
www.allitebooks.com

http://www.allitebooks.org

Learning Spring Application

Development

Develop dynamic, feature-rich, and robust Spring-based

applications using the Spring Framework

Ravi Kant Soni

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Spring Application Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-736-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Ravi Kant Soni

Reviewers

Wilkołek Damian

Jeff Deskins

Miguel Enriquez

Bala Sundarasamy

Mattia Tommasone

Commissioning Editor

Julian Ursell

Acquisition Editors

Joanne Fitzpatrick

James Jones

Content Development Editor

Pooja Nair

Technical Editors

Vijin Boricha

Shashank Desai

Project Coordinator

Suzanne Coutinho

Copy Editors

Sarang Chari

Tani Kothari

Puja Lalwani

Khushnum Mistry

Aditya Nair

Shambhavi Pai

Sameen Siddiqui

Trishla Singh

Proofreaders

Sais Editing

Paul Hindle

Indexer

Rekha Nair

Graphics

Sheetal Aute

Disha Haria

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ravi Kant Soni is a Java Enterprise and Spring Framework specialist with a
bachelor's degree in information science and engineering from the Reva Institute of
Technology, Bangalore. He has been involved in software development for many
years now. Ravi has worn many hats throughout his tenure, ranging from software
development, multitenant application design, and the integration of new technology
into an existing system, to his current love of writing a Spring Framework book.

Currently, he is a lead engineer at HCL Technologies Limited. Ravi has focused
on web and enterprise development using the Spring Framework for most of his
career and has been extensively involved in application design and implementation.
He has developed applications for core bank, HR and payroll, and e-commerce
systems using the Spring Framework.

Ravi has gained extensive experience in all aspects of software engineering,
including software design, systems architecture, application programming, and
automation testing. He is backed by strong product development experience
in Java, Spring, Hibernate, PostgreSQL, and many other enterprise technologies.
Ravi is skilled in other techniques such as Bootstrap, jQuery, FreeMarker, Maven,
CAS (SSO) Security, Git, Selenium WebDriver, and Agile methodology.

Ravi loves problem statements and really enjoys brainstorming unique solutions.
He can be reached at springframeworkbyravi@gmail.com. You can also get in
touch with him at in.linkedin.com/in/november03ravikantsoni/.

www.allitebooks.com

in.linkedin.com/in/november03ravikantsoni/
http://www.allitebooks.org

Acknowledgments

Writing a technical book involves endless research, review, support, and most
preciously, my time when I already have a full-time job. Here, I thank all those
who helped me with this book.

First of all, I would like to thank the Packt Publishing team for helping me with
the utmost professionalism. The one person who has been the roof of this shelter
is Joanne Fitzpatrick, the partner relationship manager (at the time of writing this
book). My special thanks to James Jones, acquisition editor (level 2), and Suzanne
Coutinho, project coordinator, for supporting me in the writing of this book and
making me conident to step into this new phase of my life. I feel very privileged
to have worked with Pooja Nair, content development editor; her knowledge spans
an amazing spectrum. Without her, this book wouldn't have been possible. Also, I
would like to express my special gratitude to the technical editor, Shashank Desai,
whose vision, commitment, and persistent efforts made the publishing of this book
possible in an eficient manner.

My heartfelt thanks go to the reviewers commissioned by Packt Publishing—
Wilkołek Damian, Jeff Deskins, Miguel Enriquez, Bala Sundarasamy, and
Mattia Tommasone—for their valuable input.

My deepest gratitude and appreciation go to my friend Alok Kumar,
software engineer 3 at Juniper Networks, who is even closer to me than my
brothers. Alok encourages my knowledge to come out on paper to ignite
the imagination of others. My hearty thanks go to Awanish Kumar, Indian
Administrative Service (IAS – AGMUT Cadre); Nagendra Kumar, engineering
lead at Facebook, Inc., for giving me positive thoughts that work as the fuel to
carry on.

www.allitebooks.com

http://www.allitebooks.org

Without my family's love, strong support, and understanding, this book would have
virtually remained a commodity. My profound thanks go to my family—my mother,
Manorma Devi; my father, Ras Bihari Prasad; my uncles, Shyam Bihari Prasad and
Arun Kumar Soni; and my aunts, Sushma Devi and Ranju Devi—for their love and
support during the writing of this book. Thanks also go to my brothers, Shashi Kant
and Shree Kant; my sister, Namrata Soni; my cousins, Anurag Soni, Sonali Soni,
Komal Soni, Amrita Soni, Rishi Raj Soni, Anjali Soni, Mohini Soni, Manshi Soni,
and Mithu; and my "guruji" Sri Ram Chandra Prasad.

Finally, I would like to thank my colleagues at HCL Technologies Limited. I learn
something new every day and enjoy a camaraderie I've never felt in any company
before. I am fortunate enough to work with such an experienced team who help me
enhance my skills. My hearty thanks to the Deputy General Manager, Gaurav Vrati,
for his guidance and strong support.

Last but not least, I am thankful to everyone who supported me in one way or another
in writing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Wilkołek Damian gained all his experience as a freelancer. After graduation, he
started to work on a Polish e-health project. He is an enthusiast of new technologies
and is an adrenaline junkie.

He has also reviewed SoapUI Cookbook, Packt Publishing.

I'd like to thank my dear love for providing me with beer and
good words!

Jeff Deskins has been building commercial websites since 1995. He loves
turning ideas into working solutions. Lately, he has been building most of his
web applications in the cloud and is continuously learning best practices for
high-performance sites.

Prior to his Internet development career, he worked for 13 years as a television
news photographer. He continues to provide Internet solutions for different
television stations through his website http://www.tvstats.com/.

I would like to thank my wife for her support and patience with
the many hours of my sitting behind my laptop learning new
technologies. Love you the most!

www.allitebooks.com

http://www.tvstats.com/
http://www.allitebooks.org

Miguel Enriquez is a passionate software engineer with 6 years of experience
and is currently working at Accenture as a software engineering senior analyst.
Miguel discovered programming when he was 14 years old, and since then he has
not stopped for a single day. He studied at the Instituto Tecnologico de Zacatecas
and graduated with honors as a systems engineer.

When he is not programming, he takes care of his wife and three daughters. In his
spare time, he plays a lot of video games and tabletop RPGs. He also practices kung
fu and other martial arts.

I would like to thank my wife, who is always supportive of my work
and has enough patience to watch me code day and night! And now,
I am reviewing this third book.

Bala Sundarasamy graduated from the College of Engineering, Guindy.
He has an extensive experience of more than 20 years in designing and building
applications using the Java and .NET technologies.

He is a founder and director of Ardhika Software Technologies Pvt. Ltd.,
which specializes in providing quick and eficient solutions to their Indian
and overseas customers using iOS, Android, Grails, Node.js, AngularJS,
MongoDB, and Elasticsearch.

A certiied Grails trainer, he conducts training programs for corporations that
want to adopt Grails for application development. He has also taught numerous
young developers to write good object-oriented code using Java and C#. He has
proven expertise in training fresh engineers to adopt industry-standard best
practices and processes in software writing.

Mattia Tommasone is a generalist software engineer focused on the development
of web applications, with domain experience ranging from social networking
to health and itness and from data analytics and visualization to automatic
deployment management.

He is currently working on the Italian eBay classiied ads website as a frontend
engineer, exploring ways to test JavaScript code.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.w

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

To my papa

Ras Bihari Prasad

To my maa

Manorma Devi

It is with your true love and warmest support that the completion of this book has
been possible.

[i]

Table of Contents

Preface ix

Chapter 1: Introducing the Spring Framework 1

Introducing Spring 2

Features of Spring 4

Other features of Spring 7

Evolution of the Spring Framework 7

Spring Framework Architecture 10

Spring Core Container 11

The AOP module 12

Data access/integration 13

The Web module 14

The Test module 14

Beneits of the Spring Framework 14
Creating an application in Spring 15

Obtaining Spring JAR iles 15
Understanding Spring packaging 16

SpringSource Tool Suite 17

The Spring application 18
Creating a Spring project 18

Adding required libraries 20

Creating source iles 22
Creating the Spring bean coniguration ile 25
Running the program 28

Exercise 29

Summary 29

Table of Contents

[ii]

Chapter 2: Inversion of Control in Spring 31

Understanding Inversion of Control 32

What is a container 33

Spring Container 34
Beans 35
BeanFactory 37

ApplicationContext 42

Dependency Injection 46
Dependency Injection in Spring 46

The Has-A relationship 48

Constructor-based Dependency Injection 49

Setter-based Dependency Injection 55
Injecting inner beans 60

Injecting null and empty string values in Spring 62
Case 1 – injecting an empty string 62

Case 2 – injecting a null value 62

Bean deinition inheritance 63
Inheritance with abstract 66

Autowiring in Spring 67
Autowiring modes 68

Autowiring using the no option 69

Autowiring using the byname option 69

Autowiring using the byType option 71

Autowiring using the constructor 71

The bean's scope 72

Singleton 75
Prototype 77

Request 78

Session 78

Global session 78

The Spring bean life cycle 78

Initialization 79

Activation 80

Destruction 80

Initialization callbacks 80
Implementing the org.springframework.beans.factory.InitializingBean interface 81

Using init-method in the XML coniguration 82
Destruction callbacks 83

Implementing the org.springframework.beans.factory.DisposableBean interface 83

Using destroy-method in the XML coniguration 84
Exercise 85

Summary 86

Table of Contents

[iii]

Chapter 3: DAO and JDBC in Spring 87
Overview of database 88

The DAO design pattern 89

The DAO layer 90

JDBC without Spring 90
Sample code 91

ADD drivers speciic to database into the project 91
Directory structure of the application 92

Spring JDBC packages 98
JDBC with Spring 99

DataSource 100

DataSource in the DAO class 101
Directory structure of the application 101

What is JdbcTemplate 105

Coniguring the JdbcTemplate object as Spring bean 106
The Spring.xml ile 107

Functionality exposed by the JdbcTemplate class 108
Querying (select) 108

Updating (Insert-Update-Delete) 109

Other JdbcTemplate operations 109

Directory structure of the application 110
The Employee.java ile 110
The EmployeeDao.java ile 111
The EmployeeDaoImpl.java ile 111

JDBC batch operation in Spring 113
Directory structure of the application 115

The EmployeeDaoImpl.java ile 115
The HrPayrollBatchUpdate.java ile 116

Calling a stored procedure 117

Using the SimpleJdbcCall class 118
Calling a stored procedure 118

Exercise 121

Summary 121

Chapter 4: Hibernate with Spring 123

Why Object/Relational Mapping? 124
Introducing ORM, O/RM, and O/R mapping 126
Introducing Hibernate 127

Hibernate architecture 128
Coniguration 129
SessionFactory 129

Session 130

Transaction 130

Table of Contents

[iv]

Query 130

Criteria 130

The Persistent object 130

Integrating Hibernate with the Spring Framework 131

Sample data model for example code 131

Integrating Hibernate 132

Required JARs for the Spring-Hibernate project 133

Coniguring Hibernate SessionFactory in Spring 134
XML Spring coniguration for Hibernate 135

Annotated domain model class 138

The Hibernate sessions 141
The Session interface methods 142

Persistence layer – implement DAOs 142
The EmployeeDao interface 142

The EmployeeDaoImpl class 142

Service layer – implement services 144
The EmployeeService interface 144

The EmployeeServiceImpl class 145
Directory structure of the application 146

Running the application 146
The DBUtils class 146

The SpringHibernateMain class 148

Output to console 149

Populated data in the Employee table 149

Hibernate Query Language 150

The Query interface 150
Database operation using HQL 150

The FROM clause 151
The AS clause 151
The SELECT clause 152
The WHERE clause 152
The ORDER BY clause 153
The GROUP BY clause 154
Using the named parameter 154
The UPDATE clause 155
The DELETE clause 155
Pagination using Query 156

Hibernate Criteria Query Language 157

The Criteria interface 157
Restrictions with Criteria 158

Exercise 165
Summary 165

Table of Contents

[v]

Chapter 5: Spring Web MVC Framework 167
The MVC architecture and separation of concern 169
Front Controller Design Pattern 170

Understanding Spring MVC 171

Features of the Spring MVC framework 172

Flow of request handling in Spring MVC 173

Developing a simple Spring MVC application 175

Creating a new Maven project 175
Adding Spring MVC dependencies to pom.xml 179

Coniguring the application 180
The /WEB-INF/web.xml ile 181
The /WEB-INF/SpringDispatcher-servlet.xml ile 181

Creating the controller – EmployeeController 185
Creating the view – hello.jsp 186

Running the application 187

DispatcherServlet in Spring MVC 189

DispatcherServlet in deployment descriptor – web.xml 190

Registering Spring MVC coniguration ile location 191
Spring coniguration – SpringDispatcher-servlet.xml 191
Controllers in Spring MVC 192

The @Controller annotation to deine a controller 193
The @RequestMapping annotation to map requests 194

Mapping requests at the class level 195
Mapping requests at the method level 197

Properties information in @RequestMapping 198

Method parameters of @RequestMapping 199

Return values in @RequestMapping annotated methods 201

ViewResolver in Spring MVC 201

Coniguring ViewResolver for JSP as view technology 202
Model in Spring MVC 203

Spring MVC with Hibernate integration 204
Application architecture 204

Sample data model for example code 205
Project structure 207

The pom.xml ile 208
The hibernate.properties ile 211

The SpringDispatcher-servlet.xml ile 211
Hibernate model class – entity class 213

The DAO layer 215
The EmployeeDao interface 215
The EmployeeDao implementation 215

Table of Contents

[vi]

The service layer 216
The EmployeeService interface 217

The EmployeeService implementation 217

Spring MVC controller classes 218

The View page 219
The hello.jsp page 219

The employee.jsp page 220

The index.jsp page 221

Running the application 221

Exception handling using @ControllerAdvice 222

The GenericException class 223

The SpringException class 223

The EmployeeController class 225
The hello.jsp page 226

The exception.jsp page 227

Running the application 227

Spring MVC internationalization (i18n) 229

The properties ile 229
Spring coniguration 229

ReloadableResourceBundleMessageSource 229

LocaleChangeInterceptor 230

SessionLocaleResolver 230

The hello.jsp page 231

Running the application 231

Handling form with the controller 232

ModelAndView in Spring MVC 233

Spring MVC Controller class 234
@ModelAttribute in the controller class 234

ModelMap in the controller class 234

The View page 236

The Spring MVC form 238

Running the application 240

Exercise 243
Summary 243

Chapter 6: Spring Security 245
What is Spring Security? 246

Major operations 246

Servlet ilters review 247
Security use case 250

Spring Security coniguration 250
Spring Security setup 251

Adding JARs to the classpath 251
Spring Security dependencies – pom.xml 251

Table of Contents

[vii]

Namespace coniguration 252
Securing web application's URL access 252

The irst step – web.xml 252
Separating security conigurations 253

Logging into web application 255

HTTP basic authentication 256
Form-based login service 257
Logout service 259
Anonymous login 259
Remember Me support 260

Users authentication 260
Users authentication with in-memory deinitions 260
Users authentication against database 261

Encrypting passwords 263

Method-level security 264
Let's get down to business 265

Project structure 265
Adding ilters to web.xml 269
Resolving your view 270

Let's add a custom login 272

Mapping your login requests 273

Obtaining the employee list 273

Let's see some credentials 275
Time to log out 276

Running the application 276

Exercise 278

Summary 278

Chapter 7: Spring Testing 279

Testing using JUnit 4 280
JUnit 4 annotations 280

Assert methods 281

An example of JUnit 4 282

Testing using TestNG 284
TestNG annotations 284

Example of TestNG 285
Agile software testing 286

Unit testing 286
Unit testing for isolated classes 288

Unit testing for dependent class using mock objects 292

The Mockito framework 294

Integration testing 297

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Create unit tests of the Spring MVC controller 299

Spring MVC test framework 301

Required dependencies 302

Annotations in Spring testing 303
The @ContextConiguration annotation 304
The @WebAppConiguration annotation 304

MockMvc 304
Assertion 305

@RunWith(SpringJUnit4ClassRunner.class) 306

Exercise 308

Summary 308

Chapter 8: Integrating JavaMail and JMS with Spring 311

E-mail support in Spring 312
Introducing the JavaMail API 312

Using the JavaMail API 314

The Spring API for JavaMail 316

Developing a Spring Mail Application 318
Coniguration ile – Spring.xml 318
Spring's e-mail sender 319

The MailerTest class 320

Spring Java Messaging Service 321

What is a message and messaging? 321

What is JMS? 321

The JMS application 322
JMS components 322

MOM Service Provider 324
Coniguring ActiveMQ – message queue 324

The Spring bean coniguration (Spring.xml) 326
MessageSender.java – Spring JMS Template 328

App.java 328

Start ActiveMQ 329

Output 329

Monitoring the broker 330

Exception on running App.java 330

Exercise 331

Summary 331

Appendix A: Solutions to Exercises 333

Appendix B: Setting up the Application Database –
Apache Derby 349
Index 355

[ix]

Preface
The Spring Framework is a cutting-edge framework that provides comprehensive
infrastructure support for developing Java applications. The Spring Framework
handles the infrastructure so that you can focus on your application. It promotes
good programming practice by enabling a POJO-based programming model and also
provides a good way to structure your application into layers. It is the appropriate
time for you to understand how to best leverage the Spring Framework to create
high-performing, easily testable, reusable code when architecting, designing, and
developing large-scale Java development projects.

Some of you prefer learning by reading, while others prefer learning by coding. I believe
that learning by coding results in better learning, which is what I've done in this book.
There is plenty of example code and adequate textual description to help you grasp
each Spring Framework feature presented. From the very irst chapter, you will be
able to develop an application using the Spring Framework.

The Spring Framework is an ocean with a number of features. This book covers
a lot of commonly used features in applications and has taken care to present
code-based examples for every feature. The book is replenished with tons of
code and diagrams. Extra effort has been taken to present snapshots of the
libraries used in every example and output. For more information about this
book, visit http://learningspringapplicationdevelopment.com/

What this book covers
Chapter 1, Introducing the Spring Framework, helps you to understand the architecture
of Spring Framework and set up the key components of the Spring application
development environment. This chapter serves as a roadmap to the rest of the book.

Chapter 2, Inversion of Control in Spring, conigures the Spring Container and manages
Spring beans using XML. In this chapter, we take a look at the concepts of Inversion
of Control (IoC) and Dependency Injection.

http://learningspringapplicationdevelopment.com/

Preface

[x]

Chapter 3, DAO and JDBC in Spring, grants you access to data using the DAO design
pattern and Spring. Implement JDBC support and ORM support in the Spring
Framework. This chapter discusses how Spring manages data sources and which
data sources you can use in your applications.

Chapter 4, Hibernate with Spring, covers one of the object-relational mapping
(ORM) libraries that has wide support in Spring—Hibernate. It covers mapping
conigurations to map persistent classes and discusses how to conigure Hibernate
to work in a Spring application.

Chapter 5, Spring Web MVC Framework, lets you leverage the best of Spring web
controllers and the Spring form tag library to create a Spring MVC application.
It introduces Spring MVC and discusses how we can use the powerful features
provided by Spring MVC to develop high-performing web applications.

Chapter 6, Spring Security, allows you to secure your applications against malicious
intruders using Spring Security. It introduces Acegi Security System and discusses
how to secure web applications using Servlet ilters.

Chapter 7, Spring Testing, implements practical testing strategies using JUnit and
TestNG. It explains how unit tests work, focusing in particular on the JUnit framework.

Chapter 8, Integrating JavaMail and JMS with Spring, implements the Spring Mail
Application programming interface to send and receive e-mails. It introduces
Java Messaging Service (JMS) for asynchronous processing.

Chapter 9, Inversion of Control in Spring – Using Annotation, conigures Spring
beans and Dependency Injection using annotation. It covers annotation-based
Dependency Injection and life cycle annotation. It explains how to reference beans
using Spring Expression Language (SpEL), invoke methods using SpEL, and work
with operators in SpEL. It also covers the text messages and internationalization
provided by Spring, which we will learn to implement in our application. This is an
online chapter available at https://www.packtpub.com/sites/default/files/
downloads/7368OS_Chapter9.pdf.

Chapter 10, Aspect-oriented Programming with Spring, introduces you to aspect-oriented
programming. It shows you how and where to apply your aspects in your application
using Spring's powerful pointcut mechanism and discusses proxies in the Spring AOP.
This is an online chapter available at https://www.packtpub.com/sites/default/
files/downloads/7368OS_Chapter10.pdf.

Appendix A, Solutions to Exercises, provides solutions to all the exercises from every
chapter of this book.

https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf

Preface

[xi]

Appendix B, Setting up the Application Database – Apache Derby, teaches you how to set
up the Apache Derby Application Database.

Appendix C, Spring Form Tag Library, shows the Spring form tag library provided
by the Spring Web MVC framework. The Spring form tag library is a set of tags in
the form of a tag library, which is used to construct views (web pages). This is an
online appendix available at https://www.packtpub.com/sites/default/files/
downloads/7368OS_AppendixC.pdf.

What you need for this book
In this book, it is assumed that you have a good understanding of the Java
programming language, preferably version 1.6 or later, including the Java basic
APIs and syntax. You are also expected to have basic understanding of the JDBC
API, relational database, and SQL query language. For Chapter 5, Spring Web MVC
Framework, you should have a basic understanding of web development with Java,
including HTML, JSP, Servlet, and a web container such as Tomcat.

Who this book is for
This book is meant for those who are interested in learning Spring Framework;
prior knowledge of the Java programming and web applications is required. No
matter what role you play in your team, a developer, an architect, or a manager,
this text will help you gain truly applicable Spring skills in the most eficient and
relevant manner. It is good to have some XML knowledge, but an XML novice can
understand what's happening in this book without much dificulty. It is also good to
have enterprise development knowledge, but it is not mandatory. The chapters are
based on the core layer, data access layer, and web layer. A step-by-step approach is
followed for developing code examples, so it is easy for a beginner to understand the
application development.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This MailHelper class also contains the sendMail() method."

https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf

Preface

[xii]

A block of code is set as follows:

package org.packt.Spring.chapter10.mail;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class MailerTest

{

 public static void main(String[] args)

 {

 //Create the application context

 ApplicationContext context =

 new ClassPathXmlApplicationContext("Spring.xml");

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

@Configuration

@Import(ConfigA.class)

public class ConfigB {

 @Bean

 public HrService hrService() {

 return new HrService();

 }

}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on MainClass.java and navigate to Run As | Java Application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xiii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Introducing the

Spring Framework
In this chapter, we'll introduce you to the Spring Framework. We'll also summarize
some of the other features of Spring. We'll then discuss the Spring Architecture as
well as the beneits of the Spring Framework. We will create your irst application
in Spring and will look into understanding the packaging structure of the Spring
Framework. This chapter serves as a road map to the rest of this book.

The following topics will be covered in this chapter:

• Introducing Spring

• Spring Framework Architecture

• Benefits of the Spring Framework

• Creating a first application in Spring

Spring is an open source framework, which was created by Rod Johnson.
He addressed the complexity of enterprise application development and described
a simpler, alternative approach in his book Expert One-on-One J2EE Design and
Development, Wrox.

Spring is now a long-time de-facto standard for Java enterprise software development.
The framework was designed with developer productivity in mind, and it makes it
easier to work with the existing Java and Java EE APIs. Using Spring, we can develop
standalone applications, desktop applications, two-tier applications, web applications,
distributed applications, enterprise applications, and so on.

Introducing the Spring Framework

[2]

As the title implies, we introduce you to the Spring Framework and then explore
Spring's core modules. Upon inishing this chapter, you will be able to build a
sample Java application using Spring. If you are already familiar with the Spring
Framework, then you might want to skip this chapter and proceed straight to
Chapter 2, Inversion of Control in Spring.

Introducing Spring
Spring is a lightweight Inversion of Control (IoC) and aspect-oriented container
framework. Historically, it was created to alleviate the complexity of the then J2EE
standard, often giving an alternative model. Any Java EE application can beneit
from the Spring Framework in terms of simplicity, loose coupling, and testability.

It remains popular due to its simple approach to building applications. It also
offers a consistent programming model for different kinds of technologies, be they
for data access or messaging infrastructure. The framework allows developers to
target discrete problems and build solutions speciically for them.

The Spring Framework provides comprehensive infrastructure support for
developing Java EE applications, where the Spring Framework handles the
infrastructure and so developers can focus on application development.

Considering a scenario of JDBC application without using the Spring Framework,
we have a lot of boilerplate code that needs to be written over and over again to
accomplish common tasks. Whereas in Spring JDBC application, which internally
uses plain JDBC, the JdbcTemplate class eliminates boilerplate code and allows
the programmer to just concentrate on application-speciic logics development.

• For a plain JDBC application without Spring, follow these steps:

1. Register driver with the DriverManager service.

2. Establish a connection with the database.

3. Create a statement object.

4. Prepare and execute an SQL query.

5. Gather and process the result.

6. Perform exception handling.

7. Perform transaction management.

8. Close JDBC object.

Chapter 1

[3]

• For a Spring JDBC application (internally uses plain JDBC), follow these steps:

1. Get access to JdbcTemplate.

2. Prepare and execute an SQL query.

3. Gather and process the result.

Spring's main aim is to promote good programming practice such as coding to
interfaces and make Java EE easier to use. It does this by enabling a Plain Old Java
Object (POJO)-based programming model, which can be applicable in a wide range
of development environments.

Technically, a POJO is any ordinary object that should not implement pre-speciied
interface or extend pre-speciied class or contains annotation.

The following is the code for the POJOClass.java class:

package com.packt.spring.chapter1;

/* This is a simple Java Class – POJO */

public class POJOClass {

 private String message;

 public String getMessage() {

 return this.message;

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

In the preceding code snippet, we have POJOClass containing a ield and
corresponding getter and setter methods. This class is a POJO class as it is
not extending or implementing any class or predeined interface of Spring API.

Spring is modular, allowing you to use only those parts that you need, without
having to bring in extra complexity. The Spring Framework can be used either for all
layer implementations or for the development of particular layer of an application.

www.allitebooks.com

http://www.allitebooks.org

Introducing the Spring Framework

[4]

Features of Spring
The Spring Framework contains the following features:

• Lightweight: Spring is described as a lightweight framework when it comes to
size and transparency. A lightweight framework helps in reducing complexity
in application code. It also helps in avoiding unnecessary complexity in its own
functioning. A lightweight framework won't have a high startup time and will
run in any environment. A lightweight framework also won't involve huge
binary dependencies.

• Non-intrusive: This means that your domain logic code has no
dependencies on the framework itself. The Spring Framework is
designed to be non-intrusive. The object in a Spring-enabled application
typically has no dependencies on any predefined interface or class given
by Spring API. Thus, Spring can configure application objects that don't
import Spring APIs.

• Inversion of Control (IoC): Spring's container is a lightweight container that
contains Spring beans and manages their life cycle. The core container of the
Spring Framework provides an implementation for IoC supporting injection.
IoC is an architectural pattern that describes the Dependency Injection needs
to be done by external entity rather than creating the dependencies by the
component itself. Objects are passively given their dependencies rather
than creating dependent objects for themselves. Here, you describe which
components need which service, and you don't directly connect your services
and components together in your code. Let's consider an example: we have
two classes Zoo and Animal, where Zoo has an object of Animal:

 ° Without Dependency Injection: This is a common way to instantiate
an object is with a new operator. Here, the Zoo class contains the
object Animal that we have instantiated using a new operator, as
shown in the following screenshot:

Chapter 1

[5]

 ° With Dependency Injection: Here, we supply the job of instantiating
to a third party, as shown in following screenshot. Zoo needs the object
of Animal to operate, but it outsources instantiation job to some third
party that decides the moment of instantiation and the type to use in
order to create the instance. This process of outsourcing instantiation
is called dependency injection.

The Spring Framework promotes loose coupling by using the technique
known as IoC. We'll talk more about IoC in Chapter 2, Inversion of Control
in Spring.

• Aspect-oriented Programming (AOP): This refers to the programming
paradigm that isolates supporting functions from the main program's
business logic. It allows a developer to build the core functionality of
a system without being aware of additional requirements.

AOP is used in the Spring Framework to provide declarative aspects
such as transactions and security. Here, application objects perform
business logic and are not responsible for other system concerns such
as logging, security, auditing, locking, and event handling. AOP is
a method of applying middleware services such as security service,
and transaction management service on Spring's application.

Introducing the Spring Framework

[6]

Let's consider a payroll management application where there will be
Employee Service, HR Service, and Payroll Service, as shown in the
following figure, which will perform some functional requirement to
the system such as add/update employee details, remove employee,
browse employee details, and much more. While implementing business
functionality, this type of application would also require nonfunctional
capabilities such as role-based access and logging details. AOP leaves an
application component to focus on business functionality. Here, the core
application implements the business functionality and is covered with
layers of functionality provided by AOP for security, logging, and
transaction management.

Aspects can be added or removed as needed without changing your code.
Spring aspects can be configured using its own IoC container. Spring AOP
includes advisors that contain advice and pointcut filtering.

• JDBC exception handling: The JDBC abstraction layer of the Spring
Framework provides an exception hierarchy. It shortens the error handling
strategy in JDBC. This is one of the areas where Spring really helps in reducing
the amount of boilerplate code we need to write in the exception handling.
We'll talk more on Spring JDBC in Chapter 3, DAO and JDBC in Spring.

• Spring MVC Framework: This helps in building robust and maintainable web
applications. It uses IoC that provides separation of controller logic. Spring
MVC Framework, which is a part of the Spring Framework licensed under the
term of Apache license, is an open source web application framework. Spring
MVC Framework offers utility classes to handle some of the most common
tasks in web application development. We'll discuss more about Spring Web
MVC Framework in Chapter 5, Spring Web MVC Framework.

Chapter 1

[7]

• Spring Security: This provides a declarative security mechanism for
Spring-based applications, which is a critical aspect of many applications.
We'll add Spring Security to our web applications in Chapter 6, Spring Security.

Other features of Spring
The following are the other features provided by the Spring Framework:

• Spring Web Services: This provides a contract-first web services model,
whereby service implementations are written to satisfy the service contract.
For more information, check out http://static.springsource.org/
spring-ws/sites/2.0.

• Spring Batch: This is useful when it's necessary to perform bulk operations
on data. For more information, refer to http://static.springsource.org/
spring-batch.

• Spring Social: Social networking, nowadays, is a rising trend on the
Internet, and more and more applications such as Facebook and Twitter
are being outfitted with integration into social-networking sites. To know
more, have a look at http://www.springsource.org/spring-social.

• Spring Mobile: Mobile applications are another significant area of
software development. Spring Mobile supports development of mobile
web applications. More information about Spring Mobile can be found
at http://www.springsource.org/spring-mobile.

Evolution of the Spring Framework
The Spring Framework is an open source framework that has multiple versions
released with the latest one being 4.x. The different versions of the Spring Framework
are as follows:

• Spring Framework 1.0: This version was released on March 2004, and the
first release was Spring Framework 1.0 RC4. The final and stable release was
Spring Framework 1.0.5. Spring 1.0 was a complete Java/J2EE application
framework, which covered the following functionalities:

 ° Spring Core: This is a lightweight container with various setter
and constructor injection

 ° Spring AOP: This is an Aspect-oriented Programming (AOP)
interception framework integrated with the core container

 ° Spring Context: This is an application context concept to provide
resource loading

http://static.springsource.org/spring-ws/sites/2.0
http://static.springsource.org/spring-ws/sites/2.0
http://static.springsource.org/spring-batch
http://static.springsource.org/spring-batch
http://www.springsource.org/spring-social
http://www.springsource.org/spring-mobile

Introducing the Spring Framework

[8]

 ° Spring DAO: This is a generic DAO support that provides access
to a generic data exception hierarchy with any data access strategy

 ° Spring JDBC: This is a JDBC abstraction shorten error and
resource handling

 ° Spring ORM: This is a hibernate support SessionFactory
management

 ° Spring Web: This web MVC Framework integrates various
view technologies

• Spring Framework 2.X: The Spring Framework 2.0 was released in October
2006 and Spring 2.5 was released in November 2007. The Spring Framework
2.x release was based around two themes: simplicity and power. This
provides you with the following features:

 ° Improvements in the IoC container and AOP, including the @AspectJ
annotation support for AOP development

 ° Introduction of bean configuration dialects

 ° XML-based configuration is reduced and XML schema support and
custom namespace is introduced

 ° Annotation-driven configuration that requires component scanning
to auto-detect annotated components in the classpath using
annotations such as @Component or specialized annotations such as
@Repository, @Service, and @Controller

 ° Introduces annotations such as @RequestMapping, @RequestParam,
and @ModelAttribute for MVC controllers

• Spring Framework 3.0: This version was released in December 2009. It makes
the entire Spring code base to take advantage of the Java 5.0 technology.
This provides you with the following features:

 ° Supports REST in Spring MVC, which is one of the beautiful
additions to the Spring Framework itself.

 ° Introduces new annotations @CookieValue and @RequestHeader
for pulling values from cookies and request headers, respectively.
It also supports new XML namespace that makes easier to configure
Spring MVC.

 ° Task scheduling and asynchronous method execution with
annotation support is introduced to this version.

Chapter 1

[9]

 ° Spring Framework 3.0.5 is the latest update release, which was
released on October 20, 2010. The Hibernate version 3.6 final is
supported by this Spring release.

• Spring Framework 3.1: This version was released in December 2011.
This release introduced many new exciting features that are related
to cache abstraction, bean definition profiles, environment abstraction,
PropertySource abstraction, and a lot more. This provides you with
the following features:

 ° Introduces Cache Abstraction to add caching concept to any existing
application using @Cacheable annotation.

 ° Introduces annotation called @Profile, which is used while applying
configuration classes.

 ° Introduces PropertySource that is an abstraction performed over
any different source of the key-value pairs. In DefaultEnvironment,
there are two configured PropertySource objects: System.
getProperties() and System.getenv().

 ° Hibernate 4.x is supported by this release through Java Persistence
API (JPA). With this release, the JPA EntityManagerFactory can be
bootstrapped without persistence.xml or other metadata files.

 ° Introduces @RequestPart annotation to provide access to multipart
form-data content on the controller method arguments.

 ° Introduces the c:namespace to support constructor injection.

• Spring Framework 3.2.x: This version was released in November 2013.
This release introduced the following new features and enhancements
to earlier features:

 ° Servlet 3-based asynchronous request processing is supported in
this release.

 ° Supports Java 7 features.

 ° Testing of Spring MVC applications without a Servlet container
is supported in this release. Here, DispatcherServlet is used for
server-side REST tests and RestTemplate for client-side REST tests.

 ° ContentNegotiationStrategy is introduced to resolve the
requested media types from an incoming request. It also supports
Jackson JSON 2 library.

Introducing the Spring Framework

[10]

 ° Method annotated with @ExceptionHandler, @InitBinder,
and @ModelAttribute can be added to a class annotated with
the @ControllerAdvice annotation.

 ° The @MatrixVariable annotation for extracting matrix variables
from the request URI is introduced.

 ° The @DateTimeFormat annotation to remove dependency on the
Joda-Time library is introduced.

• Spring Framework 4.x: This version supports a few new features.
Improvements in Spring 4.X include support for Java SE 8, Groovy 2, and
a few aspects of Java EE7. This provides you with the following features:

 ° Supports external bean configuration using a Groovy DSL

 ° Auto-wiring is based on generic types

 ° Introduces the @Description annotation

 ° Introduces @Conditional that can conditionally filter the beans.

 ° Introduces the @Jms annotation to support annotation-driven endpoint

 ° Catching support is revisited, provided CacheResolver to resolve
caches at runtime

 ° Added new testing features such as SQL Script execution, bootstrap
strategy, and so on

 ° Added lightweight messaging and WebSocket-style architectures

Spring Framework Architecture
Spring packaging is modular, allowing you to pick and choose the modules that
are applicable to you, without any need to bring in the rest. The following section
gives you a detailed explanation about different modules available in the Spring
Framework. The following igure shows you a complete overview of the framework
and modules supported by the Spring Framework:

Chapter 1

[11]

Spring Core Container
Spring Core Container consists of the core, beans, context, and expression language
modules, as shown in the preceding igure. Let's discuss these in detail as follows:

• Core module: This module of Spring Core Container is the most important
component of the Spring Framework. It provides features such as IoC and
Dependency Injection. The idea behind IoC is similar to the Hollywood
principle: "Don't call me, I'll call you." Dependency Injection is the basic
design principle in Spring Core Container that removes explicit dependence
on container APIs.

Introducing the Spring Framework

[12]

• Beans module: The bean module in Spring Core Container provides
BeanFactory, which is a generic factory pattern that separates the
dependencies such as initialization, creation, and access of the objects
from your actual program logic. BeanFactory in Spring Core Container
supports the following two scopes modes of object:

 ° Singleton: In singleton, only one shared instance of the object with a
particular name will be retrieved on lookup. Spring singleton returns
a same bean instance per Spring IoC container. Each time you call
getBean() on ApplicationContext, Spring singleton returns the
same bean instance.

 ° Prototype or non-singleton: In prototype, each retrieval results in
the creation of a brand new instance. Each time you call getBean()
on ApplicationContext, Spring prototype creates a separate
bean instance.

• Context module: An ApplicationContext container loads Spring bean
definitions and wires them together. The ApplicationContext container
is the focal point of the Context module. Hierarchical context is also one
of the focal points of this API. ApplicationContext supports the Message
lookup, supporting internationalization (i18N) messages.

• Expression language: Spring Expression Language (SpEL) is a powerful
expression language supporting the features for querying and manipulating
an object graph at runtime. SpEL can be used to inject bean or bean property
in another bean. SpEL supports method invocation and retrieval of objects
by name from IoC container in Spring.

The AOP module
Spring's Aspect-oriented Programming (AOP) module is one of the main
paradigms that provide an AOP implementation. Spring AOP module is a
proxy-based framework implemented in Java. The Spring Framework uses
AOP for providing most of the infrastructure logic in it.

AOP is a mechanism that allows us to introduce new functionalities into an existing
code without modifying it design. AOP is used to weave cross-cutting aspects into the
code. The Spring Framework uses AOP to provide various enterprise services, such as
security in an application. The Spring AOP framework is conigured at runtime.

Spring integrates with AspectJ, which is an extension of AOP. AspectJ lets
programmers deine special constructs called Aspects, which contains several
entities unavailable to standard classes.

Chapter 1

[13]

Data access/integration
Spring's data access addresses common dificulties developers face while working
with databases in applications.

• JDBC module: The Spring Framework provides solution for various
problems identified using JDBC as low-level data access. The JDBC
abstraction framework provided under the Spring Framework removes
the need to do tedious JDBC-related coding. The central class of Spring
JDBC abstraction framework is the JdbcTemplate class that includes the
most common logic in using the JDBC API to access data such as handling
the creation of connection, statement creation, statement execution, and
release of resource. The JdbcTemplate class resides inside the org.
springframework.jdbc.core package.

• ORM module: The Object-relational mapping (ORM) module of the Spring
Framework provides a high-level abstraction for ORM APIs, including JPA
and Hibernate. Spring ORM module reduces the complexity by avoiding the
boilerplate code from application.

• OXM module: Spring OXM module stands for Spring Object XML Mappers,
which supports Object/XML mapping. It also supports integration with
Castor, JAXB, XmlBeans, and the XStream framework.

Most applications need to integrate or provide services to other applications.
One common requirement is to exchange data with other systems, either on
a regular basis or in real time. In terms of the data format, XML is the most
commonly used format. As a result, there exists a common need to transform
a JavaBean into XML format and vice versa.

Spring supports many common Java-to-XML mapping frameworks
and, as usual, eliminates the need for directly coupling to any specific
implementation. Spring provides common interfaces for marshalling
(transforming JavaBeans into XML) and unmarshalling (transforming
XML into Java objects) for DI into any Spring beans. Spring also has
modules to convert data to and from JSON, in addition to OXM.

• JMS module: The Java Messaging Service (JMS) module comprises
features to produce and consume messages. It is a Java Message Oriented
Middleware (MOM) API for sending messages between two or more clients.
JMS is a specification that describes a common way for Java program to
create, send, and read distributed enterprise messages.

 ° Spring Java mail: The org.springframework.mail package is the
root package that provides mail support in the Spring Framework.
It handles electronic mail.

www.allitebooks.com

http://www.allitebooks.org

Introducing the Spring Framework

[14]

• Transaction module: The Spring transaction module provides abstraction
mechanism to supports programmatic and declarative transaction
management for classes.

The Web module
The Web module consists of the Web, Servlet, Struts, and Portlet modules.

• Web module: The Spring Web module builds on the application
context module and includes all the support for developing robust
and maintainable web application in a simplified approach. It also
supports multipart file-upload functionality.

• Servlet module: In Spring, the Servlet module contains Model-View-
Controller (MVC) implementation that helps to build enterprise web
applications. In Spring Framework, the MVC provides clean separation
between binding request parameter, business objects, and controller logic.

• Struts module: The Web Struts module supports integration of Struts
Web tier within a Spring application. It also supports configuration of
Struts Actions using Spring Dependency Injection.

• Portlet module: Spring Portlet supports for easier development of web
application using Spring. Portlet is managed by the Portlet container,
similar to the web container. Portlet is used in the UI layer for displaying
contents from data source for end user.

The Test module
In the Spring Framework, the Test module helps to test applications developed using
the Spring Framework, either using JUnit or TestNG. It also helps in creating mock
object to perform unit testing in isolation. It supports running integration tests outside
the application server. We'll look at Spring's Test module in Chapter 7, Spring Testing.

Beneits of the Spring Framework
The following is the list of a few great beneits of using the Spring Framework:

• Spring is a powerful framework, which address many common problems
in Java EE. It includes support for managing business objects and exposing
their services to presentation tier component.

• It facilitates good programming practice such as programming using
interfaces instead of classes. Spring enables developers to develop
enterprise applications using POJO and POJI model programming.

Chapter 1

[15]

• It is modular, allowing you to use only those parts that you need. It allows
us to just choose any part of it in isolation.

• It supports both XML- and annotation-based configuration.

• Spring provides a lightweight container that can be activated without
using web server or application server software.

• It gives good support for IoC and Dependency Injection results in
loose coupling.

• The Spring Framework supports JDBC framework that improves
productivity and reduces the error.

• It provides abstraction on ORM software to develop the ORM persistence logic.

• The Spring Web MVC framework provides powerful and a flexible Web
framework as an alternative to Struts and other framework.

• The Spring Test module provides support for an easy-to-test code.

Creating an application in Spring
Before we create an application in Spring, irst we need to obtain Spring Library.
We can download the Spring distribution ZIP iles that are available in the Spring
Maven Repository. Else, we can simply add the dependencies for Spring into
project's pom.xml ile whenever we use Maven for application development.

Spring packaging is modular, allowing you to pick and choose the component
you want to use in your application. Spring comes with a large selection of
sample applications that can be referred while building your application.

Obtaining Spring JAR iles
• Downloading Spring distribution ZIP files: The complete Spring Framework

library can be downloaded by opening the link http://repo.spring.io/
release/org/springframework/spring/ and selecting the appropriate
subfolder for the version needed for your application development.
Distribution ZIP files end with dist.zip, for example, spring-framework-
4.1.4.RELEASE-dist.zip.

While writing this book, the latest version was
Spring Framework 4.1.4.

Download the package and extract it. Under the lib folder, you will find a
list of Spring JAR files that represents each Spring module.

http://repo.spring.io/release/org/springframework/spring/
http://repo.spring.io/release/org/springframework/spring/

Introducing the Spring Framework

[16]

• Checking Spring out of GitHub: You can check out the latest version of
code from Spring's GitHub repository at https://github.com/spring-
projects/spring-framework.

To check out the latest version of the Spring code, first install Git
from http://git-scm.com/, open the Git Bash tool, and run the
following command:

git clone https://github.com/spring-projects/spring-framework

Understanding Spring packaging
After extracting the downloaded Spring Framework ZIP ile, you will get the
directory structure, as shown in the following screenshot:

The spring-framework-4.14.RELEASE folder, as shown in the preceding screenshot,
contains docs, libs, and schema subfolders. The lib folder contains the Spring JAR
iles, as shown in the following screenshot:

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
http://git-scm.com/

Chapter 1

[17]

Shown in the preceding screenshot is a list of JAR iles required while
developing applications using Spring. You can ind more details on these
JAR iles at http://www.learnr.pro/content/53560-pro-spring/40
and http://agile-hero.iteye.com/blog/1684338.

SpringSource Tool Suite
SpringSource Tool Suite (STS) is a powerful Eclipse-based development
environment for developing Spring application. The latest version of STS can
be downloaded from http://spring.io/tools/sts. We will use STS IDE for
all our examples in this book. The following screenshot shows a snapshot of an
STS dashboard:

Let's now create a simple Spring application using Spring STS.

http://www.learnr.pro/content/53560-pro-spring/40
http://agile-hero.iteye.com/blog/1684338
http://spring.io/tools/sts

Introducing the Spring Framework

[18]

The Spring application
With basic understanding of the Spring Framework, we can now create a simple
Spring application example. All the examples in this book have been written using
the STS IDE.

We will write a simple Spring application that will print greeting message to user.
Do not worry if you do not fully understand all the code in this section; we'll go into
much more detail on all the topics as we proceed through this book.

Creating a Spring project
The following steps will help you create your Spring project in STS:

1. The irst step in creating a Spring application is to create a new Spring
project in the STS IDE. Navigate to File | New | Spring Project, as shown
in the following screenshot:

2. Name your Spring project SimpleSpringProject and select the Simple Java
template, which creates a Simple Spring project using the Java build without
a top-level package and with default Spring coniguration and project
natures, as shown in the following screenshot:

Chapter 1

[19]

3. Then, click on Finish, which will create the project in a workspace.

Introducing the Spring Framework

[20]

Adding required libraries
Let's add the basic Spring JAR iles to the build path of this Spring project:

1. Add the Spring Framework libraries and common logging API libraries
to your project. The common login library can be downloaded from
http://commons.apache.org/proper/commons-logging/download_

logging.cgi. To add required libraries, right-click on the project named
SimpleSpringProject and then click on the available options in the context
menu, that is, Build Path | Conigure Build Path to display the Java Build
Path window, as shown in the following screenshot:

2. Now, use the Add External JARs button from the Libraries tab in order to
include the following core JARs from the Spring Framework and common
logging installation directories:

 ° spring-aop-4.1.4.RELEASE

 ° spring-aspects-4.1.4.RELEASE

 ° spring-beans-4.1.4.RELEASE

 ° spring-context-4.1.4.RELEASE

http://commons.apache.org/proper/commons-logging/download_logging.cgi
http://commons.apache.org/proper/commons-logging/download_logging.cgi

Chapter 1

[21]

 ° spring-context-support-4.1.4.RELEASE

 ° spring-core-4.1.4.RELEASE

 ° spring-expression-4.1.4.RELEASE

 ° commons-logging-1.2

The Libraries tab is as shown in the following screenshot:

Introducing the Spring Framework

[22]

Now, you will have the content in your Project Explorer, as shown in the
following screenshot:

Creating source iles
Now let's create the actual source iles under the SimpleSpringProject project:

1. First, create the packages named org.springframework.chapter1.service
and org.springframework.chapter1.main, as shown in the following
screenshot. To do this, right-click on src in package explorer section and
navigate to New | Package.

Chapter 1

[23]

2. Create a class called MainClass.java inside the org.springframework.
chapter1.main package. Then, create an interface named
GreetingMessageService.java and its implementation class
GreetingMessageServiceImpl.java inside the package org.
springframework.chapter1.service, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Introducing the Spring Framework

[24]

The following is the content of interface GreetingMessageService.java and its
implementation GreetingMessageServiceImpl.java:

• GreetingMessageService.java:

package org.springframework.chapter1.service;

public interface GreetingMessageService {

 public String greetUser();

}

• GreetingMessageServiceImpl.java:

package org.springframework.chapter1.service;

import org.springframework.stereotype.Service;

@Service

public class GreetingMessageServiceImpl implements
GreetingMessageService {

 public String greetUser() {

 return "Welcome to Chapter-1 of book Learning
Spring Application Development";

 }

}

The GreetingMessageService interface has a greetUser() method. The
GreetingMessageServiceImpl class implements the GreetingMessageService
interface and provides deinition to the greetuser() method. This class is annotated
with the @Service annotation, which will deine this class as service class.

Downloading the example code
You can download the example code iles from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the iles e-mailed directly to you.

The following is the content of the ile MainClass.java:

package org.springframework.chapter1.main;

import org.springframework.chapter1.service.
GreetingMessageService;

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[25]

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class MainClass {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "beans.xml");

 GreetingMessageService greetingMessageService =
context.getBean(

 "greetingMessageServiceImpl",
GreetingMessageService.class);

 System.out.println(greetingMessageService.greetuser());

 }

}

In MainClass.java, we are creating ApplicationContext using framework API,
as shown in the following:

ApplicationContext context = new ClassPathXmlApplicationContext(

 "beans.xml");

This API loads Spring beans coniguration ile named beans.xml, which takes care
of creating and initializing all the bean objects. We use the getBean() method of the
created ApplicationContext to retrieve required Spring bean from the application
context, as shown in the following:

GreetingMessageService greetingMessageService = context.getBean(

 "greetingMessageServiceImpl", GreetingMessageService.class);

The getBean() method uses bean ID and bean class to return a bean object.

Creating the Spring bean coniguration ile
The Spring bean coniguration ile is used to conigure the Spring beans in the Spring
IoC container. As we have annotated the GreetingMessageServiceImpl class with
@Service annotation, the next step is to add <context:component-scan> in the
bean coniguration ile. To do this, follow these steps:

1. Create a Spring Bean Coniguration ile under the src directory. To do this,
right-click on src in package explorer section and then navigate to New |
Spring Bean Coniguration File.

Introducing the Spring Framework

[26]

2. Enter the bean name beans and click on Next, as shown in the
following screenshot:

Chapter 1

[27]

3. Select the context option and click on Finish, as shown in the
following screenshot:

4. Now the Spring bean coniguration ile is created. Add the following code
to create an entry. The contents of the beans.xml ile are as follows:
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Introducing the Spring Framework

[28]

 xmlns:context="http://www.springframework.org/schema/
context"

 xsi:schemaLocation="http://www.springframework.org/
schema/beans

 http://www.springframework.org/schema/beans/spring-
beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-
context-4.1.xsd">

 <context:component-scan base-
package="org.springframework.chapter1.service"/>

</beans>

When the Spring application gets loaded into the memory, in order to create all
the beans, the framework uses the preceding coniguration ile, as shown in the
following screenshot:

The Spring bean coniguration ile can be named anything, but developers usually
keep the name beans.xml. This Spring bean coniguration ile should be available
in classpath.

The S in the upper-right corner of the project icon indicates
it is a Spring Project.

Running the program
Once you are done with creating source iles and beans coniguration iles, you are
ready for the next step, that is, compiling and running your program.

Chapter 1

[29]

To execute the example, run the MainClass.java ile. Right-click on MainClass.java
and navigate to Run As | Java Application. If everything goes ine, then it will print
the following message in STS IDE's console, as shown in the following screenshot:

We have successfully created our irst Spring application, where you learned how to
create the Spring project and executed it successfully. We will see detailed examples
in the next chapter.

Exercise
Q1. What is Spring?

Q2. List some of the features of Spring.

Q3. Explain different modules in the Spring Framework.

The answers to these are provided in Appendix A, Solution to Exercises.

Summary
In this chapter, you were introduced the Spring Framework and acquainted with its
features. You took a look at the versions of Spring. Then, you studied the architecture,
and different modules in the Spring Framework such as the Spring Core Container,
Spring AOP, Spring data access/integration, and the Spring Web module and Test
module. You also understood the beneits of the Spring Framework. Finally, you
created an application in Spring and took a look on package structure of Spring.

In the next chapter, we'll explore IoC, Dependency Injection, and Spring Core
Container service. We'll also see bean's life cycle and bean's scope.

[31]

Inversion of Control in Spring
In this chapter, we'll explore the concept of Inversion of Control (IoC). We'll then
explore Spring Core Container, BeanFactory, and ApplicationContext, and you
will learn how to implement them. We will take a look at Dependency Injection (DI)
in Spring and their types: setter and constructor. We will wire beans using setter- and
constructor-based Dependency Injection for different data types. We will also go
through bean deinition inheritance in Spring. We will then see autowiring in Spring
and their modes. We will also see Spring bean's scope and its implementation. Then,
we will move on to the life cycle of Spring bean.

The following is a list of topics that will be covered in this chapter:

• Understanding IoC

• Spring Container

• BeanFactory

• ApplicationContext

• Dependency Injection

• Constructor-based Dependency Injection

• Setter-based Dependency Injection

• Bean definition inheritance

• Autowiring in Spring

• Bean's scope

• Singleton

• Prototype

• Request

• Session

• Global-session

Inversion of Control in Spring

[32]

• Spring bean life cycle

• Initialization callback

• Destruction callback

Let's understand Inversion of Control.

Understanding Inversion of Control
In software engineering, IoC is a programming technique in which object coupling is
bound at runtime by an assembler object and is usually not known at compile time
using static analysis.

IoC is a more general concept, whereas DI is a concrete design pattern.

IoC is a way of thinking; a mechanism is required to activate components that
provide speciic functionality, due to which IoC depends on DI. The IoC pattern
inverts responsibility of the managing the life cycle from the application to the
framework, which makes writing Java applications even easier. IoC makes your
code more manageable, more testable, and more portable. IoC also keeps component
dependencies, life cycle events, and coniguration outside of the components.

Consider the following example: we have a Car class and a Vehicle class object.
The biggest issue with the code is tight coupling between classes. In other words,
the Car class depends on the vehicle object. So, for any reason, changes in the
Vehicle class will lead to the changes in, and compilation of, the Car class too.

So let's put down the problems with this approach:

• The biggest problem is that the Car class controls the creation of the
vehicle object

• The Vehicle class is directly referenced in the Car class, which leads
to tight coupling between the car and vehicle objects

The following igure illustrates this:

Chapter 2

[33]

If, for any reason, the vehicle object is not created, the whole Car class will fail in
the constructor initialization stage. The basic principle of IoC stands on the base of
the Hollywood principle: Do not call us; we'll call you.

In other words, it's like the Vehicle class saying to the Car class, "don't create me,
I'll create myself using someone else".

The IoC framework can be a class, client, or some kind of IoC container. The IoC
container creates the vehicle object and passes this reference to the Car class,
as shown here:

What is a container
In software development terminology, the word "container" is used to describe
any component that can contain other components inside it. For example, Tomcat
is a web container to contain deployed WAR iles. JBoss is an application server/
container; it contains an EJB container, web container, and so on.

The container irst creates the objects and then wires them together, after
which it moves on to conigure them, and inally manage their complete life cycle.
It identiies the object dependencies, creates them, and then injects them into the
appropriate objects.

www.allitebooks.com

http://www.allitebooks.org

Inversion of Control in Spring

[34]

So, we can think about a container as an intermediate who'll register vehicle and
car objects as separate entities, create the vehicle and car objects, and inject the
vehicle object into car.

Spring Container
Spring Container is the central component of the Spring Framework. Spring
Container manages the life cycle of an application's bean, which will live within
Spring Container. Spring Container is responsible for wiring an application's beans
by associating different beans together. Spring Container manages the components
of applications using DI. The coniguration metadata, which can be represented in
XML, Java annotations, or Java code, helps Spring Container to decide the object to
initiate, conigure, and assemble.

Let's take an example of Tomcat, which is a Servlet container. Tomcat creates the
Servlet objects, which are required in order to run an application. While deploying
an application, we conigure all Servlets in an XML ile. Tomcat reads this XML ile,
identiies the Servlet to be instantiated, and then creates the identiied Servlet.

Spring is a container but not a container of Servlet. It is a container of beans and
behaves as a factory of beans. So, we can have Spring Container and we can have as
many objects as we want, as shown in the following diagram. Also, all these objects
are managed by Spring Container. The container handles the instantiation of object,
their whole life cycle, and inally their destruction too:

Chapter 2

[35]

Beans
Beans are reusable software components that are managed by the Spring IoC
container. It contains the properties, setter, and getter methods of a class.

The Spring IoC container is represented by the interface org.springframework.
context.ApplicationContext, which is responsible for instantiating, coniguring,
and assembling beans. Beans are relected in the coniguration metadata used by
a container. The coniguration metadata deines the instruction for the container
and the objects to instantiate, conigure, and assemble. This coniguration metadata
can be represented in XML, Java annotations, or Java code. In this chapter, we will
conigure using XML, which has been the traditional format to deine coniguration
metadata. Refer to Chapter 9, Inversion of Control in Spring – Using Annotation, which
is available online, on instructing the container to use Java annotations by providing
a small amount of the XML coniguration.

XML-based bean coniguration
The bean coniguration information is stored in an XML ile, which is used to create
a bean deinition using the <bean>...</bean> element. The bean deinition contains
the following metadata, which represents the coniguration information of a bean:

• A fully qualified class name that represents bean name

• The behavioral configuration elements, such as scope, life cycle, and so on,
describe the bean's behavior in the Spring IoC container.

The following code snippet shows the basic structure of the XML coniguration of
the metadata:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="..." class="...">

 <!-- configuration for this bean here -->

 </bean>

 <!-- more bean definitions here -->

</beans>

Inversion of Control in Spring

[36]

The coniguration iles have <beans> as the root element. The beans element has all
other individual beans conigured using the <bean> tag. Every <bean> tag needs
to specify a class attribute and can have an optional ID or name attribute. The ID
attributes enforce uniqueness in naming the beans. The class attribute has the fully
classiied class name; for example, the src.org.packt.Spring.chapter2.Employee
class can be conigured as follows:

...

<bean id="employeeBean"

 class="src.org.packt.Spring.chapter2.Employee">

 </bean>

 ...

A reference of the Employee class instance is returned when the coniguration ile is
loaded using the BeanFactory or ApplicationContext container, and employeeBean
is accessed using the getBean (employeeBean) method. The Spring IoC container
is responsible for instantiating, coniguring, and retrieving your Spring beans.
The Spring IoC container enforces DI in its various forms and employs a number
of established design patterns to achieve this.

Spring provides the following two interfaces that act as containers:

• BeanFactory: This is a basic container, and all other containers
implement BeanFactory.

• ApplicationContext: This refers to the subinterface of BeanFactory
and is mostly used as a container in enterprise applications.

To instantiate Spring Container, create an object of any of the BeanFactory
or ApplicationContext implementation classes that supply the Spring bean
coniguration. The basic packages in the Spring IoC container of the Spring
Framework are org.springframework.beans and org.springframework.context.
An advanced coniguration mechanism is provided by the BeanFactory interface
to manage any type of object. The ApplicationContext interface implements
the BeanFactory interface, which provides enterprise-speciic functionality and
supports message-resource handling, Spring's AOP features, event publication,
and WebApplicationContext for use in web applications.

Chapter 2

[37]

Both the containers, BeanFactory and ApplicationContext, are responsible for
providing DI. For all the conigured beans, these containers act as a repository.
These containers initiate a registered bean, populate the bean's properties, and call
the init() method to make the bean ready for use. The destroy() method of bean
is invoked during the shutdown of the application. The init() and destroy()
methods relect the Servlet life cycle, where initialization can be performed during
the init() method and cleanup during the destroy() method.

BeanFactory
Spring creates all the instances, along with the references to the objects you require.
This is different from when you create an instance yourself with the help of the new
method. This is called a factory pattern.

What is a factory pattern?
In a factory pattern, we have an object that behaves as the object factory. Basically,
if you need an instance of any object, you don't have to create the instance yourself.
Instead, you call a method of this factory, which then returns the instance you
wanted. This factory reads from a coniguration ile, which acts as a blueprint that
contains guidelines on how we can create the object.

Assume that we have an object Foo and instead of creating a new object Bar, we
make a call to another Java object, which is a Factory object. The job of the Factory
object is to create and hand over a new object Bar to the object Foo, as shown in the
following igure. The whole purpose of this factory is to produce objects.

Inversion of Control in Spring

[38]

The Factory object reads from the coniguration, which has metadata with details
about the object that needs to be created. Coniguration is a blueprint of all those
objects that Factory creates. The Factory object reads from this coniguration ile,
as shown here:

The Foo object interacts with the Factory object to get an object with a certain
speciication. Then the Factory object inds out what the blueprint for that particular
object speciication is and then creates a new object, as shown in the following igure:

Chapter 2

[39]

Once the object has been created, Factory hands back the requesting Bar object to
the Foo object. So, now Foo will have a new object it wants not using new() but using
Factory, as shown in the following igure. This is something that Spring does.

Spring BeanFactory
Spring has objects of the BeanFactory type that behave like the Factory object. You
specify the blueprints object in a coniguration ile, which is an XML ile, and then
supply it to BeanFactory. Later, if you need the instance of any object, you can ask
BeanFactory for it, which then refers to the XML ile and constructs the bean as
speciied. This bean is now a Spring bean as it has been created by Spring Container
and is returned to you. Let's now summarize this:

1. Spring has BeanFactory, which creates new objects for us. So, the Foo object
will call BeanFactory.

2. BeanFactory would read from Spring XML, which contains all the bean
deinitions. Bean deinitions are the blueprints here. BeanFactory will
create beans from this blueprint and then make a new Spring bean.

Inversion of Control in Spring

[40]

3. Finally, this new Spring bean is handed back to Foo, as shown here:

The advantage here is that this new bean has been created in this BeanFactory, which
is known by Spring. Spring handles the creation and the entire life cycle of this bean.
So, in this case, Spring acts as container for this newly created Spring bean.

BeanFactory is deined by the org.springframework.beans.factory.BeanFactory
interface. The BeanFactory interface is the central IoC container interface in Spring
and provides the basic end point for Spring Core Container towards the application
to access the core container service.

It is responsible for containing and managing the beans. It is a factory class that
contains a collection of beans. It holds multiple bean deinitions within itself and
then instantiates that bean as per the client's demands.

BeanFactory creates associations between collaborating objects as they're
instantiated. This removes the burden of coniguration from the bean itself along
with the bean's client. It also takes part in the life cycle of a bean and makes calls
to custom initialization and destruction methods.

Implementation of BeanFactory
There are many implementations of the BeanFactory interface, with the org.
springframework.beans.factory.xml.XmlBeanFactory class being the most
popularly used one, which reads the bean deinition and initiates them based on
the deinitions contained in the XML ile. Depending on the bean deinition, the
factory will return either an independent instance or a single shared instance of
a contained object.

Chapter 2

[41]

This class has been deprecated in favor of DefaultListableBeanFactory and
XmlBeanDefinitionReader, and the purpose of this implementation is just to
explain BeanFactory. The constructor for XmlBeanFactory takes an implementation
of the Resource interface as an argument, as shown in the following line of code:

XmlBeanFactory (Resource resource)

The Resource interface has many implementations. The two commonly used
implementations are shown in the following table:

The Resource interfaces Description
org.springframework.core.
io.FileSystemResource

This loads the configuration file from
the underlying filesystem

org.springframework.core.
io.ClassPathResource

This loads the configuration file from
the classpath

Let's assume that beans are conigured in the beans.xml ile located in the C drive:

...

<bean id="mybean" class="...">

 ...

</bean>

...

The code snippet to load the coniguration ile using BeanFactory is given as follows:

BeanFactory bfObj = new XmlBeanFactory (new FileSystemResource
("c:/beans.xml"));

MyBean beanObj= (MyBean) bfObj.getBean ("mybean");

Here, we've used FileSystemResource, which is one of the Resource interface
implementations. The bfObj object corresponds to Spring Container, one that
has loaded the bean deinitions from the beans.xml ile. BeanFactory is a lazy
container, so at this point, only bean deinitions get loaded, but beans themselves
are not instantiated yet. At the second line, we call the getBean() method of the
BeanFactory object created by passing the bean ID "mybean" as an argument to
this method.

BeanFactory reads the bean deinition of a bean with the ID "mybean" from
Spring's beans.xml ile, instantiates it, and then returns a reference.

Inversion of Control in Spring

[42]

The BeanFactory interface has different methods, such as getBean, containBean,
and so on, for client code to call. You can get the complete list of these methods from
http://docs.spring.io/spring/docs/2.0.x/reference/beans.html.

The BeanFactory container is usually used in very simple applications; however,
in real-time projects, the ApplicationContext container is used.

ApplicationContext
Like BeanFactory, ApplicationContext is also used to represent Spring Container,
built upon the BeanFactory interface. ApplicationContext is suitable for Java
EE applications, and it is always preferred over BeanFactory. All functionality of
BeanFactory is included in ApplicationContext.

The org.springframework.context.ApplicationContext interface deines
ApplicationContext. ApplicationContext and provides advanced features to
our Spring applications that make them enterprise-level applications, whereas
BeanFactory provides a few basic functionalities. Let's discuss them:

• Apart from providing a means of resolving text messages,
ApplicationContext also includes support for i18n of those messages.

• A generic way to load file resources, such as images, is provided by
ApplicationContext.

• The events to beans that are registered as listeners can also be published by
ApplicationContext.

• ApplicationContext handles certain operations on the container or beans
in the container declaratively, which have to be handled with BeanFactory
in a programmatic way.

• It provides ResourceLoader support. This is used to handle low-level
resources, Spring's Resource interface, and a flexible generic abstraction.
ApplicationContext itself is ResourceLoader. Hence, access to
deployment-specific Resource instances is provided to an application.

• It provides MessageSource support. MessageSource, an interface used to
obtain localized messages with the actual implementation being pluggable,
is implemented by ApplicationContext.

http://docs.spring.io/spring/docs/2.0.x/reference/beans.html

Chapter 2

[43]

Implementation of ApplicationContext
The most commonly used ApplicationContext implementations are as follows:

• ClassPathXmlApplicationContext: This bean definition is loaded by
the container from the XML file that is present in the classpath by treating
context definition files as classpath resources. ApplicationContext
can be loaded from within the application's classpath using
ClassPathXmlApplicationContext:

ApplicationContext context =

new ClassPathXmlApplicationContext("spring-beans.xml");

• FileSystemXmlApplicationContext: This bean definition is loaded
by the container from an XML file. Here, the full path of the XML bean
configuration file should be provided to the constructor:

ApplicationContext context =
new FileSystemXmlApplicationContext("classpath:beans.xml");

In the preceding code snippet, the ApplicationContext instance is created
using the FileSystemXmlApplicationContext class and beans.xml is
specified as a parameter.

The getBean() method can be used to access a particular bean by specifying
its ID, as shown in following code snippet:

MyBean beanObj= (MyBean) context.getBean ("mybean");

In the preceding code snippet, the getBean() method accepts the ID of the
bean and returns the object of the bean.

ApplicationContext is an active container that initiates all the configured
beans as soon as the ApplicationContext instance is created and before
the user calls the getBean() method. The advantage of this active creation
of beans by ApplicationContext is the handling of exceptions during the
startup of the application itself.

• XmlWebApplicationContext: This is used to create the context in web
application by loading configuration the XML file with definitions of
all beans from standard locations within a web application directory.
The default location of the configuration XML file is /WEB-INF/
applicationContext.xml.

• AnnotationConfigApplicationContext: This is used to create the context
by loading Java classes annotated with the @Configuration annotation
instead of XML files. The AnnotationConfigApplicationContext class
is used when we define Java-based Spring bean configuration for the bean
definition instead of XML files.

www.allitebooks.com

http://www.allitebooks.org

Inversion of Control in Spring

[44]

• AnnotationConfigWebApplicationContext: This is used to create the
web application context by loading the Java classes annotated with the @
Configuration annotation instead of XML files in the web application.

To demonstrate an implementation of ApplicationContext, an example of
PayrollSystem can be considered. It will have the EmployeeService interface,
EmployeeServiceImpl class, and PayrollSystem class with the main method.

In the EmployeeService.java interface, you'll ind the following code:

package org.packt.Spring.chapter2.ApplicationContext;

public interface EmployeeService {

 public Long generateEmployeeId();

}

The EmployeeService.java interface is a plain old Java interface that has a method
named generateEmployeeId() to generate a unique employee ID on each call.

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.ApplicationContext;

public class EmployeeServiceImpl implements EmployeeService {

 @Override

 public Long generateEmployeeId() {

 return System.currentTimeMillis();

 }

}

The EmployeeServiceImpl.java class implements the EmployeeService interface.
This generateEmployeeId() class-implemented method is used to generate a unique
employee ID on each part of this method based on the system's current time.

In the PayrollSystem.java class, you'll ind the following code:

package org.packt.Spring.chapter2.ApplicationContext;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplication
Context;

public class PayrollSystem {

Chapter 2

[45]

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "beans.xml");

 EmployeeService empService = (EmployeeServiceImpl)
context

 .getBean("empServiceBean");

 System.out.println("Unique Employee Id: " +
empService.generateEmployeeId());

 }

}

The PayrollSystem.java class is a main class that contains the main() method.
This method creates an instance of ApplicationContext, calls the getBean()
method to get the bean of EmployeeService, and then prints the generated
unique employee ID by calling the method from this bean.

The beans.xml ile contains the bean deinition for EmployeeServiceImpl,
as shown in the following code snippet:

...

<bean id="empServiceBean"
class="org.packt.Spring.chapter2.ApplicationContext.
EmployeeServiceImp">

</bean>

...

When you successfully run PayrollSystem.java, the output will be printed on
the console as follows:

Unique Employee Id: 1401215855074

The generated Employee Id value will be different for you when you run the
preceding code in your local system as it is based on the current time.

A Spring application requires several beans or objects to work together in order to
develop a loosely coupled application. Objects depend on each other to carry out
their respective functions and this applies to beans too. Now let's understand DI.

Inversion of Control in Spring

[46]

Dependency Injection
Dependency Injection (DI) is a design pattern in which an object's dependency
is injected by the framework rather than by the object itself. It reduces coupling
between multiple objects as it is dynamically injected by the framework. In DI,
the framework is completely responsible for reading coniguration.

The advantages of DI are as follows:

• Loosely coupled architecture.

• Separation of responsibility.

• Configuration and code are separate.

• A different implementation can be supplied using configuration without
changing the code dependent.

• Improves testability.

• DI allows you to replace actual objects with mock objects. This improves
testability by writing simple JUnit tests that use mock objects.

Dependency Injection in Spring
In the Spring Framework, DI is used to satisfy the dependencies between objects.
It exits in only two types:

• Constructor Injection: By invoking a constructor containing a number of
arguments, constructor-based DI can be accomplished. These arguments
are injected at the time of instance instantiation.

• Setter Injection: Setter-based DI is attained by calling setter methods on
your beans. Using setter methods defined in a Spring configuration file,
the dependencies are "set" in the objects.

Chapter 2

[47]

The following igure gives us a better picture:

Let's consider an example where the EmployeeServiceImpl class has an instance
ield employeeDao of the EmployeeDao type, a constructor with an argument, and
a setEmployeeDao method.

In the EmployeeServiceImpl.java class, you'll ind the following code:

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao;

 public EmployeeServiceImpl(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

 public void setEmployeeDao(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

}

In the EmployeeDaoImpl.java class, you'll ind the following code:

public class EmployeeDaoImpl implements EmployeeDao {

 // ...

}

Inversion of Control in Spring

[48]

Here, an instance of EmployeeDao can be provided by the coniguration ile by either
the constructor method or the setter method. Before we understand what these are
in more detail, let's understand how generally two objects interact with each other
to make an even more meaningful object.

The Has-A relationship
When a class contains another class as instance ield; for example, the
EmployeeServiceImpl class contains EmployeeDao as its ield. This is called
a Has-A relationship since we say, "EmployeeServiceImpl has an EmployeeDao".
So, without employeeDao, EmployeeServiceImpl cannot perform. The following
code illustrates this:

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao = null;

}

So, employeeDao is the dependency that needs to be resolved in order to
make EmployeeServiceImpl fully functional. The way to create an object
of the EmployeeDao type or, in other words, satisfy the dependency of
EmployeeServiceImpl in Java is shown here:

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao = null;

 public EmployeeServiceImpl() {

 this.employeeDao = new EmployeeDaoImpl();

 }

 public void setEmployeeDao() {

 this.employeeDao = new EmployeeDaoImpl();

 }

}

It is not a very good option as once the EmployeeServiceImpl object is created,
you don't have any way to have the object of the employeeDao type swapped
with a subclass implementation.

Chapter 2

[49]

Constructor-based Dependency Injection
Constructor Injection is the process of injecting the dependencies of an object
through its constructor argument at the time of instantiating it. In other words,
we can say that dependencies are supplied as an object through the object's own
constructor. The bean deinition can use a constructor with zero or more arguments
to initiate the bean, as shown here:

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao = null;

 public EmployeeServiceImpl(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

}

In the preceding code, the object of the EmployeeDao employeeDao type is injected
as a constructor argument to the EmployeeServiceImpl class. We need to conigure
bean deinition in the coniguration ile that will perform Constructor Injection.

The Spring bean XML coniguration tag <constructor-arg> is used for
Constructor Injection:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeServiceImpl">

 <constructor-arg ref="employeeDao" />

 </bean>

 <bean id="employeeDao"

 class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeDaoImpl">

 </bean>

...

In the preceding code snippet, there is a Has-A relationship between the classes, which
is EmployeeServiceImpl HAS-A EmployeeDao. Here, we inject a user-deined object
as the source bean into a target bean using Constructor Injection. Once we have the
employeeDao bean to inject it into the target employeeService bean, we need another
attribute called ref—its value is the name of the ID attribute of the source bean, which
in our case is "employeeDao".

Inversion of Control in Spring

[50]

The <constructor-arg> element
The <constructor-arg> subelement of the <bean> element is used for Constructor
Injection. The <constructor-arg> element supports four attributes. They are
explained in the following table:

Attributes Description Occurrence
index It takes the exact index in the constructor

argument list. It is used to avoid ambiguity such
as when two arguments are of the same type.

Optional

type It takes the type of this constructor argument. Optional

value It describes the content in a simple string
representation, which is converted into the
argument type using the PropertyEditors
Java beans.

Optional

ref It refers to another bean in this factory. Optional

Constructor Injection – injecting simple Java types
Here, we inject simple Java types into a target bean using Constructor Injection.

The Employee class has employeeName as String, employeeAge as int, and married
as boolean. The constructor initializes all these three ields.

In the Employee.java class, you'll ind the following code:

package org.packt.Spring.chapter2.constructioninjection.
simplejavatype;

public class Employee {

 private String employeeName;

 private int employeeAge;

 private boolean married;

 public Employee(String employeeName, int employeeAge, boolean
married) {

 this.employeeName = employeeName;

 this.employeeAge = employeeAge;

 this.married = married;

 }

 @Override

 public String toString() {

Chapter 2

[51]

 return "Employee Name: " + this.employeeName + " , Age:"

 + this.employeeAge + ", IsMarried: " +
married;

 }

}

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employee"

 class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">

 <constructor-arg value="Ravi Kant Soni" />

 <constructor-arg value="28" />

 <constructor-arg value="False" />

 </bean>

...

Constructor Injection – resolving ambiguity
In the Spring Framework, whenever we create a Spring bean deinition ile and
provide values to the constructor, Spring decides implicitly and assigns the bean's
value in the constructor by means of following key factors:

• Matching the number of arguments

• Matching the argument's type

• Matching the argument's order

Whenever Spring tries to create the bean using Construction Injection by following
the aforementioned rules, it tries to resolve the constructor to be chosen while
creating Spring bean and hence results in the following situations.

No ambiguity
If no matching constructor is found when Spring tries to create a Spring bean
using the preceding rule, it throws the BeanCreationException exception with
the message: Could not resolve matching constructor.

Let's understand this scenario in more detail by taking the Employee class from
earlier, which has three instance variables and a constructor to set the value of
this instance variable.

Inversion of Control in Spring

[52]

The Employee class has a constructor in the order of String, int, and boolean to be
passed while deining the bean in the deinition ile.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employee"

 class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">

 <constructor-arg value="Ravi Kant Soni" />

 <constructor-arg value="False" />

 <constructor-arg value="28" />

 </bean>

...

If the orders in which constructor-arg is deined are not matching, then you will
get the following error:

Exception in thread "main" org.springframework.beans.factory.
UnsatisfiedDependencyException:
Error creating bean with name employee defined in the classpath
resource [beans.xml]: Unsatisfied dependency expressed through
constructor argument with index 1 of type [int]: Could not convert
constructor argument value of type [java.lang.String] to required
type [int]: Failed to convert value of type 'java.lang.String' to
required type 'int'; nested exception is
java.lang.NumberFormatException: For input string: "False"

Solution – use index attribute
The solution to this problem is to ix the order. Either we modify the constructor-
arg order of the bean deinition ile or we use the index attribute of constructor-
arg as follows:

...

 <bean id="employee"

 class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">

 <constructor-arg value="Ravi Kant Soni" index="0" />

 <constructor-arg value="False" index="2" />

 <constructor-arg value="28" index="1" />

 </bean>

...

Remember that the index attribute always starts with 0.

Chapter 2

[53]

Parameter ambiguity
Sometimes, there is no problem in resolving the constructor, but the constructor
chosen is leading to inconvertible data. In this case, org.springframework.beans.
factory.UnsatisfiedDependencyException is thrown just before the data is
converted to the actual type.

Let's understand this scenario in more depth; the Employee class contains two
constructor methods and both accept three arguments with different data types.

The following code snippet is also present in Employee.java:

package
org.packt.Spring.chapter2.constructioninjection.simplejavatype;

public class Employee {

 private String employeeName;

 private int employeeAge;

 private String employeeId;

 Employee(String employeeName, int employeeAge, String
employeeId) {

 this.employeeName = employeeName;

 this.employeeAge = employeeAge;

 this.employeeId = employeeId;

 }

 Employee(String employeeName, String employeeId, int
employeeAge) {

 this.employeeName = employeeName;

 this.employeeId = employeeId;

 this.employeeAge = employeeAge;

 }

 @Override

 public String toString() {

 return "Employee Name: " + employeeName + ", Employee
Age: "

 + employeeAge + ", Employee Id: " +
employeeId;

 }

}

Inversion of Control in Spring

[54]

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employee"

 class="org.packt.Spring.chapter2.constructioninjection
.simplejavatype.Employee">

 <constructor-arg value="Ravi Kant Soni" />

 <constructor-arg value="1065" />

 <constructor-arg value="28" />

 </bean>

...

Spring chooses the wrong constructor to create the bean. The preceding bean
deinition has been written in the hope that Spring will choose the second
constructor as Ravi Kant Soni for employeeName, 1065 for employeeId,
and 28 for employeeAge. But the actual output will be:

Employee Name: Ravi Kant Soni, Employee Age: 1065, Employee Id: 28

The preceding result is not what we expected; the irst constructor is run instead
of the second constructor. In Spring, the argument type 1065 is converted to int,
so Spring converts it and takes the irst constructor even though you assume it
should be a string.

In addition, if Spring can't resolve which constructor to use, it will prompt the
following error message:

constructor arguments specified but no matching constructor

found in bean 'CustomerBean' (hint: specify index and/or

type arguments for simple parameters to avoid type ambiguities)

Solution – use type attribute
The solution to this problem is to use the type attribute to specify the exact data
type for the constructor:

...

 <bean id="employee"

 class="org.packt.Spring.chapter2.constructioninjection.
simplejavatype.Employee">

 <constructor-arg value="Ravi Kant Soni"
type="java.lang.String"/>

 <constructor-arg value="1065" type="java.lang.String"/>

Chapter 2

[55]

 <constructor-arg value="28" type="int"/>

 </bean>

...

Now the output will be as expected:

Employee Name: Ravi Kant Soni, Employee Age: 28, Employee Id: 1065

The setter-based Dependency Injection
The setter-based DI is the method of injecting the dependencies of an object using
the setter method. In the setter injection, the Spring container uses setXXX() of the
Spring bean class to assign a dependent variable to the bean property from the bean
coniguration ile. The setter method is more convenient to inject more dependencies
since a large number of constructor arguments makes it awkward.

In the EmployeeServiceImpl.java class, you'll ind the following code:

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao;

 public void setEmployeeDao(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

}

In the EmployeeDaoImpl.java class, you'll ind the following code:

public class EmployeeDaoImpl implements EmployeeDao {

 // ...

}

In the preceding code snippet, the EmployeeServiceImpl class deined the
setEmployeeDao() method as the setter method where EmployeeDao is the
property of this class. This method injects values of the employeeDao bean
from the bean coniguration ile before making the employeeService bean
available to the application.

The Spring bean XML coniguration tag <property> is used to conigure
properties. The ref attribute of property elements is used to deine the
reference of another bean.

Inversion of Control in Spring

[56]

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeServiceImpl">

 <property name="employeeDao" ref="employeeDao" />

 </bean>

 <bean id="employeeDao"

 class="org.packt.Spring.chapter2.dependencyinjection.
EmployeeDaoImpl">

 </bean>

...

The <property> element
The <property> element invokes the setter method. The bean deinition can be
describing the zero or more properties to inject before making the bean object
available to the application. The <property> element corresponds to JavaBeans'
setter methods, which are exposed by bean classes. The <property> element
supports the following three attributes:

Attributes Description Occurrence
name It takes the name of Java

bean-based property
Optional

value It describes the content
in a simple string
representation, which is
converted into the argument
type using JavaBeans'
PropertyEditors

Optional

ref It refers to a bean Optional

Setter Injection – injecting a simple Java type
Here, we inject string-based values using the setter method. The Employee class
contains the employeeName ield with its setter method.

In the Employee.java class, you'll ind the following code:

package org.packt.Spring.chapter2.setterinjection;

public class Employee {

Chapter 2

[57]

 String employeeName;

 public void setEmployeeName(String employeeName) {

 this.employeeName = employeeName;

 }

 @Override

 public String toString() {

 return "Employee Name: " + employeeName;

 }

}

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employee" class="org.packt.Spring.chapter2.
setterinjection.Employee">

 <property name="employeeName" value="Ravi Kant Soni" />

 </bean>

...

In the preceding code snippet, the bean coniguration ile set the property value.

In the PayrollSystem.java class, you'll ind the following code:

package org.packt.Spring.chapter2.setterinjection;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "beans.xml");

 Employee employee = (Employee)
context.getBean("employee");

 System.out.println(employee);

 }

}

Inversion of Control in Spring

[58]

The output after running the PayrollSystem class will be as follows:

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext
@1ba94d: startup date [Sun Jan 25 10:11:36 IST 2015]; root of
context hierarchy

Jan 25, 2015 10:11:36 AM org.springframework.beans.factory.xml.
XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

Employee Name: Ravi Kant Soni

Setter Injection – injecting collections
In the Spring IoC container, beans can also access collections of objects. Spring allows
you to inject a collection of objects in a bean using Java's collection framework. Setter
Injection can be used to inject collection values in the Spring Framework. If we have
a dependent object in the collection, we can inject this information using the ref
element inside the list, set, or map. Let's discuss them in more detail:

• <list>: This element describes a java.util.List type. A list can contain
multiple bean, ref, value, null, another list, set, and map elements.
The necessary conversion is automatically performed by BeanFactory.

• <set>: This element describes a java.util.Set type. A set can contain
multiple bean, ref, value, null, another set, list, and map elements.

• <map>: This element describes a java.util.Map type. A map can contain
zero or more <entry> elements, which describes a key and value.

The Employee class is a class with an injecting collection.

In the Employee.java class, you'll ind the following code:

package org.packt.Spring.chapter2.setterinjection;

import java.util.List;

import java.util.Map;

import java.util.Set;

public class Employee {

 private List<Object> lists;

 private Set<Object> sets;

 private Map<Object, Object> maps;

Chapter 2

[59]

 public void setLists(List<Object> lists) {

 this.lists = lists;

 }

 public void setSets(Set<Object> sets) {

 this.sets = sets;

 }

 public void setMaps(Map<Object, Object> maps) {

 this.maps = maps;

 }

}

The bean coniguration ile is the one that injects each and every property of the
Employee class.

In the beans.xml ile, you'll ind the following code:

...

<bean id="employee" class="org.packt.Spring.chapter2.setterinjection.
Employee">

 <property name="lists">

 <list>

 <value>Ravi Kant Soni</value>

 <value>Shashi Kant Soni</value>

 <value>Shree Kant Soni</value>

 </list>

 </property>

 <property name="sets">

 <set>

 <value>Namrata Soni</value>

 <value>Rishi Raj Soni</value>

 </set>

 </property>

 <property name="maps">

 <map>

 <entry key="Key 1" value="Sasaram"/>

 <entry key="Key 2" value="Bihar"/>

 </map>

 </property>

</bean>

...

Inversion of Control in Spring

[60]

In the preceding code snippet, we injected values of all three setter methods of the
Employee class. The List and Set instances are injected with the <list> and <set>
tags. For the map property of the Employee class, we injected a Map instance using the
<map> tag. Each entry of the <map> tag is speciied with the <entry> tag that contains
a key-value pair of the Map instance.

Injecting inner beans
Similar to the concept of inner classes in Java, it is also possible to deine a bean
inside another bean; for example, in an Automated Teller Machine (ATM) system,
we can have a printer bean as an inner bean of the ATM class.

The following are the characteristics of inner beans in Spring:

• A bean can optionally be declared as an inner bean when it doesn't need to
be shared with other beans.

• An inner bean is defined within the context of its enclosing bean.

• Typically, the inner bean does not have an ID associated with it because the
inner bean will not be shared outside of its enclosing bean. We can associate
an ID; however, the value of this ID attribute is ignored by Spring.

• The inner class is independent of the inner bean. Any class can be defined as
an inner bean; for instance, a Printer class is not an inner class, but a printer
bean is defined as an inner bean.

• The scope of an inner bean is always a prototype.

The limitations of using inner beans are as follows:

• It cannot be reused or shared with other beans

• In practice, it affects the readability of the configuration file

An ATM class has a Printer class. We'll declare the printer bean as an inner bean
(inside the enclosing ATM bean) since the Printer class is not referenced anywhere
outside the ATM class. The printBalance() method of ATM delegates the call to the
printBalance() method of the printer. The printer bean will be declared as an inner
bean and will then be injected into the ATM bean using Setter Injection.

The ATM class delegates the call to print the balance to the Printer class.

The following code snippet can also be found in ATM.java:

package org.packt.Spring.chapter2.setterinjection;

public class ATM {

Chapter 2

[61]

 private Printer printer;

 public Printer getPrinter() {

 return printer;

 }

 public void setPrinter(Printer printer) {

 this.printer = printer;

 }

 public void printBalance(String accountNumber) {

 getPrinter().printBalance(accountNumber);

 }

}

In the preceding code snippet, the ATM class has a Printer class as property and the
setter, getPrinter(), and printBalance() methods.

In the Printer.java class, you'll ind the following code:

package org.packt.Spring.chapter2.setterinjection;

public class Printer {

 private String message;

 public void setMessage(String message) {

 this.message = message;

 }

 public void printBalance(String accountNumber) {

 System.out.println(message + accountNumber);

 }

}

In the preceding code snippet, the Printer class has the printBalance() method. It
has a message property, and a setter method sets the message value from the bean
coniguration ile.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="atmBean" class="org.packt.Spring.chapter2.
setterinjection.ATM">

Inversion of Control in Spring

[62]

 <property name="printer">

 <bean
class="org.packt.Spring.chapter2.setterinjection.Printer">

 <property name="message"

 value="The balance information is
printed by Printer for the account number"></property>

 </bean>

 </property>

 </bean>

...

Here, we declare atmBean. We declare the printer bean as an inner bean by declaring
inside the enclosing atmBean. The id attribute cannot be used outside the context of
atmBean and hence hasn't been provided to the printer bean.

Injecting null and empty string values in Spring
We come across two cases while injecting null and empty string values.

Case 1 – injecting an empty string
We can pass an empty string as a value, as shown in the following code, which is like
setEmployeeName("") in the Java code:

...

<bean id="employee"
class="org.packt.Spring.chapter2.setterinjection.Employee">

 <property name="employeeName" value="""></property>

</bean>

...

Case 2 – injecting a null value
We can pass a null value, as shown in the following code, which is like
setEmployeeName(null) in the Java code:

...

 <bean id="employee"
class="org.packt.Spring.chapter2.setterinjection.Employee">

Chapter 2

[63]

 <property name="employeeName">

 <null />

 </property>

 </bean>

...

Bean deinition inheritance
Bean deinition inheritance means that you have lot of bean deinition in the bean
coniguration ile and you have something that is common across lots of bean.
There is a common setter value that has to be initialized across multiple beans
and only then bean deinition inheritance can be used.

You can have one parent bean that contains all of these common deinitions inside
it, and then you can inherit all the common bean deinitions across the other bean.
This parent bean, which has all the common deinitions, can be a bean in itself.
This parent bean can be made into abstract bean deinitions, so there are no beans
created for it, and all it does is for the purpose of templating a bean deinition.

From a parent bean deinition, a child bean deinition inherits coniguration data
and can override or add values, as required. In an XML-based coniguration ile,
a child bean deinition is indicated using a parent attribute that speciies the parent
bean as the value of this attribute. Refer to the following table for clarity:

Beans Description
ParentBean <bean id="pBean"

class="ParentBean">

ChildBean <bean id="cBean"
class="ChildBean" parent="pBean">

ParentBean and ChildBean are explained as follows:

• ParentBean: This is a parent bean that is used as a template to create other
beans. It would be referred to in the XML file with id="pBean".

• ChildBean: This is a child bean that inherits from the parent bean defined
earlier. The parent="pBean" specifies that this bean is inheriting the
properties of the ParentBean bean.

Inversion of Control in Spring

[64]

The child bean must accept the parent bean's property values. The child bean
deinition inherits constructor argument values and property values from the
parent bean deinition. The child bean deinition overrides the initialization
method setting and destroys method setting from the parent bean deinition.

Spring bean deinition inheritance is not related with the Java class inheritance.
A parent bean is deined as a template and child beans can inherit the required
coniguration from this parent bean.

Now, the following example illustrates bean deinition inheritance.

In the Employee.java class, you'll ind the following code:

package org.packt.Spring.chapter2.beaninheritance;

public class Employee {

 private int employeeId;

 private String employeeName;

 private String country;

 public void setEmployeeId(int employeeId) {

 this.employeeId = employeeId;

 }

 public void setEmployeeName(String employeeName) {

 this.employeeName = employeeName;

 }

 public void setCountry(String country) {

 this.country = country;

 }

 @Override

 public String toString() {

 return "Employee ID: " + employeeId + " Name: " +
employeeName

 + " Country: " + country;

 }

}

In the preceding code snippet, the Employee class contains properties named
employeeName, employeeId, country, and their corresponding setter method.
This class has also overridden the toString() method.

Chapter 2

[65]

The Spring bean coniguration ile, beans.xml, where we deined the
indianEmployee bean as a parent bean with the country property and
its value. Next, an employeeBean bean has been deined as the child bean
of indianEmployee using the parent="indianEmployee" parent attribute.
The child bean inherits country properties from the parent bean and
introduces two more properties, employeeId and employeeName.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="indianEmployee"
class="org.packt.Spring.chapter2.beaninheritance.Employee">

 <property name="country"
value="India"></property>

 </bean>

 <bean id="employeeBean" parent="indianEmployee">

 <property name="employeeId" value="1065"></property>

 <property name="employeeName" value="Ravi Kant
Soni"></property>

 </bean>

...

In the PayrollSystem.java class, you'll ind the following code:

package org.packt.Spring.chapter2.beaninheritance;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "beans.xml");

 // using 'employeeBean'

 Employee employeeA = (Employee)
context.getBean("employeeBean");

 System.out.println(employeeA);

 // using 'indianEmployee'

Inversion of Control in Spring

[66]

 Employee employeeB = (Employee)
context.getBean("indianEmployee");

 System.out.println(employeeB);

 }

}

When we run the PayrollSystem class, the result will be as follows:

INFO: Refreshing
org.springframework.context.support.ClassPathXmlApplicationContext
@1c4f0f8: startup date [Sun Jan 25 14:31:50 IST 2015]; root of
context hierarchy

Jan 25, 2015 2:31:51 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

Employee ID: 1065 Name: Ravi Kant Soni Country: India

Employee ID: 0 Name: null Country: India

Here, the indianEmployee bean is able to instantiate. In the indianEmployee bean,
we have only set the value for the country property, so other ields get the null
value. In the employeeBean, we have set only two properties, which are employeeId
and employeeName, and the country property is inherited from the indianEmployee
bean, so all the ields get their value for employeeBean.

Inheritance with abstract
Inheritance with abstract helps in creating a bean deinition as a template, which
cannot be instantiated and serves as a parent deinition for child deinitions. While
deining a bean deinition as a template, you should specify only the abstract
attribute with the value true, for example, abstract="true".

In the beans.xml ile, you'll ind the following code:

...

<bean id="indianEmployee"
class="org.packt.Spring.chapter2.beaninheritance.Employee"

 abstract="true">

 <property name="country" value="India"></property>

 </bean>

 <bean id="employeeBean" parent="indianEmployee">

 <property name="employeeId" value="1065"></property>

Chapter 2

[67]

 <property name="employeeName" value="Ravi Kant
Soni"></property>

 </bean>

...

The parent bean indianEmployee cannot be instantiated on its own because
it is explicitly marked as abstract. When a bean deinition is abstract, that
bean deinition is served as a pure template bean deinition and used as a parent
deinition for child deinitions. So, while running the PayrollSystem class, the
following code snippet will result in an error message on the console:

...

 // using 'indianEmployee'

 Employee employeeB = (Employee)
context.getBean("indianEmployee");

 System.out.println(employeeB);

...

Since the indianEmployee bean is a pure template, if you try to instantiate it, you
will encounter the following error message:

org.springframework.beans.factory.BeanIsAbstractException: Error
creating bean with name 'indianEmployee': Bean definition is
abstract

Autowiring in Spring
Setting bean dependencies in the coniguration ile is a good practice to follow in
the Spring Framework; however, the Spring container can automatically autowire
relationships between collaborating beans by inspecting the contents of BeanFactory.

As we have seen, every member variable in the Spring bean has to be conigured;
for example, if a bean references another bean, we have to specify the reference
explicitly. Autowiring is a feature provided by the Spring Framework that helps us
reduce some of these conigurations by intelligently guessing what the reference is.

The Spring Framework provides autowiring features where we don't need to provide
bean injection details explicitly. The Spring container can autowire relationships
between collaborating beans without using the <constructor-arg> and <property>
elements. This immensely helps in cutting down the XML coniguration. Spring is
capable of automatically resolving dependencies at runtime. This automatic resolution
of bean dependencies is also called autowiring.

Inversion of Control in Spring

[68]

Spring wires a bean's properties automatically by setting the autowire property on
each <bean> tag that you want to autowire. By default, autowiring is disabled. To
enable it, specify the method of autowiring you want to apply using the autowire
attribute of the bean you want to autowire, as shown here:

<bean id="foo" class ="Foo" autowire="autowire-type" />

Autowiring modes
There are ive modes of autowiring that Spring Container can use for autowiring.
They are explained in the following table:

Mode Description
No By default, Spring bean autowiring is turned off, that is, no

autowiring is to be performed, and you should use explicit bean
reference ref for wiring.

byname This is autowiring by property name, that is, if the bean property
is the same as the other bean name, autowire it. The setter method
is used for this type of autowiring to inject a dependency.

byType The data type is used for this type of autowiring. If the data type
bean property is compatible with the data type of the other bean,
autowire it. Only one bean should be configured for this type in
the configuration file; otherwise, a fatal exception is thrown.

constructor This is similar to autowire byType, but here the constructor is
used to inject a dependency.

autodetect Spring first tries to autowire by the constructor; if it does not
work, then Spring tries to autowire with byType. This option
is deprecated.

Let's demonstrate autowiring with examples.

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.autowiring;

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao = null;

 public void setEmployeeDao(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

}

Chapter 2

[69]

In the EmployeeDaoImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.autowiring;

public class EmployeeDaoImpl implements EmployeeDao {

 // ...

}

In the preceding code snippet, the EmployeeServiceImpl class has employeeDaofield
and a setter method.

Autowiring using the no option
This is a default mode, and you should use the explicit bean reference ref for wiring.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl">

 <property name="employeeDao"
ref="employeeDaoBean"></property>

 </bean>

 <bean id="employeeDaoBean"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">

 </bean>

...

Autowiring using the byname option
Autowiring using the byName option autowires a bean by its property name.

A Spring container looks at the properties of the beans on which the autowire
attribute is set using byName in the coniguration ile. It then tries to match and
wire its properties with the beans deined by the same names in the coniguration
ile. If such a bean is found, it is injected into the property. If no such bean is found,
an error is raised.

Inversion of Control in Spring

[70]

Case 1 – if id=" employeeDao"
In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

 autowire="byName">

 </bean>

 <bean id="employeeDao"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">

 </bean>

...

In this case, since the name of the employeeDao bean is the same as the
employeeService bean's property (EmployeeDao employeeDao), Spring will
autowire it via the setter method setEmployeeDao (EmployeeDao employeeDao).

Case 2 – if id=" employeeDaoBean"
In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

 autowire="byName">

 </bean>

 <bean id="employeeDaoBean" class="org.packt.Spring.chapter2.
autowiring.EmployeeDaoImpl">

 </bean>

...

In this case, since the name of the employeeDaoBean bean is not the same as the
employeeService bean's property (EmployeeDao employeeDao), Spring will not
autowire it via the setter method, setEmployeeDao(EmployeeDao employeeDao).
So, the employeeDao property will get a null value.

Chapter 2

[71]

Autowiring using the byType option
Autowiring using byType enables Dependency Injection based on property data types.

The Spring container looks at each property's class type searching for a matching bean
deinition in the coniguration ile when autowiring a property in a bean. If no such
bean is found, a fatal exception is thrown. If there is more than one bean deinition
found in the coniguration, a fatal exception is thrown, and it will not allow byType
autowiring for that bean.

If there are no matching beans, nothing happens; the property is not set. So, to throw
an error, use the dependency-check="objects" attribute value.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.autowiring.
EmployeeServiceImpl"

 autowire="byType">

 </bean>

 <bean id="employeeDaoBean"
class="org.packt.Spring.chapter2.autowiring.EmployeeDaoImpl">

 </bean>

...

In this case, since the data type of the employeeDaoBean bean is the same as the data
type of the employeeService bean's property (EmployeeDao employeeDao), Spring
will autowire it via the setter method setEmployeeDao(EmployeeDao employeeDao).

Autowiring using the constructor
Autowiring using the constructor applies to constructor arguments.

It will look for the class type of constructor arguments and perform autowiring using
byType on all constructor arguments. A fatal error is raised if there isn't exactly one
bean of the constructor argument type in the container.

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.autowiring;

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao;

Inversion of Control in Spring

[72]

 public EmployeeServiceImpl(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

 public EmployeeDao getEmployeeDao() {

 return employeeDao;

 }

}

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeService"

 class="org.packt.Spring.chapter2.autowiring
.EmployeeServiceImpl"

 autowire="constructor">

 </bean>

 <bean id="employeeDaoBean" class="org.packt.Spring.chapter2.
autowiring.EmployeeDaoImpl">

 </bean>

...

In this case, since the data type of the employeeDaoBean bean is the same as
the constructor argument data type in the employeeService bean's property
(EmployeeDao employeeDao), Spring autowires it via the constructor: public
EmployeeServiceImpl(EmployeeDao employeeDao).

The bean's scope
Spring provides us with beans after instantiating and coniguring them. Spring
Container manages objects. This means that any object can refer to any other object
from Spring Container using the bean's ID, and Spring Container provides an
instance of the requesting object.

When we start Spring Container, ApplicationContext reads the Spring coniguration,
ile looks for all bean deinitions available there, and then initializes beans before any
call to the getBean() method.

During initialization, ApplicationContext itself has initialized all the Spring beans
conigured in Spring XML. When another object makes a call to the getBean()
method, ApplicationContext returns the same reference of bean that has already
been initialized. This is the default behavior of beans.

Chapter 2

[73]

This leads to the concept of a bean's scope. We can choose the number of instances
of beans depending on the scope. There are different scopes in which a bean can be
conigured. The <bean> tag has a scope attribute that is used to conigure the scope
of the bean. There are different bean scopes in Spring, such as singleton, prototype,
request, session, and global session. We will understand each session one by one.

Let's understand this by considering the following example, where we have the
EmployeeService interface, EmployeeServiceImpl class, and PayrollSystem
class with the main() method.

In the EmployeeService.java interface, you'll ind the following code:

package org.packt.Spring.chapter2.beanscope;

public interface EmployeeService {

 void setMessage(String message);

 String getMessage();

}

In the preceding code snippet, the EmployeeService interface declares two methods.

The following are the contents of the EmployeeServiceImpl.java class:

package org.packt.Spring.chapter2.beanscope;

import org.springframework.beans.factory.InitializingBean;

public class EmployeeServiceImp implements EmployeeService {

 private String message;

 @Override

 public void setMessage(String message) {

 this.message = message;

 }

 @Override

 public String getMessage() {

 return this.message;

 }

}

Inversion of Control in Spring

[74]

In the preceding code snippet, the EmployeeServiceImpl class implemented the
EmployeeService interface.

In the beans.xml ile, you'll ind the following code:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl">

 </bean>

</beans>

In the preceding coniguration ile, we deined employeeServiceBean without any
scope, to see the default nature of the bean.

In the PayrollSystem.java class, you'll ind the following code:

package org.packt.Spring.chapter2.beanscope;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class PayrollSystem {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "beans.xml");

 // Retrieve for first time

 EmployeeService employeeServiceA = (EmployeeService)
context

 .getBean("employeeServiceBean");

 employeeServiceA.setMessage("Message by service A");

 System.out

 .println("employeeServiceA: " +
employeeServiceA.getMessage());

Chapter 2

[75]

 // Retrieve it again

 EmployeeService employeeServiceB = (EmployeeService)
context

 .getBean("employeeServiceBean");

 System.out

 .println("employeeServiceB: " +
employeeServiceB.getMessage());

 }

}

In the preceding code snippet, the PayrollSystem class has the main() method.
For the irst time, we call getBean("employeeServiceBean"), assign the
bean to the employeeServiceA variable of the EmployeeService type, and
then set the message by calling the setMessage() method. Again, we call
getBean("employeeServiceBean") and assign the bean to the employeeServiceB
variable of the EmployeeService type. The output after calling the getMessage()
method from both reference variable results is the same, as shown here:

org.springframework.context.support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext
@1202d69: startup date [Sat Jan 24 20:04:30 IST 2015]; root of
context hierarchy

Jan 24, 2015 8:04:30 PM org.springframework.beans.factory.xml.
XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A

employeeServiceB: Message by service A

Singleton
By default, all Spring beans are singleton. Once ApplicationContext is initialized,
it looks at all the beans in XML and initializes only one bean per bean deinition in
Spring Container. On each call to the getBean() method, Spring Container returns
the same instance of the bean.

The irst bean scope in Spring that is called is singleton, which initializes only one
bean per bean deinition in the container and returns the same instance reference
on each call to the getBean() method. This scope makes Spring initialize all beans
during the load time itself without waiting for the getBean() call.

Inversion of Control in Spring

[76]

In the beans.xml ile, you'll ind the following code:

...

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl"

 scope="singleton">

</bean>

...

In the preceding coniguration ile, we have a bean with a singleton scope. When we
run PayrollSystem.java, the output will be as follows:

org.springframework.context.support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext
@1855562: startup date [Sat Jan 24 20:36:27 IST 2015]; root of
context hierarchy

Jan 24, 2015 8:36:28 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A

employeeServiceB: Message by service A

Since the EmployeeServiceImpl bean is in the singleton scope, the second retrieval
by employeeServiceB will display the message set by employeeServiceA even
though it's retrieved by calling a new getBean() method.

The singleton pattern in general says that overall there will be only one instance of
the object. But when we talk about singleton in the Spring Framework, we are talking
about Spring Container alone.

We can have multiple containers running in the same JVM, so we can have multiple
instances of the same bean in same JVM.

So, singleton in Spring represents in a particular Spring container, and there is only
one instance of a bean created in that container that is used across different references.

Chapter 2

[77]

Prototype
The prototype is second bean scope in Spring, which returns a brand-new instance of
a bean on each call to the getBean() method. When a bean is deined as a prototype,
Spring waits for getBean() to happen and only then does it initialize the prototype.
For every getBean() call, Spring has to perform initialization, so instead of doing
default initialization while a context is being created, it waits for a getBean() call.
So, every time getBean() gets called, it creates a new instance.

In the beans.xml ile, you'll ind the following code:

...

 <bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
beanscope.EmployeeServiceImpl"

 scope="prototype">

 </bean>

...

In the preceding coniguration ile, we have a bean with scope as a prototype.
When we run the PayrollSystem.java ile, the output will be as follows:

org.springframework.context.support.ClassPathXmlApplicationContext
prepareRefresh

INFO: Refreshing
org.springframework.context.support.ClassPathXmlApplicationContext
@1855562: startup date [Sat Jan 24 21:05:14 IST 2015]; root of
context hierarchy

Jan 24, 2015 9:05:15 PM
org.springframework.beans.factory.xml.XmlBeanDefinitionReader
loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[beans.xml]

employeeServiceA: Message by service A

employeeServiceB: null

The conigured destruction life cycle callbacks are not called in the case of a
prototype. Spring doesn't maintain the complete life cycle of the prototype.
Here, the container instantiates and conigures prototype beans and returns
this bean to the client with no further record of this prototype instance.

Since every getBean() call creates a new instance of the prototype bean, this
could lead to performance issues when beans use limited resources such as
network connections, whereas it may be useful if you would like to get a
new instance of a domain object, such as an employee object.

Inversion of Control in Spring

[78]

Request
The third bean scope in Spring is request, which is available only in web applications
that use Spring and create an instance of bean for every HTTP request. Here, a new
bean is created per Servlet request. Spring will be aware of when a new request is
happening because it ties well with the Servlet APIs, and depending on the request,
Spring creates a new bean. So, if the request scope has getBean() inside it, for every
new request, there will be a new bean. However, as long as it's in the same request
scope, the same bean is going to be used.

Session
The session is the fourth bean scope in Spring, which is available only in web
applications that use Spring and create an instance of bean for every HTTP session.
Here, a new bean is created per session. As long as there is one user accessing in a
single session, each call to getBean() will return same instance of the bean. But if
it's a new user in a different session, then a new bean instance is created.

Global session
The global session is the ifth bean scope in Spring, which works only in portlet
environments that use Spring and create a bean for every new portlet session.

The Spring bean life cycle
As long as Spring beans are required by the application, they exist within the
container. For a bean to get into a usable state after instantiation, it needs to
perform some initialization. Likewise, some clean up may be necessary when
the bean is no longer required and is removed from the container.

Spring provides us with callback methods for the life cycle of the bean. You can have
a method in your bean that runs when the bean has been created, and you can also
have a method in your bean that is run when the bean is about to be destroyed.

Spring's BeanFactory manages the life cycle of beans created through the Spring
IoC container. The life cycle of beans consist of callback methods, which can be
categorized broadly into the following two groups:

• Post-initialization callback methods

• Pre-destruction callback methods

Chapter 2

[79]

The following igure illustrates the two groups:

Initialization
It represents a sequence of activities that take place between the bean instantiation
and the handover of its reference to the client application:

• The bean container finds the definition of the Spring bean in the
configuration file and creates an instance of the bean

• If any properties are mentioned, populate the properties using setters

• If the Bean class implements the BeanNameAware interface, then call the
setBeanName() method

• If the Bean class implements the BeanFactoryAware interface, then call
the setBeanFactory() method

• If the Bean class implements the ApplicationContextAware interface,
then call the setApplicationContext() method

• If there are any BeanPostProcessors objects associated with the
BeanFactory interface that loaded the bean, then Spring will call the
postProcessBeforeInitialization() method before the properties
for the bean are injected

• If the Bean class implements the InitializingBean interface, then call the
afterPropertiesSet() method once all the bean properties defined in the
configuration file are injected

Inversion of Control in Spring

[80]

• If the bean definition in the configuration file contains the init-method
attribute, then call this method after resolving the value for the attribute
to a method name in the Bean class

• The postProcessAfterInitialization() method will be called if there
are any bean post processors attached to the BeanFactory interface that
loads the bean

Activation
The bean has been initialized and the dependency has been injected. Now the bean is
ready to be used by the application.

Destruction
This represents the following sequence of activities:

• If the Bean class implements the DisposableBean interface, then call the
destroy() method when the application no longer needs the bean reference

• If the bean definition in the configuration file contains the destroy-method
attribute, then call this method after resolving the value for the attribute to a
method name in the Bean class.

There are two important bean life cycle callback methods that are required at the
time of bean initialization and its destruction.

• Initialization callbacks

• Destruction callbacks

Initialization callbacks
There are two ways in which you can achieve the initialization work after all
necessary properties on the bean are set by the container:

• Implementing the org.springframework.beans.factory.
InitializingBean interface

• Using init-method in the XML configuration

In the EmployeeService.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks;

public interface EmployeeService {

Chapter 2

[81]

 public Long generateEmployeeID();

}

Implementing the org.springframework.beans.
factory.InitializingBean interface
The org.springframework.beans.factory.InitializingBean interface is used
to specify a single method in a bean, as follows:

void afterPropertiesSet()throws Exception;

This method gets initialized whenever the bean containing this method is called.

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks;

import org.springframework.beans.factory.InitializingBean;

public class EmployeeServiceImpl implements EmployeeService,
InitializingBean {

 @Override

 public Long generateEmployeeID() {

 return System.currentTimeMillis();

 }

 @Override

 public void afterPropertiesSet() throws Exception {

 System.out.println("Employee afterPropertiesSet... ");

 }

}

In the beans.xml ile, you'll ind the following code:

...

<bean id="employeeServiceBean"
class="org.packt.Spring.chapter2.callbacks.EmployeeServiceImpl">

</bean>

...

Inversion of Control in Spring

[82]

Here, the InitializingBean interface tells Spring that the EmployeeServiceImpl
bean needs to know when it's being initialized. A method of this bean needs
to be called when the bean is initialized. The InitializingBean interface has
afterPropertiesSet(), which needs to be implemented, and it will be called by
Spring when this bean is initialized and all properties are set. This InitializingBean
interface is a marker for the bean to know that the afterPropertiesSet() method of
this bean needs to be called after initialization.

Using init-method in the XML coniguration
In the case of XML-based coniguration metadata, you can use the init-method
attribute to specify the name of the method that has a void no-argument signature,
which is to be called on the bean immediately upon instantiation.

In the beans.xml ile, you'll ind the following code:

...

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.xml.EmployeeServiceImpl"
init-method="myInit">

</bean>

...

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks.xml;

public class EmployeeServiceImpl implements EmployeeService {

 @Override

 public Long generateEmployeeID() {

 return System.currentTimeMillis();

 }

 public void myInit() {

 System.out.println("Employee myInit... ");

 }

}

Now we have init-method in the coniguration beans.xml ile, which will take the
method name as the value from the bean. So, instead of implementing an interface to
this bean, we have a simple method that is called by Spring.

Chapter 2

[83]

Destruction callbacks
There are two ways you can do a destruction callback:

• Implementing the org.springframework.beans.factory.DisposableBean
interface

• Using destroy-method in the XML configuration

Implementing the org.springframework.beans.
factory.DisposableBean interface
The org.springframework.beans.factory.DisposableBean interface is used to
specify a single method in a bean, as follows:

void destroy() throws Exception;

This method allows a bean to get a callback whenever the Spring container
containing this bean is destroyed.

In the EmployeeServiceImp.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks;

import org.springframework.beans.factory.DisposableBean;

public class EmployeeServiceImp implements EmployeeService,
DisposableBean {

 @Override public Long generateEmployeeID() {
 return System.currentTimeMillis();
 }

 @Override
 public void destroy() throws Exception {
 System.out.println("Employee destroy... ");
 }
}

Inversion of Control in Spring

[84]

In the beans.xml ile, you'll ind the following code:

...

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.EmployeeServiceImpl">

</bean>

...

The DisposableBean interface has a destroy() method. If a bean implements
a DisposableBean interface, then Spring will automatically call the destroy()
method of that bean before actually destroying the bean.

Using destroy-method in the XML coniguration
In the case of XML-based coniguration metadata, you can use the destroy-method
attribute to specify the name of the method that has a void no-argument signature,
which is called just before a bean is removed from the container.

In the beans.xml ile, you'll ind the following code:

<bean id="employeeServiceBean" class="org.packt.Spring.chapter2.
callbacks.xml.EmployeeServiceImpl"
destroy-method="cleanUp">

</bean>

In the EmployeeServiceImpl.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks.xml;

public class EmployeeServiceImpl implements EmployeeService {

 @Override

 public Long generateEmployeeID() {

 return System.currentTimeMillis();

 }

 public void cleanUp() {

 System.out.println("Employee Cleanup... ");

 }

}

Chapter 2

[85]

Now we have destroy-method in the coniguration beans.xml ile, which will take
the method name as a value from the bean. So, instead of implementing the interface
to this bean, we have a simple method that is called by Spring.

In the PayrollSystem.java class, you'll ind the following code:

package org.packt.Spring.chapter2.callbacks.xml;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.context.support.ClassPathXmlApplication
Context;

public class PayrollSystem {

 public static void main(String[] args) {

 ConfigurableApplicationContext context = new
ClassPathXmlApplicationContext("beans.xml");

 EmployeeService employeeService = (EmployeeService)
context.getBean("employeeServiceBean");

 System.out.println(employeeService.generateEmployeeID());

 context.close();

 }

}

Exercise
Q1. What are Inversion of Control (IoC) and Dependency Injection (DI)?

Q2. What are the different types of Dependency Injection in Spring?

Q3. Explain autowiring in Spring. What are the different modes of autowiring.

Q4. Explain the different Spring bean scopes.

The answers to these are provided in Appendix A, Solution to Exercises.

Inversion of Control in Spring

[86]

Summary
In this chapter, you learned about the Spring IoC container and the BeanFactory
and ApplicationContext interfaces. You also learned about DI in Spring and their
types. We saw the bean's scope in Spring. Finally, we went through the life cycle of
the Spring bean.

In the next chapter, we will cover the DAO design pattern. We will take a look at a
simpliied spring JDBC abstraction framework. We will implement the JDBC code
using the Spring JDBC support and discuss how Spring manages DataSource and
the data sources you can use in your applications. We will also discuss data support
in Spring applications.

Chapter 3

[87]

DAO and JDBC in Spring
In the previous chapter, you explored the concept of Inversion of Control (IoC).
We then explored concepts such as, Spring Core Container, BeanFactory, and
ApplicationContext, and then you learned how to implement them. We looked
at Dependency Injection (DI) in Spring and their types: setter and constructor.
We also wired beans using setter- and constructor-based Dependency Injection
for the different data types.

In this chapter, we will cover the Data Access Object (DAO) design pattern. We
will look at the simpliied spring JDBC abstraction framework. We will implement
the JDBC code using the Spring JDBC support and discuss how Spring manages
DataSource that you can use in your applications. We will discuss data support
in the Spring application.

When we talk about the Spring data support, it's speciically for the purpose of your
application interacting with the data or the database, and you can typically write the
Java code that interacts with the database. There are a few things that you have to do
irrespective of what code you are going to write. You need to open the connection,
manage the transaction, and then close the connection to write some boilerplate code.
The whole point of using the Spring data support is that you can do away with all
the extra boilerplate code and the code that you write speciically for the business
case and the business problem that you want to resolve.

When we talk about writing a code that interacts with the database in Java, there are
numerous ways we can do that. It could be as simple as JDBC or it could be some
kind of framework, such as Hibernate or iBATIS. Spring supports lots of these
technologies. The Spring JDBC module provides a kind of an abstraction layer and
all the tedious JDBC code that we would otherwise have to write is provided by the
JDBC module, which is in the Spring Framework.

DAO and JDBC in Spring

[88]

The topics covered in this chapter are listed as follows:

• Overview of database

• The DAO design pattern

• JDBC without Spring

• The Spring JDBC packages

• JDBC with Spring

• What is JdbcTemplate

• The JDBC batch operation in Spring

• Calling the stored procedure

Overview of database
Databases are everywhere, but you never see them. They are concealed behind the
tools and services that you use every day. Ever wondered where Facebook, Twitter,
and Tumbler store their data? The answer is a database. Where does Google keep
the details of the pages that it indexes from the Internet and where are the contacts
stored in your mobile phone? Again, the answer is a database. In the information
system, databases do most of the work that we do in our day-to-day lives. So, what
is a database?

A database is a place where we store data. Databases are organized and structured.
All the data that we store in the database its into the database structure. Flat-ile
databases are simple databases. They store data in columns and rows.

Let's look at an Employee table:

Employee ID First name Last name Age Contact number
1 Ravi Soni 28 +91-9986XXXXXX

2 Shree Kant 22 +91-9986XXXXXX

Chapter 3

[89]

Let's think about a simple database that the Human Resource (HR) has used to store
his/her employee details. This database contains the name, address, birth date, and
contact number of each employee. If the HR hires a new employee and would like
to add the employee details to the database, then the HR will store the employee's
irst name, last name, address, date of birth, and mobile number in the database. The
employee details that the HR writes down are stored in the ields of his employee
address database. Each row is called a record, and each of the rows holds the
information about the different employees in his/her employee address database.
So, unlike a paper employee address book, the HR can carry out employee-related
operations on his/her stored database. They can use the search option to ind a
particular employee's details.

In almost any business these days, there is a database or a collection of databases,
and these are the main pieces of the backend infrastructure. Database is nothing but
collection of data. There are different kinds of databases, such as Oracle, PostgreSQL,
MySQL, and so on. The database software is called a relational database
management system (RDBMS) and its instance is called a database engine. The
database server is a machine that runs the database engine. We refer to the RDBMS,
when we mention the term database throughout this book.

Refer to Appendix B, Apache Derby Database, to set up
the Apache Derby database.

The DAO design pattern
The DAO design pattern can be used to provide a separation between the low-level
data accessing operations and the high-level business services, as shown here:

DAO and JDBC in Spring

[90]

The DAO layer
In between the database and the business layer, there is a layer called the DAO
layer. The DAO layer is mainly used to perform the Create-Retrieve-Update-Delete
(CRUD) operation. The DAO layer is responsible for creating, obtaining, updating,
or deleting records in the database table. To perform this CRUD operation, DAO
uses a low-level API, such as the JDBC API or the Hibernate API. This DAO layer
will have a method for performing the CRUD operation. It is the intermediate
layer between the Business Layer and the DB. It is used to separate the low-level
accessing API from the high-level business service. The DAO layer decouples the
implementation of persistent storage from the rest of your application.

The advantages of using DAO are as follows:

• Its application is independent of the data access techniques and database
dependency

• It offers loose coupling with the other layers of the application

• It helps the unit test the service layer using a mock object without connecting
to the database

JDBC without Spring
As Java developers, we work with data all the time and develop almost all the
applications that interact with some sort of database and most of the times it's
relational. Generally, the application needs to interact with a database in order to
get data from it. And the typical way for connecting a Java application to a database
would be through JDBC.

Java Database Connectivity (JDBC) is a standard Java API. It is used for database
connectivity between the Java programming language and a great variety of
databases. JDBC is an application programming interface that allows a Java
programmer to access the database from a Java code using sets of standard interfaces
and classes written in a Java programming language.

JDBC provides several methods for querying, updating, and deleting data in RDBMS,
such as SQL, Oracle, and so on. The JDBC library provides APIs for tasks such as:

• Making a connection to a database

• Creating the SQL statements

• Executing the SQL queries in the database

Chapter 3

[91]

• Viewing and modifying the resulting records

• Closing a database connection

It is generally considered a pain to write a code to get JDBC to work. We need
to write a boilerplate code to open a connection and to handle the data. Another
problem with JDBC is that of poor exception hierarchy, such as SQLException,
DataTruncation, SQLWarning, and BatchUpdateException. These require less
explanation and a major problem is that all of these exceptions are deployed as
checked exceptions, which mandate the developer to go ahead to implement a
try block. It's very dificult to recover from a catch block, when an exception is
thrown even during the statement execution, and most of the time these catch
blocks are used for generating log messages for those exceptions.

Sample code
Here, we will take the example of JdbcHrPayrollSystem, which connects to the
Apache Derby database that we saw in the previous section. We will write a query
to retrieve the record, we will look at the code required to run this query, and then
we will print out the retrieved record.

ADD drivers speciic to database into the project
Whenever we need to write a code to access the database, we have to make sure
that the drivers for the database that we are trying to connect to are available for
the project. For Apache Derby, we need to include a driver so that the project can
connect to the database, as shown here:

project > properties > Libraries > Add External jars > (navigate
to the derby folder) > lib folder > select (derby.jar and
derbyclient.jar) > ok

DAO and JDBC in Spring

[92]

Directory structure of the application
The inal directory structure of the application is shown in the following screenshot:

It is a good practice to design DAO using the program to an interface principle, which
states that concrete implementations must implement the interface that is used in the
program that wants to use the implementation rather than the implementation class
itself. Following this principle, we will irst deine an interface for EmployeeDao and
declare some data access methods that include the methods for creating new employee
details, or getting employee details using the employee ID, and then inserting the
employee details into the table.

Chapter 3

[93]

The Employee.java ile
We have package org.packt.Spring.chapter5.JDBC.model that contains the
class named employee, which is a simple model class containing the employee
ID, name, and its corresponding getter and setter. This employee class also has
a parameterized constructor with parameters, such as id and name that set the
instance variable:

package org.packt.Spring.chapter5.JDBC.model;

public class Employee {

 private int id;

 private String name;

 public Employee(int id, String name) {

 setId(id);

 setName(name);

 }

 // setter and getter

}

The EmployeeDao.java ile
We have package org.packt.Spring.chapter5.JDBC.dao that has the interface
EmployeeDao and the class EmployeeDaoImp. This interface contains the method
for creating the Employee table, inserting the values into the table, and fetching the
employee data from the table based on the employee ID, as shown here:

package org.packt.Spring.chapter5.JDBC.dao;

import org.packt.Spring.chapter5.JDBC.model.Employee;

public interface EmployeeDao {

 // get employee data based on employee id

 Employee getEmployeeById(int id);

 // create employee table

 void createEmployee();

 // insert values to employee table

 void insertEmployee(Employee employee);

}

DAO and JDBC in Spring

[94]

The EmployeeDaoImpl.java ile
Now, we will provide an implementation for the EmployeeDao interface. The
EmployeeDaoImpl class is responsible for connecting to the database and getting or
setting the values. The complexity lies in the JDBC code that goes inside the methods
that connect to the database. First, we need to have a connection object, and then we
need to initialize ClientDriver, which in our case, is speciic to the Apache Derby
driver. Now, we need to open a connection using the database URL. Then, based on
the functionality, we need to prepare and execute a query:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import org.packt.Spring.chapter5.JDBC.model.Employee;

public class EmployeeDaoImpl implements EmployeeDao {

 // JDBC driver name and database URL

 static final String JDBC_DRIVER =
"org.apache.derby.jdbc.ClientDriver";

 static final String DB_URL = "jdbc:derby://localhost:1527/db";

 private void registerDriver() {

 try {

 Class.forName(JDBC_DRIVER).newInstance();

 } catch (InstantiationException e) {

 } catch (IllegalAccessException e) {

 } catch (ClassNotFoundException e) {

 }

 }

Here, the getEmployeeById(int id) method will fetch the employee information
based on the employee ID:

 @Override

 public Employee getEmployeeById(int id) {

 Connection conn = null;

 Employee employee = null;

Chapter 3

[95]

 try {

 // register apache derby driver

 registerDriver();

 // open a connection using DB url

 conn = DriverManager.getConnection(DB_URL);

 // Creates a PreparedStatement object for sending
parameterized SQL

 // statements to the database

 PreparedStatement ps = conn

 .prepareStatement("select * from
employee where id = ?");

 // Sets the designated parameter to the given Java
int value

 ps.setInt(1, id);

 // Executes the SQL query in this PreparedStatement
object and

 // returns the ResultSet object

 ResultSet rs = ps.executeQuery();

 if (rs.next()) {

 employee = new Employee(id,
rs.getString("name"));

 }

 rs.close();

 ps.close();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 return employee;

 }

DAO and JDBC in Spring

[96]

The createEmployee() method creates an Employee table with the column ID and
name, as shown in the following code snippet:

 @Override

 public void createEmployee() {

 Connection conn = null;

 try {

 // register apache derby driver

 registerDriver();

 // open a connection using DB url

 conn = DriverManager.getConnection(DB_URL);

 Statement stmt = conn.createStatement();

 stmt.executeUpdate("create table employee (id
integer, name char(30))");

 stmt.close();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 }

In the following code snippet, the insertEmployee(Employee employee) method
will insert the employee information into the Employee table:

 @Override

 public void insertEmployee(Employee employee) {

 Connection conn = null;

 try {

 // register apache derby driver

 registerDriver();

 // open a connection using DB url

 conn = DriverManager.getConnection(DB_URL);

 Statement stmt = conn.createStatement();

 stmt.executeUpdate("insert into employee values ("

 + employee.getId() + ",'" +
employee.getName() + "')");

 stmt.close();

 } catch (SQLException e) {

Chapter 3

[97]

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 }

The HrPayrollSystem.java ile
We have package org.packt.Spring.chapter5.JDBC.main that contains the class
HrPayrollSystem with the main() method. In the main() method, we will initialize
DAO and call the methods of DAO to create a table, insert the data, and then fetch
the data from the table, as shown here:

package org.packt.Spring.chapter5.JDBC.main;

import org.packt.Spring.chapter5.JDBC.dao.EmployeeDao;

import org.packt.Spring.chapter5.JDBC.dao.EmployeeDaoImpl;

import org.packt.Spring.chapter5.JDBC.model.Employee;

public class HrPayrollSystem {

 public static void main(String[] args) {

 EmployeeDao employeeDao = new EmployeeDaoImpl();

 // create employee table

 employeeDao.createEmployee();

 // insert into employee table

 employeeDao.insertEmployee(new Employee(1, "Ravi"));

 // get employee based on id

 Employee employee = employeeDao.getEmployeeById(1);

 System.out.println("Employee name: " +
employee.getName());

 }

}

Having shown the trouble in using JDBC, in the next section, we will be discussing
the DAO support in the Spring Framework to remove the troubling points one after
the other.

DAO and JDBC in Spring

[98]

Spring JDBC packages
In the previous section, we have seen the shortcomings of using the JDBC API as
a low-level data access API for implementing the DAOs. These shortcomings are
as follows:

• Code duplication: As we know, writing the boilerplate code over and over
again in code duplication violates the Don't repeat yourself (DRY) principle.
This has some side effects in terms of the project costs, efforts, and timelines.

• Resource leakage: The DAO methods must hand over the control of the
obtained database resources, such as connection, statements, or result sets
after calling the close() method. This is a risky plan because a novice
programmer might very easily skip some of the code fragments. As a result,
the resources would run out and bring the system to a stop.

• Error handling: When using JDBC directly we need to handle SQLException,
since the JDBC drivers report all the errors suitable by raising SQLException.
It is not possible to recover these exceptions. Moreover, the message and
the error code obtained from the SQLException object are database vendor-
speciic, so it is dificult to write a portable DAO error messaging code.

To solve the aforementioned problems, we need to identify the parts of the code
that are ixed and then encapsulate them into some reusable objects. The Spring
Framework provides a solution for these problems by giving a thin, robust, and
highly extensible JDBC abstraction framework.

The JDBC abstraction framework provided under the Spring Framework is
considered to be a value-added service that takes care of all the low-level details,
such as retrieving connection, preparing the statement object, executing the query,
and releasing the database resources. While using it for data access, the application
developer needs to specify the SQL statement for executing and retrieving the result.

Chapter 3

[99]

To handle the different aspects of JDBC, Spring JDBC is divided into packages, as
shown in the following table:

Spring JDBC package Description
org.springframework.jdbc.core In the Spring Framework, this package

contains the foundation of the JDBC classes,
which includes the core JDBC class and
JdbcTemplate. It simplifies the database
operation using JDBC.

org.springframework.jdbc.
datasource

This package contains DataSource
implementations and helper classes, which
can be used to run the JDBC code outside
the JEE container.

org.springframework.jdbc.
object

In the Spring Framework, this package
contains the classes that help in converting
the data returned from the database into
plain Java objects.

org.springframework.jdbc.
support

SQLExceptionTranslator is the most
important class in this package of the
Spring Framework. The Spring Framework
recognizes the error code used by the
database. This is done by using this class
and mapping the error code to a higher
level of exception.

org.springframework.jdbc.
config

This package contains the classes that
support JDBC configuration within
ApplicationContext of the Spring
Framework.

JDBC with Spring
In the earlier section, we did not include any Spring-related functionality, and
we implemented a Java class that had DAO implementation, which connected to
a database to fetch a particular record using JDBC. Now in this section, we will
look at some of the features of the Spring Framework that make our job easier by
eliminating the boilerplate code. Here, we will look into the connection support
provided by Spring that makes it easy to handle the connections.

DAO and JDBC in Spring

[100]

DataSource
The DriverManagerDataSource class is used for coniguring the DataSource for
application, which is deined in the coniguration ile, that is, Spring.xml. So, irst
of all, we need to add the Spring JAR that will have the DriverManagerDataSource
class to our project. The Spring Framework provides the JAR for JDBC spring-jdbc-
4.1.4.RELEASE.jar containing the package named DataSource, which will have the
class DriverManagerDataSource.class, as shown in the following screenshot:

The coniguration of DriverManagerDataSource is shown here. We need to provide
the driver class name and the connection URL. We can also add the username and
the password in the property if the database requires it.

Check out the ile Spring.xml using the following code snippet:

...

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.Spring.chapter5.JDBC.dao" />

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.
DriverManagerDataSource">

 <property name="driverClassName"
value="${jdbc.driverClassName}" />

Chapter 3

[101]

 <property name="url" value="${jdbc.url}" />

 </bean>

 <context:property-placeholder location="jdbc.properties" />

...

The bold properties in the aforementioned coniguration code represent the values
that you normally pass to JDBC to connect it with the interface. For easy substitution
in the different deployment environments and for easy maintenance, the database
connection information is stored in the properties ile, and the Spring's property
placeholder will load the connection information from the jdbc.properties ile:

jdbc.driverClassName=org.apache.derby.jdbc.ClientDriver

jdbc.url=jdbc:derby://localhost:1527/db

DataSource in the DAO class
In the previous section, we added the properties for the DataSource in the
coniguration ile Spring.xml. So, we will look into the DAOs class to see the beneit
of using DataSource. We will implement the EmployeeDao interface that we deined
in the earlier section.

Directory structure of the application
The inal directory structure of the application is shown in the following screenshot:

DAO and JDBC in Spring

[102]

The EmployeeDaoImpl.java ile
In the earlier section, we were trying to perform a few basic steps, which are
common for methods such as:

• Set up connection to a database

• Create a prepared statement

The irst step is to connect to the database that is common for all the methods
of the application. We will take out the boilerplate code for this step from the
methods deined in the EmployeeDaoImpl class.

We have deined DataSource as a member variable and annotated it by the
@Autowired annotation. We have called the getConnection() method of
this DataSource to get the connection based on the deinition provided in
the coniguration ile.

Checkout the ile EmployeeDaoImpl.java for the following code snippet:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import javax.sql.DataSource;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl implements EmployeeDao {

 @Autowired

 private DataSource dataSource;

Here, the EmployeeDaoImpl class is annotated by the stereotypical annotation,
@Repository, so that Spring automatically scans this class and registers it as the
Spring bean employeeDaoImpl.

The getEmployeeById(int id) method is used to get the employee details based
on the employee ID, as shown here:

 @Override

 public Employee getEmployeeById(int id) {

 Employee employee = null;

Chapter 3

[103]

 Connection conn = null;

 try {

 conn = dataSource.getConnection();

 PreparedStatement ps = conn

 .prepareStatement("select * from
employee where id = ?");

 ps.setInt(1, id);

 ResultSet rs = ps.executeQuery();

 if (rs.next()) {

 employee = new Employee(id,
rs.getString("name"));

 }

 rs.close();

 ps.close();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 return employee;

 }

The createEmployee() method is used for creating the Employee table, as shown in
the following code snippet:

 @Override

 public void createEmployee() {

 Connection conn = null;

 try {

 conn = dataSource.getConnection();

 Statement stmt = conn.createStatement();

 stmt.executeUpdate("create table employee (id
integer, name char(30))");

 stmt.close();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

DAO and JDBC in Spring

[104]

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 }

The insertEmployee(Employee employee) method is used for inserting the data
into the Employee table, as shown here:

 @Override

 public void insertEmployee(Employee employee) {

 Connection conn = null;

 try {

 conn = dataSource.getConnection();

 Statement stmt = conn.createStatement();

 stmt.executeUpdate("insert into employee values ("

 + employee.getId() + ",'" +
employee.getName() + "')");

 stmt.close();

 } catch (SQLException e) {

 throw new RuntimeException(e);

 } finally {

 if (conn != null) {

 try {

 conn.close();

 } catch (SQLException e) {

 }

 }

 }

 }

}

The HrPayrollSystem.java ile
We have package org.packt.Spring.chapter5.JDBC.main that contains the class
HrPayrollSystem with the main() method:

package org.packt.Spring.chapter5.JDBC.main;

import org.packt.Spring.chapter5.JDBC.dao.EmployeeDao;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

Chapter 3

[105]

public class HrPayrollSystem {

 public static void main(String[] args) {

 @SuppressWarnings("resource")

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "Spring.xml");

 EmployeeDao employeeDao =
context.getBean("employeeDaoImpl",

 EmployeeDao.class);

 // create employee table

 employeeDao.createEmployee();

 // insert into employee table

 employeeDao.insertEmployee(new Employee(1, "Ravi"));

 // get employee based on id

 Employee employee = employeeDao.getEmployeeById(1);

 System.out.println("Employee name: " +
employee.getName());

 }

}

The types of code that we have discussed so far use the Spring Framework to
manage DataSource and this makes things simple. We have taken all the connection
parameters from the class and set them to bean deined by an XML ile. In DAO, we
have used the method of the new bean to get the connection of the database.

What is JdbcTemplate
The central class of the Spring JDBC abstraction framework is the JdbcTemplate
class that includes the most common logic in using the JDBC API to access
data, such as handling the creation of connection, statement creation, statement
execution, and release of resource. The JdbcTemplate class can be found in the
org.springframework.jdbc.core package.

The JdbcTemplate class instances are thread-safe once conigured. A single
JdbcTemplate can be conigured and injected into multiple DAOs.

We can use the JdbcTemplate to execute the different types of SQL statements.
Data Manipulation Language (DML) is used for inserting, retrieving, updating,
and deleting the data in the database. SELECT, INSERT, or UPDATE statements are
examples of DML. Data Deinition Language (DDL) is used for either creating
or modifying the structure of the database objects in the database. CREATE, ALTER,
and DROP statements are examples of DDL.

DAO and JDBC in Spring

[106]

The JdbcTemplate class is in the org.springframework.jdbc.core package. It is a
non-abstract class. It can be initiated using any of the following constructors:

• JdbcTemplate: Construct a new JdbcTemplate object. When constructing an
object using this constructor, we need to use the setDataSource() method
to set the DataSource before using this object for executing the statement.

• JdbcTemplate(DataSource): Construct a new JdbcTemplate object, and
initialize it with a given DataSource to obtain the connections for executing
the requested statements.

• JdbcTemplate(DataSource, Boolean): Construct a new JdbcTemplate
object, and initialize it by a given DataSource to obtain the connections for
executing the requested statements, and the Boolean value describing the
lazy initialization of the SQL exception translator.

If the Boolean argument value is true, then the exception translator will
not be initialized immediately. Instead, it will wait until the JdbcTemplate
object is used for executing the statement. If the Boolean argument value is
false, then the exception translator will be initialized while constructing
the JdbcTemplate object.

It also catches the JDBC exception and translates it into the generic and more
informatics exception hierarchy, which is deined in the org.springframework.dao
package. This class avoids common error and executes the SQL queries, updates the
statements, stores the procedure calls, or extracts the results.

While using the JdbcTemplate, the application developer has to provide the code for
preparing the SQL statement and the extract result. In this section, we will look into
operations such as, query, update, and so on using the JdbcTemplate in Spring.

Coniguring the JdbcTemplate object as
Spring bean
The Spring JdbcTemplate makes the application developer's life a lot easier by
taking care of all the boilerplate code required for creating and releasing database
connection, which saves development time. In the earlier section, we saw how to
deine the DataSource bean in the coniguration ile. To initialize the JdbcTemplate
object, we will use the DataSource bean as ref. This is discussed while explaining
the coniguration ile, Spring.xml.

Chapter 3

[107]

The Spring.xml ile
The following code snippet shows the Spring.xml ile:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

 xmlns:jdbc="http://www.springframework.org/schema/jdbc"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.2.xsd

 http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.2.xsd">

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.Spring.chapter5.JDBC.dao" />

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.
DriverManagerDataSource">

 <property name="driverClassName">

 <value={jdbc.driverClassName}></value>

 </property>

 <property name="url">

 <value={jdbc.url}></value>

 </property>

 </bean>

 <bean id="jdbcTemplate" class="org.springframework.jdbc.core.
JdbcTemplate">

 <property name="dataSource" ref="dataSource" />

 </bean>

 <context:property-placeholder location="jdbc.properties"/>

</beans>

DAO and JDBC in Spring

[108]

Functionality exposed by the JdbcTemplate

class
The Spring JdbcTemplate provides many helpful methods for the CRUD operations
for the database.

Querying (select)
Here, we use the select command to query the database using the JdbcTemplate
class. Depending upon the following application requirements, the database table
can be queried:

• The following is a simple query to get the number of rows in a relation:

int rowCount = this.jdbcTemplate.queryForObject("select
count(*) from employee ", Integer.class);

• A simple query that uses the bind variable is shown here:

int countOfEmployeesNamedRavi =
this.jdbcTemplate.queryForObject(

 "select count(*) from employee where Name = ?",
Integer.class, "Ravi");

• The following is a simple query for String:

String empName = this.jdbcTemplate.queryForObject(

 "select Name from employee where EmpId = ?",

 new Object[]{12121}, String.class);

• The code block to populate a domain object after querying is shown here:

Employee employee = this.jdbcTemplate.queryForObject(

 "select Name, Age from employee where EmpId = ?",

 new Object[]{1212},

 new RowMapper<Employee>() {

 public Employee mapRow(ResultSet rs, int
rowNum) throws SQLException {

 Employee emp = new Employee(rs.getString("Name"),
rs.getString("Age"));

 return emp;

 }

 });

Chapter 3

[109]

• The code block to populate a list of the domain objects after querying is
given here:

List<Employee> employee = this.jdbcTemplate.query(

 "select Name, Age from employee",

 new RowMapper<Employee>() {

 public Employee mapRow(ResultSet rs, int
rowNum) throws SQLException {

 Employee emp = new Employee(rs.getString("Name"),
rs.getString("Age"));

 return emp;

 }

 });

Apart from querying the database table, the operation for updating the record can
also be performed as discussed in the next section.

Updating (Insert-Update-Delete)
When we talk about updating a record, it simply implies inserting a new record,
making a change in an existing record, or deleting an existing record.

The Update() method is used to perform operations such as insert, update, or delete.
The parameter values are usually provided as an object array or var args. Consider
the following cases:

• The following shows an Insert operation:

this.jdbcTemplate.update("insert into employee (EmpId,
Name, Age) values (?, ?, ?)", 12121, "Ravi", "Soni");

• An Update operation is shown here:

this.jdbcTemplate.update("update employee set Name = ?
where EmpId = ?", "Shree", 12121);

• A Delete operation is given here:

this.jdbcTemplate.update("delete from employee where EmpId
= ?",Long.valueOf(empId));

Other JdbcTemplate operations
The execute() method is used for executing any arbitrary SQL:

this.jdbcTemplate.execute("create table employee (EmpId integer,
Name varchar(30), Age integer)");

DAO and JDBC in Spring

[110]

Directory structure of the application
The inal directory structure of the application is shown here:

The Employee.java ile
The Employee class has parameterized the constructor with three parameters,
namely, empId, name, and age:

package org.packt.Spring.chapter5.JDBC.model;

public class Employee {

 private int empId;

 private String name;

 private int age;

 public Employee(int empId, String name, int age) {

 setEmpId(empId);

Chapter 3

[111]

 setName(name);

 setAge(age);

 }

// setter and getter

The EmployeeDao.java ile
The EmployeeDao interface contains the declaration of a method whose
implementation is provided in EmployeeDaoImpl.java:

package org.packt.Spring.chapter5.JDBC.dao;

import org.packt.Spring.chapter5.JDBC.model.Employee;

public interface EmployeeDao {

 void createEmployee();

 int getEmployeeCount();

 int insertEmployee(Employee employee);

 int deleteEmployeeById(int empId);

 Employee getEmployeeById(int empId);

}

The EmployeeDaoImpl.java ile
Now let's look at the implementation of EmployeeDao, where we will use the
JdbcTemplate class to execute the different types of queries:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Types;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.jdbc.core.RowMapper;

import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl implements EmployeeDao {

 @Autowired

 private JdbcTemplate jdbcTemplate;

 @Override

 public int getEmployeeCount() {

DAO and JDBC in Spring

[112]

 String sql = "select count(*) from employee";

 return jdbcTemplate.queryForInt(sql);

 }

 @Override

 public int insertEmployee(Employee employee) {

 String insertQuery = "insert into employee (EmpId, Name,
Age) values (?, ?, ?) ";

 Object[] params = new Object[] { employee.getEmpId(),

 employee.getName(), employee.getAge() };

 int[] types = new int[] { Types.INTEGER, Types.VARCHAR,
Types.INTEGER };

 return jdbcTemplate.update(insertQuery, params, types);

 }

 @Override

 public Employee getEmployeeById(int empId) {

 String query = "select * from Employee where EmpId = ?";

 // using RowMapper anonymous class, we can create a
separate RowMapper

 // for reuse

 Employee employee = jdbcTemplate.queryForObject(query,

 new Object[] { empId }, new
RowMapper<Employee>() {

 @Override

 public Employee mapRow(ResultSet rs,
int rowNum)

 throws SQLException {

 Employee employee = new
Employee(rs.getInt("EmpId"), rs

 .getString("Name"), rs.getInt("Age"));

 return employee;

 }

 });

 return employee;

 }

 @Override

 public int deleteEmployeeById(int empId) {

 String delQuery = "delete from employee where EmpId =
?";

 return jdbcTemplate.update(delQuery, new Object[] {
empId });

 }

}

Chapter 3

[113]

JDBC batch operation in Spring
The single executable unit for performing multiple operations is known as a batch.
If you batch multiple calls to the same prepared statement, then most of the JDBC
drivers show improved performance. Moreover, if you group the updates into
batches, then you can limit the number of round trips to the database, as shown in
the following diagram:

Server-1

SQL-100

SQL-3

SQL-1

SQL-2

Java application

Server-2

Database

Network

As shown in the aforementioned igure, we have Server-1, where our Java
application is running, and in Server-2, the database is running. Both the servers
are situated in different locations. Let's assume that we have to execute 100 queries.
Generally, we send each query from the Java application to the database server
and execute them one by one. Here, we have sent the SQL-1 query from the Java
application to the database server for execution, and then the SQL-2 query, and
so on till the SQL-100 query. So here, for 100 queries, we have to send the SQL
queries from the Java application to the database server through the network. This
will add a communication overhead and reduce the performance. So to improve
the performance and reduce the communication overhead, we use the JDBC batch
processing, as shown here:

Server-1

SQL-100

Java application

Server-2

DatabaseNetworkSQL-3

SQL-1

SQL-2

.

.

.

.

Batch

JDBC with batch processing

DAO and JDBC in Spring

[114]

In the preceding igure, we have a batch with 100 SQL queries, which will be sent
from the Java application server to the database server only once, and they will still
be executed. So, there is no need to send each SQL query from the Java application
server to the database server. In this way, it will reduce the communication overhead
and improve the performance.

The batch update operation allows you to submit multiple SQL queries to the
DataSource for processing at once. Submitting multiple SQL queries at once
instead of submitting them individually, improves the performance.

This section explains how to use an important batch update option with the
JdbcTemplate. The JdbcTemplate includes a support for executing the batch
of statements through a JDBC statement and through PreparedStatement.

The JdbcTemplate includes the following two overloaded batchUpdate() methods
that support this feature:

• One method is for executing a batch of SQL statements using the JDBC
statement. This method's signature is that it issues multiple SQL updates,
as shown here:

public int[] batchUpdate(String[] sql) throws
DataAccessException

The following sample code shows how to use this method:

jdbcTemplate.batchUpdate (new String [] {

 "update emp set salary = salary * 1.5 where
empId = 10101",

 "update emp set salary = salary * 1.2 where
empId = 10231",

 "update dept set location = 'Bangalore'
where deptNo = 304"

});

• The other method is for executing the SQL statement multiple times with
different parameters using PreparedStatement, as shown by the following
code snippet:

public int[] batchUpdate(String sql,
BatchPreparedStatementSetter bPSS) throws
DataAccessException

Let's consider an example of a code, where an update batch operation performs actions.

Chapter 3

[115]

Directory structure of the application
The inal directory structure of the application is shown here:

The EmployeeDaoImpl.java ile
The EmployeeDaoImp class has the method insertEmployees() that performs the
batch insert operation, as shown here:

package org.packt.Spring.chapter5.JDBC.dao;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.util.List;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.BatchPreparedStatementSetter;

DAO and JDBC in Spring

[116]

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl {

 @Autowired

 private JdbcTemplate jdbcTemplate;

 public void insertEmployees(final List<Employee> employees) {

 jdbcTemplate.batchUpdate("INSERT INTO employee "

 + "(id, name) VALUES (?, ?)",

 new BatchPreparedStatementSetter() {

 public void
setValues(PreparedStatement ps, int i)

 throws SQLException {

 Employee employee =
employees.get(i);

 ps.setLong(1,
employee.getId());

 ps.setString(2,
employee.getName());

 }

 public int getBatchSize() {

 return employees.size();

 }

 });

 }

 public int getEmployeeCount() {

 String sql = "select count(*) from employee";

 return jdbcTemplate.queryForInt(sql);

 }

}

The HrPayrollBatchUpdate.java ile
The HrPayrollBatchUpdate class calls a method from EmployeeDaoImp to perform
a batch update operation:

package org.packt.Spring.chapter5.JDBC.batchupdate;

public class HrPayrollBatchUpdate {

Chapter 3

[117]

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "Spring.xml");

 EmployeeDaoImp employeeDaoImp = (EmployeeDaoImp) context

 .getBean("employeeDaoImp");

 List<Employee> employeeList = new ArrayList<Employee>();

 Employee employee1 = new Employee(10001, "Ravi");

 Employee employee2 = new Employee(23330, "Kant");

 Employee employee3 = new Employee(12568, "Soni");

 employeeList.add(employee1);

 employeeList.add(employee2);

 employeeList.add(employee3);

 employeeDaoImp.insertEmployees(employeeList);

 System.out.println(employeeDaoImp.getEmployeeCount());

 }

}

The preceding code shows how to use the batchUpdate() method with string and
BatchPreparedStatementSetter for executing a SQL statement multiple times
with different parameter values. In this section, we have seen how to execute batch
statements using a JdbcTemplate.

Calling a stored procedure
A stored procedure is a group of transact SQL statements. If you have a situation
where you write the same query over and over again, then you can save that speciic
query as a stored procedure and call it just by calling its name. Stored procedures are
a block of SQL statements that are stored as basic objects within your database.

Let's take our Employee table that has columns as EmpId, Name, and Age. Let's say that
we need the name and age of an employee, we will write the query as Select Name,
Age from employee. So every time we need the name and age of the employee, we
will need to write this query. Instead, we can add this query to the stored procedure
and call that stored procedure rather than writing this query again and again.

DAO and JDBC in Spring

[118]

The advantages and disadvantages of using the stored procedure are as follows:

Advantages Disadvantages
Stored procedure helps in increasing the
performance of an application. Stored
procedures, once created, are compiled and
stored in the database. And this compiled
version of the stored procedures is used if
an application uses the stored procedures
multiple times in a single connection.

Stored procedures are difficult to debug and
only a few DBMS allow you to debug it.

It helps in reducing the traffic between
the application and the database server.
Because, the application has to send the
name and the parameter of the stored
procedures rather than sending the multiple
length SQL statements.

Developing and maintaining the stored
procedures is not easy and leads to
problems in the development and the
maintenance phases, as it requires a
specialized skill set, which the average
developer has no interest in learning.

Using the SimpleJdbcCall class
An instance of the SimpleJdbcCall class is that of a multithreaded and reusable
object, representing a call to a stored procedure. It provides the metadata processing
to simplify the code required for accessing the basic stored procedure. While
executing a call, you only have to provide the name of the stored procedure. The
names of the supplied parameters are matched with the in and out parameters,
speciied during the declaration of a stored procedure. Here, we will discuss the
calling of a stored procedure and a stored function using the SimpleJdbcCall class.

Calling a stored procedure
The SimpleJdbcCall class takes the advantage of the metadata present in the
database to look up the names of the IN and OUT parameters, and thereby there is no
need to explicitly declare the parameters. However, you can still declare them if you
have the parameters that don't have the automatic mapping of the class, such as the
array parameters.

In MYSQL, we declare a stored procedure named getEmployee, which contains an IN
parameter ID and two OUT parameter IDs, named Emp_Name and Emp_Age. The query
lies between BEGIN and END:

IN MYSQL

DROP PROCEDURE IF EXISTS getEmployee

CREATE PROCEDURE getEmployee

(

Chapter 3

[119]

 IN id INTEGER,

 OUT Emp_Name VARCHAR(20),

 OUT Emp_Age INTEGER

)

BEGIN

 SELECT Name, Age

 INTO Emp_Name, Emp_Age

 FROM employee where EmpId = id;

END;

In the preceding code snippet, three parameters were speciied. First was the IN
parameter id, containing the ID of the employee. The remaining parameters were the
OUT parameters, which were used for returning the data retrieved from table.

In Apache Derby, we declare a stored procedure named getEmployee as shown
here:

IN Apache Derby

CREATE PROCEDURE getEmployee(IN id INTEGER, OUT name varchar(30))
LANGUAGE JAVA EXTERNAL NAME
'org.packt.Spring.chapter5.JDBC.dao.EmployeeDaoImp.getEmployee'
PARAMETER STYLE JAVA;

The CREATE PROCEDURE statement, as shown in aforementioned code snippet, allows
us to create the Java stored procedures that can be called by using the CALL PROCEDURE
statement. The getEmployee is a procedure name that is created in the database. The
LANGUAGE JAVA makes the database manager call the procedure as a public static
method in a Java class. The EXTERNAL NAME 'package.class_name.method_name'
makes the method_name method to be called when the procedure is executed. Here,
the EXTERNAL NAME 'org.packt.Spring.chapter5.JDBC.dao.EmployeeDaoImp.
getEmployee' makes the getEmployee method get called during the execution of
the procedure. The Java method created org.packt.Spring.chapter5.JDBC.dao.
EmployeeDaoImp.getEmployee is speciied as the EXTERNAL NAME.

Now, let's discuss the implementation of SimpleJdbcCall for calling the
getEmployee stored procedure. The following code snippet shows us how to read
the getEmployee stored procedure.

The EmployeeDaoImpl.java ile
The following code snippet gives the EmployeeDaoImpl.java class:

package org.packt.Spring.chapter5.JDBC.dao;

import java.util.Map;

DAO and JDBC in Spring

[120]

import javax.sql.DataSource;

import org.packt.Spring.chapter5.JDBC.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.jdbc.core.namedparam.MapSqlParameterSource;

import org.springframework.jdbc.core.namedparam.SqlParameterSource;

import org.springframework.jdbc.core.simple.SimpleJdbcCall;

import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl implements EmployeeDao {

 @Autowired

 private DataSource dataSource;

 @Autowired

 private JdbcTemplate jdbcTemplate;

 private SimpleJdbcCall jdbcCall;

 public void setJdbcTemplateObject(JdbcTemplate jdbcTemplate) {

 this.jdbcTemplate = jdbcTemplate;

 }

 @Autowired

 public void setDataSource(DataSource dataSource) {

 this.dataSource = dataSource;

 this.jdbcCall = new SimpleJdbcCall(this.dataSource)

 .withProcedureName("getEmployee");

 }

 @Override

 public Employee getEmployee(Integer id) {

 SqlParameterSource in = new
MapSqlParameterSource().addValue("id", id);

 Map<String, Object> simpleJdbcCallResult =
jdbcCall.execute(in);

 Employee employee = new Employee(id,

 (String) simpleJdbcCallResult.get("name"));

 return employee;

 }

}

Chapter 3

[121]

In the preceding code snippet, the instance of the SqlParameterSource interface
was created, which contained the parameters that must match the name of the
parameter declared in the stored procedure. The execute() method accepts the
IN parameter as an argument and returns a map containing the OUT parameters,
keyed by the name, as speciied in the stored procedure. Here the OUT parameter
is name. The retrieved value is set to the employee instance of employee.

Exercise
Q1. Explain the Spring JDBC packages.

Q2. What is JdbcTemplate?

Q3. Explain the JDBC batch operation in Spring.

The answers to these are provided in Appendix A,
Solution to Exercises.

Summary
In this chapter, we understood the overview of database and covered the DAO design
pattern. We looked at JDBC without the Spring Framework and the simpliied Spring
JDBC abstraction framework. We implemented the JDBC code using the Spring JDBC
support. We discussed how Spring manages the DataSource and which data sources
can be used in our applications. We also discussed the data support in the Spring
application. We looked at the JDBC batch operation in Spring and calling the stored
procedure by using SimpleJdbcCall.

In the next chapter, you will learn about ORM and understand the concept of
Hibernate. Then, we will discuss the important elements of the Hibernate architecture.
We will also learn how to use HQL and HCQL to query the persistent object.

Chapter 4

[123]

Hibernate with Spring
While developing a real-world application using the Spring Framework, we often
store and retrieve data to and from the relational database in the form of objects.
These objects are non-scalar values that can't be directly stored and retrieved to
and from the database, as only scalar values can be directly stored in the relational
database, which is technically deined as impedance mismatch. In the previous
section, we took a look at using JDBC in Spring applications.

Data persistence is the ability to preserve the state of an object so that it can
regain the same state in the future. In this chapter, we will be focused on saving
in-memory objects into the database using ORM tools that have wide support in
Spring Hibernate.

As we have understood from earlier chapters, Spring uses POJO-based development
and also uses declarative coniguration management to overcome EJB's clumsy and
heavy setup (EJB architecture was released a lot of time ago and is just not feasible).

The developer community realized that the development of data access logic could
be easy using a simple, lightweight POJO-based framework. This resulted in the
introduction of ORM. The objective of ORM libraries was to close the gap between
the data structure in the RDBMS and the object-oriented model in Java. It helped
developers focus on programming with the object model.

Hibernate is one of the most successful ORM libraries available in the open
source community. It won the heart of the Java developer community with
features such as its POJO-based approach, support of relationship deinitions,
and ease of development.

This chapter will cover the basic ideas and main use cases of Hibernate in Spring
when developing data access logic. Hibernate is an extensive ORM library, so it is
not possible to cover every aspect of Hibernate in just one chapter.

Hibernate with Spring

[124]

The list of topics that will be covered in this chapter are:

• Why Object/Relational Mapping (ORM)?
• Introducing ORM, O/RM, and O/R mapping

• Introducing Hibernate

• Integrating Hibernate with the Spring Framework

• Hibernate Criteria Query Language (HCQL)

Why Object/Relational Mapping?
Object-oriented languages such as Java represent data as an interconnected Graph
of Objects, whereas relational database systems represent data in a table-like format.
Relational databases normally work with tables; data is stored in different types of
tables. Java implements the object model whereas relational database management
systems (RDBMS) implement the relational model. Because both the models
are quite different in the way they represent data, when we load or store graphs
of objects using relational databases, it causes mismatch problems. Refer to the
following igure for clarity:

Enterprise-level applications implemented using object-oriented languages such as
Java manage the data in the form of objects. Most of these applications use relational
databases such as RDBMS to maintain persistence of data in the form of tables with
rows and columns. Implementing the data access layer using low-level APIs such as
JDBC includes huge boilerplate code, which affects the productivity of the system,
increasing the cost of application development.

Chapter 4

[125]

Let's say we have an Employee class in our application, having ields named empId,
firstName, dateOfBirth, and phone. In the running application, there will be
many instances of this class in memory. Say we have four employee objects in
memory and we want to save these employee objects into the relational database as
a common database.

We will be having an Employee table with column names the same as the ields in
the Employee class. Each of these employee objects contains data for a particular
employee, which will be persisted as rows in that table. A class corresponds to a
table and an object of this class corresponds to a row in that table, as shown here:

This is what we have followed as our traditional approach in Java applications
over the years. We connect to a database using a JDBC connection and create a SQL
query to perform an INSERT operation. So, that data will execute in the form of SQL
queries to perform INSERT. Similarly, we create an object using setter methods after
performing the SELECT query. By using boilerplate code, the object will get converted
into a data model and vice versa, which results in a painful mapping process. This
is a common problem in every Java application that has a persistence layer and that
connects to the database in order to save and retrieve values.

Mapping relationships is another issue that needs to be addressed. Let's say we have
another table called Address table and an object called address object. Let's also say
the employee object has a reference to this address object. In this case, the primary
key of the Address table will be mapped to a foreign key of the Employee table.

Another issue that needs to be addressed is data types. Let's say we have an object
with a Boolean data type whereas most of the database doesn't have Boolean data
type and probably used as char for Y/N or integer for 0/1, which need to be handled
during data type conversion while writing code.

Managing changes to object state is another issue that needs to be addressed. If there
are some changes to object state, then we need to manually execute the procedure
to make these changes and we also need to reframe the SQL queries and update the
database by ourselves.

Hibernate with Spring

[126]

To solve these problems, we need a customizable generic system that can take
the responsibility of illing the gap between the object and relational models for
our application. This requirement has resulted in the introduction of ORM, which
provides an elegant way to handle the mentioned issues.

Introducing ORM, O/RM, and O/R
mapping
ORM is the process of persisting objects in a relational database such as RDBMS.
ORM bridges the gap between object and relational schemas, allowing object-
oriented applications to persist objects directly without having the need to convert
objects to and from a relational format.

ORM creates a virtual object database that can be accessed via a programming
language and simpliies the data access layer of complex enterprise applications
using a relational database as its persistence store. ORM simpliies the job of
implementing the data access layer for enterprise applications implemented
using object-oriented programming languages and the relational database as
its persistence store, as illustrated by the following igure:

ORM is about mapping object representations to JDBC statement parameters and in
turn mapping JDBC query results back to object representations. Database columns
are mapped to the instance ields of domain objects or JavaBeans' properties.

Chapter 4

[127]

Usually, ORM doesn't work at the SQL level but rather refers its own Object Query
Language, which gets translated into SQL at runtime. The mapping information is
kept as metadata (in XML iles or as annotations on mapped objects), which deines
how to map a persistent class and its ields into database tables and theirs columns.
The database dialect is conigured to address database speciics. For example,
ID generation is conigured in the metadata and is automatically translated into
sequences or autoincrement columns.

Until now, we have understood how ORM implementations in Java help us to
quickly implement a reliable data access layer to concentrate on other tiers of the
application. In the next section, we will understand the features of Hibernate and
their uses in a Spring application.

Introducing Hibernate
Hibernate, by deinition, is an ORM solution for Java. Hibernate is an open source,
full-ledged persistence framework. It is used to map plain old Java objects
(POJOs) to the tables of a relational database and vice versa. Hibernate is used to
persist application data into a data layer. Hibernate implements Java Persistence
API (JPA), which is a set of standards that has been prescribed for any persistence
implementation and that needs to be met in order to get certiied as a Java persistent
API implementation.

Hibernate sits between Java objects in memory and the relational database server
to handle the persistence of objects based on O/R mapping. Hibernate supports
almost all relational database engines such as the HSQL database engine, MySQL,
PostgreSQL, Oracle, and so on.

The object query language used by Hibernate is called Hibernate Query Language
(HQL). HQL is a SQL-like textual query language that works at the class- or ield-
level. Let's start learning about the architecture of Hibernate.

Hibernate with Spring

[128]

Hibernate architecture
In this section, we will discuss all the important elements of the Hibernate system
and see how they it into its architecture. The following igure shows the Hibernate
architecture:

Hibernate makes use of various existing Java APIs such as Java Database
Connectivity (JDBC), Java Naming and Directory Interface (JNDI), and Java
Transaction API (JTA). JDBC supports functionality common to relational databases,
which allows almost any database with a JDBC driver to be supported by Hibernate,
whereas JTA and JNDI allow Hibernate to be integrated with Java EE application
servers. The basics elements of the Hibernate architecture are described in the
following sections.

Chapter 4

[129]

Coniguration
The org.hibernate.cfg.Configuration class is the basic element of the Hibernate
API, which allows us to build SessionFactory. Coniguration can be thought of
as the factory class that can produce SessionFactory. The irst object of Hibernate
is the configuration object, created only once during the initialization of the
application. The configuration object encapsulates the Hibernate coniguration
details such as connection properties and dialect, which are used to build
SessionFactory as shown in the following igure:

The hibernate.properties and hibernate.cfg.xml iles are conigurations iles
that are supported by Hibernate. We can use the hibernate.properties ile to
specify the default values for the new coniguration object.

SessionFactory
The org.hibernate.SessionFactory interface provides an abstraction for
the application to obtain the Hibernate session object. The SessionFactory
initialization process includes various operations that consume huge resources
and extra time, so it is generally recommended to use a single SessionFactory
per JVM instance. For each database, we need to have one SessionFactory using
a separate coniguration ile. So we have to create multiple SessionFactory if we
are using multiple databases.

The SessionFactory is a heavyweight and immutable towards the application; that
is, it is a thread safe object. It is mostly conigured as a singleton in an application
so that there will be only one object per application. It is usually created during the
startup of an application and is kept for later reference. The SessionFactory is
used by all threads of the application. We can open multiple sessions using a single
SessionFactory.

Hibernate with Spring

[130]

Session
The org.hibernate.Session interface is an interface between the Hibernate system
and the application. It is used to get the connection with a database. It is light weight
and is initiated each time an interaction is needed with the database.

Session objects are not usually thread safe and it is recommended to obtain a
separate session for each thread or transaction. After we are done using session,
it has to be closed to release all the resources such as cached entity objects and the
JDBC connection.

The Session interface provides an abstraction for Java application to perform
CRUD operations on the instance of mapped persistent classes. We will look into
the methods provided by the Session interface in a later section of his chapter.

Transaction
The Transaction interface is an optional interface that represents a unit of
work with the database. It is supported by most RDBMS systems. In Hibernate,
Transaction is handled by the underlying transaction manager.

Query
The org.hibernate.Query interface provides an abstraction to execute the
Hibernate query and to retrieve the results. The Query object represents the
Hibernate query built using the HQL. We will learn about the Query interface in
more detail in a later section of this chapter.

Criteria
The org.hibernate.Criteria interface is an interface to use the criterion API
and is used to create and execute object-oriented criteria queries, which is an
alternative to HQL or SQL.

The Persistent object
Persistent classes are the entity classes in an application. Persistent objects
are objects that are managed to be in the persistent state. Persistent objects
are associated with exactly one org.hibernate.Session. And once the org.
hibernate.Session is closed, these objects will be detached and will be free
to be used in any layer of the application.

Chapter 4

[131]

Integrating Hibernate with the Spring

Framework
While using the Hibernate framework, you do not write the code to manage the
connection or to deal with statements and result sets. Instead, all the details for
accessing a particular data source are conigured in the XML iles and/or in the
Java annotations.

While integrating the Hibernate framework with the Spring Framework, the business
objects are conigured with the help of the IoC container and can be externalized
from the application code. Hibernate objects can be used as Spring beans in your
application and you can avail all the beneits of the Spring Framework.

In this section, we will set up the Hibernate environment and create a Spring
Hibernate project in STS. The simplest way to integrate Hibernate with Spring is to
have a bean for SessionFactory and make it a singleton and the DAOs classes just
get that bean and inject its dependency and get the session from the SessionFactory.
The irst step in creating a Spring Hibernate project is to integrate Hibernate and
connect with the database.

Sample data model for example code
In this chapter, we will use a PostgreSQL database. Please refer to http://www.
postgresqltutorial.com/install-postgresql/ to set up a PostgreSQL database
server on your machine and download the JDBC driver for the PostgreSQL
database; we have used the postgresql-9.3-1102.jdbc3.jar JDBC connector for
PostgreSQL.

We will create a database named ehrpayroll_db that will contain a table named
employee and will populate dummy data to the table. The following is a sample data
creation script for a PostgreSQL database.

Let's irst create a database for our project in the PostgreSQL database:

1. Type in the following script to create a database named ehrpayroll_db:

CREATE DATABASE ehrpayroll_db

2. Now enter the given script to create a table named EMPLOYEE_INFO:

CREATE TABLE EMPLOYEE_INFO(

 ID serial NOT NULL Primary key,

 FIRST_NAME varchar(30) not null,

 LAST_NAME varchar(30) not null,

http://www.postgresqltutorial.com/install-postgresql/
http://www.postgresqltutorial.com/install-postgresql/

Hibernate with Spring

[132]

 JOB_TITLE varchar(100) not null,

 DEPARTMENT varchar(100) not null,

 SALARY INTEGER

);

3. The next script helps you populate the data for the table employee:

INSERT INTO EMPLOYEE_INFO

(FIRST_NAME, LAST_NAME, JOB_TITLE, DEPARTMENT, SALARY)

VALUES

('RAVI', 'SONI', 'AUTHOR', 'TECHNOLOGY', 5000);

The following igure shows the created table with the data inserted:

id

integer

first_name

character varying(30)

last_name

character varying(30)

job_title

character varying(100)

department

character varying(100)

5000TECHNOLOGYAUTHORSONIRAVI

salary

integer

11

Integrating Hibernate
To integrate Hibernate, we need to perform these steps:

1. Download the Hibernate JAR and include them into the classpath. Download
(.zip ile for Windows) the latest version of Hibernate from http://www.
hibernate.org/downloads. Once you unzip the downloaded ZIP ile, the
directory structure will appear as shown in the following screenshot:

2. Inside the lib directory, there will be a lot of directories that contain
Hibernate-related JARs, as shown in the following screenshot. The required
folder contains all the JARs you need to create a basic Java application.

http://www.hibernate.org/downloads
http://www.hibernate.org/downloads

Chapter 4

[133]

Once you have downloaded the Hibernate libraries, you can create a new Spring
project and add Hibernate libraries to this project using Java Build Path.

Required JARs for the Spring-Hibernate
project
We need to add the JARs required to create our Spring-Hibernate projects. These are
shown in the following screenshot:

Hibernate with Spring

[134]

Coniguring Hibernate SessionFactory in
Spring
The Spring Framework lets us deine resources such as JDBC DataSource or
Hibernate SessionFactory as a Spring bean in an application context, which
prevents the need for hardcoded resource lookups for application objects. This
deined Spring bean references are used by application objects that need to access
resources to receive the predeined instances.

The Session interface in the Hibernate API provides methods to ind, save, and delete
objects in a relational database. The Hibernate session is created by irst creating the
SessionFactory. The Spring Framework provides a number of classes to conigure
Hibernate SessionFactory as a Spring bean containing the desired properties.

For session creation, the Spring API provides the implementation of the
AbstractSessionFactoryBean subclass: the LocalSessionFactoryBean class
and the AnnotationSessionFactoryBean class. Since we will be using annotation
style, we will use the AnnotationSessionFactoryBean class, which supports
annotation metadata for mappings. AnnotationSessionFactoryBean extends the
LocalSessionFactoryBean class, so it has all the basic properties of Hibernate
integration.

In the coniguration ile, we have to declare the sessionFactory bean and set
dataSource, packagesToScan or annotatedClasses, and hibernateProperties.
Let's take a look at these in detail:

• The dataSource property sets the name of the data source to be accessed
by the underlying application.

• The packagesToScan property instructs Hibernate to scan the
domain object with the ORM annotation under the speciied package.
The annotatedClasses property instructs Hibernate to for the
ORM-annotated class.

• The hibernateProperties property sets the coniguration details for
Hibernate. We have deined only a few important properties out of many
coniguration parameters that should be provided for every application.

Chapter 4

[135]

The following table describes these properties:

Property Description
hibernate.dialect Hibernate uses this property to generate the

appropriate SQL optimized for the chosen
relational database. Hibernate supports SQL
dialects for many databases, and the major dialects
include PostgreSQLDialect, MySQLDialect,
H2Dialect, Oracle10gDialect, and so on.

hibernate.max_fetch_depth This property is used to set the maximum depth
for the outer join when the mapping object is
associated with other mapped objects. This
property is used to determine the number of
associations Hibernate will traverse by join when
fetching data. The recommended value lies
between 0 and 3.

hibernate.jdbc.fetch_size This property is used to set the total number of
rows that can be retrieved by each JDBC fetch.

hibernate.show_sql This property file is used to output all SQL to the
log file or console, which is an alternative to set log
to debug and troubleshooting process. It can be set
to either True or False.

Refer to the Hibernate reference manual for the full list of Hibernate properties
at http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/
session-configuration.html.

XML Spring coniguration for Hibernate
Spring beans, the data source, a SessionFactory, and a transaction manager bean
are conigured in the app-context.xml ile. You should adapt your Hibernate beans
according to the project requirements.

Here is an implementation of app-context.xml. In the following coniguration ile,
we have declared several beans to support the Hibernate SessionFactory:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"

 xsi:schemaLocation="

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/session-configuration.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/session-configuration.html

Hibernate with Spring

[136]

 http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd

 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.0.xsd">

In the following code snippet, we have instructed Spring to scan the component under
the package org.packt.spring.chapter6.hibernate using component-scan:

 <context:annotation-config />

 <context:component-scan base-
package="org.packt.spring.chapter6.hibernate" />

The property-placeholder will refer to the hibernate.properties ile, as shown
in the following code snippet:

 <context:property-placeholder

 location="classpath:/META-
INF/spring/hibernate.properties" />

In the following code snippet, the dataSource bean is declared to provide database
connection details to Hibernate:

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.
DriverManagerDataSource">

 <property name="driverClassName"
value="${jdbc.driverClassName}" />

 <property name="url" value="${jdbc.url}" />

 <property name="username" value="${jdbc.username}" />

 <property name="password" value="${jdbc.password}" />

 </bean>

The sessionFactory bean is declared in the following code snippet.
The Hibernate sessionFactory bean is the most important part. We have
used AnnotationSessionFactoryBean to support the Hibernate annotation.
We have injected the dataSource bean into sessionFactory. We have instructed
Hibernate to scan for the ORM annotated object. And then we have provided the
coniguration details for Hibernate using hibernateProperties, as shown here:

Chapter 4

[137]

 <bean id="sessionFactory"

 class="org.springframework.orm.hibernate3.
annotation.AnnotationSessionFactoryBean">

 <property name="dataSource" ref="dataSource" />

 <property name="annotatedClasses"

 value="org.packt.spring.chapter6.hibernate.model.Employee" />

 <property name="hibernateProperties">

 <props>

 <prop
key="hibernate.dialect">${hibernate.dialect}</prop>

 <prop
key="hibernate.show_sql">${hibernate.show_sql}</prop>

 </props>

 </property>

 </bean>

In the following code snippet, we have declared the transactionManager bean.
To access transactional data, SessionFactory requires a transaction manager.
The transaction manager provided by Spring speciically for Hibernate 3 is org.
springframework.orm.hibernate3.HibernateTransactionManager:

 <bean id="transactionManager"

 class="org.springframework.orm.hibernate3.
HibernateTransactionManager">

 <property name="sessionFactory" ref="sessionFactory" />

 </bean>

The <tx:annotation-driven> is declared in the following code snippet to support
transaction demarcation requirements using annotations:

 <tx:annotation-driven transaction-manager=
"transactionManager" />

</beans>

hibernate.properties
The Hibernate- and JDBC-speciic properties are stored in a hibernate.properties
ile, as follows:

JDBC Properties

jdbc.driverClassName=org.postgresql.Driver

jdbc.url=jdbc:postgresql://localhost:5432/ehrpayroll_db

jdbc.username=postgres

Hibernate with Spring

[138]

jdbc.password=sa

Hibernate Properties

hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

hibernate.show_sql=true

Annotated domain model class
The Java persistent model establishes the static relationships of the persistence model
by deining the entity component. The API deines the entity class as the object tier of
a table in the database tier. An entity instance is deined as the object tier equivalent
of a row in a database table.

The following is a table that maps Object Tier elements to Database Tier elements:

Object Tier element Database Tier element
Entity class Database table

Field of entity class Database table column

Entity instance Database table row

Hibernate annotation provides the metadata for object and relational table mapping.
This metadata is clubbed into a POJO ile that helps users understand the code inside
POJO as well as the table structure simultaneously while developing. Hibernate
provides JPA implementation, which allows the user to use JPA annotation in model
beans. The JPA annotations are explained in the following table:

JPA annotation Description
@Entity The javax.persistence.Entity annotation declares a

class as an entity bean that can be persisted by Hibernate,
since Hibernate provides JPA implementation.

@Table The javax.persistence.Table annotation can be
used to define table mapping. It provides four attributes
that allows us to override the table name, its catalogue,
and its schema.

@Id The javax.persistence.Id annotation is used
to define the primary key, and it will automatically
determine the appropriate primary key generation
strategy to be used.

Chapter 4

[139]

JPA annotation Description
@GeneratedValue • The javax.persistence.GeneratedValue

annotation is used to deine that the ield will be
autogenerated

• It takes two parameters, strategy and generator

• The GenerationType.IDENTITY strategy is used
so that the generated id value is mapped to the
bean and can be retrieved by the Java program

@Column • The javax.persistence.Column annotation is
used to map the ield with the table column

• We can also specify length, nullable, and
uniqueness for the bean properties

Now it's time to write Employee.java. This class will be mapped to the Employee
table in the database using Hibernate. The Employee class ields are annotated with
JPA annotations so that we don't need to provide mapping in a separate XML ile.
It should be noted that Hibernate puts emphasis on overriding the equals() and
hashCode() methods of a persistent class when used in collections (such as a list or
set) because internally Hibernate works with the objects in the session and cache.
It is recommended to implement the equals() and hashCode() methods using a
real-world key, which is a key that would identify the instance in the real world, as
shown here:

package org.packt.spring.chapter6.hibernate.model;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name = "EMPLOYEE_INFO")

public class Employee {

 @Id

 @Column(name = "ID")

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Integer id;

Hibernate with Spring

[140]

 @Column(name = "FIRST_NAME")

 private String firstName;

 @Column(name = "LAST_NAME")

 private String lastName;

 @Column(name = "JOB_TITLE")

 private String jobTitle;

 @Column(name = "DEPARTMENT")

 private String department;

 @Column(name = "SALARY")

 private int salary;

 // constructor and setter and getter

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (!(obj instanceof Employee)) {

 return false;

 }

 Employee employee = (Employee) obj;

 if (firstName != null ?
!firstName.equals(employee.firstName)

 : employee.firstName != null) {

 return false;

 } else {

 return true;

 }

 }

 @Override

 public int hashCode() {

 return firstName != null ? firstName.hashCode() : 0;

 }

 @Override

 public String toString() {

 return "Employee [id=" + id + ", name=" + firstName + " "
+ lastName

Chapter 4

[141]

 + ", jobTitle=" + jobTitle + " department="
+ department

 + " salary=" + salary + "]";

 }

}

In the preceding code snippet:

• The Employee class is annotated with the @Entity annotation, which
will deine this class as a mapped entity class. The Employee class is also
annotated with the @Table annotation that deines the table name in the
database with which this entity class will map.

• The ID is annotated with the @ID annotation, which represents that ID is
the primary key of the object. Hibernate will generate the ID value based on
the @GeneratedValue annotation. The GenerationType.IDENTITY strategy
relects that the ID will be generated by the backend (the ID column of the
EMPLOYEE_INFO table is the primary key with SERIAL speciied, which means
the value of ID will be generated and assigned by the database during the
insert operation) during insert.

• The name and e-mail are annotated with the @Column annotation.

• If the type and attribute names are exactly the same as the name of table
and column, then we can skip the name of the table and column from the
annotation.

The Hibernate sessions
The Session interface is an important interface that is required while
interacting with a database in Hibernate. The Session interface is obtained from
SessionFactory. The Session object is light weight and can be used to attain a
physical connection with a database. It is initiated each time an interaction needs
to happen with a database. Also, persistent objects are saved and retrieved through
a Session object. It is not usually thread safe, so avoid keeping it open for a long
time. They should be created and destroyed as needed. The Session interface offers
create, delete, and read operations for instances of mapped entity classes.

Instances may exist in one of the following three states at a given point in time:

• Transient: This state represents a new instance of persistence class that has
no representation in a database and is not associated with Session.

Hibernate with Spring

[142]

• Persistent: This state represents that the instance of a persistence class has a
representation in the database.

• Detached: In this state, the persistent object will be detached from the
database. This state will be reached once the Hibernate Session will be closed.

The Session interface methods
The Session interface provides a numbers of method such as beginTransaction(),
createCriteria(), save(), delete(), and so on, which you can read about at
http://www.tutorialspoint.com/hibernate/hibernate_sessions.htm.

Persistence layer – implement DAOs
The persistence layer will have the DAO. Let's create DAO classes that will interact
with the database using the Hibernate SessionFactory. The SessionFactory
implementation will be injected into the reference variable at runtime using Spring's
Inversion of Control (IoC) feature.

The EmployeeDao interface
The EmployeeDao interface declares two methods named getAllEmployees() and
insertEmployee(), as shown here:

package org.packt.spring.chapter6.hibernate.dao;

import java.util.List;

import org.packt.spring.chapter6.hibernate.model.Employee;

public interface EmployeeDao {

 // to get all employees

 public List<Employee> getAllEmployees();

 // to insert new employee

 public void insertEmployee(Employee employee);

}

The EmployeeDaoImpl class
The EmployeeDaoImpl class is annotated with @Repository, which indicates that
this class is a DAO. It also has the @Transactional(readOnly = true) annotation,
which conigures this class and all its methods for read-only access:

http://www.tutorialspoint.com/hibernate/hibernate_sessions.htm

Chapter 4

[143]

package org.packt.spring.chapter6.hibernate.dao;

import java.util.List;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.packt.spring.chapter6.hibernate.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Repository;

@Repository

@Transactional(readOnly = true)

public class EmployeeDaoImpl implements EmployeeDao {

 @Autowired

 private SessionFactory sessionFactory;

 @SuppressWarnings("unchecked")

 public List<Employee> getAllEmployees() {

 Session session = sessionFactory.openSession();

 String hql = "FROM Employee";

 Query query = session.createQuery(hql);

 List<Employee> emList = query.list();

 return emList;

 }

 @Transactional(readOnly = false)

 public void insertEmployee(Employee employee) {

 Session session = sessionFactory.openSession();

 session.save(employee);

 }

}

To get a SessionFactory, we declare a member variable named sessionFactory
of type SessionFactory and annotated with the @Autowired annotation that
automatically initializes the SessionFactory. The next step is to get the session
from the sessionFactory.

In order to use Hibernate in the getAllEmployees() and insertEmployees()
method, we use a session object. The session object is obtained from a
SessionFactory. Using this session object, we can use the createQuery
method to create queries and run them.

Hibernate with Spring

[144]

When we are inished with the session, we should close it. We needn't close it by
ourselves; the Spring Framework will do this for us.

Let's understand the methods deined in EmployeeDaoImpl class in more detail:

• Querying the database – getAllEmployees(): The method
getAllEmployees() will fetch all the employee details from the Employee
table in the database and return the list of employees.

This method will get Hibernate Session (Session is the main runtime
interface between Java application and Hibernate) from sessionFactory
using the openSession() method of the SessionFactory class. This session
will use the query object to call the list() method that will fetch employees.

• Inserting new record – insertEmployee(): The method insertEmployee()
will insert a new record to the Employee table. This method will use the
save() method deined in the Hibernate Session to perform the INSERT
operation.

Annotate this method with @Transactional(readOnly = false), which
will allow us to perform the INSERT operation.

Service layer – implement services
We have deined the Service layer, which seems redundant in this demo due to the
lack of complexity. This layer will simply take a call from the controller (in Spring
MVC) or from the main method and pass this call to the DAOs layer.

The EmployeeService interface
The EmployeeService interface declares two methods named getAllEmployees()
and insertEmployee(), as shown here:

package org.packt.spring.chapter6.hibernate.service;

import java.util.List;

import org.packt.spring.chapter6.hibernate.model.Employee;

public interface EmployeeService {

public List<Employee> getAllEmployees();

public void insertEmployee(Employee employee);

}

Chapter 4

[145]

The EmployeeServiceImpl class
The EmployeeServiceImpl class will implement the EmployeeService interface and
provide a deinition for the methods declared in the interface. This class has declared
a member variable named EmployeeDAO and annotated it with the @Autowired
annotation. This class is annotated with the @Service annotation, which makes this
class a service class:

package org.packt.spring.chapter6.hibernate.service;

import java.util.List;

import org.packt.spring.chapter6.hibernate.dao.EmployeeDao;

import org.packt.spring.chapter6.hibernate.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class EmployeeServiceImpl implements EmployeeService {

 @Autowired

 private EmployeeDao employeeDao;

 public List<Employee> getAllEmployees() {

 List<Employee> emList = employeeDao.getAllEmployees();

 return emList;

 }

 public void insertEmployee(Employee employee) {

 employeeDao.insertEmployee(employee);

 }

}

Hibernate with Spring

[146]

Directory structure of the application
The inal directory structure of the application is as follows:

Running the application
Once we are done with the preceding coniguration, we can write a main method to
store values from the Employee object to the database.

The DBUtils class
We have created a DBUtils class annotated with the @Component annotation to
register this class to the Spring container as a bean. This class deined a method
named initialize() and annotated it with the @PostConstruct annotation.

The @PostConstruct annotation does not belong to Spring, it's located in the J2EE
library: common-annotations.jar. The @PostConstruct annotation is a shared
annotation that is part of a JSR for basic annotations. It comes with Java SE 6 or
newer versions. The commons-annotations.jar is the inal product of the JSR API.
The @PostConstruct annotation deines a method that will be called after a bean
has been fully initialized. In other words, it will be called after bean construction
and the injection of all dependencies.

Chapter 4

[147]

The initialize() method will get the database connection and create a table
EMPLOYEE and insert dummy data to this table. This class has been used in this
project to prevent exceptions in case we miss out on creating a table in the database.
In a real-world application, we don't need this class:

package org.packt.spring.chapter6.hibernate.util;

import java.sql.Connection;

import java.sql.SQLException;

import java.sql.Statement;

import javax.annotation.PostConstruct;

import javax.sql.DataSource;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

@Component

public class DBUtils {

 @Autowired

 private DataSource dataSource;

 @PostConstruct

 public void initialize() {

 try {

 Connection connection =
dataSource.getConnection();

 Statement statement =
connection.createStatement();

 statement.execute("DROP TABLE IF EXISTS
EMPLOYEE_INFO");

 statement.executeUpdate("CREATE TABLE
EMPLOYEE_INFO(" +

 "ID serial NOT NULL Primary key, " +

 "FIRST_NAME varchar(30) not null, " +

 "LAST_NAME varchar(30) not null, " +

 "JOB_TITLE varchar(100) not null, " +

 "DEPARTMENT varchar(100) not null, " +

 "SALARY INTEGER)";

 statement.executeUpdate("INSERT INTO EMPLOYEE_INFO
"

Hibernate with Spring

[148]

 + "(FIRST_NAME, LAST_NAME, JOB_TITLE,
DEPARTMENT, SALARY) "

 + "VALUES " + "('RAVI', 'SONI', 'AUTHOR',
'TECHNOLOGY', 5000)";

 statement.close();

 connection.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

The SpringHibernateMain class
The SpringHibernateMain class contains the main method. The ApplicationContext
will initialize the container with the app-context.xml ile we deined:

package org.packt.spring;

import org.packt.spring.chapter6.hibernate.model.Employee;

import org.packt.spring.chapter6.hibernate.service.EmployeeService;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplication
Context;

public class SpringHibernateMain {

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "/META-INF/spring/app-context.xml");

 EmployeeService employeeService = context.getBean(

 "employeeServiceImpl",
EmployeeService.class);

 // insert employee

 Employee emp = new Employee();

 emp.setFirstName("Shree");

 emp.setLastName("Kant");

 emp.setJobTitle("Software Engineer");

 emp.setDepartment("Technology");

Chapter 4

[149]

 emp.setSalary(3000);

 employeeService.insertEmployee(emp);

 // fetch all employee

 for (Employee employee :
employeeService.getAllEmployees())

 System.out.println(employee);

 }

}

Output to console
Once you run the application, the following output will be expected:

Hibernate: insert into EMPLOYEE_INFO (DEPARTMENT, FIRST_NAME,
JOB_TITLE, LAST_NAME, SALARY) values (?, ?, ?, ?, ?)

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_, employee0_.JOB_TITLE
as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Populated data in the Employee table
Once the application has been run successfully, the updated Employee table with all
the data will be as shown here:

In the previous sections, we discussed mapping persistent objects using Hibernate.
In the next section, we will understand HQL. Hibernate is engineered around the
object model and provides a powerful query language named HQL to deine our
queries so we don't need to construct SQL to interact with the database. HQL is
similar to SQL except that we will use objects instead of table names.

Hibernate with Spring

[150]

Hibernate Query Language
Hibernate Query Language is an object-oriented query language that works on
persistence objects and their properties instead of operating on tables and columns.
Hibernate will translate HQL queries into conventional SQL queries during the
interaction with a database.

Even though you can use SQL queries using native SQL directly with Hibernate, it
is recommended that you use HQL to get the beneits of Hibernate's SQL generation
and caching strategies.

In HQL, keywords such as SELECT, FROM, WHERE, GROUP BY, and so on are not
case sensitive but properties such as table and column names are case sensitive.
So org.packt.spring.chapter6.hibernate.model.Employee is not same as
org.packt.spring.chapter6.hibernate.model.EMPLOYEE, whereas SELECT
is similar to Select.

The Query interface
To use HQL, we need to use Query object. The Query interface is an object-oriented
representation of HQL. The Query object can be obtained by calling the createQuery()
method of the Session interface. The Query interface provides a number of methods
such as executeUpdate(), list(), setFirstResult(), setMaxResult(), and so on.
The following code snippet uses HQL to get all records:

@Transactional

 public List<Employee> getAllEmployees() {

 Session session = sessionFactory.openSession();

 String hql = "FROM Employee";

 Query query = session.createQuery(hql);

 <Employee> emList = query.list();

 return emList;

 }

Database operation using HQL
HQL supports clauses to perform database operation. Let's have a look at a few clauses.

Chapter 4

[151]

The FROM clause
The FROM clause is used to load complete persistence objects into memory. The FROM
clause is the same as the SELECT clause in SQL, as shown in the following table:

HQL SQL

FROM Employee SELECT * from Employee

The syntax to use the FROM clause is as follows:

String hql = "FROM Employee";

Query query = session.createQuery(hql);

List results = query.list();

We can specify the package and class name if needed to fully qualify the class name,
as follows:

String hql = "FROM org.packt.spring.chapter6.hibernate.model.
Employee";

Query query = session.createQuery(hql);

List results = query.list();

The expected output to the console is:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The AS clause
In HQL, the AS clause is used to assign aliases to the classes when you have long
queries. The syntax to use the AS clause is:

String hql = "FROM Employee AS E";

Query query = session.createQuery(hql);

List results = query.list();

Hibernate with Spring

[152]

The AS clause is optional, so you can also specify the alias directly after the class
name as follows:

String hql = "FROM Employee E";

Query query = session.createQuery(hql);

List results = query.list();

The SELECT clause
The SELECT clause gives more control over the result set than the FROM clause. In
order to get some speciic properties of the object instead of the complete objects, go
for the SELECT clause.

The syntax of the SELECT clause is as shown here, where it is just trying to get the
name ield of the Employee object:

String hql = "SELECT E.firstName FROM Employee E";

Query query = session.createQuery(hql);

return query.list();

In this code snippet, E.firstName is the property of the Employee object rather than
a ield of the Employee table.

The WHERE clause
The WHERE clause is used to narrow the speciic objects that are returned from the
storage. The syntax of the WHERE clause is:

String hql = "FROM Employee E WHERE E.firstName='RAVI'";

Query query = session.createQuery(hql);

List results = query.list();

The expected output will be as follows:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_ where
employee0_.FIRST_NAME='RAVI'

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Chapter 4

[153]

The ORDER BY clause
The ORDER BY clause can be used to sort the results from a HQL query by any
property of the objects in the result set, either in the ascending (ASC) or the
descending (DESC) order.

The syntax of the ORDER BY clause is as follows:

String hql = "FROM Employee E ORDER BY E.firstName DESC";

Query query = session.createQuery(hql);

List results = query.list();

The expected output will be as follows:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_ order
by employee0_.FIRST_NAME DESC

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Whenever we need to sort by more than one property in the result set, just add
those additional properties to the end of the ORDER BY clause, separated by commas,
as follows:

String hql = "FROM Employee E ORDER BY E.firstName DESC, E.id
DESC";

Query query = session.createQuery(hql);

List results = query.list();

The expected output will be as follows:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_ order
by employee0_.FIRST_NAME DESC, employee0_.ID DESC

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Hibernate with Spring

[154]

The GROUP BY clause
Hibernate uses the GROUP BY clause to pull information from the database and
group them based on the value of the attribute and use the result to include an
aggregate value.

HQL supports aggregate functions such as count(*), count(distinct x), max(),
min(), avg(), and sum(). A few are listed here with descriptions:

Function Description
avg(property name) This function calculates the average of a property's value

count(property name
or *)

This function counts the number of times a given
property occurs in the results

max(property name) This function returns the maximum value from the group

min(property name) This function returns the minimum value from the group

sum(property name) This function returns the sum total of the property value

The syntax of the GROUP BY clause is as follows:

Session session = sessionFactory.openSession();

String hql = "SELECT SUM(E.salary) FROM Employee E GROUP BY

E.firstName";

Query query = session.createQuery(hql);

List<Long> groupList = query.list();

The expected output will be as follows:

Hibernate: select sum(employee0_.SALARY) as col_0_0_ from
EMPLOYEE_INFO employee0_ group by employee0_.FIRST_NAME

Salary: 3000

Salary: 5000

Using the named parameter
Hibernate supports named parameters in HQL queries to accept input from users
and you don't have to defend against SQL injection attacks.

The syntax to use named parameters is as shown here:

Session session = sessionFactory.openSession();

String hql = "FROM Employee E WHERE E.firstName =

Chapter 4

[155]

:employee_firstName";

Query query = session.createQuery(hql);

query.setParameter("employee_firstName", "Shree");

return query.list();

The expected output will be as follows:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_ where
employee0_.FIRST_NAME=?

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The UPDATE clause
Hibernate supports bulk updates. The Query interface contains a method named
executeUpdate() to execute the HQL UPDATE or DELETE statement. The UPDATE
clause can be used to update one or more object's properties.

The syntax of the UPDATE clause is as shown here:

String hql = "UPDATE Employee E set E.firstName = :name WHERE id =

:employee_id";

Query query = session.createQuery(hql);

query.setParameter("name", "Shashi");

query.setParameter("employee_id", 2);

int result = query.executeUpdate();

System.out.println("Row affected: " + result);

The expected output will be as follows:

Hibernate: update EMPLOYEE_INFO set FIRST_NAME=? where ID=?

Row affected: 1

The DELETE clause
To delete one or more objects, you can use the DELETE clause. The syntax of the
DELETE clause is as shown here:

String hql = "DELETE from Employee E WHERE E.id = :employee_id";

Query query = session.createQuery(hql);

query.setParameter("employee_id", 2);

Hibernate with Spring

[156]

int result = query.executeUpdate();

System.out.println("Row affected: " + result);

The expected output will be as follows:

Hibernate: delete from EMPLOYEE_INFO where ID=?

Row affected: 1

Pagination using Query
HQL supports pagination, where we can construct a paging component in our
application. The Query interface supports two methods for pagination:

Method Description
Query
setFirstResult(int
startPosition)

This method takes an argument of type int, which
represents the result to be retrieved. The row in the
result set starts with 0.

Query
setMaxResults(int
maxResult)

This method takes an argument of type int, and
is used to set a limit on the maximum number of
objects to be retrieved.

The following code snippet will fetch one row at a time:

String hql = "FROM Employee";

Query query = session.createQuery(hql);

query.setFirstResult(0);

query.setMaxResults(1);

return query.list();

The expected output will be as follows:

Hibernate: select employee0_.ID as ID0_, employee0_.DEPARTMENT as
DEPARTMENT0_, employee0_.FIRST_NAME as FIRST3_0_,
employee0_.JOB_TITLE as JOB4_0_, employee0_.LAST_NAME as LAST5_0_,
employee0_.SALARY as SALARY0_ from EMPLOYEE_INFO employee0_ limit
?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Chapter 4

[157]

Hibernate Criteria Query Language
There is an alternative way provided by Hibernate to manipulate objects and in turn
the data available in an RDBMS table. A Java programmer might feel it is easier to
use Hibernate Criteria Query Language (HCQL) as it supports methods to add
criteria on a query.

The Criteria interface
We can build a criteria object using the Criteria interface, where we can apply
logical conditions and iltration rules. The Session interface of Hibernate provides the
createCriteria() method to create a Criteria object that returns an instance of a
persistence object's class when your application executes a criteria query.

The following is a list of commonly used methods from the Criteria interface:

Method Description
public Criteria add(Criterion c) This method is used to add restrictions

public Criteria addOrder(Order o) This method is used to specify ordering

public Criteria
setFirstResult(int firstResult)

This method is used to specify the first
number of record to be retrieved

public Criteria setMaxResult(int
totalResult)

This method is used to specify the total
number of records to be retrieved

public List list() This method returns the list containing
the object

public Criteria
setProjection(Projection
projection)

This method is used to specify the
projection

The following code snippet retrieves all the objects that correspond to the Employee
class using the criteria query:

public List<Employee> getAllEmployees() {

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

List<Employee> emList = criteria.list();

return emList;

}

Hibernate with Spring

[158]

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Restrictions with Criteria
Restrictive classes provide methods that we can use as Criteria. Let's have a look at
a few of them.

The eq method
The eq method will set the equal constraint to a given property.

The syntax of this method is:

public static SimpleExpression eq(String propertyName,Object
value)

The following code snippet shows the use of the eq method retrieving all the records
of the Employee table whose salary is equal to 5000:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.eq("salary", 5000));

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.SALARY=?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Chapter 4

[159]

The gt method
This method sets the greater than constraint to a given property. The syntax of this
method is:

public static SimpleExpression gt(String propertyName,Object
value)

The following code snippet shows the use of the gt method retrieving all the records
of the Employee table whose ID is greater than 1:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.gt("id", 1));

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.ID>?

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The lt method
This method sets the less than constraint to a given property. The syntax of this
method is:

public static SimpleExpression lt(String propertyName,Object
value)

The following code snippet shows the use of the lt method retrieving all the records
of the Employee table whose id is lesser than 3:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.lt("id", 2));

List<Employee> emList = criteria.list();

Hibernate with Spring

[160]

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.ID<?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The like method
This method sets the like constraint to a given property. The syntax of this method is:

public static SimpleExpression like(String propertyName, Object
value)

The following code snippet shows the use of the like method retrieving all the
records of the Employee table whose firstName property is like RAVI:

Session session = sessionFactory.openSession();
Criteria criteria = session.createCriteria(Employee.class);
criteria.add(Restrictions.like("firstName", "RAVI"));
List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.FIRST_NAME like ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The ilike method
This method sets the ilike constraint to the given property and is case sensitive.
The syntax of this method is:

public static SimpleExpression ilike(String propertyName, Object
value)

The following code snippet shows the use of the ilike method retrieving all the
records of the Employee table whose firstName property is like RAVI:

Session session = sessionFactory.openSession();
Criteria criteria = session.createCriteria(Employee.class);
criteria.add(Restrictions.ilike("firstName", "RAVI"));
List<Employee> emList = criteria.list();

Chapter 4

[161]

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.FIRST_NAME ilike ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The between method
This method sets the between constraint. The syntax of this method is:

public static Criterion between(String propertyName, Object low,
Object high)

The following code snippet shows the use of the between method retrieving all the
records of the Employee table whose salary is between 4000 and 5000:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.between("salary", 4000,5000));

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.SALARY between ? and ?

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

The isNull method
This method sets the isNull constraint to the given property. The syntax of this
method is:

public static Criterion isNull(String propertyName)

The following code snippet shows the use of the isNull method retrieving all the
records of the Employee table whose salary is null:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.isNull("salary"));

List<Employee> emList = criteria.list();

Hibernate with Spring

[162]

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.SALARY is null

The isNotNull method
This method sets the isNotNull constraint to the given property. The syntax of this
method is:

public static Criterion isNotNUll(String propertyName)

The following code snippet shows the use of the isNotNull method retrieving all the
records of the Employee table whose salary is not null:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.add(Restrictions.isNotNull("salary"));

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where this_.SALARY is not null

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

The And or OR condition
LogicalExpression restrictions can be used to create AND or OR conditions as
discussed in the following section.

Restrictions.and
The following code snippet shows the and condition:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

Criterion salary = Restrictions.eq("salary", 5000);

Chapter 4

[163]

Criterion firstName = Restrictions.like("firstName", "RAVI");

LogicalExpression andExp = Restrictions.and(salary, firstName);

criteria.add(andExp);

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where (this_.SALARY=? and
this_.FIRST_NAME like ?)

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Restrictions.or
The following code snippet shows the or condition:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

Criterion jobTitle = Restrictions.eq("jobTitle", "AUTHOR");

Criterion firstName = Restrictions.like("lastName", "Kant");

LogicalExpression orExp = Restrictions.or(jobTitle, firstName);

criteria.add(orExp);

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ where (this_.JOB_TITLE=? or
this_.LAST_NAME like ?)

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR
department=TECHNOLOGY salary=5000]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Hibernate with Spring

[164]

Pagination using Criteria
HCQL supports pagination, where we can construct a paging component in our
application. The Criteria interface supports two methods for pagination:

Method Description
Public Criteria
setFirstResult(int
startPosition)

This method takes an argument of type int,
which represents the result to be retrieved.
The row in the result set starts with 0.

Public Criteria
setMaxResults(int maxResult)

This method takes an argument of type int,
and is used to set a limit on the maximum
number of objects to be retrieved.

The following code snippet will fetch two rows at a time:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.setFirstResult(0);

criteria.setMaxResults(2);

List<Employee> emList = criteria.list();

Sorting the results
The org.hibernate.criterion.Order class of the Criteria API can be used to
sort your results in either ascending or descending order, according to one of the
objects' properties.

• public static Order asc(String propertyName): This method applies
the ascending order based on a given property

• public static Order desc(String propertyName): This method applies
the descending order based on a given property

The following code snippet will order the result by ID in descending order:

Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);

criteria.addOrder(Order.desc("id"));

List<Employee> emList = criteria.list();

The expected output will be as follows:

Hibernate: select this_.ID as ID0_0_, this_.DEPARTMENT as
DEPARTMENT0_0_, this_.FIRST_NAME as FIRST3_0_0_, this_.JOB_TITLE
as JOB4_0_0_, this_.LAST_NAME as LAST5_0_0_, this_.SALARY as
SALARY0_0_ from EMPLOYEE_INFO this_ order by this_.ID desc

Chapter 4

[165]

Employee [id=2, name=Shree Kant, jobTitle=Software Engineer
department=Technology salary=3000]

Employee [id=1, name=RAVI SONI, jobTitle=AUTHOR department=TECHNOLOGY
salary=5000]

Exercise
Q1. What is ORM?

Q2. Explain the basic elements of the Hibernate architecture.

Q3. What is HQL?

The answers to these are provided in Appendix A,
Solution to Exercises.

Summary
In this chapter, you learned about ORM and understood the various properties
of Hibernate in detail. Then we discussed the important elements of the Hibernate
architecture. We have successfully conigured Hibernate with the Spring application.
We have covered a few pieces of Hibernate functionalities and its features. For
better understanding of Hibernate, refer to the Hibernate documentation at
http://hibernate.org/.

You also learned how to use HQL and HCQL to query persistent objects. HQL is
the most powerful query language to retrieve objects using different conditions.
HCQL provides an object-oriented manner to retrieve persistent objects.

In the next chapter, you will look at Spring MVC. You will learn how to implement
the web tier and the Spring services provided to implement the Web Tier.

http://hibernate.org/

Chapter 5

[167]

Spring Web MVC Framework
The presentation layer in an enterprise application is the front door to your application.
It provides users a visual view of the information as well as allowing them to perform
business functions provided and managed by the application. The development of
the presentation layer is a challenging task these days because of the rise of cloud
computing and different kinds of devices that people are using. Many technologies
and frameworks have evolved to develop enterprise web applications, such as
Spring Web MVC, Java Server Faces (JSF), Struts, Google Web Toolkit (GWT), and
jQuery. These provide rich component libraries that can help develop interactive web
frontends. Many frameworks also provide widget libraries and tools targeting mobile
devices, including tables and smartphones.

The Spring Web Model View Controller (MVC) framework supports web
application development by providing comprehensive and intensive support.
The framework is lexible, robust, and well-designed and is used to develop web
applications. It is designed in such a way that development of a web application is
highly conigurable into Model, View, and Controller. In the MVC design pattern,
Model represents the information (data) of a web application; View represents the
User Interface (UI) components, such as checkbox, textbox, and so forth that are
used to display web pages; and Controller processes the user request.

The Spring MVC framework helps in integrating other frameworks, such as Struts
and WebWork, with a Spring application. This framework also supports the
integration of other view technologies such as Java Server Pages (JSP), FreeMarker,
Tiles, and Velocity in a Spring web application.

Spring Web MVC Framework

[168]

The Spring MVC module provides the MVC framework to develop web applications.
In this chapter, we will cover the following topics:

• Spring MVC: We will introduce Spring MVC architecture and discuss
how we can use the powerful features provided by Spring MVC to develop
well-performing web applications. We will also write our irst Spring Web
MVC application.

• Spring MVC and Hibernate ORM framework: We will integrate the
Hibernate ORM framework with Spring MVC to fetch data from the database.

• Exception handling: We will discuss how to conigure exception handling
in Spring that will be supported by all controllers and error pages to display
custom messages to the user.

• i18n (internationalization): We will discuss how to use Spring MVC
to develop a web application that supports common web application
requirements, including i18n (internationalization).

• Handling form with controller: We will develop a Spring MVC application
that will handle the Spring form and allow the user to submit the form.

In this chapter, we will irst briely introduce MVC as a pattern in web applications
and its architecture. Then, we will discuss the Front Controller Design Pattern,
which is a prerequisite to understanding Spring MVC. Next, we will look into the
high-level view of Spring MVC and its architecture. Finally, we will create our irst
Spring MVC application.

The list of topics covered in this chapter is as follows:

• MVC architecture and separation of concern

• Front Controller Design Pattern

• Understanding Spring MVC

• Developing a simple Spring MVC application

• Dispatcher servlet in Spring MVC

• Spring coniguration: SpringDispatcher-servlet.xml
• Controller in Spring MVC

• Model in Spring MVC

• Spring MVC with Hibernate integration

• Exceptional handling using @ControllerAdvice

• Spring MVC internationalization (i18n)

• Handling form with controller

Chapter 5

[169]

The MVC architecture and separation

of concern
Separation of concern is the process of splitting functionality into distinct features
as little as possible. MVC is an architectural pattern used in the development of web
applications; it provides separation of concern in the architecture of an application
and separates it into three software modules that communicate with each other using
a relatively simple interface. The model holds the business entities that can be passed
to the View via Controller to expose them to the end user. The View is independent
of the Model and Controller; it represents the presentation form of an application.
The Controller is independent of the Model and View with the sole purpose of
handling requests and performing business logic. Thus, the model (business entities),
controllers (business logic), and views (presentation logic) lie in logical/physical
layers, independent of each other.

The presentation layer of an application is commonly implemented using the MVC
pattern. MVC offers more organized and maintainable code. It is popularly known as
a software design pattern used to develop web applications. The three components
of MVC are:

• Model: The Model represents the business entity on which the application's
data is stored. It is the conceptualization of the objects that the user works
with and the mapping of those concepts into data structures: the user model
and data model.

• View: The View is responsible for preparing the presentation for the client
based on the outcome of the request processing, without including any
business logic. It renders the model data into the client's user interface type.

• Controller: The Controller is responsible for controlling the low request to
response low in the middleware. It invokes backend services for businesses
after receiving a request from the user, and updates the model. It prepares
models for the View to present. It is also responsible for determining which
view should be rendered.

Spring Web MVC Framework

[170]

The following igure illustrates Model, View, and Controller:

The preceding igure shows MVC in a web application. The Controller is typically
used to process requests from the client and forward requests for changes to the
Model. The View code accesses the Model to render the response to the client.

Front Controller Design Pattern
A pattern represents the strategies that allow programmers to share their
knowledge about recurring problems and their solutions. As we have seen in
the previous section, the MVC pattern separates the user interface logic from
the business logic of web applications. When we want to achieve reusability and
lexibility while avoiding duplication and decentralization, we should structure
the controller for a very complex web application in the best possible manner.

The Front Controller is used at the initial point of contact to handle all Hyper
Text Transfer Protocol (HTTP) requests; it enables us to centralize logic to avoid
duplicate code, and manages the key HTTP request-handling activities, such as
navigation and routing, dispatch, and context transformation. The front controller
design pattern enables centralizing the handling of all HTTP requests without
limiting the number of handlers in the system.

The Front Controller does not just capture HTTP requests; it also initializes some of
the very important components of the framework to run, as shown in the following
igure. It helps in loading the map of URLs and the components that need to be
invoked when a request lands with the URLs. It can also load some of the other
components, such as views.

Chapter 5

[171]

The preceding igure illustrates the front controller design pattern in web
applications. The user/browser will interact with only one controller, which is the
front controller. The front controller intercepts the user request, performs common
functionality, and dispatches the request to the respective controller based on
web application coniguration and HTTP request information. The controller then
interacts with the service layer to perform business logic and persistence logic. Then
it updates the model, and the view renders the model data to generate presentation
view and return the view to the user. The front controller responds to the client in
the form of a view.

In Spring MVC, the Dispatcher Servlet acts as a front controller. As we have
discussed about the MVC and the front controller, which are the important to
understand the Spring MVC framework, starting with Spring MVC framework
followed by its architecture and its elements.

Understanding Spring MVC
A web application developed using the Spring MVC framework is easier to develop,
understand, and maintain. Spring MVC is an open source framework; it allows us
to download the source code and modify it to support user extensions according to
requirements. Its code is exposed to the developer and this enables fast development
and maintenance cycle. As a result, we can expect a quick result from the Spring
team in ixing the bugs and responding to new requirements in the market.

The Spring MVC framework is implemented using standard Java technologies such
as Java, Servlet, and JSP. Thus, we are allowed to host Spring MVC projects on any
Java enterprise web server just by including the Spring JAR iles into the lib of our
web application/project.

Spring Web MVC Framework

[172]

The Spring MVC module in the Spring Framework provides comprehensive support
for the MVC design for features such as i18n, theming, validation, and so on, to ease
the implementation of the presentation layer.

The Spring MVC framework is designed around a DispatcherServlet. The
DispatcherServlet dispatches the HTTP request to the handler, which is a very
simple Controller interface. Spring MVC allows us to use any form object or
command object. Struts built around required base classes such as Action class and
ActionForm class; however, the Spring MVC application doesn't need to implement
a framework-speciic interface or base class.

Features of the Spring MVC framework
The Spring MVC framework provides a set of the following web support features:

• Powerful coniguration of framework and application classes: The Spring
Web MVC framework provides straightforward and powerful coniguration
of the framework as well as of application classes such as JavaBeans.

• It allows easier testing. Most of the Spring classes are designed as JavaBeans,
which enables you to inject the test data using the setter method of these
JavaBeans classes. The Spring MVC framework also provides classes to
handle HTTP requests, which make the unit testing of the web application
much simpler.

• It allows separation of roles. Each component of a Spring MVC framework
performs a different role during request handling. A request is handled
by components such as the Controller, Validator, Model Object, View
Resolver, and HandlerMapping interfaces. The whole task is dependent
on these components and provides a clear separation of roles.

• No need for the duplication of code. In the Spring MVC framework, we
can use the existing business code in any component of the Spring MVC
application. Therefore, no duplicity of the code arises in a Spring MVC
application.

• It allows speciic validation and binding. Validation errors are displayed
when any mismatched data is entered in a form.

Chapter 5

[173]

Flow of request handling in Spring MVC
The DispatcherServlet is the front controller for the Spring MVC application,
providing centralized access to the application for various requests and collaborating
with various other objects to complete the request handling and present the
response to the client. In Spring MVC, the DispatcherServlet receives requests
and dispatches requests to the appropriate controller. There can be any number of
DispatcherServlet in a Spring application to handle user interface requests or
Restful-WS requests, as shown in the following igure. Each DispatcherServlet
uses its own WebApplicationContext coniguration to locate the various objects
registered in the Spring container, such as the controller, handler mapping, view
resolving, i18n, theming, type conversion and formatting, validation, and so on.

The preceding igure shows the low of request handling in Spring MVC, along with
its components. They are explained as follows:

• Filter: The Filter component applies to every HTTP request. In the preceding
sections, we will describe the commonly used ilters and their purposes.

• DispatcherServlet: The Servlet intercepts and analyzes the incoming HTTP
request and dispatches them to the appropriate controller to be processed.
It is conigured in the web.xml ile of any web application.

Spring Web MVC Framework

[174]

• Local resolution and theme resolution: The coniguration of i18n and
themes is deined in DispatcherServlet ile's WebApplicationContext. It
provides support to every request.

• Handler mapping: This maps the HTTP request to the handler, that is, a
method within a Spring MVC controller class, based on the HTTP paths
expressed through the @RequestMapping annotation at the method or type
level within the controller class.

• Controller: The Controller in Spring MVC receives requests from the
DispatcherServlet class and performs some business logic in accordance
with the client.

• ViewResolver: The ViewResolver interface of Spring MVC supports
view resolution based on the view name returned by controller. The
URLBasedViewResolver class supports the direct resolution of view name to
URLs. The ContentNegotiatingViewResolver class supports the dynamic
resolution of views based on the media type supported by the client, such as
PDF, XML, JSON, and so on.

• View: In Spring MVC, the View components are user-interface elements,
such as textbox items and many others, which are responsible for displaying
the output of a Spring MVC application. Spring MVC provides a set of tags
in the form of a tag library, which is used to construct views.

Whenever an HTTP request from a browser comes to a Spring MVC application, it
is irst intercepted by DispatcherServlet, which acts like the front controller for
a Spring MVC application. The DispatcherServlet class intercepts the incoming
HTTP request and determines which controller handles the request, and then sends
the HTTP request to a Spring MVC controller.

The controller implements the behavior of the Spring MVC application. The
controller receives the request from the DispatcherServlet class and performs
some business logic in accordance with the client request. A Spring MVC application
may have several controllers, and to decide on the controller to send the request,
DispatcherServlet takes help from one or more handler mappings. The handler
mapping makes its decision based on the URL carried by the request.

Chapter 5

[175]

After the business logic is performed by controller, some information referred to
as the model is generated, that needs to be carried back to the client and display in
the browser. But it is not suficient to send raw information to the client. So the raw
information needs to be given to the view, which can be JSP or FreeMarker. The
Controller also packages up the model data and identiies the view name that will
render the output. Then, it sends the request along with view name and model back
to DispatcherServlet.

The DispatcherServlet class consults the view resolver to map the view name to
a speciic view implementation, which may or may not be JSP, FreeMarker, JSON,
Thymeleaf, and so on. A good point here is that Spring is agnostic of the view
technology. So, at this point, the request job is almost over and DispatcherServlet
knows about the view which will render the result. It delivers the model data to the
view component, and the request job is inally done here. This model data will be
used by the view to render the output, which will be carried back by the response
object to the client.

Developing a simple Spring MVC

application
Let's create a simple Spring MVC application. Here, we will create the application
in simple steps using Spring Source Tool (STS) IDE, which will display "Hello
World!!" in the browser. The details of MVC components will be discussed later
in the following sections. Here, we will create a Maven Project in STS IDE. In a
Maven project, we can provide dependencies in pom.xml, rather than downloading
and adding the JARs to the project. For the irst time, an Internet connection is
required in order to get JARs downloaded automatically to the .m2 folder. For more
understanding on Maven, please refer to the book Instant Apache Maven Starter,
Maurizio Turatti and Maurizio Pillitu, Packt Publishing.

Creating a new Maven project
Take a look at the following instructions to create a new Maven project:

1. Navigate to File | Project | Maven.

Spring Web MVC Framework

[176]

2. Select Maven Project, and hit the Next button.

3. Under Select project name and location, the Create a simple project (skip
archetype selection) option should be unchecked. Click on the Next button
to continue with default values.

Chapter 5

[177]

4. Now we need to add Maven archetype to create a web application. To add
the archetype, click on Add Archetype and set Archetype Group Id to org.
apache.maven.archetypes and Archetype Artifact Id to maven-archetype-
webapp. Set Archetype Version to 1.0. Then, click on OK to continue.

Spring Web MVC Framework

[178]

5. On the Specify Archetype parameter page wizard, we can deine the main
package of project. Set the Group Id to org.packt.Spring.chapter7.
springmvc and the Artifact Id to SpringMVCPayrollSystem. Click on the
Finish button to exit the wizard and to create the project.

Finally, the Maven project will be created as shown in the following screenshot:

Chapter 5

[179]

As seen in the preceding screenshot, the SpringMVCPayrollSystem project contains:

• /src/main/java: This folder contains the project's source iles
• /src/main/resources: This folder contains the coniguration iles
• /target: This folder contains compiled and packaged deliverables

• /src/main/webapp/WEB-INF: This folder contains the web application's
deployment descriptors

• pom.xml: This is the Project Object Model (POM) ile; it is the single ile that
contains all project-related conigurations

Adding Spring MVC dependencies to pom.xml
To add the Spring MVC dependencies to Maven's pom.xml ile, edit the pom.xml
page of the POM editor, and add the dependencies needed for the MVC, that is,
spring-webmvc package, as shown in the following code:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.packt.Spring.chapter7.springmvc</groupId>

 <artifactId>SpringMVCPayrollSystem</artifactId>

 <packaging>war</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <name>SpringMVCPayrollSystem Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <properties>

 <spring.version>4.0.2.RELEASE</spring.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

Spring Web MVC Framework

[180]

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>${spring.version}</version>

 </dependency>

 </dependencies>

 <build>

 <finalName>SpringMVCPayrollSystem</finalName>

 </build>

</project>

Once the build has been completed, the JARs will be downloaded to the .m2 folder
(provided an Internet connection is available), as shown in the following screenshot.
We can also refer to Resolved Dependencies in Dependency Hierarchy in the POM editor.

Coniguring the application
Now we need to conigure the Spring MVC application using the web.xml and
SpringDispatcher-servlet.xml iles.

Chapter 5

[181]

The /WEB-INF/web.xml ile
The /WEB-INF/web.xml ile represents the deployment descriptor of a web
application, which deines the application that a server needs to know, such as
Servlet and other components:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 id="WebApp_ID" version="3.0">

 <display-name>Archetype Created Web Application</display-name>

 <servlet>

 <servlet-name>SpringDispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>SpringDispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

</web-app>

In the preceding code snippet, the Servlet name has been speciied as
SpringDispatcher and Servlet class as DispatcherServlet. We have deined URL
mapping as /, which will map to all request URLs. We will understand this in more
detail in the upcoming sections.

The /WEB-INF/SpringDispatcher-servlet.xml ile
Since we have deined the Servlet name as SpringDispatcher in web.xml, so we
need to deine SpringDispatcher-servlet.xml in the /WEF-INF/ folder. Follow
these steps to create this ile:

1. Right-click on WEB-INF and go to New | Other.

Spring Web MVC Framework

[182]

2. Then, create a new Spring bean coniguration ile by selecting Spring Bean
Coniguration File from the Spring folder and clicking on Next.

3. Now, set the File name option as SpringDispatcher-servlet.xml and click
on Next.

Chapter 5

[183]

4. Select the desired XSD namespace to use with the new Spring bean
deinition, such as beans, context, and mvc. Then, click on Finish.

Spring Web MVC Framework

[184]

Then, we will have SpringDispatcher-servlet.xml, where we need to deine a
few beans:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-
beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-
context-4.0.xsd

 http://www.springframework.org/schema/mvc

 http://www.springframework.org/schema/mvc/spring-mvc-
4.0.xsd">

 <context:component-scan base-package="org.packt.Spring.chapter7.
springmvc" />

 <bean

 class="org.springframework.web.servlet.view.
InternalResourceViewResolver">

 <property name="prefix">

 <value>/WEB-INF/views/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

 </bean>

</beans>

In the preceding code snippet, we have declared <context:component-scan>
with the base package org.packt.Spring.chapter7.springmvc, so that
the annotated class of this package or subpackage gets scanned by the Spring
container. We have also deined the org.springframework.web.servlet.view.
InternalResourceViewResolver bean as the internal resource view resolver,
with the values of the properties preix and sufix as /WEB-INF/views/ and .jsp
respectively. So this InternalResourceViewResolver will ind the .jsp ile in the
WebContent/WEB-INF/views/ folder.

Chapter 5

[185]

When this Spring coniguration ile is created in this project, this project will become
a Spring project, as seen in the following screenshot:

Since we are done with setting up the environment for the Spring MVC
application, we can now create the controller and view. First, let's create the
EmployeeController controller class.

Creating the controller – EmployeeController
We will create the EmployeeController class within the org.packt.Spring.
chapter7.springmvc.controller package:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping("/employee")

Spring Web MVC Framework

[186]

public class EmployeeController {

 @RequestMapping(method = RequestMethod.GET)

 public String welcomeEmployee(ModelMap model) {

 model.addAttribute("name", "Hello World!");

 model.addAttribute("greetings",

 "Welcome to Packt Publishing - Spring MVC
!!!");

 return "hello";

 }

}

In the preceding code snippet, we have annotated the EmployeeController
class with the @Controller stereotype annotation, and the @RequestMapping("/
employee") annotation that will map the URL to the entire class, and handler
methods within the class. The welcomeEmployee(ModelMap model) method will
handle the GET request from DispatcherServlet. The org.springframework.
ui.ModelMap is used to hold the model. The name and greetings attributes have
been set with values Hello World! and Welcome to Packt Publishing - Spring
MVC !!! respectively.

As we are done with creating the controller class for the Spring MVC application, we
now need to create the view page hello.jsp.

Creating the view – hello.jsp
Here, we will create the view page hello.jsp within the /WEB-INF/views/ folder:

<%@ page language="java" contentType="text/html; charset=ISO-8859-
1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">

<title>Chapter-7 Spring MVC</title>

</head>

<body>

 <h1 style="color: green; text-align: center;">${name}</h1>

 <h3 style="color: orange; text-align:
center;">${greetings}</h3>

Chapter 5

[187]

</body>

</html>

In the preceding code snippet, the view renders data from the model to prepare the
page for the user. Now it's time to run the application to get results in the browser.

Running the application
In order to run this application, we have to follow a few steps. Here, we are using the
server named VMware vFabric tc Server Developer Edition v2.9, which is the
inbuilt server in STS IDE. We can also use another server, such as Apache Tomcat.
Follow these steps to run the application:

1. First, right-click on the SpringMVCPayrollSystem project and go to Run As
| Run On Server. Then, select the server to be used.

2. Select the server as VMware vFabric tc Server Developer Edition v2.9
(or another server if you wish to), and then click on Next, where we need to
modify the resources on the server.

Spring Web MVC Framework

[188]

3. We can add or remove resources that will run on the server. The Available
section on the left-hand side will give the list of resources that can be
moved to the right using the Add button. The Conigured section on the
right-hand side will give the list of resources that have been conigured
and will run on server. To remove a resource from the Conigured section,
select the resource and click on Remove; to remove all the resources at
once, click on Remove All. Here, we have the SpringMVCPayrollSystem
project in the Conigured section.

Chapter 5

[189]

4. Once we move the resource to the Conigured section and click on Finish,
the server will start running. By clicking on http://localhost:8080/
SpringMVCPayrollSystem/employee in the browser, we will see the
following result:

Since we have developed a Spring Web MVC application, we will understand each
component in greater detail. Let's start with DispatcherServlet.

DispatcherServlet in Spring MVC
The DispatcherServlet class of the Spring MVC framework is an implementation
of front controller and is a Java Servlet component for Spring MVC applications. It is
a front controller class that receives all incoming HTTP client requests for the Spring
MVC application. It is also responsible for initializing framework components used
to process the request at various stages.

The DispatcherServlet class is fully conigured with the Inversion of Control
(IoC) container that allows us to use various Spring features such as Spring context,
Spring Object Relational Mapping (ORM), Spring Data Access Object (DAO), and
so on. DispatcherServlet is a Servlet that handles HTTP requests and is inherited
from HttpServlet base class.

Coniguring DispatcherServlet in our Spring web application into the web
application deployment descriptor (web.xml) is necessary, just like any other servlet.
Using URL mapping in the coniguration ile, the HTTP requests to be handled by
DispatcherServlet are mapped. A Spring MVC application can have any number
of DispatcherServlet classes and each DispatcherServlet class will have its own
WebApplicationContext.

Spring Web MVC Framework

[190]

DispatcherServlet in deployment descriptor –
web.xml
For a Java web application, the web deployment descriptor web.xml is the essential
coniguration ile. In web.xml, we deine the Servlet for our web application and
how the web request should be mapped to them. In the Spring MVC application, we
only have to deine a single DispatcherServlet instance, which acts as the front
controller for the Spring MVC application, even though we are allowed to deine
more than one if required.

The following code snippet declares the DispatcherServlet in web.xml:

<servlet>

 <servlet-name>SpringDispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>SpringDispatcher</servlet-name>

 <url-pattern>/**</url-pattern>

</servlet-mapping>

In the preceding code snippet, SpringDispatcher is the user-deined name of the
DispatcherServlet class, which is enclosed with the <servlet-name> element.
When this newly created SpringDispatcher class is loaded in a web application, it
loads an ApplicationContext from an XML ile.

The next task after creating the SpringDispatcher class is to map this class
with the incoming HTTP request that indicates what URLs are handled by the
DispatcherServlet class. To map the DispatcherServlet class, we use the
<servlet-mapping> element and to handle URLs, we use the <url-pattern> tag in
the web.xml ile, as seen in the preceding code snippet.

The /** (slash with **) pattern doesn't imply any speciic type of response and
simply indicates that DispatcherServlet will serve all incoming HTTP requests,
including the request for any static content.

Chapter 5

[191]

Registering Spring MVC coniguration ile
location
As we discussed in the previous section, DispatcherServlet loads the [servlet-
name]-servlet.xml ile in the WEB-INF folder to compose WebApplicationContext.
In order to deine this ile as a random ile in a random location, or as a multi-ile,
we use <init-param> under <servlet> to deine an initialization parameter named
contextConfigLocation:

<init-param>

<param-name>contextConfigLocation</param-name>

<param-value>/config/springmvc/someCommon-servlet.xml,
/config/springmvc/someUser-servlet.xml</param-value>

</init-param>

Spring coniguration – SpringDispatcher-
servlet.xml
By default, when the DispatcherServlet class is loaded, it loads the Spring
application context from the XML ile whose name is based on the name of the
Servlet. In the preceding code, as the name of the Servlet has been deined as
SpringDispatcher, DispatcherServlet will try to load the application context
from a ile named SpringDispatcher-servlet.xml located in the application's
WEB-INF directory.

The DispatcherServlet class will use the SpringDispatcher-servlet.xml ile to
create an ApplicationContext, which is a standard Spring bean coniguration ile,
as shown here:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-
context-3.0.xsd http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

 <mvc:annotation-driven />

Spring Web MVC Framework

[192]

 <context:component-scan base-
package="org.packt.Spring.chapter7.springmvc" />

 <bean
 class="org.springframework.web.servlet.
view.InternalResourceViewResolver">

 <property name="prefix" value="/WEB-INF/views/" />

 <property name="suffix" value=".jsp" />

 </bean>

</beans>

Let's take a look at some of the MVC features used in the preceding code snippet:

• <mvc:annotation-driven/>: This tells the Spring Framework to support
annotations like @Controller, @RequestMapping, and others, all of which
simplify the writing and coniguration of controllers.

• InternalResourceViewResolver: The Spring MVC framework supports
different types of views for presentation technologies, including JSPs, HTML,
PDF, JSON, and so on. When the DispatcherServlet class deined in the
application's web.xml ile receives a view name returned from the handler, it
resolves the logical view name into a view implementation for rendering.

• In the preceding code snippet, we have conigured the
InternalResourceViewResolver bean to resolve the bean into JSP iles in
the /WEB-INF/views/ directory.

• <context:component-scan>: This tells Spring to automatically detect
annotations. It takes the value of the base package, which corresponds to the
one used in the Spring MVC controller.

Controllers in Spring MVC
The DispatcherServlet class delegates the incoming HTTP client request to the
controllers to execute the functionality speciic to it. The controller interprets user
input and transforms this input into a speciic model which will be represented by
the view to the user.

While developing web functionality, we will develop resource-oriented controllers.
Rather than each use case having one controller in the web application, we will
have a single controller for each resource that the Spring web application serves. An
abstract implementation method is provided by Spring for the user to develop the
controller without being dependent on a speciic API. We do not need to inherit any
speciic interface or class while developing a controller based on Spring MVC using
the @Controller annotation.

Chapter 5

[193]

The @Controller annotation to deine a
controller
The @Controller annotation is used to deine a class as a controller class
without inheriting any interface or class. The following code snippet deines the
EmployeeController class as a controller using the @Controller annotation:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

@Controller

public class EmployeeController {

 // ...

}

The @Controller annotation indicates the role to the annotated class. Such an
annotated class is scanned by the dispatcher for mapped methods and detects the
@RequestMapping annotation, which we will discuss in next section. This deined
controller can be automatically registered in the Spring container by adding
<context:component-scan/> in SpringDispatcher-servlet.xml ile.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.
xsd">

<context:component-scan base-package="org.packt.Spring.chapter7.
springmvc"/>

<!-- ... -->

</beans>

Spring Web MVC Framework

[194]

The @RequestMapping annotation to map

requests
The web request in Spring MVC is mapped to handlers by one or more
@RequestMapping annotations declared in the controller class. The handler mapping is
used to match the URL as per its path relative to the ApplicationContext interface's
deployment path and the path that is mapped to DispatcherServlet. For example,
in the URL http://localhost:8080/SpringMVCPayrollSystem/employee the path
to match is /employee as the context path is /SpringMVCPayrollSystem.

Let's take an example:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @RequestMapping(method = RequestMethod.GET)

 public String getEmployeeName(@RequestParam("employeeId") int
employeeId,

 Model model) throws Exception {

 Model.addAttribute("employeeName", employeeService.
getEmployeeName(employeeId))

 return "employeeList";

 }

}

In the preceding code snippet, since we have activated annotation scanning
on the org.packt.Spring.chapter7.springmvc package declared inside
SpringDispatcher.xml ile, the annotation will be detected upon deployment
for this controller class.

Chapter 5

[195]

The @Controller annotation will deines this class the Spring MVC controller class.
The @RequestMapping at the class level take the value /employee that means any
HTTP request received on /employee URI is attended by the EmployeeController
class. Once the controller class attends to the HTTP request, it delegates this
(initial request) call to the default HTTP GET method which is a handler method,
declared in the controller. The @RequestMapping(method = RequestMethod.GET)
annotation is used to decorate the getEmployeeName method as controller's default
HTTP GET handler method.

The method returns the view named employeeList. In the next section, we will
explore the views to which the Spring MVC controller's handler methods delegate
their result.

The @RequestMapping annotation can be applied to a class level where the mapping
strategy will be to map speciic URI pattern to the controller class, or applied to
method level where mapping strategy will be to map particular HTTP method to
each controller handler method. The scope of request URL can also be reduced
by adding HTTP method or request parameter, other than deining URL path in
@RequestMapping.

Mapping requests at the class level
The @RequestMapping annotation can be used to decorate the Spring MVC
controller class that allows handler method to ine grained URLs with their
own @RequestMapping annotation, as shown in the following code snippet:

@Controller

@RequestMapping(value = "/employee")

public class EmployeeController {

@Autowired

 private EmployeeService employeeService;

 @RequestMapping("/add")

 public String addEmployee (Model model) {

 model.addAttribute("employee", new Employee());

 model.addAttribute("empList", employeeService.list());

 return "employeeList";

 }

Spring Web MVC Framework

[196]

 @RequestMapping(value = {"/remove", "/delete"}", method =
RequestMethod.GET)

 public String removeEmployee ((@RequestParam("employeeId") int
employeeId){

 employeeService.removeEmployee(employeeId);

 return "redirect:";

 }

 @RequestMapping(value = "/{employeeId}", method =
RequestMethod.GET)

 public String getEmployee (@PathVariable("employeeId")Integer
employeeId, Model model){

 //...

 return "employeeList";

 }

}

The @RequestMapping annotation at class level uses a URI /employee, which
delegates all requests under the /employee URI to the controller's handler methods.

The irst two controller's handler methods make use of only the @RequestMapping
annotation. The handler method addEmployee() is invoked when an HTTP
GET request is made on the /employee/add URL. The handler method
removeEmployee() is called when an HTTP GET method is made on either the /
employee/remove URL or the /employee/delete URL.

The third controller's handler method uses one more annotation @PathVariable
to specify the @RequestMapping value, which will pass the value present in URL
as input in the handler method. The handler method declares
@PathVariable("employeeId") Integer employeeId . If the HTTP request is
in the form of /employee/10121, the handler method will have access to the
employeeId variable with the 10121 value.

We can also deine some utility methods without using the @RequestMapping
annotation for the class without inluencing Spring MVC.

Chapter 5

[197]

Mapping requests at the method level
To decorate the handler method directly is the simplest strategy to use the
@RequestMapping annotation, which allows us to map requests at the method level
in a controller class. In order to use this strategy, we need to declare each handler
method in the controller class with the @RequestMapping annotation containing the
URL pattern. The DispatcherServlet class will dispatch the request to the handler
annotated with @RequestMapping to handle the request.

Let's say, if we deine @RequestMapping("/employee") at the class level, and
@RequestMapping("/add") at the method level, then the URL path that the method
deined as @RequestMapping("/add") will be interpreted as"/employee/add".
The style and path pattern is also supported by @RequestMapping, for example,
as "/employee/*".

Let's take an example of the following code snippet, where both values, which
is the URL route and the default HTTP GET handler method, are deined in the
@RequestMapping annotation at the method level:

@Controller

public class EmployeeController {

@Autowired

 private EmployeeService employeeService;

 @RequestMapping(value = "/employee", method =
RequestMethod.GET)

 public String getEmployeeName(@RequestParam("employeeId") int
employeeId, Model model){

 //...

 return "employeeList";

 }

 @RequestMapping("/employee/add")

 public String addEmployee (Model model){

 //...

 return "employeeList";

 }

 @RequestMapping(value = {"/employee/remove",
"/employee/delete"}", method = RequestMethod.GET)

Spring Web MVC Framework

[198]

 public String removeEmployee ((@RequestParam("employeeId") int
employeeId){

 //...

 return "redirect:";

 }

}

It is important to note that the Spring MVC controller should have at minimum a
URL route and a default HTTP GET handler method; otherwise a ServletException
is thrown.

Properties information in @RequestMapping
The scope of the HTTP request URL to be handled can be limited by applying the
following properties information in @RequestMapping. The @RequestMapping
annotation has the following properties that can be conigured:

• Value: The value speciies the value of the mapping. The format of the URL
value is value="/getEmployee"; for example, @RequestMapping(value="/
getEmployee").

It indicates that the incoming "/employee" request is mapped to the
controller class. If the value is used at the class level, it serves as primary
mapping; if it is used at the method level, then it is relative to primary
mapping.

The value can take more than one URL path, for example,
@RequestMapping(value={"/addEmployee", "/updateEmployee"}).
Here, both "/addEmployee" and "/updateEmployee" URLs will be handled.

• Method: The method enables you to specify the type of HTTP request,
such as GET, POST, PUT, DELETE, and so on. The DispatcherServlet class
invokes the handler method based on the HTTP request it receives.

The value is provided as enumeration of org.springframework.
web.bind.annotation.RequestMethod, for example,
@RequestMapping(method = RequestMethod.GET') or
@RequestMapping(method = RequestMethod.POST).

• Params: This speciies the request parameters that come along with the
HTTP request. It can be represented in various forms, such as name = value
pairs; for example, params={"params1=apple","params2","!myparam"}.

Chapter 5

[199]

It is used to narrow down the mapping functionality. Let's take an example:

@RequestMapping(params={"params1=apple","params2","!myparam"})

The particular method or controller is invoked only if the incoming request
has a parameter params1 and params2 and if the value of params1 is apple
and myparam is not present in the HTTP request.

• Headers: The header speciies the HTTP header as name=value pairs.
It is used to narrow down the mapping functionality; for example,
@RequestMapping(value="/employee.do", header="content-

type=text/*").

The particular method or controller is invoked only if the incoming request
has an HTTP header called content-type whose value matches text/html
or text/plain in the HTTP request.

Method parameters of @RequestMapping
The @RequestMapping annotation can be applied to methods with signatures.
These methods can accept any parameters. The parameters of the method that are
annotated with @RequestMapping are listed in the following table:

Parameter Description
ServletRequest/
HttpServletRequest

This helps to access the request collection

java.util.Local This specifies the request locale

HttpSession This helps to work with the HTTP session

@PathVariable This helps to access the variable in the request
path; for example, if the request path is /
employee/{employeeId}, the employeeId
variable in the path is accessed by annotating
the method argument using @PathVariable:

@RequestMapping("/employee/{empl
oyeeId}")

 public String
getEmployee(@PathVariable("emplo
yeeId") int employeeId{ })

Spring Web MVC Framework

[200]

Parameter Description
@RequestParam This helps to bind the HTTP request parameter

to the argument of the controller method; its
functionality is similar to ServletRequest.
getParameter(java.lang.String); for
example:

@RequestMapping("/employee.do")

 public String
getEmployee(@RequestParam("emplo
yeeId") int employeeId{ })

@ModelAttribute This represents a command or model object

Model, Map, or ModelMap This specifies the collection to which more
information can be added; this is passed on to
the view page

Errors/BindingResult This holds the results of validating a command
or model object

Session Status This helps to end a conversational session

@RequestHeader This specifies the access to an HTTP header

@RequestBody This helps to access the content of the incoming
request

@RequestParam
The @RequestParam annotation binds request parameters to method parameters.
It can be used to bind the HTTP request parameter to the argument of the controller
method. Its functionality is similar to ServletRequest.getParameter(java.lang.
String). Let's take an example of the @RequestParam annotation, as seen in the
following code snippet:

@RequestMapping("/employee.do")

 public String getEmployee(@RequestParam("employeeId") int
employeeId,ModelMap model) {

 Employee employee =
this.employeeService.getEmployee(employeeId);

 model.addAttribute("employee",employee);

 return "/listEmployee.do";

 }

Chapter 5

[201]

It should be noted that the parameter that applies to @RequestParam should exist
in the HTTP request; otherwise an exception org.springframework.web.bind.
MissingServletRequestParameterException will be thrown:

org.springframework.web.bind.MissingServletRequestParameterException:

Required java.lang.Integer parameter 'employeeId' is not present

We can also specify parameters to be optional just by setting the @RequestParam
required attribute to false:

(@RequestParam(value = "employeeId", required = false))

Return values in @RequestMapping annotated

methods
The @RequestMapping annotated methods can have return values, some of
which have been described in the following table (for the entire list, visit http://
docs.spring.io/spring/docs/4.1.x/spring-framework-reference/

htmlsingle/#mvc-ann-return-types):

Return type Description
ModelAndView This holds Model and View information

String This represents the View name

View This represents the View object

Model/Map This contains data exposed by a view; view is determined
implicitly by the RequestToViewNameTranslator class

Void This specifies that a view can be handled by the invoked
method internally or can be determined implicitly by the
RequestToViewNameTranslator class

ViewResolver in Spring MVC
The controller class handler methods return different values that denote the logical
view names. The views can represent Java Server Pages (JSP), FreeMarker, Portable
Document Format (PDF), Excel, and Extensible Stylesheet Language (XSL) pages.
The control will be delegated to view template from DispatcherServlet.

The view name returned by the method is resolved to the actual physical source
by the ViewResolver beans declared in the context of the web application. Spring
provides a number of ViewResolver classes that are conigured in the XML iles.

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/htmlsingle/#mvc-ann-return-types

Spring Web MVC Framework

[202]

All ViewResolvers implement the org.springframework.web.servlet.
ViewResolver interface. The ViewResolver interface maps the view names with
the implementations of the org.springframework.web.servlet.ViewResolver
interface. Here is list of few ViewResolvers provided by the Spring Framework:

ViewResolver Description

org.springframework.web.servlet.view.
ResourceBundleViewResolver

This configures view names
in property files; the default
resource bundle is properties

org.springframework.web.servlet.view.
InternalResourceViewResolver

This refers to a convenient
ViewResolver class that uses
suffix and prefix properties
for the view name and
RequestDispatcher to
transfer the control

org.springframework.web.servlet.view.
Freemarker.FreeMarkerViewResolver

This maps the view name
with the FreemarkerView
class, which is used for the
FreeMarker template engine

org.springframework.web.servlet.view.
velocity.VelocityViewResolver

This maps the view name with
the VelocityView class,
which is used for the Velocity
template engine

The ViewResolver should be chosen according to the view technology used in the
web application.

We are not going to cover all ViewResolvers in this book. Here, we will cover
only InternalResourceViewResolver to conigure the view resolver for JSP
as view technology.

Coniguring ViewResolver for JSP as view
technology
InternalResourceViewResolver resolves the logical view name into a View object,
which delegates rendering responsibility to a template, such as JSP, located in the
context of the web application.

Chapter 5

[203]

ViewResolver can be conigured in the /WEB-INF/SpringDispatcher-servlet.
xml coniguration ile to resolve the view. Let's consider an example of coniguring
InternalResourceViewResolver:

<bean class="org.springframework.web.servlet.view.
InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/view/" />

<property name="suffix" value=".jsp" />

</bean>

In the preceding code snippet, we have used InternalResourceViewResolver with
the preix WEB-INF/view/ and sufix .jsp to the view name.

The DispatcherServlet class interacts with InternalResourceViewResolver to
resolve logical view. It resolves the view name by taking preixes such as /WEB-INF/
views/, and appending it with a logical view name, and adds sufixes (.jsp) such as
/WEB-INF/views/welcome.jsp. The InternalResourceViewResolver hands over
the path to view the object which will dispatch the request to JSP page.

Model in Spring MVC
The form values that a user enters in a page can be conigured to be collected in
a container or model object and given to the controller for processing. Instead of
accessing the request parameters individually, they can be bound to an instance and
accessed.

In Spring, the objects that hold form value are known as command objects.
Command objects are Plain Old Java Objects (POJO) created with variables and
getter/setter properties. If the variable name matches the request parameter name,
the request parameter value is set into the variable.

Command objects in Spring can be conigured to be accessed in a view using the
org.springframework.web.bind.annotation.ModelAttribute annotation.
The @ModelAttribute annotation can be used for methods or method parameters.
It has a value property that can be used to set the name of the model attribute.

Let's consider an example: @ModelAttribute(value="employeeform") speciies
the model attribute name as employeeform. If it is not speciied, then the name of the
attribute is derived from the type of parameters or the return value of the method. If
the parameter type is org.packt.Spring.chapter7.springmvc.model.Employee,
then the name of the model attribute is employee. The model can accessed from the
view using the request collection.

Spring Web MVC Framework

[204]

Spring MVC with Hibernate integration
In this section, we will develop an end-to-end web application using Spring MVC,
which acts as frontend technology, and Hibernate, which acts as backend ORM
technology. You already learned how to integrate Spring and Hibernate and
developed a simple application in an earlier chapter. In this section, we will move
forward and integrate Spring MVC and Hibernate in a web application. For more
understanding of Spring and Hibernate integration along with PostgreSQL as
database to persist the data.

It is recommended that you go through Chapter 4,
Hibernate with Spring, before you start this section.

In this section, our goal is to create a simple Spring MVC application named
eHrPayrollSystem in the Spring Source Tool Suite (STS) IDE along with Hibernate
as ORM framework, and connect it to PostgreSQL as the database to persist the data.
Here, this web application will just fetch the list of employees from the database and
display them to the user on the view page. We will perform the CRUD operation in
our web application in a later section of this chapter.

Application architecture
The following igure shows the layered architecture of the eHrPayrollSystem web
application. The Data Access Layer, also called the DAO layer, which will access
data from the database. The DAO layer will use the Hibernate ORM framework API
to interact with the database. The service layer will invoke this DAO layer. In our
eHrPayrollSystem web application, we have EmployeeDao as a DAO interface and
EmployeeService as service interface.

Chapter 5

[205]

Sample data model for example code
For the eHrPayrollSystem web application, we will be using PostgreSQL as the
database (for more details, refer to Chapter 4, Hibernate with Spring). Let's irst create
a database for our project in the PostgreSQL database and then create a table.

Spring Web MVC Framework

[206]

Script to create database named ehrpayroll_db:

CREATE DATABASE ehrpayroll_db

Script to create EMPLOYEE_INFO table:

CREATE TABLE EMPLOYEE_INFO(

ID serial NOT NULL Primary key,

FIRST_NAME varchar(30) not null,

LAST_NAME varchar(30) not null,

JOB_TITLE varchar(100) not null,

DEPARTMENT varchar(100) not null,

SALARY INTEGER

);

Script to populate data for employee_info table:

INSERT INTO EMPLOYEE_INFO

(FIRST_NAME, LAST_NAME, JOB_TITLE, DEPARTMENT, SALARY)

VALUES

('RAVI', 'SONI', 'AUTHOR', 'TECHNOLOGY', 5000);

INSERT INTO EMPLOYEE_INFO

(FIRST_NAME, LAST_NAME, JOB_TITLE, DEPARTMENT, SALARY)

VALUES

('Shree', 'Kant', 'Software Engineer', 'TECHNOLOGY', 3000);

Chapter 5

[207]

Project structure
The screenshot of the inal structure of the eHrPayrollSystem project is as follows:

Spring Web MVC Framework

[208]

We have created packages for Java resources, as described here, under the src/
main/java folder:

• org.packt.Spring.chapter7.springmvc.controller: Spring controller
classes will be deined to this package for the eHrPayrollSystem web
application. We will create an EmployeeController class in this package.

• org.packt.Spring.chapter7.springmvc.dao: This represents the DAO
layer for the eHrPayrollSystem web application. The EmployeeDao interface
and EmployeeDaoImpl class will be created in this package. The DAO layer
will interact with the database using Hibernate API.

• org.packt.Spring.chapter7.springmvc.model: The entity class will go
into this package. Employee is an entity class deined within this package
with different attributes and annotations.

• org.packt.Spring.chapter7.springmvc.service: This represents
the Service layer for the eHrPayrollSystem web application. The
EmployeeService interface and EmployeeServiceImpl class will be created
within this package.

The pom.xml ile
In an earlier section of this chapter, we developed our web application as a Maven
project by providing dependencies speciic to the Spring Framework. Now we
have to add other dependencies related to Servlet, JSTL, JDBC connection pooling,
Hibernate ORM framework, PostgreSQL database, and so on:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.packt.Spring.chapter7.springmvc</groupId>

 <artifactId>SpringMVCPayrollSystem</artifactId>

 <packaging>war</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <name>SpringMVCPayrollSystem Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <!-- Declare versions for Spring framework, Hibernate framework

and AspectJ -->

 <properties>

 <spring.version>4.0.2.RELEASE</spring.version>

 <hibernate.version>4.3.5.Final</hibernate.version>

Chapter 5

[209]

 <org.aspectj-version>1.7.4</org.aspectj-version>

 </properties>

 <dependencies>

 <!-- jUnit dependencies -->

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 <!-- Spring Core dependencies -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- Spring webmvc dependencies -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- Spring transaction dependencies -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-tx</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- Spring ORM dependencies -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-orm</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- AspectJ dependencies -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${org.aspectj-version}</version>

 </dependency>

 <!-- Hibernate ORM framework dependencies -->

 <dependency>

 <groupId>org.hibernate</groupId>

Spring Web MVC Framework

[210]

 <artifactId>hibernate-core</artifactId>

 <version>${hibernate.version}</version>

 </dependency>

 <!-- Hibernate entity manager dependencies -->

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate.version}</version>

 </dependency>

 <!-- Java Servlet and JSP dependencies -->

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>2.5</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

 <artifactId>jsp-api</artifactId>

 <version>2.1</version>

 <scope>provided</scope>

 </dependency>

 <!-- JSTL dependency -->

 <dependency>

 <groupId>jstl</groupId>

 <artifactId>jstl</artifactId>

 <version>1.2</version>

 </dependency>

 <!-- Apache Commons DBCP dependency (for database connection

pooling) -->

 <dependency>

 <groupId>commons-dbcp</groupId>

 <artifactId>commons-dbcp</artifactId>

 <version>1.4</version>

 </dependency>

 <!-- Postgresql Connector Java dependency (JDBC driver for

Postgresql) -->

 <dependency>

 <groupId>postgresql</groupId>

 <artifactId>postgresql</artifactId>

 <version>9.0-801.jdbc4</version>

 </dependency>

 <!—logging dependencies -->

 <dependency>

Chapter 5

[211]

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.4.2</version>

 </dependency>

 <dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.14</version>

 </dependency>

 </dependencies>

 <build>

 <finalName>SpringMVCPayrollSystem</finalName>

 </build>

</project>

For more information on web.xml, you can refer to the Developing
a simple Spring MVC application section earlier in this chapter.

The hibernate.properties ile
The hibernate.properties ile in the /src/main/webapp/WEB-INF folder
contains database connection information, such as driver class name, database URL,
username, password, and so on.

Refer to the /src/main/webapp/WEB-INF/hibernate.properties ile. You can
check the same in the following code snippet:

JDBC Properties

jdbc.driverClassName=org.postgresql.Driver

jdbc.url=jdbc:postgresql://localhost:5432/ehrpayroll_db

jdbc.username=postgres

jdbc.password=sa

Hibernate Properties

hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

hibernate.show_sql=true

The SpringDispatcher-servlet.xml ile
The SpringDispatcher-servlet.xml ile contains the dataSource
bean, sessionFactory bean, transactionManager bean, and
InternalResourceViewResolver bean.

Spring Web MVC Framework

[212]

Refer to /src/main/webapp/WEB-INF/SpringDispatcher-servlet.xml or take a
look at the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.0.xsd

 http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd

 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <context:component-scan base-
package="org.packt.Spring.chapter7.springmvc" />

 <context:property-placeholder location="/WEB-
INF/hibernate.properties" />

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.
DriverManagerDataSource
">

 <property name="driverClassName"
value="${jdbc.driverClassName}" />

 <property name="url" value="${jdbc.url}" />

 <property name="username" value="${jdbc.username}" />

 <property name="password" value="${jdbc.password}" />

 </bean>

 <bean id="sessionFactory"

 class="org.springframework.orm.hibernate4.
LocalSessionFactoryBean">

 <property name="dataSource" ref="dataSource" />

 <property name="annotatedClasses"

 value="org.packt.Spring.chapter7.springmvc.model.Employee" />

 <property name="hibernateProperties">

 <props>

 <prop
key="hibernate.dialect">${hibernate.dialect}</prop>

 <prop key="hibernate.show_sql">${hibernate.show_sql}</
prop>

 </props>

Chapter 5

[213]

 </property>

 </bean>

 <bean id="transactionManager"

 class="org.springframework.orm.hibernate4.
HibernateTransactionMana
ger">

 <property name="sessionFactory" ref="sessionFactory" />

 </bean>

 <tx:annotation-driven transaction-manager="transactionManager"
/>

 <bean

 class="org.springframework.web.servlet.view.InternalResource
ViewResolver">

 <property name="prefix">

 <value>/WEB-INF/views/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

 </bean>

</beans>

Hibernate model class – entity class
Employee has been deined as an entity class to store employee information. It will
be linked to EMPLOYEE_INFO table in the database (for more information, please refer
to Chapter 4, Hibernate with Spring).

Refer to src/main/java/org/packt/Spring/chapter7/springmvc/model/
Employee.java. You can also take a look at the following code snippet for a preview:

package org.packt.Spring.chapter7.springmvc.model;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name = "EMPLOYEE_INFO")

public class Employee {

Spring Web MVC Framework

[214]

 @Id

 @Column(name = "ID")

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Integer id;

 @Column(name = "FIRST_NAME")

 private String firstName;

 @Column(name = "LAST_NAME")

 private String lastName;

 @Column(name = "JOB_TITLE")

 private String jobTitle;

 @Column(name = "DEPARTMENT")

 private String department;

 @Column(name = "SALARY")

 private int salary;

 // constructor and setter and getter

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (!(obj instanceof Employee)) {

 return false;

 }

 Employee employee = (Employee) obj;

 if (firstName != null ?
!firstName.equals(employee.firstName)

 : employee.firstName != null) {

 return false;

 } else {

 return true;

 }

 }

 @Override

 public int hashCode() {

 return firstName != null ? firstName.hashCode() : 0;

Chapter 5

[215]

 }

 public String toString() {

 return "Employee [id=" + id + ", name=" + firstName + ""
+ lastName

 + ", jobTitle=" + jobTitle + " department="
+ department

 + " salary=" + salary + "]";

 }

}

The DAO layer
The Data Access Object (DAO) layer of the eHrPayrollSystem application
consists of the EmployeeDao interface and its corresponding implementation class,
EmployeeDaoImpl.

The EmployeeDao interface
The EmployeeDao interface will have the listEmployee() method declaration to
access data from the database.

Take a look at src/main/java/org/packt/Spring/chapter7/springmvc/dao/
EmployeeDao.java. Here's a preview of what you'll ind in the ile:

package org.packt.Spring.chapter7.springmvc.dao;

import java.util.List;

import org.packt.Spring.chapter7.springmvc.model.Employee;

public interface EmployeeDao {

 public List<Employee> listEmployee();

}

The EmployeeDao implementation
The EmployeeDaoImpl class is a DAO class that implements the data access interface
EmployeeDao annotated with the @Repository annotation (for more details, refer to
Chapter 4, Hibernate with Spring).

Spring Web MVC Framework

[216]

Take a look at src/main/java/org/packt/Spring/chapter7/springmvc/dao/
EmployeeDaoImpl.java. You can also check out the following code snippet:

package org.packt.Spring.chapter7.springmvc.dao;

import java.util.List;

import org.hibernate.Query;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.packt.Spring.chapter7.springmvc.model.Employee;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Repository;

@Repository

public class EmployeeDaoImpl implements EmployeeDao {

 private static final Logger logger = LoggerFactory

 .getLogger(EmployeeDaoImpl.class);

 @Autowired

 private SessionFactory sessionFactory;

 @SuppressWarnings("unchecked")

 public List<Employee> listEmployee() {

 Session session = sessionFactory.openSession();

 String hql = "FROM Employee";

 Query query = session.createQuery(hql);

 List<Employee> empList = query.list();

 logger.info("Person List::" + empList);

 return empList;

 }

}

The service layer
The service layer of eHrPayrollSystem consists of the EmployeeService interface
and its corresponding implementation class EmployeeServiceImpl.

Chapter 5

[217]

The EmployeeService interface
The EmployeeService interface will have the listEmployee() method declaration.

You can refer to the src/main/java/org/packt/Spring/chapter7/springmvc/
service/EmployeeService.java ile or you can take a look at the given code
snippet for a preview:

package org.packt.Spring.chapter7.springmvc.service;

import java.util.List;

import org.packt.Spring.chapter7.springmvc.model.Employee;

public interface EmployeeService {

 public List<Employee> listEmployee();

}

The EmployeeService implementation
The EmployeeServiceImpl class is a service class that implements the interface
EmployeeService, annotated with @Service (for more details, refer to Chapter 4,
Hibernate with Spring).

Take a look at the following code. You'll ind the same in the src/main/java/org/
packt/Spring/chapter7/springmvc/service/EmployeeServiceImpl.java ile:

package org.packt.Spring.chapter7.springmvc.service;

import java.util.List;

import org.packt.Spring.chapter7.springmvc.dao.EmployeeDao;

import org.packt.Spring.chapter7.springmvc.model.Employee;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class EmployeeServiceImpl implements EmployeeService {

 @Autowired

Spring Web MVC Framework

[218]

 private EmployeeDao employeeDao;

 public List<Employee> listEmployee() {

 return this.employeeDao.listEmployee();

 }

}

Spring MVC controller classes
The EmployeeController class is a controller class deined in the org.packt.
Spring.chapter7.springmvc.controllerpackage.

Take a look at the /src/main/java/org/packt/Spring/chapter7/springmvc/
controller/EmployeeController.java ile for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import org.packt.Spring.chapter7.springmvc.service.EmployeeService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @RequestMapping(method = RequestMethod.GET)

 public String welcomeEmployee(ModelMap model) {

 model.addAttribute("name", "Hello World!");

 model.addAttribute("greetings",

 "Welcome to Packt Publishing - Spring MVC
!!! @Author: Ravi Kant Soni");

 return "hello";

 }

 @RequestMapping(value = "/listEmployees", method =
RequestMethod.GET)

 public String listEmployees(ModelMap model) {

Chapter 5

[219]

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

}

The EmployeeController class deines a listEmployees() method. This method
uses the EmployeeService interface to fetch all the employee details in the
eHrPayrollSystem web application. The listEmployees() method has been
mapped to request "/employee/listEmployees", so whenever Spring encounters
this URL request, it will call this method. This method returns the view named
employee which will be resolved to employee.jsp by the view resolver.

Another method is welcomeEmployee(), which will be called by Spring when it
encounters the URL "/employee". This method will return a view named hello,
which will be resolved as hello.jsp name.

The View page
Finally, we need to add JSP iles to the folder /WEB-INF/views.

The hello.jsp page
This JSP page contains an anchor tag with the URL "employee/listEmployees".

Check out the /WEB-INF/views/hello.jsp ile for the following code snippet:

<body>

 <h1 style="color: green; text-align: center;">${name}</h1>

 <h3 style="color: orange; text-align:
center;">${greetings}</h3>

 <table align="center" cellspacing="10">

 <tr style="color: blue; font-style: italic; font-size:
14pt">

 <td align="left">Click Here</td>

 <td align="right" bgcolor="lightgreen">List

 Of Employees</td>

 </tr>

 </table>

</body>

Spring Web MVC Framework

[220]

The employee.jsp page
This JSP will iterate the employeeList model data and display employee
information. We will discuss the tags in a later section of this chapter.

Check out the /WEB-INF/views/employee.jsp ile for the following code snippet:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">

 <title>Employee List</title>

 </head>

 <body>

 <div align="center">

 <h1 style="background-color: lightgreen; color:
darkgreen">Employee

 List

 </h1>

 <table cellspacing="0" cellpadding="6" border="1">

 <tr bgcolor="grey" style="color: white">

 <th>No</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Job Title</th>

 <th>Department</th>

 <th>Salary</th>

 </tr>

 <c:forEach var="employee" items="${employeesList}"
varStatus="status">

 <tr bgcolor="lightyellow">

 <td>${status.index + 1}</td>

 <td>${employee.firstName}</td>

 <td>${employee.lastName}</td>

 <td>${employee.jobTitle}</td>

 <td>${employee.department}</td>

 <td>${employee.salary}</td>

 </tr>

 </c:forEach>

 </table>

 </div>

 </body>

</html>

Chapter 5

[221]

The index.jsp page
This is the irst page that will be executed when we start web application for
the URL http://localhost:8080/eHrPayrollSystem. The <%response.
sendRedirect("employee");%> will redirect this page to the URL http://
localhost:8080/eHrPayrollSyste/employee.

Check out the /src/main/webapp/index.jsp ile for the following code snippet:

<html>

<body>

 <%

 response.sendRedirect("employee");

 %>

</body>

</html>

Running the application
Congratulations! We have successfully set up the Spring-Hibernate environment and
are done with coding. Now, it's time to compile and execute the eHrPayrollSystem
application. If everything goes well, we will get the output as seen here at the URL
http://localhost:8080/eHrPayrollSystem/employee:

Spring Web MVC Framework

[222]

On clicking List Of Employees on the page, it will redirected to the URL
http://localhost:8080/eHrPayrollSystem/employee/listEmployees:

Exception handling using

@ControllerAdvice
Usually the evil stack trace appears to the user whenever any unknown exceptions
occur to an application. The user will complain to our application as stack traces are
not user friendly and not handled by the user at all. And sometimes these stack trace
revile the internal method call which can cause security risks.

However, we can conigure the web application deployment descriptor web.xml to
display user-friendly JSP pages in case of class exception or HTTP errors. The Spring
MVC provides a way to manage views in case of a class exception.

From Spring 3.2 onwards, we have the @ControllerAdvice annotation.
This annotation is used to deine the global exception handler using the
@ExceptionHandler annotation. So, any exception thrown by the application
will be handled by this class having methods annotated with @ExceptionHandler.
Thus, if a method is declared with the @ExceptionHandler annotation in the
@ControllerAdvice class, it will be applicable to all controllers in application.

The @ExceptionHandler annotation makes it easier to handle exception and errors.
This annotation can be used for any method in the controller class with the list of
Exception classes as parameters. When a controller method throws an exception,
the method annotated with @ExceptionHandler is executed only if the thrown
exception matches the conigured exception classes.

Chapter 5

[223]

The Spring coniguration ile SpringDispatcher-servlet.xml must deine mvc
namespace in order to have the @ControllerAdvice annotation get identiied:

<mvc:annotation-driven/>

It should be noted that if only <context:annotation-config /> has been deined
in this ile, then @ControllerAdvice will not be loaded and will not work. Let's
implement this concept in our SpringMVCPayrollSystem project, which we created
earlier in this chapter.

The GenericException class
This is a generic exception with custom error code and error description.

Check out the src/main/java/org/packt/Spring/chapter7/springmvc/
exception/GenericException.java ile for the following code snippet:

package org.packt.Spring.chapter7.springmvc.exception;

public class GenericException extends RuntimeException {

 private static final long serialVersionUID = 1L;

 private String exceptionMsg;

 private String exceptionCode;

 public GenericException(String exceptionCode, String
exceptionMsg) {

 this.exceptionCode = exceptionCode;

 this.exceptionMsg = exceptionMsg;

 }

 // getter and setter methods

}

The SpringException class
The SpringException class is annotated with @ControllerAdvice from the org.
springframework.web.bind.annotation package. It will be applied globally, that
is, to all controllers in the application. This class has two methods annotated with
the @ExceptionHandler annotation, which will be called whenever an exception
is thrown and the exception from the controller class matches the conigured
Exception classes.

Spring Web MVC Framework

[224]

Check out the src/main/java/org/packt/Spring/chapter7/springmvc/
exception/SpringException.java ile for the following code snippet:

package org.packt.Spring.chapter7.springmvc.exception;

import org.springframework.web.bind.annotation.ControllerAdvice;

import org.springframework.web.bind.annotation.ExceptionHandler;

import org.springframework.web.servlet.ModelAndView;

@ControllerAdvice

public class SpringException {

 @ExceptionHandler(Exception.class)

 public ModelAndView allException(Exception e) {

 ModelAndView modelAndView = new
ModelAndView("error/exception");

 modelAndView.addObject("error",
e.getClass().getSimpleName());

 modelAndView.addObject("message", e.getMessage());

 return modelAndView;

 }

 @ExceptionHandler(GenericException.class)

 public ModelAndView genericException(GenericException ex) {

 ModelAndView modelAndView = new
ModelAndView("error/exception");

 modelAndView.addObject("error",
ex.getClass().getSimpleName());

 modelAndView.addObject("message",

 ex.getExceptionCode() + " - " +
ex.getExceptionMsg());

 return modelAndView;

 }

}

Chapter 5

[225]

The EmployeeController class
The EmployeeController class has three methods. One is just to render the hello.
jsp page. The other two will throw the following exceptions:

• If the request contains the URL as "/employee/testIOException", then it
throws IOException and the allException() method will be ired from the
SpringException class.

• If the request contains the URL as "/employee/testGenericException",
then it throws GenericException and the genericException() method
will be ired from the SpringException class.

Check out the src/main/java/org/packt/Spring/chapter7/springmvc/
controller/EmployeeController.java ile for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import java.io.IOException;

import org.packt.Spring.chapter7.springmvc.exception.GenericException;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @RequestMapping(method = RequestMethod.GET)

 public String welcomeEmployee(ModelMap model) {

 model.addAttribute("name", "Hello World!");

 model.addAttribute("greetings",

 "Welcome to Packt Publishing - Spring MVC
!!!");

 return "hello";

 }

 @RequestMapping("/testIOException")

 public String testIOException(ModelMap model) throws
IOException {

Spring Web MVC Framework

[226]

 if (true) {

 throw new IOException("This is an IO Exception");

 }

 return "hello";

 }

 @RequestMapping("/testGenericException")

 public String testGenericException(ModelMap model) throws
IOException {

 if (true) {

 // add custom code and message that appear to error
page

 throw new GenericException("R333", "This is a

custom message");

 }

 return "hello";

 }

}

The hello.jsp page
This view page contains two hyperlinks with the URLs "employee/
testIOException" and "employee/testGenericException" that will be mapped
to the controller method.

Check out the /WEB-INF/views/hello.jsp ile for the following code snippet:

<body>

 <h1 style="color: green; text-align: center;">${name}</h1>

 <h2 style="color: orange; text-align: center;">${greetings}</h2>

 <table align="center" border="1" cellspacing="0" cellpadding="10">

 <tr>

 <td rowspan="2" style="color: red; text-align: center;">

 Exception Handling

 </td>

 <td>Click here to test
IO

 Exception

 </td>

 </tr>

 <tr>

 <td>Click here to
 test Generic Exception

Chapter 5

[227]

 </td>

 </tr>

 </table>

</body>

The exception.jsp page
This page will be executed when an exception is thrown from the controller.

Take a look at the /WEB-INF/views/error/hello.jsp ile for the following code
snippet:

<body>

 <h1 style="color: red">Sorry! Unable to process current Request</
h1>

 ${error}: ${message}

</body>

Running the application
Once you compile and run the application successfully, the output will appear in
the browser as at the URL http://localhost:8080/SpringMVCWithException/
employee:

Spring Web MVC Framework

[228]

Once you click on Click here to test IO Exception, the page will be redirected
to the URL http://localhost:8080/SpringMVCWithException/employee/
testIOException:

For the URL http://localhost:8080/SpringMVCWithException/employee/
testGenericException, you'll get the following output:

Chapter 5

[229]

Spring MVC internationalization (i18n)
It is always good practice to use internationalization (i18n) whenever you develop
a web application. The goal is to externalize the user messages and text into
properties ile. It is always good to externalize the language-related settings in the
early stage, even though we won't ind internationalization (i18n) requirement on
irst day of application development, but it will be fruitful when our application
needs to respond more than one language. The i18n can be enabled very easily
with Spring MVC.

The properties ile
Let's say that our web application supports two locales: en and fr. This application
will consider English as the default locale, and the user will have options to
change the locale. The two properties iles for these two locales are messages_
en.properties and messages_fr.properties:

• src/main/resources/messages/messages_en.properties: This ile
contains the following snippet:

employee

employee.first.name=First Name

employee.last.name=Last Name

• src/main/resources/messages/messages_fr.properties: This ile
contains the following snippet:

employee

employee.first.name=Pr\u00E9nom

employee.last.name=Nom

Spring coniguration
We need to conigure beans of type ReloadableResourceBundleMessageSource,
LocaleChangeInterceptor, and SessionLocaleResolver to support
internationalization (i18n) in our web application.

ReloadableResourceBundleMessageSource
In the Spring coniguration ile SpringDispatcher-servlet.xml, add the org.
springframework.context.support.ReloadableResourceBundleMessageSource
bean, which will allow the alteration of properties iles without restarting the JVM:

<!-- Application Message Bundle -->

<bean id="messageSource"

Spring Web MVC Framework

[230]

class="org.springframework.context.support.ReloadableResourceBundleMe
ssageSource">

<property name="basename" value="classpath:messages/messages" />

<property name="defaultEncoding" value="UTF-8"/>

</bean>

The messageSource bean needs to be conigured in the coniguration ile to enable
i18n for our web application. The basename property of this bean is used to provide
the resource bundle location. The value of this property is classpath:messages/
messages. This means that properties iles are located in the class path under the
messages folder and follow the name pattern as messages_{locale}.properties.
The defaultEncoding for the properties ile is UTF-8, which deines the encoding
used for the messages.

LocaleChangeInterceptor
The LocaleResolver allows us to change the current locale and is used in
combination with LocaleChangeInterceptor. It uses the deined parameter in
the user request to change the current locale. For example, a request with the URL
http://localhost:8080/eHRPayrollSystem/employeeList?lang=fr will change
the language of the page to French.

<mvc:interceptors>

<bean class="org.springframework.web.servlet.i18n.
LocaleChangeIntercepto
r">

<property name="paramName" value="lang" />

</bean>

</mvc:interceptors>

SessionLocaleResolver
Using the localeResolver object, Spring's DispatcherServlet enables us to
resolve messages based on the client's locale. The localeResolver bean of type
org.springframework.web.servlet.i18n.SessionLocaleResolver allows us to
retrieve locales from the session that might be associated with request from user:

<bean id="localeResolver" class="org.springframework.web.servlet.i18n.
SessionLocaleResolver">

<property name="defaultLocale" value="en" />

</bean>

If the session is not found, then defaultLocale is set to en, that is, English.

Chapter 5

[231]

The hello.jsp page
The hello.jsp page contains two hyperlinks, and one click will change the locale.
The spring:message is used to display the message from the corresponding
message's properties ile based on the current locale:

<%@ page contentType="text/html;charset=UTF-8"%>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>

<html>

 <head>

 <title>Chapter-7 Spring MVC</title>

 </head>

 <body>

 <h1 style="color: green; text-align: center;">Chapter 7:
Spring

 MVC - internationalization

 </h1>

 <table align="center" border="1">

 <tr>

 <td><b style="color: brown">Language</td>

 <td>English|</td>

 <td>French</td>

 </tr>

 </table>

 <h2 style="color: orange; text-align: center;">

 <spring:message code="employee.first.name" text="default

text" />

 : ${firstName}

 </h2>

 <h2 style="color: orange; text-align: center;">

 <spring:message code="employee.last.name" text="default

text" />

 : ${lastName}

 </h2>

 </body>

</html>

Running the application
On clicking French, the language will be changed to French or fr.

Spring Web MVC Framework

[232]

For English locale, go to http://localhost:8083/
SpringMVCInternationalization/employee or http://localhost:8083/
SpringMVCInternationalization/employee?lang=en, as shown in the
following screenshot:

For French locale, go to http://localhost:8083/
SpringMVCInternationalization/employee?lang=fr:

Handling form with the controller
In a web application, we can have a form to add employee information to the system.
A user needs to have a form where he/she can provide employee information, and
when he/she submits the form, a controller needs to accept the form submission. So,
a controller needs to have at least two functions:

• One function to display employee information form to user on HTTP GET
request

Chapter 5

[233]

• Another function to handle when the form is submitted using the HTTP POST
method, by processing business functionality for data present in the form

Spring MVC handles form submission by using three components, namely
controller, model and view:

• Controller: The controller in Spring MVC is generally used to handle
requests. The controller in Spring MVC can also be used to bind the model
object with view and vice versa.

• Model: Model is a POJO class. The model class is created to bind form ield
with properties of the object which will be put into the model.

• View: The form tags in Spring MVC are used to render the form ield
equivalent to HTML. The form tags bind the model's object with the form.

ModelAndView in Spring MVC
The org.springframework.web.servlet.ModelAndView in the Spring Framework
plays both model and view. ModelAndView holds data for both model and view.
There are different constructors for ModelAndView; the one we have used in our
application is:

public ModelAndView(String viewName, String modelName,Object
modelObject)

The arguments of a ModelAndView constructor are:

• viewName: This is the name of the page which we are looking for

• modelName: This can be any name which represents the model

• modelObject: This is a bean that is associated with the form

Let's take an example:

 ModelAndView("addemployee", "command", new Employee());

Here, addemployee is viewname, command is modelName, and new Employee() will
be the employee object, which will be associated with the form in the addemployee.
jsp page in our application.

Spring Web MVC Framework

[234]

Spring MVC Controller class
The EmployeeController class is designated to handle the request URL /employee:

@RequestMapping(value = "/employee")

@ModelAttribute in the controller class
The org.springframework.web.bind.annotation.ModelAttribute in
Spring MVC is used to an annotation for the handler method or method
arguments in the controller class. The @ModelAttribute annotation binds
a named model attribute to any arguments in a method or to the method
itself. Let's say we have created a ModelAttribute with the name
employeeForm: @ModelAttribute("employeeForm").

ModelMap in the controller class
The org.springframework.ui.ModelMap is an implementation of map, and in
Spring MVC, it is used whenever working with UI tools. It carries the data that
can be viewed.

In Spring MVC, writing handler methods is very lexible, as we have seen earlier
in this chapter. We have implemented four methods, namely listEmployees(),
addEmployee(), updateEmployee(), deleteEmployee(), to handle the GET and
POST requests.

Check out the /src/main/java/org.packt/spring/chapter7/springmvc/
controller/EmployeeController ile for the following code snippet:

package org.packt.Spring.chapter7.springmvc.controller;

import org.packt.Spring.chapter7.springmvc.model.Employee;

import org.packt.Spring.chapter7.springmvc.service.EmployeeService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.ModelAttribute;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

import org.springframework.web.servlet.ModelAndView;

Chapter 5

[235]

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @RequestMapping(method = RequestMethod.GET)

 public String listEmployees(ModelMap model) {

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

 @RequestMapping(value = "/addemployee", method =
RequestMethod.POST

 public ModelAndView addEmployee(ModelMap model) {

 return new ModelAndView("addemployee", "command", new
Employee());

 }

 @RequestMapping(value = "/updatemployee", method =
RequestMethod.POST)

 public String updateEmployee(

 @ModelAttribute("employeeForm") Employee employee,
ModelMap model) {

 this.employeeService.insertEmployee(employee);

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

 @RequestMapping(value = "/delete/{empId}", method =
RequestMethod.GET)

 public String deleteEmployee(@PathVariable("empId") Integer
empId,

 ModelMap model) {

 this.employeeService.deleteEmployee(empId);

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

}

Spring Web MVC Framework

[236]

Let's understand each method deined in the EmployeeController class as shown in
the preceding code snippet in detail:

• listEmployees(): In this method, we have ModelMap. We have added
an attribute to this model with the key 'employeesList' and the value
contains the employee list, which returns from the employeeService.
listEmployee() method.

• addEmployee(): In this method, we have called the ModelAndView
constructor that takes addemployee as view name, commandName as
command that can be associated with the Spring form <form:form> tag, and
employee object, which must match the value of the commandName attribute
of the <form:form> tag.

• updateEmployee(): The insertEmployee() method handles form
submission via the POST request. Out of all parameters deined in this
method, @ModelAttribute("employeeForm") is the important parameter.
When the form is submitted, the form value can be accessed.

• deleteEmployee(): This method will delete employees based on
employeeId associated with the URL, for example, "/delete/{empId}". The
(@PathVariable("empId") integer empId is an important attribute of this
method that will take the value associated to the URL.

The View page
The employee.jsp page uses EL expressions to display values of properties of the
employee object in the model.

Check out the /WEB-INF/views/employee.jsp ile for the following code snippet:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">

 <title>Employee List</title>

 </head>

 <body>

 <div align="center">

 <h1 style="background-color: lightgreen; color:
darkgreen">Employee

 Page

 </h1>

Chapter 5

[237]

 </div>

 <div align="center">

 <table align="center" width="80%" cellspacing="0"
cellpadding="5">

 <tr>

 <td align="right"><a href="${pageContext.request.
contextPath}/employee/addemployee"

 style="background-color: lightblue;"> Add Employee </td>

 </tr>

 <tr>

 <td>

 <table cellspacing="0" cellpadding="6" border="1"
width="100%">

 <tr>

 <td colspan="7"

 style="background-color: lightblue;
color: darkgreen; font-size: 16pt"

 align="center">Employee List</td>

 </tr>

 <tr bgcolor="grey" style="color: white">

 <th>No</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Job Title</th>

 <th>Department</th>

 <th>Salary</th>

 <th>Delete</th>

 </tr>

 <c:forEach var="employee"
items="${employeesList}"

 varStatus="status">

 <tr bgcolor="lightyellow">

 <td>${status.index + 1}</td>

 <td>${employee.firstName}</td>

 <td>${employee.lastName}</td>

 <td>${employee.jobTitle}</td>

 <td>${employee.department}</td>

 <td>${employee.salary}</td>

 <td><a href="${pageContext.request.
contextPath}/employee/delete/${employee.id}">Delete</td>

 </tr>

 </c:forEach>

 </table>

 </td>

Spring Web MVC Framework

[238]

 </tr>

 </table>

 </div>

 </body>

</html>

The Spring MVC form
The Spring MVC form provides a tag library to create a form that will be associated
with a bean. When we submit this Spring MVC form, the associated bean will
automatically be populated, and that bean will be used for further processing.

The JSP page must be created using Spring tags and should not have generic
HTML tags. The <form:form> tag is very similar to the regular HTML <form> tag,
and plays a major role in the Spring MVC form. The commandName can be added to
it to specify the name of the model class object, which will act as backing object for
this form.

<%@taglib
uri="http://www.springframework.org/tags/form"prefix="form"%>

For more reference on Spring form tag, refer to Appendix C, Spring Form Tag Library.

Check out the /WEB-INF/views/addemployee.jsp ile for the following code
snippet:

<%@taglib uri="http://www.springframework.org/tags/form"
prefix="form"%>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">

 <title>Add Employee</title>

 </head>

 <body>

 <div align="center">

 <h1 style="background-color: lightgreen; color:
darkgreen">Add

 New Employee Page

 </h1>

 </div>

 <div align="center">

 <table cellspacing="0" cellpadding="6" border="1"
widht="60%">

Chapter 5

[239]

 <tr>

 <td colspan="8"

 style="background-color: lightblue; color:
darkgreen; font-size: 16pt"

 align="center">Employee Information</td>

 </tr>

 <tr>

 <td>

 <form:form method="POST" action="updatemployee">

 <table widht="100%">

 <tr>

 <td>

 <form:label path="firstName">First
Name</form:label>

 </td>

 <td align="left" width="70%">

 <form:input path="firstName" />

 </td>

 </tr>

 <tr>

 <td>

 <form:label path="lastName">Last Name</
form:label>

 </td>

 <td align="left">

 <form:input path="lastName" />

 </td>

 </tr>

 <tr>

 <td>

 <form:label path="jobTitle">Job
Title</form:label>

 </td>

 <td align="left">

 <form:input path="jobTitle" />

 </td>

 </tr>

 <tr>

 <td>

 <form:label
path="department">Department</form:label>

 </td>

 <td align="left">

Spring Web MVC Framework

[240]

 <form:input path="department" />

 </td>

 </tr>

 <tr>

 <td>

 <form:label path="salary">Salary</
form:label>

 </td>

 <td align="left">

 <form:input path="salary" />

 </td>

 </tr>

 <tr>

 <td colspan="2"><input type="submit"
value="Submit" /></td>

 </tr>

 </table>

 </form:form>

 </td>

 </tr>

 </table>

 </div>

 </body>

</html>

Running the application
On compiling and running the application, the expected output will appear URL
http://localhost:8080/eHRPayrollFormHandling/employee, as shown in the
following screenshot:

Chapter 5

[241]

On clicking the Add Employee link, you will be directed to Add New Employee
Page. Enter the employee information into the input box, as shown in the following
screenshot. The URL is http://localhost:8080/eHRPayrollFormHandling/
employee/addemployee:

Spring Web MVC Framework

[242]

After entering employee information, click on the Submit button. Then, you will be
brought back to Employee Page where the list of employees will be shown to the
user. The URL is http://localhost:8080/eHRPayrollFormHandling/employee:

In the preceding screenshot, newly added employee information is visible to the user
along with old employees. We can also delete an employee by clicking on the Delete
link for each employee on the page. Let's say we have clicked the Delete link for an
employee 1; this employee will be deleted, and after deleting this employee, a new
list of employees will be visible to the user. The URL is http://localhost:8080/
eHRPayrollFormHandling/employee/delete/1:

Chapter 5

[243]

Exercise
Q1. What is Spring Web MVC framework?

Q2. What is DispatcherServlet in Spring MVC framework?

Q3. What is Controller in Spring MVC?

Q4. What is ViewResolver in Spring MVC?

The answers to these are provided in Appendix A,
Solution to Exercises.

Summary
In this chapter, we covered the Spring MVC framework and its components, such
as DispatcherServlet class and HandlerMapping. We developed a Spring Web
MVC application by creating a controller, view, and web coniguration ile. We
discovered that DispatcherServlet is the central component of a Spring Web MVC
application. It accepts requests from the view page and dispatches the control to the
controller classes. We also understood that controller classes process requests and
send back a view and some data to be displayed in the view. The view components
are resolved by the ViewResolver class.

We have seen annotation and their uses in Spring MVC: the @Controller
annotation is used to create controller class, @ModelAttribute is used to represent
the model or command objects, @ExceptionHandler is used to handle exceptions,
and @RequestMapping is used to map incoming requests to various methods of
controller classes. In addition, we have explored handling forms using the controller
in Spring MVC. We also developed a Spring MVC application after integration with
the Hibernate ORM framework.

In the next chapter, Spring Security, we will irst try to understand what Spring
Security is. Then, we will look into the dependencies needed for Spring Security.
We will take a look at authentication and authorization in Spring Security. We
will take a quick review of Servlet ilters in web applications and will understand
how Spring Security is dependent on this ilter mechanism. After that, we will
see the two important aspects of Spring Security: the authentication manager and
authentication provider.

[245]

Spring Security
In the previous chapter, you learned about the features of the Spring Web MVC
framework. We also understood different components of the Spring MVC framework,
such as DispatcherServlet and HandlerMapping. You also learned how to develop
web applications using the Spring MVC framework by creating a controller, view, and
web coniguration ile.

In this chapter, we will irst try to understand what Spring Security is. Then, we
will look into the dependencies needed for Spring Security. We will take a look
at authentication and authorization in Spring Security. Next, we will do a quick
review of the Servlet ilter in web application and also understand how Spring
Security is dependent on this ilter mechanism. We will discuss how to secure web
applications using ilters along with the Spring interceptor and ilter concepts in
Spring Security. Then, we will see the two important aspects of Spring Security,
that is, the authentication manager and authentication provider. We will also see
different ways of logging into web applications, such as HTTP basic authentication,
form-based login services, anonymous login, and also the Remember Me support
in Spring Security. We will also discuss authenticating and authorization against
databases. Then, we will implement method-level security.

The list of topics covered in this chapter is as follows:

• Introduction to Spring Security

• Review on Servlet filters

• Security use case

• Spring Security configuration

• Securing web application's URL access

• Logging into web application

• Users authentication

Spring Security

[246]

• Method-level security

• Developing an application using Spring MVC, Hibernate, and Security

What is Spring Security?
Security for a web application is nothing but protecting resources and allowing
only speciic users to access it. Spring Security shouldn't be assumed as a irewall, a
proxy server, intrusion detection, JVM security, or anything similar. Spring Security
is basically made for the Java EE Enterprise software application and is primarily
targeted towards Spring-framework-based web applications.

The Spring Security framework initially started as Acegi Security Framework,
which was later adopted by Spring as its subproject Spring Security. The Spring
Security framework is a de facto standard to secure Spring-based applications.
The Spring Security framework provides security services for enterprise Java
software applications by handling authentication and authorization. Spring
Security handles authentication and authorization at both the web request level
and the method invocation level. Spring Security is a highly customizable and
powerful authentication and access control framework.

Major operations
The two major operations provided by Spring Security are authentication
and authorization.

• Authentication: This is the process of assuring that the user is the one that
the user claims to be. Authentication is a combination of identification and
verification. Identification can be performed in a number of ways. For example,
through a username and password that can be stored in a database, LDAP, or
CAS (single sign-on protocol). Spring Security provides a password encoder
interface to make sure that the user's password is hashed.

• Authorization: This provides access control to an authenticated user.
Authorization is the process of assuring that the authenticated user is
allowed access only to those resources that they are authorized to use.
Let's take an example of the HR Payroll application, where some parts
of the application have access to HR and to some other parts all the
employees have access. The access rights given to the user of the
system will determine the access rules.

Chapter 6

[247]

In web-based applications, this is often done through URL-based security
and is implemented using filters that play a primary role in securing the
Spring web application.

Sometimes, URL-based security is not enough for web applications as
URLs can be manipulated and have relative pass. Let's take an example of
HrPayrollSystem, where the HR and manager are involved, and there is an
employees list page. On this employees list page, there is a Delete button for
each employee. The Delete button contains a hyperlink for a delete method
call in the controller class. This button appears for HR but it is hidden for
managers. Even though the manager doesn't see the Delete button, the delete
method can be called by altering the URL in the browser. This results in the
delete operation by the manager, which shouldn't have happened.

So, Spring Security also provides method-level security. The authorized user
will only able to invoke those methods which he is granted for.

Servlet ilters review
Spring Security is developed on top of the Spring Framework and uses the ilters
concept in the Servlet engine. Filters are like Servlet; they come into action when any
request comes to Servlet and can decide whether the request should be forwarded to
Servlet or not. Spring Security registers a single javax.servlet.Filter, that is, the
DelegatingFilterProxy.

Before starting with Spring Security, let's quickly recall what Servlet ilters are. In
the following igure, a user enters the URL in the browser. The request comes to the
container and then to Servlet after referring to web.xml for Servlet mapping with
respecting URL. After processing the request, the request goes back to the user.

Spring Security

[248]

A Filter is present between Servlet and Container. It intercepts the requests and
responses to and from Servlet and can pre-process and post-process, as shown in
the following diagram:

In the web.xml ile, you'll ind the following code:

<filter>

 <filter-name>filterA</filter-name>

 <filter-class>FilterA</filter-class>

</filter>

<filter-mapping>

 <filter-name>filterA</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

In the preceding code snippet, we have mapped filterA to all URLs. Now, in the
FilterA.java class, you'll ind the following code:

public void doFilter(ServletRequest request, ServletResponse
response, FilterChain filterChain)

{

 // do something before filter

 System.out.println("Starting Filter");

 // run rest of the application

 filterChain.doFilter(request, response);

 // cleanup

 System.out.println("Ending Filter");

}

Chapter 6

[249]

Now, we have the code for FilterA. First, it invokes a message before the rest of the
applications run. Then, it runs the rest of the application. Lastly, it prints a message
again. From the following diagram, let's understand how requests gets impacted by
this ilter:

As shown in the preceding diagram, when we make a request to our application
using HTTP GET /home URL, the Servlet container recognizes the filterA intercepts
this URL. The container invokes the doFilter() method of the FilterA class. As
soon as the doFilter() method is invoked, it prints the message Starting Filter.
Then, filterA invokes the filterChain, and then home.jsp is invoked. Next, it
returns to the filterChain.

Filters can be used for the following operations:

• Blocking access to a resource based on user identity or role membership

• Auditing incoming requests

• Comparing the response data stream

• Transforming the response

• Measuring and logging Servlet performance

Spring Security is dependent on this ilter mechanism. So, before reaching out
to Servlet to perform some business logic, some security can be performed using
the ilters.

Spring Security

[250]

Security use case
The use case we will use for all our examples is as follows:

1. The user reaches the application or homepage of the application and clicks
on a secure link (for example, login).

2. The moment the user clicks on the secured link, Spring Security brings the
login page.

3. The login page will perform a credential check from the authentication
provider; this can be plain-text, database, or similar.

4. An authentication failure happens if wrong credentials are given by the user;
otherwise, the user will be allowed to the secured area.

5. When the user clicks on logout, they will be directed to the homepage.

The following diagram illustrates the preceding steps:

Spring Security coniguration
To add Spring Security to our Spring web application, we need to perform a basic
Spring Security setup. To do this, follow these steps:

1. Add Spring JARs or Spring Security dependencies.

2. Update web.xml with springSecurityFilterChain.

3. Create a Spring Security coniguration ile.

Chapter 6

[251]

Spring Security setup
We can either download and add Spring Security JARs to classpath or we can
provide dependencies to Maven.

Adding JARs to the classpath
There are three important JARs that we need for Spring Security. These can be
downloaded from the Spring website and are as follows (the version should
match other Spring JARs used in the project):

• spring-security-config-3.X.X.RELEASE.jars: This contains support for
Spring Security's XML namespace

• spring-security-core-3.X.X.RELEASE.jars: This provides the essential
Spring Security library

• spring-security-web-3.X.X.RELEASE.jars: This provides Spring
Security's filter-based web security support

If we have developed a Maven application, then we need to update pom.xml.

Spring Security dependencies – pom.xml
Update dependencies to Maven. We have spring-security-core, spring-
security-web, and spring-security-config:

<properties>

 <spring.security.version>3.1.4.RELEASE</spring.security.version>

</properties>

<!-- Spring Security -->

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-core</artifactId>

 <version>${spring.security.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.security.version}</version>

</dependency>

<dependency>

Spring Security

[252]

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.security.version}</version>

</dependency>

Namespace coniguration
In the Spring coniguration ile, we need to add one more entry to schema, which
is related to Spring Security and the corresponding schemaLocation and their xsd,
which lives in Spring JARs. The security preixed elements go here.

In the SpringDispatcher-servlet.xml ile, you'll ind the following code:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:security="http://www.springframework.org/schema/security"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-
3.1.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-

3.1.xsd">

</beans>

Securing web application's URL access
HttpServletRequest is the starting point of a Java web application. To conigure
web security, you need to set up a ilter that provides various security features.
To enable Spring Security, add ilter and their mapping in the web.xml ile.

The irst step – web.xml
The irst step is to conigure DelegatingFilterProxy instance in web.xml while
securing the web application's URL access with Spring Security.

In the web.xml ile, you'll ind the following code:

<!—Spring Security -->

<filter>

<filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter
-class>

</filter>

Chapter 6

[253]

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The DelegatingFilterProxy ilter class, which is a special servlet ilter,
doesn't do much by itself. It delegates the control to an implementation of
javax.servlet.Filter, which is registered as a special bean with ID is
springSecurityFilterChain in Spring application context. In the earlier
code snippet, we added /*, which will map to all the HTTP requests and go
to this springSecurityFilterChain.

In the preceding code snippet, we declared the URL pattern /*, which requires
some level of granted authority and prevents other users without authority from
accessing the resources behind those URLs.

Separating security conigurations
If we are planning to separate the entire security speciic coniguration into a
separate coniguration ile named Spring-Security.xml, we must change the
security namespace to be the primary namespace for that ile. Here, there are no
security preixed elements.

In the Spring-Security.xml ile, you'll ind the following code:

<beans:beans
xmlns="http://www.springframework.org/schema/security"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

 <http auto-config="true">

 <intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE_ADMIN ' />

 <intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

 <intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

 </http>

Spring Security

[254]

 <authentication-manager>

 <authentication-provider>

 <user-service>

 <user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />

 <user name="ravisoni" password="mypassword"
authorities="ROLE_USER" />

 </user-service>

 </authentication-provider>

 </authentication-manager>

</beans:beans>

The preceding coniguration ile has been divided into two major sections, as shown
in previous code snippet:

• The first section includes <http> tag and <intercept-url> tag;
these define what you want to secure

• The second section includes the <authentication-manager>,
<authentication-provider>, and <user-service> tags; these
define how you want to secure

Web security is enabled using the <http> tag. This tag is the container element for
the HTTP security coniguration. To deine the Spring Security coniguration for
HTTP requests, we must irst deine the <http> tag, which automatically sets up
FilterChainProxy. The auto-config=true attribute automatically conigures the
basic Spring Security Services that a web application needs. This can be ine-tuned
with the corresponding subelements in it.

The <intercept-url> element is deined inside the <http> coniguration element.
It restricts access to speciic URLs. The <intercept-url> tag deines the URL
pattern and set of access attributes that are required to access URLs. It is mandatory
to include a wildcard at the end of the URL pattern, and failing to do so will allow
a hacker to skip the security check by appending arbitrary request parameter.
The access attributes decide if the user can access the URLs. In most cases, access
attributes are deined in terms of roles. In the previous code snippet, users with the
ROLE_USER role are able to access the /employeeList and /employeeAdd URLs.
However, to delete an employee via the /employeeDelete URL, a user must have
the ROLE_ADMI role.

Chapter 6

[255]

The <authentication-manager> tag used to process authentication information.
The <authentication-provider> tag is nested inside the <authentication-
manager> tag, and used to deine credential information and the roles that will be
granted to this user. In the preceding code snippet, inside the <authentication-
manager> tag, we have provided the <authentication-provider> tag, which
speciies a text-based user ID and password.

Logging into web application
Users can log into a web application using multiple ways supported by
Spring Security:

• HTTP basic authentication: These processes the basic credentials presented
in the header of the HTTP request. HTTP basic authentication is generally
used with stateless clients which pass their credentials on each request.

• Form-based login service: This provides the default login form page for
users to log into the web application.

• Logout service: This allows users to log out of this application.

• Anonymous login: This grants authority to an anonymous user like
normal user.

• Remember Me support: This remembers a user's identity across multiple
browser sessions.

First, we will disable the HTTP autoconiguration by removing the auto-config
attribute from the <http> tag to better understand the different login mechanisms
in isolation:

<http>

 <intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE_ADMIN ' />

 <intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

 <intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

</http>

Spring Security

[256]

HTTP basic authentication
The HTTP basic authentication in Spring Security can be conigured by using
the <http-basic/> element. Here, the browser will display a login dialog for
user authentication:

<beans:beans
xmlns="http://www.springframework.org/schema/security"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

 <http>

 <intercept-url pattern='/employeeList'
access='ROLE_USER,ROLE_ADMIN ' />

 <intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

 <intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

 <!-- Adds Support for basic authentication -->

 <http-basic/>

 </http>

 <authentication-manager>

 <authentication-provider>

 <user-service>

 <user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />

 <user name="ravisoni" password="mypassword"
authorities="ROLE_USER" />

 </user-service>

 </authentication-provider>

 </authentication-manager>

</beans:beans>

The interesting thing with HTTP basic authentication is that we don't have to create
any login page. The browser will present a login box before the user on our behalf.
As each request contains user authentication information that is the same as the
HTTP stateless mechanism, we don't need to maintain session.

Chapter 6

[257]

When we try to access a secured URL in our web application, the browser will open
an authentication dialog box automatically for a username and password:

Form-based login service
Spring Security supports form-based login service by providing the default
login form page for users to input their login details. The <form-login> element
deines the support for the login form, as shown in the following code snippet. By
default, a login form, which will map to the /spring_security_login URL, will
automatically be created by Spring Security, as shown here:

<http>

 . . .

 <!-- Adds Support for basic authentication -->

 <form-login />

 </http>

We can also create our own custom login page (login.jsp) in the root directory of
the web application. This should not go inside WEB-INF as it prevents users from
accessing it directly. The form action URL in login.jsp will take the j_spring_
security_check value; this is the URL where the form will be posted to trigger the
authentication process, and j_username is used as the username and j_password is
used as the password, as shown in the following code snippet:

<html>

<head>

<title>Login</title>

</head>

<body>

 <form action="j_spring_security_check" method='POST'>

 <table>

 <tr>

 <td>UserName:</td>

Spring Security

[258]

 <td><input type='text' name='j_username' value=''></td>

 </tr>

 <tr>

 <td>Password:</td>

 <td><input type='password' name='j_password' /></td>

 </tr>

 <tr>

 <td>Remember me:</td>

 <td><input type='checkbox' name='_spring_security_
remember_me' /></td>

 </tr>

 <tr>

 <td><input name="submit" type="submit" value="submit"
/></td>

 </tr>

 </table>

 </form>

</body>

</html>

While referring to the custom login page for Spring Security, we need to specify its
URL in the login-page attribute of <form-login/>. As shown in following code
snippet, <form-login login-page="/login" authentication-failure-url="/
loginfailed" default-target-url="/employeeList" /> deines that when the
login button is clicked, it should be navigated to /login. The default target URL
is deined as /employeeList; this means when a user is authenticated, this URL
hits by default. When an authentication failure happens, it should navigate to /
loginfailed:

<http>

 . . .

 <form-login login-page="/login" authentication-failure-
url="/loginfailed" default-target-url="/employeeList" />

</http>

Chapter 6

[259]

Logout service
The logout service handles logout requests and is conigured via the <logout>
element. In Spring Security, by default, it is mapped to the /j_spring_security_
logout URL, and it redirects the user to the context path's root when the logout
successful:

<http>

. . .

<logout />

</http>

We can provide the logout link in our page by referring the URL
 Logout .

We can also conigure log out so that the user is redirected to another URL
after the logout is successful, as shown in the following code snippet:

<http>

. . .

<logout logout-success-url="/login" />

</http>

Anonymous login
The <anonymous> element is used to conigure anonymous login service,
where the username and authority of the anonymous user can be conigured:

<http>

 <intercept-url pattern='/employeeList' access='ROLE_
USER,ROLE_ADMIN,ROLE_GUEST ' />

 <intercept-url pattern='/employeeAdd' access='ROLE_USER'
/>

 <intercept-url pattern='/employeeDelete'
access='ROLE_ADMIN' />

. . .

 <anonymous username='guest' granted-
authority='ROLE_GUEST' />

</http>

Spring Security

[260]

Remember Me support
The <remember-me /> element is used to conigure the Remember Me support in
Spring Security. By default, it encodes authentication information and the Remember
Me expiration time along with private key as a token. It stores this to the user's
browser cookie. The next time a user accesses the same application, they can be log
in automatically using the token:

http>

. . .

<remember-me />

</http>

Users authentication
While users log into applications to access secure resources, the user's principle
needs to be authenticated and authorized. The authentication provider helps in
authenticating users in Spring Security. If a user is successfully authenticated
by the authentication provider, then only the user will able to log into the web
application, otherwise, the user will not be able to log into the application.

There are multiples of ways supported by Spring Security to authenticate users,
such as a built-in provider with a built-in XML element, or authenticate user against
a user repository (relational database or LDAP repository) storing user details.
Spring Security also supports algorithms (MD5 and SHA) for password encryption.

Users authentication with in-memory
deinitions
If there are only few users for your application with infrequent modiication in their
details, then you can deine user details in Spring Security's coniguration ile instead
of extracting information from the persistence engine, so that their details are loaded
into your application's memory, as shown here:

<authentication-manager>

 <authentication-provider>

 <user-service>

 <user name="admin" password="adminpassword"
authorities="ROLE_ADMIN" />

 <user name="ravisoni" password="mypassword"
authorities="ROLE_USER" />

 <user name="user" password="mypassword"
disabled="true" authorities="ROLE_USER" />

Chapter 6

[261]

 </user-service>

 </authentication-provider>

 </authentication-manager>

The user's details can be deined in <user-service> with multiple <user> elements.
For each user, a username, password, disabled status, and a set of granted authority
can be speciied, as shown in the previous code snippet. The disabled user indicates
that the user cannot log into system anymore.

The user details can also be externalized by keeping them in the properties ile (for
instance, /WEB-INF/usersinfo.properties):

<authentication-manager>

 <authentication-provider>

 <user-service properties="/WEB-
INF/usersinfo.properties" />

 </authentication-provider>

 </authentication-manager>

Next, we will see the speciied properties ile containing user details in the form of
properties, where each property represents the user's details. In this property ile, the
key of the property represents the username, while the property value is divided into
several parts separated by commas. The irst part represents the password and the
second part represents the user's enable status (this is optional with the default status
is enabled), and the remaining parts represent authority granted to the user.

The /WEB-INF/usersinfo.properties ile is as follows:

admin=adminpassword,ROLE_ADMIN

ravisoni=mypassword,ROLE_USER

user=mypassword,disabled,ROLE_USER

Users authentication against database
If you have a huge list of users in your application and you frequently modify
their details, you should consider storing the user details in a database for easy
maintenance. Spring Security provides built-in support to query user details
from the database.

In order to perform authentication against database, tables need to be created to store
users and their roles details. Refer to http://docs.spring.io/spring-security/
site/docs/3.2.3.RELEASE/reference/htmlsingle/#user-schema for more
details on user schema.

http://docs.spring.io/spring-security/site/docs/3.2.3.RELEASE/reference/htmlsingle/#user-schema
http://docs.spring.io/spring-security/site/docs/3.2.3.RELEASE/reference/htmlsingle/#user-schema

Spring Security

[262]

The USER_AUTHENTICATION table is used to authenticate the user and contains the
following columns.

The script is as follows:

CREATE TABLE USER_AUTHENTICATION (

 USERNAME VARCHAR(45) NOT NULL ,

 PASSWORD VARCHAR(45) NOT NULL ,

 ENABLED SMALLINT NOT NULL DEFAULT 1,

 PRIMARY KEY (USERNAME)

);

The table structure is as follows:

Username Password Enabled
admin adminpassword 1

ravisoni mypassword 1

user mypassword 0

The USER_ AUTHORIZATION table is used to authorize the user and contains the
following columns.

The script is as follows:

CREATE TABLE USER_ AUTHORIZATION (

 USERNAME VARCHAR(45) NOT NULL,

 AUTHORITY VARCHAR(45) NOT NULL,

 FOREIGN KEY (USERNAME) REFERENCES USERS

);

The table is as follows:

Username Authority
admin ROLE_ADMIN

ravisoni ROLE_USER

user ROLE_USER

Now, dataSource has to be declared in the Spring coniguration ile to allow
Spring Security to access these tables, which will help in creating a connection
to the database, as shown here:

<bean id="dataSource"

 class="org.springframework.jdbc.datasource.DriverManager
DataSource">

Chapter 6

[263]

 <property name="driverClassName"
value="org.apache.derby.jdbc.ClientDriver" />

 <property name="url"
value="jdbc:derby://localhost:1527/test;create=true" />

 <property name="username" value="root" />

 <property name="password" value="password" />

</bean>

Then, conigure the authentication provider using the <jdbc-user-service>
element that queries this database. Specify the query statement to get the user's
information and authority in the user-by-username-query and authorities-by-
username-query attributes, as follows:

<authentication-manager>

 <authentication-provider>

 <jdbc-user-service data-source-ref="dataSource"

 user-by-username-query=

 "select username, password, enabled from
user_authentication where username=?"

 authorities-by-username-query=

 "select username, authority from
user_authorization where username =? "

 />

 </authentication-provider>

 </authentication-manager>

Encrypting passwords
Spring Security supports some hashing algorithms, such as MD5
(Md5PasswordEncoder), SHA (ShaPasswordEncoder), and BCrypt
(BCryptPasswordEncoder) for password encryption.

To enable the password encoder, use the <password-encoder/> element and
set the hash attribute, as follows:

 <authentication-manager>

 <authentication-provider>

 <password-encoder hash="md5" />

 <jdbc-user-service data-source-ref="dataSource"

 . . .

 </authentication-provider>

 </authentication-manager>

Spring Security

[264]

Method-level security
This is an alternative to securing URL access in the web layer. Sometimes, it is also
required to secure method invocation in the service layer by enforcing ine-grained
security control on methods. This is because, sometimes, it's easier to control it on
particular methods than iltering by address, which can be called by typing. We
can secure method invocation using Spring Security in a declarative way. We can
annotate methods declaration in a bean interface or its implementation class with
@Secured annotation and specify the access attributes as its value whose type is
String[], and enable security for these annotated methods by adding <global-
method-security> in Spring-Security.xml ile. This can be done as follows:

<beans:beans
xmlns="http://www.springframework.org/schema/security"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

 <!-- To allow standards-based @Secured annotation, enable
secured-annotations -->

 <global-method-security secured-annotations="enabled" />

 <http

 . . .

 . . .

</beans>

The global-method-security namespace is conigured along with its secured-
annotations="enabled" attribute to enable annotation-based security. And
annotate methods with @Secured annotation to allow method access for one
or more than one role:

public interface EmployeeService {

@Secured("ROLE_USER", "ROLE_GUEST")

public List<employee> employeeList();

@Secured("ROLE_USER", "ROLE_ADMIN")

public Person employeeAdd(Employee employee);

@Secured("ROLE_ADMIN")

Chapter 6

[265]

public Person employeeDelete(int employeeId);

}

Let's get down to business
In this section, we will develop an application using Spring MVC, Hibernate, and
Spring Security. Here, we have a custom login page, logout page, employee page (to
list employees), and add employee page (to add employees), which is secured by the
Spring Framework. A user can log into the application using the custom login page
and view the secured page based on the authentication and authorization. A user
will be redirected to the custom login page on any authentication failure along with
the error message, which describes the reason for failure. User will be logged out
from the application on clicking on the logout link and redirected to the logout page.

Project structure
The overall project structure is as follows (refer to the Spring MVC with Hibernate
Integration section from Chapter 5, Spring Web MVC Framework, to perform CRUD
operations using Hibernate):

Spring Security

[266]

In the pom.xml ile, you'll ind the following code:

A list of all required dependencies are listed here in pom.xml. To get Spring Security
features, you need to add spring-security-core, spring-security-web, and
spring-security-config to the pom.xml ile:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.packt.Spring.chapter8.springsecurity</groupId>

 <artifactId>ehrPayrollWithSecurity</artifactId>

 <packaging>war</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <name>ehrPayrollWithSecurity Maven Webapp</name>

 <url>http://maven.apache.org</url>

Here, the properties specify the versions used:

 <properties>

 <spring.version>4.1.3.RELEASE</spring.version>

 <security.version>4.0.0.CI-SNAPSHOT</security.version>

 <hibernate.version>4.2.11.Final</hibernate.version>

 <org.aspectj-version>1.7.4</org.aspectj-version>

 </properties>

Here are the dependencies for all the JARs:

<dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 <!-- Spring -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

Chapter 6

[267]

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- Spring transaction -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-tx</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- Spring Security -->

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-core</artifactId>

 <version>${security.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${security.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${security.version}</version>

 </dependency>

 <!-- Spring ORM -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-orm</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <!-- AspectJ -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${org.aspectj-version}</version>

 </dependency>

 <!-- Hibernate ORM framework dependencies -->

 <dependency>

 <groupId>org.hibernate</groupId>

Spring Security

[268]

 <artifactId>hibernate-core</artifactId>

 <version>${hibernate.version}</version>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate.version}</version>

 </dependency>

 <!-- Java Servlet and JSP dependencies (for compilation only) -
->

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>3.0.1</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>javax.servlet.jsp</groupId>

 <artifactId>jsp-api</artifactId>

 <version>2.1</version>

 <scope>provided</scope>

 </dependency>

 <!-- JSTL dependency -->

 <dependency>

 <groupId>jstl</groupId>

 <artifactId>jstl</artifactId>

 <version>1.2</version>

 </dependency>

 <!-- Apache Commons DBCP dependency (for database connection
pooling) -->

 <dependency>

 <groupId>commons-dbcp</groupId>

 <artifactId>commons-dbcp</artifactId>

 <version>1.4</version>

 </dependency>

 <!-- postgresql Connector Java dependency (JDBC driver for
postgresql) -->

 <dependency>

 <groupId>postgresql</groupId>

 <artifactId>postgresql</artifactId>

 <version>9.0-801.jdbc4</version>

 </dependency>

 <!-- logging -->

 <dependency>

Chapter 6

[269]

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.4.2</version>

 </dependency>

 <dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.14</version>

 </dependency>

</dependencies>

<build>

 <finalName>ehrPayrollWithSecurity</finalName>

</build>

</project>

Adding ilters to web.xml
Add ilters to web.xml, where all incoming requests will be handled by Spring
Security. The Spring Security JAR contains DelegatingFilterProxy, which
delegates control to a ilter chaining in the Spring Security internals. The bean
name should be springSecurityFilterChain.

In the web.xml ile, you'll ind the following code:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 id="WebApp_ID" version="3.0">

 <display-name>Archetype Created Web Application</display-name>

 <servlet>

 <servlet-name>SpringDispatcher</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>SpringDispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <listener>

Spring Security

[270]

 <listener-class>org.springframework.web.context.
ContextLoaderListener</
listener-class>

 </listener>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/SpringDispatcher-servlet.xml,

 /WEB-INF/spring-security.xml

 </param-value>

 </context-param>

 <!-- Spring Security -->

 <filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.
DelegatingFilterProxy</filter
-class>

 </filter>

 <filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

</web-app>

Resolving your view
To resolve the view, view resolver has been added to the SpringDispatcher-
servlet.xml coniguration ile. Also, dataSource, sessionFactory, and
transactionManager have been deined here:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-4.1.xsd

 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
4.1.xsd

Chapter 6

[271]

 http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-3.2.xsd

 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-4.1.xsd">

 <context:component-scan base-
package="org.packt.Spring.chapter8.springsecurity" />

 <context:property-placeholder location="/WEB-
INF/hibernate.properties" />

 <bean id="dataSource"

class="org.springframework.jdbc.datasource.DriverManagerDataSource
">

 <property name="driverClassName"
value="${jdbc.driverClassName}" />

 <property name="url" value="${jdbc.url}" />

 <property name="username" value="${jdbc.username}" />

 <property name="password" value="${jdbc.password}" />

 </bean>

 <bean id="sessionFactory"

 class="org.springframework.orm.hibernate4.
LocalSessionFactoryBean"
>

 <property name="dataSource" ref="dataSource" />

 <property name="annotatedClasses"

 value="org.packt.Spring.chapter8.springsecurity.model.
Employee" />

 <property name="hibernateProperties">

 <props>

 <prop key="hibernate.dialect">${hibernate.dialect}</prop>

 <prop key="hibernate.show_sql">${hibernate.show_sql}</
prop>

 </props>

 </property>

 </bean>

 <bean id="transactionManager"

 class="org.springframework.orm.hibernate4.HibernateTransaction
Manager">

 <property name="sessionFactory" ref="sessionFactory" />

 </bean>

 <tx:annotation-driven transaction-manager="transactionManager"
/>

 <bean

 class="org.springframework.web.servlet.view.InternalResource
ViewResolver">

 <property name="prefix">

Spring Security

[272]

 <value>/WEB-INF/views/</value>

 </property>

 <property name="suffix">

 <value>.jsp</value>

 </property>

 </bean>

</beans>

Let's add a custom login
We have deined a role called ROLE_ADMIN. We have deined credentials for this role.
Also, we have mapped URLs with roles that will be handled by Spring Security.
To provide custom login form, add <form:login> in this ile. When the user tries
to access a secured resource, a custom login page will be served.

In the security-config.xml ile, you'll ind the following code:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/security"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-
3.1.xsd">

 <http auto-config="true">

 <intercept-url pattern="/employee/*" access="ROLE_ADMIN" />

 <form-login login-processing-url="/login" login-page="/
loginPage"

 username-parameter="username" password-
parameter="password"

 default-target-url="/employee/listemployee"

 authentication-failure-url="/loginPage?auth=fail" />

 <logout logout-url="/logout" logout-success-
url="/logoutPage" />

 </http>

 <authentication-manager>

 <authentication-provider>

 <user-service>

 <user name="ravi" password="ravi@123" authorities="ROLE_
ADMIN" />

 </user-service>

 </authentication-provider>

 </authentication-manager>

</beans:beans>

Chapter 6

[273]

Mapping your login requests
The LoginController class contains two methods, namely logoutPage and
loginPage, with request mapping. The /loginPage redirects the user to the
login page and the /logoutpage redirects the user to the logout page:

package org.packt.Spring.chapter8.springsecurity.controller;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

public class LoginController {

 @RequestMapping(value = "/logoutPage", method =
RequestMethod.GET)

 public String logoutPage() {

 return "logout";

 }

 @RequestMapping(value = "/loginPage", method =
RequestMethod.GET)

 public String loginPage() {

 return "login";

 }

}

Obtaining the employee list
This controller class has the listEmployee(), addEmployee(), and
deleteEmployee() methods. In the EmployeeController.java ile,
you'll ind the following code:

package org.packt.Spring.chapter8.springsecurity.controller;

import org.packt.Spring.chapter8.springsecurity.model.Employee;

import org.packt.Spring.chapter8.springsecurity.service.
EmployeeService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.ModelAttribute;

Spring Security

[274]

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

import org.springframework.web.servlet.ModelAndView;

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @Autowired

 private EmployeeService employeeService;

 @RequestMapping(value = "/listemployee", method =
RequestMethod.GET)

 public String listEmployees(ModelMap model) {

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

 @RequestMapping(value = "/addemployee", method =
RequestMethod.GET)

 public ModelAndView addEmployee(ModelMap model) {

 return new ModelAndView("addemployee", "command", new
Employee());

 }

 @RequestMapping(value = "/updatemployee", method =
RequestMethod.POST)

 public String updateEmployee(

 @ModelAttribute("employeeForm") Employee employee,
ModelMap model) {

 this.employeeService.insertEmployee(employee);

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

 @RequestMapping(value = "/delete/{empId}", method =
RequestMethod.GET)

 public String deleteEmployee(@PathVariable("empId") Integer
empId,

 ModelMap model) {

 this.employeeService.deleteEmployee(empId);

Chapter 6

[275]

 model.addAttribute("employeesList",
employeeService.listEmployee());

 return "employee";

 }

}

Let's see some credentials
This login page provides an input box to accept credentials from the user. In the
login.jsp ile, you'll ind the following code:

<%@ taglib uri='http://java.sun.com/jsp/jstl/core' prefix='c'%>

<html>

<head>

<title>Login Page</title>

</head>

<body>

 <h2 style="color: orange">Login to eHR Payroll</h2>

 <c:if test="${'fail' eq param.auth}">

 <div style="color:red">

 Login Failed!!!

 Reason : ${sessionScope["SPRING_SECURITY_LAST_
EXCEPTION"].message}

 </div>

 </c:if>

 <form action="${pageContext.request.contextPath}/login"
method="post">

 <table frame="box" cellpadding="0" cellspacing="6">

 <tr>

 <td>Username:</td>

 <td><input type='text' name='username' /></td>

 </tr>

 <tr>

 <td>Password:</td>

 <td><input type='password' name='password'></td>

 </tr>

 <tr>

 <td colspan='2'><input name="submit" type="submit"
value="Submit"></td>

 </tr>

 </table>

 </form>

</body>

</html>

Spring Security

[276]

Time to log out
This logout page relects that the user has been logged out from the application.
In the logout.jsp ile, you'll ind the following code:

<html>

<title>Logout Page</title>

<body>

 <h2>You have been successfully logged out.</h2>

 <a href="${pageContext.request.contextPath}/employee/
listemployee">
Login to eHR Payroll

</body>

</html>

Running the application
Once you deploy the web application after starting the server, open the URL
http://localhost:8080/ehrPayrollWithSecurity/loginPage a custom
login page will appear:

Chapter 6

[277]

If you enter the wrong credentials, the following error will appear:

If you enter the correct credentials, you will be navigated to the listEmployee page:

Spring Security

[278]

Clicking on Logout will navigate you to the logout page, as shown here:

Exercise
Q1. What is Spring Security?

Q2. What is authentication and authorization?

Q3. What are the different ways supported by Spring Security for users to log into
a web application?

The answers to these are provided in Appendix A,
Solution to Exercises.

Summary
In this chapter, you learned what Spring Security is and the major operations
in Spring Security. We took a quick look at the Servlet ilter and understood
the security use case. We conigured Spring Security by adding dependencies
in pom.xml and also conigured namespace.

We secured the web application's URL access by providing DelegatingFilterProxy
as the ilter class and the URL pattern. We created a separated Spring Security
coniguration ile. We saw different ways of logging into the web application.

We authenticated users with in-memory deinition and also against the database.
We saw Spring Security supports for encrypt password. Lastly, we conigured
the method-level security in Spring Security.

In the next chapter, we will cover Spring testing. We will understand testing
using JUnit4 and TestNG. We will also understand the Mockito framework
(look into MockMVC).

[279]

Spring Testing
In software development, testing is a crucial part. Software development cannot be
completed without testing. Testing is a process that ensures the performance and
quality of software development, and veriies that the applications run smoothly
and lawlessly. For this, unit testing is the easiest technique. It allows us to test each
component of the application separately. Integration testing ensures that multiple
components are working well in a system.

To avoid the mixing of the test code with the normal code, usually unit tests are
created in a separate source folder or a separate project. Some developers, on the
hot topic, "What should be tested", hold that every statement in the code should
be tested.

Testing can be done either automatically or manually, and automated tests can be
run continuously and repeatedly at different phases of the software development
process. This is highly recommended for the Agile development process. Since the
Spring Framework is an Agile framework, it supports these kinds of processes.

The Java platform supports many testing frameworks, in which JUnit and TestNG
are the most popular frameworks. In this chapter, we will discuss a popular Java
testing framework and the basic techniques of testing. We will also discuss the
support provided by the Spring Framework for unit and integrating testing.

Here is the list of topics that will be covered in this chapter:

• Testing using JUnit 4

• Testing using TestNG

• Agile software testing

• Spring MVC test framework

Spring Testing

[280]

Testing using JUnit 4
JUnit 4 is the most widely accepted unit testing framework on the Java platform.
It allows you to annotate the methods that need to be tested by using the @Test
annotation, and it is used to create automated tests for your Java application,
which can be run repeatedly to ensure the correctness of your application.
The website for JUnit is http://junit.org/.

A Test class contains the JUnit tests. These are methods and are only used for
testing. A test method needs to be annotated with the @org.junit.Test annotation.
In this test method, you use a method provided by the JUnit framework to check the
actual result versus the expected result of the code execution.

JUnit 4 annotations
JUnit 4 uses annotations; a few of these are listed in the following table:

Annotation Import Description
@Test org.junit.Test The @Test annotation identifies the

test cases. A public void method
annotated with the @org.junit.
Test annotation can be run as a test
case.

@Before org.junit.Before A public void method annotated with
the @Before annotation is executed
before each Test method in that class
execute. It may be used to set up an
environment variable.

@After org.junit.After A public void method annotated with
the @After annotation is executed
after each Test method in that class
execute. It may be used to release the
external resource that was allocated in
a Before method or clean up the test
environment and save memory.

@BeforeClass org.junit.BeforeClass A public static void method annotated
with the @BeforeClass annotation
is executed once, before all the tests in
that class are executed.

http://junit.org/

Chapter 7

[281]

Annotation Import Description
@AfterClass org.junit.AfterClass A public static void method annotated

with the @AfterClass annotation
is executed once, after all the test
methods in that class have been
executed. It can be used to perform
some clean-up activities, such as
disconnect from the database.

@Ignore org.junit.Ignore A method annotated with the @Ignore
annotation will not be executed.

Assert methods
JUnit provides the static assert methods declared in the org.junit.Assert class to
test for certain conditions. An assert method starts with assert, and then compares the
expected value with the actual value returned by a test. The Assert class provides
a set of assertion methods of the return type void. These are useful for writing tests.
A few of these are listed in the table shown here:

Method Description
assertTrue(boolean expected,
boolean actual)

This method checks whether the Boolean
condition is true

assertFalse(boolean condition) This method checks whether the Boolean
condition is false

assertEquals(boolean expected,
expected, actual)

This method compares the equality of any
two objects using the equals() method

assertEquals(boolean expected,
expected, actual, tolerance)

This method compares either the float or
the double values and tolerance defines
number of the decimal that must be the
same

assertNull(Object object) This method tests whether a single object
is null

assertNotNull(Object object) This method tests that a single object is
not null

assertSame(Object object1,
Object object2)

This method tests whether two objects
refer to the same object, and it must be
exactly the same object pointed to

assertNotSame(Object object1,
Object object2)

This method tests if two objects do not
refer to the same object

Spring Testing

[282]

An example of JUnit 4
Suppose we are going to develop a simple calculator. We have to test it in order
to ensure the system's quality. Let's consider a simple calculator whose interface
is deined as follows:

package org.packt.Spring.chapter9.SpringTesting.Calculator;

public interface SimpleCalculator {

 public long add(int a, int b);

}

Now, we can implement this SimpleCalculator:

package org.packt.Spring.chapter9.SpringTesting.Calculator;

public class SimpleCalculatorImpl implements SimpleCalculator {

 public long add(int a, int b) {

 return a + b;

 }

}

Next, we will test this SimpleCalculator with JUnit 4. Most of the IDEs, such as
Eclipse, STS, and NetBeans support the creation of the JUnit tests through wizards.
Add JUnit 4 JAR to your CLASSPATH to compile and run the test cases created for
JUnit 4, as shown here:

package org.packt.Spring.chapter9.SpringTesting.Calculator;

import static org.junit.Assert.*;

import org.junit.Before;

import org.junit.Test;

public class SimpleCalculatorJUnit4Tests {

 private SimpleCalculator simpleCalculator;

 @Before

 public void init() {

 simpleCalculator = new SimpleCalculatorImpl();

 }

Chapter 7

[283]

 @Test

 public void verifyAdd() {

 long sum = simpleCalculator.add(3, 7);

 assertEquals(10, sum);

 }

}

Now we can run our test case by right-clicking on the test, and then choosing
Run As | JUnit test, and we can verify the JUnit view as the test case should run
successfully, as shown in the following two cases:

• It will display a green bar if the test case passes:

• It will display a red bar if the test case fails:

Here is the error code in the second case:

@Test

 public void verifyAddFail() {

 long sum = simpleCalculator.add(3, 7);

 assertEquals(11, sum);

 }

Spring Testing

[284]

Testing using TestNG
TestNG (Next Generation) is another testing framework that is similar to the JUnit 4
framework, but it has new functionalities such as grouping concept, and dependency
testing. These have made testing easier and more powerful. It is designed to cover
all the categories of tests, such as the unit test, the functional test, the integration test,
and so on. TestNG also supports multi-threaded testing.

TestNG annotations
TestNG uses annotations; a few of them are listed in the following table:

Annotation Import Description
@Test org.testng.annotations.Test It marks the

method as a test
method

@BeforeMethod org.testng.annotations.BeforeMethod The annotated
method will be
executed before
each @test
annotated method

@AfterMethod org.testng.annotations.AfterMethod The annotated
method will be
executed after the
execution of each
and every @test
annotated method

@BeforeClass org.testng.annotations.BeforeClass The annotated
method will be
executed only once
before the first
test method in the
current class is
invoked

@AfterClass org.testng.annotations.AfterClass The annotated
method will be
executed only once
after the execution
of all the @Test
annotated methods
of that class

Chapter 7

[285]

Annotation Import Description
@BeforeTest org.testng.annotations.BeforeTest The annotated

method will be
executed before
any @Test
annotated method
belonging to that
class is executed

@AfterTest org.testng.annotations.AfterTest The annotated
method will be
executed after any
@Test annotated
method belonging
to the classes is
executed

Example of TestNG
Refer to the link http://testng.org/doc/download.html to set up TestNG for
your IDEs. Add TestNG JAR to your CLASSPATH to compile and run the test cases
created for TestNG, as shown here:

package org.packt.Spring.chapter9.SpringTesting.Calculator;

import org.testng.Assert;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

public class SimpleCalculatorTestNGTests {

 private SimpleCalculator simpleCalculator;

 @BeforeMethod

 public void beforeMethod() {

 simpleCalculator = new SimpleCalculatorImpl();

 }

 @Test

 public void verifyAdd() {

 long sum = simpleCalculator.add(3, 7);

 Assert.assertEquals(10, sum);

 }

}

http://testng.org/doc/download.html

Spring Testing

[286]

You will see a progressive green bar if your test case passes:

Agile software testing
The term Agile, in the world of software development, typically refers to an
approach to project management that aims to unite teams around the principles of
collaboration, simplicity, lexibility, and responsiveness throughout the process of
developing a new program in an application.

An Agile software testing means the practice of testing software for any performance
issues or bugs within the context of Agile worklow. The developers and testers,
in the agile approach, are seen as the two sides of the same coin. The Agile software
testing includes unit testing and integration testing. It helps with executing the tests
as quickly as possible.

Let's understand the signiicance and the objectives of unit and integration testing.

Unit testing
Unit testing, as the name suggests, is the testing of every individual method of the
code. It is the method of testing the fundamental pieces of your functionality. It is
a piece of code written by the software developer to test a speciic functionality of
the code. Unit tests are used for improving the quality of the code and preventing
bugs. They are not commonly used for inding them. They are automated testing
frameworks.

Chapter 7

[287]

Let's take an example of the EmployeeService class that needs the employeeDao
object for loading the data from the database. This employeeDao is a real object. So,
to test the EmployeeService class, it is required to provide the employeeDao object
that has a valid connection to the database. We also have to insert the data needed
for the test into the database.

Inserting the data into the database after setting up the connection and then testing on
an actual database can be a lot of work. Instead, we can provide the EmployeeService
instance with a fake EmployeeDao class, which will just return the data that we need
to complete the test. This fake EmployeeDao class will not read any data from the
database. This fake EmployeeDao class is a mock object that is a replacement for a
real object, which makes it easier to test the EmployeeService class.

A common technique that can be applied while testing a unit that depends on other
units is to simulate the unit's dependencies with stubs and mock objects, which help
in reducing the complexity because of the dependencies in the unit test. Let's look at
each of them in detail:

• Stub: A stub is a dummy object, which simulates real objects with the
minimum number of methods required for a unit test. It can be configured
to the return value by implementing the methods in a predetermined way
along with the hardcoded data that suite the test.

• Mock: A mock object is a fake object or a substitute object that is added to
the system, and it usually knows how its method is expected to be called
for a test, and decides whether the unit test has passed or failed. The mock
object tests whether the real object interacted as expected with the fake object.
There may be one or more mock objects per test. A mock object is an object
which mimics an actual object. In Java, there are several libraries, which
are available for implementing mocking, including jMock, EasyMock, and
Mockito (we are interested in this particular tool).

State veriication is used to check whether the actual method returns the correct value.
Behavior veriication is used to check whether the correct method was called. Stub
is used for state veriication, whereas a mock object is used for behavior veriication.
A stub object cannot fail a unit test but a mock object can. This is because we know
what and why we are implementing a stub object, whereas a mock is just a fake object
that mimics a real object and if the business logic in the code is wrong, then the unit
test fails even if we have passed a real object.

Spring Testing

[288]

Unit testing for isolated classes
Unit testing is easy for the isolated class, which tests either the class or its method in
isolation. Let's create unit tests for the isolated class, where the class under testing
will not directly depend on any other class, as shown in the following diagram:

The core functions of the HrPayroll system should be designed around employee
details. First, we need to create the Employee class and override the equals()
method, as shown in the following code snippet:

package org.packt.Spring.chapter9.SpringTesting.modle;

public class Employee {

 private String employeeId;

 private String firstName;

 private String lastName;

 private int salary;

 // constructor, Getters and setters

 @Override

 public boolean equals(Object obj) {

 if (!(obj instanceof Employee)) {

 return false;

 }

 Employee employee = (Employee) obj;

 return employee.employeeId.equals(employeeId);

 }

}

Now, to persist the employee object to the HrPayroll system, we need to deine the
EmployeeDao interface:

package org.packt.Spring.chapter9.SpringTesting.dao;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

Chapter 7

[289]

public interface EmployeeDao {

 public void createEmployee(Employee employee);

 public void updateEmployee(Employee employee);

 public void deleteEmployee(String employeeId);

 public Employee findEmployee(String employeeId);

}

Let's implement the EmployeeDao interface to demonstrate the unit testing for this
isolated class:

package org.packt.Spring.chapter9.SpringTesting.dao;

import java.util.Collections;

import java.util.HashMap;

import java.util.Map;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class InMemeoryEmployeeDaoImpl implements EmployeeDao {

 private Map<String, Employee> employees;

 public InMemeoryEmployeeDaoImpl() {

 employees = Collections

 .synchronizedMap(new HashMap<String,
Employee>());

 }

 public boolean isOldEmployee(String employeeId) {

 return employees.containsKey(employeeId);

 }

 @Override

 public void createEmployee(Employee employee) {

 if (!isOldEmployee(employee.getEmployeeId())) {

 employees.put(employee.getEmployeeId(), employee);

 }

 }

Spring Testing

[290]

 @Override

 public void updateEmployee(Employee employee) {

 if (isOldEmployee(employee.getEmployeeId())) {

 employees.put(employee.getEmployeeId(), employee);

 }

 }

 @Override

 public void deleteEmployee(String employeeId) {

 if (isOldEmployee(employeeId)) {

 employees.remove(employeeId);

 }

 }

 @Override

 public Employee findEmployee(String employeeId) {

 return employees.get(employeeId);

 }

}

From the aforementioned code snippet, we can see that the
InMemeoryEmployeeDaoImpl class doesn't depend on any other class directly,
which makes it easier to test, because we don't need to be worried about setting
dependency and their working.

Here is an implementation of InMemeoryEmployeeDaoTest:

package org.packt.Spring.chapter9.SpringTesting.test;

import junit.framework.Assert;

import org.junit.Before;

import org.junit.Test;

import org.packt.Spring.chapter9.SpringTesting.dao.
InMemeoryEmployeeDao
Impl;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class InMemeoryEmployeeDaoTest {

 private static final String OLD_EMPLOYEE_ID = "12121";

 private static final String NEW_EMPLOYEE_ID = "53535";

 private Employee oldEmployee;

 private Employee newEmployee;

 private InMemeoryEmployeeDaoImpl empDao;

Chapter 7

[291]

The setUp() method is annotated with the @Before annotation, as shown in the
code snippet here:

 @Before

 public void setUp() {

 oldEmployee = new Employee(OLD_EMPLOYEE_ID, "Ravi",
"Soni", 1001);

 newEmployee = new Employee(NEW_EMPLOYEE_ID, "Shashi",
"Soni", 3001);

 empDao = new InMemeoryEmployeeDaoImpl();

 empDao.createEmployee(oldEmployee);

 }

The isOldEmployeeTest() method is annotated by the @Test annotation. This test
method veriies the employeeId, as shown in the following code snippet:

 @Test

 public void isOldEmployeeTest() {

 Assert.assertTrue(empDao.isOldEmployee(OLD_EMPLOYEE_ID));

 Assert.assertFalse(empDao.isOldEmployee(NEW_EMPLOYEE_ID));

 }

The createNewEmployeeTest() method is annotated by the @Test annotation.
This test method creates a new employee and then veriies the new employeeId:

 @Test

 public void createNewEmployeeTest() {

 empDao.createEmployee(newEmployee);

 Assert.assertTrue(empDao.isOldEmployee(NEW_EMPLOYEE_ID));

 }

The updateEmployeeTest() method is annotated by the @Test annotation.
This test method updates employee details and then veriies the employee's
firstName, as shown here:

 @Test

 public void updateEmployeeTest() {

 String firstName = "Sharee";

 oldEmployee.setFirstName(firstName);

 empDao.updateEmployee(oldEmployee);

 Assert.assertEquals(firstName,
empDao.findEmployee(OLD_EMPLOYEE_ID)

 .getFirstName());

 }

Spring Testing

[292]

The deleteEmployeeTest() method is annotated by the @Test annotation. This test
method deletes employee details and then veriies the employee ID, as shown in the
following code snippet:

 @Test

 public void deleteEmployeeTest() {

 empDao.deleteEmployee(OLD_EMPLOYEE_ID);

 Assert.assertFalse(empDao.isOldEmployee(OLD_EMPLOYEE_ID));

 }

}

The test results of the aforementioned test cases will be as shown here:

Unit testing for dependent class using mock objects
As we have seen in the previous section, testing either an isolated class or an
independent class is easy. However, it would be a little more dificult to test a
class that depends on another class, such as the EmployeeService class (that holds
business logic), which depends on the EmployeeDao class (this class knows how to
communicate with the database and get the information). Unit testing is harder and
has dependencies, as shown here:

Chapter 7

[293]

Class Under Test means that whenever we write a unit test, generally the term
"unit" refers to a single class against which we have written the tests. It is the class
that is being tested. So it's good to remove the dependencies, create a mock object
and continue with the unit testing, as shown in the following diagram:

The concept behind removing the dependencies and creating a mock object is that by
creating an object that can take the place of a real dependent object. If we are writing a
unit test for our EmployeeService around business logic, then that particular unit test
should not connect EmployeeService to the EmployeeDao intern, and then connect
the EmployeeDao intern to the database and perform a crud operation, because we just
want to perform the testing of the EmployeeService class, and so we need to create a
mock EmployeeDao. The Mockito framework allows us to create the mock object.

Spring Testing

[294]

The Mockito framework
The Mockito framework is an open source mock framework for unit testing;
it was originally based on EasyMock, which can be downloaded from either
http://mockito.org/ or https://code.google.com/p/mockito/. It can be
used in conjunction with other testing tools, such as JUnit. It helps in creating
and coniguring mock objects. Add the Mockito JAR to your CLASSPATH along
with JUnit. It uses the ield-level annotations, as shown here:

• @Mock: This creates the mock object for an annotated field.

• @Spy: This creates spies for the objects or the files it annotates.

• @InjectMocks: The private field that is annotated by the @InjectMocks
annotations is instantiated and Mockito injects the fields annotated with
either the @Mock annotation or the @Spy annotation to it.

• @RunWith(MockitoJUnitRunner.class): If you use the aforementioned
annotations, then it is must be done to annotate the test class with this
annotation to use the MockitoJUnitRunner. When MockitoJUnitRunner
executes the unit tests, it creates mock objects and spy objects for all the
fields annotated by the @Mock annotation or the @Spy annotation.

Let's perform the unit testing using Mockito, where we create a mock object for a
dependent object. Here is the code for the EmployeeService.java interface:

package org.packt.Spring.chapter9.SpringTesting.service;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public interface EmployeeService {

 public Employee findEmployee(String employeeId);

}

The following is an implementation of EmployeeService:

package org.packt.Spring.chapter9.SpringTesting.service;

import org.packt.Spring.chapter9.SpringTesting.dao.EmployeeDao;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class EmployeeServiceImpl implements EmployeeService {

 private EmployeeDao employeeDao = null;

http://mockito.org/
https://code.google.com/p/mockito/

Chapter 7

[295]

 public EmployeeServiceImpl(EmployeeDao employeeDao) {

 this.employeeDao = employeeDao;

 }

 @Override

 public Employee findEmployee(String employeeId) {

 return employeeDao.findEmployee(employeeId);

 }

}

And, here we have created our test class in the test folder, and created a
mock object by annotating EmployeeDao. We have annotated the class by the
@RunWith(MockitoJUnitRunner.class) annotation. We have created two test
methods by using the @Test annotation, where, in the irst test case, we verify that
the findEmployee behavior happened once and in the second test case, we verify
that no interactions happened on employeeDao mocks:

package org.packt.Spring.chapter9.SpringTesting.service;

import static org.mockito.Mockito.verify;

import static org.mockito.Mockito.verifyNoMoreInteractions;

import static org.mockito.Mockito.verifyZeroInteractions;

import static org.mockito.Mockito.when;

import junit.framework.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.runners.MockitoJUnitRunner;

import org.packt.Spring.chapter9.SpringTesting.dao.EmployeeDao;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

@RunWith(MockitoJUnitRunner.class)

public class EmployeeServiceTest {

 private static final String OLD_EMPLOYEE_ID = "12121";

 private Employee oldEmployee;

 private EmployeeService employeeService;

 @Mock

 private EmployeeDao employeeDao;

Spring Testing

[296]

 @Before

 public void setUp() {

 employeeService = new EmployeeServiceImpl(employeeDao);

 oldEmployee = new Employee(OLD_EMPLOYEE_ID, "Ravi",
"Soni", 1001);

 }

 @Test

 public void findEmployeeTest() {

 when(employeeDao.findEmployee(OLD_EMPLOYEE_ID)).
thenReturn(oldEmployee);

 Employee employee =
employeeService.findEmployee(OLD_EMPLOYEE_ID);

 Assert.assertEquals(oldEmployee, employee);

 // Verifies findEmployee behavior happened once

 verify(employeeDao).findEmployee(OLD_EMPLOYEE_ID);

 // asserts that during the test, there are no other
calls to the mock

 // object.

 verifyNoMoreInteractions(employeeDao);

 }

 @Test

 public void notFindEmployeeTest() {

 when(employeeDao.findEmployee(OLD_EMPLOYEE_ID)).thenReturn
(null);

 Employee employee =
employeeService.findEmployee(OLD_EMPLOYEE_ID);

 Assert.assertNotSame(oldEmployee, employee);

 verify(employeeDao).findEmployee(OLD_EMPLOYEE_ID);

 // Verifies that no interactions happened on employeeDao
mocks

 verifyZeroInteractions(employeeDao);

 verifyNoMoreInteractions(employeeDao);

 }

}

Chapter 7

[297]

And, the result of running the test as JUnit is as follows:

Integration testing
Integration testing is a phase of software testing in which individual software modules
are combined and tested as a group to ensure that the required units are properly
integrated and interact correctly with each other. The purpose of integration testing is
to verify the functionality, performance, and reliability of the code. Integration testing
is used for testing several units together.

Let's take an example. We can create an integration test to test EmployeeServiceImpl
using InMemeoryEmployeeDaoImpl as a DAO implementation:

package org.packt.Spring.chapter9.SpringTesting.service;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.packt.Spring.chapter9.SpringTesting.dao.EmployeeDao;

import org.packt.Spring.chapter9.SpringTesting.dao.
InMemeoryEmployeeDaoImpl;

import org.packt.Spring.chapter9.SpringTesting.modle.Employee;

public class EmployeeServiceIntegrationTest {

 private static final String OLD_EMPLOYEE_ID = "12121";

 private static final String NEW_EMPLOYEE_ID = "53535";

 private Employee oldEmployee;

 private Employee newEmployee;

 private EmployeeService employeeService;

Spring Testing

[298]

 @Before

 public void setUp() {

 oldEmployee = new Employee(OLD_EMPLOYEE_ID, "Ravi",
"Soni", 1001);

 newEmployee = new Employee(NEW_EMPLOYEE_ID, "Shashi",
"Soni", 3001);

 employeeService = new EmployeeServiceImpl(

 new InMemeoryEmployeeDaoImpl());

 employeeService.createEmployee(oldEmployee);

 }

 @Test

 public void isOldEmployeeTest() {

 Assert.assertTrue(employeeService.isOldEmployee
(OLD_EMPLOYEE_ID));

 Assert.assertFalse(employeeService.isOldEmployee
(NEW_EMPLOYEE_ID));

 }

 @Test

 public void createNewEmployeeTest() {

 employeeService.createEmployee(newEmployee);

 Assert.assertTrue(employeeService.isOldEmployee
(NEW_EMPLOYEE_ID));

 }

 @Test

 public void updateEmployeeTest() {

 String firstName = "Sharee";

 oldEmployee.setFirstName(firstName);

 employeeService.updateEmployee(oldEmployee);

 Assert.assertEquals(firstName,

 employeeService.findEmployee(OLD_EMPLOYEE_ID).getFirstName());

 }

 @Test

 public void deleteEmployeeTest() {

 employeeService.deleteEmployee(OLD_EMPLOYEE_ID);

Chapter 7

[299]

 Assert.assertFalse(employeeService.isOldEmployee
(OLD_EMPLOYEE_ID));

 }

}

The result is shown here:

Create unit tests of the Spring MVC

controller
We will take the example of the Spring MVC from this chapter as a target application
to test and execute unit testing. We have the EmployeeController class as a target
class to test.

You'll ind the following code in EmployeeController.java:

package org.packt.Spring.chapter7.springmvc.controller;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping("/employee")

public class EmployeeController {

 @RequestMapping(method = RequestMethod.GET)

 public String welcomeEmployee(ModelMap model) {

Spring Testing

[300]

 model.addAttribute("name", "Hello World!");

 model.addAttribute("greetings",

 "Welcome to Packt Publishing - Spring MVC
!!!");

 return "hello";

 }

}

In the aforementioned code snippet, the welcomeEmployee() method in
the EmployeeController class gets mapped into the HTTP request. In the
welcomeEmployee() method, the request is processed and bound to the model
objects. Then, the EmployeeController class updates the model and the view
state, and after this it returns to the logical view.

The main objective of the unit testing controller class is to verify that the methods
of the controller class update the model and the view states properly and also return
to the correct view. Since we perform the testing of the controller class's behavior,
we should mock the service layer (if present) with the correct behavior.

For the EmployeeController class, we would like to develop the test cases for the
welcomeEmployee() method. Here we will test the welcomeEmployee() method
of the controller using JUnit 4.

It is important to note that the classes undergoing testing should be placed in
the folder /src/test/java and the resources iled should be placed in the folder
/src/test/resources.

You'll ind this code in EmployeeControllerTest.java:

package org.packt.Spring.chapter7.springmvc.controller;

import org.junit.Assert;

import org.junit.Test; WelcomeEmployee

import org.packt.Spring.chapter7.springmvc.controller.
EmployeeController;

import org.springframework.ui.ExtendedModelMap;

import org.springframework.ui.ModelMap;

public class EmployeeControllerTest {

 @Test

 public void test () {

 EmployeeController controller = new EmployeeController();

Chapter 7

[301]

 ModelMap modelMap = new ExtendedModelMap();

 String view = controller.welcomeEmployee(modelMap);

 // verify view page name

 Assert.assertNotNull(view);

 Assert.assertEquals("hello", view);

 // verify page title

 String titlename = modelMap.get("name").toString();

 Assert.assertEquals("Hello World!", titlename);

 // verify greeting message

 String greetings = modelMap.get("greetings").toString();

 Assert.assertEquals("Welcome to Packt Publishing - Spring
MVC !!!",

 greetings);

 }

}

Even though the preceding code works, it has the following problems:

• The preceding test case tests the controller API strictly but disagrees on the
request methods, such as GET, POST, PUT, or DELETE

• The preceding test case only tests the return value that is put in the ModelMap

• The preceding test case tests for the correct view name

It is always challenging to perform unit testing of web applications. A better solution
for the aforementioned problem is provided by the Spring MVC test framework,
which allows us to test the Spring MVC controller.

Spring MVC test framework
The Spring MVC test framework makes unit testing and integration testing of the
Spring MVC controller more meaningful by offering irst class JUnit support. It helps
in testing all the aspects of the controller method that have not been tested before.
It allows us to test these aspects in depth without starting a web container.

In order to perform a test on the Spring MVC framework, the Spring TestContext
framework along with JUnit or TestNG makes it so simple by providing an
annotation-driven unit and integration testing support. The Spring TestContext
framework can be tested by annotations such as, @RunWith, @WebAppConfiguration,
and @ContextConfiguration, to load the Spring coniguration and inject the
WebApplicationContext into the MockMvc for the unit and the integration test.

Spring Testing

[302]

Required dependencies
We can conigure the Spring TestContext framework by updating pom.xml
with the required dependencies, such as spring-test, junit, and mockito-all.
The following table explains them in detail:

Group ID Artifact ID Version Description
org.springframework spring-

test
3.2.4 release It supports unit and

integration testing of the
Spring components

org.mockito mockito-
all

1.9.5 The library of the Mockito
mocking framework

JUnit junit 4.10 The library of the JUnit
framework

You'll ind the following code at pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.packt.Spring.chapter7.springmvc</groupId>

 <artifactId>SpringMVCPayrollSystem</artifactId>

 <packaging>war</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <name>SpringMVCPayrollSystem Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <properties>

 <spring.version>3.2.0.RELEASE</spring.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-core</artifactId>

 <version>${spring.version}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>${spring.version}</version>

Chapter 7

[303]

 </dependency>

 <!-- Servlet -->

 <dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>2.5</version>

 <scope>provided</scope>

 </dependency>

 <!-- Test -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>3.2.4.RELEASE</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.9.5</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.10</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <finalName>SpringMVCPayrollSystem</finalName>

 </build>

</project>

Annotations in Spring testing
The Spring Framework provides the annotations that can be used to perform unit
and integration testing with the TestContext framework. Here, we will discuss the
two important annotations: @ContextConfiguration and @WebAppConfiguration.

Spring Testing

[304]

The @ContextConiguration annotation
This annotation is used to set ApplicationContext for the test classes by taking the
actual coniguration ile with the ile path. In the following code, we have given the
ile, so it will take the relative path as the root package. We can also give the exact
path by specifying the ile: prefix. Also, we can pass more than one coniguration
ile using a comma separator, as shown here:

@ContextConfiguration ({"classpath*: SpringDispatcher-
servlet.xml"})

public class EmployeeControllerTestWithMockMvc {

 // class body

}

The @ContextConfiguration annotation caches the ApplicationContext for us
and puts it in the static memory for the entire duration of the test or the test suite.
And the entire test executes it in the same JVM because ApplicationContext is
stored in the static memory. If the second JVM is there, it will not have access to the
static context, and it will result in a second ApplicationContext being created.

The @WebAppConiguration annotation
It is a class-level annotation used to create a web version of the application context
in the Spring Framework. It is used to denote that the ApplicationContext,
which is loaded for an integration test and used by that class, is an instance of
WebApplicationContext. It is important to note that the @WebAppConfiguration
annotation must be used with the @ContextConfiguration annotation:

@WebAppConfiguration

@ContextConfiguration ({"classpath*: SpringDispatcher-
servlet.xml"})

public class EmployeeControllerTestWithMockMvc {

 // class body

}

MockMvc
The MockMvc is a key part of the Spring MVC Test framework, which can be used
to write the tests for the applications developed using the Spring MVC. It is the entry
point for Spring MVC testing. The MockMvc mock the entire Spring MVC infrastructure
and is created using the implementations of the MockMvcBuilder interface. In order to
use the Spring MVC testing, the irst step is to create an instance of MockMvc. There
are four static methods in the MockMvcBuilders class.

Chapter 7

[305]

They are as follows:

• ContextMockMvcBuilder annotationConfigSetup(Class…

configClasses): Use this method when you need to configure the
application context using Java configuration.

• ContextMockMvcBuilder xmlConfigSetup(String… configLocations):
Use this method when you need to configure the application context by
using the XML configuration files.

• StandaloneMockMvcBuilder standaloneSetup(Object… controllers):
You can use this method when you need to configure the test controller
manually, and when you want to run the individual components for testing.
We don't need to configure the entire application context; instead we only
need to configure and execute the associated controller component files.

• InitializedContextMockMvcBuilder webApplicationContextSetup(Web

ApplicationContext context): This method must be used when you have
already fully initialized the WebApplicationContext object.

Here, we have created the MockMvc instance using MockMvcBuilders and calling
the standaloneSetup() method after passing an instance of the controller class as
a parameter and then building it by calling the build() method, as shown in the
following code snippet:

private MockMvc mockMvc;

 @Before

 public void setup() {

 this.mockMvc = MockMvcBuilders.standaloneSetup
 (employeeController).build();

 }

Once we have an instance of MockMvc, we can perform the testing using MockMvc.
We can send the HTTP request after specifying all the details, such as the HTTP
method, the content type, and so on. And then, we can verify the results.

Assertion
To perform the assertion, irst we use the instance of MockMvc and then we call
the perform() method to pass a relative path to run the test case. And then, we
can verify the different components inside the controller using andExpect. The
andExpect(status().isOk()) is used to check for a 200 status. Similarly, we can
perform the contentType validation, the xpath validation, validate data in the
model, URL validation, and the view name validation.

Spring Testing

[306]

The sample code for this is as shown here:

this.mockMvc

 .perform(get("/employee"))

 .andExpect(status().isOk())

 .andExpect(view().name("hello"))

 .andExpect(model().attribute("name", "Hello
World!"))

 .andExpect(

 model().attribute("greetings",

 "Welcome to Packt
Publishing - Spring MVC !!!"));

@RunWith(SpringJUnit4ClassRunner.class)
This is a JUnit annotation. It executes the tests in a class annotated by the @RunWith
annotation, or extends a class annotated by the @RunWith annotation by invoking
the class passed as a parameter, which means that the tests in the annotated class
are not executed by the in-built API in the JUnit framework, the runner class used to
execute the test case. In order to use the Spring's JUnit class runner for running the
test cases within the Spring's ApplicationContext environment, passed spring's
SpringJUnit4ClassRunner class as parameter.

So now, we have the complete code to perform the testing of the EmployeeController
controller using the Spring MVC test framework. We will use the MockMvc that will
mock the entire Spring MVC infrastructure. We will create a MockMvc instance in the
method annotated by the @Before annotation, so that it will be available before the
test starts.

You'll ind this code in EmployeeControllerTestWithMockMvc.java:

package org.packt.Spring.chapter7.springmvc.controller;

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilder
s.get;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.
status;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.
view;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.
model;

Chapter 7

[307]

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.InjectMocks;

import org.mockito.MockitoAnnotations;

import org.packt.Spring.chapter7.springmvc.controller.
EmployeeController;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.
SpringJUnit4ClassRunner;

import org.springframework.test.context.web.WebAppConfiguration;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.setup.MockMvcBuilders;

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration

@ContextConfiguration({ "classpath*:SpringDispatcher-servlet.xml"
})

public class EmployeeControllerTestWithMockMvc {

 @InjectMocks

 private EmployeeController employeeController;

 private MockMvc mockMvc;

 @Before

 public void setup() {

 MockitoAnnotations.initMocks(this);

 this.mockMvc =
MockMvcBuilders.standaloneSetup(employeeController).build();

 }

 @Test

 public void testHome() throws Exception {

 this.mockMvc

 .perform(get("/employee"))

 .andExpect(status().isOk())

 .andExpect(view().name("hello"))

 .andExpect(model().attribute("name", "Hello
World!"))

 .andExpect(

 model().attribute("greetings",

 "Welcome to Packt
Publishing - Spring MVC !!!"));

 }

}

Spring Testing

[308]

Now, we can run the test case by right-clicking on the test and then choosing Run As
| JUnit Test. We can verify in the JUnit view as the test case should run successfully,
as shown here:

Exercise
Q1. What is the difference between JUnit 4 and TestNG?

Q2. What is the difference between unit testing and integration testing?

Q3. Explain the Spring MVC test framework.

Q4. Explain @ContextConfiguration and @WebAppConfiguration.

Q5. Explain MockMvc and @RunWith(SpringJUnit4ClassRunner.class).

The answers to these are provided in Appendix A, Solution to Exercises.

Summary
In this chapter, you learned about the Spring test. We understood testing using JUnit 4,
its annotations, it's assert statements, and demonstrated all this with an example. Then,
we moved on to testing using TestNG and its annotations. We also demonstrated this
with an example. We understood Agile software testing, which includes unit testing
and integration testing. And then, we went through unit testing for the isolated classes
and then we went through the Mockito framework for the dependent class. We also
looked into integration testing with the help of an example. Then, we created a unit
test for the Spring MVC controller using JUnit. And inally, we discussed the topic of
the Spring MVC test framework, where we saw the dependencies required to use the
Spring MVC test and the annotations provided by them. And then, we looked into
MockMvc and their assertion method.

Chapter 7

[309]

In the next chapter, we will go through the e-mail support in Spring to develop
an e-mail application. We will then look at the JavaMail API and the Spring API
to write e-mails. You will also learn to develop a simple Spring e-mail application.

[311]

Integrating JavaMail and

JMS with Spring
In this chapter, irst, we will go through the e-mail support in Spring to develop
an e-mail application. We will then look into the JavaMail API and the Spring
API for e-mails. Later in this chapter, you will learn to develop a simple Spring
e-mail application.

In an e-mail application, an e-mail composed by a client is sent to a server and then
delivered to the destination and then sends back a response to the client. Here, the
communication between the client and the server is completely synchronous, which
can be enriched by making this communication asynchronous. The Java messaging
system is the standard application programming interface (API) to perform
asynchronous communication.

Secondly, we will cover JMS and what message and messaging is. Then, we
will look into the JMS application and its components. We will also cover MOM
Service Provider and the coniguration of ActiveMQ as Message Queue. Then, we
will conigure a Spring bean in the Spring coniguration ile, and using Spring JMS
template, we will create a MessageSender class and run an application to perform
a functionality related to JMS.

The list of the topics covered in this chapter is as follows:

• E-mail support in Spring

• Spring Java Messaging Service

Integrating JavaMail and JMS with Spring

[312]

E-mail support in Spring
Electronic mail (e-mail) plays an important role in all day-to-day activities in this
era of global networks. Suppose you want to get periodic updates of a particular
feature on a website, by just subscribing to that feature, you will start receiving
e-mails regarding these updates. E-mails also allow you to send notiications,
business orders, or any periodic reports of a producer.

Oracle provides a simple yet powerful API known as a JavaMail API for creating an
application with an e-mail support. The JavaMail API provides a set of classes and
interfaces for creating an e-mail application. This API is used to programmatically
send and receive e-mails, which can be scaled up to work with different protocols
associated with the mailing system. Although it is a powerful API, it is very complex,
and using the JavaMail API directly in our application is a slightly tedious task as it
involves writing a lot of code.

The Spring Framework provides a simpliied API and plugging for a full
e-mail support, which minimizes the effect of the underlying mailing system
speciications. The Spring e-mail support provides an abstract, easy, and
implementation-independent API for sending e-mails. In this chapter, we will
get an overview on the JavaMail API and learn how to send e-mail using the
JavaMail API in Spring.

Introducing the JavaMail API
The JavaMail API provides a protocol-independent and platform-independent
framework to provide e-mail support for a Java application. The JavaMail API
is a collection of classes and interfaces that comprise an e-mail system. The steps
involved in sending a simple e-mail using the JavaMail API are as follows:

1. Connect to an e-mail server by specifying the username and password;
let's say for example, if you want to send an e-mail from abc@xyz.com,
then you need to connect to the e-mail server of xyz.com.

2. Create a message by specifying the recipient's addresses that can include
Cc and Bcc addresses as well.

3. Add attachments to the message if any.

4. Transport the message to the e-mail server.

Chapter 8

[313]

Sending a simple e-mail requires the use of a number of classes and interfaces that
are present in the javax.mail and javax.mail.internet packages. The important
classes and interfaces in the JavaMail API are listed in the following table:

Class/interface Description
Session The javax.mail.Session is the key class of

the JavaMail API. It represents an e-mail session.
Typically, we create a Session object, set the
properties, and send a message.

Message The javax.mail.Message is an abstract class of
the JavaMail API that models an e-mail message.
It represents the e-mail sent.

Transport The javax.mail.Transport is an abstract class of the
JavaMail API that represents the protocol used to send
and receive e-mails. The Transport object is used for
sending an e-mail message.

Authenticator The javax.mail.Authenticator is an abstract class
of the JavaMail API that represents an authentication for
the e-mail provider.

PasswordAuthentication The PasswordAuthentication holds the username
and password by the Authenticator object.

MimeMessage The javax.mail.internet.MimeMessage is an
abstract class that represents a Multipurpose Internet
Mail Extension (MIME) message. MimeMessage is an
e-mail message, which will understand the MIME types
and headers.

InternetAddress The javax.mail.internet.InternetAddress
represents an Internet e-mail address such as To, Bcc,
and Cc.

Integrating JavaMail and JMS with Spring

[314]

The JavaMail application uses the JavaMail API to exchange e-mails, as shown in the
following igure:

Using the JavaMail API
The JavaMail API can be used to create a class to send an e-mail using the MailHelper
class. This MailHelper class contains a constructor, which can be used to initialize the
host, username, and password. This MailHelper class also contains the sendMail()
method.

The following code snippet shows the MailHelper.java class:

public class MailHelper {

 private Properties props;

 private String host;

 private String userName;

 private String password;

 public MailHelper(String host, String username, String
password){

 this.userName = username;

 this.password = password;

 props = new Properties();

 // put host information

 props.put("mail.stmp.host", host);

 // put true for authentication mechanism

Chapter 8

[315]

 props.put("mail.smtp.auth", "true");

 }

 public void sendMail(String from, String to, String subject,
String body){

 Session session = Session.getDefaultInstance(props, new
PasswordAuthenticator());

 try{

 Message message = new MimeMessage(session);

 message.setFrom(new InternetAddress(from));

 InternetAddress toAddress = new
InternetAddress(to);

 message.addRecipient(RecipientType.TO, toAddress);

 message.setSub(subject);

 message.setText(body);

 Transport transport =
session.getTransport("smtp");

 transport.connect();

 transport.sendMessage(message,
message.getAllRecipients());

 transport.close();

 } catch(NoSuchProviderException ex){

 ex.printStackTrace();

 } catch(MessagingException ex){

 ex.printStackTrace();

 }

 }

 private class PasswordAuthenticator extend Authenticator{

 protected PasswordAuthentication
getPasswordAuthentication(){

 return new PasswordAuthentication(userName,
password);

 }

 }

}

In the preceding code snippet, the MailHelper class has instance variables and a
constructor. The props variable, of the Properties collection type, used to specify
the common properties to connect to the e-mail provider host.

Integrating JavaMail and JMS with Spring

[316]

Simple Mail Transfer Protocol (SMTP) is a protocol that is used to send e-mails.
The SMTP server performs this job. The props.put("mail.stmp.host", host)
code inside the constructor is used to specify the host information, where we connect
to the SMTP server of our host. The props.put("mail.smtp.auth", "true") code
inside the constructor speciies the use of an authentication mechanism to connect to
the SMTP server.

The sendMail method of the MailHelper class creates a Session object using the
host information and the username-password credentials. The from-address and
the to-address are added to the instance of the MimeMessage class. The subject
and the body of the e-mail are also added to this MimeMessage object. Finally, the
message is sent using an instance of the Transport class.

The PasswordAuthenticator class is an inner class that has been used by a Session
object to hold the username and the password.

From the preceding code, the following problems can be encountered:

• Lots of initialization and creation work involved in sending a simple e-mail

• Exceptions need to be taken care of while using the JavaMail API; this results
in some extra lines of code

• Some extra classes are needed if required to perform the attachment
operation while sending an e-mail using the JavaMail API

• A solution to the preceding problem is provided by the Spring Framework
that simplifies the use of the JavaMail API to send e-mails

Let's understand the use of the Spring API for the JavaMail API and rewrite the
MailHelper class.

The Spring API for JavaMail
The Spring Framework provides an API to simplify the use of the JavaMail API. The
classes handle the initialization, clean-up operations, and exceptions. The packages for
the JavaMail API provided by the Spring Framework are listed in the following table:

Package Description
org.springframework.mail This defines the basic set of classes and

interfaces for sending e-mails

org.springframework.mail.java This defines JavaMail API-specific
classes and interfaces for sending e-mails

Chapter 8

[317]

In the Spring mail API hierarchy, the org.springframework.mail package is the
root-level package for the Spring Framework's e-mail support, as shown here:

The important classes and interfaces in the org.springframework.mail package are
listed in the following table:

Class/interface Description
MailMessage Refers to a common interface for all types of messages that can

be sent. It doesn't support complex MIME messages. It is used
for sending simple plain-text e-mails.

MailSender Refers to an interface that defines methods for sending simple
e-mails. It supports only the plain-text e-mails.

MailException Refers to a base class for all the exceptions thrown by the
mailing system.

SimpleMailMessage Refers to the class that defines the representation of a simple
message that can be sent.

The important classes and interfaces in the org.springframework.mail.java
package are listed in the following table:

Class/interface Description
JavaMailSenderImpl Refers to the implementation of the JavaMailSender

interface. It is a core class that is used to send simple as
well as MIME messages. It extends the MailSender
interface and provides the methods for constructing and
sending a MIME message.

MimeMailMessage Implements the MailMessage interface. It is based on
the JavaMail MIME message.

MimeMessageHelper Acts as a wrapper for a MIME message. It is used
to populate a MIME message and is used by the
JavaMailSenderImpl class.

Integrating JavaMail and JMS with Spring

[318]

The Java application can use Spring to access the JavaMail API for sending e-mails,
as shown in the following igure:

In the preceding igure, the Java classes use the Spring API, which indirectly uses the
JavaMail API to send e-mails.

Developing a Spring Mail Application
Let's create a JavaMail API with the Spring application for sending e-mails via the
Gmail SMTP server using the Spring mail API. Here, we develop a basic e-mail
application that creates simple e-mails containing text only.

Coniguration ile – Spring.xml
Let's now create the coniguration ile, Spring.xml, and conigure the mailSender
bean of the JavaMailSenderImpl class and deine its properties:

• host

• port

• username

• password

Also, conigure the bean for the EmailService class with the mailSender property:

<!-- SET default mail properties -->

<bean id="mailSender" class="org.springframework.mail.javamail.
JavaMailSenderImpl">

 <property name="host" value="smtp.gmail.com" />

 <property name="port" value="25" />

Chapter 8

[319]

 <property name="username" value="username" />

 <property name="password" value="password" />

 <property name="javaMailProperties">

 <props>

 <prop key="mail.smtp.auth">true</prop>

 <prop key="mail.smtp.starttls.enable">true</prop>

 </props>

 </property>

</bean>

<bean id="emailService" class="org.packt.Spring.chapter10.mail">

 <property name="mailSender" ref="mailSender" />

</bean>

The preceding coniguration ile sets the host as "smtp.gmail.com" and the port
as "25." The username and the password properties need to be set with reader's
username and password of their Gmail account. The username is used as the sender
of the e-mail.

Spring's e-mail sender
It is the e-mail API-speciic Java ile. It provides the deinition of the sendEmail()
method, which is used to send the actual e-mail to the recipient:

package org.packt.Spring.chapter10.mail;

import org.springframework.mail.MailSender;

import org.springframework.mail.SimpleMailMessage;

public class EmailService

{

 @Autowired

 private MailSender mailSender;

 public void sendEmail(String to, String subject, String msg) {

 // creates a simple e-mail object

 SimpleMailMessage email = new SimpleMailMessage();

 email.setTo(to);

 email.setSubject(subject);

 email.setText(msg);

Integrating JavaMail and JMS with Spring

[320]

 // sends the e-mail

 mailSender.send(email);

 }

}

Here, we have autowired MailSender and called the send() method that will send
the e-mails.

The MailerTest class
The MailerTest class has the main() method that will call the sendEmail() method
of the EmailService class and send an e-mail:

package org.packt.Spring.chapter10.mail;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXml
ApplicationContext;

public class MailerTest

{

 public static void main(String[] args)

 {

 //Create the application context

 ApplicationContext context =

 new ClassPathXmlApplicationContext("Spring.xml");

 //Get the mailer instance

 EmailService emailService =
(EmailService)context.getBean("emailService ");

 //Send a composed mail

 emailService.sendEmail("****@gmail.com",

 "Email Test Subject",

 "Email Testing body");

 }

}

The output of this application can be conirmed by opening the inbox.

We have developed an application using Spring e-mails. Let's now understand the
Spring Java Messaging Service.

Chapter 8

[321]

Spring Java Messaging Service
In this section, irst, we will go through the basics of Java Messaging Service and
will see the differences between JMS and e-mail. Then, we will look into the JMS
application and its different components that create the complete JMS application.
We will also look through other things such as the JMS provider and the messaging
model. We will dig into the API programming model. Then, we will see the messaging
consumption types. Then, we will jump into the Spring JMS integration and we will
see some code samples. And then, we will look into the details of the code content.

Let's now discuss the message and messaging.

What is a message and messaging?
A message is nothing but just bytes of data or information exchanged between
two parties. By taking different speciications, a message can be described in various
ways. However, it is nothing but an entity of communication. A message can be used
to transfer a piece of information from one application to another application, which
may or may not run in the same platform.

Messaging is the communication between different applications (in a distributed
environment) or system components, which are loosely coupled unlike its peers
such as TCP sockets, Remote Method Invocation (RMI), or CORBA, which is tightly
coupled. The advantage of Java messaging includes the ability to integrate different
platforms, increase the scalability and reliability of message delivery, and reduce the
system bottlenecks. Using messaging, we can increase the systems and clients who
are consuming and producing the message as much as we want.

We have quite a lot of ways in which we communicate right from the instance
messenger, to the stock taker, to the mobile-based messaging, to the age-old
messaging system; they are all part of messaging. We understand that a message
is a piece of data transferred from one system to another and it can be between
humans as well, but it is mainly between systems rather than human beings when
we talk about the messaging using JMS.

What is JMS?
The Java Message Service (JMS) is a Java Message Oriented Middleware (MOM)
API for sending messages between two or more clients. JMS is a part of the Java
Enterprise edition. JMS is a broker like a postman who acts like a mediator between
the message sender and receiver.

Integrating JavaMail and JMS with Spring

[322]

JMS is a speciication that describes a common way for Java programs to create,
send, and read distributed enterprise messages. It advocates the loosely coupled
communication without caring about the sender and the receiver. It provides
asynchronous messaging, which means that it doesn't matter whether the sender
and the receiver are present at the same time or not. The two systems that are
sending or receiving messages need not be up at the same time.

The JMS application
Let's look into the sample JMS application pictorial as shown in the following igure:

We have a Sender and a Receiver. The Sender sends a message while the Receiver
receives one. We need a broker that is MOM between the Sender and the Receiver
who takes the sender's message and passes it to the network to the receiver. MOM
is basically an MQ application such as ActiveMQ or IBM-MQ, which are two
different message providers. The Sender promises the loose coupling and it can be
a .NET or mainframe-based application. The Receiver can be a Java or Spring-based
application, and it sends back the message to the Sender as well. This is a two-way
communication that is loosely coupled.

JMS components
Let's move on the JMS components listed in the following table:

Component Description
JMS provider The JMS provider is the messaging system (that is, MOM)

and acts as a message broker or agent as like a post office
or postman. It implements JMS in addition to other
administrative and control functionalities required of a
full-featured messaging product (Active MQ or IBM MQ).

It is an agent or message broker that takes the messages
and sends them across. It is like a post office or postman
that takes your e-mail and delivers it to the recipient.

Chapter 8

[323]

Component Description
JMS client The JMS client is a Java application that receives or produces

messages. The JMS client is a Java application. It is the one
who is producing or receiving the messages.

Let's say that you are sending a postcard to your friend;
then, you and your friend are the JMS client.

JMS producer/publisher The JMS producer and publisher are two types of JMS client
that creates and sends messages.

JMS consumer/subscriber The JMS consumer and subscriber are two types of JMS
clients that receive messages.

JMS application The JMS application is the system composed of typically one
JMS provider and many JMS clients.

Here is the pictorial representation:

There are three JMS clients in the preceding igure. The Producer can be assumed
as it's you who is going to send a message to your friend. The Consumer can be
assumed to be your friend who will receive a message. The Producer/Consumer
could be someone else who will receive as well as send a message. The JMS Provider
can be assumed as the post ofice or postman via which the whole delivery things
happen and which guarantee that the sure delivery happens only once.

Integrating JavaMail and JMS with Spring

[324]

MOM Service Provider
There are various MOM Service Provider products; some of them are listed in the
following table:

Product Company
WebLogic Oracle

MQ Series IBM

JBOSSMQ JBOSS

SoniqMQ Progress

ActiveMQ Apache

We will mainly look into the ActiveMQ message queue. The Active MQ is from
Apache, and it's free.

Coniguring ActiveMQ – message queue
We need to follow the given steps to conigure ActiveMQ to our system:

1. While coniguring ActiveMQ to our system, we need to download the
ZIP distribution from the oficial link http://activemq.apache.org/
download.html, as shown in the following screenshot:

http://activemq.apache.org/download.html
http://activemq.apache.org/download.html

Chapter 8

[325]

2. Then, extract the ZIP distribution to a folder.

3. Navigate to the activemq-5.10.0\bin folder, inside which you will ind the
following folders:

 ° activemq-5.10.0\bin for 64 bit

 ° activemq-5.10.0\bin for 32 bit

These folders can be seen in the following screenshot:

4. Navigate to the win32 or win64 folder based on your machine, and open
Command Prompt at this location and then run activemq, as shown here:

Integrating JavaMail and JMS with Spring

[326]

We can see in the preceding screenshot, that activemq is run and has provided some
information on the console. This MQ can be listed at tcp://localhost:61616 URL.
The admin page URL http://localhost:8161/admin provides access to the admin
page (username: admin, password: admin):

The Spring bean coniguration (Spring.xml)
Create the coniguration ile Spring.xml and deine the respective bean deinitions
such as ActiveMQ ConnectionFactory, ActiveMQ queue destination, and JMS template
as follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

 xmlns:jms="http://www.springframework.org/schema/jms"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/
beans/spring-beans.xsd

Chapter 8

[327]

 http://www.springframework.org/schema/
context

 http://www.springframework.org/schema/
context/spring-context.xsd

 http://www.springframework.org/schema/jms

 http://www.springframework.org/schema/jms/
spring-jms.xsd

 http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/
activemq-core.xsd">

 <context:component-scan base-package="org.packt.Spring.chapter10.
JMS" />

 <bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate">

 <property name="connectionFactory"
ref="connectionFactory" />

 <property name="defaultDestination" ref="destination" />

 </bean>

 <bean id="connectionFactory" class="org.apache.activemq.
ActiveMQConnectionFactory">

 <property name="brokerURL">

 <value>tcp://localhost:61616</value>

 </property>

 </bean>

 <bean id="destination"
class="org.apache.activemq.command.ActiveMQQueue">

 <constructor-arg value="myMessageQueue" />

 </bean>

</beans>

The Spring Framework supports JMS with the help of the following classes:

• ActiveMQConnectionFactory: This will create a JMS ConnectionFactory for
ActiveMQ that connects to a remote broker on a specific host name and port

• ActiveMQQueue: This will configure the ActiveMQ queue name as in our
case myMessageQueue

• JmsTemplate: This is a handy abstraction supported by Spring, and it allows
us to hide some of the lower-level JMS details while sending a message

Integrating JavaMail and JMS with Spring

[328]

MessageSender.java – Spring JMS Template
The MessageSender class is responsible for sending a message to the JMS queue:

package org.packt.Spring.chapter10.JMS.Message;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jms.core.JmsTemplate;

import org.springframework.stereotype.Component;

@Component

public class MessageSender {

 @Autowired

 private JmsTemplate jmsTemplate;

 public void send(final Object Object) {

 jmsTemplate.convertAndSend(Object);

 }

}

App.java
The App class contains the main method, which calls the send() method to send a
message, as shown in the following code snippet:

package org.packt.Spring.chapter10.JMS.Main;

import java.util.HashMap;

import java.util.Map;

import org.packt.Spring.chapter10.JMS.Message.MessageSender;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext
;

public class App {

Chapter 8

[329]

 public static void main(String[] args) {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "Spring.xml");

 MessageSender messageSender = (MessageSender) context

 .getBean("messageSender");

 Map<String, String> message = new HashMap<String,
String>();

 message.put("Hello", "World");

 message.put("city", "Sasaram");

 message.put("state", "Bihar");

 message.put("country", "India");

 messageSender.send(message);

 System.out.println("Message Sent to JMS Queue: " +
message);

 }

}

Start ActiveMQ
Before you run App.java, you need to start ActiveMQ, which allows us to run a
broker; it will run ActiveMQ Broker using the out-of-the-box coniguration.

Output
Run App.java and get the output on the console as follows:

Message Sent to JMS Queue: {state=Bihar, Hello=World,
country=India, city=Sasaram}

Integrating JavaMail and JMS with Spring

[330]

Monitoring the broker
We can monitor ActiveMQ Broker using the web console by pointing the browser to
http://localhost:8161/admin. Once app.java gets executed, a message will be
sent to the JMS queue, as shown in the following screenshot:

Exception on running App.java
There are chances of getting the error Could not connect to broker URL
exception: tcp://localhost:61616. Reason: Java.net.ConnectException:

Connection refused: connect. This exception will come if the message broker
service is not up, so make sure that ActiveMQ is running, as shown here:

Exception in thread "main"
org.springframework.jms.UncategorizedJmsException: Uncategorized
exception occurred during JMS processing; nested exception is
javax.jms.JMSException: Could not connect to broker URL:
tcp://localhost:61616. Reason: java.net.ConnectException:
Connection refused: connect

 at
org.springframework.jms.support.JmsUtils.convertJmsAccessException
(JmsUtils.java:316)

Chapter 8

[331]

Exercise
Q1. What is a JavaMail API?

Q2. What is message and messaging?

Q3. What is JMS?

The answers to these are provided in Appendix A,
Solution to Exercises.

Summary
In this chapter, we discussed the e-mail support in Spring and JMS in Spring. We took
a look at the JavaMail API and Spring API for JavaMail. Then, we developed a Spring
Mail Application. We discussed Spring Java Message Service and understood message,
messaging, and JMS components. We took a look at the MOM Service Provider and
conigured ActiveMQ. We also developed an application to perform messaging using
a Spring JMS Template. Then, we discussed the exception on running the application.

In the next chapter, we will go through the solutions of all the exercises given thus far.

Online chapters

Chapter 9, Inversion of Control in Spring – Using Annotation, conigures Spring
beans and Dependency Injection using annotation. It covers annotation-based
Dependency Injection and life cycle annotation. It explains how to reference beans
using Spring Expression Language (SpEL), invoke methods using SpEL, and work
with operators in SpEL. It also covers the text messages and internationalization
provided by Spring, which we will learn to implement in our application. This is an
online chapter available at https://www.packtpub.com/sites/default/files/
downloads/7368OS_Chapter9.pdf.

Chapter 10, Aspect-oriented Programming with Spring, introduces you to aspect-oriented
programming. It shows you how and where to apply your aspects in your application
using Spring's powerful pointcut mechanism and discusses proxies in the Spring AOP.
This is an online chapter available at https://www.packtpub.com/sites/default/
files/downloads/7368OS_Chapter10.pdf.

Appendix C, Spring Form Tag Library, shows the Spring form tag library provided
by the Spring Web MVC framework. The Spring form tag library is a set of tags in
the form of a tag library, which is used to construct views (web pages). This is an
online appendix available at https://www.packtpub.com/sites/default/files/
downloads/7368OS_AppendixC.pdf.

https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter9.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_Chapter10.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf
https://www.packtpub.com/sites/default/files/downloads/7368OS_AppendixC.pdf

[333]

Solutions to Exercises

Chapter 1, Introducing the Spring
Framework
Q1. What is Spring?

Spring is an open-source framework created by Rod Johnson. He addressed
the complexity of enterprise application development, and described a simpler,
alternative approach in his book Expert One-on-One J2EE Design and Development,
Wrox. Spring is a lightweight inversion of control and aspect-oriented container
framework. Any Java EE application can beneit from the Spring Framework,
in terms of simplicity, loose coupling, and testability.

Spring is modular, allowing you to use only those parts that you need without having
to bring in extra complexity. The Spring Framework can be used either for all layer
implementations or for the development of particular layer of an application.

Q2. List some of the features of Spring?

The Spring Framework contains following features:

• Lightweight: Spring is described as a lightweight framework when it comes
to size and transparency.

• Non-intrusive: Non-intrusive means that your domain logic code has no
dependencies on the framework itself. The Spring Framework is designed
to be non-intrusive.

• Container: Spring's container is a light-weight container that contains and
manages the life cycle and configuration of application objects.

Solutions to Exercises

[334]

• Inversion of Control: IoC is an architectural pattern that describes
the Dependency Injection that needs to be done by an external entity,
rather than creating the dependencies by the component itself.

• Aspect-oriented programming: AOP refers to the programming paradigm
that isolates supporting functions from the main program's business logic.

• JDBC exception handling: The JDBC abstraction layer of the Spring
Framework provides an exception hierarchy.

• Spring Web MVC framework: This helps in building robust and
maintainable web applications. The Spring Web MVC framework also
offers utility classes to handle some of the most common tasks in the web
application development.

• Spring Security: This provides a declarative security mechanism for
Spring-based applications, which is a critical aspect of many applications.

Q3. Explain different modules in the Spring Framework.

The Spring Framework contains following modules:

• Spring Core Module

• Spring AOP Module

• Spring DAO(JDBC) Module

• Spring ORM Module

• Spring Web Module

• Spring Test Module

Chapter 2, Inversion of Control in Spring
Q1. What are Inversion of Control (IoC) and Dependency Injection (DI)?

IoC is a more general concept, and DI is a concrete design pattern. In software
engineering, IoC is a programming technique where the assembler object compels
object coupling at runtime using static analysis. DI reduces the coupling between
objects. DI is a design pattern on which the dependency of object is injected by the
framework, rather than created by the object itself.

IoC makes your code more portable, more testable, and more manageable and
keeps component coniguration, dependencies, and life cycle events outside of
the components.

Appendix A

[335]

Q2. What are the different types of Dependency Injection in Spring?

In the Spring Framework, DI is used to satisfy the dependencies between objects. It
exits in two major types:

• Constructor Injection: Constructor-based DI can be accomplished by
invoking parameterized constructor. These constructor arguments will
be injected during the instantiation of the instance.

• Setter Injection: Setter-based DI is the preferred method of Dependency
Injection in Spring that can be accomplished by calling setter methods
on your bean after invoking a no-argument static factory method or no-
argument constructor to instantiate this bean.

Q3. Explain autowiring in Spring. What are the different modes of autowiring.

A Spring container can use ive modes of autowiring as follows:

• no: By default, Spring bean autowiring is turned off which means that no
autowiring is to be performed, and you should use explicit bean reference
ref for wiring.

• byName: This property name is used for this type of autowiring. If the bean
property is same as other bean name, autowire it. The setter method is used
for this type of autowiring to inject dependency.

• byType: This data type is used for this type of autowiring. If the data
type bean property is compatible with data type of other bean, autowire it.
For this type, only one bean should be configured in configuration file else
a fatal exception will be thrown.

• constructor: This is similar to autowire byType, but here constructor is used
for injecting dependency.

• autodetect: Autowiring by autodetect in Spring is deprecated, and it first
tries to autowire by constructor, and if it does not work, then autowire by type.

Q4. Explain different Spring bean scope.

The following list gives the Spring bean scope:

• Singleton: Singleton in Spring represents in a particular Spring Container
and there is only one instance of bean created in that container that is used
across different references.

• Prototype: This is a new bean created with every request or reference.
For every getBean() call, Spring has to do initialization so instead of
doing default initialization while a context is being created, it waits for
getBean() call.

Solutions to Exercises

[336]

• Request: A new bean is created per Servlet request. Spring will be aware of
when a new request is happening because it ties well with Servlet APIs and
depending on request, Spring creates a new bean.

• Session: A new bean is created per session. As long as there is one user
accessing in a single session, on each call to getBean() will return same
instance of bean.

• Global-session: This is applicable in portlet context. There will be a global
session in an individual portlet session, and a bean can be tied with global
session. Here, a new bean is created per global HTTP session.

Chapter 3, DAO and JDBC in Spring
Q1. Explain Spring JDBC packages.

To handle different aspects of JDBC, Spring JDBC is divided into packages, as shown
in following table:

Spring JDBC packages Description
org.springframework.jdbc.core In the Spring Framework, this package

contains the foundations of JDBC
classes, which includes Core JDBC
Class and JdbcTemplate. It simplifies
the database operation using JDBC.

org.springframework.jdbc.datasource This package contains DataSource
implementations and helper classes,
which can be used to run the JDBC
code outside JEE container.

org.springframework.jdbc.object In the Spring Framework, this
package contains classes that helps in
converting the data returned from the
database into plain java objects.

org.springframework.jdbc.support SQLExceptionTranslator is the
most important class in this package
of the Spring Framework. Spring
recognizes the error code used by
database using this class, and map
error code to higher-level exception.

org.springframework.jdbc.config This package contains classes that
supports JDBC configuration within
ApplicationContext of the Spring
Framework.

Appendix A

[337]

Q2. What is JdbcTemplate?

The JdbcTemplate class instances are thread-safe once conigured. A single
JdbcTemplate can be conigured and injected in multiple DAOs. We can use
JdbcTemplate to execute different types of SQL statements. Data Manipulation
Language (DML) is used to insert, retrieve, update, and delete data in database.
The SELECT, INSERT, or UPDATE statements are examples of DML. Data Deinition
Language (DDL) is used to either create or modify the structure of database objects
in database. The CREATE, ALTER, and DROP statements are examples of DDL.

Q3. Explain the JDBC operation in Spring.

The single executable unit for performing multiple operations is known as
a batch. The batch update operation allows submitting multiple of SQL queries
DataSource for processing at once. Submitting multiple SQL queries together,
instead of individually improves the performance. The JdbcTemplate includes
a support for executing the batch of statements through a JDBC Statement and
PreparedStatement. The JdbcTemplate includes two overloaded batchUpdate()
methods in support of this feature:

• One for executing a batch of SQL statements using JDBC Statement like:

public int[] batchUpdate(String[] sql) throws
DataAccessException

• The other for executing the SQL Statement for multiple times with different
parameters using PreparedStatement such as:

public int[] batchUpdate(String sql,
BatchPreparedStatementSetter bPSS) throws
DataAccessException

Chapter 4, Hibernate with Spring
Q1. What is ORM?

ORM is the process of persisting objects in a relational database such as RDBMS.
ORM bridges the gap between object and relational schemas, allowing object-
oriented application to persist objects directly without having the need for
converting object to and from a relational format.

ORM is about mapping object representations to JDBC Statement parameters, and
in turn mapping JDBC query results back to object representations. The database
columns are mapped to instance ields of domain objects or JavaBeans' properties.

Solutions to Exercises

[338]

Q2. Explain the basics elements of Hibernate architecture.

The basics elements of Hibernate architecture are described in the following sections:

• Configuration: The org.hibernate.cfg.Configuration class is the
basic element of the Hibernate API that allows us to build SessionFactory.
Configuration can be referred as factory class that can produce
SessionFactory.

• SessionFactory: The SessionFactory is created during the startup of the
application, and is kept for later use in the application. The org.hibernate.
SessionFactory interface serves as factory, provides an abstraction to obtain
the Hibernate session object. The SessionFactory initialization process
includes various operations that consume huge resource and extra time,
so it is recommended to use single SessionFactory per JVM instance.

• Session: The org.hibernate.Session is an interface between Hibernate
system and the application. It is used to get the connection with a database.
It is light weight, and is initiated each time an interaction is needed with the
database. After we complete the use of Session, it has to be closed to release
all the resources, such as cached entity objects and JDBC connection.

• Transaction: Transactional interface is an optional interface that represents
a unit of work with the database, and supported by most of RDBMS. In
Hibernate, Transaction is handled by the underlying transaction manager.

• Query: The org.hibernate.Query interface provides an abstraction to
execute the Hibernate query and to retrieve the results. The Query object
represents Hibernate query built using Hibernate Query Language.

• Criteria: The org.hibernate.Criteria is an interface for using Criterion
API and is used to create and execute object oriented criteria queries,
alternative to HQL or SQL.

• Persistent: These classes are the entity classes in an application. Persistent
objects are objects that are managed to be in persistent state. Persistent objects
are associated with exactly one org.hibernate.Session. Once the org.
hibernate.Session is closed, these objects will be detached and will be
free to use in any layer of application.

Q3. What is HQL?

Hibernate Query Language (HQL) is an object-oriented query language that works
on the Persistence object and their properties, instead of operating on tables and
columns. Hibernate will translate the HQL queries into conventional SQL queries
during the interaction of database. In HQL, the keywords such as SELECT, FROM,
WHERE, and GROUP BY, and so on is not case sensitive.

Appendix A

[339]

Chapter 5, Spring Web MVC Framework
Q1. What is Spring Web MVC framework?

The Spring Web Model View Controller (MVC) framework is lexible, robust, and
well-designed and is used for developing web applications. It is designed in such
a way that development of a web application is highly conigurable into model,
view, and controller. The Spring Web MVC framework is implemented using Java
technologies such as Java, Servlet, and JSP, which allows us to host Spring MVC
project on any Java enterprise web server just by including Spring JARS into lib
of web application/project.

The Spring MVC module in the Spring Framework, provides comprehensive
support for the MVC design support, with support for features such as i18n,
theming, validation, and so on, to ease the implementation of the presentation
layer. The Spring MVC framework is designed around a DispatcherServlet.
The DispatcherServlet dispatches the HTTP request to handler which is a
very simple controller interface.

Q2. What is DispatcherServlet in Spring MVC framework?

The DispatcherServlet of Spring MVC framework is an implementation of
Front Controller and is a Java Servlet component for Spring MVC applications.
DispatcherServlet of Spring MVC framework is a front controller class that
receives all incoming HTTP client request for the Spring MVC application. It is
also responsible for initializing the framework components which will be used
to process the request at various stages.

The DispatcherServlet is fully conigured with the IoC container that
allows us to use various Spring features such as Spring context, Spring Object
Relational Mapping (ORM), Spring Data Access Object (DAO), and so on.
DispatcherServlet is a Servlet that handles HTTP request and is inherited
from HTTPServlet base class. A Spring MVC application can have any number
of DispatcherServlet, and each DispatcherServlet will have its own
WebApplicationContext.

Q3. What is controller in Spring MVC?

DispatcherServlet delegates the incoming HTTP client request to the controllers
to execute the functionality speciic to it. Controller interprets the user input and
transforms this input into a speciic model, which will be represented by the view
to the user. The @Controller annotation is used to deine a class as controller class
without inheriting any interface or class.

Solutions to Exercises

[340]

Q4. What is ViewResolver in Spring MVC?

The controller class handler methods return different values that denote the logical
view names. The views can represent Java Server Pages (JSP), FreeMarker, Portable
Document Format (PDF), Excel, and Extensible Stylesheet Language (XSL) pages.
The control will be delegated to view template from DispatcherServlet. The view
name returned by the method is resolved to the actual physical source by the view
resolver beans declared in the context of web application. Spring provides a number of
view resolver classes that are conigured in the .xml iles. The ViewResolver interface
maps the view names with the implementations of the org.springframework.web.
servlet.ViewResolver interface.

Chapter 6, Spring Security
Q1. What is Spring Security?

The Spring Security framework is the de-facto standards for securing Spring-based
applications. Spring Security framework provides security services for enterprise
Java software application by handling authentication and authorization. Spring
Security handles authentication and authorization at both; the web request level
and at method invocation level. Spring Security is a highly customizable and
powerful authentication and can access control framework.

Q2. What is authentication and authorization?

Authentication is the process of assuring that a user is the one what user claim to be.
Authentication is a combination of identiication and veriication. The identiication
can be performed in a number of different ways; for example, as username and
password, which can be stored in a database, or LDAP, or CAS (single sign-on
protocol) and so on.

Authorization provides access control to the authenticated user. Authorization is
the process of ensuring that the authenticated user is allowed to access only those
resources which he/she is authorized to use.

Q3. What are the different ways supported by Spring Security for users to log into
a web application?

There are multiple ways to be supported by Spring Security for users to log into a
web application as follows:

• HTTP basic authentication: HTTP basic authentication is supported
by Spring Security by processing the basic credentials presented in the
header of HTTP request. HTTP basic authentication is generally used
with stateless clients who on each request pass their credential.

Appendix A

[341]

• Form-based login Service: Spring Security supports form-based login
service, by providing default login form page for users, to log into the
web application.

• Anonymous login: An anonymous login service is provided by Spring
Security that grants authorities to an anonymous user like the normal user.

• Remember Me support: Remember Me login is also supported by Spring
Security by remembering the user's identity across multiple browser sessions.

Chapter 7, Spring Testing
Q1. What is the difference between JUnit4 and TestNG?

JUnit and TestNG, both are unit testing frameworks, which look very similar in
functionality. Both provide functionalities such as annotation supports, exception
test, timeout test, ignore test, and suite test. Whereas, a group test and dependency
test is only supported by TestNG. TestNG has the ability to dynamically generate the
test data for parameterized test, whereas JUnit cannot. The following is a list of few
annotations supported by TestNG and JUnit4:

Feature TestNG JUnit4
Test annotation @Test @Test

Before the first test method in the current class @BeforeClass @BeforeClass

After all the test methods in the current class @AfterClass @AfterClass

Before each test method @BeforeMethod @Before

After each test method @AfterMethod @After

Before all tests in this suite run @BeforeSuite -

After all tests in this suite run @AfterSuite -

Run before the test @BeforeTest -

Run after the test @AfterTest -

Q2. What is the difference between unit testing and integration testing?

Unit testing, as the name suggests, is testing of every individual method of the code.
It is the method of testing fundamental pieces of your functionality. It is a piece
of code written by a software developer to test a speciic functionality in the code.
Unit tests are more about improving quality and preventing bugs, less about inding
them, and are automated using testing frameworks.

Solutions to Exercises

[342]

Integration testing is the phase of software testing in which individual software
modules are combined and tested as a group to ensure that required units are properly
integrated and interacted with each other correctly. The purpose of integration testing
is to verify functional, performance, and reliability of the code. The integration testing
is used to test several units altogether.

Q3. Explain the Spring MVC test Framework.

Spring MVC test framework makes unit testing and integration testing of Spring
MVC controller more meaningful by offering irst class JUnit support. It helps in
testing all aspects of controller method, which has not tested before. It allows us
to perform testing in depth without starting a web container.

In order to perform a test of Spring MVC, the Spring TestContext framework,
along with JUnit or TestNG, make it simple by providing annotation driven unit
and integration testing support. The Spring TestContext framework can be used
using @RunWith, @WebAppConfiguration, and @ContextConfiguration annotation
to load Spring coniguration, and inject the WebApplicationContext to the
MockMvc for unit and integration test.

Q4. Explain @ContextConfiguration and @WebAppConfiguration.

The @ContextConfiguration annotation is used to set the ApplicationContext for
test classes, by taking the actual coniguration ile with the ile path. In the following
code, we have given the ile, so it will take relative path as the root package. We can
also give the exact path by specifying the ile: preix. The @ContextConfiguration
caches the ApplicationContext for us, and puts it in a static memory for the
entire duration of the test or the test suite. The entire tests executes in the same
JVM because of ApplicationContext stored in the static memory. If the second
JVM is there, it will not have access to the static context, and will result in second
ApplicationContext to be created.

The @WebAppConfiguration annotation is a class-level annotation used to
create a web version of the application context in Spring. It is used to denote
that the ApplicationContext, which is loaded for an integration test and
used by that class, is an instance a WebApplicationContext. It is important to
note that the @WebAppConfiguration annotation must be used together with
@ContextConfiguration.

Appendix A

[343]

Q5. Explain MockMvc and @RunWith(SpringJUnit4ClassRunner.class).

The MockMvc is a key part of Spring MVC Test framework, which can be used to
write tests for applications developed using Spring MVC. It is the entry point for
Spring MVC Testing. The MockMvc mock the entire Spring MVC infrastructure
and is created by using the implementations of the MockMvcBuilder interface. In
order to use Spring MVC testing, the irst step is to create an instance of MockMvc.

The @RunWith annotation is a JUnit annotation. It executes the tests in a class
annotated with the @RunWith annotation, or extends a class annotated with the
@RunWith annotation by invoking the class passed as the parameter, which means
that the tests in annotated class are not executed by the in-built API in the JUnit
framework, the runner class used to execute the test case. In order to use Spring's
JUnit class runner for running test cases within Spring's ApplicationContext
environment passed Spring's SpringJUnit4ClassRunner class as a parameter.

Chapter 8, Integrating JavaMail and
JMS with Spring
Q1. What is a JavaMail API?

A JavaMail API provides a protocol and platform independent framework to provide
e-mail support for a Java application. The JavaMail API is a collection of classes and
interfaces that comprise an e-mail system. These steps are involved in sending a
simple email, using the JavaMail API. They are as follows:

1. Connect to a e-mail server by specifying the username and password,
let's say an example; if you want to send an email from abc@xyz.com,
then you need to connect to the e-mail server of xyz.com.

2. Create a message by specifying the recipient's addresses that can include
Cc and Bcc addresses as well.

3. Add attachments to the message if any.

4. Transport the message to the e-mail server.

Q2. What is message and messaging?

Message is nothing but bytes of data or information, which are being exchanged
between two parties. By taking different speciications; a message can be described
in various ways. However, it is nothing but an entity of communication. A message
can be used to transfer a piece of information from one application to another
application, which may or may not run in the same platform.

Solutions to Exercises

[344]

Messaging is communication between different applications (in a distributed
environment), or system components which are loosely coupled unlike its peers,
like TCP sockets, Remote Method Invocation (RMI) or CORBA, which is tightly
coupled. The advantage of Java messaging includes the ability to integrate different
platforms, increase the scalability and reliability of message delivery and reduces
the system bottlenecks. Using messaging, we can increase the systems and clients
who are consuming and producing the message as much as we want.

Q3. What is JMS?

The JMS, that is, Java Message Service is a Java Message Oriented Middleware
(MOM) API for sending messages between two or more clients. JMS is a part of
Java Enterprise edition. JMS is a broker like a postman, who acts like a mediator
between the message sender and receiver.

JMS is a speciication that describes a common way for Java programs to create,
send, and read distributed enterprise messages. It advocates the loosely coupled
communication without caring about sender and receiver. It provides asynchronous
messaging, that means it doesn't matter whether the sender and the receiver are
present at the same time or not. The two systems that are sending or receiving
messages need not be up at same time.

Chapter 9, Inversion of Control in Spring
– Using Annotation
Q1. What are Stereotype annotations?

The @Component annotation which is a parent stereotype annotation can be used
to deine all beans. However, the Spring Framework supports different stereotype
annotations to divide components by layer as listed here:

• @Component: It is a generic stereotype annotation, which defines a class
as bean. It is required to import org.springframework.stereotype,
in order to use this annotation.

• @Repository: Annotate all your repository classes with @Repository
annotation, which is a marker for a class. A repository class serves in
the persistence layer of the application as a Data Access Objects (DAO)
that contains all your database access logic. It is required to import,
org.springframework.stereotype.Repository to use @Repository
annotation.

Appendix A

[345]

• @Service: Annotate all your service classes with @Service annotation,
which contains all your business logic. It is required to import org.
springframework.stereotype.Service, in order to use @Service.

• @Controller: The @Controller indicates that the annotated class is a
Spring component of type "controller". It is a class-level annotation that
indicates that an annotated class serves the role of a controller in Spring
MVC. It is required to import org.springframework.stereotype.
Controller, in order to use @Controller.

Q2. Explain different components of event handling.

Event handling is an important feature provided by ApplicationContext.
Event handling consists of three core components as follows:

• ApplicationListener: This interface has to be implemented by a class
that listens to an event. If any bean implements the ApplicationListener
interface, then that bean is notified every time an ApplicationEvent gets
published to the ApplicationContext.

• ApplicationEventPublisher: This interface has to be implemented by a
class that publishes an event. Any bean can publish an event by calling an
application event publisher's publishEvent() method.

• ApplicationEvent: This class is used when you are writing your own
custom event, adding additional functionality, and additional metadata
about the event.

Q3. What is Spring Expression Language (SpEL)?

In Spring, SpEL is a powerful expression language that supports the features to
query and manipulate the object graph at runtime. SpEL can be used to dynamically
evaluate property and use it as a value conigured in IoC controller. SpEL supports
operators such as mathematical operators, logical operators, and relational operators.
SpEL also supports regular expressions using the matches operator.

SpEL provides dynamic bean wiring at runtime. SpEL picks the right bean or value
to Dependency Inject at runtime. SpEL can also be used to inject a bean, or a bean
property, or a bean method in another bean.

The features of SpEL are as follows:

• To reference beans using beans ID

• To inject methods and Properties on beans

• To perform mathematical, logical, and relational operations on values

• To match regular expression

• To manipulate collections

Solutions to Exercises

[346]

Chapter 10, Aspect-oriented Programming
with Spring
Q1. What is Aspect-oriented Programming (AOP)?

AOP is a promising technology to separate crosscutting concerns, which is sometimes
hard to perform in object-oriented programming, that is, OOP. AOP refers to the
programming paradigm that isolates main business logic from other supporting
functions. AOP in the Spring Framework provides declarative enterprise services.
Here, in AOP, application objects perform the business logic and are not responsible
for other system concerns such as, logging, auditing, locking, or an event handling.
AOP is a methodology of applying middleware services such as security service,
transaction management service, and so on Spring application.

Q2. What are concern, advice, aspect, join-point and point cut in Spring?

Concern refers to a part of system divided on the basis of the functionality. It can be
either core or crosscutting. Core concern represents a speciic functionality for primary
requirements. Crosscutting concern is also known as system-wide concern; represent
functionality for secondary requirement, such as logging, security, and so on.

• Advice: This represents code that is executed at joinpoint. It includes API
invocation to the system-wide concern.

• Aspect: The combination of pointcut and advice is referred to as aspect,
which is a cross-cutting functionality that should be included in the
application.

• Joinpoint: This refers to a point in the execution flow of your application,
such as class initialization, object instantiation, method invocation, field
access, or throwing an exception. Aspect code can be inserted at joinpoint
to add new behavior into your application. Crosscutting concern is
automatically added before/after joinpoint by AOP.

• Pointcut: This represents a collection of joinpoint specifying where an
advice needs to be applied.

Q3. What are the different types of advice?

There are different types of advices as follows:

• Before advice: This executes before joinpoint. Using it, we can execute
the advisor code before the method is invoked.

• After-returning advice: This is used to apply advice after the method
successfully finishes its execution.

Appendix A

[347]

• Throws advice: This can be applied when a method throws an exception
during its execution.

• After (finally) advice: As the name suggests, this advice gets executed after
the join point method execution got finished, either normally, or by throwing
some exceptions.

• Around Advice: This can be applied before and after the method execution.

Q4. What is weaving in Spring?

Weaving is the process of inserting aspects to the application at the appropriate
point. The weaving can take place at different stages in the target class's lifetime:

• Compile time: To inject the byte code of the advice at the joint point during
the compile time is called as compile time weaving.

• Classload time: Classload time is injecting the byte code at the class loading
time. During this, the byte code will be injected to the loaded class to have
the advice code at the joint point.

• Runtime – Spring way: The target object will be shielded with the Proxy
bean, which is created by the Spring Framework. Whenever the caller calls
the method on the target bean, the Spring Framework invokes the proxy and
applies advices to target method. Once the method execution is over, again
Spring apply advices to the target method if required, and the response will
return back to caller.

Spring uses this kind of weaving. Runtime weaving is an effective way as it keeps
the code clean.

[349]

Setting up the Application

Database – Apache Derby
To set up some kind of database running on your development environment, we
use Apache Derby database. Apache Derby is a light weight in memory database,
which is easy to setup and takes less resources, and is also perfect for testing out
new concepts and trying out things that we are doing right now.

To download Apache Derby, hit over the Apache Derby website at
http://db.apache.org/derby/derby_downloads.html, and download the
latest release. Once the downloaded ZIP ile is extracted, we will have some
important folder named bin and lib folder as shown:

http://db.apache.org/derby/derby_downloads.html

Setting up the Application Database – Apache Derby

[350]

The lib folder contains the jar that needs to be included in our program when we
connect to the Derby database. The bin contains programs like startNetworkServer.
bat and stopNetworkServer.bat for database as follows:

After downloading and extracting the JAR ile, the next step is to set environment
variable. Derby recommends a couple of environment variables that need to be set.

• DERBY_HOME: The DERBY_HOME environment variable needs to be set to the
location where we have extracted our distribution containing the bin and
lib folder.

• Path: The second variable that we need to set is path environment variable.
We need to set DERBY_HOME/bin to path environment variable:

Appendix B

[351]

Now, open a command prompt, and hit over to location where we have Apache
Derby as follows:

Here in the preceding screenshot, we have changed the directory to the bin directory
in Apache Derby, which contains batch iles and script iles. For Windows OS, we
need these batch iles while running.

Setting up the Application Database – Apache Derby

[352]

Apache Derby operates in two modes:

• The Network-Server mode

• The Embedded mode

First, we need to start derby as Network Server mode which is similar to all the
databases on one machine, and the other machine on the network that can connect
to it. Embedded mode is something speciic to derby.

To start derby Network Server mode, we need to run startNetworkServer.bat
as follows:

In the preceding screenshot, we can see that Apache Derby Network-Server started
and ready to accept connection on port 1527, which we can test by using a client to
connect to the server. Derby actually comes with a client called ij.bat, which can
be used to connect to the server to execute queries.

So, we need to have a second command line prompt, which hits same bin directory,
and run ij.bat to client, and executes the query to connect to the server connect
jdbc:derby://localhost:1527/db;create=true'; as follows:

Appendix B

[353]

We can create a table using create query for table employee (as shown in the
following screenshot with two column as ID and NAME), and insert values using
insert query, and also print data to console using select query, as follows:

[355]

Index

Symbols

@ContextConiguration annotation 304, 342
@ControllerAdvice annotation

application, running 227, 228
EmployeeController class 225
exception.jsp page 227
GenericException class 223
hello.jsp page 226
SpringException class 223
used, for handling exception 222, 223

@Controller annotation 193
@RequestMapping annotation

method parameters 199
properties 198
requests, mapping at class level 195, 196
requests, mapping at method level 197, 198
return values 201
used, for mapping requests 194, 195

@RunWith annotation 343
@WebAppConiguration

annotation 304, 342

A

ActiveMQ
URL 324

advice 346
advice, types

after (inally) advice 347
after-returning advice 346
around advice 347
before advice 346
throws advice 347

Agile software testing
about 286

integration testing 297-299
unit testing 286, 287

annotations, JUnit 4
@After 280
@AfterClass 281
@Before 280
@BeforeClass 280
@Ignore 281
@Test 280

annotations, Spring testing
@ContextConiguration annotation 304
@WebAppConiguration annotation 304
about 303

annotations, TestNG
@AfterClass 284
@AfterMethod 284
@AfterTest 285
@BeforeClass 284
@BeforeMethod 284
@BeforeTest 285
@Test 284

Apache Derby
about 349, 350
Embedded mode 352
environment variables 350
Network Server mode 352
setting up 350-353
URL, for downloading 349

application
creating, in Spring 15
credentials 275
custom login, adding 272
developing 265
employee list, obtaining 273
ilters, adding to web.xml 269
login requests, mapping 273

[356]

logout page 276
project structure 265, 266
running 276, 277
view, resolving 270

application programming interface
(API) 311

Aspect-oriented Programming
(AOP module) 5, 12, 346

assert methods
about 281
assertEquals() 281
assertFalse () 281
assertNotNull() 281
assertNotSame() 281
assertNull() 281
assertSame() 281
assertTrue() 281

autowiring modes, options
autodetect 68, 335
byName 335
byType 68, 335
constructor 68, 335
no 68, 335

B
BatchOperationDemo application

directory structure 115
bean deinition inheritance

about 63-66
abstract, using 66, 67

BeanFactory
about 37
factory pattern 37-39
implementation 40-42
Spring BeanFactory 39, 40
URL 42

beans
about 35
scope 72
XML-based bean coniguration 35, 36

bean scope, Spring Framework
global-session 336
prototype 335
request 336
session 336
singleton 335

C

class/interface, JavaMail API
Authenticator 313
InternetAddress 313
Message 313
MimeMessage 313
PasswordAuthentication 313
Session 313
Transport 313

class/interface, org.springframework.
mail.java package

JavaMailSenderImp 317
MimeMailMessage 317
MimeMessageHelper 317

class/interface, org.springframework.
mail package

MailException 317
MailMessage 317
MailSender 317
SimpleMailMessage 317

Class Under Test 293
constructor-based Dependency Injection

<constructor-arg> element 50
about 49
ambiguity, resolving 51, 52
parameter ambiguity, resolving 53-55
simple Java types, injecting 50, 51

context module 12
controllers

used, for handling form submission 232
controllers, Spring MVC

@Controller annotation 193
@RequestMapping annotation 194, 195
about 192

core module 11
Create class

about 92
EmployeeDaoImpl.java ile 94-96
EmployeeDao.java ile 93
Employee.java ile 93
HrPayrollSystem.java ile 97

Create-Retrieve-Update-Delete (CRUD) 90
Criteria interface, HCQL

used, for pagination 164
Criteria interface restrictions, HCQL

AND condition 162

[357]

between method 161
eq method 158
gt method 159
ilike method 160
isNotNull method 162
isNull method 161
like method 160
lt method 159
OR condition 162
pagination 164
results, sorting 164

D

DAO design pattern 89
DAO layer

about 90, 215
advantages 90

Data Access Layer 204
database 88, 89
database operation clauses, with HQL

AS clause 151
DELETE clause 155
FROM clause 151
GROUP BY clause 154
named parameter, using 154, 155
ORDER BY clause 153
pagination 156
SELECT clause 152
UPDATE clause 155
WHERE clause 152

Data Deinition Language (DDL) 105, 337
Data Manipulation Language

(DML) 105, 337
Dependency Injection (DI)

about 31, 46-48, 87, 334
advantages 46
constructor-based Dependency Injection 49
Constructor Injection 46
empty string, injecting 62
Has-A relationship 48
inner beans, injecting 60-62
null value, injecting 62
setter-based Dependency Injection 55
setter Injection 46
types 335

destruction callbacks, Spring bean lifecycle
about 83
destroy-method, using in XML

coniguration 84
org.springframework.beans.factory.

DisposableBean interface 83, 84
directory structure, BatchOperation

Demo application
about 115
EmployeeDaoImpl.java ile 115
HrPayrollBatchUpdate.java ile 116

directory structure, JdbcTemplate
Example application

EmployeeDaoImpl.java ile 111
EmployeeDao.java ile 111
Employee.java ile 110

directory structure, SpringDataSource
Example application

about 101
EmployeeDaoImpl.java ile 102-104
HrPayrollSystem.java ile 104, 105

DispatcherServlet class, Spring MVC
about 189
coniguration ile location, registering 191
in deployment descriptor web.xml 190

Don't repeat yourself (DRY) 98

E

e-mail, Spring
about 312
JavaMail API 312-314

event handling
ApplicationEvent interface 345
ApplicationListener interface 345
components 345

expression language 12
Extensible Stylesheet Language

(XSL) 201, 340

F

form submission
application, running 240-242
handling, with controller 232
ModelAndView constructor 233

[358]

Spring MVC form 238
View page 236

front controller design pattern 170, 171

G

Google Web Toolkit (GWT) 167

H

Hibernate
about 87, 127
architecture 128
integrating, with Spring Framework 131
Spring MVC, integrating with 204
references 132, 135

Hibernate architecture
coniguration 129
elements 338
org.hibernate.Criteria interface 130
org.hibernate.Query interface 130
Persistent objects 130
SessionFactory 129
Session interface 130
Transaction interface 130

Hibernate Criteria Query Language (HCQL)
about 157
Criteria interface 157

Hibernate, integrating with Spring
Framework

about 131
annotated domain model class 138-141
application, directory structure 146
application, running 146
Hibernate SessionFactory,

coniguring 134, 135
JARs requisites 133
persistence layer 142
sample data model 131, 132
service layer 144
Session interface 141
steps 132

Hibernate Query Language (HQL)
about 127, 150, 338
Query interface 150
used, for performing database

operation 150

Hibernate SessionFactory coniguration
about 134
hibernate.dialect property 135
hibernate.jdbc.fetch_size property 135
hibernate.max_fetch_depth property 135
hibernate.properties 137
hibernate.show_sql property 135
XML Spring coniguration 135-137

Hyper Text Transfer Protocol (HTTP) 170

I

iBATIS 87
initialization callbacks, Spring bean

lifecycle
about 80
init-method, using in XML coniguration 82
org.springframework.beans.factory.

InitializingBean interface,
implementing 81, 82

integration testing 297-299, 342
internationalization (i18n), Spring MVC

application, running 231, 232
coniguration 229
hello.jsp page 231
LocaleChangeInterceptor 230
properties ile 229
ReloadableResourceBundleMessage

Source 229
SessionLocaleResolver 230
using 229

Inversion of Control (IoC)
about 32, 33, 87, 142, 189, 334
container 33
issues 32
Spring Container 34

J

JAR iles
URL 17

Java Database Connectivity (JDBC)
about 90, 128
APIs 90

JavaMail API
about 343
Spring API 316, 317

[359]

used, for sending e-mail 312, 343
using 314-316

Java Message Oriented Middleware
(MOM) 13, 321

Java Naming and Directory Interface
(JNDI) 128

Java Persistence API (JPA) 127
Java Server Faces (JSF) 167
Java Server Pages (JSP) 167, 201, 340
Java Transaction API (JTA) 128
JDBC batch operation

about 113, 114
directory structure 115

JDBC module 13
JdbcTemplate class

about 105, 106
used, for querying database 108, 109

JdbcTemplateExample application
directory structure 110

JdbcTemplate object
coniguring, as Spring bean 106
Spring.xml ile 107

JDBC, without Spring
about 90, 91
JdbcHrPayrollSystem 91

JDBC, with Spring
about 99
DataSource 100, 101
DataSource, in DAO class 101

JMS
about 13, 322, 344
application 322

JMS components
JMS application 323
JMS client 323
JMS consumer/subscriber 323
JMS producer/publisher 323
JMS provider 322

JPA annotation
@Column 139
@Entity 138
@GeneratedValue 139
@Id 138
@Table 138

JUnit
URL 280

JUnit 4
annotations 280
differentiating, with TestNG 341, 342
examples 282
used, for testing 280

L

life cycle, Spring bean
about 78
activation 80
destruction 80
destruction callbacks 83
initialization 79
initialization callbacks 80

M

major operations, Spring Security
about 246
authentication 246
authorization 246, 247

message 343
Message Oriented Middleware (MOM) 344
method-level security 264
method parameters, @RequestMapping

annotation
@ModelAttribute 200
@PathVariable 199
@RequestBody 200
@RequestHeader 200
@RequestParam 200, 201
Errors/BindingResult 200
HttpSession 199
java.util.Local 199
Map 200
Model 200
ModelMap 200
ServletRequest/HttpServletRequest 199
Session Status 200

Mockito framework
about 294-297
ield-level annotations 294
URL 294

MockMvc
about 304, 305, 343
assertion, performing 305

[360]

MOM Service Provider
about 324
ActiveMQ, coniguring 324-326

Multipurpose Internet Mail Extension
(MIME) 313

MVC
about 14, 167-169
architecture 169
Controller 169, 170
Model 169, 170
View 169, 170

O

Object Relational Mapping
(ORM) 124-127, 189, 337, 339

P

pagination types, Criteria interface
Public Criteria setFirstResult(int start

Position) method 164
Public Criteria setMaxResults(int max

Result) method 164
persistence layer

DAOs, implementing 142
EmployeeDaoImpl class 142, 143
EmployeeDao interface 142

Plain Old Java Object (POJO) 3, 127
pom.xml ile

about 208, 211
hibernate.properties ile 211

Portable Document Format (PDF) 201, 340
Portlet module 14
PostgreSQL database

URL 131
Project Object Model (POM) 179

R

relational database management system
(RDBMS) 89, 124

Remote Method Invocation (RMI) 321, 344

S

separation of concern 169
service layer

about 204, 216
EmployeeServiceImpl class 145
EmployeeService implementation 217
EmployeeService interface 144, 217
services, implementing 144

Servlet 247, 248
Servlet ilters

about 247
review 247-249

Servlet module 14
Session interface, Hibernate

about 141
detache state 142
methods 142
persistent state 142
transient state 141
URL 142

setter-based Dependency Injection
about 55
collections, injecting 58, 59

SimpleJdbcCall class
about 118
stored procedure, calling 118

Simple Mail Transfer Protocol (SMTP) 316
Source Tool Suite (STS) 204
Spring

application, creating 15
autowiring 67
e-mail 312
JDBC batch operation 113
mail application, developing 318
packaging 16, 17
Spring JAR iles, obtaining 15
SpringSource Tool Suite (STS) 17

Spring application
about 18
program, running 28
required libraries, adding 20, 22
source iles, creating 22-25
Spring bean coniguration ile,

creating 25-28
Spring project, creating 18, 19

[361]

Spring Batch
about 7
URL 7

Spring bean
JdbcTemplate object, coniguring as 106

Spring bean coniguration ile
creating 25-28

Spring Container
about 34
ApplicationContext 42
ApplicationContext, implementing 43-45
BeanFactory 37
beans 35
XML-based bean coniguration 35, 36

Spring Core Container
about 11
beans module 12
context module 12
Core module 11
expression language 12

SpringDataSourceExample application
directory structure 101

Spring Expression Language (SpEL)
about 345
features 345

Spring Framework
about 2, 3, 333
AOP module 12
architecture 10
autowiring 335
bean scope 335
beneits 14, 15
data access 13
Dependency Injection (DI) 334
evolution 7-10
features 4-6, 333, 334
Hibernate SessionFactory,

coniguring 134, 135
integration 13
Inversion of Control (IoC) 334
JDBC operation 337
modules 334
Spring Core Container 11, 12
Test module 14
weaving 347
Web module 14

Spring Hibernate 123
SpringHibernateIntegrationDemo

application
DBUtils class 146
output 149
populated data, in Employee table 149
running 146
SpringHibernateMain class 148

Spring JAR iles
obtaining 15, 16

Spring JDBC packages
about 336
org.springframework.jdbc.conig 99, 336
org.springframework.jdbc.core 99, 336
org.springframework.jdbc.

datasource 99, 336
org.springframework.jdbc.object 99, 336
org.springframework.jdbc.support 99, 336
shortcomings 98, 99

Spring JMS
about 321
ActiveMQ, starting 329
App class 328
App.java, running exception 330, 331
broker, monitoring 330
message 321
MessageSender class 328
messaging 321
output 329
Spring bean coniguration

(Spring.xml) 326, 327
Spring Mail Application

developing 318
e-mail sender 319
MailerTest class 320
Spring.xml ile 318

Spring Mobile
about 7
URL 7

Spring MVC
about 171, 339
application, developing 175
controller 339
controller class 234
controllers 192
DispatcherServlet class 189

[362]

framework features 172
integrating, with Hibernate 204
internationalization (i18n) 229
Model 203
ModelAndView 233
request handling low 173-175
test framework 301
ViewResolver 201, 340

Spring MVC application
coniguring 180
dependencies, adding to pom.xml 179, 180
developing 175-189
EmployeeController, creating 185, 186
hello.jsp vie page, creating 186, 187
Maven project, creating 175-179
running 187, 188, 189

Spring MVC controller
unit test, creating 299-301

Spring MVC controller class
@ModelAttribute 234
about 234
ModelMap 234-236

Spring MVC, integrating with Hibernate
about 204
application architecture 204
application, running 221
controller classes 218, 219
DAO layer 215
entity class 213
pom.xml ile 208, 211
project structure 207, 208
sample data model 205, 206
service layer 216
SpringDispatcher-servlet.xml ile 211
View page 219

Spring MVC test framework
about 301, 342
annotations 303
required dependencies 302

Spring project
creating 18, 19

Spring Security
about 246, 340
anonymous login 341
coniguration 250
form-based login Service 341
HTTP basic authentication 340

major operations 246, 247
Remember Me support 341
URL 261
use case 250

Spring Security coniguration
about 250
namespace coniguration 252
setup 251

Spring Security setup
about 251
JARs, adding to classpath 251
pom.xml 251

Spring Social
about 7
URL 7

Spring Source Tool (STS) 175
Spring transaction module 14
Spring Web Services

about 7
URL 7

stereotype annotation
@Component 344
@Controller 345
@Repository 344
@Service 345
about 344

stored procedure
advantages 118
calling 117-119
disadvantages 118

Struts module 14

T

testing 279
testing, with JUnit 4

about 280
annotations 280
assert methods 281
examples 282, 283

testing, with TestNG
about 284
annotations 284
examples 285

Test module 14
TestNG

annotations 284

[363]

differentiating, with JUnit 4 341
examples 285
used, for testing 284

U

unit testing 341
unit testing, Agile software testing

about 286, 287
for dependent class, with mock

objects 292, 293
for isolated classes 288-291
mock 287
Mockito framework 294-297
stub 287

unit test, of Spring MVC controller
creating 299-301

URL access, web application
securing 252
security conigurations, separating 253, 254
web.xml 252

use case, Spring Security 250
users authentication

about 260
against database 261, 262
in-memory deinitions, using 260, 261
passwords, encrypting 263

V

View page
about 219
employee.jsp page 220
hello.jsp page 219
index.jsp page 221

ViewResolver, Spring MVC
about 201, 202
coniguring, for JSP 202

W

weaving
about 347
runtime weaving 347
stages 347

web application, logging
anonymous login 255, 259
form-based login service 255-258
HTTP basic authentication 255, 256
logout service 255, 259
Remember Me support 255, 260

Web module 14

Thank you for buying

Learning Spring Application Development

About Packt Publishing
Packt, pronounced 'packed', published its irst book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it irst before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring MVC Beginner's Guide
ISBN: 978-1-78328-487-0 Paperback: 304 pages

Your ultimate guide to building a complete web
application using all the capabilities of Spring MVC

1. Carefully crafted exercises, with detailed
explanations for each step, to help you
understand the concepts with ease.

2. You will gain a clear understanding of the end
to end request/response life cycle, and each
logical component's responsibility.

3. Packed with tips and tricks that will
demonstrate the industry best practices on
developing a Spring-MVC-based application.

Web Application Development

with Yii 2 and PHP
ISBN: 978-1-78398-188-5 Paperback: 406 pages

Fast-track your web application development using
the new generation Yii PHP framework

1. Implement real-world web application
features eficiently using the Yii
development framework.

2. Each chapter provides micro-examples that
build upon each other to create the inal
macro-example, a basic CRM application.

3. Filled with useful tasks to improve the
maintainability of your applications.

Please check www.PacktPub.com for information on our titles

Mockito for Spring
ISBN: 978-1-78398-378-0 Paperback: 178 pages

Learn all you need to know about the Spring
Framework and how to unit test your projects
with Mockito

1. Learn about the Spring testing framework,
stubbing, mocking, and spying dependencies
using the Mockito framework and explore its
advanced features.

2. Create an automated JUnit safety net
for building a reliable, maintainable,
and testable software.

3. Step-by-step tutorial stuffed with
real-world examples.

Spring Security [Video]
ISBN: 978-1-78216-865-2 Duration: 02:10 hours

An empirical approach to securing your
web applications

1. Fully secure your web application with
Spring Security.

2. Implement authentication and registration
with the database as well as with LDAP.

3. Utilize authorization examples that help
guide you through the authentication of
users step-by-step.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing the
Spring Framework
	Introducing Spring
	Features of Spring
	Other features of Spring

	Evolution of the Spring Framework
	Spring Framework Architecture
	Spring Core Container
	The AOP module
	Data access/integration
	The Web module
	Test module

	Benefits of the Spring Framework
	Creating an application in Spring
	Obtaining Spring JAR files
	Understanding Spring packaging
	SpringSource Tool Suite
	Spring application
	Creating a Spring project
	Adding required libraries
	Creating source files
	Creating the Spring bean configuration file
	Running the program

	Exercise
	Summary

	Chapter 2: Inversion of Control in Spring
	Understanding Inversion of Control
	What is a container
	Spring Container
	Beans
	BeanFactory
	ApplicationContext

	Dependency Injection
	Dependency Injection in Spring
	The Has-A relationship
	Constructor-based Dependency Injection
	The setter-based Dependency Injection

	Injecting inner beans
	Injecting null and empty string values in Spring
	Case 1 – injecting an empty string
	Case 2 – injecting a null value

	Bean definition inheritance
	Inheritance with abstract

	Autowiring in Spring
	Autowiring modes
	Autowiring using the no option
	Autowiring using the byname option
	Autowiring using the byType option
	Autowiring using the constructor

	Bean's scope
	Singleton
	Prototype
	Request
	Session
	Global session

	Spring bean life cycle
	Initialization
	Activation
	Destruction
	Initialization callbacks
	Implementing the org.springframework.beans.factory.InitializingBean interface
	Using init-method in the XML configuration

	Destruction callbacks
	Implementing the org.springframework.beans.factory.DisposableBean interface
	Using destroy-method in the XML configuration

	Exercise
	Summary

	Chapter 3: DAO and JDBC in Spring
	Overview of database
	The DAO design pattern
	The DAO layer

	JDBC without Spring
	Sample code
	ADD drivers specific to database into the project
	Directory structure of the application

	Spring JDBC packages
	JDBC with Spring
	DataSource
	DataSource in the DAO class
	Directory structure of the application

	What is JdbcTemplate
	Configuring the JdbcTemplate object as Spring bean
	The Spring.xml file

	Functionality exposed by the JdbcTemplate class
	Querying (select)
	Updating (Insert-Update-Delete)
	Other JdbcTemplate operations

	Directory structure of the application
	The Employee.java file
	The EmployeeDao.java file
	The EmployeeDaoImpl.java file

	JDBC batch operation in Spring
	Directory structure of the application
	The EmployeeDaoImpl.java file
	The HrPayrollBatchUpdate.java file

	Calling a stored procedure
	Using the SimpleJdbcCall class
	Calling a stored procedure

	Exercise
	Summary

	Chapter 4: Hibernate with Spring
	Why Object/Relational Mapping?
	Introducing ORM, O/RM, and O/R mapping
	Introducing Hibernate
	Hibernate architecture
	Configuration
	SessionFactory
	Session
	Transaction
	Query
	Criteria
	The Persistent object

	Integrating Hibernate with the Spring Framework
	Sample data model for example code
	Integrating Hibernate
	Required JARs for the Spring-Hibernate project
	Configuring Hibernate SessionFactory in Spring
	XML Spring configuration for Hibernate

	Annotated domain model class
	The Hibernate sessions
	The Session interface methods

	Persistence layer – implement DAOs
	The EmployeeDao interface
	The EmployeeDaoImpl class

	Service layer – implement services
	The EmployeeService interface
	The EmployeeServiceImpl class

	Directory structure of the application
	Running the application
	The DBUtils class
	The SpringHibernateMain class
	Output to console
	Populated data in the Employee table

	Hibernate Query Language
	The Query interface
	Database operation using HQL
	The FROM clause
	The AS clause
	The SELECT clause
	The WHERE clause
	The ORDER BY clause
	The GROUP BY clause
	Using the named parameter
	The UPDATE clause
	The DELETE clause
	Pagination using Query

	Hibernate Criteria Query Language
	The Criteria interface
	Restrictions with Criteria

	Exercises
	Summary

	Chapter 5: Spring Web MVC Framework
	MVC architecture and separation of concern
	Front Controller Design Pattern
	Understanding Spring MVC
	Features of Spring MVC framework
	Flow of request handling in Spring MVC

	Developing a simple Spring MVC application
	Creating a new Maven project
	Adding Spring MVC dependencies to pom.xml
	Configuring the application
	The /WEB-INF/web.xml file
	The /WEB-INF/SpringDispatcher-servlet.xml file

	Creating the controller – EmployeeController
	Creating the view – hello.jsp
	Running the application

	DispatcherServlet in Spring MVC
	DispatcherServlet in deployment descriptor – web.xml
	Registering Spring MVC configuration file location

	Spring configuration – SpringDispatcher-servlet.xml
	Controllers in Spring MVC
	The @Controller annotation to define a controller
	The @RequestMapping annotation to map requests
	Mapping requests at class level
	Mapping requests at method level
	Properties information in @RequestMapping
	Method parameters of @RequestMapping
	Return values in @RequestMapping annotated methods

	ViewResolver in Spring MVC
	Configuring ViewResolver for JSP as view technology

	Model in Spring MVC
	Spring MVC with Hibernate integration
	Application architecture
	Sample data model for example code
	Project structure
	The pom.xml file
	The hibernate.properties file

	The SpringDispatcher-servlet.xml file
	Hibernate model class – entity class
	The DAO layer
	The EmployeeDao interface
	The EmployeeDao implementation

	The service layer
	The EmployeeService interface
	The EmployeeService implementation

	Spring MVC controller classes
	The View page
	The hello.jsp page
	The employee.jsp page
	The index.jsp page

	Running the application

	Exception handling using
@ControllerAdvice
	The GenericException class
	The SpringException class
	The EmployeeController class
	The hello.jsp page
	The exception.jsp page
	Running the application

	Spring MVC internationalization (i18n)
	The properties file
	Spring configuration
	ReloadableResourceBundleMessageSource
	LocaleChangeInterceptor
	SessionLocaleResolver

	The hello.jsp page
	Running the application

	Handling form with the controller
	ModelAndView in Spring MVC
	Spring MVC Controller class
	@ModelAttribute in the controller class
	ModelMap in the controller class

	The View page
	Spring MVC form
	Running the application

	Exercises
	Summary

	Chapter 6: Spring Security
	What is Spring Security?
	Major operations

	Servlet filters review
	Security use case
	Spring Security configuration
	Spring Security setup
	Adding JARs to classpath
	Spring Security dependencies – pom.xml

	Namespace configuration

	Securing web application's URL access
	The first step – web.xml
	Separating security configurations

	Logging into web application
	HTTP basic authentication
	Form-based login service
	Logout service
	Anonymous login
	Remember Me support

	Users authentication
	Users authentication with in-memory definitions
	Users authentication against database
	Encrypting passwords

	Method-level security
	Let's get down to business
	Project structure
	Adding filters to web.xml
	Resolving your view
	Let's add a custom login
	Mapping your login requests
	Obtaining the employee list
	Let's see some credentials
	Time to log out
	Running the application

	Exercises
	Summary

	Chapter 7: Spring Testing
	Testing using JUnit 4
	JUnit 4 annotations
	Assert methods
	Example of JUnit 4

	Testing using TestNG
	TestNG annotations
	Example of TestNG

	Agile software testing
	Unit testing
	Unit testing for isolated classes
	Unit testing for dependent class using mock objects
	The Mockito framework

	Integration testing

	Create unit tests of the Spring MVC controller
	Spring MVC test framework
	Required dependencies
	Annotations in Spring testing
	The @ContextConfiguration annotation
	The @WebAppConfiguration annotation

	MockMvc
	Assertion

	@RunWith(SpringJUnit4ClassRunner.class)

	Exercise
	Summary

	Chapter 8: Integrating JavaMail and
JMS with Spring
	E-mail support in Spring
	Introducing the JavaMail API
	Using the JavaMail API
	The Spring API for JavaMail
	Developing a Spring mail application
	Configuration file – Spring.xml
	Spring's e-mail sender
	The run MailerTest.java class

	Spring Java Messaging Service
	What is a message and messaging?
	What is JMS?
	JMS application
	JMS components

	MOM Service Provider
	Configuring ActiveMQ – message queue

	Spring bean configuration (Spring.xml)
	MessageSender.java – Spring JMS Template
	App.java
	Start ActiveMQ
	Output
	Monitoring the broker
	Exception on running App.java

	Exercise
	Summary

	Appendix A: Solutions to Exercises
	Appendix B: Setting up the Application Database – Apache Derby
	Index

