
www.allitebooks.com

http://www.allitebooks.org

Learning Vaadin 7
Second Edition

Master the full range of web development features
powered by Vaadin-built rich Internet applications

Nicolas Fränkel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Vaadin 7
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2011

Second edition: September 2013

Production Reference: 1050913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-977-2

www.packtpub.com

Cover Image courtesy of www.public-domain-image.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nicolas Fränkel

Reviewers
Martin Cremer

Jonatan Kronqvist

Jouni Lehto

Tomek Lipski

Michael Vogt

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Madhuja Chaudhari

Technical Editors
Dipika Gaonkar

Dennis John

Mrunmayee Patil

Shali Sasidharan

Sonali Vernekar

Project Coordinator
Wendell Palmer

Proofreader
Samantha Lyon

Indexer
Hemangini Bari

Graphics
Valentina Dsilva

Sheetal Aute

Disha Haria

Abhinash Sahu

Ronak Dhruv

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

When we started designing Vaadin Framework in the year 2000—then called
Millstone Framework—we had a clear vision of creating a platform that would
make building web applications fast, easy, and modular; something that we wanted
to use by ourselves in the process of building business-oriented web applications.
We envisioned a full stack of technologies starting from a web server, an object
relationship mapping tool, a rich set of user interface components, and an extensible
theme system. Everything built from scratch with a tiny team with no funding and
little experience. Fortunately we did not have a clue about the size and complexity of
the task or the lack of our experience—otherwise we would have never dared to start
working on such a huge task. Finally, it took two years and three complete rewrites
to understand the value of focusing solely on the user interface layer and being able
to release something solid that has outgrown all the expectations we had.

Now when I look back at the design principles we chose for Vaadin, three principles
in particular seem to have contributed to the longevity of the framework. First, we
reasoned that the diversity and incompatibility of the web browsers we experienced
back in the year 2000 was not going away—quite the contrary. While the Web is
today the de facto platform for building all kinds of user interfaces, the capabilities
of web browsers seem almost unlimited today and the number of web browsers
has grown to include smartphones and tablets in addition to the handful of desktop
browsers that should be supported by most applications. So we chose to embrace
this complexity and abstract away from the browser to make it easier for developers
to support "all" browsers at once. Secondly, we set our optimization target to be
developer efficient, which in most cases can be roughly measured by the number
of code lines in the user interface layer of the program. This has been a good choice
as developers continue to be a more expensive resource in business application
projects than servers. Finally, we recognized the need to support the heterogeneous
teams where some developers might be more experienced than others. Some of
the mechanisms to support the teams include theme packaging, multiple levels of
abstraction, support for data bindings side-by-side with internal data in components,
and deep inheritance hierarchies for user interface components to name a few.

www.allitebooks.com

http://www.allitebooks.org

Vaadin 7 has been the holy grail to our team for as long as I can remember.
Somewhere after releasing IT Mill Toolkit 4 in 2007 we started dreaming of all the
changes we should be making to the core of the framework to remove some of the
shortcomings we felt it had. We started building up a huge backlog of things we
should fix sometime soon when we have the time to do so and the courage to tear
down parts of the old design. Then came IT Mill Toolkit 5 with the GWT-based
client side and later on Vaadin 6. While they both included important features, they
skipped many of the hard design choices in our "someday when we have the time"
backlog. And we still believed that the time to do these would come really soon after
the release of Vaadin 6. What happened was that we underestimated the success of
Vaadin 6 and ended up releasing eight minor releases to it during 2009 to 2012. This
took all of our focus and we pushed Vaadin 7 even further. Finally near the end of
2011, we decided that we cannot push Vaadin 7 any further and this would be the
right time to make all the important changes we have been dreaming of.

While we thought we succeeded in cutting down the number of features in the
release to an amount that it would be doable and fully finished in nine months, we
ended up using almost twice that time and even then had to leave big things out
from the release. But oh boy! We managed to get in over 60 new features, including
a huge deal of merging Google Web Toolkit directly inside the Vaadin Framework.
With this release, we also shifted the underlying philosophy of the framework by
recognizing that all the three layers of abstraction that the framework implements
should be equally accessible to the software developers: server-side Java, client-side
compiled Java, and client-side JavaScript. This effectively changed Vaadin from
being a server-side only framework that abstracts away from the Web to being a full
stack framework that bridges Java and HTML5 platforms in a coherent way that
supports the developers on all of its levels.

I have always been a huge fan of open source since being introduced to it by starting
to play around with Linux kernel 0.3 and early Linux distributions. Working on,
living in, and breathing open source did make it natural to choose to release Vaadin
with an open source license and to build a community around it. After years of
trying and failing to build an impactful community, all pieces finally clicked together
in 2009 with the release of Vaadin 6. Seeing how people all over the world started to
use Vaadin for building applications their businesses depended on for years to come
had been great. What has been even more amazing is how people have started to
contribute back to Vaadin—in terms of add-on components, helping each other on
the forums, and promoting the framework to their peers. At the end of the day,
a lively and friendly community and an ecosystem around Vaadin has been the
key to the rapid growth of adoption.

www.allitebooks.com

http://www.allitebooks.org

I think that I first heard of Nicolas Fränkel by reading one of his many insightful
blog posts some years back. I also remember him being one of the more active
Vaadin community members helping others on the forum. At one time Nicolas
invited me to a really nice dinner in Geneva where I was visiting the SoftShake
conference to discuss about Vaadin and overeat the excellent Swiss fondue. During
the dinner, we ended up talking about the need for a book that would tutor
beginners through Vaadin and would introduce them to common patterns for
Vaadin development. I remember getting contacted by Packt Publishing about
getting in touch with potential authors for such a book. Nicolas had quite a lot of
Vaadin experience and I asked if he would be interested in considering writing the
book. To my surprise he agreed and the first edition of this book was born. Later
on when Vaadin 7 was published, Nicolas decided to update the book to cover this
newly released Version 7. I am sure that Nicolas underestimated the effort needed
in writing about Vaadin 7 the same way as our team did while developing it. Maybe
even for the same reason—the list of new things in Vaadin 7 is huge.

You might be familiar with Book of Vaadin—a free book about Vaadin. While
being a very complete reference to Vaadin and anything related to it, the amount
of content and the reference-like approach can make it overwhelming for a beginner.
This book takes another approach. Instead of trying to be a reference, it teaches
Vaadin concepts by introducing them one-by-one in an order natural for learning.
It is written as a journey of building a simple Twitter client while learning the most
important aspects of Vaadin—one-by-one.

In conclusion, I'd like to give my deep thanks to Nicolas for taking the challenge
of writing this book, which I am sure, will help many people to get a quick start for
writing Vaadin-based applications. I hope that these applications will benefit the
companies investing in them as well as save a lot of time and frustration from the end
users. But at the end of the day, it is most important to me—and I am sure that Nicolas
shares this too—that you as a developer of those applications will save your time and
frustration and be able to accomplish something that would not be possible otherwise.

Dr. Joonas Lehtinen
CEO and Founder, Vaadin

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nicolas Fränkel operates as a successful Java/Java EE architect with more than 10
years' experience in consulting for different clients.

Based in France, he also practices (or has practiced) as a WebSphere Application
Server administrator, a certified Valtech trainer, and a part-time lecturer in different
French universities, so as to broaden his understanding of software craftsmanship.

His interests in IT are diversified, ranging from Rich Client Application, to Quality
Processes through open source software and build automation. When not tinkering
with new products or writing blog posts, he may be found practicing sports: squash,
kickboxing, and skiing at the moment. Other leisure activities include reading
novels, motorcycles, photography, and drawing, not necessarily in that order.

I'd like to thank the Vaadin team for all its glory, the product is
awesome, guys! Keep up the good work. I would also like to thank
my wonderful wife Corinne for letting me sin once again, this time
in full understanding of the time it takes. I love you more after each
passing year. My son Dorian, this is only the beginning.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Martin Cremer is working as an architect for a company in the financial
sector. His work focuses on maintaining and developing reference architecture
for web-based enterprise applications with Vaadin as well as supporting developers
in their daily work.

Jonatan Kronqvist completed his M.Sc. and has been working with Vaadin Ltd.,
the company behind the Vaadin framework, since 2006. During this time, he has
been a Vaadin consultant, a project manager, and a core developer of the Vaadin
framework. Currently he spends his time focusing on add-ons and tools for easing
development with Vaadin.

Before going full time on Vaadin, he has worked on many different projects ranging
from advanced 3D graphics at a CAD software company to leading the development
of a popular computer game for children.

Jouni Lehto has over 10 years' experience on different kind of web technologies
and has been involved in a few projects where Vaadin has been the choice.

www.allitebooks.com

http://www.allitebooks.org

Tomek Lipski is an open source enthusiast and evangelist. He has over
16 years' commercial experience in IT, and 10 years' experience working in
portal, enterprise integration, VAS, and traditional IT areas for the biggest
companies in Central Europe.

In 2011, Lipski designed and coordinated an implementation and launch of Aperte
workflow—an open source BPMS. Aperte workflow utilizes the OSGi plugin
management system to provide flexible solutions combining several popular
open source Java-based technologies, such as Vaadin, Liferay, and Activiti.

You can follow @tomeklipski on Twitter or check out his blog at
http://blog.tomeklipski.com.

Michael Vogt started his career in 2000 at Apple, Germany as a WebObjects
developer. Since then he has worked in many different companies and countries,
mostly as a freelancer on GWT projects. Currently he works in the service
department of Vaadin.

http://blog.tomeklipski.com/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Vaadin and its Context	 7

Rich applications	 8
Application tiers	 8

Tier migration	 9
Limitations of the thin-client applications approach	 11

Poor choice of controls	 11
Many unrelated technologies	 12
Browser compatibility	 14
Page flow paradigm	 14

Beyond the limits	 15
What are rich clients?	 15
Some rich client approaches	 16

Why Vaadin?	 20
State of the market	 20
Importance of Vaadin	 20
Vaadin integration	 21

Integrated frameworks	 21
Integration platforms	 22

Using Vaadin in the real world	 23
Concerns about using a new technology	 23

Summary	 25
Chapter 2: Environment Setup	 27

Vaadin in Eclipse	 27
Setting up Eclipse	 28

When Eclipse is not installed	 28
Installing the Vaadin plugin	 30
Creating a server runtime	 32
Creating our first Eclipse Vaadin project	 32
Testing our application	 35

Table of Contents

[ii]

When Eclipse is already installed	 36
Checking if WTP is present	 36
Adding WTP to Eclipse	 37

Vaadin in IntelliJ IDEA	 39
Setting up IntelliJ	 40
Adding the Vaadin 7 plugin	 43
Creating our first IntelliJ IDEA Vaadin project	 44

Adjusting the result	 45
Adding framework support	 46
Deploying the application automatically	 46

Testing the application	 47
Final touches	 47

Changing the Vaadin version	 47
Context-root	 48
Servlet mapping	 49

Vaadin and other IDEs	 49
Adding Vaadin libraries	 49
Creating the application	 49
Adding the servlet mapping	 50

Declaring the servlet class	 51
Declaring Vaadin's entry point	 51
Declaring the servlet mapping	 51

Summary	 52
Chapter 3: Hello Vaadin!	 53

Understanding Vaadin	 53
Vaadin's philosophy	 54
Vaadin's architecture	 55

Client-server communication	 56
The client part	 57
The server part	 59
Client-server synchronization	 60

Deploying a Vaadin application	 60
Inside the IDE	 61

Creating an IDE-managed server	 61
Adding the application	 63
Launching the server	 63

Outside the IDE	 65
Creating the WAR	 65
Launching the server	 65

Using Vaadin applications	 66
Browsing Vaadin	 66
Out-of-the-box helpers	 66

The debug mode	 67
Restart the application, not the server	 69

Table of Contents

[iii]

Behind the surface	 69
Stream redirection to a Vaadin servlet	 69
Vaadin request handling	 70
What does a UI do?	 71

UI features	 71
UI configuration	 72
UI and session	 72

Scratching the surface	 73
The source code	 74
The generated code	 74
Things of interest	 75

Summary	 76
Chapter 4: Components and Layouts	 77

Thinking in components	 77
Terminology	 78
Component class design	 78

Component	 79
MethodEventSource	 80
Abstract client connector	 80
Abstract component	 80

UIs	 81
HasComponents	 82
Single component container	 82
UI	 83
Panel	 83

Windows	 84
Window structure	 84
Customizing windows	 85

Labels	 86
Label class hierarchy	 87
Property	 87
Label	 88

Text inputs	 89
Conversion	 90
Validation	 92
Change buffer	 96
Input	 97

More Vaadin goodness	 102
Page	 102
Third-party content	 104
User messages	 106

Laying out the components	 110
Size	 110
Layouts	 112

About layouts	 112

Table of Contents

[iv]

Component container	 112
Layout and abstract layout	 113
Layout types	 113
Choosing the right layout	 116

Split panels	 117
Bringing it all together	 118

Introducing Twaattin	 118
The Twaattin design	 118
The login screen	 118
The main screen	 118

Let's code!	 118
Project setup	 119
Project sources	 119

Summary	 122
Chapter 5: Event Listener Model	 125

Event-driven model	 125
The observer pattern	 125

Enhancements to the pattern	 126
Events in Java EE	 127

UI events	 128
Event model in Vaadin	 129

Standard event implementation	 129
Event class hierarchy	 130
Listener interfaces	 131
Managing listeners	 133
Method event source details	 133
Abstract component and event router	 134

Expanding our view	 135
Button	 135

Events outside UI	 136
User change event	 136

Architectural considerations	 137
Anonymous inner classes as listeners	 138
Components as listeners	 138
Presenters as listeners	 139
Services as listeners	 140
Conclusion on architecture	 140

Twaattin is back	 141
Project sources	 141
Additional features	 144

Summary	 145

Table of Contents

[v]

Chapter 6: Containers and Related Components	 147
Data binding	 147

Data binding properties	 148
Renderer and editor	 148
Buffering	 148
Data binding	 149

Data in Vaadin	 149
Entity abstraction	 149

Property	 149
Item	 156
Container	 168

Containers and the GUI	 176
Container datasource	 177
Container components	 181
Tables	 186
Trees	 204

Refining Twaattin	 205
Prerequisites	 206
Adaptations	 206
Sources	 206

The login screen	 207
The login behavior	 208
The timeline screen	 208
The tweets refresh behavior	 210
Column generators	 212

Summary	 215
Chapter 7: Core Advanced Features	 217

Accessing the JavaEE API	 217
Servlet request	 218
Servlet response	 220
Wrapped session	 222

Navigation API	 222
URL fragment	 223
Views	 223
Navigator	 224

Initial view	 227
Error view	 227
Dynamic view providers	 227

Event model around the Navigation API	 230
Final word on the Navigator API	 230

Embedding Vaadin	 230
Basic embedding	 231

Table of Contents

[vi]

Nominal embedding	 232
Page headers	 232
The div proper	 232
The bootstrap script	 233
UI initialization call	 233

Real-world error handling	 236
The error messages	 236
Component error handling	 237
General error handling	 240

SQL container	 244
Architecture	 245
Features	 246
Queries and connections	 246
Database compatibility	 248
Joins	 253

References	 254
Free form queries	 256

Related add-ons	 259
Server push	 260

Push innards	 261
Installation	 262
How-to	 262
Example	 263

Twaattin improves!	 265
Ivy dependencies	 265
Twaattin UI	 266
Tweet refresher behavior	 268
Twitter service	 269

Summary	 269
Chapter 8: Featured Add-ons	 271

Vaadin add-ons directory	 271
Add-ons search	 272
Typology	 272
Stability	 272
Add-ons presentation	 273

Summarized view	 273
Detailed view	 273

Noteworthy add-ons	 276
Button group	 276

Prerequisites	 276
Core concepts	 276
How-to	 279
Conclusion	 281

Table of Contents

[vii]

Clara	 281
Prerequisites	 282
How-to	 282
Limitations	 284
Conclusion	 285

JPA Container	 285
Concepts	 286
Prerequisites	 286
How-to	 296
Conclusion	 298

CDI Utils	 298
Core concepts	 299
Prerequisites	 300
How-to	 300
Conclusion	 305

Summary	 306
Chapter 9: Creating and Extending Components and Widgets	 307

Component composition	 307
Manual composition	 308
Designing custom components	 311
Graphic composition	 311

Visual editor setup	 311
Visual Designer use	 312
Limitations	 315

Client-side extensions	 316
Connector architecture	 316
How-to	 318

Shared state	 321
How-to	 321

Server RPC	 323
Server RPC architecture	 323
How-to	 324

GWT widget wrapping	 326
Vaadin GWT architecture	 326
How-to server-side	 326
How-to client-side	 326

Widget styling	 328
Example	 328

Prerequisites	 329
Server component	 329
Client classes	 330

JavaScript wrapping	 332
How-to	 333

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Example	 333
Prerequisites	 334
Core	 334

Componentized Twaattin	 337
Designing the component	 337
Updating Twaattin's code	 338

Data Transfer Object	 338
Status component	 339
Status converter	 341
Timeline screen	 341

Summary	 343
Chapter 10: Enterprise Integration	 345

Build tools	 345
Available tools	 346

Apache Ant	 346
Apache Maven	 346
Fragmentation	 347
Final choice	 347

Tooling	 347
Maven in Vaadin projects	 348

Mavenize Vaadin projects	 348
Vaadin support for Maven projects	 349

Mavenizing Twaattin	 353
Preparing the migration	 353
Enabling dependency management	 354
Finishing touches	 354
Final POM	 355

Portals	 355
Portal, container, and portlet	 355
Choosing a platform	 356

Liferay	 356
GateIn	 357

Tooling	 359
A simple portlet	 359

Creating a project	 359
Portlet project differences	 359
Using the portlet in GateIn	 363

Configuring GateIn for Vaadin	 365
Themes and widgetsets	 365

Advanced integration	 367
Restart and debug	 367
Handling portlet specifics	 368

Portlet development strategies	 372
Keep our portlet servlet-compatible	 372

Table of Contents

[ix]

Portal debug mode	 372
Updating a deployed portlet	 373

OSGi	 374
Choosing a platform	 375

Glassfish	 376
Tooling	 380
Vaadin OSGi use cases	 380

Vaadin bundling	 380
Modularization	 381

Hello OSGi	 381
Making a bundle	 381
Export, deploy, and run	 383
Correcting errors	 383

Integrating Twaattin	 385
Bundle plugin	 385
Multiplatform build	 388

Cloud	 389
Cloud offering levels	 389
State of the market	 390
Hello cloud	 391

Registration	 391
Cloud setup	 391
Application deployment	 394

Summary	 395
Index	 397

Preface
Vaadin is a component-based Java web framework for making applications look
great and perform well, making your users happy. Vaadin promises to make your
user interfaces attractive and usable while easing your development efforts and
boosting your productivity. After having read this book, you will be able to utilize
the full range of development and deployment features offered by Vaadin while
thoroughly understanding the concepts.

Learning Vaadin 7 Second Edition is a practical systematic tutorial to understand,
use, and master the art of RIA development with Vaadin. You will learn about the
fundamental concepts that are the cornerstones of the framework, at the same time
making progress on building your own web application. The book will also show
you how to integrate Vaadin with other popular frameworks and how to run it on
top of internal, as well as externalized infrastructures.

This book will show you how to become a professional Vaadin developer by giving
you a concrete foundation through diagrams, practical examples, and ready-to-use
source code. It will enable you to grasp all the notions behind Vaadin one-step at
a time: components, layouts, events, containers, and bindings. You will learn to
build first-class web applications using best-of-breed technologies. You will find
detailed information on how to integrate Vaadin's presentation layer on top of other
widespread technologies, such as CDI and JPA. Finally, the book will show you how
to deploy on different infrastructures, such as GateIn portlet container and Cloud
platform Jelastic.

This book is an authoritative and complete systematic tutorial on how to create
top-notch web applications with the RIA Vaadin framework.

Preface

[2]

What this book covers
Chapter 1, Vaadin and its Context, introduces Vaadin, its features, its philosophy,
and its surrounding environment.

Chapter 2, Environment Setup, describes how to set up the development environment,
whether using Eclipse or IntelliJ IDEA.

Chapter 3, Hello Vaadin!, creates a basic Vaadin project and explains what happens
under the hood.

Chapter 4, Components and Layouts, presents simple building blocks for any Vaadin
application worth its salt.

Chapter 5, Event Listener Model, illustrates the interactions between users and your
application and how they are implemented in Vaadin.

Chapter 6, Containers and Related Components, explains not only components
presenting beans collections, but also how they can be bound to the underlying data.

Chapter 7, Core Advanced Features, portrays advanced use-cases addressing
real-life problems, such as using the Navigation API, running Vaadin applications
inside legacy ones, error handling customization, data source binding, and the
ever-popular server push.

Chapter 8, Featured Add-ons, lists some extra-features such as GUI declarative
description through XML, client widgets integration, JPA and CDI integration.
These are available with additional libraries known as add-ons.

Chapter 9, Creating and Extending Components and Widgets, details how to create new
and extend existing server-side components and client-side widgets.

Chapter 10, Enterprise Integration, describes how to deploy Vaadin applications in other
contexts commonly found in enterprise environment: portals such as JBoss GateIn,
OSGi platforms using Glassfish and finally "the cloud" with provider Jelastic.

What you need for this book
In order to get the most out of this book, it's advised to have a computer,
a Java Developer Kit 6/7 installed as well as an Internet access.

Helpful tools include a Java IDE, Eclipse or IntelliJ IDEA, the Tomcat servlet
container, and the Glassfish Application Server.

Preface

[3]

Who this book is for
If you are a Java developer with some experience in Java web development and
want to enter the world of Rich Internet Applications, then this technology and
book are ideal for you. Learning Vaadin 7 Second Edition will be perfect as your
next step towards building eye-candy dynamic web applications on the JVM.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Every component is declared as an
attribute and assigned a @AutoGenerated annotation."

A block of code is set as follows:

public class DisableOnClickButtonExtension extends AbstractExtension {

 public DisableOnClickButtonExtension(String disabledLabel) {

 getState().setDisabledLabel(disabledLabel);
 }

 ...
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

@Connect(DisableOnClickButtonExtension.class)
public class DisableOnClickButtonConnector extends
AbstractExtensionConnector {

 @Override

 public DisableOnClickButtonSharedState getState() {

 return (DisableOnClickButtonSharedState) super.getState();

 }

 ...
}

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now, just go the File menu and click on New".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Vaadin and its Context
Developing Java applications and more specifically, developing Java web
applications should be fun. Instead, most projects are a mess of sweat and toil,
pressure and delays, costs and cost cutting. Web development has lost its appeal.
Yet, among the many frameworks available, there is one in particular that draws
our attention because of its ease of use and its original stance. It has been around
since the past decade and has begun to grow in importance. The name of this
framework is Vaadin. The goal of this book is to see, step-by-step, how to
develop web applications with Vaadin.

Vaadin is the Finnish word for a female reindeer (as well as a
Finnish goddess). This piece of information will do marvels to
your social life as you are now one of the few people on Earth
who know this (outside Finland).

We are going to see Vaadin in detail in later chapters; the following is a preview
of what it is:

•	 A component-based approach that really works, and provides a bunch
of out-of-the-box components as well as extensions

•	 Full web compatibility, in addition to Google Web Toolkit
•	 All development is made completely in Java
•	 Most of the code can be run server-side, taking advantages of Java static

typing, with the full power of dynamic update tools such as JRebel
•	 Integration with Eclipse and IntelliJ IDEA IDEs
•	 Available with no charge under a friendly Open Source Apache license

and much, much more

www.allitebooks.com

http://www.allitebooks.org

Vaadin and its Context

[8]

Before diving right into Vaadin, it is important to understand what led to its creation.
Readers who already have this information (or who don't care) should go directly to
Chapter 2, Environment Setup.

In this chapter, we will look into the following:

•	 The evolution from mainframe toward the rich client.
°° The concept of application tier
°° The many limits of the thin-client approach
°° What stands beyond those limits

•	 Why choose Vaadin today?

°° The state of the market
°° Vaadin's place in the market
°° A preview of what other frameworks Vaadin can be integrated

with and what platforms it can run on

Rich applications
Vaadin is often referred to as a Rich Internet Application (RIA) framework. Before
explaining why, we need to first define some terms which will help us describe the
framework. In particular, we will have a look at application tiers, the different kind
of clients, and their history.

Application tiers
Some software run locally, that is, on the client machine and some run remotely, such
as on a server machine. Some applications also run on both the client and the server.
For example, when requesting an article from a website, we interact with a browser on
the client side but the order itself is passed on a server in the form of a request.

Traditionally, all applications can be logically separated into tiers, each having
different responsibilities as follows:

•	 Presentation: The presentation tier is responsible for displaying the
end-user information and interaction. It is the realm of the user interface.

•	 Business Logic: The logic tier is responsible for controlling the application
logic and functionality. It is also known as the application tier, or the middle
tier as it is the glue between the other two surrounding tiers, thus leading to
the term middleware.

Chapter 1

[9]

•	 Data: The data tier is responsible for storing and retrieving data.
This backend may be a file system. In most cases, it is a database,
whether relational, flat, or even an object-oriented one.

This categorization not only naturally corresponds to specialized features,
but also allows you to physically separate your system into different parts,
so that you can change a tier with reduced impact on adjacent tiers and no
impact on non-adjacent tiers.

Tier migration
In the history of computers and computer software, these three tiers have
moved back and forth between the server and the client.

Mainframes
When computers were mainframes, all tiers were handled by the server. Mainframes
stored data, processed it, and were also responsible for the layout of the presentation.
Clients were dumb terminals, suited only for displaying characters on the screen and
accepting the user input.

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Client server
Not many companies could afford the acquisition of a mainframe (and many still
cannot). Yet, those same companies could not do without computers at all, because
the growing complexity of business processes needed automation. This development
in personal computers led to a decrease in their cost. With the need to share data
between them, the network traffic rose.

Vaadin and its Context

[10]

This period in history saw the rise of the personal computer, as well as the
Client server term, as there was now a true client. The presentation and logic
tier moved locally, while shared databases were remotely accessible, as shown
in the following diagram:

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Thin clients
Big companies migrating from mainframes to client-server architectures thought
that deploying software on ten client machines on the same site was relatively easy
and could be done in a few hours. However, they quickly became aware of the fact
that with the number of machines growing in a multi-site business, it could quickly
become a nightmare.

Enterprises also found that it was not only the development phase that had to be
managed like a project, but also the installation phase. When upgrading either the
client or the server, you most likely found that the installation time was high, which
in turn led to downtime and that led to additional business costs.

Around 1991, Sir Tim Berners-Lee invented the Hyper Text Markup Language,
better known as HTML. Some time after that, people changed its original use,
which was to navigate between documents, to make HTML-based web applications.
This solved the deployment problem as the logic tier was run on a single-server node
(or a cluster), and each client connected to this server. A deployment could be done
in a matter of minutes, at worst overnight, which was a huge improvement. The
presentation layer was still hosted on the client, with the browser responsible for
displaying the user interface and handling user interaction.

Chapter 1

[11]

This new approach brought new terms, which are as follows:

•	 The old client-server architecture was now referred to as fat client.
•	 The new architecture was coined as thin client, as shown in the

following diagram:

Client Server

Pr
es

en
ta

tio
n

Lo
gi

c

D
at

a

Limitations of the thin-client applications
approach
Unfortunately, this evolution was made for financial reasons and did not take
into account some very important drawbacks of the thin client.

Poor choice of controls
HTML does not support many controls, and what is available is not on par with
fat-client technologies. Consider, for example, the list box: in any fat client, choices
displayed to the user can be filtered according to what is typed in the control. In
legacy HTML, there's no such feature and all lines are displayed in all cases. Even
with HTML5, which is supposed to add this feature, it is sadly not implemented in
all browsers. This is a usability disaster if you need to display the list of countries
(more than 200 entries!). As such, ergonomics of true thin clients have nothing to
do with their fat-client ancestors.

Vaadin and its Context

[12]

Many unrelated technologies
Developers of fat-client applications have to learn only two languages: SQL
and the technology's language, such as Visual Basic, Java, and so on.

Web developers, on the contrary, have to learn an entire stack of technologies,
both on the client side and on the server side.

On the client side, the following are the requirements:

•	 First, of course, is HTML. It is the basis of all web applications, and although
some do not consider it a programming language per se, every web developer
must learn it so that they can create content to be displayed by browsers.

•	 In order to apply some common styling to your application, one will
probably have to learn the Cascading Style Sheets (CSS) technology. CSS is
available in three main versions, each version being more or less supported
by browser version combinations (see Browser compatibility).

•	 Most of the time, it is nice to have some interactivity on the client side, like
pop-up windows or others. In this case, we will need a scripting technology
such as ECMAScript.

ECMAScript is the specification of which JavaScript is an
implementation (along with ActionScript). It is standardized
by the ECMA organization. See http://www.ecma-
international.org/publications/standards/
Ecma-262.htm for more information on the subject.

•	 Finally, one will probably need to update the structure of the HTML
page, a healthy dose of knowledge of the Document Object Model
(DOM) is necessary.

As a side note, consider that HTML, CSS, and DOM are W3C
specifications while ECMAScript is an ECMA standard.

From a Java point-of-view and on the server side, the following are the requirements:

•	 As servlets are the most common form of request-response user interactions
in Java EE, every web developer worth his salt has to know both the Servlet
specification and the Servlet API.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Chapter 1

[13]

•	 Moreover, most web applications tend to enforce the Model-View-
Controller paradigm. As such, the Java EE specification enforces the use
of servlets for controllers and JavaServer Pages (JSP) for views. As JSP are
intended to be templates, developers who create JSP have an additional
syntax to learn, even though they offer the same features as servlets.

•	 JSP accept scriptlets, that is, Java code snippets, but good coding practices
tend to frown upon this, however, as Java code can contain any feature,
including some that should not be part of views—for example, the database
access code. Therefore, a completely new technology stack is proposed in
order to limit code included in JSP: the tag libraries. These tag libraries also
have a specification and API, and that is another stack to learn.

However, these are a few of the standard requirements that you should know
in order to develop web applications in Java. Most of the time, in order to boost
developer productivity, one has to use frameworks. These frameworks are available
in most of the previously cited technologies. Some of them are supported by Oracle,
such as Java Server Faces, others are open source, such as Struts.

JavaEE 6 seems to favor replacement of JSP and Servlet by Java
Server Faces (JSF). Although JSF aims to provide a component-based
MVC framework, it is plagued by a relative complexity regarding its
components lifecycle.

Having to know so much has negative effects, a few are as follows:

•	 On the technical side, as web developers have to manage so many different
technologies, web development is more complex than fat-client development,
potentially leading to more bugs

•	 On the human resources side, different meant either different profiles were
required or more resources, either way it added to the complexity of human
resource management

•	 On the project management side, increased complexity caused lengthier
projects: developing a web application was potentially taking longer than
developing a fat-client application

All of these factors tend to make the thin-client development cost much more than
fat-client, albeit the deployment cost was close to zero.

Vaadin and its Context

[14]

Browser compatibility
The Web has standards, most of them upheld by the World Wide Web Consortium.
Browsers more or less implement these standards, depending on the vendor and
the version. The ACID test, in version 3, is a test for browser compatibility with web
standards. Fortunately, most browsers pass the test with 100 percent success, which
was not the case two years ago.

Some browsers even make the standards evolve, such as Microsoft which
implemented the XmlHttpRequest object in Internet Explorer and thus formed
the basis for Ajax.

One should be aware of the combination of the platform, browser, and version.
As some browsers cannot be installed with different versions on the same platform,
testing can quickly become a mess (which can fortunately be mitigated with virtual
machines and custom tools like http://browsershots.org). Applications should
be developed with browser combinations in mind, and then tested on it, in order to
ensure application compatibility.

For intranet applications, the number of supported browsers is normally limited.
For Internet applications, however, most common combinations must be supported
in order to increase availability. If this wasn't enough, then the same browser in the
same version may run differently on different operating systems.

In all cases, each combination has an exponential impact on the application's
complexity, and therefore, on cost.

Page flow paradigm
Fat-client applications manage windows. Most of the time, there's a main window.
Actions are mainly performed in this main window, even if sometimes managed
windows or pop-up windows are used.

As web applications are browser-based and use HTML over HTTP, things are
managed differently. In this case, the presentation unit is not the window but the
page. This is a big difference that entails a performance problem: indeed, each time
the user clicks on a submit button, the request is sent to the server, processed by it,
and the HTML response is sent back to the client.

For example, when a client submits a complex registration form, the entire page is
recreated on the server side and sent back to the browser even if there is a minor
validation error, even though the required changes to the registration form would
have been minimal.

Chapter 1

[15]

Beyond the limits
Over the last few years, users have been applying some pressure in order to have
user interfaces that offer the same richness as good old fat-client applications. IT
managers, however, are unwilling to go back to the old deploy-as-a-project routine
and its associated costs and complexity. They push towards the same deployment
process as thin-client applications. It is no surprise that there are different solutions
in order to solve this dilemma.

What are rich clients?
All the following solutions are globally called rich clients, even if the approach
differs. They have something in common though: all of them want to retain the
ease of deployment of the thin client and solve some or all of the problems
mentioned previously.

Rich clients fulfill the fourth quadrant of the following schema, which is like a
dream come true, as shown in the following diagram:

Client server aka fat client Rich Client aka the Holy Grail

Ease of deployment

Thin client

Mainframes

Fe
at

ur
es

Vaadin and its Context

[16]

Some rich client approaches
The following solutions are strategies that deserve the rich client label.

Ajax
Ajax was one of the first successful rich-client solutions. The term means
Asynchronous JavaScript with XML. In effect, this browser technology enables
sending asynchronous requests, meaning there is no need to reload the full page.
Developers can provide client scripts implementing custom callbacks: those are
executed when a response is sent from the server. Most of the time, such scripts
use data provided in the response payload to dynamically update relevant part
of the page DOM.

Ajax addresses the richness of controls and the page flow paradigm. Unfortunately:

•	 It aggravates browser-compatibility problems as Ajax is not handled in the
same way by all browsers.

•	 It has problems unrelated directly to the technologies, which are as follows:

°° Either one learns all the necessary technologies to do Ajax on its
own, that is, JavaScript, Document Object Model, and JSON/XML,
to communicate with the server and write all common features such
as error handling from scratch.

°° Alternatively, one uses an Ajax framework, and thus, one has to
learn another technology stack.

Richness through a plugin
The oldest way to bring richness to the user's experience is to execute the code
on the client side and more specifically, as a plugin in the browser. Sun—now
Oracle—proposed the applet technology, whereas Microsoft proposed ActiveX.
The latest technology using this strategy is Flash.

All three were failures due to technical problems, including performance lags,
security holes, and plain-client incompatibility or just plain rejection by the market.

Chapter 1

[17]

There is an interesting way to revive the applet with the Apache Pivot project, as
shown in the following screenshot (http://pivot.apache.org/), but it hasn't
made a huge impact yet;

A more recent and successful attempt at executing code on the client side
through a plugin is through Adobe's Flex. A similar path was taken by
Microsoft's Silverlight technology.

Flex is a technology where static views are described in XML and
dynamic behavior in ActionScript. Both are transformed at compile
time in Flash format.

Unfortunately, Apple refused to have anything to do with the Flash plugin on iOS
platforms. This move, coupled with the growing rise of HTML5, resulted in Adobe
donating Flex to the Apache foundation. Also, Microsoft officially renounced plugin
technology and shifted Silverlight development to HTML5.

www.allitebooks.com

http://pivot.apache.org/
http://pivot.apache.org/
http://www.allitebooks.org

Vaadin and its Context

[18]

Deploying and updating fat-client from the web
The most direct way toward rich-client applications is to deploy (and update)
a fat-client application from the web.

Java Web Start
Java Web Start (JWS), available at http://download.oracle.com/javase/1.5.0/
docs/guide/javaws/, is a proprietary technology invented by Sun. It uses a
deployment descriptor in Java Network Launching Protocol (JNLP) that takes the
place of the manifest inside a JAR file and supplements it. For example, it describes
the main class to launch the classpath, and also additional information such as the
minimum Java version, icons to display on the user desktop, and so on.

This descriptor file is used by the javaws executable, which is bundled in the Java
Runtime Environment. It is the javaws executable's responsibility to read the JNLP
file and do the right thing according to it. In particular, when launched, javaws will
download the updated JAR.

The detailed process goes something like the following:

1.	 The user clicks on a JNLP file.
2.	 The JNLP file is downloaded on the user machine, and interpreted by the

local javaws application.
3.	 The file references JARs that javaws can download.
4.	 Once downloaded, JWS reassembles the different parts, create the classpath,

and launch the main class described in the JNLP.

JNLP
File

references to JARs

javaws

JAR1

2

3

4

5

7

http://download.oracle.com/javase/1.5.0/docs/guide/javaws/
http://download.oracle.com/javase/1.5.0/docs/guide/javaws/

Chapter 1

[19]

JWS correctly tackles all problems posed by the thin-client approach. Yet it never
reaches critical mass for a number of reasons:

1.	 First time installations are time-consuming because typically lots of
megabytes need to be transferred over the wire before the users can even
start using the app. This is a mere annoyance for intranet applications,
but a complete no go for Internet apps.

2.	 Some persistent bugs weren't fixed across major versions.
3.	 Finally, the lack of commercial commitment by Sun was the last straw.

A good example of a successful JWS application is JDiskReport
(http://www.jgoodies.com/download/jdiskreport/jdiskreport.jnlp),
a disk space analysis tool by Karsten Lentzsch, which is available on the Web for free.

Update sites
Updating software through update sites is a path taken by both Integrated
Development Environment (IDE) leaders, NetBeans and Eclipse. In short,
once the software is initially installed, updates and new features can be
downloaded from the application itself.

Both IDEs also propose an API to build applications.

This approach also handles all problems posed by the thin-client approach.
However, like JWS, there's no strong trend to build applications based on these
IDEs. This can probably be attributed to both IDEs using the OSGI standard whose
goal is to address some of Java's shortcomings but at the price of complexity.

Google Web Toolkit
Google Web Toolkit (GWT) is the framework used by Google to create some of its
own applications. Its point of view is very unique among the technologies presented
here. It lets you develop in Java, and then the GWT compiler transforms your code
to JavaScript, which in turn manipulates the DOM tree to update HTML. It's GWT's
responsibility to handle browser compatibility. This approach also solves the other
problems of the pure thin-client approach.

Yet, GWT does not shield developers from all the dirty details. In particular, the
developer still has to write part of the code handling server-client communication
and he has to take care of the segregation between Java server-code which will be
compiled into byte code and Java client-code which will be compiled into JavaScript.
Also, note that the compilation process may be slow, even though there are a number
of optimization features available during development. Finally, developers need a
good understanding of the DOM, as well as the JavaScript/DOM event model.

Vaadin and its Context

[20]

Why Vaadin?
Vaadin is a solution evolved from a decade of problem-solving approach,
provided by a Finnish company named Vaadin Ltd, formerly IT Mill.

Therefore, having so many solutions available, could question the use of
Vaadin instead of Flex or GWT? Let's first have a look at the state of the market
for web application frameworks in Java, then detail what makes Vaadin so unique
in this market.

State of the market
Despite all the cons of the thin-client approach, an important share of
applications developed today uses this paradigm, most of the time with
a touch of Ajax augmentation.

Unfortunately, there is no clear leader for web applications. Some reasons
include the following:

•	 Most developers know how to develop plain old web applications,
with enough Ajax added in order to make them usable by users.

•	 GWT, although new and original, is still complex and needs seasoned
developers in order to be effective.

From a Technical Lead or an IT Manager's point of view, this is a very fragmented
market where it is hard to choose a solution that will meet users' requirements, as
well as offering guarantees to be maintained in the years to come.

Importance of Vaadin
Vaadin is a unique framework in the current ecosystem; its differentiating features
include the following:

•	 There is no need to learn different technology stacks, as the coding is solely
in Java. The only thing to know beside Java is Vaadin's own API, which is
easy to learn. This means:

°° The UI code is fully object-oriented
°° There's no spaghetti JavaScript to maintain
°° It is executed on the server side

Chapter 1

[21]

•	 Furthermore, the IDE's full power is in our hands with refactoring and
code completion.

•	 No plugin to install on the client's browser, ensuring all users that browse
our application will be able to use it as-is.

•	 As Vaadin uses GWT under the hood, it supports all browsers that the
version of GWT also supports. Therefore, we can develop a Vaadin
application without paying attention to the browsers and let GWT handle
the differences. Our users will interact with our application in the same
way, whether they use an outdated version (such as Firefox 3.5), or a niche
browser (like Opera).

•	 Moreover, Vaadin uses an abstraction over GWT so that the API is easier
to use for developers. Also, note that Vaadin Ltd (the company) is part of
GWT steering committee, which is a good sign for the future.

•	 Finally, Vaadin conforms to standards such as HTML and CSS, making
the technology future proof. For example, many applications created with
Vaadin run seamlessly on mobile devices although they were not initially
designed to do so.

Vaadin integration
In today's environment, integration features of a framework are very important, as
normally every enterprise has rules about which framework is to be used in some
context. Vaadin is about the presentation layer and runs on any servlet container
capable environment.

Integrated frameworks
A whole chapter (see Chapter 9, Creating and Extending Components and Widgets) is
dedicated to the details of how Vaadin can be integrated with some third-party
frameworks and tools. There are three integration levels possible which are as follows:

•	 Level 1: out-of-the-box or available through an add-on, no effort required
save reading the documentation

•	 Level 2: more or less documented
•	 Level 3: possible with effort

Vaadin and its Context

[22]

The following are examples of such frameworks and tools with their respective
integration estimated effort:

•	 Level 1:
°° Java Persistence API (JPA): JPA is the Java EE 5 standard for all things

related to persistence. An add-on exists that lets us wire existing
components to a JPA backend. Other persistence add-ons are available
in the Vaadin directory, such as a container for Hibernate, one of the
leading persistence frameworks available in the Java ecosystem.

°° A bunch of widget add-ons, such as tree tables, popup buttons,
contextual menus, and many more.

•	 Level 2:
°° Spring is a framework which is based on Inversion of Control

(IoC) that is the de facto standard for Dependency Injection. Spring
can easily be integrated with Vaadin, and different strategies are
available for this.

°° Context Dependency Injection (CDI): CDI is an attempt at making IoC
a standard on the Java EE platform. Whatever can be done with Spring
can be done with CDI. Given that CDI is a standard, we will have a
look of its integration with Vaadin in Chapter 8, Featured Add-ons.

°° Any GWT extensions such as Ext-GWT or Smart GWT can
easily be integrated in Vaadin, as Vaadin is built upon GWT's own
widgets. This will be seen in complete detail in Chapter 9, Creating
and Extending Components and Widgets, where we will create such
new components.

•	 Level 3:

°° We can use another entirely new framework and languages and
integrate them with Vaadin, as long as they run on the JVM: Apache
iBatis, MongoDB, OSGi, Groovy, Scala, anything you can dream of!

Integration platforms
Vaadin provides an out-of-the-box integration with an important third-party
platform: Liferay is an open source enterprise portal backed by Liferay Inc. Vaadin
provides a specialized portlet that enables us to develop Vaadin applications as
portlets that can be run on Liferay. Also, there is a widgetset management portlet
provided by Vaadin, which deploys nicely into Liferay's Control Panel.

Chapter 1

[23]

Using Vaadin in the real world
If you embrace Vaadin, then chances are that you will want to go beyond toying
with the Vaadin framework and develop real-world applications.

Concerns about using a new technology
Although it is okay to use the latest technology for a personal or academic
project, projects that have business objectives should just run and not be riddled
with problems from third-party products. In particular, most managers may be
wary when confronted by a new product (or even a new version), and developers
should be too.

The following are some of the reasons to choose Vaadin:

•	 Product is of highest quality: The Vaadin team has done rigorous testing
throughout their automated build process. Currently, it consists of more
than 8,000 unit tests. Moreover, in order to guarantee full compatibility
between versions, many (many!) tests execute pixel-level regression testing.

•	 Support:
°° Commercial: Although completely committed to open source,

Vaadin Limited offer commercial support for their product.
Check their Pro Account offering.

°° User forums: A Vaadin user forum is available. Anyone registered
can post questions and see them answered by a member of the
team or of the community.

Note that Vaadin registration is free, as well as hassle-free:
you will just be sent the newsletter once a month (and you
can opt-out, of course).

•	 Retro-compatibility:
°° API: The server-side API is very stable, version after version, and

has survived major client-engines rewrite. Some part of the API
has been changed from v6 to v7, but it is still very easy to migrate.

°° Architecture: Vaadin's architecture favors abstraction and is at the
root of it all.

Vaadin and its Context

[24]

•	 Full-blown documentation available:
°° Product documentation: Vaadin's site provides three levels

of documentation regarding Vaadin: a five-minute tutorial,
a one-hour tutorial, and the famed Book of Vaadin.

°° Tutorials
°° API documentation: The Javadocs are available online; there is

no need to build the project locally.

•	 Course/webinar offerings: Vaadin Ltd currently provides four different
courses, which tackles all the needed skills for a developer to be proficient
in the framework.

•	 Huge community around the product: There is a community gathering,
which is ever growing and actively using the product. There are plenty of
blogs and articles online on Vaadin. Furthermore, there are already many
enterprises using Vaadin for their applications.

•	 Available competent resources: There are more and more people learning
Vaadin. Moreover, if no developer is available, the framework can be learned
in a few days.

•	 Integration with existing product/platforms: Vaadin is built to be easily
integrated with other products and platforms. The Book of Vaadin describes
how to integrate with Liferay and Google App Engine.

Others already use Vaadin
Upon reading this, managers and developers alike should realize Vaadin
is mature and is used on real-world applications around the world. If
you still have any doubts, then you should check http://vaadin.
com/who-is-using-vaadin and be assured that big businesses
trusted Vaadin before you, and benefited from its advantages as well.

http://vaadin.com/who-is-using-vaadin

Chapter 1

[25]

Summary
In this chapter, we saw the migration of application tiers in the software
architecture between the client and the server.

We saw that each step resolved the problems in the previous architecture:

•	 Client-server used the power of personal computers in order to decrease
mainframe costs

•	 Thin-clients resolved the deployment costs and delays

Thin-clients have numerous drawbacks. For the user, a lack of usability due to poor
choice of controls, browser compatibility issues, and the navigation based on page
flow; for the developer, many technologies to know.

As we are at the crossroad, there is no clear winner in all the solutions available:
some only address a few of the problems, some aggravate them.

Vaadin is an original solution that tries to resolve many problems at once:

•	 It provides rich controls
•	 It uses GWT under the cover that addresses most browser

compatibility issues
•	 It has abstractions over the request response model, so that the model

used is application-based and not page based
•	 The developer only needs to know one programming language: Java,

and Vaadin generates all HTML, JavaScript, and CSS code for you

Now we can go on and create our first Vaadin application!

Environment Setup
In this chapter, we will set up our IDE in order to ease the use of Vaadin and create
new projects using this framework.

In particular, we will cover:

•	 Downloading and installing the right distribution of the IDE
•	 Checking that your currently installed IDE is the right distribution
•	 Installing the Vaadin plugin in your IDE
•	 Creating a new Vaadin project using our now enhanced IDE

The first section is dedicated to Eclipse from the Eclipse Foundation. The second
section tackles IntelliJ IDEA installation and configuration for Vaadin development.

Depending on your own personal taste, you can go directly to your preferred section
and ignore the other one, or browse both.

Finally, we will look at the configuration performed by the Vaadin plugin when we
create a new Vaadin project if you want to configure your project in other IDEs or
manually, since it creates a template project out-of-the-box.

Vaadin in Eclipse
In order to add Vaadin capabilities to Eclipse IDE, we will first need to have the
Web Tools Platform (WTP). Eclipse's WTP concerns itself with all that is centered
on web standards in the Java ecosystem: servlets, JSP, HTML, JavaScript, and so on.
As everything is a plugin in Eclipse, WTP itself is available as a collection of plugins.

www.allitebooks.com

http://www.allitebooks.org

Environment Setup

[28]

Setting up Eclipse
If you already have Eclipse installed on your system, chances are that it already
contains WTP and its dependencies. If not, you could start from scratch
and install an Eclipse bundled with WTP (aka Eclipse for Java EE developers),
or just have WTP and its dependencies added to your existing installation.

Note that the recommended method is to install the complete Java
EE bundle, not only because it is recommended by Vaadin but also
because manual handling of WTP dependencies can be a bore.

When Eclipse is not installed
A more straightforward way to download an Eclipse bundled with WTP is to go
to the Eclipse downloads website at http://www.eclipse.org/downloads/ and
choose Eclipse IDE for Java EE Developers. The exact URL changes with each Eclipse
major release. At the time of this writing, it references the Juno (Eclipse 4.2) Service
Release 2: http://www.eclipse.org/downloads/packages/eclipse-ide-java-
ee-developers/junosr2.

Astute readers will note, and rightly so, that the "Eclipse IDE for
Java EE Developers" distribution contains much more than simply
the Eclipse IDE and WTP; EJB features for example. Although
those features are unnecessary, it is the simplest way to have the
WTP features.

Chapter 2

[29]

Now choose your OS carefully on the right panel of the screen and click on the
proposed distribution site, as shown in the following screenshot:

Environment Setup

[30]

Installing the Vaadin plugin
These are the steps we need to perform to install Vaadin:

1.	 In Eclipse, go to the Help menu and then click on Install new software.
2.	 Click on the Add button. You will be presented with a dialog prompting

you for a name and an update site's location. Vaadin plugin manages library
dependencies with Ivy. Just type http://www.apache.org/dist/ant/
ivyde/updatesite in the location field. Repeat the operation with
http://vaadin.com/eclipse/.

3.	 Click on the Next button and complete the wizard as follows:
°° Select the single Vaadin item. Don't forget to check Contact all

update sites during install to find required software.

http://www.apache.org/dist/ant/ivyde/updatesite
http://www.apache.org/dist/ant/ivyde/updatesite

Chapter 2

[31]

°° Review the choices.
°° Accept the terms of the license agreement.
°° Finally, restart Eclipse in order to have the Vaadin features.

4.	 Now, we can check the installed features: go to the menu Help | About
Eclipse. The opening pop up should display the Vaadin logo, as shown in
the following screenshot:

Troubleshooting
If Vaadin does not appear in the plugins list, restart Eclipse.

Congratulations, now we have completed the IDE setup. It is now time to create our
first Vaadin project!

Environment Setup

[32]

Creating a server runtime
Before creating the project itself, we need a server to run it on. Therefore, carry out
the following steps:

1.	 On the Server tab, right-click and select New Server. The following screen
should then pop up:

2.	 On the opening window, select J2EE Preview, as it is the simplest server
Vaadin can run on. Click on Finish, and the newly created server should
appear in the Server tab.

Creating our first Eclipse Vaadin project
Carry out the following steps:

1.	 Go to the File menu and navigate to New | Vaadin 7 Project.
2.	 Set the project name as you wish-MyFirstVaadinApp, for example.

Chapter 2

[33]

3.	 Displayed parameters should be kept as default.
4.	 Note that the Vaadin version should be set to the latest stable release by

default. Since we chose Vaadin 7, it's 7.1.3 at the time of this writing.

5.	 Click on the Next button. On the Java step, keep the source and the build
folders as they are and click on Next.

6.	 On the Web Module step, change the context-root to myfirstvaadinapp
and click on Next.

Context-roots are used to separate multiple web applications installed
in the same servlet container and accessible on the same port.

Environment Setup

[34]

7.	 In the last step, change the values as follow:
°° My First Vaadin Application for the Application name
°° com.packt.learnvaadin for the Base package name
°° MyUI for the Application class name

8.	 Finally, click on Finish. The project should look something similar to
the one shown on the following screenshot, which displays the Project
Explorer tab, when expanded:

Servlet mapping
There's one last action to complete our project. Open the web.xml deployment
descriptor and search for servlet-mapping:

<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

Chapter 2

[35]

In order to be fully generic:

•	 Change the URL pattern from /* to /app/* as follows:
<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/app/*</url-pattern>
</servlet-mapping>

•	 Add the /VAADIN/* mapping as follows:

<servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
</servlet-mapping>

The rationale behind these changes can be found later in the Declaring the servlet
mapping section in this chapter.

Testing our application
Finally, select the project, right-click on the contextual menu, go to Run As | Run on
Server and append /app at the end of the URL.

It should display a welcome message for us in Eclipse's internal browser, as shown
in the following screenshot:

That is it. Congratulations, our first Vaadin project is running!

Environment Setup

[36]

When Eclipse is already installed
If you already have Eclipse installed and want to use this existing installation,
then the first thing to do is to check whether WTP is present, as it is a dependency
of the Vaadin plugin.

Checking if WTP is present
In order to check whether an Eclipse installation has WTP, you have to launch it
and go to menu Help | About Eclipse. The pop up that opens will show some
information along with an icon list. Check the wtp icon, as can be seen in the
following screenshot, to know whether WTP is installed:

If you have WTP installed, then head back to the section named When Eclipse is
not installed in this chapter. Otherwise, please first follow the instructions in the
following section.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
All relevant code as well as the full Twaattin source code is available
online on GitHub at https://github.com/nfrankel/Learning-
Vaadin/.

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[37]

Adding WTP to Eclipse
In Eclipse, adding additional features to the core is done through a two-step process,
which is as follows:

1.	 Add an update site, which is a URL that describes the deployment of
additional components.

2.	 Use the update site to download and install them.

In order to add the WTP features to an existing Eclipse installation, we will first
add an update site. As seen in the Installing the Vaadin plugin section in this chapter,
go to the Help menu and then click on Install new software and carry out the
following steps:

1.	 Click on the Add button. You will be presented with a dialog prompting
you for a name and an update site's location (as shown in the following
screenshot). So, type WTP in the first field and http://download.eclipse.
org/webtools/repository/juno/ in the second (the last part of the URL
depending on the particular Eclipse release):

2.	 Clicking on OK will populate the preceding window. For the purpose
of using Vaadin, we only need the latest version that does not include
the SDK (at the time of this writing, it is Version 3.4.2).

www.allitebooks.com

http://download.eclipse.org/webtools/repository/juno/
http://download.eclipse.org/webtools/repository/juno/
http://www.allitebooks.org

Environment Setup

[38]

The SDK is only required when writing WTP plugins, which is not
the case for us. The bare version is preferable as it is much lighter
(and thus, faster to download).

Chapter 2

[39]

Dependencies
Depending on the exact Eclipse installation and the precise WTP
version, there may be some need to download additional WTP
dependencies. As such, it is very important to select the option
Contact all update sites during install to find required software
to let Eclipse do just that.

3.	 Click on Next and complete the wizard as follows:
°° Review your choices
°° Accept the license agreement
°° Finally, restart Eclipse with our much wanted WTP features

4.	 Once restarted, you should see WTP installed as described in the previous
Checking if WTP is present section.

Troubleshooting
If WTP still does not appear in the plugins list or behaves strangely, then
make sure to restart Eclipse. Using a freshly installed Eclipse without
restarting may have unpredicted side effects, such as leaving Eclipse in
an unstable state. Therefore, it is a good practice to always restart it just
after having installed a new plugin or a new version of the plugin.

Vaadin in IntelliJ IDEA
If you do not intend to use IntelliJ IDEA, you can safely skip this specific part and go
to the Vaadin and other IDEs section.

IntelliJ IDEA is a commercial product from JetBrains (for more
information, see https://www.jetbrains.com/idea/). Though
there's a community edition, it works only with simple Java projects,
and will not work with web applications, including Vaadin projects.
Even if you do not intend to buy it, request an evaluation copy, it's
valid for 30 days and you may be pleasantly surprised.

Environment Setup

[40]

Setting up IntelliJ
At the time of this writing, the latest IntelliJ IDEA version is 12.1.3.
There are two different distributions available, the simple Community
edition which supports Java SE and the full Ultimate edition. We'll need the
second one, since Vaadin needs JavaEE support. It can be downloaded from the
following URL: https://www.jetbrains.com/idea/download/index.html.

Launch the installer, accept the License Agreement, and choose install location as
well as shortcut menu, then start the application.

Chapter 2

[41]

If IntelliJ IDEA wasn't installed previously on the machine, a pop up will be
shown asking for a settings folder. Click on OK, since the radio button I do not
have a previous version of IntelliJ IDEA… is selected by default.

Choose the right option, depending whether you bought a commercial license
or want to try the product.

IntelliJ IDEA has an architecture which is based on plugins; the more the number of
enabled plugins, the slower the IDE. The next step is to select which plugins should
be enabled. Do not worry if there's a mistake, we will be able to enable/disable
plugins later.

•	 The first window is about Source Configuration Management. Keep the
one you want and click on Next.

•	 The second window is about JavaEE and frameworks. Choose at least
Application Servers view.

•	 Notice there is a Vaadin choice-unfortunately, this embedded plugin is
not compatible with version 7 of Vaadin, so there is no point in selecting
it. Click on Next.

•	 The next window is about Application Servers. In this book, we will
use either Eclipse's internal servlet container or Tomcat, since they are
the simplest containers able to run Vaadin. In the last chapter, we'll also
deploy Vaadin applications on CloudFoundry.

•	 Select Tomcat and CloudFoundry. Click on Next.

You may, however, use your favorite servlet container, like Jetty or
more advanced application server like RedHat JBoss Application
Server. In most cases, this won't matter, however.

Environment Setup

[42]

•	 The following window is about HTML/JavaScript. The good news is that
those don't matter for developing Vaadin applications. Click on Next.

•	 The final window lists miscellaneous plugins. We need Maven and Maven
Integration Extension for the Vaadin plugin we will download to work.
Additionally, it's advised to at least keep GitHub selected, which is the
chosen way to store the code source for the Twaattin example application.
Click on Next.

At this point, IntelliJ will finally start.

Chapter 2

[43]

Adding the Vaadin 7 plugin
Though IntelliJ IDEA doesn't come with Vaadin 7 support, there's a plugin
developed by Dmitry Zhuravlev and freely made available for anyone to use.

Go to http://plugins.intellij.net/plugin/?idea&id=6727 and download
the latest version (1.5.3 at the time of this writing).

Back to IntelliJ IDEA, select Configure, then Plugins (second item in the list).
Click on the Install plugin from disk… button and select the previously
downloaded plugin.

Finally, select the new Vaadin Support item and click on OK. Restart IntelliJ IDEA.

Now is the time to create a New Project!

Environment Setup

[44]

Creating our first IntelliJ IDEA Vaadin project
1.	 Select Maven Vaadin 7 Application (under the Java Enterprise title). Fill the

fields according to the following:
°° Project name: MyFirstVaadinApp
°° Project location: as desired
°° Project SDK: choose the location of a Java SDK on the file system, it

should at least be Java 6 (but 7 is ok)

2.	 Click on Next and confirm Project creation.
3.	 Finally, choose the latest Vaadin 7 version made available by the plugin

(7.0.2 at the time of this writing) and set com.packt.learnvaadin for the
package name.

4.	 Click on Finish.

Chapter 2

[45]

Troubleshooting
If clicking on the Finish button doesn't do anything (even not
closing the window), go back and make sure both Maven plugins
are installed.

The result should look something like the following screenshot:

Notice the project uses Maven: if you've never used Maven before, that's not a
problem. Just consider the project a standard Web Module.

Adjusting the result
In order to comprehend Vaadin in a step-by-step process, we will need to make some
adjustments that will make deploying and running easier. Do not worry; we will cover
those things in Chapter 9, Creating and Extending Components and Widgets. For the time
being, please have faith, go to the webapp deployment descriptor and coldly remove
the following snippet without any kind of remorse, it's not needed at this point:

<init-param>
 <description>Application widgetset</description>
 <param-name>widgetset</param-name>
 <param-value>
 com.packt.learnvaadin.AppWidgetSet
 </param-value>
</init-param>

Delete the src/main/java/com.packt.learnvaadin.AppWidgetSet.gwt.xml
file accordingly.

Environment Setup

[46]

Adding framework support
This section assumes there's an available Tomcat installation on the local machine.

Installing Tomcat is as simple as browsing to the Tomcat 7 download
page at https://tomcat.apache.org/download-70.cgi,
choosing the latest version (7.0.40 at the time of this writing),
downloading it, and unzipping it in the location of your choosing.

In order to be able to run our newly created project, we need to tell IntelliJ IDEA
how to run the application. Right-click on the project and choose Add Framework
support (this is the second item).

In the opening window, select Application Servers, select New Tomcat Server,
and point Tomcat Home to the directory where Tomcat is installed (or unzipped).

Deploying the application automatically
Click on the new Tomcat 7 combo-box in the toolbar and select the Edit
Configurations item. In the opening window, choose the previously created
local Tomcat Server, and go to the Deployment tab.

Click on the + button, choose artifact, and select MyFirstVaadinApp.war.
Click on OK.

Chapter 2

[47]

Testing the application
We can finally select Run in the toolbar.

It should automatically open the default browser and display a button for us to click.

Final touches
Compared to Eclipse, there are some differences. We have to close the gap in order
for the rest of book's examples to be adequate for IntelliJ IDEA users.

Changing the Vaadin version
The downloaded plugin hardcodes available Vaadin versions, so that the latest
version provided by the plugin isn't the latest version of Vaadin 7. To update to
the latest version, just edit the pom.xml file at the root of the project and locate the
following line:

<vaadin.version>7.0.2</vaadin.version>

Change the existing version with the latest (7.1.3 at the time of this writing).

Changing the POM will trigger a confirmation dialog from IntelliJ
IDEA: do you want to import the changes (that is, change the project
configuration according to those changes) or auto-import them? It's
advised to auto-import so that future changes will be automatically
reflected in the configuration.

Launching the application again should yield the same results, albeit with the latest
Vaadin framework version.

www.allitebooks.com

http://www.allitebooks.org

Environment Setup

[48]

Context-root
IntelliJ IDEA provides the application at the root of the server, meaning it's
available at http: //localhost:8080/. In order for further instructions to be
equally applicable to Eclipse projects as well as IntelliJ IDEA projects, we'll need
to add a context-root.

Click on the Edit Configuration button in the toolbar and select the
previously created Tomcat 7 server runtime. In the Deployment tab, select
MyFirstVaadinApp:war and type /myfirstvaadinapp in the combo-box.

IntelliJ IDEA should automatically change the server startup page
accordingly. If it is not the case, you can go to the Server tab and
update the Startup Page field.

Chapter 2

[49]

Servlet mapping
Finally, follow the instructions detailed in section Servlet mapping (in Eclipse).

Now, even though the code itself is somewhat different from the Eclipse project,
the configuration is the same.

Vaadin and other IDEs
In both IDEs, the Vaadin plugin helps us jumpstart a project in a matter of minutes.
However, it may be interesting to understand what is really done in the created
project by the plugin in case we need to do it manually in other IDEs which don't
have such plugins.

Adding Vaadin libraries
First we should add Vaadin libraries and their dependencies to the web application's
WEB-INF/lib folder. According to Java EE specifications,
this means that our code can now access the Vaadin JAR as it is on the
web application's classpath.

Previous versions of Vaadin only needed a single approximately 70
MB Vaadin JAR that contained all classes, all mandatory dependencies
and compiled HTML. Starting with version 7, Vaadin has become more
modular and started to rely on external dependencies: on one hand, it is
now more complex to package what is needed, but on the other hand,
we have the choice of what we package.

For the time being, there is no need to explicitly describe each library. All that are
needed are available in the Vaadin 7 distribution at the root for Vaadin libraries and
under the lib folder for their dependencies.

Creating the application
Then, we also need to create a class named com.packt.vaadin.MyUI as defined in
our preceding sample application. Now, if we look at this class, we can see that it
inherits from the com.vaadin.ui.UI class.

For now, suffice it to say that UI is the entry point class of our Vaadin application.

Environment Setup

[50]

Adding the servlet mapping
The last thing the plugin does is update the WEB-INF/web.xml file, also known as the
web deployment descriptor.

Looking at the file, we see the following Vaadin-specific lines:

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.
com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>MyFirstVaadinApp</display-name>
 <context-param>
 <description>Vaadin production mode</description>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>
 <servlet>
 <servlet-name>My First Vaadin Application</servlet-name>
 <servlet-class>com.vaadin.server.VaadinServlet</servlet-class>
 <init-param>
 <description>Vaadin UI class to use</description>
 <param-name>UI</param-name>
 <param-value>com.packt.learnvaadin.MyUI</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/app/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>My First Vaadin Application</servlet-name>
 <url-pattern>/VAADIN/*</url-pattern>
 </servlet-mapping>
 <welcome-file-list>...</welcome-file-list>
</web-app>

Chapter 2

[51]

Declaring the servlet class
The first thing to do is to declare the servlet. For servlet containers and full
application servers, the servlet is provided by Vaadin and is com.vaadin.server.
VaadinServlet. We will see in Chapter 10, Enterprise Integration that for more exotic
platforms (such as portlet) containers and other classes are provided.

The servlet class is of utmost importance as it is the entry point of HTTP (as well as
HTTPS) requests, as well as the exit point of their respective responses in Java web
applications. The good news is that Vaadin takes care of handling requests (and
sending responses) for us.

Declaring Vaadin's entry point
We saw in the preceding section that the real entry point in Vaadin is not the servlet
but a delegated class that extends Vaadin's UI. We should make the servlet aware
of this entry point, and this is done with the servlet initialization parameter aptly
named UI.

This parameter is not optional and Vaadin will vigorously complain if this parameter
is omitted with the following explicit message:

com.vaadin.server.ServiceException: No UIProvider has been added and there is
no "UI" init parameter.

If you ever encounter such a message, then your first reflex should be to check the
deployment descriptor for the missing UI servlet initialization parameter.

Declaring the servlet mapping
Like in any Java web application, we should make our servlet available through
a mapping that represents the URL part after the protocol, domain name, port
(optional), and context-root that will activate the Vaadin servlet.

Refresher: In http: //packtpub.com:80/vaadin, packtpub.com
is the domain, 80 is the port, and vaadin is the context-root. The
context-root we set up previously in the project is /myfirstvaadinapp.

Environment Setup

[52]

In our previous setup, we configured the web application creation wizard to use
the /app/* mapping.

Apart from specific cases, it is a bad idea to use the /* mapping for Vaadin servlet.
That would mean that Vaadin servlet would have to handle every request in our
application, including static resources, JAAS login form, and so on. We definitely
don't want that.

Moreover, we will see later in Chapter 7, Core Advanced Features that a subcontext
is also necessary in order to properly close the Vaadin applications.

The second servlet mapping is added because the internal Vaadin's themes and
resources are referenced under <context-root>/VAADIN/* and thus, should be
handled by the Vaadin servlet. As a developer, you can safely ignore this part
(but don't remove it!).

Alternatively, we can also provide access to themes and resources ourselves,
but this is the simplest option.

If you run the Vaadin servlet under the more general /* mapping,
then there is no need for this additional mapping.

Summary
In this chapter, we have seen how to:

•	 Correctly set up our IDE, depending on whether it is already present
on our system or not

•	 Enhance our IDE with specific Vaadin features to make our project
set up faster

•	 Create a new project using the plugin's help
•	 Add the Vaadin framework to a project when no plugin is available

This chapter forms the basis of all your future work with Vaadin, so be sure to grasp
all the concepts explained in it. After having created a basic "Hello World" project,
the next chapter will detail Vaadin internals, as well as how to deploy our project
outside the IDE.

Hello Vaadin!
In this chapter, we will cover the following:

•	 Key concepts behind the Vaadin framework
•	 An overview of its internal architecture
•	 Deploying a Vaadin application to a servlet container, be it in

an IDE or outside it
•	 Updating the previously developed application with a very simple

interaction in order to display "Hello Vaadin!"

In the rest of this book, we will use Eclipse IDE for detailed
explanations and screenshots. However, there are enough similarities
between Eclipse and IntelliJ IDEA such that those same explanations
can safely be used in IntelliJ IDEA.

Now enough with the talk, let us begin.

Understanding Vaadin
In order to understand Vaadin, we should first understand its goal regarding the
development of web applications.

Hello Vaadin!

[54]

Vaadin's philosophy
Classical HTML over HTTP application frameworks are coupled to the inherent
request/response nature of the HTTP protocol. This simple process translates
as follows:

1.	 The client makes a request to access a URL.
2.	 The code located on the server parses request parameters (optional).
3.	 The server writes the response stream accordingly.
4.	 The response is sent to the client.

client server

request(url)

return response

parse(parameters)

write(response)

All major frameworks (and most minor ones, by the way) do not question this
model; Struts, Spring MVC, Ruby on Rails, and others, completely adhere to this
approach and are built upon this request/response way of looking at things. It is no
mystery that HTML/HTTP application developers tend to comprehend applications
through a page-flow filter.

On the contrary, traditional client-server application developers think in components
and data binding because it is the most natural way for them to design applications
(for example, a select-box of countries or a name text field).

Chapter 3

[55]

The Play Framework (http://www.playframework.org/) takes a radical stance
on the page-flow subject, stating that the Servlet API is a useless abstraction on the
request/response model and sticks even more to it.

On the contrary, a few web frameworks, such as JSF, tried to cross the bridge
between components and page-flow, with limited success. The developer handles
components, but they are displayed on a page, not a window, and he/she still has
to manage the flow from one page to another.

Vaadin's philosophy is two-fold:

•	 It lets developers design application through components and data bindings
•	 It isolates developers as much as possible from the request/response model

in order to think in screens and not in pages and page flow

This philosophy lets developers design their applications the way it was before the
web revolution. In fact, fat client developers can learn Vaadin in a few hours and
start creating applications in no time.

The downside is that developers who learned their craft with the thin client and have
no prior experience of fat client development will have a hard time understanding
Vaadin, as they are inclined to think in page-flow. However, they will be more
productive in the long run.

Vaadin's architecture
In order to achieve its goal, Vaadin uses an inventive architecture. The first fact of
interest is that it is shared to both a server and a client side.

•	 The client side manages thin rendering and user interactions in the browser
•	 The server side handles events coming from the client and sends changes

made to the user interface to the client

Hello Vaadin!

[56]

•	 Communication between both tiers is done over the HTTP protocol using
JSON over AJAX:

We will have a look at each of these tiers.

Client-server communication
Messages in Vaadin use two layers: HTTP and JSON. Both are completely unrelated
to the Vaadin framework and are supported by independent third parties.

HTTP protocol
Using the HTTP protocol with Vaadin has the following two main advantages:

•	 There is no need to install anything on the client, as browsers handle HTTP
(and HTTPS for that matter) natively

•	 Firewalls that let the HTTP traffic pass (a likely occurrence) will let Vaadin
applications function normally

JSON message format
Vaadin messages between the client and the server use JavaScript Objects Notation
(JSON). JSON is an alternative to XML that has the following differences:

•	 First of all, XML has features to make it more standardized and type safe.
Different technologies are available to enforce such grammar, but the most
used is XML Schemas. This way, XML documents can be validated according
to grammar.

Chapter 3

[57]

•	 Without grammar, JSON is also much easier to process in many languages.
In particular, JavaScript has built-in support for JSON processing. On the
contrary, XML must be parsed to the DOM and only then can we inspect
values and act upon them.

•	 The JSON syntax is lighter than the XML syntax. XML has both a start
and an end tag, whereas JSON has a tag coupled with starting brace and
ending brace. For example, the following two code snippets convey the
same information, but the first requires 78 characters and the second
only 63. For a more in-depth comparison of JSON and XML, refer to
http://json.org/xml.html:
<person>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</person>

{"person" {
 {"firstName": "John"},
 {"lastName": "Doe"}
}

The difference varies from message to message, but on an average, it is
about 40 percent. It is a real asset only for big messages, and if you add
server GZIP compression, size difference starts to disappear. The reduced
size is no disadvantage, though.

•	 Finally, XML designers go to great lengths to differentiate between child
tags and attributes, the former being more readable to humans and the
latter to machines. The JSON message design is much simpler as JSON
has no attributes.

The client part
The client tier is a very important tier in web applications as it is the one with which
the end user directly interacts.

In this endeavor, Vaadin uses the excellent Google Web Toolkit (GWT) framework.
GWT has been mentioned in Chapter 1, Vaadin and its Context. However, we will need
a deeper understanding on how it is used in Vaadin.

Hello Vaadin!

[58]

In the GWT development, there are the following mandatory steps:

1.	 The code is developed in Java.
2.	 Then, the GWT compiler transforms the Java code in JavaScript, one

set for each configured browser type.
3.	 Finally, the generated JavaScript is bundled with the default HTML

and CSS files, which can be modified as a web application.

Although novel and unique, this approach provides the following interesting
key features that catch the interest of end users, developers, and system
administrators alike:

•	 Disconnected capability, in conjunction with HTML 5 client-side data stores
•	 Displaying applications on small-form factors, such as those of

handheld devices
•	 Development only with the Java language
•	 Excellent scalability, as most of the code is executed on the client side,

thus freeing the server side from additional computation

On the other hand, there is no such thing as a free lunch! There are definitely
disadvantages in using GWT, such as the following:

•	 The whole coding/compilation/deployment process adds a degree of
complexity to the standard Java web application development and according
to most developers, is very (very) slow.

•	 Google GWT plugins are available for Eclipse and NetBeans and GWT
development is supported natively by IntelliJ IDEA. Those are really
necessary, because without them, developing is much slower and
debugging almost impossible.

For more information about GWT dev mode, please refer to
https://developers.google.com/web-toolkit/doc/
latest/DevGuideCompilingAndDebugging.

•	 There is a consensus in the community that GWT has a higher learning curve
than most classic web application frameworks; although the same can be said
for others, such as JSF.

•	 If the custom JavaScript is necessary, you have to bind it in Java with the
help of a stack named JavaScript Native Interface (JSNI), which is both
counter-intuitive and complex.

https://developers.google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging
https://developers.google.com/web-toolkit/doc/latest/DevGuideCompilingAndDebugging

Chapter 3

[59]

•	 With pure GWT, developers have to write the server-side code themselves
(if there is some).

•	 Finally, if everything is done on the client side, it poses a great security risk.
Even with obfuscated code, the business logic is still completely open for
inspection from hackers. Of course, this is dependent on the architecture,
as logic can still be hosted server side.

Vaadin uses GWT features extensively and tries to downplay its disadvantages
as much as possible. This is all possible because of the Vaadin's server part.

The server part
Vaadin's server-side approach plays a crucial role in the framework.

While in GWT, every code update needs a slow Java-to-HTML compilation
(and even slower because of multiple target browsers), Vaadin code update
only requires a simple, single Java-to-byte code compilation.

It is possible to add native GWT widgets and/or custom JavaScript
to Vaadin 7 applications. An example of such use will be shown in
Chapter 9, Creating and Extending Components and Widgets.

Remember throughout your Vaadin journey that you should favor coding server
side first and foremost!

There are two important tradeoffs that Vaadin makes in order achieve this:

•	 As opposed to GWT, the user interface related code runs on the server,
meaning Vaadin applications are not as scalable as pure GWT ones.
This should not be a problem in most applications, but if you need
to, you should probably leave Vaadin for some less intensive part of
the application; stick to GWT or change to an entirely new technology.

While Vaadin applications are not very scalable when compared
to applications architecture around a pure JavaScript frontend
and a SOA backend, a study (for Vaadin Version 6) found that
a single Amazon EC2 instance could handle more than 10,000
concurrent users per minute, which is probably higher than your
average application. The whole result for you to reproduce can
be found at http://vaadin.com/blog/-/blogs/vaadin-
scalability-study-quicktickets.

Hello Vaadin!

[60]

•	 Second, each user interaction creates an event from the browser to the server
(though they can be buffered to prevent unwanted network usage). This
can lead to changes in the user interface's model in memory and, in turn,
propagate modifications to the JavaScript UI on the client. The consequence
is that server-side components simply cannot run while disconnected from
the server! If your requirements include the offline mode, you will have to
develop GWT widgets that may run offline yourself.

Note that Vaadin TouchKit, an add-on aimed at mobile application
development, lets us have an offline mode. This is only true when
using this add-on, though.

Client-server synchronization
The biggest challenge when representing the same model on two heterogeneous tiers
is synchronization between each tier. An update on one tier should be reflected on
the other, or at least fail gracefully if this synchronization is not possible (an unlikely
occurrence considering the modern day infrastructure).

Vaadin's answer to this problem is a synchronization key generated by the server
and passed on to the client on each request. The next request should send it back
to the server or else the latter will restart the current session's application.

Deploying a Vaadin application
Now we will see how we can put what we have learned to good use.

Vaadin applications are primarily web applications and they follow all specifications
of Web Archive artifacts, as specified by JavaEE Version 1.4. As such, there is nothing
special for deploying Vaadin web applications. Readers who are familiar with the
WAR deployment process will feel right at home!

WAR deployment itself is dependent on the specific application
server (or servlet/JSP container).

Chapter 3

[61]

Inside the IDE
In the last chapter, we smoke-tested our brand new Vaadin application with Eclipse's
mock servlet container. In most cases, we will need features not available on the
latter, for example, data sources management.

Creating an IDE-managed server
Although it is possible to export our project as a WAR file and deploy it on the
available servlet container, the best choice is to use a server managed by
the IDE. It will let us transparently debug our Vaadin application code.

The steps are very similar to what we did with the mock servlet container
in Chapter 2, Environment Setup.

Selecting the tab
First of all, if the Server tab is not visible, navigate to Window | Open perspective |
Other... and later choose JavaEE.

Hello Vaadin!

[62]

Creating a server
In order to be as simple as possible, we will use Tomcat. Tomcat is a servlet
container, as opposed to a full-fledged application server, and only implements
the servlet specifications, not the full Java EE stack. However, what it does, it does
it so well that Tomcat was once the servlet API reference implementation.

Right-click on the Server tab and navigate to New | Server. Open Apache and select
Tomcat 7.0 Server. Keep both Server's hostname and Server name values and click
on Next.

Now the following two options are possible:

1.	 If you do not have Tomcat 7 installed, click on Download and install. Accept
the license agreement and then select the directory where you want to install
it to, as shown in the following screenshot:

2.	 If it is already installed, just point to its root location in the Tomcat
installation directory field.

3.	 Click on the Finish button.

Chapter 3

[63]

Verifying the installation
At the end of the wizard, there should be a new Tomcat 7.0 server visible under the
Servers tab, as shown in the following screenshot. Of course, in case you chose another
version or another server altogether, that will be the version or server displayed:

Adding the application
As Vaadin applications are web applications, there is no special deployment process.

Right-click on the newly created server and click on the Add and Remove menu
entry. A pop-up window opens. On the left-hand side, there is a list of available web
application projects that are valid candidates to be deployed on your newly created
server. On the right-hand side, there is a list of currently deployed web applications.

Select the MyFirstVaadinApp project we created in Chapter 2, Environment Setup
and click on the Add button. Then click on Finish.

The application should now be visible under the server.

Launching the server
Select the server and right-click on it. Select the Debug menu entry. Alternatively,
you can do the following:

•	 Click on the Debug button (the one with the little bug) on the Server
tab header

•	 Press Ctrl + Alt + D

Each IDE has its own menus, buttons, and shortcuts. Know them
and you will enjoy a huge boost in productivity.

Hello Vaadin!

[64]

The Console tab should display a log similar to the following:

This means Tomcat started normally.

Chapter 3

[65]

Outside the IDE
In order to deploy the application outside the IDE, we should first have a
deployment unit.

Creating the WAR
For a servlet container such as Tomcat, the deployment unit is a Web Archive,
better known as a WAR.

Right-click on the project and select the WAR file from under the Export menu. In
the opening pop up, just update the location of the exported file; choose the webapps
directory where we installed Tomcat and name it myfirstvaadinapp.war.

Launching the server
Open a command prompt. Change the directory to the bin subdirectory of the
location where we installed Tomcat, and run the startup script.

Troubleshooting
If you have installed Tomcat for the first time, chances are that the
following message will be displayed:
Neither the JAVA_HOME nor the JRE_HOME environment
variable is defined

At least one of these environment variables is needed
to run this program

In this case, set the value of the JAVA_HOME variable to the directory
where Java is installed on your system (and not its bin subdirectory!).

The log produced should be very similar to the one displayed by running Tomcat
inside the IDE (as shown in preceding section), apart from the fact that Apache
Portable Runtime is perhaps available on the classpath. As it is not mandatory
in any way—it is meant to improve performance for production systems—that
does not change a thing from the Vaadin point of view.

Hello Vaadin!

[66]

Using Vaadin applications
Vaadin being a web framework, its output is displayed inside a browser.

Browsing Vaadin
Whatever way you choose to run our previously created Vaadin project, in
order to use it, we just have to open one's favorite browser and navigate to
http: //localhost:8080/myfirstvaadinapp/app. Two things should happen:

1.	 First, a simple page should be displayed with the message Hello Vaadin user
(or a Click Me button if using IntelliJ IDEA).

2.	 Second, the log should output that Vaadin has started:

==

Vaadin is running in DEBUG MODE.

Add productionMode=true to web.xml to disable debug features.

To show debug window, add ?debug to your application URL.

==

Troubleshooting
In case nothing shows up on the browser screen, and after some initial
delay, an error pop up opens with the following message:
Failed to load the widgetset: /myfirstvaadinapp/VAADIN/
widgetsets/com.vaadin.terminal.gwt.DefaultWidgetSet/
com.vaadin.terminal.gwt.DefaultWidgetSet.nocache.
js?1295099659815

Be sure to add the /VAADIN/* mapping to the web.xml as shown in
Chapter 2, Environment Setup in the Declaring the servlet mapping section
and redeploy the application.

Out-of-the-box helpers
Before going further, there are two things of interest to know that are precious
when developing Vaadin web applications.

Chapter 3

[67]

The debug mode
Component layout in real-world business use cases can be a complex thing, to say
the least. In particular, requirements about fixed and relative positioning are a real
nightmare when one goes beyond Hello world applications, as it induces nested
layouts and component combinations at some point.

Given the generated code approach, when the code does not produce exactly what
is expected on the client side, it may be very difficult to analyze the cause of the
problem. Luckily, Vaadin designers have been confronted with them early on
and are well aware of this problem.

Hello Vaadin!

[68]

As such, Vaadin provides an interesting built-in debugging feature; if you are
ever faced with such a display problem, just append ?debug to your application
URL. This will instantly display a neat window that gives detailed inside data about
the application:

•	 The first tab displays the console.
•	 The second shows a view of the widgets hierarchy (or more specifically of

the connectors, which will be explained in later chapters). It is a very useful
debugging aid when components laid out on the server side are not shown in
the browser.

•	 The third tab reveals the widget's inner state.
•	 The rest of the tabs manage settings, let us minimize the console and

finally exit it.

Just be aware that this window is not native (it is just an artifact
created with the client-side JavaScript). It can be moved with its
upperbar, which is invaluable if you need to have a look at what is
underneath it. Likewise, it can be resized by moving the cursor over
a corner and dragging the mouse, just like a native window.

Although it considerably decreases the debugging time during the development
phase, such a feature has no added value when in production. It can even be seen
as a minor security risk, as the debug window displays information about the
internal state of Vaadin's widget tree.

Vaadin provides the means to disable this feature. In order to do so, just add the
following snippet to your WEB-INF/web.xml:

<context-param>
<description>Vaadin production mode</description>
<param-name>productionMode</param-name>
<param-value>true</param-value>
</context-param>

Now if you try the debug trick, nothing will happen.

Production mode is NOT default
As such, it is a good idea to always set the productionMode context
parameter from the start of the project, even if you set it to false. Your
build process would then set it to true for release versions. This is much
better than forgetting it altogether and having to redeploy the webapp
when it becomes apparent.

Chapter 3

[69]

Restart the application, not the server
We have seen in the previous Vaadin's architecture section that Vaadin's user interface
model is sent to the client through JSON messages over HTTP. The whole load
is sent at the first request/response sequence when the UI instance is initialized;
additional sequences send only DOM updates.

Yet, important changes to the component tree happen often during the development
process. By default, refreshing the browser does display such changes.

Initializing the UI at each browser refresh is a new feature of Vaadin
7. In the previous version, state was kept between refreshes.

In order to keep the state between refreshes, we can annotate our UI with @com.
vaadin.annotations.PreserveOnRefresh. In this case, we can still refresh
explicitly through a URL parameter; change your server-side code, wait for the
changes to take effect on the server, just append ?restartApplication and
watch the magic happen.

Increase performance
You should remove the restartApplication URL parameter as
soon as it is not needed anymore. Otherwise you will rerun the whole
initialization/send UI process each time your refresh the browser.

Behind the surface
Wow, in just a few steps, we created a brand new application! Granted, it does
not do much, those simple actions are fundamental to the comprehension of more
advanced concepts seen in further chapters. So let's catch our breath and see what
really happened under the hood.

Stream redirection to a Vaadin servlet
The URL http: //localhost:8080/myfirstvaadinapp/app can be decomposed
in the following three parts, each part being handled by a more specific part:

1.	 http: //localhost:8080 is the concatenation of the protocol, the domain,
and the port. This URL is handled by the Tomcat server we installed and
started previously, whether normal or inside the IDE.

Hello Vaadin!

[70]

2.	 /myfirstvaadinapp is the context root and references the project we created
before. Thus, Tomcat redirects the request to be handled by the webapp.

3.	 In turn, /app is the servlet mapping the Vaadin plugin added to the web
deployment descriptor at the time the project was created. The servlet
mapping uses the Vaadin servlet, which is known under the logical name
My First Vaadin Application. The latter references the com.vaadin.server.
VaadinServlet class.

Vaadin request handling
As you can see, there is nothing magical in the whole process; the URL we browsed
was translated as a request that is being handled by the VaadinServlet.service()
method, just like any Java EE compliant servlet would do.

Vaadin's servlet directly overrides service() instead of the whole
group of doXXX() methods (such as doGet() and doPost()). This
means that Vaadin is agnostic regarding the HTTP method you use.
Purists and REST programmers will probably be horrified at this
mere thought, but please remember that we are not manipulating
HTTP verbs in request/response sequences and are instead using an
application.

Compared to Vaadin 6, the Vaadin servlet does not do much but delegate operations
to other classes. In order for most of these classes to be accessible outside the servlet,
Vaadin 7 uses the ThreadLocal pattern. One of the servlet's most important activity
is to put collaborating classes in the thread local at the beginning of the service()
method and to clean them at the end.

Initial load time
Be wary of this last step when creating your own applications; an initial
screen that is too big in size will generate an important latency followed
by a strange update of your client screen. This is generally not wanted;
either try to decrease your initial page complexity or use a change
manager that will mitigate the user's feelings about it.

Chapter 3

[71]

What does a UI do?
In Vaadin, a UI represents the topmost component in a components hierarchy.
The central class representing an application is the com.vaadin.ui.UI class
invoked during VaadinServletservice() method call.

You can think of a UI as the entire browser window (or tab in modern browsers) for
full-fledged Vaadin applications, or an HTML page embedding a Vaadin webapp.

UI features
UI features include the following:

•	 Providing an entry point into the application. In this regard, the UI init()
method is called when the servlet mapping whose init parameter matches
the UI class name is accessed.
In our first example, the Hello Vaadin user label is displayed because
the URL accessed is the root. It maps to a VaadinServlet instance which
is parameterized with MyUI; its init() method displays the label.

•	 Keeping state or not between browser refreshes, depending of the
presence of the @PreserveOnRefresh annotation.

•	 Setting the HTML title through the use of the @com.vaadin.annotations.
Title annotation.

•	 Setting the overall theme for the UI, thanks to @com.vaadin.annotations.
Theme.

Some themes are provided out of the box by Vaadin (liferay,
chameleon, reindeer, and runo). You can also tweak them and
reference them under a new theme name or create entirely new
themes from scratch. Themes, being very simple to use but much
more complex to create, are outside the scope of this book. Readers
interested in going further down road can find documentation at
http://vaadin.com/book/-/page/themes.creating.html.

Hello Vaadin!

[72]

UI configuration
In our first project, having a look at the web deployment descriptor, notice there
is a UI servlet parameter configured for the Vaadin servlet:

<servlet>
 <servlet-name>My First Vaadin Application</servlet-name>
 <servlet-class>
 com.vaadin.server.VaadinServlet
 </servlet-class>
 <init-param>
 <param-name>UI</param-name>
 <param-value>
 com.packt.learnvaadin.MyUI
 </param-value>
 </init-param>
</servlet>

As such, there can be only a single Vaadin UI configured for each Vaadin servlet.

Sometimes we do not know the UI to use at the beginning because
the instance must be defined dynamically at runtime. In this case,
instead of defining a UI, it is possible to define a UIProvider.
More info regarding providers can be found in the Vaadin wiki at
https://vaadin.com/wiki/-/wiki/Main/Creating%20
an%20application%20with%20different%20features%20
for%20different%20clients.

UI and session
The most important fact about the UI class is that one instance of it is created the
first time a user session requests the Vaadin servlet; this instance is stored in the
HttpSession of the current user. This means that having multiple UI instances
opened at the same time is not a good thing regarding memory; the UI.close()
method should be called once a UI is not needed anymore in order for Vaadin
to remove the UI from the session.

In reality, UI instances are not stored directly in HttpSession, but
within a com.vaadin.server.VaadinSession instance that is
stored in the session. There is a1-n relationship from VaadinSession
to HttpSession meaning there is a possibility that more than one
VaadinSession could relate to the same session. You should keep in
mind that each session stores one and only one Vaadin session object
for each configured Vaadin servlet.

https://vaadin.com/wiki/-/wiki/Main/Creating%20an%20application%20with%20different%20features%20for%20different%20clients

Chapter 3

[73]

Vaadin's object model encompasses VaadinSession, UI, and AbstractComponent,
as shown in the following diagram:

Storing state on the server
Storing UI instances and their hierarchy in the session has a
major consequence. Great care must be taken in evaluating
the number of users and the average load of each user session
because the session is more loaded than in traditional Java
EE web applications, thus greater is the risk of java.lang.
OutOfMemoryError.
Besides, when used on clustered application servers, state has
to be serialized for replication, so it is a huge requirement on
stored objects.

Scratching the surface
Having said all that, it is time to have a look at the both the source code that was
created by the Vaadin plugin and the code that it generated and pushed on the client.

Hello Vaadin!

[74]

The source code
The source code was taken care of by Vaadin plugin:

import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.Label;
import com.vaadin.ui.UI;

public class MyUI extends UI {

 @Override
 public void init(VaadinRequest request) {

 Label label = new Label("Hello Vaadin user");

 setContent(label);
 }
}

Though having no prior experience in Vaadin and only armed with some
basic concepts, we can guess what the class does. That is the strength of
Vaadin-compared to competitor frameworks, it is self-evident!

•	 In the first instruction of method init(),we create a new label. Labels
are used to display static messages. They are often found in web forms
as description for fields. Our label has a specific text. Notice it is displayed
in the final screen.

•	 In the second instruction, we add the label to the UI. Even when you have
no prior experience with component-based development (whether thin or
fat client-based), it is clear that the label will be displayed in the window:

The generated code
In your favorite browser, right-clicking and selecting the menu that shows the source
will only display JavaScript—gibberish to the inexperienced eye.

Chapter 3

[75]

In fact, as the UI is generated with GWT, we do not see anything interesting in
the HTML source—only the referenced JavaScript and a single <noscript> tag
that handles the case where our browser is not JavaScript-enabled (an unlikely
occurrence in our time, to say the least).

There is a consensus on the Web that JavaScript-powered web
applications should degrade gracefully, meaning that if the user
deactivates JavaScript, applications should still run, albeit with less
user-friendliness. Although it is a very good practice most of the time,
JavaScript applications will not run at all in this case. GWT, and thus,
Vaadin, are no exceptions in this matter.

Of much more interest is the current HTML/JS/CSS. In order to display it, we will
need Google Chrome, Firefox with the Firebug plugin, or an equivalent feature in
another browser.

Firebug is a must-have for all web developers using Firefox.
It's free and available from http://getfirebug.com/.

More precisely, locate the following snippet:

<div id="myfirstvaadinappapp-603887191" class=" v-app reindeer">
 <div class="v-ui v-scrollable" tabindex="1"
 style="height: 100%; width: 100%;">
 <div class="v-loading-indicator"
 style="position: absolute; display: none;"></div>
 <div class="v-label v-widget v-has-width" style="width: 100%;">
 Hello Vaadin user
 </div>
 </div>
</div>

Things of interest
First of all, notice that although only a simple message is displayed on the user
screen, Vaadin has created an entire DOM tree filled with <div> elements that has
both style and class attributes. We will see later in Chapter 4, Components and
Layouts, that Vaadin (through GWT) creates, at least, such a <div> element for
every layout and component. For now, just be aware of the following:

•	 The class v-ui denotes a UI
•	 The class v-label indicates a label

Hello Vaadin!

[76]

Summary
We saw a few things of importance in this chapter.

First, we had an overview of the Vaadin's philosophy. Vaadin creates an
abstraction over the classic request/response sequence in order for developers
to think in "applications" and no more in "pages".

In order to do that, the Vaadin's architecture has the following three main
components:

•	 The client side that is JavaScript upon the Google Web Toolkit
•	 The server side that calls appropriate fragments of client code
•	 Communications between the client and the server is implemented

with JSON messages over the HTTP protocol

Then we deployed the Vaadin application we developed in Chapter 2, Environment
Setup. There is nothing special with Vaadin applications, they are simple web
archives and are deployed as such.

The debug window, which is very convenient when debugging display and
layout-related bugs, comes bundled with Vaadin.

Finally, we somewhat scratched the surface of how it all works, most notably
the following:

•	 The handling of an HTTP request by Vaadin
•	 The notion of UI in the framework
•	 The code, both source-generated by the plugin and the HTML structure

generated by the former

This chapter concludes the introduction to Vaadin. It is a big part on the path to
learning Vaadin. If you feel the need to take a pause, then this is the right time to
do so. If not, go on to learn about components and layouts in the next chapter!

Components and Layouts
In this chapter, we will examine the building blocks of Vaadin applications,
namely the components. Technologies such as Swing, SWT, Flex, or JSF all provide
components that are composed in order to produce a user interface. It is no mystery
then that Vaadin also provides them.

Numerous components are available in Vaadin; even more are available as
add-ons and we will see in Chapter 9, Creating and Extending Components and
Widgets, how to build our own. However, the following that are provided
out-of-the-box are fundamental:

•	 UI

•	 Window

•	 Label

•	 Field

Then, we will have a look on how these components can be arranged; this will
let us detail the layouts:

•	 Layout

•	 Panel

Starting from this chapter, we will build an application that will be used throughout
the rest of this book. The goal of this application will be to interact with Twitter.

Thinking in components
Components are at the core of any rich application framework worth its salt.

Components and Layouts

[78]

Terminology
In Vaadin, the term widget refers to the client-side UI component made with GWT,
whereas the term component refers to the server-side Java-compiled component, as
well as the whole GWT + Java class association.

Component class design
Before diving right into concrete components that we will manipulate in order
to create our user interface, let's take some time to analyze the component class
hierarchy design in Vaadin.

The following is a simplified components class diagram:

Chapter 4

[79]

Component
The root of the Vaadin component hierarchy is the Component interface.
This interface inherits, directly or indirectly, from other interfaces, some
of which belong to the Java API and others to the Vaadin API:

•	 Serializable: It is critical that Vaadin components are serializable, as we
have seen in Chapter 3, Hello Vaadin!, because the UI objects are tied to the
HTTP session. Were components not serializable, it would still be possible
to store the UI instances in the session, but some application servers would
not be able to serialize them between cluster nodes, or even when stopping
with active sessions. Therefore, Vaadin tackles this problem right from the
start and makes all components serializable.

For example, Apache Tomcat uses serialization to store user sessions
before terminating. Also, note the Google App Engine passes user
sessions through cluster nodes using serialization.

From a code point of view, this changes nothing, as serializable is a marker interface
and as such, has no methods. The only thing we have to do when inheriting from
Vaadin components is to manage class versioning. There are only three options:
do nothing, add a @SuppressWarning annotation on classes, or add a serial version
unique identifier field (generated or not), like this:

private static final int serialVersionUID = 1;

For detailed information about class versioning, please look at this Stack
Overflow answer: http://stackoverflow.com/questions/285793/
what-is-a-serialversionuid-and-why-should-i-use-it.

•	 ClientConnector: The ClientConnector interface is the contract that all
components must adhere to in order for the Vaadin framework to share
common state between server-side components and their client-side widgets
counterparts. This interface is used by developers who create their own
components wrapping GWT widgets or native JavaScript, and will be seen
in more detail in Chapter 9, Creating and Extending Components and Widgets.

•	 Sizeable: The Sizeable interface is of much more interest as it governs the
size the components will have. We will describe it in detail in the More Vaadin
goodness section later in this chapter.

http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it
http://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

Components and Layouts

[80]

MethodEventSource
MethodEventSource is an interface that is part of the Observer pattern [GOF:293].
It represents the subject part of the observer/subject pair. As such, it knows how to
register/unregister the third-party observers.

This particular interface and its methods will be under intense scrutiny in Chapter 5,
Event Listener Model, where we will detail the event model in Vaadin.

Abstract client connector
AbstractClientConnector will be very much needed by Chapter 9, Creating and
Extending Components and Widgets; until then, suffice to say it implements all methods
described in ClientConnector with an adequate implementation.

Abstract component
The AbstractComponent class implements all the aforementioned interfaces, so that
each and every component in Vaadin will have the same behavior for free.

This also means that all the custom components we develop, as soon as we inherit
from AbstractComponent, will be handled just in the way we intend.

Although this design may seem trivial, it is always a bad surprise
when an application does not behave as expected. In Vaadin,
all components have the same expected behavior, provided the
developer did not implement his/her own, of course.

Properties of AbstractComponent affecting the display include the following:

Property Type

caption String

description String

Chapter 4

[81]

caption is the label associated with the field. It is displayed near the field, on a
location depending on the layout (see Layouts section), while description is a
detailed explanation about the field. Description is often displayed as a tooltip.

Note that both properties are defined on the AbstractComponent level but only
make sense at the AbstractField level (see The text field section).

Immediate mode
immediate is a property of AbstractComponent. It governs how events are sent
from the client to the server (more details on events will be seen in Chapter 5, Event
Listener Model).

When immediate is set to true, the event is immediately sent to the server;
when set to false, it is buffered in a local queue located on the client-side and
sent along the next immediate event. Default value for immediate is false for
most components, and true for buttons.

As an example, for a form, if we desire a modern behavior where each field is
sent and validated immediately after the value is changed by the user, we set
immediate to true on each field.

Troubleshooting
The immediate mode is the most common source of confusion for
Vaadin beginners: if events seem not to be sent to the server, be sure
to check the immediate property.

UIs
UIs are every rich application's root component. In fact, the Vaadin plugin already
created a UI in our previous "Hello Vaadin" project (see The source code section from
Chapter 3, Hello Vaadin!).

Components and Layouts

[82]

The UI class has a rich component hierarchy, as seen in the following diagram:

HasComponents
The com.vaadin.ui.HasComponents interface is a Vaadin-specific Iterable
template with Component. It simply describes a specialized component that may
contain other components.

Single component container
The SingleComponentContainer interface is a container which can
only contain a single child component. Its direct implementation is
AbstractSingleComponentContainer, which implements all needed methods.

In order to set its child, it declares the setContent(Component) method; and
symmetrically the getContent() one. This means that only a single component
can be set as a child element of the container and it acts as its root.

Chapter 4

[83]

UI
As seen in Chapter 3, Hello Vaadin!, the UI class is a specialized component
representing the root of its components hierarchy. You may think of it as the
canvas upon which added components will be painted and limited by the inner
borders of the browser window.

Since UI extends SingleComponentContainer, we can only add a single component
to it. In real-life, however, we may need to add more than one component: this
requires the use of an intermediary container that can handle multiple children
components. Such intermediaries are generally layouts (see Layouts section).

Theming
In Vaadin, a combination of CSS, images, and HTML layouts (refer to the Layout
types section named later in this chapter) can be brought together and applied to
the UI. This combination is called a theme.

Theme creation is a specialized topic and could easily fit a small
book in itself. Interested readers can refer to http://vaadin.com/
book/-/page/themes.html for more information.

Setting a theme can be done on a single UI. In order to do this, decorate the UI
with the @com.vaadin.annotations.Theme annotation.

Available themes in Vaadin are reindeer (the default), chameleon, liferay,
and runo. Additional themes can be obtained through the Vaadin directory as
add-ons (see Chapter 8, Featured Add-ons for more information on Vaadin
directory and add-ons).

Panel
The next class is a concrete one, Panel. As can be guessed, it represents a panel;
by default, panels are displayed in a different background and delimited with
visible borders.

Panel adds an interface to the AbstractComponentContainer, Scrollable.
Scrollable lets us programmatically scroll our panel components. Note that
the scrolling unit is the pixel.

http://vaadin.com/book/-/page/themes.html
http://vaadin.com/book/-/page/themes.html

Components and Layouts

[84]

Windows
Finally, Window is the last class in the window class hierarchy. Note that it is
by no means a leaf class, meaning it can be extended should the need arise.

In UML (Unified Modeling Language), leaf classes are classes that
cannot be extended. In Java, that translates to final classes.

Windows can be displayed using the addWindow(Window) method of the UI class,
and likewise be hidden using the removeWindow(Window) method of the same class.

There is no limit to the number of window a UI can display.

Differences with earlier Vaadin versions
Before Vaadin 7, Windows were used both for top-level windows and
pop ups. This led to API inconsistency, as some methods could either
be called on one or the other. Vaadin 7 has clarified things: windows
are pop ups. Top-level windows are represented by UI.

Window structure
Windows are composed out-of-the-box from the following elements:

•	 A title bar with:
°° A title located at the top-left corner
°° A X icon button located at the top right corner, for closing the pop up
°° A handle located at the bottom right corner, for resizing the window

•	 A canvas, the same as for UIs, where a single component can be laid out:

Chapter 4

[85]

Customizing windows
Most of the time, the defaults for structure and behavior of a window won't fit
our needs. However, the Vaadin framework allows us to customize both.

Basic configuration
Properties are available in order to customize windows. These are summed up
in the following table:

Property Type Default value
closable boolean True

resizable boolean True

draggable boolean True

•	 An unclosable window does not display the X icon button in the title
bar. Thus, we have to provide another means to close it; or it will stay
there indefinitely!

•	 An unresizable window does not display the handle at the
bottom- right corner.

•	 Regular windows can be dragged around when the title bar is clicked
on. However, we can remove this behavior with the setDraggable
(boolean) method.

Location
Setting the right location on the user screen is very important from an ergonomic
point of view. In order to do this, Vaadin provides a few methods.

Most of the time, centering the window relative to the parent UI fits our needs:
just use the center() method.

y

X

y

X

Components and Layouts

[86]

In order to go beyond centering and to set the location of the upper-left corner pop
up relative to the upper-left corner of its parent, Vaadin respectively provides the
setPositionX(int) and setPositionY(int) methods. The position parameter's
unit is the pixel.

Modality
Modality is the capacity for the window to intercept all events from the user to
the underlying UI.

In effect, a modal window blocks all relations to the parent application until it
is closed, whereas a non-modal window lets the user interact normally with the
application.

By default, windows are non-modal. However, we can change the modality with
the setModal(boolean) method of the Window instance.

Weak modality
Notice that windows are displayed as an HTML <div> element on
the client-side, not as browser native windows. As a result, modality
is enforced, neither by the browser nor the system, but by JavaScript.
Hence, we should never rely on this weak modality in order to
enforce security constraints, as it can easily be bypassed.

In case of doubt, the isModal() method of the Window class returns whether
the window is indeed modal.

Labels
Labels are widgets used to display non-editable text content. In Vaadin, text fields
use associated captions; therefore labels are seldom used (see Field section later
in this chapter).

Chapter 4

[87]

Label class hierarchy
Label is a subclass of AbstractComponent but also implements the
Property interface.

As the Property interface is implemented throughout the whole Component class
hierarchy, it is best to have a look closely at it before going further.

Property
In essence, the Property interface simply designates a single value data holder,
with accessors.

Note that Vaadin 7, as opposed to previous versions, does take
advantage of Java 5 Generics: property value uses a template
type. Do not forget to use this when needed!

Moreover, there is a read-only property: by contract, calling the setValue(Object
value) on a read-only instance should throw a Property.ReadOnlyException.

Finally, Vaadin provides the getType() method to let us query the type stored
by the Property implementation instance.

Components and Layouts

[88]

Label
As shown in the preceding class diagram, a Label is an AbstractComponent
that implements the Property interface.

Formats
However, labels have a distinguishing feature that set them apart from other
components; they allow for formatting. Formats are configured using the
ContentMode enumeration.

Available formats are:

•	 Text format: It is not as simple as it sounds since the final output should
be valid HTML. Hence, all HTML entity characters are translated into
their equivalent HTML alphanumeric code. For example, the < entity is
transformed by Vaadin into <. This process ensures the user really sees
what the message is. This format is hinted at by the ContentMode.TEXT
enumeration value. It is also the default.

For the complete entities list, visit the following URL:
http://www.w3.org/TR/REC-html40/sgml/entities.html

•	 Preformatted: Browsers conveniently lay out HTML paragraphs depending
on the window size. If the size changes, then the paragraph will be laid
out differently. Yet, it may be required that the paragraph be laid out in a
predefined certain way, for example that line breaks occur at certain places.
This is the case for computer code, especially for Python for example. For
these use-cases, HTML provides the <pre> tag which lays out the paragraph
exactly the way it is typed. By using preformatted, Vaadin will also use this
tag to render the paragraph. This format is governed by the ContentMode.
PREFORMATTED constant.

•	 HTML: This formatting is similar to the previous one, but also tidies the
written HTML, so that the produced output is HTML-compliant. For
example, the following server-code HelloVaadin will
produce this HTML output: HelloVaadin.
This is used with the ContentMode.HTML constant.

Chapter 4

[89]

Using HTML in Java
Just because something is possible, this does not mean that it
should be done. In particular, formatting HTML on the server-side
is a bad idea-do it only sparsely. The right way to handle this is
through theming.

Formatters are either set in the constructor, or changed later with the
setContentMode(ContentMode).

For example, the following code displays a welcome message into our application:

Label label = new Label ("Welcome to <i style='color:red'
 title='Vaadin rules!'>Vaadin", ContentMode. HTML);

The following screenshot shows the result:

It should be noted that even though label formatting is a feature
brought by the Label class, the proper way to style labels is
through themes (and thus CSS).

Text inputs
Text fields are the simplest components available to users in order to send data
to the server part of an application.

In our case, however, they are also a very good entry point into Vaadin field class
hierarchy, as they are devoid of more complex features.

Components and Layouts

[90]

Conversion
While users enter characters that translate into strings, there are times when the
underlying data is more finely type. For example, age should be an integer, whereas
birthdate should be a date. To handle such data, Vaadin 7 introduces the concept of
converters: a converter takes a string representation of the data and converts it to the
data type and back.

Vaadin provides a lot of converters out-of-the-box in the com.vaadin.data.util.
converter package. They are pretty self-explanatory:

•	 StringToBooleanConverter

•	 StringToNumberConverter

•	 StringToIntegerConverter

•	 StringToFloatConverter

•	 StringToDoubleConverter

•	 StringToDateConverter

Chapter 4

[91]

Adding a converter to a field is achieved with the setConverter(Converter<T,
?>) method of the AbstractField class. From this point, it is easy to get the
converted value with the getConvertedValue() method of the same class.

setConverter() comes in two flavors: one accepts a converter
instance, the other a class. In the latter case, the class should be the
class we can use to convert from, not the converter class. Therefore,
it will have no effect if it does not belong to one of the above classes.

The following snippet creates a text field that converts raw values to integers.
When the user clicks on the button, it outputs two times the converted value in
the standard output.

final TextField tf = new TextField("Integer");
tf.setConverter(new StringToIntegerConverter());
Button button = new Button("Submit");
button.addClickListener(new ClickListener() {
 @Override
 public void buttonClick(ClickEvent event) {
 System.out.println(
 ((Integer) tf.getConvertedValue()) * 2);
 }
});

If the user types 4 in the field, the standard output displays 8, as expected.

Now, if the user types four, there is no ClassCastException for Vaadin throws
its own exception beforehand. In this case, the displayed message is com.vaadin.
data.util.converter.Converter$ConversionException: Could not convert 'four'
to java.lang.Integer.

When implementing custom converters, there are two important requirements
to enforce:

•	 A converter must have no side-effect, and must make no changes to the GUI
•	 Converter methods, from and to string representations, should be symmetric

Components and Layouts

[92]

Validation
Validation is a major feature of components. As soon as an application needs a user
input, there is a need for this input validation. In Vaadin, the validation process is
handled by the Validatable/Validator pair.

Validator
Validators are specialized objects that fulfill a double purpose:

•	 Checking if an Object is valid.
•	 Validating an Object. It will throw a Validator.InvalidValueException

if the object is invalid.

Chapter 4

[93]

Validators hierarchy
The validator hierarchy is shown in the following diagram:

Some concrete validators are available out-of-the-box in Vaadin's API, and should
fit most of your needs. These are the following validators:

•	 RegexpValidator is used for validating regular expressions. This validator
is very interesting as it is generic enough to be used for ZIP codes, telephone
numbers, and similar objects. The regular expression is passed to the
constructor, hence making the validator immutable.

Components and Layouts

[94]

For more information on regular expressions, visit the following URL:
http://www.regular-expressions.info/

For specific patterns and rules used in Java, visit the following URL:
http://download.oracle.com/javase/6/docs/api/java/
util/regex/Pattern.html

•	 EmailValidator is used for validating e-mails, whereas
StringLengthValidator is used for string length input.

Regexp, e-mail, and string length validators
Be aware that everything that can be validated with either an
EmailValidator or a StringLengthValidator, can also be
validated with a RegexpValidator. However, the former are much
easier to use, are more semantically significant, and there is no risk of
mistyping regular expressions.

•	 CompositeValidator implements the Composite pattern [GOF:163]. Each
one holds a list of other Validator instances. When asking the composite
for validation, it will ask each validator in the list for validation. Now, the
composite may run in two different exclusive modes:

°° In AND mode, validating succeeds if no referenced validators
fail validation. The AND mode is the default one.

°° In OR mode, validating succeeds if a single referenced
validator succeeds.

The order in which the validators are executed has no importance
whatsoever, as all validators in the list will run, even in OR mode a
failed validation will not stop other validations.

If ours needs go beyond that, and our input cannot be validated with a regular
expression, then we should probably use AbstractStringValidator as the
basis for our brand new validator.

Error message
Validators can be set with an error message at the AbstractValidator level.
InvalidValueException instances are initialized using this error message.
InvalidValueException accepts a single placeholder that is filled with the
field value should the validation fail.

http://download.oracle.com/javase/6/docs/api/java/

Chapter 4

[95]

The exception handling mechanism itself will be explained in
detail in Chapter 5, Event Listener Model.

For example, the following code snippet will display an error message relative
to the value when the submit button is clicked:

// window is the main window
TextField tf = new TextField("Email");
EmailValidator validator =
 new EmailValidator("{0} is not an email");
tf.addValidator(validator);
Button button = new Button("Submit");
VerticalLayout layout =
 new VerticalLayout(tf, button);
layout.setMargin(true);
setContent(layout);

Validatable
A Validatable stands for objects that know how to validate their input based
on a collection of internal validators.

Like Validator, Validatable has two main methods that must be kept in synch:

•	 isValid() that checks if an Object is valid
•	 validate() that throws a Validator.InvalidValueException if the

object is invalid

Unlike Validator, it delegates this logic to its underlying validators.

Validatable coherence
It is mandatory, by contract, that the isValid() and validate()
methods be coherent with each other. Vaadin's implementations
respect this rule as AbstractValidator.validate() effectively
calls isValid(). However, when directly implementing
Validatable, take care to enforce this in the code.

Components and Layouts

[96]

Change buffer
In computer software, a buffer is a zone that is used to temporarily store data.

In Vaadin, the Buffered interface represents an object that can flush or cancel
changes made to its buffer to the underlying datasource object, but has the option
to override this behavior altogether and ignore the buffer in one or both ways
(read and write).

The following schema illustrates this:

Write-through

Buffer
write

read
discard

commit

Read-through

Caller Value

•	 In a read-through mode, the value read from the buffer is always in sync
with the underlying value

•	 In a write-through mode, the new value is immediately updated

Note that each behavior is completely independent. A buffered
object may be write-buffered but read-through or the opposite,
read-buffered but write-through. Beware that those combinations
are highly unorthodox, even if sometimes desired, and may result
in puzzling behavior at first glance.

The Buffered interface is very similar to Relational Databases Management systems
as the latter also uses a buffer to handle transactions and isolation levels for SQL
Data Manipulation Language (INSERT, DELETE, and UPDATE) statements:

•	 commit() will update the real value with the value held in the buffer
•	 discard() will replace the buffered value with the real one, just like a

rollback statement

Chapter 4

[97]

Buffered and validatable
Input fields can be at the same time buffered and validatable. Vaadin introduces
the BufferedValidatable to the hierarchy, which unsurprisingly inherits, from
both Buffered and Validatable.

This interface just adds to its superinterfaces how to set/unset, that the current
buffer invalid value has been committed, and query this information through the
invalidCommited property.

These methods are used by Vaadin's internals to verify if it needs to
send change value events, they can comfortably stay in the dark.

Input
From this point on, Vaadin weaves display features into the data class hierarchy.

Components and Layouts

[98]

Focusable
As inputs are meant to be displayed, they can also receive focus. Component
describes the Focusable interface that has the following three methods:

•	 setTabIndex(int) to set the tabulation order
•	 getTabIndex() to get it
•	 Finally, focus() to programmatically give focus to a particular component

A thing worth noticing is that although Focusable is declared in Component, not
all components are focusable, though fields are. In particular, labels, which are
components but not fields, won't be able to receive focus.

Field
The Field interface inherits from BufferedValidatable, Focusable,
and Component. Moreover, it adds features that characterize input fields.

In Vaadin, the following properties are inherent to a field:

Property Type
required boolean

requiredError String

Chapter 4

[99]

required is an indicator set to true if the field should throw an
EmptyValueException if it is empty, while requiredError is the associated
message. These are propagated as InvalidValueException instances, seen
previously in the above sections.

As Field is an interface, it has no property per se, yet
getter/setter combinations are handled by properties in
the AbstractField child class so it is not far-fetched to
call them properties even at the interface level.

AbstractField is a straight abstract class that provides implementation of
the Field interface. It also inherits from the AbstractComponent class, like
Label, but can hold a value thanks to the Property interface.

Also, AbstractField provides the isEmpty() method to check whether the
property managed by the field is null (or empty in the case of text fields).

There is not much more to say about it, except that all input components such as
text field, select box, and so on provided by the Vaadin API inherit either directly or
transitively from this abstract class. If we need to create our own component, then it
should be the first class to consider extending, although it is by no means required.

The text field
The text field class hierarchy in Vaadin begins with AbstractTextField,
which defines additional features to enhance AbstractField.

Components and Layouts

[100]

Descending in the hierarchy, there are specialized classes for some use-cases:

•	 Simple text field when nothing more is needed: this will translate on the
browser to an HTML input of type text

•	 Password field that hides the characters typed in it which will be displayed
with an HTML input of type password

•	 Text area that is represented by an HTML textarea

However, the real power lies in the AbstractTextField that factorizes common
behavior and properties. The following table lists those properties that are described
in the following table:

Property Type Default value Misc.
columns int 0 Set to 0 for implicit

calculation
cursorPosition int N/A
inputPrompt String null

maxLength int -1 Set to -1 for unlimited
length

nullRepresentation String null

nullSettingAllowed boolean false

Null
For a computer programmer, null and empty values are not the same thing and
may have a very different meaning (or not) both in the code and in the database.

Some software handles the case while others do not. In the former case, the
most well-known example is when we have to use a GUI to set a NULL value
into the database.

The good news is that, Vaadin lets us handle null values differently from empty
ones. On the other hand, if this is the desired behavior, the null value must be
assigned a string representation. This means that this string will be interpreted
by Vaadin as null, and it won't be available as a real string value anymore. For
this reason, it is very important to assign only strings that have no meaning for the
user. Examples of such meaningless strings include, but are not limited to: <NULL>,
<null>, #null, or an empty string.

Note that this feature may only be used when null values are indeed allowed
for the field: it is not the case by default and must be activated if necessary with
setNullSettingAllowed(true) on the text field instance.

Chapter 4

[101]

Input prompt
An input prompt is the text that is shown in the field itself as a hint for accepted
values to the user. As soon as the user starts typing into the field, the prompt is
hidden. The prompt font is usually shown with less visibility than the input font
itself in order to have a clear discrimination between prompt and input, as shown
in the following screenshot:

Setting the input prompt is simply done by calling the setInputPrompt
(String) method. We can also query it with getInputPrompt().

The value of the input prompt
Not only is setting an input prompt in your own applications
an interesting alternative (as well as a cheaper one) to a
carefully documented help, it is also a UI design pattern. Refer
to http://ui-patterns.com/patterns/InputPrompt
for more information.

Cursor
Vaadin lets us programmatically manage the cursor position within a field.
This is simple and straightforward. Note that calling the setCursorPosition(int)
method will also give focus to the field the method is called on.

We can also get approximate cursor position from the last time of UI
synchronization.

Selection
We can select a text field's content with either of the following methods:

•	 selectAll() selects the whole of the text content
•	 setSelectionRange(int, int), where the first parameter is the initial

position index and the second the length to select, selects characters starting
from the position (included and beginning with 0)

For example, the following code snippet will select "23":

TextField tf = new TextField();
tf.setValue("123456789");
tf.setSelectionRange(1, 2);

Components and Layouts

[102]

A "real-world" text field example
Can you guess what the next code snippet does?

TextField tf = new TextField("Age");
tf.setInputPrompt("Please enter age");
tf.setImmediate(true);
tf.setConverter(new StringToIntegerConverter());
IntegerRangeValidator validator =
 new IntegerRangeValidator("Age must be below 100", 1, 99);
tf.addValidator(validator);

Here is the answer: it creates a text field, complete with label and input prompt.
This field accepts only integer values that are to be between 1 and 99. Conversion
and validation happen as soon as the user leaves the f﻿﻿ield.

More Vaadin goodness
Many customizations are available in Vaadin to implement your customer
requirements. Some of them do not need components.

Page
In Vaadin parlance, Page represents the browser window (or tab) whereas UI
stands for the canvas inside it. Some configuration is available through pages,
as shown in the following properties:

Property Type
title String

location URI

uriFragment String

Getting a handle on the page is easy as pie: UI offers the getPage() method.
Alternatively, just use the static method Page.getCurrent() anywhere in the code.

Get current
The getCurrent() method is available on many classes (including
UI): when you are stuck when trying to get a handle on a specific object,
check whether such a method is provided before trying to get clever.

Chapter 4

[103]

Title
Pages can be set with their title. This title will be written in the generated HTML
output under the <title> tag and will be visible in the title bar of most browsers. To
do so, just annotate the UI with the com.vaadin.annotations.@Title annotation.

Alternatively, if the title has to be dynamic and cannot be set in stone, call the
setTitle(String) method on Page.

Navigation
Under normal conditions, Vaadin implements the Single Page Interface, meaning
that during the entire application lifecycle and throughout UI changes, Vaadin does
not change the URL of the first request that launched it.

In order to know more about the Single Page Interface, refer to the
following URL:
https://en.wikipedia.org/wiki/Single-page_application

To navigate to locations that are not served by the current Vaadin servlet
(may they be under the same context-root or completely unrelated URIs),
the setLocation(String) method (or setLocation(URI)) is very useful.

For example, the following snippet sets the browser location to a well-known
search engine:

Page.getCurrent().setLocation("http: // www . google.com");

URL fragment
Single Page Interface is an acceptable default for standard applications. Yet for web
applications, users are used to bookmark different pages in order to easily find them
later-it is the legacy of page-flow applications.

More importantly, some applications have real need for fine-grained URL, like online
stores where each item can be set its own URL. This also let these different items be
referenced separately by search engines such as Google.

In this case, the method setUriFragment(String) of the Page class is useful in that
it lets developers append a URI fragment to the URL application. On the contrary,
getUriFragment() lets us accede to the URI fragment, if there is one.

Components and Layouts

[104]

As an example, let us consider an online shop. Each item of the shop displays a list of
related items. Hyperlinks on such related items include a URL fragment that may be
used to display the associated item full-size:

String uriFragment = Page.getCurrentPage().getUriFragment();
long itemId = transcodeFragmentToId(uriFragment);
Item item = loadFromDatabase(itemId);

Accessing a component that contains such code will load the desired item from
the database, as expected.

Third-party content
Sometimes content sent to the user should not be related to user interface,
but to third-party content, whether in text or binary format. This is the case
when the user requests an image, a PDF, or even a bare HTML document that
should not be handled by the Vaadin framework.

Resources
In order to cover these cases, Vaadin provides an abstraction: Resource.

Chapter 4

[105]

The Resource interface represents something provided to the terminal for
presentation. How the terminal really handles the display is left to it.

In Vaadin, resources may come from two different locations:

•	 From inside the application (or at least from where the application is
located, in the case of files):

°° Resources on the classpath
°° Resources from streams accessible by the code
°° File resources located on the server filesystem

•	 From outside the application, for example, resources accessible by an URL.

Browser window opener
These resources can be displayed in a native pop-up window and Vaadin provides
a dedicated extension named BrowserWindowOpener to take care of that.

Extensions will be detailed in Chapter 7, Core Advanced Features.
For now, let us say that an extension is a way of providing
additional client-side behavior to an existing component.

Vaadin accepts the popup window name. If a window is already opened with the
specified name, then Vaadin replaces its content with the new resource.

Some window names hold a special meaning. Those are the same as in JavaScript's
window.open() and are summarized here for ease of reference:

•	 _blank always opens a new window, even if a previous blank named
window is already open.

•	 _self indicates the current window, hence using it is equivalent to not
using a window name at all.

•	 _parent and _top reference respectively the frame's parent and the frameset.
If frames are not used, then it is the same as _self.

For example, the following snippet creates a button that opens a pop-up window
displaying the Packt homepage each time it is clicked:

Button button = new Button("Click me");
try {
 URL url = new URL("http://www.packtpub.com/");
 Resource resource = new ExternalResource(url);

Components and Layouts

[106]

 BrowserWindowOpener opener = new BrowserWindowOpener(resource);
 opener.setWindowName("_blank");
 opener.extend(button);
} catch (MalformedURLException e) {
 throw new RuntimeException(e);
}

User messages
Applications generally need to inform users. For example, when a user
deletes or updates an entry, it is a good practice to let users know their
operation succeeded or not.

Traditionally, there have been two ways to communicate these facts to the
user for web applications:

•	 Opening an information box through JavaScript. This pop-up is modal,
that is, it blocks inputs outside it and forces the user to acknowledge the
displayed message.

•	 A space is reserved for a message on the screen, most of the time a banner
at the top of the page. It may also be used for error messages: standard
information messages are displayed in a neutral color, errors in red.

Vaadin notification system employs yet a third strategy: the framework displays
the message in an overlay on top of the UI.

The notification class
In order to do that, the com.vaadin.ui.Notification class is used.

From a graphical point of view, a notification displays elements in a horizontal
layout in the following order, from left to right: an icon, a caption, and description.

Each one corresponds to a Java property, thus having both a getter and a setter.
The following table sums it up:

Property Type Constr.
argument

Optional Def.
value

caption String yes mandatory N/A
description String yes optional null

icon com.vaadin.terminal.
Resource

no optional null

Chapter 4

[107]

A notification is defined by its type. Currently, there are three types denoting
different severity level and one special type. The former are, in order of gravity:

•	 Information, also known as humanized notifications, denotes fairly
unimportant content, for example, operation acknowledgement such
as "Entry deleted". Note that an information message fades as soon as
Vaadin detects a keyboard input, or a mouse click, or move from the user.

°° Information notifications are created using Type.HUMANIZED_
MESSAGE enumeration value in the Notification constructor,
or leaving it unspecified, as it is the default style.

•	 Warning notifications are similar to information messages, except they fade
only when a delay has passed or after some user interaction. In this way, they
are more noticeable than information messages.

°° Warning notifications are created using the Type.WARNING_MESSAGE
enumeration value in the Notification constructor.

•	 Error type notifications behave more like modal alert boxes. Their message is
shown until the user clicks on the notification (the X in the top right corner is
only for show).

°° In order to create error messages, use Type.ERROR_MESSAGE.

•	 Finally, tray notifications are used for low-severity messages. However,
unlike the other notifications, they will stack in front of one another, always
displaying the most recent. Clicking on the visible tray notification will
dismiss it and display the underlying notification. This will continue until
there are no more notifications to display.

°° Tray notifications are created using the TYPE_TRAY_NOTIFICATION
constant in the Notification constructor.

Components and Layouts

[108]

Beware of humanized notifications
Be aware that if the user interacts in any way with the application while
the notification is shown, he/she will likely be unable to read the content
of the message. Therefore, it is advised to restrain the use of humanized
notifications, for showing users that the system reacted to whatever
they did, and should not be used for anything, but acknowledging that
whatever operation they requested actually was performed.

Notifications additional properties
Tray notifications are displayed at the lower right corner; other notifications are
centered on the screen. It is however possible to override this position with the
setPosition(Position) method.

In addition, the delay for the notification can be configured as can the style name.
All three, position, delay, and style name are Java properties.

Property Type Constructor
argument

Mandatory /
optional

Default value

position Position No optional Depends on the type
delayMsec int No optional 1500 for Type.

WARNING_MESSAGE

3000 for Type.TRAY_
NOTIFICATION

styleName String No mandatory Depends on the type
("tray", "warning"
or "error")

Here are the different available positions for tray notifications:

Position.MIDDLE_LEFT Position. _CENTERMIDDLE Position. _RIGHTMIDDLE

Position.TOP_LEFT Position.TOP_CENTER Position.TOP_RIGHT

Position.BOTTOM_LEFT Position. _CENTERBOTTOM Position. _RIGHTBOTTOM

Chapter 4

[109]

Displaying notifications
The standard steps to display notifications are the following:

•	 Create a new notification instance
•	 Customize the instance
•	 Call the show(Page) method on the notification instance

As an example, the following snippet displays a welcome message:

Notification notification =
 new Notification("Welcome Vaadin", "It's our first
 application");
notification.show(Page.getCurrent());

However, we had no need to customize the notification, neither its position nor its
display delay. In fact, this is the use-case encountered more frequently: just create
a plain notification and display it.

Therefore, Vaadin adds some very productive static methods to the
Notification class:

•	 show(String): Shows a standard humanized notification
•	 show(String, Type): Shows a notification, letting us choose the type
•	 show(String, String, Type): Shows a notification complete with

configurable description and type

Hence, the previous snippet can be shortened to the following:

Notification.show("Welcome Vaadin", "It's our first application",
 HUMANIZED_MESSAGE);

Use static methods when possible
Of course, there is no magic involved: Vaadin creates the notification
instance for us. Yet, as creating it ourselves has no interest if we just
need standard behavior, it is well advised to use these static methods
whenever possible. It cleans the code, if only a little, and lets us focus
on the real meaningful parts.

Components and Layouts

[110]

Laying out the components
How the UI components are placed on the browser is reliant on the following
two factors:

•	 The components size
•	 Their layout

Size
Previously, when we stared at the Component interface, we noticed it inherited
from Sizeable: let us have a look at that now. Size in Vaadin is governed by
two properties: unit and value.

Available units are exactly the same as those defined by the W3C CSS1 specifications.

Visit http://www.w3.org/TR/REC-CSS1/#units for detailed
information about W3C CSS1 specifications.

Units are governed by the Sizeable.Unit enumeration. As a quick reminder,
these are summed up in the following table:

Unit Type Symbol Description Equivalence Constant
inch absolute in INCH

centimeter absolute cm 2.54 cm = 1 inch CM

millimeter absolute mm 1000 mm = 1 m MM

point absolute pt 12 pt = 1 pica POINTS

pica absolute p 6 picas = 1 inch PICAS

pixel absolute px PIXELS

em relative em Proportion of the letter in regards
to the point size of the current font

EM

ex relative ex Proportion of the letter in regards
to the height of the letter x

EX

percentage relative % Relative to the available space for
the component
As an example, in a vertical layout
with 3 components 50% for one of
the components means 50% of the
available slot, which is 33% of the
parent layout size)

PERCENTAGE

Chapter 4

[111]

Setting the dimension of a component, either the height or a width, is done with
either of the following two methods:

•	 setHeight/setWidth(float, Unit): In this case, both the value and the
unit are set. The latter parameter is taken from the constants defined in the
Unit interface, as described in the previous table.

•	 setHeight/setWidth(String): In this case, the Vaadin framework parses
the string value in order to compute the desired length and its unit. The
string is parsed by following exactly the same rules as followed for CSS 1
length units' specifications.

Calling setHeight/setWidth() with either the empty string or
null as an argument will clear the length value and set the unit to
pixel for the desired dimension.

There are also two shortcut methods:

•	 setSizeFull() is the equivalent of calling setHeight("100%") and
setWidth("100%")

•	 setSizeUndefined() clears both the height and width information

For example, these two lines of code are equivalent:

myComponent.setHeight(100, Unit.PIXEL);
myComponent.setHeight("100px");

These two are also equivalent:

myComponent.setWidth(20, Unit.PERCENTAGE);
myComponent.setWidth("20%");

Which style to choose?
Using one or the other is more or less a question of taste. Using
strings has the disadvantage of mistyping, but you could also use an
unwanted unit constant. It is advised to use the style that suits you
best but in a consistent manner throughout the project.

Components and Layouts

[112]

Layouts
In Vaadin, layouts are components: they all inherit from
AbstractComponentContainer. In this aspect, layouts are full-fledged
components and have an intrinsic size.

About layouts
The web browser terminal translates components into HTML elements.
For layouts, this means each of them generates a <div> tag.

Depending on several factors (including user machine performance, web browser
type and version, server performance, and network latency), users may experience
unresponsive behavior when resizing a native window displaying a Vaadin
application, if there are too many nested layouts.

There is already some nesting done by Vaadin, so it is better not to
add more than three extra nested levels. Beyond that, you should take
care to know your audience (intranet, extranet), and to extensively test
your UI. Failing all that, the best move is to migrate from simple nested
layouts to a more complex layout, CustomLayout being the ideal
candidate (see section Advanced layouts later in this chapter for details).

Component container
The interface named ComponentContainer represents a component that may
hold more than one other component. As such, it has methods that manage
child components and more precisely:

•	 Add a single child component (or a bunch of children components)
•	 Remove a child component
•	 Replace a child component
•	 Remove all child components
•	 Move all child components from one component container to another

The abstract class that provides these implementations is
AbstractComponentContainer. It also inherits from AbstractComponent
and as such, has all features seen earlier.

Chapter 4

[113]

Layout and abstract layout
Layout is the base interface for all layouts. It just knows how to use margin or not,
on all four sides, or side-by-side. The space used for the margin is dependent on
both the terminal and the theme used.

AbstractLayout is the straightforward implementation of Layout and inherits
from AbstractComponentContainer.

Layout types
Vaadin provides many different layouts out-of-the-box; there will always be one that
will fit your needs. If you are really stuck with a particularly complex graphic design,
then just take a look at CssLayout which is described in this section. The following
are lists available types of layout:

Simple layouts
Simple layouts are efficient and let you forget about HTML and CSS.

•	 Horizontal and vertical layouts: Horizontal and vertical layouts position
child components respectively in a horizontal and vertical way. Those
layouts are the simplest we can use: they just put components next to
one another in a single neat row/column, regardless of the user screen's
dimensions. It is the responsibility of the web browser to provide the means
to display UI parts that are out of view, usually with the help of scrollbars.

Vertical Layout

Horizontal Layout

•	 Grid layout: Of more interest is the GridLayout. As its name implies,
Vaadin will lay out the child components in a grid-like fashion.

Components and Layouts

[114]

GridLayout's constructor needs both the number of columns and the number of rows.

•	 Form layout: Fields captions are usually displayed on the top of the relevant
field; it is the default location. However, forms are usually label-field pairs
where the label is displayed left of the field and each pair stacked vertically.
Vaadin emulates this presentation when using the form layout. This is shown
in the following screenshot:

Advanced layouts
When our needs are more elaborate than the preceding simple cases, Vaadin still has
the answer. In fact, HTML and CSS let you have a more precise hand over the overall
design of your screens.

Leaky abstractions
Using these layouts is a case of leaky abstraction: in most cases, Vaadin
shields us from the mechanics and the technology of lower layers.
Previous layouts generate an awful bunch of nested divs, which makes
DOM heavy and slow to update. On the contrary, absolute, CSS, and
custom layouts force us to dirty our hands with gritty details but give
much more control over what is generated client-side.

•	 Absolute layout: The Absolute layout translates to absolute CSS positioning.
As a reminder, it has four possible attributes: top, bottom, left, and right.
Each attribute can be affected a length, containing both a value and a unit as
seen in Size earlier in this chapter, and the browser will draw the component
at the exact position relative to the screen.

In order to make that work, AbsoluteLayout adds the addComponent(Component,
String) where the second argument is the absolute position written respecting the
CSS specifications.

Chapter 4

[115]

For example, the following code will display the label in the bottom left corner:

layout.addComponent(new Label("Made with Vaadin"),
 "left:10px;bottom:10px");

•	 CSS layout: The CSS layout goes even further than the previous absolute
layout, in that it renders its children component in the same HTML <div>
and lets the CSS position them on the final page.

A whole book could be devoted to CSS specifications and Vaadin theming targeted
at designers. For mere developers like us, the only thing to know is that each Vaadin
component is affected a CSS class in the generated HTML. In order to effectively use
CSS, we have to tell the designer how the class name is computed.

The rule is very simple: the class name is "v-" concatenated with the name of the Java
component in lowercase. The following table shows some examples of this rule:

Java component CSS class name
TextField v-textfield

Button v-button

CssLayout v-csslayout

Remember that layouts are components too!

•	 Custom layout: Vaadin can also be used as a templating engine with the
help of the CustomLayout. In order to do this, carry out the following steps:

1.	 First, find the desired HTML template to feed the layout, whether
on the fly by loading the desired resource from an input stream,
or through a theme template.

Components and Layouts

[116]

With theme templates, the template is fetched either from the web
application's root or from an accessible JAR. In both cases, the
layout is referenced under VAADIN/themes/<CURRENT_THEME>/
layouts/<LAYOUT_NAME>.html.

2.	 Then, set the placeholders. Placeholders must be the div elements
and should be set a unique location attribute.

3.	 Finally, add components to the CustomLayout by using
addComponent(Component, String). Vaadin will replace
the previously defined div with the corresponding component
using the second parameter as the key.

As an example, the following snippet of code warmly welcomes Vaadin:

// window is main window
CustomLayout layout = new CustomLayout
 (new ByteArrayInputStream("<body><h1>Hello</h1>
 <div location='who' />".getBytes()));
layout.addComponent(new TextField("name", "Vaadin!"), "who");
window.setContent(layout);

Choosing the right layout
It may seem a banal, but the right layout is the one that fits your needs. However,
there are some general guidelines:

•	 It is a good practice to begin with a simple layout, that lets you forget HTML
and CSS specifications, and then progress to advanced ones if there is a real
added-value

•	 If you come from a client-server background (Swing, SWT, or something
else), then realize there is a performance penalty when nesting too many
levels of layout

•	 If only a small part of the screen is complex, then prefer a top-level simple
layout that nests an advanced one over a single advanced one

Chapter 4

[117]

Of course, these principles are too broad to be one-size-fits-all. Nonetheless, they
should be useful most of the time: don't have any scruples in adapting them to each
specific situation, though.

Split panels
In Vaadin, split panels are designed as component containers. They behave as their
client-server counterpart: they contain two components separated by a split bar.

Available properties are as follows:

Property Type Default value
firstComponent Component null

secondComponent Component null

locked boolean false

Regardless of the locked indicator, we can programmatically set the position of the
split bar with the setSplitPosition() method. It accepts the following parameters:

•	 The position value as a float, required.
•	 The position unit as a Unit (optional and defaults to PERCENTAGE). See the

section named Size for a refresher on available units.
•	 A reverse indicator as a boolean, optional. If not specified or if set to false,

then the position is measured by the first region, else it is by the second.

For example, the following code fragment displays a locked vertical split panel
where the first pane takes 100 pixels and the second the rest of the screen:

AbstractSplitPanel panel = new HorizontalSplitPanel();
panel.setFirstComponent(new Label("Hello"));
panel.setSecondComponent(new Label("Vaadin!"));
panel.setLocked(true);
panel.setSplitPosition(100, PIXELS);

Components and Layouts

[118]

Bringing it all together
Before jumping into the next chapter, in order to learn from a real world example, we
will begin creating an application in Vaadin. This application will be our main thread
in bringing together all we learned of the framework.

Introducing Twaattin
Our application's focus will be to provide an interface to Twitter. As it will be
developed with the Vaadin framework, it is only natural to name this brand new
application Twaattin.

The Twaattin design
In this chapter, we will focus our design on what we learned here. From a
component point of view, there will be the following two components:

•	 Twaattin won't let us connect to Twitter without first requesting a login
and a password. At startup, Twaattin presents a login screen.

•	 The Twitter timeline is shown as the second screen.

The login screen
The login screen contains a login field, a password field, and a submit button.

If the login process fails, for whatever reason, then Twaattin does nothing but
display an error message. If the login is successful, then Twaattin displays the
Twitter timeline and shows a confirmation message.

The main screen
The main screen should aggregate tweets, stacked from the more recent to the
more ancient vertically.

Let's code!
OK, the design is done; now we will begin the real work.

Chapter 4

[119]

Twaattin sources
All sources are available on GitHub at this address:
https://github.com/nfrankel/twaattin.
Feel free to fork them to practice on your own.

Project setup
Create another project like the one we did in Chapter 2, Environment Setup,
although there are some changes:

•	 Twaattin should be the project name
•	 Use com.packtpub.learnvaadin.twaattin for the base package name
•	 The UI class name is TwaattinUI
•	 Finally, the context-root is better changed to twaattin

Project sources
The sources consist of files updated or created by hand.

UI
package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.server.Sizeable.Unit.PIXELS;

import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.HorizontalSplitPanel;
import com.vaadin.ui.UI;

public class TwaattinUI extends UI {

 private static final long serialVersionUID = 1L;

 @Override
 public void init(VaadinRequest request) {

 HorizontalSplitPanel panel = new HorizontalSplitPanel();

Components and Layouts

[120]

 panel.setFirstComponent(new LoginScreen());
 panel.setSecondComponent(new TimelineScreen());

 panel.setSplitPosition(300, PIXELS);

 setContent(panel);
 }
}

At this point, we'll present both components side-by-side in a horizontal split panel
since we have not seen any way to interact with a Vaadin application.

The login screen
package com.packtpub.learnvaadin.twaattin.ui;

import com.vaadin.ui.Button;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.PasswordField;
import com.vaadin.ui.TextField;

public class LoginScreen extends FormLayout {

 private static final long serialVersionUID = 1L;

 private TextField loginField = new TextField("Login", "packtpub");
 private PasswordField passwordField =
 new PasswordField("Password");
 private Button submitButton = new Button("Submit");

 public LoginScreen() {

 setMargin(true);

 addComponent(loginField);
 addComponent(passwordField);
 addComponent(submitButton);
 }
}

Chapter 4

[121]

Wow, that is our first real screen! There are a few occurrences worth noticing:

•	 First, as our UI references components, the login screen in turn references
each component as private attributes.

•	 Objects instantiations are done when declaring the attribute. Doing it here
or in the constructor is largely a matter of taste.

The timeline screen
package com.packtpub.learnvaadin.twaattin.ui;

import com.vaadin.ui.Label;
import com.vaadin.ui.VerticalLayout;

public class TimelineScreen extends VerticalLayout {

 private static final long serialVersionUID = 1L;

 public TimelineScreen() {

 setMargin(true);

 fillTweets();
 }

 public void fillTweets() {

 for (int i = 0; i < 10; i++) {

 Label label = new Label();

 label.setValue("Lorem ipsum dolor sit amet, consectetur "
 + "adipisicing elit, sed do eiusmod tempor incididunt "
 + "ut labore et dolore magna aliqua. Ut enim ad minim "
 + "veniam, quis nostrud exercitation ullamco laboris "
 + "nisi ut aliquip ex ea commodo consequat.");

 addComponent(label);
 }
 }
}

For now, the timeline window is just a placeholder: a bunch of labels stacked
vertically. In all cases, there is no way it can be displayed at the time.

Components and Layouts

[122]

Summary
In the first section of this chapter, we have seen the building blocks of the
Vaadin framework, namely components. This was a good reason to detail the
Component class hierarchy, which was an excuse to have a look at the following
classes and interfaces:

•	 Component is the root interface for widgets, and has important ancestors.
°° MethodEventSource to add listeners to the widget
°° Paintable to make the component displayable on the terminal
°° Sizeable to let the widget be resized

•	 UI is the base class to display components. It introduced us to
ComponentContainer, a component that can hold other components.

•	 Label is the simplest widget in Vaadin. It showed the Property interface,
a way to decouple the widget itself from its value.

•	 Text field is a plain input field. Yet, we discovered several features not
present in plain labels, brought by its hierarchy:

°° Validation with the Validator/Validatable pair
°° Change buffering with the Buffered interface
°° Focus feature brought by Focusable
°° Finally, the Field interface and its properties

Although we only brushed the surface of the variety of components Vaadin offers,
looking at each node in the class hierarchy allows us to easily understand future
as-yet-unseen widgets.

Components are interesting intrinsically, but each UI worth its salt needs them to
be laid out the way we want. The second section lets us browse the many layouts,
which also are components, provided by Vaadin:

•	 Simple layouts such as vertical/horizontal layouts, grids, or even forms.
•	 More advanced ones, such as absolute, CSS, or custom layouts. These are

much more powerful, but at the cost of a tighter coupling with the web
browser terminal.

Chapter 4

[123]

Finally, we examined split panels, which are specialized component containers.

We finished this chapter with the first Java classes of our Twaattin killer application!

As yet, components and layouts are next to useless because there is no interaction
between the user and the application yet. The next chapter will address this,
as we will dive into the event-listener model in Vaadin.

Event Listener Model
In this chapter, we will see how Vaadin components communicate with each other.

Components have to work together in order to achieve a common goal. Like ants,
they cannot do so without a way to pass information through messages. In Vaadin
and other software, this is done through events and listeners.

In the first section of this chapter, we will explain this whole event and listener
thing. We will have a look at the famous observer pattern and the way it is used
in Java EE applications.

Then we will get a grasp on how it is implemented in Vaadin and the different
ways one can wire widgets together so one can be the subject and the other
observers. A discussion will follow in order to determine which components
category is more suitable to serve as observers.

Finally, we will go further into Twaattin and wire some event listener behaviors
into it.

Event-driven model
Most of the time, web developers are blissfully ignorant of what is known as event-
driven software. It is, however, the bread and butter of the client server application
developers. We will have a detailed look at this model.

The observer pattern
The event-driven model is based on a design pattern described in detail in Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson,
and Vlissides.

Event Listener Model

[126]

In this computer software book, the authors present answers to common software
challenges. Each problem-solution pair is known as a design pattern and constitutes
a design library one can draw upon when facing a particular quandary. The observer
pattern is such a pattern. Here is the problem and its associated solution:

Suppose we have an object that is subject to changes throughout the application
lifecycle. Now, this object has to tell other objects about these updates. For example,
when a user clicks on a button (the main object) and until the server responds, the
button has to be disabled, the menu has to be grayed, and a waiting cursor should
be displayed.

We could of course handle the button click from the user, and having references to
the other widgets call the adequate methods on them. Then again, the separation of
concerns principle encourages us to decouple the button's code from other widgets.

That is where the Observer pattern comes into play. Using it, we will register widgets
that are interested in being informed that a click occurred. At the time of the click, a
single generic method (for example notify()) will be called in each of the observers.
What the method really does is up to the implementation of each observer.

Enhancements to the pattern
The observer pattern is very general and has nothing to do with user interfaces. In
order to manage the complexity of the latter, there are some necessary enhancements.

Chapter 5

[127]

Event
An event is an action that is initiated outside the flow of the software:

•	 The code may or may not handle an event
•	 Event-handling may be either synchronous or asynchronous
•	 Those events can in turn fire other events

Event details
In the plain observer pattern, the notify() method has no parameters. In order to
pass information from the subject to the observers, we can introduce one in the form
of a detail object.

Detail attributes may include the timestamp of the event, the event's source, and
other attributes depending on the event type.

Event types
Passing information through a parameter somewhat enhances the starting pattern,
but lacks handling granularity. This means that an observer that is registered to two
or more subjects is unable to distinguish between them when notified of an event.

Therefore, an area of improvement is the creation of different event types.
The granularity of types is of course dependent on the considered system,
no differentiation between types to a type per real event (click, value selection,
 key type, and so on).

Events in Java EE
Interestingly enough, events and the observer pattern are not widespread
throughout Java EE. There are some notable exceptions, though:

•	 Java Messenger Service listeners are objects that connect to a JMS queue.
As soon as a message is posted in the queue, the onMessage() method
of the listener is called.

•	 Message Driven Beans are specialized Enterprise Java Beans that
integrate a JMS listener in the EJB architecture, adding transactional
and security features.

•	 In web application specifications, there are also some listener
interfaces available since Version 2.3. As a reminder, they correspond
to events regarding:

°° Request: It includes creation/destruction and attributes
binding/unbinding in request scope

Event Listener Model

[128]

°° Session: It includes creation/destruction, activation/passivation, and
attributes binding/unbinding in session scope

°° Application: It includes start/stop and attributes binding/unbinding
in application scope

•	 Only recently did Java EE 6 introduce a whole event-listener model with
JSR-299, also known as Context and Dependency Injection.

UI events
Vaadin provides its own event handling API. It is not specific to Java, but can also be
used in PHP, ASP, or other web application technologies.

Client-server events
One type of event that has to be addressed is the sending of messages from the client
tier to the server tier, which can be referred to as "HTTP events".

For example:

•	 When the user clicks on a submit button, the client asks an URL resource
from the server, the server sends the whole page, and the browser displays it

•	 When the user needs to open a pop-up window, it is the same

In traditional web pages, you can navigate URLs by clicking on hyperlinks and
submitting forms whether in straight HTML or through JavaScript.

Different interactions maybe represented by different URLs, or a single URL can
interpret HTML parameters, so as to have different actions depending on those
parameters and their respective values.

Client events
Likewise, client events—events that are limited to the client—are implemented in
JavaScript. Examples of such events include the following:

•	 Changing values of a particular drop-down list depending on the selected
value of another. When sex is Male, selectable title values should be set to Mr

•	 Clicking on a submit button disables all the buttons on a page so as to
prevent multiple submissions

•	 On the contrary, checking a checkbox labeled as Accept general terms and
conditions enables the submit button

Chapter 5

[129]

Limitations of URL and custom JavaScript for events
In addition, there are several limitations to these particular client event
implementations:

•	 First, they are as low-level as can be. This directly translates into a lack of
abstractions and therefore, a lack of productivity. In modern computer
software, you don't have to think about bits.

•	 Then, both the client and server code have to be kept synchronized.
Changing one end can have side effects on the other one. Unit testing is thus
impossible; one has to rely on integration tests that are more complex, more
heavyweight, and more fragile.

•	 Finally, as was mentioned earlier in Chapter 1, Vaadin and its Context,
JavaScript is somewhat browser-dependent and code that goes beyond
"Hello world" has to take the differences between browsers, versions, and
platforms into account. Not only does it vastly increase the code complexity
and decrease readability, but also makes bugs more probable. All these
factors have a direct impact on costs.

Event model in Vaadin
The event model in Vaadin is twofold:

1.	 Implement the Observer pattern.
2.	 Add an abstraction layer to the HTML/JavaScript event.

In Vaadin, there are two different ways to add event routing to our objects.

Note that Vaadin handles the sending of client-side browser events
and firing its own events on the server side.

Standard event implementation
The first way for Vaadin to offer event routing capabilities is with an implementation
based on typed event-listener pairs. Each event has a corresponding pair.

For example, in order to act on focus and blur events, Vaadin provides the
following pairs:

•	 BlurListener / BlurEvent
•	 FocusListener / FocusEvent

Event Listener Model

[130]

This design is very similar to what is done in AWT. However, there is
a subtle difference in the implementation: the pairs are specialized and
are related to a single occurrence type. For example, in AWT there is
a single event-listener for both focus and blur event, with the listener
having to implement two methods even if it needs only one of the two,
whereas in Vaadin there is one method for focus and one method for
blur events, leading to a decrease in useless code.

Event class hierarchy
At the root of Vaadin event class hierarchy lies a core Java library class, namely
java.util.EventObject. As a reminder, event object is just a thin wrapper
around the event source and it has access to the event source.

Event
The first class that Vaadin introduces, and that it inherits from the former is com.
vaadin.event.ConnectorEvent. Connectors will be covered in detail in Chapter 9,
Creating and Extending Components and Widgets; for the time being, let's forget about
this hierarchy level.

The next class in the hierarchy is com.vaadin.ui.Component.Event.
The only contribution of Event is to narrow the return type of Event.getSource().
It provides the getComponent() method that returns a Component instance, which
is just a way to ease the life of the developer.

Typed events
Subclasses of Event are of much more interest to us. In fact, each of the widgets seen
in Chapter 4, Components and Layouts, holds at least one event inner class of its own.

The design of these event classes shows a good use of inner
classes, as the event type is only pertaining to its outer class. For
example, CloseEvent defined in Window, has no sense for labels.

Chapter 5

[131]

See how the subclasses of Event add a getter method with the narrowest return type
possible in order to avoid casting the event source? Should you extend the hierarchy
further, it is advised to do so, even if nothing enforces it. It is one of those nice
comfortable features that make Vaadin so comfortable to code with.

Listener interfaces
There are many listeners available in Vaadin, and they all share some
common features:

•	 There is one listener for each event type; events and listeners go in pairs
•	 There is no inheritance hierarchy between them
•	 They extend Serializable so as to be serialized during session serialization
•	 They are designed as inner interfaces of the relevant class; for example,

ClickListener which waits for click events on buttons is defined in the
Button class

Event Listener Model

[132]

•	 Also, they are defined as being static
•	 They have a semantic significance, meaning one can understand what

it does without looking at the documentation
•	 They are single method interfaces and this method:

°° Has a name pertaining to the listener
°° Has a single parameter which is an event coupled to the listener

In order to continue with the ClickListener class, the only method's signature
is buttonClick(ClickEvent event).

Window
Now, remember our old friend the Window component from Chapter 4, Components
and Layouts? At the time, nothing was said about it, but it contains the following
two listeners (as well as two events, but let's focus on the former):

•	 CloseListener: This listener triggers when a window is closed.
•	 ResizeListener: This listener is called when the user resizes it.

The following code will display a notification when the window is closed:

public class MyUI extends UI implements Window.CloseListener {

 @Override
 public void init(VaadinRequest request) {

 // Some content has to be set or app will appear buggy
 setContent(new Label());
 Window window = new Window();

 window.addCloseListener(this);
 addWindow(window);
 }

 @Override
 public void windowClose(CloseEvent event) {

 Notification.show("Window has just been closed");
 }
}

Chapter 5

[133]

Managing listeners
Each widget that may be an event source has two methods for each event-listener pair:

•	 A method to add a specific listener, addXXXListener(XXXListener)
•	 The symmetric method to remove it, removeXXXListener(XXXListener)

This leads us to the following schema, inner classes' structure notwithstanding:

This design is used throughout Vaadin, so it is better to keep it in mind, as it is very
helpful when using a component-listener-event triplet we don't know. In addition, if
we implement our own, it is better to copy this design in order to be consistent.

Previous versions of Vaadin used overloading to allow components
to manage different listener types. The current version uses different
methods. It is discouraged to use the overloaded version in favor of
those new methods to avoid explicit type casting.

Method event source details
In order to enforce the Single Responsibility Principle, components rely on
delegate listeners management to another abstraction. The framework introduces
the MethodEventSource interface, which is an implementation of the Observer
pattern mentioned earlier in this chapter.

For detailed information about the Single Responsibility Principle,
visit the following URL:
http://wikipedia.org/wiki/Single_responsibility_
principle

http://wikipedia.org/wiki/Single_responsibility_principle

Event Listener Model

[134]

It has the following methods:

•	 addListener(Class<?>, Object, Method) will add a single listener
where:

°° Class<?> is the event class the listener will respond to
°° Object is the listener object itself
°° Method is the method that will be called when the event type is

received. Other event types won't trigger anything

•	 removeListener(Class<?>, Object, Method) where the parameters are the
same as above; it will remove the previously added listener

Additionally, not using the third argument will remove all listeners for the
event type on the target object.

It is advised not to use MethodEventSource directly but to prefer
the friendlier and typed listener management methods found in the
component classes. However, it can be used to implement your own
event handling for your application.

Abstract component and event router
Now, the contract for every abstract component is also meant to be a method event
source. In order to achieve this, Vaadin introduces a concrete implementation of the
method event source, the EventRouter class.

This class has the following two important advantages:

•	 Abstract components can delegate the event routing logic to the router, thus
decoupling event, and display concerns

•	 Additionally, if there is a need to encapsulate an event router in our own
components, then we choose not to inherit from AbstractComponent, but
rather use our own implementation

Chapter 5

[135]

Expanding our view
The respective event and listener classes described earlier are by no means extensive.
As for the components, it makes no sense to plainly list them, it has no benefit, and is
out of the scope of this book. It would only paraphrase the Javadocs anyway.

However, a concrete example will show us that there is no need for it, as Vaadin
implementation is uniform throughout the class hierarchy. What we learned here
can be extended to any out of the box component.

If you want to challenge my claim, feel free to do so. Take a
component, verify that it is designed as it should be and you will be
pleasantly surprised. That is what makes Vaadin such an enjoyable
framework to work with.

Button
Buttons are such standard components that Vaadin, of course, provides it.

The most important event that can happen on a button is the click. From what
we have learned, Button should provide an inner class ClickEvent or something
similar. This event should have a single method, getButton() that returns a Button,
on which the user can click.

Event Listener Model

[136]

Also, Button should encompass a static inner interface ClickListener that has a
single method with the signature buttonClick(ClickEvent).

Finally, there has to be an addClickListener(ClickListener) method on the
Button class itself.

Looking at http://vaadin.com/api/com/vaadin/ui/Button.ClickEvent.html,
we can challenge our theory. It appears completely in line with what we have just
guessed before:

Events outside UI
In general, but also in Vaadin, events are not limited to interactions with user interface.

User change event
In fact, there is one event that is of particular interest to us because there is a good
chance that it will be used throughout your future Vaadin applications. It is the user
changed event; its structure follows the guidelines we saw earlier in this chapter.

Chapter 5

[137]

In most applications, once a user logs in, the user's name, login, and so on, is
displayed on the screen. Vaadin takes that into account and provides the following:

•	 A way to store an object representing the user in the application. Vaadin uses
VaadinSession, an abstraction around HttpSession and PortletSession
that behaves as a hash map. An advantage of VaadinSession over plain
HttpSession is that hash map keys can be either String or Class. In the
latter case, it means you don't have to rely on the String constant trick.

Note that Vaadin makes no assumption on the particular object type
used. It can be a java.security.Principal, a Spring Security
user details, a plain String, or your own custom implementation.

For more details on Java security, JAAS, and Principal, visit
http://java.sun.com/developer/technicalArticles/
Security/jaasv2/

For more details on Spring Security and UserDetails, visit
http://static.springsource.org/spring-security/
site/docs/3.0.x/reference/springsecurity-single.
html#d0e1588

•	 An event model centered about changes made to the user stored in
the application.

•	 A user change event holds both the previous user and the new user.
This design lets us manage both login events (when old user is null and
new user is not) and logout events (when old user is not null but new
user is) and react accordingly.

Architectural considerations
Until recently, we described the event model in Vaadin but we did not map
these listeners to any component (in the conceptual sense) or objects belonging
to a particular layer in our architecture.

In fact, there are so few constraints enforced on listener classes (and even fewer
when using the alternative implementation) that any object is a candidate for
being a listener in its own right, isn't it?

Yet, just because something is possible, that does not mean that it is necessarily the
right thing to do. Here, we stray from the pure Vaadin learning path to something
that is more conceptual and thus more subject to debate. Some architectural choices
are in order for listeners.

http://java.sun.com/developer/technicalArticles/Security/jaasv2/
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#d0e1588

Event Listener Model

[138]

Anonymous inner classes as listeners
As Swing developers know, the vast majority of Swing examples found on the Web,
and even some Oracle's own code, use a vast amount of anonymous inner classes.

This Java language feature lets developers implement an interface or override a class
while creating a new instance, as shown in the following example:

window.addListener(new ResizeListener() {

 public void windowResized(ResizeEvent e) {

 Notification.show("Window resized");
 }
});

Anonymous inner classes have both pros and cons:

•	 Inner classes have access to their wrapping scope final variables and their
wrapping class attributes

•	 Overuse of them renders the code confused and decreased readability

Overall, beyond simple "Hello world" applications or prototypes, it is discouraged
to use them in applications.

Components as listeners
"Components as listeners" is the simplest option possible. In fact, there is nothing
that prevents us to make them so, as it is legal to do so.

However, this model has some limits that are worth mentioning:

•	 When going beyond simple "Hello world" applications, the sheer number
of event listening methods just clutters the code and dreadfully impairs
its readability.

•	 From a design point of view, this grouping denies the Single Responsibility
Principle that forms the basis of good object-oriented software: component
responsibilities should be limited to displaying and event firing, and not
include event handling.

•	 As a corollary, this coupling also prevents us from reusing separately
both components and behaviors, which is a shame since it should be
a feature of OO design.

Chapter 5

[139]

Nonetheless, this design lets us create quickly simple applications that just work.
If used only within this restricted perimeter, or for prototypes, then it is the right
choice as it follows the Keep It Simple Stupid (KISS) principle.

For more details on the KISS principle, visit the following URL:

http://en.wikipedia.org/wiki/KISS_principle

Presenters as listeners
In "standard" web applications, as well as Swing applications, the Model View
Controller (MVC) design pattern is a common occurrence. In Java, this pattern is
implemented like so:

•	 A Java Server Page represents the view. It has only presentation logic and the
controller sets the data.

•	 The controller is a servlet that:
°° Requests data from the model
°° Feeds the data to the view
°° Redirects the control flow to the latter

•	 Finally, the model is implemented either as Session Enterprise Java
Beans or as Plain Old Java Objects (POJO), depending on each
application's architecture.

In order to know more about Plain Old Java Objects, refer to the
following URL:

http://en.wikipedia.org/wiki/Plain_Old_Java_Object

In rich client applications, the MVC model is often replaced with the Model-View-
Presenter design pattern. There are some slight differences between them, but the
most important is that the view is in charge for managing UI events, whereas it is the
controller's responsibility in MVC.

In such architecture, presenters are listeners par excellence.

Event Listener Model

[140]

Services as listeners
Most applications are also designed as layered. The first is the presentation,
the second the service (also known as business), and finally the data access.
Such designs lets us change a layer and affect only the calling layer.

One could think about services being called through an event handling mechanism;
for example, in order to populate a widget's data in response to a button click.

However, this does not work well in Vaadin, as event model implementation for
listener methods have no return value, so we would need to pass a reference to
be updated, which would couple our service layer.

Conclusion on architecture
In regards to architecture, there is no universal good or bad design. As in building
construction, architecture in software is contextual and should always be thought
of from this point of view. A whole book could be entirely devoted to this subject,
and it won't even begin to cover all the cases, as architectural considerations are
somewhat empirical and somewhat based on personal experiences.

However, the following points represent some of the factors that can influence
architectural decisions:

•	 Application size: A small application with a short lifespan is more lenient
towards cluttering. In this case, we could probably use anonymous inner
classes without too many side effects. On the contrary, a big application will
require more structuring in order to be manageable.

•	 Expected lifespan: For a constant ROI, the lesser the lifespan of an
application, the lesser the cost. As such, an application that is a temporary
solution should not be designed as a software jewel. For example, a Proof of
Concept application is just that; it probably will be discarded after the proof
has been made. Don't waste time on architecture!

•	 Team experience: In this regard, experience is not only quantitative, but also
qualitative. While it is true that more experienced developers are naturally
inclined to use more structured solutions, you should also consider how
developers actually code. If your team already practices MVP daily, then
maybe it would be a good thing not to change things too much.

•	 QA: Of course, QA is the biggest reason of all to adopt a specific architecture.
If the norm is to use components as listeners, then don't hurt your head too
much and do as you are told.

Chapter 5

[141]

In previous sections of this book, there are some examples of possible architectures.
There is nothing to stop you from designing other solutions. In fact, you are
encouraged to do so if none fit your particular needs for an application.

Twaattin is back
We will put what we have seen in this chapter regarding events and listeners
to good use: Twaattin awaits us!

We have left it in a state where login and timeline screens were displayed
side-by-side, because we did not know how to manage user interaction.
As now we can, let's amend our coding to conform to the following changes:

•	 Set the login screen as the first displayed screen
•	 When the user presses the login button, authenticate the user

°° Sets the login as a session attribute
°° Send a user changed event
°° The listener of such event displays the timeline screen

Project sources
Most sources display only differences with Chapter 4, Components and Layouts.
Remember that the full source code is available on GitHub: https://github.com/
nfrankel/twaattin/tree/chapter4.

The UI
package com.packtpub.learnvaadin.twaattin.ui;

...

public class TwaattinUI extends UI {

 @Override
 public void init(VaadinRequest request) {

 setContent(new LoginScreen());
 }
}

The UI now just displays the login screen, since it will be replaced by the timeline
screen if login succeeds.

https://github.com/nfrankel/twaattin/tree/chapter4
https://github.com/nfrankel/twaattin/tree/chapter4

Event Listener Model

[142]

The login screen
import com.packtpub.learnvaadin.twaattin.presenter.LoginBehavior;
...

public class LoginScreen extends FormLayout {

...

 public LoginScreen() {

 ...

 submitButton.addClickListener(new LoginBehavior(loginField,
 passwordField));
 }
}

In the login screen, we just add a single line in order for a login behavior to act as a
listener when the button is clicked.

The login behavior
package com.packtpub.learnvaadin.twaattin.presenter;

import static com.vaadin.ui.Notification.Type.ERROR_MESSAGE;

import java.security.Principal;

import com.packtpub.learnvaadin.authentication.
AuthenticationException;
import com.packtpub.learnvaadin.authentication.
 SimpleUserPasswordAuthenticationStrategy;
import com.packtpub.learnvaadin.authentication.
 UserPasswordAuthenticationStrategy;
import com.packtpub.learnvaadin.twaattin.ui.TimelineScreen;
import com.vaadin.server.VaadinSession;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.Notification;
import com.vaadin.ui.PasswordField;
import com.vaadin.ui.TextField;
import com.vaadin.ui.UI;

Chapter 5

[143]

public class LoginBehavior implements ClickListener {

 private static final long serialVersionUID = 1L;

 private final TextField loginField;
 private final PasswordField passwordField;

 public LoginBehavior(TextField loginField,
 PasswordField passwordField) {

 this.loginField = loginField;
 this.passwordField = passwordField;
 }

 @Override
 public void buttonClick(ClickEvent event) {

 try {

 String login = loginField.getValue();
 String password = passwordField.getValue();

 Principal user =
 new SimpleUserPasswordAuthenticationStrategy()
 .authenticate(login, password);

 VaadinSession.getCurrent().setAttribute(
 Principal.class, user);

 UI.getCurrent().setContent(new TimelineScreen());

 Notification.show("You're authenticated into Twaattin");

 } catch (AuthenticationException e) {

 Notification.show(e.getMessage(), ERROR_MESSAGE);
 }
 }
}

When the user presses the submit button of the login form, the buttonClick()
method of the presenter is called. If the authentication succeeds, it sets the user in the
session; if not, it displays a failure message. The real authentication logic is delegated
to specific package having nothing to do with Vaadin (the interested reader might
want to read up on GitHub).

Event Listener Model

[144]

Additional features
However, now we can log in, two more features would be nice to have:

•	 Since we could log in to more than one user, the ability for the application to
display the user login is necessary

•	 Additionally, being able to log out without closing the browser and deleting
the cookie is a good thing

Some small changes are in order to implement these new features.

The timeline window
import static com.vaadin.server.Sizeable.Unit.PERCENTAGE;
import static com.vaadin.ui.Alignment.MIDDLE_RIGHT;

import java.security.Principal;

import com.packtpub.learnvaadin.twaattin.presenter.LogoutBehavior;
import com.vaadin.server.VaadinSession;

public class TimelineScreen extends VerticalLayout {

 public TimelineScreen() {

 ...

 Label label = new Label(VaadinSession.getCurrent()
 .getAttribute(Principal.class).getName());

 Button button = new Button("Logout");

 button.addClickListener(new LogoutBehavior());

 HorizontalLayout menuBar = new HorizontalLayout(label,
 button);

 addComponent(menuBar);

 ...
 }

...
}

We just need a label to display the user and a logout button that listens to click
events, just as we have seen previously, and to add the logout behavior.

Chapter 5

[145]

The logout behavior
package com.packtpub.learnvaadin.twaattin.presenter;
import java.security.Principal;
import com.packtpub.learnvaadin.twaattin.ui.LoginScreen;
import com.vaadin.server.VaadinSession;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.Notification;
import com.vaadin.ui.UI;

public class LogoutBehavior implements ClickListener {

 private static final long serialVersionUID = 1L;

 @Override
 public void buttonClick(ClickEvent event) {

 VaadinSession.getCurrent().setAttribute(Principal.class,
 null);

 UI.getCurrent().setContent(new LoginScreen());

 Notification.show("You've been logged out");
 }
}

Logout behavior is symmetric to the login. It removes the user from the session
(which is done by setting it to null), displays the login screen, and informs the
user that he/she has been logged out.

Summary
In this chapter, we tackled the concept of events and listeners. Both form the basis
for the Observer design pattern implementation. The latter can be summed up
as, when objects want to be notified of certain occurrences in another object, they
register as observers and when specific events happens, they trigger behavior
depending on each object's implementation.

Then we learned that this pattern is used throughout that client software's user
interfaces, but web developers are seldom aware of it. There are some event model
implementations in Java EE, but they are unrelated to UI.

Event Listener Model

[146]

In Vaadin, however, we can keep our event-listener related knowledge (or acquire it)
because it is fully observer-compliant.

Then, we discussed architectural considerations. The thing to remember here is
that the architecture is based on each project's own features. There is no right or
wrong answer, but this section hinted at some factors one has to take into account
to determine which types are the best for listeners.

Finally, we went further into building Twaattin. Now we have the entire login-
logout behavior fully implemented.

In the next chapter, we will connect objects and collections to UI components.

Containers and Related
Components

In previous chapters, we learned about Vaadin's component-based approach, how
it is implemented, and how those components send events to each other in a nicely
decoupled way. This chapter is about the second important part of the framework:
data binding.

This chapter is separated into two sections. In the first section, after a general view
on data binding, we will have a thorough look at the three abstractions available in
Vaadin: property, item, and container.

In the second section, we will discover two new components that are able to display
containers, tables, and trees. As tables are present in so many applications, Vaadin
provides a great deal of features that will demand some time to learn in detail.

Data binding
Data binding is the ability of an application to link the value displayed by a
component with the underlying data. However, it is not a monolithic feature,
but has the following properties that we can choose to/not to implement,
depending on the technology:

•	 Accessing the data either in the read mode, that is, displaying the data
through the component, or in the write mode, that is, updating the data
through the component

•	 Storing changes made to the component's value in a buffer so they can
be committed

•	 Binding the data to the component so that changes to the underlying data
value change the value displayed to the user

Containers and Related Components

[148]

Data binding properties
Properties of data binding are renderer and editor, buffering, and
value-component binding.

Renderer and editor
The important aspect is that there is a transformation necessary between
the data, which is an object in its own right, and its graphical representation.

For example, one can ask how a date should be shown to the end user.
Most mature frameworks create the following two abstractions in order
to standardize this process:

1.	 A renderer component that is able to display data items on the screen,
thereby creating a string representation of the data.
In our example, the date can be processed by the renderer that will
probably format it in some way, based on either a standard locale or
even the user's locale.

2.	 An editor component that allows us to change objects; this can be done
either from a string representation or from a specialized component.

Again, with our date example, the editor could let us change the date from
its string representation and take the risk that days and month are not at
the same place depending on which region of the globe you come from,
or display a nice calendar.

Buffering
Buffering is a way for components to discard changes made to it concerning the
underlying data. In this regard, the component also provides a way to commit the
buffered value to the underlying data, or to reset the buffer from the latter.

Note that it is different from an HTML text field that holds a value, as the component
could disappear from a view and still hold the buffered value as long as it is
accessing the same object.

Chapter 6

[149]

Data binding
Data binding comes in two flavors: the easiest is when updating the UI component's
displayed value really changes the underlying data.

The other flavor is very addictive once tasted: imagine a value having the the
ability to send change events to components to which it is bound. For example,
when changing the value of the person's first name variable in the code, the
value is magically changed for the user in the GUI.

In order to achieve this, data is to be wrapped by a custom component that adds
a whole event-listener model around it.

Data in Vaadin
The good news is that Vaadin brings renderers, editors, and buffering to the table.
The bad news is that bidirectional data binding is not supported out of the box.

Entity abstraction
Regarding the entity abstraction problem, Vaadin provides a clean design with
the following three interfaces corresponding to a different grouping level:

•	 At the property level, for example, the birthdate of a person
•	 At the item level, the item here being the entity, for example, a person
•	 At the container, representing a collection of related items, for example,

a list of persons

Property
We have seen the Property interface in Chapter 4, Components and Layouts. As a
reminder, it represents a single isolated value, with accessors available for value,
a read-only indicator, and datatype (only getter available). In Chapter 5, Event
Listener Model, we have seen that it also provides a change event listener.

Containers and Related Components

[150]

Now is a good time to learn that Property also provides two interfaces: Viewer
and Editor, which Field extends. The following is a figure showing those concepts:

The following two facts are worth noticing:

1.	 First, viewer and editor have a slightly different meaning than shown:
°° A viewer represents a class that is able to use a property as

a datasource.
°° An editor is only a marker interface. It means that the property can

be changed through the editor. If not implemented, the property
can still be set, but only in the code with the setValue() method.
Likewise, even if implemented, we still cannot call the previous
method if the property is in the read-only mode.

2.	 Second, for a property to be an editor, it has to be a viewer, which makes
sense—ever tried to edit a value you couldn't see?

Chapter 6

[151]

Finally, as we have seen before, Field is the single subinterface of Property, which
is implemented by all components in the class hierarchy (with the notable exception
of components that do not wrap around an editable value such as labels, menu bars,
and layouts).

AbstractProperty
AbstractProperty is the common superclass of all Property implementations.
It is a straight implementation of Property, ReadOnlyStatusChangeNotifier,
and ValueChangeNotifier.

It provides the following:

•	 A readOnly property
•	 Methods for adding both ReadOnlyStatusChangeListener and

ValueChangeListener

•	 Methods for firing instances of ReadOnlyStatusChangeEvent and
ValueChangeEvent

For a quick refresher on the whole event-listener implementation in Vaadin,
please refer back to Chapter 5, Event Listener Model.

Containers and Related Components

[152]

ObjectProperty
Moving on to the next class in the hierarchy: ObjectProperty that forms the basis
of a wrapper around values connected to components. The following code snippet
connects a date object to a label:

Property property = new ObjectProperty<Date>(new Date());

Label label = new Label();

label.setPropertyDataSource(property);

It will display the current date as follows:

Thu Jan 10 23:23:56 CET 2013

Note that Vaadin core components automatically listen to the change events of
their respective datasources: changes to the underlying property will be propagated
to the label component.

Property formatter
Astute readers may have some questions regarding the previous example: we
have seen previously that a viewer component should bridge the object world
and their string representations. The date displayed earlier is just a straightforward
result of toString().

In order to convert in our own way, we should just use the Converter<P, M>
interface seen in the Conversion section of Chapter 4, Components and Layouts,
and implement the desired getFormat(Locale) method.

Let us change our previous example somewhat:

Property<Date> property = new ObjectProperty<Date>(new Date());

Label label = new Label();

label.setPropertyDataSource(property);

StringToDateConverter converter = new StringToDateConverter() {

 @Override
 protected DateFormat getFormat(Locale locale) {

Chapter 6

[153]

 return new SimpleDateFormat("dd/MM/yy");
 }
};

label.setConverter(converter);

The same can be done with an editable component, with the expected result. We just
have to replace the label with a text field and it yields the correct result as follows:

The previous example is just that—an example. If you need a text
field that holds the date value, just pick a Vaadin component made
just for this case: com.vaadin.ui.DateField, or even better,
com.vaadin.ui.PopupDateField that comes bundled with a
nice calendar editor; you will love it.
Just remember that common use cases have a high probability of
having been dealt with by Vaadin developers.

Handling changes
As seen in Chapter 4, Components and Layouts, all Vaadin components are buffered
regarding the data they hold and as such, have two important operations: commit()
and discard(). Now that we have seen properties and events, it is the right time to
put it all together.

Consider the following use case; we have a text field. Once updated, its changes can
either be saved or cancelled. The following code does exactly that:

import static com.vaadin.ui.Notification.Type.TRAY_NOTIFICATION;

import com.vaadin.data.Property;
import com.vaadin.data.util.ObjectProperty;
import com.vaadin.event.FieldEvents.TextChangeEvent;
import com.vaadin.event.FieldEvents.TextChangeListener;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Notification;

Containers and Related Components

[154]

import com.vaadin.ui.TextField;
import com.vaadin.ui.UI;

public class CommitDiscardUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 Property<String> prop = new ObjectProperty<String>("ABC");

 final TextField tf = new TextField(prop);

 tf.setBuffered(true);

 tf.addTextChangeListener(new TextChangeListener() {

 @Override
 public void textChange(TextChangeEvent event) {

 Notification.show("Text change (event) : "
 + event.getText(), TRAY_NOTIFICATION);
 }
 });

 Button commitButton = new Button("Save");

 commitButton.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 Notification.show("Before commit (property) : "
 + tf.getPropertyDataSource().getValue(),
 TRAY_NOTIFICATION);

 tf.commit();

 Notification.show("After commit (property) : "
 + tf.getPropertyDataSource().getValue(),
 TRAY_NOTIFICATION);
 }
 });

Chapter 6

[155]

 Button discardButton = new Button("Cancel");

 discardButton.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 Notification.show("Before discard (property) : "
 + tf.getPropertyDataSource().getValue(),
 TRAY_NOTIFICATION);

 tf.discard();

 Notification.show("After discard (property) : "
 + tf.getPropertyDataSource().getValue(),
 TRAY_NOTIFICATION);
 }
 });

 HorizontalLayout layout = new HorizontalLayout(
 tf, commitButton, discardButton);

 setContent(layout);
 }
}

The graphical result is as follows:

From this point on, try the following sequential interactions:

1.	 Change the text.
2.	 Click on Cancel. Prior to the click, tf.getValue() returns the previously

entered value that is stored in the buffer. In essence, tf.getValue() !=
datasource.getValue(). After the click, the buffer is reset to "ABC",
which is the value of the datasource.

3.	 Change the value again and click on Save. As the field is in a read-through
mode, prior to the click, tf.getValue() delegates to datasource.
getValue() and returns "ABC"; after the click, tf.setValue() calls
datasource.setValue().

Containers and Related Components

[156]

Item
The preceding section taught us about formatting, parsing, and buffering individual
fields. We did not address the unrelated fields syndrome described earlier.

Method property
When faced with the challenge of displaying a structured object, the first
solution to our quandary would be to get a reference to each single attribute,
wrap it inside ObjectProperty, and then connect it to the right field. That
would be too cumbersome and against Vaadin's principles.

There is a shortcut to this whole thing in the form of the MethodProperty class.
ObjectProperty envelops a single object, whereas MethodProperty encapsulates
a pair of accessor methods.

For example, let's consider our previous Person class, which has properties for first
name, last name, and birthdate and a read-only ID. In order to bind a person to a
datasource, we would have to do the following:

MethodProperty<Person> firstName = new MethodProperty<Person>
(person, "firstName");

It is understood that it would have to be done for each single field we want
to display. It is better than the previous solution, but still not satisfactory.

The right level of abstraction
In this case, the right thing to do is to use one of Vaadin's most important
interfaces: Item.

Just as ObjectProperty wraps a simple object and MethodProperty wraps a
structured object's methods pair, Item wraps a bag of properties. Even better,
wrapping BeanItem, which is the standard implementation of Item, around such
an object will automatically enclose each of its property inside MethodProperty!

Chapter 6

[157]

JavaBean standard
BeanItem relies on the JavaBean standards, meaning Vaadin will
only expose JavaBean properties, methods that start with either get
(or is for Boolean) for read accessors and set for write accessors.

Containers and Related Components

[158]

Notice that the previous class diagram represents every aspect of
Vaadin seen previously in the same class diagram: event model and
viewer/editor pair.
Also, note that in order to see the big picture, interfaces and
serializable classes are not represented as such. Just keep this in
mind for future development.

This wrapping may be done in different ways, but the reference to the enclosed
object is immutable, that is, it cannot be changed after the item instantiation.
The constructor is available in the following two flavors:

•	 When only the wrapped bean is specified, automatic wrapping occurs
based on reflection. Vaadin will try to find the appropriate bean descriptor
(see http://download.oracle.com/javase/6/docs/api/java/beans/
BeanDescriptor.html for more information), and if not found will default
to listing methods and finding those, which begin with get/set.

•	 In addition to the wrapped bean, properties to be wrapped can also
be specified as a collection of strings or as a string array.

Reflection and valid properties
In all three cases, Vaadin will wrap a property only if a valid getter/
setter pair can be found (actually, a property with no setter is equally
valid from a Vaadin point of view, but enforces the property to be
read-only). In the first case, this is easy as the framework will provide
only valid ones. For the last two, extra-care has to be taken in order to
synchronize the string parameter values with real properties.
Remember, both reflection and string implies painful refactoring.

Once wrapped inside BeanItem, we can query for the right Property and set each
as a field datasource very easily.

The following code uses a Person instance and wraps it inside BeanItem, ready to
be used in our application:

import java.util.Date;

public class Person {

 private final Long id;
 private String firstName;
 private String lastName;
 private Date birthdate;

http://download.oracle.com/javase/6/docs/api/java/beans/BeanDescriptor.html
http://download.oracle.com/javase/6/docs/api/java/beans/BeanDescriptor.html

Chapter 6

[159]

 public Person(Long id) {
 this.id = id;
 }

 public Long getId() {
 return id;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public Date getBirthdate() {
 return birthdate;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public void setBirthdate(Date birthdate) {
 this.birthdate = birthdate;
 }
}

import java.util.Date;

import com.vaadin.data.util.BeanItem;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.TextField;
import com.vaadin.ui.UI;

public class PersonUI extends UI {

Containers and Related Components

[160]

 @Override
 protected void init(VaadinRequest request) {

 Person person = new Person(1L);

 person.setFirstName("John");
 person.setLastName("Doe");
 person.setBirthdate(new Date(0));

 BeanItem<Person> item = new BeanItem<Person>(person);

 TextField id = new TextField (item.getItemProperty("id"));
 TextField firstName =
 new TextField(item.getItemProperty("firstName"));
 TextField lastName =
 new TextField(item.getItemProperty("lastName"));
 DateField birthdate =
 new DateField(item.getItemProperty("birthdate"));

 FormLayout layout = new FormLayout(id, firstName, lastName,
 birthdate);

 layout.setMargin(true);

 setContent(layout);
 }
}

The following screenshot shows the final result:

Notice that as id has no setter; Vaadin is smart enough to set the
TextField object we asked for as read-only.

Chapter 6

[161]

Field group
Our screen is nice and good, but probably misses a Commit and a Cancel button,
as shown for the single date field previously.

If we try to do it, we are going to run into some hardship. Which one? Well, in our
previous date example, committing or discarding involved a single field. Now, with
three fields, are we going to commit/discard each field individually? That wouldn't
be very productive; surely there must be a way to make it easier.

In fact, there is one, in the form of the FieldGroup class. Field groups have a nice
feature: they can have Item as their datasource, but they also have both commit() and
discard() methods that will commit/discard all wrapped item properties globally.

The main responsibilities of FieldGroup include the following:

•	 Creating a field from a property, the field type adapted to the property type.
•	 Binding an item's property to an already existing field. Alternatively, the

class also provides methods to create fields and binds properties to it in a
single method call.

•	 Committing and discarding: in this case, it calls the relevant method on each
field belonging to the group.

Containers and Related Components

[162]

Binding limitation
Once bound, a property cannot be bound furthermore. This means
that at any one point, only a single field will interface through that
particular property.

Now, we could replace the body of the previous snippet with the following:

FieldGroup group = new FieldGroup(item);

Field<?> id = group.buildAndBind("id");
Field<?> firstName = group.buildAndBind("firstName");
Field<?> lastName = group.buildAndBind("lastName");
Field<?> birthdate = group.buildAndBind("birthdate");

We get the following result, without any further configuration:

This approach has both pros and cons. Among the advantages, we can list
the following:

•	 It wraps the item datasource
•	 Field captions are given for free
•	 When there is no setter, Vaadin is smart enough to only display a label

However, for the birthdate, only a text field is built, even though we would have
needed a date field. The good news is that these defaults are fully configurable!

Chapter 6

[163]

Configuring field types
By default, Vaadin creates checkboxes for Boolean types.

For enum types, it is mandatory to choose the exact field type between all available
types, meaning we have to use the builddAndBind() method that accepts the class
parameter or Vaadin will throw a BindException exception.

group.buildAndBind(null, "gender", ListSelect.class);

Available types are represented in the following screenshot. Please play around
before going further:

Yet, it is always possible to override this behavior with little effort through the
use of FieldGroupFieldFactory. The factory is the delegate responsible for
creating fields and has a single <T extends Field> T createField(Class<?>,
Class<T>) method. By default, FieldGroup uses an instance of
DefaultFieldGroupFieldFactory that has the previously described behavior.

In order to get a DateField for Date properties, we only have to extend the default
factory. Let us do this while favoring composition over inheritance:

import java.util.Date;
import com.vaadin.data.fieldgroup.DefaultFieldGroupFieldFactory;
import com.vaadin.data.fieldgroup.FieldGroupFieldFactory;
import com.vaadin.ui.DateField;
import com.vaadin.ui.Field;

public class AdvancedDateFieldGroupFieldFactory implements
 FieldGroupFieldFactory {

Containers and Related Components

[164]

 private FieldGroupFieldFactory delegate =
 new DefaultFieldGroupFieldFactory();

 @Override
 public <T extends Field> T createField(Class<?> dataType,
 Class<T> fieldType) {

 if (dataType.isAssignableFrom(Date.class)) {

 return (T) new DateField();
 }

 return delegate.createField(dataType, fieldType);
 }
}

Now, we just need to set this factory to the previous field group to get the
desired result.

group.setFieldFactory(new AdvancedDateFieldGroupFieldFactory());

The output is as follows:

Chapter 6

[165]

Replacing the vertical layout to a form layout even gives a better visual effect,
aligning captions and fields on the same horizontal baseline.

FormLayout layout = new FormLayout(id, firstName, lastName,
birthdate);

Changing captions
Field group default captions use the property name and convert it to uppercased
spaced text.

If the caption is not desired, FieldGroup has a field buildAndBind overloaded
method accepting a caption parameter. The following code removes the caption
of the ID and sets alternate captions for firstName and lastName:

Field<?> id = group.buildAndBind(null, "id");
Field<?> firstName = group.buildAndBind("Given name",
 "firstName");
Field<?> lastName = group.buildAndBind("Family name", "lastName");

Containers and Related Components

[166]

Updating our code to reflect these changes gives us the following appearance:

Group commit/discard
In order to highlight commit/discard features, we just need to have the Save
and Discard buttons, as in discussed in the Handling changes section. Let us
implement this feature in a nicer way than before:

abstract class AbstractCommitDiscardClickListener
 implements ClickListener {

 private final String operation;

 public AbstractCommitDiscardClickListener(String operation) {

 this.operation = operation;
 }

 @Override
 public void buttonClick(ClickEvent event) {

 Notification.show("Before " + operation + ": "
 + group.getItemDataSource().toString(),
 TRAY_NOTIFICATION);

 execute();

 Notification.show("After " + operation + ": "
 + group.getItemDataSource().toString(),
 TRAY_NOTIFICATION);
 }

Chapter 6

[167]

 protected abstract void execute();
}

Button commitButton = new Button("Commit");

commitButton.addClickListener(
 new AbstractCommitDiscardClickListener("commit") {

 protected void execute() {

 try {

 group.commit();

 } catch (CommitException e) {

 throw new RuntimeException(e);
 }
 }
});

Button discardButton = new Button("Discard");

discardButton.addClickListener(
 new AbstractCommitDiscardClickListener("discard") {

 protected void execute() {

 group.discard();
 }
});

FormLayout layout = new FormLayout(id, firstName, lastName,
 birthdate, new HorizontalLayout(commitButton, discardButton));

Notice that the commit() method throws a checked
CommitException that we have to manage.

With this updated code, we can check that the changing of values do not happen
until the field group is committed: it buffers the whole item it wraps.

This concludes the section about the use of field groups.

Containers and Related Components

[168]

Container
In the previous section, we learned how to display a single object to a structured
object. The next step is to learn how to display a list of structured objects, and that
is the realm of Vaadin's Container interface.

Containers bring a completely new dimension to data binding.

The best way to picture a container is to think either of a 2D matrix, where lines
are items and columns are properties.

However, there are some constraints on items put in a container:

•	 All items in a container must have the same properties, meaning:
°° Properties must have the same ID
°° Properties must have the same data type

•	 Each item must be identified by a unique non-null identifier. Container
enforces no particular condition on this ID, though children classes can.
In essence, the ID is a key to access the corresponding item.

Chapter 6

[169]

Filtering and sorting
Containers may also have additional capabilities.

Filterable
Filterable containers may display only some of its contained items, based on
declared filters.

Filters can be either added or removed, and they are additive, meaning an item
must meet all filter criteria to be displayed by the container.

Filter
Filters are based on the Filter interface that has the following two simple methods:

•	 appliesToProperty(Object) checks whether this filter applies to a specific
property and returns a Boolean value accordingly. It's used as a first step in
order to avoid possible algorithm overheads by the second method.

•	 passesFilter(Object, Item) applies the real filter to the object's ID
and the object and also returns a Boolean value stating whether this
object passes the filter and should be displayed.

Containers and Related Components

[170]

Ordered
An ordered container lets us do the following:

•	 Insert an item after an already present item
•	 Get the first/last present item
•	 Get the next/previous item, given a present item ID

And that is it, it stops there. However, it has two interesting child interfaces.

Containers that also belong to the Indexed interface let us add items based
on an index, as well as get the index of an object from its ID and vice versa.
These features are seldom used; of much more interest is the Sortable interface.

Chapter 6

[171]

Like its name implies, it allows us to sort the items found in the container.
The sort() method accepts the following two parameters:

•	 An array of property IDs. The sort is executed on the first property.
If there's equality, sort continues with the second property, and so on.

•	 An array of Boolean values that refer to the sort order; true meaning
ascending, false meaning descending.

Note that both arrays must have the same length. Moreover, we have to explicitly
tell which properties are sortable with the getSortableContainerPropertyIds()
method.

In order to be clearer with ordering, we will need some data. We will use the Person
class defined earlier:

ID First name Last name Birth date
1 John DOE 01/01/1970
2 Jane doe 01/01/1970
3 jules winnfield 12/21/1948
4 vincent Vega 02/17/1954

If we try to sort combinations on the sample data, the following are the results:

Property Ascending Lines order
firstName true 2, 1, 3, 4 ("Jane", "John", "jules", "vincent")
firstName false 4, 3, 1, 2 ("vincent", "jules", "John", "Jane")
lastName true 1, 4, 2, 3 ("DOE", "Vega", "doe", "winnfield")
birthdate true 3, 4, 1, 2

The first and the second sort seem to display the expected result. However, the
third sort is case-sensitive and the fourth is based on the underlying Date value,
which is desirable.

Containers and Related Components

[172]

Item sorter
A concrete sortable container class (which we will see later in this chapter, bear with
me for the moment) delegates sorting to an item sorter.

DefaultItemSorter is, guess what, the item sorter that is used if no other is set. In
turn, it uses DefaultPropertyValueComparator in order to compare each property.
Note that the latter implementation compares properties using Comparable.

If properties used for the set are not Comparable, Vaadin will
throw a ClassCastException.

Now we understand the previous behavior. Both Date and String are Comparable
and are sorted using the compareTo() method. In the case of dates, it does its job;
in the case of strings, the method is case-sensitive.

In order to be case-insensitive, we would have to use compareToIgnoreCase().
Let us implement such a comparator and use it for a case-insensitive search.

As an example, we will create a property value comparator that will sort persons
by names, either first or last, with no regards to case:

import java.util.Comparator;

import com.vaadin.data.util.DefaultItemSorter.
DefaultPropertyValueComparator;

Chapter 6

[173]

public class CaseInsensitivePropertyComparator implements
Comparator<String> {

 @Override
 public int compare(String prop1, String prop2) {

 return string1.compareToIgnoreCase(string2);
 }
}

This new comparator does the same as the default one (in fact, it delegates to it if
compared properties are not strings), but compares strings regardless of the case.

Then it is just a matter of passing the comparator as a constructor argument to the
sorter, and then the sorter to the container implementation:

ItemSorter sorter = new DefaultItemSorter(
 new CaseInsensitivePropertyComparator());

container.setItemSorter(sorter);

Now, the third sort becomes 1, 2, 4, and 3 ("DOE", "doe", "Vega", "winnfield") which
is the expected result.

Concrete indexed containers
Though container properties (filterablen, sortable, and ordered) are designed
so as to be independent, the vital AbstractBeanContainer implements all three.
This suits our needs just fine nonetheless.

AbstractBeanContainer also introduces the following two important concepts:

•	 Item sorter: The one that we just talked about previously.
•	 Bean ID resolver: When we described container previously, we saw that an

ID was just a key to a glorified hash map. Now, there must be some way to
get the key: either pass it when adding an item or provide a way to compute
the key from the bean. The latter is the responsibility of the bean ID resolver.

From there, the framework provides two simple implementations, which both use
introspection on items to define what the container properties will be:

•	 BeanItemContainer, which uses the bean itself as the identifier. In
order to do this, it redefines a very simple bean ID resolver named
IdentityBeanResolver. Undercover, it uses hashCode() and equals(),
just like standard HashMap.

Containers and Related Components

[174]

•	 BeanContainer, which either enforces:
°° Passing an identifier along with the item to be added with the

addItem() method
°° Using a bean ID resolver that computes an ID when adding a bean

with the addBean() method

In order not to add even more complexity to the diagram, which
is already dense enough, methods coming from Ordered and
Indexed are not shown. Just remember that they exist.

As an example, let's create a bean container for our Person objects. This container
will use the Person object's id as the key to the person itself.

Chapter 6

[175]

The first step consists of creating the bean ID resolver, which is simple enough:

public class PersonIdResolver implements BeanIdResolver<Long, Person>
{

 @Override
 public Long getIdForBean(Person person) {

 return person.getId();
 }
}

Then, we can use our bean container as expected:

BeanContainer<Long, Person> container =
 new BeanContainer<Long, Person>(Person.class);

container.setBeanIdResolver(new PersonIdResolver());

container.addAll(...);

Person person = container.getItem(1L).getBean();

This example is trivial; however, how many times will we need an ID resolver that is
not based on an identifier present in the bean? In order to prevent creating a bean ID
resolver each time, Vaadin also provides a bean ID resolver based on a property. The
previous code may be simplified with the following:

BeanContainer<Long, Person> container =
 new BeanContainer<Long, Person>(Person.class);

container.setBeanIdProperty("id");

container.addAll(...);

We can now forget about our custom bean ID resolver.

Containers and Related Components

[176]

Hierarchical
Simple tabular data management is addressed by the previous features and
implementations of AbstractBeanContainer; however hierarchized data
management is not.

Vaadin, however, provides another abstraction to manage it with the
Hierarchical interface.

It provides some ways to organize data in a tree-like manner:

•	 Get/set leaf status of a node
•	 Get root status of a node
•	 Query for root nodes, note that multiple roots are possible
•	 Get the parent/children of a node
•	 Set a new parent for a node, thereby moving it around

Containers and the GUI
When we talked about Property earlier, it was a no-brainer to set it as a text
field datasource in order to display it.

In the following section, we will be using AbstractSelect as an example.

Chapter 6

[177]

Container datasource
In order to use Container as a component data source, there are still some details
about it we have to understand:

1.	 First, Container mimics the structure of Property insofar as it encloses
both a Viewer and an Editor interface.

2.	 Second, there is a parallel between AbstractField and AbstractSelect,
the parent classes for all components able to display a Container.

Containers and Related Components

[178]

In addition to the previous methods, AbstractSelect also has some important
properties accessible with getter/setter pairs. These are summarized in the
following table:

Property Type Default value
itemCaptionMode ItemCaptionMode EXPLICIT_DEFAULTS_ID

itemCaptionPropertyId Object null
itemIconPropertyId Object null
multiSelect Boolean false
newItemHandler NewItemHandler DefaultNewItemHandler

newItemsAllowed Boolean false
nullSelectionAllowed Boolean true
nullSelectionItemId Object null

Displaying items
Components that display a single value per item (including combo-boxes and
lists but excluding tables) may represent items by caption and/or by icon.

The simplest way to do that is to assign each specific item a caption and/or an
icon with setItemCaption() and setItemIcon() methods respectively.

// select is an abstract select
select.addItem(person);
select.setItemCaption(person, person.getFirstName() + " " + person.
getLastName());

However, in this case, we have to add items one by one and lose the ability to
initialize the component with a container datasource (which is the whole point).

Abstract select has a mode property that lets us manage it as such. Available
values for this property are found in the com.vaadin.ui.AbstractSelect.
ItemCaptionMode constant:

Constant Computed caption value
EXPLICIT None: We have to set it for each item explicitly, like in

the previous example
ICON_ONLY None: Only an icon is shown. An icon must be set

explicitly for each item
ID The toString() value of the item's ID
ITEM The toString() value of the item

Chapter 6

[179]

Constant Computed caption value
INDEX Item's index in the container
EXPLICIT_DEFAULTS_
ID

By default, the toString() value of the item's
ID, but individual items can be set a caption, thus
overriding the default value

PROPERTY An item property is used, which is specified with
setItemCaptionPropertyId()

Note that setting the caption item by item, or using a general strategy is mutually
exclusive, save the case of EXPLICIT_DEFAULTS_ID (which is the default). Also,
be aware of the following:

•	 The defined strategy will take precedence over the manually set caption
•	 The framework won't say anything about it if we try to set it anyway

As an example, let's display our Person objects. We would like to show both the
first and the last name, and nothing else really suits our needs; item IDs have a
whole different purpose and redefining toString() seems a bad option.
However, we could surely create a computed property from scratch as follows:

public String getDisplayName() {
 return firstName + " " + lastName;
}

Then using this property is just a matter of configuring the abstract select:

select.setItemCaptionMode(ItemCaptionMode. PROPERTY);
select.setItemCaptionPropertyId("displayName");

From a design point of view, it would have been cleaner to create
a view object. Yet for clarity's sake, it is simpler this way.

Handling new items
New items may be added to concrete subclasses of AbstractSelect. The exact
behavior is delegated to a NewItemHandler instance. The default one just checks
whether the select is read-only and throws a Property.ReadOnlyException in
this case.

Typical use cases of new item handlers include the following, among others:

•	 Inserting the new item as a row in the data tier (read database)
•	 Tracing the identity of the connected user

Containers and Related Components

[180]

Null items
Use cases may/may not allow selecting null values. Such configuration can easily
be achieved by calling the nullSelectionAllowed() method.

null values cannot be added to containers as such, but AbstractSelect can have
items that contain null values. Just create a specific item ID (or object depending
on the bean item container implementation) and call setNullSelectionItemId()
with it as a parameter.

Now querying the value of the component when the dummy is selected will return
null and not the real object:

BeanItemContainer<Person> container =
 new BeanItemContainer<Person>(Person.class);

// Define a person which cannot exist
Person nullPerson = new Person(-1L);

container.addItem(nullPerson);

final ListSelect select = new ListSelect("", container);

// Send events on directly when clicked
select.setImmediate(true);

// Handle the value of the person as null
select.setNullSelectionItemId(nullPerson);

select.addValueChangeListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 System.out.println(select.getValue());
 }
});

Chapter 6

[181]

Container components
Inherited from AbstractSelect are some concrete components that may display
a container's content.

Depending on the properties described earlier and the implementation type,
we can get virtually any result we need.

Containers and Related Components

[182]

Note that all subclasses of AbstractSelect have the following constructors:

•	 A constructor with no parameters that comes in handy when we have no
idea of the content at the time of instantiation.

•	 A constructor with a String parameter. It is the same as the previous
constructor, only with a caption.

•	 A constructor with both String and Container parameters. The String
references the component's caption and the Container references the items
to be displayed by the component. If there is no caption, just use null for the
parameter.

•	 A constructor with both the caption as a String and Collection parameters
that will populate the underlying container.

Since a picture is worth a thousand words, here is a sample of different
configurations of the preceding component, all setting the same Person object's
Collection:

Person person1 =
 new Person(1L, "John", "DOE", new Date(70, 0, 1));
Person person2 =
 new Person(2L, "Jane", "doe", new Date(70, 0, 1));
Person person3 =
 new Person(3L, "jules", "winnfield", new Date(48, 11, 21));
Person person4 =
 new Person(4L, "vincent", "Vega", new Date(54, 1, 17));

List<Person> persons =
 Arrays.asList(person1, person2, person3, person4);

Code Representation
ListSelect select = new
ListSelect("List Select",
persons);

Chapter 6

[183]

Code Representation
ListSelect select = new
ListSelect("List Select
w/o null allowed",
persons);

select.setNullSelection
Allowed(false);

OptionGroup select =
new OptionGroup ("Option
Group", persons);

OptionGroup select =
new OptionGroup("Option
Group w/ multiselect",
persons);

select.
setMultiSelect(true);

ComboBox select = new
ComboBox("Combo Box",
persons);

NativeSelect select =
new NativeSelect("Native
Select", persons);

TwinColSelect select =
new TwinColSelect("Twin
Col. Select", persons);

Containers and Related Components

[184]

Notice that in the previous snippets, configuring the same component in different
ways gets us different graphical representations.

For a practical example, consider we want the user to select a single Person object.
Space requirement constrains us to use the smallest space possible. Moreover, there
may be many Person objects available: it would be a good idea to let the user type
some characters in order to filter out choices. In this case, our component of choice
is ComboBox, as it does not use much space and lets us filter options:

import java.util.Arrays;
import java.util.Date;

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.data.util.BeanItemContainer;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.AbstractSelect;
import com.vaadin.ui.ComboBox;
import com.vaadin.ui.Notification;
import com.vaadin.ui.UI;

@SuppressWarnings("serial")
public class SelectPersonUI extends UI {

 @SuppressWarnings("deprecation")
 @Override
 protected void init(VaadinRequest request) {

 Person person1 =
 new Person(1L, "John", "DOE", new Date(70, 0, 1));
 Person person2 =
 new Person(2L, "Jane", "doe", new Date(70, 0, 1));
 Person person3 =
 new Person(3L, "jules", "winnf", new Date(48, 11, 21));
 Person person4 =
 new Person(4L, "vincent", "Vega", new Date(54, 1, 17));

 BeanItemContainer<Person> container =
 new BeanItemContainer<Person>(Person.class);

 container.addAll(Arrays.asList(
 person1, person2, person3, person4));

 ComboBox combo = new ComboBox("", container);

Chapter 6

[185]

 combo.setImmediate(true);
 combo.setNullSelectionAllowed(true);
 combo.setItemCaptionPropertyId("lastName");

 combo.addValueChangeListener(new ValueChangeListener() {

 public void valueChange(ValueChangeEvent event) {

 AbstractSelect combo =
 (AbstractSelect) event.getProperty();

 Person selected = (Person) combo.getValue();

 if (selected == null) {

 Notification.show("null");

 } else {

 Notification.show(selected.getId() + " ("
 + selected.getFirstName() + ")");
 }
 }
 });

 setContent(combo);
 }
}

There are some important points in the preceding code:

•	 setItemCaptionPropertyId("lastName") lets us use the lastName
property of the Person item as its caption. We could have used any
other property, of course, but it fits for a label.
If there would have been probable duplicates (as is the case in databases),
we should probably have used a computed property (for example, the
aggregation of both first and last names).

•	 In ComboBox, filtering is enabled by default in with the "starts with"
pattern. There is nothing more to code to make it work.

•	 Last but not the least, getting the select's value returns the item itself!
This means that getting and setting the selected value is a breeze.

Containers and Related Components

[186]

Value type
The return type in the signature of the getValue() method is Object.
We can easily cast it to the item type, in our example, Person. Be aware
however, that when multiselection is enabled, the returned value is a set
of all selected item IDs. When multiselection can be enabled or disabled,
take extra care when casting the return value.

Tables
Tables merit their own section as they display multiple columns, something
the components in the previous section are not meant to handle.

Besides specific event-listener pairs, tables add the following important features
to a simple select:

•	 Computed columns, that is, columns not found in the underlying container.
Does the displayName property ring any bells?

•	 Configurable columns, in order to display exactly what we want. It includes
displaying date values with the right format but also using checkboxes for
Boolean values, and so on.

•	 Drag-and-drop; tables are eligible as both source and target.
•	 A viewpoint around a very, very high number of items.

Consistence of table hierarchy
In essence, tables are abstract selects, of sorts. This means that they
add methods and behaviors of their own, but some defined in their
parent class have no meaning, for example; for Table instances,
the itemCaptionMode property makes no sense.

Table structure
The first thing to understand for Vaadin tables is how they are structured.

Prop.1 header Prop.2 header Prop.n header Gen. col.1 header
item1.row
header

item1.property1 item1.
property2

item1.
propertyn

item1.gencol1

Item2.row
header

item2.property1 item2.
property2

item2.
propertyn

Item2.gencol1

Chapter 6

[187]

Prop.1 header Prop.2 header Prop.n header Gen. col.1 header
Itemn.row
header

Itemn.
property1

itemn.
property2

itemn.
propertyn

Itemn.gencol1

Prop.1 footer Prop.2 footer Prop.n footer Gen. col.1 footer

Columns
Each table's column is referenced by a property ID. Those IDs may be explicitly set, but
in most cases, it is the property's name of the bean item type stored in the underlying
container. For our Person type, they are firstName, lastName, and so on.

Column properties can be set in either of the following ways:

•	 Globally, where the method expects an array of the right type values
as a single parameter or varargs

•	 Column by column, where parameters are respectively the property
ID and a value of the desired type

For example, should we want to set column headers in one line, we could do
the following:

table.setColumnHeaders(new String[] { "First Name", "Last Name",
"Birth date", "ID" });

Alternatively, the same result could be achieved with the following:

table.setColumnHeader("firstName", "First Name");
table.setColumnHeader("lastName", "Last Name");
table.setColumnHeader("birthdate", "Birth date");
table.setColumnHeader("id", "ID");

Global column properties are summed up in the following table:

Property Type Default value
columnAlignments Align...

columnHeaders String[]

columnIcons Resource[]

visibleColumns Object[]

Containers and Related Components

[188]

The following table recaps single column "properties":

Property Type Default value
columnAlignment String Align.LEFT

columnCollapse boolean

columnCollapsible boolean

columnExpandRatio float

columnFooter String null

columnHeader String

columnIcon Resource null

columnWidth int -1

Most are self-describing; however, a little explanation on how table width works
in Vaadin would be in order.

Width
In essence, it boils down to how the framework integrates with HTML: when the
column width is set to -1, no width is set in it and thus, width is based on both
CSS and available space in the page; if not, width is just set by the code.

Collapsing
Vaadin allows us to hide some columns at first, but provides us with the means
to display them later. This is known as a collapsing column. First, we have to call
setColumnCollapsingAllowed(true) in order to enable the feature.

Then, individual columns may be collapsed with the setColumnCollapsed()
method or manually by the user. This code collapses the unnecessary columns:

table.setColumnCollapsed("firstName", true);

In the preceding screenshot, see how Vaadin displays a selector to choose
columns to be shown.

Chapter 6

[189]

Table width and collapsing
Beware that collapsed columns are not used when computing the
total table width. It is advised to explicitly set the table width in order
to ensure that uncollapsed columns will get enough space to be put in
view with no need to scroll.

Header and footer
Header and footer are structuring elements of tables.

The former code snippet showed us how to set headers explicitly, even if most
of the time, the strategy used for creating headers (which is the same as the one
for creating captions, see the Changing captions section of this chapter) from item
properties is good enough.

Like captions, we can change the strategy used with setColumnHeaderMode
(ColumnHeaderMode):

Constant Computed row header value
HIDDEN No column header is shown
EXPLICIT None: We have to set each column header explicitly
EXPLICIT_DEFAULTS_
ID

Default: A spaced uppercased property is used,
but individual columns can be set a header, thus
overriding the computed value

ID Spaced uppercased property

As an illustration, let us update our table with more user-friendly headers:

table.setColumnHeader("firstName", "Given name");
table.setColumnHeader("lastName", "Family name");
table.setColumnHeader("birthdate", "Birth Date");

Containers and Related Components

[190]

Note that column headers are more than what we would expect as regular users.

Footers must be set independently as they are empty by default. Besides, we
have to call setFooterVisible(true) to display the entire footer bar, as it
is hidden otherwise.

Row header column
The row header column is a special column hidden by default. Think of it as
a summary of the row item, made comprehensible for mere humans. In fact,
it works exactly the same as the caption mode of AbstractSelect, only the
method is setRowHeaderMode(RowHeaderMode) and the constants are as follows:

Constant Computed row header value
HIDDEN Default value: No header column is shown
EXPLICIT None: We have to set it for each item explicitly
ICON_ONLY None: Only an icon is shown. An icon must be set

explicitly for each item
ID The toString() value of the item's ID
ITEM The toString() value of the item
INDEX The item's index in the container
EXPLICIT_DEFAULTS_ID By default, it is the toString() value of the item's

ID, but individual items can be set a header, thus
overriding the default value

PROPERTY An item property is used, which is specified with
setItemCaptionPropertyId()

In our current table, we could use the displayName computed property as the
row header:

table.setRowHeaderMode(RowHeaderMode.PROPERTY);
table.setItemCaptionPropertyId("displayName");

This would output the following:

Chapter 6

[191]

Ordering and reordering
By default, column ordering is random. In this regard, it is always better to explicitly
set column ordering with the setVisibleColumns(String[]) method that takes an
array of item properties as an argument.

Note that Vaadin will check that column names exist inside
the container. That is why we should only call this method
after setting the datasource.

Users cannot change the column ordering. By calling setColumnReorderingAllowed
(true), this feature can be enabled.

Note that none of these changes affect the row header column.

In our example, the following order suits our needs just fine (and has been used
in the previous screenshots):

table.setVisibleColumns(new String[] {"id", "firstName", "lastName",
"birthdate"});

Formatting properties and generated columns
Formatting table properties can be achieved through the following three
different means:

•	 Using a property formatter (see the Property formatter section of this chapter).
It would be particularly unwieldy as it would require wrapping the to-be-
formatted property of each item individually.

•	 Overriding the protected formatPropertyValue(Object, Object,
Property) method. For example, let's format Person birth dates in
our table with the French locale:
Table table = new Table("", container) {

 @Override
 protected String formatPropertyValue(Object itemId,
 Object propId, Property property) {

 Object value = property.getValue();

Containers and Related Components

[192]

 if (value instanceof Date) {

 Date date = (Date) value;

 DateFormat format = DateFormat.getDateInstance(
 DateFormat.SHORT, Locale.FRENCH)

 return format.format(date);
 }

 return super.formatPropertyValue(
 itemId, propId, property);
 }
};

Alternatively, we could have checked on the property's ID.
With our choice, if other date attributes are added to the
underlying JavaBean, they will benefit from the formatting
as well (which may / may not be desirable).

This approach not only defeats separation of concerns, it also renders
the code less readable.

•	 In abstract selects, we had to explicitly create the displayName computed
property on Person. It was a bad design, but alternatives were either
complex or unsatisfying.

Table offers a feature that AbstractSelect does not: generated columns.
These columns are the answer to the previous quandary and implements
it in a clean way.

In order to achieve this, Vaadin introduces the ColumnGenerator interface: it overrides
the wanted property's name, if it already exists, or creates a new one if it does not.

Chapter 6

[193]

Generated cell return value
The method return type is Object: in effect, we can return either a
Component instance, or a String. In the latter case, Vaadin will wrap
the String value inside Label to display.

Once implemented, the column generator can be added to the table with a
specific property ID. Let's replace the displayName property on the Person
with an equivalent generated column implementation:

import com.vaadin.data.Item;
import com.vaadin.data.Property;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;

@SuppressWarnings("serial")
public class DisplayNameColumnGenerator implements ColumnGenerator {

 @Override
 @SuppressWarnings("unchecked")
 public Object generateCell(Table source,
 Object itemId, Object columnId) {

 // item is the Person (or the line of the table)
 Item item = source.getItem(itemId);

 Property<String> firstName =
 item.getItemProperty("firstName");
 Property<String> lastName =
 item.getItemProperty("lastName");

 return firstName.getValue() + " " + lastName.getValue();
 }
}

Now, it's just a matter of using the generated column:

table.addGeneratedColumn("displayName",
 new DisplayNameColumnGenerator());
table.setColumnHeader("displayName", "Display name");
table.setVisibleColumns(
 new String[] { "id", "displayName", "birthdate" });

Containers and Related Components

[194]

Notice that generated columns cannot be sorted (see below) as
there is no underlying property the container may be aware of.

Additionally, we can use generated columns as a way to change (for example,
format) existing property columns. Let us create a column generator that will
format dates according to the French locale:

import static java.text.DateFormat.SHORT;
import static java.util.Locale.FRENCH;

import java.text.DateFormat;
import java.util.Date;

import com.vaadin.data.Item;
import com.vaadin.data.Property;
import com.vaadin.ui.Table;
import com.vaadin.ui.Table.ColumnGenerator;

@SuppressWarnings("serial")
public class DateColumnGenerator implements ColumnGenerator {

 @Override
 @SuppressWarnings("unchecked")
 public Object generateCell(Table source, Object itemId,
 Object columnId) {

 // item is the Person (or the line of the table)
 Item item = source.getItem(itemId);

 // property is the date property
 // (or the intersection between the line and the column)
 Property<Date> property = item.getItemProperty(columnId);

 Date value = property.getValue();

 DateFormat format =
 DateFormat.getDateInstance(SHORT, FRENCH);

 return format.format(value);
 }
}

Chapter 6

[195]

Now, it's just a matter of using the generated column:

table.addGeneratedColumn("birthdate", new DateColumnGenerator());

As the birthdate property already exists in the container, the date column generator
will replace it. As an icing on the cake, the implemented column generator is able to
decorate any date property on any table.

Sorting
By default, Vaadin tables are sortable: users can choose a column to sort from,
by clicking on the column header.

Note that sorting is executed on the underlying property value,
and not on its string representation.

User sorting
In order to prevent the user sorting, there are the following two options:

•	 Calling the setSortDisabled(true) method
•	 Hiding all column headers with setColumnHeaderMode(ColumnHeaderMo

de.HIDDEN), as seen previously

Programmatic sorting
Alternatively, developers can use server-side sorting using two parameters:
the property's ID and an indicator hinting at whether the sort is ascending
(which is the default).

For example, the following snippet sorts the table from the last name, in the
descending order:

table.setSortContainerPropertyId("lastName");
table.setSortAscending(false);

This approach has a strong limitation; it can only be used for sorting on a single
column. In order to overcome this, remember that Container.Sortable provides
the sort(Object[] propertyId, boolean[] ascending) method to use multiple
columns at once.

Containers and Related Components

[196]

Also, it lets us sort in a single method call, as the following snippet proves, which is
equivalent to the former:

table.sort(new String[] {"lastName"}, new boolean[] {false});

Viewpoint
Containers can hold a very high number of items and their associated table
components are still reactive, as not all are displayed to the user. In order
to achieve this, tables use the concept of viewpoint: the number of of rows
shown is constrained by the table (and fewer than the number of items).

First, we can set the number of visible rows with the setPageLength(int) method.

Default value of page length is 15.

Notice that in combination to row height, it sets the default table height. If set to 0,
the table will adjust its height to display all of the items in the container: be sure
that it is the desired behavior, as it can have a great impact on both performance
and ease of use.

On the contrary, not setting the page length to 0 means that the table will not adhere
to the setHeight() contract. This is of utmost importance when trying to fit the table
component in a specific place, for example, when setSizeFull() must scale the
table accordingly.

Note that the page length will be updated on the client side if the table height
is defined.

Additionally, we can programmatically scroll to the first item in the list, either
by the item's ID or by its index. This is done with the setCurrentPageFirstItemId(
Object) and setCurrentPageFirstItemIndex(int) methods respectively.

Viewpoint change event
Table does not come with an event model around scrolling visible items. Out of
the box, the framework displays the range of visible items when the user scrolls at
the top of the table, just below the column headers. If we need to be informed about
scrolling, we have to override the protected refreshRenderedCells() method in
order to implement the desired behavior (and still call the parent method, of course).

Chapter 6

[197]

Improving responsiveness
Scrolling the viewpoint in order to show different items will make the table fetch
newly visible items from the underlying container. As such, there would be a
noticeable waiting time for the user if not for a nifty feature of the framework.

Vaadin table fetches more items than it is needed to be displayed and caches the
superfluous items in memory. The number of such items is pageLength times the
value of a property named cacheRate, above and below the table. Therefore, if users
complain about response time, increasing the cache rate could be a good idea.

Of course, if the user scrolls too fast, it won't do anything. In most cases however,
it just increases the responsiveness with no side effect.

Editing
Until now, we have learned how to configure how we want to display data,
and that is no mean feat. Nonetheless, displaying is one thing, editing is another.

In Vaadin, making a table editable is as simple as calling setEditable(true)
on it. Behold the result: in just one line, we have a fully-editable table:

The following things are worth noticing:

•	 Editable fields are specifically tailored to the property type and in exactly
the same way as for single fields (see the Configuring field types section of
this chapter).

•	 Computed properties, such as the displayName property, are still shown
as simple labels (and not as a field).

•	 This is also the case for properties with no setter, such as the ID.

Containers and Related Components

[198]

In fact, like forms, tables delegate field generation to a factory; a TableFieldFactory
interface and DefaultFieldFactory also implements it, as presented in the
following figure:

Tweaking the field of our editable table is just a matter of implementing the
right table field factory.

Let us pretend that we want to display inline calendars instead of popups
to edit dates (not a really useful idea in fact). It is just a matter of coding the
desired implementation:

public class InlineDateTableFieldFactory
 implements TableFieldFactory {

 @Override
 public Field<?> createField(Container container,
 Object itemId, Object propertyId, Component uiContext) {

 Item item = container.getItem(itemId);

 Property<?> property = item.getItemProperty(propertyId);

 if (Date.class.isAssignableFrom(property.getType())) {

 return new InlineDateField(property);
 }

 return DefaultFieldFactory.get().createField(
 container, itemId, propertyId, uiContext);
 }
}

Chapter 6

[199]

As for the previous field factory, remember to favor composition
over inheritance (http://wikipedia.org/wiki/Composition_
over_inheritance)

Then, it is just a matter of setting our factory on the table:

table.setTableFieldFactory(new InlineDateTableFieldFactory());

Notice that it is very similar to our previous custom form field factory.
Well, it is even simpler as column header is not handled (and should not be).

Selection
On the client side, items in standard tables are just a bunch of characters put
one next to another.

Just calling the setSelectable(true) method on the table will make each
row appear as a single object to the user and selectable as such.

By default, only a single row can be selected at a time. In order to select multiple
rows, we need to call setMultipleSelect(true) on the table. When multiple
selections are enabled, users can select a range of rows with the Shift key and
individual rows can be added or removed from the selection with the Ctrl key.

Selected rows can be retrieved by invoking the getValue() method on the table.
The returned value is of runtime type:

•	 Set<?> if multiple selection is enabled
•	 The Item type item if it is not (in our running example, that would

be Person)

Drag-and-drop
Tables are a good entry point into Vaadin's drag-and-drop capabilities.

The framework uses the following abstractions in order to accomplish
drag-and-drop:

•	 Transferable: This represents the transferred data
•	 DragSource: This stands for the source component

http://wikipedia.org/wiki/Composition_over_inheritance
http://wikipedia.org/wiki/Composition_over_inheritance

Containers and Related Components

[200]

•	 DropTarget: This denotes the target component:

Transferable
Transferable wraps the data to be dragged-and-dropped between components.

TransferableImpl is just a straightforward implementation of Transferable.
As Transferable may apply to a great number of differently structured data,
it is built around a hash map:

Chapter 6

[201]

Keys are called data flavors and vary, depending on the concrete type of
transferable. We can query for all data flavors of a particular transferable
with the getDataFlavors() method. DataBoundTransferable is a specialized
transferable designed for containers.

At the table level, drag sources are cells, so TableTransferable is an
implementation where we can get both a cell's item ID and its property ID.

Drag source
DragSource knows how to create transferable objects. Concrete classes
implement the single getTransferable(Map<String, Object>) method
that return Transferable instances.

Drop target
Drop target model design is somewhat more complex than drag source,
for the wanted behavior may need to be provided by collaborating classes.

<<lnterface>>
com.vaadin.event.dd.DropTarget

+ getDropHandIer(): DropHandler
+ translateDropTargetDetaiIs(in clientVariables: Map): TargetDetaiIs

+ getTarget(): DropTarget
+ getData(in key: String): Object

<<lnterface>>
com.vaadin.event.dd.TargetDetails

com.vaadin.event.Transferable
+ DragAndDropEvent(in transferable: Transferable, in dropTargetDetails: TargetDetails)
+ getTargetDetails(): TargetDetails
+ getTransferable(): Transferable

com.vaadin.event.dd.DragAndDropEvent

1

+ accept(in dragEvent: DragAndDropEvent): boolean
+ isCIientSideVeri?able(): boolean

<<lnterface>>
com.vaadin.event.dd.acceptcriteria.AcceptCriterion

+ drop(in event DragAndDropEvent)
+ getAcceptCriterion(): AcceptCriterion

<<lnterface>>
com.vaadin.event.dd.DropHandIer

1

•	 At the heart of the model lies DragAndDropEvent, which is not a real event per
se (it does not inherit from EventObject) but is still sent by the framework. It
encapsulates both a Transferable and a TargetDetails instance.

•	 TargetDetails in turn wraps the drop target as well as all information
contained in the aforementioned Transferable. Concrete target details classes
are provided throughout Vaadin by components, including tables (and trees).

•	 DropTarget represents the target of the drag-and-drop operation. It
delegates the drop itself to a DropHandler.

Containers and Related Components

[202]

•	 DropHandler is the class responsible for managing what really happens in
the drop through the drop() method. Drop handlers have to detail under
what conditions the drop is valid.

•	 AcceptCriterion wraps possibly many criteria in order to determine
whether to drop the transferable on the target or to abort the operation.

Accept criterion
Accept criterion can be separated into two main groups: criteria that can work
solely on the client side and criteria that need server-side access.

In order to ease the understanding of the diagram, package was not
represented. It is com.vaadin.event.dd.acceptcriteria.

The different types of criteria are fairly self-describing.

Table drag-and-drop
Table is a component which is drag-and-drop ready, having concrete
implementations of all previous interfaces, save DropHandler, which
has to be application-specific anyway.

•	 In order to enable dragging from the table, we just have to call
setDragMode(TableDragMode) with the right value: either ROW or MULTIROW.
It is NONE by default, meaning the drag is disabled. Note that in order for
multi-row to work, the table must be selectable with multi-selection enabled.

Chapter 6

[203]

•	 To enable dropping to a table, we just have to implement DropHandler
and associate a new instance of it with the table.

The following DropHandler example creates a new person from the dragged
person and drops it at the end of the table:

public class DuplicatePersonDropHandler implements DropHandler {

 @Override
 public void drop(DragAndDropEvent event) {

 TableTransferable transferable =
 (TableTransferable) event.getTransferable();

 Object itemId = transferable.getItemId();

 Table table = transferable.getSourceComponent();

 @SuppressWarnings({ "unchecked", "rawtypes" })
 BeanItem<Person> item = (BeanItem) table.getItem(itemId);

 Person originalPerson = item.getBean();

 Person newPerson = new Person(null);

 newPerson.setFirstName(originalPerson.getFirstName());
 newPerson.setLastName(originalPerson.getLastName());
 newPerson.setBirthdate(originalPerson.getBirthdate());

 table.addItem(newPerson);
 }
}

Then, we set it on the table and we do not forget to make it selectable with
single row selection:

table.setSelectable(true);
table.setDragMode(TableDragMode.ROW);

table.setDropHandler(new DuplicatePersonDropHandler());

•	 We set the drag mode to ROW, in order for the table to be a drag source
•	 We created a drop handler and set it on the table, so as to make the latter

a drag source too
•	 Finally, the accept criterion constrains the drop source so that it can only

be the table itself

Containers and Related Components

[204]

Trees
Trees are another component that has the capability to use a container datasource.
Tables are meant to display flat containers; whereas trees are meant to do the same for
hierarchical ones (see the section named Hierarchical of this chapter for a reminder).

From a UI point of view, trees are about nodes and parent-child relationships
between them.

Note that a node can have a single parent (or none at all for
root nodes).

Tree is much simpler than Table as there are no columns involved: only nodes
are displayed, albeit in a hierarchical fashion.

Collapse and expand
One of features of Tree is the ability to let us either collapse a node (that is, hide
its children) or expand it (that is, display its children) programmatically.

The following two method flavors are available:

•	 One that just acts upon the node and its direct children,
collapseItem(Object) and expandItem(Object)

•	 The other proceeds recursively from the node parameter, collapseItemsRec
ursively(Object) and expandItemsRecursively(Object)

Chapter 6

[205]

One can also query for the expanded status of a particular node with the
isExpanded(Object) method.

In all these methods, the Object parameter is the item's ID.

Parent and child
As trees are all about parent and child nodes, Vaadin provides the following
methods in order to manage relationships:

•	 With the rootItemIds() method, we can get the root item IDs.
This implies that there can be more than a single root node.

•	 For a particular item, isRoot() returns the root status and
hasChildren(Object) returns whether it has children. Both methods
are pretty self-explanatory.

Then, a node leaf status can be set with the help of the setChildrenAllowed()
method.

Finally, one can change the entire node structure by using setParent().
For example, the following snippet simply rearranges the second and the
fourth items respectively under the first and third items for a 4-items tree:

// Assume that the container is the same as in the table examples
Tree tree = new Tree("", container);

Iterator<?> iterator = tree.getVisibleItemIds().iterator();

tree.setParent(iterator.next(), iterator.next());
tree.setParent(iterator.next(), iterator.next());

Item labels
Labels are handled the same way for trees as for selects, meaning we should use
the same solutions as seen in the Displaying items section, earlier in this chapter.

Refining Twaattin
We are now ready to connect Twaattin to the Twitter API. We will use Twitter4J
for this purpose, available at http://twitter4j.org/. Twitter4J is a Java API
facade over HTTP REST JSON requests.

It is open source, free, and well designed so it just fits our needs. As this
book is not about it, detailed information can be found on the relevant
website http://twitter4j.org.

Containers and Related Components

[206]

Prerequisites
In order to use Twitter for authentication, the first thing to do is to register a client
application using the form at https://dev.twitter.com/apps/new.

This will get us a consumer key and a consumer secret that will have to be passed
to Twitter to authenticate (using the OAuth protocol under the cover).

Detailed configuration of Twitter4J is well beyond the scope of this
book. Suffice it to say, we need to write the previous key/secret
pair in twitter4j.properties at the root of the application
classpath or pass them as system properties on the command line.
For complete instructions, please go to http://twitter4j.org/
en/configuration.html.

In order to use Twitter4J API, we need a dependency on its binary library. As
dependencies are already managed by Ivy, add the following line to the ivy.xml
file in the dependencies section:

<dependency org="org.twitter4j" name="twitter4j-core" rev="3.0.3" />

Adaptations
The biggest adaptation to our application is that since the Twitter API uses OAuth
for authentication, we can log in to Twitter rather than Twaattin. This blatantly
violates Twitter API guidelines, but is the best example in the scope of this book.

OAuth is an open protocol that delegates authentication to
so-called OAuth providers. More information is available at
http://oauth.net/.

When authenticated, Twitter will return a PIN that will be used to verify our
credentials in latter calls. The login screen will have to be changed in order to
provide a link to Twitter's authentication window and a PIN field.

Sources
Here are the Twaattin updated sources. Only the important code is reproduced;
for the complete sources, refer to https://github.com/nfrankel/twaattin/
tree/chapter6.

http://twitter4j.org/en/configuration.html
http://twitter4j.org/en/configuration.html
https://github.com/nfrankel/twaattin/tree/chapter6
https://github.com/nfrankel/twaattin/tree/chapter6

Chapter 6

[207]

The login screen
Here is code for the login screen.

package com.packtpub.learnvaadin.twaattin.ui;

import com.packtpub.learnvaadin.service.TwitterService;
import com.packtpub.learnvaadin.twaattin.presenter.LoginBehavior;
import com.vaadin.server.ExternalResource;
import com.vaadin.ui.Button;
import com.vaadin.ui.Link;
import com.vaadin.ui.TextField;
import com.vaadin.ui.VerticalLayout;

public class LoginScreen extends VerticalLayout {

 private static final long serialVersionUID = 1L;

 private Link twitterLink = new Link();
 private TextField pinField = new TextField();
 private Button submitButton = new Button("Submit");

 public LoginScreen() {

 setMargin(true);
 setSpacing(true);

 twitterLink.setCaption("Get PIN");
 twitterLink.setTargetName("twitterauth");
 twitterLink.setResource(new ExternalResource(
 TwitterService.get().getAuthenticationUrl()));

 pinField.setInputPrompt("PIN");

 addComponent(twitterLink);
 addComponent(pinField);
 addComponent(submitButton);

 submitButton.addClickListener(new LoginBehavior(pinField));
 }
}

Containers and Related Components

[208]

Noteworthy parts include the following:

•	 The declaration of a Link object. Links render as HTML links to a wrapped
Resource. In our case, it is wrapped around Twitter's authentication
page URL.

•	 The target's name property for Link directly translates to a target attribute
for the a tag and lets us create a new pop-up window. When not specified,
the URL is opened in the current window.

•	 Finally, we use TwitterService, a facade over Twitter4J that allows us
to conveniently focus on the needed features of the API.

The login behavior
Update of the login behavior uses Twitter4J API to authenticate.

The timeline screen
Lorem ipsem label components are replaced with a simple table.

package com.packtpub.learnvaadin.twaattin.ui;

import static com.vaadin.server.Sizeable.Unit.PERCENTAGE;
import static com.vaadin.ui.Alignment.MIDDLE_RIGHT;
import static java.util.Locale.ENGLISH;

import java.security.Principal;

import com.packtpub.learnvaadin.twaattin.presenter.LogoutBehavior;
import com.packtpub.learnvaadin.twaattin.presenter.
TweetRefresherBehavior;
import com.packtpub.learnvaadin.twaattin.ui.decorator.
NameColumnGenerator;
import com.packtpub.learnvaadin.twaattin.ui.decorator.
ProfileImageColumnGenerator;
import com.packtpub.learnvaadin.twaattin.ui.decorator.
ScreenNameColumnGenerator;
import com.packtpub.learnvaadin.twaattin.ui.decorator.
SourceColumnDecorator;
import com.packtpub.learnvaadin.twaattin.ui.decorator.
TweetColumnDecorator;
import com.vaadin.server.VaadinSession;
import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;

Chapter 6

[209]

import com.vaadin.ui.Label;
import com.vaadin.ui.Table;
import com.vaadin.ui.VerticalLayout;

public class TimelineScreen extends VerticalLayout {

 private static final long serialVersionUID = 1L;

 public TimelineScreen() {

 setMargin(true);

 Label label = new Label(VaadinSession.getCurrent()
 .getAttribute(Principal.class).getName());

 Button button = new Button("Logout");

 button.addClickListener(new LogoutBehavior());

 HorizontalLayout menuBar =
 new HorizontalLayout(label, button);

 menuBar.setWidth(100, PERCENTAGE);
 menuBar.setComponentAlignment(button, MIDDLE_RIGHT);

 addComponent(menuBar);

 addComponentAttachListener(new TweetRefresherBehavior());

 Table table = new Table();

 addComponent(table);

 table.addGeneratedColumn(
 "source", new SourceColumnDecorator());
 table.addGeneratedColumn(
 "screenName", new ScreenNameColumnGenerator());
 table.addGeneratedColumn(
 "name", new NameColumnGenerator());
 table.addGeneratedColumn(
 "profileImage", new ProfileImageColumnGenerator());
 table.addGeneratedColumn(
 "text", new TweetColumnDecorator());

Containers and Related Components

[210]

 table.setColumnHeader("source", "via");
 table.setColumnHeader("screenName", "Screen name");
 table.setColumnHeader("profileImage", "");
 table.setColumnHeader("text", "Tweet");

 table.setVisibleColumns(new Object[] { "text", "name",
 "screenName", "profileImage", "createdAt", "source" });
 }
}

Some new features appear in the updated timeline screen:

•	 The first highlighted line adds a new behavior (described below) as an attach
listener. Attach listeners are triggered when a component is added (that is,
attached) as a child component. Previously seen listeners were triggered
by user actions. As we want to display tweets when the screen is displayed,
using such a listener makes sense.

•	 We also add some column generators to display either additional info or
format the existing one.

The tweets refresh behavior
TweetRefreshBehavior pulls tweets from the service layer, adds them to a bean
item container, and adds then the container to a table.

It represents the core of what we've seen in this chapter:

package com.packtpub.learnvaadin.twaattin.presenter;

import java.util.List;

import twitter4j.Status;
import twitter4j.TwitterException;

import com.packtpub.learnvaadin.service.TwitterService;
import com.vaadin.data.util.BeanItemContainer;
import com.vaadin.ui.Component;
import com.vaadin.ui.HasComponents.ComponentAttachEvent;
import com.vaadin.ui.HasComponents.ComponentAttachListener;
import com.vaadin.ui.Table;

@SuppressWarnings("serial")
public class TweetRefresherBehavior implements ComponentAttachListener
{

Chapter 6

[211]

 @Override
 public void componentAttachedToContainer(
 ComponentAttachEvent event) {

 Component component = event.getAttachedComponent();

 if (component instanceof Table) {

 Table table = (Table) component;

 try {

 List<Status> statuses =
 TwitterService.get().getTweets();

 BeanItemContainer<Status> container =
 new BeanItemContainer<Status>(Status.class);

 container.addAll(statuses);

 table.setContainerDataSource(container);

 } catch (TwitterException e) {

 throw new RuntimeException(e);
 }
 }
 }
}

Notice that before doing anything, the method checks whether the child component
is of type Table. This is mandatory, for the parent component container has more
than one child.

Then, we just add the whole Status collection to the container.

We used BeanItemContainer (the whole bean is its item ID)
instead of BeanContainer. Alternatively, we could have used
the latter and employed the id property as the unique item ID.

Containers and Related Components

[212]

Column generators
Column generators have been discussed in this chapter. As an example, let us have a
look at the screen name and the image profile column generators. Both inherit from
an abstract column generator that makes the underlying User easily accessible:

package com.packtpub.learnvaadin.twaattin.ui.decorator;

import twitter4j.User;

import com.vaadin.server.ExternalResource;
import com.vaadin.ui.Link;
import com.vaadin.ui.Table;

@SuppressWarnings("serial")
public class ScreenNameColumnGenerator
 extends AbstractUserColumnGenerator {

 private static final String TWITTER_USER_URL =
 "https://twitter.com/";

 /**
 * @return Screen name of the underlying {@link User} as a
 * {@link Link} component.
 */
 @Override
 public Object generateCell(Table source, Object itemId,
 Object columnId) {

 User user = getUser(source, itemId);

 ExternalResource resource = new ExternalResource(
 TWITTER_USER_URL + user.getScreenName());

 Link link = new Link('@' + user.getScreenName(), resource);

 link.setTargetName("screenname");

 return link;
 }
}

Chapter 6

[213]

The getUser() method of the Status object returns a structured User object and
not a simple String, so we need a column generator to extract relevant data and
possibly augment it. In our case, we get the screen name (the @ handle) and add
a link to the user Twitter profile.

We developed a name column generator to just extract the name
property of a User.
It would have been much nicer to just call the setVisibleColumns()
methods with a user.name. Unfortunately, this feature is not
implemented at the time of this writing. Keep this under watch,
it can reduce your code size!

package com.packtpub.learnvaadin.twaattin.ui.decorator;

import twitter4j.User;

import com.vaadin.server.ExternalResource;
import com.vaadin.ui.Image;
import com.vaadin.ui.Table;

@SuppressWarnings("serial")
public class ProfileImageColumnGenerator extends
AbstractUserColumnGenerator {

 /**
 * @return Profile image of the underlying {@link User} as an
 * {@link Image} component
 */
 @Override
 public Object generateCell(Table source, Object itemId,
 Object columnId) {

 User user = getUser(source, itemId);

 String url = user.getMiniProfileImageURL();

 if (url != null) {

 ExternalResource resource = new ExternalResource(url);

 return new Image("", resource);
 }

 return null;
 }
}

Containers and Related Components

[214]

The profile column generator makes use of the Image class we did not see before.
There is nothing special with this class; it the class of choice to embed images in
the rendered screen.

External resource performance
Be aware that external resources are rendered on the client-side;
in our particular case, images are not read server-side and then
sent byte by byte to the browser, rather is directly displayed by the
browser. This means that we can display a large group of images
without taxing our server(s).

The following screenshot is the final result of our improved Twaatin application:

Chapter 6

[215]

Summary
In this chapter, we were made aware of two important parts of many
Vaadin applications. The first part described the following three levels
of data wrapping in Vaadin:

•	 Property: This represents a simple object such as a String or a Date.
Properties can be tweaked in order to display the encapsulated data the
way we really want.

•	 Item: This wraps around a single structured object. We used our Person
class to show how it could be encapsulated in Item, and finally displayed
in a form. Forms are a nice façade over a single item, whether in a read-only
or read-write mode.

•	 Container: This is the topmost level and lets us wrap around a collection of
items. Containers may have additional properties such as filterable, sortable,
and hierarchical, each one bringing features to the container.

Then, we saw components that can connect to container datasources: tables
and trees. Remember that where trees are hierarchical containers, tables are flat
containers. However, they can be filterable and sortable at the same time.

As tables are such useful components, Vaadin provides many configuration features
around them and we spent some time looking at those capabilities:

•	 Collapsing and ordering of columns, as well as headers and footers
•	 Sorting, both on the user-side and programmatically
•	 Table viewpoint and items caching to enhance the user experience
•	 Selection of table rows and editing of table data
•	 Finally, the drag-and-drop feature was a good entry point into the more

general drag-and-drop API in Vaadin

At this point, we have seen all the basics of the framework. You should now be able
to create simple applications from scratch. The next chapter details some advanced
features of the framework, both coming out of the box and from third-party add-ons.

This chapter is one of the biggest in the book and conveys important
information. Be sure to have mastered all that was described before
going further (or be sure to bookmark it to reread it later).

Core Advanced Features
In this chapter we will go beyond simple features to tackle what will make
our applications well thought out and professional. Other core features are
out-of-the-box capabilities provided by the Vaadin framework and include:

•	 Accessing JavaEE objects from within the Vaadin framework
•	 Using the Navigation API, letting us bookmark application state
•	 Embedding Vaadin components in third-party applications
•	 Default error handling and overriding it
•	 Connecting components to databases
•	 Server push

Accessing the JavaEE API
In some cases, we will want to get a handle on the underlying request-response
model. This could be motivated by the following requirements:

•	 The servlet context; for example, integrating with some third-party
framework such as Spring requires data stored in the servlet context

•	 Managing cookies, either to read or write them, for example, to pass
cookie-based authentication reverse-proxies

•	 The session context, to get data stored there by a legacy part of
the application

Core Advanced Features

[218]

For all these cases, we need access to the underlying Java EE Servlet API, which
until this point was completely hidden. Basically, we need to be able to get a handle
on HttpServletRequest, HttpServletResponse, and HttpSession objects.

Servlet request
There are three entry points for getting a reference on the servlet request:

•	 The first is the init(VaadinRequest) UI method.
•	 The second is com.vaadin.server.VaadinService.getCurrentRequest(),

which returns a com.vaadin.server.VaadinRequest. The com.vaadin.
server.VaadinServletService.getCurrentServletRequest() method
returning javax.servlet.http.HttpServletRequest is to be used in
servlet containers.

•	 Finally, com.vaadin.server.VaadinPortletService.
getCurrentPortletRequest() method that returns javax.portlet.
PortletRequest is to be used in portlet containers.

The last two methods respectively return a Servlet API object and a Portlet API one
while the others return a Vaadin object. Why so? Because they are designed to run
in both servlet and portlet containers. Therefore, the first two methods do not make
assumptions in which environment the code will be deployed and those are the ones
we should use if we plan to also provide agnostic code.

That is the reason why Vaadin provides a façade over both servlet and portlet
requests in the form of the VaadinRequest. This interface offers a subset of methods
found in both HttpSerlvetRequest and PortletRequest. The following diagram
offers an overview of the class hierarchy we are discussing:

Chapter 7

[219]

In the preceding class hierarchy, the Vaadin implementation class tends to follow
this pattern:

•	 It implements the Vaadin interface
•	 It encapsulates the corresponding Java EE Servlet API interface and

offers a read-only accessor to it
•	 It extends the Java EE Servlet API wrapping class
•	 It delegates calls to the encapsulated interface

Core Advanced Features

[220]

Most of the time, it is enough to get a handle on the native request
object. It offers more than its lot of methods. It also let you run
regardless of the container; you never know when a port of your
Vaadin application to another container type will be necessary!

Servlet response
Servlet response is accessible through the following methods:

•	 The first way is VaadinService.getCurrentResponse(), returning
a VaadinResponse object

•	 Then, VaadinServletService.getCurrentResponse() method that
returns a VaadinServletResponse object

•	 The VaadinPortletService.getCurrentResponse() method returns
a VaadinPortletResponse object

Please note the previous classes belong to the com.vaadin.server
interface.

The following class diagram displays the big picture:

Chapter 7

[221]

Vaadin shows there its design regularity: the response class hierarchy is similar to
the preceding previous request.

With a reference on a VaadinResponse object, we can take many actions.
Those include adding cookies, for example:

import java.util.Random;

import javax.servlet.http.Cookie;

import com.vaadin.server.VaadinRequest;
import com.vaadin.server.VaadinResponse;
import com.vaadin.server.VaadinService;
import com.vaadin.ui.Label;
import com.vaadin.ui.UI;

@SuppressWarnings("serial")
public class VaadinResponseUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 Label label = new Label("Check cookie under 'random' key");

 Random generator = new Random();

 long random = generator.nextLong();

 Cookie cookie = new Cookie("random", String.valueOf(random));

 VaadinResponse response = VaadinService.getCurrentResponse();

 response.addCookie(cookie);

 setContent(label);
 }
}

Core Advanced Features

[222]

Wrapped session
The final integration of Java EE Servlet API concerns WrappedSession. One can
get a handle on it through the following methods:

•	 findVaadinSession(VaadinRequest) in VaadinService
•	 getSession() in VaadinSession

Vaadin session
VaadinSession is completely unconnected to WrappedSession.
The first relates exclusively to the Vaadin API itself while the latter
is oriented towards the Servlet/Portlet API. We used Vaadin session
to store the logged in Twattin when we used login/password
authentication in Chapter 5, Event Listener Model.

As is the case for Vaadin request and response, wrapping session is a facade over
both Servlet and Portlet API.

Navigation API
We discussed in Chapter 1, Vaadin and its Context, about Vaadin's approach opposite
to traditional page flow paradigm, and how it is a good thing since applications
are about screens and not pages. However, this single URL thing is precisely
what prevents us from bookmarking individual pages.

In some cases, however, this is a business requirement. Consider for example,
the following use-cases:

•	 A large retail store application offers many items dispatched in the same
screen. Such a screen displays details about items, and the vendor really
wants customers to bookmark specific items. In fact, any such catalogue
application would probably have the same requirements.

•	 In the same vein, a forum application could probably host many different
subjects. It would be a real asset to this application to let users bookmark
a specific subject or even a particular thread.

Chapter 7

[223]

URL fragment
HTML provides a nice feature in the form of the URL fragment. Quoting the W3C:

Some URIs refer to a location within a resource. This kind of URI ends with "#" followed by
an anchor identifier (called the fragment identifier).

Refer the following URL for more details:
http://www.w3.org/TR/html401/intro/intro.html#h-2.1.2

Therefore, this lets us to stay on the same page, and yet reference different states,
that can be read or written on the server side. It is up to the application developer to
bridge between the string fragment and the whole state. Taking our previous use-
cases as examples, the fragment can be an item's, a forum's, or a thread's ID. Let us
implement this with Vaadin!

Views
Views form the Navigator API root, as shown in the following diagram. Basically, a
view is just a place to display a bag of components. A view provides a single method,
enter(ViewChangeEvent) called when the view is displayed by a Navigator object.
Though there is no requirement in the API, views are generally components.

Core Advanced Features

[224]

Navigator
A navigator is a class that manages views switching. This is how it works: first, we
register a view under a specific name and then we can tell the navigator to display
the view. Each time a view is changed, it fires a view change event. Navigators offer
a way to subscribe to those events.

Each navigator needs a UI and a place to display views, aptly named
ViewDisplay. View displays have two implementation classes:
SingleComponentContainerViewDisplay and ComponentContainerViewDisplay.
The following diagram displays the methods of the Navigator class:

+Navigator(in ui: UI, in viewDisplay: View Display)
+Navigatore(in ui: UI, in componentContainer: ComponentContainer)
+addView(in viewName: string, in view: View
+addView(in viewName: string, in viewClass: Class)
+add ViewChangeListener(in listener: ViewChangeListener)
+getDisplay(): ViewDisplay
+getState(): String
+getUI(): UI
+navigateTo(in state: String)
+removeView(in viewName: View)
+removeViewChangeListener(in listener: ViewChangeListener)
+setErrorView(in view: View)
+setErrorView(in viewClass: Class)

com.vaadin.navigator.Navigator

Methods to add views to the navigator either take a view instance or a view class.
In the latter case, the navigator takes care of instantiating the view.

Let us create a very simple application as an illustration, where users can
switch views. With the following code, clicking on a button displays a view
registered at initialization:

@PreserveOnRefresh
public class ViewUI extends UI {

 private static final String[] VIEW_NAMES =
 { "AView", "AnotherView", "AThirdView" };

 @Override
 protected void init(VaadinRequest request) {

 Layout viewPlaceholder = new VerticalLayout();

Chapter 7

[225]

 ViewDisplay display =
 new ComponentContainerViewDisplay(viewPlaceholder);

 final Navigator navigator = new Navigator(this, display);

 navigator.addView("", new LabelView("Void"));

 BeanItemContainer<String> container =
 new BeanItemContainer<String>(String.class);

 for (String viewName : VIEW_NAMES) {

 container.addBean(viewName);

 LabelView newView = new LabelView(viewName);

 navigator.addView(viewName, newView);
 }

 ComboBox combo = new ComboBox("View name", container);

 combo.setImmediate(true);

 combo.addValueChangeListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 String viewName =
 (String) event.getProperty().getValue();

 navigator.navigateTo(viewName);
 }
 });

 FormLayout layout = new FormLayout(viewPlaceholder, combo);

 layout.setMargin(true);

 setContent(layout);
 }

 private class LabelView extends Label implements View {

Core Advanced Features

[226]

 public LabelView(String label) { super(label); }

 @Override
 public void enter(ViewChangeEvent event) {}
 }
}

The UI has only two components: a placeholder for the view and a combo-box to
hold view names.

When the combo-box changes value, we just tell the navigator to navigate to the
view name and the navigator takes care to display it in the placeholder location.

This code produces the following display:

From a user point of view, nothing exceptional happens. We could easily have
obtained the same result without views. Yet, notice how the URL appends the
view name. Even better, we can navigate to a view by directly typing the URL
appended with #! and the view name!

Of course, more realistic examples would load data
corresponding to the entity. Using the entity's ID directly is
good enough for catalogue applications. Depending on the
required level of security, it may be a bad idea to expose it;
in this case, symmetric encoding may be the solution.

Chapter 7

[227]

Initial view
Notice how we first registered a view under the empty string:

navigator.addView("", new LabelView("Void"));

If this is not done, Vaadin will loudly complain with a java.lang.
IllegalArgumentException: Trying to navigate to an unknown state ''
and an error view provider not present error.

Registering an initial view under the empty string is thus mandatory.

Error view
Users may likely type invalid URL fragments and provoke errors on their own.
In order to prevent throwing raw stack traces to their face, it is well advised to
create a specific error view and register it in the navigator by using:

navigator.setErrorView(myErrorView);

Dynamic view providers
In the previous example, views were static and were added during UI initialization.
Sometimes, this cannot be done. For example, what if the views had to display n
labels where n comes from user input? n is not bound so we cannot create views
at initialization; we definitely have to take another route.

This route is to delegate to an interface called view provider. View providers
know how to:

•	 Translate from view name and optional parameters to raw view name.
Of course, if there are no parameters, this is a no-brainer. It is the
responsibility of getViewName(String).

•	 Get a view object from a view name with the help of the getView(String)
method. Using the same view over and over or creating a new view
each time the method is called with the same key is dependent on the
implementation.

Then, a view provider can be added to and respectively removed from the navigator
with addProvider(ViewProvider) and removeProvider(ViewProvider).

Core Advanced Features

[228]

Given these, implementation of our n labels problem is easily achieved:

@PreserveOnRefresh
public class ViewProviderUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 Layout viewPlaceholder = new VerticalLayout();

 ViewDisplay display =
 new ComponentContainerViewDisplay(viewPlaceholder);

 final Navigator navigator = new Navigator(this, display);

 navigator.addProvider(new NumberViewProvider());

 HorizontalLayout layout =
 new HorizontalLayout(viewPlaceholder);

 setContent(layout);
 }

 private class NumberViewProvider implements ViewProvider {

 @Override
 public String getViewName(String viewAndParameters) {

 int indexQuestionMark = viewAndParameters.indexOf('?');
 int indexSlash = viewAndParameters.indexOf('/');

 int index = Math.max(indexQuestionMark, indexSlash);

 return index == -1 ? viewAndParameters :
 viewAndParameters.substring(0, index);
 }

 @Override
 public View getView(String viewName) {

 GridView gridView = new GridView();

 if (!"".equals(viewName.trim())) {

Chapter 7

[229]

 int number = Integer.parseInt(viewName);

 for (int i = 0; i < number; i++) {

 Label label = new Label(String.valueOf(i));

 gridView.addComponent(label);
 gridView.setComponentAlignment(label, MIDDLE_RIGHT);
 }
 }

 return gridView;
 }
 }

 private class GridView extends GridLayout implements View {

 public GridView() {

 setMargin(true);
 setSpacing(true);
 setColumns(5);
 }

 @Override
 public void enter(ViewChangeEvent event) {}
 }
}

Now we can append #! and a positive number to the URL's end: the application
will get the view name from the URL and it creates a brand new view from the
name, adding as many labels as specified.

This is achieved by using adding a view provider that parse the view name
and creates a view with so many labels. Of course, we have to account for the
fact that at application launch, there is a view name.

In truth, the same result could have been attained by inheriting from Navigator
and overriding the navigateTo(String) method. But remember the golden
principle from object-oriented programing:

Favor composition over inheritance.

View provider is the way composition is addressed regarding this issue in Vaadin.

Core Advanced Features

[230]

Point is: for static views, create them and simply register them.
For dynamic views, use a (or many) view provider(s).

Event model around the Navigation API
The Navigation API brings a standard event model based on view changes; events
are generated when views are switched either programmatically or by the user.
View change listeners are provided so that we are able to take action in this case
for example, switches may be vetoed.

The event/listener pair follows the standard Observer pattern seen in Chapter 5,
Event Listener Model; we will use it at the end to enhance Twaattin.

Final word on the Navigator API
The good news about the Navigator API is that it uses Google standards to make
Single Page Interface (SPI) applications crawlable by search engines. In standard
websites, a single URI maps to specific content. In SPI, the application URI only maps
to many contents, as it is reloaded through asynchronous requests, AJAX in one word.

Google provides the way to crawl and index AJAX applications with the use of
hashbang, the #! used in the Navigator API. By using the latter, you automatically
make relevant application pages appear in Google search results. Isn't life sweet?

Developers interested in going down this road should probably
get acquainted with Search Engine Optimization (SEO) first.

Embedding Vaadin
In our previous examples, the whole application was Vaadin-based. This may not
be desirable for a variety of reasons:

•	 Legacy applications may have to be upgraded one part at a time, thus
having one part managed by the old application framework (if any)
and the other part by the Vaadin framework

•	 Even though Vaadin-based applications can easily be integrated with other
frameworks, some may be unsuitable for such integration, thus creating the
need for embedding either the Vaadin or the other application

Chapter 7

[231]

•	 Finally, we may need to display more than one Vaadin application at the
same time in the same HTML page without having to go as far as installing
a portal

In addition, sometimes there is a need to use a single Vaadin component as a part
of a larger, static web page where the content is better made with something else
than Vaadin. That is why it is great that it is so easy to embed Vaadin.

Basic embedding
At the simplest level, Vaadin can be embedded using a simple HTML iframe tag.
In this case, the embedding page and the iframe Vaadin servlet have to come from
the same domain.

More information on iframes can be found at the following URL:
http://www.w3.org/TR/html4/present/frames.html#h-16.5

In this case, we need a dedicated servlet mapping in the web application
deployment descriptor to serve Vaadin and use it as the iframe src attribute.
The servlet mapping would look something akin to the following:

<servlet-mapping>
 <servlet-name>VaadinServlet</servlet-name>
 <url-pattern>/app/*</url-pattern>
</servlet-mapping>

On the HTML page, the iframe is referenced as follows:

<iframe src="/app/">[Cannot display Vaadin]</iframe>

This technique is very easy to use and requires no specific knowledge at all.
Nonetheless, using iframes brings some huge disadvantages, including:

•	 Making the bookmarking feature discussed earlier impossible.
•	 Increasing complexity of page-iframe communications.
•	 Decreasing accessibility of pages as screen readers have two different

structures to analyze. Depending on the specific reader, it may make the
application completely unusable for vision-impaired users.

•	 Finally, iframes represent a security hole in that they are susceptible to Cross-
Site Scripting. More information on security in general and issues related to
iframes can be found on the OWASP website: https://www.owasp.org/.

Core Advanced Features

[232]

Nominal embedding
Ever wondered how a Vaadin application is kick started after calling a URL?

The first request to the Vaadin servlet downloads a page with only a few data,
but including GWT bootstrap code. Subsequent requests are then only client-sided
AJAX ones. Nominal embedding only replicates this process.

This approach embeds Vaadin directly in a div tag on the desired page, without the
need for further artifacts. However, whereas Vaadin took care of providing loading of
necessary components and initializing them, it is now the developer's responsibility.

Page headers
In order to enable Vaadin 7 applications to run on Internet Explorer 6 or 7,
the Google Chrome Frame plugin: a way of running Chrome inside IE, has
to be enabled on the user's computer.

For more information on Google Chrome Frame, please see
https://developers.google.com/chrome/chrome-frame/.

Then, encoding must be set to UTF-8. This is achieved through HTML page headers:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=9;chrome=1" />
</head>

The div proper
The placeholder div only has to have the v-app CSS class attribute and a
unique id attribute.

In order to provide the best user-experience, you may also want to:

•	 Provide a loading indicator to inform the user that application resources
are being loaded. This is done with adding an embedded div with CSS class
v-app-loading.

•	 Add alternative text if the user has deactivated JavaScript (which to be
frank should be seldom seen nowadays).

Chapter 7

[233]

The final result would look something like the following:

<div id="embedded-app" class="v-app">
 <div class="v-app-loading"></div>
 <noscript>You should enable javascript to use this
 app</noscript>
</div>

The bootstrap script
A requirement of embedding Vaadin in a div tag is to call the JavaScript
initialization script. It is called vaadinBootstrap.js and is available under
the /VAADIN subcontext, as all other Vaadin static resources. Calling this script
must be made before UI initialization.

<script type="text/javascript" src="VAADIN/vaadinBootstrap.js"></
script>

By using GWT client-side, we also inherit from GWT requirements. One of such
requirement is the GWT history iframe tag, needed to support URL fragments
(as seen in the previous section named URL fragment).

<iframe tabindex="-1" id="__gwt_historyFrame" src="javascript:false"
 style="position: absolute; width: 0; height: 0; border: 0;
 overflow: hidden"></iframe>

UI initialization call
The final step in the embedding process is to call the method that will initialize
the UI. It is only possible if the previous bootstrap script has been referenced
properly and is finished loading. To ensure this is the case, try getting a reference
on the window.vaadin object.

The method itself is vaadin.initApplication() and it expects two parameters,
the first being the id of the aforementioned placeholder div, the second a
full-fledged JSON data structure:

{
 "browserDetailsUrl" : string,
 "widgetset" : string,
 "theme" : string,
 "versionInfo" : {
 "vaadinVersion" : string
 "applicationVersion" : string
 },

Core Advanced Features

[234]

 "vaadinDir" : string,
 "heartbeatInterval" : int,
 "debug" : boolean,
 "standalone" : boolean,
 "authErrMsg" : {
 "message" : string,
 "caption" : string
 },
 "comErrMsg" : {
 "message" : string,
 "caption" : string
 },
 "sessExpMsg" : {
 "message" : string,
 "caption" : string
 }
}

Here is the description of the mandatory attributes:

•	 browserDetailsUrl: The Vaadin servlet's context root, configured
in the web deployment descriptor.

•	 widgetset: Fully qualified widgetset (see Chapter 8, Featured Add-ons,
for detailed information on widgetsets). If no custom widgetset is
developed, use com.vaadin.DefaultWidgetSet.

•	 theme: Specifies the theme name. Pick a theme offered by Vaadin
out-of-the-box (liferay, chameleon, reindeer, or runo) or choose
your own custom theme name if you installed one.

•	 vaadinDir: The subcontext for serving Vaadin static resources
(such as widgetsets and themes). Has to be set to VAADIN/.

•	 heartbeatInterval: The interval between heartbeats in seconds. Heartbeats
are asynchronous requests sent to the Vaadin application. In the absence of
such signals, the servlet cleans the user session to reclaim memory space.

•	 vaadinVersion: Specifies the Vaadin version, in major, minor and bugfix
dotted notation (for example, 7.0.0).

Chapter 7

[235]

Additional optional attributes include authErrMsg, comErrMsg and sessExpMsg,
each being composed of a caption and a detailed text. The latter can use <u> start
and </u> end tags to create a link pointing to the application root. Defaults should
be enough in most cases.

The following is an example of a working HTML 5 page:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=9;chrome=1" />
<title>Embedding page</title>
</head>
<body class="v-generated-body">
 <div id="embedded-app" class="v-app"
 style="height:200px;width:400px"></div>
 <script type="text/javascript" src="VAADIN/vaadinBootstrap.js">
 </script>
 <script type="text/javascript">//<![CDATA[
 if (!window.vaadin) {
 alert("Failed to load the bootstrap JavaScript");
 }
 vaadin.initApplication("embedding", {
 "browserDetailsUrl": "app",
 "theme": "reindeer",
 "versionInfo": {
 "vaadinVersion": "7.0.0"
 },
 "widgetset": "com.vaadin.DefaultWidgetSet",
 "vaadinDir": "VAADIN/",
 "heartbeatInterval": 300
 });//]]>
 </script>
</body>
</html>

An important limitation of this solution is that it does not allow for embedding
applications hosted on domains different from the page since browser security models
tend to view AJAX requests made across third-party domains as security breaches.

Core Advanced Features

[236]

Real-world error handling
Up to this point, we managed checked exceptions by wrapping them under
runtime exceptions and re-throwing those. This way of handling error produces
the following output:

The error messages
A simple hierarchy of error messages is available out-of-the-box in Vaadin:

•	 User errors represent errors provoked by the user. They are expected
during the course of the application, and are intended as a guide to the user.

•	 System errors, on the other hand, are unexpected errors. They inherit from
RuntimeException in order to convey contextual information about these
abnormal conditions.

•	 Finally, CompositeErrorMessage allows us to encapsulate one or more
error messages should the need arise.

Chapter 7

[237]

The hierarchy of error messages is as shown in the following diagram:

Component error handling
Once the right type of error message has been chosen, it is easy as pie to set the error
message on the desired component through the setComponentError(ErrorMessage)
method: Vaadin takes care of displaying the small error icon.

In order to remove it, just call setComponentError(null) on the component.

Core Advanced Features

[238]

The following code presents a combo box to let use set an error flag on the desired
text field. Then, setting the focus on the text field removes it.

import java.util.ArrayList;
import java.util.Collection;

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.event.FieldEvents.FocusEvent;
import com.vaadin.event.FieldEvents.FocusListener;
import com.vaadin.server.UserError;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.ComboBox;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.TextField;
import com.vaadin.ui.UI;

@SuppressWarnings("serial")
public class ComponentErrorUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 FormLayout layout = new FormLayout();

 layout.setMargin(true);

 Collection<Integer> values = new ArrayList<Integer>();

 final TextField[] fields = new TextField[5];

 for (int i = 0; i < fields.length; i++) {

 final TextField textField =
 new TextField(String.valueOf(i));

 textField.addFocusListener(new FocusListener() {

Chapter 7

[239]

 @Override
 public void focus(FocusEvent event) {

 textField.setComponentError(null);
 }
 });

 layout.addComponent(textField);

 values.add(i);

 fields[i] = textField;
 }

 ComboBox combo = new ComboBox("Choose component", values);

 combo.setImmediate(true);
 combo.setNewItemsAllowed(false);

 combo.addValueChangeListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 Integer i = (Integer) event.getProperty().getValue();

 if (i != null) {

 fields[i].setComponentError(
 new UserError("An error"));
 }
 }
 });

 setContent(new HorizontalLayout(layout, combo));
 }
}

This way, we can choose the component the error is displayed on, but it may not
be enough when an exception occurs from within the code's depths. Fortunately,
Vaadin provides a more general error handling solution.

Core Advanced Features

[240]

General error handling
The root component in the exception handling chain, the one tasked to manage
behavior, is the servlet as in most other web applications.

The servlet delegates error handling to an ErrorHandler instance, which is
a DefaultErrorHandler concrete class by default. Default error handler is what
displays the red warning icon and the associated stack trace.

Note that error handler is located in the Vaadin session so that error
handling can be customized per user, if the need be, and the servlet
queries the session to provide the error handler.

The following diagram shows the collaborating classes in the default exception
handling mechanism:

Making use of our newfound knowledge of Vaadin error handling, we can design a
solution to emulate the way of displaying errors in classical web applications: reserve
a location at the screen's top and show the error message there. Sometimes, a button
also let us consult additional details. This is exactly what the following code does:

import java.io.PrintWriter;
import java.io.StringWriter;

Chapter 7

[241]

import com.vaadin.data.Property.ValueChangeEvent;
import com.vaadin.data.Property.ValueChangeListener;
import com.vaadin.server.DefaultErrorHandler;
import com.vaadin.server.ErrorHandler;
import com.vaadin.server.VaadinRequest;
import com.vaadin.server.VaadinSession;
import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.CheckBox;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.TextArea;
import com.vaadin.ui.UI;
import com.vaadin.ui.VerticalLayout;

@SuppressWarnings("serial")
public class ErrorHandlingUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 final ErrorBar errorBar = new ErrorBar();

 Button button = new Button("Throw error");

 button.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 throw new RuntimeException("A bad thing happened");
 }
 });

 CheckBox check = new CheckBox("Set custom error handler");

 check.addValueChangeListener(new ValueChangeListener() {

 @Override
 public void valueChange(ValueChangeEvent event) {

 boolean checked =

Core Advanced Features

[242]

 (Boolean) event.getProperty().getValue();

 VaadinSession session = VaadinSession.getCurrent();

 ErrorHandler handler = checked
 ? new CustomErrorHandler(errorBar)
 : new DefaultErrorHandler();

 errorBar.setVisible(false);

 session.setErrorHandler(handler);
 }
 });

 VerticalLayout layout =
 new VerticalLayout(errorBar, check, button);

 layout.setMargin(true);
 layout.setSpacing(true);

 setContent(layout);
 }

The custom error handler is the "meat" of the code: it is where the error
managing code is implemented. In our case, it displays the stack into an
error bar custom component.

 private class CustomErrorHandler implements ErrorHandler {

 private final ErrorBar errorBar;

 public CustomErrorHandler(ErrorBar errorBar) {

 this.errorBar = errorBar;
 }

 @Override
 public void error(com.vaadin.server.ErrorEvent event) {

 Throwable throwable = event.getThrowable();

 errorBar.displayError(throwable);
 }
 }

Chapter 7

[243]

The error bar is a component aggregating multiple other components.
Its responsibility is to display a throwable stack trace.

 private class ErrorBar extends VerticalLayout {

 private final Label staticLabel =
 new Label("An error occured:");
 private final Label errorLabel = new Label();
 private final TextArea stackTextArea = new TextArea();
 private final Button collapseButton =
 new Button("Show details");

 public ErrorBar() {

 HorizontalLayout upperBar =
 new HorizontalLayout(staticLabel, errorLabel,
 collapseButton);

 upperBar.setSpacing(true);

 addComponent(upperBar);
 addComponent(stackTextArea);

 stackTextArea.setVisible(false);
 stackTextArea.setWidth("100%");

 addStyleName("error");

 setVisible(false);

 collapseButton.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 boolean visible = stackTextArea.isVisible();

 stackTextArea.setVisible(!visible);
 collapseButton.setCaption(visible
 ? "Show details" : "Hide details");
 }
 });
 }

Core Advanced Features

[244]

 public void displayError(Throwable throwable) {

 errorLabel.setValue(throwable.getMessage());

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 throwable.printStackTrace(printWriter);

 stackTextArea.setReadOnly(false);
 stackTextArea.setValue(
 stringWriter.getBuffer().toString());
 stackTextArea.setRows(throwable.getStackTrace().length);
 stackTextArea.setReadOnly(true);

 setVisible(true);
 }
 }
}

Play with the application created by the preceding code (or variations of it). Notice
how error handler is tied to the Vaadin session by opening two different browser
windows: they can manage different error handlers, because they are seen as
different clients by the server (and thus generate two separate session spaces).

Key points include:

•	 Creation of a custom error component to allow for the display of exceptions
•	 Laying out an instance of error component on the screen
•	 Creation of an error handler concrete class to bind received exceptions

to said instance

SQL container
In Chapter 6, Containers and Related Components, we looked at the table component
but we left how to fill the container with data aside. If we were in a standard layered
architecture, we would explicitly call the service layer in order to call the persistence
layer which would itself query the database.

Chapter 7

[245]

If our requirements are limited to CRUD operations, this is overkill. In order to
manage this, Vaadin provides a SQL container implementation able to directly
connect to a SQL database using JDBC.

The add-ons directory provides some additional database-oriented
containers, each using a specific API (JPA and Hibernate).

Architecture
Vaadin SQL Container is built around the SQLContainer class, which has all the nice
properties we expect from a container: it is indexed, sortable, and filterable.

Items in the container are specialized instances, namely RowItem. This type is
not exposed and should not to be manipulated directly by the developer, even
though it is part of the API.

Core Advanced Features

[246]

Features
Features of SQL container include:

•	 Transaction management: Changes made to the container can be either
committed or rollbacked to the data tier. Alternatively, we can set each
operation to the container to be commited automatically. Note that the
default behavior doesn't use autocommit.

•	 Programmatic filtering: Uses Vaadin's filter API already seen in the Filter
section of Chapter 6, Containers and Related Components.

•	 Programmatic ordering: Ordering is as simple as calling
addOrderBy(OrderBy) on OrderBy instances.

•	 Initialization: The container can be initialized with data from the underlying
data tier with the refresh() method.

•	 Paging: The container uses a page length attribute in order to optimize
performance. As in tables (see the Viewpoint section in Chapter 6, Containers
and Related Components), SQL containers use a page length, as well as a cache
ratio. Unlike table, cache ratio is set to 2 and cannot be changed, at least
not without serious hacking. This means that requests made through query
delegate (see the diagram in the next section) limit the number of occurrences
to two times the page length.

Queries and connections
SQL container's responsibilities are those of a container. Real interaction with
the database is delegated to a QueryDelegate instance, which in turn delegates
connection management to a JDBCConnectionPool instance.

JDBC connection pool can either wrap a direct connection to the
database, driver manager style, or a data source retrieved from the
application server, depending on the concrete class type. Note that
in the former case, the class creates a pseudo-shareable pool.
For more information on driver manager, visit the following URL:
http://download.oracle.com/javase/6/docs/api/java/
sql/DriverManager.html

For more information on data source, visit the following URL:
http://download.oracle.com/javase/6/docs/api/
javax/sql/DataSource.html

http://download.oracle.com/javase/6/docs/api/java/sql/DriverManager.html
http://download.oracle.com/javase/6/docs/api/javax/sql/DataSource.html

Chapter 7

[247]

Query delegates come in two flavors:

•	 For simple table display, just use a TableQuery, passing the table's
name and the JDBC connection pool to use. This kind of delegate will
retrieve all occurrences from the table. The only thing left to do is to
customize the appearance of the table as was done in Chapter 6,
Containers and Related Components.

•	 Alternatively, when we need to go beyond this, we can use FreeformQuery.
It allows us to pass the query, as well as the JDBC connection pool and
optionally all primary key columns.

Note that without the last parameter, only SELECT orders can be executed,
thus rendering the wrapping table read-only.

In both cases, programmatic order bys and filters can be added in order to further
refine the results.

Note that table query is relatively straightforward, and does not require much effort
in order to create an editable table widget backed by a SQL database table.

NoSQL backends are currently not compatible with SQL
container, which would be strange, anyhow.

Core Advanced Features

[248]

Database compatibility
As table query delegates much of the SQL generation to a dedicated SQLGenerator
class, using another RDBMS is just a matter of creating the right implementation
(inheriting from DefaultSQLGenerator seems like a good starting point). By
default, Vaadin provides:

•	 A default implementation compatible with Hypersonic SQL, MySQL,
and PostgreSQL databases

•	 A specific Microsoft SQL implementation
•	 And a dedicated Oracle implementation

The default implementation of SQLContainer doesn't work with
IBM DB2 as it does not support LIMIT/OFFSET per default. It can
be explicitly set, but when working with existing tables that cannot
be changed, one will have to update some implementation.

All these classes and interfaces are located in the com.vaadin.data.util.
sqlcontainer.query.generator package.

Note that SQLGenerator represents an abstraction over the RDBMS
product whereas StatementHelper, as its name implies, is a helper
whose responsibility is to help creating SQL statements and should
generally not be used directly.

Chapter 7

[249]

Armed with our newfound knowledge, it is easy to create a generic UI meant
to display any data table (with a Primary Key constraint) within an editable table
widget, along with two global commit/rollback buttons. Each row also shows
a delete button as generated columns (see Chapter 6, Containers and Related
Components, for a refresher on generated columns):

@SuppressWarnings("serial")
public class DatabaseTableScreen extends VerticalLayout {

 private SQLContainer container;
 private Table table;

 public DatabaseTableScreen() {

 setMargin(true);

 table = new Table();

 table.setPageLength(10);
 table.setEditable(true);
 table.setSizeFull();

 table.addGeneratedColumn("",
 new RemoveItemColumnGenerator());

 HorizontalLayout buttonBar = new HorizontalLayout();

 buttonBar.setMargin(true);
 buttonBar.setSpacing(true);

 Button commit = new Button("Commit");
 commit.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 try {
 container.commit();

 Notification.show("Changes committed");

 } catch (SQLException e) {

Core Advanced Features

[250]

 Notification.show("Unable to commit",
 ERROR_MESSAGE);
 }
 }
 });
 buttonBar.addComponent(commit);

 Button rollback = new Button("Rollback");
 rollback.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 try {
 container.rollback();

 Notification.show("Changes rollbacked");

 } catch (SQLException e) {

 Notification.show(
 "Unable to rollback", ERROR_MESSAGE);
 }
 }
 });
 buttonBar.addComponent(rollback);

 addComponent(table);
 addComponent(buttonBar);
 }

 public void populate(String tableName,
 JDBCConnectionPool connectionPool) {

 QueryDelegate query =
 new TableQuery(tableName, connectionPool);

 try {

 container = new SQLContainer(query);

 table.setContainerDataSource(container);

Chapter 7

[251]

 } catch (SQLException e) {

 throw new RuntimeException(e);
 }
 }

The following column generator can be reused to provide a generic remove item
feature in Vaadin tables:

 public class RemoveItemColumnGenerator
 implements ColumnGenerator {

 @Override
 public Component generateCell(Table source,
 Object itemId, Object columnId) {

 Button button = new Button("Delete");

 button.setData(itemId);

 button.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 Object itemId = event.getButton().getData();

 container.removeItem(itemId);
 }
 });

 return button;
 }
 }
}

Storing arbitrary data
The two highlighted lines are of particular importance: the first
lets us store the item's Primary Key in the button while the second
enable us to get it. Both setData() and getData() methods are
available on AbstractComponent.

Core Advanced Features

[252]

In order to use this window, we just have to provide a JDBC pool instance,
for example, by tasking the UI to create it during initialization as follows:

package com.packt.learnvaadin.container;

import java.sql.SQLException;

import com.vaadin.data.util.sqlcontainer.connection.
JDBCConnectionPool;
import com.vaadin.data.util.sqlcontainer.connection.
SimpleJDBCConnectionPool;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.UI;

@SuppressWarnings("serial")
public class DatabaseTableUI extends UI {

 @Override
 protected void init(VaadinRequest request) {

 DatabaseTableScreen screen = new DatabaseTableScreen();

 try {

 JDBCConnectionPool connectionPool =
 new SimpleJDBCConnectionPool(
 "org.h2.Driver", "jdbc:h2:~/learnvaadin",
 "SA", "");

 screen.populate("PERSON", connectionPool);

 } catch (SQLException e) {

 throw new RuntimeException(e);
 }

 setContent(screen);
 }
}

Chapter 7

[253]

As an example, let us use a table that maps our Person entity from Chapter 6,
Containers and Related Components:

If we use the database component on the previous table, we get the
following display:

Vaadin automatically detects that the ID column is the Primary Key and displays
it as a label (instead of a field).

Joins
Table queries are enough when viewing/updating data from a single table.
However, most of the time, data is scattered through more than one table.
That is why SQL provides JOIN, a way to get results from multiple tables
in a single select query.

Core Advanced Features

[254]

References
SQL containers know how to reference other SQL containers so Vaadin can create
relationships of sort without using a single line of SQL. In order to do that, the
framework internally uses Reference instances. Such references are relationships
between a referencing container (and its referencing column) and a referenced
container (and its referenced column).

As an example, let's change our former table diagram to create n-to-1 job
relationships for each person:

We are going to change the previous code to be able to view this new structure.
In this case, this makes no sense to be generic:

public void populate(JDBCConnectionPool connectionPool) {

 QueryDelegate personsQuery =
 new TableQuery("PERSON", connectionPool);

Chapter 7

[255]

 QueryDelegate jobsQuery = new TableQuery("JOB", connectionPool);

 try {

 personsContainer = new SQLContainer(personsQuery);
 jobsContainer = new SQLContainer(jobsQuery);

/*1*/	 personsContainer.addReference(jobsContainer, "JOB_ID",
"ID");

 table.setContainerDataSource(personsContainer);

 table.addGeneratedColumn("Job", new ColumnGenerator() {

 @Override
 public Object generateCell(Table source, Object itemId,
 Object columnId) {

 Item person = personsContainer.getItem(itemId);

/*2*/ if (person.getItemProperty("JOB_ID").getValue() != null) {

/*3*/ Item job = personsContainer.getReferencedItem(
 itemId, jobsContainer);

 @SuppressWarnings("unchecked")
 Property<String> property =
 job.getItemProperty("LABEL");

 return property.getValue();
 }

 return null;
 }
 });

/*4*/ table.setVisibleColumns(new Object[] {
 "ID", "FIRST_NAME", "LAST_NAME", "BIRTHDATE", "Job", "" });

 } catch (SQLException e) {

 table.setComponentError(new SystemError(e));
 }
}

Core Advanced Features

[256]

The most important lines in the preceding code are:

1.	 Create the relationship between the person's job ID in the PERSON
container and the job ID in the JOB container.

2.	 Check whether the join is not made on a null value.
3.	 Retrieve the job as an item without coding a single line of SQL.
4.	 Finally, we should not forget to add the newly job generated column

to the visible columns set.

The result looks like the following screenshot:

Free form queries
As references, free form queries allow us to display data from different SQL
tables into a single table component.

Chapter 7

[257]

They offer finer grained control at the cost of requiring developers to write SQL
code themselves. Moreover, they also require more effort, at least when executing
CUD (CRUD without read: INSERT, UPDATE, and DELETE) statements.

As an exercise, we are to implement the same display as before, but with free form
queries instead of container references:

public void populate(JDBCConnectionPool connectionPool) {

 QueryDelegate personsQuery = new FreeformQuery(
 "SELECT P.ID AS ID, FIRST_NAME, LAST_NAME, BIRTHDATE, LABEL " +
 "AS JOB FROM PERSON AS P LEFT OUTER JOIN JOB AS J ON " +
 "P.JOB_ID = J.ID", connectionPool, "ID");

 try {

 personsContainer = new SQLContainer(personsQuery);

Core Advanced Features

[258]

 table.setContainerDataSource(personsContainer);

 table.setVisibleColumns(new Object[] {
 "ID", "FIRST_NAME", "LAST_NAME", "BIRTHDATE", "JOB", "" });

 } catch (SQLException e) {

 table.setComponentError(new SystemError(e));
 }
}

Pros and cons are readily visible; the code as a whole is much shorter but in
exchange, we need to code the SQL select statement, which may be more or
less easy depending on the relationships between tables.

Troubleshooting
Always be careful to use the right column name. When Vaadin
complains about Ids must exist in the Container or
as a generated column , missing id: xxx, the first
thing to check is the visible column names case. As a first measure,
it is advised to always use upper case when referencing column
names from the database.

The preceding code produces the following output:

Chapter 7

[259]

The only difference between using referenced containers and free form queries is that
in the former case, referenced columns IDs are displayed as labels by default whereas
in the latter, all non-identity columns are displayed as fields, thus read-write.

Using table queries, Vaadin can infer data types from the table metadata and create
the adequate field. When using free form queries, it is impossible. As such, any CUD
operation delegates to a free form statement query delegate that has to be set in order
to execute such operations.

Troubleshooting
If Vaadin complains about java.lang.
UnsupportedOperationException: FreeFormQueryDelegate
not set, it is because setting a delegate to handle updates to the
underlying data was forgotten.

Developing a free form query delegate may be done at two different levels:

•	 For simple implementations, FreeformQueryDelegate is enough to
fit our needs.

•	 If we use PreparedStatement instead of regular statements, we need
to implement FreeformStatementDelegate. However, remember that
PreparedStatement is the preferred way to prevent SQL injection attacks.

The framework code is smart enough to adapt what is used to the
underlying interface.

The case for prepared statements
Considering PreparedStatement is compiled once to the
native RDBMS internal language and then reused over and over,
and the prevention against SQL injection attacks, it is advised
to always use it (see https://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_Sheet for the detailed
OWASP Cheat Sheet reference).

Related add-ons
Should SQL be a little too old-fashioned, some add-ons may be of interest
(see Chapter 8, Featured Add-ons, on add-ons for a description of what they are):

•	 A container over a Hibernate backend, HbnContainer is provided by Gary
Piercey. It is provided in Version 2.0.1 under the friendly Apache 2.0 license
and is considered beta. More information can be found on the add-on
homepage https://vaadin.com/directory#addon/hbncontainer.

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Core Advanced Features

[260]

•	 EclipseLink is not well represented as the associated container is only
compatible with Vaadin 6 and has seen no update since late 2009:
https://vaadin.com/directory#addon/eclipselink-container.

•	 Finally, JPAContainer is a certified add-on provided by Vaadin Ltd. It is
also available under Apache 2.0 license (since v2.2.0) and provides a nice
integration for components to use a Java Persistence API backend. It is
described in Chapter 8, Featured Add-ons, in the relevant section.

Server push
Traditional HTML-based applications use the request-response model. Requests
are initiated by the client, sent to the server, and the latter sends the response back
to the client.

Nonetheless, some use-cases require the server to notify the client without the
client initiating the sequence. Such use-cases would include chat applications,
real-time trading platforms, and so-on.

Legacy techniques to emulate server push include:

•	 Traditional polling: At regular intervals, the client sends the server requests.
If there is data to be communicated, it is sent back in the response; if not,
the response is empty. The ratio of empty versus meaningful responses is
generally an argument against this approach.

•	 Long polling: As in the previous strategy, the client sends requests at
regular intervals. But instead of sending empty responses, the server
keeps the connection until data becomes available. At this time, it is
sent back to the client.

•	 Long-lived HTTP connections: This way is the same as the previous one,
except that requests are not sent regularly but when they are necessary.

The modern way to do server push is to use WebSocket: bi-directional
communication between client and server that is part of HTML5. This
means we need to use relatively-modern browsers that support this feature.

Vaadin versions prior to 7.1 rely on external add-ons (see Chapter 8, Featured Add-ons,
for a word on add-ons), but with 7.1, push comes with core and that is very good!

Chapter 7

[261]

Users stuck with previous versions should migrate to 7.1, or
take a look at the ICEPush add-on located at https://vaadin.
com/directory#addon/icepush, based on the excellent
ICEPush technology.

Push innards
Vaadin push is based on the Atmosphere framework, an open source project
hosted on GitHub (https://github.com/Atmosphere/atmosphere).

Knowing these details is by no mean mandatory to use server
push. Just skip this section to concentrate on usage, if you prefer.

Under the hood, Atmosphere uses WebSocket. However, for users using less
state-of-the-art browser and version combinations, Atmosphere provides a fallback
based on the Comet framework that aim to emulate server push through techniques
described in the preceding section.

All in all, this means there are a couple of minimum versions for both server and
browsers. Here is an excerpt for both:

Server Minimum compatible version
Eclipse Jetty 7
Oracle Glassfish 3.1.2
Apache Tomcat 7.0.27

Browser Minimum compatible version
Mozilla Firefox 9
Google Chrome 13
Microsoft Internet Explorer 10
Opera 11
Apple Safari (OS X) 5

https://vaadin.com/directory#addon/icepush
https://vaadin.com/directory#addon/icepush

Core Advanced Features

[262]

The full compatibility matrix is available on Atmosphere's wiki https://github.
com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers.

For Eclipse users, this means we have to use Tomcat instead
of the J2EE Preview Server.

Installation
In order to use server push, we need to add an additional dependency in Ivy.
The snippet to use is:

<dependency org="com.vaadin" name="vaadin-push" rev="&vaadin.version;"
conf="default->default" />

Vaadin version should at least be 7.1 for the library to be available.

How-to
To push, annotating the UI with com.vaadin.annotations.Push is necessary.
That's it!

Yet if you just do that, chances are that the UI changes will not work; there is a single
requirement to fulfill and that is that the pushed UI is locked to prevent concurrent
changes. In order to do so, Vaadin provides the access(Runnable) method in the
UI class. It is somewhat akin to a synchronized block in standard Java code.

As for synchronized blocks, code in access() methods should be as short as
possible, in order to be executed as quickly as possible. Remember that locks are
performance bottlenecks.

In any way, notice there is no change beside that; most importantly, the web
deployment descriptor stays untouched.

https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers
https://github.com/Atmosphere/atmosphere/wiki/Supported-WebServers-and-Browsers

Chapter 7

[263]

Example
As an illustration, we will create a clock, refreshed by the server. Our first class is the
runnable that will update the label:

import static java.text.DateFormat.MEDIUM;

import java.text.DateFormat;
import java.util.Calendar;
import java.util.Date;

import com.vaadin.ui.Label;

final class LabelUpdaterRunnable implements Runnable {

 private static final DateFormat DATE_FORMAT =
 DateFormat.getTimeInstance(MEDIUM);

 private Label timeLabel;

 LabelUpdaterRunnable(Label timeLabel) {

 this.timeLabel = timeLabel;
 }

 protected String getCurrentTime() {

 Date date = Calendar.getInstance().getTime();

 return DATE_FORMAT.format(date);
 }

 @Override
 public void run() {

 timeLabel.setValue("Time: " + getCurrentTime());
 }
}

Core Advanced Features

[264]

Nothing very interesting here: we pass a label and update its value when the
runnable is run. Code that does the real magic follows:

import com.vaadin.annotations.Push;
import com.vaadin.server.VaadinRequest;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.UI;

@SuppressWarnings("serial")
@Push
public class ServerPushUI extends UI {

 private Label timeLabel = new Label();

 @Override
 protected void init(VaadinRequest request) {

 HorizontalLayout layout = new HorizontalLayout(timeLabel);

 layout.setMargin(true);

 setContent(layout);

 new Thread(new EndlessRefresherRunnable()).start();
 }

 private class EndlessRefresherRunnable implements Runnable {

 @Override
 public void run() {

 while (true) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {}

 access(new LabelUpdaterRunnable(timeLabel));
 }
 }
 }
}

Chapter 7

[265]

The EndlessRefresherRunnable has the following features:

•	 Implements Runnable so it can be run as a thread.
•	 Loop over a combination of:

°° Waiting for one second.
°° Passing the previous runnable to the access() method. Vaadin

takes care of locking the UI and launching the thread parameter.

Threads in web application
The preceding code should not be taken at face value and used in a
production environment, as not only spawning new threads is frowned
upon in a Java EE application, but this one has no end. Threads should
not be started unless you deeply know what you do. Real-world
application should probably use an event-based stack, such as JMS, an
EJB timer, Java 7 thread pools, or a third-party framework like Quartz.

The whole application code can be found at https://github.com/nfrankel/
server-push.

Twaattin improves!
Given the current state of Twaattin and our understanding of Vaadin, automatically
refreshing the displayed timeline when new tweets are published seems like a
natural improvement.

In this section, we will describe how to do that. Changes are needed to use server
push but also Twitter4J streaming features. The latter is out of the scope of this book;
just know that a specified Twitter4J module implements the Observer pattern so we
can automatically be notified of new Twitter events.

Ivy dependencies
We need to do the following:

•	 Upgrade to at least version 7.1.0 of Vaadin
•	 Add two dependencies, vaadin-push and twitter4j-stream

<?xml version="1.0"?>
<!DOCTYPE ivy-module [
 <!ENTITY vaadin.version "7.1.0 ">

https://github.com/nfrankel/server-push
https://github.com/nfrankel/server-push

Core Advanced Features

[266]

]>
<ivy-module version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://ant.apache.org/ivy/
 schemas/ivy.xsd">
 ...
 <dependencies>
 ...
 <dependency org="org.twitter4j" name="twitter4j-core"
 rev="3.0.3" />
 <dependency org="org.twitter4j" name="twitter4j-stream"
 rev="3.0.3" />
 </dependencies>
</ivy-module>

Twaattin UI
The meaty changes take place in TwattinUI; we of course have to annotate it
with @Push to enable server push. We also need to make a couple of changes,
particularly from a design point of view:

1.	 We learned previously of the access() method on the UI. Therefore, we
will use this to our advantage and make the UI our observer, tasked with
propagating events.

2.	 The tweet refresher behavior is already taking care of making changes.
However, it should be the same instance used for a single user. It should
have the same scope as the UI, so in the absence of dependency injection
framework, we will manage it from there.

3.	 Finally, Twitter4J stream takes care of notifying us of new events. Therefore,
we just have to wrap GUI updating code inside a Runnable interface and
pass it as a parameter to access().
@Push
public class TwaattinUI extends UI implements UserStreamListener {

 private static final long serialVersionUID = 1L;

 private TweetRefresherBehavior tweetRefresherBehavior = new
TweetRefresherBehavior();

 ...

Chapter 7

[267]

 public static TwaattinUI getCurrent() {

 return (TwaattinUI) UI.getCurrent();
 }

 public TweetRefresherBehavior getTweetRefresherBehavior() {

 return tweetRefresherBehavior;
 }

 @Override
 public void onException(Exception ex) {

 setComponentError(new SystemError(ex));
 }

 @Override
 public void onStatus(final Status status) {

 access(new Runnable() {

 @Override
 public void run() {
 tweetRefresherBehavior.updatedStatus(status);
 }
 });
 }

 // A bunch of methods to implement
 ...
}

The code being a little long, it has been abridged. The entire source can be found
online at the following address: https://github.com/nfrankel/twaattin/blob/
chapter7/src/com/packtpub/learnvaadin/twaattin/ui/TwaattinUI.java

Note that we only implemented methods to be notified of a new
tweet and when something unexpected happens. Other methods
can be left untouched or implemented, depending on one's taste.

https://github.com/nfrankel/twaattin/blob/chapter7/src/com/packtpub/learnvaadin/twaattin/ui/TwaattinUI.java
https://github.com/nfrankel/twaattin/blob/chapter7/src/com/packtpub/learnvaadin/twaattin/ui/TwaattinUI.java

Core Advanced Features

[268]

Tweet refresher behavior
The current refresher behavior gets the user timeline and adds them to the table
when the latter is attached to the UI.

We have to change that a little to only store the reference to the table when
attached and add tweets each time it is called by the UI.

As an improvement, we will store the container instead of the table,
to ease our task. Otherwise, we would have to create the BeanItem
object. Better let the framework do that for us.

package com.packtpub.learnvaadin.twaattin.presenter;

import twitter4j.Status;

import com.vaadin.data.util.BeanItemContainer;
import com.vaadin.ui.Component;
import com.vaadin.ui.HasComponents.ComponentAttachEvent;
import com.vaadin.ui.HasComponents.ComponentAttachListener;
import com.vaadin.ui.Table;

@SuppressWarnings("serial")
public class TweetRefresherBehavior
 implements ComponentAttachListener {

 private BeanItemContainer<Status> container;

 public void updatedStatus(Status status) {

 if (container != null) {

 container.addBean(status);
 }
 }

 @SuppressWarnings("unchecked")
 @Override
 public void componentAttachedToContainer(
 ComponentAttachEvent event) {

 Component component = event.getAttachedComponent();

Chapter 7

[269]

 if (component instanceof Table) {

 Table table = (Table) component;

 container = (BeanItemContainer<Status>)
 table.getContainerDataSource();
 }
 }
}

Twitter service
The final but mandatory touch is to use Twaattin4J Streaming API instead of
the standard one. This means replacing TwitterFactory and Twitter by their
respective counterparts TwitterStreamFactory and TwitterStream.

The whole codebase of Twaattin implementing server push can be found on GitHub
for reference https://github.com/nfrankel/twaattin/tree/chapter7.

Summary
In this chapter, we learned about some advanced features of Vaadin that span a large
perimeter. In particular, we saw the following use-cases and the way Vaadin could
meet our needs out-of-the-box:

•	 Should we need to go deeper in order to access any of the available
web contexts (servlet, application, and session), we just have to use the
getCurrent() method on the different objects.

•	 With the help of Vaadin Navigation API, we can capture state and set
it as a URL fragment on the address bar while staying on the same screen.
Also, the reverse can be done: taking the fragment and using it to set data
in the application.

•	 Moreover, we discovered how legacy applications and/or sites can
be integrated with Vaadin application and how more than one Vaadin
application can run in the same context, with just a touch of HTML and
JavaScript configuration.

Core Advanced Features

[270]

•	 If the default error handler mechanism does not suit us, we know how to
override it to do exactly what we want with the ErrorHandler interface.

•	 When the need to integrate with a SQL backend comes up, we know how to
put our newfound knowledge to good use with the SQLContainer API. With
it, it is easy as pie to map database tables to UI tables and columns to lines.

•	 Last but not least, we learned how to push data from the server to the client.

At this point, Vaadin should be fairly well understood; important features are part of
the core framework and are available out-of-the-box. In the next chapter, we will get
on the next step to add additional features such as more widgets, more persistence
features, themes, and others.

Featured Add-ons
As the Vaadin team wants to keep the framework as cohesive as possible, some very
interesting capabilities are not integrated into the core framework, but are available
as add-ons.

In this chapter, we will describe the Vaadin add-ons portal then detail some add-ons
that bring new features or just make our life easier. These are as follows:

•	 Button group is a UI add-on, which is very easy to use yet a great
introduction to understand the underlying GWT layer

•	 Clara is a way to declare UI (a la Flex) instead of coding them
•	 JPA container to connect to a JPA backend, so as to directly display data into

Vaadin tables
•	 CDI Utils is an add-on to take advantage of CDI-enabled containers

In Vaadin, third-party modules are called add-ons. Some are supplied by Vaadin
Ltd, but most are supplied by others (either individuals or companies).

Other add-ons of interest include: Vaadin Charts, a library to help visualize data
in 2D charts, TestBench, an end-to-end testing tool, and TouchKit, a theme aimed
entirely toward mobile users user-experience.

Vaadin add-ons directory
Vaadin provides an add-on store available online at http://vaadin.com/
directory. Should you become interested in providing add-ons, know that
this repository is accessible to do this.

http://vaadin.com/directory
http://vaadin.com/directory

Featured Add-ons

[272]

Add-ons search
The store provides categorization in order to search for certain specific features.
Those categorizations are available in different flavors.

Results obtained using the following criteria, either alone or in conjunction, can
then be sorted. Sorting is possible by release date, number of downloads, and grade.

Typology
The available categories are as follows:

•	 UI components: These add-ons have graphical representations that are
displayed to users when added to a window.

•	 Data components: This category groups add-ons containers that can connect
to data tiers, such as SQL databases. These connectors provide a way to
manage data (direct SQL, JPA, Hibernate, and so on).

•	 Themes: These add-ons offer a quick route to change an application's look
and feel.

•	 Tools: These add-ons concern themselves with integration with third-party
products (excluding data containers) such as Spring, languages such as Scala,
build tools such as Gradle, and so on.

•	 Miscellaneous: Add-ons that are not part of another category are put in here.
•	 Official: This cross-cutting category lists all add-ons provided by Vaadin

Ltd, whether available commercially or freely under an open source license.

Stability
Add-ons are classified into different stability levels as follows:

•	 Certified: These add-ons are provided by Vaadin Ltd, the company behind
the framework, and guarantee the highest level of reliability and integration.
Third-party add-ons can also be certified by the company, against a set fee.

•	 Stable: These add-ons have been subject to at least one whole release
lifecycle. They can usually be trusted to function in an expected way.

•	 Beta: These add-ons are just that. It is advised not to use them in a production
environment because they do not guarantee to be completely bug-free.

•	 Experimental: These add-ons should not be used beyond R&D: they are
here just to give you a preview of what is to come. If interested, you should
probably contact the author for help!

Chapter 8

[273]

Add-ons presentation
Add-on presentation is handled by the directory and thus highly standardized.
Each add-on has two views: a summarized view (displayed in search results)
and a detailed view.

Summarized view
Displayed information in the summarized view includes the following:

•	 Name
•	 Category
•	 Author
•	 A short description
•	 Version
•	 Maturity
•	 Rate (from 1 to 5)
•	 Number of downloads

As an example, here is a screenshot for the Vaadin JPAContainer summary:

Detailed view
After clicking on the add-on's name, the detailed view opens. In addition to the
previous information, it displays the following data:

•	 Version; it is selectable so we can see data related to previous versions.
Note that some field values are dependent on the selected version.

•	 Maturity, it is version-dependent.
•	 License information, it is also version-dependent.

Featured Add-ons

[274]

•	 Matrix of browsers compatibility including versions, it is
version-dependent, too.

•	 Vaadin versions compatibility.
•	 Detailed description.
•	 One or more highlights area-it displays a pop-up window usually

with either code example or screenshot.
•	 Release notes, it is version-dependent.
•	 History of ratings (and their associated comment) for each published version.
•	 Download link, of course it is version-dependent.
•	 Maven snippet to include in the POM, it is version-dependent.
•	 Depending of the license nature, a link to purchase the add-on or to

subscribe to Vaadin Pro Account which includes the add-on use. More
info on Vaadin Pro Account can be found at https://vaadin.com/pro.

•	 List of links; commons links include (but are not limited to):
°° Demo application
°° Source Control Manager repository
°° Afferent documentation
°° Discussion forum
°° Issue tracker

•	 Rate widget; rating may be associated with a comment.
•	 Page's permalink.

Chapter 8

[275]

Here is the detailed page for the JPAContainer add-on:

Featured Add-ons

[276]

Noteworthy add-ons
At the time of writing this book, the Vaadin directory contained 100 add-ons,
stable or certified (half are Vaadin 7-compatible) on a total of more than 350. It is
well beyond the scope of this book to them all in detail. However, a few are worth
describing, as they really enhance Vaadin capabilities.

Button group
Button group is one of many components available as add-ons. Not only does it have
a nice visual display—reducing space between buttons in the same group to nothing,
it is a good example of an add-on providing client-side code.

A dedicated page can be found at https://vaadin.com/directory#addon/
buttongroup.

Prerequisites
The Vaadin plugin comes bundled with Ivy, the dependency management tool that
we have already used when integrating Twitter4J in Twaattin.

Use of button group is achieved by adding the following line into the ivy.xml file:

<dependency org="org.vaadin.addons" name="buttongroup" rev="2.3" />

Core concepts
If we naively add the dependency, then just try to add a buttonGroup component
to some UI, we will get similar error messages:

Widgetset does not contain implementation for org.vaadin.peter.buttongroup.
ButtonGroup. Check its component connector's @Connect mapping, widgetsets
GWT module description file and re-compile your widgetset.

In case you have downloaded a Vaadin add-on package, you might want to refer
to add-on instructions.

https://vaadin.com/directory#addon/buttongroup
https://vaadin.com/directory#addon/buttongroup

Chapter 8

[277]

This means things are getting serious; up to this point, we could code only in Java.
In order to make this add-on that includes client-side code work, we have to go
deeper in to our GWT knowledge.

GWT modules
We learned in earlier chapters that GWT produces client-side code (HTML,
JavaScript, and CSS). In order to address complexity and reusability issues
brought by real-world applications, GWT provides a standardized way toward
modularity. Essentially, modules are packages with reusable functionalities.

Each module must provide an XML descriptor file which ends with gwt.xml.
The un-suffixed file name is the module's name. This descriptor has to be placed
in a Java-like package structure.

Finer details about GWT modules are out of the scope of this
book. Please refer to http://code.google.com/p/google-
web-toolkit-doc-1-5/wiki/DevGuideModules.

For now, suffice to know that modules offer a way to describe both module
composition and an application single entry-point.

Widget sets
Vaadin make a restricted usage of modules with only composition and entry-point.
To differentiate between full-blown modules and those limited modules, Vaadin-
restricted modules are called widgetsets in Vaadin parlance.

To speak the truth, widgetsets have been used all throughout our previous examples,
only without our knowledge. Just get your hands on whatever Vaadin project you
have at the moment and search for a vaadin-client-compiled-7.x.y.jar file.
Then look for a VAADIN.widgetset folder: GWT developers will not be surprised
here, as it is the exact structure of a GWT compiled application.

http://code.google.com/p/googleweb-toolkit-doc-1-5/wiki/DevGuideModules
http://code.google.com/p/googleweb-toolkit-doc-1-5/wiki/DevGuideModules

Featured Add-ons

[278]

The following screenshot displays a view of the project structure:

With this client-compiled JAR, Vaadin supplies GWT-compiled widgets. The main
difference between widgets and components is that the former are client-side and
compiled to JavaScript, while the latter are server-side and compiled to bytecode.
All Vaadin components we used formerly have a widget counterpart inside the Java.

Chapter 8

[279]

We will describe exact relations between components and widgets
in Chapter 9, Creating and Extending Components and Widgets.

An important Vaadin advantage is that the default widgetset is already
compiled. This means we do not need to compile it during development.
Calling display-related setter methods (or passing constructor arguments)
in Java code will send messages from the server to the client.

GWT has chosen another path: calling setter methods translates into compiled-code
updates and causes significant coding freezes when they take place.

How-to
GWT can only accept a single entry-point, thus a single module. When there are
multiple modules, we have to create a composition structure. In this case, the new
module composing all others can be set as the application entry point.

The easiest way to achieve this is through the Vaadin Eclipse plugin and now we
can do this more precisely, thanks to the compile Vaadin widgets button located in
the toolbar, as shown in the following screenshot:

After clicking on this magic button with a selected Vaadin project and additional
widgetsets, we will do the following:

1.	 Create a relevant gwt.xml file under a widgetset sub-package relative
to the configured UI in the sources folder. It describes the composition
described previously (references to all widgetsets, including the default one).

Do not change the generated widgetset filename!
Neither package name nor file name (nor extension) should
be changed: the framework is will look for this specific file
and no other.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit
1.7.0//EN" "http://google-web-toolkit.googlecode.com/svn/
tags/1.7.0/distro-source/core/src/gwt-module.dtd">

Featured Add-ons

[280]

<module>
 <inherits name="com.vaadin.DefaultWidgetSet" />
 <inherits name="org.vaadin.peter.buttongroup.
ButtonGroupWidgetset" />
</module>

2.	 Add a reference to this GWT file in the web deployment descriptor as a
Vaadin servlet init-param. The code for performing the same is as follows:
<servlet>
 <servlet-name>Buttongroup Application</servlet-name>
 <servlet-class>com.vaadin.server.VaadinServlet</servlet-class>
 <init-param>
 <param-name>UI</param-name>
 <param-value>
 com.packtpub.learnvaadin.ButtonGroupUI
 </param-value>
 </init-param>
 <init-param>
 <param-name>widgetset</param-name>
 <param-value>
 com.packtpub.learnvaadin.widgetset.ButtongroupWidgetset
 </param-value>
 </init-param>
</servlet>

3.	 Last but not least, it compiles client-side code into GWT-compatible
JavaScript (look at the new VAADIN folder in WEB-INF.

This is an excerpt of GWT engine compiling output:

Executing compiler with parameters [/Library/Java/JavaVirtualMachines/
jdk1.7.0_10.jdk/Contents/Home/bin/java, -Djava.awt.headless=true,
-Xss8M, -Xmx512M, -XX:MaxPermSize=512M, -classpath, ... -Dgwt.
persistentunitcachedir=/var/folders/_s/4wk9w3fs6xs70t3sb8g
ptrpsb4lk97/T/widgetset_com.packtpub.learnvaadin.widgetset.
ButtongroupWidgetsetdb4ceafd-a8ec-4f50-afed-e47f849d5f52, com.
vaadin.tools.WidgetsetCompiler, -war, WebContent/VAADIN/widgetsets,
-deploy, /var/folders/_s/4wk9w3fs6xs70t3sb8gptrpsb4lk97/T/widgetset_
com.packtpub.learnvaadin.widgetset.ButtongroupWidgetsetdb4ceafd-
a8ec-4f50-afed-e47f849d5f52, -extra, /var/folders/_s/4wk9w3fs
6xs70t3sb8gptrpsb4lk97/T/widgetset_com.packtpub.learnvaadin.
widgetset.ButtongroupWidgetsetdb4ceafd-a8ec-4f50-afed-e47f849d5f52,
-localWorkers, 8, -logLevel, INFO, com.packtpub.learnvaadin.widgetset.
ButtongroupWidgetset]

Updating GWT module description file...

 Process output

Chapter 8

[281]

 Compiling

 Compiling permutation 1...

 Compile of permutations succeeded

Linking into /Users/nicolas.fraenkel/Google Drive/Learning Vaadin/
workspace/buttongroup/WebContent/VAADIN/widgetsets/com.packtpub.
learnvaadin.widgetset.ButtongroupWidgetset; Writing extras to /var/folder
s/_s/4wk9w3fs6xs70t3sb8gptrpsb4lk97/T/widgetset_com.packtpub.learnvaadin.
widgetset.ButtongroupWidgetsetdb4ceafd-a8ec-4f50-afed-e47f849d5f52/com.
packtpub.learnvaadin.widgetset.ButtongroupWidgetset

 Link succeeded

 Compilation succeeded -- 71.941s

Once this has been performed and updates have been published on the server, the
application should run as expected. The following screenshot should be displayed:

Alternatively, we can manually replace preceding second part (the web.xml part)
by a simple annotation on the UI:

@Widgetset("com.packtpub.learnvaadin.widgetset.ButtongroupWidgetset")
public class ButtonGroupUI extends UI {
 ...
}

Vaadin will first look if there is a @Widgetset on the UI, and if not found fallback
on the web deployment descriptor. Real-life usage depends on one's needs and taste.

Conclusion
This specific add-on serves as a nice illustration of using add-ons embedding
widgets. It also is a space-saver in some already tight-packed UIs.

Sources of the preceding example with tags for each configuration flavor (web.xml
versus annotation) can be found at https://github.com/nfrankel/buttongroup.

Clara
Believe it or not, one the most heard complaint about Vaadin is that it does not use
XML for UI design, as for Flex and Android, but only pure Java. After all you hear
against XML on the web, it may seem strange, but it is still in popular demand.

Featured Add-ons

[282]

Clara is an attempt to remedy to that.

Clara is developed by Teemu Pöntelin, a member of the Vaadin
team, but is not endorsed by Vaadin Ltd (yet).

Details on the plugin may be found at https://vaadin.com/directory#addon/
clara. Currently there is no similar add-on.

Prerequisites
As for button group, adding dependencies takes place in the ivy.xml file.

<dependency org="org.vaadin.addons" name="clara" rev="1.0.0" />

How-to
Here is a description on how to use Clara.

XML
XML files use two different schemas:

•	 One for UI components, including layouts, urn:package:com.vaadin.ui
•	 The other for layout alignment, urn:vaadin:layout

Each UI component (and layout) of the Vaadin framework can be displayed by using
a tag corresponding with its exact unqualified class name.

<TextField />

Setting simple values on those components can be called by using the property name
as a XML attribute.

<TextField caption="FirstName" />

Adding components to containers is achieved by using embedded tags.

<HorizontalLayout>
 <TextField caption="FirstName" />
</HorizontalLayout>

As an illustration, let us remake the Twaattin front page using Clara:

<?xml version="1.0" encoding="UTF-8"?>
<VerticalLayout xmlns="urn:package:com.vaadin.ui"
 xmlns:l="urn:vaadin:layout" margin="true" spacing="true">

https://vaadin.com/directory#addon/clara
https://vaadin.com/directory#addon/clara

Chapter 8

[283]

 <Link caption="Get PIN" targetName="twitterauth" />
 <TextField inputPrompt="PIN" />
 <Button caption="Submit" />
</VerticalLayout>

And this is it: everything is now in place, with only a few lines of XML!

Inflating
Android has popularized the term "inflate" to describe the process of passing binary
stream containing XML to a factory to get bytecode made of graphical components.

Clara inflating is equally simple: just use Clara.create(InputStream).
The standard way to get an InputStream handle on files in a Servlet context
is the following:

httpRequest.getServletContext().getResourceAsStream("/WEB-INF/
twaattin.xml");

Adding behavior
XML is a first-class citizen to define UI but is found lacking for defining behavior:
it is the realm where programming languages such as Java rule. We just need to
have a bridge between UI XML and Java event handlers.

Clara provides that through the @UiHandler annotation. It requires the id attribute
of the XML component and has to be set on the handling Java method we want to
associate the component with.

public class ClaraBehavior {

 @UiHandler("submitButton")
 public void handleSubmitButtonClick(ClickEvent event) {

 Notification.show("You're authenticated into Twaattin");
 }
}

We need to update the XML with an attribute id having the same value.

<Button id="submitButton" caption="Submit" />

Also, we need to pass the behavior class as a parameter to the create() method.

Component component = Clara.create(xml, new ClaraBehavior());

Featured Add-ons

[284]

Data sources
XML simple grammar is a limitation: we can only create components and add some
layout data. Most Vaadin applications require data sources. Clara provides an easy
way to bind them to components with the @UiDataSource annotation.

It has to be set on a method whose return type is a data source. As seen in Chapter 6,
Containers and Related Components, those are dependent on the component type:

•	 Property for TextField and Label
•	 Item for Form
•	 Container for AbstractSelect

@UiDataSource needs a value which corresponds to the component id.
The following snippet sets the value of the pin text field in a dynamic way:

@UiDataSource("pin")
public Property<String> getLabelProperty() {

 return new ObjectProperty<String>("1111", String.class);
}

Creating complex components
There are numerous requirements beyond data sources that XML cannot address,
for example, the PIN link of our Twaattin example using ExternalResource.

In order to address this issue, Clara offers a way to retrieve any component
it created, through the Clara.findComponentById(Component, String)
method with:

•	 Component being the inflated XML
•	 String the value of the component id attribute

We will continue with our Twaattin example. Here is the rest of the code:

Link link = (Link) Clara.findComponentById(component, "twitterLink");
link.setResource(new ExternalResource("http://twitter.com"));

Limitations
There are limitations in the current Clara version, which definitely prevents us from
porting Twaattin to Clara.

Chapter 8

[285]

One of those limitations is that it is impossible to pass components to event handler
class constructor, as for Twaattin LoginBehavior, which requires a PIN field. This
is a chicken and egg problem: inflating the XML requires the behavior class, but the
behavior requires a reference to field which can only be available if the XML is inflated!

Of course, there are workarounds for this problem: one could change the design
to create a setter for the behavior, for example. Yet, those are just workarounds
that break previous immutability.

Conclusion
Despite its "coolness" and ease of use, Clara is still experimental. It is OK to play
with it and to conduct personal projects but beware before using it "for real".

However, just keep it under close watch-it has the potential to become one of
the most popular plugins around.

Sources of the preceding example can be found at https://github.com/nfrankel/
clara.

JPA Container
JPAContainer is an add-on that let us use a specific container bound to a predefined
Java Persistence API (JPA) model.

The plugin itself can be found at https://vaadin.com/directory#addon/vaadin-
jpacontainer. The plugin is both provided by and certified by Vaadin Ltd. It is
released under the Apache 2.0 License.

Read carefully before using previous versions of the plugin
(up to 2.1.0): those are released under a dual AGPL 3.0 and
CVAL 2.0 licenses, take care.

Similar add-ons include the following:

•	 Though not an add-on anymore, SQL Container (seen in Chapter 7,
Core Advanced Features) was once an add-on and let us directly
connect to a database using SQL

•	 HbnContainer to use a predefined Hibernate entity model

https://github.com/nfrankel/clara
https://github.com/nfrankel/clara
https://vaadin.com/directory#addon/vaadinjpacontainer
https://vaadin.com/directory#addon/vaadinjpacontainer

Featured Add-ons

[286]

Concepts
JPA is a Java EE standardized way to access SQL backends. JPA has been
available since Java EE 5.

JPA version Java EE version JSR
1.0 (under umbrella EJB 3.0) 5 220
2.0 6 317
2.1 7 338

Describing JPA is way out of the scope of this book; we will assume we
already have a working JPA model.

Prerequisites
Using JPA container requires some additional steps.

Dependency
As before, let us add the add-on dependency to our project:

<dependency org="org.vaadin.addons" name="jpacontainer"
rev="3.0.0.beta1" />

Model
We also need a pre-existing model. We will reuse the Person/Job model
of Chapter 7, Core Advanced Features.

Here are the sources, annotated the JPA-way:

package com.packtpub.learnvaadin.jpa.model;

import static javax.persistence.TemporalType.DATE;

import java.util.Date;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.ManyToOne;
import javax.persistence.Temporal;

Chapter 8

[287]

@Entity
public class Person {

 @Id
 @GeneratedValue
 private Long id;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(DATE)
 private Date birthdate;

 @ManyToOne
 private Job job;

 // Getters & setters
 // ...
 // Do not forget equals() & hashcode()!
 // ...
}

package com.packtpub.learnvaadin.jpa.model;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@Entity
public class Job {

 @Id
 @GeneratedValue
 private Long id;
 private String label;

 // Getters & setters
 // ...
 // Do not forget equals() & hashcode()!
 // ...
}

Featured Add-ons

[288]

Finally, here is the persistence descriptor to use:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="vaadindemo" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <jta-data-source>jdbc/persons</jta-data-source>
 <!--Prevents:
 http://netbeans.org/bugzilla/show_bug.cgi?id=181068-->
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.ddl-generation"
 value="create-tables" />
 </properties>
 </persistence-unit>
</persistence>

Nothing fancy here. Mainly, we declare the eclipseink persistence provider,
which is used by Glassfish as well as:

•	 The persistence unit name
•	 The JNDI name the datasource will be bound to

Application server
Using JPA requires both the API itself but also an implementation (for example,
Hibernate or EclipseLink). It is entirely possible to run JPA-based applications on
simple servlet containers like Tomcat, with both API and implementation embedded
into the Web Application Archive libraries. However, using a full-blown application
server guarantees JPA works exactly as expected as part of Java EE, and keeps the
WAR size lower as well.

There are plenty of free open source application servers available on the market.
Were only JPA in the balance, we would probably go for TomEE, a fully Java EE 6
compliant Tomcat (http://tomee.apache.org/apache-tomee.html). However,
we will also need an OSGi container in later chapters, so it would be a good move
to choose an application server that can do both. In other words, we are going to
use GlassFish, Oracle's open source (and free!) application server.

Chapter 8

[289]

Download, install, and integrate
In order to integrate Glassfish within the Eclipse IDE, we have to add a plugin
to the latter. In Eclipse, go to Help | Eclipse Marketplace. In the opened dialog
box, search for glassfish. Choose the plugin adapted to the installed Eclipse
version- if prior Eclipse installation instructions were followed, that would be
Glassfish Tools for Juno.

Click on the Install button. Follow the wizard by selecting the single component
to install and accept the license agreement. Restart Eclipse as the end dialog asks.

Featured Add-ons

[290]

At this point, create a new server as seen in Chapter 3, Hello Vaadin!. A new
entry is available under the Glassfish menu (and not under the Oracle one).
Choose GlassFish Server Open Source Edition 3 (Java EE 6).

Click on Next. Select an installation path to the desired Glassfish directory
and click on Install (you need to accept the license agreement).

Note that Glassfish will be installed in a glassfish3 directory inside
the chosen folder, so that if you choose C:/Development, Glassfish
will be installed in C:/Development/glassfish3.

Chapter 8

[291]

Once the server is finished downloading, click on Next. The next wizard screen is
about configuring the server instance. We are not using it for production purposes,
so let us keep the defaults, also including the blank admin password (it will be easier
to remember in the future).

Featured Add-ons

[292]

Click on Next and then Finish. Congratulations, a new Glassfish server has appeared
in the Servers tab, as shown in the following screenshot:

Create the data source
We used our own Vaadin connection in Chapter 7, Core Advanced Features. Whereas
in this chapter we will use a server provided data source. This way, one can choose
one's preferred way to connect to a database.

In most real-life cases, it is advised to use a server data source,
as it decouples the application from specific environments. As
a developer, we can then work with the same JNDI resource
while letting administrators concern themselves with connection
parameters changing from environment to environment.

To begin with, we need to be able to connect to the data source. Since we will reuse
H2, we already have the necessary JAR driver. Put it in the <GLASSFISH_HOME>/lib
folder. This will make H2 data sources creation available for all domains of the
same Glassfish installation.

You can think of domain as a way to logically partition
applications and resources. In this book, we will keep using the
same default domain domain1 and will not need this kind of
resources management.

Chapter 8

[293]

Browse to Glassfish admin console, at http: //localhost:4848/.

Go to Resources | JDBC | Connection Pools menu. In the right frame,
click on New. Fill in the fields as shown in the following screenshot:

•	 Name: Vaadin Pool
•	 Resource Type: java.sql.Driver
•	 Database Vendor: H2

Featured Add-ons

[294]

Click on Next (at the top-right).

In the new screen, the following fields are present:

•	 Driver Classname: org.h2.Driver
•	 In the Additional Properties section:

°° URL: jdbc:h2:~/learnvaadin.
°° user: SA.
°° password: none. Note that this information is necessary,

regardless of whether a password has previously been set.

Click on Finish. A new pool will appear in the JDBC Connection Pools screen list.

Chapter 8

[295]

Once the connection pool is created, we need to make it available under a JNDI
name. This is the goal of the Resources | JDBC | JDBC Resources menu.

Featured Add-ons

[296]

In the opening frame, set fields accordingly:

•	 JNDI Name: jdbc/persons; it has to be exactly the same as in the provided
persistence.xml file

•	 Pool Name: Vaadin Pool, as in the previously defined pool

Click on OK. A new resource now appears in the resources list screen.

Everything is now ready to go onward.

How-to
JPA itself has many features and some complexity, including a rich lifecycle for
managed entities. A full-blown book could very well be dedicated on subject,
so we will focus on a simple use-case and see how to make it work.

In this context, we will display a list of persons and their associated job, if any.
Using JPAContainer, it can be easily achieved in only two steps as following:

1.	 To create a JPAContainer—a specialized Container fully integrated with
JPA, we call the JPAContainerFactory.make(Class, String) factory
method where Class is the JPA enhanced class and String is the name
of the persistence unit in the persistence descriptor.

°° Given the previous data, this translates to:

JPAContainer<Person> container = JPAContainerFactory.make
(Person.class, "vaadindemo");

2.	 The previous step only is enough to display persons, with only a single flaw:
jobs are shown as their String equivalent (for example, com.packtpub.
learnvaadin.jpa.model.Job@xyztuv) which hints that the toString()
method is used. With our current knowledge, the first reflex will be to use a
column decorator and that will work very well.

°° Yet, JPAContainer offers a simpler way to display nested property
(for example, a job's label): just call the addNestedProperty(String)
method, where the parameter is the dotted path to the wanted
property.

°° In our example, this will display the job's label:

container.addNestedContainerProperty("job.label");

Chapter 8

[297]

That's it! Of course, everything that applies to a Container applies to a
JPAContainer, so the tricks we learned in Chapter 6, Containers and Related
Components also apply, resulting in the following code:

public class JpaScreen extends VerticalLayout {

 public JpaScreen() {

 setMargin(true);

 JPAContainer<Person> container =
 JPAContainerFactory.make(Person.class, "vaadindemo");

 container.addNestedContainerProperty("job.label");

 Table table = new Table("", container);

 table.setVisibleColumns(new Object[] {
 "lastName", "firstName", "birthdate", "job.label" });
 table.setColumnHeader("firstName", "Given name");
 table.setColumnHeader("lastName", "Family name");
 table.setColumnHeader("job.label", "Job");

 addComponent(table);
 }
}

Note that we do not use column names as for SQLContainer, but JPA property
names. Here is what should be displayed:

Featured Add-ons

[298]

Conclusion
SQLContainer is a good path to follow when needing to connect to a database.
Yet, when a JPA model is already provided, it is a no brainer to use JPA Container
to connect to the JPA backend. Even better, it handles nested properties.

Remember to use this add-on when being in this situation, it is developed
and endorsed by Vaadin itself!

CDI Utils
Context and Dependency Injection is a JSR that defines how Dependency
Injection takes place in a Java EE compliant application server.

At the moment, Twaatin has come up with coupling issues, meaning classes
are directly dependent on one another. The issues are as follows:

•	 Screens set their own behavior. It would be nice to be completely
independent, in order for screens to be usable with different behaviors
in different contexts.

•	 Likewise, authentication strategy implementation is dependent on
the Twitter service. Since the latter is a class (with static methods),
unit testing the strategy is impossible.

•	 Finally, the login behavior is also dependent on the authentication
strategy. The former needs to create a new strategy instance.

For a more detailed description of coupling, please see
http://en.wikipedia.org/wiki/Coupling_%28computer_
programming%29.

Similar inversion of control (see the following information box) add-ons include
ways to integrate the Spring framework: search for Spring Vaadin Integration
and Spring Stuff in the directory.

It is the author's opinion that those two add-ons are not
production-ready by contrast, brilliant ideas for successful
Spring integration can be found at https://vaadin.com/web/
petter/home/-/blogs/experimenting-with-vaadin-
spring-and-serialization.

Let's rework on some of the Twaattin code with CDI to make our components less
coupled and more testable in regard to the earlier stated three improvements.

http://en.wikipedia.org/wiki/Coupling_%28computer_programming%29
https://vaadin.com/web/petter/home/-/blogs/experimenting-with-vaadinspring-and-serialization
https://vaadin.com/web/petter/home/-/blogs/experimenting-with-vaadinspring-and-serialization

Chapter 8

[299]

Core concepts
Before diving into how to integrate CDI into our Vaadin applications, a little
introduction is in order. Feel free to skip if you already are familiar with CDI.

Inversion of Control and Dependency Injection
Inversion of Control and Dependency Injection are notions that are often used
interchangeably, but there is a slight difference between them.

Inversion of Control (IoC), is the principle by which a component can get
a reference on another component without first instantiating it so there is
low coupling between the two.

In Java and Java EE, there are several ways to achieve IoC. Some of them are
listed as follows:

•	 The first way is through the Abstract Factory [GOF:87] pattern which is
possible in pure Java.

•	 Another common implementation in Java EE is through the Service Locator
pattern. In this pattern, the application server instantiates services and makes
them available, whereas applications look up for them in order to use them.

•	 The last option is Dependency Injection.

For more information on Service Locator, visit the following URL:
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/ServiceLocator.html

Dependency Injection (DI), is a specific form of IoC. In DI, both object creation
and injection of its dependencies are delegated to a specific part of the system.

DI use cases
DI is used to decouple the building blocks of our application from one another,
be they classes, packages, or JARs. DI lets us abstract our dependencies, so we
can inject a class in an environment, such as an integration test, and another
class in the standard running environment.

This also allows used to stub our dependencies with mock objects to test our
class in isolation, for unit testing.

http://java.sun.com/blueprints/corej2eepatterns/Patterns/ServiceLocator.html

Featured Add-ons

[300]

As an example, the Twitter service used in Twaattin is a good use case of using
DI. The current code has flaws: the application is tightly coupled to the service,
thus preventing unit testing. It is not possible to test the UI without using Twitter,
which makes testing difficult at best (and impossible when offline).

Prerequisites
Before diving right into CDI Utils, we need to do a few things.

First, we need a Java EE compliant server. The good news is that we already have
one fully integrated ever since we worked on JPA Container. If that is not the case,
please refer to the Application server section.

Then, we just need the dependency as usual. Update the ivy.xml settings file like so:

<dependency org="org.vaadin.virkki" name="cdi-utils" rev="2.1.1" />

How-to
As in any other CDI application, the first step is to create a beans.xml file under
WEB-INF to enable the application for CDI.

NullPointerException
If you encounter NullPointerException when running a CDI
application and it seems that beans are not injected, the first thing
to check is whether the beans.xml file is there (and at the right
location, of course).

The second step is to configure a UI provider. UI providers are dedicated
components responsible for creating UI. The add-on provides the CdiUIProvider
implementation, which is able to connect to the CDI context itself (or more precisely
to the underlying BeanManager) and register beans in it.

Chapter 8

[301]

The following diagram is the UI provider class diagram:

Configuration to use a specific UI provider is done in the web deployment
descriptor, as a Vaadin Servlet initialization parameter.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/
xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.
com/xml/ns/j2ee/web-app_2_4.xsd">
 <servlet>
 <servlet-name>CDI Application</servlet-name>
 <servlet-class>com.vaadin.server.VaadinServlet</servlet-class>
 <init-param>
 <param-name>UIProvider</param-name>
 <param-value>
 org.vaadin.virkki.cdiutils.application.CdiUIProvider
 </param-value>
 </init-param>
 <init-param>
 <param-name>UI</param-name>
 <param-value>com.packtpub.learnvaadin.cdi.ui.CdiUI</param-value>
 </init-param>
 </servlet>
 ...
</web-app>

Featured Add-ons

[302]

The final step is to annotate the UI itself with org.vaadin.virkki.cdiutils.
application.UIContext.UIScoped. This binds the UI lifecycle management
with Vaadin.

@UIScoped
public class CdiUI extends UI {
 ...
}

CDI injection
In CDI, injection can be achieved either at the attribute or at the constructor
level through annotations use.

In a single class, injecting attributes or constructors cannot be
mixed-and-matched. Choose one or the other.

Instantiation of the needed class, as well its injection at the right injection point,
is taken care of by the CDI container.

Taking Twaattin as an example, reworking on the coupling between screen
and behavior can be achieved either way by simply using @javax.inject.Inject
annotation in the desired place.

// Attribute injection
public class LoginScreen extends VerticalLayout {

 @Inject
 private LoginBehavior behavior;

 private Button submitButton = new Button("Submit");

 public LoginScreen() {

 ...
 submitButton.addClickListener(behavior);
 }
}

// Constructor injection
public class LoginScreen extends VerticalLayout {

 private Button submitButton = new Button("Submit");

Chapter 8

[303]

 @Inject
 public LoginScreen(LoginBehavior behavior) {

 ...
 submitButton.addClickListener(behavior);
 }
}

Both snippets are equivalent: however, note constructor injection has the advantage
of not storing the behavior instance as an attribute.

In Twaattin original code, the PIN field has to be injected in both screen—to display
it, and behavior—to get its value. Unfortunately, this is not something that should
be done in CDI and we have to use another Java EE feature, though decoupling
strategy/service and behavior/strategy can be achieved using this approach.

Event observers
Along with CDI comes a neat feature of Java EE 6 containers, event-listener
support as follows:

•	 javax.enterprise.event.Event<?> is a dedicated component to
fire events of type T, with no requirement on type T. Instances of this
component have to be injected by CDI.

•	 Methods interested in those events—observers, have to take T as a single
parameter and be annotated as javax.enterprise.event.Observes.

Login processing is a perfect fit for event subscription: when the user logs in, an
event is fired, wrapping all necessary input values. Login behavior listens to those
events and acts in regard to values sent.

In order to implement this in Twaattin, we need to create an event type to wrap
the PIN value:

package com.packtpub.learnvaadin.cdi.presenter;

public class LoginEvent {

 private final String pinValue;

 public LoginEvent(String pinValue) {
 this.pinValue = pinValue;
 }

 public String getPinValue() {
 return pinValue;
 }
}

Featured Add-ons

[304]

The next step is to wire Vaadin user-generated events to CDI events. Login screen
has to be updated to listen to the former as well as the latter:

public class LoginScreen extends VerticalLayout implements
ClickListener {

 @Inject
 private javax.enterprise.event.Event<LoginEvent> eventManager;

 private Button submitButton = new Button("Submit");
 private TextField pinField = new TextField();

 @Inject
 public LoginScreen() {

 ...

 submitButton.addClickListener(this);
 }

 @Override
 public void buttonClick(ClickEvent event) {

 LoginEvent loginEvent =
 new LoginEvent(pinField.getValue());

 eventManager.fire(loginEvent);
 }
}

Finally, the behavior class has to listen to those CDI events:

public class LoginBehavior {

 public void handleLogin(@Observes LoginEvent event) {

 ...
 }
}

Chapter 8

[305]

Components declaration
CDI Utils also provides a way to inject components declaratively instead of
instantiating them programmatically.

Just because it is possible to achieve something, this does not
mean that it has to be done. In particular, injection is used to break
dependencies and thus, make code more changeable and testable.
It is the author opinion that injecting UI components into other UI
components does not bring any of those qualities. You may have
another point of view, so here is how you can do that.

This feature is only available for Vaadin out-of-the-box components that are
injected. Usage is as follow: annotate the same injection point as @Inject with @
Preconfigured. Valid attribute are equivalent of AbstractComponent properties.

For example, the following two snippets do the same:

// Programmatic way
private TextField textField = new TextField();

// Somewhere after (e.g. in the constructor)
textField.setCaption("First name");
textField.setImmediate(true);

// Declarative way
@Inject
@Preconfigured(caption = "First name", immediate = true)
private TextField textField;

Conclusion
CDI Utils is currently "the" way to use Vaadin and CDI together. Note that it
will be replaced by CDI Integration, which is now in alpha and does not allow
for component injection. Complete sources for previous add-on examples can
be found at https://github.com/nfrankel/cdiutils.

Featured Add-ons

[306]

Summary
In this chapter, we detailed how Vaadin can be enriched with additional features
coming from the Vaadin directory add-ons and how we could search the latter.

In particular, we had a look at these particular add-ons:

•	 Button group is a simple example of UI add-on. We had a look at what was
mandatory to use such graphical add-ons.

•	 Although experimental, Clara is interesting because it let us declare UI with
XML instead of programming them.

•	 Most applications need at least a data backend and Vaadin-based ones are
not different. The JPA Container add-on is an easily configurable adapter
allowing us to wrap a JPA in a Vaadin table.

•	 Finally, CDI Utils brings the power of Context and Dependency Injection
into the Vaadin realm.

These are only a small sample of all available add-ons. It is simply not feasible
to list them all! It is advised to have a look at the directory regularly to know
about the latest published add-ons. Alternatively, one can also subscribe to
the @Vaadin Twitter channel at https://twitter.com/vaadin where new
releases are automatically published.

Now that we have the know-how regarding integration of third-party add-ons, now
would be a good time to learn how to develop our own, or more precisely to be able
to be independent in case no add-on really applies to some use-cases. This is exactly
what the next chapter proposes to describe.

Creating and Extending
Components and Widgets

Although Vaadin provides many great components out-of-the-box, we sometimes
need to go further. We saw in the previous chapter how we could extend Vaadin
with provided add-ons. Now is the time to learn how to extend it on our own.

Extending Vaadin is a feature designed into the framework itself. In this chapter,
we'll have a look at different ways to achieve this:

•	 Creating custom component in Vaadin by composing them from
other components

•	 Extending existing widgets on the client side
•	 Wrapping existing GWT widgets into Vaadin components
•	 Wrapping existing JavaScript into Vaadin components

Learning these techniques will get you a long way towards getting the best
out of Vaadin.

Component composition
Composing components can either be very simple or a daunting task, depending
on the number of components involved.

Creating and Extending Components and Widgets

[308]

Components composition is by far the easiest way (compared to other techniques)
to provide custom-tailored components. However, this fits only limited use-cases, for
example, to reuse some application GUI part. The keyword here is being reusable.
Examples of such component include:

•	 An address component, with address lines, state, zip code, and city
•	 A yes/no/cancel options dialog, similar to the ones found in Swing
•	 A screen template, including a top menu and a left bar
•	 A reusable menu among all the screens of an application

The following screenshot is an example of a reusable dialog box:

Manual composition
The root of custom component composition in Vaadin is the CustomComponent class,
which inherits AbstractComponent and implements HasComponents.

Chapter 9

[309]

Adding components to the custom component is just a matter of:

•	 Setting the composition root to a container, probably a layout so as
to add more than one subcomponent

•	 Adding components to the root

An important limitation of this approach is that we have to basically
create at least two classes: one being the custom component, playing
the role of the wrapper, and the other being the topmost component,
the content container. Such containers can be panels or whatever, so
long as we can reuse them.

This is it! There's no fancy API: we just add the child widgets to our custom
component's root and we are good to go.

As an example, let's create a reusable confirm dialog, just like the one seen
previously. It would look something like the following code:

import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.Button.ClickListener;
import com.vaadin.ui.CustomComponent;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Label;
import com.vaadin.ui.UI;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.Window;

@SuppressWarnings("serial")
public class CustomDialog extends Window {

 private String clickValue;

 public CustomDialog() {

 setContent(this.new CustomDialogContent());
 }

 public ClickValue getClickValue() {
 return clickValue;
 }

 private class CustomDialogContent extends CustomComponent {

Creating and Extending Components and Widgets

[310]

 private Label message = new Label("This is a confirm
 dialog.");
 private Button yesButton = new Button("Yes");
 private Button cancelButton = new Button("Cancel");
 private Button noButton = new Button("No");

 public CustomDialogContent() {

 VerticalLayout mainLayout = new VerticalLayout();

 mainLayout.setMargin(true);
 mainLayout.setSpacing(true);

 setCompositionRoot(mainLayout);

 mainLayout.addComponent(message);

 HorizontalLayout buttonBar = new HorizontalLayout();

 buttonBar.setSpacing(true);

 mainLayout.addComponent(buttonBar);

 Button[] buttons =
 new Button[] { yesButton, noButton, cancelButton };

 for (final Button button : buttons) {

 buttonBar.addComponent(button);
 button.addClickListener(new ClickListener() {

 @Override
 public void buttonClick(ClickEvent event) {

 clickValue = button.getCaption();

 UI.getCurrent().removeWindow(CustomDialog.this);
 }
 });
 }
 }
 }
}

As stated before, we have two component classes: CustomDialogContent for the
content and CustomDialog for the dialog itself.

Chapter 9

[311]

Designing custom components
The reason behind using custom components is reuse. As such, a well thought-out
design is a must-have in those cases.

In the preceding code, this is very straightforward: we provided the
getClickedValue() method to return the value clicked. And yet, there
are some ways for improvement:

•	 Is String the right return type? Or should we provide an enum to carry
the return type?

•	 Neither text for the buttons nor dialog message can be customized.
For buttons, it prevents internationalization, but a hard-coded message
prevents reuse altogether!

•	 Shouldn't the cancel button be optional?
•	 Providing only CustomDialogContent and let users wrap it in their

own window will improve reusability.

In practice, reusable component design should be constrained by two major
concerns: providing sensible defaults, but enabling parameterization at the
same time so that the component can really be reused in a variety of contexts.

Apart from that, only experience will tell you how much effort you should invest
in your personal case.

Graphic composition
Previous sections explained about manual coding of custom components to
meet our needs.

Nonetheless, the easier way to create a custom component by assembling other
ones is to do it graphically. It's a nice thing then, that the Vaadin Eclipse plugin
includes a graphical editor, named the Visual Designer.

Visual editor setup
Vaadin's graphical editor is bundled within the plugin. To check that it is installed,
go to Help | About Eclipse and click on the Vaadin features icon.

Creating and Extending Components and Widgets

[312]

In the opening pop-up, the Vaadin plugin should appear. Click on the
Plugin details button.

If everything is in order, the Visual Designer plugin should be listed in the list.

Visual Designer use
Now, just go the File menu and click on New.

Then choose Vaadin | Vaadin Composite. It immediately opens the standard
Java code viewpoint where there are two tabs underneath, a code tab selected
by default, and a design tab.

Selecting the latter will display the "true" graphical editor. It is separated in
two main parts:

•	 A canvas with a gridline occupies the main space.
•	 A vertical bar on the left displays the following three sections:

°° A component palette showing all available components.
Remember that layouts are components too (albeit special ones).

°° The custom component hierarchy.
°° Available properties of the currently selected component.

Chapter 9

[313]

Components from the palette can be dragged-and-dropped either to the canvas
or to the component hierarchy.

A full guide to the Visual Designer is beyond the scope of this book, but there are
nonetheless some guidelines that can save us a considerable amount of time.

Creating and Extending Components and Widgets

[314]

Position and size
The first tab for a selected component is the layout one. It represents properties
that manage position and size.

Available properties are:

•	 Width and Height. Those correspond respectively to the setWidth()
and setHeight() methods of the Sizeable interface, and accept the
same values. In order to use setXXXUndefined(), set value to "auto".

•	 Visible, Margin, and Spacing are standard properties seen in Chapter 4,
Components and Layouts. Note that setting different margins on different
borders is not possible with the VD.

•	 Component Alignment manages the position of the element in its available
space.

•	 Expand Ratio refers to the space provided to the component when space has
to be shared between multiple components.

On the design canvas, we can also see a small rectangle when selecting a component.
It's a shortcut to changing size and position.

Chapter 9

[315]

The second tab displays every property not shown on the first tab, and is dependent
on the component's type.

For example, the preceding screenshot presents the available properties for a label.

Limitations
Note that the editor is an important tool for designing Vaadin applications
and deemed as such by Vaadin's team. It has some limitations, though.

Restricted compatibility
The most important limitation of the Visual Designer in its current state is its
inability to display existing components that were not initially designed with the VD.

Top-level element
Moreover, the top level element designed in the VD can only be a layout. By default,
it's AbsoluteLayout. If it has to be changed, we cannot graphically update the type:
we have to update the code itself manually.

This prevents us from creating reusable screen, complete with title. The biggest
reusable unit is the screen's content.

Creating and Extending Components and Widgets

[316]

Rigid structure
The generated code is set to some pattern that the editor expects. This has three
important consequences:

•	 Every component is declared as an attribute and assigned a
@AutoGenerated annotation

•	 It is instantiated and configured in its own private builder method
that is called in the constructor

•	 Custom non-generated code, if it exists, has to take place after those
calls in the constructor

Any change to these will likely prevent Vaadin from opening the Visual Designer
or have unwanted side effects. Don't do that!

Client-side extensions
Vaadin's greatest advantage is that we code everything in Java, which means
important stuff is executed on the server-side. However, some events are
better handled client-side.

For example, picture a requirement to display a tool tip when the cursor hovers
over a field. Going server-side would require each mouse move to send an event
to the server to check whether the mouse is over the component: a sure way to
saturate the network and kill scalability. Another common use-case is the need
to tabulate between fields in a predefined order.

Those are clearly use-cases better handled client-side.

Connector architecture
Before going further, a more detailed understanding of client-server
communication in Vaadin 7 is in order.

Vaadin 7 introduces the concept of connector. Connectors are code bits that
bind between client-side widgets and server-side components.

•	 Client connectors provide a way to manage widgets and make RPC
calls to components

•	 Server connectors offer event firing features

Chapter 9

[317]

•	 State is managed in a so-called shared state class that exists on both
sides. Synchronization between those is handled transparently by the
Vaadin framework.

Shared state

<<get/set>> <<get/set>>

Event Server
Connector

Server
Component<<bind>>

RPCClient
Connector

Client
Widget

CLIENT-SIDE SERVER-SIDE

Note that connectors hold references to their respective client and
server classes, not the other way around. This enables working with
existing components and widgets, as seen in the following section!

Let us study a simple existing Vaadin class with our newfound knowledge, Label.
We already know about Component hierarchy. What about the Connector one?

LabelConnector is the corresponding connector. It holds a reference on the VLabel
widget. On the other side, it also binds the Label component through an annotation.

Creating and Extending Components and Widgets

[318]

The only difference with the extension hierarchy is that component connector
provides capabilities by itself, while extension connector is only meant to
supplement those coming with the attached widget.

Here is the class diagram of the full-blown extension connector architecture:

How-to
Extension is exactly that: an attachment for an existing widget, with independent
feature, and communication between client and server. Vaadin provides a root class
for our custom extensions through the AbstractExtension class. It is only designed
to restrict types the extension can be attached to.

Extensions, like any other Vaadin component, must be provided a client connector.
Creating a custom extension requires both.

As an illustration, we will create a button that prevent multiple submits.
It gets disabled and asks the user to wait when clicked.

The following is to be taken as an example. Vaadin provides
such a feature in the form of the setDisableOnClick(true)
method in the Button class, although caption does not change.

Chapter 9

[319]

The first step is to create the extension proper, to restrict adding it on Button types
only. Easy as pie:

import com.vaadin.server.AbstractExtension;
import com.vaadin.ui.Button;

@SuppressWarnings("serial")
public class DisableOnClickButtonExtension extends AbstractExtension {

 protected void extend(Button button) {

 super.extend(button);
 }
}

The second step is where the magic takes place:

import static com.vaadin.client.ApplicationConnection.DISABLED_
CLASSNAME;

import com.google.gwt.event.dom.client.ClickEvent;
import com.google.gwt.event.dom.client.ClickHandler;
import com.packtpub.learnvaadin.DisableOnClickButtonExtension;
import com.vaadin.client.ComponentConnector;
import com.vaadin.client.ServerConnector;
import com.vaadin.client.extensions.AbstractExtensionConnector;
import com.vaadin.client.ui.VButton;
import com.vaadin.shared.ui.Connect;

@SuppressWarnings("serial")
@Connect(DisableOnClickButtonExtension.class)
public class DisableOnClickButtonConnector extends
AbstractExtensionConnector {

 @Override
 protected void extend(ServerConnector target) {

 final VButton button =
 (VButton) ((ComponentConnector) target).getWidget();

 button.addClickHandler(new ClickHandler() {

 @Override
 public void onClick(ClickEvent event) {

Creating and Extending Components and Widgets

[320]

 button.setEnabled(false);
 button.addStyleName(DISABLED_CLASSNAME);
 button.setText("Please wait...");
 }
 });
 }
}

Here, we have to use the GWT API itself:

1.	 We get a reference on the GWT widget to add a GWT event handler.
2.	 In the handler code, we disable the button and set the desired text. Also,

since Vaadin buttons do not render as HTML buttons but as div, we also
need to set a specific style name to render the button as disabled.

This book is not about GWT. If more detailed understanding than
provided is needed, please see Google documentation at http://
code.google.com/webtoolkit/.

Finally, we have to compile client-side code. This is easily achieved by clicking on
the Compile Vaadin widgets button, as seen as in the Button group section of Chapter
8, Featured Add-ons. This will create a gwt.xml file, update the web deployment
descriptor, and compile the client-side properly.

Package structure
The extension connector class should be located in a client
subpackage, relative to the extension class. Extension and the gwt.
xml file should be in the same package. If those requirements are
not met, nothing will happen, but there will be no error shown.

This is it: now, when the button is clicked, it is disabled while its caption is updated.

The code source for this secure submit extension first version the can be found
online at https://github.com/nfrankel/client-extension/tree/v1.0-
simple-extension.

At present, there is a slight drawback: it only shows a single label when pressed.
This completely defeats reusability and internationalization. We need to add a
feature to enable disabled text configuration.

http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
https://github.com/nfrankel/client-extension/tree/v1.0-simple-extension
https://github.com/nfrankel/client-extension/tree/v1.0-simple-extension

Chapter 9

[321]

Shared state
Shared state is a way for client widget and server component to share state that is,
common attribute values, hence its name. At runtime, a shared state object for each
connector will be present in both the JVM and the JavaScript container. Vaadin takes
care of keeping them in synch, so that state changes on one side will be reflected on
the other side.

This object is available on both sides through the getState() method, available
on connector and extension (and component). This method has just to be overridden
to return the right shared state class.

How-to
Shared state classes should extend com.vaadin.shared.communication.
SharedState, although components should use the more specialized
com.vaadin.shared.AbstractComponentState class instead.

Since shared states are compiled into JavaScript, they have to be
present in a client subpackage.

In our case, we want to be able to configure the disabled label, so the shared
state should be very simple, with a single attribute.

import com.vaadin.shared.communication.SharedState;

@SuppressWarnings("serial")
public class DisableOnClickButtonSharedState extends SharedState {

 private String disabledLabel;

 public String getDisabledLabel() {
 return disabledLabel;
 }

 public void setDisabledLabel(String disabledLabel) {
 this.disabledLabel = disabledLabel;
 }
}

Creating and Extending Components and Widgets

[322]

Then we need to override the getState() method, client-side and server-side
to return our new class: a no-brainer.

@Connect(DisableOnClickButtonExtension.class)
public class DisableOnClickButtonConnector extends
AbstractExtensionConnector {

 @Override
 public DisableOnClickButtonSharedState getState() {

 return (DisableOnClickButtonSharedState) super.getState();
 }

 ...
}

We also need to provide the label configuration feature in the extension.

public class DisableOnClickButtonExtension extends AbstractExtension {

 public DisableOnClickButtonExtension(String disabledLabel) {

 getState().setDisabledLabel(disabledLabel);
 }

 ...
}

Notice we designed the disabled label as an immutable property,
so it cannot be changed afterwards. It is clearly a design choice-if
needed, just create an adequate setter.

The last thing is to access the state when the button is pressed, and set the
returned label as the button text.

@Override
public void onClick(ClickEvent event) {

 button.setEnabled(false);
 button.addStyleName(DISABLED_CLASSNAME);
 button.setText(getState().getDisabledLabel());
}

Chapter 9

[323]

Note the addStyleName() call. This is needed because Vaadin
buttons are not native HTML buttons. Disabling a button will not
render it as visually disable (although clicking on it will have no
effect), hence the needed CSS class.

From this point on, the disabled label can be configured when the extension
is instantiated and it will be shown when the button is clicked! The code source
for this enhanced version is available at https://github.com/nfrankel/client-
extension/tree/v1.1-shared-state-implementation.

Curious readers may have tried to change the code above in order to reset the button
state from the server side. Unfortunately, this does not work. The reason is that
component state is managed server-side, so from a Vaadin point-of-view, the button
is not disabled. We can with a little effort fix the behavior, by using RPC calls.

Server RPC
RPC stands for Remote Procedure Calls and is a very old computer science feature.
This will let you immediately disable the button widget client-side as well as call
the server to update its counterpart component.

Server RPC architecture
Extensions can expose callable points in the form of server RPC. Such RPC
is just an interface that has to extend ServerProxy, which is a marker interface
(an interface without methods).

Connector

P
ro

xy

S
er

ve
r

R
P

C

Extension

On the client side, connectors just need to create a proxy over this RPC. Vaadin
will transparently carry calls to the proxy from the connector to the server, hence
the RPC name to it.

https://github.com/nfrankel/clientextension/tree/v1.1-shared-state-implementation
https://github.com/nfrankel/clientextension/tree/v1.1-shared-state-implementation

Creating and Extending Components and Widgets

[324]

How-to
In our case, the RPC should disable the button and set its label. The RPC interface
looks like:

import com.vaadin.shared.communication.ServerRpc;

public interface DisableOnClickButtonRpc extends ServerRpc {

 void disableButton(String disabledLabel);
}

Troubleshooting
Note that since the RPC class will be proxied, it has to be in a
client subpackage to be compiled. As ever, if not the case, it will
fail silently, but surely.

The extension has to wrap such an implementation and register it (that is, listen
to RPC calls made by the client-side proxy).

import com.vaadin.shared.communication.ServerRpc;
...

@SuppressWarnings("serial")
public class DisableOnClickButtonExtension extends AbstractExtension {

 private Button button;

 private ServerRpc rpc = new DisableOnClickButtonRpc() {

 @Override
 public void disableButton(String disabledLabel) {

 button.setCaption(disabledLabel);
 button.setEnabled(false);
 }
 };

 public DisableOnClickButtonExtension(String disabledLabel) {

 registerRpc(rpc);
 getState().setDisabledLabel(disabledLabel);
 }

 protected void extend(Button button) {

Chapter 9

[325]

 this.button = button;

 super.extend(button);
 }

 ...
}

Note that we need to get a handle on the button to change its state. This is easily
achieved in the extend(Button) method already available to us.

The client side also creates a server RPC but this time through a factory method
returning a proxy. Then we call the only method of the interface and watch the
magic happen on the server side.

import com.vaadin.client.communication.RpcProxy;
...

@SuppressWarnings("serial")
@Connect(DisableOnClickButtonExtension.class)
public class DisableOnClickButtonConnector extends
AbstractExtensionConnector {

 private DisableOnClickButtonRpc rpc =
 RpcProxy.create(DisableOnClickButtonRpc.class, this);

 ...

 button.addClickHandler(new ClickHandler() {

 @Override
 public void onClick(ClickEvent event) {

 String disabledLabel = getState().getDisabledLabel();
 button.setEnabled(false);
 button.addStyleName(DISABLED_CLASSNAME);
 button.setText(disabledLabel);

 rpc.disableButton(disabledLabel);
 }
 ...
}

This time, when we query for the button status, it returns disabled (as well as
the right caption).

Full sources for this final version can be found online on GitHub at
https://github.com/nfrankel/client-extension/tree/v1.2-server-rpc.

Creating and Extending Components and Widgets

[326]

Beware that for event queuing reasons, querying for status in a
click listener attached to the button itself may not return the correct
status. It has to be done in another component (to give the server
some time to handle the RPC call).

GWT widget wrapping
Another way to create custom components in Vaadin is to wrap GWT widgets
under a thin Vaadin layer. This is the way some out-of-the-box Vaadin components
are themselves provided.

Vaadin GWT architecture
Vaadin GWT architecture is based on two foundations: client-side and server-side.

How-to server-side
On the server-side, things are like the former extension. We need to create a class
implementing Component, though it is well-advised to extend AbstractComponent
for Vaadin takes care of much boring code for us.

In the case of state sharing, we have to override the getState() method to narrow
the return state type.

How-to client-side
On the client-side, there are no requirements for the wrapped widget, beyond
inheriting from com.google.gwt.user.client.ui.Widget!

Here's an example of the widget hierarchy:

1.	 At the hierarchy top lies Widget, from the GWT framework itself.
2.	 Some third-party library provides a widget we want to use within

our application. There can be as many inheritance levels from this
widget to Widget.

3.	 Optional: subclass the former if we need to add custom code, server
RPC, for instance.

Chapter 9

[327]

In this case, as a convention, Vaadin widgets are prefixed with V for "Vaadin".
It is advised to have your own prefix for widgets, generally taken from your
company: we will use the P as in "Packt Publishing".

When relevant, connector, shared state, and server RPC also have to be developed
client side, as for extensions. Refer to the appropriate sections if needed, since it
behaves exactly in the same way.

There is a slight difference in the connector part, though. Whereas extensions
inherited from AbstractExtensionConnector, full-fledged widgets have to
extend AbstractComponentExtension.

In particular, concrete component connectors have to implement:

•	 createWidget() to create the new widget instance
•	 getWidget() to narrow the returned type

Creating and Extending Components and Widgets

[328]

Widget styling
Style for unknown widgets cannot be inferred by Vaadin. This means we have to
provide a CSS for them, regardless of the current theme. Theming can be used to
customize the widget base look for a particular theme.

GWT offers a way to reference CCS: it can be named however we like, but has to be
present in a public directory and referenced in the widgetset gwt.xml file like so:

<stylesheet src="stylesheet.css" />

Troubleshooting
If nothing shows up in the browser, first check the DOM with
your browser (Google Chrome or Firefox with the Firebug plugin)
to check the widget is here. In most cases, it's the case but it has no
CSS attached.

Example
As an example, we will wrap an existing GWT widget. The GWT Incubator project
offers one such widget, YouTubeViewer.

Like its name implies, it provides a way to display the chosen video on YouTube.

The Incubator project has not been released since 2010, and the viewer
itself is deprecated. Nonetheless, it makes for a simple illustration.

In order to go further, we just have to detail the existing widget to be wrapped.

Chapter 9

[329]

The widget provides some attribute for customization: to make things simpler,
we will just use the movie ID.

Prerequisites
Prerequisites are like for any standard Java libraries in Java web applications:

1.	 Download the JAR library at http://google-web-toolkit-incubator.
googlecode.com/files/gwt-incubator-20101117-r1766.jar.

2.	 Put it in the WEB-INF/lib folder of your project to make it accessible.

Server component
For the server component, we just have to extend AbstractComponent, as stated
above, and wire the right shared state class. We also need a way to provide the
video ID. From a design point-of-view, this can be achieved through a setter, a
constructor, or both shown as follows:

import com.packt.learnvaadin.gwt.client.YouTubViewerState;
import com.vaadin.ui.AbstractComponent;

@SuppressWarnings("serial")
public class YouTubeViewer extends AbstractComponent {

 public YouTubeViewer() {}

 public YouTubeViewer(String movieId) {

 setMovieId(movieId);
 }

 @Override
 protected YouTubViewerState getState() {

 return (YouTubViewerState) super.getState();
 }

 public void setMovieId(String movieId) {

 getState().setMovieId(movieId);
 }
}

This is all that is mandatory in the server component class.

http://google-web-toolkit-incubator.googlecode.com/files/gwt-incubator-20101117-r1766.jar
http://google-web-toolkit-incubator.googlecode.com/files/gwt-incubator-20101117-r1766.jar

Creating and Extending Components and Widgets

[330]

Client classes
On the client side, we need to create the shared state used previously. As stated,
we will only use the movie ID. We already did that in the extension section:

import com.vaadin.shared.AbstractComponentState;

@SuppressWarnings("serial")
public class YouTubViewerState extends AbstractComponentState {

 private String movieId;

 public String getMovieId() {
 return movieId;
 }

 public void setMovieId(String movieId) {
 this.movieId = movieId;
 }
}

Next, let us create the connector:

import com.google.gwt.user.client.ui.Widget;
import com.google.gwt.widgetideas.client.YouTubeViewer;
import com.vaadin.client.communication.StateChangeEvent;
import com.vaadin.client.ui.AbstractComponentConnector;
import com.vaadin.shared.ui.Connect;

@SuppressWarnings({ "serial", "deprecation" })
@Connect(com.packt.learnvaadin.gwt.YouTubeViewer.class)
public class YouTubeViewerConnector extends AbstractComponentConnector
{

 @Override
 public YouTubViewerState getState() {

 return (YouTubViewerState) super.getState();
 }

Chapter 9

[331]

 @Override
 public YouTubeViewer getWidget() {

 return (YouTubeViewer) super.getWidget();
 }

 @Override
 protected Widget createWidget() {

 return new YouTubeViewer("");
 }

 @Override
 public void onStateChanged(StateChangeEvent stateChangeEvent) {

 super.onStateChanged(stateChangeEvent);

 String movieId = getState().getMovieId();

 getWidget().setMovieID(movieId);
 }
}

As opposed to the shared state, there are several comments to make on the
connector code:

•	 Binding the connector to the server component is achieved through
the @Connect annotation, as for extensions

•	 On the contrary, binding the client widget is made through an
implementation of the createWidget() method

•	 Finally, notice we overrode the onStateChanged() method so that
when state changes, that is. when the movie id is set on the server-side,
the widget is set the same id and displays the desired movie

The source code for this example is available at https://github.com/nfrankel/
gwt-integration.

https://github.com/nfrankel/gwt-integration
https://github.com/nfrankel/gwt-integration

Creating and Extending Components and Widgets

[332]

The final result looks somewhat like the following screenshot: a Youtube player with
a field for the movie ID. When the field value changes, the player displays the new
movie (if the ID is valid).

JavaScript wrapping
The previous section taught us about GWT widget wrapping, but what to do when
there is no GWT widget available, but plain JavaScript? Do we need to first wrap
the JavaScript in a custom made widget? That was the case for version 6 of Vaadin,
but version 7 takes care of that.

Chapter 9

[333]

How-to
On the server-side, there are a couple of requirements:

1.	 The component class must inherit from AbstractJavaScriptComponent.
2.	 It must be annotated with @Javascript. This annotation takes an array

of all JavaScript files needed for value. JavaScripts can be either referenced
by an absolute URL or relative to the component class. In the latter case, it
is much simpler to put them in the same package as the component to
avoid unnecessary hassle and directly reference them by their name
(including .js extension).

3.	 Finally, we also need a gwt.xml file referencing at least Vaadin
default widget set. It has to be set as an init-param in the web
deployment descriptor, as before.

On the client-side, a single JavaScript is to be Vaadin entry-point; it must have
the following structure:

window.server_package_with_underscore_for_separator = function() {

 ...

 this.onStateChange = function() {

 ...
 }
}

The onStateChange function will be called at initialization, so this is where
we need to put code that we want to be executed at that time, the rest can be
put in other scripts.

Beware that since AbstractJavaScriptComponent also may have shared state
(refer to the section Shared state), this method will also be called when state changes.
State class to inherit is then com.vaadin.shared.ui.JavaScriptComponentState.

Example
We are going to display a simple 3D scene with Vaadin using WebGL. First of
all, we need to check our browser is compatible (see http://caniuse.com/webgl).

WebGL itself being kind of low-level, we are going to use Three.js,
a JavaScript library.

Creating and Extending Components and Widgets

[334]

This book is neither about WebGL nor Three.js and both
require dedicated books. For more information, go respectively to
https://www.khronos.org/webgl/ and http://threejs.org/.

Prerequisites
Download the library from http://github.com/mrdoob/three.js/zipball/
master and extract the build/three.min.js.

Core
We need a server component:

package com.packtpub.learnvaadin.js;

import com.vaadin.annotations.JavaScript;
import com.vaadin.ui.AbstractJavaScriptComponent;

@SuppressWarnings("serial")
@JavaScript({
 "https://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js",
 "three.min.js",
 "scene.js"
})
public class ThreeJs extends AbstractJavaScriptComponent {

}

It is quite simple. Notice we did not need to download JQuery, we used the Google
provided online instance. The scene.js will be our entry point, and is the next step.

window.com_packtpub_learnvaadin_js_ThreeJs = function() {

 // set the scene size
 var WIDTH = 400, HEIGHT = 300;

 // set some camera attributes
 var VIEW_ANGLE = 45, ASPECT = WIDTH / HEIGHT, NEAR = 0.1;
 var FAR = 10000;

 // create a WebGL renderer, camera and a scene
 var renderer = new THREE.WebGLRenderer();
 var camera = new THREE.PerspectiveCamera(
 VIEW_ANGLE, ASPECT, NEAR, FAR);
 var scene = new THREE.Scene();

http://github.com/mrdoob/three.js/zipball/master
http://github.com/mrdoob/three.js/zipball/master

Chapter 9

[335]

 // create the cube's material
 var material = new THREE.MeshLambertMaterial({
 color : 0xCC0000
 });

 // create a new mesh with cube geometry, the material next!
 var cube = new THREE.Mesh(new THREE.CubeGeometry(
 50, 50, 50, 16, 16, 16), material);

 // create a point light
 var light = new THREE.PointLight(0xFFFFFF);

 // set its position
 light.position.x = 10;
 light.position.y = 50;
 light.position.z = 130;

 // the camera starts at 0,0,0 so pull it back
 camera.position.z = 150;

 // start the renderer
 renderer.setSize(WIDTH, HEIGHT);

 cube.rotation.x += 0.5;
 cube.rotation.y += 0.4;

 // add the cube to the scene
 scene.add(cube);

 // and the camera
 scene.add(camera);

 // add to the scene
 scene.add(light);

 // get the DOM element to attach to assume we've got jQuery to hand
 var $container = $("<div id='container'/>").appendTo('.v-ui');

 // attach the render-supplied DOM element
 $container.append(renderer.domElement);
 this.onStateChange = function() {

 // draw!
 renderer.render(scene, camera);
 }
}

Creating and Extending Components and Widgets

[336]

Important parts of this code are highlighted:

•	 We put the JavaScript server-side in the com.packtpub.learnvaadin.js
package (same as the component), so the namespace mimics it, replacing
dots with underscore

•	 We use jQuery to create a div on the HTML page and it will be used to
display the scene

•	 Finally, the only code we need to call in the onStateChange function is
the rendering itself

This example's complete code for can be browsed and forked at https://github.
com/nfrankel/js-integration. In a browser, this is what should be displayed:

It is nothing fancy, a simple cube, and yet we used Vaadin to display raw JavaScript.

Because we can
Just because we can do something that it should be done. In
particular, one advantage of Vaadin is to wrap messy HTML,
JavaScript, CSS, and AJAX under a nice and clean Java layer.
Using JavaScript directly in one part or two of your application
is definitely OK, but if you find yourself writing more JavaScript
than Java code, you would better use the framework capabilities
or remove it completely.

https://github.com/nfrankel/js-integration
https://github.com/nfrankel/js-integration

Chapter 9

[337]

Componentized Twaattin
The table we used to display our tweets in Chapter 7, Core Advanced Features
displayed the data, but it was lacking in design.

Moreover, Twitter itself has another way of showing the tweets: looking at the
site, we can easily see there's potential for a reusable component in the form
of a tweet widget!

Designing the component
On Twitter's site, a tweet looks similar to the following diagram:

Photo

Screen_name

Lorem ipsum dolor sit amet consectetor adipiscing
elt.Sed vitae elo vitare mauris.

Full Name

when deletereplyfavorite

There is not much chance a GWT widget is available. So, we are going to go for
the composition approached, we learned about in the first section.

Laying out the component would look similar to the following diagram:

M
ai

n(
ve

rt
ic

al
 la

yo
ut

)

Names block

Tweet

Actions bar

Creating and Extending Components and Widgets

[338]

Updating Twaattin's code
The most important Twaattin's change is the new component. However, we need a
way to pass Twitter data to the component. In the previous section, it was handled
through bean items: it is not possible anymore.

A first-approach implementation could be to pass the raw Status interface to the
component in the constructor. Unfortunately, this would couple the component to
Twitter4J API. It would also put logic for computing fields in the component, which
is too much responsibility in a good object-oriented design: the component's role
should only be to display content, nothing else.

A more refined design would be to create a dumb data placeholder, also known
as a Data Transfer Object, and pass it instead. A third-party class would hold
logic to compute fields from the Status to the DTO.

TimelineScreen VerticalLayout

TweetRefresherBehavior

StatusDto StatusConverter

<<create>>

<<create>>
StatusComponent

<<create>>

1

Data Transfer Object
public class StatusDto {

 private String name;
 private String screenName;
 private String profileImage;
 private String tweet;
 private String retweetedBy;

 // Getters and setters go here

}

As stated earlier, this class is very simple, with no logic.

Chapter 9

[339]

Status component
In the component, we only use very basic widgets seen before: layouts, labels
and links. Images are new, but are only thin wrappers around external resources.

import static com.vaadin.server.Sizeable.Unit.PIXELS;
import static com.vaadin.shared.ui.label.ContentMode.HTML;

import com.packtpub.learnvaadin.twaattin.ui.convert.StatusConverter;
import com.packtpub.learnvaadin.twaattin.ui.convert.StatusDto;
import com.vaadin.server.ExternalResource;
import com.vaadin.server.Resource;
import com.vaadin.ui.Button;
import com.vaadin.ui.CustomComponent;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Image;
import com.vaadin.ui.Label;
import com.vaadin.ui.Link;
import com.vaadin.ui.VerticalLayout;

@SuppressWarnings("serial")
public class StatusComponent extends CustomComponent {

 public StatusComponent(StatusDto dto) {

 ExternalResource userPage =
 new ExternalResource(StatusConverter.TWITTER_USER_URL +
 dto.getScreenName());

 Link name = new Link(dto.getName(), userPage);

 Label screenName = new Label('@' + dto.getScreenName());

 HorizontalLayout names = new HorizontalLayout(name,
 screenName);

 names.setSpacing(true);

 Label tweet = new Label(dto.getTweet(), HTML);

 HorizontalLayout actionsBar =
 new HorizontalLayout(new Button("Reply"),
 new Button("Retweet"), new Button("Favorite"));

Creating and Extending Components and Widgets

[340]

 actionsBar.setSpacing(true);

 String retweetedBy = dto.getRetweetedBy();

 VerticalLayout rightSide;

 if (retweetedBy == null) {

 rightSide = new VerticalLayout(names, tweet, actionsBar);

 } else {

 Label label = new Label("Retweeted by " + retweetedBy,
 HTML);

 rightSide = new VerticalLayout(
 names, tweet, label, actionsBar);
 }

 rightSide.setSpacing(true);

 Resource pictureRes = new
 ExternalResource(dto.getProfileImage());

 Image picture = new Image(null, pictureRes);

 picture.setHeight(50, PIXELS);
 picture.setWidth(50, PIXELS);

 HorizontalLayout mainLayout =
 new HorizontalLayout(picture, rightSide);

 mainLayout.setMargin(true);
 mainLayout.setSpacing(true);

 setCompositionRoot(mainLayout);
 }
}

Chapter 9

[341]

Apart from the whole layout code, two important things are worthy of notice:

•	 The first is the component constructor. It has data for all data needed
for the component creation in a nice single DTO parameter. We don't
provide a setter so that this data is used for initialization only; the
component is immutable.

•	 Also, we remembered to use the setCompositionRoot() method and
not to add components directly to the component but to the root instead.

Code online displays the setStyleName() calls: they are here so we
can customize the design with theming but are not mandatory. They
should be used in any composite component worth reusing though.

Status converter
The previous component is used only for display. The transformation of status data
into HTML and hyperlink is done in the converter.

Timeline screen
The timeline screen has to be changed to remove the table, and add a vertical layout
to stack the tweet components.

public class TimelineScreen extends VerticalLayout {

 private static final long serialVersionUID = 1L;

 public TimelineScreen() {

 setMargin(true);

 Label label = new Label(VaadinSession.getCurrent()
 .getAttribute(Principal.class).getName());

 Button button = new Button("Logout");

 button.addClickListener(new LogoutBehavior());

 HorizontalLayout menuBar = new HorizontalLayout(label,
 button);

 menuBar.setWidth(100, PERCENTAGE);

Creating and Extending Components and Widgets

[342]

 menuBar.setComponentAlignment(button, MIDDLE_RIGHT);
 menuBar.setMargin(true);

 addComponent(menuBar);

 addComponentAttachListener(new TweetRefresherBehavior());

 VerticalLayout timeline = new VerticalLayout();

 addComponent(timeline);
 }
}

The source code is available online at https://github.com/nfrankel/twaattin/
tree/chapter9.

https://github.com/nfrankel/twaattin/tree/chapter9
https://github.com/nfrankel/twaattin/tree/chapter9

Chapter 9

[343]

Summary
In this chapter, we learned about several ways to add custom components to
extend our palette of existing components.

The first section told us about component composition. Composition is all
about inheriting from CustomComponent. This can be done manually or
graphically through the Visual Designer available in the Eclipse Vaadin plugin.

We also described how to create add-ons, to add client-sided behavior in existing
widgets. Then we moved further to wrap existing client-side GWT widgets in
new Vaadin components. Finally, we learned how to do without GWT and
directly interact with JavaScript. All of those are based on these core classes:

•	 Connectors allow for Vaadin communication between client and server code
•	 Shared state represent common data structure synchronized between

both sides
•	 RPC directly execute server method calls from client code

This chapter should have brought you all the skills necessary to go beyond Vaadin out-
of-the-box components. The next chapter will be about using Vaadin in the enterprise.

Enterprise Integration
Until now, we used Vaadin in a "standard" fashion, packaged with an IDE-based
build and deployed on an application server (or JSP/servlet container). This chapter
will show us details on how to integrate Vaadin in some components that are part of
the enterprise ecosystem:

•	 Maven-based build
•	 Deploying Vaadin portlets on portals
•	 Deploying Vaadin-based services on OSGi platforms
•	 Finally, deploying Vaadin applications "in the cloud"

We will take a brief look at what each platform really is, and then see how
Vaadin can run on them with a little tweaking.

First we will see how to manage multiplatform development and how build
tools minimize the required effort.

Build tools
Until now, in order to create our WAR, we either ran the application inside Eclipse
(or other IntelliJ) or used its export feature, which is nice but not really automated
enough. During the normal course of enterprise projects, packages are created
through standard tools. There are the following few arguments in favor of such tools:

•	 Nowadays, we need automated and reproducible builds so that we may
have continuous builds. Every time a commit is detected or at fixed times,
the build is launched and a bad commit—one that breaks the build—is
spotted as early as possible.

Enterprise Integration

[346]

•	 Moreover, if we want our project to be able to run on multiple platforms,
and as some configuration may be in conflict, we need to remove those
manual and error-prone configuration changes for each build.

•	 If our project has more than one developer, it lets each one develop with
their favorite IDE, confident in the fact that a third-party tool will handle
the build itself.

•	 Finally, build tools let us plug in other features, such as automated tests.

Available tools
Nowadays, plenty of enterprise-quality build tools are available for free.
The problem lies in choosing the right one.

Apache Ant
In Java, the first portable build tool was Apache Ant (http://ant.apache.org/).
At the time, it was a revolution that soon engulfed the entire ecosystem: every project
worth its salt provided an Ant build file that allowed users build it regardless of their
respective operating system.

However, Ant's following limitations soon became apparent:

•	 The Ant build file is very liberal in its approach. To be simplistic, it just
defines targets, whatever those may be: compile, copy, create the archive,
and so on. As such, no two build files appear the same even if they perform
the same thing. In short, build files are not paragons of readability.

•	 In addition, Ant's compile target needs the classpath definition. As a
build has to be consistent, external libraries have to be provided and thus
committed to the project's source versioning software that it then bloats,
and adds no particular value to.

Apache Maven
In order to correct Ant's flaws, Apache launched a new build tool named Maven
(http://maven.apache.org/). It corrected the previous shortcomings with two
brand-new ideas at the time:

Chapter 10

[347]

•	 Maven brought standardization to builds:
°° A standardized build cycle: compile, copy, archive, and so on. As such,

Maven's build file, the famed Project Object Model (POM) does not
tell what it does, like in Ant, but only configures how it does it.

°° Standardized subprojects in the form of modules. Now, two projects
using WAR inclusion in an EAR look alike!

•	 Maven also brought the concept of a repository where every project should
put its artifacts. Then, instead of manually downloading third-party libraries,
projects would only need to reference them in the registry.

Fragmentation
Maven's approach was not to every developer's taste. Some argued against XML
format's verbosity, others against the POM's lack of extensibility, some just wanted
to hold onto something they practiced for years, such as Ant.

The explosion of languages on the JVM added to the confusion, with every language
coming with its own build tool: Gradle for Groovy, Rake for Ruby, Gant for Grails,
SBT for Scala, and the list goes on.

Final choice
Choosing a build tool in such a context is hard, yet necessary. In the context of this
book, we will use Maven to manage our build.

Two major arguments in favor of Maven are as follows:

•	 Despite many criticisms against Maven, it actually is a major build tool,
if not the tool of choice

•	 Vaadin provides an archetype (see below) to help us create Vaadin projects

Tooling
In Eclipse (or Eclipse-based STS), Maven tooling is provided by the Eclipse's m2e
plugin available at http://download.eclipse.org/technology/m2e/releases/
update sites. Please refer to Chapter 3, Hello Vaadin!, for a reminder regarding the
use of update sites.

After having installed m2e, navigate to Window | Preferences | Maven | Catalog.
Click on Open Catalog. Search on wtp and install the found m2e-wtp connector as
a regular plugin.

Enterprise Integration

[348]

Troubleshooting
If during the web application testing Vaadin throws the following
exception, check the deployment folder on the server:
javax.servlet.ServletException: Failed to load
application class

Chances are that one or more Vaadin JAR files are missing. In this case,
it is perhaps because the m2e-wtp connector is not installed.

As for IntelliJ, it supplies Maven support out of the box. Enjoy!

Maven in Vaadin projects
In Eclipse, there are basically two ways to build Vaadin projects with Maven,
and this is to either create a Vaadin project and add Maven features to it or the
other way around.

Both are valid depending on our use cases.

Mavenize Vaadin projects
First, create a Vaadin project just as we did in Chapter 3, Hello Vaadin!, with the
following three important differences:

•	 For the Java sources folder:
°° Click on Remove on src
°° Then Add Folder src/main/java

•	 For default output folder, enter target/classes
•	 Finally, for the web content directory folder, enter src/main/webapp

If these values remind you of the standard Maven folder structure,
you are absolutely right! Entering these values will prevent us from
manually moving folders around after adding Maven to the mix.

Then, we need to use Maven dependencies management instead of Ivy:

1.	 Right-click on the project directory and navigate to Configure | Convert
to Maven Project. This opens a window: Group Id, Artifact Id, Version,
Packaging, Name, and Description fields are used by the plugin to create
the POM. Fill the values as you would a brand new POM. However,

Chapter 10

[349]

Packaging should be WAR in all cases! Click on Next, as shown in the
following screenshot:

2.	 Right-click again and navigate to Ivy | Remove Ivy dependency
management…. Click on Yes on the opening popup. Remove ivy.xml
and ivysettings.xml files, as they are now useless.

Now comes the manual part; we have to manually clean up our project. Click on the
project and navigate to Java Resources | Libraries. Now select Apache Tomcat 6.0
(the server library), EAR libraries, and Web App Libraries, right-click and navigate to
Build Path | Remove from Build Path.

Finally add the mandatory Vaadin dependencies. For a list of these, we should use
the Vaadin artifact (see next section).

Vaadin support for Maven projects
The other possible way is to create a Maven project and add Vaadin support in Eclipse.

1.	 Navigate to File | New | Project. Locate a Maven project and click on Next
two times (default values are ok for the first window).

Enterprise Integration

[350]

2.	 For archetype selection, filter with Vaadin and select com.vaadin: vaadin-
archetype-application and click on Next, as shown in the following screenshot:

3.	 Enter the values (take a look at the Mavenize Vaadin projects section if you lack
imagination) and click on Finish:

Chapter 10

[351]

A quick glance at the POM tells us it is much more furnished as compared to adding
dependency management to a Vaadin project:

•	 The project.build.sourceEncoding property avoids making our build
platform-dependent

•	 The other properties manage versions: Vaadin JARs and the plugin
•	 The Maven compiler plugin is configured to use Java 6
•	 The Jetty plugin will let us easily test our Vaadin application with the Jetty

servlet container
•	 Finally, two additional repositories are added besides the main Maven

repository: one for Vaadin snapshots, the other for Vaadin add-ons

In order to use the Vaadin Eclipse plugin, right-click on the project and click on
Properties. Select Project Facets on the left-hand side and check Vaadin Plug-in for
Eclipse, as shown in the following screenshot:

Enterprise Integration

[352]

Alternatively and independently of any IDE, we could also use the Maven
command-line to create the project. It can be achieved with the following command:

mvn–B archetype:generate -DarchetypeGroupId=com.
vaadin -DarchetypeArtifactId=vaadin-archetype-application
-DarchetypeVersion=7.0.4 -DgroupId=com.packtpub.learnvaadin
-DartifactId=maven2vaadin -Dversion=1.0.0-SNAPSHOT -Dpackaging=war

Once the project is created, it can be imported in Eclipse and converted to a Vaadin
project as done previously.

Widget compilation
It may be necessary to add client compilation during the build process.

In that case, Vaadin provides the following snippet in the generated POM to
handle that:

<plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>${vaadin.plugin.version}</version>
 <configuration>
 <extraJvmArgs>-Xmx512M -Xss1024k</extraJvmArgs>
 <webappDirectory>
 ${basedir}/src/main/webapp/VAADIN/widgetsets
 </webappDirectory>
 <hostedWebapp>
 ${basedir}/src/main/webapp/VAADIN/widgetsets
 </hostedWebapp>
 <noServer>true</noServer>
 <!-- Remove draftCompile when project is ready -->
 <draftCompile>false</draftCompile>
 <compileReport>true</compileReport>
 <style>OBF</style>
 <strict>true</strict>
 <runTarget>http://localhost:8080/</runTarget>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>resources</goal>
 <goal>update-widgetset</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Chapter 10

[353]

Seasoned Maven users will notice that the widgetset generation output, either
through Eclipse or through Maven, is localized in src/main/webapp and not in
target. This means that we have no need to compile it with each build and it can
be safely isolated in an activatable profile. However, this means we also have to take
care not to commit the VAADIN/widgetset folder.

As this plugin takes a good part of the build time, it is worthwhile.

Running Twaattin outside IDE
With our new Maven build, we can effortlessly run Vaadin outside any IDE by just
typing the following command:

mvn jetty:run

Twaattin is available at http: //localhost:8080/app.

Further Jetty configuration is also available; the whole documentation
is available at http://docs.codehaus.org/display/JETTY/
Maven+Jetty+Plugin.

Mavenizing Twaattin
There is no advantage to migrate Twaattin under Maven at this time, but we will
prepare the project now to be ready for the rest of the chapter.

Preparing the migration
As we are to update an existing project instead of creating the right project structure
from the beginning, we will need to move the directories around:

1.	 First, create the src/main/java and src/main/resources directories. Move
Java files from src to the former and properties files to the latter. Then,
right-click on the project and select Properties. Click on Build Path from the
Source tab. Remove src and add both.

2.	 While we are at it, set the output directory to target/classes instead of
build/classes on the same tab.

3.	 Create a folder named webapp at src/main/ and move files from
WebContent to it. Eclipse does not take on this sort of operation kindly; we
will need to smooth it somewhat. To do so, locate the org.eclipse.wst.
common.component file under the .settings directory. Change the value
of the source-path attribute of the following tag by the new location:
<wb-resource deploy-path="/" source-path="/src/main/webapp"/>

4.	 Finally, remove the lib directory, as it is an Ivy-generated folder

http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

Enterprise Integration

[354]

Enabling dependency management
Now we just need to follow the preceding section procedure. Dependencies go well
beyond Vaadin. We also need the Servlet API and Twitter4J.

Finishing touches
The last step just lets us use Maven dependency management. A few steps are still
needed in order to have a nice polished build file.

Cleaning up warning messages
There may be some disturbing warning messages that pollute our nice build, such as
the following:

Using platform encoding (Cp1252actually) to copy filtered resources, i.e.
build is platform dependent

The preceding message appears when developing on Windows. We need to add a
property to our POM to specify the file encoding:

<project ...>
...
 <properties>
 <project.build.sourceEncoding>
 UTF-8
 </project.build.sourceEncoding>
 </properties>
</project>

Optimizations
Remove the following unnecessary plugins from the POM:

•	 vaadin-maven-plugin: There is no need to compile widgetset as there are no
custom widgets

•	 maven-clean-plugin: As there is no widget generation, there is no need to
clean it

•	 lifecycle-mapping: This plugin is only made to integrate Maven build
into Eclipse

Chapter 10

[355]

Final POM
The final POM being quite large, it is available online at https://github.com/
nfrankel/twaattin/blob/chapter10-maven/pom.xml.

This may seem quite a struggle for little added value, but it is the prerequisite to
effortlessly add additional platforms to run Twaattin on.

Portals
Although not as widespread as some wished them to be 10 years ago, portals are still
common enough to be a target of choice for Vaadin web applications.

Portal, container, and portlet
Before going further, one has to understand some essential notions about what a
portal is and how it is constituted.

Three different concepts are each attached to a different granularity level:

•	 Portlet: A portlet is a pluggable software component meant to be displayed
inside a portal. As opposed to a servlet, a portlet only generates a part of the
rendered page. If we make a parallel to a wall, a portlet would be a brick.

•	 Portal: A portal is a full-fledged application that aggregates portlets. Most
portals will also allow administrators (or individual users) customize the
portlets layout, as well as the global portal's look-and-feel.
To continue our wall analogy, the portal would be the wall itself.

•	 Portlet container: A portlet container is the technical layer that manages
portlets. It plays the same role for them, as would a servlet container
for servlets, including request forwarding, response handling, lifecycle
management, and so on.

In a wall, the container would be the cement that sits between the wall and
each separate brick.

https://github.com/nfrankel/twaattin/blob/chapter10-maven/pom.xml
https://github.com/nfrankel/twaattin/blob/chapter10-maven/pom.xml

Enterprise Integration

[356]

Choosing a platform
Currently, there are the following two different JSR specifications for portlet API:

•	 JSR-168: This is also known as the Java Portlet API, is the first generation
specification introducing portlets in Java. As many first specifications go,
it has limits which the next JSR tries to address.

•	 JSR-286 : This is the Java Portlet API 2.0 and is meant to replace the former
specification. It tries to align itself with the OASIS portlet specifications
(WSRPS 2.0) and introduces new features such as the following:

°° Inter-portlet events
°° Shared rendering parameters
°° Non-HTML resource serving
°° Portlet filters

In addition, different products implementing these specifications are available.
At the time of writing this book, enterprise-grade portals that can be considered
for use comprise both commercial products and free/open source ones.

•	 Commercial products include the following:
°° IBM WebSphere Portal is part of the many offerings of IBM

WebSphere
°° Oracle WebLogic Portal

•	 Free/open source products consist of the following:

°° Apache Jetspeed 2 is a portal relying on Apache Pluto, a raw portlet
container. It does not seem very widespread.

°° JBoss GateIn (http://www.jboss.org/gatein) is the result of the
merging of former projects JBoss Portal and eXo Portal.

°° Last but not least, Liferay is a portal commonly found in the
enterprise. It is developed by Liferay Inc. which also provides
commercial fee-based support for it.

Liferay
Vaadin Ltd. and Liferay Inc. already work together in a partnership to integrate
their products with one another, so there is plenty of good documentation available
online, mostly on www.vaadin.com and on www.liferay.com that describe how to
do that.

Chapter 10

[357]

Starting with Version 6, Liferay comes bundled with Vaadin library and widgetsets,
so there is nothing to install on the platform to run Vaadin applications on it.

If one encounters difficulties running Vaadin applications as portlets, one should
turn to Vaadin forums, which provide answers to many questions.

GateIn
The platform of choice taken as an example for the rest of this section is GateIn.
What is explained in the following sections can be adapted to your portal of choice.

For enterprise users, GateIn is also available as an enterprise
edition, JBoss Portal Platform. It is a particular version of
GateIn for which JBoss provides support—at a price. For more
information, visit https://www.redhat.com/products/
jbossenterprisemiddleware/portal.

Downloading and installation
The latest version of GateIn (3.5.0 at the time of this writing) comes bundled
with either JBoss AS 7 or with Tomcat 7. Using one or the other depends on one's
requirements and personal tastes. In the context of this book, we will use Tomcat 7
as we do not need specific Java EE features.

Download the version that is suitable for you from http://www.jboss.org/
gatein/download.

Installing GateIn is just a matter of unzipping the downloaded archive. For Windows
users, take care to extract it under a path that contains no space characters.

By default, GateIn uses HyperSonic SQL (also known as HSQLDB),
a file-based database. Production-grade installations require a more
robust database backend. What is enough for the scope of this
book is not enough for real-world cases. Please refer to the online
documentation to configure the underlying database at https://
docs.jboss.com/gatein/portal/latest/reference-guide/
en-US/html_single/#sect-Reference_Guide-Database_
Configuration.

Launch
Navigate to <GATEIN_HOME>/bin and type:

gatein start

https://www.redhat.com/products/jbossenterprisemiddleware/portal
https://www.redhat.com/products/jbossenterprisemiddleware/portal
http://www.jboss.org/gatein/download
http://www.jboss.org/gatein/download
https://docs.jboss.com/gatein/portal/latest/reference-guide/en-US/html_single/#sect-Reference_Guide-Database_Configuration
https://docs.jboss.com/gatein/portal/latest/reference-guide/en-US/html_single/#sect-Reference_Guide-Database_Configuration

Enterprise Integration

[358]

Alternatively, calling gatein jpda start shell (or bat) instead lets
us launch GateIn in debug mode, in order to connect to the JVM within
the IDE.

In order to check whether GateIn launched normally, navigate to http: //
localhost:8080/portal. The default portal home page should be displayed,
as shown in the following screenshot:

Now it is done, we are good to go further!

Troubleshooting
If Tomcat runs fine but you get a "404 not found" error in your
browser, be sure to check that the CATALINA_HOME environment
variable is not set (or at least set to GateIn extract directory) and
carefully read the console.

Chapter 10

[359]

Tooling
The good news here is that we already have all the needed tooling at our disposal,
as the Vaadin Eclipse plugin has the right parameters to create portlets instead of
standard web applications.

A simple portlet
As an example, we will develop a simple portlet that displays a message when
a button is clicked.

The development of such an application holds no secret for us, so let's focus
our attention on the differences when developing portlets.

Creating a project
Portlet project creation starts like any other Vaadin project; by navigating to
File | New | Other and choosing Vaadin7 Project.

Fill the wizard as we did in Chapter 3, Hello Vaadin!. Now in deployment
configuration, replace Servlet (default) with Generic Portlet (Portlet 2.0).

In order to configure the context root, enter hello during the WebModule
configuration step; for the portlet title, type vaadinportlet.

In the final step, the Portlet version is asked for again;
do not change it as it could have adverse effects on the
project's integrity

Finishing the wizard, Vaadin creates the project, just like we saw in Chapter 3.

Portlet project differences
There are some subtle (and not so subtle) Portlet project differences that we will
look into in detail.

Enterprise Integration

[360]

Portlet deployment descriptor
The Vaadin Eclipse plugin created a portlet.xml file under the WEB-INF folder
in the new project. Developers familiar with portals know this file as the portlet
deployment descriptor. For those unfamiliar, it is very akin to a web deployment
descriptor (web.xml), but aimed at portals instead of applications servers.

The generated descriptor is as follows (comments excluded):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<portlet-app version="2.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 10

[361]

 xsi:schemaLocation="
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello Portletportlet</portlet-name>
 <display-name>hello-portlet</display-name>
 <portlet-class>com.vaadin.server.VaadinPortlet</portlet-class>
 <init-param>
 <name>UI</name>
 <value>com.packtpub.learnvaadin.HelloPortletUI</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>hello-portlet</title>
 <short-title>hello-portlet</short-title>
 </portlet-info>
 </portlet>
</portlet-app>

The following describes the differences as compared to a generated web
deployment descriptor:

•	 The XML schema points to a portlet schema, not a web app schema.
•	 The support section displays both the output mime-type and the

portlet-mode. As a general rule, the former should not be changed
as it fits Vaadin's output. As for the mode, the specification defines
the following three modes:

°° View displays the portlet; it is the standard mode
°° Edit lets the user change/configure/manage the portlet
°° Help displays help for the portlet

In addition to the three standard modes, it is also possible to define
custom modes.
Although each of these modes has a semantically unique meaning, nothing
prevents us from using the view mode to configure the portlet. By default,
the mode is "view" and it matches most of our use cases.

Enterprise Integration

[362]

•	 Finally, title and short-title have to be filled. Both Liferay and
GateIn will look for these pieces of data and won't display the portlet if
they are missing:

Portal proprietary files
The Vaadin Eclipse plugin also creates the Liferay proprietary files: liferay-
display.xml, liferay-portlet.xml, and liferay-plugin-package.properties.

When using GateIn as the portal platform, those can safely be ignored or deleted.

Similarities
Despite the previous differences, keep in mind that there are also a few similarities;
the application instance is the same regardless of the deployed platform. This means
that we can keep our code, just update the deployment descriptor, and we are good
to go on an entirely different platform!

Chapter 10

[363]

There is slight reservation to this, however, as listeners (if in scope) are
context-dependent; see the section named Handling portlet specifics in this
chapter.

Using the portlet in GateIn
Now all the necessary development tasks are done, we still have do make the portlet
available to GateIn and add it in a page.

Deploying in GateIn
Deploying the portlet in GateIn will make it available for further use. In order to do
this, perform the following steps:

1.	 Export the portlet as a WAR file. Right-click on the project and choose Export
| WAR file.

2.	 Copy-paste the exported WAR file under <GATEIN_HOME>/webapps.

If the initial configuration is kept, Tomcat will automatically and recursively unpack
the exported WAR file in the webapps directory and will start the application. This
can be verified by the following Vaadin trace in Tomcat's command window:

May 05, 2013 7:09:30 PM org.apache.catalina.startup.HostConfig deployWAR

INFO: Deploying archive hello-portlet.war of webapp

May 05, 2013 7:09:32 PM com.vaadin.server.
DefaultDeploymentConfigurationcheckProductionMode

Warning:

===

Vaadin is running in DEBUG MODE.

Add productionMode=true to web.xml to disable debug features.

To show debug window, add ?debug to your application URL.

===

Adding the portlet to a page
In order to add the portlet to a page, we need to log in to the portal with the
credentials to do it.

Sign in
Click on Sign in on the left-hand side of the menu bar. It opens a login pop-up
window. By default, root/gtn will enable us to have enough credentials to make
changes to pages (or add new ones, for that matter).

Enterprise Integration

[364]

Refresh portlets
Before adding the portlet to a page, a user action is needed. Once logged in, choose
the Group menu and navigate to Administration | Application Registry. It opens
the complete list of available portlets. At this point, we cannot see our newly
deployed servlet.

Click on the Import Applications option at the top-left corner of the window (after
navigating to Portlet | Gadget). A confirm dialog opens asking whether portlets
should be imported (this will be done in their respective category) and click on OK.

A new category appears, matching the deployed WAR file's name. Under it, there
should be a single portlet that takes its name from the portlet deployment descriptor.

Add portlet
From this point on, portlets exported to the GateIn webapps directory will be
available for use by end users.

Therefore, navigate to the Site Editor menu and choose Edit Page. This will change
the page mode to edit and will change the display. On the Page Editor tool pane,
search for the freshly added category, and drag-and-drop the child portlet where you
want on the main layout.

Saving is achieved by clicking on the disk icon in on the Page Editor tool pane.
The new portlet will be displayed but unfortunately, nothing shows apart from the
following plain message:

Failed to load the bootstrap javascript: /html/VAADIN/vaadinBootstrap.js

Chapter 10

[365]

The next section will get us this answer to this error.

Configuring GateIn for Vaadin
In fact, we missed a crucial step in using Vaadin in GateIn and that is the portal
configuration. We will correct this in the following sections.

Themes and widgetsets
Vaadin client's code needs access to the /VAADIN path, where both themes and GWT-
compiled widget sets lie. When served by a servlet, this path is relative to the root of
the web application.

Unfortunately, in the context of a portal, Vaadin has no reference to the servlet
context, thus it cannot get the webapp's root. Therefore, the framework will try to
access /html/VAADIN relative to the server's root to get these files.

There are some options to make this work.

Enterprise Integration

[366]

Serve files from the portal
The first solution is to serve files directly from the portal. We need to extract files
from the vaadin-client-compiled.jar and vaadin-themes.jar files in the ROOT
webapp under html, as well as the vaadinBootstrap.js file:

The latter file is available in the VAADIN folder in vaadin-server.jar.

This approach has the advantage of putting the default widgetset in a common
location, so that all Vaadin's portlets use it. On the other side, this makes the build
process more complicated as we have to separate static Vaadin files in one archive
and bytecode inside the WAR file.

Serve files from an HTTP server
As an alternative, if we have an HTTP server (Apache HTTP server, Microsoft IIS,
or another) in front of our application server(s), the former could serve these files
instead of the latter.

It has the same pros and cons as the previous solution, but with an additional tier.

Chapter 10

[367]

Pick a solution and use it here; refreshing the page will display the Vaadin portlet, as
shown in the following screenshot:

Advanced integration
Beyond a simple Hello World, we need advanced capabilities brought by Vaadin.
We will check how they work in a portal context.

Restart and debug
We can use Vaadin restart and debug features in GateIn (or any other portal)
like we used in standard web applications.

Just append restartApplication and/or debug query parameters and watch
the magic happen.

Be wary that in this case, it will restart all Vaadin portlets displayed on
the page at refresh time. Moreover, it will only show the debug window
of a single Vaadin portlet, in a non-deterministic way. Hence, it is easier
to use these parameters during development when there is only a single
Vaadin portlet; that is when they are used anyway.

Enterprise Integration

[368]

Handling portlet specifics
Portlets have some features that are unique as regards to standard web applications.

First, they have a unique lifecycle. Beyond the portlet standard init() and
destroy() methods, two steps are also important: the process action phase and the
render phase.

Second, a portlet container also manages the following for each portlet:

•	 Its mode: Edit, view, and help
•	 Its window state: Normal, minimized, and maximized

Finally, JSR 286 also adds event handling between portlets.

All of these features translate into the portlet API. However, much like the servlet
API, the Vaadin framework hides the latter, so developers do not have to worry
about it.

In order to let us interact with these elements, Vaadin makes the PortletListener
interface available, defined in the VaadinPortletSession class.

Each of the listener's method maps one of the following portlet
request-processing phases:

Phase Method Description
Render handleRenderRequest() Generate HTML
Action handleActionRequest() Process user actions
Resource handleResourceRequest() Serve resources
Event handleEventRequest() Manage events

Chapter 10

[369]

Adding a listener to a GUI component is just a matter of checking the session to
check its type (VaadinServletSession or VaadinPortletSession). The following
snippet illustrates this:

import static javax.portlet.PortletMode.EDIT;
import static javax.portlet.PortletMode.VIEW;

import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.EventRequest;
import javax.portlet.EventResponse;
import javax.portlet.PortletMode;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.ResourceRequest;
import javax.portlet.ResourceResponse;

import com.vaadin.server.VaadinPortletSession;
import com.vaadin.server.VaadinPortletSession.PortletListener;
import com.vaadin.server.VaadinSession;
import com.vaadin.ui.Button;
import com.vaadin.ui.Button.ClickEvent;
import com.vaadin.ui.CustomComponent;
import com.vaadin.ui.Label;
import com.vaadin.ui.UI;
import com.vaadin.ui.VerticalLayout;

@SuppressWarnings({ "serial", "deprecation" })
public class HelloScreen extends CustomComponent implements
PortletListener {

 private Button button = new Button("Click Me");

 public HelloScreen() {

 final VerticalLayout layout = new VerticalLayout();

 layout.setMargin(true);

 setCompositionRoot(layout);

 button.addClickListener(new Button.ClickListener() {

Enterprise Integration

[370]

 public void buttonClick(ClickEvent event) {

 layout.addComponent(
 new Label("Thank you for clicking"));
 }
 });

 layout.addComponent(button);

 if (VaadinSession.getCurrent() instanceofVaadinPortletSession) {

 VaadinPortletSession portletSession =
 (VaadinPortletSession) VaadinSession.getCurrent();

 portletSession.addPortletListener(this);
 }
 }

 @Override
 public void handleRenderRequest(RenderRequest request,
 RenderResponse response, UI uI) {

 PortletMode mode = request.getPortletMode();

 if (mode == VIEW) {

 button.setVisible(false);

 } else if (mode == EDIT) {

 button.setVisible(true);
 }
 }

 // Other methods left empty
 ...
}

This code is pretty self-explanatory: in the edit mode, the button is visible while in
the view mode, it is not.

Chapter 10

[371]

We also need to add support for edit in the portlet deployment descriptor:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<portlet-app ...>

<portlet>
 ...
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
</supports>
 ...
</portlet>
</portlet-app>

In order to check the behavior, click on the Edit Portlet icon in the portlet bar during
page edit. This opens a pop up, showing the portlet in edit mode, button included.
Click on it a couple of times then click on Close at the bottom of the pop up. After
quitting page edition, the button will not be shown anymore, but labels will be,
and as many times as the button was clicked during editing:

Check complete source online at https://github.com/nfrankel/hello-portlet.

Enterprise Integration

[372]

Portlet development strategies
During development, chances are we won't get our portlet right the first time.
In order to ease our work, there are some techniques we can use.

Keep our portlet servlet-compatible
As a rule of thumb, portlet development is generally much slower than servlet
development because of all the packaging and deployment involved. Tomcat or
NetBeans integration in Eclipse lets us update classes and see changes on the fly
most of the time. Hence, it is better if we can develop a servlet; it is advised to keep
the servlet-compatibility mode as long as possible to test our portlet in a simple
servlet container.

Portal debug mode
When this parallel cannot be maintained, for example, in order to add inter-portlet
communication features, we will have to deploy our newly-developed portlet on
the target portal to develop further. In order to be able to debug the portlet, the
following actions are in order:

1.	 Launch GateIn in debug mode with the help of the gatein jpda start
command (instead of the standard gateinstart).

2.	 In Eclipse, connect to the JVM launched in the debug mode. In order to
accomplish this, click on the scrolling menu of the Debug button on the
toolbar (the one that looks like a bug) and choose Debug Configurations.

3.	 This will open a window. Select Remote Java Application in the list and click
on the New Launch Configuration in the upper-left corner. The default port
(8000) is suitable if GateIn also uses the default configuration:

Chapter 10

[373]

From this point on, we can set breakpoints in our portlet and manage the flow
from inside the IDE!

Updating a deployed portlet
Finally, successive portlet deployments are likely to be in order. In order to do
that for the first deployment, all we have to do is export the WAR to GateIn and
then import applications in the portal (see the Deploying in GateIn section in this
chapter for a quick reminder).

The current version of Vaadin does not support Push mode in
portlets. Therefore, we cannot migrate Twaattin to a portlet.

Enterprise Integration

[374]

OSGi
OSGi is a very promising technology that aims to resolve modularization granularity
and classpath issues inherent to Java. Despite its inherent structure, OSGi concepts
are straightforward and aim to work at the following three different levels:

•	 First, OSGi comes with the concept of a bundle. Bundles are JAR files,
but provide additional information in their manifest; most notably, a
bundle expresses which packages it exposes to the outside world (read
which ones have public visibility) and which one it needs in order to fulfill
its dependencies. Optionally, it may also define an activator class, which is
a listener used on the next level. This defines the modularity layer.

•	 OSGi also provides the way to manage bundle's lifecycle. Basically, a bundle
may be in six different states, and transitions between states are well defined.
The six states are as follows:

State Description
INSTALLED Platform is aware of the bundle.
RESOLVED Checked for OSGi-correctness.
STARTING Being started. If an activator is defined for the bundle,

calls its start() method.
ACTIVE Running and available in the OSGi platform to be used

by other bundles.
STOPPING Being stopped. If an activator is defined for the bundle,

calls its stop() method.
UNINSTALLED Final state.

Chapter 10

[375]

This layer is known as the lifecycle layer. A major benefit of this layer is the
hot deployment of bundles.

•	 Finally, some commons capabilities are described in the service layer, each
in the form of a Java interface. These interfaces are grouped in the following
three different sets:

°° System, such as logging, deployment, and admin
°° Protocol, such as HTTP and Universal Plug-and-Play
°° Miscellaneous, such as XML parsing

Bundles may implement those services and register in the services registry
for other bundles to discover and use them.

Also, note that OSGi is a standard promoted by the OSGi Alliance, which includes
notable members such as IBM, Oracle Red Hat, and VMware. For a deeper insight
into OSGi, visit the OSGi Alliance site at http://www.osgi.org/.

Choosing a platform
Some OSGi platforms are available to add our own bundles to the following:

•	 Knopflerfish (http://www.knopflerfish.org/), an independent OSGi
implementation.

•	 Apache Felix (http://felix.apache.org/), a small yet compliant OSGi
platform.

•	 Eclipse IDE's manages its plugin architecture with the help of OSGi. The
Equinox project (http://www.eclipse.org/equinox/), a whole OSGi
implementation was started to achieve that.

Many applications servers also run on top of OSGi in order to manage complexity
through modularization: Oracle Glassfish 3, Oracle WebLogic, IBM WebSphere,
Red Hat Flyweight (formerly JBoss Application Server), and OW Jonas 5 are such
application servers.

Another way to use OSGi is to embed a compatible container in the
application. As one should probably tweak the application server the
application will run into, chances are that it won't be considered as a
viable option in the enterprise. Thus, we will focus on the "running
in an OSGi container" way.

Enterprise Integration

[376]

In order to illustrate OSGi, we will use Oracle Glassfish in the rest of this document.
Glassfish uses Felix under the cover. In most cases, however, it should play no part
as OSGi is a specification and Felix is only an implementation among others.

Glassfish
Like many other providers, Oracle supplies two distributions of its Glassfish
application server: Glassfish Server Open Source Edition (available under CDDL or
GPLv2 license) and Glassfish Server which is available under a commercial license.

In order to stay true to the open source approach, we will use the Open Source
distribution.

Deploying bundles
There are basically three ways to deploy an OSGi bundle to Glassfish. However,
for the first two, we will need to update Glassfish configuration in order to enable
them. These are worth the effort.

Prerequisites
In order to enable OSGi access, go to the Glassfish root and type the
following command:

asadmin create-jvm-options -Dglassfish.osgi.start.level.final=3

Start (or restart) Glassfish.

This works with Glassfish v3.1.2 or later. Former versions should
follow the procedure shown at http://stackoverflow.com/
questions/8349209/launching-felix-shell-on-glassfish.

Telnet deployment
Once the configuration is updated, we can type the following in the command prompt:

telnet localhost 6666

The command prompt will display the following text:

Welcome to Apache Felix Gogo

g! help

http://stackoverflow.com/questions/8349209/launching-felix-shell-on-glassfish
http://stackoverflow.com/questions/8349209/launching-felix-shell-on-glassfish

Chapter 10

[377]

For security-minded readers, Glassfish should only allow local telnet
connections by default. We should not worry too much about letting
remote users access the console.

Installing an OSGi bundle is just a matter of typing the following command:

install file:///path/to/bundle

Glassfish will neatly return the newly installed bundle's ID:

Bundle ID: xxx

Just remember to then start the bundle (pass the start command the returned ID).

start xxx

To be sure everything went ok, type lb on the command prompt. It displays the
whole list of all installed bundles, as well as their current status; it should show the
new bundle (probably as the last item) as ACTIVE.

File system deployment
The second way to deploy a bundle to the Glassfish server is the simplest; just
put the bundle in the bundles folder under <GLASSFISH_HOME>/glassfish/
domains/<MY_DOMAIN>/autodeploy/.

A look at the log can confirm it works:

INFO: Installed C:\Development\glassfishv3\glassfish\domains\domain1\
autodeploy\bundles\jsoup-1.6.3.jar

INFO: Started bundle: file:/C:/Development/glassfishv3/glassfish/domains/
domain1/autodeploy/bundles/jsoup-1.6.3.

In addition, we can check the Felix console just like with the previous method.

Web console deployment
Navigate to the Glassfish administration panel at http: //localhost:4848/.

Enterprise Integration

[378]

Click either on Deploy an Application on the homepage or on the Applications
menu on the left-hand side.

Fill the opening window as follows:

•	 Select the bundle to deploy
•	 Type: Other
•	 Status: check Enabled
•	 OSGi Type: check
•	 Run Verifier: check
•	 Force Redeploy: check if the bundle is already deployed

Chapter 10

[379]

Click on OK; this will deploy the bundle. The preceding options are depicted in the
following screenshot:

Logs should display the operation's status as follows:

INFO: Installed org.jsoup [257] from reference:file:/C:/Development/
glassfishv3/glassfish/domains/domain1/applications/jsoup-1.6.3/

INFO: Started org.jsoup [257]

INFO: jsoup-1.6.3 was successfully deployed in 5 867 milliseconds.

Whatever the method used, the result would be the same, separating OSGi
dependencies from the WAR.

Enterprise Integration

[380]

Tooling
The good news here is that there is no need for further tooling beside what we
already installed; we will keep our IDE and Glassfish will serve as an OSGi
container.

The bad news is that the many OSGi advantages come at a price; OSGi makes
development more structured. Although we previously could use a build tool or not,
now we have to use one in order to reproduce builds through automation. In order
to be consistent with former sections of this chapter, it is advised to use Maven; how
to do it is the goal of the following sections. Alternatively, one could choose Ant,
SBT, or even Make if one is really desperate.

Vaadin OSGi use cases
Benefits from OSGi are varied and depend on what layers are used.

Vaadin bundling
Strategies regarding libraries in an application server context come in the following
three different flavors, each having pros and cons:

•	 Often, every web application comes with its libraries bundled in its WEB-INF/
lib folder. The good part is that each is then independent; the bad is that
even with similar libraries in the same versions, it adds to the WAR size, but
also unnecessarily increases the memory load as each WAR's class loader has
to load an instance of the library.

•	 Another approach is to put libraries in the application server's shared
libraries folder. In this case, WAR can be very lightweight. Moreover,
only the application server class loader has to load the library; it is done
once. On the downside, applications have no choice on the version of
these libraries, and have to use the one provided by the application
server (much like the servlet API library).

•	 Finally, most application servers allow administrators to add libraries to the
classpath of single applications; some even allow the defining of groups of
libraries to ease that. This strategy gets the best of both worlds—independency
and memory optimization—at the cost of a much higher administration cost.

With OSGi, the administrator could deploy different versions of Vaadin on the OSGi
platform and each deployed applications would specify which version it needs. The
platform would then resolve dependencies for us.

Chapter 10

[381]

Modularization
A non-Vaadin-specific use case for Vaadin we could benefit from is modularization.
We could decouple an application in modules, and then manage each one's lifecycle
independently from one another.

A good example of module granularity in the case of multiple Vaadin application
per WAR would be application objects. A slightly more convoluted, yet still a
possible case would be Vaadin windows; one could conceive an application
so that screens could be upgraded separately.

Hello OSGi
As an example, we will deploy a simple application as an OSGi bundle.

First, we will need to create a Vaadin project that we will make OSGi compatible.
Proceed as usual or refer to the description in Chapter 3, Hello Vaadin!.

Making a bundle
As can be expected, making the JAR OSGi-compliant is just a matter of putting the
right information in the manifest. At the very least, manifest headers should include
the following:

For a complete list of headers, visit http://www.osgi.org/
Specifications/ReferenceHeaders.

Header Value Description
Bundle-
ManifestVersion

2 OSGi version
compatibility. 2
means OSGiR4.2

Bundle-Name hello-osgi Human-readable
name

Bundle-
SymbolicName

com.packtpub.learnvaadin.osgi System name

Bundle-Version 1.0.0 Bundle version
Web-ContextPath /osgi Context root

Import-Package javax.servlet,javax.servlet.http,
com.vaadin.server,com.vaadin.ui

Packages
dependency

http://www.osgi.org/Specifications/ReferenceHeaders
http://www.osgi.org/Specifications/ReferenceHeaders

Enterprise Integration

[382]

Header Value Description
Bundle-
ClassPath

WEB-INF/classes,

 WEB-INF/lib/vaadin-client-
compiled-7.1.0.jar,

 WEB-INF/lib/vaadin-themes-
7.1.0.jar

This is the
classpath. As it's
not a standard
webapp but a
bundle, we have
to redefine the
classpath the
OSGi way.

Inaccessible OSGi libraries
Note that bundle classpath not only uses WEB-INF/classes, but also
the necessary client JARs (those that contain widgetsets and themes).
Those can be deployed as OSGi bundles but do not seem to be accessible
from other web applications. We need to keep them inside the library
folder and reference them explicitly.

The final manifest looks like the following code snippet:

Bundle-ClassPath: WEB-INF/classes,
 WEB-INF/lib/vaadin-client-compiled-7.1.0.jar,
 WEB-INF/lib/vaadin-themes-7.1.0.jar
Bundle-ManifestVersion: 2
Bundle-Name: hello-osgi
Bundle-SymbolicName: com.packtpub.learnvaadin.osgi
Bundle-Version: 1.0.0
Bundle-Vendor: Nicolas Frankel
Import-Package: com.vaadin.server;version="[7.1.0,7.1.0]",
com.vaadin.ui;version="[7.1.0,7.1.0]",
javax.servlet,
javax.servlet.http
Manifest-Version: 1.0
Web-ContextPath: /osgi

The formatting should be taken care of precisely, as there is a limit
of 72 characters for a line, according to the JAR specifications (visit
http://download.oracle.com/javase/1.4.2/docs/guide/
jar/jar.html#Name-Value%20pairs%20and%20Sections for
more information).

http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html#Name-Value%20pairs%20and%20Sections

Chapter 10

[383]

Export, deploy, and run
The previous manifest is enough. Now is the time to deploy the application.

First, we need to deploy dependent bundles, as was explained in the Deploying
bundles section:

•	 jsoup-1.6.3

•	 vaadin-server-7.1.0

•	 vaadin-shared-7.1.0

•	 vaadin-shared-deps-1.0.2

They can (and should) be safely taken from the exported web application.

We then need to export the webapp; right-click on the project and choose export
as WAR. As Eclipse has no hint that we want an OSGi bundle, we need to use our
favorite ZIP tool, open the exported archive and remove all JARs under the WEB-
INF/lib directory those referenced in the manifest (vaadin-client-compiled
and vaadin-themes).

Finally, deploy the web application itself and it is done. At this point, navigate to
http: //localhost:8080/osgi and watch the magic happen.

Correcting errors
Actually, the magic consists of a bug that makes the application unusable as it
is. It is referenced in Vaadin's bug tracking system at http://dev.vaadin.com/
ticket/9942.

While this bug is fixed, we can certainly find workarounds.

Vaadin servlet
OSGi is very strict on-class loading and classloader isolation. This means that just
enhancing a standard JAR with the previous manifest to make it a bundle is not enough.

The vaadin-server bundle will throw a ClassNotFoundException when trying
to instantiate the UI in our own bundle.

The reason is that the former cannot know about our classloader used to load the
latter. In order to fix this, we need to provide a custom VaadinServletService
able to return its own classloader:

public class FixOsgiClassLoaderVaadinServlet extends VaadinServlet {

 @Override

http://dev.vaadin.com/ticket/9942
http://dev.vaadin.com/ticket/9942

Enterprise Integration

[384]

 protected VaadinServletService createServletService(
 DeploymentConfiguration deploymentConfiguration)
 throws ServiceException {

 VaadinServletService servletService =
 new VaadinServletService(this, deploymentConfiguration) {

 @Override
 public ClassLoader getClassLoader() {

 return getClass().getClassLoader();
 }
 };

 servletService.init();

 return servletService;
 }
}

This new servlet class has to be referenced in the web deployment descriptor in
place of the standard VaadinServlet.

Vaadin bootstrap
The vaadinBootstrap.js script will not be found either, because it is part of the
vaadin-server.jar. Here, the fix is either to embed the JAR in WEB-INF/lib and
reference it in the manifest or copy it in the web application (as for portlets).

The former option would defeat the whole point of OSGi and bundles, so we will opt
for the latter. The final webapp structure would look something like the following:

Chapter 10

[385]

Integrating Twaattin
Now it is time to go beyond a simple example and update Twaattin to be an OSGi
bundle in its own right.

At the time of this writing, Vaadin Push is not OSGi-compatible, so
be aware the following will not work. You're advised to follow newer
versions of Vaadin Push to check if they correct the problem. I'll try to
update Twaattin to be OSGi-compatible when this happens.

Bundle plugin
In the previous Hello OSGi example, we manually crafted the OSGi manifest. As
Twaattin already uses Maven, much information is already available in the POM; it
is a good idea to also let Maven handle the OSGi manifest.

To this end, the Apache Felix project provides the maven-bundle-plugin, which
is based on the Bnd utility. The complete documentation of the plugin is available
online at http://felix.apache.org/site/apache-felix-maven-bundle-
plugin-bnd.html.

Bnd is a free tool (provided by aQute) that can generate a project's
OSGi manifest from its classes and libraries. More information can be
found at http://www.aqute.biz/Bnd/Bnd.

The plugin takes Bnd one step further and uses all Maven-provided data, including
dependencies that suits our purpose just fine. Goals are provided not only to
generate the OSGi bundle, but also to just generate the manifest.

Like with the rest of the Maven ecosystem, the plugin infers reasonable defaults for
most pieces of information, meaning we only need to configure specific parts.

It translates like the following for Twaattin:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.4.0</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>bundle-manifest</id>
 <phase>process-classes</phase>
 <goals>

http://felix.apache.org/site/apache-felix-maven-bundleplugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundleplugin-bnd.html

Enterprise Integration

[386]

 <goal>manifest</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <supportedProjectTypes>
 <supportedProjectType>war</supportedProjectType>
 </supportedProjectTypes>
 <manifestLocation>
${project.build.directory}/${project.artifactId}-${project.version}/
META-INF
 </manifestLocation>
 <instructions>
 <Bundle-ClassPath>
 .,WEB-INF/classes,
 WEB-INF/lib/twitter4j-core-${twitter4j.version}.jar,
 WEB-INF/lib/twitter4j-stream-${twitter4j.version}.jar
 </Bundle-ClassPath>
 <Import-Package>
 !twitter4j,!twitter4j.auth,*
 </Import-Package>
 </instructions>
 </configuration>
</plugin>

This configuration does many things; we will have a look at each part.

The first thing to know is that by default, the plugin only operates on jar and
bundle packaging types. It does not work for other artifact types (it fails silently).
Nevertheless, it can be configured to allow other packaging; the first thing to do is to
instruct the plugin we understand it is a WAR file, but we still want the OSGi manifest.
This is done with the supportedProjectType tag in the preceding XML snippet.

Then the goal is only to create the manifest so that we may include it in our bundle.
In order to achieve this, we isolate it in a specific folder, defined as a Maven property
so we don't have to hard-configure it in the assembly.

Finally, the instructions tag references individual headers we will find in the OSGi
manifest. The following two things are of particular interest:

•	 Some libraries are OGSi bundles, some are not. The latter, such as Twitter4J,
are to be kept inside WEB-INF/lib, as was the case with client JAR in Hello-
OSGi formerly.

Chapter 10

[387]

•	 OSGi-specific classloading system disregards the standard WEB-INF/classes
and WEB-INF/lib folders, meaning we have to configure them in the
manifest. Libraries kept inside the webapp also have to be configured
in the POM.

The previous fragment produces the following OSGi manifest (for readability
purposes, the presented manifest does not respect the 72 characters per line limit):

Manifest-Version: 1.0

Bnd-LastModified: 1372611930283

Build-Jdk: 1.7.0_02

Built-By: Nicolas

Bundle-ClassPath: .,WEB-INF/classes,WEB-INF/lib/twitter4j-core-3.0.3.jar

 ,WEB-INF/lib/twitter4j-stream-3.0.3.jar

Bundle-ManifestVersion: 2

Bundle-Name: twaattin

Bundle-SymbolicName: com.packtpub.learnvaadin.twaattin

Bundle-Version: 1.0.0.SNAPSHOT

Created-By: Apache Maven Bundle Plugin

Export-Package: com.packtpub.learnvaadin.authentication;version="1.0.0.
SNAPSHOT",com.packtpub.learnvaadin.osgi;uses:="com.vaadin.server";versio
n="1.0.0.SNAPSHOT",com.packtpub.learnvaadin.service;version="1.0.0.SNAP
SHOT",com.packtpub.learnvaadin.twaattin.presenter;uses:="com.vaadin.ui";
version="1.0.0.SNAPSHOT",com.packtpub.learnvaadin.twaattin.ui.convert;ve
rsion="1.0.0.SNAPSHOT",com.packtpub.learnvaadin.twaattin.ui;uses:="com.
packtpub.learnvaadin.twaattin.presenter,com.packtpub.learnvaadin.twaa
ttin.ui.convert,com.vaadin.annotations,com.vaadin.server,com.vaadin.
ui";version="1.0.0.SNAPSHOT"

Import-Package: com.vaadin.annotations;version="[7.1,8)"
,com.vaadin.server;version="[7.1,8)",com.vaadin.shared.
ui.label;version="[7.1,8)",com.vaadin.ui;version="[7.1,8)"

Tool: Bnd-2.1.0.20130426-122213

Note that metadata such as Bundle-Name, Bundle-SymbolicName, and the
like are automatically computed from POM's artifactId, groupId, and version
values. Although it is possible to override these values, defaults are good enough
for Twaattin.

Moreover, the Export-Package header is taken care of by the plugin
(and Bnd underneath) and read from our source code.

Enterprise Integration

[388]

If crafted by hand, take care that OSGi expects the version to be in
MAJOR.MINOR.MICRO.QUALIFIER format. These components
have to be separated by dots, so the Maven -SNAPSHOT qualifier
should be replaced.

Multiplatform build
In order for our build to truly be multiplatform, we now just have to provide an
assembly descriptor for the bundle (as well as configure it in the POM).

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>osgi</id>
 <formats>
 <format>war</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <fileSet>
 <directory>src/main/webapp</directory>
 <outputDirectory>/</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>${project.build.outputDirectory}</directory>
 <outputDirectory>/WEB-INF/classes</outputDirectory>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <outputDirectory>/WEB-INF/lib</outputDirectory>
 <excludes>
 <exclude>*:war</exclude>
 <exclude>com.vaadin.external.atmosphere:*</exclude>
 <exclude>com.vaadin.external.slf4j:*</exclude>
 <exclude>com.vaadin:vaadin-server</exclude>
 <exclude>com.vaadin:vaadin-push</exclude>
 <exclude>com.vaadin:vaadin-shared</exclude>
 <exclude>com.vaadin:vaadin-shared-deps</exclude>
 <exclude>com.vaadin:vaadin-theme-compiler</exclude>

Chapter 10

[389]

 <exclude>org.jsoup:*</exclude>
 <exclude>*:commons-cli</exclude>
 <exclude>*:commons-jexl</exclude>
 <exclude>*:commons-logging</exclude>
 <exclude>net.sourceforge.cssparser:*</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>
</assembly>

We see that OSGi packaging is not more complex than for our previous portlet;
the real piece of work is done in the bundle plugin.

We just have to take care to remove the Vaadin JAR from the WEB-INF folder,
for it is provided by the OSGi container.

As mentioned before, we sadly need to stop there as Vaadin Push is
not OSGi-friendly yet.

Cloud
What is dangerous with the world "cloud" nowadays is that it is a relatively young
approach, so not everyone necessarily has the same definition of it.

In order for certain terms to have the same meaning in the scope of this book,
we first need to define them.

Cloud offering levels
Currently, there is some agreement that there are three different service levels
offered by clouds. This should be the shared understanding for our following
work on clouds:

•	 Infrastructure as a Service (IaaS): In IaaS, only the hardware is
dematerialized. In effect, this only affects system administrators in that
they interact with a server whose location they don't know, as opposed to
one they know of. The net gain here is a decrease on hardware costs as it is
mutualized. We still have to install JVM, application servers, and the rest.

•	 Platform as a Service (PaaS): PaaS goes one step further and also provides
the platform, for example, the JVM and the application servers, on top of the
distant hardware. In this case, the cloud vendor completely isolates users
from the underlying infrastructure behind a façade, which also offers a user
interface to configure the different platforms.

Enterprise Integration

[390]

•	 Software as a Service (SaaS): The last level of cloud offering is the SaaS,
which is a distantly hosted application.

What is common in all three levels is the virtualization of hardware. One never
knows on which physical server one runs the OS, the platform, or the software.

For our purposes, the needed offering is situated on the PaaS level; we will just
deploy our software "in the cloud".

State of the market
This field being relatively new, things are changing fast. In the Java ecosystem,
however, there are stable players providing a cloud platform for our software
to run on:

•	 Google was the first major company to provide a "free" cloud platform for
Java web applications in the form of Google App Engine. This approach has
some disadvantages, including a reduced scope of the Java API that prevent
some tasks such as thread launching, file creation, and so on. Moreover,
persistence can only be achieved through JPA or JDO, and only so with the
help of the DataNucleus product, thus forcing us to use it locally as well.

Chapter 10

[391]

Finally, although free at the entry level, there are some fees when one goes
above some quotas (but these are quite high; for an up-to-date reference on
these limits, refer to http://code.google.com/intl/fr/appengine/docs/
quotas.html).

•	 The second Java offering comes from CloudBees, nearly a pure-player
in this area. CloudBees also provides build services along Paas, enabling
continuous deployment.

•	 VMware is also a player on this field by supplying the Cloud Foundry
software. This software is provided as an open source project (for private
clouds), as well as a platform to deploy on.

•	 Finally, Jelastic is a relative newcomer but has partnered with Vaadin to
provide free (but time limited) hosting to Vaadin applications. In the scope
of this book, it is our choice.

Hello cloud
In this section, we will deploy our first web application to Jelastic. Please first create
a Vaadin project as we have done before or reuse an existing project.

Registration
If you intend to use the Jelastic platform, you need to register to get an account
first. Go to https://vaadin.com/cloud, follow the instructions, and come back
when it is done.

Cloud setup
In a standard environment, we would need to create a new virtual server. In the
cloud, we just need to configure it, but the steps are the same.

http://code.google.com/intl/fr/appengine/docs/quotas.html
http://code.google.com/intl/fr/appengine/docs/quotas.html

Enterprise Integration

[392]

Once logged into the provider, this is exactly what the first screen aims for.
Configuration is available for every component of a standard infrastructure:

Resources
The load balancer, as well as most resources described in the following can be scaled
vertically, meaning each may be allocated more resources. To simplify management,
those resources are measured in terms of cloudlet, each cloudlet being equivalent to
128MB RAM and 200MHz CPU.

Cloudlet resources are defined using a range:

•	 The lowest level sets the minimum number of used cloudlets. Even when
deployed applications are not in use, this requested number of cloudlets will
be dedicated to your infrastructure.

•	 The higher number sets the maximum number of possible cloudlets. When
the load increases, in order to keep acceptable performance, Jelastic will
allocate up to this number of cloudlets.

Pricing is per cloudlet per hour.

Balancing
The topmost layer is the load balancer. It is the component tasked of dispatching
requests between application containers if there is more than one of them. The only
choice here is nginx 1.2.

Chapter 10

[393]

Application server and JDK
Just below balancing configuration lies the application server itself and its
associated JDK.

Application servers may be scaled horizontally, meaning we can add more application
server nodes to serve requests (thus making load balancing mandatory). In this case,
once a user request is served by a specific node, the load balancer always dispatches
consecutive user requests to the same node, in order to keep user session on the same
application server. This strategy is called sticky session. The drawback is that if the
used node fails, user requests are successfully redirected to the other running node,
but all session-relevant data (such as authentication) is lost. In order to remedy to
this, the high-availability configuration parameter has to be turned on.

Some of the available application servers are already known to us, Glassfish 3.1 and
Tomcat 6.0 and 7.0; others are brand new, Jetty 6.1 and TomEE 1.5. As for JDK, we
can choose between 6.0 and 7.0.

Database and cache
Some applications (if not all) need to store data persistently between runs. The
traditional way to do this is to use a SQL database. Available options are MySQL 5.5,
Maria DB (a spin-off of MySQL) 5.5 and 10.0, and PostgreSQL 8.4 and 9.2.

Alternative to SQL containers is the new NoSQL movement. Jelastic also provides
NoSQL backends in the form of CouchDB 1.2 and MongoDB 2.2.

NoSQL stands for "No SQL" or "Not Only SQL" depending on
who you ask.

Finally, accessing SQL backends has a huge impact on scalability. Most of the time, it
can be improved by keeping data in memory, where access time is much lower than
on hard drives. The cache solution offered by Jelastic is Memcached 1.4.

Miscellaneous
Other parameters include the following.

•	 SSL (Secure Socket Layer), which protects data sent to and from the server
from undesired readings and writings.

•	 Build, as we can use Jelastic not only to run our applications but also to
build them.

•	 Last but not least, we have to choose our domain name, ending with
jelastic.servint.com.

Enterprise Integration

[394]

Beware that once the domain name is chosen, it cannot be changed.
When using a trial account, this is a source of concern as only a
single environment is allowed; choose wisely!

The Create button at the bottom-right corner of the screen creates the environment
according to our specifications. Of course, it is always possible to update it later.

A full-blown infrastructure creation can take some time. Enjoy a
well-deserved pause during it.

The environment should look like the following screenshot:

A HelloWorld application is already available; feel free to delete it (or deploy it).
Hover over its line and select the Delete button.

Application deployment
Deploying our application "in the cloud" is a 2-step process:

1.	 Once built as a Web Application Archive, we can easily upload our
application.
In the Deployment Manager section, just click on the Upload link; select the
WAR and click on the Upload button.

2.	 Once at least one application is uploaded, it can be deployed on an
application server. Hover over the application and click on Deploy to; at

Chapter 10

[395]

this point, we have to choose the context the application will be deployed. If
nothing is typed, it will be at the root of the previously chosen domain.

Deploying an application to a context that is already used by an application will
undeploy the oldest application and replace it with the newer.

When the application is finished deploying, it appears under the application server
with its associated context. Hovering over it and choosing Open in browser will
display it in all its glory "in the cloud":

Before going further, deploy some already available applications; it is fun to see
them online!

Summary
In this chapter, we have deployed Vaadin applications on exotic platforms that go
well beyond simple applications servers: portals, OSGi containers, and the cloud. In
each case, we used a product, respectively GateIn, GlassFish, and Cloud Foundry to
demonstrate the feasibility of it. Should the need arise; however, we now have all the
necessary keys to deploy on other products, for example, Liferay, Felix, or Google
App Engine.

The lesson here is that Vaadin applications can be run on a variety of platforms
without much adaptation.

Index
Symbols
@SuppressWarning annotation 79

A
Absolute layout, UI components 114
AbstractBeanContainer 173
AbstractClientConnector 80
AbstractComponent

about 80
immediate mode 81
properties 80

Abstract Factory 299
AbstractField class 91
AbstractProperty 151
accept criterion 202
access() method 266
ActiveX 16
addClickListener(ClickListener) method

136
addListener() method 134
add-ons categories

data components 272
miscellaneous 272
official 272
themes 272
tools 272
UI components 272

add-ons presentation
detailed view 273
summarized view 273

add-ons search 272
add-ons stability levels

beta 272
certified 272

experimental 272
stable 272

addWindow(Window) method 84
advanced integration, portal

about 367
portlet specifics, handling 368-371
restart and debug features 367

advanced layouts, UI components
about 114
Absolute layout 114
CSS layout 115
CustomLayout 115

AJAX 16, 230
anonymous inner classes

about 138
cons 138
pros 138

Apache Ant
about 346
limitations 346
URL 346

Apache Felix
URL 375

Apache Jetspeed 2 356
Apache Maven 346
Apache Pivot project

URL 17
Apache Portable Runtime 65
Apache Tomcat 79
application deployment 394
application tiers

about 8
data tier 9
logic tier 8
presentation tier 8

[398]

appliesToProperty(Object) method 169
architectural considerations, Vaadin event

model
about 137
anonymous inner classes, as listeners 138
components as listeners 138, 139
influencing factors 140, 141
presenters as listeners 139
services as listeners 140

architecture, SQL container 245
Asynchronous JavaScript with XML. See

AJAX
AutoGenerated annotation 316

B
basic configuration, Windows 85
basic embedding, Vaadin 231
binding

limitation 162
Bnd utility 385
bootstrap script 233
Buffered interface 96
buffering 148
build tools

about 345
Apache Ant 346
Apache Maven 346

bundles 374
Button group

about 276
composition structure, creating 279-281
conclusion 281
core concepts 276
GWT modules 277
prerequisites 276
widget sets 277-279

C
caption property, AbstractComponent 81
CDI Utils

about 22, 298
CDI injection 302, 303
components declaration 305
conclusion 305
core concepts 299

DI use-cases 299
event observers 303, 304
Inversion of Control and Dependency

Injection 299
prerequisites 300
reference link 305
using 300-302

center() method 85
Clara

about 281
behavior, adding 283
complex components, creating 284
conclusion 285
data sources 284
inflating 283
limitations 284
prerequisites 282
using 282
XML files 282

ClientConnector interface 79
client part, Vaadin architecture 57, 59
client server 9, 10
client-server communication, Vaadin

architecture 56
client-server synchronization, Vaadin

architecture 60
client-side extensions

about 316
connector architecture 316

Cloud 389
CloudBees 391
cloudlet 392
Cloud offering levels

IaaS 389
PaaS 389
SaaS 390

Cloud setup 391
application server and JDK 393
balancing 392
database and cache 393
miscellaneous 394
resources 392

collapsing column 188
columns, tables

about 187
collapsing 188

[399]

footer 189, 190
generating 191-195
header 189, 190
ordering 191
reordering 191
row header column 190
table properties, formatting 191-195
width 188

commit/discard features 166, 167
commit() method 153
compareToIgnoreCase() method 172
compareTo() method 172
component 78
component class design

about 78
AbstractClientConnector 80
AbstractComponent 80
component interface 79
Component interface 79
diagram 78
MethodEventSource interface 80

component composition
about 307
custom components, designing 311
graphic composition 311
manual composition 308

component error handling 237, 239
Component interface

about 79
ClientConnector 79
Serializable 79
Sizeable 79

CompositeValidator 94
concrete indexed containers 173-175
connection, SQL container 246, 247
connector architecture, client-side

extensions 316
connectors

client connectors 316
server connectors 316

container components 181-185
container datasource

about 177
items, displaying 178, 179
new items, handling 179
null items 180

containers
about 168
concrete indexed containers 173-175
filterable containers 169
filtering capability 169
hierarchical 176
item sorter 172, 173
ordered container 170, 171
sorting capability 169

Context and Dependency Injection 298
converters

about 90
StringToBooleanConverter 90
StringToDateConverter 90
StringToDoubleConverter 90
StringToFloatConverter 90
StringToIntegerConverter 90
StringToNumberConverter 90
working 90

Cross-Site Scripting 231
CSS 12
CSS layout, UI components 115
custom component

about 308
designing 311

CustomComponent class 308
custom component composition

components, adding 309
custom layout, UI components 115

D
database compatibility, SQL container

248-253
data binding

about 147, 149
properties 148

data binding, properties
buffering 148
editor component 148
renderer component 148

data tier 9
Data Transfer Object 339
data, Vaadin

containers 176
entity abstraction 149

[400]

DefaultErrorHandler method 240
Dependency Injection (DI) 299
deployed portlet

updating 373
description property, AbstractComponent

81
detailed view, add-ons presentation 273
differences, portlet project

portal proprietary files 362
portlet deployment descriptor 360-362

discard() method 153
div placeholder 232
Document Object Model (DOM) 12
drag-and-drop capabilities, tables

accept criterion 202
DragSource 201
drop target model 201
Transferable 200

DragSource 201
drop target model design 201
dynamic view providers, navigator 227, 229

E
EclipseLink 260
Eclipse, setting up

Eclipse bundled with WTP, downloading
28

server runtime, creating 32
Vaadin plugin, installing 30, 31

Eclipse Vaadin project
creating 32-34
servlet mapping 34, 35
testing 35
WTP, adding to Eclipse 37, 39
WTP, checking 36

ECMAScript 12
editor component 148
EmailValidator 94
EndlessRefresherRunnable

about 265
features 265

entity abstraction
about 149
container 168
Item 156
Property interface 149, 150

error correction, Hello OSGi
Vaadin bootstrap 384
Vaadin servlet 383, 384

error messages 236
error type notifications 107
error view, navigator 227
event-driven model

about 125
events, in Java EE 127
observer pattern 125, 126

event firing 138
event model, Navigation API 230
event model, Vaadin

about 129
architectural considerations 137
events, outside UI 136
standard event implementation 129
view, expanding 135

events outside UI, Vaadin event model
about 136
user change event 136

extension connector
architecture, diagrammatic

representation 318
working 318-321

Ext-GWT 22

F
fat client 11

updating, through update sites 19
features, SQL container

initialization 246
paging 246
programmatic filtering 246
programmatic ordering 246
transaction management 246

field group
about 161, 162
captions, modifying 165
commit/discard features 166, 167
field types, configuring 163, 165
functionalities 161

field types
configuring 163, 165

[401]

files
serving, from HTTP server 366
serving, from portal 366

filterable containers 169
filters 169
Flash 16
Flex 17
formats, labels

about 88
HTML 88
preformatted 88
text 88

form layout, UI components 114
fragmentation 347
free form queries 256-259

G
Gant for Grails 347
GateIn

about 357
configuring, for Vaadin 365
downloading 357
installing 357
launching 357, 358
portlet, deploying in 363
portlet, using 363

general error handling 240-244
generated code 74
getButton() method 135
getClickedValue() method 311
getContent() method 82
getConvertedValue() method 91
getState() method 322
getType() method 87
getUriFragment() 103
getValue() method 199
Glassfish

about 376
bundles, deploying 376

Google App Engine 79
Google Chrome Frame

URL 232
Google Web Toolkit (GWT) 19, 57
Gradle for Groovy 347

graphic composition
about 311
limitations 315
Visual Designer, using 312, 313
visual editor, setting up 311, 312

grid layout, UI components 113
GWT dev mode 58
GWT Incubator project

about 329, 330
client classes 331, 332
prerequisites 330
server component 330

GWT widget wrapping
about 327
example 329
GWT Incubator project 327

H
HasComponents interface 82
HbnContainer 259
Hello cloud

registration 391
Hello OSGi

about 381
bundle, creating 381, 382
deploying 383
errors, correcting 383

horizontal and vertical layouts, UI
components 113

HTML, labels 88
HTTP protocol, Vaadin architecture 56
HTTP server

files, serving from 366
HttpServletRequest object 218
HttpServletResponse object 218
HttpSession object 218
humanized notifications 107
HyperSonic SQL (HSQLDB) 357
Hyper Text Markup Language (HTML) 10

I
IDE-managed server

creating 61, 62
installation, verifying 63
tab, selecting 61

[402]

iframe tag 231, 233
immediate property, AbstractComponent

81
improvements, Twaattin

Ivy dependencies 265
Twaattin UI 266, 267
Tweet refresher behavior 268
Twitter service 269

inaccessible OSGi libraries 382
influencing factors, architectural

considerations
application size 140
expected lifespan 140
QA 140
team experience 140

initial view, navigator 227
init() method 71
inputs, text fields

about 97
field 98, 99
focusable 98

Integrated Development Environment (IDE)
19

integrated frameworks
about 21
JPA 22
levels 21

integration level 1, Vaadin 21
integration level 2, Vaadin 22
integration level 3, Vaadin 22
integration platforms

Liferay 22
IntelliJ IDEA

about 39
installing 27
setting up 40-42
using 39
Vaadin 7 plugin, adding 43

IntelliJ IDEA Vaadin project
context-root 48
creating 44, 45
deploying 46
framework support, adding 46
result, adjusting 45
servlet mapping 49
testing 47
Vaadin version, changing 47

Inversion of Control (IoC) 22, 299
isEmpty() method 99
isModal() method 86
isRoot() method 205
Item, entity abstraction

about 156
field group 161, 162
method property 156
right level of abstraction 156-160

item sorter 172, 173
Ivy dependencies 265

J
JavaEE API

accessing 217
servlet request 218, 219
servlet response 220, 221
wrapped session 222

Java EE events, event-driven model
about 127
UI events 128

Java Network Launching Protocol (JNLP) 18
Java Persistence API. See JPA
JavaScript Native Interface (JSNI) 58
JavaScript wrapping

about 333
example 334
requisites 334

JavaScript wrapping example
core 335
prerequisites 335

Java Server Faces 13
JavaServer Pages (JSP) 13
JBoss GateIn 356
JDBC connection pool 246
JDiskReport

URL 19
JMS 265
joins, SQL container

about 253
free form queries 256-259
references 254, 256

JPA 22
JPA Container

about 260, 275, 285
concepts 286

[403]

conclusion 298
features 296
prerequisites 286
similar add-ons 285
URL 285
using 296, 297

JSON 56
JSON message format, Vaadin

architecture 56, 57
JSR-168 356
JSR-286 356
JSR specifications, for portlet API

about 356
JSR-168 356
JSR-286 356

JWS
about 18, 19
URL 18

K
Keep It Simple and Stupid (KISS)

principle 139
Knopflerfish

URL 375

L
LabelConnector 317
labels

about 86
class hierarchy diagram 87
formats 88
Property interface 87

layouts, UI components
about 112
abstract layout 113
advanced layouts 114
component container 112
selecting 116
simple layouts 113
types 113

lifecycle layer 375
Liferay 22, 357
limitations, graphic composition

about 315
restricted compatibility 315
rigid structure 316

top level element 315
load balancer 392
location, Windows 85
logic tier 8
long-lived HTTP connections 260
long polling 260

M
mainframes 9
Maven

in Vaadin projects 348
Twaattin, migrating under 353

Maven dependencies management
using 348, 349

Mavenize Vaadin projects 348, 349
Maven projects

Vaadin support 349-352
Maven tooling 347
MethodEventSource interface 80
MethodProperty class 156
modality, Windows 86
Model View Controller (MVC) design

pattern 139
Model-View-Controller paradigm 13
modularity layer 374

N
navigateTo(String) method 229
Navigation API

about 222
event model 230
overview 230
URL fragment 223
views 223

navigator
about 224, 226
dynamic view providers 227-229
error view 227
initial view 227

nominal embedding, Vaadin
about 232
bootstrap script 233
div proper 232
page headers 232
UI initialization call 233-235

notification class 106

[404]

notifications
about 107
additional properties 108
displaying 109
error type notifications 107
humanized notifications 107
tray notifications 107
warning notifications 107

notify() method 127

O
OAuth

about 206
URL, for info 206

ObjectProperty 152
observer pattern enhancements,

event-driven model
event 127
event details 127
event types 127

observer pattern, event-driven model
enhancements 126

onMessage() method 127
ordered container 170, 171
OSGi 374, 375
OSGi bundles, deployment to Glassfish

file system deployment 377
prerequisites 376
Telnet deployment 376
web console deployment 377, 379

OSGi platforms
Apache Felix 375
Knopflerfish 375

OWASP
URL 231

P
page

about 102
navigation 103
title 103
URL fragment 103

page headers 232
passesFilter(Object, Item) method 169
Plain Old Java Objects (POJO) 139

Play Framework 55
portal

about 355
files, serving from 366

portal configuration
themes 365
widgetsets 365

portal proprietary files 362
portlet

about 355
adding, to page 363
deploying, in GateIn 363
using, in GateIn 363

portlet container 355
portlet deployment descriptor 360-362
portlet development strategies

about 372
deployed portlet, updating 373
portal debug mode 372
portlet servlet-compatible 372

portlet project
creating 359
differences 359
similarities 362

portlet specifics
handling 368-371

portlet.xml file 360
preformatted, labels 88
prerequisites, JPA Container

application server 288
data source, creating 292-295
dependency 286
Glassfish, integrating with Eclipse

IDE 289-292
model 286, 288

presentation tier 8
programmatic sorting 195
Project Object Model (POM) 347
project sources, Twaattin killer application

about 119
login screen 121
timeline screen 121
UI 120

property formatter 152, 153
Property interface, entity abstraction

AbstractProperty 151

[405]

modifications, handling 153, 155
ObjectProperty 152
property formatter 152, 153

Property interface, labels 87
pseudo-shareable pool 246
push innards, server push 261

Q
Quartz 265
queries, SQL container 246, 247
query delegates 247

R
Rake for Ruby 347
real-world error handling

about 236
component error handling 237, 239
error messages 236
general error handling 240-244

real-world text field example 102
references 254, 256
refresh() method 246
RegexpValidator 93
related add-ons, SQL container 259, 260
removeListener() method 134
removeWindow(Window) method 84
renderer component 148
rich applications

about 8
application tiers 8
limitations, of thin client 11

rich client approaches
Ajax 16
fat client, deploying 18
fat client, updating 18
GWT 19
plugin 16, 17

rich clients 15
Rich Internet Application (RIA) 8
rootItemIds() method 205
row header column 190

S
SBT for Scala 347
Search Engine Optimization (SEO) 230
server part, Vaadin architecture 59, 60
server push

about 260
example 263-265
installation 262
push innards 261

Server RPC
about 324
architecture 324, 326

service layer 375
Service Locator 299
service() method 70
servlet request, JavaEE API 218, 219
servlet response, JavaEE API 220, 221
setChildrenAllowed() method 205
setConverter() method 91
setDraggable(boolean) method 85
setHeight() method 314
setLocation(String) method 103
setModal(boolean) method 86
setMultipleSelect(true) method 199
setParent() method 205
setPosition(Position) method 108
setPositionX(int) method 86
setPositionY(int) method 86
setSelectable(true) method 199
setSplitPosition() method 117
setTitle(String) method 103
setValue() method 150
setWidth() method 314
setXXXUndefined() method 314
shared state 322
similarities, portlet project 362
simple layouts, UI components

about 113
form layout 114
grid layout 113
horizontal and vertical layouts 113

[406]

SingleComponentContainer interface 82
Single Page Interface (SPI) 103, 230
Single Responsibility Principle 133
Sizeable interface 79
size, UI components

about 110
dimension, setting 111

sorting, tables
programmatic sorting 195
user sorting 195

source code 74
split panels

about 117
properties 117

Spring 22
SQL container

about 244
architecture 245
connection 246, 247
database compatibility 248-253
features 246
joins 253
queries 246, 247
related add-ons 259, 260

SQLContainer class 245
standard event implementation, Vaadin

event model
about 129
abstract component 134
event 130
event class hierarchy 130
EventRouter class 134
listener interfaces 131, 132
listeners, managing 133
method event source details 133, 134
typed events 130, 131
Window component 132

StringToBooleanConverter 90
StringToDateConverter 90
StringToDoubleConverter 90
StringToFloatConverter 90
StringToIntegerConverter 90
StringToNumberConverter 90
Struts 13
summarized view, add-ons presentation 273

T
table drag-and-drop 202, 203
tables

about 186
columns 187
drag-and-drop capabilities 199
editing 197, 199
selecting 199
sorting 195
structure 186
viewpoint 196

text field class hierarchy
about 99
cursor 101
input prompt 101
null 100
password field 100
properties 100
real-world example 102
selection 101
simple text field 100
text area 100

text fields
about 89
buffer, changing 96
BufferedValidatable 97
conversion 90, 91
inputs 97
validation 92

text format, labels 88
thin client applications approach

limitations 11
thin client applications drawbacks

about 11
browser compatibility 14
page flow paradigm 14
unrelated technologies 12, 13

thin clients 10
third-party content

about 104
browser window opener 105
resources 104

tier migration
about 9
client server 9

[407]

mainframes 9
thin clients 10

traditional polling 260
Transferable 200
TransferableImpl 200
tray notifications 107
trees

about 204
child node 205
collapse feature 204
expand feature 204
item labels 205
parent node 205

Twaattin
about 118, 276
adaptations 206
code, updating 339
component, designing 338
design 118
event-driven model 125
improvements 265
integrating 385
login screen 118
main screen 118
migrating, under Maven 353
prerequisites 206
refining 205
running, outside IDE 353
source code 343
status component 340, 342
status converter 342
timeline screen 342
updated sources 206

Twaattin integration
bundle plugin 385
multiplatform build 388

Twaattin killer application
project setup 119
project sources 119

Twaattin migration, under Maven
about 353
dependency management, enabling 354
Maven dependency management, using

for optimization 354
preparing 353

Twaattin UI 266, 267

Twaattin updated sources
about 206
column generators 212
login behavior 208
login screen 208
timeline screen 208, 210
tweets refresh behavior 210

Twaattin, Vaadin event model
about 141
login behavior 143
login screen 142
logout behavior 145
project sources 141
timeline window 144
UI 141

Tweet refresher behavior 210, 268
Twitter4J API 339
Twitter service 269

U
UI.close() method 72
UI components

laying out 110
layouts 112
size 110, 111
split panels 117

UI events
about 128
client events 128
client-server events 128
limitations 129

UI initialization call 233-235
UI provider

about 300
class diagram 301

UIs
about 81
component hierarchy diagram 82
HasComponents 82
panel class 83
SingleComponentContainer 82
theming 83
UI class 83

UI, Vaadin. See Vaadin UI

[408]

UML (Unified Modeling Language) 84
URL fragment, Navigation API 223
user messages

about 106
notification class 106
notifications additional properties 108
notifications, displaying 109

user sorting 195

V
Vaadin

about 7, 20, 53
architecture 55
basic embedding 231
benefits 23, 24
client-side extensions 316
component compostion 307
components class design 78
concerns 23
data 149
embedding 230, 231
features 20-24
GateIn, configuring for 365
labels 86
market status 20
nominal embedding 232
page 102
philosophy 54, 55
terminology 78
text fields 89
third-party content 104
UIs 81
user messages 106
using, in real world 23
Windows 84

Vaadin 7
connectors 316

Vaadin add-ons
about 271
add-on presentation 273
add-ons search 272
Button group 276
CDI Utils 298
Clara 281
JPA Container 285

stability levels 272
typology 272

Vaadin application
browsing 66
creating 49
debug mode 67, 68
deploying 60
deploying, inside IDE 61
deploying, outside IDE 65
entry point, declaring 51
generated code 74
out-of-the-box helpers 66
restarting 69
servlet class, declaring 51
servlet mapping, adding 50
servlet mapping, declaring 51, 52
source code 74
stream redirection, to servlet 69
surface 69
surface, scratching 73
using 66

Vaadin application deployment, in IDE
about 61
application, adding 63
IDE-managed server, creating 61
server, launching 63, 64

Vaadin application deployment,
outside IDE

about 65
server, launching 65
WAR, creating 65

Vaadin architecture
about 55
client part 57-59
client-server communication 56
client-server synchronization 60
HTTP protocol 56
JSON message format 56
server part 59, 60

Vaadin bootstrap 384
Vaadin bundling 380
Vaadin GWT architecture

about 327
client-side 327, 328
server-side 327
widget styling 329

[409]

Vaadin, in Eclipse
about 27
Eclipse, setting up 28

Vaadin integration
about 21
integrated frameworks 21
integrated platforms 22

Vaadin JPAContainer summary 273
Vaadin libraries

adding 49
Vaadin modularization 381
Vaadin OSGi use cases

about 380
modularization 381
Vaadin bundling 380

Vaadin projects
creating 348

Vaadin request handling 70
Vaadin servlet 383, 384
VaadinServlet.service() method 70, 71
Vaadin session 222
Vaadin support, for Maven project

Twaattin, running outside IDE 353
widget compilation 352, 353

Vaadin support, for Maven projects 349-352
Vaadin UI

about 71
configuration 72
features 71
session 72

validatable
about 95
isValid() method 95
validate() method 95

validation, text fields 92
validator hierarchy

diagrammatic representation 93
validators

about 92
CompositeValidator 94
EmailValidator 94
error message 94
RegexpValidator 93

viewpoint, tables
about 196
responsiveness, improving 197
viewpoint change event 196

views, Navigation API 223
view, Vaadin event model

buttons 135, 136
expanding 135

Visual Designer
about 311
position and size, managing 314
using 312, 313

W
W3C CSS1 specifications 110
warning notifications 107
Web Archive 65
WebGL 334
widget 78
Windows

about 84
basic configuration 85
customizing 85
location 85
modality 86
structure 84

wrapped session, JavaEE API 222
WTP 27

X
XmlHttpRequest object 14

Thank you for buying
Learning Vaadin 7

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Vaadin 7 UI Design By Example
Beginner's Guide
ISBN: 978-1-78216-226-1 Paperback: 253 pages

Build exciting Vaadin applications in no time

1.	 Learn how to develop Vaadin web applications
while having fun and getting your hands dirty

2.	 Develop relevant and unique applications
following step-by-step guides with the help of
plenty of screenshots from the start

3.	 The best available introduction to Vaadin with
a practical hands-on approach and easy to read
tutorials and examples

Vaadin 7 Cookbook
ISBN: 978-1-84951-880-2 Paperback: 404 pages

Over 90 recipes for creating Rich Internet
Applications with the latest version of Vaadin

1.	 Covers exciting features such as using
drag-and-drop, creating charts, custom
components, lazy loading, server-push
functionality, and more Tips for facilitating
the development and testing of Vaadin
applications Enhance your applications
with Spring, Grails, or Roo integration

Please check www.PacktPub.com for information on our titles

Google App Engine Java and GWT
Application Development
ISBN: 978-1-84969-044-7 Paperback: 480 pages

Build powerful, scalable, and interactive web
applications in the cloud

1.	 Comprehensive coverage of building scalable,
modular, and maintainable applications with
GWT and GAE using Java

2.	 Leverage the Google App Engine services
and enhance your app functionality and
performance

3.	 Integrate your application with Google
Accounts, Facebook, and Twitter

ExtGWT Rich Internet Application
Cookbook
ISBN: 978-1-84951-518-4 Paperback: 366 pages

80 recipes to build rich Java web apps on the robust
GWT platform, with Sencha ExtGWT

1.	 Take your ExtGWT web development skills
to the next level

2.	 Create stunning UIs with several layouts
and templates in a fast and simple manner

3.	 Enriched with code and screenshots for
easy and quick grasp

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Vaadin and its Context
	Rich applications
	Application tiers
	Tier migration

	Limitations of the thin-client applications approach
	Poor choice of controls
	Many unrelated technologies
	Browser compatibility
	Page flow paradigm

	Beyond the limits
	What are rich clients?
	Some rich client approaches

	Why Vaadin?
	State of the market
	Importance of Vaadin
	Vaadin integration
	Integrated frameworks
	Integration platforms

	Using Vaadin in the real world
	Concerns about using a new technology

	Summary

	Chapter 2: Environment Setup
	Vaadin in Eclipse
	Setting up Eclipse
	When Eclipse is not installed
	Installing the Vaadin plugin
	Creating a server runtime
	Creating our first Eclipse Vaadin project
	Testing our application

	When Eclipse is already installed
	Checking if WTP is present
	Adding WTP to Eclipse

	Vaadin in IntelliJ IDEA
	Setting up IntelliJ
	Adding the Vaadin 7 plugin
	Creating our first IntelliJ IDEA Vaadin project
	Adjusting the result
	Adding framework support
	Deploying the application automatically

	Testing the application
	Final touches
	Changing the Vaadin version
	Context-root
	Servlet mapping

	Vaadin and other IDEs
	Adding Vaadin libraries
	Creating the application
	Adding the servlet mapping
	Declaring the servlet class
	Declaring Vaadin's entry point
	Declaring the servlet mapping

	Summary

	Chapter 3: Hello Vaadin!
	Understanding Vaadin
	Vaadin's philosophy
	Vaadin's architecture
	Client-server communication
	The client part
	The server part
	Client-server synchronization

	Deploying a Vaadin application
	Inside the IDE
	Creating an IDE-managed server
	Adding the application
	Launching the server

	Outside the IDE
	Creating the WAR
	Launching the server

	Using Vaadin applications
	Browsing Vaadin
	Out-of-the-box helpers
	The debug mode
	Restart the application, not the server

	Behind the surface
	Stream redirection to a Vaadin servlet
	Vaadin request handling
	What does a UI do?
	UI features
	UI configuration
	UI and session

	Scratching the surface
	The source code
	The generated code
	Things of interest

	Summary

	Chapter 4
: Components and Layouts
	Thinking in components
	Terminology
	Component class design
	Component
	MethodEventSource
	Abstract client connector
	Abstract component

	UIs
	HasComponents
	Single component container
	UI
	Panel

	Windows
	Window structure
	Customizing windows

	Labels
	Label class hierarchy
	Property
	Label

	Text inputs
	Conversion
	Validation
	Change buffer
	Input

	More Vaadin goodness
	Page
	Third-party content
	User messages

	Laying out the components
	Size
	Layouts
	About layouts
	Component container
	Layout and abstract layout
	Layout types
	Choosing the right layout

	Split panels

	Bringing it all together
	Introducing Twaattin
	The Twaattin design
	The login screen
	The main screen

	Let's code!
	Project setup
	Project sources

	Summary

	Chapter 5: Event Listener Model
	Event-driven model
	The observer pattern
	Enhancements to the pattern

	Events in Java EE
	UI events

	Event model in Vaadin
	Standard event implementation
	Event class hierarchy
	Listener interfaces
	Managing listeners
	Method event source details
	Abstract component and event router

	Expanding our view
	Button

	Events outside UI
	User change event

	Architectural considerations
	Anonymous inner classes as listeners
	Components as listeners
	Presenters as listeners
	Services as listeners
	Conclusion on architecture

	Twaattin is back
	Project sources
	Additional features

	Summary

	Chapter 6: Containers and Related Components
	Data binding
	Data binding properties
	Renderer and editor
	Buffering
	Data binding

	Data in Vaadin
	Entity abstraction
	Property
	Item
	Container

	Containers and the GUI
	Container datasource
	Container components
	Tables
	Trees

	Refining Twaattin
	Prerequisites
	Adaptations
	Sources
	The login screen
	The login behavior
	The timeline screen
	The tweets refresh behavior
	Column generators

	Summary

	Chapter 7: Core Advanced Features
	Accessing the JavaEE API
	Servlet request
	Servlet response
	Wrapped session

	Navigation API
	URL fragment
	Views
	Navigator
	Initial view
	Error view
	Dynamic view providers

	Event model around the Navigation API
	Final word on the Navigator API

	Embedding Vaadin
	Basic embedding
	Nominal embedding
	Page headers
	The div proper
	The bootstrap script
	UI initialization call

	Real-world error handling
	The error messages
	Component error handling
	General error handling

	SQL container
	Architecture
	Features
	Queries and connections
	Database compatibility
	Joins
	References
	Free form queries

	Related add-ons

	Server push
	Push innards
	Installation
	How-to
	Example

	Twaattin improves!
	Ivy dependencies
	Twaattin UI
	Tweet refresher behavior
	Twitter service

	Summary

	Chapter 8: Featured Add-ons
	Vaadin add-ons directory
	Add-ons search
	Typology
	Stability
	Add-ons presentation
	Summarized view
	Detailed view

	Noteworthy add-ons
	Button group
	Prerequisites
	Core concepts
	How-to
	Conclusion

	Clara
	Prerequisites
	How-to
	Limitations
	Conclusion

	JPA Container
	Concepts
	Prerequisites
	How-to
	Conclusion

	CDI Utils
	Core concepts
	Prerequisites
	How-to
	Conclusion

	Summary

	Chapter 9: Creating and Extending Components and Widgets
	Component composition
	Manual composition
	Designing custom components
	Graphic composition
	Visual editor setup
	Visual Designer use
	Limitations

	Client-side extensions
	Connector architecture
	How-to

	Shared state
	How-to

	Server RPC
	Server RPC architecture
	How-to

	GWT widget wrapping
	Vaadin GWT architecture
	How-to server-side
	How-to client-side
	Widget styling

	Example
	Prerequisites
	Server component
	Client classes

	JavaScript wrapping
	How-to
	Example
	Prerequisites
	Core

	Componentized Twaattin
	Designing the component
	Updating Twaattin's code
	Data Transfer Object
	Status component
	Status converter
	Timeline screen

	Summary

	Chapter 10: Enterprise Integration
	Build tools
	Available tools
	Apache Ant
	Apache Maven
	Fragmentation
	Final choice

	Tooling
	Maven in Vaadin projects
	Mavenize Vaadin projects
	Vaadin support for Maven projects

	Mavenizing Twaattin
	Preparing the migration
	Enabling dependency management
	Finishing touches
	Final POM

	Portals
	Portal, container, and portlet
	Choosing a platform
	Liferay
	GateIn

	Tooling
	A simple portlet
	Creating a project
	Portlet project differences
	Using the portlet in GateIn

	Configuring GateIn for Vaadin
	Themes and widgetsets

	Advanced integration
	Restart and debug
	Handling portlet specifics

	Portlet development strategies
	Keep our portlet servlet-compatible
	Portal debug mode
	Updating a deployed portlet

	OSGi
	Choosing a platform
	Glassfish

	Tooling
	Vaadin OSGi use cases
	Vaadin bundling
	Modularization

	Hello OSGi
	Making a bundle
	Export, deploy, and run
	Correcting errors

	Integrating Twaattin
	Bundle plugin
	Multiplatform build

	Cloud
	Cloud offering levels
	State of the market
	Hello cloud
	Registration
	Cloud setup
	Application deployment

	Summary

	Index

