictionary Exactly

The Query Matches Dictionary Exactly query condition is almost identical to
Query Matches Keyword Exactly, but instead of a free-text keyword, the rule
will fire if a query matches a term from the specified taxonomy term set.

Query More Common in Source

This query condition will cause the query rule to fire if the query the user typed
is more frequently used on a different result source than the one we are setting
the query rule for.

For example, we create a query rule for the Local SharePoint Results result source
and set the source of the Query More Common in Source rule to Local Video
Results. If a user searches for Gameplay videos in the Everything search vertical
with a query (which uses the Local SharePoint Results result source) and if that
query has more frequently been used on the Local Video Results result source,
the query rule will fire.

Result Type Commonly Clicked

This query condition will cause the query rule to fire if the query the user typed
often ends up with users clicking on a result of a particular type.

For example, if a significant number of users who previously performed a search
for Gameplay videos ended up clicking on a result of the type video, there is a big
probability that the user is performing the search to look for a video result; so, we
can provide it to him/her by showing a result block.

[21]

Using the Out of the Box Search Components

Advanced Query Text Match

This option allows us to type any regular expression we wish to create. Depending
upon the condition, the query rule will fire.

When creating a query rule, we can combine all of these condition types and create
a powerful rule that can react on the user's query even without the user explicitly
telling us what he is looking for. An example of such a combined rule can be seen
in the following screenshot:

Query Conditions
Define when a user Query Contains Action Term v

box query mak e om0 " ; e i "
You can specify multiple Action terms are commands like "download" or filters like "video". They match the

conditions of different types, start or end of a query.

or remove all conditions to fire (@ Action term is one of these phrases
for any query text. Every query {semi-colon separated)

condition becomes false if the
query is not a simple keyword
query, such as if it has quotes, () Action term is an entry in this dictionary
property filters, parentheses, or

special operators,

Images ; Image ; Pictures ; Picture

Import from term store

Remaove Condition
OR

Query More Comman in Source v

Cuery is more likely to be used in this source
Pictures (System) k4

Remove Condition

Add Alternate Condition

This query rule will fire if a query either contains one of the specified action terms
or if the query is more commonly used in the pictures result source.

Setting the action

Now that we have defined under which result source the query rule is going to run
and under what conditions, it's time to set what the query rule will actually do when
it fires; and with this, we answer the third and final question.

We have three possible actions to choose from, and each represents a different type
of action. Let's discuss these options now and gain an understanding of which action
is best suitable for which given situation.

[22]

Chapter 2

Promoted result

A promoted result is a result that appears on top of the results page. As we noted
before, it is very similar to SharePoint 2010's best bet result.

Promoted results are most useful when you wish to promote one particular result
and draw the user's attention to it. A promoted result doesn't have to be a textual
link. When we create a promoted result, we can choose whether it will be displayed
as a hyperlink (as shown in the beginning of the section) or as a banner as shown in
the following screenshot:

Add Promoted Result

Title
URL

[JRender the URL as a banner instead of as a hyperlink
Description

Save Cancel

When the checkbox Render the URL as a banner instead of as a hyperlink is
checked, SharePoint will render the hyperlink content inside of an iframe element,
ignoring whatever you wrote in the Title and Description fields.

Result block

A result block is a selection of results that are displayed as a group and that are
part of the core search results. What makes a result block stand out is the fact that
the result it shows aren't necessarily coming from the local SharePoint index or
from SharePoint.

[23]

Using the Out of the Box Search Components

When creating a result block, the two most basic settings we have to set are
Block Title and Query as can be seen in the following screenshot:

Add Result Block x

Query Variables
Query variables are set by the rule's query conditions. You can use
them in the block's title and query. Learn mare.
{searchboxquery} - the ariginal query from the search box
{subjectTerms} - the matched keyword phrase (e.g. amazaon)

Block Title
Title other languages

Results for "{subjectTerms}"

Query

Configure Query

{subjectTerms} Launch Query Builder
Search this Source Itermns
Query's original source he 2 |
F Seftings
P Ro g
QK Cancel

A query can be as simple as {subjectTerms}, which is the matched phrase from
the user's query, or it can be a complex one including properties and calculations.

We will discuss how to build queries in the next chapter, so for now we will use
the default query.

In addition to the query, we can specify the source of the query. All the out of
the box sources are available for use, along with any custom ones we will create.

The following are additional settings for a result block: whether or not to display a
show more link, should the block be ranked or promoted, the display template (UI)
of the block, and routing.

[24]

Chapter 2

Change ranked results by changing the query

This action type is the most powerful one as it allows us to not only show or promote
a given set of results but change the way the query is handled by SharePoint.

The query builder provides an easy way to either manipulate the query, to add
additional keywords, to filter managed properties, or even to change result ranks
using the XRANK keyword.

We will dive deep into the keyword query language and this action type in the
next chapter.

Using the content search web part

When working with out of the box SharePoint search web parts, SharePoint
2013 simplifies the process by cutting down the number of web parts from 17
in SharePoint 2010 to just four.

In addition to the core search web parts, there are a number of new web parts
that are powered by search. The most important of the bunch, without a doubt,
is the content search web part.

The content search web part is the evolution of the content query web part from
SharePoint 2007/2010. It allows us to display content straight from the search index,
based on a query. For example, we can use the content search web part to display
the latest document added on a specific site collection (that is, the knowledge center)
to any other site collection in our farm using a simple query!

The content search web part infrastructure relies on two factors:

* A query built using the query builder
e A display template to render the results
We will discuss display the template in detail in Chapter 4, Customizing the Look, but for

now, imagine display templates as HTML- and JavaScript-based template solutions for
rendering results. Gone are the days of using code and XSLT for UI design.

[25]

Using the Out of the Box Search Components

When working with the content search web part, always keep its limitations at the
back of your mind; they are as follows:

* The content the web part returns is only as fresh as the latest crawl. If you
just uploaded a document and are searching for it, you won't find it.

* Only major versions of content are shown. Since the search index never
crawls minor versions of content, this kind of content will not be shown
using the content search web part.

* If a site is marked not to be indexed, the search content web part will not
be able to query it; thus, it won't show any content from the site.

* At the time of writing the book, the content search web part is not
%ji\ available on Office 365. It is very likely that Microsoft will add it
g in a future update.

The content search web part has a few commonly used queries out of the box, such
as recently changed items, items matching a tag, items matching a content type,
and others. For example, we can easily set the content search web part to show all
the latest discussions in a given site or show all of the latest videos on entire web
applications. If we wish to create our own query, we can easily do so by switching
to the advanced mode as shown in the following screenshot:

Build Your Query

Learn how to build your query

REFINERS SORTING SETTINGS TEST

SEARCH RESULT PREVIEW

= RelevantResults (5)

Switch to Quick Mode

Local SharePoint Results (System) v

ntent you want to search by
esult source,

point13, sites/Communities/.../Our new communitiy

sharepoint13/sites/Lists/Community Discussion/Food

ywerd filter Property filter
y from the search box w| | Select property v
Add keyword filter Caontains v | | Select value v

Add property filter

Quern,

path:"http://sharepoint13" ContentTypeld:0x012002*

Test query

oK Cancel

[26]

Chapter 2

The query builder provides us with easy access to all of the managed properties

and keyword filters, in addition to a preview box that shows the result of our query.
The screenshot shows the query text for displaying all of the items of type discussion
in a web application, whose URL is http://sharepoint13.

Don't get discouraged if you don't understand the query right away, we will dive
deeper into the keyword query language in the next chapter.

Building a simple search-driven
application

With all the theory we just discussed, it's time to put the wheels in motion.
With the knowledge we gained so far in this chapter, we can build a simple
search-driven application that will use query rules to react to users' intentions.

First, let's get our infrastructure in order and create two new sites as follows:
* A team site called video Games Center that will host the content for

our search-driven application

* A search center site that we will use to create the search logic on

Adding content

In order to show search results, we first need something to search for. Let's follow
the ensuing steps to pour some content into our newly added team site:

1. Navigate to the newly added team site and add the following apps:

o

A picture library named videoGamesImages

° A document library named videoGamesDocuments

Once both the libraries have been created, rename them to video Games
Center Images and Video Games Center Documents respectively.

2. From the downloadable content of the book, unzip the videoGamesImages.
rar and VideoGamesDocuments. rar files and drag the files to the newly
created picture library and document library respectively.

3. If you are using Office 365, wait for about 15 minutes before the continuous
crawler picks up the new files. If you are using an on-premise installation,
continue to the next step to perform an incremental crawl.

[27]

Using the Out of the Box Search Components

4. Head over to SharePoint's central admin and click on Manage Service
Applications. Find your Search Service Application tab and click on it.

5. On the left-side menu, under the Crawling category click on
Content Sources.

6. Locate the Local SharePoint sites content source, and using the little
arrow on its right, click on Start Incremental Crawl as can be seen in
the following screenshot:

Search Service Application: Manage Content Sources

Use this page to add, edit, or delete content sources, and to manage crawls.

= New Content Source | [Refresh | P Start all crawls

ype Jame Status Current crawl duration Last crawl duration Last crawl completed Mext Full Craw
Fiv ILo:aI SharePoint sites - Idle 00:02:20 5/30/2013 9:53:21 AM Mone
=l Videa Edit Idle 00:02:40 5/19/2013 11:23:27 &AM Mone

View Crawl Log

Start Full Crawl

Start Incremental Crawl

7. The status for the content source will change to starting and then crawling.
Once the status returns to Idle, it means the crawl has finished and we can
move on to the next section.

Creating the result source

As we noted before, the result source is the heart of a search-driven application.
Follow these steps to create a result source called video Games that will narrow
the search to the two new libraries we just created:

1. Switch over to the search center site, then click on the cogwheel icon,
and then click on Site Settings.
Under the Search category, click on Result Sources.
Click on the New Result Source button at the top of the page.

Name our new result source Video Games Results. Our result source
queries a local SharePoint site (Video Games Center) and returns
SharePoint results, so leave the default settings for Protocol and Type.

[28]

Chapter 2

5. Now comes the interesting part. We wish to limit the query to only search
inside the two new libraries we created. To achieve this goal, we will use
the Keyword Query Language's site managed property that represents
the SharePoint result's absolute URL.

6. The Keyword Query Language's syntax is quite simple: <managed property
name>: <value>. We tell the search engine which managed property we
wish to use, what operator to use (contains, equals to, and so on) on it, and
what value to compare to. In our case, we are going to use site:<your site
urls/VideoGames*.

7. The previous query will tell the search engine to look for content inside
every library that contains the phrase "VideoGames" in its URL, under the
specified site URL. In our environment, the query text will look as follows:
{searchTerms} site:hippodevssp.sharepoint.com/VideoGames*.

8. To set the query, click on Launch Query Builder under Query Transform and
add the new query as stated in the preceding steps (make sure to replace the
site URL with your own). The page will look like the following screenshot:

Build Your Query

SEARCH RESULT PREVIEW

Froperty filter

Query after all transformations ¥ | | Select property v

Add keyword filter Contains | v| | Select value v
Add property filter

Query text
{searchTerms} site:hippodevssp.sharepoint.com/VideoGames™
sharep

.com/Forms/Allltems.aspx

sharepoint.com/.../VideoGamesmages

sharepoint.com/.../VideoGamesmages

sharepoint.com/.../VideoGamesmages

Test query - . . .
a hippodevssp.sharepoint.com/.../VideoGamesimages

oK Cancel

If everything went as expected, you should get a new preview of the affected results
on the right-side of the window when clicking on the Test query button.

Click on the OK button to save the new query. Click on the Save button to save the
result source.

[29]

Using the Out of the Box Search Components

Creating a search vertical

Now that we have the brain behind our new search-driven application, let's add the
face as follows:

1.

At the enterprise search center, click on the cogwheel icon and then click
on Add a page.

Name the page anything you like and click on OK. This will create the
landing page for the new search vertical.

Locate the Search Results Web Part button, click on the little arrow on
its right, and choose Edit Web Part.

Click on the Change Query button. Above the button, we have the select

query dropdown. Since this results page is dedicated to our result source,
change the source in the dropdown to Video Games Results and click on
OK. Publish the page.

The page will show all the results from both of our libraries. Now let's add
a link to the new search vertical next to Videos so that it will be visible to
users. Click on the cogwheel icon and then on Site Settings.

Under the Search section, click on Search Settings.

Scroll down to the Configure Search Navigation section of the page and click
on Add Link. Give the new vertical a title of video Games, and using the
Browse button, browse to the page we created in step 2. Click on OK to save.

Navigate back to the search center site. Our new search vertical is proudly
shown as in the following screenshot:

earch... P

Everything People Conversations Videos Video Games

LA

So far we've created the simplest of search-driven applications. We've created a
new search vertical so users can search directly within the two asset libraries we've
created. But now let's add a bit of logic to the application using search queries.

[30]

Chapter 2

Adding a query rule

When we discussed query rules earlier in this chapter, we saw an example of

a user searching for xbox360 pictures and getting back a result block showing
images of an Xbox 360 console. Let's create this query rule now for our little
application as follows:

1.

Navigate to the search center, click on the cogwheel icon, and choose
Site Settings.

Under the Search section, click on Query Rules.

The result source we wish to create the query rule for is our newly added
Video Games Results. Select it using the first drop-down box (Select a
Result Source...) and click on New Query Rule.

Name the rule Images Rule.

For the query conditions, select Query Contains Action Term. Make sure
the first radio button (Action term is one of these phrases) is selected, and
type images ; image in the text box. We consider images and image as
actions because we do not want the search engine to look for <term> images
or <term> image but for <term> only. The terms images and image actas a
filter in this query.

The action we wish to perform is adding a result block; click on
Add Result Block.

Change the block title to {actionTerms} for "{subjectTerms}" so
users will know what they are looking at. Since both {subjectTerms}
and {actionTerms} are placeholders, the title will actually be the action
the user has searched for, followed by the term the user has searched for.
For example, images for Xbox 360.

[31]

Using the Out of the Box Search Components

8. The query area is where we should direct most of our attention.
We declared earlier that this result block should return only images.
But images alone are not enough. We don't want it to just take any image
from the picture library and show it. We want it to show pictures related to
the search query the user typed. By setting the query to {subjectTerms}
contenttype:picture, we are telling the search engine we wish to return
results that match the query term (that is, Xbox 360), but also that we only
want those results that have content of the type picture. Set the query as
shown in the preceding part. Your Edit Result Block pop-up should look
similar to the following screenshot:

Edit Result Block x

Query Variables
Query variables are set by the rule's query conditions. You can use
them in the block's title and query. Learn maore.
{searchboxquery} - the original query from the search box
{subjectTerms} - the unmatched query terms
{actionTerms} - the matched action term (e.g. image). May be
empty depending on your query conditions.

Block Title
Title other languages

{actionTerms} for "{subjectTerms}"

Query

Configure Query

{subjectTerms} contenttype:picture Launch Query Builder
Search this Source Items
Video Games Results v 2 |

[32]

Chapter 2

9. Once the query is set, click on the OK button and then on Save to save the
new query rule.

10. Navigate back to the search center and search for xbox360 images under the
new Video Games search vertical. The expected outcome is as shown in the
following screenshot:

xbox360 images)

Everything People Conversations Videos Video Games

images for "xbox360"

xbox360-3 o
hippodevssp.sharepoint.com/../VideoGamesimages =
iy

xbox360-2 :)
hippodevssp.sharepoint.com/../VideoGamesimages l E'
=

Video Games Center Images - All Pictures

Type Mame Picture Size File Size Modified ... playstation3-1 1500 x 1487 217
KB 4/29/2013 ... xbox360-1 1000 x 1000 61 KB 4,/29/2013 12:40 PM ...

hippodevssp.sharepoint.com/VideoGameslimages,/Forms/Allitems.aspx

[33]

Using the Out of the Box Search Components

Summary

This chapter mixed theory with practice. We started off by discussing result sources,
the heart of search-driven applications. We saw examples on what result sources are,
what they are used for, and got introduced to search verticals.

Query rules, the main concept of the chapter, was introduced next. Query rules

are a new addition to SharePoint, and they allow us to respond intelligently to user
queries. When building a query rule, you have to remember three questions: where
is the user going to use this query rule (which search vertical)?, what makes this
query rule fire?, and what does the query rule do once fired?

Once we understood the concept of query rules, we moved on and got introduced
to the new king of search-related web parts: the content search web part.

The chapter ended with a step-by-step tutorial on creating a small and simple
search-driven application based on the subjects discussed in this chapter.

While this search-driven application may seem simple, remember that it's only the
beginning and that we will further enhance it down the road.

Take some time to familiarize yourself with query rules and try to create additional
ones (for example, create a query rule that will detect if a certain query is more
commonly used in the Video Games Results vertical than the Everything vertical
and show results from that vertical in the result block). The more queries you create,
the more you'll appreciate their power.

[34]

Using the New CSOM and
RESTful APls

SharePoint 2013 changes the way we, developers, extend the platform. In the
previous versions, most, if not all, of the developing focus was on the server side.
SharePoint 2013, however, changes this philosophy and puts the client side in the
front seat. In this chapter, we will dive deep into the new client-side developing
methods, get a better understanding of the choice of query language in SharePoint
2013 —Keyword Query Language (KQL), and finish off with an introduction to
the new developing model introduced in SharePoint 2013 — Apps.

In this chapter, we will cover the following topics:

* Introducing the Keyword Query Language
* Using the new client-side APIs
* Introducing to apps

* Building a SharePoint-hosted search-driven app

Understanding the Keyword Query
Language

Whether users know it or not, every time they use SharePoint's search box,
they are actually writing a keyword query. A keyword query consists of either
a free text query, a property restriction, or both. In addition, keyword queries
can include operators, such as OR, AND, and NOT.

Using the New CSOM and RESTful APIs

The basics

A basic keyword query contains at least one search term (free text), and is

case insensitive, which means that a search for xbox will return items containing
both xbox and xBOX. Operators, on the other hand are case sensitive and must be
written using uppercase letters, so searching for items containing either "xbox"
or "playstation" will result in the following query: xbox OR playstation.

What if we wish to look for any item that begins with xbox and not just contains it?
That's why we have the asterisk (*) operator. Searching for xbox* will return items
such as xbox360, xbox720, and so on.

If we wish to look for items containing the exact phrase 'xbox 360', we put the
phrase between quotes. If we just type xbox 360 without quotes, we will get items
containing xbox and 360, but not necessarily the exact phrase "xbox 360". That means
an item containing the phrase "A new xbox dashboard is available for download.
Current 360 owners can get it right now" will be returned as a result, even though

it has nothing to do with the phrase we searched for.

Currently, keyword queries don't support suffix matching, which
%ji\ means we can't use the asterisk operator before a phrase, (that is,
xbox) only after (xbox).

Property restrictions

Property restrictions help to narrow down the search results by adding conditions
to the query that the results must meet in order to be shown to the user.

Property restrictions have a consistent syntax:
[Property Name] [Operator] [Property Valuel]
The property name is the name of the managed property we wish to filter by

(that is, Author, Site, Created, and so on).

Make sure the managed property you wish to filter by is set to
%@“ Queryable. Setting a managed property to Queryable is done
’ in the Search Schema page.

[36]

Chapter 3

Property restriction supports several operators; each has its own purpose.
The following operators are available:

Operator Description

Restricts the search for results for which the specified
property contains a specified value. An example would
be Author : Johnny. The example will return all the items
whose author name contains Johnny.

= Restricts the search for results for which the specified
property equals a specified value. An example would be
FileExtension=pptx. The example will return all the
items whose file type is PowerPoint and extension is . pptx.

<> Restricts the search for results for which the specified
property is not equal to a specified value. An example
would be Path<>http://sharepoint. The example will
return all the items whose path isn't http://sharepoint.

> / >= Restricts the search for results for which the
specified property is greater than / greater than or
equal to the specified value. An example would be
Created>=24/4/2013. The example will return all the
items that were created on or after April 24, 2013.

</ =< Restricts the search for results for which the specified
property is less than / less than or equal to the specified
value. An example would be Created<=24/4/2013. The
example will return all the items that were created on or
before April 24, 2013.

valuel..value2 Restricts the search for results for which the specified
property falls between a specified range. An example
would be Created=1/4/2013..30/4/2013. The example
will return all the items that were created between the 1+
and the 30" of April, 2013.

What gives keyword query its true power is the ability to combine property
restrictions together. Say, we wish to find all the documents containing the word
Console and authored by someone named Ben. Our query will look as follows:

Console AND IsDocument:1 AND Author:Ben

[37]

Using the New CSOM and RESTful APIs

What about all the Excel files containing the exact phrase "quarterly report",
authored between the January 1 and the March 30 and hosted on either the
finance department's intranet located at http://sharepoint/sites/finance
or the management's intranet at http://sharepoint /management? It may
sound quite complicated but the query will end up looking like the following;:

"quarterly report" AND FileExtension=xlsx AND
LastModifiedTime=1/1/2013..30/3/2013 AND
(path:http://sharepoint/finance OR
path:http://sharepoint/management)

By combining different managed properties and property restrictions, we can be
as specific or as open as we wish regarding our results.

XRANK

A special kind of property restriction is the XRANK property. XRANK is used to boost
results at query time based on a specific rule. Changing the results relevance on the
fly is an extremely powerful feature as it enables us to easily promote certain results
dynamically.

Say the HR department of our company wishes that if someone searches for a term
that is in their taxonomy term store (for example, Vacation), we will boost any result
that is a Word file. Using XRANK, our query will look as follows:

{searchTerm} XRANK (cb=1000) FileExtension=docx

The query searches for whatever the search term is and gives a constant boost (cb)
of 1000 points to any result that has a file extension of . docx.

Constant boost (or cb) is just one of the available parameters XRANK can handle. Other
parameters include normalized boost (nb), range boost (rb), or percentage boost (pb).

We will use XRANK later in the book. If you wish to dive deeper into XRANK,
visit the MSDN documentation about XRANK at http://msdn.microsoft.com/en-
us/library/ee558911.aspxX.

Synonyms

In some cases we wish to search for a term that has a synonym. Using the words
operator, we can specify synonyms and return results that match either of the
specified terms. The Words operator can be used with free text expressions only,
and it is not supported in property restrictions.

[38]

Chapter 3

Say we wish to find results that contain either Phone or Telephone. What would be
the difference between using Words (Phone, Telephone) and Phone OR Telephone?

The answer is simply the rank. When using the Words operator, both Phone and
Telephone are treated as synonyms and not separate terms. Therefore, any instance
of these words is ranked as if they were the same term. An item containing the term
Phone three times and the term Telephone two times will rank the same as an item
containing only the term Phone five times.

Using the Or operator means that each term is ranked on its own. An item with
three instances of Phone and two instances of Telephone will be ranked higher
than an item containing only Phone five times. OR ranks the terms as separate
terms, and as such each has its own ranking.

Using the new client-side APIs

For the first time in SharePoint history, Microsoft treats client-side developing as
a first-class citizen in SharePoint. With a set of RESTful APIs that provide access to
almost every aspect of SharePoint and a redesigned client-side object model, we,
SharePoint developers, can create powerful and engaging client-side applications.

Search, which is a major element in SharePoint 2013, embraces the new
methodology and enables us to develop search-driven applications using
JavaScript and managed code (C#).

Before we go ahead and discuss the usage of the new client-side APIs, let's dive
into what these APIs are.

RESTful API

REST (or Representational State Transfer) is a simple alternative to SOAP

(or Simple Object Access Protocol) based on an HTTP request/response pair.
To communicate with a REST service, the client sends an HTTP request using
a unique URI (Unique Resource Identifier).

REST and SharePoint 2013

SharePoint 2013's REST API allows us to perform CRUD (Create, Read, Update,
and Delete) operations on most of SharePoint's client object model types and
members using standard HTTP verbs. Reading content using REST is done using
the GET verb, inserting items is done using POST, PUT is used for updating content,
and Delete, big surprise here, is used for deleting content.

[39]

Using the New CSOM and RESTful APIs

By default, SharePoint uses the ATOM (XML) protocol to respond to REST calls,
but if we are planning on using a JavaScript framework such as jQuery, we would
much rather work with JSON objects. Changing the response protocol for a REST
call is done by sending an Accept header to the REST service with the desired
format. The Accept header is sent on a per-call basis.

Using REST is as easy as typing a URL in the browser's address bar. Most of
SharePoint's REST calls are structured using the following syntax:

http://servername/site/ api/<namespace>/object/parameters/?$0Data

The namespace is the main entry point for the REST call. The possible values for
an entry point are as follows:

* Site: This value corresponds to SPContext . Current . Site in SharePoint's
object model.

* Web: This value corresponds to SPContext . Current . Web in SharePoint's
object model.

* SP.UserProfiles.PeopleManager: This value represents the user profile
manager and enables us to work with social-related content.

* Search: This value is the jewel in the crown. It represents the search engine
and enables us to work with search-related content.

* Publishing: This value represents the publishing features of SharePoint 2013.

Once the namespace is set, it's time to specify an object. object, just like in
SharePoint's object model, represents a SharePoint item, for example, List. To get
the entire collection of lists under the current site, the following syntax is used:

http://servername/site/ api/web/lists

When we wish to target just a specific object (that is, a list), we use parameters.
An example for such a parameter is getbytitle. Using a parameter is as easy
as the following syntax:

http://servername/site/ api/web/lists/getbytitle ('Reports')
The preceding syntax will return all the items of a list named Reports.

What makes REST so unique is its ability to use OData query operators to filter
results. OData supports many query operators, and a complete list in the MSDN
documentation can be found at http://msdn.microsoft.com/en-us/library/
sharepoint/fpl142385 (v=office.15) .aspx.

A common use for query operators is returning a specific number of rows from a list.
The following syntax returns the top 10 rows from a list called Reports:

[40]

Chapter 3

http://servername/site/ api/web/lists/getbytitle ('Reports')/
items$Stop=10

And what if we wish to return a set of 10 results, starting from row 10? We use the
$skip operator:

http://servername/site/ api/web/lists/getbytitle ('Reports')/
items$skip=10Stop=10

Using REST

As fun as writing REST in a browser's address bar is, it's not really a useful method.
In most cases, we will find ourselves using REST in a JavaScript app. The easiest way
to use REST with JavaScript is by using jQuery's $.ajax and $.getjson methods.
Calling the preceding query using jQuery is done using the following code:

var restUrl =
"http://hippodevssp.sharepoint.com/sites/VideoGames/web/lists/
getbytitle ('Reports')/itemsStop=10";
$.getJSON (restUrl, function (data) {
/* do something useful with the data here */
3N

We mentioned earlier that in order to work with JSON objects, we
must add an Accept header telling SharePoint we wish to get a JSON
response. Adding the Accept header in jQuery is done using the
following code:

$.ajaxSetup ({
i {

'beforeSend': function (xhr)
xhr.setRequestHeader ("ACCEPT",
"application/json;odata=verbose") ;

}
- P -

As its name implies, $.getjson is only good for GET requests. If we wish to create
a POST request, we will use the $.ajax method.

Adding a new item to the Reports list is done using the following code:

$.ajax ({
url: "http://servername/site/ api/web/lists/getbytitle('Reports')/
items",
method: "POST",
data: JSON.stringify({ ' metadata': { 'type':
'SP.Data.ReportsListItem' }, 'Title': 'New item!'}),

headers:
"X-RequestDigest": $("# REQUESTDIGEST") .val ()

[41]

Using the New CSOM and RESTful APIs

"accept": "application/json;odata=verbose"
"content-type": "application/json;odata=verbose"
1
success: function () { alert("Success!") },

error: function (xhr, ajaxOptions, thrownError) {
alert ("POST error:\n" + xhr.status + "\n" + thrownError) ;

3N

Downloading the example code

\ You can download the example code files for all Packt books
~ you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register
to have the files e-mailed directly to you

A few things to notice in this REST call are as follows:

* The method property is set to POST as we are posting data back to SharePoint.

* The data property has a predefined syntax; the _ metadata JSON object
has its type always set to SP.Data.<List name>ListItem. In our case its
SP.Data.ReportsListItem. After the Type object, we can write all the
columns we wish to have on our new item.

* Make sure to add success and error callbacks. When things go the other way,
you will want to know what failed.

While not as common as jQuery, we can use REST with C# code as well. The following
code shows how to call REST using C# to read the items of the Reports list:

HttpWebRequest listRESTRequest =

(HttpWebRequest) HttpWebRequest .Create ("http://
hippodevssp.sharepoint.com/sites/videogames/ api/Web/lists/
getbytitle ('Reports')") ;
listRESTRequest .Method = "GET";

1listRESTRequest.Accept = "application/atom+xml";
listRESTRequest.ContentType = "application/atom+xml;type=entry";

HttpWebResponse listRESTResponse =
(HttpWebResponse) 1istRESTRequest . GetResponse () ;

StreamReader listReader = new

StreamReader (listRESTResponse.GetResponseStream()) ;
var listXml = new XmlDocument () ;
listXml.LoadXml (listReader.ReadToEnd ()) ;

To make things a little bit easier, you can use the great open source project
RESTSharp (http://restsharp.org/) to make REST calls in C#.

[42]

Chapter 3

REST and search

Now that we understand what REST is and how to use it, let's see how we can
relate it to search. The entry point for search is, big surprise, search. Under the
search namespace we have the following objects:

* query: This object performs a query against the search engine and
retrieves results.

* postquery: This object same as query, but allows the use of POST instead
of GET in order to overcome possible URL length restrictions.

* suggest: This object used to get query suggestions. Can only be used
with GET.

To perform a search, we use the query object with the querytext parameter,
as follows:

http://servername/site/ api/search/query?querytext='Xbox 360"’
Making this REST call on our Video Games site will result as follows:

" metadata":
"type": "SP.KeyValue"
1
n Ke-y-ll : n Rankll ,
"Value": "11.5442914962769",
"ValueType": "Edm.Double"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "DocId",
"Value": "27972637",
"ValueType": "Edm.Int64"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "WorkId",
"Value": "27972637",
"ValueType": "Edm.Int64"
b A
" metadata": {
"type": "SP.KeyValue"
1
"Key": "Title",
"Value": "Video Games Center Images",
"ValueType": "Edm.String"

b Ao

[43]

Using the New CSOM and RESTful APIs

" metadata": {

"type": "SP.KeyValue"
I
"Key": "Author",
"Value": "Johnny Tordgeman',
"ValueType": "Edm.String"
b A

Now that's a lot of JSON for just one result! When we use the REST API to perform
a search query, we get back all the information about that result. This information
includes the author, the result's rank, its title, and much more.

An equally important parameter of the Query namespace is sourceid. In the
previous chapter, we declared a result source called Video Games Results, which
narrows the query to only look for results in the predefined libraries. If we wish to
use that result source with our REST call, we append the sourceid parameter. The
sourceid parameter specifies the Globally Unique Identifier (GUID) of the result
source we wish to use. Searching for xbox360 within our Video Games Results
result source will look as follows:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99%bas652bl57a’

You may be asking yourself "where do I get the result source's unique identifier
from?" The answer is quite simple. When you click on a result source, look at the
end of the address bar. You'll find the source ID there as shown highlighted in the
following screenshot:

/' B Edit Result Source x

€« c

B ItSource.aspx?level =sitedsourceid

Newsfeed SkyDrive Sites »er

) SHARE Yy Follow [

EDITLINKS

Site Settings

videoGames

Edit Result Source

General Information

Name
e unique at each

level. For example
cesin a site cannot

Wideo Games Results

but one in a site and Description
one provided by the site collection

can.

Descriptio

other confi

(@ Local sharePoint

Select Local SharePoint for results O RemoteSharePoint

[44]

Chapter 3

When we wish to limit the number of results returned or wish to start at a
specified result index, we use the startrow and rowlimit parameters. The
former is a zero-based index specifying the first result that should be returned.
The latter specifies the maximum number of results that the search engine will
return. For example, if we wish to get a maximum of five results, starting from
the 10 result, we will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99bak52bl57a'&startrow=9&rowlimit=5

As we can see, each result item we get back has its full list of properties returned.
What if we only need one or two properties? We shouldn't waste bandwidth and
return all of the properties. This is when the selectproperties parameter should
be used. This parameter accepts a list of parameters that should be returned for each
result. If we wish to return only the Author and Title parameters for example, we
will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360"'&sourcei
d='9cdd3749-4930-4c8c-a911-99bak52bl57a'&selectproperties="'Title, Auth
or'

To get results in a specified language, we can set the culture parameter. It specifies
an LCID (Locale ID) representing the requested language. If we wish to return
results only in the English language, we will use the following syntax:

https://servername/site/ api/search/query?querytext="'xbox360'&sourceid
='9cdd3749-4930-4c8c-a911-99bak52bl57a' &selectproperties="'Title, Author
'&culture=1033

A full list of LCIDs can be found at http://msdn.
e microsoft.com/en-us/goglobal/bb964664 .aspx.

There are many more properties we can use for a search REST call. If you wish to
go deeper, check out Search Space's post on the SharePoint 2013 Search REST API at
http://blogs.msdn.com/b/nadeemis/archive/2012/08/24/sharepoint-2013-
search-rest-api.aspx.

[45]

Using the New CSOM and RESTful APIs

Client Side Object Model (CSOM)

Other than REST, SharePoint 2013 introduces a revamped client object model.
The client object model was first introduced in SharePoint 2010 and provided
a way for developers to interact with SharePoint using one of three methods:

* Managed code: Using C#
* Managed code: Using Silverlight
* Unmanaged Code: Using JavaScript

Since CSOM is not new to SharePoint 2013, we will not focus on how to work with
it for the remainder of the chapter. If you need a refresh, or wish to understand how
to perform basic operations with CSOM, head over to the MSDN documentation at
http://msdn.microsoft.com/en-us/library/fpl79912.aspx.

For the remainder of the chapter, we will focus on the JavaScript variant and
the search object.

CSOM and search

The entry point for search in CSOM is the KeywordQuery class, which is under
the Microsoft.SharePoint.Client.Search.Query namespace. The process of
sending a query to the engine and getting back results using CSOM is as follows:

1. We initiate the KeywordQuery class and use its set _queryText method to
set the search query.

2. We initiate the SsearchExecuter class and use its executeQuery method
to tell the client context object to perform the search once executed.

3. We execute the client context object using its executeQueryAsync method.
If the request succeeded, the success callback will be called.

The preceding steps result in the following code when trying to search for xbox360:

var context = SP.ClientContext.get current();

var keywordQuery = new
Microsoft.SharePoint.Client.Search.Query.KeywordQuery (context) ;

keywordQuery.set queryText ("xbox360") ;

var searchExecutor = new
Microsoft.SharePoint.Client.Search.Query.SearchExecutor (context) ;

results = searchExecutor.executeQuery (keywordQuery) ;

context .executeQueryAsync (onQuerySuccess, onQueryFailed) ;

[46]

Chapter 3

The rResultRows array is the result of successfully executing the query. We can
iterate through the array using jQuery's $.each method and print the results to the
user however we like. It is recommended we use some templating engine such as
jsRender or Handlebars to easily create the graphic representation of the results.

Other than set_queryText, the KeywordQuery object holds everything we discussed
earlier on the REST API section. Setting the result source ID is done using the
set_sourceId method, the culture is set using the set_culture method, and so on.

A common place to use either the REST API or the JavaScript CSOM is an app,
which is what we are going to discuss next.

An app in SharePoint 2013 is a new development model introduced in SharePoint
2013. The easiest way to explain what apps are is to compare it to the mobile world.
Think about apps for your smartphone. An app is a piece of software that you
install on your mobile OS from a marketplace or installation files (that is, . apk for
Android). Prior to the installation, the app tells you all the permissions it needs in
order to run, and you can choose whether to install it or not. Apps for SharePoint
are almost identical.

In a nutshell, apps are the evolution of SharePoint 2010's sandbox solutions.
Sandbox solutions were never a big hit in the SharePoint community as they

had a lot of limitations. One of the biggest limitations was that sandbox solutions
couldn't make calls to external web services. Apps tackle many of those limitations
and present a nice and lean client-based development model.

An app uses standard web technologies such as HTML and JavaScript. In some
cases, apps may use OAuth authentication as well. Just like mobile OS apps,
SharePoint apps also declare permission requests before they are installed, and

the site owner can choose whether to install an app or not. The following screenshot
shows an app request for access permissions:

.

Do you trust The Profileio®
Let it read items in all site collections.
Let it access basic information about the users of this site.

Allow application access to user profiles: Read

Trust It Cancel

Apps have three hosting options; each is used for different scenarios.

[47]

Using the New CSOM and RESTful APIs

A SharePoint-hosted app

A SharePoint-hosted App is basically an app that runs in the context of SharePoint.
SharePoint-hosted apps can only use client-side code to implement behavior and UX
(User Experience). A SharePoint-hosted app runs in an isolated sub website, which
is created during its installation, and as such, SharePoint-hosted apps do not require
any special authentication method.

A provider hosted app

A provider hosted app is an app that runs in any environment we choose and
written in any language we choose. It is up to us, the app developers, to supply
the hosting infrastructure, which can either be a local server or a cloud-based
provider such as Amazon. It is not recommended to use Windows Azure as an
infrastructure for provider hosted apps, as Azure has its own hosting option for
apps. Communication with SharePoint is done using CSOM and REST calls with
OAuth authentication through ACS (Azure Access Services).

An autohosted app

Autohosted apps are apps that are hosted on Windows Azure, and can make use
of Azure SQL for database purposes. Once installed, the app's web deployment
manifest creates a new Azure web service instance and an optional SQL database
instance. Just like provider hosted apps, autohosted apps communicate with
SharePoint using CSOM and REST and OAuth authentication.

Both autohosted and provider hosted methods enable us to write feature-rich apps
with code behind, without deploying anything to SharePoint. That helps to keep our
SharePoint installation more intact. SharePoint-hosted apps are client-side-based apps,
which are deployed on SharePoint, and as such cannot have any server-side code.

Regardless of which deployment option you choose, when an app is installed

to a SharePoint instance and added on a page, SharePoint basically adds an iframe
element, which displays the app's entrance page. Always keep in mind that apps
are isolated from the SharePoint runtime. Every time an app is executed, SharePoint
generates a new app domain with a unique URL.

[48]

Chapter 3

Publishing an app

Once our app is developed we want users to, well, use it. Publishing an app makes
it available to users. There are two places we can publish an app to:

* The Office Store: The Office Store is the public app catalogue for Office
applications. Everyone can access the store and acquire free or paid apps.
The Office Store supports all of the deployment models mentioned
previously. The Office Store, as shown in the following screenshot,
looks like any other marketplace you may know from the mobile world:

-
|/ 10 Apps for SharePoint - OFf x ||
€& - € [[officemicrosoftcom/en-us/store/apps-for-sharepoint-FX102804987.aspx 75 @ & =
What's new Office Products ... Apps for Office and SharePoint ... -
Excel Outlook Project SharePoint Word Whi

Communication
Apps for
SharePoint

Email less, communicate more

New Apps for SharePoint

CompartiMOss Translate Task & Calendar Sync AvePoint Meetings
(0) 1(0)] 1(9)] 1(9)]
General de Software BakTek AvePoint Inc. AvePoint Inc.
SharePoint 2013 SharePoint 2013 SharePoint 2013 SharePoint 2013
rore | naa rnn | naa rore | aaa rore | oaaa hd
[3

[49]

Using the New CSOM and RESTful APIs

* An internal organization app catalogue: On-premise, SharePoint installation
and Office 365 tenants have a local organizational catalog where SharePoint
developers can develop apps for internal use only. No one outside the
organization can access these apps. Just like the Office Store, all the
deployment models are supported for the internal catalog.

Publishing an app to the Office Store requires you to register as a developer and fill
out tax-related forms. If you are interested in publishing apps, check out the MSDN
guide at http://msdn.microsoft.com/en-us/library/jj220037.aspx.

Apps can fill out an entire book (and actually have), and in our search-related book
we won't go any deeper. If you feel like you wish to go deeper (and you should),
check out Microsoft SharePoint 2013 App Development, Scot Hillier and Ted Pattison,
Microsoft Press.

In the next section, we are going to build a SharePoint-hosted search-driven app
that uses both REST and CSOM to access the search engine.

Building a SharePoint-hosted
search-driven app

Now that we know how to use the new client-side APIs, how keyword queries work,
and the overall idea of apps, let's combine all that knowledge and create a client-side
search-driven app.

We mentioned in the previous chapter that the Content Search Web Part is not
available in Office 365. What we will build now is a simple content search like
web part that will aggregate all the tasks a user has over the entire tenant.

The end result of this section is as follows:

Tasks App Part
Title % Complete Due Date Action
1 Categorize the new stock h B Thu May 16 2013
2 Aftend the new xbox accouncment show h . ¥ Tue May 21 2013
3 Learn more about Playstation 4 b Wed May 08 2013

[50]

Chapter 3

Create task apps (lists)

Create a task app (list) on the Video Games site, and any other sites you may
have. Add some tasks that are assigned to your user and other users and wait
a bit for the continuous crawl to pick up the new content.

Understanding the requirements

Our requirements are to display all the tasks from everywhere in the tenant for a
specific user. Naturally, you may think that creating a result source is the first step
in creating this app. Think about it a bit harder: when we created a result source
earlier, we created it on the Search site because the search happened on the search
site. Now, the search can happen on any site (wherever the site admin places our
app part) and should search any site.

So what should we do? We should simply query the Local SharePoint Results
source (which is the default one) with a query that uses property restriction.
The two properties we wish to restrict are:

* A content type of Task

* AnAssignedTo value of the user who performs the query

The resulting query of these property restrictions is as follows:

ContentType=Task AND AssignedTo='{username}'

Now we face another problem. How can we tell at runtime who the current user is?
Well, it's quite simple actually. You'll find out momentarily when we start building
our app.

Building the app

To get started, open the TasksApp-Starter project from the downloadable content
of the book.

The first task we shall complete is to get the current user's display name.

We will do that by using the JavaScript Client Object Model. Open the 2pp. js
file located under the scripts folder. Currently it consists of a single line that
initiates the client context. The easiest way to get the current user would be to
use the get_currentUser method of the CSOM's web object. Add the following
code snippet right after the context initiation line:

var user = context.get web().get currentUser();

[51]

Using the New CSOM and RESTful APIs

context.get_web will take care of getting the currently used web, while
get_currentUser will take care of getting the current user object.

In addition, we will need one global variable: appweburl. The variable will hold
the URL of the app itself. Add the following snippet following the previously
added code:

var appWebUrl;

Next, let's perform some initializations, which our app needs. Add the following
code snippet to app. js:

$ (document) .ready (function () {

appWebUrl =
decodeURIComponent (getQueryStringParameter ("SPAppWebUrl")) ;

$.ajaxSetup ({
'beforeSend': function (xhr) {

xhr.setRequestHeader ("ACCEPT",
"application/json;odata=verbose") ;

}
13N

context.load (user) ;
context .executeQueryAsync (onGetUserSuccess, onGetUserFail) ;

1)
The code handles the following;:

Sets the appwebUr1 variable to the query string value of SPAppWebUrl,
which represents the app subweb URL. It is the dynamic address the
app was assigned during its creation.

Adds an accept header to all outgoing Ajax calls from jQuery. This step is
required in order to get back JSON objects from SharePoint's REST APIL.

Loads and executes the current user object we initiated earlier. If the call
to get the user is successful, the onGetUserSuccess delegate is called;
otherwise the onGetUserFail delegate is called.

The onGetUserFail method is quite simple. Its entire purpose in life is to alert the
user that an error has occurred. Its implementation is as follows:

function onGetUserFail (sender, args)

}

alert ("Something went wrong: " + args.get errorDetails());

[52]

Chapter 3

The onGetUserSuccess method is the heart of our application. This method calls
the REST API and gets back the data that we will display to the user. The method

implementation is as follows:

function onGetUserSucces () {
var restURL = appWebUrl +
"/ api/search/query?querytext="'ContentType=Task AND
AssignedTo=\"" + user.get title() +

"\"'&selectproperties='Title, Author, PercentCompleteOWSNMBR, DueDateO

WSDATE, Path'";
$.getJSON (restURL, function (data) ({

SetTasksUI (data.d.query.PrimaryQueryResult.RelevantResults.Table.

Rows) ;
I3F;
}

The query consists of the property restrictions we discussed previously, and a set of
selected properties that we will use in our app. If we didn't specify which properties
we wanted, we would have got back 42(!) properties, and that's, in most cases, a

waste of bandwidth.

Once the getgsoN method gets data back from SharePoint, we send it to the

SetTaskUI method. All the results that the REST API returns are located under
the data.d.query namespace, and Rows is the collection of the results objects.

The setTaskUI method takes the results array and builds the HTML showing it
using the $.each method for iterating through the results array. The method's

implementation is as follows:

function SetTasksUI (dataRows) {
var htmlRows = "";
$.each(dataRows.results, function (index, item) {
var title = $S.grep(item.Cells.results, function (e) {
return e.Key == "Title"; });
var perComplete = parselnt($.grep(item.Cells.results,
(e) { return e.Key == "PercentCompleteOWSNMBR";
}) [0] .Value*100) ;

var dueDate = new Date($.grep(item.Cells.results, function

{ return e.Key == "DueDateOWSDATE"; }) [0].Value);

var path = $.grep(item.Cells.results, function (e) { return
e.Key == "Path"; }) [0].Value;

var className = dueDate > new Date() ? "regular" : "error";

function

(e)

[53]

Using the New CSOM and RESTful APIs

htmlRows += "<tr class='" + className + "'><td>"
+parselnt (index + 1) + "</td><td><div class='titleDiv'>" + title[0].Value +

"</divs></td><td><div class='progress progress-success
progress-striped's<div class='bar' style='width: "
+perComplete + "%'></div></div></td><td>"
+dueDate.toDateString() + "</td><td><div class='btn
btn-mini btn-warning's<i class='icon-edit icon-
white's</i>Edit</divs</td></tr>";

1)

$(".table") .append (htmlRows) ;
$(".btn-warning") .on("click", function () {
1)

$(".loader") .fadeOut (function ()

S (".content") .fadelIn() ;

1)
}

Each result in the results array is an object that has a key and a value. Using
the $.grep method, we can get an object's value by comparing an object property
(in our case, the key) to a specified value.

If you debug the app right now, you'll notice that you don't get any results back.
The reason for that is not that our query was incorrect or that we used the wrong
content type. The reason for that is we didn't request for the app's permission to
access the search engine.

To request the search permission click on the AppManifest .xml file, and
under the Permissions tab set the scope to Search and the permission to
QueryAsUserIgnoreAppPrincipal. Once set, your permission tab should
look as follows:

General Permissions Prerequisites Supported Locales Remote Endpoints

M Allow the app to make app-only calls to SharePoint.

Scope Permission Properties

Search QueryAsUserlgnorefppPrinci

[54]

Chapter 3

Run the app again and you should get a result similar to the following screenshot:
m—

<« C' £ https://hippodevssp-b42fi46a8al43d.sharepoint.com/sites/dev/Task:Ly & & =

Continue x ¥

Title % Complete Due Date Action
1 Categorize the new stock h W Thu May 16 2013 B Edt
2 Attend the new xbox accouncment show . | Tue May 21 2013 G Ean |
3 Learn more about Playstation 4 Wed May 08 2013 =

We haven't implemented the Edit button as it's not really search related. If you
are interested in seeing the full implementation, it will be posted on the author's
blog at http://blog.johnnyt .me.

Summary

This chapter covered a lot in terms of client-side developing. We started with
deep diving into the Keyword Query Language, and understood how to query the
search engine and get only the results and properties we wanted. We moved on to
discussing the new client APIs that SharePoint 2013 introduces: REST and CSOM.
We saw the differences between the two methods, use cases, and properties for
both. Next, we briefly discussed the concept of apps, the new development model
introduced in SharePoint 2013.

The chapter ended with a step-by-step tutorial on creating a client-side-based
SharePoint-hosted search-driven app based on the subjects discussed in this chapter.
In the next chapter we are going to deal with customizing the results' appearance.
Using result types and display templates, which are the two new concepts introduced
in SharePoint 2013, we can give each result type a unique appearance. So get your
artistic nature ready and head over to the next chapter.

[55]

Customizing the Look

So far we dealt with the logic behind search results: how to get them, how to show
only certain results, how to boost results, and so on. We have, however, relied on the
core presentation of SharePoint to display the results. In this chapter we are going to
focus on how to change the presentation of results. SharePoint 2013 introduced new
concepts called result types and display templates, which, by using standard web
technologies, help us achieve the look we are after.

In this chapter, we will cover the following topics:

* Working with result types
* Building a design template

Result types and design templates

Both result types and design templates are new concepts introduced in
SharePoint 2013. Kate Dramstad, a program manager from the SharePoint
search team at Microsoft, describes both concepts in a single, easy-to-remember
formula: result types + design templates = rich search experience.

Customizing the Look

When we perform a search we get back results. Some results are documents, others
are pictures, SharePoint items, or just about anything else. Up until SharePoint 2010,
all results, no matter which type they were, looked quite the same. Take a look at the
following screenshot showing a results page from FAST for SharePoint 2010:

. Search Results ; newsfeed %

&« C' | [sharepoint/sites/fast/Pages/resLits.aspx 7k =newsfead

ch Results $ System Account -

All Sites People

Preferences
newsfeed P advanced

Result Type 1-3 of 3 results Sortby: [Relevance =] B ®

Any Result Type

Web Pags & newsfeed.aspx

Text spsve spsve Edit My Profile My Memberships Untitled Newsfeed My Calendar

2 Date: 4/19/2013
http://sharepoint/sites/Elbit/newsfasd aspx
Site

3 newsfeed
Any Site Authors: Systern Account Date: 2/2/2013 Size: G4KB

sharepoint/sitas http://sharepoint/sites/Elbit/Pages/newsfeed. aspx

3] newsfeedHelper.is

Author ... ElbitGeneralPrototype(); newsfeed.init{decodeURIComponent ... nbsp;</div=");
newsfeed setFilter{$ithis).val(}), newsfeed); newsfeed getPosts
Any Author Date: 4/7/2013

http:/fsharepoint/sites/Elhit/SiteAssetsdavaScript/NewsfeedHelper.js
Systemn Account

Modified Date
Any Modified Date
Past Month

Past Six Months

Past Year

The results are dull looking, can't be told apart, and in order to find what you are
looking for, you have to scan the results up and down with your eyes and zero in
on your desired result.

[58]

Chapter 4

Now let's look at how results are displayed in SharePoint 2013:

] |
/B httpsi//hippodevsspshare x
&« C' | 8 nttps;//hippodevssp.sharepoint.com/search/Pages/results.aspx#k=xbox360 5 @ a =
] Office 365 Newsfeed SkyDrive Sites ... Admin~ [SIUUNRPOSIENEUTINE S
~
xbox360 jol Johnny Tordgeman replied. x
; ‘ ; ; Feed Post
Everything People Conversations Videos Video Games
FrZ 0 /chnny Tordgeman
Result type Video Games Center Images unbosing #xboi360:

Type MName Picture Size File Size Modified ... xbox360- i

Newsfeed post 4/29/2013 12:40 PM ... xbox360-3 1000 x 1000 176 KB 4/ o
Web page epoint.com/VideoG: /Forms/T] o " |
! |
E2l /ohnny Tordgeman replied 20 minutes | 2
Author ago
unboxing #xbox360 ... & B

i
g

System Account 1 like @ l
g

johnny@johnnyt.me

EPZl Johnny Tordgeman said. 19 minutes 20 minutes ago O replies, 1 like
ago
Oreplies Original Post

0 likes
FrZ 0 /chnny Tordgeman
buying a new #xbox360 today with #kinect!

21 minutes ago

Johnny Tordgeman

SHOW MORE

Modified date

One Year Ago Today xbox360-1
Al

wbhou2En 2 e

21 minutes
ago
1 reply
0 likes

VIEW CONVERSATION

What a difference! The page looks much more alive and vibrant, with easy
distinguishing of different result types and a whole new hover panel, which
provides information about the hovered item and is completely customizable.

Display templates

Search, and its related web parts, makes heavy use of display templates instead

of plain old XSLT (Extensible Stylesheet Language Transformations). Display
templates are basically snippets of HTML and JavaScript, which control the
appearance and behavior of search results. SharePoint ships with a bunch of display
templates that we can use out of the box, but we can also create our own custom ones.

[59]

Customizing the Look

Similar to master pages, it is recommended to copy an existing display template
that is close in nature to what we strive to achieve and start our customization
from it. Customizing a display template can be done on any HTML editor, or

if you choose, even Notepad. Once we upload the HTML template, SharePoint
takes care of creating the companion JavaScript file all by itself.

If we tear apart the results page, we can distinguish four different layers of

display templates:
T 5N
/ B https://hippodevsspshare %\
€« C' & https;//hippodevssp.sharepoint.com/search/Pages/results.aspx#k=xbox260 > @ a =
1] Office 365 Newsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ £ 2
@ :
xhox360 jo Johnny Tordgeman replied... x
; ‘ ; : Feed Post
Everything People Conversgjons Videos Video Games
(O] FP7l Jchnny Tordgeman
Result type Video Games Center Images unbexing #xoox360:
Type MName Picture Size File Si Modified ... xbox360-1 1 \;’
Newsfeed post 4/20/2013 12:40 PM ... xbox360-3 1000 x 1000 176 KB 4/20/20 - 4
Web page hippod point.com/VideoG [Forms/Tt p: ‘ r
T ‘\ e o
B2l Johnny Tordgeman replied 20 minute: o " 1
Author ago
unboxing #xbox360 ... @ Tz A
System Account ® = @
‘ o
johnny@johnnyt.me F= Jonnny Tordgeman said 19 minute: 20 minutes ago 0 replies, 1 like
ago
Johnny Tordgeman xbox360 vs #playstation3! whos gonna win ... C'J\Ephz Original Post
oW MoRE 12daafdb-87b3-4574-0fd 1-89f1ca27e05b vs ae7615fc- likes)
o 8374-4941-bcd0-d5244a011f3al whos gonna win & Erzl Jchnny Tordgeman
_) buying a new #xbox360 today with #kinect!
Modified date EPSl /ohnny Tordgeman said :;E”“"”tﬁ 21 minutes ago
— buying a new #xbox360 today with #kinect ... buying 1 reply
a new c472bcef-8f42-4e2d-8b7a-2220071707fa today 0 likes
with 17827218-F194-49¢8-8bee-44932c4ab974
VIEW CONVERSATION
One Vear Ago Today <box360-1

epoint.com/...,/VideoG, ag

X

The layers are as follows:

* Filters layer: In the preceding screenshot they are highlighted with the
green border on the left and numbered 1. This layer shows the new
refinement panel area that is not limited to text alone, but also enables
the use of UX elements such as sliders, sliders with graphs, and so on.

* Control layer: In the preceding screenshot they are highlighted with the red
border in the middle and numbered 2. This layer shows that not only results
but also controls can be templated. We will see what a templated control
looks like later in the chapter.

[60]

Chapter 4

* Item layer: In the preceding screenshot they are highlighted with the orange
border in the middle and numbered 3. This layer shows that each result type
can be templated to look unique. For example, in the screenshot we see how a
site result (the first result), conversation results (next three results), and image
result (last one) looks like. Each result type has its own display template.

* Hover panel layer: In the preceding screenshot, they are highlighted with the
blue border on the right and numbered 4. They are introduced in SharePoint
2013, the hover panel shows information on a hovered result. The extra
information can be a preview of the document (using Office Web Apps),

a bigger version of an image or just about anything we like, as we can
template the hover panel just like any other layer.

Display templates are stored in a site's master page gallery under
S the Display templates folder.

Each one of these layers is controlled by display templates. But if design templates
are the beauty, what are the brains? Well, that is result types.

Result types

Result types are the glue between design templates (UX — user experience) and the
type of search result they template. You can think of result types as the brain behind
the templating engine.

Using result types enables administrators to create display templates to be displayed
based upon the type of content that is returned from the search engine. Each result
type is defined by a rule and is bound to a result source. In addition, each result type
is associated with a single display template.

Just like display templates, SharePoint ships with it a set of out of the box result types
that match popular content. For example, SharePoint renders Word document results
using the Item Word.html display templates within any result source if the item
matches the Microsoft Word type of content. However, if an item matches the PDF
type of content, the result will be rendered using the Item_ PDF.html display template.

Defining a result type is a process much like creating a query rule. We will create our
tirst result type and display template towards the end of the chapter.

Both result types and display templates are used not only for search results, but also
for other web parts as well, such as the Content Search Web Part.

[61]

Customizing the Look

Styling results in a Content Search Web Part

The Content Search Web Part (CSWP) comes in handy when we wish to show
search-driven content to users quickly and without any interaction on their side.

When adding a CSWP we have two sections to set: Search Criteria and Display
Templates. Each section has its unique settings, explained as follows:

1. The search criteria section is equivalent to the result type. Using the
Query Builder we tell the web part which result type it should get.
The Query Builder enables us to either choose one of the built-in queries
(latest documents, items related to current user, and so on) or build our
own. In addition, we can set the scope of the search. It can either be the
current site, current site collection, or a URL. For our example, we will
set the query to be Documents(System), meaning it searches for the latest

documents, and the scope to Current site collection:

Build Your Query

BASICS REFINERS SETTINGS TEST

slecl a gquery Documents (System)
Choose ntent you want to search b
selecting a result source,

by app Current site collection
pe the search results to a specific
ibrary, list or URL.

@ Don'trestrict by any tag

an limit results to content tagged with I) ‘e

specific terms, including site navigation terms.) Restrict by navigation term of current
page

(O Restrict by current and child navigation

terms

© Restrict on this tag

Switch to Advanced Made

m

Learn how to build your query

SEARCH RESULT PREVIEW

sharepoint13/Shared Documents/words.docx

ments/Boo

ings to create a good Book O..

sharepoint13/Shared Documents/Example outline.pdf

oK Cancel

[62]

Chapter 4

Next, we set the display template for the control holding the results. This is
equivalent to the Control layer we mentioned earlier. The CSWP provides
three control templates: List, List with Paging, and Slideshow. The control
templates change the way the container of the items looks. To compare the
different templates, take a look at how the container looks when the List
template is chosen:

Content Search -

Wwords

Book1

01_Important guidelines for Outline preparation

And the following screenshot displays how the exact same list looks when
the Slideshow template is chosen:

Content Search -

words

Since our content is not images, rendering the control as Slideshow makes
no sense.

[63]

Customizing the Look

4. Last but not least, we set the Item display template. As usual, SharePoint
comes with a set of built-in item templates, each designated for different item
types. By default, the Picture on left, 3 lines on right item display template
is selected. By looking at the preceding screenshot we can see it's not right for
our results. Since we are searching for documents, we don't have a picture
representing them so the left area looks quite dull. If we change the Item
display template to Two lines we will get a much more suitable result:

Content Search

@S words
B Bookl
@S 01_Important guidelines for Outline preparation

Display templates allow us to change the look of our results instantly. While playing
around with the out-of-the-box display templates is fun, extending them is even
better. If you look at the Two lines template that we chose for the CSWP, it seems
kind of empty. All we have is the document type, represented by an icon, and the
name of the document. Let's extend this display template and add the last modified
date and the author of the document to the display.

Creating a custom display template

As we mentioned earlier, the best way to extend a display template is to copy and
paste a template that is close in nature to what we wish to achieve, and customize it.
So, as we wish to extend the Two lines template, open SharePoint Designer, navigate
to Master Page Gallery | Display Templates | Content Web Parts of the site you
previously added the CSWP, and copy and paste the Item TwoLines.html file into
the same folder. Rename the newly created file to Item_TwoLinesWithExtraInfo.
html. As soon as you save the new filename, refresh the folder. You'll notice that
SharePoint automatically created a new file named Item TwoLinesWithExtralInfo.
js. The combination of the HTML and JavaScript file is what makes the magic of
display templates come to life. Edit the Ttem TwoLinesWithExtraInfo.html file,
and change its title to Two Lines with Extra Info.

[64]

Chapter 4

Getting the new properties

The first code block we should discuss is the cust omDocumentProperties block.
Let's examine what it holds between its tags:

<mso:CustomDocumentPropertiess>
<mso:TemplateHidden msdt:dt="string">0</mso:TemplateHidden>
<mso:ManagedPropertyMapping msdt:dt="string">'Link
URL' {Link URL}:'Path','Line
1'..</mso:ManagedPropertyMapping>
<mso:MasterPageDescription msdt:dt="string">This Item Display
Template will show a small
thumbnail..</mso:MasterPageDescription>

<mso:ContentTypeId
msdt :dt="string">0x0101002039C03B61C64EC4A04F5361F385106603</
mso:ContentTypeIds>

<mso:TargetControlType msdt:dt="string">;#Content Web
Parts;#</mso:TargetControlType>

<mso:HtmlDesignAssociated
msdt :dt="string">1</mso:HtmlDesignAssociated>

<mso:HtmlDesignConversionSucceeded
msdt :dt="string">True</mso:HtmlDesignConversionSucceeded>

<mso:HtmlDesignStatusAndPreview
msdt :dt="string"s>https://hippodevssp.sharepoint.com/search/_
catalogs/masterpage/Display%20Templates/Content%20Web%20Parts/Item
TwoLinesWithExtraInfo.html, Conversion
successful.</mso:HtmlDesignStatusAndPreviews

</mso:CustomDocumentProperties>
The most important properties from this block are:

* ManagedPropertyMapping: This property holds all the managed properties
that our display template will have access to. The properties are organized
in the key:value format. For example, if we wish to make use of the Author
property, we will declare it as 'Author' : 'Author'. The value can be a list of
managed properties, so if the first one is null, the mapping will be done using
the second one, and so on.

* ContentTypeld: This property sets the content type of the display template.
The specific value recognizes the file as a display template.

* TargetControlType: This property sets the target of the display template.
In our example it is set to Content Web Parts, which means the search
content web part and any other related search content web part. Other
possible values are SearchBox, SearchHoverPanel, SearchResults,
and so on.

[65]

Customizing the Look

Since we wish to display the author and the last modified date of the document, let's
add these two managed properties to the ManagedPropertyMapping property. Add
the following snippet in the beginning of the property, as follows:

<mso :ManagedPropertyMapping

msdt:dt="string">'Author: 'Author', 'LastModified': 'LastModifiedTime’,..
</mso:ManagedPropertyMapping>

We mapped the Author managed property to the Author key, and the
LastModifiedTime managed property to the LastModified key. Next,
we will discuss how to actually use the new properties.

Getting the values of the new properties
Using the newly added properties is done using plain old JavaScript.

1. Scroll down a bit until you see the following opening div statement:

<div id="TwoLinesg">

2. The div tag begins with what seems to be a comment markup (<! --),
but if you look closer you should recognize that it is actually JavaScript.
By using built-in methods and client object model code, display templates
can get any information out of SharePoint, and of the outside world. The
getItemvalue method is in charge of getting content back based on a given
managed property. That means if we wish to get the author of a result, and
we set the key to the managed property to be Author, the following line of
code will get it:

var author = $getItemValue (ctx, "Author") ;

3. The same goes for the last modified date. We used the key LastModified
for the managed property, and hence the following line of code will be used:

var last = $getItemValue (ctx,"LastModified") ;

4. Add these two lines just above the closing comment statement
markup (_#-->).

Remember that each result is rendered using this display template,
so the author and the last variables are unique for that one item
"~ that is being rendered.

[66]

Chapter 4

Displaying the new properties
The last part of the template comes right after the closing comment statement from

the previous section. You can see plain old regular HTML at this point, starting with
the following line:

<div class="cbs-Item" id="_ #= containerId =# "
data-displaytemplate="Item2Lines">

But if you look close enough you might notice something is weird with the id
property. It has an unusual suffix and prefix. This suffix and prefix are the template
placeholders. Whatever value is between these two will get replaced at runtime with
the value of its JavaScript variable.

Under the closing div tag of _#= 1line21d =#_, add the following snippet:

<div class="cbs-Line2 ms-noWrap">Author: #= author
=#_ </div>

<div class="cbs-Line2 ms-noWrap"><bsLast Modified: #= last
=#_ </div>

Author and LastModified are two variables we created in the previous section,
and now using the template placeholders we will display them to the users.

Save the new template, and navigate to the site you saved the new template on,
which should be the same site to which you added the CSWP earlier as well. Edit the
properties of the CSWP and change its display template to our new Two Lines with
Extra Info custom display template. Click on OK and you should get a result similar
to the following screenshot:

Content Search

85 words

Auther: Johnny Tordgeman;System Account
Last Medified: Monday, May 13, 2013

B5 Bookl
Author: Johnny Tordgeman:System Account
Last Modified: Sunday, May 12, 2013

85 01_Important guidelines for Qutline preparation
Author: Priyanka;System Account

Last Modified: Wednesday, September 5, 2012

."’El Top 10 things to create a good Book Outline
Author: Bansari Barot;System Account
Last Modified: Thursday, February 12, 2009

.“"El Example outline
Autheor: Rashmip;System Account
Last Modified: Friday, April 4, 2008

[67]

Customizing the Look

Enriching the Video Games Search Center

If you recall, we created a nice search vertical named Video Games in Chapter 2,
Using the Out of the Box Search Components. The search vertical was scoped to search
content in two specific folders we created. One of the fields we could input in our
images folder was keyword. By default, SharePoint 2013's images hover panel won't
show this field; but as this field is important to us, let's change the display template
of that hover panel and add it.

Before we go ahead and create the new result type, head over to your video

Games Center Images folder and add a few keywords to the images of your choice.
Once done, wait for the continuous crawl to pick up your changes, or if using an
on-premise installation, head over to the search service application and start an
incremental crawl, as shown in the previous chapter.

Modifying the default image display template

As we mentioned earlier, the best way to modify a display template is to pick up an
out of the box one and modify it. In order to change the image template hover panel,
we have to first edit the image display template itself and point it to the new hover
panel template we will be creating. To modify the default image display template
follow these steps:

1. Launch SharePoint Designer 2013 and open the search center site.

2. Navigate to Master Page Gallery | Display Templates | Search folder,
and locate the Ttem Picture.html file.

3. Once located, copy and paste it in the same folder.

Rename the new file to Item Console Picture.html. Click on the file
and under Customizations click on Edit file.

Change the title of the new template to Console Picture Item.

Under the body tag, locate the declaration of the hoverurl parameter
and change it as follows:

var hoverUrl =
"~sitecollection/_catalogs/masterpage/Display
Templates/Search/Item Console Picture HoverPanel.js";

7. Save the file and navigate back to the search folder.

[68]

Chapter 4

Now that we have a new image display template, we need to create the new hover
panel display template that we had specified for it. To create the new hover panel
display template follow these steps:

1.

5.

Locate the Item_Picture HoverPanel.html file, copy and paste it in the
same folder, and rename it to Item Console Picture HoverPanel.html.

Edit the file and add the Keywords managed property to the
ManagedPropertyMapping property, just like we did in the previous
example. The property should look like the following code:

<mso :ManagedPropertyMapping

msdt:dt="string">'Keywords': 'Keywords', 'Title'.. </
mso :ManagedPropertyMapping>

Under the div tag in Item Picture_ HoverPanel.html, locate the JavaScript
section (that begins with <! --#_) and before its closing element add the
following line of code:

var keywords = $SgetlItemValue (ctx, "Keywords") ;
This will get the content of the Keywords managed property.

To display the value of the keywords managed property to the user, add the
following lines of code under the span whose ID is:

#= ShtmlEncode (id + HP.ids.dimensions) =#:

Keywords: #= keywords =#_

Save the file.

We are done with creating the templates, so now it's time to create the result type.

Creating the result type

To create the result type that will match the new display template we created,
follow these steps:

1.

In your search center, navigate to Site Settings and click on Result Types
under the Search section.

In the Manage Result Types page, click on New Result Type. Give the
new result type a name such as Console Picture Type.

[69]

Customizing the Look

3. For the source select the Video Games Result source (reminder: we only
wish to have the new display template shown in our search vertical).

4. Click on Show more conditions on the left, and choose Path as the
property. For the operator select Contains any of and <your site urls/
VideoGamesImages/ as the value. In our example, the value would be
https://hippodevssp.sharepoint.com/VideoGamesImages/.

5. For the display type, choose Console Picture Item. This is the display
template we created in the previous section. Save the result type. Once
completed, your settings should look as shown in the following screenshot:

—
J;" B Edit Result Type x \ Y
€« C | B https;//hippodevssp.sharepoint.com/search/ layouts/15/ConfigureResultType.aspx?ID=817&action=edit&level=s Iy | =
] Office 365 Newsfeed SkyDrive Sites ... Admin~ Johnny Tordgeman~ %% 2
) SHARE ¥ Follow [
~
Which custom properties should match?
Path v | | Contains any of.. v
https://hippodevssp.sharep
Add value
Add property
Actions
What should these results look like?
Console Picture Item v
Note: This result type will automatically update with the latest properties in your display template
each time you visit the Manage Result Types Page.
Display template URL
[J Optimize for frequent use
Save Cancel
¥
< >

We are now finished with the new result type and display template. Go ahead and
perform a search using our Video Games search vertical.

[70]

Chapter 4

Hover over any image result and our new hover panel display template will be
shown in all its glory as shown in the following screenshot:

playstation3 e

playstation3-2
Picture Library List ltem

Everything People Conversations Videos Video Games

Video Games Center

playstation3-1 1AM ... playstation3-3 1500 x
1187 130 KB 4/29/2013 12:40 PM ...

hippodevssp.sharepoint.com/VideoGamesimages/Forms/allitems.aspx

playstation3-3
hippodevssp.sharepoint.comy../VideoGamesimages

playstation3-2
hippodevssp.sharepoint.com/.../VideoGamesimages

playstation3-1
hippodevssp.sharepoint.com/../VideoGamesimages

1008 x 15
Keywords: Ficture
4 results
Changed by [| Johnny Tordgeman on 6/4/2013 8:01 PM
Preferences Advanced Search

OPEM SEMD VIEW LIBRARY

Summary

This chapter was all about prettifying items. We learned about result types and
display templates, what the different layers of display templates are, and how to
style results in search-related web parts.

We finished the chapter off by creating two new display templates: an item display
template based on the Two lines out of the box template and a new hover panel
display template for the image display template.

Display templates are a powerful feature, and among its popular usages are adding
a person's latest status updates whenever someone hovers over their result in the
people search, showing the user's latest tweets based on their username, and so

on. All of this can be achieved using display templates and a bit of JavaScript

client object model.

In the next and final chapter we will discuss the all-important concept of Business
Connectivity Services (BCS). Using BCS we can get content from external systems
and have SharePoint index and search them. So, go get your SQL server ready because
we are about to crawl an external database and perform search operations on it.

[71]

Extending Beyond
SharePoint

In this chapter we are going to deal with extending search beyond the scope of
SharePoint. So far we've seen search results coming only from within SharePoint,
and whether the results were documents, sites, conversations, or images, all came
from SharePoint. By leveraging the BCS, we can get SharePoint to index external
systems. In this chapter we are going to discuss how to build a .NET assembly BCS
that will crawl] the external system, and display the results to the user as if they were
regular plain old SharePoint results.

In this chapter we will cover the following topics:

¢ Introduction to BCS in the context of search

* Connecting with the SQL server using .NET assembly

BCS for search

BCS has been in use since SharePoint 2010. If you previously used BCS in
SharePoint 2010, you'll feel right at home. As noted before, BCS enables us
to connect to external data sources and display the data via web parts, lists,
user profile properties, or search.

When discussing BCS we need to understand that BCS is not a technology by itself.
It is a grouping term for a set of technologies, which takes care of getting the data
from the external system. An external system can be anything from databases
(such as SQL server or Oracle) to web services, and even cloud-based solutions.

Extending Beyond SharePoint

BCS uses the connectors framework to reach out to external systems. Out of the box,
we have four types of connectors we can use straight away: SQL, WCF, .NET, and
the newly added OData connector. While the Business Data Connectivity (BDC)
layer is in charge of connecting the external system, it does not know or dictate what
data will be returned from the system, or what would its schema look like. All the
operations and schema for the returned data are defined by an external content

type (ECT). An ECT specifies the definition of the fields (name and type) that will be
returned from the external source. For example, a Product ECT might specify that the
data that will be returned from an external system, SQL in this case, as follows:

* ProductID: This is an integer representing the unique ID of a product
* ProductName: This is a string representing the name of a product

* ProductPrice: This is a decimal representing a product's price

In addition to schema definition, an ECT also defines the operations available
for the BCS. Just like any modern system, these operations include Create-Read-
Update-Delete (CRUD) operations, and other operations such as file stream
reading or getting a list of items.

Now after all this, you may ask yourself what does any of this have to do with
search? Good question indeed. BCS is a very broad subject, and can fill out an
entire book (and it has), and as we are focused on the subject of search, the rest
of the chapter will deal with only search-related aspects of BCS.

. If you wish to go deeper with BCS, check out Professional Business
Connectivity Services in SharePoint 2010, Scot Hillier and Brad Stevenson,
=" Wrox Publishing. While the book deals with BCS in SharePoint 2010

and not SharePoint 2013, the core concepts are exactly the same.

BCS and search

SharePoint 2013 provides two distinct approaches for processing search queries to
return search results: federated and content crawling.

In the federated approach, the results returned by the search query are not crawled
(read: stored) by the search server. When we write a search term, the term is
forwarded to the external system and then gets processed by it. Once processing is
finished, the external system returns the results to SharePoint's search engine, which
in turn formats and renders the result. The biggest advantage with federated search
is that we don't really need to worry about getting the data to SharePoint, as the
external system is in charge of the search logic.

[74]

Chapter 5

In addition, using federated search we can access systems that don't have the ability
to get crawled (or even secured against crawling) but have an internal search engine
that is accessible.

Content crawling, on the other hand, returns results from SharePoint's search
service application's content index database. This database contains content that
was crawled by the search service application, and includes the text content and

any metadata the content item may have. Unlike the federated approach, it's our

job as developers to get the data into the search service application's index database
from the external system. And this is where BCS and search finally meet. Using BCS,
we can create a content crawling indexing connector that will bring the external
system's data back to SharePoint.

A BCS indexing connector is composed of the following parts:

* The BDC model file: This file provides the schema of the data and the
connection information to the external system

* The connector logic: This is a component that contains the code that
connects and crawls the external system

When we develop a BCS indexing connector, it's a good idea to have answers to
the following questions:

1. How are we going to connect to the external system? This includes server
IP address, database instance name, authentication, and so on.

2. What is the schema of the data we are crawling? How is it organized?
What types of fields are we going to crawl? (Think of ECT.)

3. How can we recognize data changes in the repository for the incremental
crawl? In order for the crawl to be able to perform incremental search (and
by doing that save time and bandwidth) it must have the ability to recognize
when content changes in the external system. This is done by either a
timestamp-based crawl or change-based log crawl, depending on the
external system APIs.

4. Do we need to secure the data we are crawling? In some cases the data we
crawl is public and everyone in our organization has access to it. But there
are cases where we need to implement a security method, so that users
searching through the crawled content will only get results they have access
to. This means that our connector must know how to read the permissions of
the external system and implement it at crawl time using a Windows Access
Control List (ACL).

[75]

Extending Beyond SharePoint

The first question is rather easy to answer, as you should be able to get all
the information from your IT department, or anyone else that works on
maintaining the external system.

When answering the second question we have a few additional parameters to be
taken into consideration. As we noted earlier, other than type and name, the ECT
also defines operations the BCS will perform. There are six possible operations the
BCS can perform, as follows:

Finder: This is a core operation that retrieves a list of items from the external
content source that are to be crawled. This method should return minimal
information about the items (usually only the ID) and not the entire item
content.

SpecificFinder: This is a core operation that retrieves individual items from
the external content source based on the list the finder operation generated.

ChangedIdEnumerator: This is an optional operation that returns minimal
information (usually ID) about items in the external content source, which
were modified after a given time. This is required when implementing a
changelog-based incremental crawling.

DeletedIdEnumerator: This is an optional operation that returns minimal
information (usually ID) about items in the external content source, which
were deleted after a given time. This is required when implementing a
changelog-based incremental crawling.

BinarySecurityDescriptorAccessor: This is an optional operation that
returns the security descriptor for an item from the external content source.
This operation is in charge of handling the security aspects of crawling, and
in fact creates the access control lists for each and every item it crawls. This is
required if you choose to implement item-level security.

StreamAccessor: This is an optional operation that returns a data stream
from a file. When we wish to crawl the content of a file, mostly Office files
or PDF, we have to implement a StreamAccessor operation.

Now that we are done with the theory side of BCS in search, let's get active and
create a BCS search indexer ourselves!

[76]

Chapter 5

Building a BCS search connector

Before we begin writing our connector, we need something to connect to. First,
extract the downloadable files for this chapter from the Packt Publishing website.
You'll notice there is a file called videoGamesDB.bak. This is a SQL database backup
with video games console content that we will crawl to our SharePoint. Restore this
database to a SQL server of your choice.

Now that we have content to crawl], let's move on and create the BCS connector.

Setting the operations

As this book is not a book about BCS, we've already created the basics for you.
Open the VideoGamesConnector-Starter project from the downloadable content
of the book in Visual Studio 2012. The BCS is partially done. What it's missing
are a few key factors, as follows:

e Implementation of the ReadList method
* Implementation of the ReadItem method
* Setting the BCS as crawlable

Implementing the ReadList method

Implementing the ReadList method is rather simple. All it does is connect to the
database and grab a list of all the items we are going to crawl. Since this is just a
preliminary step, we are not going to get all the information about the items, just their
IDs. Once the method finishes its run, it returns the list of IDs to the search engine,
which in turn will call the ReadItem method for each ID and get the full item content.

Open the DAL class and find the initialization of the _connectionString variable.
This variable will hold the connection string for the database hosting the consoles
table. Set the connection string according to your environment.

In this demo we are using a hardcoded value for the connection string.
In a real-world application this is not a good idea, as the code moves
%\ between environments (developing, testing, production, and so on)
g and so the connection string changes as well. It is advisable to use
SharePoint's Secure Store to store and retrieve this kind of information.

[77]

Extending Beyond SharePoint

Find the GetConsolesList method and implement it as follows:

List<VideoGamesEntity> items = new List<VideoGamesEntitys>() ;
SglConnection sglConnection = new SglConnection() ;
SglDataReader sglReader = null;
try
{
sglConnection = new SglConnection(connectionString) ;
sglConnection.Open/() ;
//Declare Sgl Command
SglCommand cmd = new SglCommand () ;
cmd. Connection = sglConnection;

cmd . CommandText = @"select ID from Consoles";
sglReader = cmd.ExecuteReader() ;

if (sglReader.HasRows)
{
DataTable dt = new DataTable() ;
dt .Load (sglReader) ;
foreach (DataRow row in dt.Rows)
{
VideoGamesEntity Entity = new VideoGamesEntity () ;
Entity.ID = row["ID"].ToString() ;
items.Add (Entity) ;

}

return items;

}

catch (Exception ex)
//Write to log
return items;

}

finally

{

// close reader
if (sglReader != null)

{

sglReader.Close() ;

[78]

Chapter 5

// close connection
if (sglConnection != null)

{

sglConnection.Close() ;

}

The implementation is rather simple. We initiate a new list of the

VideoGamesEntity class, named items. Next we connect to the SQL database

(using the _connectionString variable we initialized earlier) and perform a simple
select query for all the IDs of the Consoles table. Once we have the IDs we add them
to the items list and return the list back to the search engine. Next up we implement
the ReadItem method.

Implementing the Readltem method

As we noted earlier, the job of the ReadItem method is to bring all the content of a

given item. The method accepts an ID as an argument and uses that ID to bring the
corresponding item.

Locate the GetConsoleItem method and implement it as follows:

VideoGamesEntity Entity = new VideoGamesEntity () ;
SglConnection EntityConnection = null;
SglDataReader SglReader = null;

try

{

//Connection DB

EntityConnection = new SglConnection(connectionString) ;

//Open Connection (will be closed at the Finally statement)
EntityConnection.Open() ;

//Declare Sgl Command
SglCommand cmd = new SglCommand() ;
cmd. Connection = EntityConnection;
cmd. CommandText = @"select * from Consoles where ID=@IDParam";

//Declare Sgl Parameters:

[79]

Extending Beyond SharePoint

SglParameter IDParam = new SglParameter ("@IDParam",
SglDbType.Int, 10);
IDParam.Value = Int32.Parse (id) ;

//add new parameter to command object
cmd . Parameters.Add (IDParam) ;

SglReader = cmd.ExecuteReader () ;
//Checking if there is any results (suppose to be only 1)
if (SglReader.HasRows)
{
DataTable dt = new DataTable() ;
dt .Load (SglReader) ;
DataRow row = dt.Rows[0];

Entity.ID = id;
Entity.Title = row["Title"] .ToString() ;
Entity.Manufacturer = row["Manufacturer"].ToString() ;
Entity.HardDisk = row["Hard Disk"].ToString() ;
Entity.HighDefinition = bool.Parse (row["High
Definition"] .ToString()) ;
Entity.Wifi = bool.Parse(row["Wi-fi"].ToString()) ;
Entity.ImageUrl = row["Image Url"].ToString() ;

}

return Entity;

}

catch (Exception ex)

{

//Write to log
return Entity;

}

finally

{

// close reader
if (SglReader != null)

{

SqglReader.Close () ;

}

// close connection
if (EntityConnection != null)

{

EntityConnection.Close() ;

}

[80]

Chapter 5

No rocket science here. For each item from the ReadList method, the ReadItem
method gets called. The method connects to the SQL server and performs a select
query filtered by the given ID. Once results come back from SQL, we create a
VideoGamesEntity entity and set its properties. Finally we return the data filled
entity to the search engine for crawling. The search engine receives the new entity
and stores the new entity in the search index database. We now implemented the
two basic operations needed for BCS to operate. The next step is to set the connector
to be crawlable, or in other words, search enabled.

Making the BCS model crawlable

The BCS model has several properties that we can set which are related to search.
These properties include the following;:

* ShowlInSearchUI: This is a model-level property that specifies that this
model should be displayed in the search user interface. The value of this
property is ignored; what's important is the inclusion of the property itself in
the model. This property is required when building a searchable BCS model.

* InputUriProcessor / OutputUriProcessor: These are LobSystem level
properties, which enable custom processing of the input and output URLs
before passing it to the search system or connector.

* RootFinder: This is a method-level property which specifies the default
Finder method that the connector should use to enumerate the items for
crawling. This property is required for a searchable BCS model.

* DirectoryLink / AttachmentAccessor: These are two method-level
properties, which are used for creating association between entities.
It is recommended that you read the post on the blog regarding related
entities at http://blog.johnnyt.me/2013/03/crawling-with-fast-and-
sharepoint-2013/.

* AuthorField: This is a method-level property that specifies the author name
to display in the search results. This is usually set in the SpecificFinder
method to point to the field from the external content source that should
be used for displaying the author.

* DisplayUriField: This is a method-level property that specifies the URL
to show in the search results for a given item. This property overrides the
default profile page URL that the BCS service sets.

* DescriptionField: This is a method-level property that specifies the
description to display for the result.

[81]

Extending Beyond SharePoint

There are many more properties we can set for our searchable BCS and you
can find more information about them at the MSDN documentation page
located at http://msdn.microsoft.com/en-us/library/gg294165.aspx.

The first property we will set is the ShowInSearchUI property. Double-click on
the videoGamesModel . bdem file and switch the tab to BDC Explorer. Navigate
to the VideoGamesModel LOBSystemInstance and click on the three dots (...)
next to Custom Properties as shown in the following screenshot:

BDC Explorer =

Type here to search -

= *3 Model
= *3 VideoGamesModel
= B videoGamesMadel
= o LobSysteminstances
||:|laa VideoGamesModel I
*3 VideoGamesEntity

[+

BDC Explorer | Solution Explo.. Team Explorer

VideoGamesModel LobSystemninstance -

(Collection) |
Lrerault Lheplay MNarr
Is Cached
MName VideoGamesModel

Add a new property named showInSearchUI, and set the type to System.String
and the value to x.

[82]

Chapter 5

Next, we will set up the Root Finder property. In the BDC explorer pane, navigate
to the ReadList method. On the BDC Method Details pane (usually in the bottom
area) locate the ReadList instance and click on the three dots (...) next to Custom
properties, as shown in the following screenshot:

Bd VideoGamesConnector - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) P - 0O x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM SQL IOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP

G- iR - W P Start - Debug - A _
g VideoGamesModelbdem & X Featurel feature DAL.cs ice.cs i ~ BDC Explorer v ax
g Type here to search

E %3 Model
= #3 VideoGameshMadel
= f videoGamesModel
@ pf LobSysteminstances
= *3 VideoGamesEntity
® © Readltem

¥ @ ReadList

#; VideoGamesE.. A

= Identifiers
& D
B Methods BDC Explorer | Solution Explo... | Team Explorer
@ Readitem 7 ReadList Methodinstance -
4
BDC Method Details - VideoGamesEntity - ix
[ool L
Name Direction Type Descriptor Do 3
4 Methods - ~TIT
Default Display Narr Entity1 List
< § Readlist ls Cached
4 @ Parameters Name ReadList
Y@ retumParameter Return & VideoGamesEntityList Return Parameter Ni returnParameter
%@ <Add a Parameter> PN
4 @ Instances Custom Properties
0 ReadList The custom properties of this element.
39 <Add a Method Instance> hd

Error List

Add a new property named RootFinder with a type of System.Stringand a
value of x.

Build and deploy the solution. If everything goes smoothly, continue to the next
section where we set the permissions and a content source of the newly added
searchable BCS.

[83]

Extending Beyond SharePoint

Creating a search content source

Now that we have a BCS connector ready for crawling, it's time to create a

content source that will use it. Head over to your server's SharePoint 2013 Central
Administration and click on Manage service applications. From the list of service
applications, click on the service whose type is Business Data Connectivity
Service Application (in a default installation it will be named Business Data
Connectivity Service). Here we can see a list of installed BCS models, and among
these we should find our searchable BCS model VideoGamesEntity. Whenever we
deploy a BCS model we have to set its permissions. Check the checkbox next to the
VideoGamesEntity model and click on Set Object Permissions on the ribbon.
Add the farm administrator account and give it all the available permissions.

Add the Everyone account and give it permissions to execute.

Now that the administrative part is behind us, let's create the content source.
Navigate back to the Manage service applications page and click on Search

Service Application. Under the Crawling category on the left-side menu, you'll

find Content Sources. Click on it to navigate to the content sources management
page. Click on New Content Source. The Add Content Source page appears. Give
the new content source the title video Games Content Source. The type of our new
content source is Line of Business Data, as we are using a BCS source. Change the
radio button to Crawl selected external data source and check the checkbox next to
VideoGamesModel, which is our BCS model as shown in the following screenshot:

- o
o ok 1

System Account ~ 'ﬂ' ?

e@|ﬁ> http://sharepoint13:48 © ~ ¢ || B Search Service Application: ... | |

SharePoint Newsfeed SkyDrive Sites

O sHare O,

Search Administration Name Name; * A

pe a name to describe this co Video Games Content Source

Diagnaostics

Crawl Log

Crawl Health Reports
Query Health Reports
Usage Reports

Content Source Type Select the type of content to be crawled:

of content will be

O SharePoint Sites

Crawling

Content Sources

Crawl Rules

Server Name Mappings
File Types

Index Reset
Pause/Resume

Crawler Impact Rules

Queries and Results
Authoritative Pages
Result Sources
Query Rules

Query Client Types
Search Schema
Query Suggestions
Search Dictionaries

O Web sites
O File Shares
() Exchange Public Folders
®) Line of Business Data
O Custom Repository
External Data Source Select the Business Data Connectivity Service Application:
Business Data Connectivity Sen-'lceﬂ

O Crawl all external data sources in this Business Data Connectivity
Application
® Crawl selected external data source

[l videoGamesModel

[84]

Chapter 5

Scroll all the way to the bottom of the page and click on OK. Our new content
source is ready! To perform a crawl, click on the little arrow to the right of the
content source name and click on Start Full Crawl. The content source will start
crawling. Once the status changes to Idle, check the Crawl Log page. If your content
source had seven successes, everything went great. Try to perform a search for xbox.
You'll get a result similar to the following screenshot:

= l:l-
e@'ﬁ} hitp://sharepoint13/sit @ ~ & H B search Center ‘ | A T
SharePoint Newsfeed SkyDrive Sites [EESTSEFNCCTITINE o L4
H> | xbox jo) ‘
Everything People Conversations Videos
Modified date 29
—_— XBOX 360 ...
videogamesmodel_videogamesmodel/.../297s_id=SBAAAAA==MQA=&s_ce=...
OnevearAgo Today
sult
Al Pref Advan
< >

This weird looking result you are seeing is a result from an external content
source. It is easily identified by the unusual looking URL it has.

When we perform a custom crawl we automatically create crawled properties.
Crawled properties represent the BCS model entity's properties. For our entity,

we have automatically created a number of crawled properties such as the ImageUrl,
Title, and so on. Crawled properties for a BCS model have an easy-to-remember
syntax: <BCS model name>.<Entity name>, that is videogamesmodel . Tit1le.

In order to display the crawled properties, we have to map the crawled properties

to managed properties. That is done through the Search Schema page. Head back

to the Search Service Application page, click on Search Schema, and then on New
Managed Property. We will map the ImageUrl crawled property to a new managed
property named ConsoleImageUrl, so type ConsoleImageUrl in the Property Name
textbox. The type of the crawled property is text (string in the entity model class). The
following main characteristics section defines how this property is going to be treated:

* Searchable means that the property is included in the full text index.
This means that if the managed property value contains the word
Console, searching for Console will return the result.

[85]

Extending Beyond SharePoint

* Queryable is very similar to searchable, but does not offer a full text index.
That means that if the property value is console, only searching for
propertyname : Console will return the result.

* Retrievable means that the managed property will be returned as part
of the search result. If we are going to use result types and display
templates (wWhich we should always consider) we have to mark the
property as retrievable.

* Refineable means that we can use this managed property in the
refinement panel and refine the results based on this property.

* Sortable means that we can sort the results based on this property.

Since we are not planning on performing a search based on the URL of an item,
the only characteristics we wish to add to the managed property is Retrievable.

The most important part of mapping a managed property is, well, mapping it.
Under the Mappings to crawled properties section, click on the Add a Mapping
button to bring up the mapping popup. Filter the categories to Business Data to
see all the available crawled properties as can be seen in the following screenshot:

Crawled property selection

Select crawled properties to map to New Property(Text)

Filter on a category:
v

Search for a crawled property name:

Select a crawled property:
docaclmeta
EntityName
EntityNamespace
VideoGamesEntity.HardDisk
VideoGamesEntity.HighDefinition
VideoGamesEntity.|D
VideoGamesEntity.ImageaUrl
VideoGamesEntity.Manufacturer
VideoGamesEntity.Title
VideoGamesEntity.Wifi

[86]

Chapter 5

The property we are after is VideoGamesEntity.ImageUrl, so select it and click
on OK. Click on OK again to save the new managed property.

In order to use the new managed property, perform another full crawl on the
related content source.

Once the crawl is finished, create a new result type and display template to retrieve
the new managed property and proudly display it to the users.

Summary

This was a pretty intensive chapter, but we hope you managed to soak in most,

if not all, of what it aimed to provide. Creating a BCS connector might seem like

a daunting task at first, but the more connectors you create, and the more you play
around with its different methods and variables, the more you will learn to love

it. Using BCS connectors we get the ultimate power of crawling external systems,
a task which used to be next to impossible in the past.

This chapter also brings our little book to an end. We hope you enjoyed working
with search, and we are sure that you will take everything you learned into an
exciting real-world project that combines with, or is completely based on, search.

[87]

Symbols
$.grep method 54

A

Access Control List. See ACL

ACL 75

ACS 48

analytics architecture
components 14

App, publishing to
internal organization App catalogue 50
Office Store 49

architecture, SharePoint 2013 Search
analytics-processing component 13, 14
components 10
content component 11
diagram 10
index component 13
query components 12

ATOM (XML) protocol 40

Azure Access Services. See ACS

B

BCS
about 73
operations 76
search 74,75
BCS indexing connector
BCS indexing 75
connector logic 75
BCS search connector
building 77
operations, setting 77

Index

BDC 74
Business Data Connectivity. See BDC

Cc

client-side APIs

app, publishing 49, 50

autohosted app 48

CSOM 46

provider hosted app 48

RESTful API 39

SharePoint-hosted App 48

using 39
Client Side Object Model. See CSOM
content components

about 11

content-processing component 11,12

crawl component 11
content-processing component 11
content search web part

using 25, 26
Content Search Web Part. See CSWP
ContentTypeld 65
Create-Read-Update-Delete. See CRUD
CRUD 74
CSOM

about 9, 46

search 46, 47
CSWP

about 62

results, styling 62-64
custom display template

creating 64

new properties, displaying 67

new properties, obtaining 65, 66

new properties values, obtaining 66

D

DAL class 77
design templates 58, 59
display templates
about 59
control layer 60
filters layer 60
hover panel layer 61
item layer 61

E

ECT 74

Exchange 16

Extensible Stylesheet Language
Transformations. See XSLT

external content type. See ECT

G

GetConsoleltem method 79
GetConsolesList method 78
get]SON method 53

index component
about 13
input role 13
output role 13

K

Keyword Query Language. See KQL
KQL
about 35
basics 36
property restrictions 36, 37
synonyms 39

L

LastModified key 66
Local SharePoint 16
Local SharePoint Results 51

M
ManagedPropertyMapping property 65

(0

OAuth authentication 47
onGetUserFail method 52
onGetUserSuccess method 53
OpenSearch 1.0/1.1 16
operations, BCS
BinarySecurityDescriptorAccessor 76
ChangedldEnumerator 76
DeletedldEnumerator 76
finder 76
SpecificFinder 76
StreamAccessor 76
operations, BCS search connector
AuthorField property 81
DescriptionField property 81
DirectoryLink / AttachmentAccessor
property 81
DisplayUriField property 81
InputUriProcessor / OutputUriProcessor
property 81
Readltem method, implementing 79, 81
ReadList method, implementing 77, 79
RootFinder property 81
setting 77
ShowInSearchUI property 81
operator
1 37
</=<37
<> 37
= 37
>/ >= 37
valuel value2 37

P

ProductID 74
ProductName 74
ProductPrice 74
property restrictions, KQL
about 36
operators 37
XRANK 38

[90]

Q

query components
about 12
query processing component 13
web front end 12
query conditions
advanced Query Text Match 22
Query Matches Dictionary Exactly 21
Query More Common in Source 21
Result Type Commonly Clicked 21
query rules
action, setting 22
creating 19
learning 17, 18
promoted result 23
query conditions, setting 21
ranked results modifications, by query
changing 25
result block 23, 24
result source, setting 19, 20

R

Readltem method 79
ReadList method 77
Remote SharePoint 16
Representational State Transfer. See REST
REST
about 9
and search 43-45
using 41, 42
RESTful API
about 39
REST, using 41
SharePoint 2013 39, 40
result sources
about 15
creating 28, 29
Exchange protocol 16
explaining 15, 16
Local SharePoint protocol 16
OpenSearch 1.0/1.1 protocol 16
Remote SharePoint protocol 16
Remote SharePointrotocol 16

setting 19, 20

result types 57-61

S

SetTaskUI method 53
SharePoint 2013 5
SharePoint 2013 Search

about 5

architecture 10

features 5
SharePoint 2013 Search, features

customization 7-9

development methods 9, 10

drawback 6

ranking features 9

relevance 9

search administration 6

Ul changes 7, 8
SharePoint-hosted search-driven App

about 50

app, building 51-55

requirements 51

task apps (lists), creating 51
Simple Object Access Protocol. See SOAP
simple search-driven application

building 27

content, adding 27, 28

query rule, adding 31, 33

result source, creating 28, 29

search vertical, creating 30
SOAP 39

T

TargetControlType 65

\'

VideoGamesEntity entity 81
Video Games Search Center
default Image display template, modifying
68, 69
enriching 68
result type, creating 69, 70

[91]

w

web front end 12
Web service callout 12

X

XRANK 38
XRANK keyword 25
XSLT 59

[92]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
Learning Search-driven Application
Development with SharePoint 2013

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise

"PUBLISHING

Microsoft SharePoint 2010
Business Application Blueprints
ISBN: 978-1-84968-360-9 Paperback: 282 pages

Master SharePoint application development by
building exciting SharePoint business solutions

1. Instant SharePoint - Build nine exciting
SharePoint business solutions

Microsoft SharePoint 2010 2. Expand your knowledge of the SharePoint
Business Application Blusprints platform so that you can tailor the sample
solutions to your requirements

3. Learn how the different development

Mike Oryszak PACKT] " ; techniques can be used in various situations
to support both client side and server side
development to solve different problems in
different environments.

Microsoft SharePoint for
Business Executives: Q&A

Handbook
ISBN: 978-1-84968-610-5 Paperback: 236 pages

100 Essential Questions and Answers about
SharePoint 2010 for Executives considering
SharePoint deployments

Microsoft SharePoint for
Business Executives: 1. Forget lengthy technical SharePoint guides
Q&A Handbook more suited for hands-on technical staff; get
equipped with the knowledge of SharePoint's
business potential before deployment

2. Get to grips with SharePoint governance,
the Cloud, staffing, development and much
more from a business perspective in this book
and e-book

Please check www.PacktPub.com for information on our titles

' enterprise 8

professional expertise distilled

"PUBLISHING

Microsoft SharePoint 2010
End User Guide: Business

Performance Enhancement
ISBN: 978-1-84968-066-0 Paperback: 424 pages

A from-the-trenches tutorial filled with hints, tips,
and real world best practices for applying SharePoint

2010 to your business

Microsoft SharePoint 2010 End User Guide:

Business Perf Enh t
usiness Ferformance Enhancemen 1. Designed to offer applicable, no-coding solutions

Taking the basics to the business with no-codin .

solutions for SharePoint 2010 3 to dramatically enhance the performance of

your business

2. Excel at SharePoint intranet functionality to
Michaol McCabo Petor Ward [PACKT] " : have the most impact on you and your team

3. Drastically enhance your End user SharePoint
functionality experience

Microsoft SharePoint 2010

Administration Cookbook
ISBN: 978-1-84968-108-7 Paperback: 288 pages

Over 90 simple but incredibly effective recipes to
administer your SharePoint applications

1. Solutions to the most common problems
encountered while administering SharePoint

Microsoft SharePoint 2010 in book and eBook formats

Administration Cookbook 2. Upgrade, configure, secure, and back up
your SharePoint applications with ease

e 3. Packed with many recipes for improving
LA Al collaboration and content management
with SharePoint

Please check www.PacktPub.com for information on our titles

		Cover

		Copyright

		Credits

		About the Author

		About the Reviewer

		www.PacktPub.com

		Table of Contents

		Preface

		Chapter 1: Getting Started with SharePoint 2013 Search

		New features of SharePoint 2013 Search

		Search administration

		UI changes and customization

		Relevance and ranking features

		New development methods

		The search architecture

		Content components

		Crawl component

		Content-processing component

		Query components

		Web frontend

		Query processing component

		The index component

		Analytics processing component

		Summary

		Chapter 2: Using the Out of the Box Search Components

		Getting acquainted with result sources

		Learning query rules

		Creating query rules

		Setting the result source

		Setting query conditions

		Setting the action

		Using the content search web part

		Building a simple search-driven application

		Adding content

		Creating the result source

		Creating a search vertical

		Adding a query rule

		Summary

		Chapter 3: Using the New CSOM and RESTful APIs

		Understanding the Keyword Query Language

		The basics

		Property restrictions

		XRANK

		Synonyms

		Using the new client-side APIs

		RESTful API

		REST and SharePoint 2013

		Using REST

		REST and search

		Client Side Object Model (CSOM)

		CSOM and search

		A SharePoint-hosted app

		A provider hosted app

		An autohosted app

		Publishing an app

		Building a SharePoint-hosted
search-driven app

		Create task apps (lists)

		Understanding the requirements

		Building the app

		Summary

		Chapter 4: Customizing the Look

		Result types and design templates

		Display templates

		Result types

		Styling results in a Content Search Web Part

		Creating a custom display template

		Getting the new properties

		Getting the values of the new properties

		Displaying the new properties

		Enriching the Video Games Search Center

		Modifying the default image display template

		Creating the result type

		Summary

		Chapter 5: Extending Beyond SharePoint

		BCS for search

		BCS and search

		Building a BCS search connector

		Setting the operations

		Implementing the ReadList method

		Implementing the ReadItem method

		Making the BCS model crawlable

		Creating a search content source

		Summary

		Index

